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Long-run income convergence is investigated in the U.S. context. We employ a novel
pairwise econometric procedure based on a probabilistic definition of convergence. The
time-series properties of all the possible regional income pairs are examined by means of
unit root and non-cointegration tests, where inference is based on the fraction of rejections.
We distinguish between the cases of strong convergence, where the implied cointegrating
vector is [1, −1], and weak convergence, where long-run homogeneity is relaxed. To
address cross-sectional dependence, we employ a bootstrap methodology to derive the
empirical distribution of the fraction of rejections. We find supporting evidence of U.S.
states sharing a common stochastic trend consistent with a definition of convergence
based on long-run forecasts of state incomes being proportional rather than equal. We find
that the strength of convergence between states decreases with distance and initial income
disparity. Using Metropolitan Statistical Area data, evidence for convergence is stronger.
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Convergence

1. INTRODUCTION

In recent years, economists have keenly debated the neoclassical growth model
prediction of per capita income convergence. Assuming the same structural char-
acteristics, countries or regions with relatively less capital would be expected to
accumulate more capital and grow faster than those with relatively more capital,
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eventually converging to the same steady state. In contrast, models of endogenous
growth or the “new” theories of international trade argue that such convergence
might fail on account of increasing returns and externalities. Indeed, as pointed
out by Krugman (1991) and Krugman and Venables (1995), in the presence of
increasing returns, economic activity might be expected to concentrate geograph-
ically in a few areas. A wide range of studies that includes early work by Baumol
(1986), Barro (1991), Barro and Sala-i-Martin (1991, 1992), Mankiw et al. (1992),
Carlino and Mills (1993), Bernard and Durlauf (1995), and Sala-i-Martin (1996)
and, more recently, studies such as Papageorgiou and Perez-Sebastian (2004),
Inklaar and Timmer (2009), and Deckers and Hanck (2012) have considered con-
vergence across countries, U.S. states, and European regions and industries and
provided mixed evidence in favor of convergence. The empirical investigation of
the convergence hypothesis has been based on both cross-sectional and time-series
approaches. The cross-sectional approach is often encapsulated in the notion of
β-convergence, which requires that “poor” regions grow faster than “rich” ones.
However, several criticisms have been raised against the conclusions reached in
many of these studies on account of Galton’s fallacy or “regression towards the
mean” (Quah, 1993). In contrast, the time series approach is built on a stochas-
tic definition of convergence in which the per capita disparities are expected to
be stationary. Moreover, temporary shocks to key structural variables such as
saving rates, population growth, and technological progress are characterized by
stationary relative outputs, thereby indicating that economies are stochastically
converging. This definition is exemplified by studies such as Bernard and Durlauf
(1995), who find little evidence of long-run convergence among OECD countries.

Using per capita income data across many decades, a number of studies have ex-
amined stochastic convergence among U.S. states. As pointed out by Choi (2004),
among others, because of their almost homogeneous institutional environments
and their highly integrated markets for products and factors, the U.S. states satisfy
the underlying conditions of the convergence hypothesis in the standard neoclassi-
cal growth model. The existing evidence, however, is mixed. For example, Carlino
and Mills (1993) provide evidence in favor of stochastic convergence insofar
as shocks to relative regional per capita income are temporary, but only after
allowing for a structural break in 1946. Evans and Karras (1996) employ a panel
unit root test based on Levin et al. (2002). Although this test only allows for fixed
effects and common slopes, they reject the null hypothesis of joint nonstationarity
of relative per capita incomes. Tsionas (2001) employs vector error correction
modeling and finds that multiple common trends are driving the income series,
thus concluding against the convergence of real per capita incomes. Choi (2004)
applies multiple panel data techniques to state per capita output and finds that
output convergence in the United States has proceeded among geographically
neighboring states rather than among distant states, notwithstanding the nearly
complete integration of product and factor markets. More recently, Mello (2011)
examines relative incomes and considers whether low power of unit root tests and
high persistence have led researchers to find evidence against convergence. Using
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a methodology based on fractional integration and interval estimation, support is
found for stochastic convergence.

In this paper, we contribute to the debate concerning long-run income con-
vergence among U.S. states. In doing so, we analyze the interaction between
nonstationary state income series and draw on the time-series approach, but in a
way that also utilizes cross-sectional information. The novelty of our approach
is the development of an econometric procedure advocated by Pesaran (2007).
Within this framework, a pairwise probabilistic definition of regional convergence
forms the basis of our empirical testing strategy. The idea here is that for a sample
of N states, unit root tests are conducted on all N(N − 1)/2 real per capita income
differentials (pairs or gaps). Under the null of nonstationarity or nonconvergence,
one would expect the fraction of real per capita income pairs for which the unit
root hypothesis is rejected to be close to the size of the underlying unit root tests,
denoted as α. Thus, we can argue that the null of nonstationarity for all state
pairs could be rejected if this fraction of rejections exceeded α. However, the
presence of cross-sectional dependence can make inference based on the fraction
of rejections difficult, so the bootstrap methodology is employed to derive the
empirical distribution of the fraction of rejections.

There already exist a limited number of studies that investigate stochastic
convergence using a pairwise approach. Pesaran (2007) considers data for 101
countries and geographical subgroups. Relying on the use of pairwise unit root
tests provides little evidence of convergence at a global level, though there is some
evidence of club convergence [Quah (1997)]. Deckers and Hanck (2012) do not
support the notion of convergence, using a sample of 51 countries. In terms of
studies of regional income convergence, Mello (2011) considers the case of the
48 contiguous U.S. states. The pairwise unit root testing procedure indicates that
the nonstationary null is rejected in 8.6% of the cases, where α is set equal to
5%. Le Pen (2011) offers a pairwise study of output convergence between 195
European regions. Although this particular study integrates structural breaks into
the analysis, the evidence is not supportive of stochastic convergence. Using these
studies as a starting point, we extend the analysis in two important directions. First,
none of these regional studies consider an empirical distribution of the fraction
of rejections. In our investigation, we construct confidence intervals around the
point estimates of the percentage of rejections. Second, and more importantly, the
studies mentioned only consider pairwise stationarity with an implied cointegrat-
ing coefficient of unity. In sharp contrast to the existing literature, we conduct an
analysis that also permits the possibility of pairwise cointegration, that is, relaxing
the [1, −1] assumption for the cointegrating vector, as distinct from pairwise
stationarity. This extension allows pairwise states to share a common stochastic
trend such that state responses to shocks are proportional rather than equal.

The paper is organized as follows. The following section briefly describes the
pairwise testing approach to convergence. The third section discusses the data
and the results of the empirical analysis. Although pairwise unit root testing is
not supportive of long-run convergence among the 48 U.S. states, our pairwise
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cointegration approach provides more supportive evidence. Further, we find that
the strength of convergence, as measured by the long-run slope coefficient, is
negatively related to both distance and initial income disparity. When we consider
a more disaggregated data set for 346 Metropolitan Statistical Areas (MSAs), con-
firmatory evidence of convergence is found (more disaggregation implies stronger
convergence). The final section offers some concluding remarks.

2. A PAIRWISE APPROACH TO TESTING FOR CONVERGENCE

The unit root and cointegration tests employed in the literature to assess stochastic
convergence have typically been applied to regional income benchmarked against
national income. However, this approach could be sensitive to the choice of base
region or state and susceptible to aggregation bias.1 For the purposes of our
empirical analysis, we employ the Pesaran (2007) pairwise testing procedure to
analyze probabilistic convergence across a large number of cross-section units.
Let yit be real per capita income data in U.S. state i at time t , where i = 1, . . . , N

and t = 1, . . . , T . Pesaran’s pairwise approach is based on examination of the
time series properties of all N(N − 1)/2 possible real per-capita income gaps
between states i and j , denoted gijt = yit − yjt , where i = 1, . . . , N − 1 and
j = i + 1, . . . , N . Defining Z̄NT as the fraction of gaps for which the unit-root
hypothesis is rejected, Pesaran (2007) shows that as T → ∞, the expected value
of Z̄NT is equal to the nominal size of the unit root test statistic, α. Thus, evidence
of stochastic convergence is found whenever Z̄NT > α, which is consistent with
Definition 2.1 in Bernard and Durlauf (1995). According to this definition, for
two states to converge, their incomes must be cointegrated, and the cointegrating
vector must be equal to [1,−1]′. This means that in the long run the incomes
of the two states contain a common stochastic trend (i.e., they share the same
determinants) and respond to permanent shocks with the same weights.

Under the pairwise approach, it is possible that convergence occurs across all
states even if cointegration cannot be detected for every pair we choose. An impor-
tant issue that arises is whether Z̄NT is statistically different from α. In a significant
departure from Mello (2011), we compute confidence intervals for Z̄NT . These are
based on the derivation of the empirical distribution of the fraction of rejections
using the bootstrap methodology, because the derivation of the variance of Z̄NT is
complicated by the fact that individual unit root tests are not independent from each
other. Moreover, the pairwise approach outlined so far implicitly assumes that all
income pairs are cointegrated, with a known cointegrating vector equal to [1,−1]′.
This implies that the output forecasts of any state pair will be equal as T → ∞. In
practice, this might be regarded as a somewhat strong assumption. Thus, we might
expect a case for weaker convergence whenever there is cointegration between two
income series but the cointegrated vector is not known. For this reason, we deviate
further from Mello (2011) by extending Pesaran’s pairwise approach, considering
a test for a weaker form of convergence, according to which income pairs are
cointegrated with an unknown cointegrating vector. In other words, instead of
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testing whether gijt = yit −yjt is stationary, we alternatively examine whether yit

and yjt are cointegrated, possibly with a slope different from unity. This weaker
form of convergence is consistent with Definition 2.2 in Bernard and Durlauf
(1995), where long-run income forecasts are proportional. This means that the
two series contain a common stochastic trend insofar as they share the same deter-
minants in the long run, but in the long run they respond to permanent shocks with
different weights. To test for pairwise cointegration between state incomes, we
employ the Johansen (1988) maximum likelihood estimator of cointegrated vector
autoregressive (VAR) models, which offers the advantage that normalization on a
particular state within each bivariate relationship is not an issue, insofar as it does
not matter whether one looks at cointegration between yit and yjt , or between yjt

and yit .
At this point it is worth mentioning that attempting to estimate a single vector

error correction model (VEC) that incorporates the per capita income series for
all the U.S. states would be highly problematic because of the large number of
states and lags that would be involved in the modeling exercise, and the number
of time observations that are available. The pairwise Johansen approach provides
the opportunity to incorporate all bivariate state income relationships that exist.
Of course, there already exist panel unit root and noncointegration tests such as
Maddala and Wu (1999), Pedroni (2001), Levin et al. (2002), and Im et al. (2003) as
potential ways of overcoming the low test power attached to univariate methods.
However, following Pesaran et al. (2009), it can be argued that the pairwise
methodology provides three key advantages over existing panel techniques in
terms of (i) addressing the proportion of cases that are stationary (or cointegrated);
(ii) allowing for the presence of cross-sectional dependence across states; and (iii)
not being affected by the selection of a base or reference state.

3. EMPIRICAL ANALYSIS

3.1. Data Description

We employ per capita personal income (PCPI) data for 48 U.S. states in dollars.2

The data, expressed in natural logarithm form, are annual, cover the study period
from 1929 to 2009 for a total of 81 observations, and were downloaded from the
Federal Reserve Economic Dataset (FRED), assembled by the Federal Reserve
Bank of St. Louis. In the data set, each income series is coded as the state abbrevia-
tion plus the suffix PCPI; thus, for instance, ARPCPI is per capita personal income
in Arkansas, and so on. Because reliable data on state price levels are not available,
the PCPI series for each state is then deflated by the overall consumer price index;
see, for example, Sala-i-Martin (1996) and Barro and Sala-i-Martin (1999, Ch.
10). Perhaps it is worth noting that in the original pairwise approach advocated by
Pesaran (2007), which examines differentials between pairs of series, the results
are not affected by the choice of data in nominal or real terms (as long as all series
are deflated by the same national deflator, as in this paper). However, when one
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considers cointegration between pairs of series, whether the series are nominal or
real turns out to be important.

In addition to these state-level data, we also analyze PCPI data obtained from
the FRED data set for 346 MSAs over the study period 1969–2009. The reason
for analyzing this alternative data source is not only to exploit the information
provided by a highly disaggregated data set, but also the fact that the pairwise
approach is applicable even when the number of individual series in the panel, N,
is large relative to its time dimension, T, as shown by the analytical and Monte
Carlo simulation results reported in Pesaran (2007). In particular, the simulation
results presented by this author in Tables 1b and 2b illustrate that under the null of
nonconvergence, the rejection frequencies vary little across N for a given T, and
increase rapidly with T. Overall, the pairwise testing approach performs well for
T ≥ 30.

3.2. Discussion of Results

We begin our empirical analysis of convergence by considering a standard ap-
proach based on unit root tests applied to income differentials in each state. For
this, one could calculate relative income with respect to national real per capita
income (United States), as in, e.g., Mello (2011), or with respect to a particular
state. For the latter, and in what can be regarded as a somewhat arbitrary choice,
we select four benchmark states with respect to which all other incomes are
measured, namely California (CA), Florida (FL), Illinois (IL), and New York
(NY). As can be seen from the results reported in Table 1, there is considerable
variation in the percentage of rejections. In many cases the order of integration of
the income differentials depends upon the chosen benchmark. For instance, in the
cases of the states of Texas (TX) and Washington (WA), we reject the unit root
hypothesis when their incomes are measured relative to the national average (US),
Illinois (IL), and New York (NY), but not when they are measured relative to the
states of California (CA) and Florida (FL). The results in Table 1 thus illustrate
the importance of considering the additional information that emerges when one
looks at state incomes in pairs of states, as opposed to the income of a given
state relative to U.S. income, or relative to the income of any other (somewhat
arbitrarily chosen) state.

Table 2 reports the percentage of rejections of the augmented Dickey and Fuller
(1979) (ADF) tests, based on all 1,128 bivariate income differentials. These tests
are conducted at the 5% and 10% significance levels, the number of lags of the
test regression is determined using the Akaike information criterion (AIC) with
pmax = 4, and a trend term is included if it is statistically significant at the 5%
level.3 As can be seen, the percentage of rejections exceeds the size of the unit
root test statistics, being equal to 33.78% (46.72%) at the 5% (10%) significance
level; qualitatively similar results are obtained from employing the more powerful
Elliott et al. (1996) (ERS) unit root test (these results are not reported here, though).
If we follow Barro (1991) and others in making a distinction between Southern
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TABLE 1. ADF unit root t-tests on relative per capita personal income

State Relative to U.S. Relative to CA Relative to FL Relative to IL Relative to NY

AL −2.432 −2.469 −1.636 −1.933 −3.533�

AR −3.364� −3.037� −1.807 −1.741 −2.040
AZ −3.365� −3.288� −1.669 −3.225� −3.225�

CA −1.376 n.a. −2.287 −2.131 −2.876�

CO −2.101 −2.164 −3.360� −1.957 −2.471
CT −2.081 −0.760 −2.662� −2.030 −2.981�

DE −1.256 −2.989� −1.924 −1.666 −2.794�

FL −2.193 −2.287 n.a. −2.935� −3.494�

GA −3.624� −2.634� −2.047 −2.268 −3.846�

IA −2.341 −1.750 −2.695� −2.499 −2.309
ID −3.368� −3.409� −1.202 −4.984� −4.281�

IL −2.606� −2.131 −2.935� n.a. −1.765
IN −2.473 −2.587 −0.844 −4.685� −2.482
KS −3.262� −1.804 −2.276 −2.633� −3.687�

KY −1.628 −2.255 −1.809 −2.481 −2.310
LA −1.717 −1.423 −2.424 −1.477 −2.460
MA −2.468 −0.524 −3.905� −1.653 −1.686
MD −2.463 −0.801 −3.434� −0.685 −2.155
ME −2.028 −0.473 −4.471� −2.305 −2.713�

MI −1.258 −2.504 −0.222 −3.933� −3.067�

MN −1.942 −1.265 −3.752� −1.699 −2.510
MO −2.621� −1.670 −2.915� −1.941 −2.869�

MS −2.665� −2.570 −1.675 −2.141 −3.742�

MT −1.842 −3.525� −1.009 −3.566� −2.557
NC −3.644� −2.479 −1.942 −3.139� −4.096�

ND −2.057 −1.852 −2.191 −2.071 −2.232
NE −1.891 −1.435 −2.867� −1.842 −2.060
NH −1.539 −0.668 −3.024� −1.291 −2.292
NJ −2.328 −0.074 −2.650� −0.782 −2.443
NM −2.186 −1.970 −1.810 −2.739� −3.802�

NV −0.858 −3.079� −0.978 −1.965 −3.001�

NY −4.083� −2.876� −3.494� −1.765 n.a.
OH −0.982 −2.324 −0.822 −5.341� −3.056�

OK −1.570 −1.365 −2.274 −2.759� −1.968
OR −1.515 −2.575 −1.338 −3.827� −3.370�

PA −3.299� −0.612 −3.195� −1.225 −2.560
RI −2.376 −1.663 −3.165� −1.766 −5.185�

SC −3.597� −3.151� −2.364 −2.178 −3.583�

SD −2.250 −2.084 −2.098 −2.318 −2.727�

TN −3.805� −2.178 −1.422 −1.690 −3.223�

TX −3.265� −2.074 −2.013 −2.723� −3.929�

UT −2.466 −3.332� −1.161 −4.255� −3.750�

VA −1.497 −3.020� −1.316 −2.620� −3.484�

VT −1.033 −0.086 −4.082� −0.702 −2.872�

WA −3.068� −2.524 −1.845 −3.734� −3.585�

WI −2.809� −1.436 −2.632� −2.205 −3.481�

WV −2.398 −1.489 −3.527� −1.917 −2.842�

WY −3.204� −2.635� −2.205 −1.855 −2.965�

Notes: � denotes significance at the 10% level; n.a. indicates not applicable. Unit root tests include an intercept term
and the number of lags is determined using the AIC with pmax = 4.
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TABLE 2. Fraction of rejections assuming state income
pairs are cointegrated with known cointegrating vector
[1,−1]′

α All states Non-Southern states Southern states

5% 33.78 35.29 38.18
10% 46.72 47.15 58.18

Notes: Sample period 1929–2009. In line with Barro and Sala-i-Martin (1992),
the following 11 states are classified as Southern: Alabama, Arkansas, Florida,
Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina,
Tennessee, and Virginia. The remaining states are non-Southern. The ADF
unit-root test regressions include a linear trend if it is statistically significant
at the 5% level. The number of lags of the dependent variable is determined
using the AIC with pmax = 4. Critical values for the ADF test are based on
response surfaces estimated by Cheung and Lai (1995).

and non-Southern states, the corresponding point fraction of rejections is slightly
higher for Southern states (38.18%) than the 35.29% obtained for non-Southern
states.4 The results just described, however, focus only on the point estimate of the
proportion of the pairwise tests that reject the null hypothesis of no convergence.
It is important to consider the precision of these estimates, because potential
cross-section dependence between the test outcomes is likely to increase the
uncertainty considerably. We therefore move the analysis forward by employing
the factor-augmented sieve bootstrap approach outlined in Appendix 1. In doing
so, the cross-sectional dependence is interpreted in terms of a factor model. As
explained, the parameters of an underlying factor model are estimated directly,
and we subsequently use these estimates to bootstrap the pairwise rejection rates,
treating this factor model as an approximation to the true data generation process
(the bootstrap results are based on 5,000 replications).

To implement the bootstrap, we start off by considering the time series properties
of the cross-sectional mean of all income series in real terms, denoted as ȳt in the
previous section, as an estimate of the common factor.5 The results indicate that
the ADF and ERS tests (including constant and trend) provide mixed evidence
regarding the order of integration of ȳt ; that is, whereas ADF(1) = −3.075
suggests that the null hypothesis of a unit root is not rejected at the 10% significance
level, ERS(1) = −3.263 provides evidence in favor of stationarity. Thus, for the
purposes of the implementation of the bootstrap, we consider two cases, one in
which a unit root is imposed on ȳt , and another one in which a unit root is not
imposed.

Table 3 reports the respective distributions of the bootstrapped fraction of re-
jections for the income gaps in real terms. Focusing on the case where a unit root
is imposed on the common factor, the results of the ADF test reveal that the mean
of the bootstrap distribution is 16.03% for α = 10%, a value that is much lower
than the corresponding point estimate of 46.72% reported in Table 2. The lower
bound of the 90% bootstrap confidence interval is 7.27%, which includes 10%. It
should be recalled that for convergence one would expect a fraction of rejections
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TABLE 3. Distribution of the bootstrapped fraction of rejections assuming state
income pairs are cointegrated with known cointegrating vector [1,−1]′

States α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

Imposing a unit root on common factor
All 5% 8.79 7.80 4.57 2.75 3.28 3.98 14.98 17.73 20.57

10% 16.03 14.89 6.63 6.38 7.27 8.59 25.09 28.82 31.74
Non-Southern 5% 9.09 8.26 4.33 3.00 3.45 4.35 15.02 17.27 19.52

10% 16.16 15.32 6.37 6.46 7.36 8.71 24.78 27.78 30.78
Southern 5% 10.63 9.09 6.43 1.82 1.82 3.64 18.18 21.82 25.46

10% 19.08 18.18 8.85 5.46 7.27 9.09 30.91 34.55 40.00

Not imposing a unit root on common factor
All 5% 11.46 10.73 4.78 4.43 5.14 6.12 17.73 20.39 23.05

10% 20.10 19.33 6.41 9.66 10.81 12.50 28.81 31.65 34.93
Non-Southern 5% 13.17 12.16 6.20 4.35 5.11 6.29 21.47 24.93 28.38

10% 21.83 21.02 7.99 9.16 10.21 12.16 32.58 36.49 40.24
Southern 5% 13.08 12.73 7.08 1.82 3.64 5.46 21.82 25.46 29.09

10% 22.82 21.82 9.40 7.27 9.09 10.91 34.55 40.00 43.64

Notes: Sample period 1929–2009. Pairwise ADF unit root tests. The bounds of the confidence intervals are given by
the underlined figures. The number of bootstrap replications used to derive the empirical distribution of the fraction
of rejections is 5,000.

larger than 10%, which is the significance level at which the tests are conducted. If
a unit root is not imposed on the common factor, the lower bound of the bootstrap
distribution is in the boundary of α = 10% for the ADF test (i.e., 10.81%). Similar
results are observed when α = 5% is used as the significance level, or when instead
of the ADF unit root test the ERS test is employed in the analysis. It is therefore
clear that cross-section dependence introduces a large degree of uncertainty into
the point estimate of the proportion of rejections. As can be seen from Table 3,
qualitatively similar results are also obtained when Southern and non-Southern
states are considered.

Our findings so far do not provide strong support for long-run convergence
between U.S. state incomes in real terms. The possibility we have considered
so far is one of strong convergence where the implied cointegrating vector is
restricted to [1, −1]. In the spirit of Definition 2.2 in Bernard and Durlauf (1995),
it can be argued that a weaker form of convergence is more relevant, whereby
state income pairs are cointegrated, but with an unknown cointegrating vector not
necessarily equal to [1, −1].6 To explore this possibility, we employ and develop
the Johansen (1988) maximum likelihood estimator of cointegrated VAR models
within the Pesaran pairwise setting. The starting point of the analysis is to estimate
for each possible state income pair a VAR model with an unrestricted constant
term (because the variables exhibit a positive drift). The optimal lag length of
the VAR models is determined using the AIC with pmax = 4. Then we use the
trace and the maximum eigenvalue tests to determine the number of cointegrating
vectors, which is denoted r . The former involves testing the null hypothesis that
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TABLE 4. Fraction of rejections assuming state in-
come pairs are cointegrated with unknown cointe-
grating vector

Ho Ha α Fraction of rejections

Johansen trace test
r = 0 r ≥ 1 5% 62.68
r = 0 r ≥ 1 10% 71.72

Johansen maximum eigenvalue test
r = 0 r = 1 5% 53.55
r = 0 r = 1 10% 65.60

Notes: Sample period 1929–2009. The Johansen cointegration test results
are based on the estimation of bivariate VAR models with a constant term
that enters unrestrictedly. The number of lags of the VAR models is deter-
mined using the AIC with pmax = 4. r denotes the number of cointegrating
vectors. Critical values are based on response surfaces estimated by MacK-
innon et al. (1999).

there are r = 0 cointegrating vectors against the alternative that r ≥ 1. The latter
involves testing the null hypothesis that there are r = 0 cointegrating vectors
against the alternative that r = 1. In both cases, if the null hypothesis is rejected,
then this would provide support for the view that the two real income series share
the same stochastic trend.7

The results in Table 4 indicate that the proportion of rejections of Ho : r = 0
(against Ha : r ≥ 1) is 71.72% (i.e., 809 out of 1,128 possible real income gaps)
setting α = 10%, whereas the corresponding number of rejections for α = 5% is
62.68%. Once again, these initial point estimates of the percentage of rejections
of noncointegration fail to account for the presence of potential cross-section
dependence, so we implement the bootstrap procedure. These results thus offer
support for the presence of a weaker form of convergence; see Table 5. Indeed, let
us again consider the results obtained for the trace test when a unit root is imposed
on ȳt . Looking at α = 10%, the mean proportion of rejections is 37.31%, and the
90% bootstrap confidence interval around this mean estimate ranges from 12.94%
to 69.59%. Therefore, this 90% confidence interval does not cover values below
10%. Qualitatively similar results are obtained using the maximum eigenvalue
test, or setting α = 5%, or when a unit root is imposed on the common factor ȳt

(irrespective of the significance level).
These results are more favorable toward the presence of cointegration between

bivariate state pairs. It can be argued that strong or weak convergence is reflected in
the long-run slope coefficient that depicts each long-run relationship. Conditioning
on the cases for which the trace test provides evidence in favor of cointegration,
that is, 809 when α = 10% and 707 when α = 5%, the null hypothesis that the
cointegrating vector can be set equal to [1, −1] cannot be rejected in less than
half of the possible cases—more precisely 303/809 = 0.37 when α = 10% and
310/707 = 0.44 when α = 5%.
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TABLE 5. Distribution of the bootstrapped fraction of rejections assuming state
income pairs are cointegrated with unknown cointegrating vector

Johansen tests

Ho Ha α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

Imposing a unit root on common factor
Trace:
r = 0 r ≥ 1 5% 25.87 22.52 14.80 6.20 7.71 9.93 47.08 55.33 62.41
r = 0 r ≥ 1 10% 37.31 34.62 17.31 10.90 12.94 16.58 62.59 69.59 74.91

Max. Eigenvalue:
r = 0 r = 1 5% 21.54 17.64 13.66 5.41 6.56 8.07 40.78 50.36 56.83
r = 0 r = 1 10% 31.65 28.10 16.22 9.66 11.44 13.74 55.50 64.27 69.42

Not imposing a unit root on common factor
Trace:
r = 0 r ≥ 1 5% 27.80 25.53 12.77 9.22 11.26 13.56 45.48 52.75 58.95
r = 0 r ≥ 1 10% 36.10 34.31 13.57 14.71 17.29 20.21 55.14 61.53 67.11

Max. Eigenvalue:
r = 0 r = 1 5% 20.90 18.44 11.22 6.56 7.80 9.49 35.90 43.71 50.44
r = 0 r = 1 10% 27.92 25.44 12.22 11.26 12.86 14.89 44.60 52.58 59.22

Notes: Sample period 1929–2009. r denotes the number of cointegrating vectors. The bounds of the confidence
intervals are given by the underlined figures. The number of bootstrap replications used to derive the empirical
distribution of the fraction of rejections is 5,000.

Given the presence of weak as opposed to strong convergence across state pairs
and heterogeneity in the estimated long-run slopes, it is of interest to consider what
factors might drive the estimated values of the slopes themselves and whether
it is possible to define a basis for convergence clusters. Choosing β

(ij)
2 as the

cointegrating slope, we measure the strength of convergence between real per
capita personal incomes in states i and j as the absolute value of the difference
between β

(ij)
2 and one, that is, |β(ij)

2 − 1|, and consider the roles played by two
potential drivers. The first is the absolute value of the difference between (the
logs of) initial per capita income in states i and j, denoted by |log yi0 − log yj0|.
The second driver is (the log of) distance between states i and j, which we denote
log Dij . For this, we employ the Euclidean distance between the population centers
of any two states, based on the geographic coordinates (latitude and longitude)
obtained from the Census Bureau for the year 2000.8

Estimation by OLS for the 809 cases where the trace test rejects the null
hypothesis of no cointegration at the 10% significance level yields the following
regression result:

∣∣∣β(ij)
2 − 1

∣∣∣ = − 0.032
(0.076)

+ 0.110
(0.028)

∣∣log yi0 − log yj0

∣∣ + 0.024
(0.011)

log Dij ,

(1)
σ̂ = 0.251,
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FIGURE 1. Three-dimensional scatter plot and regression plane of convergence determi-
nants. To improve the visualization of the scatterplot, the observations for which the value
of the z-axis is greater than one are excluded. Nonetheless, the regression plane is fitted
using all 809 observations for which the Johansen trace test rejects the null hypothesis of
no cointegration at the 10% significance level.

where White’s heteroskedasticity-consistent standard errors are reported in paren-
theses.9 The estimated positive coefficient on |log yi0 − log yj0| supports the view
that the likelihood of strong convergence, or |β(ij)

2 − 1| = 0, is enhanced if two
pairwise states are characterized by similar initial per capita incomes. The esti-
mated coefficient on (the log of) distance is positive and statistically significant,
supporting the view that convergence between any two states is stronger, the
closer they are in terms of distance. Thus, although our findings are supportive of
cointegrating relationships across state pairs, it is on this basis that convergence
clubs or groupings may arise.10 To illustrate graphically the convergence results,
Figure 1 presents the regression plane estimated in the preceding, along with
the corresponding three-dimensional scatterplot of the data, in which to improve
the visualization of the results the z-axis is restricted to the [0, 1] interval. As
can be seen from the figure, the shorter the distance between any two states,
and the smaller the absolute difference between their initial incomes, the closer
the cointegrating slope will be to unity; that is, the more likely is convergence
Definition 2.1 in Bernard and Durlauf (1995) to hold.
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TABLE 6. Fraction of rejections
assuming MSA income pairs are
cointegrated with known cointe-
grating vector [1,−1]′

α Fraction of rejections

5% 15.48
10% 25.38

Notes: The ADF unit-root test regressions in-
clude a linear trend if it is statistically significant
at the 5% level. The number of lags of the depen-
dent variable is determined using the AIC with
pmax = 4. Critical values for the ADF test are
based on response surfaces estimated by Cheung
and Lai (1995).

In the final part of our investigation, we examine convergence using MSA-level
data that provide 346 annual income series over the study period 1969–2009. As
with the case of state-level data, we are using the maximum study period dictated
by data availability. Once again, we begin our analysis by applying the ADF
unit root test to MSA income differentials calculated with respect to national real
per capita income. Results, not reported here, indicate that the null hypothesis
of nonstationarity can be rejected only in 26 (49) instances when a 5% (10%)
significance level is used. Table 6 reports the percentage of rejections of the ADF
unit root tests based on all 59,585 bivariate MSA-level income differentials.11

The percentage of rejections exceeds the size of the unit root test statistics, being
equal to 15.48% (25.38%) at the 5% (10%) significance level. Table 7 reports the
respective distributions of the bootstrapped fraction of rejections. These results are
supportive of strong convergence when MSA-level data are analyzed. Focusing
on the case where a unit root is imposed on the common factor, for example, the
lower bound of the 90% bootstrap confidence interval is 16.26%. In contrast to

TABLE 7. Distribution of the bootstrapped fraction of rejections assuming MSA
income pairs are cointegrated with known cointegrating vector [1,−1]′

α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

Imposing a unit root on common factor
5% 12.65 12.46 2.29 8.65 9.19 9.88 15.64 16.72 17.84

10% 21.16 20.99 3.12 15.39 16.26 17.32 25.21 26.59 27.93

Not imposing a unit root on common factor
5% 12.68 12.49 2.25 8.80 9.30 9.98 15.62 16.68 17.74

10% 21.20 21.01 3.07 15.71 16.44 17.42 25.24 26.57 27.78

Notes: Pairwise ADF unit root tests. The bounds of the confidence intervals are given by the underlined figures. The
number of bootstrap replications used to derive the empirical distribution of the fraction of rejections is 5,000.
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TABLE 8. Fraction of rejections assuming MSA income pairs
are cointegrated with unknown cointegrating vector

Ho Ha α Fraction of rejections

Johansen trace test
r = 0 r ≥ 1 5% 15.32
r = 0 r ≥ 1 10% 24.64

Johansen maximum eigenvalue test
r = 0 r = 1 5% 12.57
r = 0 r = 1 10% 20.39

Notes: The Johansen cointegration test results are based on the estimation of bivariate
VAR models with a constant term that enters unrestrictedly. The number of lags of
the VAR models is determined using the AIC with pmax = 4. r denotes the number
of cointegrating vectors. Critical values are based on response surfaces estimated by
MacKinnon et al. (1999).

the earlier results based on state-level data, this is greater than 10%. This finding
is qualitatively unchanged when α = 5% is used as the significance level, or
when a unit root is not imposed on the common factor. Further results based
on the application of the pairwise Johansen test are reported in Tables 8 and
9. Focusing on the trace test, the fraction of rejections of Ho : r = 0 (against
Ha : r ≥ 1) is 24.64% when α = 10%, whereas the corresponding fraction of
rejections for α = 5% is 15.32%. If a unit root is imposed on ȳt , when looking
at α = 10%the mean proportion of rejections is 27.40%, and the 90% bootstrap
confidence interval around this mean estimate ranges from 17.98% to 42.66%.
This 90% confidence interval does not cover values below 10%, and so offers
further support for income convergence. Qualitatively similar results are obtained
by using the maximum eigenvalue test, by setting α = 5%, or when a unit root is
imposed on the common factor ȳt (irrespective of the significance level).

3.3. Comparison with Existing Findings

The earlier pairwise findings reported by Le Pen (2011) and Mello (2011) focus
only on strong convergence and are based on point estimates, making no allowance
for confidence intervals. Our investigation, based on confidence intervals, suggests
that in fact, a weaker form of convergence at the state level is likely to hold in
terms of state incomes sharing a common stochastic trend. Although Le Pen (2011)
provides evidence against convergence in the case of a European sample, it is most
likely that the point pairwise estimate for U.S. states reported by Mello (2011) lies
within a confidence interval based on the size of the individual unit root tests. The
results that we report here are supportive of convergence across U.S. states, but
we find that relative state incomes might respond proportionately to shocks such
as those based on saving, demography, and technology. Therefore, the long-run
forecasts of relative state incomes are proportional rather than equal. This is a form
of convergence that is not considered by Le Pen (2011) or by Mello (2011). The
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TABLE 9. Distribution of the bootstrapped fraction of rejections assuming MSA
income pairs are cointegrated with unknown cointegrating vector

Johansen tests

Ho Ha α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

Imposing a unit root on common factor
Trace:
r = 0 r ≥ 1 5% 19.57 18.23 6.32 11.37 12.33 13.33 27.38 31.34 36.22
r = 0 r ≥ 1 10% 27.40 25.74 7.95 16.73 17.98 19.36 37.45 42.66 48.17

Max. Eigenvalue:
r = 0 r = 1 5% 17.72 16.79 4.65 11.45 12.15 13.01 23.12 26.31 29.34
r = 0 r = 1 10% 25.15 24.04 6.01 16.96 17.91 18.95 32.40 36.21 40.26

Not imposing a unit root on common factor
Trace:
r = 0 r ≥ 1 5% 20.14 19.68 3.85 13.97 14.71 15.61 25.23 27.24 28.91
r = 0 r ≥ 1 10% 28.28 27.78 4.83 20.25 21.29 22.55 34.58 37.14 38.99

Max. Eigenvalue:
r = 0 r = 1 5% 18.46 18.09 3.36 13.06 13.70 14.51 22.89 24.66 26.16
r = 0 r = 1 10% 25.96 25.59 4.23 19.00 19.88 20.97 31.56 33.57 35.39

Notes: r denotes the number of cointegrating vectors. The bounds of the confidence intervals are given by the
underlined figures. The number of bootstrap replications used to derive the empirical distribution of the fraction
of rejections is 5,000.

earlier study by Tsionas (2001) investigates common trends, but concludes that
multiple common trends, rather than a single common trend, drive real incomes
across states. On this basis, Tsionas (2001) is not able to conclude that convergence
is present. Our finding of weak convergence is robust to a pairwise grouping that
permits us to distinguish between Southern and non-Southern states, and we do
not find evidence that supports the presence of convergence clubs along these
particular lines.

We do find that strong convergence is present when examining data at the MSA
level. In convergence studies, the concept of aggregation bias suggests that it is
more likely that convergence will be found at the state level. It should, however, be
remembered that the MSA-level study period used in this study starts much later, in
1969 rather than in 1929. On this basis, our study suggests that strong convergence
could be a phenomenon associated with the more recent decades. After all, the
support for stochastic convergence offered by Carlino and Mills (1993) relies
on allowing for a structural break in 1946. Last, we find that distance is an
important consideration in reflecting on the strength of convergence. Indeed, we
support the findings of Choi (2004) insofar as there is convergence with respect to
geographically neighboring states. Although we find that convergence is stronger
for contiguous states, our results also suggest that convergence is present with
respect to the states separated by larger distances.
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4. CONCLUDING REMARKS

This paper employs time series annual information for U.S. states to assess one
of the key predictions of the neoclassical growth model, namely that of real per
capita income convergence. Our empirical modeling exercise uses a pairwise
probabilistic approach to examine stochastic convergence. This approach is based
on the fraction of rejections of nonstationarity or noncointegration across all bi-
variate state per capita income pairs. Our results confirm convergence over a long
time period as well as convergence with highly disaggregated data. Although we
reject strong convergence at the state level insofar as testing the nonstationarity
of pairwise state income differentials, these tests are characterized by implied
cointegrating vectors of the form [1, −1] under the alternative hypothesis. Further
results based on the development and application of a pairwise Johansen cointe-
gration test offer more empirical support. In this respect, there is a weaker form
of convergence characterized by cointegration between state incomes where the
elements of the cointegrating vector are unrestricted. However, we find that the
likelihood of convergence between any two states is strongest for those states
that have similar initial per capita incomes and are closest in terms of distance.
Additional analysis at a more disaggregated level using metropolitan statistical
area data from a more recent study period provides stronger evidence of long-run
convergence characterized by stationary income differentials.

NOTES

1. For example, real per capita income in states i and j might be found nonstationary when they are
measured against a third numeraire state k, but stationary when they are measured against one another.
This would be the case when there was a highly persistent factor that was common to states i and j, but
that was not shared by state k. The pairwise methodology considers all possible bivariate relationships
and does not involve what can be a problematic choice of a single reference state across the sample.

2. Alaska and Hawaii are excluded from our analysis on the grounds that these states are not
geographically contiguous with any other state in the United States, so the mechanisms that may
underpin long-run constancy of income ratios across states within the United States may not operate
in these cases.

3. As indicated by Le Pen (2011), authors such as Carlino and Mills (1993), among others, argue
that including a deterministic component in the output gap is not always incompatible with convergence.
This situation could appear when regions or countries have not yet reached their long-run equilibrium.
The deterministic trend would thus reflect a catch-up process. At the end of the catch-up phase, the
deterministic trend becomes insignificant.

4. We classify states as Southern and non-Southern following Barro and Sala-i-Martin (1992); see
the notes in Table 1.

5. An application of the Bai and Ng (2002) test confirmed the presence of a single common factor
driving U.S. state incomes.

6. See also the early work by Quintos (1995) and others in the context of the relationship between
government revenue and expenditure and the sustainability of the budget deficit,

7. It is worth mentioning that a test of the null hypothesis that r ≤ 1 against the alternative that
r = 2 is not undertaken, as it opens up the possibility of obtaining counterintuitive results. Indeed, this
second test rejection of the null would indicate the presence of two cointegrating vectors or, in other
words, that each real income series was stationary in levels.
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8. We are most grateful to Gary Wagner, who kindly provided these data, which were used in
Garrett et al. (2007).

9. It should also be noted that when the null of homogeneity is not rejected at the 10% significance
level (i.e., in 303 instances), the corresponding value of the dependent variable is set equal to zero.

10. To assess whether convergence is stronger when two states are both Southern, as defined in
Barro and Sala-i-Martin (1992), inclusion in in the regression model of a dummy variable that takes
the value of one if this condition is satisfied, and zero otherwise, was also tried. However, the estimated
coefficient on this additional regressor was not found to be statistically different from zero.

11. The significant increase in the number of income differentials that accompanies an analysis
at MSA-level poses no additional difficulties for the pairwise convergence approach, other than the
requirement for substantially more computing time.
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APPENDIX A: BOOTSTRAPPING
THE Z̄NT STATISTIC

To bootstrap the Z̄NT statistic, we follow Pesaran et al. (PSYH) (2009). The model setup
considered by these authors is based on the following set of equations:

yit = α′
idt + γ ′

i ft + εit , (A.1)

�εit = ηi + λiεi,t−1 +
pi∑

l=1

ψil�εi,t−l + υit , (A.2)

�fst = μ′
sdt + φfs,t−1 +

ps∑

l=1

ξsl�fs,t−l + est , (A.3)

where s = 1, 2, . . . , m is the number of common factors, dt = (1, t)′ is a vector of deter-
ministic components that includes intercept and trend, ft is an m × 1 vector of unobserved
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common factors, with elements denoted fst , and εit denotes the corresponding idiosyncratic
elements. The unobserved common factors fst and/or the idiosyncratic elements εit may
be I (0) or I (1).

In line with PSYH, we use the cross-sectional average of yit , denoted as ȳt =
N−1

∑N
i=1 yit , as an estimate of the common factor that may induce cross-section de-

pendence across state incomes. To account for cross-section dependence, real per capita
income in each state is regressed on ȳt :

yit = α̂i + δ̂i t + γ̂i ȳt + ε̂it . (A.4)

In Appendix B we report the results of estimating the factor equations for the state-level
data used in the paper. It should be noted that in these factor equations the trend term is
included if it turns out to be statistically significant at the 5% level.

The next step is to examine the time series properties of ȳt , which may be I (0) or I (1).
This involves estimating the following ADF(p) regression for ȳt :

�ȳt = μ̂ + φ̂ȳt−1 +
p∑

l=1

b̂l�ȳt−l + êt , (A.5)

which may also include a trend term if it is statistically significant, and where p may be
determined, e.g., using the AIC. To illustrate the implementation of the bootstrap, let us
consider, for instance, the case in which ȳt has a unit root with a drift and no deterministic
trend. Imposing a unit root on (A.5), i.e., letting φ̂ = 0, and allowing for a drift implies the
following restricted version of (A.5):

�ȳt = μ̂ +
p∑

l=1

ĉl�ȳt−l + ût . (A.6)

Thus, when a unit root and a drift term are imposed on the factor ȳt , the bootstrap samples
of ȳt , denoted ȳ

(b)
t , can be computed using the following generating mechanism:

ȳ(b)
t = μ̂ + ȳ

(b)
t−1 +

p∑

l=1

ĉl�ȳ
(b)
t−l + û(b)

t , (A.7)

where bootstrap residuals û
(b)
t are generated by randomly drawing with replacement from

the set of estimated and centered residuals ût in (A.6), and where the first (p + 1) values
of ȳt are used to initialize the process ȳ

(b)
t .

In turn, the bootstrap samples of yit , denoted as y
(b)
it , are generated as

y
(b)
it = α̂i + δ̂i t + γ̂i ȳ

(b)
it + ε̂

(b)
it , (A.8)

where α̂i , δ̂i , and γ̂i are the OLS estimates of αi , δi , and γi in (5), respectively, and

ε
(b)
it = η̂i + (1 + λ̂i )ε

(b)
i,t−1 +

pi∑

l=1

ψ̂il�ε
(b)
i,t−1 + υ

(b)
it , (A.9)

where bootstrap residuals υ
(b)
it are generated by randomly drawing with replacement from

the set of estimated residuals υit in (A.2), and the first (p + 1) values of ε̂it are used to
initialize the process ε

(b)
it . The AIC is used to select the optimal lag order pi .
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After y
(b)
it has been obtained, it is possible to compute all possible bootstrap income gaps

between states i and j , that is, g
(b)
ij t = y

(b)
it − y

(b)
j t , so that one can then calculate the fraction

of these income gaps for which the unit root hypothesis can be rejected using either the
ADF(p) or the ERS(p) test. The procedure already described is repeated b = 1, . . . , B

times to derive the empirical distribution of the bootstrapped fraction of rejections.

APPENDIX B: FACTOR ESTIMATE EQUATIONS

State Intercept S.E. Trend S.E. ȳt S.E. R̄2

AL −1.840 0.100 −0.002 0.001 1.369 0.029 0.998
AR −2.005 0.121 −0.003 0.001 1.396 0.035 0.997
AZ −0.095 0.083 −0.003 0.001 1.039 0.024 0.997
CA 1.317 0.028 0.766 0.006 0.995
CO 0.480 0.085 0.003 0.001 0.884 0.024 0.997
CT 2.472 0.174 0.011 0.001 0.423 0.050 0.985
DE 2.028 0.136 0.003 0.001 0.574 0.039 0.986
FL −0.221 0.034 1.051 0.008 0.996
GA −1.276 0.038 1.248 0.009 0.996
IA −0.903 0.147 −0.006 0.001 1.263 0.042 0.992
ID −0.731 0.141 −0.006 0.001 1.204 0.041 0.992
IL 0.965 0.025 0.833 0.006 0.996
IN −0.546 0.083 −0.007 0.001 1.188 0.024 0.997
KS −1.389 0.107 −0.008 0.001 1.386 0.031 0.996
KY −0.969 0.037 1.165 0.008 0.996
LA −0.681 0.037 1.110 0.008 0.996
MA 2.875 0.156 0.015 0.001 0.264 0.045 0.988
MD 1.686 0.125 0.009 0.001 0.588 0.036 0.993
ME 1.334 0.144 0.007 0.001 0.618 0.042 0.991
MI 0.003 0.110 −0.006 0.001 1.087 0.032 0.994
MN 0.514 0.079 0.005 0.001 0.855 0.023 0.998
MO 0.259 0.025 0.945 0.006 0.997
MS −2.297 0.123 −0.002 0.001 1.435 0.035 0.997
MT −0.361 0.166 −0.007 0.001 1.141 0.048 0.986
NC −1.293 0.038 1.247 0.009 0.996
ND −3.389 0.293 −0.017 0.002 1.886 0.084 0.979
NE −0.898 0.148 −0.005 0.001 1.250 0.043 0.992
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NH 1.924 0.129 0.013 0.001 0.469 0.037 0.993
NJ 1.958 0.131 0.008 0.001 0.548 0.038 0.992
NM −1.357 0.153 −0.006 0.001 1.319 0.044 0.992
NV 1.029 0.135 −0.003 0.001 0.854 0.039 0.988
NY 2.549 0.156 0.009 0.001 0.413 0.045 0.984
OH 0.488 0.065 −0.003 0.001 0.936 0.019 0.998
OK −1.459 0.154 −0.006 0.001 1.351 0.044 0.993
OR −0.041 0.106 −0.005 0.001 1.076 0.031 0.994
PA 1.278 0.079 0.004 0.001 0.697 0.023 0.997
RI 2.670 0.152 0.011 0.001 0.326 0.044 0.986
SC −1.546 0.043 1.281 0.010 0.996
SD −2.618 0.242 −0.012 0.002 1.665 0.070 0.985
TN −1.147 0.026 1.213 0.006 0.998
TX −0.855 0.106 −0.003 0.001 1.211 0.031 0.996
UT −0.414 0.102 −0.005 0.001 1.121 0.030 0.995
VA 0.080 0.100 0.006 0.001 0.922 0.029 0.997
VT 1.190 0.130 0.008 0.001 0.645 0.038 0.993
WA 0.233 0.117 −0.003 0.001 1.009 0.034 0.994
WI 0.316 0.019 0.941 0.004 0.998
WV 0.067 0.103 0.002 0.001 0.920 0.030 0.996
WY 0.422 0.063 0.929 0.014 0.982
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