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RANDOM MOTIONS IN INHOMOGENEOUS MEDIA
UDC 519.21

E. ORSINGHER AND N. E. RATANOV

Abstract. Space inhomogeneous random motions of particles on the line and in
the plane are considered in the paper. The changes of the movement direction are
driven by a Poisson process. The particles are assumed to move according to a finite
velocity field that depends on a spatial argument.

The explicit distribution of particles is obtained in the paper for the case of
dimension 1 in terms of characteristics of the governing equations. In the case of
dimension 2, the distribution is obtained if a rectifying diffeomorphism exists.

1. Introduction

Consider a transport equation of the following form (see, for example, [9, 10, 21, 22]):

(1.1)
∂p

∂t
(x, v, t) + v · ∇p(x, v, t) = −µp(x, v, t) + µ

∫
V

T (v, v′)p(x, v′, t) dv′.

Here p(x, v, t) denotes the density of particles at a spatial position x ∈ R
n moving with

velocity v ∈ V ⊂ R
n at time t ≥ 0 and µ is a constant turning rate. The turning kernel

T (v, v′) is the probability that the velocity jumps from v′ to v provided the jump occurs.
This general model applies in various fields from thermal conductivity and photon

transport in a highly scattering medium [5, 22] to description of the motion of biological
organisms [4, 9, 10]. As mentioned in [22], the solution of the full transport equation
can only be found numerically. Thus it is natural to seek stochastic models and the
corresponding differential equations that are simpler than the general equation (1.1).
We want these models to be analytically tractable but still retain significant features of
the underlying physics.

In the one-dimensional case, this equation is equivalent to the so-called telegraph
equation, which is a widespread research project beginning from the middle of the 19th
century (see [5] for a survey of the history of the question). However, the reduction of the
process with jump velocities to the telegraph equation is possible in the one-dimensional
case only. Even if only four directions are allowed in the plane, the system does not
reduce to the telegraph equation in any scaling (see [10, 13]). Nevertheless the equations
can be solved in quadratures in the latter case.

An alternative approach to the transport equation (1.1) leads to the telegraph equation
for all dimensions (see [22, 16]). These two approaches do not coincide. We explore the
first approach in this paper.

It is worthwhile mentioning at this point that almost all known literature on this
subject is devoted to equations of the type (1.1) with constant coefficients, while the
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medium is highly inhomogeneous in many physical and biological applications (see [2, 4,
22]), and thus the underlying equations contain varying coefficients.

In a recent survey paper, Weiss wrote that “. . . little is known about more general
equations with . . . space dependent coefficients” ([22, p. 394]). We try to fill the gap in
this paper.

We develop the idea of a rectifying diffeomorphism to construct explicit solutions for
inhomogeneous media. The results are illustrated by examples of physical and biological
processes. In particular, the diffusions in the medium with circular (see Example 3 in
Section 4.3 below) or cellular structure (see [2] or Section 5 below) can be given in terms
of velocity-jump processes with varying velocity.

The results presented in this paper supply the mathematical base for developing the
theory of travelling waves in reaction-diffusion systems. The existing theory is highly
motivated in biology and physics [4, 9, 10], but it is developed mainly for homogeneous
media. An extension of the theory to inhomogeneous media is a problem of great impor-
tance for applications (see [19, 20]).

2. Random motions governed by Poisson flows

Let (Ω, F, P) be a complete probability space. Let τ1, τ2, . . . be random times that
form a Poisson flow with rate µ > 0. Let N(t) = max{i : τi < t}, t ≥ 0, N(0) = 0, denote
the total number of Poisson events occurring up to time t. This paper is concerned with
various types of motions on the line and in the plane. We assume that abrupt changes
of the movement direction occur at the Poisson times τi, i = 1, 2, . . . .

Investigations of this model begin with the famous works by Goldstein [3] and Kac
[6, 7]. Further developments are due to both probabilists and physicists (see, for exam-
ple, [12, 17]). Planar random motions are considered in [8, 14, 15].

The one-dimensional version of this model with constant velocity is called the telegraph
process. This process is defined by

(2.1) U(t) = ξ

∫ t

0

(−1)N(s) ds,

where the random variable ξ (taking values ±1 with equal probabilities) and the Poisson
process N(·) are independent. The stochastic process (2.1) corresponds to the motion
of a particle that starts from the origin and moves on the line with unit velocity. The
particle changes the direction of movement at times τi, i = 1, 2, . . . . It is clear that U(t)
is the position of the moving particle at time t.

The distribution of the process U(t) defined by (2.1) is well known and can be written
in the following form:

(2.2)

q1(y, t) ≡ qµ
1 (y, t)

=
e−µt

2

[
δ(y − t) + δ(y + t)

+
(

µI0

(
µ
√

t2 − y2
)

+
∂

∂t
I0

(
µ
√

t2 − y2
))

· χ[−t,t](y)
]

(see, for example, [12]). Here and in what follows the symbol χ∆(·) stands for the
indicator of a set ∆, while δ(·) is the Dirac function. We denote by I0 the modified
zero-order Bessel function, that is,

I0(z) =
∞∑

n=0

z2n

22n(n!)2
.



RANDOM MOTIONS IN INHOMOGENEOUS MEDIA 143

In particular, equality (2.2) means that the particle reaches the points y = ±t with
equal probabilities e−µt/2. The absolutely continuous component of distribution (2.2) is
concentrated on the interval (−t, t) and is given by

(2.3)
q1,ac(y, t) ≡ qµ

1,ac(y, t)

=
e−µt

2

[
µI0

(
µ
√

t2 − y2
)

+
∂

∂t
I0

(
µ
√

t2 − y2
)]

· χ[−t,t](y).

In the case of a planar motion, we consider a particle that can move in any of the
following four directions:

Dk =
(

cos
kπ

2
, sin

kπ

2

)
, k = 0, 1, 2, 3.

We assume that the particle starts at time t = 0 from the origin and chooses one of the
four directions with equal probability 1/4. The changes of directions take place at the
Poisson random times τi when the particle changes direction Dk for Dk±1 (this means
that the particle starts moving along the line being orthogonal to the previous one). In
doing so, the particle chooses the directions Dk−1 and Dk+1 with equal probabilities 1/2.
Between the times τi, the particle is moving with the constant unit velocity. The current
position of the moving particle at time t is denoted by U(t) = (U1(t), U2(t)).

In order to obtain the distribution of U(t) we use the following equivalent represen-
tation (see [13]). Let

(2.4) V1(t) = ξ1

∫ t

0

(−1)N1(s) ds, V2(t) = ξ2

∫ t

0

(−1)N2(s) ds

be two independent one-dimensional telegraph processes. This means that the random
variables ξi, i = 1, 2, assume values ±1 with probabilities 1/2 and that the homogeneous
Poisson processes Ni(t), i = 1, 2, have rate µ/2 and are mutually independent. The
process

U′ = (U ′
1(t), U

′
2(t)),

where

(2.5) U ′
1(t) =

V1(t) + V2(t)
2

and U ′
2(t) =

V1(t) − V2(t)
2

,

is stochastically equivalent to the process U = U(t), t > 0. This is the case, since
the Poisson process N = N(t) (with rate µ) governing the changes of directions for
U = U(t) can be decomposed into two independent Poisson processes N1 and N2 (each
with rate µ/2) governing the evolution of the pair (V1, V2).

Representation (2.5) allows one to obtain the distribution of U = U(t), t > 0, in the
following form:

(2.6)

q2(y, t) = 2q
µ/2
1,ac(y1 − y2, t)q

µ/2
1,ac(y1 + y2, t)

+ e−µt/2
[
q

µ/2
1,ac(y1 − y2, t) {δ(y1 + y2 − t) + δ(y1 + y2 + t)}

+ q
µ/2
1,ac(y1 + y2, t) {δ(y1 − y2 − t) + δ(y1 − y2 + t)}

]
+

e−µt

4
[
δ(y1) {δ(y2 − t) + δ(y2 + t)} + δ(y2) {δ(y1 − t) + δ(y1 + t)}

]
,

y = (y1, y2) ∈ R
2, t > 0.

The first term on the right hand side of (2.6) corresponds to the absolutely continuous
component of the distribution of the random variable U(t) assuming values in the square

Qt =
{
y = (y1, y2) ∈ R

2 : |y1 − y2| < t, |y1 + y2| < t
}

.
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The other terms correspond to the discrete and singular components of the distribution
concentrated on the boundary ∂Qt.

The absolutely continuous component of the distribution is given by

(2.7)

q2,ac(y, t) = 2q
µ/2
1,ac(y1 − y2, t)q

µ/2
1,ac(y1 + y2, t)

=
e−µt

2

[
µ2

4
I0

(µ

2

√
t2 − (y1 − y2)2

)
I0

(µ

2

√
t2 − (y1 + y2)2

)

+
µ

2
∂

∂t

{
I0

(µ

2

√
t2 − (y1 − y2)2

)
I0

(µ

2

√
t2 − (y1 + y2)2

)}
+

∂

∂t
I0

(µ

2

√
t2 − (y1 − y2)2

) ∂

∂t
I0

(µ

2

√
t2 − (y1 + y2)2

)]
,

y = (y1, y2) ∈ Qt,

which coincides with the result (3.5) of [13] (for c = 1). The distribution on the bound-
ary ∂Qt can be represented in a similar manner (see (3.7)–(3.8) in [13]).

The stochastic process U = U(t) defined by (2.1) for the one-dimensional case and the
process U = U(t) described above for the two-dimensional case are called the standard
telegraph processes on the line and in the plane, respectively.

The main aim of this paper is to find out how motions in inhomogeneous media (as
well as their distributions) can be expressed in terms of the standard telegraph processes.
The main tool for deriving these expressions is an underlying rectifying diffeomorphism.

3. Change of the time. The one-dimensional case

We start the construction of rectifying diffeomorphisms for the one-dimensional case.
It is natural to speak about the random change of time in this case.

Let c = c(x), x ∈ (−∞,∞), be a nonrandom positive continuous function. Let the
stochastic process X = Xx(t) be defined by the following equation:

(3.1) Xx(t) = x + ξ

∫ t

0

(−1)N(s)c(Xx(s)) ds, t ≥ 0.

The process X = Xx(t), t ≥ 0, can alternatively be rewritten as follows:

(3.2) Xx(t) = x +
∫ t

0

c(Xx(s)) dU(s).

Considering the latter representation, one can say that the process X = Xx(t) is a motion
of a telegraph particle with space-dependent velocity. The integral equation (3.2) can be
rewritten in the equivalent differential form as follows:

(3.3)

{
dXx(t) = c(Xx(t)) dU(t), t > 0,

Xx(0) = x.

The distribution of X = Xx(t), t ≥ 0, is evaluated in [18, equality (5.7)]. Below
we provide a different proof of this result. Consider the function λ = λx(t), which is a
solution of the following Cauchy problem:

(3.4)

{
dλx

dt (t) = c(λx(t)), t > 0,

λx(0) = x.

Now we change the argument of the function λ = λx(t) for a random time. Consider
the process

(3.5) X̃x(t) = λx(U(t)), t ≥ 0.



RANDOM MOTIONS IN INHOMOGENEOUS MEDIA 145

Note that the process X̃x coincides in distribution with Xx. To prove this we use the
relations

(3.6) dX̃x(t) = c
(
λx(U(t))

)
dU(t) = c

(
X̃x(t)

)
dU(t),

which are true almost everywhere with respect to t.
Note also that λ = λx(t) increases in t (for every fixed x). Thus the equation λx(t) = y

has a unique solution t = σ(y, x), whence

λx(σ(y, x)) = y.

Using the function σ one can invert (3.5) and obtain the following equality:

(3.7) U(t) = σ (Xx(t), x) .

It follows from (3.4) that

(3.8) σ(y, x) =
∫ y

x

dz

c(z)
.

Since
∂σ(y, x)

∂y
=

1
c(y)

in view of (3.8), we deduce from (3.7) that the transient probabilities of the process
X = Xx(t) are

(3.9) p1(y, t|x) =
1

c(y)
q1(σ(y, x), t).

Considering the identity

δ(σ(y, x) − t) = c(y)δ(y − λx(t))

we derive the distribution of Xx(t) from (2.2):

(3.10)

p1(y, t|x)

=
1
2
e−µt

[
δ(y − λx(t)) + δ(y − λx(−t))

+
1

c(y)

(
µI0

(
µ
√

t2 − σ(y, x)2
)

+
∂

∂t
I0

(
µ
√

t2 − σ(y, x)2
))

× χ[λx(−t),λx(t)](y)
]
.

Note that the assumptions

(3.11)
∫ 0

−∞

dz

c(z)
= +∞,

∫ +∞

0

dz

c(z)
= +∞

yield that a solution of equation (3.1) exists for all t > 0. If the above relations do not
hold, then a solution of (3.1) exists in a finite interval [0, t∗), where

t∗ = t∗(x) = min(l−, l+)

and

l− =
∫ x

−∞

dz

c(z)
, l+ =

∫ +∞

x

dz

c(z)
.

This means that the process X = Xx(t) defined by (3.1) approaches infinity in a finite
time with probability 1−P{−t∗ < U(t) < t∗}. In the physical literature this phenomenon
is known as a blowup.
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4. The two-dimensional case

4.1. Two-dimensional telegraph process in an inhomogeneous plane. We use the
same approach as in the one-dimensional case. Consider the four continuous functions
cij = cij(x), x = (x1, x2) ∈ R

2, i, j = 1, 2, and define a planar motion X = Xx(t), t > 0,
by means of the following equations:

(4.1)

{
dXx

1 (t) = c11(Xx
1 , Xx

2 ) dU1(t) + c12(Xx
1 , Xx

2 ) dU2(t),
dXx

2 (t) = c21(Xx
1 , Xx

2 ) dU1(t) + c22(Xx
1 , Xx

2 ) dU2(t)

and initial data

(4.2) Xx
∣∣
t=0

= (Xx
1 (0), Xx

2 (0)) = x, x = (x1, x2) ∈ R
2.

Here we denote by U1 and U2 the components of the standard telegraph process U in
the plane.

The system of differential equations (4.1) with initial data (4.2) is equivalent to the
following system of integral equations:

(4.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xx
1 (t) = x1 +

∫ t

0
c11(Xx

1 (s), Xx
2 (s)) dU1(s)

+
∫ t

0
c12(Xx

1 (s), Xx
2 (s)) dU2(s),

Xx
2 (t) = x2 +

∫ t

0
c21(Xx

1 (s), Xx
2 (s)) dU1(s)

+
∫ t

0
c22(Xx

1 (s), Xx
2 (s)) dU2(s)

(compare with (3.2)–(3.3)).
This means that the particle starts from the point x = (x1, x2) ∈ R

2 and moves
according to the velocity fields c1 = (c11, c21) and c2 = (c12, c22) (backward and forward
directions are chosen with equal probabilities); the particle switches from one velocity
field to the other after each Poisson event.

The problem is to obtain the distribution of a particle whose movement is described
by equations (4.1). The solution of this problem is not as easy as in the one-dimensional
case.

4.2. Rectifiable vector fields. We recall some notions and results of the theory of
vector fields.

Definition 4.1. Let c : R
2 → R

2 be a smooth vector field in the plane. We say that the
vector field c is globally rectifiable if there exists a diffeomorphism F = (F1, F2) in the
whole plane such that F∗c = e. Here F∗ is the differential of the mapping F and e is a
coordinate unit vector in R

2.

Note that any smooth vector field is locally rectifiable in a neighborhood of every
nonsingular point (see, for example, [1]).

Definition 4.2. Let c1 and c2 be two smooth vector fields, which are linearly inde-
pendent in the domain Ω ⊂ R

2. We say that a pair of vector fields is rectifiable in the
domain Ω ⊂ R

2 if there exists a diffeomorphism F = (F1, F2) defined on Ω and such that
F∗c1 = e1 and F∗c2 = e2, where e1 and e2 form a Euclidean basis in the plane R

2. If
Ω = R

2, then the pair of vector fields is called globally rectifiable.

Rewriting equations (4.1) in the vector form we get

dXx(t) = C(Xx) dU(t), Xx
∣∣
t=0

= x = (x1x2) ∈ R
2,

where Xx(t) = (Xx
1 (t), Xx

2 (t))T and the matrix C(x) is given by

C(x) =
(

c11(x) c12(x)
c21(x) c22(x)

)
.
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Assume that a pair of vector fields c1 and c2 is rectifiable. Let F be the corresponding
diffeomorphism and let F∗ be its differential. Definition 4.2 means that F∗C = E , where
the symbol E stands for the unit matrix. Therefore the tangent mapping F∗ is the inverse
to C:

(4.4) F∗ =

⎛
⎝∂F1

∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

⎞
⎠ = C−1 =

(
c̄11 c̄12

c̄21 c̄22

)
.

Thus the usual Cauchy–Riemann conditions

(4.5)
∂c̄11

∂x2
=

∂c̄12

∂x1
,

∂c̄21

∂x2
=

∂c̄22

∂x1

for the elements of the inverse matrix C−1 are necessary and sufficient for the rectifiability
of system (4.1).

Let X = Xx(t), t ≥ 0, be a process of the form (4.1) and Qt(x) be the support of
the distribution of Xx(t). Let c1 = (c11, c21) and c2 = (c12, c22) be a pair of rectifiable
vector fields in some domain Ω ⊂ R

2 (in the sense of Definition 4.2) and let F be the
corresponding diffeomorphism for (c1, c2) in the domain Ω.

Theorem 4.1. Let Ω ⊃ Qt(x) for t ≤ t∗. Then the distribution density p2 = p2(y, t|x)
of the stochastic process X = Xx(t) is equal to

(4.6)
p2(y, t|x) = |detF∗(y)| · q2 (F(y) −F(x), t) ,

x,y ∈ Qt(x) ⊂ Ω ⊂ R
2,

for t ≤ t∗, where q2 = q2(z, t), z ∈ R
2, is the distribution density of the standard two-

dimensional telegraph process defined by (2.6).

Proof. Consider the process X̃ = F(X). Applying (4.1) and (4.4) we get

dX̃ = dF(X) = F∗(X) dX = F∗C dU = dU.

Thus X̃x(t) = F(x) + U(t), t ≥ 0, and the distribution density p̃2 = p̃2(y, t|x) of the
process X̃ = X̃x(t) is given by

p̃2(y, t|x) = q2(y1 − F1(x), y2 − F2(x), t).

This implies that the distribution density p2(y, t|x) of the random variable Xx = F−1X̃x

satisfies (4.6). �

Remark 4.1. The approach we used for the two-dimensional case coincides with that for
the one-dimensional case. The function σ(·, x) is the rectifying diffeomorphism for c(·)
in the one-dimensional case. Equality (3.9) is a special case of (4.6).

The two-dimensional model is more complicated than the one-dimensional model.
The rectifying diffeomorphism does not always exist for a pair of vector fields. Below
we consider some examples of rectifiable motions in the plane that satisfy the Cauchy–
Riemann conditions (4.5).

4.3. Examples. 1. Consider a random motion described by the following equations:

(4.7)

{
dXx

1 (t) = c1(Xx
1 ) dU1(t),

dXx
2 (t) = c2(Xx

2 ) dU2(t), x = (x1, x2) ∈ R
2,

and initial data (4.2). This random motion corresponds to the process defined by (4.1)
with two orthogonal fields of velocity c1 = (c1(x1), 0) and c2 = (0, c2(x2)) where
c1 = c1(x1) and c2 = c2(x2) are some positive continuous functions.
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The model introduced by (4.7) corresponds to the movement of a particle that takes
the position

x = (x1, x2) ∈ R
2

at the beginning and may move horizontally with velocity c1(x1) and vertically with
velocity c2(x2) (in both directions). Note that the horizontal velocity depends on the
first coordinate x1 only, while the vertical velocity depends on x2 only (the case of
c1, c2 = const is studied in detail in [14]). The model defined by (4.7) corresponds to a
movement in an anisotropic medium.

It is clear that the process X1 = Xx
1 (t) ≡ Xx1

1 (t) does not depend on x2, while the
process

X2 = Xx
2 (t) ≡ Xx2

2 (t)

does not depend on x1. Therefore equation (4.7) can be rewritten in the following
equivalent form:

(4.8)

{
Xx1

1 (t) = x1 +
∫ t

0
c1(Xx1

1 (s)) dU1(s),
Xx2

2 (t) = x2 +
∫ t

0
c2(Xx2

2 (s)) dU2(s).

We use Theorem 4.1 to obtain the distribution densities p2 = p2(y, t|x), x,y ∈ R
2,

for this process. The matrix C becomes of the form

(4.9) C =
(

c1(x1) 0
0 c2(x2)

)

and hence

(4.10) F∗ = C−1 =
(

c1(x1)−1 0
0 c2(x2)−1

)
.

It is easy to see that the rectifying mapping F = (F1, F2) can be rewritten for this
case as follows:

(4.11) F1(y) ≡ F1(y1) =
∫ y1

0

dz

c1(z)
, F2(y) ≡ F2(y2) =

∫ y2

0

dz

c2(z)
.

According to the notation introduced in Section 3 we get

F1(y1) − F1(x1) ≡ σ1(y1, x1) =
∫ y1

x1

dz

c1(z)
,(4.12)

F2(y2) − F2(x2) ≡ σ2(y2, x2) =
∫ y2

x2

dz

c2(z)
.(4.13)

Thus the distribution of the position of a particle is given by

(4.14)
p2(y, t|x) =

1
c1(y1)c2(y2)

q2 (F1(y1) − F1(x1), F2(y2) − F2(x2), t)

≡ 1
c1(y1)c2(y2)

q2 (σ1(y1, x1), σ2(y2, x2), t) ,

where the function q2 = q2(σ1, σ2, t) is defined by (2.6).
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In particular, the absolutely continuous component of the distribution is

(4.15)

p2,ac(y, t|x) =
e−µt

2c1(y1)c2(y2)

×
[
µ2

4
I0

(µ

2

√
t2 − (σ1 − σ2)2

)
I0

(µ

2

√
t2 − (σ1 + σ2)2

)

+
µ

2
∂

∂t

{
I0

(µ

2

√
t2 − (σ1 − σ2)2

)
I0

(µ

2

√
t2 − (σ1 + σ2)2

)}
+

∂

∂t
I0

(µ

2

√
t2 − (σ1 − σ2)2

) ∂

∂t
I0

(µ

2

√
t2 − (σ1 + σ2)2

)]

for |σ1 − σ2| < t and |σ1 + σ2| < t, where σ1 = σ1(y1, x1) and σ2 = σ2(y2, x2). The
singular component of the distribution p2 = p2(y, t|x) can also be easily obtained.

Remark 4.2. One can look at these formulas from another point of view similar to that
discussed in Section 2. Namely, consider the solutions λ1 = λx1

1 (t) and λ2 = λx2
2 (t) of

the following Cauchy problems:

(4.16)

{
dλ

x1
1

dt (t) = c1(λx1
1 (t)), t > 0,

λx1
1 (0) = x1, x1 ∈ (−∞,∞),

and

(4.17)

{
dλ

x2
2

dt (t) = c2(λx2
2 (t)), t > 0,

λx2
2 (0) = x2, x2 ∈ (−∞,∞).

Let σ1 = σ1(y1, x1) and σ2 = σ2(y2, x2) be the inverse functions to λ1 and λ2, respec-
tively:

(4.18) λx1
1 (σ1(y1, x1)) = y1, λx2

2 (σ2(y2, x2)) = y2.

It is clear that these functions coincide with σ1 and σ2 defined in (4.12)–(4.13).

The domain Qt = {y ∈ R
2 : |σ1 − σ2| < t, |σ1 + σ2| < t} consisting of points y

attainable by the moving particle in time t is a set whose boundary has, in general, a
rather irregular form.

2. Now we consider a slightly different model. Let a planar motion be defined by the
following equations:

(4.19)

{
dXx

1 (t) = c1(Xx
1 ) (dU1(t) + dU2(t)) ,

dXx
2 (t) = c2(Xx

2 ) (dU1(t) − dU2(t))

with initial data (4.2). It is easy to see that this process satisfies the assumptions of
Theorem 4.1 but the solution of system (4.19) can be constructed in a simpler way.

As mentioned above (see (2.4)–(2.5)), the process defined by equations (4.19) is
stochastically equivalent to the process described by the equations{

dXx
1 (t) = c1(Xx

1 ) dV1(t),
dXx

2 (t) = c2(Xx
2 ) dV2(t),

where V1 = V1(t) and V2 = V2(t) are two independent standard telegraph processes in
the line with rate µ/2 instead of µ. Hence the process (4.19) splits into two independent
one-dimensional motions X2 = Xx2

2 (t) with space-varying velocities c1(x1) and c2(x2),
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respectively. This allows us to obtain the distribution explicitly:

(4.20)
p2(y, t|x) =

1
2c1(y1)c2(y2)

q2 (z1, z2, t)

=
1

c1(y1)c2(y2)
q

µ/2
1 (σ1(y1, x1), t) · qµ/2

1 (σ2(y2, x2), t) ,

where

z1 =
σ1(y1, x1) + σ2(y2, x2)

2
, z2 =

σ1(y1, x1) − σ2(y2, x2)
2

.

Here q2 = q2(z1, z2, t) denotes the distribution density of the standard telegraph process
in the plane R

2 (see (2.6)), q
µ/2
1 is the distribution density of the standard telegraph

process in the plane (with rate µ/2), and σ1 and σ2 are defined in (4.12)–(4.13) (or
in (4.18)).

The rectifying diffeomorphism of vector fields related to this process can be written
as follows:

F1(y) =
σ1(y1, 0) + σ2(y2, 0)

2
, F2(y) =

σ1(y1, 0) − σ2(y2, 0)
2

.

Applying this diffeomorphism to formula (4.6) we obtain (4.20).
3. Consider another example of a planar motion. Assume that the particle either

rotates (both directions, clockwise and counterclockwise, are possible) with angular ve-
locity depending on the current angular position or it moves radially (both directions,
outwards and onwards, are possible) with the velocity depending on the current distance
from the origin. The particle switches the radial motion to the circular motion (or vice
versa) at Poisson times (it chooses one of two possible directions at the switching time
with probability 1/2).

The random motion described above can be represented as follows:

(4.21)

{
dXx

1 (t) = −ω(θ)Xx
2 dU1(t) + c(ρ)

ρ Xx
1 dU2(t),

dXx
2 (t) = ω(θ)Xx

1 dU1(t) + c(ρ)
ρ Xx

2 dU2(t)

with initial position Xx(0) = x 
= 0. Here ρ = ρ(X) and θ = θ(X) are polar coordinates
of the moving particle X = (Xx

1 (t), Xx
2 (t)); c = c(ρ) > 0 and ω = ω(θ) denote the radial

and angular fields of velocity. To find the corresponding rectifying diffeomorphism one
needs to invert the matrix

C =

(
−ω(ϕ)x2

c(r)
r x1

ω(ϕ)x1
c(r)

r x2

)
,

where r = r(x) and ϕ = ϕ(x) are polar coordinates of the point x = (x1, x2) 
= (0, 0).
The inverse matrix is given by

F∗ = C−1 =

( −x2
ω(ϕ)r2

x1
ω(ϕ)r2

x1
rc(r)

x2
rc(r)

)
.

Thus the rectifying diffeomorphism exists in every domain that does not contain the ori-
gin. The diffeomorphism F = (F1, F2) coincides with the quasi-polar change of variables.
More precisely,

(4.22) F1 = F1(x) =
∫ ϕ(x)

0

dϕ

ω(ϕ)
, F2 = F2(x) =

∫ r(x)

0

dr

c(r)
.
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Theorem 4.1 allows us to obtain the distribution of the position of the particle at least
for sufficiently small t. Assume that

t < min

(∫ π

0

dϕ

ω(ϕ)
,

∫ r(x)

0

dr

c(r)

)
.

Then

(4.23) p2(y, t|x) =
1

|c(ρ(y))ω(θ(y))ρ(y)|q2

(
F1(y) − F1(x), F2(y) − F2(x), t

)
,

where q2(·, ·, t) is the distribution density of the standard motion in the plane and F1

and F2 are defined in (4.22).
The boundary of the set Qt of points attainable in time t is curvilinear. In particular,

if c(r) ≡ 1 and ω(ϕ) ≡ 1, then the boundary is formed by the following segments of
Archimedes’ spirals:

ρ = ρ0 + t − |θ − θ0|, ρ = ρ0 − t + |θ − θ0| |θ − θ0| < t.

5. The underlying partial differential equations

The partial differential equations governing the distributions of the standard telegraph
processes are well known. For one-dimensional motions, the density q1 = q1(y, t) satisfies
the telegraph equation

(5.1)

{
∂2q1
∂t2 + 2µ∂q1

∂t = ∂2q1
∂y2 , t > 0,

q1

∣∣
t=0

= δ(y), ∂q1
∂t

∣∣
t=0

= 0

(see, for example, [6]).
In the planar case, the transition probabilities q2 = q2(y, t) form a solution of a fourth-

order hyperbolic equation (see [13]). After the transformation q̄2 = eµtq2, this equation
can be written as follows:

(5.2)
∂4q̄2

∂t4
=
(
L2

y1
+ L2

y2

) ∂2q̄2

∂t2
+ µ2 ∂2q̄2

∂t2
− L2

y2
L2

y1
q̄2,

where L2
yi

= ∂2/∂yi
2, i = 1, 2.

The distributions of the telegraph processes (2.2) and (2.7) can be derived from these
two equations.

Note that equation (5.1) follows from (1.1) for n = 1 if V = {−1, +1} and the turning
kernel is symmetric, that is, T (−1, 1) = T (1,−1) = 1/2. Equation (5.2) follows from (1.1)
for n = 2 if V = {Dk, k = 0, 1, 2, 3} and T (Dk, Dk−1) = T (Dk, Dk+1) = 1/2 (the integral
on the right hand side of (1.1) turns to the sum for these two particular cases).

Below we derive equations related to random motions in inhomogeneous media. In the
one-dimensional case defined by (3.1), the equation follows from the representations (3.5)
and (3.9). It is easy to understand that the density

p1 = p1(y, t|x)

satisfies the Cauchy problem

(5.3)

{
∂2p1
∂t2 + 2µ∂p1

∂t = ∂
∂y c(y)∂c(y)p1(y,t|x)

∂y , t > 0,

p1

∣∣
t=0

= δ(x − y), ∂p1
∂t

∣∣
t=0

= 0.

Moreover this density is a solution of the equation

(5.4)
∂2p1

∂t2
+ 2µ

∂p1

∂t
= c(x)

∂

∂x
c(x)

∂p1(y, t|x)
∂x

, t > 0,
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with the same initial data as in (5.3). Note that (5.3) and (5.4) can be rewritten in
the form of backward and forward Fokker–Planck equations. Explicit expressions for
the solutions of these equations with boundary conditions related to reflection and/or
absorption barriers are also known (see [4] or [18] for further details).

In particular, equations (5.3) and (5.4) can be applied to describe a one-dimensional
diffusion in a cellular media. Let the velocity of a particle be a function c = c(x),
x ∈ (−∞,∞), with period 1. Then the density is given by (3.9)–(3.10). It is interesting
to note that, for a spatially scaled function cε(x) = c(x/ε), the corresponding densities
have the following asymptotic behavior:

(5.5) pε
1(y, t|x) ∼ 1

c(y/ε)
q1((y − x)σ, t)

as ε → 0, where

σ =
∫ 1

0

dz

c(z)
.

In the two-dimensional case, the corresponding equation looks much more sophisti-
cated. Let X = (X1, X2) be a random motion defined in (4.1) and let F be the rectifying
diffeomorphism for the vector fields c1 = (c11, c21) and c2 = (c12, c22) in the domain
Ω ⊂ R

2. The governing equation follows from (5.2) after a suitable change of variables.
We have

(5.6) p2(y, t|x) =
1

|det C(y)|q2(F(y) −F(x), t), x,y ∈ Ω,

in view of (4.6).
Since C = (F∗)−1, we also have

(5.7)
∂q2(z, t)

∂zi

∣∣∣∣
z=F(y)−F(x)

= Li [q2(F(y) −F(x), t)] , i = 1, 2,

where
L1 = c11(y)

∂

∂y1
+ c21(y)

∂

∂y2
, L2 = c12(y)

∂

∂y1
+ c22(y)

∂

∂y2
.

Using equalities (5.6) and (5.7) we change the variables in equation (5.2). Put

u(y, t) = |det C(y)| p2(y, t|x)eµt.

Then the function u satisfies the following fourth-order equation:

∂4u

∂t4
− µ2 ∂2u

∂t2
=
(
L2

1 + L2
2

) ∂2u

∂t2
− L2

2L2
1u.

If ω = 1 and c = 1 in Example 3 of the preceding section, then L1 = ∂/∂θ and
L2 = ∂/∂ρ.
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