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MILNOR NUMBER EQUALS TJURINA NUMBER FOR

FUNCTIONS ON SPACE CURVES

DAVID MOND  DUCO VAN STRATEN

A

The equality of the Milnor number and Tjurina number for functions on space curve singularities, as
conjectured recently by V. Goryunov, is proved. As a consequence, the discriminant in such a situation
is a free divisor.

1. Introduction

In many situations in complex geometry one can define a Milnor number that

describes the rank of some vanishing homology, and a Tjurina number, the dimension

of the base of a semi-universal deformation. For example, for a hypersurface

singularity X¯V( f ) one has

µ¯dim/}J
f
, τ¯dim/}( f, J

f
),

so that µ& τ, with equality if f is quasi-homogeneous, see [16]. Recently, V.

Goryunov [9] has studied functions on curve singularities XZ#$, and conjectured,

somewhat surprisingly, that the equality µ¯ τ holds in such a situation, without any

condition of quasi-homogeneity. For functions on smooth curves, the equality of µ and

τ is of course so evident that it passes without notice : every non-constant germ in one

variable is equivalent to xn for some n" 0. We show in this note that Goryunov’s

conjecture is correct. In fact, the result follows from known results in homological

algebra. Because many of these results are scattered over the literature, we try to be

self-contained. We cannot, however, claim much originality.

2. The Milnor number

We will consider curve singularities X, by which we mean reduced, one-

dimensional germs XZ (#N, 0). We let /
X

¯/}I, where /B#²x
"
,x

#
,… ,x

N
´, be the

local ring of X. Furthermore, we consider the dualising module

ω
X

BExtN−"(/
X
,ΩN).

Here ΩN is the module of N-forms on (#N, 0). One can think of ω
X
, via the so-called

class map cl :Ω
X

MNω
X
, as consisting of certain meromorphic differential forms on

the curve. For an explanation, we refer to [10] and to Remark 2.4 and §4 of this note.

A function f `/
X

can be considered as a map f :XMNS, where S is a smooth curve

germ. We will always assume our functions f to be non-constant on each branch, so

that /
X

becomes a finite and free /
S
-module via f.
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The ramification of the map f :XMNS can be measured as follows: the

composition of /
X

MNdf Ω
X

with the class map cl :Ω
X

MNω
X

produces an injective

map /
X

MNω
X
, whose cokernel we denote by -

f
:

0MN/
X

MNω
X

MN-
f
MN 0.

It is a module of finite length. We will denote by 2
f
the short exact sequence by

which we define -
f
.

D 2.1. We define the Milnor number of f :XMNS as

µ( f )Bdim-
f
.

P 2.2. The Milnor number µ is conser�ed under simultaneous

deformation of f and X.

Proof. Consider a one-parameter deformation 8MNT of X over T, and a lift

of f to a function F :8MNS. Because X is assumed to be reduced, ω8 is T-flat, and

the snake lemma, applied to the injective morphism of complexes 2
F
MNt

[

2
F

(with

cokernel 2
f
) gives the short exact sequence

0MN-
F
MN

t[

-
F
MNM

f
MN 0.

Hence -
F

is /
T
-flat, and therefore /

T
free. It follows that µ is conserved in any 1-

parameter deformation of XMNf S, and thus in any deformation. *

R 2.3. If 8MNT is a smoothing of X, and F is generic, then µ( f ) counts

the number of critical points of f
t
¯FrXt

. These can be thought of as the points where

the smooth curve X
t
is tangent to the level hypersurfaces of F. For at any such point,

ω
Xt

¯Ω"
Xt

, and our module -
ft

is just Ω"
Xt

}df
t
g/

Xt

, and thus isomorphic to the usual

jacobian algebra /
Xt,x

}J
ft

. Hence an ordinary tangency of X
t
to the level hypersurface

of F will contribute 1 to the total. In fact these are the only points at which length(-
ft

)

is equal to 1.

R 2.4. (1) The module ω
X

can be identified with Hom
S
(/

X
,ω

S
) ([6,

Theorem 3.3.7(b)]). After a choice of generator for ω
S
, ω

S
¯/

S
, and so

ω
X

DHom
S
(/

X
,/

S
). Let Q(/

X
) and Q(/

S
) denote the total rings of fractions of /

X

and /
S

respectively, and let tr :/
X

MN/
S

denote the trace map, which associates to

each element g of /
X

the trace of the Q(/
S
)-linear endomorphism of Q(/

X
) induced

by multiplication by g. (The trace of a function g `/
X

can also be thought of as the

function tr(g) `/
S

whose value at a regular value s `S is the sum of the values of g at

the preimages of s.) As ω
X

is maximal Cohen–Macaulay of rank 1, every element of

Hom
S
(/

X
,/

S
) is a Q(/

X
)-multiple of tr, that is,

Hom
S
(/

X
,/

S
)¯²g `Q(/

X
) r tr(gh) `/

S
ch `/

X
´[tr.

The submodule of Q(/
X
) defined here is the classical complementary module,

usually denoted ,
X/S

. Thus, we have shown that

ω
X

D,
X/S

.
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Thought of as a module of meromorphic forms on X, ω
X

¯,
X/S

[df, and the

quotient -
f
with which we defined the Milnor number µ, is just (,

X/S
[df )}(/

X
[df ),

or simply ,
X/S

}/
X
.

(2) The module (,
X/S

[df )}(/
X
[df ) is also studied in [15], under the name

R+(df ). It supports a natural quadratic form, induced by the residue pairing, and in

[15] the signature of this form is used to compute the number of branches of the

curve-germ X and of its real part.

(3) There are many other ways to define numbers that are related to the

ramification of the map f :XMNS. In §5 we will see that if XZ#$ is a space curve

singularity, many of these numbers agree.

3. The Tjurina number

Given any map f :XMNS of analytic germs, there is a so-called (analytic)

cotangent complex ,
X/S

. The homology groups TX/S

k
(M )BH

k
(,

X/S
CM ) and

cohomology groups Tk

X/S
(M )BHk(Hom(,

X/S
,M )) form a (co)-homology theory for

/
X
-modules M. The modules TX/S

k
BTX/S

k
(/

X
) and Tk

X/S
BTk

X/S
(/

X
) are important in

the deformation theory of the map f :XMNS.

TX/S

!
is the module of relative Ka$ hler 1-forms Ω

X/S
, T!

X/S
is the module of relative

vector fields Θ
X/S

on X over S. The other T
k

and Tk are to be thought of as higher

derived versions of these, and are supported inside the critical locus of the map. For

a good overview, we refer to [3] and also [13]. Most remarkable is the module T"
X/S

,

which has the interpretation as space of infinitesimal deformations of the map

f :XMNS, where we keep S fixed, but are allowed to deform X in any flat way, and

the map in an arbitrary way. Isomorphisms are defined by obvious diagrams, always

with identity on S. This leads to the following very general definition.

D 3.1. The Tjurina number of f :XMNS is

τ( f )BdimT"
X/S

.

Now let us return to the case of a function f :XMNS on a curve singularity. We

remark that a space curve has a semi-universal deformation whose base is a smooth

space of dimension τ¯dimT"
X/k

(see, for example, [17]). Similarly, standard

arguments show that the base of a semi-universal deformation of the function

f :XMNS is smooth of dimension τ( f ).

E 3.2. For a Morse point, τ( f )¯ 1. Once again, this is the only case

where the value of the invariant is 1.

The modules T
k

and Tk for k% 2 can be computed using the Lichtenbaum–

Schlessinger complex. One starts with XZ (#N, 0) and extends the map XMNS to

(#N, 0)MNS. Choose generators of the ideal * of X, and let 2 denote the module

of relations between the generators. That is, we have an exact sequence

0MN2MN/kMN*MN 0.

Let 2
!
Z2 be the module of Koszul relations between the generators of *.

Consider the complex

,%
# : 2}2

!
MN/kC/

X
MNΩ#N

/S
C/

X
.
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The homology groups of this complex are the TX/S

k
, the cohomology groups of its

/
X
-dual the Tk

X/S
, for k¯ 0, 1, 2.

P 3.3. Assume that T#
X/S

¯ 0 and that X is smoothable. Then

µ( f )¯ τ( f ).

Proof. Consider a one-parameter smoothing 8MNT, and a function

F :8MNS. Let t be a local parameter on T. Put 3¯S¬T ; we have an obvious map

8MN3. The sequence

0MN/8 MN
t[

/8 MN/
X

MN 0

induces a long exact sequence

…MNTk
8/3

MNTk
8/3

MNTk

X/S
MNTk+"

8/3
MN….

However, T!
X/S

¯ 0, as there are no relative vector fields for f :XMNS, as the

fibres are discrete. By assumption, T#
X/S

¯ 0, so, since T#
X,3

is Artinian, the long

exact sequence contains the short exact sequence

0MNT"
8/3

MN
t[

T"
8/3

MNT"
X/S

MN 0.

Thus T"
X/3

is T-flat, and by the same argument as in the proof of Proposition 2.2, τ is

conserved in the family. At each point on the smooth curve X
t
, τ( f

t
) and µ( f

t
) are

equal, and by the conservation of each number in the deformation, the result follows.

*

The reader will note that we do not exhibit an explicit isomorphism -
f
MNT"

X/S
.

R 3.4. (1) Associated to the composite of ring homomorphisms

#MN/
S
MN/

X

there is a long exact sequence of cotangent cohomology, the Zariski–Jacobi sequence,

which runs
…MNTi

X/S
MNTi

X/#
MNTi

S/#
MNTi+"

X/S
MN….

Here Ti

X/#
and Ti

S/#
are just Ti

X
and Ti

S
respectively ; since S is smooth, Ti

S
¯ 0 for

i& 1 (and recall that T!
S
¯ θ

S
), and it follows that Ti

X/S
¯Ti

X
for i& 2. So the con-

dition in the theorem is equivalent to T#
X

¯ 0.

(2) It is known that T#
X

¯ 0 for space curves and Gorenstein curves in #%, so in

these cases Proposition 3.3 holds [12, 19]. See also §4 and in particular Corollary 4.3.

(3) In fact, the proposition holds more generally for all unobstructed curves (that

is, curves in which the obstruction map T"
X/S

MNT#
8/3

is equal to 0. For a general

smoothable curve one can use a variant of [11] to see that the image of T"
8/3

MNT"
X/S

has a dimension that is equal to the dimension of the component of the deformation

space on which the smoothing occurs. In particular, this dimension is equal to µ( f ), and

thus all components have the same, computable dimension.

(4) In the same way one may prove that the relative T" is Cohen–Macaulay over

the semi-universal deformation of an unobstructed curve. From this fact one deduces,

as in [18], that the discriminant is a free divisor.

(5) In general, one can use the long exact sequences for the relative Tk to find

inequalities between µ and partial Euler characteristics of the T i ; see [13].
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4. The first Koszul homology

We will now take a closer look at space cur�es XZ#$. The salient feature of this

case is that one still has complete control over the structure of the equations of X,

which are obtained as the n¬n minors of some (n­1)¬n-matrix M. That is, writing

/ for the ring of functions on #$, /
X

has a free /-resolution of the form

0MN/n MN
M

/n+"MN
∆

/MN/
X

MN 0.

Here ∆ is the map with components ∆
i
, which is the minor of M obtained by

deleting the ith row.

Note that /n is the module 2 of relations between the ∆
i
. The module 2

!
is

generated by the Koszul (or trivial) relations ∆
i
e
j
®∆

j
e
i
. To describe these elements

inside /n, we use the map

Γ :/0n+"

#
1¯g#/n+"MN/n

whose entries consist of the (n®1)¬(n®1) minors of M :

Γ(e
i
ge

j
)¯ 3

n

k="

detΓk

i,j
e
k
,

where Γk

i,j
is the matrix obtained from M by deleting ith and jth rows and kth column.

The composition

g#/n+"MN
Γ

/n MN
M

/n+"

maps e
i
ge

j
to the Koszul relation ∆

i
e
j
®∆

j
e
i
.

The cokernel of the map Γ is the first Koszul homology module of the ∆
i
:

2}2
!
¯H

"
(/,∆)¯ :H

"
.

It is a fundamental result that H
"
is a torsion free /

X
-module, and this fact has some

useful consequences. Let us see why this is the case.

As we are going to work with various minors, it is useful to describe the above

resolution in a basis-free manner and work in complete generality. Let R be for the

moment any ring, and let & and ' be free R-modules of rank n and (n­1)

respectively. We fix isomorphisms

gn&FR, gn+"'FR.

Note that with these fixed identifications, one has

gn−p&¯gp&*, gn+"−p'¯gp'*.

For any R-module N we denote its dual by N*BHom
R
(N,R). Given any

homomorphism M :&MN', one derives from it other maps like

gpM :gp&MNgp', M*:'*MN&*, gp(M*) :gp'*MNgp&*,

and so on. In particular, we get composable maps

gp&MNgp'¯gn+"−p'*MNgn+"−p&*¯gp−"&.

It follows from the Laplace expansion rule of determinants that the composition

of these two maps is zero, so that we get complexes. (We put the right-most module

at spot zero, so that the complex lives in negative degrees.)
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For p¯ 1, we get the complex 0MN&MN'MNRMN 0; for p¯ n we get its

dual 0MNRMN'*MN&*MN 0. We are most interested in the case p¯ 2:

0MNg#&MNg#'MN&MN 0.

These complexes were first considered in [7] and [2].

P 4.1 (cf. [2, Lemma 1.6]). Let IZR be the ideal generated by the

maximal minors of M. Assume that the local cohomologies Hi

I
(R)¯ 0 for i¯ 0, 1 (that

is, depth
I
(R)& 2). Then the abo�e complexes are acyclic.

Proof. This is essentially the Lemme d’Acyclicite! (see also [15, A.2, A.3]).

For any R-module M, let

Cp(M )¯ 3
"
%i

"
!…!ip

%n+"

M
fi
"
,…,fi

p

be the pth Cech module of M, with respect to a set of generators f
i
of I, so that CE(M )

computes the local cohomology HE

I
(M ) of M. Let F

E
denote any of the complexes

whose acyclicity we wish to prove, and consider the double complex CE(F
E
). Since the

cohomology of F
E
is supported on Spec (R}I ), it follows that for any f ` I, the complex

(F
E
)
( f )

is acyclic, and thus the same is true for all of the complexes Cp(F
E
). So the total

complex computes the cohomology of F
E
. On the other hand, the assumption of

vanishing of local cohomology tells us that if we first take vertical cohomology, we

get an E
"

term looking like

0

n

0

0

n

0

n
n

n
.

Because the associated spectral sequence also computes the cohomology of the

total complex, the proposition follows immediately. *

C 4.2. (1) If R is Cohen–Macaulay, and I an ideal of codimension& 2,

then it follows that the codimension equals 2.

(2) Under the abo�e assumptions, we ha�e exact sequences

0MN&MN'MNRMNR}IMN 0

0MNg#&MNg#'MNFMNH
"
MN 0.

In particular R}I and H
"

are Cohen–Macaulay.

Hence, for a space curve, the module H
"
¯2}2

!
is torsion free.

C 4.3. If X is reduced Cohen–Macaulay of codimension 2, then

TX

#
¯ 0.

Proof. From the Lichtenbaum–Schlessinger complex, TX

#
¯ker(H

"
MN…).

However, as T
#
is concentrated on the singular locus of X and H

"
is Cohen–Macaulay,

it follows that T
#

must be zero. *

R 4.4. (1) The other complexes resolve the higher Koszul homologies H
i
.

Therefore all of these are Cohen–Macaulay too.
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(2) It was shown by Huneke [14] that the Cohen–Macaulay property of all Koszul

homologies H
i
is preserved under linkage. In particular, these results holds if X is

linked to a complete intersection. This in particular applies to space curves : use

induction and the fact that a curve defined by the minors of an (n­1)¬n matrix is

linked via the curve defined by two of these minors to the curve defined by the minors

of their common (n®1)¬n submatrix.

Another feature of space curves is the close relation between the /
X

− dual ω* of

the dualising module ω
X
, and H

"
, which implies that ω$

X
behaves well under flat

deformation of X, and gives the vanishing of T#
X
.

Start with the resolution of ω
X

:

0MNRMN'*MN&*MNω
X

MN 0.

Applying Hom
X
(®,/

X
) to this, we get ω$

X
as kernel :

0MNω$
X

MN&C/
X

MN'C/
X
.

On the other hand, the composition

g#'MN&MN'

is the zero-map after tensoring with /
X

; hence the first map factors to ω$
X
. We let #

be the cokernel as follows.

0 7
2
P 7

2
P 0

0 x*
X &⊗/X P⊗/X

0 H1.#

A local calculation shows that # is supported at the singular point ; from the snake

lemma #MNH
"

is injective. As H
"

is torsion free, we get #¯ 0.

Hence
g#'MNω$

X
MN 0

and
0MNω$

X
MN&C/

X
MNH

"
MN 0

are exact sequences.

C 4.5. If X is reduced Cohen–Macaulay of codimension 2, then

T#
X

¯ 0.

Proof. Dualising the exact sequence

0MNω$
X

MN&C/
X

MNH
"
MN 0,

we get the exact sequence

0MNH$

"
MN&*C/

X
MNω$$

X
MNExt"(H

"
,/

X
)MN 0.

However, &*C/
X

has just ω
X

as image in ω$$
X

; hence we have an exact sequence

0MNH$

"
MN&*C/

X
MNω

X
MN 0.
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On the other hand, tensoring the resolution of ω
X

with /
X

gives an exact sequence

'*C/
X

MN&*C/
X

MNω
X

MN 0

from which we conclude that we have a surjection

'*C/
X

MOH$

"
.

The cokernel of this map, however, is by definition T#
X
. *

5. KaX hler and Dedekind different

In §2 we defined the Milnor number of a function on an arbitrary curve as the

length of the cokernel /
X

MNω
X
. This cokernel has the advantage of being flat under

any deformation, but has the disadvantage that in general it may have many

generators. It would be computationally better to have a description of colength of

some Jacobian-type ideal JZ/
X
. The first idea that comes to mind is to use the

module Θ
X

of all vector fields on X, and evaluate them on f to get Θ
X
( f )Z/

X
. In this

way we get the Bruce–Roberts number [5] :

µ
BR

( f )Bdim/
X
}Θ

X
( f ).

As vector fields do not lift automatically over deformations, this will behave badly

non-flat, and thus cannot possibly be equal to the topological number µ( f ).

A better idea is to look at the transpose of the map /
X

MNω
X
. It gives a map

ω$
X

MN/
X
. Via the transpose of the class map, ω* is mapped injectively into Θ

X
;

we denote its image by θs

X
. The image of ω$

X
in /

X
is the ideal obtained by evaluating

these special �ector fields (the elements of θs

X
) on f. The ideal

$
D
(X}S )Bω$

X
( f )Z/

X

is classically known as the Dedekind different of the map f :XMNS ; it is the inverse

ideal of the complementary module ,
X/S

.

D 5.1.

µ
D
( f )Bdim/

X
}$

D
(X}S ).

P 5.2. Let f :XMNS be a function on a space cur�e singularity. Then

µ( f )¯µ
D
( f ).

Proof. It follows from §4 that ω$
X

behaves well under deformation. Let

8MNT be a flat deformation of X ; applying Hom/8
( ,/8) to the exact sequence

0MNω8 MN
t[

ω8 MNω
X

MN 0

we get the sequence

0MNω$8 MN
t[

ω$8 MNω$
X

MN 0,

which we claim is also exact. The only point in doubt is the zero at the right-hand

side; this comes from the fact that we have a priori generators for ω$
X

:g#'MOω$
X
.

See also [18], where the result is deduced in a more complicated manner from

TX

#
¯ 0.
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By dualising the relative class map cl8/T
:Ω"

8/T
MNω8 we get an inclusion

ω$8 :N θ8/T
; denoting its image by θs

8/T
, the exact sequence of ω*’s becomes

0MN θs
8/T

MN
t[

θs
8/T

MN θs

X
MN 0.

Now evaluate the special vector fields on a lifting F of f. Note that a function

which is not constant on any branch of a curve cannot annihilate any non-torsion

vector field, and that the modules of special vector fields are torsion-free. We

therefore get an exact sequence

0MN/8}(θs
8/T

[F )MN
t[

/8}(θs
8/T

[F )MN/
X
}$

D
(X}S )MN 0,

from which the proposition follows. *

As we know the generators of ω$
X
, we can be more explicit about the ideal

$
D
(X}S ).

P 5.3. The element e
i
ge

j
of g#' maps to the �ector field

det

I

J

¦∆
i

¦x

¦
¦x

¦∆
j

¦x

¦∆
i

¦y

¦
¦y

¦∆
j

¦y

¦∆
i

¦z

¦
¦z

¦∆
j

¦z

K

L
in ω$

X
ZΘ

X
.

Proof. According to [1], the class map Ω
X

MNω
X

¯Ext#/(/X
,Ω$) is the

following: let α `Ω" be a lift of a 1-form from Ω
X
. The element

1

2
αgd∆gdM

can be considered as an element of &*CΩ$, which represents the element cl(α)

in Ext#(/
X
,Ω$). In order to simplify notation, we will fix a volume form

dV¯ dxgdygdz and freely divide and multiply by it, when necessary. An element

φ `ω$
X

is a special element of &C/
X

; considered as vector field (that is, in θs

X
)

it is

φ(cl(dx))
¦
¦x

­φ(cl(dy))
¦
¦y

­φ(cl(dz))
¦
¦z

.

Using a basis e
i

for ' and f
j

for &, the image of the element e
i
ge

j
under

Γ :g#'MN& is Γk

i,j
f
k
, where Γk

i,j
is the minor obtained from M by deleting the ith

and jth rows and kth column. These elements generate ω$
X
. For these elements one

has:

Γ(e
i
ge

j
) (cl(α))¯

1

2
αgd∆

p
gd(Mp

k
)Γk

i,j

where we use the Einstein summation convention. Because ∆
p
Mp

k
¯ 0 we have

d∆
p
Mp

k
­∆

p
dMp

k
¯ 0, so, modulo the ideal generated by the ∆

i
, we have

d∆
p
gd(Mp

k
Γk

i,j
)¯ d∆

p
gd(Mp

k
)Γk

i,j
.
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Now we had Mp

k
Γk

i,j
¯∆

i
δp

j
®∆

j
δp

i
; hence

d∆
p
gd(Mp

k
Γk

i,j
)¯ 2d∆

j
gd∆

i
.

That is, one has

Γ(e
i
ge

j
) (cl(α))¯αgd∆

j
gd∆

i
.

The formula follows (up to a sign). *

The most obvious way to measure ramification is to look at the module Ω
X/S

of

relative Ka$ hler differentials. The problem with it is that it does not have flatness

properties needed to have a topological meaning. Therefore, instead, we look at the

Fitting ideal F
!
(Ω

X/S
)Z/

X
, generated by the maximal minors of a presentation matrix

for Ω
X/S

. It is also known under the name of KaX hler different : $
K
(X}S )¯F

!
(Ω

X/S
).

We define

µ
K
( f )Bdim/

X
}$

K
(X}S ).

In general, one has an inclusion

$
K
(X}S )Z$

D
(X}S )

and hence an inequality µ
D
( f )%µ

K
( f ), see [4, 8].

For space curves, one has equality as follows.

P 5.4. If XZ (#$, 0) is a space cur�e singularity, then

$
K
(X}S )¯$

D
(X}S ) ;

hence

µ( f )¯µ
D
( f )¯µ

K
( f ).

Proof. The sequence

/n+#
X

MN
J

/$
X

¯Ω#$
C/

X
MNΩ

X/S

is a presentation of Ω
X/S

. Here the matrix J is

I

J

¦f

¦y

¦f

¦x

¦f

¦z

¦∆
"

¦y

¦∆
"

¦x

¦∆
"

¦z

…

…

…

¦∆
n+"

¦y

¦∆
n+"

¦x

¦∆
n+"

¦z

K

L

.

Thus, in view of the above inequality, the ideal of 3¬3 minors F
!
(Ω

X/S
) is precisely

$
D
(X}S ). *

R 5.5. One has

dimΩ
X/S

®dimTX/S

"
¯µ( f )

as one proves using T
#
¯ 0 and the argument of §2. Note that

TX/S

"
¯ torsion(I}I #)¯& I}I #

is the module of non-trivial hypersurfaces singular along X. For a complete

intersection it is zero.
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