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Abstract

Microgrids are considered as a cornerstone in the evolution to a smarter grid. However, this
evolution brings some critical challenges for the control in a real-time implementation. We
present two control algorithms to operate a power system with microgrids and other two to op-
erate microgrids in order to reach the optimal social welfare. We consider three types of agents:
photovoltaic generators, conventional generators and smart loads. These agents can be aggre-
gated into a microgrid or interact directly in the power system depending on their power. To
optimize the microgrids, we use two strategies. First one is based on projected consensus algo-
rithm, where each agent iteratively optimizes its local utility function based on local information
obtained from its neighbors and global information obtained through a distributed finite-time
average algorithm. The second one is based on populations game theory; specifically we use a
centralized replicator dynamics where a central agent iteratively optimizes the system status.
To optimize the whole power system we use two strategies, first an asynchronous algorithm
based on primal-dual optimization is proposed, where we consider that agents update the pri-
mal variables and a ”virtual agent” updates the dual variables. Our last algorithm is a distributed
transactive control algorithm based on populations games to dynamically manage the distributed
generators and smart loads in the system to reach the optimum social welfare. Agents are con-
sidered non-cooperative, and they are individually incentive-driven. The proposed algorithm
preserve stability while guarantee optimality conditions considering several constraints in the
system on the real-time operation. We show numerical results of the proposed control strate-
gies.
Keywords:
Distributed control, distributed optimization, transactive control, projection algorithms, asyn-
chronous algorithms, game theory, microgrids.
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Resumen

Las microrredes están consideradas como la piedra angular de la evolución hacia una red más
inteligente. Sin embargo, esta evolución trae consigo algunos retos importantes para el control
en la implementación en tiempo real. Presentamos dos algoritmos de control para operar un
sistema de energía con microrredes y otros dos para operar microrredes con el fin de alcanzar el
bienestar social óptimo.
Consideramos dos tipos de agentes: generadores convencionales y cargas inteligentes. Estos
agentes pueden ser agregados en una microred o interactuar directamente en el sistema de en-
ergía dependiendo de su potencia. Para optimizar las microrredes utilizamos dos estrategias, la
primera se basa en un algoritmo de consenso proyectado, donde cada una de ellas optimiza iter-
ativamente su función de utilidad local a partir de la información local obtenida de sus vecinos
y la información global obtenida a través de un algoritmo distribuido de tiempo finito prome-
dio. El segundo se basa en la teoría de juegos de poblaciones, específicamente usamos una
dinámica de replicador centralizada donde un agente central optimiza iterativamente el estado
del sistema. Para optimizar todo el sistema de potencia utilizamos dos estrategias, la primera
es proponer un algoritmo asíncrono basado en la optimización prima-dual, donde consideramos
que los agentes actualizan las variables primarias y un ”agente virtual” actualiza las variables
duales. Nuestro último algoritmo es un algoritmo de control transaccional distribuido basado
en juegos de poblaciones para gestionar dinámicamente los generadores distribuidos y las cargas
inteligentes en el sistema para alcanzar el bienestar social óptimo. Se considera que los agentes
no cooperan y se basan en incentivos individuales. El algoritmo propuesto preserva la estabili-
dad a la vez que garantiza condiciones óptimas considerando varias restricciones en el sistema
sobre la operación en tiempo real. Se muestran los resultados numéricos de las estrategias de
control propuestas.
Palabras clave:
Control distribuido, optimización distribuida, control transaccional, algoritmos de proyección,
algoritmos asíncronos, teoría de juegos, microgrids.
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1 Introduction

Power systems have been evolving towards the smart grid concept [1, 2]. A smart grid is a net-
work that can supply the electricity demand integrating communication networks, distributed
generators (renewables and non-renewables), and power storage [1]. Microgrids are defined as
a cluster of small distributed generators, loads and battery energy storage systems that are con-
nected to the point of common coupling or as a network [3]. The evolution towards the smart
grid concept has been possible because of the technology progression associated with monitor-
ing and control different power systems devices [4, 5]. As a result of large diffusion of a vast
number of devices that can be monitored and control the power network, several challenges
have emerged because of the necessity of coordinate them, in order to assure a robust opera-
tion [6].

However, power system evolution to smart grids has brought some problems such as economic
dispatch [7], coordination between vast numbers of devices [6], among others. Economic dis-
patch is a problem where the main goal is minimizing the total generation cost, whereas the
constraints such as power balance and generation capacity are maintained [8]. Economic dis-
patch initially was focused on the transmission level in power systems [9, 10]. Nevertheless,
another recent focus has been how to optimize the operation in a smart grid, particularly micro-
grids.

To solve the economic dispatch problem, several approaches have been made including dis-
tributed energy resources. In 2008, Tsikalakis et al. [7] proposed a centralized control strategy
in a microgrid where they maximize the power exchanges with the power system. The following
years were evolving those approaches including distributed energy resources, [11, 12, 13, 14, 15].
Nevertheless, the approaches before mentioned are centralized methods, where a central con-
troller receives all data and process it to make the optimal economic dispatch. Centralized con-
trol requires high computational processing, high bandwidth, and in case of a successful attack
targeted to the controller, the system will be left without any control [16, 17]. The expensive
communication infrastructure, and the possibility that the system may go out of control due to
an attack make a centralized control a non-viable option to control a large-scale smart grid.

Distributed control is a promising strategy in order to deal with these problems. Several theories
have been applied tomake distributed control algorithms: Game theory [18, 19, 20], convex opti-
mization methods [21, 22, 23] with interesting theoretical results. Several approaches have been
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used to economic dispatch problems, optimal power flow, and voltage control [24, 25, 26, 27, 28].
These algorithms are subject to several technical constraints. The first constraint is the coordi-
nation of devices introduced to the power system, such as smart loads, traditional and renew-
able generators with the objective maintaining the system stability instead of uncertainty and
stochasticity of traditional loads and renewables generators on real-time operation [29]. The
second constraint is to guarantee that all agents maximize their profit without destabilizing the
power system.

In 2014 Dörfler et al. [30] have been proposed a distributed control strategy, in where each
distributed generator can execute a control action without having all the microgrid information.
Several approaches to make economic dispatch with a distributed control strategy have been
proposed, among the strategies proposed has been [31, 32]. There are different approaches to
make distributed economic dispatch based on game theory, [15, 33, 27], where it proves that
the control algorithm based on game theory can be used to improve the results obtained with
other algorithms.

Furthermore, several demand response strategies have been proposed in order to solve the eco-
nomic dispatch problem with load and generation variations [34]. The inclusion of communi-
cation networks has given users the capability to interact with the distribution system through
demand response mechanisms. Those mechanisms permit the users to vary its power consume
considering the distribution system variables. In this context, transactive control is an effective
strategy to assure coordination of a vast number of devices, including smart loads [6]. Transac-
tive control uses a market mechanism that permits agents to interact between them through an
economic signal in order to distribute the available resources [35, 36].

Transactive control, also called market-based control, is a strategy that uses a market mecha-
nism to enabling actors to interact with each other through an economic signal to allocate the
available resources [37, 38, 39]. Most of the literature of transactive control is focused on the
transmission level of the electrical infrastructure [37, 39]. However, a scalable coordination
approach to distribution systems operation could present several advantages over traditional
control strategies.

To generate a control algorithm that can control the distribution system with all the above con-
straints, transactive control emerges as a strong strategy to coordinate the diverse devices in the
distribution system. To use this control strategy, microgrids, generators and loads are modeled
as agents. We assume that these agents act rationally. These three actors have different and
definite goals. First, we have the generators, which looking to reduce their costs to generate
the required energy for maximizing their profit. Second, we have consumers, who are looking
for increase their utility while satisfied some minimum requirements. Microgrids are the last
agent; microgrids are looking for maximizing its profit while providing the energy demanded by
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the loads.

Therefore, the problem to be addressed is the design of a control algorithm based on trans-
active control framework to control a distribution system, considering the constraints men-
tioned above, while it maintained an optimum operation point despite the disturbances caused
by changes in the loads. To accomplish the above objective, several specific objectives were
raised. Initially, we modeled the agents in the distribution system considering physical con-
straints and utility variables. Then, we develop four transactive control algorithms were the
agents modeled before were included and finally, we test the algorithms taking into account
an IEEE 30-bus power case where we prove the effectiveness of these algorithms to reach the
optimum system operation while the power system constraints are maintained.

There are several contributions to these algorithms. First, we develop a fully distributed al-
gorithm that does not need a priori knowledge in order to reach the optimum of the system.
Second, we developed an algorithm based on game theory where our main contribution is that
the algorithm can address optimization problems with linear constraints, and it also works in a
distributed way. Finally, we propose an asynchronous algorithm to optimize the whole power
system, this algorithm breaks a commonly used constraint that is communication synchronism.

This document is organized as follows. In chapter 2, we present the preliminaries concepts
used in the development of this work, specifical concepts about graph theory, convex optimiza-
tion and population games theory. In chapter 3 we present the problem statement where it is
shown the model of each agent in the distribution system, i.e., traditional generators, photo-
voltaic generators, shiftable loads and adjustable loads. In chapter 4 we present four algorithms
that aim to solve the problem statement in chapter 3. In chapter 5 we present two cases study.
First one is implemented in a WSCC 9-bus system where we test the effectiveness of the algo-
rithms presented in section 4.1 and section 4.2. In order to test the capability of algorithms
presented in section 4.3 and section 4.4 to reach to the optimum operation we make a test in an
IEEE 30 bus model based. Furthermore, we make an analysis of their properties and their main
differences. Finally, we establish conclusions and future work.



2 Preliminaries

This chapter presents the preliminaries concepts of graph theory, convex optimization and game
theory specifically population dynamics. Initially, we propose some notation used in this docu-
ment.

If X is a set and x is an element of X , we write x ∈ X . A set that meets a property P is
denoted as X = {x | x satisfies P}. The union and intersection of the sets X1 and X2 is
denoted as X1 ∪ X2 and X1 ∩ X2 respectively. We denote by [a, b] the set of real numbers x
that satisfies a ≤ x ≤ b. Besides a rounded, instead of square bracket means strict inequality
definition as (a, b), this set satisfies a < x < b.

Furthermore, functions are defined using the notation f : A → B, where A are the domain
and B is the range of the function. When we use this notation, we assume that A and B are not
empty sets.

We denote by Rn a vector of n-dimensions. For any x ∈ Rn, we use xi to indicate its i-th
component. Vectors are designed as column vectors unless otherwise stated. x⊤ denotes the
transpose of x, which is a n-dimensional row vector. We use the notation Rx>0 and Rx≥0 to
denote that all elements of these sets are positive and nonnegative respectively. We denote a
matrix as An×m, where n and m are the matrix dimensions.

A function f : [a, b] → R is said to satisfy the Lipschitz condition if there is a constant T
such that |f(h) − f(h′)| ≤ T |h − h′| ∀ h, h′ ∈ [a, b]. Moreover, let f a function of n vari-
ables, The Hessian Matrix is a matrix of n × n where each element is the second-order partial
derivatives of the function f . The Hessian matrix is denoted as Hn×n(f).

2.1 Graph Theory

A graph is a representation of a set of elements with interconnections between them; a graph is
denoted as G. A graph is composed by a set of vertexes denoted as V and a set of interconnections
between vertexes that are called links or edges and they are denoted as E . w is a function that
assigns a real value to each edge such that w : E → R, if a graph has weights for all links equals
to one, this graph is called unweighted graph. Let x and y be any agent of the graph G. Then, a
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graph can be defined as [40, Section 3.4]

G = (V , E , w), (2-1)

where V = {1, 2, 3, . . . , V }, and V represents the number of vertexes in the graph. Furthermore,
E is a set of ordered pairs of vertexes, such that E ⊆ V × V , i.e., (x, y) ∈ E if there is a link
between x ∈ V and y ∈ V . A link between (x, y) implies that a vertex x can send information to
y. Besides, we let Nx denote the neighbors of an agent x ∈ V such that Nx = {y | (x, y) ∈ E}
[41].

An undirected graph is a graph where if there exists a link between (x, y), then, there exist
other links between (y, x) for all links. A path between x to y in a graph is a sequence of edges
that connect a sequence of vertexes that starts in vertex x and finishes in vertex y. A graph
G is connected, which means that there is at least one path between two different nodes [42,
Section 2.2]. A cycle in a graph G is a path that starts and ends in one vertex. Three different
vertexes at least compose a cycle, a graph without cycles is called a tree. Additionally, if G is
connected, it implies the existence of at least one tree [40, subsection 3.2]. A spanning tree is
a subgraph denoted as G ′ such that includes all vertexes of G with the minimum number of links.

An example of before statements is in Figure 2-1 where there is an unweighted, undirected
graph composed by a set of vertexes and edges defined as

V = {a, b, c, d, e, f, g} (2-2)

E = {(a, b), (b, c), (a, d), (b, d), (b, e), (c, e), (d, f), (e, f), (e, g), (f, g)} (2-3)

The black links are a path between vertex a to vertex g, this path involves a subset of (2-2) that is
VP = {a, b, e, g}. Moreover, a subset of (2-3) is involved, this subset is EP = {(a, b), (b, e), (e, g)}.
Finally, the blue links are a tree that involves all vertexes in the graph without forming a cycle.

a b c

d

e

f g

a b

e

g

Figure 2-1: Graph representation
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Adjacency Matrix

For an undirected, weighted graph G(V , E , w), with V = {1, 2, . . . , V }. The adjacency matrix of
G is a non-negative matrix denoted as A(G) ∈ RV×V . Positions A(x, y) and A(y, x) are equal
to the weight of the edge (x, y), and all other positions of A are equal to zero. Then, for an
undirected graph, the adjacency matrix is a symmetric matrix. Let axy be the weight of an edge,
an adjacency matrix is shown in (2-4).

A(G) =


0 a12 a13 . . . a1V
a21 0 a23 . . . a2V
a31 a32 0 . . . a3V
...

...
... . . . ...

aV 1 aV 2 aV 3 . . . 0

 (2-4)

Degree Matrix

The degree of a vertex x is the cardinality of the neighborhood set of x, it is denoted as rx = |Nx|.
Then, by definition a degree matrix is a diagonal matrix, denoted as ∆(G), a degree matrix is
shown in (2-5).

∆(G) =


r1 0 0 . . . 0

0 r2 0 . . . 0

0 0 r3 . . . 0
...

...
... . . . ...

0 0 0 . . . rV

 (2-5)

2.2 Convex Optimization

This section presents the convex optimization and analysis concepts used during this work, and
it follows the work in [43, 44, 45, 46]. This chapter presents some definitions about convex sets
and convex functions initially. Then, we define the projection operation that is extensively used
in this work. Finally, Lagrange multipliers and duality are explained.

2.2.1 Convex Sets

Let x and y be two points in Rn, where n is an arbitrary space dimension. A segment line
between x and y can be defined if x ̸= y as [44]

z = αx+ (1− α)y, α ∈ [0, 1] (2-6)
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Let C a set, let x and y be any two points in C. C is a convex set if any line segment between x

and y always belongs to C.

Definition 1 Taken from [43]. A set C ⊂ Rn is convex if

αx+ (1− α)y ∈ C, ∀ x, y ∈ C,∀ α ∈ [0, 1] (2-7)

As a consequence, it is possible to deduce that an arbitrary point x inside a convex set C can
see all points in the convex set, furthermore, these arbitrary points can be connected with a line
that always belongs to C as is shown in 2-2.

A

B
C

D E

F

G

H

I

J

Figure 2-2: Convex and no convex sets representation. On the left, in blue there is a convex set.
On the right, in green there is a no convex set, note that a segment line (H, I) does
not belong anywhere to the set, then the set on the right is called a no convex set.

Some operations are possible to make with convex sets that preserve convexity of the sets [43].
Let IC be a set of convex sets as IC = {C1, C2, . . . , CI}

Proposition 1 The intersection of convex sets, i.e., ∩iCi, {i ∈ IC} is convex.

Proposition 2 A sum between two convex sets C1 + C2 is convex.

Proposition 3 Let χ be a scalar that belongs to R, the set χC1 is convex

Proposition 4 The closure and the interior of a convex set are convex.
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2.2.2 Convex Functions

A function f : C → R is convex, where C is a convex subset ofRn. In other words, if the domain
of the function f is a convex set. i,e a convex function respects

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀ x, y ∈ C, ∀ α ∈ [0, 1]. (2-8)

A convex function has characteristics highly used in optimization analysis, these characteristics
are:

• A twice continuously differentiable function is convex on a convex set if and only if its
Hessian matrix is positive semi-definite on the interior of the convex set.

• A local minimum is also a global minimum, and then a convex function only has one min-
imum.

(y,f(y))

(x,f(x))
α f(x)+(1-α) f(y)

Figure 2-3: Representation of a convex function.

2.2.3 Global and local minima

In this subsection, it is given some basic concepts about global and local minima related to
convex optimization. First of all, consider a function f : Rn → (−∞,∞). We consider the
problem of minimizing f(x) over X, where X is a subset of Rn, as is shown

Problem 1
minimize

x
f(x)

subject to x ∈ X
(2-9)

As a result of (2-9), we obtain a vector x∗ ∈ X, this vector is called minimizing point or global
minimum over X, this vector is
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x∗ = argmin
x∈X

f(x). (2-10)

It is proved through the Weistrass theorem [43] that any continuous function has a minimum
over a compact set, then we can assume the existence of (2-10).

2.2.4 Projection Operation

A projection is a linear transformation from a vector space to a subset of it. Among its charac-
teristics is the idempotency, which means that a projection gives the same result if the linear
transformation is applied once or more times [47]. The projection is denoted as PX [·], and it is
defined as

PX[Y ] = argmin
a∈X

∥a− Y ∥, (2-11)

where X is the set where a is feasible [43, 46]. Consider a compact set X ⊂ Rn and a point
Y /∈ X, the projection operation moves point Y to the nearest point that belongs to X as is
shown in Figure 2-4. If the point Y ∈ X, the projection operation does not move the point.

Y3 X Y1PX[Y1]

Y4

Y2

PX[Y2]

Figure 2-4: Projection operation over the points Y1,Y2,Y3 and Y4
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2.2.5 Lagrange Multipliers

Consider a more specific case of (2-9), as it is shown in (2-12), in several text it is refered as
primal problem [43, 44].

Problem 2 Consider an smooth objective function f : Rn → R, constraints functions g : RI → R and
h : RJ → R

minimize
x

f(x) (2-12a)

subject to gi(x) ≤ 0 i = 1, 2, . . . , I, (2-12b)

hj(x) = 0 j = 1, 2, . . . , J (2-12c)

where x is the optimization variable that belongs to vectorial space Rn. It is assumed for this
problem that it exists at least a x that satisfies hj(x) = 0 and gi(x) ≤ 0 ∀ i ∈ I, j ∈ J . In other
words, we assume that the domainD =

∩I
i=0 dom gi(x)∩

∩J
j=0 domhj(x) is not empty. Inside

D it is assumed that exists a point optimal point denoted as x∗.

The main idea of Lagrange duality is to include (2-12b) and (2-12c) into the objective function
in (2-12). Constraints (2-12b) and (2-12c) are included through a weighted sum augmenting the
objective function as is shown

L(x, λ, µ) = f(x) +
I∑

i=0

λigi(x) +
J∑

j=0

µjhj(x), (2-13)

where λ ∈ RI
>0 is the Lagrange multiplier associated to inequalities constraints and µ ∈ RJ

>0

is the Lagrange multiplier associated to equalities constraints. It is possible to note in (2-13), if
the constraints are not fulfilled, the value of the (2-13) is higher and then the optimal point of
L is not reached.

2.2.6 Lagrange Duality

Consider the minimization of x in (2-13), it is well defined in [44] that the Lagrange dual function
is

q(λ, µ) = inf
x∈X

L(x, λ, µ) = inf
x∈X

(
f(x) +

I∑
i=0

λigi(x) +
J∑

j=0

µjhj(x)

)
(2-14)

where h : RI ×RJ → R, h is the minimum value of (2-13). When Lagrange duality is applied x

is no longer a variable. Since the dual function is the punctual minimum of a family of related
functions (λ, µ), it is concave, even when the problem (2-12) is not convex [44].
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2.2.6.1 The Lagrange dual Problem

Consider λ ∈ R>0 and µ ∈ R. Then, the dual function always produces lower bounds on the
optimal value p∗, and this is denoted as

q(λ, µ) ≤ x∗ (2-15)

However, it is possible to realize that p∗ depends on (λ, µ), in consequence, it is possible to
search a value of (λ, µ) such as we can obtain the best lower bound. This problem can be seen
as

maximize
λ, µ

q(λ, µ) (2-16a)

subject to λ ≥ 0 (2-16b)

We denote the optimum values obtained (λ∗, µ∗) as optimal Lagrange multipliers. This prob-
lem is convex independently of the primal problem nature. The duality gap is the difference
between the solution of the primal problem p∗ and the dual problem d∗, and this difference is
always a non-negative value. However, we use them assumption and proposition proposed in
[43, Chapter 6].

Assumption 1 (Taking from [43, Chapter 6])
Convexity and linear constraints: The optimal value p∗ of problem (2-12) is finite, and the following hold:

• The setX is the intersection of a polyhedral set and a convex set C .

• The cost function f : RN → R over C.

• There exists a feasible solution of the problem that belongs to the relative interior of C .

Then, considering Assumption 1, it is possible to affirm that there is not duality gap, and there
exist at least a multiplier that satisfies problem (2-12) [43, Proposition 6.4.2].

2.3 Population Games Basics

Population games describe how a mass of players evolve in time while they choose a strategy.
These agents follow a strategy selected from among a finite set of pure strategies. Due to the
size of the population, the analysis focuses through a payoff function associated with the chosen
strategy.
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2.3.1 Populations

Let P = {1, 2, 3, . . . , p} be a population of agents. Agents in population P form a mass of
population m > 0. The set of strategies available to agents in population P is denoted as
S = {1, 2, 3, . . . , n}. During gameplay, each agent in population P selects a strategy from the
set of available strategies. The set of population states for population P is

X =

{
x ∈ Rn

≥0 :
∑
i∈S

xi = m

}
.

The scalar xi ∈ R≥0 represents the mass of players in population P choosing strategy i ∈ S.
Elements of Xv, the set of vertexes of X , are called pure population states because at these
states all agents choose the same strategy.

2.3.2 Payoffs or Fitness Functions

Usually, populations and strategies that can take these populations are considered as fixed. How-
ever, in order to identify a game, we use its payoff function. A fitness function F : X → R is a
map that assigns each social state an utility, one for each strategy in each population.

2.3.3 Replicator Dynamics

In population games, replicator dynamics has been used in several engineering applications con-
sidering some benefits in implementation such as real-time adaptation and robustness to dy-
namic environmental uncertainties [33, 48, 49, 29]. Replicator dynamics has been developed
over several years and as a result of this work centralized and distributed forms to implement
replicator dynamics has been developed [18, 49, 29, 50]. Initially, we present the centralized
replicator dynamics and then the distributed case.

2.3.3.1 Centralized Replicator Dynamics

The replicator dynamics solves the problems as economic dispatch, transactive control among
others, as a resource allocation problem. Replicator dynamics considers N = {1, 2, 3, . . . , N}
finite number of agents, who adopt a i-th strategy from a finite set of pure strategies.
Let xi ≥ 0 be the population proportion in the i-th habitat, and the stage population vector is
given by x(t) = [x1(t), x2(t), x3(t), . . . , xN(t)]

⊤, with⊤ as the vector transpose, where each ele-
ment represents the population at each time t. The total population is given by P =

∑
i∈N ρi(t),

where ρi(t) corresponds to the number of individuals with pure strategy i at a time instant. The
population proportion playing the i-th strategy is xi = ρi(t)P .
Accordingly, to achieve an appropriate performance in the steady state, the total resources de-
manded should be the sum of all set points of resources allocated. The payoff function (Fi) is
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associated with the chosen strategy. Therefore, a continuous time implementation is also used.
In its general form, the replicator dynamics can be represented as

ẋi = β(Fi − F̄ (x))xi (2-17)

where xi is the state associated with the agent i, β is a parameter that permits modify the
convergence speed. The average payoff in the population F̄ (x) is given by

F̄ (x) =
1

N

N∑
i=0

xiFi (2-18)

To guarantee the power balance, the results in [18, 51] are used, where the choice of (2-18)
guarantees the invariance of the constraint set ∆ defined as

∆ =

{
xi ∈ RN

≥0 :
N∑
i=0

xi = Rt

}
(2-19)

This result ensures that if xi(0) ∈ ∆, ∀i ∈ N , all xi(t) ∈ ∆ with t ≥ 0. In other words,
ever is dispatched the resource demanded by the system, i.e., the replicator dynamic algorithm
guarantee a perfect balance between resources demanded and generated.

2.3.3.2 Distributed Replicator Dynamics

The dynamic population model describes how a pure population strategy changes through time.
The replicator dynamics consider a N finite number of agents in the system, who adopt a i-th
strategy from a finite set of pure strategies. Accordingly, to achieve an appropriate performance
in the steady state, the demanded power load should be the sum of all power set points [33].
In its general form, the distributed replicator dynamics equation can be represented as

ẋi = xi

(
Fi(xi)

∑
j∈Ni

xj −
∑
j∈Ni

xjFj(xj)

)
, (2-20)

where Fi is the fitness function associated with each strategy, and Ni is the neighborhood of
agent i sharing information through a communication network. In [29], we can find the simplex
invariance for the distributed replicator dynamics, which means that if x(0) ∈ ∆, the dynamic
variable xi(t) evolves inside ∆.
The fundamental concept in the design of the population games is the appropriate selection of
the fitness function such that the distributed replicator dynamic equation (2-20) can be used as
a constrained distributed optimization algorithm [18] as is shown in Section 4.4.
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2.3.4 Discrete Time Population Dynamics

In order to implement the centralized and distributed replicator dynamics we use a discrete
time simulation, due to the implementation is made in digital computers and using a digital
communication system. Furthermore, we use this discrete time implementation in order to
make comparisons with the others proposed algorithms.

Then, in this context replicator dynamics are represented as a discrete time system. First, con-
sider k ∈ R≥0 and α ∈ R>0, where k denotes discrete time or iterations and α is a stepsize, in
this work we assume a fix stepsize. Then, (2-17) and (2-20) in a discrete time implementation
are presented in (2-21) and (2-21).

xi(k + 1) = xi(k) + αxi(k)

(
fi(k)−

1

n

N∑
i=0

fi(k)

)
(2-21)

xi(k + 1) = xi(k) + αxi(k)

(
fi(k)

∑
j∈Ni

xj(k)−
∑
j∈Ni

xj(k)fj(k)

)
(2-22)

In the following section we present the problem statement where we present the agent models,
estimation about line losses and the social welfare problem.
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This work is focused explicitly on distribution systems because the distributed generation is
highly used near to loads [52]. We study an economic dispatch problem where loads and gen-
erators interact between them, called social welfare problem [53, 37, 39], which is described in
Section 3.3. The models used in this work are described in Section 3.1, we use two generators
models, two consumers models and microgrid model, which is, in fact, a combination of gener-
ators and loads. Traditionally, the losses in distribution lines are high, this was taken into the
system modeling, and they are presented in the Section 3.2.

3.1 Agents in the Distribution System

We represent the distribution network as a graph G, where each agent is represented by a node.
We consider five types of agents, two generators, two consumers and a microgrid. Each one of
them has different characteristics that are modeled through an objective function and several
constraints depending on their characteristics. The objective function represents a cost function
for generators and microgrids or utility function for loads. These agents interact between them
through a communication network that is represented by edges in the graph G.

3.1.1 Generators

Generators are considered as distributed energy resources. We assume that there are two types
of generators, traditional and photovoltaic generators (renewable generators). These generators
are dispatchable. A dispatchable generator can change the power that it is generating by tak-
ing into account the system requirements (i.e., the generation-demand balance), and respond
dynamically to changes in the power demanded by consumers. Photovoltaic generators are
dispatchable due to the implementation of maximum power point tracking (MPPT) algorithms
[54, 55, 56].

3.1.1.1 Traditional Generators

A traditional generator is denoted as n. The set of generators is denoted asN = {1, 2, 3, . . . , N},
where N is the number of traditional generators in the network. Moreover, the cost of genera-
tion is assumed quadratic [37, 39], i.e.,
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C(Pgn) = ρgnPgn +
βgn

2
P 2
gn (3-1)

where ρg ∈ RN and βg ∈ RN are cost coefficients, Pg(k) ∈ RN is a vector that contains the
power delivered by each generator at time instant k,Pg(k) = [Pg1(k), Pg2(k), Pg3(k), . . . , PgN (k)]

⊤.
Moreover, each generator has local constraints given by

P gn ≥ Pgn ≥ P gn , (3-2)

where P gn and P gn are the minimum and maximum power delivered by the n-th generator,
respectively. We assume that P gn and P gn do not have changes through the time.
A traditional generator is denoted as n. The set of generators is denoted asN = {1, 2, 3, . . . , N},
where N is the number of traditional generators in the network. Moreover, the cost of genera-
tion is assumed quadratic [37, 39], i.e.,

C(Pgn) = ρgnPgn +
βgn

2
P 2
gn (3-3)

where ρg ∈ RN and βg ∈ RN are cost coefficients, Pg(k) ∈ RN is a vector that contains the
power delivered by each generator at time instant k,Pg(k) = [Pg1(k), Pg2(k), Pg3(k), . . . , PgN (k)]

⊤.
Moreover, each generator has local constraints given by

P gn ≥ Pgn ≥ P gn , (3-4)

where P gn and P gn are the minimum and maximum power delivered by the n-th generator,
respectively. We assume that P gn and P gn do not have changes through the time.

3.1.1.2 Photovoltaic Generators

In this approach, we consider that within the microgrid agents, there may be photovoltaic gen-
erators. These generators have inherent stochasticity in the way as electricity is generated due
to depending on the solar radiation at each instant. Let r be any photovoltaic generator in the
system such that r ∈ R = {1, 2, 3, . . . , R}. The cost function of these generators is a quadratic
function [34] represented by

C(PPr) = ρPrPpr +
βPr

2
P 2
pr , (3-5)

where ρP ∈ RR and βP ∈ RR are cost coefficients, Pp(k) ∈ RR is the vector that contains the
power generated by each photovoltaic generator at time instant k as follows
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Pp(k) = [Pp1(k), Pp2(k), Pp3(k), . . . , PpR(k)]
⊤, (3-6)

Ppr represents the power of the agent r. Maximumpower available of any photovoltaic generator
(Ppr ) is proportional to the photovoltaic system area (Ar), efficiency of the photovoltaic panel
(er) and solar radiation data (SRr) [57], as follows

Ppr = ArerSRr. (3-7)

SRr is a property that makes power available by photovoltaic generator r to change due to this
parameter varies through the time. The agent r has local constraints given by

P pr ≥ Ppr ≥ P pr , (3-8)

where P pr and P pr are the maximum and minimum power of the photovoltaic generator, re-
spectively. Then, considering that SRr is a variable parameter, it is possible to show that P pr

and P pr are variables that change over time.

3.1.2 Consumers

Consumers are divided into three types of consumers. These are adjustable, shiftable and base
loads. Initially, the base load is that which is necessary and cannot be negotiated with the net-
work. However, the base load can be changed through the time depending on users preferences,
and then the base load does not have any utility function. The shiftable load is a load that can
vary over time depending on its objective function. However, this type of load can only support
two states, on or off load. Finally, an adjustable load is a load that can vary over time depending
on its objective function, and this load can support several states in order to maximize their
profit.

3.1.2.1 Shiftable Load

Shiftable loads are those that can shift their consumption to another time zone, in order to
prevent the shifting load from being activated at times when there is more congestion in the
network, and therefore a higher energy price, examples of this kind of load are the wash-
ing machine and electric vehicles. The set of consumers with shiftable loads is denoted as
s ∈ S = {1, 2, 3, . . . , S}. We assume that these agents can obtain several variables of the
distribution system through demand response devices. As well as all agents in the distribution
system, shiftable loads have an objective function that measures the utility of turn on or turn
off the load, and it is represented as
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U(PLs) = ρLPLs +
βL

2
P 2
Ls
, (3-9)

where ρL ∈ RS and βL ∈ RS are utility coefficients, PL(k) ∈ RS is the vector that contains the
power consumed by each shiftable load at time instant k as follows

PL(k) = [PL1(k), PL2(k), PL3(k), . . . , PLS(k)]
⊤, (3-10)

PLs represents the power of the agent s. Demand response devices are capable of making deci-
sions about turn on or off the load. If the objective function is equal or greater than a threshold,
then the load is turned on. If the objective function is lower than a threshold, then the load is
turned off as is shown

PLs =

{
PLs if U(PLs) ≥ Ts;

0, if U(PLs) < Ts;
(3-11)

where Ts is the threshold of the user s, this threshold is based on users preferences, and it can
switch between users.

3.1.2.2 Adjustable Load

Adjustable loads are those that can adjust its consume taking into account several information
given by the network. This kind of load has several states, and it chooses one of them depending
on its utility through its objective function, an example of this kind of load is the air conditioning.
The set of consumers is denoted as a ∈ A = {1, 2, 3, . . . , A}. Consumers are assumed to be
agents who can obtain some system variables through demand response devices. These devices
are capable of making decisions about the amount of power required by each consumer in order
to maximize its utility [58]. The consumers’ utility function is defined as [37]

U(Pda) = ρdaPda +
βda

2
P 2
da , (3-12)

where ρd ∈ RA and βd ∈ RA are utility coefficients, Pd(k) ∈ RA is the vector that contains the
load demanded by each smart consumer at time instant k,Pd(k) = [Pd1(k), Pd2(k), . . . , PdA(k)]

⊤.
The agent a-th has local constraints given by

P da ≥ Pda ≥ P da , (3-13)

where P da and P da are the minimum and maximum power demanded by the load a-th respec-
tively.
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3.1.3 Microgrids

Currently distribution systems require to any agent that wants to be dispatched in an economic
dispatch to have a minimum power available. However, this amount of power is usually only
meet by industrial consumers and generators.Microgrids have appeared in order to include small
agents as an active part of the distribution systems.

Microgrids have certain characteristics thatmake them the cornerstone of the transition to smart
grids. First of all, they include small adjustable loads, shiftable loads, traditional generators and
renewables generators [58, 59]. Moreover, the agents inside a microgrid can communicate be-
tween them as is shown in Figure 3-1.

A microgrid can be grid-tied or off-grid, as consequence a microgrid can operate isolated from
the main grid. The main restriction in a microgrid is that this is delimited to a specific geograph-
ical area [60]. Let q be any microgrid in the power system such that q ∈ Q = {1, 2, 3, . . . , Q}.
Then the microgrid utility function can be denoted as

Uq (PM) =
Aq∑

aq=1

U
(
Pdaq

)
+

Sq∑
sq=1

U
(
PLsq

)
−

Nq∑
nq=1

C
(
Pgnq

)
−

Rq∑
rq=1

C
(
Pprq

)
, (3-14)

Figure 3-1: General diagram of a power system with high penetration of microgrids. The el-
ements enclosed in green are microgrids. The orange connections represent the
power lines among each agent.

where PM is a stacked vector such that PM =
[
P q
d , P

q
L, P

q
g , P

q
p

]⊤
. Any agent in the microgrid q

is denoted as xq ∈ Vq. Besides, Pdaq is the power demanded by a consumer aq belonging to the
microgrid q such that aq ∈ Aq = {1, 2, 3, . . . , Aq}. Moreover, PLsq

is the power demanded by a
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consumer sq belonging to the microgrid q such that sq ∈ Sq = {1, 2, 3, . . . , Sq}. Furthermore,
Pgnq

is the power generated by a generator nq belonging to the microgrid q such that nq ∈ N q =

{1, 2, 3, . . . , N q}. Finally, Pprq is the power generated by a photovoltaic generator rq belonging
to the microgrid q such that rq ∈ Rq = {1, 2, 3, . . . , Rq}.

Remark 1 SRr in each microgrid q is considered equal for all agents rq ∈ Rq as in [61].

Microgrids are subject to different constraints in order to meet their main objective, i.e., opti-
mize the state of agents inside itself. Furthermore, a microgrid can be trading with the distri-
bution system in order to sell (buy) the available (missing) power in order to fulfill its power
requirements. These constraints are shown in (3-15)

Aq∑
aq=1

Pdaq +
Sq∑

sq=1

PLsq
−

Nq∑
nq=1

Pgnq
−

Rq∑
rq=1

Pprq = PEq (3-15a)

PEq ≥ PEq ≥ PEq
(3-15b)

where, if PEq ∈ R≥0, PEq is the power requested by the power system after to sell the power
available by the microgrid q. Otherwise, PEq is the power requested to the power system after
to buy the power missing by the microgrid q in order to fulfill constraint (3-15a). Furthermore,
PEq and PEq

are associated to the maximum and minimum power available of each microgrid q.
Then, the optimization problem for each microgrid is to optimize (3-14) while constraints (3-4),
(3-8), (3-13), (3-15a) and (3-15b) are fulfilled as follows

maximize
PM

U (PM) (3-16a)

subject to
Aq∑

aq=1

Pdaq +
Sq∑

sq=1

PLsq
−

Nq∑
nq=1

Pgnq
−

Rq∑
rq=1

Pprq = PEq , (3-16b)

P gnq
≥ Pgnq

≥ P gnq
∀nq ∈ N q, (3-16c)

P prq ≥ Pprq ≥ P prq
∀rq ∈ Rq, (3-16d)

P daq ≥ Pdaq ≥ P daq
∀aq ∈ Aq, (3-16e)

PLsq
≥ PLsq

≥ PLsq
∀sq ∈ Sq, (3-16f)

PEq ≥ PEq ≥ PEq
, (3-16g)

where (3-14) is a convex function. We assume that the local objective function and the local
constraint set are only known to the agent. Then, problem (3-16) is strongly convex. Local
constraints are closed convex sets. Finally, it is assumed that exists at least a feasible point and
a solution to this problem.
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3.2 Power Losses

Network losses in a distribution system are factors that can be determinant to reach the opti-
mum social welfare [62]. Network losses could be reduced making an optimal power flow, e.g.,
sometimes could be better generate with a generator more expensive if the load is near to the
generator. Furthermore, losses varying through time depending on the load used by consumers.
It is not possible to solve the system in all possible cases of demand and power generation
needed to solve the problem analytically [63]. We assume that the network losses are constant
in the range of operation and estimated by the Kron’s formula as follows

Pl =
Z∑

k=1

Z∑
l=1

pkBklpl +
Z∑

k=1

Bk0pkd+B00, (3-17)

where B = [Bkl], B0, and B00 are the loss factors, Nl is the number of generator considered in
the estimation algorithm. In order to calculate an estimation of the network losses, the algorithm
in [49] is used. This algorithm can calculate loss factors which give us a closeness estimation
of the losses. However, it is important to highlight that the lines will be considered but only
considering active power, i.e., only the resistive component of the line is considered. Besides,
non-technical losses in the distribution systems are not considered. As a result of this estimation
algorithm, it is obtained a constant power Pl to be included in the algorithm as a part of the load
to be dispatched.

3.3 Social Welfare Problem

The problem of social welfare is related to the optimization of the state of each agent of the
electricity system, in other words, to minimize the cost of generators, maximize the utility of
consumers and microgrids and it is obtained from (3-3), (3-5), (3-9), (3-12) and (3-14) as follows

SW (P ) =
A∑

a=1

U(Pda) +
S∑

s=1

U(PLs) +

Q∑
q=1

U(PMq)−
N∑

n=1

C(Pgn)−
R∑

r=1

C(Ppr). (3-18)

The main goal is to maximize (3-18) as it is shown in (3-19), taking into account constraints (3-4),
(3-8), (3-13) , (3-15). Let P be a stacked vector that contains all power of any agent in the system
such that P = [Pa, PL, Pg, Pp, PM ]⊤. Then, the optimization problem of the power system is
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maximize
P

SW (P ) (3-19a)

subject to
A∑

a=1

Pda +
S∑

s=1

PLs +

Q∑
q=1

PMq −
N∑

n=1

Pgn −
R∑

r=1

Ppr = Pl, (3-19b)

P gn ≥ Pgn ≥ P gn ∀n ∈ N , (3-19c)

P da ≥ Pda ≥ P da ∀a ∈ A, (3-19d)

P pr ≥ Ppr ≥ P pr ∀r ∈ R, (3-19e)

PLs ≥ PLs ≥ PLs
∀s ∈ S, , (3-19f)

PMq ≥ PMq ≥ PMq
∀q ∈ Q, (3-19g)

where (3-18) is a convex function. We assume that the local objective function and the local
constraint set are known to the agent only. Then, problem (3-19) is strongly convex. Local
constraints are closed convex sets. Finally, it is assumed that exists at least a feasible point and
a solution to this problem. In the following section, we will present the algorithms for solving
the optimization problem proposed in this section.



4 Transactive Control Approaches

In this section, we present four algorithms developed to solve the problem proposed in the pre-
vious section. These algorithms are based on convex optimization theory and game theoretical
methods. Initially, we present two algorithms based on convex optimization theory. The first
and second algorithms are formulated in order to solve problem (3-16). The others two algo-
rithms are formulated to solve problem (3-19).

In our first algorithm, we develop an algorithms combination in order to obtain a fully dis-
tributed transactive algorithm that without a priori knowledge can dispatch generators and loads
in a microgrid optimally. As a result, this algorithm was presented in [64].

Second, we design a centralized algorithm that can optimize the resource allocation of power in
a microgrid, and this algorithm was based on the following works [33, 48, 29]. Our main contri-
bution to this algorithm has been made that this algorithm can address optimization problems
with linear constraints. As a result, this algorithm was presented in [53].

Our third algorithm has the same base of our third algorithm, projected gradient method, and du-
ality gradient method are used to build an asynchronous algorithm that can optimize the social
welfare problem (c.f. Equation (3-18)) asynchronously, which gives to the algorithm an advan-
tage over the others algorithms that requires a synchronous communication. In the microgrids
inside the proposed power system, we use the optimization algorithm presented in Section 4.2.
This algorithm was submitted to publication [65].

Finally, the last algorithm was developed taking into account our second algorithm. We made a
distributed replicator dynamics where we can include several restrictions to the power system.
This algorithm allows taking advantage of the algorithms made in distributed form, as each node
performs small calculations instead of a single entity performs all the processing. This algorithm
was submitted to publication [66].
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Table 4-1: Algorithms characteristics
Properties Power System Theoretical Method

Asynchronous Duality Distributed Centralized Hierarchical MG
Distribution
Systems with
Microgrids

Game
Theoretical
Methods

Convex
Optimization
Methods

Algorithm 1 x x x
Algorithm 2 x x x x
Algorithm 3 x x x x x x x
Algorithm 4 x x x x x

We define the following assumptions in order to solve Problem (3-19), these are about minimal
conditions of utility functions, constraints sets, and initial points. Xx denote a constraint set of
any agent x.

Assumption 2 The graph G is connected, static, undirected, and unweighted.

Assumption 3 Links are assumed lossless, without delays and synchronous.

Assumption 4 For all agent x ∈ V , the setXx is not-empty compact and convex.

Assumption 5 Consumers utility functions, generators cost functions and constraints are twice continuously
differentiable.

Assumption 6 The feasible sets of Pgn ∀ n ∈ N , PPr ∀ r ∈ R, Pda ∀ a ∈ A, PLs ∀ s ∈ S , and
PMq ∀ q ∈ Q are not-empty.

Assumption 7 All agents start their power inside their feasible set, i.e. Pgn(0), Ppr(0), PLs(0) and Pda(0)

satisfy (3-19c),(3-19d), (3-19e) and (3-19f).

Assumption 8 The agents know their set of neighbors and hence their own cardinality, ra, where ra = |Na|.

Assumption 9 The set of feasible points for problem (3-19) is non-empty.
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4.1 Distributed Transactive Control in Power Systems Based on
the Projected Consensus Algorithm

We propose a distributed transactive control algorithm based on the projected distributed gra-
dient algorithm [45, 21]. In order to find a solution we consider the Assumptions 2, 3, 4, 5 and
8. These assumptions are related to graph properties, communications and agents initial knowl-
edge. This section is based on [64].

To solve (3-16), it is necessary for this algorithm that all agents have information about the
global state of the network. Agents need the following data: total power demanded (PD), to-
tal power delivered (PG) and finally the number of generators and consumers in the network
(N +R) and (A+ S) respectively. Where PD and PG are calculated such as

PD =
A∑

a=1

Pda(k) +
S∑

s=1

PLs(k) PG =
N∑

n=1

Pgn(k) +
R∑

r=1

Ppr(k)

Results in the recent literature assume that global parameters can be obtained a priori by agents.
This implies that global parameters are acquired by a central agent that send the global parame-
ters to the agents in the power system as in [67, 68, 69, 70, 48]. To relax the requirement of the
central agent, we formulate a fully distributed algorithm that can find the global parameters in
a distributed way efficiently. We use the Minimum Diameter Spanning Tree (MDST) algorithm
and a Finite Time Average algorithm to reach consensus in a finite number of steps, these algo-
rithms are explained in subsection 4.1.1 and 4.1.2 respectively.

The MDST algorithm is used to find a spanning tree of the graph G that allows to finite time
averaging algorithm share the global parameters with all the agents in the power system. Later,
the same spanning tree is used to execute the distributed projection gradient algorithm to com-
pute the iterations of the optimization variables.

4.1.1 Distributed Algorithm for the Minimum Diameter Spanning Tree

We use the finite time consensus algorithm to achieve a common knowledge of the global pa-
rameters of the system at each node [71]. However, this algorithm only works on spanning
tree graphs. Finding a spanning tree in a graph is a problem heavily studied in recent years
[72, 73, 74, 75, 76]. We use the approach in [72] to guarantee the best convergence time for the
finite-time distributed algorithm, because this algorithm converges in maximum d steps, being
d the graph diameter.

Step 1 Computation of All-Pairs Shortest Paths (APSP) Algorithm.
In this step, each node calculates the minimum distance to every node in the graph.
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Step 2 Computation of Absolute Center of G .
The absolute center of G is a node where the eccentricity of a graph is the minimum. The
information used to compute the absolute center is a list generated in ASPS algorithm
where all the minimum distances between each pair of nodes are made.

Step 3 Construction of Minimum Diameter Spanning Tree.
The center ID is sent through the minimum distance path to each node in the graph. When
sending the ID information, also sends other data, a counter that in each step of commu-
nication is updated until reach the diameter of G, this procedure can be made grace a G
is an unweighted graph, and it is a synchronous system. Finally, when all nodes in the
graph know which one is the absolute center of the graph the spanning tree is constructed
thought of community knowledge.

Lemma 1 [72, Theorem 5]: Consider a graph G and let Assumptions 2 and 8 hold on G. Then, the distributed
algorithm for the MDST proposed in [72, Theorem 5] finds a MDST of G, inO(n) iterations.

Proof. The distributed algorithm for the MDST has to calculate the All-Pairs Shortest Path
(APSP) of the network. The time of execution of APSP is O(n) [72, Lemma 4]. Then, each
node knows which node is the shortest path to another node. After that, the absolute center of
the graph is calculated, given a node with the lowest eccentricity xmin, the information about
which node is the center of the graph is sent to other nodes in at most O(n). Now consider
the collection of all paths produced by APSP that begins in any node in the network and end in
xmin, the set of path forms a tree rooted in xmin, which is the MDST of G. Therefore each node
knows a route to xmin and the MDST is built through of knowledge of the shortest path to xmin

for all nodes [72, Subsection 2.1.5].

Once theMDST is created, the global parameters are calculated through the distributed algorithm
for the MDST as described in the following subsection.

4.1.2 Finite-time Distributed Averaging

To calculate the global parameters PD, PG, G and D the algorithm proposed in [71] is used.
This algorithm has several characteristics that allow being used to this application such as its
convergence in d steps atmaximum. However, this algorithm onlyworks in spanning tree graphs.
In the beginning, each agent x in the system has initial values for the global parameters as follows

PGx(0) =


Pgx(0), if x ∈ N ,

Ppx(0), if x ∈ R,

0, otherwise,

(4-1a)
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PDx(0) =


Pdx(0), if x ∈ A,

PLx(0), if x ∈ S,
0, otherwise,

(4-1b)

Gx(0) =


1, if x ∈ N ,

1, if x ∈ R,

0, otherwise,

(4-1c)

Dx(0) =


1, if x ∈ A,

1, if x ∈ S,
0, otherwise,

(4-1d)

where Gx and Dx are the number of generators and consumers respectively. Let hx be any
global parameter which is displayed in (4-1), for each of the above values, each agent performs
the following update action in parallel

hx(q + 1) =

{
hx(0) +

∑
y∈Nx

hy(0), if q = 0;∑
y∈Nx

hy(q) + (1− rx)hx(q − 1), if q ≥ 1.
(4-2)

Variable q is used to represent steps. Algorithm 1 explains how (4-2) is used to calculate the
global parameters.

Lemma 2 [71, Theorem 1]: Suppose G is a tree graph with diameter equal to d. Algorithm 1makes it possible
for each agent x to get the global parameters at a maximum of d steps.

The maximum path between two agents in the MDST obtained will be the maximum number of
iterations in which the algorithm converges to global values (PD, PG, G and D).

4.1.3 Distributed Projected Consensus Gradient

To solve the problem presented in (3-16) we use the projected consensus algorithm proposed
in [21]. Our algorithm does not require private information from the neighboring agents such
as its incremental cost or gradient of its utility function. The algorithm only needs the power
set points of the agents in the power system in iteration k to estimate the power set points in
iteration k + 1.

For the initialization step we let Assumptions 2, 6, 7 and 8 hold. The x-th agent updates its
global parameters by using the information produced by Algorithm 1, then taking a gradient
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Algorithm 1 Finite-time Distributed Averaging
1: Executed by: Agents x ∈ V = {1, 2, 3, . . . , V }

Require: Spanning Tree Neighbors
2: Initialize: PDx(0), PGx(0), Gx(0), Dx(0) and Set q = 0

3: PDx(1) = PDx(0) +
∑

y∈Nx
PDy(0)

4: PGx(1) = PGx(0) +
∑

y∈Nx
PGy(0)

5: Gx(1) = Gx(0) +
∑

y∈Nx
Gy(0)

6: Dx(1) = Dx(0) +
∑

y∈Mx
Dy(0)

7: while q ≤ d do
8: Send PDx(q), PGx(q),Gx(q) and Dx(q) to Spanning Tree neighbors
9: PDx(q + 1) =

∑
y∈Nx

PDy(q) + (1− rx)PDx(q − 1)

10: PGx(q + 1) =
∑

y∈Nx
PGy(q) + (1− rx)PGx(q − 1)

11: Gx(q + 1) =
∑

y∈Gx
Ny(q) + (1− rx)Gx(q − 1)

12: Dx(q + 1) =
∑

y∈Nx
Dy(q) + (1− rx)Dx(q − 1)

13: Set q = q + 1;
14: end while
15: return PDx(q), PGx(q), Gx(q) and Dx(q)

16: ▷ PDx(q)=PD, PGx(q)=PG, Gx(q)=N +R, Dx(q)=A+ S

step to minimize the cost or maximize the utility function, and then projecting the result onto
its constraint setXx, whereXx is the set of feasible solutions for each agent (cf. Equations (3-4),
(3-8), (3-11) and (3-13)).

Initially, we seek for reach an average consensus, for this we use the Algorithm 1. We define the
stacked vector of power (generated and demanded) as P⊤ = [Pg, Pp, PL, Pd]

⊤, Px is the power
of agent x ∈ V , Py is the power of the neighbors of agent x, with y ∈ Nx, we use the variable
vx to store the sum of the powers in the iterative system as follows


vx(1) = Px(0) +

∑
y∈Nx

Py(0)

vx(2) =
∑

y∈Nx
Py(1) + (1− rx)Px(0)

...
vx(d) =

∑
y∈Nx

Py(d− 1) + (1− rx)PDx(d− 2).

(4-3)

When (4-3) has been executed, every agent x ∈ V has a value vx(d) =
∑

x∈V Px. Once vx(d) is
obtained, it is possible to take the gradient step. For this step, we use z(k) which contains the
power average consensus minus the gradient of cost or utility function such as

z(k) =
vx(d)

Gx +Dx

− αkdx(k), (4-4)
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where αk > 0 is the stepsize, dx(k) is the gradient of the utility function depending on each
agent (cf. Equations (3-3), (3-5), (3-9) and (3-12)). Finally, z(k) is projected onto the feasible sets
Xx. Each agent makes projections taking into account the constraints to which it is subjected.
Consumers and generators are subject to constraints associated to its maximum and minimum
load and generation, respectively. The projection onto the feasible set is defined as follows:

PXx [z(k)] = z1(k) =


Px, if z(k) > Px,

Px, if z(k) < Px,

z(k) Otherwise.

(4-5)

Furthermore, generators have to maintain the equality constraint shown in (3-15a), the projec-
tion onto the feasible set Xg, where Xg is the constraint set where constraint (3-15a) is held, is
shown in (4-6).

PXg [z1(k)] =

z1(k), if (3-15a) is hold,

z1(k)−
PGx(k)− PDx(k)

Gx

Otherwise.
(4-6)

Finally, the power update lawPx(k+1) is given by for consumers and generator agents as follows

Px(k + 1) =


PXx [z(k)] if x ∈ A
PXx [z(k)] if x ∈ S
PXx [z1(k)] if x ∈ N
PXx [z1(k)] if x ∈ R

(4-7)

4.1.4 Distributed Transactive Algorithm

We now state the distributed transactive algorithm, that is, the main contribution of this paper.
We use k to denote the iterations in the algorithm.
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Algorithm 2 Distributed Transactive Control Algorithm
1: Executed by: Agents x ∈ V = {1, 2, 3, . . . , V }
2: Require: dx, αx and rx
3: Initialize: Assumption 7 is hold ∀ a. Set k = 0

4: Execute Algorithm MDST in Subsection 4.1.1.
5: while k ≥ 0 do
6: Send Px(k) to all y ∈ Nx

7: Execute Algorithm 1
8: Obtain PG(k), PD(k), G(k) and D(k)

9: Execute For all x ∈ V
10: Equation (4-3) and then (4-4)
11: Execute For all x ∈ V
12: Equation (4-5)
13: Execute For all x ∈ N ∨ x ∈ R
14: Equation (4-6)
15: Obtain Px(k + 1)

16: Set k = k + 1;
17: end while

4.1.5 Convergence

In this subsection, we analyze and prove the convergence of the proposed distributed transactive
algorithm.

Theorem 1 Assume that the stepsize α satisfies that
∑

k αk = ∞ and
∑

k α
2
k ≥ ∞. Furthermore, let

Px(k), with x ∈ V , be the set points generated by Algorithm 2 and X = ∩V
x=1Xx be the intersection set

between all feasible sets of the agents. Then, Px(k) with x ∈ V converges to the optimal solution P ∗
x with

P ∗
x ∈ X , that is

lim
k→∞

Px(k) = P ∗
x .

Proof. Without loss of generality, all agents can be listed such as in (3-16). The optimization
problem defined in (3-19) can be generalized as

minimize
Px

V∑
x=1

Ux(Px) (4-8a)

subject to
V∑

x=1

Px = 0, (4-8b)

Px ≥ Px ≥ Px ∀x ∈ V (4-8c)
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with Px(k) and Ux(·) defined as follows

Px(k) =


Pda , a = 1, . . . , A

PLs+A
, s = A+ 1, . . . , S + A

−Pgn+S+A
, n = S + A+ 1, . . . , N + S + A

−Ppr+N+S+A
, p = N + S + A+ 1, . . . , V

(4-9a)

Ux(·) =

{
Uj(·), j = 1, . . . , A+ S

−Ci(·), i = A+ S + 1, . . . , V
(4-9b)

The constraints (4-8b) and (4-8c) can be written such asX = ∩V
x=1Xx ∩Xg, whereXg is the set

of feasible solutions for (4-8b). It is possible to write (4-8) such as

minimize
Px

V∑
x=1

Ux(Px) (4-10a)

subject to X = ∩V
x=1Xx ∩Xg (4-10b)

It is assumed thatXx andXg are compact sets. Given that all utility functionsUx(Px) are contin-
uous, and based on Weierstrass’ Theorem (4-10) has an optimal solution P ∗

x ∈ X . Considering
that vx(d)

Nx+Mx
in (4-4) is equal to

vx(d)

Nx +Mx

= lim
k→∞

1

V

∑
x∈V

Px

and according to [21, Proposition 5] agents executing Algorithm 2 converges to P ∗
x ∈ X .
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Initialization

Spanning Tree
Algorithm

Global Parame-
ters Estimation

Distributed Projec-
tion Optimization

Devices

Px(k + 1)

Figure 4-1: Flowchart of Distributed Transactive Control in Power Systems based on the Pro-
jected Consensus Algorithm
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4.2 Centralized Transactive Control Based on Replicator
Dynamics

The main contribution of this algorithm is to improve the centralized replicator dynamics al-
gorithm including the constraints through Lagrange multipliers. This section is based on [53].
Transactive control finds the optimum equilibrium point based on the power which must be
generated by each generator. Moreover, the power which should be consumed by the end user
in order to minimize the generators cost and maximize the users’ utility. We denote any agent
in the system as x. The main goal is to maximize 3-16, as it is shown in the following problem:

maximize
P

U (P ) (4-11a)

subject to RP = r (4-11b)

Constraints could be represented by a matrix as RP = r, where P = [Pg, Pp, Pd, PL]
⊤ and

R ∈ RM , where M is the number of system constraints, this is made possible by transform-
ing inequalities through slack variables. In order to resolve the optimization problem (4-11),
we have used population dynamics models [48, 29]. Population dynamics represent how a pure
population strategy progress through time. The replicator dynamics consider a V finite number
of generators and loads, who adopt a ith strategy from a finite set of pure strategies. Accordingly,
to achieve an appropriate performance in the steady state, the load demanded power should be
the sum of all power set points [33].

The payoff function is associated with the chosen strategy; therefore, we also use a continu-
ous time implementation. In its general form, the replicator dynamics can be represented as

ṗx = βpx(fx − F̄ ) (4-12)

where p = [p1, p2, p3, . . . , pV ]
⊤ = [Pg, Pp, Pd, PL]

⊤, β is a speed parameter for the convergence
of the replicator dynamics, fx is the fitness function associated with each strategy, and F̄ is the
average fitness function [29]. In this work, we use replicator dynamics (2-17) to solve the eco-
nomic dispatch problem dynamically. In order to integrate the restrictions within the replicator
dynamics use the Lagrange function

L(P, µ) = SW + µ⊤(RP − r) (4-13)

Where µ is the Lagrange multipliers, the fitness functions of the game are defined as f(p) =

[f1, f2, f3, . . . , fV ]
⊤ = ∇PL and f(µ) = ∇µL. Thus, the fitness functions are
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∇PL(P, µ) = ∇SW (P ) +R⊤µ (4-14)

∇µL(P, µ) = −RP + r (4-15)

The average of these fitness functions is

F̄PG
=

N+R∑
j=0

pj ∗ Fj (4-16)

F̄PD
=

A+S∑
j=0

pj ∗ Fj (4-17)

F̄µ =
M∑
j=0

pj ∗ Fj (4-18)

Here pj is the power in each agent and Fj is the fitness function associated with this variable.
In fact, this process is made two times, i.e, for each fitness equation (4-14) and (4-15) we have a
fitness average function. Furthermore, we obtain two average fitness functions (4-16) to gener-
ator agents and (4-17) to consumer agents. This optimization can be made it due to the fitness
functions used to represent the model are convex functions.

With the above optimization problem, the microgrid can be controlled optimally taking into
account not only maximizing the profits of the generators but also maximizing the profits of the
users.

4.2.1 Centralized Transactive Algorithm

We now state the centralized transactive algorithm based on replicator dynamics. We use k to
denote the iterations in the algorithm.

Finally, in order to clarify the proposed algorithm the following flowchart is shown.
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Algorithm 3 Centralized Transactive Control Algorithm
1: Executed by: Central Controller
2: Initialize: Assumption 2 and 7 are hold ∀ x. Set k = 0

3: while k ≥ 0 do
4: Execute For all x ∈ V
5: Equation (4-14) and (4-15)
6: Execute For all x ∈ V
7: Equation (4-16) and (4-17)
8: Execute For all x ∈ V
9: Equation (4-12)

10: Obtain Px(k + 1)

11: Set k = k + 1;
12: end while

Initialization

Calculate Own
Fitness Function

Average Fit-
ness Function

Calculate La-
grange Multipliers

Devices

Px(k + 1)

Figure 4-2: Flowchart of Distributed Transactive Control in Power Systems based on the Repli-
cator Dynamics Algorithm
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4.3 Asynchronous Transactive Control Algorithm

This algorithm has been developed to control a distribution system with microgrids inside. This
algorithm uses as controller of the microgrids the Algorithm proposed in Section 4.2 and the al-
gorithm presented in this section presents the second control layer that controls the distribution
system, in this control layer is proposed an asynchronous control algorithm which is executed
by the agents belonging to the distribution system. This section is based on [65].

Synchronization is a cornerstone to execute a wide variety of algorithms proposed for control
of multi-agent systems [67, 68, 69, 70, 48, 27, 45]. It is common to assume that all devices in
the grid obtain the data by other devices instantaneously. Nevertheless, these characteristics
are unable to be accomplished [77, 78] due to the huge variety of devices in the grid [5, 6].

After microgrids execute Algorithm 2 they know if they need to buy power from the system
or if they can sell it. In other words, once Algorithm 2 is executed PMq and PMq

will be known,
where PMq and PMq

are the maximum and minimum power that an agent q can sell or buy to
the network respectively. Once this data is revealed, the asynchronous algorithm starts to run.
It is assumed that while this algorithm is running the values of PMq and PMq

will not change.

The proposed algorithm is based on a primal-dual algorithm which uses the Lagrange multi-
pliers µ. Lagrange multipliers are updated by a virtual agent which is connected with all agents
in the power system. Power system agents send their estimates to the virtual agent at any time.
Once the virtual agent has all agents estimations, it updates the Lagrange multiplier, and it is
sent to the power system agents.

Initially, some minimal assumptions are made in order to execute this algorithm. We suppose
that Assumption 3, 4, 5, 6, 7 and 9 are held. Control signals in power systems have to cover a
large number of kilometers. Usually, it is assumed that communications and computations of al-
gorithms are made synchronously. In practice, this is almost impossible because communication
may interfere with each other, there may be slow data transmission, even loss of information
when the channel data is over saturated.

In order to relax the traditional assumption that the control algorithm in the system is made
synchronously, an asynchronous transactive control algorithm is proposed. In order to give a
detailed overview of the algorithm an introduction to primal-dual optimization is presented first.
Then, the algorithm used in this approach is presented.
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4.3.1 Primal-Dual Optimization

Constraints in (3-19) can be organized as RP = r. It is important to highlight that constraint
with the form T P ≥ t can be written as RP = r by using slack variables. Then, consider the
problem stated below, it is equivalent to Problem (3-19)

Problem 3

minimize
P

SW (P )

subject to RP = r,

P ∈ X

where R is a matrix that includes global and local constraints and X is the set where P is
feasible, i.e., X = ∩V

x=1Xx, P is a vector where all the decision variables are stacked P =

[Pg, Pp, Pd, PL, PM ]⊤, x ∈ V represents any agent that executes the control algorithm in the
power system. Also, Px represents the power of agent x in the power system. Then, if Assump-
tions 2 and 4 are hold the Lagrangian associated with Problem 3 is

L(P, µ) = SW (P ) + µ⊤(RP − r), (4-19)

where µ is a vector that contains the Lagrange multipliers, µ ∈ RM
≥0, where RM

≥0 is the nonnega-
tive hyperorthant of RM i.e., R≥0 = {µ ∈ R | µ ≥ 0}, whereM is the number of constraints of
the power system. It is well defined that L(·, µ) is convex for all µ ∈ RM

≥0 and L(P, ·) is concave
for all Px ∈ X .

Assumption 10 (Slater’s condition) Following [46], Exist a vector P ∈ RM
≥0 such that RP ≤ 0. P is

called a Slater vector.

A saddle point of L(P, µ) is the maximization of L(P, µ) over µ for all µ ∈ RM
≥0 and the

minimization L(P, µ) over Px for all x ∈ V . Under Assumptions 4 and 5 a point denoted as(
P̂ , µ̂

)
∈ X × RM

≥0 is a solution of Problem 3if and only if it is a saddle point of L(P, µ) [43].
The saddle point condition satisfies that

L(P̂ , µ) ≤ L(P̂ , µ̂) ≤ L(P, µ̂) (4-20)

Under Assumptions 4, 5 and 10 it is guaranteed that a saddle point
(
P̂ , µ̂

)
exists [79]. In order

to solve Problem 3, projection methods are used. Projection methods are useful to our problem
because it is adaptable to decentralized problems [80]. However, this method requires that



4.3 Asynchronous Transactive Control Algorithm 39

∇xL(·, µ) and ∇µL(Px, ·) be Lipschitz. To be Lipschitz implies that the function domain is
bounded, however it is possible to see that∇xL(·, µ) is not bounded because initially µ ∈ RM

≥0.
To adjust this situation and use projection methods, a convex, compact and nonempty subset
of RM

≥0 is proposed, i.e., Xµ ⊂ RM
≥0.

Lemma 3 Let P ∈ X a Slater vector. Then,

µ̂ ∈ Xµ :=

{
µ ∈ RM

≥0 : ∥µ∥1 ≤
SW (P )− q(µ̂)

min1≤i≤M{−fi(P )}

}
Proof. (Inspired in [81]). It is possible define the dual function of L(P, µ) taking into account
[43, Proposition 2.6.1] as

maximize
µ

q(µ)

subject to µ ∈ RM
≥0,

where q(µ) = infP∈X
(
SW (P ) + µ⊤(RP )

)
. Let P a Slater vector. Using Slater property,(cf.

Equation (4-20)), we have

q(µ) ≤ L(P̂ , µ̂) ≤ L(P , µ̂)

Considering that µ̂⊤(RP ) can be rewrote as
∑M

i=1 µ̂ifi(P ), where fi(P ) are the constraints
(RP ). It follows that

q(µ) ≤ SW (P ) +
M∑
i=1

µ̂ifi(P )

q(µ) ≤ SW (P ) +

(
M∑
i=1

µ̂i

)
max

1≤i≤M
{fi(P )}(

M∑
i=1

µ̂i

)
min

1≤i≤M
{−fi(P )} ≤ SW (P )− q(µ)

Therefore, considering that

q(µ̂) = inf
P∈X

(
SW (P ) +

M∑
i=1

µ̂ifi(P )

)
≤ SW (P ) +

M∑
i=1

µ̂ifi(P )

It follows that

∥µ̂∥1 ≤
M∑
i=1

µ̂i ≤
SW (P )− q(µ̂)

min1≤i≤M{−fi(P )}
< ∞ (4-21)
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Using µ̂i ≥ 0 for all i ∈ M is possible define

Xµ =

{
µ ∈ RM

≥0 : ∥µ∥1 ≤
SW (P )− q(µ̂)

min1≤i≤M{−fi(P )}

}
(4-22)

Once defined Xµ. ∇aL(·, µ) is Lipschitz due to µ ∈ Xµ is a bounded convex set.

Thus, with the definition of the set limit, it is possible to use the projection operator in our
algorithm since Xµ is a closed convex set.

4.3.2 Asynchronous Transactive Control Algorithm

Now, we present the asynchronous transactive control algorithm. This algorithm achieves the
optimum social welfare for the power system asynchronously through the use of primal-dual
optimization. We assume that agents compute primal updates of each one and the virtual agent
computes the dual updates. The algorithm states that first the agents compute its updates and
then the virtual agent computes the dual update. As it is an asynchronous algorithmwe state the
following clocks for the agents (kx), each agent has a different clock, and for the virtual agent (kv).

Initially, it is known that each agent can update its utility or cost function by having only its
previous status and the previous status of dual updates as shown in (4-23). If the agent has not
received an update of the dual variable when running (4-23), then it should stop its update and
keep the previous value. The update law executed by agents in the power system is

Px(k
x + 1) =

PXx [Px(k
x)− α∇xL(P, µ)] if µ(kx) ̸= µ(k),

Px(k
x) if µ(kx) = µ(k),

(4-23)

where α is the stepsize, and ∇x represents the partial derivative with respect to x. Be defined
[Px(k

x)− α∇xL(P, µ)] = β(kx). Then, the projection operation is

PXx [β (kx)] =


P x, if β (kx) > P x,

P x, if β (kx) < P x,

β (kx) Otherwise.

(4-24)

where P x and P x are the minimum and maximum power allowed by each agent x. Once each
agent calculates (4-23) is expected that they sends to the cloud its estimates at time arbitrary
kx + τ and its expected to arrive to the virtual agent in kx + τ v, where τ and τ v are arbitrary
delay times. It is important to highlight that τ < τ v.
After the virtual agent has received all the new estimates for all agents in the network, the virtual
agent computes the following update
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µ(kv + 1) = PXµ [µ(k
v)− αµ (∇µL(P, µ)− µ(kv))] , (4-25)

where

PXµ [µ(k
v)− αµ (∇µL(P, µ)− µ(kv))] =

µmax, if µ (kv) > µmax,

0, if µ (kv) < 0,

µ(kv)− αµ (∇µL(P, µ)− µ(kv)) , Otherwise.

(4-26)

where µmax is the upper bound of the set Xµ. Then, the virtual agent sends its estimates to
each agent and the algorithm start again. The algorithm of the transactive control in the power
system is summarized in Algorithm 4.

Algorithm 4 Distributed Transactive Control Algorithm for Power Systems
1: Executed by: Agents x ∈ V = {1, 2, 3, . . . , V }
2: Require: ∇xL(P, µ) ∀ x ∈ V and ∇µL(P, µ)
3: Initialize: Assumptions 6 and 9 are hold ∀ x ∈ V . Set kv = 0 and kx = 0 ∀ x ∈ V
4: Initialize: Px(0) ∀ x ∈ V and µ(0)

5: while kv ≥ 0 do
6: for all x ∈ V do
7: Execute Equation (4-23)
8: if x ∈ Q then
9: Execute Algorithm 2

10: end if
11: Send Px(k

x) to the virtual agent
12: kx = kx + 1;
13: end for
14: Execute Equation (4-25)
15: Send µ(kv) to each agent
16: kv = kv + 1;
17: end while

Figure 4-3 shows the flowchart of the Algorithm 4 .First an initialization is required, then each
agent in a time (kx) updates its estimates using (4-23). Once (4-23) is update, each agent sends its
estimates to the virtual agent. The virtual agent executes (4-25) when it receives all estimates
from the agents x ∈ V . Finally the dual variable update is sent to all agents x ∈ V . If the
power generated does not fulfill constraint (3-19b) the algorithm returns to step two and it
executes again the algorithm until constraint (3-19b) is fulfilled. If the constraint is fulfilled, the
optimization Algorithm has reached the optimum social welfare for the power system and ends.
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Initialization

Agent x ∀ ∈ V update
their estimates

Send estimates to
the virtual agent

virtual agent up-
dates its estimate

Send estimate to
the agent x ∀ ∈ V

Devices

Px(k + 1)

Figure 4-3: Flowchart of the asynchronous transactive algorithm used by the power system
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4.4 Distributed Constrained Transactive Optimization Control
Based on Population Dynamics

In this section, it is presented the last algorithm of this work. A distributed control algorithm
considering renewable energy integration and flexible power demand using transactive control
based on population games is developed. This section is based on [66], transactive control is
responsible for the determination of how much energy each user will consume and how much
power each generator have to generate in order to satisfy the demandwhile operating the system
most economically.
Constraints in Problem (3-19) could be represented in the form R⊤P = r, where the decision
variable are stacked in a vector as P = [Pg, Pp, Pd, PL, PM ]⊤ = [P1, P2, P3, . . . , PV ]

⊤, and R is
a vector indicating the sign depending if the entry is a generator (+) or a smart load (-). In this
work, we use a distributed replicator dynamics equation [29] to solve the social welfare prob-
lem dynamically associated with a transactive control problem between microgrids, distribution
system, and consumers. This model is a dynamic resource allocation problem among V agents
(generator and smart loads) given a finite amount of power r.
The feasible set is defined as the set of possible trajectories of the system restricted by Problem
(3-19) constraints as

∆ = {p ∈ Rn : R⊤P = r.}

Some assumptions have to be considered to assure optimality conditions and the existence of
solutions of problem stated in (3-19). In this algorithm we consider that assumptions 3, 7 and
9. We use the Lemma 4 in order to establish the conditions to optimal points

Lemma 4 A solution of problem (3-19), P ∗ belonging to the feasible set ∆, is an optimal solution if and
only if∇xSW (P ∗

x ) = ∇ySW (P ∗
y ) for all x, y.

Notice that ∇ stands for the Jacobian of a function. In order to relate the optimality condition
in Lemma 4 with the Distributed Replicator Dynamics (2-20), we use the Lagrangian function
associated to optimization problem (3-19) as

L(P, µ) = SW (P )− µ⊤ (R⊤P − r
)

(4-27)

where µ are the Lagrange multipliers, SW is the social welfare function, and R⊤P − r are the
constraints in the system. The optimal solution (P ∗, µ∗), which can be found by the Kuhn-
Tucker first-order conditions for maximization establishes that P ∗ is a unique solution to (3-19)
if (P ∗, µ∗) is a saddle point of L(P, µ) [43].

4.4.1 Distributed Replicator Dynamics and Potential Games

One of the main attributes of potential games is the existence of a single scalar-valued function,
called potential function, which captures all relevant information about the payoffs of the agents.
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Assuming there exists a continuously differentiable potential function h : Rn
>0 → R, then a

potential game satisfies the following relationship for the fitness function for each agent

∂h(p)

∂px
= Fx(p) for all x. (4-28)

Equation (4-28) implies that the population game must satisfy the external symmetry defined as

∂Fx

∂py
=

∂Fx

∂py
for all x, y. (4-29)

In potential games, there is a property that relates Nash equilibrium to local maximizers of
potential function [50], it is stated in the following proposition.

Proposition 5 A potential game with potential function h satisfies that Nash equilibrium of the potential
game is equal to the solution of the Kuhn-Tucker conditions of the optimization problemmaximize h(p) subject
to feasible set∆ [50].

On the other hand, we are interested in the stability of the game. A significant result in popula-
tion games about stability states that a population game satisfying (4-28) is a stable game if the
potential function h is concave [50].
Having introduced the main concepts of potential population games, it is possible to present a
definition for the fitness function relating the population game as a potential game guaranteeing
optimality and stability conditions. Therefore, the fitness functions are defined as follows

Fx(Px) = ∇PL = ∇PSW −Rµ (4-30)

therefore the dynamic equation is

ṗx =

(
1

PL

)
px

(
Fx(px)

∑
y∈Nx

py −
∑
y∈Nx

pyFy(py)

)
, (4-31)

where x and y are agents in the power system, which introduces an extended system including
the Lagrange multipliers dynamics with fitness function defined as

Fm(µm) = ∇µL = −(R⊤P − r), (4-32)

and dynamic equation

µ̇m = µm

(
Fm(µm)

∑
b∈Nm

µb −
∑
b∈Nm

µbFb(µb)

)
(4-33)

where m ∈ M = {1, 2, 3, . . . ,M} is the number of constraints and b is any constraint in the
neighborhood of m. In the next subsection it is presented the optimality and stability analysis
of the extended dynamical system including px(t) and µm(t).
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Algorithm 5 Distributed Constrained Transactive Optimization Control based on Population Dy-
namics
1: Executed by: Agents x ∈ V = {1, 2, 3, . . . , V }
2: Require: β
3: Initialize: Set k = 0 ∀ x ∈ V
4: Initialize: Px(0) ∀ x ∈ V and µ(0) ∀ m ∈ M
5: while k ≥ 0 do
6: for all m ∈ M do
7: Execute Equation (4-33)
8: Send to x ∈ Nm

9: end for
10: for all x ∈ V do
11: Execute Equation (4-31)
12: Send tom ∈ Nx

13: end for
14: Set k = k + 1

15: end while

4.4.2 Optimality and Stability Analysis

Consider the extended population game defined by distributed replicator dynamics (4-31) and
Lagrange multiplier dynamics (4-33) with fitness functions (4-30) and (4-32), respectively. It is
necessary to show that the extended population game is a potential game to guarantee optimality
through Lemma 4 and Proposition 5. Then, to show the game is stable, we have to verify that
the potential function h is concave and twice continuously differentiable.

Theorem 2 Assume a convergence constant β ∈ R. Furthermore, let Px(k), with x ∈ V , be the set points
generated by Algorithm 5. Then, Px(k) with x ∈ V converges to the optimal solution P ∗

x with P ∗
x ∈ X , that

is

lim
k→∞

Px(k) = P ∗
x .

Proof.
Since we have defined fitness functions as (4-30) and (4-32), by definition it is clear that a po-
tential function for the population game (2-20) is h(P, µ) = L = SW (P ) − µ⊤(RP − r) and
considering the form of the social welfare function SW defined in (3-18), it can be shown that
the game satisfies the external symmetry (4-29). When the optimality condition in Lemma 4
is reached then Fx(px) = Fy(py) for all x, y and it is noticed that in the distributed replicator
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dynamics (2-20) we have

(
Fx(Px)

∑
y∈Nx

Py −
∑
y∈Nx

PyFy(Py)

)
=

(
Fx(Px)

∑
y∈Nx

Py −
∑
y∈Nx

PyFx(Px)

)

=

(
Fx(Px)

(∑
y∈Nx

Py −
∑
y∈Nx

Py

))
= 0,

which implies that (2-20) reaches an equilibrium point.

For the stability analysis, we need to verify that the potential function h(P, µ) is concave to
assure the stability of the algorithm.

To prove that the function is concave we need to check that the Hessian matrix of h(P, µ) is
negative semidefinite , i.e, ∇2h(P, µ) ≤ 0. The Jacobian is obtained as

∇h(P, µ) =

[
∇Ph

∇µh

]
=

[
∇SW − µ⊤R
−(Rµ+ r)

]
.

Hence, the Hessian is obtained as

∇2h(p, µ) =

[
∇2

ph

∇2
µh

]
=

[
∇2SW

0

]
.

The problem to check the semidefiniteness of the Hessian of h reduces to check the Hessian of
∇2SW . Recall that SW is as in (3-18), and deriving twice it is obtained the Hessian as

∇2SW =

(
A∑

a=1

βda +
S∑

s=1

βLs

)
−

(
R∑

r=1

βPr +
N∑

n=1

βgn

)
.

As a result to guarantee that ∇2SW ≤ 0, we obtain a relationship between the coefficients of
cost functions of the generators and utility functions of the smart loads as follows

(
A∑

a=1

βda +
S∑

s=1

βLs

)
≤

(
R∑

r=1

βPr +
N∑

n=1

βgn

)
(4-34)

If condition (4-34) is satisfied then the algorithm based on the DRD is stable.

In this section, it has been analyzed the main features of the proposed algorithm in term of
optimality and stability.The flowchart of the proposed algorithm is shown in Figure 4-4.
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Calculate La-
grange Multipliers

Devices

Px(k + 1)

Figure 4-4: Flowchart of the Distributed Constrained Transactive Optimization Control based on
Population Dynamics

In the next section, several case studies are presented to illustrate the effectiveness of the algo-
rithms proposed to solve the social welfare problem.



5 Simulation Results

In this chapter, we test the effectiveness of all the proposed algorithms stated in Chapter 4. We
test the algorithms presented in Section 4.1 and Section 4.2 in a WSCC 9 bus. Furthermore, we
test the algorithms presented in Section 4.3 and Section 4.4 in a modified IEEE 30 bus system,
where we include microgrids inside this system.

5.1 Simulations of Microgrids

To simulate and make an effective comparison of the different algorithms is necessary to make
two study cases. First of them is dedicated to algorithms that are executed in microgrids,i.e.,
Algorithms in Sections 4.1 and 4.2.

Figure 5-1: Illustrative general scheme of a microgrids adopted from a WSCC 9-bus.

We simulate a Microgrid using a WSCC 9-Bus System, as it is shown in Figure 5-1. In this power
system case, there are three generators, which we adopted two as traditional generators and
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one as photovoltaic generators. There are also three loads; we choose that two of them being
adjustable loads and the other is a shiftable load as is shown in Table 5-1.

Table 5-1: System parameters to study case in Microgrids.

Agents Parameters
Agent Power Max [W] Power Min [W]

Conventional Generator 1 3000 100
Conventional Generator 2 4000 100
Photovoltaic Generator 1 3000 100

Shiftable Load 1 2000 1000
Shiftable Load 2 3000 1500
Adjustable Load 1 3000 1500

Notice that the base load is the minimum power that the load can consume and the set between
the minimum or maximum load is where the load behavior is a smart load. In the simulation, the
minimum power of all loads rise up 500 [W ] as is shown in Figure 5-4 and Figure 5-5. However,
the power maximum also rises 500 [W ], then the smart loads in the system do not vary its
capacity to consuming power from the network.

Adjustable Load 1 Adjustable Load 2 Shiftable Load 1
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Figure 5-2: Algorithm 1: Smart Load results for simulation in WSCC 9 bus system
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Figure 5-3: Algorithm 2: Smart Load results for simulation in WSCC 9 bus system

It is possible to see that adjustable load decreases its amount of power consumed in 500 and
1000 iterations due to the increase of base load which is a predictable behavior in both algo-
rithms which is shown in Figure 5-2 and Figure 5-3, because smart loads should consume less
power when the power system is in a load peak . Also, it is possible to see that shiftable load
after 1000 iterations does not consider viable to connect to the microgrid the shiftable load for
both algorithms which is also shown in Figure 5-2 and Figure 5-3.

Adjustable Load 1 Adjustable Load 2 Shiftable Load 1
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Figure 5-4: Algorithm 1: Total load results for simulation in WSCC 9 bus system.
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Figure 5-5: Algorithm 2: Total load results for simulation in WSCC 9 bus system.

In Figure 5-4 and Figure 5-5 is possible to see that the load associated with base load increases
in 500 and 1000 iterations. Furthermore is shown that adjustable loads turn off some load every
time this happens. Furthermore, the shiftable load only changes the load consumed to the power
systemwhen the threshold is reached. This occurs near to 1000 iterations in both algorithms. In
Figure 5-4 is possible to see that shiftable load turn off the load, while in Figure 5-5 is possible
to see that when adjustable load 1 and 2 reach the optimum state, shiftable loads change the
load consumed.
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Figure 5-6: Algorithm 1: Generation results for simulation in WSCC 9 bus system.
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Figure 5-7: Algorithm 2: Generation results for simulation in WSCC 9 bus system.

With respect to the generators agent it is possible to see that all of them respond to the changes
in the load balance, which in both cases is reached in 15 iterations for Algorithm presented in
Section 4.1 and 25 iterations for Algorithm presented in Section 4.2 as is shown in Figure 5-6
and Figure 5-7 respectively. Furthermore, in 1500 iterations we change SR for the photovoltaic
generator. This changes the maximum power available for the photovoltaic generator, reducing
it power availability to 1000W. In the Algorithm presented in Section 4.1 this change the genera-
tors power set points and adjustable loads power set point. Adjustable loads change its consume
due to the change in the average consensus used to set the power set point as is shown in Figure
5-6. While in Algorithm presented in section 4.2 power set points for generators change, but
power for smart loads do not change. This is due to average fitness function is only taken fitness
function of smart loads, then the change in generators power set point does not affect the smart
loads as is shown in Figure 5-7.
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Figure 5-8: Algorithm 1: Power net in Microgrid for simulation in WSCC 9 bus system.
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Figure 5-9: Algorithm 2: Power net in Microgrid for simulation in WSCC 9 bus system.

Finally, Figure 5-8 and Figure 5-9 show that both algorithms maintain the power balance in the
network. Also, it is possible to see that the convex optimization based algorithm fulfill this
constraint in less time despite their distributed nature. However, this algorithm has oscilla-
tions around the optimum point; this makes it have a difference of ± 1 % to power demanded.
In Figure 5-9 is possible to see that the game theory algorithm has more smooth behavior, In
consequence, the algorithm reaches the optimum point, i.e., the difference between the power
demanded and power generated is 0[W ].
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5.2 Simulations of Distributed System with Microgrids

In this section, we simulate a power system based on an IEEE 30-bus system. A microgrid,
five generators, and six smart loads. Microgrid agent has two traditional generators, one photo-
voltaic generator and three smart loads. We seek to maximize the social welfare of generators,
consumers and the microgrid. Agents have limited power generation and demand as it is shown
in Table 5-2.

Table 5-2: IEEE 30 bus system Parameters

Agents Parameters

Microgrid (MG1) [W] [W]
Power (max, min) gen 1 5000, 100
Power (max, min) gen 2 6000, 100
Power (max, min) gen 3 7000, 100
Power (max, min) con 1 2000, 1000
Power (max, min) con 2 3000, 2000
Power (max, min) con 3 4000, 3000

Power System [W] [W]
Power (max, min) gen 1 14000, 100
Power (max, min) gen 2 15000, 100
Power (max, min) gen 3 14000, 100
Power (max, min) gen 4 15000, 100
Power (max, min) gen 5 14000, 100
Power (max, min) con 1 6333, 3333
Power (max, min) con 2 8333, 3333
Power (max, min) con 3 6333, 3333
Power (max, min) con 4 8333, 3333
Power (max, min) con 5 6333, 3333
Power (max, min) con 6 8333, 3333
Power (max, min) MG 1 PMq , 10

Initially, each agent in the power system initializes its power states, i.e., Px(0) ∀ x. Then, Algo-
rithm 4 starts, agents in the power system updates its states, if the agent is a microgrid, the agent
q executes Algorithm 2. After the microgrid optimizes its state, the dual update is computed by
the virtual agent.
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Figure 5-10: Illustrative general scheme of a Distribution system with microgrids adopted from
a IEEE 30-bus

Notice that the base load is the minimum power that the load can consume and the set between
the minimum or maximum load is where the load behavior is a smart load. We use several states
in the power system, in the beginning, the loads request to the system 20.000 [W ] divided into
each load. Once stabilized the power system, in 700 iterations we raise the load to 35.000 [W ],
in other words, the base load of each load rises until 5.833 [W ]. Finally, another load change
is proposed raises the base load of each consumer to 9.166 [W ], for a total in the system of
55.000 [W ].
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Figure 5-11: Algorithm 3: Smart Load results for simulation in IEEE 30 bus system
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Figure 5-12: Algorithm 4: Smart Load results for simulation in IEEE 30 bus system

It is possible to see that adjustable load decreases its amount of power consumed in 500 and
1000 iterations due to the increase of the base load which is predictable behavior because smart
loads should consume less power when the power system is in a load peak. However, this only
occurs in Figure 5-11. In Figure 5-12 is shown that load rises until a point and maintain its
stability until the end of the simulation. This behavior is done because the algorithm starts
within the set where the solution is feasible. When changing the optimization problem, that
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is, when changing the load that the power system has to supply, the algorithm needs to be
reconfigured, which is a clear disadvantage against the asynchronous algorithm.
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Figure 5-13: Algorithm 3: Generation results for simulation in IEEE 30 bus system
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Figure 5-14: Algorithm 4: Generation results for simulation in IEEE 30 bus system

Concerning the generators agent, it is possible to see that all of them respond to the changes
in the load balance, which in Figure 5-13 is reached in 300 iterations for Algorithm 3. As well
as in Figure 5-12, the generators in Figure 5-14 do not follow the power requested by the grid
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making an imbalance that is dangerous for the correct operation of a power system. However,
Algorithm 4 reaches smooth to the global optimum taking into account the microgrid inside
it. The microgrid agent is ever the less requested for power; however, both algorithms include
it inside the economic dispatch making both algorithms meet their main objective, to include
microgrids in the economic dispatch of a distribution system.
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Figure 5-15: Algorithm 3: Power net in Microgrid for simulation in IEEE 30 bus system.

Power net

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

·104

Iterations

P
ow

er
[w

]

Figure 5-16: Algorithm 4: Power net in Microgrid for simulation in IEEE 30 bus system.
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Finally, it is possible to see in Figure 5-15 that the asynchronous algorithm reaches a difference
of 0[W] between power generated and power demanded in approximately 600 iterations each
time the load is changed. While in Figure 5-16 it is shown how the first 700 iterations the
algorithm reaches a difference of 0[W] between power generated and power demanded, but in
both load rises the difference increase in the total of the increased load.



6 Conclusions

Based on transactive control framework, new economic strategies in the dispatch of distributed
generators and the users in microgrids and distribution systems have been proposed. We have
proposed four algorithms in order to achieve this objective. Initially, we propose a centralized
population dynamics algorithm that can control a microgrid in order to optimize and guarantee
the constraints. We have considered some constraints in the generators and consumers with
satisfactory results. Then we have obtained an optimal solution that includes, technical, eco-
nomical and ensures the maximum social welfare of generators and consumers dynamically.

The centralized algorithm to control microgrids is included inside our second algorithm. This
algorithm is based on distributed replicator dynamics protocol, this algorithm solves a social
welfare optimization problem between distributed generators, smart loads and microgrids in a
transactive control framework. The proposed algorithm considers utility functions of genera-
tor and consumers in order to reach the optimum social welfare dynamically while maintaining
some system constraints. However, this algorithm cannot solve the power system optimization
problem if this problem changes through time. Despite this constraint, game theory rises as a
robust framework theory to solve optimization problems applied to power systems.

In our third algorithm, we use the first algorithm in order to control the microgrids inside the
distribution system, this algorithm is used as the first control layer of our algorithm. We present
a hierarchical asynchronous transactive control strategy to operate a power system with micro-
grids in order to reach the optimal social welfare with satisfactory results. It is proved its behav-
ior theoretically and in simulations. Moreover, the second control layer can address problems in
power systems in an asynchronous way. The simulation results show that the hierarchical trans-
active control algorithm reaches optimal social welfare while maintaining system constraints in
a power network. Our system has advantages over other proposed control systems as it relaxes
the synchronism condition in the control systems applied to power systems.

Finally, As a future work, all algorithms need to include other constraints such as maximum
generation rates. Furthermore, this algorithm could include a dynamical calculation of losses in
the system and an algorithm running in parallel to estimate the energy valuation of each con-
sumer agent. Finally, communication failures in the first control layer algorithm and storages
system or wind generators agents could be analyzed and included in this algorithm.
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