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Title in English

A Modular Robot Architecture Capable of Learning to Move and Be Automatically

Reconfigured

T́ıtulo en español

Arquitectura de Robot Modular Capaz de Aprender a Moverse y Ser Automáticamente

Reconfigurada

Abstract: Tackling the problem of making a modular robot automatically learn the

movements necessary to locomote in different environments is not an easy task. The

ability of modular robots to have an arbitrary morphology provides an advantage over

usual monolithic robots when moving in different environments. However, being able to

reconfigure also has its problems. Movement control for reconfigurable robots is difficult

to design and implement. Morphology can also influence the sensing capabilities of a

modular robot. Only a few studies include sensor information when adjusting or optimiz-

ing controllers for modular robots. The main contribution of this work is the development

of an architecture that includes a locomotion training framework that enables a modular

robot to move in different environments taking into account sensor information. The

framework is composed of four main parts: a control strategy, a configurable environment

approach, an adaptation mechanism and a new modular robot platform: the EMERGE

modular robot. The EMERGE modular robot platform is designed to be easy to be

assembled and can be quickly reconfigured thanks to the magnetic connectors present

in its modules. This in turn enables an external agent, like a robot manipulator to

reconfigure the robot. Results show that well coordinated movements turn out to be very

important for controllers using sensors to improve when being adapted. The mechanisms

inside the controller, for example, decision structures, also play a major part in allowing

a robot to adapt to move in different environments and be improved. Evaluating robots

in reality is a very expensive task and differences between simulation and reality also

make robots behave very differently. The magnetic connector makes the assembly of an

EMERGE morphology easier but hinders the disassembly process.

Resumen: Resolver el problema de hacer, de forma automática, que un robot modular

se mueva en diferentes ambientes no es tarea fácil. La habilidad de los robots modulares

de tener morfoloǵıa arbitraria provee una ventaja sobre robots monoĺıticos normales al

moverse en diferentes ambientes. Sin embargo, ser capaz de auto reconfigurarse tiene

sus propios problemas. El control de movimiento para robots modulares es dif́ıcil de

diseñar e implementar. La morfoloǵıa de los robots también influencia la capacidad de

percibir de los robots modulares. Solo contados estudios incluyen información sensorial

al ajustar u optimizar controladores para este tipo de robots. La mayor contribución

de este trabajo es el desarrollo de una arquitectura de robot modular que hace que este



pueda moverse en diferentes ambientes teniendo en cuenta información sensorial. Esta

arquitectura está compuesta por cuatro partes principales: una estrategia de control,

un modelo de ambiente configurable, un mecanismo de adaptación y una plataforma

de robot modular nueva: el robot EMERGE. El robot modular EMERGE, es diseñado

para ser fácil de construir y de reconfigurar gracias a sus conectores magnéticos. Esto

también posibilita a un agente externo, como un manipulador robótico, a reconfigurar

el robot. Los resultados de los experimentos muestran que la buena coordinación del

robot es muy importante para que los controles que usan sensores puedan mejorar. Los

mecanismos internos del controlador, por ejemplo, las estructuras de decisión también

tienen un rol importante al adaptar el robot a diferentes ambientes. Evaluar robots en

la realidad es una tarea muy costosa y las diferencias entre la simulación y la realidad

hacen que los robots se comporten muy diferente. Los conectores magnéticos hacen que

armar las morfoloǵıas de módulos de EMERGE sean fáciles de armar, mas no de desarmar.

Keywords: Modular Robots, Coordination, Configurable environments, Sensors, Loco-

motion, EMERGE, Automatic Reconfiguration

Palabras clave: Robots modulares, Coordinación, Ambientes Configurables, Sensores,

Locomoción, EMERGE, Reconfiguración Automática
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CHAPTER 1

Introduction

Moving through different environments is a task that seems trivial when performed by

many living beings. In general, the majority of living beings we interact with have bodies

that do not change shape, at least in the time scale where locomotion takes place and

depending on the species, and are almost always aware of what tho do when they perceive

an obstacle. Internally, however, livings beings coordinate different body parts when

locomoting. Sensor information travels throughout the body and adjusts this coordination

accordingly. Imagine now that instead of a living being, a robot is trying to move through

different environments, but this robot can have any shape and any sensor distribution. The

robot still has to coordinate all its parts and integrate information from all its sensors.

This is the case of modular robots. A modular robot is a multi-robot system that

encapsulates part of its functionality in basic units called modules. By joining modules

together, in different ways, different robot morphologies can be built. The ability of mod-

ular robots to have an arbitrary morphology provides an advantage over usual monolithic

robots when moving in different environments [113].

However, being able to reconfigure also has its problems. The control of movement

for reconfigurable robots is difficult to design and implement. For example, a robot in a

quadruped configuration moves its limbs in a way that is not very useful when the robot

reconfigures into a snake. Past studies in modular robot locomotion have concentrated in

designing control strategies that cope with the reconfiguration ability of modular robots

[113]. Yet, only few of them include sensor information when adjusting or optimizing

controllers. Sensing obstacles plays a very important role in generating and adapting

movements for traveling through different environments. This can be observed in the

plethora of sensor arrangements and systems that are found in living beings.

Yoneda et al [135] use real valued genetic algorithms to evolve controller parameters

for simulated modules attached trough actuated springs to each other. The modules are

in a ring configuration and must travel to a light source, that each module can sense

1
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with its own light sensor. Zahadat et al [140] evolve controllers based on Fractal Gene

Regulatory Networks (FGRN) that can react to changes in the environment. Fitness is

computed based on distance to two individual target goals where the simulated robotic

system must arrive to, using locomotion movements. Even if these works consider mod-

ular robots with sensors, they do not examine the influence of sensor signals in module

coordination and only use one morphology for testing, which is important as different

modular robot morphologies can have different sensing capabilities. Rossi et al [94] make

this influence explicit by including a term in the control of inter-module joints and also

tests in different morphologies. In [94] they evolve sinusoidal controller parameters for

different configurations of a modular robot with sensors on one of its modules. However,

only one module is fitted with two proximity sensors, called “head” module. Evolution

tunes the influence of the “head” module sensors readings in the output of all modules

sinusoidal controllers. Furthermore, only Zahadat et al work with realistic modules, and

none consider communication among modules.

Besides, several works that involve modular robots learning to locomote, including the

ones described, most often than not use simple environments [18, 19, 24, 52, 66, 67, 85,

103, 111, 119, 120, 121, 136, 137, 138, 140], like flat surfaces and isolated obstacles. Few

studies use rough terrains, made by randomly adjusting the height of parts of the terrain

[28] and only some employ environments with multiple features[123].

This work proposes a locomotion training framework that enables a modular robot to

move in different environments taking into account sensor information. The framework

is composed of four main parts: First a control strategy, which includes a coordination

mechanism that uses communication to coordinate neighboring modules, a sensor infor-

mation handling mechanism, that aggregates and filters sensor signals coming from all

modules, and a decision mechanism which explicitly defines the behavior of the coordi-

nation mechanism based on the outputs of the sensor information handling mechanism.

Second, a configurable environment approach, which allows the controller to be tested in

different environments with different features. Next, an adaptation mechanism to adapt

the controller to the different features of the environment. And finally a new modular

robot platform: the EMERGE modular robot. The EMERGE modular robot platform is

designed to be easily assembled and can be quickly reconfigured thanks to its magnetic

connectors.

The locomotion training framework is part of the main purpose of this work: define

a modular robot architecture capable of learning to move according to the environment

and be automatically reconfigured. In this respect, this dissertation concentrates on the

following objectives:

To characterize the different ways modular robots can learn by doing a

literature review. The basic concepts of modular robots, their control and learning

strategies used are reviewed (Chapter 2). Movement control for reconfigurable robots is

difficult to design and implement. Deciding when to use specific movements is not trivial

when changing configurations. Most existing automatic controller generation strategies
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have only made robot morphologies move in flat surfaces with simple obstacles. Sensor

information has also been greatly ignored and only few works study the influence of sensor

information in the automatic generation of controllers, in very basic settings.

To define a learning model to enable a modular robot to learn to move by

itself in different configurations by using a learning technique. A coordination

mechanism using CPG, a way to aggregate and filter sensor information being communi-

cated among modules, as well as an ANN decision mechanism, are defined and used as

a basic control strategy for the model. A configurable environment model is introduced

as a mechanism to train in different features of structured environments. Evolutionary

algorithms are used as an adaptation technique to train the robot controller to move in

the different environment features. All this parts comprise a locomotion training frame-

work that enable a modular robot to learn to move. Modular robots using the defined

locomotion training framework (Chapter 3) are expected to generalize in environments

that possess the same features in different arrangements.

To define an automatic reconfiguration strategy for a specific type of mod-

ular robot. Taking advantage of the fast connection feature of the passive magnetic con-

nectors of EMERGE modules, a method for assembling and disassembling modules using

an external robot manipulator is proposed as a practical alternative to self-reconfigurable

robots and manual reconfiguration systems (Chapter 4). This is specially useful in chain

type modular robots like EMERGE, where self-reconfiguration is limited due to kinematic

restrictions. For this purpose a force analysis of the magnetic connectors of EMERGE in

regard to the reconfiguration process is performed and a proof of concept test is carried

out using real industrial manipulator arms.

To test the movement learning model proposed and the automatic recon-

figuration strategy in a modular robot hardware with a limited number of

DOF. The locomotion training framework is tested in simulation and in reality (Chapter

5). Controllers are evolved in simulation using different approaches that include the use

of previously generated seeds with well coordinated movements. Different morphologies

built using EMERGE modules are used for these tests. The configurable environment

approach is used to measure the generalization ability of the robots, first for controllers

without sensors and later for controllers with sensors. The best controllers obtained in

simulation are transferred to reality and a small evolution experiment is also performed

directly in the real EMERGE modules.

The main contribution of this work is the development and testing of an architecture

including a locomotion training framework to enable a modular robot to learn to move in

different environments. This framework is used to train controllers capable of integrating

sensor information in a distributed way and for which the control model is defined. A

configurable model of the environment that can show different features to an adaptation

process in a controllable way is also proposed and tested [75]. A new modular robot

prototype designed to be easily built and open for anyone to use and modify, the EMERGE

modular robot, is also proposed and described in this work [77]. A reconfiguration strategy
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for EMERGE modules using an external robotic manipulator is also defined [73]. The

remainder of this work is organised as follows:

Chapter 2 provides a look into the literature of modular robots, the most represen-

tative prototypes to date, existing control strategies and their problems when used for

learning to move in different environments. Chapter 3 introduces the locomotion training

framework that enables a modular robot to move in different environments. Each part is

explained using a simple modular robot with sensors. Chapter 4 describes the new modular

robot platform and the automatic reconfiguration strategy designed. Chapter 5 describes

experiments performed to test the capabilities of the locomotion training framework in

simulation and in reality. Finally some conclusions and future work are outlined.



CHAPTER 2

Basic Concepts

2.1 Introduction

Search and rescue missions, space exploration, and similar tasks sometimes are performed

in situations and environments that are harsh, or even completely inaccessible, to humans.

Robots are designed as tools for helping humans to explore such environments. While

exploring these kinds of environments, robots encounter different kinds of obstacles. One

possible solution to enable robots to avoid obstacles is to use remote control. However,

different factors like distance or control signal interference demand robots to have some

level of autonomy, ideally working in a completely autonomous way. Different sponsored

competitions and challenges have been devised with the idea of developing a completely

autonomous robot [47].

The morphology of a robot determines its capacity to explore different environments

(to move in different conditions). In other words, a robot with wheels can move in a

specific set of environmental conditions, different from those where robot with tracks or

limbs can move. Most of the time, a robot is designed without the possibility of changing

its form, but including different ways of moving that can tackle different kinds of terrains

[12]. A modular robot is a multi-robot system that encapsulates part of its functionality in

basic units called modules. Different robot morphologies can be built by joining together

a predefined number of modules. The ability of modular robots to have an arbitrary

morphology provides an advantage over usual monolithic robots when moving in different

environments [113].

For example, a modular robot system can adopt a wheel configuration to move very

quickly in flat surfaces [96] and become a quadruped when facing environments containing

small obstacles and uneven terrains. Changing the morphology of the system can be

achieved by the modules themselves or by an agent external to the modules. However,

being able to reconfigure has its problems. Movement control for reconfigurable robots is

5
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difficult to design and implement. For example, a robot in a quadruped configuration uses

movements to move its limbs, which are not very useful when the robot rearranges itself

into a snake configuration. Control mechanisms that can cope with the reconfiguration

ability of modular robots have been designed and tested in several prototypes [113].

Morphology can also influence the sensing capabilities of a modular robot. Sensing

obstacles plays a very important role in generating and adapting movements for trav-

eling through different environments. This can be observed in the plethora of sensor

arrangements and systems that are found in living beings. In monolithic robots, sensor

information usually travels from the sensors to the controllers in order to be used. Since

the robot is not designed to change its morphology, the receiving controller can interpret

the sensor position without trouble. In reconfigurable modular robots, any sensor infor-

mation generated by a module can be difficult to handle as its position and orientation can

vary from morphology to morphology, thus the spatial meaning of a sensor can change.

A mechanism for handling sensor information that is capable of coping with this spatial

meaning issue is also required in order to let a robot move through different environmental

conditions.

In this chapter, the basic concepts of modular robots are introduced. First, the main

features of modular robots are presented, including an analysis of some modular robot

prototypes that have been used in locomotion tasks. Second, a short review is presented

about the strategies that have been developed for controlling modular robots, which are

the base for the control strategy proposed in this work. Finally, some control techniques

for solving the problem of automatically generating controllers are also presented.

2.2 Modular Robots

Modular robots have an advantage over monolithic robots when traveling through dif-

ferent environments, since they are able to change their morphology to avoid obstacles,

move in uneven terrains or simply enter previously inaccessible places. Modular robots

are mechanically connected compositions of autonomous devices, called modules, which

encapsulate part of their functionality [113]. Identical modules are easy to produce and

can be assembled in various configurations leading to different robot morphologies (Figure

2.1). These robot morphologies are bigger and can achieve more complex tasks than in-

dividual modules [49]. Depending on the specific system, modules are likely to have their

own processor units, sensors, actuators and means of communication with other modules.

Initial modular robots research was concentrated on developing the mechanical compo-

nents of its modules. Fukada and Kawauchi, for example, developed a cellular distributed

robot (CEBOT [29]) inspired on rapid CNC tool interchangers in the eighties. In the

nineties, Chirikjian [15], Murata [83] and Yim [128] developed modular robot systems

based on lattice structures and modules with simple actuators.
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Figure 2.1. Modular Robot

Later, research has focused more on developing distributed algorithms for control

and dynamic self-discovery of module topologies [69, 100]. Other works concentrated

on stochastic assembly and simulation of thousands or even millions of modules. More

recently, research about module designs, comprising modules with mobile capabilities[25]

have appeared as well as modular robot systems that can perform high level tasks [50].

Modular robots are often designed to have one or more of the following features:

• Re-usability and reconfigurability: Re-usability is achieved by means of modularity

[70]. It is cheaper to use the same materials by reconfiguring similar parts, rather

than making a completely new solution to the same task.

• Self-reconfiguration and self-assembly: While manual assembly and disassembly have

been used extensively [68, 28] to reconfigure modules, it requires an operator, which

reduces autonomy. A self-reconfigurable modular robot can change its modules as-

sembly configuration by itself [81].

• Scalability: Scalability is often difficult in mechanical systems but can be easily

achieved by using modules [81]. Modular robot systems are, in theory, capable of

adding up functionality by increasing the number of modules.

• Robustness and Reliability: Modular self-reconfigurable robots could react to failure

in one or more of its modules by rearranging the whole structure or simply by

disconnecting the malfunctioning module from the others [98]. Robots could also

replace the malfunctioning module with a new one [27]. Modular robots that are

reliable and robust are, however, still far from being implemented pratically in real

hardware.

2.2.1 Types of Modular Robots

Modular robots can be either homogeneous (all their modules share the same design and

features) or heterogeneous (there are different types of modules with different actuation
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and sensing capabilities) [81]. A more meaningful way of classifying modular robots is

based on their reconfiguration capabilities. There are three types of reconfiguration in

modular robot systems: Lattice-based and chain-based, as established by Yim et al. [131],

and mobile based (Figure 2.2).

• Chain-type: Chain-type modular robots can form, as the name implies, chain like

structures when attached to each other. Chains of modules can attach to other

chains in relatively arbitrary positions depending on the connector type. Limbed

configurations, like, arms, legs, or tentacles, formed by modules, can be used for

locomotion and manipulation tasks. Self-reconfiguration is difficult in chain based

modular robots due to the arbitrary position of the connections that can be formed

[81], and the many DOFs (Degrees of Freedom) that the robot system can potentially

have. Chain-type modular robots have a good power-weight ratio with few actuators.

Some chain type modular robots have only one degree of freedom per module, which

does not stop them from reaching any point in space [33], for example, by bending

themselves (Figure 2.2a).

• Lattice-type: Latticed-based modular robots are capable of aligning themselves into

periodic, and almost always symmetric configurations. Lattice based modular robots

are usually self-reconfigurable due to the periodic nature of the positions that mod-

ules can take, i.e. every step used to go from a given configuration to another is

already well defined [131]. Each module is concerned only with the nearest position

along the lattice rather than with all the arbitrary positions a chain-based mod-

ule can achieve, thus better abstractions can be used than with chain-based modules

[131]. Lattice restricted movements are also a disadvantage, because modules cannot

reach anything outside of the lattice structure (Figure 2.2b).

• Mobile-type: Mobile-based modular robots reconfigure by freely moving their mod-

ules out of a given configuration to another in contrast with chain and lattice-based

robots, which never disconnect from the main structure to perform a movement.

Modules can move by means of threads or wheels [50] (Figure 2.2c).

Some prototypes, like SMORES [25], explore the possibilities of mechanical designs

that merge the features of the three types of reconfiguration: lattice, chain and mobile

(Section 2.2.2.6). Different types of modular robots can move in different ways. Pure

lattice-type robots can move by reconfiguring their modules, often called flow, but they

must solve first the self-reconfiguration problem. Self-reconfiguration in chain-type mod-

ular robots comes with the problem of connecting and disconnecting modules from the

structure and aligning them. However, traveling through different terrains is easier in

chain-type robots than in lattice-type. The former ones do not have to self-reconfigure

in order to move, i.e. chain-type modular robots form limbed configurations with high

power-weight ratio, that move by using their main actuators.
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(a)

(b)

(c)

Figure 2.2. Types of modular robots: (a) Chain Type,(b) Lattice Type, (c) Mobile type
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2.2.2 Modular Robot Prototypes

Numerous modular robotic systems have been developed over the last decades. Table

2.1 shows some of the modular robot prototypes that have been developed around the

world. As mentioned before, the morphology of a module directly influences its ability

to locomote while avoiding obstacles. The achievable morphologies for a specific modular

robot system are determined by the module (or module types in the case of heterogeneous

robots) and connector designs. The shape and complexity of a module also limits the

kind and number of sensors that can be placed in it. Different types of connectors enable

different types of reconfiguration and how fast they can be performed. The module and

connector designs can be as elaborated as required, for example to be able to achieve a

high number of morphologies or to self-reconfigure, but this can also make their assembly

more difficult. This subsection summarizes some of the most representative ones. For a

more detailed overview check [113].

2.2.2.1 Polybot

Polybot modules are built as 1DOF hinges with a rotational actuator at their center.

Connectors are placed in opposing faces parallel to the hinge actuator and in some versions

on the faces supporting the rotational actuator (Figure 2.3 Polybot G1 and G3). Chain

morphologies with only one chain or chains and perpendicular bifurcations are possible

with this type of module, depending on the specific version of the design currently, five

versions of the module design exist (Figure 2.3) [27]. Additionally, wheel, worm, and legged

robots have been built using Polybot modules. Due to its hinge shape, sensors are placed

inside the module, in the case of orientation and force sensors, and on the connector faces

that are parallel to the rotational actuator (infrared docking aid). Versions G2 and G3

have connectors that let them self-reconfigure based on pin-hole mechanisms and Shape

Memory Alloy (SMA) wires. Module construction varies from version to version, being

the self-reconfigurable ones the most complex to build since they possess small actuated

mechanisms and specialized parts (Figure 2.3 Polybot G3).

2.2.2.2 M-TRAN

M-TRAN is a modular self-reconfigurable robot developed by the National Institute of

Advanced Industrial Science and Technology (AIST) of Japan and the Technological In-

stitute of Tokyo (Tokyo-Tech). Each module is made using two semi cylindrical, semi

cubical parts with connectors on 5 of their flat faces. One of the semi-cubical parts has

male connectors while the other has female connectors. Male connectors contain hooks

that can be automatically extended or retracted providing a mechanical link with female

modules that enables self-reconfiguration. A stick connects the two semi-cubical parts

extending what was previously a simple hinge into two (Figure 2.4b) [84]. Each end of

the central stick contains a rotational actuator that makes the semi cubical parts rotate
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Table 2.1. Modular robot Prototypes around the world. (Authors inside table)

Name Class DOF Author Affiliation Year

CEBOT Mobile Various Fukuda et al. Nagoya 1988

Polypod Chain 2-3D Yim Stamford 1993

Metamorphic Lattice 3-2D Chirikjian JHU 1993

Fracta Lattice 3-2D Murata MEL 1994

Tetrobot Chain 1-3D Hamlin et al. RPI 1996

3D Fracta Lattice 6-3D Murata et al. MEL 1998

Molecule Lattice 4-3D Kotay & Rus Dartmouth 1998

CONRO Chain 2-3D Will & Shen USC/ISI 1998

PolyBot Chain 1-3D Yim et al. PARC 1998

TeleCube Lattice 6-3D Suh et al. PARC 1998

Vertical Lattice 1-2D Hosakawa et al. Riken 1998

Cristal Lattice 4-2D Vona & Rus Dartmouth 1999

I-Cube Lattice 1-3D Unsal CMU 1999

Pneumatic Lattice 1-2D Inoue et al. TiTech 2002

UniRover Mobile 2-2D Hirose et al. TiTech 2002

M-TRAN Hybrid 2-3D Murata et al. AIST 2002

ATRON Lattice 1-3D Stoy et al. U.S Denmark 2003

Swarm-Bot Mobile 3-2D Mondada et al. EPFL 2003

Stochastic 2D Mobile 0-2D White et al. Cornell U. 2004

SuperBot Hybrid 3-3D Shen et al. USC/ISI 2005

Stochastic 3D Mobile 0-3D White et al. Cornell U. 2005

Catom Lattice 0-2D Goldstein et al. CMU 2005

Prog. Parts Mobile 0-2D Klavins U. Washington 2005

Molecube Chain 1-3D Zykov et al. Cornell U. 2005

YaMoR Chain 1-2D Ijspeert et al. EPFL 2005

Miche Lattice 0-3D Rus et al. MIT 2006

JL-I Mobile 3-2D Zhang et al U. Hamburg 2006

Shady3D Chain 3-3D Yoon et al MIT 2006

EM-Cube Mobile 0-2D Byoung Dran Lab. 2007

Evolve Chain 2-3D Chang et al. NUS 2008

Morpho Lattice 1-3D Chin-Han et al. Harvard/MIT 2008

ODIN Lattice 1-3D Lyder et al. Moller Inst. 2008

Roombots Lattice 1-3D Sproewitz U. Lausane 2008

Beanbag Robotics Mobile 1-2D Kriestel et al. Cornell U. 2008

Locokit Hybrid 1-3D Larsen et al Moller Inst 2010

L-shaped Hybrid 3-3D Kutzer et al Johns Hopkins U. 2010

Cross-Ball Hybrid 2-3D Meng et al Stevens IT 2011

U-Bot Chain 2-3D Zhao et al Science Garden of HIT 2011

SMORES Hybrid 4-3D Davey et al U. New South Wales 2012

MICROTUB Chain 1-3D Brunete et al U. Carlos III 2012

EDHMOR Chain Hetero Faina et al Universidade da Coruña 2013

REPLICATOR Chain Hetero Liedke et al EU Project 2013

Fable Chain Hetero Pacheco et al DTU 2013
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Figure 2.3. Different versions of Polybot (Taken from [88])

(a) (b)

Figure 2.4. M-TRAN: reconfiguring (a) and module (b) (Taken from [1])

about the stick. The module shape lets M-TRAN modules form chain type and lattice

type structures, because each semi cubical part can fold itself by 90 degrees around the

central stick. Limbed and snake configurations, as well as wheels, that can turn into each

other by self-reconfiguration, have been tested (Figure 2.4a) [54]. Cameras and other types

of sensors are placed in special modules that are attached to a robot configuration. The

modules themselves only include orientation and joint position sensors. Although the ad-

vantages that the module design offers its shape requires specialized DC motors and gears

in order to move joints and connectors that make assembly more difficult. Mechanical

hooks also make the reconfiguration process slower and more energy inefficient than with

other types of connectors.
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Figure 2.5. ATRON modules (Taken from [20])

2.2.2.3 ATRON

Developed by the University of Southern Denmark, the ATRON modular robot is a self-

reconfigurable robot with semi-spherical shape [10]. The module is composed of two

hemispheres connected by a rotational joint (Figure 2.5). The hemispheres can rotate rel-

ative to each other and can act as wheels thanks to a slip ring located in the center of the

module. Modules have automatic mechanical male connectors based on hooks that can

latch to female connectors in other modules allowing the connection of up to 8 modules to

the same base. ATRON modules semi-spherical shape enables tightly packed lattice con-

nections that can move by self-reconfiguration. The main rotational actuator also allows

ATRON modules to move like chains. Snakes, cars and other similar configurations have

been achieved. Each module houses a tilt sensor as well as infrared proximity sensors at the

connectors to help align modules during self-reconfiguration. The slip ring enables a differ-

ent kind of main actuator and mechanical design for a modular robot, compared to other

prototypes like Polybot, but it also complicates the construction of the module as very

specialized parts should be used to maintain electrical connection between hemispheres.

Although mechanical connectors are strong [86], they can make the self-reconfiguration

process slow compared to other kinds of connector mechanisms.

2.2.2.4 Superbot

Superbot is a robot built in the Polyphormic Robotics Laboratory of the Information Sci-

ence Institute of the University of South California by Salemi et al [96]. The basic structure

of a Superbot module has two semi cubical parts joined together by a central link, in the

same fashion as M-TRAN modules. The main difference is an extra actuated rotational

joint located in the center of the link, that lets the two semi cubical parts rotate in the

same axis of the central link (Figure 2.6) [101]. This extra DOF enables Superbot modules
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Figure 2.6. SuperBot in biped configuration (Taken from [58])

to form configurations similar to those formed by M-TRAN modules and CONRO modules

[14]. Superbot modules have mechanical connectors in faces corresponding to those of the

M-TRAN module. Reported sensors include an onboard 3D accelerometer/inclinometer

sensor [96] and an externally mounted camera [91]. The extra DOF has the disadvantage

of adding more parts (actuators, gearboxes) to the overall design. Superbot also has the

disadvantage that its connector faces need to be secured with screws to other modules

making the reconfiguration process slow.

2.2.2.5 REPLICATOR

The REPLICATOR project is an EU funded project with the aim of developing a super-

large-scale swarm of autonomous mobile micro-robots that can self-assemble into large

artificial organisms. REPLICATOR modules are heterogeneous and three different types

exist (Figure 2.7). All of them are capable of moving by themselves: A backbone module

and a scout module, both with morphology similar to Polybot modules. The backbone

module has a powerful rotational actuator that can lift several other modules, has actuated

connectors and can move sideways in the plane thanks to additional actuators. The scout

module specializes in fast locomotion using tracks and houses proximity sensors to scout

its surroundings [62]. An active wheel module is also available to carry electronics and

battery packs [90]. Chain-type morphologies (worms, limbed) are possible with the first

two types of modules, and can be extended by using the active wheel type of module.

Backbone modules and scout modules pack a lot of functionality in their body, which of

course complicates the module assembly.

2.2.2.6 SMORES

Self Assembling Modular Robot for Extreme Shape Shifting is a modular robot system

created in the University of Pennsylvania. Modules possess four DOF, three of them in

the same plane, and one perpendicular to the others. It is designed to be able to recon-
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Figure 2.7. REPLICATOR modules (Taken from [90])

figure as a lattice, chain or mobile type modular robot, as a universal modular system

[25]. The overall module shape resembles a Polybot module with circular rotating con-

nector faces attached (Figure 2.8a). SMORES modules can achieve similar configurations

to those of other modular robots like M-TRAN or Superbot with the addition of being

mobile. Genderless connectors are placed on the four available faces, being three of them

active and one passive. The combination of active and passive connectors enables self-

reconfiguration and, since the connectors are magnetic, this process is faster than in other

self-reconfigurable modular robots. However, the process still requires the use of a mechan-

ical key and the movement of the whole connector face, which makes the design complex

to build. A later version called SMORES-EP (Figure 2.8b) uses Electro Permanent (EP)

magnets instead of normal magnets [50] in its connectors. Electro permanent magnets can

de-polarize and re-polarize when short pulses of current through a coil generate a magnetic

field around them. Thanks to the use of EP magnets, mechanical separating mechanisms

are not needed anymore, but more electrical energy is consumed. No sensors have been

reported for this system.

2.2.2.7 Fable

This modular robot system is designed to explore modular playware [87]. This hetero-

geneous chain type modular robot system is composed of three different types of mod-

ules following a simple to build design (Figure 2.9): Joint modules, with actuated joints;

branching modules that are used to connect several modules together in tree-like configura-

tions; and termination modules that close off open connectors on a robot and provide extra

sensing and actuating modes to the robot. The overall shape of the module resembles one

half of an American football with cut ends. All different types of modules have a magnetic

genderless connector, which can be connected to other similar connectors of different sizes.

Only manual reconfiguration is possible given the shape of the module and the specific
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(a)

(b)

Figure 2.8. SMORES: Original SMORES Modules (a), SMORES-EP (b) (Taken from [72])

Figure 2.9. Fable modules (Taken from [87])

connector design, but this also enables robots to be reconfigured very quickly compared to

other platforms. Limbed robots, snakes and vehicles have been achieved. Modules contain

accelerometers and gyroscopes, as well as a small speaker and termination modules with

proximity sensors.

2.2.2.8 Printable modular robot

With a similar shape to that of Polybot modules, this robot structure is designed to be

completely 3D printed using standard FDM printers [55]. Modules use magnets to at-

tach to each other and electrical connections and communications are routed through the

magnets themselves. Magnetic connectors provide a very simple and quick way to recon-

figure modules manually. However, only two faces of the module are used as connectors,

hence only simple morphologies like snakes can be achieved. The hinge rotational joint is

actuated by an off-the-shelf hobby servo and other electronic components are also off-the-

shelf parts (Figure 2.10). This modular robot is an example of a very simple system and

lacks other features, like the capabilities of forming more complex configurations and read-
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Figure 2.10. Printable Modular Robot (Taken from [55])

(a)

(b)

Figure 2.11. Modular robot in two different morphologies: A snake morphology (a), a random
morphology (b)

ing sensors, that would make it more useful for implementing and testing the techniques

described in this work.

2.3 Control

Locomotion movement control for modular reconfigurable robots is difficult to design and

implement. As morphology can be arbitrary, movements or mechanisms designed to cor-

rectly move one morphology could not be useful for others. Control strategies used for

modular robots have to cope with their distributed nature and high number of actuated

DOF and sensors. Centralized and decentralized control methods have been developed

[79].

On one hand, centralized strategies use a main controller, usually an external com-

puter or a specific module of the structure, which sends commands to every module at

a given time. Centralized controllers have the advantage of being very simple to devise
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(a)
(b)

Figure 2.12. Centralized control (a) vs Distributed control (b) in modular robots. Centralized
controllers must communicate with all modules in a morphology.

and implement. On the other hand, decentralized controllers work distributing the tasks

that were done by the central controller among the modules in the robotic structure. One

way of achieving this is defining a task coordinator module [111]. Any module inside the

structure can act as a coordinator, and the coordinator can be changed in case of failure.

Due to several problems, centralized controllers are not the first option to effectively

control modular robots [44]. First, trying to communicate with all the modules of the

structure may create bottlenecks and hinder the scalability of the system. Second, the

controller robustness is diminished, because if the central controller fails, all the system

fails. Thus, this work will concentrate in the use of decentralized control strategies.

2.3.1 Decentralized Control Strategies

Several decentralized techniques have been proposed for controlling modular robots [79].

According to Stoy et al. [111], there are two main types of decentralized control:

• Synchronous Decentralized Control: Each module performs synchronized tasks using

internal clocks or sequential algorithms, “Movement tables” are examples of this kind

of control. Global synchronization of the system can produce its own problems and

decrease performance.

• Asynchronous Decentralized Control: Asynchronous decentralized control strategies

consider each module as an independent and autonomous entity, like in multi agent

systems. In this case, global behaviors “emerge” from local interactions between

modules [139]. Examples of this type of control are Central Pattern Generators.

The most basic example of a synchronous decentralized control strategy for modular

robots involves creating sequences of movements for each module, which is also called

“movement tables”. This form of control was proposed by Yim [129] in 1994 and is based

on a table that represents, for a given robot morphology, the state of every module at

every step of a time driven sequence of movements. The table contains module identifiers

in its columns vs. time steps in its rows. Once the last time-step is reached, the sequence

starts anew from the first time step. This strategy enables the implementation of cyclic

movements or “gaits”, which are common in living beings.
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Figure 2.13. Example of CPG generating coordinated movement on a snake configuration of a
modular robot

The table can be hard coded or created using an algorithm that assigns movements

to modules at each time step. Module i executes only its corresponding column (the ith

column) of the table, which is stored inside the module. The main problem with this

control strategy is that a movement table must be created for every configuration the

robotic system can take. Another problem is that it does not take into account sensor

information, rendering it to be an open loop approach.

Sinusoidal movement generators have also been used to control the movement of mod-

ular robots synchronously [94, 28]. In this case, a sinusoidal wave is generated for each

actuator in the robotic structure. Each wave is configured with a different phase, thus

different modules are coordinated to achieve a gait. The main disadvantage of this control

technique is that there should be an strict synchronization among all modules in order to

move the robot correctly.

In the case of asynchronous decentralized control strategies, there is a technique that

draws inspiration from biological control structures found mainly on vertebrates. These

structures are capable of generating complex oscillatory movement from a relatively sim-

ple input and are usually in charge of repetitive tasks like chewing, swimming, walking

or breathing [35]. The generated movement can be synchronized with the movement

produced by other similar structures [115, 127]. Structures of this type are called Cen-

tral Pattern Generators (CPGs) and have the advantage of being a decentralized control

method, which can work with local information to achieve coordinated movements [46].

CPG structures can be used to generate locomotion movements in a simple fashion by

using their local coordination features, thus providing a good low-level locomotion control

and coordination mechanism [92].

With these properties, different CPG implementations have been used to control a

number of modular robot prototypes obtaining robust locomotion patterns that can sup-

port different terrain conditions for a given morphology (Figure 2.13). CPGs can thus be

used to provide an stable coordination strategy that is able to generate basic locomotion
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(a)

(b)

Figure 2.14. Hormone inspired messages. aMessages are processed differently in each arriving
module, b Example of message propagation.

movements for different robot morphologies. Moreover, movements generated by CPGs

for a specific robot morphology can be tuned, so that the robot can locomote in different

environmental conditions [84]. Feedback can be introduced to adjust the output to sensor

information as in [84, 94]. However it has been used in very specific ways. Depending

on the type of implementation, CPGs can be very unstable at the beginning of a robot

movement, while control signals converge to stable values.

Hormone inspired messages is another technique used to asynchronously control mod-

ular robots (Figure 2.14). In previous work [102] hormone inspired messages have been

defined as messages that can be interpreted in different ways by different receiving modules

and that can be delayed or modified before being propagated [42]. This kind of control

strategy is decentralized, robust to changes in configuration [97, 110] and has been used

to achieve synchronization among sets of modules [16, 43]. Hormone inspired messages

differ from CPGs in that they are somewhat separated from the module themselves, that

is, modules only react to hormones arriving from their neighbors, while CPGs controlled

modules can act in complete isolation from other CPGs.

Similar to some variations of hormone inspired messages that model diffusion reactions

[99, 37], Gene Regulatory Networks (GRN) model the control mechanisms of a number of

important cellular behaviors [71, 7]. Since a parallel between cells in a body and modules

in a modular robot configuration can be made, GRN based techniques have been used to

control modular robots. In [140] Zahadat et al. uses GRN as reactive controllers inside

individual modules of a configuration that can execute a light following task. Meng et al.

have also used a hierarchical controller with a GRN to control self-reconfiguration of a

modular robot in simulated environments.
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Although some of these bio-inspired control techniques are capable of including sensor

information in their calculations, usually no more than one or two sensors are included in

the control model for a whole robot morphology [94, 82]. Modular robots can potentially

have sensors in each of its modules. This feature can be exploited to study how several

simple sources of sensor information throughout the body (as a first step towards proprio-

ception or sensor-actuator fusion) can affect the motion of the robot and how motion can

be adapted taking into account sensors when moving in different environments.

2.3.2 Automatic controller generation

Implementing the control techniques described in subsection 2.3.1 to actual modular robots

can be a tedious task, specially when controllers have several tunable parameters and

different controllers can be used for different modules. Additionally, typical modular robot

configurations have several modules and each of them has its own control parameters. For

this reason several works have concentrated in the automatic generation of controllers for

robot morphologies or individual modules. Methods like reinforcement learning [24, 19],

evolutionary algorithms [137] and motion planning [136, 114], have been used for this

purpose.

Reinforcement learning is a machine learning method in which a reward, or punish-

ment, is given to an agent when it follows a policy (an action or a set of actions that are

executed by the agent) [2]. Reinforcement learning involves the use of a critic. A critic is

someone or something that gives a reward or a punishment to the learning agents based

on their actions and the state of the environment. An internal representation of the utility

of each action given a certain external state or observation is necessary and it is updated

over time using predefined formulas. The main objective is to choose the best action in

terms of reward or the best state in terms of utility.

Works that make use of reinforcement learning in modular robots often test in simu-

lated and rather abstract models, as some issues, like grow in state variables and actions,

can lead to higher complexity. Varshavskaya et al [120], Shiba et al [103] and Karigiannis

and Tzafestas [53], follow this approach. Varshavskaya, Pack and Rus apply a Gradient

Ascent in Policy Space (GAPS) [119] algorithm and a Distributed Gradient Ascent in

Policy Space (DGAPS) [120] algorithm to square shaped modules which can slide along-

side each other in a simulated 2D environment with basic physical laws. Shiba et al

[103], applies Q-Learning to a 4-armed planar robot to make it reconfigure from an initial

configuration to a goal configuration. Karigiannis and Tzafestas [53] use reinforcement

learning in a nested-hierarchical multi-agent environment where all agents are links in a

2D manipulator.

Communication has been seldom explored in works using reinforcement learning ap-

proaches and only few works have studied the role of communicating sensor information

between modules when learning. The DGAPS algorithm proposed by Varshavskaya et

al [121] will converge to a local optimum given that the distributed agents get the same
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Figure 2.15. Assigning reward and state information to individual modules is an issue when
using reinforcement learning in modular robots

experience and reward as a centralized learner, something that is accomplished by means

of agreement algorithms. Karigiannis and Tzafestas [53] make each agent ”see” which

actions are performing other agents below in the hierarchy and calculate the probability

of choosing an action.

Another issue is how to assign the reward so that the group of agents cooperate with

each other towards the same goal (Figure 2.15). In [119], Christensen et al. [18], and

D’Angelo et al [24] all modules share a reward signal which is how far the complete robot

reaches in a certain direction in a given time. Christensen et al. [18] use reinforcement

learning in actual modular robots, they use reinforcement learning to learn movements in

different configurations of the ATRON robot using gait tables. D’Angelo et al [24] also

use reinforcement learning to generate controllers for different configurations of YAMOR

modules in flat surfaces.

Evolutionary algorithms are also used to develop and optimize movement behaviors for

modular robots. Evolutionary algorithms [26] are inspired by biological evolution and are

population based optimization algorithms. A population of solutions for a given problem is

generated and tested against a performance measure. Then, selected individual solutions

are modified in different ways to produce new solutions that hopefully will have a better

performance measure than the originals. Mechanisms such as mutation and crossover are

used to obtain candidate solutions from the last generation. The processes of selecting

and modifying solutions in the population are usually inspired in the biological processes

that take part in natural evolution (Figure 2.16).

Evolutionary algorithms take large numbers of generations and fitness measurements

which make it a very slow process therefore it is often done in simulation [66, 5, 135, 117,

85, 20, 118, 140, 94]. Simulations allow abstract representations of modular robots to be

used. Bennett and Rieffel [5] evolve function based programs as controllers for 2D square

shaped modules in simulation for a set of different problems involving module failures

and navigating narrow spaces using sliding movements. Torres and Zagal [118] also use a

genetic algorithm to evolve the locomotion control of a group of simulated 2D robots in

different environments in simulation.
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Figure 2.16. Evolution is usually used to optimize controller parameters

More often than not, evolution is used to produce locomotion control of different

configurations of modular robots. Sometimes evolution of controllers is accompanied by

the evolution of the morphology, taking advantage of the simulated approach. Marbach et

al [66] and Toley et al [117] use evolutionary algorithms to evolve different configurations

of simulated modular robots for locomotion and structural tasks respectively. Faina et

al [28] also evolve the morphology of modular robots for a locomotion and a painting

task. Ostergard and Lund [85] apply coevolution with genetic algorithms to generate

movement by reconfiguration from different initial configurations, which are also evolved,

of a simulated ATRON robot.

Only a few studies include sensor information when adjusting or optimizing controllers

for modular robots. This limits the movements that can be generated by controllers only

to cases when there are no sensors present in the system. Yoneda et al [135] use real valued

genetic algorithms to evolve controller parameters for simulated modules attached trough

actuated springs to each other. The modules are in a ring configuration and must travel to

a light source which each module can sense with its own light sensor. Zahadat et al [140]

evolve controllers based on Fractal Gene Regulatory Networks (FGRN) that can react to

changes in the environment. Fitness is computed based on distance to two individual target

goals where the simulated robotic system must arrive to using locomotion movements.

Rossi et al [94] evolve sinusoidal controller parameters for different configurations of a

modular robot with sensors on one of its modules. Only one module is fitted with two

proximity sensors, called “head” module. Evolution tunes the influence of the “head”

module sensors readings in the output of all modules sinusoidal controllers.

Simulation results obtained from evolutionary processes have also been tested in real

robots. Murata and Kurokawa [82], Yoshida et al [137] and Kamimura et al [52, 51]

describe the use of genetic algorithms to optimize the parameters and network connections

between CPG controlling the robot M-TRAN in simulation and then use the resulting

parameters to move a real robotic structure. Yoshida et al [138] also describe the use of

evolutionary algorithms with movement tables in M-TRAN. However, transferred results

are affected by differences between the simulated robots and their real counterparts, a

problem called the reality gap.
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Figure 2.17. Motion Planning

Another technique, motion planing, has been used to automatically generate modular

robot controllers for moving in an environment. The motion planning problem involves

calculating a precise description of how a robot must move in order to get from an initial

point in space to a goal while evading obstacles [59, 104] (Figure 2.17). This problem

has been well studied for decades in robotics and different techniques have been proposed

to solve it, including sampling based techniques like Rapidly Exploring Random Tress

(RRTs) and combinatorial based techniques. Motion planning has been applied to generate

locomotion movements in modular robots like M-TRAN [136] and REPLICATOR [123,

124]. It has also been used to generate dynamic reconfiguration movements in a chain

type modular robot [114]. One of the main limitations of using motion planning is that

the whole environment in which the robot will move has to be known beforehand.

Techniques different from evolution, reinforcement learning and motion planning to

the locomotion problem include Marbach and Ijspeert [67] which use Powells method, a

gradient free optimization algorithm, to adjust the parameters of CPG controllers and

the configuration of a modular robot in simulation. Ranasinghe and Shen [91] propose a

surprise based learning algorithm which creates a model of the environment and updates

it according to discrepancies in observations when executing different actions on the Su-

perBot robot. Jing et al [50] propose a high level control system that relies in a previously

created set of motions and configurations to perform a given task. A set of conditions and

rules are specified and an automata is created that solves the specified task.

2.4 Conclusion

In this chapter, the basic concepts of modular robots, controllers, and their automatic

generation, that have been used for the locomotion task, were presented. The literature

review includes the different types of modular robots that have been developed to date
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and analyzed some modular robot prototypes, how their module morphology affects their

ability to move and reconfigure, the sensors they can carry and how complex is to build

them. The feature of modular robots to have their morphology changed provides an

advantage over usual monolithic robots when moving in different environments. However,

movement control for reconfigurable robots is difficult to design and implement. Deciding

when to use specific movements is not trivial when changing configurations. Control

mechanisms that can cope with the reconfiguration ability of modular robots have been

designed and tested in several prototypes.

Even after implementing specific controller strategies, tunning them for modular robots

can be a difficult task. That is why several studies have concentrated on the automatic

generation of control strategies. Still, most of them have only made robot morphologies

move in flat surfaces with simple obstacles. Sensor information has also been greatly

ignored and only few works study the influence of sensor information in the automatic

generation of controllers, in very basic settings. The next chapter will define a framework

for training modular robot morphologies to move from one point to another while address-

ing these limitations. This framework includes the design of a control strategy that can

handle sensor information coming from an arbitrary set of sensors in order to adjust the

locomotion movements. The framework also includes the development of the EMERGE

modular robot platform, which can be built using simple off-the-shelf components and

uses simple magnetic connectors to enable rapid deployment of different morphologies.



CHAPTER 3

Locomotion Training Framework

Modular robots can potentially have an advantage over monolithic robots when moving

through different environmental conditions. This advantage comes from their ability to

reconfigure, be it by themselves or by an external agent. However, the morphology of a

modular robot is not known before hand and the robot can have an arbitrary set of sensors

inside its modules. Generating the movements necessary to make a modular robot move

in different environments is a difficult task.

To tackle the problem of generating locomotion movements in modular robots, that

is, to make them able to move in different environments, this work proposes a locomotion

training framework that has four main parts (Figure 3.1): A modular robotic platform

from which morphologies are built, an adaptable controller that allows the robot to change

its behavior depending on incoming sensor information, a configurable environment which

allows the controller to be trained and tested in different environments and a way to train

the adaptable controller to move in different environments. Next chapter describes the

modular robotic platform. This chapter describes the adaptable bio-inspired controller,

which is based on central pattern generators, hormone inspired messages, and a decision

mechanism; this chapter also explains how the configurable environment and the method

for training the adaptable controller work. A simple chain type modular robot is used for

explaining the way the adaptable bio-inspired controller works.

3.1 Control Strategy

Two previous works are the base of the approach proposed in this work. In a previous

work (Moreno and Gomez [76]) a similar control system for a chain type modular robot

is designed and implemented. The previous work is also based on CPGs and Hormone

inspired messages and allows an arbitrary configuration of a 1 DOF chain type modular

robot to traverse an obstacle filled environment. Modules sum a small value to get the

26
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Figure 3.1. Locomotion training framework that includes and adaptable controller, a config-
urable environment, an adaptation strategy and a modular robot platform. Blue
arrows indicate processes that can be done in simulation, red arrows indicate pro-
cesses that can be done in reality.

CPG parameters towards predefined set-points, that represent different movements, for

every incoming hormone message. Hand designed movements take into account sensor

information coming from proximity sensors placed in all of the robot modules. The work

in [76] lacks however the way to automatically generate controllers for a modular robot

configuration. This is addressed in Rossi et. al. [94] (See figure 3.3), in which a module is

fitted with two proximity sensors, as a sort of “head” module, and this module is attached

to different planar configurations. Every actuator of every module is controlled using

an individual sinusoidal generator. Theses sinusoidal generators contain a term that is

affected by the values read in the “head” module sensors. Evolution is used to adjust how

much proximity sensors in the “head” module affect controllers in all actuators, and the

overall movement of the robot. A wall is used as a simple obstacle between the robot

starting position and a goal to test whether the robot can evade it using the “head”

sensors. To continue expanding both works, and help a modular robot learn to locomote

through different environments, the use of a control strategy composed of three parts is

proposed: a coordination mechanism, a sensor information propagation mechanism and a

decision mechanism. The control strategy contains parts specifically aimed to coordinate

modules in a decentralized fashion while handling and communicating sensor information

obtained from an arbitrary set of sensors. The current strategy is defined for its usage in

homogeneous modular robots that meet the following criteria:

• Modules have a way of communicating information to other modules, that is, between

any two modules.
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(a)
(b)

Figure 3.2. Simple Ex modular robot with sensors. The orientation sensor is internal to the
module.

• Communication is only necessary among nearest neighbors. Further reaching com-

munication mechanisms are also allowed.

• Modules are able to sense their environments through the use of one or more well

characterized sensors.

• Only simple sensors are required (e.g. simple infrared proximity sensors, orientation

sensors, etc, ...)

For the purpose of explaining the control strategy, a simple homogeneous modular

robot with one rotational DOF is used (See figure 3.2), called Ex module. The module is

fitted with proximity sensors on each of its sides and one orientation sensor (Figure 3.2b).

Modules have only three connector faces and communication is only allowed among nearest

neighbors. The control strategy can be, however extended to other types of modular robots

with higher numbers of actuators and sensors. Time is assumed to be discrete, that is,

time advances following a fixed time step ∆t.

3.1.1 Coordination

As established in chapter 2, CPGs provide coordination among different modules in a

robot structure. In the same way as in [76], a CPG based coordination mechanism is

used in this work to generate coordinated locomotion movements for different robot mor-

phologies. The output of an oscillator CPG is used to control the movement of a module

actuator. A module has as many CPGs as actuators and each CPG controlled actuator

can be coupled to other CPGs of the module itself or neighboring modules. The output

of a module is coordinated with other modules output so that coordinated movements or
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Figure 3.3. A modular robot with sensors (Taken from [94])

gaits 1 are generated in different robot morphologies. In the case of having a one DOF

module, with one actuator, a module’s movement can be controlled by tunning CPG in-

dividual parameters (Figure 3.7). A set of 1 DOF modules fitted with CPGs coordinate

the morphology movement based on local interactions (Figure 3.8c).

The specific implementation of CPG used in this work is based on phase coupled oscil-

lators described in equations 3.3 to 3.6 and come from [23, 22]. Phase coupled non linear

oscillators provide an abstraction of the main features of CPGs. A range of parameters

can be used without affecting the stability of the output [79]. Let R be a modular robot

with n modules, where Mi represents the ith module of the robot, and which is configured

following topology T (equation 3.1).

T = {⟨i, j, l, k, o⟩|i, j ∈ {1, 2, . . . , n} ∧ l, k ∈ {1, . . . , f} ∧ o ∈ {1, . . . , or}} (3.1)

Where the tuple ⟨i, j, l, k, o⟩ represents a connection between modules Mi and Mj , l

and k represent the corresponding connector faces of modules Mi and Mj used in the

connection (f is the number of connector faces that each module has), and o is the specific

orientation between connector faces in the connection (or is the number of possible orien-

tations between connectors). Figure 3.4 shows the possible orientations between connector

faces of module Ex and figure 3.5 shows a simple connection example, figure 3.6 shows an

example topology with more modules.

Module Mi is defined by the tuple in equation 3.2.

Mi = (Si, Thi, Vi, Ri, Xi,∆ϕ
(i)
l ) (3.2)

1gait refers to specific cyclic movements that let animals locomote as defined in [46]
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Figure 3.4. Possible connection orientations of module Ex, f represents the number of connection
faces of the module and or is the number of possible orientations between connector
faces.

Figure 3.5. Example connection with the Ex modules, T represents the topology of the robot.
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Figure 3.6. Example robot topology using Ex modules, T represents the topology of the robot.

Where Si is the ordered set of all sensors that trigger a message when activated (S =

{s1, s2, . . . , sm}, m is the number of sensors included in the message, see section 3.1.2),

Thi = {th1, th2, . . . , thm} contains the threshold values at which the corresponding sensors

in Si are activated, and Vi = {v1, v2, . . . , vm} stores the values read by each sensor. The

order of Si, Thi and Vi is related to the sensors location around the module (See figure

3.11 for an example). As the modules considered are homogeneous, the order of Si, Thi

and Vi is the same for all modules in a robot R. The rest of module Mi parameters (Ri, Xi

and ∆ϕ
(i)
l ) are explained in equations 3.3 to 3.6.

ϕ̇i = ωi +

f∑
l=1

gi,T (l)wSin(ϕl − ϕi −∆ϕ
(i)
l ) (3.3)

r̈i = ar(
ar
4
(Ri − ri)− ṙi) (3.4)

ẍi = ax(
ax
4
(Xi − xi)− ẋi) (3.5)

θi = xi + riCos(ϕi) (3.6)

Equation 3.3 shows the coupling between the CPG phase of module Mi (ϕi) and a

neighbor module connected on face l. Each module has its own phase difference parameter

(∆ϕ
(i)
l ) for each of its connected neighbors. For ease of notation the function gi,T is

introduced (Equation 3.7), which returns whether module Mi is connected to another

module through face l.

gi,T (l) =

1, ∃j, k, o | ⟨i, j, l, k, o⟩ ∈ T

0, otherwise
(3.7)
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Figure 3.7. Parameters that adjust the output of a module CPG: Amplitude (Ri), Offset (Xi)

and phase differences with neighbors (∆ϕ
(i)
l ). A module’s CPG sends its phase (ϕi)

information to its neighbors and receives their phases (ϕl)

Also in equation 3.3, ωi represents the intrinsic frequency of the CPG oscillator; w

is the coupling strength between the oscillator on module Mi and its neighbors, and will

remain fixed through all this work. If the phase difference of module Mi with the module

connected in face l (∆ϕ
(i)
l ) matches the opposite sign value of the same parameter in

the neighboring module, the modules are guaranteed to converge to the phase difference

specified by ∆ϕ
(i)
l [22]. However, if ∆ϕ

(i)
l and its neighbor’s counterpart don’t match,

the modules phases will converge towards an intermediate phase difference value, which is

represented in figure 3.8 as ∆ϕij .

Equations (3.4) and (3.5) describe control laws that make the amplitude ri and offset

xi in the output (equation 3.6) converge to the set points Ri and Xi. The parameters ax,

ar are weights used to control the speed of convergence of the amplitude and offset to their

respective set points and will also be fixed through all this work. Thanks to these control

laws the CPG implementation also presents a smooth transition on the output even if the

input is changed abruptly [23]. This smooth transition feature can help protect the robot

actuators in the case of a rapidly changing control system. Equation (3.6) describes the

oscillator’s output (θi) as a cosine function of the phase, amplitude and offset. The output

is used to set the position of a module actuator, in the case of module Ex this position

is an angular position (See figure 3.8). Using this model a CPG output in module Mi is

adjusted by the following parameters: Amplitude Ri, offset Xi and all phase differences

with neighbors ∆ϕ
(i)
l .

Algorithm 1 describes the behavior of the CPG controller inside a module for every

time step. The CPG equations (Line 5) can be updated by using any differential equation

approximation method. As described by equations 3.3 to 3.6, this implementation of
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(a) (b)

(c)

Figure 3.8. CPG oscillator output: (a) Two Ex modules rotational actuators controlled by
coupled CPG oscillators.(b) Phase difference between the two modules. (c) A set of
three modules CPGs (∆ϕ12 and ∆ϕ23 represent the phase difference between modules
1 and 2, and modules 2 and 3 after convergence).
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CPG as a phased coupled non linear oscillator works as an open loop controller. Although

feedback can be introduced in equations 3.3 to 3.6 to give them the ability to adjust the

output to sensor information as in [84, 94], the specific way in which sensor information

coming from the module’s (or other modules) sensors should influence a CPG is difficult

to define given the reconfigurable nature of modular robots. That is, a module can be used

in different positions and orientations in different robot morphologies (See figure 3.9. For

this reason we choose to handle sensor information across different robot morphologies,

and how sensor information influences the parameter adjustment of the CPG controlled

modules, with two other different mechanisms that will be described in the following

sections.

Algorithm 1 CPG controller cycle in module Mi for every time step.

Require: ∆t, T, ϕt, ṙt, ẋt, rt, xt
1: loop ▷ forever
2: for all gi,T (l) = 1 do
3: Receive ϕl

4: end for
5: Update CPG equations (3.3-3.6)
6: ϕt+∆t = ϕ̇t∆t+ ϕt

7: ṙt+∆t = r̈t∆t+ ṙt
8: ẋt+∆t = ẍt∆t+ ẋt
9: rt+∆t = ṙt∆t+ rt

10: xt+∆t = ẋt∆t+ xt
11: for all gi,T (l) = 1 do
12: Send ϕi to neighbor connected in face l
13: end for
14: end loop

3.1.2 Sensor information handling

Sensor information plays a very important role in the adaptability of robots to different

and possibly changing environments. Living organisms show this in the plethora of sensory

systems that they use to do everyday tasks. Living beings show very specialized sensory

structures that can detect from light to sound and other types of physical phenomena [89].

In the case of modular robots, sensors can be placed around the module’s body so that

it can detect distance to an obstacle or its own orientation to the ground (Figure 3.2b).

Each module can have its own set of sensors and different modules can also have different

sets (Figure 3.9).

A variation of Hormone inspired messages is used in this work to handle how sensor

information is routed across a modular robot morphology without regard for the specific

morphology of the robot or the type of sensors used. Hormone inspired messages have been

used to achieve synchronization of modules [16, 43], or to directly control the movement

of modular robots [97, 110]. In this work coordination is already achieved locally by the

interconnected CPGs and, in contrast with previous works, the use of Hormone inspired
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Figure 3.9. Modules can have different sensor sets. For example, M1 and M2 have different sets
of proximity sensors, in unique positions and orientations, as well as inertial sensors.
The position and orientation of each proximity sensor determines its main sensing
space. The spatial orientation of the module also changes the meaning of the sensor
information.

messages as a mechanism that only propagates sensor information throughout a modular

robot is proposed. Algorithm 2 describes the general hormone mechanism.

The general hormone mechanism, as used in previous studies, is divided into three

main parts: Generation, Reception and Propagation.

• Generation: The generation part depends directly on the sensors state. In the case

of having proximity sensors, the position and orientation of a sensor determines its

main sensing area (Figure 3.9). When sensor sp (p = 1, 2, . . . ,m) is activated, i.e.

its values goes over a threshold thp ∈ Th (For example, when a proximity sensor

detects an object in its sensing range) the module stores the state of the sensor in

vp ∈ Vi (Line 5). Where vp can take either a default value, that signals that sensor sp

has not been activated, or the value read by sp, if sp has been activated. All sensor

values are normalized in the range (0, 1) This sensor information set Vi is then sent

to the nearest connected neighbors of the module as a generated hormone message

on every cycle of the process. If no sensor was activated during one cycle, a message

is neither generated nor sent to other models. Sensors that are not included in the

messages, e.g. orientation sensors, indirectly influence the way in which messages are

generated. For instance, the orientation sensor of the example module determines

the orientation of the module relative to the ground (Figure 3.10), the proximity

sensor directly facing the ground can be thus filtered (its value never stored) even if

it activates.

• Reception: In the reception part, as the name implies, messages containing sensor

information, that come from other modules, are received and processed. In mod-

ular robot configurations, modules are attached to other modules in different faces

and orientations (Figure 3.9). Receiving a message from a module connected in a
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Algorithm 2 General hormone messages mechanism inside module Mi.

Require: 0 ≤ α < 1, ϵ, T,∆t, ϕ0, ṙ0, ẋ0, r0, x0, tw
1: t = 0
2: loop ▷ forever
3: Generation:
4: for Each sp ∈ S, p ∈ {1, 2, . . . ,m} do

5: vp =

{
sp, sp ≥ thp

default, otherwise
6: end for
7: Sense orientation (ori) ▷ Sense environment
8: if ∃p, vp ̸= default then
9: for all gi,T (l) = 1 do

10: Send Vi to neighbor connected in face l
11: end for
12: end if
13: Reception:
14: for all received Vl do
15: V ′

l = ρi,T (l)Vl

16: end for
17: ⟨Ri, Xi,∆ϕ

(i)
l ⟩ = DecisionMechanism(Vi, V

′
l , ori, tw, t) ▷ Algorithm 5

18: ⟨ϕt+∆t, ṙt+∆t, ẋt+∆t, rt+∆t, xt+∆t⟩ = UpdateCPG(T,∆t, ϕt, ṙt, ẋt, rt, xt) ▷
Algorithm 1

19: Propagation:
20: for all received V ′

l do
21: V ′′

l = αV ′
l

22: V ′′′
l =

{
∅, max(V ′′

l ) ≤ ϵ

V ′′
l , otherwise

23: for all V ′′′
l ̸= ∅ do

24: Send V ′′′
l to connected neighbors different from l

25: end for
26: end for
27: t = t+∆t
28: end loop
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Figure 3.10. The Ex module can take six different orientations relative to the ground (horizontal
plane). The orientation sensor identifies the module orientation.



CHAPTER 3. LOCOMOTION TRAINING FRAMEWORK 38

Figure 3.11. Messages are transformed given the spatial configuration of the modules in order
to maintain spatial meaning. Numbers represent sensors around the module and
also determine the position of the sensors in the vector Si, Thi and Vi.

different spatial orientation renders the incoming sensor information meaningless to

the receiving module [112] (Figure 3.9). Therefore, the incoming message should be

transformed using a spatial transformation function as in line 15. The transforma-

tion function ρi,T (l) defines the transformation in terms of the module connections.

For module Ex, the transformation function is a permutation matrix ρi,T : N → N×N
that changes the order of values in incoming messages Vl (Figure 3.11).

Incoming messages (Vl) and the output of the module own sensors (Vi), like the

orientation sensor, are then fed to the decision mechanism in order to change the

CPG controller (Section 3.1.3).

• Propagation: In the propagation part, hormones are attenuated by using a propor-

tional factor α which is based on the number of hops a given message can make

before disappearing (Line 21 and figure 3.12a). If the highest sensor value in a given

message is less than a threshold (ϵ) the message is eliminated from the module (Line

22).

Only non empty messages V ′′′
l are propagated to the nearest neighbors. A message

is only propagated to the modules it didn’t come from, that is they are forwarded

(Figure 3.12b and line 24). The two previous mechanisms (attenuation and forward

propagation) prevent messages from hopping from module to module indefinitely.

In this way, a set of modules can use sensor information to adjust their behavior

for their own specific needs. The combination of all the modules movements creates a

coordinated movement in reaction to the sensor triggering (or all sensors that trigger

at that moment). Due to their basic role in the movement of the robot, these message

associated movements can be related to motor primitives [79].

Different robot configurations can have different sensor capabilities as sensors are ar-

ranged in different positions. For example, a one level morphology, that is a morphology
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(a)

(b)

Figure 3.12. Hormone elimination mechanisms. (a) Hormones are attenuated as they hop from
module to module by a factor α, and (b) are only propagated to the modules they
don’t come from.

Figure 3.13. Different robot morphologies have different sensor arrangements that limit what
can be sensed.

that has only modules touching the ground, can only see obstacles at its same level. This

morphologies can not distinguish between objects of different heights (Figure 3.13).

3.1.3 Decision Mechanism

As mentioned in section 3.1.2, when a message is propagated through a robot morphology

each module can interpret the message information and use that information in its own

way. In this work, sensor information messages are used to change the module internal

CPG parameters. A decision mechanism is then necessary to interpret the messages

coming from different modules and to change the CPG controller parameters accordingly.

There are three main issues that must be overcome by a decision mechanism:

The first one is related to the speed at which incoming messages arrive and the speed

at which the decision mechanism reacts, or adapts, to arriving messages. As messages

are generated in all modules of a module morphology, several messages can potentially be

generated and propagated almost at the same time, arriving very close to one another.

The actual speed depends on the specific type of implementation (communications latency,

time step duration, processing unit frequency, etc.). Several messages arriving rapidly from
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different sources means a very rapidly changing input signal. A very rapidly changing

signal on the input of the decision mechanism creates jittery behavior on the output, if

the decision mechanism changes the CPG parameters at the same rate. This jitter is

observable even with the damping behavior of the CPGs, and can potentially damage the

robot actuators.

To further prevent the jitter on the movement of the robot a filter should be im-

plemented, either as part of the decision mechanism or as a pre-processing mechanism.

As the filter prevents rapid changes in the incoming information, it also helps sort out

which information is maintained in time, and is actually relevant to the robot movements,

and which information disappears quickly, and can be considered noise. The input filter

acts then as a first stage in sorting out the incoming information to set the controller

parameters in a meaningful way.

The second issue is also related to sorting out relevant information for the movement of

the robot. Each module in a modular robot morphology has its own spatial configuration.

In this work the spatial configuration of the module is defined by the orientation of the

module relative to the ground (Figure 3.10). Using this orientation as a way to differentiate

among modules, the decision mechanism decides which incoming information influences

the CPG parameters and in which way. Differentiation using spatial information helps

each module specialize in a way that contributes to the overall robot locomotion. The

use of spatial information to differentiate robots has also been used in similar works by

specifying a measure related to the current morphology of the robot [36], e.g. the distance

of the module to the center of the morphology. However this metric is difficult to define

for unknown morphologies. In this work spatial information comes solely from what the

module detects.

For example, a simple decision mechanism that solves the first two issues adds a small

number to the current parameters for every message that arrives. The sum associated to a

message tries to make the current CPG parameters go towards previously defined values.

Over time the current CPG parameter values become the sum of all the contributions of

all messages that have arrived. Summing small amounts to the control set-points also lets

the contribution of each message be tuned by other variables like the distance measured

by a sensor, i.e. by multiplying the sum by the measure. Using this approach the robot

aggregates all the information coming in the form of messages to set the CPG parameters.

The sum decision mechanism has been used in previous work to manually design con-

trollers that use both CPG and hormone inspired messages [76]. However, an automatic

adaptation technique is used in this work instead of a manual process. Although the sum

decision mechanism is capable of representing different movements that depend on sensor

input, it presents some limitations when being automatically adjusted.

Consider the situation in which the robot tumbles and drastically changes its orienta-

tion. When a robot turns over, not only the meaning of the incoming sensor information

can change, but also the role of each of the modules in the movement of the morphol-
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ogy. The values toward which the small sums are working their way must be changed

completely. This asks for conditional structures to be added to the decision mechanism

to cope with changes in orientation of the robot. Thus, in the end the sum mechanism

would look more like a computer program, with if statements for each different orientation

a module can be in. An automatic adaptation technique has to cope with this and add

the conditional structures from scratch, making the adaptation process more complex in

turn. This illustrates the third issue for decision mechanisms: a representation that is

simple enough to adapt automatically.

A different kind of decision mechanism simplifies the adaptation process by using a

simpler way of representing different situations. This is the case with Artificial Neural

Networks(ANN). Artificial Neural Networks can represent different function combinations

by means of multiplication and sum operations, and have been used to control robots

for different tasks [39]. Moreover, ANNs are able to represent the non-linearity present

in most biological systems when combining movements, something that the sum decision

mechanism lacks due to the exclusive use of linear combinations of set points. ANNs are

represented by a directed graph in which nodes are connected by weighted edges (wu,v ∈ R
representing the weighted edge going from node u to node v). Each node receives inputs

from other nodes and computes an unique output using a predefined activation function.

Some nodes receive inputs from the outside world and are therefore called input nodes,

conversely, some relay signals to the outside and are called output nodes. The way in which

nodes are connected to each other is called the network topology and is usually defined in

layers containing different numbers of nodes, e.g. a network has an input layer, an output

layer, and intermediate layers, often called hidden layers. Let W be the set of all edges

weights in a network topology, if the network topology is fixed an automatic adaptation

technique only has to adjust the values in W to change the output of the network for a

given input, this makes ANNs very simple to automatically adapt.

This work uses an ANN as the decision mechanism inside each module. The number of

input nodes depends on the number of incoming messages and signals coming from other

sensors. For example, in the Ex case, each module has an ANN that receives the sensor

message information coming from other modules and from the same module, and the

orientation of the module as inputs. As mentioned in the last section the sensor messages

have to be adjusted to the spatial configuration of the module with respect to its neighbors.

In the case of orientation sensors an input is defined for every distinct orientation relative

to the ground (Figure 3.10). On the output side of the ANN are the parameters controlling

the individual module CPG. As stated in section 3.1.1, the CPG output of module Mi

is controlled using three set points: Amplitude Ri, offset Xi and phase differences ∆ϕ
(i)
l .

Phase difference parameters match the number of connections to other modules, and thus

other CPGs, that a module has in an specific configuration. In the case of having two

connector faces a module has up to two independent phase difference parameters to deal

with. In the Ex module, which has two connectors, its ANN has four outputs (Figure 3.14

for an example ANN). Neurons can have different types of activation functions but for



CHAPTER 3. LOCOMOTION TRAINING FRAMEWORK 42

the sake of simplicity this work uses a sigmoid function centered in 0 (Equation 3.8), the

output of any individual neuron goes from 0 to 1.

y =
1

1 + e−x
(3.8)

An explicit filter for incoming sensor messages is implemented in order to solve the

first issue of decision mechanisms. i.e. the high rate at which sensor information messages

arrive. Every incoming message is accumulated over a period of time, this is achieved by

summing sensor values of the same type, that is, sensor values in the same position in the

module (i.e. in the same position in the V array), and normalizing the sum (Algorithm 3).

The resulting summed an normalized values are then fed to the ANN as inputs (Algortihm

4).

Algorithm 3 Hormone filter per time step.

Require: Vi, Vl, Buf
1: C = 0 ▷ C:Accumulation array
2: cp = cp + vp, ∀vp ∈ Vi

3: rc = 1 ▷ rc: Normalization counter
4: while ∃Vl do
5: cp = cp + vp, ∀vp ∈ Vl

6: rc = rc + 1
7: end while
8: C = C/rc
9: Buf = Buf ∪ C

Algorithm 3 is repeated in every time step of the controller. An accumulation array

C is used to store the summed sensor values (lines 2 and 5). After all sensor values have

been summed the resulting value in C is divided by the number of summed messages rc

and stored in a buffer (Buf). The buffer is maintained over a predefined time window tw.

When the time window ends, a similar normalized sum is used to accumulate all summed

messages in the time window (Algorithm 4). This time a different array A is used to store

the accumulated values (Line 8) in each time step in Buf (C), and is also divided by the

number of arrays in the buffer ra, A is then fed to the ANN inputs over the next time

window.

Algorithm 5 defines the main decision mechanism procedure for every time step. The

ANN receives the module orientation relative to the ground (ori) and the accumulated

sensor information in A (after filtering incoming messages over a time window tw) and

returns the CPG parameters.

3.2 Configurable Environment

Modular robots applications envision robots to locomote in different environments with

vastly different features. For example, in space exploration robots have to tackle dirt,
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Algorithm 4 Hormone accumulation algorithm per time window tw.

Require: tw, t
1: Buf = ∅
2: loop ▷ forever
3: Buf = Accumulate(Buf, Vi, Vl) ▷ Algorithm 3
4: if t%tw = 0 then
5: A = 0 ▷ A: Accumulation array
6: ra = 0 ▷ ra: Normalization counter
7: for all C ∈ Buf do
8: ap = ap + cp
9: ra = ra + 1

10: end for
11: A = A/ra
12: Buf = ∅
13: end if
14: end loop

Figure 3.14. An ANN is used as decision mechanism taking incoming messages as inputs and
CPG parameters as outputs. This example ANN matches the Ex module model.

Algorithm 5 Decision Mechanism.

Require: tw, t, Vi, Vl,ori
1: loop ▷ forever
2: A = AccumulationFilter(Vi, Vl, tw, t) ▷ Algorithm 4

3: ⟨Ri, Xi,∆ϕ
(i)
l ⟩ = ANN(A, ori)

4: end loop
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slopes, rocks and other obstacles. Using the control strategy defined in section 3.1, a

modular robot with sensors in all of its modules can detect and react differently to different

parts, or features of an environment. However, it is not clear how the environment,

or parts of it, should be presented to an adaptation process for the resulting robot to

be able to locomote in all the environment. Several research works that involve robot

systems adapting and learning to locomote use, most often than not, only a single part

of the environment [5, 51, 82, 91, 94, 124, 135], the vast majority being flat surfaces

[18, 19, 24, 52, 66, 67, 85, 103, 111, 119, 120, 121, 136, 137, 138, 140]. Few studies use

rough terrains, made by randomly adjusting the height of parts of the terrain [28], and

only some employ environments with multiple features [123].

In order to give a robot trained with an adaptation process the ability to travel through

different parts of the environment, this work proposes a configurable environment model.

To simplify the discussion and application of the configurable environment model only

structured environments are considered. In this work structured environments are defined

as environments in which basic features can be separated from one another without am-

biguity (Figure 3.15). Examples of structured environments include office or class rooms

(Figure 3.16). This rooms can be separated into corners, straight corridors, stairs, doors,

etc. In contrast, in an unstructured environment features like corners and slopes are

usually merged together so much that they are difficult to separate from one another (Fig-

ure 3.18). Structured environments can be separated in several ways, however, in this

work only 2D separation is considered, that is, environments are only separated on the

ground plane, like separating parts of a map. The parts of the environment obtained are

considered sub-environments which can present a robot with different kinds of scenarios.

Separation of the environment by height is not considered in this work. Moreover extracted

sub-environments are expected to posses the following characteristics (Figure 3.17):

• Each sub-environment must contain only one feature of the structured environment.

• Sub-environments should have explicit start and exit points. This points are used

to connect different sub-environments to one another.

• Sub-environments should specify the direction of travel. i.e a robot can move over a

step from bottom to top or vice versa. One of these two directions must be enforced

to prevent ambiguities when analyzing results.

• To further specify the direction of travel sub-environments must have explicit bound-

aries (e.g. walls, pitfalls, etc)

• When connecting one sub-environment to another, using the exit point of one and

the start point of the other, dimensions should match, i.e. the connecting sides must

have matching dimensions.

• The general dimensions of the sub-environment should be adjusted for the size of

the robot to be tested.
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(a)

(b)

Figure 3.15. A simple structured environment. (a) The full environment, (b) extracted features.

(a) (b)

Figure 3.16. Examples of real world structured environments. (a) Office environment, (b) Class-
room environment.
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(a)

(b) (c)

Figure 3.17. Sub-environments examples.

Figure 3.18. Example of unstructured environment (taken from pexels.com)
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Sub-environments can be combined in different ways, depending on how they were

separated, and additional sub-environments can be added, extending an already existing

environment. For example, if an office is divided into corners and corridors these can be

put together in different ways to form different configurations of an office space. The same

doors, corridors and turns can be used to compose different office buildings. Another ex-

ample includes piecing together different kinds of turns to form a race track. By combining

different sub-environments more complex alternatives to flat surfaces can be presented to a

robot and how the combination affects the robot movements. Another advantage of using

sub-environments is that robot reactions and movement in each specific sub-environment

can be studied independently.

Previous decomposition approaches focus on generating behaviors for specific tasks

that are combined to solve a main task [60, 126, 61, 94, 108, 30]. In [60] Lee et al. use task

decomposition to evolve controllers for pushing a box to a goal with a Khepera robot by

evolving controllers for the sub tasks of getting to the box, circling the box and pushing

the box towards a certain direction. Controllers are evolved independently for each task

and a decision mechanism is needed for all the different evolved controllers to work as one

[126, 61]. Sub-environments can be seen as an alternative to task decomposition.

Let E be an structured environment and Se = {se1, se2, . . . , sez} the set of sub-

environments that can be extracted from E (z being the number of sub-environments

extracted). Environment E can be defined in terms of sub-environments as in equation 3.9,

in which x⊕y implies that sub-environment y start point is connected to sub-environment

x exit point, that means that a robot must start traveling environment E from the leftmost

sub-environment all the way to the rightmost one.

E = se1 ⊕ se2 ⊕ se3 ⊕ · · · ⊕ sez (3.9)

A new environment E′ can be built by changing the order of sub-environments or by

adding more of the same sub-environments as needed (Equation 3.10).

E′ = se2 ⊕ se3 ⊕ se1 ⊕ se2 (3.10)

It is expected that a robot trained in an environment formed by an specific order of

sub-environments should be able to travel through any other environment formed by a

different permutation of the same sub-environments (Figure 3.19). It is possible, however,

for the specific order of sub-environments to affect the training process as different sub-

environments could have different training difficulties, i.e. it is not the same to learn to

go over an obstacle before learning to move straight than the other way around. This

implies the possibility of there being an order that is best to train in, which is tested in

later chapters.
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(a)

(b)

Figure 3.19. Environments formed by different permutations of the same sub-environments.

3.3 Adaptation

Manually designed controllers that make use of the coordination, sensor handling and

decision mechanisms of the control strategy proposed in section 3.1, can be generated for

each robot morphology that needs to move. In a manual design ANN weights are adjusted

by a process of back propagation in which different examples of how a robot should react to

incoming sensor information, according to a human designer, are used. However, this is not

a simple process for two reasons: First, since the robot can have an arbitrary morphology,

the designer could not be completely aware of what moves/examples to present to the back

propagation process. Second, the designer needs to provide examples to each module in the

morphology, which can be many. Thus, setting the controller manually is a daunting task

for non-trivial robot morphologies. For this reasons, an automatic adaptation technique

that allows the robot to produce movements without regard to its morphology (shape

and number of modules) is preferred. The main objective of the adaptation technique is

to obtain a set of ANNs that configure the parameters of the individual modules CPG

controllers given the sensor inputs arriving from other modules and the module itself, in

order to let the robot locomote from the starting point to the exit point of an environment.

The main adaptation process can be external to the robot, as in optimization algo-

rithms, or internal, as in non supervised and on-line approaches. In this work a process

external to the robot, evolutionary algorithms, is chosen as the automatic adaptation tech-

nique. The decision to choose evolutionary algorithms is motivated by the simplicity of

the implementation on one side, as evolutionary algorithms use only a global performance

measure of the task to be optimized. In other techniques, like reinforcement learning,

assigning a significant reward signal to each module is a difficult problem in itself [18]. On

the other side, evolutionary algorithms are chosen because of the curse of dimensionality:
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In the worst case scenario the adaptation technique has to adapt independent ANNs for

each module in a morphology, thus the number of parameters to optimize escalates pro-

portional with the number of modules. A population based technique like evolutionary

algorithms can better tackle this kind of high dimensionality problems.

Evolutionary algorithms are population based optimization methods that follow a per-

formance measure or fitness [26]. A population of different solutions for a given problem

is generated and tested against the performance measure. Then, selected individual solu-

tions are modified in different ways to produce new solutions that will hopefully have a

better performance measure than the originals. The processes of selecting and modifying

solutions in the population is usually inspired in the biological processes that take part in

natural evolution. These processes include mutations, crossovers and competition.

Algorithm 6 Evolutionary Algorithm

Require: E,R
1: Generate an initial population of Ŵ s ▷ Randomly or from a seed
2: Evaluate the fitness of all Ŵ s using E and R
3: repeat
4: Select Ŵ s from the population ▷ Using fitness
5: Generate new Ŵ s ▷ Applying genetic operators to old Ŵ s
6: Evaluate the fitness of the new Ŵ s
7: Replace Ŵ s in the population by the best new Ŵ s
8: until Some stopping condition
9: Return the best Ŵ in the population

Algorithm 6 describes the main parts of the evolutionary algorithm used. The weights

of all module’s ANNs in the robot morphology are stored as an array of real numbers Ŵ ,

encoding a solution. The fitness of each solution Ŵ is evaluated using a measure of the

distance traveled by robot R in environment E, that will be fully defined on chapter 5. In

the end, the evolutionary process returns the solution Ŵ with the best fitness when the

stopping condition is met.

Using evolutionary algorithms and the sub-environment approach to train the control

strategy proposed in section 3.1, a robot that travels through different environments can

be obtained. This approach also allows the robot to adapt to the obstacles it finds in

the environment through the use of its sensors. The task to be adapted does not amount

to navigation as the robot still has to steer to go in one of the two directions and avoid

crashing into the different walls and obstacles, but it does not have to decide among

different paths.

The generalization capacity of a trained robot controller, that is the capacity for per-

forming well in tasks and environments in which it was not trained, is measured with the

help of the sub-environment approach. A robot controller trained in one or various con-

figurations of the environment is tested in other configurations that it has not seen before.

If the controller does well in this new, unseen configurations it is said to generalize well

(Figure 3.20). A difficult part of measuring generalization in this way is to determine how
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Figure 3.20. A robot controller that can locomote in configurations of the environment that it
has not been evolved in, is said to generalize well.

many features/configurations of the environment should be used in the training phase for

a trained robot controller to generalize better, this can be solved by incrementally adding

features to the environment. However this is out of the scope of this thesis.

Algorithm 7 describes the general training process. Environments (E) in this work are

considered permutations of sub-environments Se. Robots are then tested in permutations

different from the E that was used for training.

Algorithm 7 Main adaptation process.

Require: Structured Environment,RobotR
1: Extract sub-environments Se = {se1, se2, . . . , sez}
2: Select sub-environments for training (E = se1 ⊕ se3 ⊕ . . .)
3: Ŵ = evolve(E,R) ▷ Algorithm 6
4: Test a robot using Ŵ in environments with different permutations of Se
5: Return Ŵ that performed best

3.4 Conclusion

In this chapter a locomotion training framework for training controllers for modular robots

that lets them travel from one point to another in different environments is presented. First

a coordination mechanism using CPGs and a way to respond to sensor information, using

a variation of Hormone Inspired Messages, as well as an ANN decision mechanism, are de-

fined and used as a basic control strategy. Structured environments and sub-environments

are introduced as a mechanism to show different features of an environment, which can

trigger different sensor responses in a robot. Evolutionary algorithms are used as an adap-

tation technique to train the robot controller to move in the obtained sub-environments.

Modular robots using the defined locomotion training framework are expected to general-

ize in environments that possess the same features but in a different arrangement. Next
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chapter will describe the modular robot platform used to test the control strategy and the

training methods.



CHAPTER 4

The EMERGE Modular Robot

4.1 Introduction

Testing robots with different morphologies in reality involves a lot of effort and resources.

Experiments can take advantage of modular robot systems to quickly do tests in real life.

The advantage is that simulated morphologies can be very quickly assembled using real

modules, that can be reused. However building the modules of an existing modular robot

system can be a complex and expensive process. For a start, every modular robot platform

uses a different design for its modules (see chapter 2), which are not usually immediately

available. Even when having the designs, building modules is complex and time consuming,

specially if self-reconfiguration capabilities are present, which often make use of specialized

mechanisms and materials. The introduction of rapid prototyping technologies such as 3D

printing has helped reduce the costs associated with building specialized parts, but it can

still take a lot of time to print every part of a robot and assemble sensors and actuators into

it [3, 64]. Additionally, automatic connection mechanisms not only increase the weight

and energy consumption of the module but also take a lot of time to switch between

connected and disconnected states, making self-reconfiguration a cumbersome process.

Simpler manual connectors, like in [28], still make use of moving parts and screws that

increase the time to complete an assembly. Apart from the complexities of the building

process not all existing modular robots possess sensors to detect their environment or, if

present, sensors are used almost exclusively to provide a feedback loop for reconfiguration

processes. This chapter describes a new modular robot platform, the EMERGE (Easy

Modular embodied Robot Generation) module, which aims to simplify the module building

process while at the same time increasing the system reconfigurability in a practical way,

and which includes sensors with the purpose of the detecting its surroundings and studying

how sensor information must be used in a modular robot to enable different morphologies

to travel through different environments.

52
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EMERGE modules are designed to be easily built using relatively cheap, commer-

cially available components and their hardware design files are open for anyone to use and

modify 1. Modules are easy to assemble to other modules, using passive magnetic con-

nectors, so that different morphologies can be assembled, tested, and reconfigured quickly

in reality. Magnetic connectors are present in four faces of the module which allow the

EMERGE platform to build more complex morphologies with more capabilities than sim-

ilar open modular robot platforms [55]. Proximity sensors are embedded in the module

faces and each module can communicate with the others, giving EMERGE the capability

to implement and run the model described in chapter 3.

By taking advantage of the fast connection feature and other physical properties of the

EMERGE module, external agents, like a robotic manipulator, can be used to automate

not only the assembly but also the disassembly of morphologies. This in turn enables the

possibility of completely automating experiments, increasing the rate at which experiments

can be made in reality, and making EMERGE an ideal platform for fields like evolutionary

robotics, in which a great number of tests are necessary. The EMERGE platform has been

designed and implemented in collaboration with Ceyue Liu from the China University of

Mining & Technology, Beijing, Andres Faina and Frank Veenstra from IT University of

Copenhagen, and Henry Hernandez from Universidad Nacional de Colombia.

4.2 EMERGE

The EMERGE module design adheres to the following design objectives:

• The module parts are simple and off-the-shelf.

• The mechanical and electronics designs are easy to assemble.

• The modules are easy and quick to reconfigure.

• The module’s design is open for anyone to use and modify.

EMERGE is a chain type modular robot with a semi-cubic shape in which two halves

of the cube are joined together by a central hinge, resulting in one rotational DOF. Among

the different types of modular robot systems, chain type modular robots exceed in their

ability of generating high torque movements, relative to their mass, and can mimic limbs

and other structures useful for locomotion. EMERGE modules are designed around a com-

mercial servo motor, the Dynamixel AX-12A (Figure 4.2), this servo motor has a generic

chassis used by similar models which makes easy to swap the motor for a more powerful

one if needed. The position of the motor in the module also makes the design easy to be

modified in order to use other kinds of servo motors. Often, modular robots include elab-

orated mechanical connectors to enable modules to connect to each other, however this

1https://sites.google.com/view/emergemodular
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Table 4.1. Magnet properties

Quantity Value Units

Diameter 12.7 mm

Thickness 3.175 mm

Magnetization N42 –

Br(Residual Induction) 1.32 Tesla

Force on contact(Steel Plate) 28.64(2.92) N(Kg)

Material Neodymium –

can increase the module’s weight and make the module building process more complex

(Chapter 2 and section 4.4). To enable the easy assembly and reconfiguration of modules

by an external agent, EMERGE uses permanent magnets to mechanically bond connec-

tors. Four cylindrical neodymium magnets of 12mm of diameter (Table 4.1 for magnet

properties) are arranged in a cross configuration in each connector. Magnetic bonds have

the advantage of being strong enough to maintain the robotic structure integrity, but can

also be easily disconnected by using the right movements or tools.

As a consequence of using magnets, connector faces in the module are divided into

male and female faces (Figure 4.4). Magnets on the male face are arranged to attract

magnets on the female face. Taking advantage of this gender differentiation, and in order

to strengthen the connectors, magnets are housed in a 3D printed layer with special

features. In female faces, the 3D printed layer has four holes positioned along the face

diagonals in an X pattern. Male faces have protrusions that match the holes of the female

faces. Protrusions and holes in the mating connector faces prevent magnets from sliding

in the face plane, which is one of the main weaknesses of magnetic bonds. With this

design, joint faces can endure up to 1.3 Nm of torque and 88.29 N of pulling force before

disconnection.

The number and positions of connectors in a module determine the type of morpholo-

gies that can be built. To enable the assembly of 3D morphologies, and not only planar

ones, EMERGE has four connecting faces, three of them contiguous and perpendicular to

each other, fixed to the motor output shaft, and the remaining one fixed to the bottom of

the motor (Figure 4.1). All faces are attached to the servo motor by using brackets and

all the faces that would complete the cube are purposefully left empty to avoid collisions

between parts of the module. Limbed and multiple layer morphologies as well as snake

like morphologies are possible with this platform (Figure 4.3a). The mating connectors

restriction and their organization results in assemblies that are organized as trees, that is,

each module has a parent, or root, module and a root module has up to three children,

or leaf modules (Figure 4.3b). When connecting to a parent module, a leaf module can

connect in four different orientations relative to the center of the connector faces (Figure

4.5). Each orientation is separated by a 90 degrees rotation from the last one.

A PCB (Printed Circuit Board) layer is designed to be placed between the 3D printed

connection faces and the Dynamixel brackets on each connection face. The PCB layer and
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Figure 4.1. The EMERGE robotic module.

Figure 4.2. Exploded view of the module.
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(a)

(b)

(c) (d)

Figure 4.3. EMERGE morphologies connect like tree structures: (a) L shaped morphology. (b)
T shaped morphology. (c) Snake morphology. (d) Tripod morphology.

Figure 4.4. EMERGE module connector faces: (Left) Female face, (Right) Male face.
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Figure 4.5. A leaf module (Left) can be connected in four different orientations relative to its
root connector (1-4). These orientations can also be differentiated by the central
actuator’s rotation.

other electronic parts were designed by Henry Hernandez from Universidad Nacional de

Colombia. The PCB layers provide a way of organizing the electrical connections inside the

module and, at the same time, a place where electronic components, like microprocessors

and sensors, can be soldered to. For example, spring loaded pins are soldered to the male

PCB layer and are housed by the 3D printed layer, while corresponding pads are placed on

the female PCB in the matching holes. Infrared sensors (Vishay VCNL4010) are soldered

to the outer face of the PCB layer and measure distance to external obstacles through a

special window at the center of the 3D printed layer (Figure 4.4). To minimize cables even

more, PCBs below the three contiguous female faces are connected to each other through

contacts that run along their touching borders (Figure 4.6). A PSoC (Programmable

System on Chip) microcontroller (32 bit ARM Cortex M PSoC from Cypress), housed on

the inside of the module, reads the sensors through an I2C bus. The microcontroller also

controls the servo motor through a half duplex serial interface and communicates with the

other modules via CAN bus. Electrical power and CAN signals are routed through the

contiguous PCB layers, through cables to the remaining face, and onto the four spring

loaded pins and pads in each of the connector faces. Modules share electrical power and

communicate through these pins and pads on the connectors so only one module should

be connected to an external power source.

A simpler version of the electronic design is also implemented in some modules. In

this version, the PCB layer only contains tracks to route the half duplex serial connector

of the Dynamixel motor (only 3 spring loaded pins are needed). Neither sensors nor mi-

crocontroller are present. Module movements are controlled externally by communicating

with the servo motor internal microcontroller. Table shows the most important physical

features of the EMERGE module as well as the most relevant electrical and mechanical

ratings.

Some limitations of the EMERGE design include the lack of internal power supply or

batteries, however a special kind of battery module has been developed by a student at

the IT University of Copenhagen for the EMERGE platform. Thus module morphologies
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Figure 4.6. PCB below the three contiguous female connectors.

Figure 4.7. Simple version of the EMERGE module.

Table 4.2. EMERGE module features

Parameter Value

Module weight 0.206(Kg)

Max Motor torque 1.5(Nm)

Dimensions 6.1x5.5x8(cm)

Infrared max detection distance 20(cm)

Idle current consumption 80(mA)

Whole module operating voltage 11.7(V)

Intermodule Communications CAN, Serial half duplex

Max connector pull force 88.29(N)

Max connector torque 1.3(N.m)
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Figure 4.8. The abstract module is made of two semi-cubic parts linked by a rotational joint.
Each part has only one connector face.

must be connected to an external power source. An orientation sensor is also missing

but can be made by attaching a small helper module to one of the connecting faces and

onto the CAN bus. Infrared sensors in male faces also present a problem in which the 3D

printed protrusions reflect light coming from the sensors and trigger ghost readings.

4.3 Simulation

Two versions of the EMERGE module are used to implement and test the locomotion

framework proposed in simulation (Chapter 3). The first more abstract version has been

implemented to test a module comprised of two halves and a central rotating joint and

was defined before the EMERGE design was complete. The second version implements

the EMERGE design final features and provides a more realistic version of the modules.

Both are implemented using the V-REP simulator [93].

4.3.1 Abstract Module

The first simulated version abstracts the main features of the EMERGE module. The

simulated module itself is only composed of two semi-cubic halves, one rotational joint

and proximity and orientation sensors. Only two faces, of all module faces, are used as

connectors, one per each semi-cubic half. The two connection faces are located directly

across each other (Figure 4.8) and allow modules to build simple chains. Six infrared prox-

imity sensors are placed on six distinct faces of the module (Figure 4.9) facing outwards.

Each sensor with a maximum measuring distance of 20cm and a minimum of 1cm. The

central rotational joint is controlled by a proportional controller. The detailed properties

of the simulated module can be seen in table 4.3.

When forming chains, as in the real EMERGE platform, modules are only allowed to

connect in an specific order. Since there are only two connector faces in the simulated
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Figure 4.9. Six infrared sensors are located in six distinct faces of the cubic module.

Figure 4.10. The abstract module can be connected to other modules only in two different ori-
entations: (Left) with its rotational axis parallel to the ground, (Right) with its
rotational axis perpendicular to the ground.

module one of them is labeled north and the other south, as in magnetic connectors

(Figure 4.8). Only north faces are allowed to connect to south faces and vice versa.

Connections between modules are performed using force sensors inside V-REP, this special

kind of joint can be set to break when forces and moments affecting it go over a certain

threshold. Modules can connect to each other in two orientations with the module’s

actuator rotational axis parallel to the ground, or with the module’s actuator rotational

axis perpendicular to the ground (Figure 4.10). Communication is only allowed between

connected modules (nearest neighbors).

Abstract simulated modules leave out many features of mechanically realistic modules.

These features include the fitting of the motor, where sensors would be attached to, and

how different connector faces are placed around. Still, it provides a very simple first

approximation to a one DOF rotational cubic module that can interact with different

obstacles in the environment. Another distinctive feature of the abstract module is that

it has six sensors as opposed to the real EMERGE module. This is also a consequence
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Figure 4.11. Snake like configurations made by connecting several abstract modules.

Table 4.3. Abstract simulated module parameters

Parameter Value

Module mass 0.14(Kg)

Max. Joint Torque 0.726(Nm)

Central Joint P parameter 0.1

Dimensions 10x10x25(cm)

Dimensions (half) 10x10x15(cm)

Infrared max detection distance 20(cm)

Infrared min detection distance 1(cm)
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Figure 4.12. The realistic module has four connection faces, three of them perpendicular and
contiguous to one another as in the real EMERGE module.

of feature abstraction, which allows sensors to be attached to any place in disregard of

realistic mechanical restrictions.

4.3.2 Realistic module

The second simulated module provides a more realistic depiction of the EMERGE module.

Realistic modules have four connection faces and their shape includes the servo motor

enclosure as well as empty faces to let the central actuator rotate without parts colliding

with one another (Figure 4.12). As with the real module, this simulated module is capable

of building more complex morphologies than with the abstract module (Figure 4.13). Table

4.4 shows the realistic simulated module main physical properties which mimic the real

EMERGE module features. The central rotational joint is controlled by a proportional,

integral controller.

Connector faces are organized as in the real EMERGE module: three female faces

are attached to the motor output shaft and the male face is fixed to the bottom of the

servo motor body. The connection order enforced by mating connectors (only male-female

connections are possible), coupled with the different orientations that modules can take

relative to one another when connecting (Figure 4.5) enable the same kind of tree like

morphologies possible with the real module (Figure 4.14). Connections are also carried

out by using force sensors in V-REP.

The realistic simulated module uses the same kind of infrared proximity sensors as the

abstract module, but this time only four sensors are placed only at the center of connection
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Figure 4.13. Limbed and multiple layered configurations made by connecting several realistic
modules.

Figure 4.14. The gender restriction results in assemblies organized as trees. There is a root
module to where other modules connect.
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Figure 4.15. The realistic module uses four infrared proximity sensors, as in the real EMERGE
module.

Table 4.4. Realistic module parameters

Parameter Value

Module mass 0.165(Kg)

Max. Joint Torque 1.5(Nm)

Central Joint P parameter 0.1

Central Joint I parameter 0.01

Dimensions 6.1x5.5x7.7(cm)

Infrared max detection distance 20(cm)

Infrared min detection distance 1(cm)

faces, as in the real EMERGE module (Figure 4.15). Communication is also performed

only between adjacent modules, that is, only between nearest neighbors.

4.4 Reconfiguration

This section was done with the help of Andres Faina, Frank Veenstra, David Silvera, Julian

Franco, Oscar Gracia, Ernesto Cordoba and Jonatan Gomez, the paper can be found in

[73]. Ideally modular robots are able to reconfigure its modules to readjust its morphology

and adapt to a variety of tasks. Currently there are two alternatives for reconfiguration:

Manual reconfiguration and self reconfiguration. Manual reconfiguration is by far the most

used method to reconfigure modules [68, 28], however it requires an operator, which reduces

the autonomy of the robot. Self-reconfiguration enables the modules to autonomously

disconnect and reconnect from the main robotic structure [130, 141, 113]. However, self-
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reconfigurable robots still have several deficiencies and have only been investigated in

mock-up experiments in laboratory conditions [133, 38].

Deficiencies include weak connection mechanisms and heavy modules, which are a

consequence of active parts in the connection mechanism, additionally self-reconfiguration

involves complex algorithms and movements of individual modules that are difficult to

generate and that require specialized sensors to check whether two modules are really

connected [132]. This is specially complex in chain type modular robots, like EMERGE,

where a solution should check that the formed chains are feasible[134, 114]. This work

proposes an automatic reconfiguration method for the EMERGE modules as an alterna-

tive to self-reconfiguration. Specifically, the reconfiguration process is addressed through a

dedicated robot arm responsible for the automated assembly and disassembly of the mod-

ules. Through externalizing the reconfiguration mechanism, the design of the EMERGE

modules can be kept free of active connection mechanisms and the complexity of the recon-

figuration algorithm can also be reduced to moving modules around with the manipulator

The process of reconfiguring modular robots with a manipulator is different from the

automated assembly of parts in manufacturing [17, 9, 56] in the lack of fixtures, and other

ways to hold parts, on one side, and in that the system is not only required to pick and

place the modules, but also requires a mean of separating them, on the other.

Manipulators have been used to build or change the shape of modular structures [116].

Other external reconfiguration devices, also used with modular structures include mobile

robots [125] and drones [63]. From the modular robots perspective, Saldana et al. [95]

have designed decentralized algorithms for assembling different kinds of structures using

mobile modular robots. Furthermore, Brodbeck et al. [11] describes robots composed

of two different types of modules (passive and active) that are joined by an industrial

manipulator with hot glue adhesives, which can automatically test robot morphologies

and controllers in an arena.

This work’s approach comprises two main advantages over Brodbeck et al approach:

using magnets to connect the EMERGE modules is faster compared to using hot glue

fixtures, and, more importantly, this work’s system is able to automatically disassemble

the modules. To fulfill this last advantage, the forces of the EMERGE magnetic connec-

tors when approaching one another, that is, the forces involved in the attachment and

detachment of the modules are investigated. Moreover, this section also describes tests

done with an active gripper approach, a passive gripper approach is tested in [73].

4.5 Magnetic connector force analysis

To study the behavior of the EMERGE module’s magnetic connector in regard to the au-

tomatic assembly and disassembly with the active and passive approaches, forces between

magnets are modeled by using a dipole field model [34]. In this model, each magnet is
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Table 4.5. Magnet properties

Quantity Value Units

D 12.7 mm

t 3.175 mm

Br 1.32 Tesla

cf 1/10.618 -

µ0 4π × 10−7 N/A2

represented by a moment m⃗ (a vector in 3d space) that can be approximated by equation

4.1.

m⃗ =
V ·Br

µ0
cfû (4.1)

V is the volume of the magnet calculated as a cylinder with diameter D and thickness

t, Br is the residual induction of the magnet, µ0 is the vacuum permeability, and û is

the unit vector. The magnet properties used in this work can be seen in table 4.5. A

correction factor cf is introduced to adjust the model due to non modeled phenomena.

The field generated by a moment m can be calculated as:

B⃗ =
µ0

4π

(3m⃗ · r⃗)r⃗
∥r⃗∥5

− m⃗

∥r⃗∥3
(4.2)

where r⃗ is a vector going from the magnet’s position to the point of interest. The field

generated by multiple magnets is calculated independently and then summed at the point

of interest. To calculate the force that a magnet m⃗0 exerts on another magnet m⃗1 first

the field generated by m⃗0 (B⃗0) is calculated in the position of m⃗1. The force F⃗ is then:

F⃗ = ∇(m⃗1 · B⃗0) (4.3)

To find the force that one EMERGE connector exerts on another, one connector is

placed at the origin of a Cartesian coordinate space facing in the positive X direction

(Figure 4.16). Another connector is then placed at the positions and orientations of

interest and the force exerted is calculated using the dipole field model.

The simplicity of this model limits its applicability to cases where magnets are away

from each other, however, it can still produce a good estimate of the forces involved. Using

this setup, three cases related to the reconfiguration process are considered:

• Force between two separating aligned connectors: The force between two connectors

aligned at the center while being separated along the x axis can be seen in figure

4.17. Both connector magnets moments are placed so that they attract each other.

The minimum separation distance for one module to be held by friction (Ff , wood

table in contact with 3D printed ABS) is measured experimentally using the setup in



CHAPTER 4. THE EMERGE MODULAR ROBOT 67

X

0.000
0.002

0.004
0.006

0.008
0.010

0.012

Y

− 0.03

− 0.02

− 0.01

0.00

0.01

0.02

0.03

Z

− 0.03

− 0.02

− 0.01

0.00

0.01

0.02

0.03

Figure 4.16. Connectors magnetic model: The field (blue arrows) due to one connector magnets
(left-blue) is calculated. Force at a second connector (right-red) magnets is found
using the dipole field model (red arrows), the arrow at the center of the second
connector is the sum of all four magnet forces.
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Figure 4.17. Force between two connectors aligned at the center (Figure 4.16) when their sep-
aration distance in x is varied (inside diagram). Friction forces are denoted as Ff .
Red dots show the average measured force of the real connector at distances of: 5.6,
7.2, 8.2, 9.8 and 11.4mm

figure 4.17. One module is fixed and the other released from different positions with

their connectors aligned. After 20 measures the minimum distance was found to be

20 mm ± 1mm. The force of the connector is also measured at specific distances to

validate the model and tune the correction factor in table 4.5.

• Forces between misaligned connectors: The force between two misaligned connectors

can be found by initially placing the second connector at a fixed distance from the

origin one in X and varying the distance in Y (Z remains fixed at 0). The force

sampled as Y is varied can be seen in figure 4.18. The resulting FY force helps

correct small misalignments in the assembly process, but can provoke the same

misalignments in the disassembly process.
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Figure 4.18. Force between two connectors separated by a fixed distance (Dx) of 8mm in x from
each other, when y is varied (inside diagram)
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Figure 4.19. Forces between two connectors being separated by a circular detach movement.
Total force (F) on the connector compared with the magnitude of the force on the
magnet closer to the center of the movement (f).

• Forces between connectors separating at an angle: The forces between two connectors

being separated by a circular detach movement can be seen in figure 4.19. Figure 4.19

shows that the force on the magnet closer to the center of the movement decreases

slightly slower than the overall force on the connector. This magnetic force prevents

the connectors from separating, which is solved by continuing the movement until

the two connectors are perpendicular to each other.

4.5.1 Active gripper approach

The first gripper is composed of active parts attached to a Yaskawa MH6 Motoman robot

manipulator (Figure 4.20). The gripper uses two moving fingers that close around and



CHAPTER 4. THE EMERGE MODULAR ROBOT 71

(a) (b)

Figure 4.20. Attachment and detachment mechanisms using an active gripper approach. The
gripper uses two moving fingers to close around and hold one module and a knife
to separate two connectors. (a) depicts the attachment of module to a morphology.
(b) shows how a module is detached from another by using the knife to separate
the connectors.

hold one EMERGE module (Figure 4.20a). A secured module can then be positioned and

oriented in order for it to be connected to another module. To disconnect modules, a knife

part (5mm thick) is introduced between connectors to separate them, after that the free

module is held by the active fingers and put in a place where it could not connect anymore

to the morphology (Figure 4.20b). Unfortunately, the application programming interface

(API) of the Motoman is not available at the time of implementing this work; therefore, a

visual feedback system to track the positions of the modules cannot be used. Instead, the

teach pendant is used to record the movements of the robot and place the modules where

we want them to be picked up.

The procedure is: (1) position the gripper above a module ensuring the alignment of

the active fingers with the module’s shape, (2) move the gripper down until the module

is covered, (3) close the active fingers around the module, (4) lift the module up to a safe

distance above the floor, (5) move the end-effector to the side of another module, (6) move

the end-effector down, (7) move the end-effector toward the other module’s attaching face,

and (8) release the module by opening the active fingers. Similarly, to detach a module

from a 2D morphology: (1) move the gripper above the desired module, (2) align the knife

with the module’s connection with the other modules, (3) move the gripper down to make

the knife separate the connection, (4) close the fingers around the module and (5) move

the module away from the other module.
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(a) (b)

Figure 4.21. Assembly and disassembly process carried out in the repeatability test with the
active gripper. (a) shows three frames of an assembly process with an 8 module
configuration. (b) shows three frames of a disassembly process with another 8
module configuration.

Using the attachment and detachment movements described, two tests are performed

using the active gripper approach. In a repeatability test, two planar robot configurations

with 8 modules each are repeatedly assembled and disassembled (10 times) to check for

any kind of problem that could arise in the process. Figure 4.21 shows the assembly and

disassembly process carried out with the two configurations. For the assembly process,

the knife is detached from the gripper. As the reconfiguration system lacks a visual

positioning system, individual modules are placed in predetermined positions on the table,

then the robot arm travels to each module, secures it with the gripper, and moves it to

its destination.

The experiments determined that misalignments are less likely to affect the assembly

process due to the connector’s self centering forces, analyzed in section 4.5, and also

because modules are separated enough for the manipulator to correctly align one connector

face to the other. As a consequence, all 10 trials were successful. During the disassembly

process, movements of the whole structure due to a module being separated were greater

than expected, thus the structure’s position had to be manually corrected. This problem

increases as fewer modules remain in the structure, that is, friction forces are not enough

to oppose the magnetic connector forces and modules can be moved further distances

(Section 4.5 and video [78] ), this problem shows that a positioning system is necessary

for the automatic reconfiguration to work properly.

The force that the knife needs to apply in the downward direction (G in figure 4.22) to

separate one module from a robot morphology is measured using the robotic manipulator



CHAPTER 4. THE EMERGE MODULAR ROBOT 73

G

M1M2

F1 F2

Figure 4.22. Force (G) used by the active gripper’s knife when separating a module from a
planar robot morphology. F1 represents the friction force of the rest of the modules
attached, F2 is the friction force of one individual module with the ground

equipped sensors. For this purpose, the torques in each of the robot’s motors are registered

as the knife’s tip moves down. The force is then calculated based on the total torque and

the position of the knife relative to the robot arm. We performed 10 measurements and

the average maximum force was found to be 5.4 N ± 0.1N. This low force ensures that

the disassembly process using the active gripper can be done with less powerful robot

manipulators.

4.5.2 Limitations of External Manipulator Approach

The main limitation of using an stationary external device for reconfiguration is that

the process is only possible if all the modules are near the manipulator’s workspace.

Also, only 2D modular robot morphologies are considered. This is because there is no

disconnection mechanism embedded in the connectors of the modules. Movements of the

robotic structure in the disassembly process show that a visual feedback system, or another

positioning system, is a must for the reconfiguration to work properly.

4.6 Summary

In this chapter a new modular robot platform, the EMERGE module was presented.

EMERGE is a chain type modular robot designed to be easy to be built and which

increases reconfigurability in a practical way. Sensors are included in the module faces

with the explicit purpose of studying how sensor information must be used in a modular

robot to enable different morphologies to travel through different environments. Modules

are built using relatively cheap, commercially available components and their hardware

design files are open for anyone to use and modify.

The EMERGE module has mating passive magnetic connectors which, thanks to their

spatial location, result in tree like organized assemblies. Thanks to the magnetic con-

nectors, modules can be quickly and easily assembled and disassembled in order to test
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different robot morphologies in reality. An arrange of spring-loaded pins and pads in the

connectors ensure the distribution of electrical power and communications among modules

in a structure. These electrical contacts are embedded in specially designed 3D printed

faces and are attached to a PCB layer that routes connections inside the module. Elec-

tronic components like a microcontroller, which manages communication, servo motor

control and sensor reading, and the sensors themselves are placed on the PCB, although

a microcontroller-less version has also been implemented. Either version of the electronics

allows the movements of the robot to be controlled in evolutionary or learning locomo-

tion experiments, with the advantage of being able to run full embedded controllers in

the microcontroller version. Simulated modules have also been implemented for the same

purposes as the real platform.

Taking advantage of the fast connection feature of the passive magnetic connectors, this

chapter showed that it is possible to automatically assemble and disassemble EMERGE

modules using a robot manipulator as a practical alternative to self-reconfigurable robots

and manual reconfiguration systems. This is specially useful in chain type modular robots

like EMERGE, where self-reconfiguration is limited due to kinematic restrictions. Al-

though the analysis of the connector shows that it can apply a self-centering force and

tests showed that this force simplifies the assembly of the structures, it also makes them

more difficult to disassemble. Therefore, a positioning system, i.e. visual feedback, is nec-

essary for the robot manipulator to keep track of modules that move due to disassembling

forces. Automatic reconfiguration can be specially beneficial in fields that optimize the

morphology and control of robots [105], for example, evolutionary robotics.

The simple design of the EMERGE module poses limitations for testing controllers in

different environments, including the lack of an internal power supply, the lack of an inter-

nal orientation sensor and possible infrared ghost readings due to the design of the male

connector face. Nevertheless, the first two limitations can be overcome by using helper

modules and an external power supply. The third limitation will be addressed in a future

iteration of the design. On the external reconfiguration side, some challenges, like being

able to reconfigure 3D morphologies, and the lack of a visual positioning system for the

manipulator, remain to be addressed in order to improve the robotic arm reconfiguration

system to a state where continuous experiments can be done. A visual positioning system

was implemented with the passive gripper approach described in [73], although with some

limitations.

The next chapter will describe the experimental setup used to test the implementation

of the locomotion training framework from chapter 3 on the EMERGE module, as well as

the results obtained.
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Experiments

5.1 Introduction

A controller capable of using sensor information to modify its behavior, a configurable

environment approach, a way to adapt controllers and a modular robot platform all set

the scene to enable a modular robot to move in different environments. However, different

tests are necessary to establish the ability of the defined components to actually generate

controllers capable of moving and generalizing to unseen conditions.

Having defined all these parts of the locomotion training framework in previous chap-

ters, this chapter describes the experiments performed to test whether evolution can adapt

a controller for a modular robot to travel in different environments.The chapter starts by

testing controllers that use only the CPG coordination mechanism in environments de-

fined using the configurable environment approach in simulation. Next, also in simulation,

a generalization measure is proposed and tested using combinations of sub-environments

housing primitive features of the environment. Resulting controllers are compared to

controllers generated using a gradient based optimization algorithm.

Controllers with all sensor parts are then evolved in different robot morphologies. Co-

ordination is found to have a high impact on the ability of evolved controllers to generalize,

this is tested by using different kinds of initial populations with different coordination capa-

bilities. An incremental short challenge approach is also done to confirm the coordination

assumption. Finally, controllers are transferred and tested in the real EMERGE modules

and a test of the full locomotion training framework is done in reality.

75
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Table 5.1. Parameter values of the CPG coordination mechanism

Parameter Value Range

ar 50 -

ax 30 -

ωi 2π × 0.65 -

w 7 -

Ri - [−1; 1]

Xi - [−1; 1]

∆ϕ
(i)
l - [−π/2;π/2]

5.2 Configurable environments and Evolution

Using the configurable environment approach described in chapter 3 a robot controller

can be evolved to generate the movements necessary to travel through a structured en-

vironment. As a structured environment is separated into sub-environments, these sub-

environments are used to train the robot. Each sub-environment shows different features

of the given structured environment to the adaptation process, making the training more

controllable. Moreover, if a robot is trained in all sub-environments then it should be

able to move through the original environment and through environments built from the

same parts. In this section, a controller for a modular robot with an specific topology

is evolved using the configurable environment approach. The controller is evolved in all

sub-environments extracted from the structured environment and it is later tested whether

it can travel through a different environment built using the same sub-environments.

There are, of course, different ways of using environments in the training process. Even

if all available environments are used, using them in different ways implies different fitness

measures and thus can possibly produce different behaviors (with their own advantages

and disadvantages) and results of the evolutionary algorithm. For this reason, two different

ways of using environments are implemented and compared in this section.

A modular robot topology without sensors is used in this experiment in order to

simplify the training process and show the effect of the configurable environment approach.

Since the robot used in this case has no sensors only the coordination mechanism is used

to control the modules and the decision mechanism is ruled out in favor of a monolithic

approach, i.e. the same controller parameters are used to generate an unique behavior

that lets the robot travel trough all environments.

The robot is assembled in a snake topology (Equation 5.1) in simulation using the basic

simulated V-REP modules (Chapter 4). The parameter values of the CPG coordination

mechanism can be seen on table 5.1, Ri, Xi and ∆ϕi
l will be changed by the training

process and thus intervals are shown instead. To enable the relatively simple chain of

modules to move in different directions in a 3D space, modules are assembled in alternating

orientations like in figure 5.1.
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Figure 5.1. Basic simulated modules in alternating configuration.

Table 5.2. Structured corridor environment: Abstract EMERGE module

Parameter Value Description

Width 0.6m

Height 0.2m Bump height

Wall height 0.8m

T = {⟨1, 2, 2, 1, 2⟩, ⟨2, 1, 1, 2, 2⟩, ⟨2, 3, 2, 1, 4⟩, ⟨3, 2, 1, 2, 4⟩, ⟨3, 4, 2, 1, 2⟩,
⟨4, 3, 1, 2, 2⟩, ⟨4, 5, 2, 1, 4⟩, ⟨5, 4, 1, 2, 4⟩, ⟨5, 6, 2, 1, 2⟩, ⟨6, 5, 1, 2, 2⟩,

⟨6, 7, 2, 1, 4⟩, ⟨7, 6, 1, 2, 4⟩, ⟨7, 8, 2, 1, 2⟩, ⟨8, 7, 1, 2, 2⟩} (5.1)

A structured corridor environment, depicted in figure 5.2a and in which the robot

finds turns and obstacles as well as long empty segments, is decomposed into four sub-

environments Straight, Turnleft, TurnRight and Bump). All sub-environments have a

similar distance from the start position to the exit position. For the sake of clarity,

environments composed of only one sub-environment (E = se), like in the current case,

will be called primitive environments, or primenv, from now on. Table 5.2 shows some of

the most important features of the environment.

The starting position of the robot in each primenv is defined by the position of the last

module (M8) of the chain and is shown in figure 5.3d. Primenv Straight (Figure 5.3a) is a

straight strip in front of the starting position, TurnLeft (Figure 5.3c) its a left turn after

a shorter straight strip, Bump (Figure 5.3b) has a step that doubles the robot’s height

after some distance from the start of the same straight strip as in Straight, and TurnRight

(Figure 5.3d) is a turn in the opposite direction of TurnLeft.
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(a)

(b)

Figure 5.2. Two environments with turns and obstacles. The light blue rectangle is a rectangular
obstacle. The circle represents the exit area.

Individual controller solutions to be evolved contain only three parameters of the co-

ordination mechanism (CPG): Ri, offset Xi and only one value of phase difference with

neighbors ∆ϕi
l, which is used for all connections between modules. Although each mod-

ule controller works individually from the rest, all controllers share the exact same three

parameters.

Since all three parameters of the individual to be evolved are real numbers (max and

min values are shown on table 5.1) the Differential Evolution (DE) Algorithm [109] is used.

This evolutionary algorithm uses a special kind of mutation and crossover that relies on the

difference between real valued parameters of different individuals to produce new ones and

was implemented using the JEAF [13] framework. The evolutionary algorithm settings

can be seen on table 5.3.

Regardless of the way primenvs are organized in the evolutionary process the same

measure of robot performance is used individually in each sub-environment. This measure

is divided into two stages.(Equation 5.2): first, if the robot is not able to get out of the

environment under the maximum time allowed the fitness will be the distance from the

exit to the first module (M1) of the robot (D) plus the maximum time allowed for the

test (T ) in simulation time. Once the robot gets to the exit (Figure 5.3) its fitness will be

the time it takes to complete the environment t. In this way the evolution improves the

controller’s performance by minimizing the fitness function, that is, by making the robot

travel through the whole length of the environment faster. The shape of the fitness function

allows other things to be inferred from the fitness value, for example, if an individual’s

fitness is less than T in an specific primenv then it was able to travel through its whole

length.
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(a) Straight

(b) Bump

(c) TurnLeft (d) TurnRight

Figure 5.3. The four primitive environments in which the robot is trained. The circle represents
the exit point. The initial position of the robot is shown in (d).
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Table 5.3. Differential Evolution Parameters: Using sub-environments

Parameter Value

Population Size 32

Number of Generations 300

F 0.9

CR 0.9

Max. Evaluation time T 40(s)

F =

D + T if goal not reached

t if goal reached
(5.2)

5.2.1 Using an aggregating measure of fitness

One way to train a robot controller in all primenvs and provide a unique measure of

fitness that can be used by the evolutionary algorithm, is to use an aggregating measure

of the performance of the controller in each primenv. In this case two different aggregating

measures are used and compared: the average performance of the controller in all primenv

and the worst performance in all primenv. Each measure is used for 10 runs of the

evolutionary algorithm (DE).

Figure 5.4a shows the average of the best individual fitness per generation for 10 runs of

the evolutionary process, using the average primenv fitness. Figure 5.4b shows the fitness

for each primenv in one run. It should be noted from the figure, that using the average

primenv fitness is deceiving in that a solution can perform really well in some primenv

while performing poorly in the others. Whats more, using the average primenv fitness

doesn’t ensure that a controller is good in all primenvs at the same time, however in this

case all evolutionary executions generate controllers that get to the exit in all individual

primenvs.

Figure 5.5 shows the best individual fitness per generation and the average of the

best individual fitness per generation for 11 evolutionary runs using the worst primenv

fitness. It can be seen from the figure that when using the worst primenv fitness measure

the evolutionary process is not able to produce an individual that reaches the exit of all

primenvs in 2 of the 11 runs for the allowed number of generations.

When presented with the two environments from figure 5.2 controllers obtained using

the average primenv fitness are able to reach the exit of both in 14 out of 20 tries and

using the worst primenv fitness in 17 out of 20 tries. This demonstrates that locomotion

movements, enabling a robot to travel through different configurations of an structured

environment, can be generated in a modular robot by using an evolutionary algorithm and

the configurable environment approach with an aggregating fitness measure. Unsuccessful



CHAPTER 5. EXPERIMENTS 81

0 200100 30050 150 250 350

0

100

20

40

60

80

120

Generations

F
it
n
e
s
s

(a)

0 200100 30050 150 250 350
0

100

20

40

60

80

120

Generations

F
it
n
e
s
s

Average

Straight

TurnLeft

Bump

TurnRight

(b)

Figure 5.4. Performance of using the average primenv fitness: Average and standard deviation
of the best individual fitness per generation (a) for 10 runs using the average primenv
fitness. Also, fitness in each primenv for 1 run (b). A fitness under 40 (bottom line)
means an individual reached the exit of the primenv.
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Figure 5.5. Performance of using the worst primenv fitness: Best individual fitness per generation
a and average of best individual fitness per generation with standard deviation b for
11 runs of evolution using the worst primenv fitness. A fitness under 40 (bottom
line) means an individual reached the exit in all primenvs.



CHAPTER 5. EXPERIMENTS 82

controllers in the environments depicted in figure 5.2 can be attributed to the controllers

exploiting features of the simulation to get a good fitness [48].

5.2.2 Using sequences of primenvs

In task decomposition, it has been shown that introducing a sequence when learning mul-

tiple tasks improves the speed and reliability of the evolutionary algorithm [94, 6, 4, 8].

Incremental evolution introduces the idea of a sequence in how robot controllers are evolved

for different tasks. In incremental evolution [30] the same task is presented to an evolu-

tionary algorithm with various levels of difficulty starting by the easiest one. As the robot

is able to solve the task the difficulty is risen gradually until the robot learns the behav-

iors needed to solve a desired level of complexity in the given task. The same controller

is expected to include the new found behaviors without using extra parts or modules.

Although incremental evolution may involve changing the environment, variations of only

one feature are usually used [80, 57, 106].

Similar to incremental evolution, in this case the robot is evaluated in all four primenv

in a sequential fashion. Only if the individual being evaluated is able to reach the exit

of one primenv under the maximum time allowed, it is evaluated in the next primenv,

until an individual is capable of reaching the exit of all four primenvs. Each individual

receives a bonus fitness each time it exits a primenv. These bonuses (Equation 5.3) are

designed to be greater than the maximum observed fitness a robot can obtain in any

individual primenv (this parameter is based in the observed fitness of several runs of the

evolutionary process). fe is the fitness obtained on primenv e using (5.2). A total fitness

greater than 325 (1000/T+300) signals that the robot has reached the exit in all primenvs

in the sequence.

F =


1000/f1 if goal not reached in primenv1

1000/f2 + 100 if goal reached in primenv1

1000/f3 + 200 if goal reached in primenv1 and primenv2

1000/f4 + 300 if goal reached in primenv1 and primenv2 and primenv3

(5.3)

Which sequence to use is a problem in itself. Bongard et al [6, 4, 8] show that the order

in which different behaviors are incrementally learned is important for the success rate of

the evolutionary process. In their work a quadruped robot with grasping capabilities is

more successful in learning how to manipulate an object first and then move towards it

than the other way around.

Thus primenvs are presented in three different sequences: Straight - TurnLeft - Bump

- TurnRight (S1), Straight - Bump - TurnLeft - TurnRight (S2) and Straight - TurnRight -

TurnLeft - Bump (S3). These first three sequences cover all permutations of the primenvs
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Table 5.4. Average performance of the evolutionary algorithm in number of generations, with
standard deviation, when using primenvs in different ways. The number indicates
how many generations are necessary to find a controller that exits all primenvs in all
cases.

Aggregated Fitness Sequence

Worst Average S1 S2 S3 S4

111.1± 52.26 108.4± 51.89 99.8± 22.35 94.7± 48.71 103.9± 52.02 175.8± 59.65

TurnLeft, TurnRight and Bump that are no mirrors of each other. That is, turning left

and then turning right is considered to be the same as turning right and then turning

left. The Straight primenv is always presented first as it is the simplest and all the others

include a straight element. The last sequence considered (Bump - TurnRight - TurnLeft -

Straight, S4) puts the Straight primenv at the end.

In figure 5.6 the average best fitness per generation for all the primenv sequences

used is shown. It can be seen that in all the cases where a sequence is introduced the

evolutionary process is able to produce a controller that makes the robot reach the exit

of all four primenvs every time. An analysis of variance (ANOVA) test comparing the

number of generations it takes for an evolution using primenv sequences to generate a

controller that reaches the exit of all primenvs showed a significant difference, F(5,53) =

3.73, p = 0.0057 among sequences. The means and standard deviations are presented in

table 5.4, which also shows the number of generations when using aggregating measures.

Post-hoc comparisons using a Tukey HSD test showed that using sequences S1 and S2 is

statistically significantly faster than when using S4 in generating controllers.

When presented with the two environments from figure 5.2, using sequence S1 produced

controllers that are able to exit both under 300 seconds in 18 out of 20 tries. In contrast,

using sequence S4 produced controllers that exit only in 11 out of 20 tries.

When the primenvs are used in sequences, the evolutionary algorithm generates con-

trollers that exit of all primenvs in all runs, in contrast with the worst measure case.

Also, using a sequence ensures that the evolutionary algorithm produces controllers that

are able to reach the exit of all primenvs as opposed to using the average measure. The

evolutionary process that uses the S1 sequence (Figure 5.6a) makes the evolutionary al-

gorithm perform specially well as it is not only able to generate controllers that reach the

exit in a low number of generations in all four primenvs but also in a consistent way when

compared to the other strategies.

The statistically significant difference between using sequences S1,S2 and S4 to pro-

duce controllers indicates that the order of primenvs influences the performance of the

evolutionary algorithm. Changing the place of the Straight primenv in the sequence (S4)

makes the overall process take on average more generations to find a solution that reaches



CHAPTER 5. EXPERIMENTS 84

0 200100 30050 150 250

0

200

400

100

300

Generations

F
it
n
e
s
s

(a) Straight-TurnLeft-Bump-TurnRight(S1)

0 200100 30050 150 250

0

200

400

100

300

Generations

F
it
n
e
s
s

(b) Straight-Bump-TurnLeft-TurnRight(S2)

0 200100 30050 150 250

0

200

400

100

300

Generations

F
it
n
e
s
s

(c) Straight-TurnRight-TurnLeft-Bump(S3)
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(d) Bump-TurnRight-TurnLeft-Straight(S4)

Figure 5.6. Average best individual fitness per generation, with standard deviation, for 10 runs of
evolution using sequences of primenvs. (Black lines) indicate environment transitions
when a controller has successfully exited each primenv.
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the exit of all four primenvs (Table 5.4). This hints to the idea that some environments

are more or less complex to learn than others.

5.3 Generalization and Evolution

Last section shows that an evolutionary process is able to produce controllers that travel

from the start to the exit of primenvs. Using a coordination mechanism and the config-

urable environment approach, controllers are able to generalize and move in other envi-

ronments built using the same primenvs.

However, to what degree are the produced controllers able to generalize to unseen

conditions? and how to measure this ”degree of generalization” with the configurable

environment approach? This section introduces the distance traveled by a controller in an

special set of environments built by combining primenvs as a measure of generalization.

These special environments are built by arranging primenvs in all their possible combi-

nations, representing all possible conditions that a robot controller would have to face.

In order to increase the effect of the distance traveled by the robot when measuring the

fitness of a controller in an environment the fitness measure from last section is redefined.

Similar to the previously used fitness measure a maximum time (T ) constrains the robot

evaluation (Equation5.4). This maximum time constrain divides the fitness measure in

two, depending on whether the robot is able to exit the environment under the maximum

time allowed. Distance (D)is measured between the first robot of the topology and the

exit point of the environment, in manhattan distance, and normalized. The starting and

exit points are shown in figure 5.8. Controllers are still able to improve their fitness by

using less time (t) once they reach the end of the environment. Time t is also normalized

using the maximum time T .

F =

0.7D + 0.3T if goal not reached

0.3t if goal reached
(5.4)

To determine the effect that showing different environments, built using primenvs,

has on the generalization measure, controllers are evolved using three different fitness

approaches. The primenvs have been simplified by eliminating the straight strip from the

beginning (Figure 5.7) of last section primenvs. The resulting controllers are then tested

in each of the 6 combination environments and compared.

• All Combinations: Controllers are evolved using all combinations of primenvs.

The individual fitness is the sum of all fitness obtained in each combination environ-

ment.
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(a) Right turn (b) Left turn (c) Bump

Figure 5.7. Modified sub-environments.

Table 5.5. Hill Climbing (HC) parameters: generalization test

Parameter
One Combination

Random Combination
All Combinations

Number of Iterations 9000 1000

Mutation Rate
1/5th
rule

-

Test Iterations 10 -

Step size 0.09 (m) -

• One Combination: Controllers are evolved using only one combination of pri-

menvs.The specific combination is chosen to be the one that yielded the best results

in the experiments of last section (left⊕ right⊕ bump).

• Random Combination: Controllers are evolved using only one combination of

primenvs but this combination randomly changes in each generation. The same

combination is used to evaluate the whole population of the current generation.

Differential Evolution (DE) is once again used for this tests (Table 5.6). The DE

algorithm is run 10 times using each of the defined fitness approaches. The same tests

are also repeated using a Hill Climbing (HC) algorithm. Hill Climbing (HC) optimiza-

tion algorithms are much simpler heuristics, compared to evolutionary algorithms. These

algorithms modify a single individual using only a simple variation, in most cases a mu-

tation. The current individual is replaced only if a better or equal (neutral) one is found.

Controllers generated by DE and HC are compared to test the effect of the adaptation

mechanism in the training process.

The HC algorithm is implemented using the unalcol library ([32]). Table 5.5 shows

the algorithm parameters, the number of evaluations is set to be consistent with the DE

case.
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Figure 5.8. The distance traveled by the robot (D) used in the fitness function is measured from
the current position of the first module of the topology to the exit point.

Table 5.6. Differential Evolution (DE) parameters: generalization test

Parameter
One Combination

Random Combination
All Combinations

Population Size 30 20

Number of iterations 300 50

F 0.9 -

CR 0.9 -

5.3.1 Differential Evolution vs Hill Climbing

Figures 5.9, 5.10 and 5.11 show the performance of the best controller fitness when using

the one combination fitness approach, the random combination fitness approach and the

all combination fitness approach respectively, for 10 different executions of DE and HC.

Figure 5.12 shows the overall distance traveled from the start of the environment, by the

best controllers produced by DE and HC when tested in each 6 combination environments.

Distance is normalized (1: full distance of the environment traveled. 0: No distance

traveled). Results indicate that controllers produced by DE cover a greater distance than

those generated by HC. A Kruskal-Wallis test shows a statistically significant difference

between the median distance traveled by controllers generated using DE and HC (p =

1.28701e−7 and figure 5.13). Figures 5.9 and 5.10 also show that DE always generates

controllers that reach the exit of the environments presented, which is not the case when

using HC.

5.3.2 Comparison of fitness approaches

When comparing controllers among different fitness approaches, a Kruskal-Wallis test

shows an statistically significant difference on the median distance traveled for all con-

trollers, regardless of using DE or HC to produce them, when using the different fitness

approaches (p = 0). Figure 5.14 shows that controllers generated using the all combi-



CHAPTER 5. EXPERIMENTS 88

0 3000 6000 9000

Fitness Evaluations

0.00

0.25

0.50

0.75

1.00

F
it
n
es
s

Median

IQR

(a)

0 3000 6000 9000

Fitness Evaluations

0.00

0.25

0.50

0.75

1.00

F
it
n
es
s

Median

IQR

(b)

Figure 5.9. Evolution of performance of the best controller fitness when using the one combina-
tion fitness approach for 10 different executions of (a) DE and (b) HC. Bars show the
inter-quartile range. A fitness below 0.3 (dashed black line) indicates the individual
exited the environment.
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Figure 5.10. Evolution of performance of the best controller fitness when using the random
combination fitness approach for 10 different executions of (a) DE and (b) HC. Bars
show the inter-quartile range. A fitness below 0.3 (dashed black line) indicates the
individual exited the environment.
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Figure 5.11. Evolution of performance of the best controller fitness when using the all combina-
tion fitness approach for 10 different executions of (a) DE and (b) HC. Bars show
the inter-quartile range.
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Figure 5.12. Overall distance traveled, by environment, of the best controllers produced using
DE and HC when tested in the 6 combination environments. Whiskers represent
1.5× IQR.
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Figure 5.13. Overall distance traveled by the best controllers generated using DE and HC when
tested in the 6 combination environments. Whiskers represent 1.5× IQR.

nations fitness approach travel more distance than the other two approaches and that

the one combination approach travel slightly more distance than the random combination

approach.

Although controllers generated by using the one combination or random combination

fitness approaches do not travel as much distance as the ones generated by using the

all combinations approach, the former are still able to travel some distance, that is, to

generalize, to unseen environments. This suggests that evolved controllers may be able to

improve their generalization ability as more combinations of the environment are used in

the training process, however this topic is out of the scope of this work.

5.4 Sensors, Hill Climbing and Evolution

Last section showed how an evolutionary algorithm is used to adapt CPG coordination

mechanisms in order to enable a robot to travel from the start to the exit of different

environments. However, by only using the CPG coordination mechanism robots are unable

to react to the environment, and can only advance blindly through different obstacles. To

also enable a robot morphology to use sensor information, what is left of the control

strategy described in section 3.1 is tested in this section, including the sensor information

handling and decision mechanisms.

With all parts in the controller, messages are generated in each module as a sensor is

activated. Messages contain information about each sensor location in the module and the

sensor reading. In simulation, messages are generated once every time step and a single

message combines the state of all activated sensors at that moment.
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Figure 5.14. Overall distance traveled by the best controllers generated using DE and HC when
tested in the 6 combination environments. Whiskers represent 1.5× IQR.

Starting from this section the realistic EMERGE module of section 4.2 is used. As

presented there, this module has four proximity sensors, located in its four connecting

faces, and one orientation sensor. The topology used is the same as in previous sections

(Equation 5.1). Sensor messages for this type of module include readings of each of the

four proximity sensors at first. Messages contain a vector of sensor reading values in which

each position represents the location of a proximity sensor in the module. The spatial

transformation function is then a permutation function that only changes the order of the

message values when they arrive to a module connected in a different orientation than the

originating module, in particular, the spatial transformation function matches the sensor

positions of the incoming message with the locations of the sensors in the receiving module,

given a topology.

Additionally, modules in different orientations can have sensors in faces that match

sensorless faces of neighbor modules. Therefore, sensor messages contain two extra values

representing the empty faces of the module, at the end of the vector. Figure 5.15 shows

the position of the sensors in the realistic EMERGE module and their respective positions

in the message. Figure 5.16 shows an spatial transformation example between modules in

different orientations; the right module sends a message to the left one which changes the

order of the message to match the positions of its sensors (including sensorless faces).

Sensor readings are normalized and attenuation and forward propagation are used to

prevent messages from looping indefinitely in the robot morphology. Furthermore, sen-

sors facing directly into the ground and sensors of connected faces are ignored. Table 5.7

summarizes the parameters of the sensor information handling mechanism. The elimi-

nation threshold parameter refers to the value under which a message is eliminated, in

other words, if all sensor readings inside a message are below the elimination threshold
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Figure 5.15. Sensor message example in the realistic EMERGE module

Figure 5.16. Sensor message spatial transformation example between modules in different orien-
tations, using the Realistic EMERGE module.
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Table 5.7. Parameters of the sensor information handling mechanism in simulation

Parameter Value Range

Sensor Reading Normalized [0, 1]

α 0.5 [0, 1]

Elimination Threshold 0.001 –

Table 5.8. Decision mechanism parameters in simulation

Parameter Value Detail

Filter
Proximity sensor window 7 time steps
Orientation sensor window 12 time steps

ANN

Input Layer 12 –
Hidden Layer 12 –
Output Layer 6 –
Bias neuron 1 Input and Hidden Layers

Activation function Sigmoid y = 1
1+e−x

Total Number of Weights 234
Min weight value -10
Max weight value 10

the message is not propagated any more. These parameters were chosen experimentally

to prevent a message from hopping through the full length of the topologies used.

When receiving sensor messages, modules use their decision mechanism to determine

the behavior of the CPG coordination mechanism. An Artificial Neural Network (ANN)

is used for this purpose. Before being fed to the neural network, incoming sensor messages

are filtered in each module. Input filtering is divided into two stages: In the first stage,

all incoming sensor message values in the current time step are averaged and stored, only

messages indicating active sensors are averaged. In the second stage a moving average

filter [45] is applied to the stored values, and the process starts anew. The first stage is

necessary to aggregate incoming information from several sources. Both stages are used

to reduce noise and rapid variability of the received information, which could make the

output of the ANN also change rapidly. Orientation sensor values are filtered in a different

way from proximity sensor values since simulated orientation sensor readings are discrete

and represent the current orientation of the module relative to the ground (Section 3.1.2).

Therefore, values are stored in each time step and after a predefined window of time, the

most prevalent orientation is fed to the ANN. Orientations for the EMERGE module are

defined in the same way as the orientations in figure 3.10. Table 5.8 shows the parameters

of the ANN and the filter.

Following the sensor message defined above, the ANN has 6 inputs for filtered proximity

sensors. Additionally, the current filtered orientation sensor value is split into 6 different

inputs to increase the effect of the orientation of the module in the ANN calculations,

leading to a way of differentiating modules from one another in a morphology. As a

result, the decision mechanism ANN has a total of 12 inputs. A hidden layer is used
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Table 5.9. Structured corridor environment: Realistic EMERGE module

Parameter Value Description

Width 0.4m

Height 0.088m Bump height

Wall height 0.8m

as the output is not expected to be a linear combination of the inputs [39]. Both the

input and hidden layers have one bias neuron as the ANN is expected to produce outputs

with no or few inputs. The number of neurons in the hidden layer is set experimentally:

simple controllers that set the CPG coordination mechanism parameters to one of the

bests controllers generated in the no sensor experiments (experiments were repeated using

the EMERGE realistic simulated module, with no sensors) were back-propagated and the

network that allowed the robot to move forward was chosen. For a detailed description of

the output layer see section 3.1.2. Summing up, the total number of weights in the ANN

amounts to 234.

Compared to the individuals evolved in previous sections, which only have 3 parameters

representing the parameters of the CPG coordination mechanism inside all modules, here,

the individual to be evolved is an array of 234 real values representing the weights of the

ANN (All modules use the same ANN as decision mechanism). The new individual is

tested using the same one combination fitness approach as last section: Controllers are

evolved using only one combination of primenvs (l ⊕ r ⊕ b) with a straight strip at the

beginning of the combination. However, as a result of the realistic EMERGE module

being smaller than its abstract counterpart, the primenvs dimensions are reduced to fit

the robot dimensions. Table 5.9 shows the main parameters of the new environment.

Also starting from this section, the Hybrid Adaptive Evolutionary Algorithm (HAEA)

is used instead of Differential Evolution [31]. The HAEA algorithm (Algorithm 8) has

two main features that make it attractive for this problem: (1) it accepts an arbitrary

number of operators, so different kinds of crossovers and mutations, even different from

the classical mutation and crossover operators, can be used in the same implementation,

and (2) individuals evolve independently from one another by producing offspring using

operators selected based on probabilities unique to each individual. In this respect, op-

erator probabilities are adjusted by a reward/punishment process, effectively making the

adjustment of operator rates automatic, with individuals being only replaced if the fitness

of an offspring is better than or equal to the fitness of the parent.

The parameters of the HAEA evolutionary algorithm can be seen in table 5.10. Three

different operators are used in these and subsequent tests: A mutation, a linear crossover,

and a simple crossover. The mutation operator adds small values to random positions

of the individual chromosome, up to 10% of the total positions can be changed at the

same time. In particular, the small added values are generated based on a power law

like distribution. The linear crossover operator creates two offspring by doing two linear

combinations of the individual and another parent selected using tournament selection
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Algorithm 8 Hybrid Adaptive Evolutionary Algorithm (HAEA).

1: function HAEA(popsize, terminationCondition)
2: t = 0
3: P0 = initPopulation(popsize)
4: while terminationCondition(t, Pt)== false do
5: Pt+1 = ∅
6: for each individual in Pt do
7: rates = extractRates(individual)
8: δ = random(0,1)
9: oper = selectOperator(operators, rates)

10: parents = selectParents(Pt, individual)
11: offspring = apply(oper, parents)
12: child = best(offspring, individual)
13: if fitness(child) better than fitness(individual) then
14: rates[oper] = (1.0 + δ)*rates[oper] ▷ reward
15: else
16: rates[oper] = (1.0 - δ)*rates[oper] ▷ punish
17: end if
18: normalizeRates(rates)
19: setRates(child, rates)
20: add(Pt+1, child)
21: end for
22: t = t + 1
23: end while
24: end function
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Table 5.10. HAEA Parameters: Evolution with sensors

Parameter Value

Population Size 30

Number of iterations 100

Mutation Rate 0.2

Selection Tournament size 4

Operators
PowerLawMutation

LinearXOver
SimpleXOver

Table 5.11. Hill Climbing Parameters: Sensors

Parameter Value

Number of iterations 3000

Mutation Rate 0.2

Mutation PowerLawMutation

[31]. Linear combinations are performed in an element wise fashion and the coefficients are

randomly generated using a Gaussian distribution. Finally, the simple crossover operator

copies the first part of the individual into the offspring up to a certain random index,

the remainder of the offspring is copied from another parent; a second child is created by

doing the complementary operation. As mentioned before, replacement is performed on

an individual basis. The same test is repeated using Hill Climbing (HC), with the same

mutation operator as HAEA.

The fitness function is updated one last time to use less parameters keeping the em-

phasis on the distance traveled (Equation 5.5). Distance (D) is now measured from the

start of the environment to the first module in the topology using normalized Manhattan

distance [21]. Time (t) is also normalized using the maximum time available for the test

(T ). The fitness can be used either in a maximizing or minimizing setting.

F = maxD − t

1 +D
⇔ min−(D − t

1 +D
) (5.5)

Figure 5.17 shows the performance of controllers per fitness evaluation generated using

HAEA and HC for 10 runs of each algorithm. Results show that, in general, controllers

generated using HAEA are able to move forward in the environment, below the 0.25 mark,

which in the l ⊕ r ⊕ b environment is about the end of the left turn. Furthermore, the

best controllers reach the −0.25 mark, which indicates the end of the right turn, and the

start of the bump obstacle. In contrast, the best HC generated controllers only reach the

0 mark while the median controller does not even reach the 0.5 mark. This could be a

consequence of HC not being able to obtain good solutions by only modifying small parts

of the initial controller each time. Figure 5.18 shows a robot running a controller generated

using HAEA, it can be seen that the robot moves by encroaching into itself erratically.



CHAPTER 5. EXPERIMENTS 97

0 750 1500 2250 3000

Fitness Evaluations

−1.0

−0.5

0.0

0.5

1.0

F
it
n
es
s

Median

IQR

(a)

0 750 1500 2250 3000

Fitness Evaluations

−1.0

−0.5

0.0

0.5

1.0

F
it
n
es
s

Median

IQR

(b)

Figure 5.17. Performance of controllers generated using (a) HAEA and (b) HC for 10 different
executions of each algorithm. Bars show the inter-quartile range.

In both cases (HAEA and HC) controllers are not able to go over the bump obstacle.

The overall distance traveled in all combinations of primenvs used can be seen in figure

5.19. A Kruskal-Wallistest finds a statistically significant difference between the median

distance traveled by controllers generated using HAEA and HC (p = 0.000111597 and

figure 5.20). Figures 5.19 and 5.20 also show the overall distance traveled in all combination

environments by controllers with no sensors (CPG-only) generated using HAEA for the

same l⊕ r⊕ b environment. These two figures indicate that controllers using sensors that

have been evolved without an initial seed do not travel as much distance as controllers

with no sensors (CPG-only). A Kruskal-Wallis test confirms the difference between the

median distance traveled by HAEA generated controllers and CPG-only controllers(p =

0.0000236595). Regardless of the type of controller or the adaptation mechanism used, all

controllers seem to specialize on the environment used for training and have problems in

the environment that start with a bump.

This bad performance of controllers with sensors compared to controllers without sen-

sors could be explained by the explosion in the number of parameters (from 3 to 234)

that makes finding good solutions more difficult in general. On one hand, controllers with

sensors movements appear to be more erratic than those of controllers with no sensors

(CPG-only) [74]. On the other hand, movements that allow the robot to move forward in

the l and r primenvs could not be effectively modified by the system to go over the bump

primenv, hinting a local optimum and a deceptive fitness landscape. This, of course, also

affects the performance of the controllers in other combinations of the primenvs used, as

can be evidenced in figure 5.20.

To show that the locomotion training framework is robust against changes in morphol-

ogy, the test is repeated using a second robot morphology with topology as in equation 5.6

(Figure 5.21). The HAEA algorithm is again used as adaptation mechanism. A seed con-

troller, trained with back propagation to output specific CPG values that only give some

coordinated movements to the robot (obtained by experimentation), is used to generate

the initial population in this test. Using this seed the initial population of the evolution-
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Figure 5.18. Simulated robot running a controller with sensors generated using HAEA (HAEA-
S) in the l ⊕ r ⊕ b environment.
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Figure 5.19. Overall distance traveled, by test environment, by the best controllers with sen-
sors generated using HAEA (HAEA-S) and HC (HC-S) and HAEA evolving only
the CPG coordination mechanism with no sensors (HAEA-NS-CPG) in the realis-
tic EMERGE module, when tested in the 6 combination environments. Whiskers
represent 1.5× IQR.
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Figure 5.20. Overall distance traveled by the best controllers with sensors generated using HAEA
(HAEA-S), HC (HC-S) and HAEA evolving only the CPG coordination mechanism
with no sensors (HAEA-NS-CPG) in the realistic EMERGE module, when tested
in the 6 combination environments. Whiskers represent 1.5× IQR.

ary algorithm is built using a mutation like method. Random values are added to each

position in the chromosome around a pre-specified setpoint (0.2). Figure 5.22 shows the

performance of the best controllers generated in 10 different executions of HAEA. Figure

5.24 shows the overall distance traveled by the best controllers generated for the T shape

morphology in all combination environments, compared to those generated for the Snake

morphology. A Kruskal-Wallis test shows an statistically significant difference of the me-

dian distance traveled for each morphology (p = 0.000723859). T-shaped controllers travel

more distance than their snake counterparts (Figure 5.25). Figure 5.23 shows a robot in

the T-Shaped morphology moving in the l ⊕ r ⊕ b environment.

T = {⟨1, 2, 2, 1, 2⟩, ⟨2, 1, 1, 2, 2⟩, ⟨1, 3, 3, 1, 2⟩, ⟨3, 1, 1, 3, 2⟩, ⟨1, 4, 4, 1, 2⟩,
⟨4, 1, 1, 4, 2⟩, ⟨2, 5, 2, 1, 2⟩, ⟨5, 2, 1, 2, 2⟩, ⟨5, 9, 2, 1, 2⟩, ⟨9, 5, 1, 2, 2⟩,
⟨3, 6, 2, 1, 2⟩, ⟨6, 3, 1, 2, 2⟩, ⟨3, 7, 3, 1, 2⟩, ⟨7, 3, 1, 3, 2⟩, ⟨4, 8, 2, 1, 2⟩,

⟨8, 4, 1, 2, 2⟩} (5.6)

Controllers for the T-shaped morphology tend to get stuck the left and right pri-

menvs mainly due to its shape and dimensions (Video in [74]). Despite this disadvantage,

controllers for the T-shaped morphology are able to move further in all combinations of

primenvs than their Snake counterparts. The improved generalization ability of these

controllers is explained by the use of the initial seed, which introduces better coordinated

movements. A better coordination also makes modifying movements for tackling other

environments easier, however, T-shaped morphology controllers are still not able to go
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Figure 5.21. T-shaped topology in simulation.
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Figure 5.22. Performance of controllers generated using 10 seeded executions of HAEA with a
T shaped morpholgy. Bars show the inter-quartile range
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Figure 5.23. Simulated robot in a T-Shaped morphology running a controller with sensors gen-
erated using HAEA in the l ⊕ r ⊕ b environment.
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Figure 5.24. Overall distance traveled, by test environment, by the best controllers with sensors
generated for a snake morphology an a T shaped morphology when tested in the 6
combination environments. Whiskers represent 1.5× IQR.
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Figure 5.25. Overall distance traveled by the best controllers with sensors generated for a snake
morphology an a T shaped morphology when tested in the 6 combination environ-
ments. Whiskers represent 1.5× IQR.
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Figure 5.26. Performance of controllers generated using 10 different executions of HAEA with
a Snake morpholgy and an initial population generated from HAEA-NS-CPG con-
trollers. Bars show the inter-quartile range.

over the bump primenv, mainly due to, again, the shape of the robot. Using the initial

well coordinated seed controller idea, the test is repeated for the Snake morphology. The

initial population is generated from ANNs trained to output the CPG parameters of the

best controllers with no sensors, that were previously found (HAEA-NS-CPG). Figure

5.26 shows the controller performance for the seeded test(HAEA-S-CPGSeed). Figure

5.27 shows a robot running a controller generated using this method, movements appear

to be more well coordinated than in the HAEA-S case.

Training the ANNs for the initial population introduces errors in the controllers. As

a result, initial controllers are not able to get to the exit of the l ⊕ r ⊕ b environment

on their own, as HAEA-NS-CPG controllers did. Despite this, resulting controllers are

able to clear the training environment. Figure 5.29 shows the overall distance traveled

by the best controllers in the CPG seeded test in all combination environments. This

figure suggests that, although there is not a statistically significant difference between the

two groups, controllers generated using the CPG seed are slightly better than their CPG

only counterparts when moving in almost all combination environments. This behavior is

also evidenced on figure 5.28, in which again no statistically significant difference is found

between the two groups.

A well coordinated initial population provides a better chance for the sensor mechanism

to improve the generalization ability of the controllers. This increase can be attributed
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Figure 5.27. Simulated robot running a controller with sensors generated using HAEA and using
a initial population of previously found CPG controllers (HAEA-S-CPGS) in the
l ⊕ r ⊕ b environment.
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Figure 5.28. Overall distance traveled by the best controllers with sensors generated using a
CPG seed (HAEA-S-CPGS) and controllers generated using the only CPG coordi-
nation mechanism (HAEA-NS-CPG), in the 6 combination environments. Whiskers
represent 1.5× IQR.
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Figure 5.29. Overall distance traveled, by test environment, by the best controllers with sen-
sors generated using a CPG seed (HAEA-S-CPGS) and controllers generated using
the only CPG coordination mechanism (HAEA-NS-CPG), in the 6 combination
environments. Whiskers represent 1.5× IQR.
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Figure 5.30. Performance of controllers generated using 10 different executions of HAEA with a
Snake morpholgy and a manually generated seed for the initial population.

to two reasons: (1) It makes controllers move less erratically (Video in [74]), and (2) it

increases the chances for the sensor system to find movements useful for tackling other

primenvs, as indicated by figure 5.28. Thus, results suggest that a well coordinated set

of movements should exist for a sensor message system, of the type proposed, to take

advantage of them, and that is not trivial to generate these movements from scratch with

the sensor message system in place.

The importance of having well coordinated movements for controllers with sensors

to take advantage of is further evidenced when using a manual controller seed, built

with coordination in mind. In particular, this seed allows the robot to move forward

in a sinusoidal fashion with simpler and more ample movements. Figure 5.30 shows the

performance of controllers generated using the manual seed.

In this last test, despite HAEA not being capable of improving the fitness of the

controllers, generalization improves compared to that of controllers evolved with the CPG

coordination mechanism only (HAEA-NS-CPG) and controllers evolved using the CPG

seed. Figure 5.31 shows the overall distance traveled by the best controllers generated

in all combination environments. A Kruskall-Wallis test shows a statistically significant

difference on the median distance traveled (p = 2.69866e−8). Figure 5.32 indicates that

controllers generated using the manual seed travel more distance than their CPG only

counterparts.
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Figure 5.31. Overall distance traveled, by test environment, by the best controllers with sensors
evolved using a manual seed (HAEA-S-MS), the initial population obained from
the manual seed (S-MS) and controllers generated using the only CPG coordina-
tion mechanism (HAEA-NS-CPG), in the 6 combination environments. Whiskers
represent 1.5× IQR.
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Figure 5.32. Overall distance traveled by the best controllers with sensors evolved using a manual
seed (HAEA-S-MS), the initial population obtained from the manual seed (S-MS),
and controllers generated using only the CPG coordination mechanism (HAEA-NS-
CPG), in the 6 combination environments. Whiskers represent 1.5× IQR.

As mentioned before, the result of this last test stresses the importance of having well

coordinated movements, which a sensor information handling mechanism and a decision

mechanism can make use of. This is evidenced by the the difference in the overall distance

traveled by controllers in the initial population generated from the manual seed controller

before evolution (S-MS in figures 5.32 and 5.31) and controllers evolved using this same

initial population (HAEA-S-MS). The simpler movements of the manual seed controller

could have also aided the sensor message system to produce movements better suited

for the different primenvs. Results also indicates that the evolution process, despite not

improving the fitness of the controllers, is able to modify them and find ANNs that can

move in different environments using sensor information. Further testing is needed to find

out the exact way in which these ANNs make use of the information coming from the

environment, which sensor messages are prioritized and which are shunned when selecting

the parameters of the underlying CPGs.

5.5 Short Challenges

To further test the importance of having well coordinated movements when training a

robot with sensors, an incremental evolution approach is proposed for training a robot

from scratch. As mentioned before, incremental evolution gradually changes the task

a robot is tested in so that it acquires the ability to perform more challenging tasks.

Following this idea, the incremental evolution approach proposed involves a series of short

challenges that would allow a robot to gradually obtain the movements necessary to move

in the different primenvs presented.
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Figure 5.33. Short challenges in the l ⊕ r ⊕ b combination environment. Black lines represent
the goal of each challenge and numbers indicate the challenges sequence.

Short challenges can be defined over any primenv or normal environment. At first, a

fraction of the total distance of the environment is shown to the controller being trained

over a small amount of time. If the controller is able to cover the initial fraction a larger

fraction of the environment is shown and more time is given to the robot. The process is

repeated until the whole environment is covered. Short challenges also help to test the con-

troller in new parts of the environment in a more controlled way so the decision mechanism

is not overwhelmed by sensor information. In other words, the adaptation process is able

to test individuals on very similar situations, e.g. with similar sensor inputs, using more

evaluations, and the situation is only changed if an individual with suitable movements

appears. Figure 5.33 depicts the short challenge incremental evolution scheme. Black lines

represent the goal of each challenge and numbers indicate the challenges sequence.

With the same combination environment used in last section (l⊕r⊕b), a short challenge

fitness approach is used to evolve controllers for robots in the snake morphology (Equation

5.1). The straight strip at the beginning of the primenv combination is eliminated in this

test and instead the initial population of controllers is obtained from a previously evolved

set of controllers with sensors, trained in a straight primenv. Still, these controllers trained

in the straight primenv are evolved from scratch, i.e. without regard for having well

coordinated movements.

The fractions of the environment and the times used for each short challenge in the

l⊕r⊕b primenv are shown on table 5.12. A challenge is completed if one of two conditions

are met: (1) an individual that travels the total distance of the challenge appears, (2)

evolution under the challenge conditions reaches the max number of generations. Each

challenge is evolved with a population of 30 individuals for a max of 20 generations. The

full population found at the end of one challenge is used as the initial population of the

next challenge.

Figure 5.34 shows that in the left and right primenvs the incremental evolution ap-

proach is able to find controllers that solve all challenges. However, in the bump primenv

controllers are not able to overcome challenges after a certain point. Nevertheless, at least
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Table 5.12. Short challenges for the l ⊕ r ⊕ b environment in the form (fraction,time(s)). Tran-
sitions indicate where each primenv starts.

Challenges

(0.016,2.5),(0.056,5.23),(0.11,10.2),(0.15,13.9),(0.18,16.6),(0.22,20.5),
(0.23,21.5),(0.25,23.4),(0.26,24),(0.27,24.9),(0.30,27.6),(0.33,30),

(0.35,32.5),(0.39,35.23),(0.44,40.2),(0.48,43.9),(0.51,46.6),(0.55,50.5),
(0.56,51.5),(0.58,53.4),(0.59,54),(0.60,54.9),(0.63,57.6),(0.66,60),

(0.68,69.5),(0.7,70.2),(0.72,72.23),(0.74,74.5),(0.76,76.6),(0.81,80.9),
(0.85,83.6),(0.89,87.5),(0.93,91.9),(1,100)

Transitions l:0,r:12,b:24
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Figure 5.34. Performance of the best controllers generated by 10 different executions of the short
challenge incremental approach. A fitness below −0.5 indicates the challenge being
completed. Vertical lines indicate where each primenv starts. Bars show the inter-
quartile range.
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Figure 5.35. Overall distance traveled by the best controllers with sensors generated using the
incremental short challenge approach (HAEA-I) and normal evolution without seeds
(HAEA-S), in the 6 combination environments. Whiskers represent 1.5× IQR.

one controller is able to go over the bump primenv as indicated by the ”Best” line in figure

5.34.

Despite enabling at least one controller to go over the bump, controllers generated in

this test suffer from a loss in generalization ability. When measuring the overall distance

traveled by these controllers in all 6 primenv combinations, the median distance traveled is

not as high as with controllers using a normal evolutionary approach (Figure 5.35). This

indicates that controllers generated with the short challenge approach specialize more

than their normal evolution counterparts. One possible explanation for this behavior is

that as each challenge is completed the information about the search space represented

in each subsequent population is further reduced. Additionally, although exposed for a

greater number of evaluations to the same situation, controllers do not seem to produce

well coordinated movements. This could be a consequence of controllers facing easier tasks

that can be solved with erratic movements, thus demonstrating that it is not trivial to

find controllers with well coordinated movements, even when using an incremental system.

This prolonged exposure could also increase the chances of specialization.

In spite of the specialization problem, and advantage of the short challenges approach

is that it reveals the places where the adaptation process is having problems. To get

more detail on the behavior of controllers in each primenv the same test is repeated with

separated primenvs, that is, first, a set of short challenges is run in one primenv. Next,

another set of challenges is run in the next primenv using the last population found on

the last primenv as the initial population, and so on. The same order of primenvs is used

as in the last test (first left, next right, and last bump). Table 5.13 shows the fractions
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Table 5.13. Short challenges in the form (fraction, time (s)) for the sequence left-right-bump of
separated primenvs .

primenv Challenges

left
(0.05,2.5),(0.17,5.23),(0.33,10.2),(0.45,13.9),(0.55,16.6),(0.67,20.5),

(0.7,21.5),(0.75,23.4),(0.78,24),(0.82,24.9),(0.91,27.6),(1,30)

right
(0.05,2.5),(0.17,5.23),(0.33,10.2),(0.45,13.9),(0.55,16.6),(0.67,20.5),

(0.7,21.5),(0.75,23.4),(0.78,24),(0.82,24.9),(0.91,27.6),(1,30)

bump
(0.05,2.5),(0.1,3.2),(0.17,5.23),(0.24,7.5),(0.3,9.6),(0.45,13.9),

(0.55,16.6),(0.67,20.5),(0.8,24.9),(1,30)
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Figure 5.36. Performance of the best controllers generated by 10 runs of using the short challenge
incremental approach with a sequence of separated primenvs (l-r-b). A fitness
below −0.5 indicates the challenge being solved. Vertical lines indicate where each
primenv starts. The full population at the end of one challenge is used as the initial
population of the next one. Bars show the inter-quartile range.

and times used for each challenge in each primenv. Figure 5.36 shows the result in each

primenv.

Results show that when using separated primenvs in sequence, controllers get worse

fitness when transitioning to another challenge, which is the case when going from right

to bump. As a matter of fact, figure 5.36 clearly shows that finding a good controller for

going over the bump primenv is a very difficult task. In spite of this, at least one controller

is able to overcome it. Erratic behavior can also be observed in the controllers found as

in the l ⊕ r ⊕ b environment case.

Controllers for robots using the T shaped morphology (Equation 5.6) are also evolved

using the short challenge approach, both using the l ⊕ r ⊕ b combination environment

and the sequence of separated sub-environments. Figure 5.37 shows the best controllers

generated by 10 different executions of the short challenge incremental approach in the

l ⊕ r ⊕ b environment. Figure 5.38 shows the result in each primenv when using the

separated sequence of primenvs.
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Figure 5.37. Performance of the best controllers generated for the T shaped morphology by 10
different executions of using the short challenge incremental approach. Vertical
lines indicate where each primenv starts. Bars show the inter-quartile range.
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Figure 5.38. Performance of the best controllers generated for the T shaped morphology by 10
runs of using the short challenge incremental approach with a sequence of separated
primenvs (l-r-b). Vertical lines indicate where each primenv starts. Bars show the
inter-quartile range.
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Figure 5.39. Overall distance traveled by the best controllers generated for the T shaped mor-
phology using the incremental short challenge approach (HAEA-I) and using normal
evolution (HAEA-S), tested in the 6 combination environments. Whiskers represent
1.5× IQR.

Figures 5.37 and 5.38 show a very similar behavior to their snake morphology coun-

terparts. In particular, when using the l ⊕ r ⊕ b environment controllers are not able to

cover the whole distance of the challenge in the right turn, this is a consequence of the

shape of the morphology itself, which occupies almost all the space of the turn and is more

prone to get stuck. The controllers generated for the T shaped morphology also show less

generalization as less distance is covered in all 6 combinations of primenvs compared to a

normal evolution (Figure 5.39).

5.6 Hardware Experiments

Previous sections have demonstrated the use of an adaptation mechanism, with a con-

figurable environment approach, and a controller scheme, combining coordination, sensor

and decision mechanisms, to generate controllers capable to travel through different envi-

ronments. However, all tests have been performed in simulation and, despite being very

useful for identifying the main issues and possible solutions, they may not completely

correspond to what happens in reality.

5.6.1 Transferring controllers to reality

To show the difference between simulated and real EMERGE modules, the best individ-

uals obtained in the simulation process are transferred to reality and compared to their

simulation counterparts. A straight strip primenv, of length 1.5m, width 0.3m and walls
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Figure 5.40. Straight primenv in reality.

Table 5.14. Performance of transferred controllers of simulated robots. Time (s) to reach the 0.5
mark in a straight 1.5m × 0.3m environment. An empty distance means the robot
did not move forward or moved backwards.

Controller Simulated Real

1 33 303

2 47 507

3 224 –

4 35 –

5 88 451

0.14m high is built (Figure 5.40). The same snake topology of equation 5.1 is used to build

a robot out of EMERGE modules. Modules are powered using an external voltage source

through an electrical cable. The controller and the position of the module in the mor-

phology are programmed into each module using a microcontroller dedicated programmer

(Cypress KitProg). Controllers running in the real EMERGE modules are almost iden-

tical to their simulated counterparts, even using the exact same parameters as in section

5.4. Robot morphologies are positioned at the start of the environment, powered on and

tested for 10 min. Table 5.14 shows the time for each robot to reach the 0.5m mark. The

reduced number of tests is due to the high cost of evaluating controllers in reality. Figure

5.41 shows a robot moving forward in the straight primenv.

Individuals that moved in the straight primenv are also tested in a right corner primenv

(Figure 5.42). In [74] the best individual runs in the right corner are shown. Table 5.15

shows the times obtained by each individual to get to travel to the other side of the

environment. Figure 5.43 shows a robot moving forward in the corner primenv.
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Figure 5.41. Robot moving forward in the real straight primenv in a 10 minute test. Frames go
from left to right starting in the upper-leftmost one.

Figure 5.42. Right corner primenv in reality.
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Table 5.15. Performance of transferred controllers of simulated robots, in the right corner pri-
menv. Distance traveled (m) in 10 minutes and time (s) used for gettin from start to
end. An empty distance and time means the robot did not move forward or moved
backwards.

Controller Distance (m) Time(s)

1 1.19 600

2 0.89 600

3 1.49 549

4 – –

5 1.45 395

Figure 5.43. Robot moving forward in the corner straight primenv in a 10 min test. Frames go
from left to right starting in the upper-leftmost one.
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While the reality gap is a very studied problem, differences found when transferring

simulated controllers to reality are very big. Differences with simulation start arising when

transferring the control scheme to the real EMERGE robot. As real EMERGE modules

do not have an internal orientation sensor a special accessory is designed to measure

the current orientation of the module. Such accessory reads an analog accelerometer

(ADXL335) every second with a 12 bit resolution and determines its orientation relative

to the ground. The accessory is attached to a module and broadcasts the orientation

information to all modules in the morphology. Each module is in charge of transforming

the global orientation measure into its local orientation using topology information. As

a result, the mechanical structure of an EMERGE robot morphology is slightly modified,

something that affects its movement. Another factor affecting the mechanical structure of

the robot is the internal connection (cables, connectors, etc..) that can prevent modules

from reaching their full movement range [74]. Differences in servo-motor torques among

modules, environment friction forces, magnet forces, dimensions, etc, all contribute to

make the movements performed by real modules different to those of simulated modules.

On the software side, the reduced processing power of the microcontroller in each

robot affects how fast calculations can be carried out and introduces lag in the movement

too. However, real controllers are mostly affected by the limited number of physical and

software buffers used in communication. While simulated modules can virtually receive an

infinite number of messages from each neighbor in each time step, real modules are limited

to only 3 per neighbor. This is another reason for the implementation of attenuation and

forward propagation in the sensor information handling mechanism, which is also present

in the simulation experiments. In general, the control scheme is also designed to be as

light as possible taking into account the main limitations of the real modules. The effect

of these factors on the performance of controllers could be reduced by evolving directly on

the real EMERGE modules.

5.6.2 Testing the framework

In order to obtain better controllers in reality, the full locomotion training framework is

implemented. A robot topology with only three modules (Equation 5.7 and figure 5.44), is

used in this case, the smaller topology reduces the sources of sensor messages and makes

coordination easier. Simulation is not completely discarded but is instead used, with some

tweaks, to initialize the system. In last section, transferred simulated controllers were not

able to move real modules as well as simulated ones. One of the main observations was

that modules actuators could not reach their full movement range due to their internal

connections. In this test, the movement range of simulated modules is tweaked so that it

corresponds more closely to the one observed in the real robots. Simulated controllers are

generated using 10 executions of HAEA with the three module topology.

T = {⟨1, 2, 2, 1, 2⟩, ⟨2, 1, 1, 2, 2⟩, ⟨2, 3, 2, 1, 4⟩, ⟨3, 2, 1, 2, 4⟩} (5.7)
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Figure 5.44. Three module topology in reality.

Figure 5.45. Environment r ⊕ l in reality.

Using the best controllers obtained in simulation as initial population, HAEA is used to

evolve controllers directly in the real robots. For this purpose a configurable environment

with only left and right primenvs is built. Specifically, environment l⊕ r is used to evolve

controllers. The environment dimensions can be seen on figure 5.45. The evolutionary

setup uses the exact same parameters as in section 5.4, with the exception of the max

number of generations, which is now 10, and the number of individuals, which now is 5.

This reduction in the number of generations and individuals used is due to the high cost

of evaluating the robots in reality (3 weeks were necessary to run all tests). Distance is

measured manually on the environment and time is measured using a stopwatch. The

maximum time allowed (T ) is 300 seconds (5 minutes) per evaluation (each evaluation

takes around 15 minutes to complete). In [74] the process of measuring both variables

is shown. As always, the fitness function portrayed in equation 5.5 is minimized. Figure

5.46 shows an individual run in the l⊕ r environment. The best individuals obtained can

be seen in [74].
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Figure 5.46. Robot moving in the l ⊕ r environment in a 3 minute evaluation. Frames go from
left to right starting in the upper-leftmost one.
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Figure 5.47. Performance of controllers generated using 4 executions of HAEA and a simulated
seed for real EMERGE modules. Bars show the inter-quartile range.
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Results show that some simulated individuals transfer better to reality after the re-

duction in the number of modules and the change in the module movement range, as can

be seen from the performance of the initial population in figure 5.47. In spite of the re-

duced number of generations and individuals, in some cases, HAEA is able to make some

individuals reach the exit of the environment. But, in general, it is not able to improve

the initial population fitness by much.

The best controllers are not always repeatable, that is, they travel similar distances in

around the same time each time they are tested under similar conditions. However they

not always reach the exit of the environment, even if they did in the evolution run. When

the environment is changed, individuals that traveled far in the training environment (l⊕r)

are able to also travel consistently in the other combination (r⊕ l). Some controllers that

performed not that well in the training environment are able to improve in the other

combination environment as can be seen on figure 5.48, mainly due to them producing

movements more suitable for this other combination from the start. Again, problems with

irregular friction forces, magnetic forces, and small differences among modules affect the

capability of the adaptation mechanism to improve controllers. In addition, the reduced

number of individuals and generations used also hinder the capacity of the evolutionary

algorithm to find better controllers.

5.7 Conclusion

In this chapter various experiments testing the locomotion training framework of chapter

3 are described. Results show that the framework is able to make a modular robot with

and without sensors move in different environments.

The specific way in which primenvs in the configurable environment model are used in

conjunction with evolutionary algorithms affects the resulting controllers, even when only

part of the controller defined is being used. This is the case for the tests of section 5.2, in

which controllers using only the CPG coordination mechanism are evolved in sequences

of primenvs or in separated primenvs related only by an aggregative measure of fitness.

The primenvs presented in sequence showed more consistency when generating controllers

that exited all primenvs used. The specific sequence of primenvs also affected resulting

controllers performance in different environments made from joining primenvs, hinting

that some environments are more difficult to travel in than others, an idea that is worth

exploring and for which tests can be easily defined using the configurable environment

approach. It can be seen that when using an aggregating measure of fitness, the average

primenv fitness can be a deceiving measure, but in this case it performs better than the

worst primenv fitness measure in evolving controllers capable of reaching the exit of all

primenvs in all executions. This may be due to the worst primenv measure giving bad

fitness to controllers that perform well in almost all primenvs but perform poorly in one.

This condition is relaxed with the average primenv fitness measure by which this kind of

controllers get a better fitness.
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Measuring the generalization ability of controllers generated using the locomotion

training framework allows to study the conditions (environment used for training, adapta-

tion mechanism parameters, etc..) that produce more capable controllers. Generalization

ability is measured in a set of special environments built using all possible combinations

of primenvs.

As stated before, the more features of the environment shown to a training controller

the better its performance in variations the environment built using the same features.

This is confirmed also in section 5.3. Controllers trained using only one combination of

primenvs are not able to generalize as well as controllers trained using more combinations.

Well coordinated movements turn out to be very important for controllers using sen-

sors to improve their generalization ability when being adapted. Controllers with sensors

evolved to move from scratch perform worse (do not move as far), even on the environ-

ment used for training, than evolved controllers without sensors. In contrast, controllers

with sensors evolved with and initial population built using the movements obtained in

controllers without sensors are able to increase their generalization ability slightly. This

assumption is confirmed when using the short challenge incremental approach (Section

5.5), in which even if controllers are trained in smaller portions of the environment they

fail to obtain well coordinated movements. As a consequence controllers evolved using

short challenges over-specialize to the specific environment conditions that they saw in

the last challenge.

Differences between simulation and reality make controllers that performed well in

simulation behave completely different in reality. This can be seen when transferring

some of the best controllers obtained in simulation to the real EMERGE modules. This

holds true even when controllers are evolved directly in the real modules. The effect of

the gap can be reduced by adjusting the simulated module to take into account physical

limitations of the real modules more closely, but no matter how closely adjusted, the gap

will ever be present.



CHAPTER

Conclusions and Future Work

Making a modular robot automatically learn the movements necessary to locomote in

different environments involves coping with issues inherent to this kind of robots. For

example, since modular robots can be reconfigured, the morphology of the robot can be

arbitrary and not known beforehand. Locomotion includes coordinating different parts of

the morphology (the modules), to move in a certain direction. It also involves adjusting

the movements of the robot based on sensor information coming also from the modules,

which can have an arbitrary set of sensors. In this context, the control and learning

strategies used for tackling this problem in this work allow a modular robot to move in

different environments regardless of its shape or sensing capabilities.

To achieve this, previous control and learning strategies were reviewed. Previously

existing controller designs and automatic controller generation strategies have, in most

cases, only been tested with a small number of sensors in pre-specified positions. This is

mainly a consequence of the explosion in the number of controller parameters that appears

when working with a high number of sensor sources and different morphologies (Chapter

3). This not only affects controller designs but also the different learning strategies used.

For instance, the arbitrary morphology of modular robots makes providing examples to

supervised learning techniques a very difficult task, since ”good” movements for some

morphologies are counter intuitive. Classical unsupervised learning also presents a prob-

lem: assigning reward and defining state-action pairs is not straightforward (which sets of

sensor inputs, different from others, can be considered a state?). Thus, a simpler way of

telling that it is doing well and also allowing the controller some freedom of action to get

the reward, are desirable features in an adaptation/learning technique.

Locomotion Training Framework

This work proposes a locomotion training framework for modular robots, composed of four

main parts: (1) A control strategy, capable of moving a robot in different shapes with an

125
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arbitrary set of sensors, (2) an adaptation mechanism , which uses evolutionary algorithms

to adapt controllers to different environments, (3) a configurable model of the environment

which allows the framework to train robots in different features of the environment, and

(4) a modular robot platform, which is easy to assemble and open for anyone to use and

modify.

• Control Strategy: Controllers are composed of three main parts: the first part

is a coordination mechanism, which uses a distributed technique (CPG) to asyn-

chronously coordinate neighboring modules, determining their behaviour. This

mechanism helps getting coordinated movements for different morphologies, how-

ever, some coordinated movements are more suitable to move in different environ-

ments than others. This is evidenced in the difference of performance of controllers

with sensors generated using a well coordinated seed and controllers with sensors

generated with no seed, being the first ones better than the latter ones (Section 5.4).

The second part is a sensor information handling mechanism, which aggregates and

filters sensor signals coming from all modules, and the third part is a decision mech-

anism which receives its inputs from the sensor information handling mechanism

and uses them to determine the behavior of the coordination mechanism. Different

kinds of decision mechanisms are possible (Section 3.1.3). Yet, a decision mechanism

with very complex structures, like if statements, causes problems when paired with

automatic adaptation techniques, like evolutionary algorithms. This is because it is

very difficult for these techniques to make meaningful changes that would eventually

improve the controller. For this reason, the decision mechanism complexity must

match the capacity of the adaptation technique to make meaningful changes that

improve the controller.

• Adaptation Mechanism: Evolutionary algorithms are chosen as adaptation mech-

anism due to the simple way in which to tell whether a controller is doing well, which

is a desirable feature in a learning technique for this problem, as mentioned earlier.

It also has the advantage of allowing several different controllers to be tested, as

these algorithms are population based.

• Configurable environments: Defining the control strategy is only part of the

problem. Modeling the environment and picking which features to show a robot

in training is a matter of careful consideration. As more environment features and

variations of these features are used to train a robot, the better the robot will be

able to move in similar environments. Previous works often test controllers in simple

environments like flat surfaces. In this work a configurable environment model is

proposed in order to present more complex and varied environments to a learning

robot. Although limited only to structured environments, for the sake of simplicity,

it allows an environment to be separated in its main features, which are organized in

units containing only one feature and clear boundaries. These units, called primitive

environments or primenv are then combined in different ways in a training process.
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As it has been shown, the specific way in which primenvs in the configurable en-

vironment model are used in conjunction with evolutionary algorithms affects the

resulting controllers, even when only part of the controller strategy defined is used.

This is the case for the tests of section 5.2, in which controllers using only the CPG

coordination mechanism are evolved in sequences of primenvs or in separated pri-

menvs related only by an aggregative measure of fitness. The primenvs presented in

sequence showed more consistency when generating controllers that exited all pri-

menvs used. The specific sequence of primenvs also affected resulting controllers

performance in different environments made from joining primenvs, hinting that

some environments are more difficult to travel in than others, an idea that is worth

exploring and for which tests can be easily defined using the configurable environ-

ment approach.

Another advantage of using sequences of primenvs is a reduction in the simulation

time required to get controllers that exit all environments. This can be seen in

controllers that are evaluated in primenv sequences (Section 5.2): controllers are only

evaluated in the next primenv if they exit the last one, this means that controllers

that do not move are never evaluated in all primenvs. Although the total simulation

time saved has not been tallied, in this case individual evaluations simulation time

can be reduced up to a third for individuals that do not move past the first primenv

compared to evaluations of individuals that move in all three primenvs. However,

the fitness measure used is very complicated and difficult to compare to other results.

For this reason sequences of primenvs are replaced by environments built connecting

primenvs in the same order of the sequence in subsequent tests. Future work could

concentrate in simplifying the measure of fitness for sequences of primenvs so that

it can be used to speed up results.

• Modular robot platform: Most existing modular robots to date are still in the

prototype stage. Additionally, module prototypes often use automatic connectors

and other specialized parts that are difficult to assemble. As a result procuring a

fully functioning modular robot to test in is still very difficult and expensive, and

the few cheap, open and commercial models available do not posses the sensing

or communication/control capabilities necessary to implement the control strategy

proposed. For this reason, this work also introduces a new modular robot prototype,

the EMERGE module (Chapter 4). This module prototype is designed to be easy to

build using off-the-shelf parts and its design is open for everyone to use or modify.

Thanks to the use of magnetic connectors these modules allow the quick assembly of

module morphologies that are used in this work to test the sensor capable controllers.

Reconfiguration

The use of magnetic connectors makes the assembly and disassembly of EMERGE modules

easier, which also makes evaluating new morphologies in reality easier. Taking adavantage
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of this feature, a reconfiguration method using an external robotic manipulator is pro-

posed as a practical alternative to self-reconfigurable robots and manual reconfiguration

systems. Results show that this method, although having some limitations, is feasible and

that the assembly process is enhanced by the magnetic forces, but the disassembly is hin-

dered by these same forces. A magnetic connector force analysis confirms that EMERGE

magnetic connectors produce a self centering force that helps reduce the error when align-

ing and connecting modules, but that also moves a morphology being disassembled from

its reference position (Section 4.4). This indicates that a module localization system, like

machine vision, is a must for reconfiguration using an external agent to work properly.

Future work will concentrate in addressing the system limitations and improving it to the

point of doing morphology evolution experiments fully automatic.

Generalization

Measuring the generalization ability of controllers generated using the locomotion train-

ing framework allows to study the conditions (environment used for training, adaptation

mechanism parameters, etc..) that produce more capable controllers. Generalization abil-

ity is measured in a set of special environments built using all possible combinations of

primenvs. In this way, a controller is faced with all the possible conditions the environ-

ment can offer. Using this measure of generalization and controllers using only the CPG

coordination mechanism, in section 5.3 evolutionary algorithms are found to generate con-

trollers that travel more distance than those generated by a gradient based optimization

technique (Hill Climbing) (Figures 5.14 and 5.20).

As stated before, the more features of the environment shown to a training controller

the better its performance in variations of the environment built using the same features.

This is confirmed also in section 5.3. Controllers trained using only one combination of

primenvs are not able to generalize as well as controllers trained using more combinations.

Future work may be able to determine the right amount of variation in the environment

to get controllers with better generalization ability.

Sensors

When going from controllers without sensors, used when testing the generalization measure

(Section 5.3), to controllers with sensors (Section 5.4), the sudden increase in the number

of controller parameters (from 3 to 234) shows how the curse of dimensionality creeps in

modular robot systems. Using the same decision mechanism (ANN) in all modules helps

reduce the impact of this change, which could render controllers impossible to adapt in

the long run. Better techniques that can cope with even more parameters could be used

to study the effect of using individual decision mechanisms in each module.

In this context, well coordinated movements turn out to be very important for con-

trollers using sensors to improve their generalization ability when being adapted. This
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can be seen in section 5.4 tests. Controllers with sensors evolved to move from scratch

perform worse (do not move as far), even on the same environment used for training, than

evolved controllers without sensors. In contrast, controllers with sensors evolved with and

initial population built using the movements obtained in controllers without sensors are

able to increase their generalization ability slightly. A subsequent test demonstrates that

if a manual seed, with well coordinated and ample movements, is used to evolve controllers

with sensors, the generalization ability of the resulting controllers improves more.

Even with the CPG coordination mechanism in place, if well coordinated movements

are not found before implementing sensor mechanisms in the controller, these mechanisms

may not improve the generalization ability of the robot. Future work could implement

techniques to ensure that a robot is coordinating its modules well, before using sensor

systems. This is confirmed when using the short challenge incremental approach (Section

5.5), in which even if controllers with sensors are trained in smaller portions of the en-

vironment they fail to obtain well coordinated movements. As a consequence controllers

evolved using short challenges over-specialize to the specific environment conditions that

they saw last.

This over-specialization of controllers in the short challenge approach is also conse-

quence of the simple architecture of the ANN used. As a first approximation the simple

reactive, hidden layer topology of the network allows it to be sufficient for the task of

moving a robot with incoming sensor information. However, different neural structures

(cyclic topologies, different types of activation functions, etc..), can be used to improve

the ability of the network to, for example, memorize and re-utilize movements that were

good in the past.

Reality

Differences between simulation and reality make controllers that performed well in simu-

lation behave completely different in reality. This can be seen when transferring some of

the best controllers obtained in simulation to the real EMERGE modules (Section 5.6).

The effect of the gap can be reduced a little by adjusting the simulated module to take

into account physical limitations of the real modules more closely.

Evaluating controllers in real world tests is very expensive compared to doing the

same in simulation, this is evidenced by the reduction in the number of generations and

individuals used in section 5.6 tests. In overall, the full set of tests took about 3 weeks to

run, with each individual evaluation of fitness taking up to 15 minutes, including the time

spent preparing the robot, running the evaluation itself and taking measurements.

The locomotion training framework could be fully implemented in a real setting, and

all its parts worked as expected. Robots reacted to the environment through their, more

limited, sensors and even the configurable environment model was useful to measure gen-

eralization of the evolved controllers. The only part that was not very effective was the
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adaptation mechanism, which, by the very nature of the evolutionary algorithms used,

needed a higher number of generations and individuals to work properly. This indicates

that an adaptation mechanism which uses less costly evaluations in reality would help im-

prove the limitations of this system. An adaptation mechanism with this characteristics is

explored in [41]. Future work includes using the automatic reconfiguration approach, us-

ing and external robotic manipulator, also proposed in this work, to speed up experiments

done in reality.

Wrapping up

In summary, a modular robot platform, the EMERGE modular robot, is created.

EMERGE modules are easy to build, reconfigure and repair, which allowed morpholo-

gies to be built for all the tests performed in this work, be them in simulation or reality.

This ease of use has also allowed EMERGE modules to be used in other Master and Ph.D

projects in different parts of the world [122, 41, 65].

The configurable environment approach constitutes the first time, that we know of,

that the problem of locomotion is tackled from the point of view of the environment. This

approach not only allowed for a measure of generalization to be defined, but also provided

a practical way of building primitive environments for real tests, which can be used also

for training other kinds of robots with different low level definitions. Finding out how

many combinations of primitive environments should be presented to a robot in training

for it to generalize well in other combinations could help expand the types of environment

the robot could move into and will be explored in future works. Sequence evaluation will

also be explored as it may improve evaluation time when testing robots in simulation and

reality.

Using bio-inspired techniques: sensor messages, which are a modification of hormone

inspired messages, artificial neural networks, central pattern generators, and evolution,

allowed controllers for modular robots to move in different environments while, also for

the first time, integrating, processing and in general, managing information coming from

distributed sensors in all modules of a morphology. Strategies using similar parts can be

used not only for modular robots but also for different robots that also posses several

sources of sensor information, like soft-robots, in which sensors can be defined even using

the mechanical structure itself. Of course, finding controllers that learn to manage all this

sensor information was shown to be not that easy, well coordinated movements should be

available for a sensor system of this type to improve the performance of the robots, thus

future work must look more into mechanisms to check for this type of movements.

Several types of ANNs can be used as decision mechanism, as they can make the

architecture defined behave in different ways, which is also worth looking into in future

studies. Transferring not only the controller but also the adaptation mechanism to reality

has been the subject of a master work derived from this work [40] and will also be studied

in future works. NEAT [107] and other incremental approaches will also be implemented
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in order to better manage the increase in complexity when going from controllers without

sensors to controllers with sensors.

Automatic reconfiguration was shown to be feasible using an external robot manip-

ulator and a localization system. This provides a very practical way of reconfiguring

EMERGE modules and eventually other kinds of robots made from detachable parts. The

reconfiguration strategy proposed is also a first step towards fully automating experiments,

which will help reduce evaluation time in real tests (i.e. the hardware tests in this work)

from months to days. Reality gap reduction methods can also be implemented along the

reconfiguration strategy to improve the performance of simulated controllers in reality

which will be studied in future experiments.

Finally, as a general conclusion, the architecture defined allows a modular robot, built

using EMERGE modules, to learn controllers that let it move in different environments.

These environments represent different features of a more general structured environment

in which the robot is expected to move. The controllers generated using the framework take

into account sensor information, integrating and processing it and deciding their individual

actions for all modules to locomote as a whole, regardless of morphology. In conjunction

with the modular robot reconfiguration strategy, that uses an external manipulator, robots

with different morphologies can be tested automatically in future experiments. This opens

the way to the possibility of evolving robots with different morphologies, and thus different

sensing capabilities, in completely automatic experiments performed directly in reality and

completely autonomous learning architectures for real robots.
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