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Abstract

We implement the master relationship in [12], Laplace-Fourier path in [13], and
determinant of a surface wave in [14] together to form a LY algorithm and apply
this algorithm to solve the Lamb’s problem completely. We obtain an explicit
solution formula for the Lamb’s problem in the space-time variable X-t. The so-
lution formula is given in terms of the fundamental solutions of the d’ Alembert
wave equations in 3-D and 2-D by the Kirchhoff’s formula and Hadamard’s for-
mula . Complicated 2D-3D coupling wave structures on the surface present in
the surface wave solution formula. This shows that the wave structures given in
the paper are much richer than the Rayleigh wave discussed in the original arti-
cles, [19, 9]. Further computation and estimates of the solution formula would
also be discussed in this article and then gain results consistent with the theory

in seismology.
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CHAPTER 1

Derivation of Solution Formula

1.1 Introduction

The presence of a unbounded boundary in a multi-D space domain will com-
pletely change the natures of problems without any boundary completely such
as the compressible Euler equation, compressible and incompressible Navier-
Stokes equation, Maxwell equation, etc.. Without understanding the basic wave
natures around boundary, the general practice “to find robust estimates” among
the researchers in the modern PDE for initial value problem may fail. The ne-
cessity for a new input to gain insights on the wave natures around the boundary
arouses. Such an input would become a sharp tool to help the general practice

to continue when an initial-boundary value problem encountered.

A good candidate for such a new input is the construction of an explicit solution
formula of the Green’s function for a constant coefficient problem in a half space
domain. The advantage of an explicit solution formula of the Green’s function
is that one can represent the solution of a linear or nonlinear problem by the
Duhamel’s principle in terms of the Green’s function so that the singular struc-
ture (in the space-time variable) of the Green’s function around the boundary
will pass to the solution. This may give the sufficient ansatz structure around
boundary so that one can focus on how to obtain sharper estimates for the linear

or nonlinear problems encountered. Thus, explicit formulae in the space-time
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variable might be very useful.

Our primary interest is to develop a general methodology to obtain an explicit
solution formula of the Green’s function for a half space problem. For the sake
of making this paper interesting to the majority of mathematical disciplines in
science, we choose a rather classical unsolved mathematical problem, which is
commonly known in mathematics, physics, and engineering communities, to
demonstrate the effectiveness of the new methodology, the LY algorithm, which
is a structured program for a general class of PDEs. The details of the algorithm

will be given in Chapter 2.

We choose the Lamb’s problem as a source of ideas to practice the LY algorithm.
The Lamb’s problem is an initial-boundary value problem for a linear elastic-
ity problem in 3-D half space with a free boundary condition. This problem
is an important mathematical model to study the natural phenomenon, “earth-
quake”. The free boundary value problem for linear elasticity was initiated by
Lord Rayleigh. In [19], he investigated the motion of waves on the surface by
considering a linear elastic equation for an isotropic elastic medium in a three-
dimensional half-space ]R%r with a free boundary condition at x = 0; and in [9]
Lamb proposed the initial boundary value problem:

P?u 1 T
7=V (/\(V-u)l+pt(Vu+Vu )),

¥=(xy,z) € ]R‘j’r ={(v,y,z):x>0,y,z€e R}, t >0,

Qi +A)3x Ady Ad. 0
9y o, 0 |u@yzt)=1|of, (1.1.1)

where u = u(¥,t) € R? is the displacement vector; and ® and ¥ are the given
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initial data.

The elastic properties of isotropic materials are characterized by density p (con-
stant) and Lamé constants A > 0 and ¢ > 0. Instead of solving the ini-
tial boundary value problem (1.1.1), Rayleigh considered a special solution
u(x,y,z,t) = ePt="*~ify=igZy(f, o, p) (a wave train solution in y-z plane)
to fit the boundary condition, the speed of surface wave motion was obtained
in terms of the wave numbers (f,g) in y-z plane and the Lamé constants, i.e.
p = Q( .8 A, ],t), which is a dispersion relationship. This surface wave mo-
tion was named after him as the Rayleigh wave in physics; and indeed such a
surface wave motion is a generic physics phenomena. In [9], Lamb continued
to investigate the structure of the solution of the initial boundary value problem
for (1.1.1) in the transform variables and related the Rayleigh wave to the phe-
nomenon in seismology, the earthquake. This problem became a well-known
problem, the Lamb’s problem, in the seismology, geophysics, mechanical en-
gineering, etc.. One can find related references for the Rayleigh wave and the
Lamb’s problem in research articles and textbooks in physics, geophysics, me-

chanical engineering such as [10, 1, 17, 2, 4, 8, 11, 3, 18, 20, 22].

The system (1.1.1) is a hyperbolic system in 3-D half space domain. Though
there were many works for linear hyperbolic systems in half space domain, for
examples, [6, 16, 21], the definite structures of the surface wave for the system
(1.1.1) were never been obtained before 2011. The first key step towards this
definite surface wave structure was obtained in [12]. The fundamental solution
was used to convert an initial-boundary value problem into a problem with an
inhomogeneous boundary value problem together with zero initial data so that
an intrinsic relationship among the boundary data in terms of transform vari-
ables was discovered. This step also works for the system (1.1.1). One can use

the fundamental solution to convert the system into the following form:
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02 A+2u u
—a— V(V-a)+ =V x(Vxa)=0, 1.1.2
Sz V(Y L (v xa) (1120
a(%,0) = 9;a(¥,0) =0, (1.1.2b)
(2u+A)oy Ady A0,
uoy uoy 0 |a0,y.zt) =gy zt), (1.1.2¢)

Uo; 0 poy
and g; (1, z, t) is a given function in terms of initial data u(x, y,z,0) and u;(x, y, z, 0).

Then, one introduces the transforms

(

a(x,in,il,t) = Fla](x,in,il,t) = //IRZ a(x,y, z,t)e‘iy”_izgdydz,
a(x,in,il,s) = L[a](x,in,il,s) = /Oooé(x, in,ig, t)e *dt,
J[a](¢,in,iC,s) = /Ooo a(x, in,ig,s)e_xédx.

(1.1.3)
Then, similar to [12], by (1.1.2a), (1.1.2b), and

lim IL[a](x,in,i{,s) < oo for each given (17,{,s) € R x R x R}

X—00
together, one obtains an intrinsic algebraic relationship between the Dirichlet
data IL[a](0, in, i, s) and Neummann data IL[a,] (0, iy, iC, s), which is the mas-

ter relationship:
M(in, i, s;1L[a](0,in,il,s),Llac](0,in,if,s)) =0,

where the system 9 is linear in IL[a](0, in,i{,s) and IL[ay](0, ix,iC,s). This
system of linear equations and the transform for (1.1.2¢) together give rise the

explicit solution of (IL[a](0, in,i{,s),L{ax](0,iy,i{,s)) in the transform vari-
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ables as follows

S11(in,iC,s) Si2(in,iC,s) Si(in,il,s)
L{al (0, in, iz, ) So1(in,iC,s) Sxm(in,iC,s) Sas(in,il,s)
o = | Ss1(in,iC,s) Ssa(in,il,s) Ssa(in,ig,s)
ad0im169)/ .o Su1(in,i0,s) Sualin,it,s) Ssa(in,if,s)
Se1(in,il,s) Sex(in,ig,s) Ses(in,ig,s) s
(1.1.4)

Here, the symbols S;; are given by explicit rational functions,

Si(in,ic,s, &, ¢r)

U 8i(in, it,s,ér,81)

in iy, if, s, and roots ¢ (in,i{,s), ¢r(in,il,s) of characteristic polynomial

p(&,in,iC,s) of the system (1.1.2a), where

(

p(&,in,iC,s) = pr(E,in,il,s)*pr(E, in,il,5);
pr(C,in,ic,s) = (u&* — u (1> + &%) — 5%0),

pr(§ in,i¢,s) = ((A+2p)G% — (A +2p) (* + 0%) — s%p) ,
&t = \/;72 +{2+5%/c%, o7 = \/% . speed of S-wave,

&L= \/,72 + 72+ SZ/C%, L = 1/)‘t#: speed of P-wave.

The symbols ¢ and ¢ implicitly represent the differential equations at x = oo,

and similarly one can identify the denominator S?j(iiy, in,s,&r,¢r) as an im-
plicit balance between PDE at x = oo and boudary condition. It is a common
sense in science to make every quanitities into the same UNIT in order to make
comparison. Now, the only unit in the problem within our imagination is poly-
nomial. This concept leads to characteristic-non characteristic decomposition
to regularize the denominator Sgb (in,il,s,Cr,CL) into polynomial in the LY
algorithm. One decomposes the symbols S, into the form:

Sw= Y (Cub;mn(iﬂzig) N nab,-mn(iﬂfiCrS)) <3s§L)m (aséT)n’

0<m,n<1 @(iij, if, 5) S S
(1.1.5)

IL{gy] (i1, i, s).
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where Cyp., (i17,10) and ngp.p, (i1,1C,s) are polynomials in ix, if, and s of
degree less than 4, and the polynomial D (i, i{, s) can be realized as an explicit
balance between PDE at x = co and the boundary condtion in the same unit.

We also define it as the determinant of the Rayleigh wave:

3
D(in,ig,s) = [1(s*+ ¢ (P + %)), (1.1.6)

j=1

where

_ su_23/A-3v3/Q  23/A+3V3V/Q

€1 =1/ 3 303 (A+2p) 303(A+2p) 7
I8p (—1-iVB)/A-3VBYD  (—1+iV3)Y/A+3v3/Q
Cy = 30 303 (A+2p) - 303 (A+2p) /
o= o8 (C1HVE)Y/ABVIVG (-3 V/AVEVE  (1.1.7)
3=\ 3 303 (A+2p) 30%(A+2u) !

A= 180174 — 11u) (A +2u)?,

Q = o2 (A +2u)3 (1143 4+ 4A%u — 9Ap? — 1043) .

\

The critical value o* of the Poisson ratio m is
1 /194 + 57+/114 55
O’*EE 2—|-\/ ;_2/3\/ — =0.263082....
{/ 2 (194 + 57\/114)
(1.1.8)

All ¢; are real numbers when %A /(A4 u) < o*. Two ¢; are complex numbers

when JA/(u+A) > o*.

By completing the LY algorithm given in Section 3, we obtain the solution for-

mula of the surface wave:

Theorem 1.1.1. [Surface Wave Formula] For the problem (1.1.2), the surface
wave (a(0,y,z,t),ax(0,y,z,t)) would has three expressions due to different
Lame constants.

The solution formula:
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Case. s\ /(p+A) < o*.

a(0,y,z,t)
ax(0,y,z,1)
3
Z Cif}mﬂ (a]/’ aZ) + Z Ul (]/; Z, th) * Nij;mn;kl (ayr az)
0<m,n<1 k=1 (yzt)

x W' (y,z,t) = W9 x x gp(y,zt). (1.1.9)
wan PEWED T(y,z,t>}6x3<y,z,t>g ez

Case. s\ /(p+A) =o*.

a(0,y,z,t)
ax(0,y,z,1)

= Y. Uo(y,z o) (yﬂ;t)\WT(y,zft)( * Wr - Nijmnko(9y, 0z, t) g(y,z 1)

0<m,n<1 iz yzt) 22
1sks3 6x3
3
+ Z Cif?m” (ay’az) + Z Ul (]/; Z, th) * Nz’j;mn;kl (ayz az)
0<m,n<1 k=1 (yzt)

x W'(y,z,t) » WH x x g,(y,z,t). (1.1.10)
win WEWE T(y,z,t>}6x3<y,z,t>g ez

Here, ¢jjun(i11,10), Nijmnx1(i,10), and Nijpuxo(in,iC, t) are all polynomi-
als in (n,{) with degree less or equal to 4 generated by the LY algorithm,
and Njjuux1 is a polynomial in t of degree 1. The functions W (y,z,t) and
Wr(y,z, t) are defined by

Wi(y,zt) =2Wq(0,y,z,crt),

Wr(y,zt) =2Wy(0,vy,z,crt).

Here, Wy (x,vy,z,t), Uo(y,z,t), and U1 (y, z, t) are the solutions of the d’Alembert
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wave equations in 3-D and 2-D as follows

( ( (

B -RWo=0, | @-%-RU=0, |@-2-2u =0,
Wo(x,y,2,0) =0, 9:Uo(y,2,0) =0, 0:U1(y,z,0) = 5(y)d(z),

0Wo(x,9,2,0) =551, | Unlyz0) =)o), | Uily,z0) =0
(1.1.11)

and where ( * ) is the convolution operator over the domain R? x R,
vzt

Case. A/ (u+A) > 0.

a(0,y,z,t)
ax(O/]//Z/t)
3
Yo | cipmn(9y,92) + Y Ur(y,z cxt) % Nijnga (9y,02)
0<m,n<1 k=1 (v.zt)

x W'(y,z,t) » WH x * ,z,1). (1.1.12)
whn VEWED T(y,z,t>}6x3<y,z,t> 8421

Here for c1 which is a real number, the symbols are similar defined as the other
two cases. While for cp and c3 which are complex numbers, the symbol U1 is
not the solution of wave equation. But we can still conclude that this formula is

also valid i.e it can be reverse to physical domain.

Remark 1.1.2. Here, the functions Wy (x, v, z,t), Uy(y,z,t), and U (y,z,t)
are the kernel functions given by the Kirchhoff’s formula and the Hadamard’s
formula by the method of descendent. They are generalized functions, the spher-
ical delta function etc. Thus, the kernel functions of (a(0,y,z,t),ax(0,vy,z,t))

are finite combinations of differential operators and generalized functions.

We will not spell out all the polynomials Cjj;y and Njjyyx in the paper, since
they can be generated explicitly by a program in the mathematica 8.0. Thus, we
will not list all polynomials except some typical polynomials, since to display

all the polynomials or not will not affect the rigorous integrity of this paper.

Remark 1.1.3. The Rayleigh wave described by the geophysics community is

8
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the native 2-D wave structure. It is corresponding to the surface waves in
(1.1.12) and (1.1.10) with (m,n) = (0,0). Theorem 1.1.1 gives the generic
surface wave patterns. It gives waves on the surface possessing a complicated

2D-3D wave nature.

Remark 1.1.4. In the third case ¢ represents the only real roots of 1.1.6. Thus
we see that when the poisson ratio is greater than the critical value there would
be four complex root of 1.1.6, but these roots would have similar cancelations

as in case 1.

With the solution formula of a(0,v,z,t) and a,(0,y,z,t) given in Theorem
1.1.1, one has the solution formula for a(¥, t) with ¥ € IR3_ by the first Green’s

identity:

Corollary 1.1.5 (Interior wave formula). The solution formula of the problem

(1.1.2) is

—Gq( X b — T Xy, T)AXdT
SR/ R CICE S PR

A+2u

—£ 0 0
¢ Y
—I—/// G1(X— X, t —T)y, I a(xy, 7) | dx.dt
0 i*ea]Ri 1( * )x 0 0 0 ( * ) *
i
0 0 5
]’lay* "l/laz*
¢ 0 P P
- / / / GiE—%,t—7)| 2= o o |a@,7)|dzdr
0 JJ%.€oR3 P
)\?JZ* 0 0

(1.1.13)

with a(0, Y+, z«, T) given by Theorem 1.1.1, where G1(%, t) is the fundamental
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solution of (1.1.1)

S S 1 Ed Ed
Gl‘]‘(x, t) = % (3xix]- (51]> W H (t — —L) —H (t - E t
1 .1 X 1 A 1 X
o E) L ey L (o )
mtpcz || cr 4rmpcy |%| cr
G()(x,t) = 8tGl(x, i’),
, 1 forr >0,
X = l%, H(r) =
Oforr <0,

(1.1.14)

With Corollary 1.1.5, one has the solution formula for the Lamb’s problem:

Corollary 1.1.6 (Lamb’s problem). The solution formula for problem (1.1.1) is

given by
(
A1) = /// Gl — R, )P(R.) + G (R — %, 1) ¥ (3)dE.,
]R+

(1.1.15)
where a(X,t) is the solution given by Corollary 1.1.5 with the given inhomoge-

neous boundary data gy (y, z, t) as the one given in (1.1.15).

The ingredients of the LY algorithm in Section 3 are given in a logical order

below:

1. A fundamental solution: to shift initial data to boundary data.

10
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2. A master relationship: An intrinsic algebraic relationship among the full
boundary data in the transform variables for a solution of differential equa-

tion with zero initial data.

3. Algebraic solution of the full boundary data in the transform variables.

4. An algebraic characteristic-non characteristic decomposition of the sym-
bols of boundary data: To decompose the symbols into a polynomial in
0sG1./s, and ds¢1/s over the ring spanned by rational functions in 7, ,
and s. The denominator of the rational function gives the determinant of

the surface wave.

5. Laplace-Fourier path: A path in the complex plane for the Laplace vari-
able s consistent of the spectrum with respect to all wave numbers. This is
an instrument to invert the symbols ds¢7 /s and ds¢7/s into waves in the

X-t domain.

The combination of ingredients (1), (2), and (3) were introduced in [12] for
the purpose to study multi-D viscous shock profile stability. The ingredient (5)
was introduced in [13] to invert the symbols of the full boundary data in the
transform variables into data in the space-time variable ¥-t. The ingredient (4)
was introduced to realize the surface wave for a linearized compressible Navier-

Stokes equation [14].

With above five components, the solution formula for any 2 x2 hyperbolic sys-
tem in a 2-D half-space domain was obtained in [5] with any arbitrary well-

posed boundary condition.

In Section 2, the preliminaries materials are given. In Section 3, we will give the
LY algorithm to conclude Theorem 1.1.1 as the main program of the paper; and

design Sections 4,5,6 as the subroutines for completing some details described

11
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in the LY algorithm.

The LY algorithm is also successfully implemented to the study the pointwise

2-D wave scattering over viscous shock profile, [15].

1.2 Preliminary

In this section, we first list some basic properties of Laplace and Fourier Trans-

form.

Proposition 1.2.1. For any g,h € CZ[0,00) with the property at g( ) =10
for k € N U {0}, then their Laplace transforms G(s fo t)dt and

= [y e St f(t)dt satisfy

9;G(s) = — /000 te™*"(g(t) + cod(t))dt for any ¢y € R
GIF(s) = [ gty fat, (000 £0) = [ (e~ D) (e

/OOO e~stel(t)dt = s"G(s),
| Jo et fri (Dt = s"F(s) — Ty s'ap 1 £(0).

(1.2.1)

Proposition 1.2.2. For any g € C[0,00) and G(s) = [; e S'g(t)dt,

_ L st
q(t) = 5o /Re(s)_oe G(s)ds.

Proposition 1.2.3. For any G(s) analytic in s € Re(s) < 0 with the property

that there exists cq such that fRe(s):x |G(s)|ds < co forall x > 0, then

1 st _ .
— /Re( | CIG (s = 0forait <0,

and G(s) is the Laplace transform of the function g(t) given by

_ L st
g(t) = ./Re(s)_oe G(s)ds.

27Ti

12
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Proposition 1.2.4. Suppose that § € L*°(0,00) and its Laplace transform
G(s) = [y e *'g(t)dt is a rational function of s. Then,
Res G(s) =0.
G(s*)=0
Re(s*)>0
s=s*

Proposition 1.2.5 (Fourier Transform). The Fourier transform of the solutions

of the d’Alembert wave equations given (1.1.11) are

( A
e sin(4/¢2+n2+ 72t
/// \ e"xé_lw_lzgwo(x, y,z,t)dxdydz = ( A‘: e ),
R /C’Z + ;72 + €2

J[ e Uy, 2 gz = cos(y /2 + 2 1),
I in(</n2 - 72
// e WY, (y, 2, t)dydz = sin(vin® +¢ t).

Proposition 1.2.6. Let f be a function defined on R?, and satisfies

f(%)=f(%]) forxeR?

then

£ = 5 [ FOJo(ki) Kk,

where F(k) is the Fourier transform of f, Jo is the Bessel function of the first

kind of order 0.

Proposition 1.2.7 (Orthogonality of Bessel function). Let [, be the Bessel func-

tion of the first kind of order v, then

* / (k=K
/0 Jo (k) Ju (K'r)rdr = == —=

1.3 LY Algorithm

The LY algorithm will be given as a logical sequence to yield Theorem 1.1.1.

i. Fundamental Solution, Shift Initial Data, and Transforms

13
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With the fundamental solution Go(%¥,t) and G1(%,t) of (1.1.1) given in
(1.1.14), one can shift the initial data in (1.1.1) to the boundary data to

obtain the new function a (¥, t) as follows:

AG ) = ///RS Go(F — %o, )O(Fs) + Gy (F — Fo, ) ¥ (R)dRs,
+

a(%,t) = u(x t) — A(%,t).
(1.3.1)

The function A(%,t) is a given function in terms of ¥ and ®; and the
variable a satisfies (1.1.2) with the inhomogenous boundary condition at

x = 0 given in (1.1.2¢) with g (y, z, t) defined by

Qu+A)dx Ady Ad,
gy, zt) = — §dy wy 0 |A0yzt). (132
1O 0 uox

We reserve two notions for the Dirichlet data and Neumann data:

D(in,iC,s) = L[a](0,i7,i(,s),

N(in,il,s) = LL[ax|(0,in,i{,s).

(1.3.3)

The system (1.1.2) in the transform variables is

—(@2u+A)E —(ptA)in —(u+A)ig —(2u+A) 0 0
M~]][a]:<(y+)\)i11 —uf 0 )D+< 0 —u 0>N,
—(ut+A)ip 0 —ué 0 0 —p
(1.3.4)
where
ps*—(2u+A) g —(A+p)icy —(A+p)ict
M= —(Atp)icy  pSPpEHH2pA) Pl (A+u)ng ,
—(A+p)ict A+ PG H2p+A) g
and boundary condition in the transform variable is
0 inA iCA 2u+A) 0 0
imu 0 0 [D+ 0 u 0| N=L[g]. (135
ilu 0 O 0 0 u

By multiplying M~ to (1.3.4), one has

14
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1l

1 —(@u+A)8 —(ptA)in —(u+A)ig —(2u+A) 0 0
Jla] =M ((—(MA)M —ué 0 )D+< 0 —pu o)N)

—(u+A)in 0 —HUg 0 0 —#
adj(M) uAA)E —(p+A)in —(u+A)ig 2y+)\
= —0 (( (n+A)in  —pg 0 ) D + ( —Pl 0
p(G,in,ig,s) (u+A)in 0 —ué 0 —u

= soln(¢, in,iC,s; D,N), (1.3.6)

where p(¢,in,i,s) is the determinant of the matrix M and pr(pyr) is the

characteristic polynomial for the transverse (longitudinal) wave:

p(gl iﬂ,iC,s) = det(M) = PT({:; i17, iC,s)sz(g, 1'17,1'6,5), (1.3.7)

where
pr(&in it s) = (ng? =y (n? + %) = %),

pL(&in,i0,s) = (A +2u)& — (A +2u) (1% + {%) — s2p) -
(13.8)

Remark 1.3.1. The parameter x does not show up in J[a] due to the fact that
the initial data was set to be zero. It is a very important initial step in this

program.

Well-Posedness, Master Relationship, and solution of boundary data in

transform variables

The function soln is rational function in ¢ so that one can perform the in-
verse transform in the x-variable for given (77,{,s) € R x R x Ry
Lia](x,in,i{,s) = Y. e5**Res soln(&,iy,i, D,N). (1.3.9)
pEainics)=0 ¢
The well-posedness assumption:

For each (17,{,s) € R x R x Ry, the solution a(¥, t) satisfies

limsup |IL[a](x,i7,il,s)| < oo. (1.3.10)

X—00

This well-posedness assumption will exclude the exponential growth com-

ponent in (1.3.9). It gives rise to the following Master Relationship:

15
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Definition 1.3.2 (Master Relationship). For each (7,{,s) € R x R x Ry,

0 = M(in,if,s;D,N) = Res soln(F, iy, if,s;D,N :

(7,1, 5D, N) = Res soln(g,i,i¢, ;D N)| oo
Re(g:)>0

(1.3.11)

The master relationship (1.3.11) and the boundary condition (1.3.5) form
an algebraic system for D and N. One obtains the solution

S1 S12 S13

So1 S Sx

D\ S31 Sz S33 .
(in,il,s) = Ligy(in,il,s), (1.3.12)
N S Si Ss3
Ss1. Sz Ss3

Se1 Se2 Se3

where the entries S;; is a rational function in i7, i, s, {1, and ¢

Sij = Si(in,ig,s, &r, &)/ Si(in, iC,s, 81, 8L),

C’T = /172 + 52 + %SZ — \/172 _|_€2 +82/CT2,

Eulin it,s) = \ /1> + 0+ gfxs? = VP P 52 cl?,

pT(gT/ ”7/ iC/S) = PL(CL; ”7/ Zgz S) = 0/
(1.3.13)

and S;’j(in, i¢,s,a,b), Sfj(in, i, s,a,b) are polynomials in 7, {, s, a, and b.

Remark 1.3.3. In Section 4, we will give the expression of matrix (S;j)x3.
At least, we will write down the rational function Sy,(iy,il,s,a,b) i.e.

Sh,(in,il,s,a,b) /ng(iﬂ, i¢,s,a,b) explicitly.

iii. Characteristic-non characteristic decomposition of the symbols S;;, De-

terminant of Rayleigh Wave

16
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The symbols 1/5?].(1'11,1(, s,¢r(in,il,s),¢r(in,il,s)) are not local ana-
lytic function in (i#, 17, s) around (0,0,0). Algebraic manipulations using
the specific form of the characteristic polynomials pr and p; are carried
out to obtain the decomposition of the following form:
.. . nj. (i77,i§,5) BCL " GCT "
Sij(in,i¢,s,¢r,¢r) = ) (Cif;mn(”?f ig) + —57 ) ( S =)

0<m,n<1 @(177, if, S) s S
(1.3.14)

where D (i1, 1, s) and ;.. (117, 1, s) are polynomials in 77, {, and s only;

and the degrees of the polynomials in s satisfy

deg (i i¢,5)) < deg(D(in, i),
and ¢;j,p (i17,1) is polynomials in 77 and { with degree < 2.

Definition 1.3.4. The polynomial © (i1, i{, s) is defined as the determinant
for Rayleigh surface wave given by (1.1.1). The terms ds¢1 /s and dsC7/s

are defined as the symbols of the interior wave on the surface.

This notion and decomposition were initiated in [14]; and one can realize
1/9(in,iC,s) as the symbol of the differential operator D (d,, 9z, 9) 11t
leads to the consideration of the roots of D (i1, i(,s) to recover the wave
motion structure. The structures with convolution to ds¢; /s and dsC1/s
in (1.3.14) were never been recognised in any physics, geophysics, or me-

chanical engineering literatures. The determinant D (i, i, s) is:

D(in,ig,s) =
2 3
6 ol (.2, 2\ 4 U\ 3A+4p /5 a\2 o U\ A+p (o 03
s+8p<17 +3?)s +8(p) s (72 +2%) s*+16 ; A+2y<’7 +32).
(1.3.15)

The determinant ® can be factorized

into

17
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1v.

3
D =[]+ (" +2%),

where cj are listed below:

and

A= 3171 — 1) (A + 2u)?,

(1.3.16)
j=1

8 23/A-3v3/Q  23/A+3V3/Q

30 3p3(A+2p) 3p3(A+2u)

p (-1-iV3)/A-3V3/Q  (~1+ivV3)Y/A+3v3/Q

30 303(A+2p) 3p3(A+2u) ’

8 (~1+iV3)Y/A-3vV3/Q  (~1-iv3)}/A+3V3/Q

30 303(A+2p) 3p3(A+2u) ’
(1.3.17)

Q = ubp™2 (A +2u) (1113 + 4A% — 9Ap® — 104°%) .

The classification table of the values clz is:

‘i 3 3
2(#” < 0" | Q < 0| positive | positive | positive
2(141A) = 0" | Q =0 | positive | positive | positive
Z(P[\—JFA) > 0% | Q > 0| positive | complex | complex

(1.3.18)

The critical value o, which is given in (1.1.8), has been found in different

articles from the secular equation produced by Rayleigh.

Remark 1.3.5. In Section 5, we will use the Euclid algorithm to perform the

decomposition (1.3.14). The polynomials ¢;j;, and 0y, can be computed

explicitly by Mathematica 8.0; and they are polynomials of degree less or

equal 4.

Inversion of surface wave propagator L ! [Sii].

By the decomposition (1.3.14), the operator IL ! [Si]-] 1s decomposed into

LSy, z,t) =

)3

0<m,n<1

&l

261

18

{ (Cij;mn(ay’aZ) +L7 {

)m} * L—l{(aﬁ)n] } (1.3.19)
S (y,z,t) S

Wijun (1], i@S)} ) .
D(in,ig, s) (y.2t)
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In this decomposition (1.3.19), the operator (Cij;mn (9y,0z) + L1 [M} >

D(inigs)
is identified as the native 2-D wave (Rayleigh wave); and the operators

L= 1[9s¢1 /5] and IL=1[9s¢1/s] are identified as the 3-D body waves on

surface.

A The inversion of the Rayleigh Wave (Native 2-D wave)
a Complex Rayleigh roots (When %A/ (H+A)>c").

A

v

(0,0)

Figure 1.1: Poles with positive real part

To obtain L ! {%] one needs to compute the poles of %
in s. The pole of the rational functions are at the zeros of ©. Then,
from the table (1.3.18) one has that when the Poisson ratio satisfies
M—Jﬂ\) > 0%, the coefficients c% and c% are complex conjugates. Thus
the poles would be two couples of conjugates and symmetric with re-

spect to i axis, which are apart from the imaginary axis.

Casel. The figure above explains the poles in the right half space. In
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this case, the Bromwich integral should be integrated along the path
to the right of the poles. However, as the poles of ¢, and c¢3 come from
the rationalization of the determinant of the formula, the residue of
these two poles would be zero. Thus the integral path of Bromwich
integral can be switched to the line on the left. More precisely, we can
use the imaginary axis as the integral path. Then we see this integral

would only contain ¢ part and the integral along branch cut.

Case2. For the two poles in the left half space, one can compare
their coefficients with the coefficients of the two poles in the right half
space. Then, as the symmetric property of these poles, the contribution
of the two conjugate poles in the left half space would be canceled just

like the two in the right half space.

Then we can conclude that there would be no instability terms in the

solution formula and thus our formula would still be valid in the case

A *

b Real roots (When 1A/ (A + p) < o).

20
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v

Figure 1.2: real roots

When the Poisson ratio A/ (2(y + A)) < 0y, all roots s of © = 0 are
pure imaginary number. For any K > 0,

— / Rl Res o270 4 Res oSt L2
27Ti JRe(s)=K Qij k=1 \s=ick\/ (12+(?) gij s=—ick\/ (1*+2) gij

3 . i :
— P Nij;mn}kO(i;/]/ ZC/ t)COS(Ck \/Mt) + Nij;mn;kl (117’ lg) Sln(Ck\{/]\/?_ng)t) .

(1.3.20)

Case. JA/(A+p) <o
When the Poisson ratio A /(A + ) < o*, one has that Nijsmnxo = 0

and that Njj.,,.k1 is a polynomial in 77 and i with degree < 3 so that

L st Wijsmn 3 - . Sin(ck (772 + Cz)t)
i /Re(s)—K1 e ol ds = k; Nz];mn;kl(lﬁflg) 2+ 22) )
(1.3.21)

From this and Proposition 1.2.5, one has
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—1 | Mijsmn // ly’7+lZC / Stnij?m”d dnd
L { } 87T3 R?2 Re()=0 D e

= Z Nijmnx1(9y, 02)Ur(y, z, cit).
! (13.22)
Case. g0/ (A +pu) =0o*
The coefficient Njj ;5 is a polynomial in iy and i of degree < 4

and in particular Nj;,,;, ko 1s polynomial of degree 1 in ¢ such that

1 ot Wij;mn
= _Zmn g
27ti / Re(s )fKe o v

- )
}: ( ijmnsxo (111,10, £) cos(cxr /7% + 02t) + Nijmna (i7,10) Sm(%g t)> :

(1.3.23)

From this and Proposition 1.2.5,

—1 | Wijsmn // W’H—lzg / Stnij;m”d dnd
]L[ 1 873 J Jr2 Re()OeQSUC

3
=Y Nijmnio(9y, 0z, £)Uo(y, z, ckt) + Z Nijannx1 (9y, 02) U1 (Y, z, cxt).

(1.3.24)

Note that the polynomial Nj;.,.,.x0(i7, 18, t) as a polynomial of degree
one in f is due to double roots of c,. This resonance causes that there

is a linear growth factor f for the case A/ (A + p) = o*.

Remark 1.3.6. As in the third case, the main part is the c; part and the
computation of ¢; part is same as the computations in other two cases,

we will only show the inverse transform of the case %/\/ (M+A) <o

B The inversion of the 3-D interior wave on surface (Native 3-D wave)
To perform the inversion IL.~1[95¢; /s] and IL.~1[ds¢7/s] we will need
to introduce the Laplace-Fourier paths as follows.

For each fixed (77, {) the Laplace-Fourier paths for {1 and {1 are defined

22
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as follows:
’W = {s = s7(&,in,i0)|&r(in, i, s7 (&, in,iQ))
7 = {s = s7 (¢ in,i0)|¢r(in, i, s7 (&, in, iC))
T} = {s=s/ (& in,i0)|¢Llin,ig,sf (& in,i0)) = if, { e R},

T = (s = sy (Gin i) (in, ig, sy (G in,i0)) = i€, E € RY Y.
(1.3.25)

if, £ e R},

if, £ e RTY,

There are two paths Ry and R7:

Rr =iR\ (It UT;),
(I UTr) (1.3.26)
Ry =iR\ (T} UT]).
We re-decompose the path integral along Re(s) = 0 as follows.

/ estaséT(iTI’ lg,S) ds = </ + 4+ > eStaSCT(iTII igls) ds
Re(s)=0 § i Jr; JRr s ’

T

(1.3.27)
/ estasgL(”’/lgs) ds — (/ + + ) estasgL(lﬂ/ IC,S) ds.
Re(s)=0 r+ S

s FoJrp JRe
(1.3.28)

From the above combinations of path integrals, one defines
( 1 iyt 9sr (it i, 5)
— ny+igz st 9s
W1y, z,t) = e //]Rze /WUFT e s dsdndl
1 i 1 d CL(”/]/ ZZ,S)
= ny+igz st 9s
Wy, z,t) = . //]RZ e /F{UFL e s dsdndg,
1 P 9sCr(in,iC,s)
- ny+igz st 9s
RHr(y,z,t) = " //]Rze /RTe s dsdndg,

1 iqy—l—i@z/ stasgL(iﬂrigrs)
8.3 //11{28 - e dsdnd(.

(1.3.29)

%L(y,z, t)

Lemma 1.3.7. The notions #7(y,z,t), #1(y,z,t), Z1(y,z,t), ZL(y, 2, 1)

given in (1.3.29) satisfy
WT(]/, z, t) — %T(yl z, t) — WO(OI yl z, CTt)/
(1.3.30)
(Y, z,t) = #1(y,z,t) = Wy (0,y,z,cLt).
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We will leave the proof of Lemma 1.3.7 in Section 6.

v. The completion of the LY algorithm
The decomposition in (1.3.19), the inversions in (1.3.22), (1.3.24), and
Lemma 1.3.7 together conclude Theorem 1.1.1. This gives the final compo-
sition of the explicit solution formula of the surface wave, (a(0,v, z,t),ax(0,y,z,1))

in terms of the given inhomogeneous term g (v, z, t).

1.4 Master Relationship, boundary condition, and matrix (S;j)¢3

The master relationship (1.3.11) with &, € {1, {1} will pose 6 equations, but
there are only 3 linearly independent equations. The free boundary conditions

in transform variables

0 iyA ilA (2u+A) 0 0
g 0 0 |[D+ 0 u 0|N=Lg) (1.4.1)
icu 0 O 0 0 u
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give another 3 linearly independent equations. One has the following linear

system for D and N:

—if (8% +1%) u +5%p) an(A+2p)dL C(A+2p) &1
(P +n*)pir in (G2 +17) (A+2p) +5%0) 1§ ((C*+1?) (A +2u) +s%p)
—in (> +n*) p+s’0)  (PP(A+2p) +5%) &1 gn(A+2p) &r
0 iAn iAg
iuny 0 0
ing 0 0
—ig(A+2p)81 Cnp T

(ZP+7*) (A+2u)  inguir  iCug
—in(A+2u) &r  (7Pu+s%0) Cnp (D)
6x1

A+2u 0 0 N
0 U 0
0 0 U

(1.4.2)
The first three rows are due to the master relationship, the last three rows are the
boundary conditions given in (1.4.1). The linear system gives the full boundary

data:

D\ S3s1 S3;2 Ss3 o
(in,il,s) = L{gy|(in,ig,s), (1.4.3)
N

Ss1 Ss2 Ss3

Se1 Se2 Se3
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where each entry SZ-]- is a rational function in i7, i{, s, {1, and ¢ :

"

Sij = SZ(”?I iC/S/ CT/ gL)/SZ(Zﬁ/ ZC, S, CT/ ‘:L)/

¢r = /1 + P+ 05 = /2 + {2+ 52/ cr?,
(1.4.4)

Culin it,s) = \ [P + P+ glxs? = VP + P+ /el

{ PT(CTI ii”], iC, S) = PL (gLr i77/ iC, S) =0,
For example, the entry Sy; is

—st0?Cr + 422 (T + %) p? (&L — Cr) + p (—4s2CPpCT — s*n*plT + 42 C%pCL)

2= ()t 20) A2 (Bt i) o+ 507 — A (P D) 1 (~C — 2+ E1er)
_ S5,(in,iG,s,81,GL) .
S8, (in,iC,s,é1,EL)

(1.4.5)
and we use this entry as an example to compute the polynomials Cjjpp, Wijimn,

and Nij;mn;kl-

1.5 Characteristic-non characteristic decomposition

The polynomials ng(in, i¢,s,X,Y) and S%,(in,iC,s, X, Y) givenin (1.4.5) are
assumed to be relative prime polynomials in X and Y over the coefficient ring
C[n,{,s]. The denominator ng contains roots ¢y and ¢7. These two roots are
not local analytic in the variables (i, i, s) around (0, 0,0). Due to this defect,
they are classified as characteristic roots in [13]; and one will need to remove
them from the denominators by simple algebraic manipulations introduced in

[14]. The algebraic manuplications can be achieved as follows.

By the Euclid Algorithm, one can find polynomials Q1 (in,iC,s, X, Y), Qr(in,iC,s, X, Y),
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Qr(in,iC,s, X,Y), and R(in,iC,s) such that

Qi(in,i,s,X,Y)S%, (in,iC,s, X,Y)
+Qr(in,il,s, X, Y)pr(in,il,s, X) +Qr(in,if,s, X, Y)pr(in,iC,s,Y) = R(iy,i{,s).
(1.5.1)

By this identity, one has

Szz(iﬂ, ig, S, X, Y)

B Q1(in,iC,s,X,Y)S%,(in,il,s,X,Y)

~ R(in,ig,s) — Qr(in,il,s, X, Y)pr(in,il,s, X) — Qr(in,il,s, X, Y()lpL(i)iy,ig, s, Y)

By the property that deg(pr) = deg(pr) = 2in g, there exist g7 (in,iC,s, X, Y)
and q (in,i,s, X, Y) such that

Q1(in,il,s, X,Y)Sh(in,iC,s,X,Y)
- QT(”?/ Zgl S, X/ Y)PT(”?; ZC/ s, X) + QL (”7/ ZC/ S, X/ Y)PL (”7/ 1€/ s, X)
+ noo(in, i, s) + no1(in, i, s) X + nyo(in, il,s)Y + n11(in,ig, s) XY.

(1.5.3)

Then, by (1.5.2), (1.5.3), and pr(iy,iC,s, &) = pr(in,il,s, &) = 0 together

to yield that

Saa(i 25,7, ) = " HOT ISL T ICTSL

This gives rise to

(1.54)

2
R = (4,”2 +77 + Syp) (16 (§2 + ;72)3 P(A+p) +85° (gz + ;72)2 pA(3A + 4y)p>
+ (2 +7 +RS,2f) (85 (2% + %) p(A +2p)p? +s°(A + 21)p°),
)
+17? (4 (C2 4+ 172)” H2(3A +20) + 1657 (Z2 +12) u(A + p)p +3s* (A + Zy)pz) ,
mi = =4t u(A+20) ((24+02) w+s%)

npy =nq9 = 0.

oo

(1.5.5)
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Then, substitute ¢;0ds¢; = s and {79ds;C1 = s together with (1.5.5) into (1.5.4)

to yield that

Son(in,ig,s,81,81) = ) (sz;mn+

) (M) (o

)

7

0<m,n<1
(1.5.6)
One has
np00 = na1 =0,
_ AP () u+stp) (6% + %) (A +2p) +5%p)
n22;10 - p4 7
P (4@ 272N+ 20) + 1652 (224 72) p(A + wp + 35* (A + 20)p?)
n22;01 - : (A ¥ 2‘1/1)p4
22,01 = —5-
(1.5.7)
The divisor ® is independent of , J,
D(in,ig,s)
I 3A +4u

:s6—|—8% (;72+§2) s4+8(

P

;

A+ 2u

(P +2) s+16()

(1.5

The polynomial D (i, i{, s) is defined as the determinant of the Rayleigh wave;

and it can be factorized as a product of six linear polynomials in s:

D= (s+ic1\/172—|—§2> (s—ic“/;yz-l—Cz) (s+ic2\/172+§2)
<S—i02\/172—|-52> <S+iC3\/172+C2> (s—icm/nz-i—cz), (1.5.9)

where the square of ¢ are listed in (1.3.17).

28
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1.6 Realization of decomposition

1.6.1 Inversion of the Rayleigh Wave

In this subsection, we list the integral (277i)~ f Re(s)=0+ © Stpp10/Dds to give

an example to compute the polynomial Npj.10.4s-

By the exact expression in (1.5.7) for polynomials nyy.,,,,, one has

npa0 _ 1A ((E+77) n+5%) (2 +17) (A +2p) +5%)
D ot [T (2 + (2 + 32)) '

(1.6.1)

Case. sA/(A+u) < o*

In this case, three surface wave speeds c1, ¢y, c3 are positive and distinct; and

one has
Res  1"210 — 4#(#—9#)(“2#—9#)% eicr/ P+t
s=ick+/ (124C2) 4 p4Hi#k(C12_CI%)21Ck\/’72+€2
Res etz 4e— pck)(/\+2u PN —icer/ (i)t
smice /(P Y P4 ik (e —c) (—2icen/n+?)
(1.6.2)
This yields that
1 / 5112210 i AP (p = pc) (A + 2 —pcp) \ sin(ee /(7 + )t
2710 JRe(s)=k D P} ek TTizk(c] — c3) Vi + 2
(1.6.3)
This results in
Naza0,00 = 0,
(1.6.4)

N _ | _4Pu(—p) (A+2u—pc)
22;10;1k cxp* Hi;ék(cizfci) .

Case. JA/(A+p)=0"

In this case two surface wave speeds coincide: cq, ¢, c3 > 0 and ¢, = c3. From
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(1.6.1) one has

;

Res  ost"2i0 — _417214(2%56%){%2#*90%) gier/ P+t
s=icin/ (2102 ij p*(3—c3)22icy /12 +2

Res psti210 AP p(umpet) A 21—pct) ey \/ (24Pt

.. . 7
s——ici P pH(c3—c})R2ict /1P + 2
icnA/n2472
Res pStI210 _elcz T t4’72!4(14 pcz)(/\+2y PCz)
Dij p4c2( c1+c2)

s=icay/ (12+(?)

icon/m2+02 [ _ 8in*p (}H‘3V_2PC2)
i ( V241203 (—Geatc})
ot/ (A 735) (k=pdh) (At 2u—pcs)
V@ +Ppte (e —c3)?
st 122,10 _ ge IV ty’ (F—ch) ()“"ZV—PC%)

Res et =0 —
i 42(_ 2,2
s=—icyy/ (1°+?) Y ptes(—cite3)

Le—ies [P+ 2 8in*u(A+3pu—20c3)
VP (~Gertad)
N (irﬁu(f%—%%)(ﬂ—p%)(HZV—M%))

Vg (G -a)?
(1.6.5)

This gives rise to

1 st T22:10
— e ——ds
271 /Re(s):0+ £Y)

_ 4172Pl (H — pC%) ()\ +2u — pcz) sin < 2 4 §2t>
p*cr (2 —c3) 2 \/m
_ 8tn*u (P;;C;((?%_)C(l/\:—c:y pc3) cos (02 oy th)
~ 167°p (A + 3 — 2pc}) SN (Cz n?+ §2t>
p3cy (¢2 —¢3) 2 Noae
_ 2;727’l (C% - 3C%) (]/l - PC%) (/\ +2u — pc%) sin <C2 ;72 i gzt)

E-a)? Ve

ptc3 (cf

(1.6.6)
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This results in

;

Np:10,01 = 0,
P p(u—pci) (A+2u—pci
Naz1011 = mELat v (13%(_%)2 D,
8tn?2u(pu—pc3) (A+2u—pc3
N221003 = Nogao00 =  —— n(p—pcd) (A 2u—p 2), (1.6.7)

A4
1652p (A+3pu—20c3)

Naza013 = Nazponz = —— 5> @-3)
_ 27u(cf-3]3) (p—pc3 ) (A+2u—pc3)
L pre3(ci—3)?

1.6.2 Proof of Lemma 1.3.7.

It is sufficient to give the proof for Z7 and #7, only.

For the path integral over the path Rt given in (1.3.26), one has

1 / 958 (ini8,5) | / eth \[ NN AVEIS) +C2)
271 JRy s T 27 RT\/W .

(1.6.8)

By this identity together with substituting /(72 + {2?) = # into % defined in
(1.3.29), and by the Propositions 1.2.6 and 1.2.7 together, one has

\fij [ +¢2>>]
2n2\[/ (rt[) ]0(\/@) rar (1.6.9)
47ttcT(5 <tCT a \/m)

=Wy (0,y,z,crt).

Rr(Y,z,t) =

In order to compute the wave #7, one identifies the two branches of the Laplace-

Fourier paths I"JTr and I'; introduced in (1.3.25):
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Then, it follows

/1_|+ est aSCT (”71 ZC/S) ds

S

dé (1.6.10)

B /+°° et Cnil)t 3y (in,ig, st (& in,i0)) ast (&, in, iQ)
o sy (&in,ig) 0s o
e

oo g8 5

b Semat

and

e e 0,183)
oo o5t (GOl dar (in it, s (& in i

_/ s(; — o7 (Wé,saz (&,in,iC)) 0st (iéﬂ, )4t 61
oo oo (Ginid)t

b S

This gives rise to that

. “agr in,it ) ds

+ r* S
oo o5t (init)t oo g (Gimit)t
-k FEwnotth sEmo
o s (& in,iQ) 1@ st (& in,i0)
SV () teo iR (AP X
/ idé + / o idé
§2+,7 +22) 0 —z\/ﬁ (&2 +12+22)

. N 2
:2/0+ zsm<\/y ¢z +n? +C)t>dé

\/B(éz+n2+€2)
/+oo 1sm (;‘24—17 +¢?) >d§
=/ \/p ,

«:2+11 +2?)
(1.6.12)
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This identity and Proposition 1.2.5 conclude that the component #7 satisfies

_ 1 iny+igz st9sGT (117,10, 5)
W7y, z,t) T //]Rze /r;urT e fdsdiydé

1 . +ooisin(\/£((fz+172+cz)t> A
~ 873 //ﬂ{zeqﬁé /—oo \/% Z§2+W2+§2) acdidg

=Wy (0,y,z,crt) .
(1.6.13)

The lemma follows for #7 and Zr.
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CHAPTER 2

Computation and Estimates

2.1 Introduction

In the previous chapter we derive the solution formula of the Lamb’s problem.
Especially, we obtain the formula of the boundary data. Then we can reverse
each term into time-space domain and combine them by convolution with re-
spect to time and space variables. However, as our main goal is to construct
the Green’s function of Lamb’s problem, we need to combine the boundary op-
erators with the interior radiation waves, then our formula would have several

drawbacks:

e The solution formula (1.1.15) expressed in matrix form for Lamb’s prob-

lem is not clear enough for further analysis.

e There are too many convolutions and this would result in difficulty for

estimates.

Thus now we need to recombine the formula for further estimates. For sim-
plicity we only consider the case when Poisson ratio is smaller than the critical
value and we also suppose the formula is independent of variable z and thus the

half space system will become a 2-D system. In the 2-D system we can avoid 3-
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D Kirchhoff’s formula and thus the computation would be much more feasible;

moreover the wave structure on the boundary (dimension 1) will remain existed.

The 2-D system can be written as

azu 1 T

¥=(xy) €RE={(x,y): x>0,y € R}, t >0,

2u+A)dy Ad 0
(2u+A) y u(0,y, 1) = ,
py px 0

u(%,0) = O(¥)

oru(%,0) = ¥(7),

(2.1.1)

Then we can consider the case only horizontal impulsion load initially and

rewrite the 2-D system as below,

pv = (21 + A)vyy + Uoxx + (A + 1)Uy

putt = (f + A)vxy + Pty + (2p + Aty

with boundary condition

ox +uy =0

(2u +A)uy + Avy =0

and initial condition

ui(x,y,0) =0, u(x,y,0) =0

ve(x,y,0) = 6(x — x0, ¥y — yo), v(x,y,0)=0

35
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Theorem 2.1.1. The solution of system (2.1.2) with free boundary condition

(2.1.3) and horizontal load (2.1.4) can be expressed in transform domain as

xA/ 72 u+ps2 Xy /72 (A+2p)+ps2
inle VP —e VAT

=

252

(x0+x) /17> (A+2p)+ps?
(2 TR

2529

X X 2 52
_ (o) N/ 7 ptpst (2.1.5)

Ni7re VI
2529

\//\+2y
s29

X/ (A+2p) +ps2  xy/iPptps?
NgT exp (_ : - NG )

xo/1Pu+ps?  xy/nP(A2p)+ps?
N%L exp (— 0 v — )

VA2
2,/1s*7
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X\/m X 12 (A+2p) +ps2
ViPurpste VT P/ Arape VA
5 — v VP (A+20) +ps?
252

(x0+x) 7/ 72 (A+2p)+ps?
N exp (_ : VA +2u >

252\/n? (A +2p) + ps27

X X 2 52
(¥ +2) \/ 1 ptps” (2.1.6)

Nfre v
2,/us?9

v _ xoy/P(A2p)+ps* xy/iPptps?
Nirexp < A+2p VH
29

N? Xo/ P ptps® X/ (A+2p)+ps?
LP\ g T VA2
2,/4s?9

can be found in (2.3.8) and (2.3.11).

The reflective operators NZ((;)) L(T)

2.2 Fundamental Solution of Elastic Equation

Then we consider the equation (2.1.2) in full space, i.e we want to study the

fundamental solution of (2.1.2):

PO = (2]1 + /\)Uyy + UOxx + (/\ + ﬂ)uxy
(2.2.1)

PUp = (]/l + /\)ny + HUyy + (2]1 + )\)uxx
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with initial condition

ui(x,y,0) =0, u(x,y,0) =0
(2.2.2)
ve(x,y,0) =6(x,y), v(x,y,0)=0
Lemma 2.2.1. the solution of (2.2.1) with initial data (2.2.2) is:
( xn/n2utps2 XN/ 12 (A+2p)+ps?
”7 6‘7 \/ﬁ ) \//\+2]4
‘l,[f = 252
(2.2.3)
X/ nPutps? X/ (A+2m)+ps?
\/n2itps2e VI A e VA2
~ v \/172(/\+2;4)+p52
v/ = 5
\ 2s

Proof. Make Fourier transform of y and Laplace transform of { we can change

the (2.2.1) into symbols as:

s200 — p5(x) = —(2u + A)?0 + (4 + A)inily + pdrx
(2.2.4)

s20il = (p+ A)indy — i + (2u + A)flex
This is an inhomogeneous second order ODE with source term §(x). So we

need to study the homogeneous one first:

s200 = — (24 + A0 + (4 + A)intiy + pdyx
(2.2.5)

it = (p + A)indy — pnd + (2p + A) ey

we can rewrite (2.2.5) into a matrix form if we denote u, by m and v, by n:
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0 _ (pt+M)in 10
M
_ (pt+MN)in 0 0 1
(i1, 1,0, 0)x = (111, 7,11, 9) ff“z (2.2.6)
ps” Ty
S 0 00
0 w 00

Then the eigenvalues and correspond eigenfunctions of (2.2.6) can be list below:

( .
__ \/1Pptps? | if(A+2p) ISt iy st 4
VI IR

01 = (A2u)+ps%”  2(A+2u)+ps?” 52 (A+2u)+ps? 7

oy = V 12 p+ps? E, — J__mA+2) /iy ptps? iy P Eps?
2 NG 2 2 (A+21)+p52” P2 (A+2u)+ps2" — n(A+2p)+ps?
_ n*(A+2p)+ps? _ i i i(n2p+ps?)
0-3 - —/ E - - _/ - 2 2 4 2 2 7 1
N/ A+2u n \/)\—1—2;1\/77 (A+2u)+ps 17\//\4—2;4\/;7 (A2u)+ps
oy = VP OL2)+p9 L= i p _ i(*p+ps?) 1
\ A/ A2 ! n’ \//\+2y\/;72()\+2;4)+p52' 17\//\+2;4\/172(A+2y)+p52’
2.2.7)

Then we can diagonalize (2.2.6) and then the two positive eigenvalues would
lead to instability on the right hand-side and thus, for x > 0, the coefficients of

these two terms would be forced to be zero. Then we have

forx >0

(2.2.8)

2 (A+2p)+ps?

VA2

!
w
—~
>
F)
F)
S
N—
I
o]
x
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A A A A

and then we can solve (11, 71,1, 0) as:

( X % (A+2p) +ps2 _xy/ 12 pu+ps?
P iB17(172(/\+2y)+psz)e VA2 B iAry(;yz(/\+2;4)+psz)e v
- 2ps? 2ps?
R / 172;t+p52
h— e VH (—A114/\y—2A174y2—Ap254—quApsz—Squypsz)
2,/fips? /1 p+ps?
_xy/ 12 (A+2p)+ps?
n B2 \/A+2p/ 2 (A+2p) +ps2e VA2
2052
x\/ 2 u+ps? B 12 (A+2p)+ps?
P ine VI (APAHA2AR 3 24 A lips?)  iBry/A+2un/ 12 (A+2p) +psZe VAt
2P52 \/WZVJFPSZ 2052
x/Pptps? /2 (A4 2p) +ps?
s VIE (APA+2An%u+Aps®) | (—By?A—2Bnu)e VAT2H
. v= 2ps2 + 2ps?
(2.2.9)
Similarly for x < 0
p
Ey - (i, 7,0,0) =0
Ve
E, - (i, ,1,0) = Ce” V¥
(2.2.10)
Es- (i, ,1,9) =0
12 (A+2p)+ps2
| Es- (,7,0,0) = De V'

Then we have
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( x\/ 72 (A+2p)+ps? xn/ 12 p+ps2
P iD;y(;yz(A+2y)+psz)e VA+2p B iCq(qz(A+2y)+psz)e Vi
- 2ps? 2ps?
x\/ P utps?
ao ¢ VI (Ct A 2C 2 +Cp?s*+Cry? Aps®+3Cn ups?)
2/Hips? /P ptps?
x\/ 72 (A+2p)+ps2
B D%/ A2/ 72 (A+2p) +ps2e VA2
2ps2
xy/ P ptps? T/ (A4 2u) tps?
P ine VI (=Cn?AE—2Cn2pu3/2—C \/lips?) n iDy\/A+2p/ 2 (A+2p) +ps2e VAT
2P52 \/772]4+P52 zpsz
x/ 72u+ps2 xy/ 12 (A+2u) +ps2
. e VB (CpPA+2Cnu+Cps?) | (—Dy?A—2DpPu)e VAT
\ v= 2052 + 2ps?

(2.2.11)

From 2.2.4 we note that there is only one dirac-delta function in the system, i.e
when we balance the two side of each equation in (2.2.4), we have the continu-

ous condition for 71, 11, ¥ and jump condition for 7:

(2.2.12)

\

Then we can solve the coefficients as

( A — __PVPptps?
VI (A+2p)+ps?)
B = L
VAF2u\/ 2 (A+2p) +ps? 2213
_ P/ 17Putps? 2.2.15)
T HE(A(A2u) +0s?)
D= p
\ A2/ 2 (A+2p)+ps?
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Then we obtain lemma 2.2.1. L]

2.3 Solution in Half Space

Now we turn to the half space problem. We consider the problem

pv;t = (2]’1 + /\)v;y + ]’lvgcx + (/\ + y)”?{y

(2.3.1)
puy = (p+ Aok, + puy, + (2p + A)ul,
with boundary condition
vl + u; =%
(2.3.2)
(2p + AM)uf + Avy = g2
where
— (] f Slx — .
g1 = —(vx +uy) *(xy) 6(X — X0, ¥ — ¥0) |x=0
(2.3.3)
g2 = — (2 + A)utd + A0} # () 6(x = %0, = Y0) =0
and initial condition
uf(x,y,0) =0, u'(x,y,0)=0
(2.3.4)

vi(x,y,0) =0, v"(x,y,0)=0

Then v" 4+ v/ and u" + 1/ would satisfy the original problem 2.1.2. Then we

have
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( xo\/ Putps?
pe vE
="
xo\/ 12 pu+ps? %o 72 (A42p)+ps?
_igA2p=1)\/Putps?e VI i /A 2u(P (A2u—1)+ps? e VAT
| 82 2,/is? 252/ (A+2p) +p52
(2.3.5)

Now notice that (2.3.1) is homogeneous equation thus from the computation

of fundamental solution we know the solution of (2.3.1) can be expressed as

(2.2.9). Then substitute (2.2.9) into the boundary condition (2.3.2) we can solve

the unknowns in (2.2.9) and derive the solution of (2.3.1) with boundary condi-

tion (2.3.2) and zero initial data (2.3.4).

u' =y +upr +upr +upp

where

(xg+x) 172(A+2;4)+p52
u _

. Nii eXp( VAT2u

Upp =~ 229

 (xpt0)y/nPptps?
r _ _ Npge vE
Urr = — 2529

N exp [ 0 VP22 xy/pPutps?
; LT XP \//H—Zy N

Urpr = 27

NY exp| — X \/172;4+p52 _ x\/qz(/\+2y)+psz
TL &P VI \//H-ZV

ut, =
st 2\ /1s27

Where we have the coefficients here
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N = in(A+2u) (2n2pu+ ps?) (1*(A +2p — 1) + ps?)

Nip = in (p*s*(—(A+2p)) — 2*ups*(A +2p))

—iny (202 /(A + 20 = 1) A+ 20/ 1P+ p2 1P (A+ 20) + p7)

Nip = iPu(A+2p) (1> (A +2p — 1) + ps?)

NE = in/A+2u/n?u + ps2/n2(A + 2u) + ps? (ps?(A + 4u — 1))

+i /A + 2u/ 12+ 5?2 (A + 2u) + ps? (27 pu(A 4 2u — 1))

9= AP A 20+ 52 /(A + 2p) + ps?

A (2120 + ps2)® + 2 (2120 + ps?)”
(2.3.8)

We also have the solution formula of ¢”.

v =0 + U + U+ U (2.3.9)

where
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( 2 2
(xg+x) 4/ 7 (A+2p)+ps
NY -

. 1L &P < A+ )

0 — —
LL 282y / 72 (A+2p)+ps2P

 (xp+x)\/ 7P utps?
e — _ Njge vE
T — 2,/1is?7

(2.3.10)

N7 exp [ X0 VP22 x/Putps?
. LT &XP NZE=T NG
Orr = — 29

N?. ex X \/172;4+p52 _ x\/172(/\+2y)+p52
7L &P N \/A+2y

o, = —
\ "TL N

where we have the coefficients as

(

NP, = 2 (A+2u)%2 (22 + ps?) (7*(A+2u — 1) + ps?)

NYr = /n2u+ps? (02 (A + 2u) + 272 pups*(A + 2u))

V1P p5? (207 A + 20 = 1) A+ 20 /P ps? /P (A4 200) + p)
Nip = ny/aA+2u0)/Pp+ps? (1 (A+ 21 = 1) + ps?)

N, = (A +2u)/n2p + ps? (272 u(A +2p — 1) + ps* (A +4p — 1))

D= =42 N+ 20/ P+ ps? /(A 4 2p) + ps?

A 202+ p52)” + 2 (2120 + ps?)
2.3.11)

Combining lemma (2.2.1), (2.3.7) and (2.3.10) we can prove the theorem 2.1.1.

This expression can separate the vertical and horizontal displacement into four
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parts respectively and each part can be viewed as a reflection wave with par-
ticular incoming impulsion (transverse wave or longitude wave) and outgoing
radiation wave (transverse wave or longitude wave). However, when study the
property of the solution, these formulas have to be combined together to gener-
ate some cancelation. For instance, according to the above formulae, the term s2
in the denominator represents Newton potential and the influence domain would
be infinite if we study u; L" independently. On the other hand if we combine
these formulas together then there would be some cancelations so that outside

some cone the solution would be zero, which fits the classic theory in elastic

equation.

2.4 Poisson Solid and Solution Behavior on the Surface

In seismology Poisson solid is a ideal type of elastic material with its Lame
constants to be 4 = A = p = 1. One can simply observe that Poisson solid has
Poisson ratio smaller than the critical value. We will use this special and classic
model to study the behavior of our solution on the boundary in the following. In

fact we have
Theorem 2.4.1. For initial data is of the form
d(x — xo)Heaviside(1 — |y|)
where xo >, the solution behavior on the boundary can be expressed as below

| ((up — uy) *y Heaviside(1 — |y[)) | < O(1) (2.4.1)

<~
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where

1 log (c%(t—xo) (t+ x0) —2c1ty+x(2)+y2)

12483 2014/1—c3

1 log((eat —cixo+y) (a1 (£ %0) +y) +x5)

_12+8\/§x 2C1\/1—C%

L1y V3log (¢ (3t2 — x2) — 6c1ty + 3 (22 +12))
Z X

S
Uy

(2.4.2)

2014/3 —¢c2

1, VAlog (¢ (3 ) + 6eity +3 (5 + 7))

2c14/3 — 3

2 _n_ 2
andcl—Z 75

Theorem 2.4.2. For initial data u (x,vy,0) has compact support, denoted by D,

in the the half space, the solution behavior on the boundary uy can be expressed

as below

= [ [ i (=x0,y = y0) 1 (30, 0,0) dodyo] < O(1) (243)
D

Sl
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where
1 log (c% (t — xp) (£ + x0) —201ty+x%+y2)

up(xo,y) = Oy
12483 2014y/1—c3

1 log((aat —axo+y) (e (t+%0) +y) +x5)

_12+8\/§x 2014/1—¢c3

N 1ax V3log (¢ (3t2 — x2) — 6c1ty + 3 (x3 +12))
4 2c14/3 — ¢3
1, Valog (3 (37— x) +eaty+3 (3+17))
X
4 2c14/3 — c%

(2.4.4)

2 _n_ 2
ana’cl—Z 75

Theorem 2.4.2 is a consequence of theorem 2.4.1. In fact when initial data is of
compact support on the half space, then for initial data restricted on any fixed
Xo we have the structure in theorem 2.4.1. Now X is uniformly bounded as the
initial data has compact support, thus our estimate in theorem 2.4.1 is uniformly
with respect to xg. Thus when integrate with respect to xg we can prove theorem

24.2.

2.4.1 Initial Impulsion absorption

From previous study we know that the initial impulsion would translate freely
until hitting the boundary. In other words, the initial impulsion would be sepa-
rated into two parts: one will move towards the rear of the half space and would
have a 2-D wave behavior and the other part would collide with the boundary
and generate reflection waves and surface wave. Thus our first task is to study

the time asymptotic behavior of the solution in free space which will completely
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absorb the initial impulsion. We have derived this part in the previous sections

for general Lame constants and when we substitute 4 = A = p = 1 into the

formula we will obtain

( ol =i Jy2s2 /72
uf _ me\v \< N+ ) —i;7 \x|<f ;72+sz>
252
(2.4.5)
x| — 2 52 X[ — 2 ﬁ
o | (-v/iE+2) e \( Vn +3)
v =5l ns? o 2
2§
\
In fact this can be reverse to time-space domain:
( IX\<7\/'72+%>
9—1[3—1[6 . H _ 1
3\/,72_,_% ﬁ\/?)tz—xz—yZ
— 2+£)
92—1[3 1[ \x|( ViITT3 ]] — _sgn[x]ax 3t2\€2 7
T (2.4.6)
L5 =t
F~Hin) =9y

\

Thus we have
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.
xy| — 1 3
\/t2 2y 6\/t27x —y +2\/9t2 3(x2412) \/thLyz

2 7
W = 6(x2+y2)

2+yr <t

YO ) 197) ERVEESTERE

(2 412)°/92=3(x2112)

£ (x—y) (x+y)

V3(x2412) \/tz—xZ V2\/32—x2—y (\/tz—x2 2+\/t2 ﬁ 4)

2

752 < -
, X <t
of = Ty \/fzfx2 e +6(x2+y2)\/t2—%—% s

20,2 .2
M) e F< VPP <V

| 22?55 sl?y/e-5 -8
(2.4.7)

Then it is obvious that #f and v/ would have uniformly decay rate of \[ if
initial data has compact support. This part would completely absorb the initial

impulsion and will act as a source impulsion when collide with the boundary.

2.4.2 Initial Impulsion Restricted on the Boundary

Now we turn to the reflection waves and surface wave. Firstly we assume the

initial data is totally on the boundary.

We substitute = A = p = 1 into the formula we obtained previously:
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( (7x07x)\/3112+52

3in (2172+52)2e V3

r _
LT e (3P+52)~4v3p2 /1745731452

r in (3S4+611252+4x@12\/ 72 +52 /3:12+s2)e<*x0*>\/ 72+s?
trr = 252 (3(2P+52) 2 ~4v/312 1P+ 32452

(2.4.8)
"07\/%2“2,,(, /2 4s2

B 3in® (2172+52)e7

r —
R CTE N N T

) 79(\/3?724*52
i3/ 452 /31252 (4172+452)3X0( 172%2) V3

r .
| T 252 (322 +2) 2~ 4V/BIP /1252 3P+ 52)

Now we assume a initial transverse load on the free surface i.e

ur(x,y,0) =0, u(x,y,0) =0
(2.4.9)

v(x,y,0) = 6(x,y —yo0), ©v(x,y,0) =0

Then our solution formula of u can be expressed by superposition of (2.4.7) and
(2.4.10)with xo = 0 as our initial data is restricted on the boundary. uf has a

exact expression so we only need to deal with u".
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3in (2172+SZ)2€ V3

r —
T (VR W )

r if (354 +6725%+4/B2\ /12452 /377457 ) eV 12+
Hrr = 22 (3(212+52)" ~4v/B12 /152 32452 )

(2.4.10)
e — 31';13(2;72_1_52)6—3('\/7]241‘52
FE (32492 —4v3p2 12452 /317 452

x4/ 32 +s2

ule — _i\/§’7V 72 +s24/ 3772'1'52(41724-452)6_7
[ TE T 22 (3 aVarR P 3R

Then we can recombine u” as

Xy / 37/2—&-52
in (12174—1—354—1—1217252—4\/552\ /12 +521/3n2+52—4\/31% \ /12452 \/31724—52) e V3

2 (3(2'72+52)2—4¢§i12 VP2 \/W)

o (12t B T B R e TV
\ 252 (3(272+52)° ~4v/ 3P/ 1P+ /317457 )

(2.4.11)
Then combine #/ we have that
(
\xl(f\/ 2+£>
B S VeV Ve Tl
L L™ 4344354 +44/3n252 — 42 /1252 /312 42
(2.4.12)
il = /2 +s2
uh4uf = iﬂiy(Zqursz)e' l( ( )
\ T T 4\/§,74+\/§s4+4\/§,7252_4,72\/,72+52\/3,72+52

Then rationalize above formula and do the partial fraction we have:
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o ()

i 24621/3,/3n2+52)e
o= AT
4\/;72+%(4;72+52)

g/ () RN (- f)

452\/,724_% 452\/,724_%

| \< 25 )
i (4\/3\/172+5277\/172+527ﬁ\/3112+sz+2\/3172+52)e v

2(V3-3)((V3-3)st-42) 5

| \<f\/ 2 —2)
+i17 <5\/§\/1724—32—&—9\/1724—52—}—\@\/3;72—1—524-3\/31724-52)6x TS
12\/172+%(4172+(3+\@)52)

3i77(\/3\/172+52_2\/172+52+\/3172+52>e|x(m)

royf
= 2(53)((V33)ar)

N 3in (\/172_'_52_\/3\/3’72"_52)6““ (* \/ 112+52)

4/ 12452 (412 45)

_ 2,2
_i”(‘/g\/’72+52+3\/772+52x@\/3172+s2+3\/3;72+s2)ex< Vs )

44/ 12 +52 (41724—\/552—&-352)

ey VEE) g (V)

+
( 452 /12 +s2 4s°

(2.4.13)

Now as we want to estimate the solution on the boundary, we let x = 0 and then

the formula for u;, in transform variable domain would be simplified as
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4 3 20312 +52/312 + §2
b8y 4 242 st + 4n2s2

i3 (1+3) 1 i (3+2v3) /7 + /37 + 5
4 (2\/3172 +6n2 + 352> i 3st+2 (3 + \/3) 282

iv3(v3-1) 1 i(2V3-3) /12 + 5B+ 5
4 (2\@72 — 62 — 352) i 354 -2 (ﬁ - 3) 252

_|_

iv3(V3-1)1/n2+s2 i(7—4v/3)1/372+52
_ 4(2VB2—62-3s2) 8(v3-2)n2+2(V/3-3)s?

- N

Biny/n?+s2  3iV3iy/32+s2

8172 +2s2 8172 +2s2

i(744v/3)17/372+52 iv3(1+V3) /72 +s2

+8(2+ﬁ)q2+2(3+\/§)sz 4(2+/3y2+61724352)

(2.4.14)

Then we need to reverse this formula into time-space domain. First we need to

know some inverse transform of basic functions in our formula.

Lemma 2.4.3. ;
F ~1[Bessel [0, cryt]] = H(ert —lyl)
C%if2 — yz
“lfs 2.4.15
poSinleunt]; _ Hiat = lv)
Clﬂ 2C1
Proof.
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e Analysis on c; term

Now we first consider the terms

i\@(\/g—l)q 172452 i(7—4\/§)17 3y2+s2
4(2v32—6n2—3s2)  8(v3—2)n2+2(V/3-3)s?

The first part would be simplified as a 1-D wave which propagate along the

(2.4.16)

surface:
iV3(V3-1)iy/n?+s? '
g—11 gp—17_42V3P 6> —357) a—11 cp—1 iv3 <\/§ N 1) n
7o 2 2 =712 1]
\/m 4 (2\/§,72 —6n2 — 352)
= _\/3 <\/§_ 1) 5(}/+C1t) - 5(]/ — Clt)
12 2¢1
(2.4.17)

where C% = 6_?6_

However, when consider the other part in (2.4.16) we need detail of the convo-

lution of 1-D wave and 2-D wave.

Lemma 2.4.4.

F1 [UZM ¢ Bessel [0, 17t]]

6117
_ o Jog(l—y+at]) —log(ly +cit])
= —9y( )
2c14/(1—¢%)
—log(t — cry + \/(C% —1)(y?> —#2)) + log(t + c1y + \/(C% —1)(y? —t2))
— 9y (

).

2C1 (1 — C%)
(2.4.18)

Proof. 1. When y > t we will observe that in 2.4.42the forward cone and

backward cone will not intersect hence the convolution would be 0.

2. When t > y > c1t the forward cone and backward cone has intersection and
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so the integral can be rewritten as:

F P ——= Szn[cliy ] ¢ Bessel [0, 17t]]

_az//+°° (s~ 19) Hy =9+ (0 =) ~ Hly =) i =5)

\/S _y 2Ci

yteqt
. 1 t y+ci(t—s) 1
=92 1+1/ —d jds + / —d jds
]/( yl__—ccllt y—ci(t—s) 2c1 s2 — ]/ 4 yliccllt y—c1(t—s) 261\/ — y 4 )
togt —ortt . res—ett +ort+
_ a;(/;l:ill ArcCos[W]ds N yic | —ArcSin[ =12 + ArcSm[W]ds)
1*011 2C1 1+611 2C1
5 log(y — c1t) — log(y + c1t)
= —9y( )
2C1 (1 — C%)
—log(t — 1y + /(G — 1) (12 = 2)) +log(t + ey + /(] — 1) (y2 - 2))

—d
4 2c14/(1— %) )

(2.4.19)

3. When ¢t > y > 0 we have:

@—1[172%01;’711 *; Bessel [0, 17t]]

T H(s—|g)) Hly —§+ci(t—=s)) —H(y—¥) —ci(t—s) ,_
// \/7 2¢; s

C C 1
[ i [ [ e
752C1 _y Y yregt c1(t—s) 2¢1 —]/ y

dids)

t y+c1(t—s) 1
N v
yte 1t y—ci(t—s) 2cq -y
—y+cqt

B —82(/ Tt 7 LIF /1+C1 ArcCos[%]ds
= -0, 5
0 €1

—y+C1t
1+¢cq 2C1

= ArcSin[=9Y) 4 ApcSin[ =ttt

S
yteqt
1+C1 2C1

3 (log(—y+clt) —log(y+clt))

! 201y /(1 - )

—log(t — cry + /(3 — 1) (2 — ) +log(t + ey + /(G — 1) (12 — 2))
2C1 (1—C1)

ds)

— 9y ( )

(2.4.20)

Sin[cynt]

e %t Bessel [0, #t]] is an even function with

Now considering that % ~!]
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_1[%2’#] *¢ Bessel[0,7t]] is an odd function and

respect to X, we have dy.%

hence we can write out the formula for y < 0. thus we finish the proof

[
Lemma 2.4.5.
F 2 (Ct-e)n 1 I
(G4 ) VP p? |
log(| —y+cit]) —lo + 1t
—_3,(1- &) g~y +at]) f(ly 1)
2c14/ (1 —¢c3)
t 1
+ ————1/1 — ¢2Heaviside[|y| > t] +
y? — cit? B2 41,1
(2.4.21)

Proof. According to 2.4.4 we have

57



CHAPTER 2: COMPUTATION AND ESTIMATES

Flg G- 1),
@+ ) Pt e
a1 -yl zytath —loglly +a),
201,/(1-¢2)
2,1 Cz)(—log(t—cﬂ/—i-\/(C%—l)(yZ_tZ))+log(t+c1y+\/(C%_l)(yz_tz))
BR/ANRS
2cq (1—0%)
1
T
ViE—y
:_ay(l_c%)(log(\—y+clt|)—log(|y+c1t|))
2014/ (1—¢3)
oy(1 - C%)(logO —yhed) - log(|y+CltD)HeavisideHyl > 1]
2C1 (1—0%)
) —log(t—c1y+\/(C%—l)(yz_tZ))—|—log(t—|—c1y+\/(C%_l)(yz_tz))
= 9y(1 —c1)( )
2014/ (1 —¢3)
1
T
ViE—y
a1 — eyl =y tat) sy +at),
2014/ (1 —c3)
! 1
+ ———5=1/1— c?Heaviside[|y| > t] +
y2—c%t2 1 T 1_C%
(2.4.22)
O

Now we can apply 2.4.5 to our formula 2.4.16 and we have the corollary:
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Corollary 2.4.6.

(7-4v3) Vo +
8(v3-2) 172+2(\/§—3)32”

F L

- l <_9+5\/§> ay(3 . C%)(logﬂ —y+C1t|) - lOg(|y+C1t|))

12 2c14/(3 = ¢2)
+ 1 <—9 + 5\/§> P i c2Heaviside[|y| > /3]
12 Y2 — 22 !
1 1
+—=(-94+5V3
iz >¢m+t./s—c§
(2.4.23)
Corollary 2.4.7.

L VE(VE-1) it s

4 (2\@;72 — 62 — 352)

1 log(| —y + c1t]) — log(ly + c1t])
=~ (V3-3)a,(1-3) (2
15 (Va-3) 2,0 - e e J= ) )

1 t S

t4 (\/5 - 3) yz_—cgtﬂ” — c{Heaviside[|y| > t]
1 1

7 (V3-

[6)

>M+tﬂ

(2.4.24)
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Lemma 2.4.8.

(7-45) Va7 TR
8(v3-2) ;72+2(\/§—3)s2”

FL

V3(Va-1) Ve
4 (2v/32 — 62 - 352)

1 t
1 (—9+5\/§) ————1/3 — 3Heaviside[t < |y| < V/3t]

—Z~

y2 — 32
1 1
+ = (-9+5V3) N N
1 1
- (v3-3) Tenioa

(2.4.25)

Proof. Combine corollary 2.4.6 and corollary 2.4.7 one can find the coefficients

for the term

1 log(| —y +cqt|) — log(|y + c1t|)
—— (V3-3)9,(1- )28
12 ( ) y( 1)( 201 (1 — C%) )

are the same. Then we can draw the conclusion. ]

So now our formula for ¢q can be written in the form

i\@(\@—l)iﬁ/ﬂZ—i—sz i(7—4\/§)17 3n2+s2

F e iVIr-op-32) S(ﬁ—Z)nW(ﬁ‘f’)SZ]]

i3 (V3-1) ,

=27 1+ sy N(y, 1)

4 (2\/5172 — 6177 — 352> NCET

:_2\@(‘@_1) dytat) =ody=ab) .5 1, N

12 2¢1 v Yr
(2.4.26)
where
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N(y,t) =— 12 (—9 —|—5\/§> ;22 3 — 2Heaviside[t < |y| < V/3t]

1 Y2 —cyt

1 1
+E(—9+5\/§) _y o
55 (¥3-9)

\/tz—y2+t\/1—c%

Now to investigate the time asymptotic property of this formula we need to

(2.4.27)

make some assumptions on the initial data. In fact we assume the initial data

has a compact support on the surface:

u(x,y,0) = 6(x)Heaviside(1 — |y|). (2.4.28)

Lemma 2.4.9. For any fixed y,
1

v o \/77”\/ —cf

log t

)5 HL-[yl)  2429)

would has a decay rate of —=—

Proof. We need to compute the integration

1
B/ds/dq — (y T (5 des ) (2.4.30)

As y is fixed, thus for large t one can find a small number « such that

wt 1 1
/0 ds/dnay\/(t_s)z_(y_’?)z <\/3—c%s+\/3527—172>

1

at O(1)
g/o ds/dn ; \/ﬁsﬂ/?ﬁ) (2.4.31)
oo [ oy

_ 0(1)log(1)

B t
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/ds/dn ) L
(t—s) (y n)? <\/ﬁs—|— 352—177->

—/ds/diy 1
(t—s) (y 1)? W(Ms#— 352—;72>2

) / s [ an &
t V(tE=s)2=(y—n)*/3s* —n?
) / s [y &
t V(t—5s) )2 4/3s2 —
< Ogl
(2.4.32)
Thus we have for fixed v,

' 1 1 (1)log(t)
ay/ods/dn\/(t_s)z_(y_ﬂ)z<\/3—c%s+\/3527—172) : t

(2.4.33)
[]

However this decay rate is not uniformly in y. This is because of that the choice
of « in the previous proof is not uniform, &« would change when y changes. To
estimate the uniformly decay rate of the convolution 2.4.29 we need to consider
the behavior along the cone, i.e y = kt. For the case k # 1 one can use the

similar method to prove 2.4.33. While when k = 1, the situation will change.

Lemma 2.4.10. If y%b = 1 for some constant b, then dy——=——

\/ o AN T 2+t\/3—c%) *y
H(1 — |y|) has decay rate of%

Proof. For simplicity, we let b = 0. In fact, as the initial data is of compact

support [—1, 1], we need to compute the integration
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9 /ld /td /d 1 1
4 S
T ey (¢3—c1s+m>
J /1d /wd /d 1
= it s [ dn
e V(E—s)?—(t—a—1) <\/3—c%s+ 352—172>

1 Vi 1 !
e T
1 t 1 !
S

\/3 — 35+ /35?2 — 172>
(2.4.34)

where |a| < 1.

For the first part, as s < 10, one can rewrite it as

), /_11 i /010 ds/d,7 T 5)21 (\/3 st \/1352

" 2)
(2 4.35)
For each fixed s, the integration can be viewed as the 2-D wave convolve with a
compact support initial data at time s, where we put the differential operator to

the initial data. According to the classic theory of 2-D wave equation we have

1 1 1 0(1)
i iy (oot Va7 wp) Vs

Thus

10
a/d“/ ds/d;7 t—s)2 (t—1n (\/3—cls+\/1382 >§

For the third part we have
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a/ d“/ ds/d” V=82 —(t—a—7 <\/3 cls+1\/3527>

_/ da/ ds/d’? =01 (t—oc—77)2 (ﬁer 352_17>

—/ doc/ dS/dﬂ > U
(t—s) (t—“_ﬂ) 352—172<,/3—c%s—|—\/3527—172>2

1
d / d/d
/ : e (t—s)? (t—oc— )2 /382 — 52
o 1
O 4 /d /d
\f/ A (t —s)2 (t—oc— )2 /352 — 52

SW

(2.4.36)

Finally for the second part we have

1
a/ d/x/ ds/dq
10 (t—s)2 (t—zx— 2<\/3—c%s+ 352_,72>

1
- dtx/ ds/d;y 9
/ 10 (t—s) (t_“_ﬂ)zn(,/3—c%s+ 352—172>

—/ doc/ ds/d;y > 1
10 (t—s)? (t—“—ﬂ) 352—172<,/3—c%s+\/3527—172>2

1

o(1) 1 vt 1 1
_7/1@4/10 ds/d’?\/q—ktx—s\/\/gs_nsﬁ

1 1 1

1

\/m \/\/—57 ss

[anfy'ae ],
il ), ds/ﬁ : 7
/ fy o

IN

%\O*\A *\O sf2

(2.4.37)
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Lemma 2.4.11.

iv3(V3-1)y\/n?+s2 i(7—4V/3) /372 +s2
4(2v3n2—6n2—3s2)  8(v3-2)n2+2(/3-3)s?

V3 <\/§_ 1) 5y +c1t) — 6(y — c1t)

12 2C1

| FH e

]] *y Heaviside(1 — |y|)

) *, Heaviside(1 — |y|) |

(2.4.38)
Proof. (2.4.38) is a direct consequence of lemma 2.4.8 and lemma 2.4.10. [

e Analysis on ¢, and c3 terms

We will consider

Biny/n?+s2 3iV3yy/3y+s2

81724252 8172+2s2
/7,]2 + 52

of (2.4.14) and the other term would have similar property.

(2.4.39)

In (2.4.39) the first term represents a 1-D wave with speed ¢, = 2 which would
be greater than the speed of both transverse and longitude waves. According to
seismology research this case cannot happen so we need to show the cancelation

of such 1-D wave in our formula.

Lemma 2.4.12. For cp and c3 we have
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Sin[c;nt]

a1
F iy o ¢ Bessel [0, t]]
0, Yy > cit;
Rt cit > Iyl >
- L (V@) L (V@) =iy
L (n 1( R )-tan 1( Gl >+7r), E>yl > L
_ 2 —1) (t=y) (t+y) B 2—1)(t—y)(t+y)
72c,-sg1(1c[7¥]*1) (tan—! ( ( tlyci ) —tan~! ( ( y)c,+t >), Cil > |yl
(2.4.40)
F7 i Sinlein] *t Bessel [0, cpn7t]]
T e n
0, Yy > cit;
__ sgnfylm Gt > [yl > cut:

24/ (c2—c2) !

2¢i/ (c5—ct ye; yei+cit

_ - 2 2_2\(212_2
_%(_m—l (M”)> ~ tan-1 (W) +7), ct> |yl > L

22\ (22— 2_2 V(2P
_%ﬂ)(tanfl <(L)(Lty)> _ tan-1 <(L)<Lty)>) Lyl

C%t—yci yci—&-c%t

(2.4.41)

Proof.

F [qzm *t Bessel [0, 17t]]

_ +°° H(s —|g) Hy —g+ci(t—s)) —Hy —g) —ci(t —s) ,_
=— 0> / / __y 2 dijds

TOH{+s)—Hy—s)o(y—g+ci(t—s)) —6(y—7) —ci(t—s) ,_
:_ay// H(y z_yzy y—y 2 y—y dijds

5 /ny+c1t—s)+s) (y+ci(t—s)—s)d

26/ — (y + ei(E—3))? )
VH(y— ot —5) +5)— Hly — it —5)— 5)
B e e T

(2.4.42)
1. When y > c;t the integral function is equal to O hence the integral is 0.
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2. When ¢;t > y > t we have

_/fH(ercl(t—s)Jrs) H(y+ci(t S)_S)ds
0 20i\/s2— (y+ci(t—s))?

"H(y —ci(t—s)+s) — H(y —ci(t —s) —s)
+/0 2¢iv/s2— (y —ci(t—s))2 ds)

EIEISESRL TR
—— [ - d 4.
/0 2¢iv/s2 — (y —ci(t —5))2 ’ (2449
cit—y
Cl'fl 1
= et ds
i 200/ (M 4ci)s+ (y — cit)) (1= ci)s — (y — cit))
B T
2ci\/(c2 — 1)

3. Whent >y > 0 we have

ds

_/*H(y+cz(t—s)+s) H(y+ci(t—s) —s)
0 2ci\/s?2 — (y +ci(t —s))?
5) —

(v

FH(y —ci(t —s) + H(y —ci(t—s) —s)
Jr/ 2¢i1/s2 — (y —ci(t —5))? ds)

1
_ ds
(ﬂt {20/ (1 +ci)s+ (y—cit)) (1 —¢i)s — (v — cit))

c;j+1

_ﬁ; ! dS)
S 20/ (T —ci)s + (y +cit) (T +ci)s — (y +cit))

cj+1
(
[ (F1) iy [V (F1) iy
t
2ci4/c?—1 R
t 1( (c$1)<ty)(t+y>) t 1( (c$1)(ty><t+y>)
an W —tan T
1 1 y < L
\ 2ci4/?—1 ! i
(2.4.44)
[]
Aap gz —1Sinfeint] ; ; -
Now considering that .% [T * Bessel [0, 7t]] is an even function with
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respect to y, we have d,.% _1[%77& ¢ Bessel [0, 7t]] is an odd function and

hence we can write out the formula for y < 0. Thus we have:

Lemma 2.4.13. For cp and c3 we can derive:

33_1[772%77” ¢ Bessel [0, 17t]]
B 2 n T ((5(y—C't)+5(y+C‘t))
SNy T |
(2.4.45)
Proof. -

Similarly we can deduce the results for general positive real number c¢; which

is smaller than ¢, and c3.

Lemma 2.4.14. For ¢y and c3 we can derive:

f_l [nZM k¢t Bessel [0, CLT]t]]
i
2 il
_ i ((S(y—Cit)‘F‘s(y-'_cit))'
(N T (e
(2.4.46)
Proof. -

Corollary 2.4.15.

9_1[3_1[3\/772-1-52” _ 3V —-y* 9

(0(y—2t)+0(y +2t))

812 + 2s2 2(42 —y%) 83
(2.4.47)
Corollary 2.4.16.
B _ 3\/3\/3172—#52 3\/3\/3152—}/2 3371
a—1 1 _ _ _

(2.4.48)
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Lemma 2.4.17.
Biny/n?+s2 3iV3i4/3p2+s2
ﬁ_l [g_l[ 81724252 8124252 H
/;72 + g2
(2.4.49)
3P -2 3v/3./312 — 2 1
=y (57— >y ) *

2 (417 —y?) 2 (412 —y?) 2 — 2

Proof. Applying corollary 2.4.15 and 2.4.16 we obtain (2.4.49). [l

Again (2.4.49) is only a L' operator and we assume the initial data to be of

compact support to study the time asymptotic property of this term.

Lemma 2.4.18.
3in\/n2+s2  3iv/314/3n2+s2 )
_ _ 24252 812 +252 .
F el /s 1 x, Heaviside(1 — < 0O(1)—
(2.4.50)

Proof. Apply lemma 2.4.17 and the (2.4.18) can be similarly proven as we did

for cq terms. O
Corollary 2.4.19.
i(7+4V3) /324 iV3(14+V3) /i +s?
8(2+v3)24+2(3+v3)s2  4(2/352+652+352
| 27 (2 v3)+2(3+v0)s (23 oP+5:2) ]] *y Heaviside(1 — |y|) |
1
O(1)—
<o()
(2.4.51)

Lemma 2.4.20. If the initial data is restricted on the boundary and has com-
pact support on the boundary surface, then the behavior of the solution on the

boundary would has the property below:

V3 (vV3-1 sl
| (u(0,y,t) — (-2 <12 >5(y+ 1’5)2615(}/ 1t)

)) *y Heaviside(1 — |y|) |

< o(l)W
(2.4.52)
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Proof. Applying corollary 2.4.19, lemma 2.4.18 and lemma 2.4.11 we can im-
ply (2.4.52). []

2.4.3 Initial Impulsion in Interior

Now we consider the case when initial impulsion is in the interior domain i.e

we suppose our initial data to be

u(x,y,0) = d(x — x0,¥ — yo) (2.4.53)

Then on the boundary the reflection part of the solution has the formula as

1

$2

i (3 (21" + %) 2 (rs) + (612 — 4V3 /7 + /37 + 57 + 352 (Vs >>

2 (1274 + 354 + 1297252 — 432 /12 4 5232 + 57
(2.4.54)

Now rationalize the denominator and we can rewrite (2.4.54) as linear combi-

nation of two parts.

212
. in (6 172+52(24176+356+2172542817452)24\6(172+52)2(2112+52)\/3172+52)ex0< U )
Ur = 1252 /72 +52 (472 +52) (844354 +12252)
4
—\/n? £>
i (\@\ /312 +52 (21724-52)34-4172\ /12452 (3% +5%) (2172+52)>exo ( s
u; —=
k 2621245 (d24-52) (8 + 354121252 )

(2.4.55)

Then by partial fraction we can separate (2.4.55) into simpler operators:
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(3 viya) e V)

AT _
MT—

8524/ 12 +s2
e /2 4s2
i17(\/3\/712?+2\/§\/3172+52—3\/3112+52>e 0< ( )
+ 24(2+V3) /2452 (3n2+s2)
+N7,
S (2.4.56)
el —i )28
- in (3\/172+52+\/§\/3112+52)e O( TS >
Uy =

2
852\/712+%

_/ 2+£>
_i;y(2\/5\/172+52+3\/172+s2+\/5\/3;72+52)exo( TS

24y /25 (2+632)

+N2L,3

where we have N; and N as below:

(

dir] (\/772+52*\@\/3172+52)ex0 (_ ”2+52>

T _
N2'3 - 8+/12+s2(4n2+52)
x0<7 172+s2>
i17(ﬁ\/172—&—52—2\@\/3172—1—52—3\/3172+52)e
8(V3-2)/n2+s2(2(3+V/3)y2+3s2)
. *0 —\/172+%
NZL,SZ 117(\/3\/3172+52—\/172+s2>e ( >

o R )

o f2gs?
in (—7\@\/172+sz+12\/172+s2+2ﬁ\/3172+sz—3\/3;12+52)exo ( " >
3(V3-2) V145 (2(3+v3) %)
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In the previous section we show the cancelation of ¢, and c3 terms. Now for
NZT 5 and NZL3 we can similarly prove that there would be no surface wave with

speed cp or c3. Then we can have some results without detail of proof.

Lemma 2.4.21.

| 712 NL]] #, Heaviside(1 — [y]) |< 0(1)% (2.458)
Lemma 2.4.22.

| 7.2 [Ng3]] *y Heaviside(1 — |y|) |< O(l)i (2.4.59)

Vi

For the ¢ terms we can use similar method as we did in previous section to

study its time asymptotic property.

Lemma 2.4.23.

1[$_1[i17 <\/§\/172 + 524+ 2/3/3n2 +52 — 3,/3n2 + sz) 0
24 (2 + \/§) (272 + 52)

T

in (ﬁ\/m)

24 (2 + \/§> (22 + 52)

=27 [L7

7 1 t

- = 1 — c3Heaviside[/3t > |y| > t
W Z)yz—c%tz c?Heaviside[v/3t > |y| > ]

—(

7 1 1 1
~va 2 a T
VE =2+ /1—cf 32 —y?+1/3—c3
(2.4.60)
Proof. This is a consequence of lemma 2.4.5. [l
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Lemma 2.4.24.
1 i77e|x0‘<_ v '72+52)

g1 -
F ["E/ﬂ (C%ﬂz + 52)

log (c3 (t — xo) (t+ x0) — 2c1ty + x5 + ¥?)
2c14/1—¢c2

=3,

log ((c1t — c1x0 +y) (c1 (t + x0) + y) + x5)

-
2c14/1—¢c%
" 2xpy
12— x% — 1—c3t /2= x5 —y2+ (2—c2) 2+ (2 — 1) x§ — y?
y? 0o~ Y 1 1 0~ Y
(2.4.61)
Proof. [

Lemma 2.4.25. we can apart c1 term of ur into combination of surface wave

and L' operators:

1 (VBT FS +2/3/B7 58 =3B 7)ol V)

Tz I
24 (2 - \/5) V2482 (32 + 82)
1 log( (t — x0) (t + x0) — 21ty + X3 + )
1248v3 " 2c14/1—¢c3

1 a10g((61f—01x0+y)(Cl(f+xo)+y)+x5)
1248v3 " 2c14/1—¢c2

+ N{
(2.4.62)
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Proof. Apply lemma 2.4.23 and lemma 2.4.24 one have

in (V3VIZF +2V3y B+ 5 - 3/ 42 (V)

F gt

24 <2 + \/§> V12452 (352 + s2)
i (\/gex()(_\/m))

24 (2+V3) (P + )

=277 [L7

]

.. -1 —1€
<9y(8\/3 - Z)yz—cztz 1 — c3Heaviside[v/3t > |y| > t] *yp) 7 L [W
7 ! o 72T,
'3 2 JE— 4t /—1_C% (wt) /2 + 2
71 1 g (V)
+a( L) v P )
y(8\/§ 2 3t2 —y2+t 3—C% (y/t) 172+52
1 log (c? (t — x0) (t + x0) — 2c1ty + x§ + y?)
12+8v3 " 2014/1—¢3
1 5 log ((ert —c1xo +y) (ex (t+ x0) +y) +x5)
12 + 83 20 1_C.’1Z
2xoYy
12+8f\/ —g-2 (1= - =) et (G- 1) G- )
7 1 ¢ 5 o \/_ 0\_1 ex0< A/ 2+52)
_ay(S\/§ — E)yz—c%tz 1 — c{Heaviside[V3t > |y| > t] x(, y F ' [L o
A L e,
—d - = k) F | ————
83 2 JE— P+t /12 (1) /% + 52
( 7 1 1 1[ 1[6X0(—,/;72+52) ]]
9, N 7]
i 2 mrginfsa ™ NCET
(2.4.63)

The first two terms with log function are surface wave components and we can
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denote the remainder as NlT . L]

We can do the same analysis on ¢q term of u] .

Lemma 2.4.26. we can apart ¢y term of uj into combination of surface wave

and L' operators:

]

)2y
. in(zﬁ\/ers\/erﬁ\/m)em( 73)
24/ + 5 (2 + i)

_1, VBlog (cf (3 — x5) —berty +3 (xf + 7))
4 214/3 — 2

F e

1, VAoB (6 (38 1) + bty +3 (5 +4)
4 2014/3 — 3

+ Nt
(2.4.64)
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Proof.

in (2V3V/i+ 5743\ + 57+ V3B + 57 o(vres)

244 /n? +§ (s2 + c2n?)

]

F 2 -

s2
:zyl[zl[—inexo( fee3)

S(@E )

(3 + 2\/3) t e’ (7 th%)
— 9y \/1— c3Heaviside[v/3t > |y| > t] % (,4) F N ———]]

24 yZ_C%tZ ;72_{_%
3 <3+2\/§> 1 _ 1[$ 1[ex0(—,/ 2+532>]]
— * ¢ /_ Y
TR g Vs
(3—|—2\/§> 1 : ) exo( 172+%)
—|—8y 24 > *(y,b) T ["%7 [ > H
VB =2+ 1 /3~ 7+ 5
1 V3log (c2 (3t — x3) — 6cty +3 (x5 +12))
— 7 Vx
4 2014/3 —¢c2
1, VBlog (6 (3 1) + 6eaty 3 (5 )
2014/3 — 3
1 2\/_x0y
4\/ 75 %( \/3—c1t\/3t2 x3—y2—3(2—6)12+ (2 3)x%—3y2>
(3—|—2\/§> N : 1 ex()(\/iybrssz)
—ay 24 yz — C%tZH 1-— C%HBQUZSZd@[\/gt > ’y| > t] *(y,t) F [.5,”* [WH
3
; (3+2\/§> 1 _ 1[3 1[exo(— 2+s32)]]
— * t L/’_ Y
A g Y 7+5
<3+2\/§> 1 eXo(_ 172+%>
+oy O
VB — 2+ 1 /3 7+ 5
(2.4.65)
O
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Lemma 2.4.27. For N{F and NlL we have the time asymptotic structure when
the initial data has compact support in variable y i.e the initial data is of the

form

0(x — xo)Heaviside(1 — |y|)

Then NlT and NlL would has a uniformly decay rate of %

. 1
| 712 N]]] %, Heaviside(1 — |y|) |< O(1)W (2.4.66)
. 1
| 712 NE]] xy Heaviside(1 — |y|) |< O(1)W (2.4.67)
Proof. The proof is similar as what we did in previous sections. [
Now the we need to deal with the last two terms
in (3\/772 +524+/3/32 + 52) ex‘)(_\/m)
- 8s21/1? + 52
(2.4.68)

in (3WET R+ V3R ) o)
.

2
8524/ 1% + <

These two terms cannot be studied independently because of the s on the de-
nominator which represents the Newton potential. In fact the unbounded in-
fluence domain due to the Newton potential would be restricted in a cone after

cancelation in the summation.
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Lemma 2.4.28.

-1 in (3\/m+ ﬁ\/m) exo(_\/m>

F Y %, Heaviside(1 —
S22
in (3\/172+32+\/§\/3172+52) exo( ’7+3)
+ ﬁ’_l[iﬂ_l[ 1] %y Heaviside(1 — |y|)|
8s24/1m% + %

(2.4.69)

Proof. In fact the term s>

can be viewed as a limit case of s + C2172 where
¢ = 0. Thus we can repeat the process in the previous work in lemma 2.4.26
and lemma 2.4.25 and combine our results for solution in free space in (2.4.7)

to obtain the estimate in (2.4.69). O

Finally combining (2.4.7), lemma 2.4.21, lemma 2.4.22, lemma 2.4.28, lemma
2.4.27, lemma 2.4.26 and lemma 2.4.25 we can prove the theorem 2.4.1 and

theorem 2.4.2.
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CHAPTER 3

Conclusion and Discussion

3.1 Results

According to the previous chapters we have two main results i.e theorem 1.1.1,

theorem 2.1.1 and theorem 2.4.2.

In chapter 1 theorem 1.1.1 gives out surface formula without any restriction of
the poisson ratio, i.e the poisson ratio can be any constant between 0 and 0.5.
Although our formula is valid in mathematical sense there are something strange
when comparing our formula with the classic theory in seismology. More pre-
cisely, in case 1 and case 2, all the three poles are on the imaginary axis, thus
the bromwich integral cannot avoid any pole and this may lead to some surface
wave with speed greater than body waves’, which contradicts classic seismol-
ogy, which says surface wave speed should be smaller than body waves’, and
observation in real life [1] [8]. Thus some further study is needed on these for-
mulas obtained in theorem 1.1.1 to make our conclusion consistent with classic

theory.

In chapter 2 we have two main tasks. Firstly, we recombine the formula in
transform space and obtained solution for particular initial boundary value in
theorem 2.1.1. The recombination highly simplified our formula and allow us

to reverse it to time-space domain. Secondly, we explained that the terms with
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wave speed greater than body waves’ in 1.1.1 will be canceled and thus our
conclusion will coincide with classic theory. Finally, we estimates our formulas
in 2.1.1 and show that the c¢q terms (contain the surface wave part with wave
speed c1; which is smaller than body waves’ speed) would be the main part.
More precisely, on the surface, the formulas in 2.1.1 will have a uniformly decay
rate \/LE except for surface wave part which travels along the surface with speed
c1. Itis well known in classic theory of seismology that the surface wave will be

more destructive than body waves and our results are illustration of this theory.

3.2 Difficulties and Future Work

There are still some difficulty remain. Firstly, we can generate the Green’s func-
tion of the Lamb’s problem but it is hard to give out a proper estimates of the
formulas even in 2-D case. More precisely (in 2-D case) the interaction of 2-D
waves with different speed is not clear enough. Secondly, Lamb’s problem as-
sumes the homogeneous Lame constants i.e the elastic property of the materia
is the same every where. It is natural to think of what happen if the media is
inhomogeneous. One of the models to investigate the inhomogeneous problem
is so called Love wave problem. In this model the half space is divide to 2
layers, which are parallel to the boundary, with different elastic property. Thus
the upper layer would be a wave guide in which Love wave would translate
along the surface. The main difference between Love wave and Rayleigh wave
is that Love wave has dispersion property while Rayleigh wave not, so Love
wave speed is not unique. Many study on this topic try to reduce the system into
eigenvalue problems and draw some conclusions with assumptions about the
form of the solution [1], while, to handle with initial boundary value problem,

some further study and maybe some new tools are needed.
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