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Summary

Next Generation Sequencing (NGS) has opened up new possibilities in genomic studies.
However, studying the vast amounts of data produced by these technologies present
several challenges. In many applications, millions of reads will to be mapped to very
large genomes of size around 3 GB. Furthermore, the mapping needs to take into account
errors in the form of mismatches and indels.

In this thesis, I introduce fast and accurate techniques to solve NGS mapping
problems. Burrows-Wheeler transform (BWT) [20] is a data structure used prominently
by sequence aligners. I use BWT based indexing methods to compactly index genomes.
My first contribution is a fast and exact method called BatMis [135] to solve the
k-mismatch problem. Experiments show that BatMis is more accurate and faster than
existing aligners at solving the k-mismatch problem. In some cases, it can produce
the exact solution of the k-mismatch problem faster than heuristic methods that
produces partial solutions. BatMis can be used to accurately map short reads allowing
mismatches [134], and can also be used in pipelines where multiple A-mismatch mappings
are required [82, 73].

I next address the problem of mapping reads allowing a mixture of indels and
mismatches. This requirement is important to handle longer reads being produced by
current sequencing machines. I introduce a novel data structure that can be used to
efficiently find all the occurrences of two I-mer patterns within a given distance. With

the help of this data structure, I describe an algorithm called BatAlign to align NGS



reads allowing mismatches and indels.

In order to perform accurate and sensitive alignments, BatAlign uses two strategies
called reverse-alignment and deep-scan. Reverse-alignment incrementally looks for the
most likely alignments of a read, and deep scan looks for hits that are close to the best
hits. Finally, the candidate set of hits produced by reverse-alignment and deep scan are
examined to determine the best alignment. When handling long reads, BatAlign uses a
seed and extend method. I speed up this extension process considerably with the help
of a new alignment method and the use of SIMD operations. BatAlign can operate
with speeds close to the Bowtie2 aligner which is known for its speed, while producing
alignments with quality similar to the BWA-SW aligner which is known for its accuracy.

The last problem I address is mapping RNA-seq reads. I use BatAlign’s power to
accurately align exonic reads and recover possible junction locations. Furthermore, I
use my new data structure to device fast junction finding algorithms. Results from
both of these methods are used to determine the best alignment for RNA-seq reads.
Furthermore, the algorithm BatRNA uses a set of confident junctions to rectify incorrect
alignments and to align junctions having very short overhangs. Comparison with the
other state of the art aligners show that BatRNA produces best results in many measures
of accuracy and sensitivity, while being very fast.

In summary, the three mapping programs BatMis, BatAlign and BatRNA we present

in this theses will provide very attractive solutions to many sequence mapping problems.

xi
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Chapter 1

Introduction

1.1 Introduction

From the time immemorial, people have been seeking answers to questions about life.
These questions ranged from those that belonged to the realm of philosophy like “what
is the purpose of life” to those that can be treated scientifically like “How did life
originate?”, “How does life operate?” and “How does life propagate?”. Through
revolutionary thinking and technological breakthroughs in the last two centuries by
people like Darwin, Mendel, Crick, and Watson, the answers to the latter questions
have been shown to have a firm molecular basis.

With the publication of “The Origin of Species” in 1859, Charles Darwin initiated
a paradigm shift departing from the established view that life on earth was created
and is essentially static. He showed that organisms evolve to adapt to the changes in
the environment. Later work by Gregor Mendel demonstrated that the propagation of
characteristics of a species can be explained in terms of some inheritable factor, which
we now refer to as genes. In 1944, Oswald Theodore Avery showed that genetic material
is made out of DNA and these series of research finally culminated with the landmark

discovery of the double helical structure of DNA by Crick and Watson in 1953.
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With the molecular basis of life thus established, scientists became interested in
interrogating the structure and the function of DNA. A major breakthrough happened
when Maxam, Gilbert [98] and Fred Sanger [126] discovered practical methods to
sequence stretches of DNA. This heralded the age of sequencing, and scientists were
able to sequence small genomes. In 1977, Sanger himself determined the genome of the
bacteriophage OX174 [125] and by 1995, the genome of the first free living organism
Haemophilus influenzae was completely sequenced [37]. With effective sequencing
technologies at hand, scientists launched ambitious projects to sequence the whole
genomes of various species having more complex genomes, and to annotate their genes.

These projects, especially the Human Genome Project that was launched in 1990,
helped take genomic sequencing to the next level. Due to the large amount of funding
pouring in and the competition among laboratories, government agencies, and private
entrepreneurs, genome sequencing became much efficient, cheap, and streamlined. Due
to this progress, the first draft of the human genome was finished in 2001 [67, 141], two
years ahead of its projected finishing date.

Along with the Human Genome, we now have the complete genomes of a wide
variety of species publicly available for free. Most of the model organisms like Mouse,
Fruit Fly, Zebra Fish, Yeast, Arabidopsis thaliana, C. elegans and FE. coli have been
sequenced and their genes have been extensively annotated. Sequencing of well known
viruses like HIV (Human Immunodeficiency Virus) or HBV (Hepatitis B Virus), and
newly emerging pathogens like SARS (Severe Acute Respiratory Syndrome) virus have

also become routine.

1.2 Next Generation Sequencing

Maxam-Gilbert sequencing and Sanger sequencing are called first generation sequencing
technologies. Although they were introduced at the same time, Sanger’s method was

adopted for laboratory and commercial work due to its higher efficiency and lower
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radioactivity. Sanger sequencing kept on improving in terms of its cost, ease of use and
accuracy. During the Human Genome Project, the sequencing process was parallelized
and automated. In 2005, a major improvement in sequencing technologies occurred
with the introduction of the 454 sequencer. In a single run, it was able to sequence
the genome of Mycoplasma genitalium [96]. In 2008, the 454 sequenced the genome of
James Watson [148]. The cost and the speed improvements brought forward by 454
were remarkable, and marked the beginning of the Next Generation Sequencing (NGS)
technologies, also known as the Second Generation Sequencing (SGS) technologies.
Other sequencers competing with 454 appeared within a short time. In 2006, two
scientists from Cambridge introduced the Solexa 1G sequencer [11]. The Solexa 1G was
able to produce 1GB of sequencing data in a single run for the first time in history. In
the same year, another competing sequencer the Agencourts’ SOLiD appeared and it
too had the ability to sequence a genome as complex as the Human Genome [102]. All
these founder companies were acquired by more established companies (454 by Roche,
Solexa by Illumina and Agencourt by ABI) and became the major players in SGS.
Newer approaches for sequencing kept on being invented. These include the use of
single molecular detection, scanning tunnelling electron microscope (TEM), fluorescence
resonance energy transfer (FRET) and protein nanopores [140]. Although there is no
accepted categorization, these technologies are sometimes claimed to be the third or
fourth generation sequencing technologies [62]. These methods have various advantages
and disadvantages compared to each other. Not all of these technologies are fully mature
or user friendly; for example, Oxford Nanopore has still not made their sequencer
commercially available. Some NGS technologies (e.g. Ion Torrent) are not capable of
producing sufficient sequencing coverage for whole genome studies, but are more suitable
for clinical applications due to their lower cost, accuracy and faster runtime. Sometimes
several sequencers can be used together to take advantage of strengths of each platform.

For example, Pacific Bioscience’s PacBio sequencer is best used in tandem with other
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sequencing platforms. It produces very long reads but the number of reads produced is
small. One of its advantages of PacBio is that it does not show much of a sequencing

bias, and can be used to sequence regions with high GC content [117].

1.2.1 Algorithmic Challenges of NGS

NGS carries several algorithmic challenges with it. Compared to Sanger sequencing,
NGS produces smaller read lengths (though this is bound to change in near future)
having more errors. Sequencing methods that amplify and sequence DNA fragments
in clusters tend to accumulate errors due to the idiosyncrasies of individual members
in the clusters. As the sequencing progresses, these will result in “phasing errors”,
which causes mismatches to appear (see Chapter 2 for more details). Other methods
that sequence individual reads may fail to call bases due to the limits in the sensitivity
of measuring devices when homopolymer runs are present. This will result in indel
errors. Apart from these, other factors like imperfections in the chemistries will cause
sequencing errors too.

Algorithmically, handling exact matches is well studied and many data structures
exist to efficiently handle them. However, handling mismatches is not so straightforward,
and handling indels is more challenging. While algorithms exist to solve these problems,
they tend to be slow. When we take into consideration that millions of reads are
produced by NGS, we need to look beyond the classical solutions and towards novel
algorithms.

There are other problems associated with NGS. There might be biases in preferen-
tially sequencing regions in genomes, depending on factors like the GC content and the
structure of the genome. These biases will result in uneven coverage and can become
a problem in the downstream analysis of sequencing data. However, algorithms can

employ various methods to compensate for these biases.
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1.3 Applications of Sequencing

Compared to Sanger sequencing, NGS technologies produce shorter read lengths. How-
ever, they are massively parallel, have higher throughput and are more cost effective.
These properties allow NGS to be used in novel ways to unravel mysteries of biology.

Some of the highlights of these applications are given below.

1.3.1 De novo Assembly of Genomes

In the past decades, Sanger sequencing was the gold standard for de novo assembly
of genomes due to the long reads it produced. However, Sanger sequencing is costly
and time consuming. Due to their high throughput NGS is being successfully employed
to assemble genomes. In 2010 BGI assembled the Giant Panda Genome using NGS
alone [78], demonstrating the capability of NGS to assemble complex genomes. Also,
there are genomes that were assembled using a combination of NGS technologies along

with Sanger sequencing [28, 49].

1.3.2 Whole-genome and Targeted Resequencing

Probably the most popular application of NGS is for resequencing. Once a reference
genome for a species has been constructed, the whole genome can be sequenced by
NGS methods and the generated sequences can be aligned to the reference genome.
This would enable the detection of variations like SNPs, indels, copy number variations
and structural variations between the sampled genome and the reference genome.
These variations can play an important role in the susceptibility to certain diseases;
for example, a single nucleotide variation in the gene APOE is associated with a
high risk for Alzheimer’s disease [149]. Because of the lower cost of NGS sequencing,
comparing normal and disease genomes to identify genetic causes for diseases have
become increasingly popular. By performing a comparison between the tumor and

non-tumor genomes of 88 liver cancer patients, Sung et al. [134] showed HBV integration
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in liver cancer patients. Such an effort would have been a very expensive and time
consuming proposition before the advent of NGS.

Rather than sequencing a whole genome, a more cost efficient technique is to
sequence a targeted region with high coverage. This targeted region could be a gene of
interest or the whole exome. Whole exome sequencing was shown to be very effective in
identifying Mendelian diseases, when the gene responsible for the extremely rare Miller
syndrome was identified using a small number of samples of unrelated individuals [114].
Discovering the genes responsible for such rare inherited diseases would have been a

daunting task using traditional methods.

1.3.3 RNA-seq

Detecting the transcripts and the level of their expression is important when under-
standing the development and disease conditions of a cell. With the introduction of
RNA-seq [144], NGS has been increasingly used to study the transcriptomes of cells.
The traditional method of using EST has the disadvantages of detecting only about 60%
of expressed transcripts and not detecting transcripts with a low level of expression [17].
The large number of reads generated by NGS are more suitable for calculating the
expression levels and in detecting rarely expressed transcripts. RNA-seq has advanced
transcriptomics by determining the 3’ and 5’ bounds of genes [112], detecting novel

transcribed regions and confirming and detecting novel splicing events [108].

1.3.4 Epigenetic Studies

Epigenetics study the changes in gene functions that do not depend on the DNA
sequence. Although sequencing basically determines the linear DNA sequences, it has
been successfully used in epigenetics. Two of the areas where NGS is widely used in
epigenetics are methylation studies and ChIP-seq.

Methylation of DNA cytosine is an important regulatory process that plays a role
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in suppressing gene expression and in cell development. By treating DNA with sodium
bisulfite, unmethylated cytosine can be converted to uracil while leaving methylated
cytosine intact. When bisulfite treated DNA is sequenced, the unmethylated cytosine
will be reported as thymine. Comparing the sequencing data with the reference genome,
sites where methylation occurs can be identified [24].

ChIP-seq is a technique that can be used to analyse interaction between proteins
and DNA. Using a suitable antibody, sites that interact with the proteins of interest
can be pulled down using a method known as chromatin immunoprecipitation (ChIP).
These used to be studied with microarrays (ChIP-chip), but NGS has replaced this
step [54]. ChIP-seq has been successfully used to study the transcription factor binding
sites [54] and Histone modifications [104] and has taken over ChIP-chip as the preferred

tool.

1.4 Future of Sequencing

One of the heuristic rules for measuring the success of technological improvements
is to see how closely the improvements adhere to Moore’s law. i.e. if technological
improvements doubles some performance measure every two years, the technology is
considered to be doing very well. Judging by this criteria, sequencing technologies are
doing exceedingly well. Figure 1.1 shows how the cost of producing a human sized
genome has decreased with time. It can be seen that from 2008, when SGS started
to replace Sanger sequencing, the improvements have surpassed the level predicted
by Moore’s law by a wide margin. It shows that within few years, the holy grail of
sequencing a human genome for $1000 will be achievable. Once this watershed is passed
we can expect routine sequencing of human genomes and their use in diagnostics and
personalised medicine. This would be an achievement similar to the discovery of vaccines

and antibiotics.



CHAPTER 1. INTRODUCTION 8

100000000
*
””””
10000000 o
+
+
£ 1000000 A s
&
g +
= "’ =f==Sequencing cost
-
é 100000 " —s— Moore's law cost
’m
‘s
10:000 A
””.’. *
1000 T T T T T T T 1
o 20 40 60 80 100 120 140 160
Time (Months)

Figure 1.1: Improvement of the cost to sequence a human sized genome with time. Log-
arithmic scale is used for the Y axis. Data taken from www.genome.gov/sequencingcosts

1.5 Aligning NGS Reads

Making sense out of the flood of data generated by NGS requires specialized bioin-
formatics software. Except for de novo assembly, the first step in the applications
mentioned above is to align the sequences generated by NGS to a reference genome.
Preferably, the aligner will return a mapping quality score indicating the reliability of
the alignment. Requirements for the type of alignment differs between applications.
Some applications (e.g. SNP calling) choose to use only those reads that can be aligned
uniquely with a high mapping quality score, while other applications (e.g. methylation
studies, RNA-seq) will use all or the best alignments.

The alignment of NGS reads presents three main difficulties. The first is the size of
genomes, the second is the volume of the data generated and the third is the presence of
mismatches and indels. An eukaryotic genome like mouse or human can contain around
6GB of DNA if their diplodity is taken into account, or if we consider the similarity of
the chromosome pairs, around 3GB of DNA. The sequences generated by NGS differs

from the reference genome due to variations between the reference genome and the
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sampled genome, and due to errors in sequencing. Therefore, aligning millions of these
reads to a genome like the Human Genome presents a huge computational challenge.
Classic software like BLAST [7] or BWT-SW [66] are not very useful in this context
since they are slow and were not designed with NGS in mind; for example, they do not
take into account the nature of sequencing errors and cannot fully utilise additional
information like sequencing quality provided by NGS. Therefore, novel approaches
are necessary to align NGS reads. The aim of this thesis is the efficient and accurate
alignment of NGS reads to a large genome. The following section briefly describes the

contributions made by this thesis project in solving this problem.

1.6 Contributions of the Thesis

When aligning NGS reads to a reference genome, two main sources of errors need to
be taken into account. They are the mismatch errors and indel errors. Mismatch
errors occur when there are SNPs present in the sampled genome, or due to sequencing
errors. For NGS sequencers like [llumina and SOLiD, the majority of sequencing errors
are of this type. The first contribution of this thesis is the introduction of a fast and
memory-efficient algorithm BatMis that can map reads to a genome allowing mismatches.
BatMis is an exact method and does not use heuristics. Benchmarks show that BatMis
is much faster than other popular aligners at solving the mismatch problem, sometimes
even when the other aligners use heuristics. Benchmarks also show that at higher
mismatches some aligners might miss correct hits, but BatMis will still return all the
correct hits.

When longer reads are considered, indel errors become more important. In order
to map reads allowing indels, we introduce the BatAlign algorithm. BatAlign uses the
BatMis algorithm, as well as a new data structure I created. Experiments show that
BatAlign has better sensitivity and accuracy than other popular aligners.

Finally, we introduce the BatRNA algorithm for RNA-seq mapping. RNA-seq is
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harder to handle since its solution needs to take into account the peculiarities of gene
splicing. BatRNA can be used to do de novo RNA-seq mapping. Again, experiments
show that BatRNA is fast, sensitive and accurate. In summary, we present three memory
efficient, fast, accurate and sensitive NGS mapping algorithms.

We have published the BatMis algorithm [135], and have used it successfully as
an aligner in the whole genome study [134]. Furthermore it provides the multiple
mapping in the ChIA-PET (Chromosome Interaction Analysis by Paired-End Tag
Sequencing) pipeline [73], and the high mismatch mapping required for the bisulfite
read mapper BatMeth [82]. At the time of thesis submission, BatAlign manuscript has

been submitted for review, and is undergoing its second round of revision.

1.7 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, I present the basic
background required for the thesis and a survey of NGS technologies. In Chapter 3,
I introduce the FM-index (Full-text index in Minute space) [36] data structure, and
describe a new data structure I derived from it. These two data structures will be
used extensively in my algorithms. Chapters 4 reviews the NGS mapping algorithms
and Chapter 5 reviews the RNA-seq mapping algorithms. Chapter 6 will describe
BatMis, my efficient algorithm for solving the mismatch problem. Chapter 7 will
describe BatAlign, my algorithm for mapping reads efficiently and accurately allowing
mismatches and indels. Chapter 8 will present BatRNA, an algorithm for mapping
RNA-seq reads. Finally, Chapter 9 concludes the thesis with a summary of my work

and a brief discussion on possible future work.



Chapter 2

Basic Biology and NGS

2.1 Introduction

Living cells can be thought of as complex machines that produce, transform and
manipulate various molecules. Capturing and analysing these molecules helps us
understand the state of the cells and cellular processes. My thesis concentrates on
analyzing sequences of nucleic acids. In this Chapter, I will introduce the structure of
nucleic acids and the basic biology behind gene splicing required for the development of
the thesis. Furthermore, I will give a brief review of the sequencing technologies.

I would like to note how rapidly the sequencing landscape changes. Between the
time of my starting to write the thesis and finishing the final revisions, some platforms
have become obsolete and others have gained in prominence. For example, it has been
announced that 454 will shut down and the support for the platform will stop in 2016.
On the other hand, PacBio has become much more popular. Also, the statistics I

collected about sequencers few months ago have changed drastically.

11
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2.2 Nucleic Acids

Nucleic acids can be thought of as the “information macromolecules” of a cell. They
are of two types, DNA and RNA. DNA encodes the blueprint for constructing proteins

and RNA transfers this information for the assembly of proteins.

2.2.1 DNA

Deoxyribonucleic acid, or DNA, is built by joining together four monomers called
nucleotides. The four types of nucleotides are called dAMP, dTMP, dCMP and dGMP.
Each of these nucleotides contain a phosphate group, a five-carbon sugar molecule
and a nitrogenous base. The five-carbon sugar is deoxyribose. Because the first two
components are common to all nucleotides, we identify each nucleotide with their
associated nitrogenous base adenine, thymine, cytosine or guanine. They are in turn
represented by the initial letters as A, T,C and G respectively.

Two nucleotides can be connected together by joining the phosphate unit of the first
nucleotide to the sugar unit of the second nucleotide. Millions of nucleotides can be
joined together this way using the sugars and phosphates to form a “backbone”; for
example, chromosome 1 of a human contains more than 249 million nucleotides chained
together. A long chain of nucleotides formed in this manner is called single stranded
DNA or ssDNA. One end of this backbone will have an unbound phosphate unit in the
5" carbon. This end is called the 5’ end. The other end of the backbone will have an
unbound OH at the 3’ carbon. This end is called the 3’ end. Therefore, we can assign a
sense of direction to a sequence of nucleotides. By convention, sequences of ssDNA are
listed from 5’ end to the 3’ end.

Although ssDNA viruses exist, genomes of higher forms of life consists of double
stranded DNA (dsDNA) which we refer to simply as DNA. In DNA, the two strands of
ssDNA are joined together by connecting each nitrogenous base in one strand with a

nitrogenous base in the other strand. These nitrogenous bases are connected so that
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A always pairs with T and C always pairs with G. The pairs A,T and G,C are called
complementary pairs.

This describes the linear structure of DNA. However, the real topology of DNA in
a cell is more complex. The secondary structure of DNA is the famous double helix.
The two strands of DNA run anti-parallel to each other, and are twisted into helices of
constant diameter (The sense of direction here is as described previously). In eukaryotic
cells, strands of DNA are wound around a family of proteins called histones and can

form a complex package.

2.2.2 RNA

RNA is built out of monomers AMP,GMP,UMP and CMP. These monomers are similar
in structure to DNA, and consists of a phosphate unit, a five-carbon sugar and a
nitrogenous base. However, the five-carbon sugar is a ribose. Instead of thymine a
new nitrogenous base uracil, denoted by U, is found. As with DNA, the sugar and
phosphate units form a backbone with a similar sense of direction. However, RNA do
not form a double helix like DNA. RNA is synthesized using DNA as a template during
transcription.

Messenger RNA (mRNA) and transfer RNA (tRNA) are two important types of
RNA used in synthesizing proteins. When synthesizing proteins, mRNA is used to
obtain a blueprint of the protein and tRNA transports amino acids that make up

proteins.

2.3 Genes and Splicing

2.3.1 Genes

The blueprints for the synthesis of molecules required for the function of a cell are

encoded in stretches of DNA, and these are called genes. Genes are distributed along
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both strands of DNA. Genes consist of transcribed regions and regulatory regions. A
transcribed region is converted in to mRNA. The role of the regulatory regions is to
mark the location of genes for the transcription mechanism to start and to control the
rate of transcription.

The regions in the DNA that corresponds to mRNA are called exons; i.e. exons are
the regions in DNA that actually code a protein. In the transcribed region of a gene,
the segments lying between exons are called introns. Prokaryotes do not have introns.
Eukaryotes need to excise the introns away from the pre-mRNA, and join the exons

together. This process is called splicing.

2.3.2 Splicing

The sites where excision of introns are performed are called splice sites. The 5’ end of an
intron is called a donor site and the 3’ end of an intron is called an acceptor site. Splice
sites contain special sequences to guide splicing. One of the most conserved signals
is the GT at the donor site and AG at the acceptor site. Apart from that, there is a
pyrimidine rich region near acceptor sites and most importantly, a branch site where an
A is surrounded by some loosely conserved signal sequences. The splicing occurs with
the help of a type of RNA-protein complex called snRNP. These bind to the donor site
and the branch site, and join together to form a structure called a spliceosome. A lariat
is formed by joining the A of the branch site with the donor site. This lariat is cleaved

away and the exon at the donor site is then joined with the exon at the acceptor site.

2.3.3 Alternative Splicing

Alternative splicing is the phenomenon of a single gene coding for multiple proteins.
This happens during the splicing of of pre-mRNA, and adds to the diversity of proteins.
Alternative splicing happens quite often, in fact about 95% of human genes with more

than one exon have alternate expressions [116]. The possible number of alternate
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splicing can be large too; for example the gene Dscam of Drosophila melanogaster can
have up to 38,016 possible splicings [127].

Alternative splicing can occur in various manners [13]. One of the most common
ways is by skipping an exon. Sometimes splicing occurs in such a way that if one
exon is spliced then the other exon will be skipped; i.e. the exons are spliced mutually
exclusively. Another possibility is that the donor and acceptor sites might be moved,
changing the boundaries of exons. Rarely, an intron may be retained without being
spliced out. Furthermore, one or more of the above scenarios can happen at different

splice sites, increasing the diversity of alternative splicing even more.

2.4 Sequencing Genomes

The synthesis of macromolecules depend on the structure of DNA in genomes. Therefore,
the ability to sequence the genomes provides valuable insights to cellular processes.
Chapter 1 gave an overview of the importance and applications of genomic sequencing.

We will now present a review of the technologies behind genome sequencing.

2.4.1 Sanger Sequencing

Sanger sequencing uses the idea of chain termination. As described in Section 2.2.1,
when forming a chain of nucleotides, the 5’ phosphate joins with the 3° OH of the
deoxyribose sugar. Dideoxyribose is a sugar identical to deoxyribose except that it has
a 3’ hydrogen instead of an OH. Now consider a nucleotide whose deoxyribose has been
replaced by a dedeoxyribose. Such a nucleotide (called a ddANTP) can be attached to
the 3’ end of a nucleotide chain, but the chain cannot be extend thereafter due to the
lack of OH. This process is called chain termination.

In Sanger sequencing, the DNA are separated into two strands. These seperated
strands are put into a mixture having both normal nucleotides and ddNTP, along with

a primer designed to bind to the 5’ end of one of the strands. When DNA polymerase
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is added to this mixture it will start elongating the primer by adding nucleotides from
the 5’ end to the 3’ end. Whenever a ddNTP is added, this elongation process stops. In
the next step, the elongated strands will be separated.

The final result is a set of DNA strands of varying lengths having a ddANTP at the 3’
end. If they are made to travel through a gel, the shortest (and therefore the lightest)
DNA fragments will travel the farthest. This process is known as gel electrophoresis.
Therefore, the fragments will cluster and order themselves in the gel according to their
size. Modern implementations of Sanger sequencing will add a fluorescent tag to the
ddNTP so that each different nucleotide type will emit a different color when they are
excited. Finally, the bases are read in the correct order by passing the gel through a

laser that excites the fluorescent tags.

2.4.2 Next Generation Sequencing

NGS methods can be categorized into two classes. Sequencers of the first class will
amplify the fragments of a genome to form clusters and will sequence these clusters. The
other class will try to sequence individual fragments without any amplification. This is
called single molecule sequencing (SMS). The first class of sequencers are sometimes
classified as the second generation sequencers (SGS) and the other class as the third
generation sequencers [85].

The sequencing technologies generally follow some common steps. First the genome
is fragmented and custom made DNA segments called adapters are joined to their ends,
creating a library. The fragments in the libraries are then attached to a solid base. If
the sequencer is clustering based, these fragments undergo amplification. Finally, the
bases of each fragment in the library are detected using some mechanism. We will look

at how this process works on some of the commercial sequencing platforms.
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2.4.3 Roche 454

In the library preparation stage, the DNA will be fragmented and two adapters will
be added to their ends. Then the DNA fragments are denatured into two strands,
and hybridized onto “capture” beads that have probes complementary to the adapters
attached to them. This process is setup to ensure that in the majority of cases, only a
single fragment will be attached to a capture bead. Each bead is then enclosed in an oil
droplet and subjected to amplification using emulsion PCR [12, 31]. The oil droplet is
then dissolved and the beads are transferred to a picotiter plate, which is a large array
of small wells designed to trap a single capture bead. Finally each well in the plate is
filled with small beads containing enzymes needed for the sequencing reaction.

The sequencing is done by pyrosequencing [119] where light is emitted whenever a
nucleotide is added to a chain of nucleotides. A primer is annealed to captured template
DNA strands, and each of the four nucleotides are flowed sequentially through the
picotiter wells. Starting from the primer, the nucleotides that are added cyclically form
complementary pairs with the template, emitting light in the process. The intensity of
the light will depend on how many bases are incorporated at a given cycle. This light is
captured by a CCD camera and the sequence is interpreted.

The main type of error for the 454 is indels. If a long stretch of the same base, called
a homopolymer, occurs in the template sequence the camera might not be sensitive
enough to pick up the actual intensity of the emitted light. However, the occurrence of
mismatch errors is very low since at a given time only one nucleotide is available for

pairing.

2.4.4 TIllumina

For Illumina library preparation, DNA is fragmented and a subset of these are selected
based on their size. Adapters are then attached to both ends of the fragments. These

fragments are added to a glass plate called the flow cell that has probes complementary
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to the adaptors, and allowed to hybridize. The free ends of the fragments attach with
their complementary adapters on the flow cell creating a bridge shape. Using the
adapters as a primer, these structures undergo bridge amplification [3, 35]. After several
rounds of bridge amplification, the negative strands are washed away. At this stage the
flow cell contains clusters of ssDNA templates.

Illumina uses reversible terminators for sequencing. Similar to Sanger sequencing,
this method uses modified nucleotides with the OH in the sugar blocked. However, this
block can be removed chemically. Furthermore, the nucleotides have different colored
fluorescent tags attached to identify them. The template strands are sequenced by
adding a mixture of all four nucleotides, which will result in the incorporation of a single
base to the template strands. After washing away the unattached bases, the fluorescent
tags are detected. This process is continued after cleaving off the fluorescent tag and
unblocking the 3’ OH.

The error model of Illumina can be described as predominantly mismatch based
and having decreasing accuracy with increasing nucleotide addition steps. The errors
accumulate due to failures in cleaving off the fluorescent tags and due to phasing,
where bases fail to get incorporated to the template strand or extra bases might get
incorporated. Phasing can happen when errors occur in blocking/unblocking of the 3’

OH [95].

2.4.5 SOLiD

SOLiD stands for Sequencing by Oligo Ligation Detection. The library preparation is
similar to that of 454. The DNA is sheared, separated into single strands and adapters
are added to the resulting fragments. These fragments are then captured on beads and
amplified using emulsion PCR. The beads are attached to a glass surface on which the
sequencing is carried out.

The method of sequencing is called sequencing by ligation [129], and uses 8-mer
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probes. The 8-mer probes are fluorescently tagged according to the first two bases of
the 8mer. The sequencing is done in several rounds. First, a primer is attached to
all the templates. Then the 8-mers are allowed to hybridise with the template. Those
that hybridize adjacent to a primer, or an extension of it, are ligated together. After
detecting the color of the fluorescent tag, the added 8-mer is cleaved at the fifth base
along with the fluorescent tag and the ligation process continues. When the templates
have been sequenced this way, the strands obtained by ligation are washed away and
the next sequencing cycle begins, this time adding a primer that is one base off from the
previous primer. According to this scheme, after five such rounds of primer resetting
and ligation, each base in the template would be interrogated twice by 8-mer probes.
Probing each base twice makes SOLiD’s base calling more accurate. Each di-base is
encoded using a method called two-base encoding [101], where each di-base is encoded
using four different colours. The power of this system lies in its ability to distinguish

sequencing errors from genomic variations.

2.4.6 Polonator

Workflow of Polonator is somewhat similar to SOLiD’s workflow [107]. The library
preparation starts by fragmenting the DNA and circularizing the fragments by joining
their ends to the ends of a “linker” DNA. Then the circularized fragments are broken
so that the linker is flanked by 17-18bp portions of the original DNA fragments. The
result are templates holding two pieces of genomic DNA seperated by a linker. Next,
adapters are added to ends of these fragments. Resulting templates are attached to
beads, amplified using emulsion PCR, and deposited onto a surface.

Sequencing is done using sequencing by ligation. Primers designed to hybridize
with adapters holding the 3’ and 5’ ends of genomic DNA are flowed in. The bases are
interrogated by fluorescently tagged 9-mers (called nonamers). A nonamer is designed

to determine a specific base only, and the fluorescent tag will correspond to this base. In
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one cycle, Polonator adds nonamers designed to probe a specific base away from a primer
and lets them hybridize with the templates. Those nonamers that hybridize adjacent
to a primer are ligated with the primer, and imaged to determine the attached bases.
Next, the primer-nonamer complexes are removed, and another cycle of interrogation is
started, this time using nonamers whose query position has been shifted by one base.
For both genomic DNA fragments in a template, seven bases are queried away from the

5 end and six bases are queried away from the 3’ end. The final result is a 26bp read.

2.4.7 Ion Torrent

Ton Torrent libraries are prepared by shearing the DNA and adding adapters to them.
The double strands of DNA are separated and similar to 454, are attached to beads
and amplified using emulsion PCR. Primers are added to these beads and the beads are
deposited into wells in a silicon chip, called an Ion Chip.

During the sequencing process, the four nucleotides are added sequentially to the
wells. The sequencing is done by detecting changes in the pH level as nucleotides are
added to a template. Whenever a polymerase adds a nucleotide to a chain, a Hydrogen
ion is released, resulting in the change of pH level. The Ion Chip acts as a miniature
pH meter, and measures these changes [120].

The main source of error for Ion Torrent is indels. These occur when some templates
in a bead fail to incorporate bases in step with others. Another possibility is the failure
of pH sensors to correctly measure the change in pH level. Both these errors occur

prominently when stretches of homopolymers are sequenced.

2.4.8 HeliScope

HeliScope [136] by Helicos is the first single molecule sequencing system to be developed.
In preparing libraries, the DNA is fragmented and a poly-A tail is added to the seperated

strands. These are hybridized onto a glass containing poly T probes that will bind to
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the poly A tails of the fragments, and will also act as primers.

At the sequencing stage, the templates are washed with polymerase and fluorescently
tagged nucleotides. The nucleotides, called virtual terminators, have a special design
to prevent the addition of more than one nucleotide at a time [15]. At one cycle, only
nucleotides of the same kind are added. The nucleotides that bind with the templates are
detected using a sensitive optical system consisting of lasers and a confocal microscope.
The next cycle is started after the fluorescent tags and the terminators are cleaved away.

Since the signal from a single fluorescent nucleotide is weak, some bases might not
be called. Therefore, the major type of error in HeliScope is deletions [92]. The general
error model for HeliScope is predominantly indel based, with substitution errors being

rare.

2.4.9 PacBio

PacBio is called single molecule real time (SMRT) sequencing. It does not rely on
clusters of templates for sequencing, but detects bases real-time as they are incorporated
into a single template. The library preparation start by shearing the DNA and creating
what is called an SMRT bell [139] that is different from other library preparation
methods in several ways. The DNA double strands are not separated, and the ends of
the fragments are capped with two hairpin DNA structures (see Figure 2.1.) These
hairpins contain a complementary sequence to a primer. Next, these bell structures are
denatured to obtain a circular template.

PacBio uses a technology called zero mode waveguides (ZMW) [71] for sequencing.
ZMW’s are wells with extremely low volumes, whose diameters are in the order of tens
of nanometers. The DNA templates are trapped inside these wells by attaching them to
DNA polymerase bound to the bottom of the ZMW. Fluorescently tagged nucleotides
enter each ZMW and these are incorporated into the template strands trapped there

by the polymerase. In contrast to the usual way of fluorescently tagging the nitrogen
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base of a nucleotide, tagging is done to the phosphate of the nucleotide. This aims to
make the polymerase action more natural. There is a laser at the bottom of the ZMW
to detect the tags. The process of the polymerase adding a nucleotide takes a longer
time than an arbitrary nucleotide wandering into the well, and increases the fluorescent
signal above background level.

The polymerase used is called a strand-displacing polymerase, and as shown in
Figure 2.1 can remove an existing strand from one side while incorporating a new
nucleotide on the other side. This allows a circular template to be sequenced continuously.
PacBio sequencing is subjected to several forms of errors. A small portion of nucleotides
might not get fluorescently tagged properly, resulting in the base not being registered
when it is added to the template. There is also the chance of a stray nucleotide remaining
too long inside the ZMW, a nucleotide taking longer than average to be added to the
template or a fluorescent tag that was clipped not being diffused out of the ZMW
quickly, all of which results in an extra base being called. These errors suggests a
predominantly indel error model for PacBio. In fact the error rate is extremely high at
around 15%. However, by sequencing the circular template several times, a consensus

read can be formed that is more than 99% accurate.

2.4.10 Nanopores

Nanopores are holes with a diameter in the order of a nanometer. Some classify nanopore
technology as being the fourth generation of sequencing [62]. The detection of bases is
done without using any fluorescent tagging, and the use of enzymes is minimal. This
reduces the sources of errors common to most platforms discussed above [16]. Properties
of nanopores make it possible to detect a change in current when DNA is pulled through
a nanopore. Each nucleotide will make a characteristic signal, and this forms the basis
for sequencing using nanopores. There are many sequencers being developed using

nanopores and nano technology (e.g. Oxford Nanopore, NABsys, Electronic BioSciences,
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Figure 2.1: (A) SMRT bell is created by joining two hairpin loops of DNA to a genomic
DNA fragment. The hairpin loop has a site for a primer (shown in orange colour)
to bind. (B) The SMRT bell is denatured to form a loop, and the strand displacing
polymerase (shown in gray) starts adding bases to the loop. When it encounters the
primer, it starts displacing the primer and the synthesized strand from one side while
adding bases to the strand from the other side. Reproduced from Travers et. al. [139]

IBM, LongVitae, Complete Genomics, CrackerBio) [154], but Oxford Nanopores is the

closest for commercial release.

2.5 SMS vs Non-SMS Sequencing

SMS is more error prone compared to non-SMS due to the weak signals generated when
detecting bases. Both types of sequencers are affected by imperfections in their chemical
processes and detection methods, but the extent to which they are affected is quite
different. If such an error occurs with SMS, a miscall of bases will occur. However,
non-SMS methods can still call the correct base as the consensus of a cluster of templates
will be taken. On the other hand, errors in SMS tend to be localised but for non-SMS,

the errors propagate. For example phasing errors and fluorescent tags that fail to be
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removed keep on accumulating, resulting in noisier base calls as read lengths increase.
PCR amplification methods show a bias in amplifying certain regions resulting in a
bias for non-SMS sequencing. However, SMS are immune to such bias as they will not
have an amplification step (except perhaps an initial PCR amplification of the genomic

sample).

2.6 Summary

The capabilities of sequencing machines have undergone a rapid evolution in the last
decade. However, from an algorithmic point of view, processing the output of sequencing
machines pose two distinct challenges; the volume of the data and sequencing errors. The
volume of the data will keep on increasing for each platform. Although the sequencing
error rate can be expected to go down, it is unlikely that we will ever have a zero error
rate. The error profiles of different platforms are different, but would be a mixture of
mismatches and indels. When designing good aligners, we should take all these factors

into account.



Chapter 3

Burrows-Wheeler Transformation

3.1 Introduction

Searching for occurrences of a substring in a fixed string is an important problem in
computer science known as the exact string matching problem. There are two cases
of this problem, and they require different approaches. The first case performs the
substring search only once, or a limited number of times. Algorithms for solving this
problem in linear time have been found [57, 61] and in the average case, even a naive
algorithm will solve the problem in linear time. The second case is when multiple
substring queries are made. Although the algorithms used for the first case can be
used repeatedly for each query, when the number of queries and the sizes of the strings
become large, this becomes inefficient. The approach taken in solving this type of
problem is to pre-process the fixed string to create a new data structure called an index.
Although this one-time indexing operation might be time consuming, it pays dividends
as the number of queries increases. In this chapter, we will introduce an indexing data
structure called the Burrows-Wheeler transform that can index large strings compactly.
With the help of some auxiliary data structures, the exact string matching problem can

be solved efficiently.

25
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3.2 Definitions

We define an alphabet ¥ to be a finite, non-empty set whose elements are called
characters. A string on Y is defined to be a finite sequence of characters. The empty
string is a string having no characters, and is denoted by €. The set of all strings on X is
denoted by X*. A string can be represented by writing out its sequence of characters in
order. The length of a string S, denoted by |S| is defined as the length of the sequence
associated with it. The length of the empty string is 0. A string of length k is called a
k-mer.

If z; € ¥ fori=1,2,..,n, then S = z125...z, would represent a string on > and
|S| = n. We can also use the array notation S[1..n] to indicate a string of length n.
With this notation, the i*" character of the string is denoted by S[i]. If S; and So are
two strings, the concatenation of S; and S5 is defined to be the string composed of
the characters of S followed by the characters of So. This is denoted by St - So or by
S5152. The string obtained by concatenating together n copies of the character z is
denoted by z™. If S = X -Y - Z, where X,Y and Z are strings, Y is called a substring
of S. The substring of S starting at position ¢ and ending at position j of S is written
as S[i..j]. When X = ¢, Y is called a prefix of S. When Z = ¢, Y is called a suffix
of S. Non empty prefixes and suffixes are called proper prefixes and proper suffixes
respectively. Proper prefixes of S have the form S[1..j], where 1 < j < n. Proper
suffixes of S have the form S[i..n], where 1 <4 < n. If S’ = S[i..j], then we say that
there is an occurrence of S’ in S at i.

Two strings S1 and Sy are said to be equal if they have the same length and
Sili] = Safi] for all i = 1,...,]S1|. Let < be an order relation defined on ¥. Then we
can define an order relation <, called the lexicographical order, on ¥* as follows. Let
S1 and S be two strings on X. Then, S7 < S5 if and only if Sy is a prefix of Sy or if Sy
and S5 can be written as S1 =X -a-Y and So = X -b-Y, where X, Y € ¥* a,be X

and a < b.
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3.2.1 Exact String Matching Problem

With the above definitions and notations, we can now formally state the exact string
matching problem as follows. Let 7' = [1..n] and P[1..m] be two strings on an alphabet
Y. The exact string matching problem is to find all the occurrences of P in T'. We call

T the text and P the pattern.

3.3 Suffix Tries and Suffix Trees

Suffix tree [146] is an indexing data structure that can efficiently solve the exact string
matching problem. It is an extremely useful theoretical tool but its practical use is
limited due to its large size. When the suffix tree was first introduced, Donald Knuth
hailed it as the algorithm of the year, which is a correct description considering its
ability to solve common string matching problems elegantly and efficiently. We will
now look at a related data structure called the suffix trie from which the suffix tree is
derived. For the rest of the chapter, we will assume that the text T to be indexed is a
string on a special alphabet with the order relation “<” containing a special terminator
character “$”. The terminator character appears only once in T as the final character.
The reason for this choice will be explained later.

Suffix trie for T is defined to be a rooted tree with the following properties.
1. The tree has exactly |T'| nodes.
2. Each edge is labelled with a character from X.

3. Concatenating labels on edges of every path from the root to a node will produce

all the suffixes of T'.

4. Labels of edges starting at each internal node will not contain the same character

twice.
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Note that unless there is a special terminating symbol “$” for 7', if a substring of T
occurs at two distinct locations, condition 3 cannot be satisfied. We define threading of
pattern P through the suffix trie of T to be the matching of characters of P from left
to right in the unique path along T until all characters in P are matched or no more
characters of P can be matched [56]. If threading stops due to the former reason, we
say it is a complete threading. Otherwise the threading is said to be incomplete. Every
complete thread stops at a vertex of the suffix trie. We define P-matching leaves to be

the leaves of the subtree rooted at such a vertex.

3.3.1 Solution to the Exact String Matching Problem

Once we constructed the suffix trie of 7', the exact string matching problem can be
easily solved. The algorithm is given in Algorithm 3.1. Since there are at most |X|
edges per node, the worst case time to thread a pattern P through the suffix trie of T’
is O(|P]), and if there are occ occurrences of P in T, the whole process to report the

occurrences will take O(|P| + occ) time.

Algorithm 3.1: Exactmatch(Suff.-T, P)

Data: Suff_T is the suffix trie of string 7" and P is a string
Result: Find all occurrences of P in T

1 Thread P through Suff_T;

2 if threading is complete then

3 report all positions of P-matching leaves;

4 end

3.3.2 Suffix Trees

Suffix trie requires O(n?) space in the worst cases (for example, when T = a"b" for two
distinct characters a and b). We can compact the suffix trie by removing the internal
nodes that have only one outgoing edge. Then, the edges between the remaining nodes

can be concatenated and labelled with the string obtained by concatenating the labels
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of the consecutive edges. Now, each internal node will have at least two successors and
since there are exactly n leaves, the number of internal nodes will not exceed n — 1.
Therefore, the total number of edges will be O(n).

Next, we will find a more succinct labeling scheme for the edges. Since the edges
are labelled by a substring T[4, j] of T, we can relabel them by the ordered pair (i, j).
Each such label will cost 2log(n) bit-space. Therefore, the final space complexity for
the new compacted suffix trie, which is called a suffix tree, is O(nlog(n)) bits.

Construction of suffix trees has been widely studied. Earliest algorithms were able
to construct suffix trees in linear time [147] using a large amount of memory, but [99]
improved the space complexity to O(n?). The algorithm by Farach [33] is a popular
algorithm that has been adopted to construct suffix trees and its variants.

The definition of threading through a suffix trie in Section 3.3 and Algorithm 3.1
can be easily carried over to suffix trees. Although suffix tree is a better alternative to
the suffix tries, their O(nlogn) space requirement is still quite prohibitive for indexing
large genomes. In the next section, we will describe another data structure that can

index a text more compactly.

3.4 Suffix Array

Suffix array was introduced in 1993 by Manber and Myers [93]. The suffix array SAz[1..n]
of a text T' is an array containing the suffixes of T sorted in the lexicographically
increasing order. Instead of storing the suffix itself, the position of the suffix is stored.
Therefore, SA7[1..n] is an integer array such that T[SA7[i]..n] is the i*" smallest suffix
in T'. The space required to store each position is O(logn) bits, so the space complexity
of this data structure is O(nlogn) bits.

Since the suffix array stores the suffixes in lexicographical order, all the suffixes of
T that have P as their prefix will be found consecutively. Therefore, if SA[i] and SA[j]

are the lexicographically smallest and largest suffixes of T" having P as a prefix, then
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SArpl[i],...,SAp[j] are the locations where P occurs as a substring of 7. This interval
[i, 7] is called the SAp-range of P. SAr[i] is called the SAp-value of i, and i is called
an S Ap-location.

Given a suffix trie/tree, the corresponding suffix array can be easily obtained by
performing a depth-first traversal in lexicographical order and reporting the positions
of suffixes at the leaves. However there are more efficient methods of constructing the

suffix array in linear space and time [46].

3.4.1 Exact String Matching with Suffix Array

The exact string matching with suffix arrays is done with a binary search, and the
algorithm is given in Algorithm 3.2. In the algorithm, the variables L and R are top
and bottom bounds of SAp[1..n] where P might occur as a suffix. They are initially set
to the start and the end of SAp[l..n]. The algorithm compares the suffix corresponding
to the SAp-value in the middle of L and R with P. If there is a match it is reported.
Otherwise the bounds L and R are narrowed down. This process terminates when
L = R (which indicates that P occurs in T') or when L > R (which indicates that P
does not occur in T'.)

Each iteration of the loop in the algorithm halves the distance between L and R at
Line 3. Therefore, the algorithm will iterate at most logn times. Finding the longest
common prefix in Lines 4 takes O(m) time, and the time complexity of the algorithm is
O(mlogn). However, using an additional data structure called a longest common prefix
array, the time spent on comparing P with the prefixes in SAp[l..n] can be reduced.
This will result in an algorithm that has the time complexity O(|P| + logn + occ) [93].

Although suffix arrays offer better space reduction compared to the suffix tries, they
do so by trading off speed. There are other variants of suffix array that reduces the
space even more [42]. Also, there are some software that use suffix arrays to index large

genomes [30, 44| despite their large size. However, the space requirement is still too
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Algorithm 3.2: Exactmatch_SA(SAr[l..n], P)

Data: SAgp[l..n] is the suffix array of string 7" and P is a string
Result: Find all occurrences of P in T
1 L=1,R=mn;
2 while L < R do
M = |L+ R]/2;
if Longest common prefix of P and SAp[M] = P then
Report SA7[M];
else if T[SAr[M]..n] > P then
R=M;
else
L= M;
10 end

© 0w N o Tk W

11 end

steep for many users. The next index we present actually manages to reduce the index

size to the same size as the original text.

3.5 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) was first discovered as a method of compres-
sion [20]. However, it proved to be extremely useful as an indexing method. BWT is
simply an easy to invert permutation of a string. We will denote the BWT of T' by

BWr[l..n], and it can be defined using the suffix array as

. T[n] if SAr[i] =1
BWrli] =

T[SAr[i] — 1] otherwise.

i.e. it is obtained by concatenating the characters preceding the sorted suffixes.
Data compression-wise, this leads to a string amicable to compression as the context
of consecutive entries of the suffix array tends to be similar, and the chance of similar
characters preceding them is also high. Next we will show how to invert the BWr[1..n]

to obtain 7T". Table 3.1 shows an example of BWr[1..n] and SAr[l..n] for a string 7.
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BWT Suffix Array Sorted suffixes

g 7 $

$ 1 acacag$
c 3 acag$

c 5 ag$

a 2 cacag$
a 4 cag$

a 6 g$

Table 3.1: The BWT and the suffix array along with the sorted suffizes of string
acacag$. Note that the BWT of string can be easily compressed.

Let oce(x, i) be the number of occurrences of x in BWr[l1..i], and let C' be an array

such that C[z] is the number of characters in BWyp[l..n] that are smaller than z for all

x € ¥. Then we have the following lemmas.

Lemma 3.5.1. Let a = BWrli], where 1 < i <n. Then, among the suffizes that start
with a, there are occ(a,i — 1) suffives lexicographically smaller than a - T[S Arli]..n] and

occ(a, 1) suffizes lexicographically smaller than or equal to a - T[S Ar[i]..n].

Lemma 3.5.2. Let a = BWrpl[i], where 1 < i < n. If SAp[i] # 1, then there are
Cla] + occ(a, i — 1) suffizes smaller than T[SAr[i] — 1..n], and Cla] + occ(a, i) suffizes

smaller than or equal to T[SAr[i] — 1..n].

Proof. All suffixes that start with a’ < a, where o’ € ¥, are smaller than a-T[SAp[i]..n].
From Lemma 3.5.1, there are occ(a,?) suffixes smaller than a - T[S Ar[i]..n] that start
with a. Adding them up, and noting that BWr[i] = T[SAr[i] — 1], we get the required

result. O

Lemma 3.5.3. Let 1 <i<mn. If SAr[i] # 1 and a - T[SAr]i]..n] is a substring of T,
then there are Cla]+occ(a,i—1) suffives smaller than a-T[S Ar[i]..n], and C[a]+occ(a, i)

suffives smaller than or equal to a - T[S Ar[i]..n] .

Proof. This is a re-statement of Lemma 3.5.2. O
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Lemma 3.5.4 (Inversion of BWT). Let 1 <i <mn. If T[j] = BWrli], then T[j — 1] =

BWr[C[T[j1} + oce(TT(j1, 4)] for j > 1.

Proof. Since BWr[i]| = T[SAr[i] — 1] by definition, we have T[SA7r[i] — 1..n] = T[j..n].
From Lemma 3.5.2, the SAp[1..n] position of T[SAr[i] — 1..n] is C[T[j]] + occ(T[4], ).
Therefore, T[SAr[C[T[j]] + oce(T[j],4)..n] = T[j..n]. By definition, BWr[C[T[j]] +
oce(Tj],4)] = T[j — 1. O

Algorithm 3.3: Invert BWT(BWr[1..n], k)
Data: BWrp[l..n] is the BWT of string T, BWr[k] is the terminal character of

>

Result: Find T’
14=k;
2 for j=nto1ldo
s T'[j] = BWrli];
4 i = C[T'[f]) + oce(BWr[T'[f]], %);
5 end
6 report reverse of T'[1..n].

Algorithm 3.3 gives the algorithm to invert BWrp[l..n]. k is the place where the
terminal character of 7' has been mapped to BWrp[1..n| under the BWT. Starting from
this last character of T, the loop in the algorithm takes the location of the j*" character
of T in BWr[l..n] and computes the location of (j — 1)* character of T in BWr[l..n]
by applying Lemma 3.5.4. This will reconstruct 1" in the reverse order. Line 6 rectifies
this by reporting the reverse of the reconstructed string.

Note that if we start with k at a location different from the end, the algorithm will
still start inverting the BWT from that point backwards. If a data structure is available
to compute C[a] and occ(a, i) in constant time, the BWT inversion algorithm can be

run in linear time. The next section discusses how to construct such data structures.
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3.6 FM-Index

FMe-index, which stands for full-text index in minute space, is a data structure proposed
by Ferragina and Manzini [36] that indexes a compressed text. Since genomes do not
tend to compress well, we will discuss how this data structure is implemented on an
uncompressed text. The FM-index consists of BWyr[l..n] and some auxiliary structures
to compute C and occ(a,i).The space required for the index is O(n)-bits. This is a
significant advantage over the indexing methods we have discussed so far that require a
much larger space than the original text. To index a nearly 3 GB genome, a suffix tree
takes up about 40 GB of space while a suffix array takes up about 12 GB. However, the
FM-index takes up only about 750 MB.

3.6.1 Auxiliary Data Structures

The array C can be computed by counting the occurrences of each character, and will
take O(|X|) space. The difficulty is in designing a succinct data structure to compute
occ(a,i). We first partition BWr[l..n] into “buckets” of size 12, where 2 < n. There
will be 73 such buckets. Each of these buckets are further divided into sub-buckets of
size [. For each a € ¥, we store the total number of a in buckets and sub-buckets as
follows. For the i*® bucket, we store the count of a’s in BWy[1..il], denoted by B,[i].
For the j* sub-bucket in bucket i, we store the number of a’s in the first j buckets,
denoted by Bl [i, j]. Finally, for all i <1, we create a lookup table R, (S, ¢) that returns
the number of occurrences of a in the first ¢ characters of a string S of length ¢, where
1 < ¢ <logn is an integer.

With these counting data structures, occ(a, i) can be easily calculated as follows. 4
falls into the [ 5 ]*" bucket and the [ 4]*™ sub-bucket, and the last i — | /| — [ 4] characters
will not fall completely in any sub-bucket. The number of a’s in BWp[1..i — LZ%J — 4]

is Bs[[z]] +B{1[LZ%J, [4]]. If BWp[1..i] does not fall completely in to a sub-bucket, then

the a’s in BWrli — [5] + |§]..i] needs to be counted. This segment can be divided
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in to consecutive intervals of length ¢ and the number of a’s in each segment can be
counted using R,. Adding all these counts of a will give occ(a, 7).

Calculation of occ(a,i) using B, B’ and R, involves only table lookups, and can
be done in constant time. If we set [ = logn/c then the space complexity of these
structures can be calculated as follows. B stores O(n/log®n) integers ranging from
1 to n. Since these integers can be represented with logn bits, B can be stored in
(n/logn) bit-space. B’ will require O(n/logn) entries taking O(loglogn)-bit space,
resulting in O(%)—bit space. The final table R, requires O(2'°¢™/¢logn) entries
of O(loglogn)-bits, and needs O(n% log nloglogn), which is O(n)-bit space. Therefore,

the final space complexity of these data structures is O(’“iﬁ%)-bit&

3.6.2 Exact String Matching with the FM-index

We will next present the solution to the exact string match problem using an FM-index.
The algorithm is shown in Algorithm 3.4 and is called the backward search. The

algorithm uses the following lemma;

Lemma 3.6.1. Let [p, q| be the SAp-range of S. Then the S Ap-range of aS is [Cla] +

occ(a,p — 1) + 1,C[a] + occ(a, q)].

Proof. From Lemma 3.5.3, the number of suffixes lexicographically smaller than aT'[S A[p]..

is Ca] 4+ occ(a,p — 1). Therefore, Cla] + occ(a,p — 1) + 1 suffixes are lexicographically
smaller than or equal to aT[SA[p]..n]. Again by Lemma 3.5.3, the number of suffixes
lexicographically smaller than or equal to aT'[SA[g]..n] is C[a] 4 occ(a, q). Noting that
T[SA[p]..n] and T[SA]g]..n] are the lexicographically smallest and largest substrings
in T that have S as a prefix, we get that SAp-range of aS is [Cla] + occ(a,p — 1) +
1, Cla] + occ(a, q)]. O

In the algorithm, [st,ed] is an SAp-range that is initialized to the SAp-range of

P[|P|] in Line 1. In the while loop, [st,ed] will be the SAp-range of PJi..l]. The loop
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will take the SAp-range of P[i + 1..|P|] and find the SAp-range of P[i + 1..|P|] using
Lemma 3.6.1. If st < ed, the resulting S Ap-range is invalid and P is not a substring of
T. Otherwise, [st, ed] will be the SAp-range corresponding to P.

Lines 4-7 of the algorithm can be performed in linear time, and the loop will be

executed at most |P| time. Therefore, the time complexity of the algorithm is O(|P|).

Algorithm 3.4: Backward_Search(BWr[1..n|, P)

Data: BWrp[l..n] is the BWT of string 7" and P is a string
Result: Find SA7 range of P in T, and the number of occurrences of P in T'.

1 x = P[|P|];st = Clz] + 1;ed = Clz + 1];
21=m—1;

3 while st <ed andi>1 do

4 x = PJi];

5 st = Clz] 4+ occ(x, st — 1) + 1;

6 ed = C[x] + occ(z, ed);

7 1=1—1;

8 end

9 if st < ed then
10 report [st, ed];
11 report number of occurrences ed — st;
12 end
13 report zero occurrences;

3.6.3 Converting SAr-Ranges to Locations

The result of the backward search algorithm is an SAp-range, and not the locations
of the occurrences of P in T'. To convert an SAp-range [st, ed] into the corresponding
locations, we need to take each i € [st, ed] and find their S Ap-values. We will call this
operation as decoding, and it can be easily done if SAp[l..n] is available. However,
storing SAp[l..n| defeats the purpose of constructing the FM-index to save space.
Given a fixed £k > 0 and any € > 0, [36] describes a data structure that occupies
O(Hy(T) + %)—bit space and retrieves the SAp-value corresponding to any SA7-

location in O(log®) time, where Hy(T) is the k-t order empirical entropy of 7. We will
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now describe a practical method that can decode any S Ap-location in O(logn) average
time while taking only O(n)-bit space.

The algorithm is described in Algorithm 3.5. We sample the values of SAr at
fixed intervals and store them in an array, i.e., we store Dy[i] = SA[ki] for some
k= 0(logn) and i = 1,2, ..|n/k|. D, will then take up O(n)-bit space. If we want to
decode an SAp-location s and if s = kj for some j = 1,2, .., then D[s] would give the
corresponding location. Otherwise we use algorithm 3.3 to invert the BWT starting
from BWr[s| until we come across a value BWr[kj]. If this value is reached after v
steps, the location corresponding to s is Dy[kj] — v. Since SAyp is uniformly sampled
at intervals of length O(logn), the average value of v is O(logn). Therefore, s can be

decoded in O(logn) time.

Algorithm 3.5: Decode(s, D,,, BWr[l..n])

Data: s is an SAp-location, BWr[l..n| and D, is a sampling of SAr[l..n] at
uniform intervals of

Result: Find SAp-value of s

s’ =s;v=0;

while s’ # kj do
c = BWrlil;
s' = Clc| + oce(BWr|c], ') ; /* invert the BWT */
v=uv+1;

end

return D,[s'] — v;

N O ok W =

The algorithms in sections 3.5-3.6 are based on the work of Ferragina et. al. [36].

3.7 Improving Decoding

Although the decoding operation can be performed in O(logn) time, practical applica-
tions may require thousands of decoding operations to be performed per string search.
Therefore, decoding may become a bottleneck in some applications. In the following

sections, I will describe a novel data structure I invented and some observations that can
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be used to make the decoding operations faster. First, I will describe how to efficiently
find the location of a pattern on the fly while performing a backward search with the

following lemma.

Lemma 3.7.1. Let P be a substring of T'. When performing backward search for P, if
the SAr-range corresponding to P, |P|] is in the form [ki, ki|, Then P occurs uniquely

at the location SA[ki] — (I —1).

Proof. The unique suffix corresponding to [ki, ki is SAr[ki], and we have P[l, |P|] =

T[SAr[ki], SAr|ki] + | P| — l]. Therefore, P occurs uniquely at SA[xi] — (I —1). O

Since SArp[ki] is already sampled, if any backward search satisfies this condition,
we can obtain the location of P in constant time as soon as the search terminates. As
P becomes longer, we can expect P to occur uniquely in 7" most of the time, and to

satisfy the above condition.

3.7.1 Retrieving Hits for a Fixed Length Pattern

It is common to search for patterns of fixed length when mapping reads. We will now
describe a simple but powerful data structure that will speedup the retrieval of such hits.
This data structure is based on the observation that, when the length of the pattern [
is long, the corresponding S Ap-r