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Summary

Next Generation Sequencing (NGS) has opened up new possibilities in genomic studies.

However, studying the vast amounts of data produced by these technologies present

several challenges. In many applications, millions of reads will to be mapped to very

large genomes of size around 3 GB. Furthermore, the mapping needs to take into account

errors in the form of mismatches and indels.

In this thesis, I introduce fast and accurate techniques to solve NGS mapping

problems. Burrows-Wheeler transform (BWT) [20] is a data structure used prominently

by sequence aligners. I use BWT based indexing methods to compactly index genomes.

My first contribution is a fast and exact method called BatMis [135] to solve the

k-mismatch problem. Experiments show that BatMis is more accurate and faster than

existing aligners at solving the k-mismatch problem. In some cases, it can produce

the exact solution of the k-mismatch problem faster than heuristic methods that

produces partial solutions. BatMis can be used to accurately map short reads allowing

mismatches [134], and can also be used in pipelines where multiple k-mismatch mappings

are required [82, 73].

I next address the problem of mapping reads allowing a mixture of indels and

mismatches. This requirement is important to handle longer reads being produced by

current sequencing machines. I introduce a novel data structure that can be used to

efficiently find all the occurrences of two l-mer patterns within a given distance. With

the help of this data structure, I describe an algorithm called BatAlign to align NGS

x



reads allowing mismatches and indels.

In order to perform accurate and sensitive alignments, BatAlign uses two strategies

called reverse-alignment and deep-scan. Reverse-alignment incrementally looks for the

most likely alignments of a read, and deep scan looks for hits that are close to the best

hits. Finally, the candidate set of hits produced by reverse-alignment and deep scan are

examined to determine the best alignment. When handling long reads, BatAlign uses a

seed and extend method. I speed up this extension process considerably with the help

of a new alignment method and the use of SIMD operations. BatAlign can operate

with speeds close to the Bowtie2 aligner which is known for its speed, while producing

alignments with quality similar to the BWA-SW aligner which is known for its accuracy.

The last problem I address is mapping RNA-seq reads. I use BatAlign’s power to

accurately align exonic reads and recover possible junction locations. Furthermore, I

use my new data structure to device fast junction finding algorithms. Results from

both of these methods are used to determine the best alignment for RNA-seq reads.

Furthermore, the algorithm BatRNA uses a set of confident junctions to rectify incorrect

alignments and to align junctions having very short overhangs. Comparison with the

other state of the art aligners show that BatRNA produces best results in many measures

of accuracy and sensitivity, while being very fast.

In summary, the three mapping programs BatMis, BatAlign and BatRNA we present

in this theses will provide very attractive solutions to many sequence mapping problems.
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Chapter 1

Introduction

1.1 Introduction

From the time immemorial, people have been seeking answers to questions about life.

These questions ranged from those that belonged to the realm of philosophy like “what

is the purpose of life” to those that can be treated scientifically like “How did life

originate?”, “How does life operate?” and “How does life propagate?”. Through

revolutionary thinking and technological breakthroughs in the last two centuries by

people like Darwin, Mendel, Crick, and Watson, the answers to the latter questions

have been shown to have a firm molecular basis.

With the publication of “The Origin of Species” in 1859, Charles Darwin initiated

a paradigm shift departing from the established view that life on earth was created

and is essentially static. He showed that organisms evolve to adapt to the changes in

the environment. Later work by Gregor Mendel demonstrated that the propagation of

characteristics of a species can be explained in terms of some inheritable factor, which

we now refer to as genes. In 1944, Oswald Theodore Avery showed that genetic material

is made out of DNA and these series of research finally culminated with the landmark

discovery of the double helical structure of DNA by Crick and Watson in 1953.

1
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With the molecular basis of life thus established, scientists became interested in

interrogating the structure and the function of DNA. A major breakthrough happened

when Maxam, Gilbert [98] and Fred Sanger [126] discovered practical methods to

sequence stretches of DNA. This heralded the age of sequencing, and scientists were

able to sequence small genomes. In 1977, Sanger himself determined the genome of the

bacteriophage OX174 [125] and by 1995, the genome of the first free living organism

Haemophilus influenzae was completely sequenced [37]. With effective sequencing

technologies at hand, scientists launched ambitious projects to sequence the whole

genomes of various species having more complex genomes, and to annotate their genes.

These projects, especially the Human Genome Project that was launched in 1990,

helped take genomic sequencing to the next level. Due to the large amount of funding

pouring in and the competition among laboratories, government agencies, and private

entrepreneurs, genome sequencing became much efficient, cheap, and streamlined. Due

to this progress, the first draft of the human genome was finished in 2001 [67, 141], two

years ahead of its projected finishing date.

Along with the Human Genome, we now have the complete genomes of a wide

variety of species publicly available for free. Most of the model organisms like Mouse,

Fruit Fly, Zebra Fish, Yeast, Arabidopsis thaliana, C. elegans and E. coli have been

sequenced and their genes have been extensively annotated. Sequencing of well known

viruses like HIV (Human Immunodeficiency Virus) or HBV (Hepatitis B Virus), and

newly emerging pathogens like SARS (Severe Acute Respiratory Syndrome) virus have

also become routine.

1.2 Next Generation Sequencing

Maxam-Gilbert sequencing and Sanger sequencing are called first generation sequencing

technologies. Although they were introduced at the same time, Sanger’s method was

adopted for laboratory and commercial work due to its higher efficiency and lower
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radioactivity. Sanger sequencing kept on improving in terms of its cost, ease of use and

accuracy. During the Human Genome Project, the sequencing process was parallelized

and automated. In 2005, a major improvement in sequencing technologies occurred

with the introduction of the 454 sequencer. In a single run, it was able to sequence

the genome of Mycoplasma genitalium [96]. In 2008, the 454 sequenced the genome of

James Watson [148]. The cost and the speed improvements brought forward by 454

were remarkable, and marked the beginning of the Next Generation Sequencing (NGS)

technologies, also known as the Second Generation Sequencing (SGS) technologies.

Other sequencers competing with 454 appeared within a short time. In 2006, two

scientists from Cambridge introduced the Solexa 1G sequencer [11]. The Solexa 1G was

able to produce 1GB of sequencing data in a single run for the first time in history. In

the same year, another competing sequencer the Agencourts’ SOLiD appeared and it

too had the ability to sequence a genome as complex as the Human Genome [102]. All

these founder companies were acquired by more established companies (454 by Roche,

Solexa by Illumina and Agencourt by ABI) and became the major players in SGS.

Newer approaches for sequencing kept on being invented. These include the use of

single molecular detection, scanning tunnelling electron microscope (TEM), fluorescence

resonance energy transfer (FRET) and protein nanopores [140]. Although there is no

accepted categorization, these technologies are sometimes claimed to be the third or

fourth generation sequencing technologies [62]. These methods have various advantages

and disadvantages compared to each other. Not all of these technologies are fully mature

or user friendly; for example, Oxford Nanopore has still not made their sequencer

commercially available. Some NGS technologies (e.g. Ion Torrent) are not capable of

producing sufficient sequencing coverage for whole genome studies, but are more suitable

for clinical applications due to their lower cost, accuracy and faster runtime. Sometimes

several sequencers can be used together to take advantage of strengths of each platform.

For example, Pacific Bioscience’s PacBio sequencer is best used in tandem with other
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sequencing platforms. It produces very long reads but the number of reads produced is

small. One of its advantages of PacBio is that it does not show much of a sequencing

bias, and can be used to sequence regions with high GC content [117].

1.2.1 Algorithmic Challenges of NGS

NGS carries several algorithmic challenges with it. Compared to Sanger sequencing,

NGS produces smaller read lengths (though this is bound to change in near future)

having more errors. Sequencing methods that amplify and sequence DNA fragments

in clusters tend to accumulate errors due to the idiosyncrasies of individual members

in the clusters. As the sequencing progresses, these will result in “phasing errors”,

which causes mismatches to appear (see Chapter 2 for more details). Other methods

that sequence individual reads may fail to call bases due to the limits in the sensitivity

of measuring devices when homopolymer runs are present. This will result in indel

errors. Apart from these, other factors like imperfections in the chemistries will cause

sequencing errors too.

Algorithmically, handling exact matches is well studied and many data structures

exist to efficiently handle them. However, handling mismatches is not so straightforward,

and handling indels is more challenging. While algorithms exist to solve these problems,

they tend to be slow. When we take into consideration that millions of reads are

produced by NGS, we need to look beyond the classical solutions and towards novel

algorithms.

There are other problems associated with NGS. There might be biases in preferen-

tially sequencing regions in genomes, depending on factors like the GC content and the

structure of the genome. These biases will result in uneven coverage and can become

a problem in the downstream analysis of sequencing data. However, algorithms can

employ various methods to compensate for these biases.
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1.3 Applications of Sequencing

Compared to Sanger sequencing, NGS technologies produce shorter read lengths. How-

ever, they are massively parallel, have higher throughput and are more cost effective.

These properties allow NGS to be used in novel ways to unravel mysteries of biology.

Some of the highlights of these applications are given below.

1.3.1 De novo Assembly of Genomes

In the past decades, Sanger sequencing was the gold standard for de novo assembly

of genomes due to the long reads it produced. However, Sanger sequencing is costly

and time consuming. Due to their high throughput NGS is being successfully employed

to assemble genomes. In 2010 BGI assembled the Giant Panda Genome using NGS

alone [78], demonstrating the capability of NGS to assemble complex genomes. Also,

there are genomes that were assembled using a combination of NGS technologies along

with Sanger sequencing [28, 49].

1.3.2 Whole-genome and Targeted Resequencing

Probably the most popular application of NGS is for resequencing. Once a reference

genome for a species has been constructed, the whole genome can be sequenced by

NGS methods and the generated sequences can be aligned to the reference genome.

This would enable the detection of variations like SNPs, indels, copy number variations

and structural variations between the sampled genome and the reference genome.

These variations can play an important role in the susceptibility to certain diseases;

for example, a single nucleotide variation in the gene APOE is associated with a

high risk for Alzheimer’s disease [149]. Because of the lower cost of NGS sequencing,

comparing normal and disease genomes to identify genetic causes for diseases have

become increasingly popular. By performing a comparison between the tumor and

non-tumor genomes of 88 liver cancer patients, Sung et al. [134] showed HBV integration
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in liver cancer patients. Such an effort would have been a very expensive and time

consuming proposition before the advent of NGS.

Rather than sequencing a whole genome, a more cost efficient technique is to

sequence a targeted region with high coverage. This targeted region could be a gene of

interest or the whole exome. Whole exome sequencing was shown to be very effective in

identifying Mendelian diseases, when the gene responsible for the extremely rare Miller

syndrome was identified using a small number of samples of unrelated individuals [114].

Discovering the genes responsible for such rare inherited diseases would have been a

daunting task using traditional methods.

1.3.3 RNA-seq

Detecting the transcripts and the level of their expression is important when under-

standing the development and disease conditions of a cell. With the introduction of

RNA-seq [144], NGS has been increasingly used to study the transcriptomes of cells.

The traditional method of using EST has the disadvantages of detecting only about 60%

of expressed transcripts and not detecting transcripts with a low level of expression [17].

The large number of reads generated by NGS are more suitable for calculating the

expression levels and in detecting rarely expressed transcripts. RNA-seq has advanced

transcriptomics by determining the 3’ and 5’ bounds of genes [112], detecting novel

transcribed regions and confirming and detecting novel splicing events [108].

1.3.4 Epigenetic Studies

Epigenetics study the changes in gene functions that do not depend on the DNA

sequence. Although sequencing basically determines the linear DNA sequences, it has

been successfully used in epigenetics. Two of the areas where NGS is widely used in

epigenetics are methylation studies and ChIP-seq.

Methylation of DNA cytosine is an important regulatory process that plays a role



CHAPTER 1. INTRODUCTION 7

in suppressing gene expression and in cell development. By treating DNA with sodium

bisulfite, unmethylated cytosine can be converted to uracil while leaving methylated

cytosine intact. When bisulfite treated DNA is sequenced, the unmethylated cytosine

will be reported as thymine. Comparing the sequencing data with the reference genome,

sites where methylation occurs can be identified [24].

ChIP-seq is a technique that can be used to analyse interaction between proteins

and DNA. Using a suitable antibody, sites that interact with the proteins of interest

can be pulled down using a method known as chromatin immunoprecipitation (ChIP).

These used to be studied with microarrays (ChIP-chip), but NGS has replaced this

step [54]. ChIP-seq has been successfully used to study the transcription factor binding

sites [54] and Histone modifications [104] and has taken over ChIP-chip as the preferred

tool.

1.4 Future of Sequencing

One of the heuristic rules for measuring the success of technological improvements

is to see how closely the improvements adhere to Moore’s law. i.e. if technological

improvements doubles some performance measure every two years, the technology is

considered to be doing very well. Judging by this criteria, sequencing technologies are

doing exceedingly well. Figure 1.1 shows how the cost of producing a human sized

genome has decreased with time. It can be seen that from 2008, when SGS started

to replace Sanger sequencing, the improvements have surpassed the level predicted

by Moore’s law by a wide margin. It shows that within few years, the holy grail of

sequencing a human genome for $1000 will be achievable. Once this watershed is passed

we can expect routine sequencing of human genomes and their use in diagnostics and

personalised medicine. This would be an achievement similar to the discovery of vaccines

and antibiotics.
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Figure 1.1: Improvement of the cost to sequence a human sized genome with time. Log-
arithmic scale is used for the Y axis. Data taken from www.genome.gov/sequencingcosts

1.5 Aligning NGS Reads

Making sense out of the flood of data generated by NGS requires specialized bioin-

formatics software. Except for de novo assembly, the first step in the applications

mentioned above is to align the sequences generated by NGS to a reference genome.

Preferably, the aligner will return a mapping quality score indicating the reliability of

the alignment. Requirements for the type of alignment differs between applications.

Some applications (e.g. SNP calling) choose to use only those reads that can be aligned

uniquely with a high mapping quality score, while other applications (e.g. methylation

studies, RNA-seq) will use all or the best alignments.

The alignment of NGS reads presents three main difficulties. The first is the size of

genomes, the second is the volume of the data generated and the third is the presence of

mismatches and indels. An eukaryotic genome like mouse or human can contain around

6GB of DNA if their diplodity is taken into account, or if we consider the similarity of

the chromosome pairs, around 3GB of DNA. The sequences generated by NGS differs

from the reference genome due to variations between the reference genome and the
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sampled genome, and due to errors in sequencing. Therefore, aligning millions of these

reads to a genome like the Human Genome presents a huge computational challenge.

Classic software like BLAST [7] or BWT-SW [66] are not very useful in this context

since they are slow and were not designed with NGS in mind; for example, they do not

take into account the nature of sequencing errors and cannot fully utilise additional

information like sequencing quality provided by NGS. Therefore, novel approaches

are necessary to align NGS reads. The aim of this thesis is the efficient and accurate

alignment of NGS reads to a large genome. The following section briefly describes the

contributions made by this thesis project in solving this problem.

1.6 Contributions of the Thesis

When aligning NGS reads to a reference genome, two main sources of errors need to

be taken into account. They are the mismatch errors and indel errors. Mismatch

errors occur when there are SNPs present in the sampled genome, or due to sequencing

errors. For NGS sequencers like Illumina and SOLiD, the majority of sequencing errors

are of this type. The first contribution of this thesis is the introduction of a fast and

memory-efficient algorithm BatMis that can map reads to a genome allowing mismatches.

BatMis is an exact method and does not use heuristics. Benchmarks show that BatMis

is much faster than other popular aligners at solving the mismatch problem, sometimes

even when the other aligners use heuristics. Benchmarks also show that at higher

mismatches some aligners might miss correct hits, but BatMis will still return all the

correct hits.

When longer reads are considered, indel errors become more important. In order

to map reads allowing indels, we introduce the BatAlign algorithm. BatAlign uses the

BatMis algorithm, as well as a new data structure I created. Experiments show that

BatAlign has better sensitivity and accuracy than other popular aligners.

Finally, we introduce the BatRNA algorithm for RNA-seq mapping. RNA-seq is
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harder to handle since its solution needs to take into account the peculiarities of gene

splicing. BatRNA can be used to do de novo RNA-seq mapping. Again, experiments

show that BatRNA is fast, sensitive and accurate. In summary, we present three memory

efficient, fast, accurate and sensitive NGS mapping algorithms.

We have published the BatMis algorithm [135], and have used it successfully as

an aligner in the whole genome study [134]. Furthermore it provides the multiple

mapping in the ChIA-PET (Chromosome Interaction Analysis by Paired-End Tag

Sequencing) pipeline [73], and the high mismatch mapping required for the bisulfite

read mapper BatMeth [82]. At the time of thesis submission, BatAlign manuscript has

been submitted for review, and is undergoing its second round of revision.

1.7 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, I present the basic

background required for the thesis and a survey of NGS technologies. In Chapter 3,

I introduce the FM-index (Full-text index in Minute space) [36] data structure, and

describe a new data structure I derived from it. These two data structures will be

used extensively in my algorithms. Chapters 4 reviews the NGS mapping algorithms

and Chapter 5 reviews the RNA-seq mapping algorithms. Chapter 6 will describe

BatMis, my efficient algorithm for solving the mismatch problem. Chapter 7 will

describe BatAlign, my algorithm for mapping reads efficiently and accurately allowing

mismatches and indels. Chapter 8 will present BatRNA, an algorithm for mapping

RNA-seq reads. Finally, Chapter 9 concludes the thesis with a summary of my work

and a brief discussion on possible future work.



Chapter 2

Basic Biology and NGS

2.1 Introduction

Living cells can be thought of as complex machines that produce, transform and

manipulate various molecules. Capturing and analysing these molecules helps us

understand the state of the cells and cellular processes. My thesis concentrates on

analyzing sequences of nucleic acids. In this Chapter, I will introduce the structure of

nucleic acids and the basic biology behind gene splicing required for the development of

the thesis. Furthermore, I will give a brief review of the sequencing technologies.

I would like to note how rapidly the sequencing landscape changes. Between the

time of my starting to write the thesis and finishing the final revisions, some platforms

have become obsolete and others have gained in prominence. For example, it has been

announced that 454 will shut down and the support for the platform will stop in 2016.

On the other hand, PacBio has become much more popular. Also, the statistics I

collected about sequencers few months ago have changed drastically.

11



CHAPTER 2. BASIC BIOLOGY AND NGS 12

2.2 Nucleic Acids

Nucleic acids can be thought of as the “information macromolecules” of a cell. They

are of two types, DNA and RNA. DNA encodes the blueprint for constructing proteins

and RNA transfers this information for the assembly of proteins.

2.2.1 DNA

Deoxyribonucleic acid, or DNA, is built by joining together four monomers called

nucleotides. The four types of nucleotides are called dAMP, dTMP, dCMP and dGMP.

Each of these nucleotides contain a phosphate group, a five-carbon sugar molecule

and a nitrogenous base. The five-carbon sugar is deoxyribose. Because the first two

components are common to all nucleotides, we identify each nucleotide with their

associated nitrogenous base adenine, thymine, cytosine or guanine. They are in turn

represented by the initial letters as A,T,C and G respectively.

Two nucleotides can be connected together by joining the phosphate unit of the first

nucleotide to the sugar unit of the second nucleotide. Millions of nucleotides can be

joined together this way using the sugars and phosphates to form a “backbone”; for

example, chromosome 1 of a human contains more than 249 million nucleotides chained

together. A long chain of nucleotides formed in this manner is called single stranded

DNA or ssDNA. One end of this backbone will have an unbound phosphate unit in the

5’ carbon. This end is called the 5’ end. The other end of the backbone will have an

unbound OH at the 3’ carbon. This end is called the 3’ end. Therefore, we can assign a

sense of direction to a sequence of nucleotides. By convention, sequences of ssDNA are

listed from 5’ end to the 3’ end.

Although ssDNA viruses exist, genomes of higher forms of life consists of double

stranded DNA (dsDNA) which we refer to simply as DNA. In DNA, the two strands of

ssDNA are joined together by connecting each nitrogenous base in one strand with a

nitrogenous base in the other strand. These nitrogenous bases are connected so that
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A always pairs with T and C always pairs with G. The pairs A,T and G,C are called

complementary pairs.

This describes the linear structure of DNA. However, the real topology of DNA in

a cell is more complex. The secondary structure of DNA is the famous double helix.

The two strands of DNA run anti-parallel to each other, and are twisted into helices of

constant diameter (The sense of direction here is as described previously). In eukaryotic

cells, strands of DNA are wound around a family of proteins called histones and can

form a complex package.

2.2.2 RNA

RNA is built out of monomers AMP,GMP,UMP and CMP. These monomers are similar

in structure to DNA, and consists of a phosphate unit, a five-carbon sugar and a

nitrogenous base. However, the five-carbon sugar is a ribose. Instead of thymine a

new nitrogenous base uracil, denoted by U, is found. As with DNA, the sugar and

phosphate units form a backbone with a similar sense of direction. However, RNA do

not form a double helix like DNA. RNA is synthesized using DNA as a template during

transcription.

Messenger RNA (mRNA) and transfer RNA (tRNA) are two important types of

RNA used in synthesizing proteins. When synthesizing proteins, mRNA is used to

obtain a blueprint of the protein and tRNA transports amino acids that make up

proteins.

2.3 Genes and Splicing

2.3.1 Genes

The blueprints for the synthesis of molecules required for the function of a cell are

encoded in stretches of DNA, and these are called genes. Genes are distributed along
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both strands of DNA. Genes consist of transcribed regions and regulatory regions. A

transcribed region is converted in to mRNA. The role of the regulatory regions is to

mark the location of genes for the transcription mechanism to start and to control the

rate of transcription.

The regions in the DNA that corresponds to mRNA are called exons; i.e. exons are

the regions in DNA that actually code a protein. In the transcribed region of a gene,

the segments lying between exons are called introns. Prokaryotes do not have introns.

Eukaryotes need to excise the introns away from the pre-mRNA, and join the exons

together. This process is called splicing.

2.3.2 Splicing

The sites where excision of introns are performed are called splice sites. The 5’ end of an

intron is called a donor site and the 3’ end of an intron is called an acceptor site. Splice

sites contain special sequences to guide splicing. One of the most conserved signals

is the GT at the donor site and AG at the acceptor site. Apart from that, there is a

pyrimidine rich region near acceptor sites and most importantly, a branch site where an

A is surrounded by some loosely conserved signal sequences. The splicing occurs with

the help of a type of RNA-protein complex called snRNP. These bind to the donor site

and the branch site, and join together to form a structure called a spliceosome. A lariat

is formed by joining the A of the branch site with the donor site. This lariat is cleaved

away and the exon at the donor site is then joined with the exon at the acceptor site.

2.3.3 Alternative Splicing

Alternative splicing is the phenomenon of a single gene coding for multiple proteins.

This happens during the splicing of of pre-mRNA, and adds to the diversity of proteins.

Alternative splicing happens quite often, in fact about 95% of human genes with more

than one exon have alternate expressions [116]. The possible number of alternate
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splicing can be large too; for example the gene Dscam of Drosophila melanogaster can

have up to 38,016 possible splicings [127].

Alternative splicing can occur in various manners [13]. One of the most common

ways is by skipping an exon. Sometimes splicing occurs in such a way that if one

exon is spliced then the other exon will be skipped; i.e. the exons are spliced mutually

exclusively. Another possibility is that the donor and acceptor sites might be moved,

changing the boundaries of exons. Rarely, an intron may be retained without being

spliced out. Furthermore, one or more of the above scenarios can happen at different

splice sites, increasing the diversity of alternative splicing even more.

2.4 Sequencing Genomes

The synthesis of macromolecules depend on the structure of DNA in genomes. Therefore,

the ability to sequence the genomes provides valuable insights to cellular processes.

Chapter 1 gave an overview of the importance and applications of genomic sequencing.

We will now present a review of the technologies behind genome sequencing.

2.4.1 Sanger Sequencing

Sanger sequencing uses the idea of chain termination. As described in Section 2.2.1,

when forming a chain of nucleotides, the 5’ phosphate joins with the 3’ OH of the

deoxyribose sugar. Dideoxyribose is a sugar identical to deoxyribose except that it has

a 3’ hydrogen instead of an OH. Now consider a nucleotide whose deoxyribose has been

replaced by a dedeoxyribose. Such a nucleotide (called a ddNTP) can be attached to

the 3’ end of a nucleotide chain, but the chain cannot be extend thereafter due to the

lack of OH. This process is called chain termination.

In Sanger sequencing, the DNA are separated into two strands. These seperated

strands are put into a mixture having both normal nucleotides and ddNTP, along with

a primer designed to bind to the 5’ end of one of the strands. When DNA polymerase
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is added to this mixture it will start elongating the primer by adding nucleotides from

the 5’ end to the 3’ end. Whenever a ddNTP is added, this elongation process stops. In

the next step, the elongated strands will be separated.

The final result is a set of DNA strands of varying lengths having a ddNTP at the 3’

end. If they are made to travel through a gel, the shortest (and therefore the lightest)

DNA fragments will travel the farthest. This process is known as gel electrophoresis.

Therefore, the fragments will cluster and order themselves in the gel according to their

size. Modern implementations of Sanger sequencing will add a fluorescent tag to the

ddNTP so that each different nucleotide type will emit a different color when they are

excited. Finally, the bases are read in the correct order by passing the gel through a

laser that excites the fluorescent tags.

2.4.2 Next Generation Sequencing

NGS methods can be categorized into two classes. Sequencers of the first class will

amplify the fragments of a genome to form clusters and will sequence these clusters. The

other class will try to sequence individual fragments without any amplification. This is

called single molecule sequencing (SMS). The first class of sequencers are sometimes

classified as the second generation sequencers (SGS) and the other class as the third

generation sequencers [85].

The sequencing technologies generally follow some common steps. First the genome

is fragmented and custom made DNA segments called adapters are joined to their ends,

creating a library. The fragments in the libraries are then attached to a solid base. If

the sequencer is clustering based, these fragments undergo amplification. Finally, the

bases of each fragment in the library are detected using some mechanism. We will look

at how this process works on some of the commercial sequencing platforms.
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2.4.3 Roche 454

In the library preparation stage, the DNA will be fragmented and two adapters will

be added to their ends. Then the DNA fragments are denatured into two strands,

and hybridized onto “capture” beads that have probes complementary to the adapters

attached to them. This process is setup to ensure that in the majority of cases, only a

single fragment will be attached to a capture bead. Each bead is then enclosed in an oil

droplet and subjected to amplification using emulsion PCR [12, 31]. The oil droplet is

then dissolved and the beads are transferred to a picotiter plate, which is a large array

of small wells designed to trap a single capture bead. Finally each well in the plate is

filled with small beads containing enzymes needed for the sequencing reaction.

The sequencing is done by pyrosequencing [119] where light is emitted whenever a

nucleotide is added to a chain of nucleotides. A primer is annealed to captured template

DNA strands, and each of the four nucleotides are flowed sequentially through the

picotiter wells. Starting from the primer, the nucleotides that are added cyclically form

complementary pairs with the template, emitting light in the process. The intensity of

the light will depend on how many bases are incorporated at a given cycle. This light is

captured by a CCD camera and the sequence is interpreted.

The main type of error for the 454 is indels. If a long stretch of the same base, called

a homopolymer, occurs in the template sequence the camera might not be sensitive

enough to pick up the actual intensity of the emitted light. However, the occurrence of

mismatch errors is very low since at a given time only one nucleotide is available for

pairing.

2.4.4 Illumina

For Illumina library preparation, DNA is fragmented and a subset of these are selected

based on their size. Adapters are then attached to both ends of the fragments. These

fragments are added to a glass plate called the flow cell that has probes complementary
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to the adaptors, and allowed to hybridize. The free ends of the fragments attach with

their complementary adapters on the flow cell creating a bridge shape. Using the

adapters as a primer, these structures undergo bridge amplification [3, 35]. After several

rounds of bridge amplification, the negative strands are washed away. At this stage the

flow cell contains clusters of ssDNA templates.

Illumina uses reversible terminators for sequencing. Similar to Sanger sequencing,

this method uses modified nucleotides with the OH in the sugar blocked. However, this

block can be removed chemically. Furthermore, the nucleotides have different colored

fluorescent tags attached to identify them. The template strands are sequenced by

adding a mixture of all four nucleotides, which will result in the incorporation of a single

base to the template strands. After washing away the unattached bases, the fluorescent

tags are detected. This process is continued after cleaving off the fluorescent tag and

unblocking the 3’ OH.

The error model of Illumina can be described as predominantly mismatch based

and having decreasing accuracy with increasing nucleotide addition steps. The errors

accumulate due to failures in cleaving off the fluorescent tags and due to phasing,

where bases fail to get incorporated to the template strand or extra bases might get

incorporated. Phasing can happen when errors occur in blocking/unblocking of the 3’

OH [95].

2.4.5 SOLiD

SOLiD stands for Sequencing by Oligo Ligation Detection. The library preparation is

similar to that of 454. The DNA is sheared, separated into single strands and adapters

are added to the resulting fragments. These fragments are then captured on beads and

amplified using emulsion PCR. The beads are attached to a glass surface on which the

sequencing is carried out.

The method of sequencing is called sequencing by ligation [129], and uses 8-mer
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probes. The 8-mer probes are fluorescently tagged according to the first two bases of

the 8-mer. The sequencing is done in several rounds. First, a primer is attached to

all the templates. Then the 8-mers are allowed to hybridise with the template. Those

that hybridize adjacent to a primer, or an extension of it, are ligated together. After

detecting the color of the fluorescent tag, the added 8-mer is cleaved at the fifth base

along with the fluorescent tag and the ligation process continues. When the templates

have been sequenced this way, the strands obtained by ligation are washed away and

the next sequencing cycle begins, this time adding a primer that is one base off from the

previous primer. According to this scheme, after five such rounds of primer resetting

and ligation, each base in the template would be interrogated twice by 8-mer probes.

Probing each base twice makes SOLiD’s base calling more accurate. Each di-base is

encoded using a method called two-base encoding [101], where each di-base is encoded

using four different colours. The power of this system lies in its ability to distinguish

sequencing errors from genomic variations.

2.4.6 Polonator

Workflow of Polonator is somewhat similar to SOLiD’s workflow [107]. The library

preparation starts by fragmenting the DNA and circularizing the fragments by joining

their ends to the ends of a “linker” DNA. Then the circularized fragments are broken

so that the linker is flanked by 17-18bp portions of the original DNA fragments. The

result are templates holding two pieces of genomic DNA seperated by a linker. Next,

adapters are added to ends of these fragments. Resulting templates are attached to

beads, amplified using emulsion PCR and deposited onto a surface.

Sequencing is done using sequencing by ligation. Primers designed to hybridize

with adapters holding the 3’ and 5’ ends of genomic DNA are flowed in. The bases are

interrogated by fluorescently tagged 9-mers (called nonamers). A nonamer is designed

to determine a specific base only, and the fluorescent tag will correspond to this base. In
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one cycle, Polonator adds nonamers designed to probe a specific base away from a primer

and lets them hybridize with the templates. Those nonamers that hybridize adjacent

to a primer are ligated with the primer, and imaged to determine the attached bases.

Next, the primer-nonamer complexes are removed, and another cycle of interrogation is

started, this time using nonamers whose query position has been shifted by one base.

For both genomic DNA fragments in a template, seven bases are queried away from the

5’ end and six bases are queried away from the 3’ end. The final result is a 26bp read.

2.4.7 Ion Torrent

Ion Torrent libraries are prepared by shearing the DNA and adding adapters to them.

The double strands of DNA are separated and similar to 454, are attached to beads

and amplified using emulsion PCR. Primers are added to these beads and the beads are

deposited into wells in a silicon chip, called an Ion Chip.

During the sequencing process, the four nucleotides are added sequentially to the

wells. The sequencing is done by detecting changes in the pH level as nucleotides are

added to a template. Whenever a polymerase adds a nucleotide to a chain, a Hydrogen

ion is released, resulting in the change of pH level. The Ion Chip acts as a miniature

pH meter, and measures these changes [120].

The main source of error for Ion Torrent is indels. These occur when some templates

in a bead fail to incorporate bases in step with others. Another possibility is the failure

of pH sensors to correctly measure the change in pH level. Both these errors occur

prominently when stretches of homopolymers are sequenced.

2.4.8 HeliScope

HeliScope [136] by Helicos is the first single molecule sequencing system to be developed.

In preparing libraries, the DNA is fragmented and a poly-A tail is added to the seperated

strands. These are hybridized onto a glass containing poly T probes that will bind to
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the poly A tails of the fragments, and will also act as primers.

At the sequencing stage, the templates are washed with polymerase and fluorescently

tagged nucleotides. The nucleotides, called virtual terminators, have a special design

to prevent the addition of more than one nucleotide at a time [15]. At one cycle, only

nucleotides of the same kind are added. The nucleotides that bind with the templates are

detected using a sensitive optical system consisting of lasers and a confocal microscope.

The next cycle is started after the fluorescent tags and the terminators are cleaved away.

Since the signal from a single fluorescent nucleotide is weak, some bases might not

be called. Therefore, the major type of error in HeliScope is deletions [92]. The general

error model for HeliScope is predominantly indel based, with substitution errors being

rare.

2.4.9 PacBio

PacBio is called single molecule real time (SMRT) sequencing. It does not rely on

clusters of templates for sequencing, but detects bases real-time as they are incorporated

into a single template. The library preparation start by shearing the DNA and creating

what is called an SMRT bell [139] that is different from other library preparation

methods in several ways. The DNA double strands are not separated, and the ends of

the fragments are capped with two hairpin DNA structures (see Figure 2.1.) These

hairpins contain a complementary sequence to a primer. Next, these bell structures are

denatured to obtain a circular template.

PacBio uses a technology called zero mode waveguides (ZMW) [71] for sequencing.

ZMW’s are wells with extremely low volumes, whose diameters are in the order of tens

of nanometers. The DNA templates are trapped inside these wells by attaching them to

DNA polymerase bound to the bottom of the ZMW. Fluorescently tagged nucleotides

enter each ZMW and these are incorporated into the template strands trapped there

by the polymerase. In contrast to the usual way of fluorescently tagging the nitrogen
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base of a nucleotide, tagging is done to the phosphate of the nucleotide. This aims to

make the polymerase action more natural. There is a laser at the bottom of the ZMW

to detect the tags. The process of the polymerase adding a nucleotide takes a longer

time than an arbitrary nucleotide wandering into the well, and increases the fluorescent

signal above background level.

The polymerase used is called a strand-displacing polymerase, and as shown in

Figure 2.1 can remove an existing strand from one side while incorporating a new

nucleotide on the other side. This allows a circular template to be sequenced continuously.

PacBio sequencing is subjected to several forms of errors. A small portion of nucleotides

might not get fluorescently tagged properly, resulting in the base not being registered

when it is added to the template. There is also the chance of a stray nucleotide remaining

too long inside the ZMW, a nucleotide taking longer than average to be added to the

template or a fluorescent tag that was clipped not being diffused out of the ZMW

quickly, all of which results in an extra base being called. These errors suggests a

predominantly indel error model for PacBio. In fact the error rate is extremely high at

around 15%. However, by sequencing the circular template several times, a consensus

read can be formed that is more than 99% accurate.

2.4.10 Nanopores

Nanopores are holes with a diameter in the order of a nanometer. Some classify nanopore

technology as being the fourth generation of sequencing [62]. The detection of bases is

done without using any fluorescent tagging, and the use of enzymes is minimal. This

reduces the sources of errors common to most platforms discussed above [16]. Properties

of nanopores make it possible to detect a change in current when DNA is pulled through

a nanopore. Each nucleotide will make a characteristic signal, and this forms the basis

for sequencing using nanopores. There are many sequencers being developed using

nanopores and nano technology (e.g. Oxford Nanopore, NABsys, Electronic BioSciences,
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Figure 2.1: (A) SMRT bell is created by joining two hairpin loops of DNA to a genomic
DNA fragment. The hairpin loop has a site for a primer (shown in orange colour)
to bind. (B) The SMRT bell is denatured to form a loop, and the strand displacing
polymerase (shown in gray) starts adding bases to the loop. When it encounters the
primer, it starts displacing the primer and the synthesized strand from one side while
adding bases to the strand from the other side. Reproduced from Travers et. al. [139]

IBM, LongVitae, Complete Genomics, CrackerBio) [154], but Oxford Nanopores is the

closest for commercial release.

2.5 SMS vs Non-SMS Sequencing

SMS is more error prone compared to non-SMS due to the weak signals generated when

detecting bases. Both types of sequencers are affected by imperfections in their chemical

processes and detection methods, but the extent to which they are affected is quite

different. If such an error occurs with SMS, a miscall of bases will occur. However,

non-SMS methods can still call the correct base as the consensus of a cluster of templates

will be taken. On the other hand, errors in SMS tend to be localised but for non-SMS,

the errors propagate. For example phasing errors and fluorescent tags that fail to be
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removed keep on accumulating, resulting in noisier base calls as read lengths increase.

PCR amplification methods show a bias in amplifying certain regions resulting in a

bias for non-SMS sequencing. However, SMS are immune to such bias as they will not

have an amplification step (except perhaps an initial PCR amplification of the genomic

sample).

2.6 Summary

The capabilities of sequencing machines have undergone a rapid evolution in the last

decade. However, from an algorithmic point of view, processing the output of sequencing

machines pose two distinct challenges; the volume of the data and sequencing errors. The

volume of the data will keep on increasing for each platform. Although the sequencing

error rate can be expected to go down, it is unlikely that we will ever have a zero error

rate. The error profiles of different platforms are different, but would be a mixture of

mismatches and indels. When designing good aligners, we should take all these factors

into account.



Chapter 3

Burrows-Wheeler Transformation

3.1 Introduction

Searching for occurrences of a substring in a fixed string is an important problem in

computer science known as the exact string matching problem. There are two cases

of this problem, and they require different approaches. The first case performs the

substring search only once, or a limited number of times. Algorithms for solving this

problem in linear time have been found [57, 61] and in the average case, even a naive

algorithm will solve the problem in linear time. The second case is when multiple

substring queries are made. Although the algorithms used for the first case can be

used repeatedly for each query, when the number of queries and the sizes of the strings

become large, this becomes inefficient. The approach taken in solving this type of

problem is to pre-process the fixed string to create a new data structure called an index.

Although this one-time indexing operation might be time consuming, it pays dividends

as the number of queries increases. In this chapter, we will introduce an indexing data

structure called the Burrows-Wheeler transform that can index large strings compactly.

With the help of some auxiliary data structures, the exact string matching problem can

be solved efficiently.

25
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3.2 Definitions

We define an alphabet Σ to be a finite, non-empty set whose elements are called

characters. A string on Σ is defined to be a finite sequence of characters. The empty

string is a string having no characters, and is denoted by ε. The set of all strings on Σ is

denoted by Σ∗. A string can be represented by writing out its sequence of characters in

order. The length of a string S, denoted by |S| is defined as the length of the sequence

associated with it. The length of the empty string is 0. A string of length k is called a

k-mer.

If xi ∈ Σ for i = 1, 2, .., n, then S = x1x2 . . . xn would represent a string on Σ and

|S| = n. We can also use the array notation S[1..n] to indicate a string of length n.

With this notation, the ith character of the string is denoted by S[i]. If S1 and S2 are

two strings, the concatenation of S1 and S2 is defined to be the string composed of

the characters of S1 followed by the characters of S2. This is denoted by S1 · S2 or by

S1S2. The string obtained by concatenating together n copies of the character x is

denoted by xn. If S = X · Y · Z, where X,Y and Z are strings, Y is called a substring

of S. The substring of S starting at position i and ending at position j of S is written

as S[i..j]. When X = ε, Y is called a prefix of S. When Z = ε, Y is called a suffix

of S. Non empty prefixes and suffixes are called proper prefixes and proper suffixes

respectively. Proper prefixes of S have the form S[1..j], where 1 ≤ j ≤ n. Proper

suffixes of S have the form S[i..n], where 1 ≤ i ≤ n. If S′ = S[i..j], then we say that

there is an occurrence of S′ in S at i.

Two strings S1 and S2 are said to be equal if they have the same length and

S1[i] = S2[i] for all i = 1, . . . , |S1|. Let < be an order relation defined on Σ. Then we

can define an order relation ≤, called the lexicographical order, on Σ∗ as follows. Let

S1 and S2 be two strings on Σ. Then, S1 ≤ S2 if and only if S1 is a prefix of S2 or if S1

and S2 can be written as S1 = X · a · Y and S2 = X · b · Y , where X,Y ∈ Σ∗, a, b ∈ Σ

and a < b.
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3.2.1 Exact String Matching Problem

With the above definitions and notations, we can now formally state the exact string

matching problem as follows. Let T = [1..n] and P [1..m] be two strings on an alphabet

Σ. The exact string matching problem is to find all the occurrences of P in T . We call

T the text and P the pattern.

3.3 Suffix Tries and Suffix Trees

Suffix tree [146] is an indexing data structure that can efficiently solve the exact string

matching problem. It is an extremely useful theoretical tool but its practical use is

limited due to its large size. When the suffix tree was first introduced, Donald Knuth

hailed it as the algorithm of the year, which is a correct description considering its

ability to solve common string matching problems elegantly and efficiently. We will

now look at a related data structure called the suffix trie from which the suffix tree is

derived. For the rest of the chapter, we will assume that the text T to be indexed is a

string on a special alphabet with the order relation “<” containing a special terminator

character “$”. The terminator character appears only once in T as the final character.

The reason for this choice will be explained later.

Suffix trie for T is defined to be a rooted tree with the following properties.

1. The tree has exactly |T | nodes.

2. Each edge is labelled with a character from Σ.

3. Concatenating labels on edges of every path from the root to a node will produce

all the suffixes of T .

4. Labels of edges starting at each internal node will not contain the same character

twice.
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Note that unless there is a special terminating symbol “$” for T , if a substring of T

occurs at two distinct locations, condition 3 cannot be satisfied. We define threading of

pattern P through the suffix trie of T to be the matching of characters of P from left

to right in the unique path along T until all characters in P are matched or no more

characters of P can be matched [56]. If threading stops due to the former reason, we

say it is a complete threading. Otherwise the threading is said to be incomplete. Every

complete thread stops at a vertex of the suffix trie. We define P -matching leaves to be

the leaves of the subtree rooted at such a vertex.

3.3.1 Solution to the Exact String Matching Problem

Once we constructed the suffix trie of T , the exact string matching problem can be

easily solved. The algorithm is given in Algorithm 3.1. Since there are at most |Σ|

edges per node, the worst case time to thread a pattern P through the suffix trie of T

is O(|P |), and if there are occ occurrences of P in T , the whole process to report the

occurrences will take O(|P |+ occ) time.

Algorithm 3.1: Exactmatch(Suff T, P )

Data: Suff T is the suffix trie of string T and P is a string
Result: Find all occurrences of P in T
Thread P through Suff T ;1

if threading is complete then2

report all positions of P -matching leaves;3

end4

3.3.2 Suffix Trees

Suffix trie requires O(n2) space in the worst cases (for example, when T = anbn for two

distinct characters a and b). We can compact the suffix trie by removing the internal

nodes that have only one outgoing edge. Then, the edges between the remaining nodes

can be concatenated and labelled with the string obtained by concatenating the labels
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of the consecutive edges. Now, each internal node will have at least two successors and

since there are exactly n leaves, the number of internal nodes will not exceed n − 1.

Therefore, the total number of edges will be O(n).

Next, we will find a more succinct labeling scheme for the edges. Since the edges

are labelled by a substring T [i, j] of T , we can relabel them by the ordered pair (i, j).

Each such label will cost 2 log(n) bit-space. Therefore, the final space complexity for

the new compacted suffix trie, which is called a suffix tree, is O(n log(n)) bits.

Construction of suffix trees has been widely studied. Earliest algorithms were able

to construct suffix trees in linear time [147] using a large amount of memory, but [99]

improved the space complexity to O(n2). The algorithm by Farach [33] is a popular

algorithm that has been adopted to construct suffix trees and its variants.

The definition of threading through a suffix trie in Section 3.3 and Algorithm 3.1

can be easily carried over to suffix trees. Although suffix tree is a better alternative to

the suffix tries, their O(n log n) space requirement is still quite prohibitive for indexing

large genomes. In the next section, we will describe another data structure that can

index a text more compactly.

3.4 Suffix Array

Suffix array was introduced in 1993 by Manber and Myers [93]. The suffix array SAT [1..n]

of a text T is an array containing the suffixes of T sorted in the lexicographically

increasing order. Instead of storing the suffix itself, the position of the suffix is stored.

Therefore, SAT [1..n] is an integer array such that T [SAT [i]..n] is the ith smallest suffix

in T . The space required to store each position is O(log n) bits, so the space complexity

of this data structure is O(n log n) bits.

Since the suffix array stores the suffixes in lexicographical order, all the suffixes of

T that have P as their prefix will be found consecutively. Therefore, if SA[i] and SA[j]

are the lexicographically smallest and largest suffixes of T having P as a prefix, then
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SAT [i], . . . , SAT [j] are the locations where P occurs as a substring of T . This interval

[i, j] is called the SAT -range of P . SAT [i] is called the SAT -value of i, and i is called

an SAT -location.

Given a suffix trie/tree, the corresponding suffix array can be easily obtained by

performing a depth-first traversal in lexicographical order and reporting the positions

of suffixes at the leaves. However there are more efficient methods of constructing the

suffix array in linear space and time [46].

3.4.1 Exact String Matching with Suffix Array

The exact string matching with suffix arrays is done with a binary search, and the

algorithm is given in Algorithm 3.2. In the algorithm, the variables L and R are top

and bottom bounds of SAT [1..n] where P might occur as a suffix. They are initially set

to the start and the end of SAT [1..n]. The algorithm compares the suffix corresponding

to the SAT -value in the middle of L and R with P . If there is a match it is reported.

Otherwise the bounds L and R are narrowed down. This process terminates when

L = R (which indicates that P occurs in T ) or when L > R (which indicates that P

does not occur in T .)

Each iteration of the loop in the algorithm halves the distance between L and R at

Line 3. Therefore, the algorithm will iterate at most log n times. Finding the longest

common prefix in Lines 4 takes O(m) time, and the time complexity of the algorithm is

O(m log n). However, using an additional data structure called a longest common prefix

array, the time spent on comparing P with the prefixes in SAT [1..n] can be reduced.

This will result in an algorithm that has the time complexity O(|P |+ log n+ occ) [93].

Although suffix arrays offer better space reduction compared to the suffix tries, they

do so by trading off speed. There are other variants of suffix array that reduces the

space even more [42]. Also, there are some software that use suffix arrays to index large

genomes [30, 44] despite their large size. However, the space requirement is still too
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Algorithm 3.2: Exactmatch SA(SAT [1..n], P )

Data: SAT [1..n] is the suffix array of string T and P is a string
Result: Find all occurrences of P in T
L = 1, R = n;1

while L ≤ R do2

M = bL+Rc/2;3

if Longest common prefix of P and SAT [M ] = P then4

Report SAT [M ];5

else if T [SAT [M ]..n] > P then6

R = M ;7

else8

L = M ;9

end10

end11

steep for many users. The next index we present actually manages to reduce the index

size to the same size as the original text.

3.5 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) was first discovered as a method of compres-

sion [20]. However, it proved to be extremely useful as an indexing method. BWT is

simply an easy to invert permutation of a string. We will denote the BWT of T by

BWT [1..n], and it can be defined using the suffix array as

BWT [i] =


T [n] if SAT [i] = 1

T [SAT [i]− 1] otherwise.

i.e. it is obtained by concatenating the characters preceding the sorted suffixes.

Data compression-wise, this leads to a string amicable to compression as the context

of consecutive entries of the suffix array tends to be similar, and the chance of similar

characters preceding them is also high. Next we will show how to invert the BWT [1..n]

to obtain T . Table 3.1 shows an example of BWT [1..n] and SAT [1..n] for a string T .
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BWT Suffix Array Sorted suffixes

g 7 $

$ 1 acacag$

c 3 acag$

c 5 ag$

a 2 cacag$

a 4 cag$

a 6 g$

Table 3.1: The BWT and the suffix array along with the sorted suffixes of string
acacag$. Note that the BWT of string can be easily compressed.

Let occ(x, i) be the number of occurrences of x in BWT [1..i], and let C be an array

such that C[x] is the number of characters in BWT [1..n] that are smaller than x for all

x ∈ Σ. Then we have the following lemmas.

Lemma 3.5.1. Let a = BWT [i], where 1 ≤ i ≤ n. Then, among the suffixes that start

with a, there are occ(a, i− 1) suffixes lexicographically smaller than a · T [SAT [i]..n] and

occ(a, i) suffixes lexicographically smaller than or equal to a · T [SAT [i]..n].

Lemma 3.5.2. Let a = BWT [i], where 1 ≤ i ≤ n. If SAT [i] 6= 1, then there are

C[a] + occ(a, i− 1) suffixes smaller than T [SAT [i]− 1..n], and C[a] + occ(a, i) suffixes

smaller than or equal to T [SAT [i]− 1..n].

Proof. All suffixes that start with a′ < a, where a′ ∈ Σ, are smaller than a ·T [SAT [i]..n].

From Lemma 3.5.1, there are occ(a, i) suffixes smaller than a · T [SAT [i]..n] that start

with a. Adding them up, and noting that BWT [i] = T [SAT [i]− 1], we get the required

result.

Lemma 3.5.3. Let 1 ≤ i ≤ n. If SAT [i] 6= 1 and a · T [SAT [i]..n] is a substring of T ,

then there are C[a]+occ(a, i−1) suffixes smaller than a·T [SAT [i]..n], and C[a]+occ(a, i)

suffixes smaller than or equal to a · T [SAT [i]..n] .

Proof. This is a re-statement of Lemma 3.5.2.
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Lemma 3.5.4 (Inversion of BWT). Let 1 ≤ i ≤ n. If T [j] = BWT [i], then T [j − 1] =

BWT [C[T [j]] + occ(T [j], j)] for j > 1.

Proof. Since BWT [i] = T [SAT [i]− 1] by definition, we have T [SAT [i]− 1..n] = T [j..n].

From Lemma 3.5.2, the SAT [1..n] position of T [SAT [i]− 1..n] is C[T [j]] + occ(T [j], i).

Therefore, T [SAT [C[T [j]] + occ(T [j], i)..n] = T [j..n]. By definition, BWT [C[T [j]] +

occ(T [j], i)] = T [j − 1].

Algorithm 3.3: Invert BWT(BWT [1..n], k)

Data: BWT [1..n] is the BWT of string T , BWT [k] is the terminal character of
Σ.

Result: Find T
i = k;1

for j = n to 1 do2

T ′[j] = BWT [i];3

i = C[T ′[j]] + occ(BWT [T ′[j]], i);4

end5

report reverse of T ′[1..n].6

Algorithm 3.3 gives the algorithm to invert BWT [1..n]. k is the place where the

terminal character of T has been mapped to BWT [1..n] under the BWT. Starting from

this last character of T , the loop in the algorithm takes the location of the jth character

of T in BWT [1..n] and computes the location of (j − 1)th character of T in BWT [1..n]

by applying Lemma 3.5.4. This will reconstruct T in the reverse order. Line 6 rectifies

this by reporting the reverse of the reconstructed string.

Note that if we start with k at a location different from the end, the algorithm will

still start inverting the BWT from that point backwards. If a data structure is available

to compute C[a] and occ(a, i) in constant time, the BWT inversion algorithm can be

run in linear time. The next section discusses how to construct such data structures.
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3.6 FM-Index

FM-index, which stands for full-text index in minute space, is a data structure proposed

by Ferragina and Manzini [36] that indexes a compressed text. Since genomes do not

tend to compress well, we will discuss how this data structure is implemented on an

uncompressed text. The FM-index consists of BWT [1..n] and some auxiliary structures

to compute C and occ(a, i).The space required for the index is O(n)-bits. This is a

significant advantage over the indexing methods we have discussed so far that require a

much larger space than the original text. To index a nearly 3 GB genome, a suffix tree

takes up about 40 GB of space while a suffix array takes up about 12 GB. However, the

FM-index takes up only about 750 MB.

3.6.1 Auxiliary Data Structures

The array C can be computed by counting the occurrences of each character, and will

take O(|Σ|) space. The difficulty is in designing a succinct data structure to compute

occ(a, i). We first partition BWT [1..n] into “buckets” of size l2, where l2 ≤ n. There

will be n
l2

such buckets. Each of these buckets are further divided into sub-buckets of

size l. For each a ∈ Σ, we store the total number of a in buckets and sub-buckets as

follows. For the ith bucket, we store the count of a’s in BWT [1..il], denoted by Ba[i].

For the jth sub-bucket in bucket i, we store the number of a’s in the first j buckets,

denoted by B′a[i, j]. Finally, for all i ≤ l, we create a lookup table Ra(S, c) that returns

the number of occurrences of a in the first i characters of a string S of length c, where

1 < c < log n is an integer.

With these counting data structures, occ(a, i) can be easily calculated as follows. i

falls into the b i
l2
cth bucket and the b ilc

th sub-bucket, and the last i−b i
l2
c−b ilc characters

will not fall completely in any sub-bucket. The number of a’s in BWT [1..i− b i
l2
c − b ilc]

is Bs[b il2 c] +B′a[b il2 c, b
i
lc]. If BWT [1..i] does not fall completely in to a sub-bucket, then

the a’s in BWT [i − b i
l2
c + b ilc..i] needs to be counted. This segment can be divided
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in to consecutive intervals of length c and the number of a’s in each segment can be

counted using Ra. Adding all these counts of a will give occ(a, i).

Calculation of occ(a, i) using B,B′ and Ra involves only table lookups, and can

be done in constant time. If we set l = log n/c then the space complexity of these

structures can be calculated as follows. B stores O(n/ log2 n) integers ranging from

1 to n. Since these integers can be represented with log n bits, B can be stored in

(n/ log n) bit-space. B′ will require O(n/ log n) entries taking O(log log n)-bit space,

resulting in O(n log logn
logn )-bit space. The final table Ra requires O(2logn/c log n) entries

of O(log logn)-bits, and needs O(n
1
c log n log log n), which is O(n)-bit space. Therefore,

the final space complexity of these data structures is O(n log logn
logn )-bits.

3.6.2 Exact String Matching with the FM-index

We will next present the solution to the exact string match problem using an FM-index.

The algorithm is shown in Algorithm 3.4 and is called the backward search. The

algorithm uses the following lemma;

Lemma 3.6.1. Let [p, q] be the SAT -range of S. Then the SAT -range of aS is [C[a] +

occ(a, p− 1) + 1, C[a] + occ(a, q)].

Proof. From Lemma 3.5.3, the number of suffixes lexicographically smaller than aT [SA[p]..n]

is C[a] + occ(a, p− 1). Therefore, C[a] + occ(a, p− 1) + 1 suffixes are lexicographically

smaller than or equal to aT [SA[p]..n]. Again by Lemma 3.5.3, the number of suffixes

lexicographically smaller than or equal to aT [SA[q]..n] is C[a] + occ(a, q). Noting that

T [SA[p]..n] and T [SA[q]..n] are the lexicographically smallest and largest substrings

in T that have S as a prefix, we get that SAT -range of aS is [C[a] + occ(a, p − 1) +

1, C[a] + occ(a, q)].

In the algorithm, [st, ed] is an SAT -range that is initialized to the SAT -range of

P [|P |] in Line 1. In the while loop, [st, ed] will be the SAT -range of P [i..l]. The loop
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will take the SAT -range of P [i+ 1..|P |] and find the SAT -range of P [i+ 1..|P |] using

Lemma 3.6.1. If st < ed, the resulting SAT -range is invalid and P is not a substring of

T . Otherwise, [st, ed] will be the SAT -range corresponding to P .

Lines 4-7 of the algorithm can be performed in linear time, and the loop will be

executed at most |P | time. Therefore, the time complexity of the algorithm is O(|P |).

Algorithm 3.4: Backward Search(BWT [1..n], P )

Data: BWT [1..n] is the BWT of string T and P is a string
Result: Find SAT range of P in T , and the number of occurrences of P in T .
x = P [|P |]; st = C[x] + 1; ed = C[x+ 1];1

i = m− 1;2

while st ≤ ed and i ≥ 1 do3

x = P [i];4

st = C[x] + occ(x, st− 1) + 1;5

ed = C[x] + occ(x, ed);6

i = i− 1;7

end8

if st ≤ ed then9

report [st, ed];10

report number of occurrences ed− st;11

end12

report zero occurrences;13

3.6.3 Converting SAT -Ranges to Locations

The result of the backward search algorithm is an SAT -range, and not the locations

of the occurrences of P in T . To convert an SAT -range [st, ed] into the corresponding

locations, we need to take each i ∈ [st, ed] and find their SAT -values. We will call this

operation as decoding, and it can be easily done if SAT [1..n] is available. However,

storing SAT [1..n] defeats the purpose of constructing the FM-index to save space.

Given a fixed k ≥ 0 and any ε > 0, [36] describes a data structure that occupies

O(Hk(T ) + log logn
logε n )-bit space and retrieves the SAT -value corresponding to any SAT -

location in O(logε) time, where Hk(T ) is the k-th order empirical entropy of T . We will
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now describe a practical method that can decode any SAT -location in O(log n) average

time while taking only O(n)-bit space.

The algorithm is described in Algorithm 3.5. We sample the values of SAT at

fixed intervals and store them in an array, i.e., we store Dκ[i] = SA[κi] for some

κ = O(log n) and i = 1, 2, ..bn/κc. Dκ will then take up O(n)-bit space. If we want to

decode an SAT -location s and if s = κj for some j = 1, 2, .., then Dκ[s] would give the

corresponding location. Otherwise we use algorithm 3.3 to invert the BWT starting

from BWT [s] until we come across a value BWT [κj]. If this value is reached after v

steps, the location corresponding to s is Dκ[κj]− v. Since SAT is uniformly sampled

at intervals of length O(log n), the average value of v is O(log n). Therefore, s can be

decoded in O(log n) time.

Algorithm 3.5: Decode(s,Dκ, BWT [1..n])

Data: s is an SAT -location, BWT [1..n] and Dκ is a sampling of SAT [1..n] at
uniform intervals of κ

Result: Find SAT -value of s
s′ = s; v = 0;1

while s′ 6= κj do2

c = BWT [i];3

s′ = C[c] + occ(BWT [c], i′) ; /* invert the BWT */4

v = v + 1;5

end6

return Dκ[s′]− v;7

The algorithms in sections 3.5-3.6 are based on the work of Ferragina et. al. [36].

3.7 Improving Decoding

Although the decoding operation can be performed in O(log n) time, practical applica-

tions may require thousands of decoding operations to be performed per string search.

Therefore, decoding may become a bottleneck in some applications. In the following

sections, I will describe a novel data structure I invented and some observations that can
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be used to make the decoding operations faster. First, I will describe how to efficiently

find the location of a pattern on the fly while performing a backward search with the

following lemma.

Lemma 3.7.1. Let P be a substring of T . When performing backward search for P , if

the SAT -range corresponding to P [l, |P |] is in the form [κi, κi], Then P occurs uniquely

at the location SA[κi]− (l − 1).

Proof. The unique suffix corresponding to [κi, κi] is SAT [κi], and we have P [l, |P |] =

T [SAT [κi], SAT [κi] + |P | − l]. Therefore, P occurs uniquely at SA[κi]− (l − 1).

Since SAT [κi] is already sampled, if any backward search satisfies this condition,

we can obtain the location of P in constant time as soon as the search terminates. As

P becomes longer, we can expect P to occur uniquely in T most of the time, and to

satisfy the above condition.

3.7.1 Retrieving Hits for a Fixed Length Pattern

It is common to search for patterns of fixed length when mapping reads. We will now

describe a simple but powerful data structure that will speedup the retrieval of such hits.

This data structure is based on the observation that, when the length of the pattern l

is long, the corresponding SAT -range of the pattern is usually small. In fact, assuming

that genomic sequences are random strings, we can show that the expected size of the

SAT -range for a length-(log|Σ| n) pattern is 1. On the other hand, if the SAT -range

of a length l pattern is too long, the pattern is more likely to be from low complexity

or repeat regions. Such patterns tend to be noisy. By ignoring these types of hits, we

might be able to increase the specificity [115] while making an acceptable trade off with

sensitivity.

Based on these two observations, our data structure stores the SAT -values for

patterns whose SAT -ranges have a size between δ and D (δ < D) as follows. Let
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P = {P1, . . . , Pr} be the set of distinct length-l substrings of T whose number of hits in

T are between δ and D. Let [sk, ek] be the SAT -ranges of Pk for k = 1, 2, . . . , r. Note

that the SAT -ranges of all these patterns are distinct and do not overlap. We define

the reduced suffix array RSAT to be an integer array formed by retaining only the

SAT -values of [sk, ek] for all k = 1, . . . , r. RSAT stores entries for [sk, ek] consecutively

for k = 1, . . . , r and the SAT -values belonging to each [sk, ek] are kept sorted in their

positional order. Furthermore, we also store two arrays S[1..r] and SUM [1..r] where

S[k] = sk and SUM [k] =
∑k−1

i=1 (ei− si + 1) + 1. SUM [k] will point to the beginning of

the locations corresponding to [sk, ek]. We denote the data structure consisting of the

BWT of T , the uniform sampling of SAT [1..n] at κ interval Dκ, RSAT , S and SUM

by LT,l,δ,D,κ.

Figure 3.1 shows an example of this data structure. Consider the string “T =

cccctgcggggccg$”. This string contains the 2-mers cc, cg, ct, gc, gg and tg. The BWT

of T is “tccgccgc$gggccg”. Only the 2-mers cc, gg, gc and cg appear more than once in

T . Figure 3.1(a) lists down the occurrences of each of these 2-mers in T sorted by their

location, along with the corresponding SAT -ranges. To construct LT,2,2,3,κ, we need to

consider all 2-mers that appear at least twice and at most three times. In Figure 3.1,

the SAT -ranges are sorted by their starting positions. Then, these starting positions

are used as keys pointing to the beginning of the list of sorted locations belonging to

the corresponding SAT -ranges. If we are to construct LT,2,2,4,κ, then the entry for cc

will be included as it occurs 4 times in T .

Table 3.2 shows that LT,l,δ,D,κ is space-efficient in practice, for a large genome

like hg19. It gives the space requirement for the data structure, excluding the space

occupied by BWT [1..n] and Dκ, and for δ = 4 and D = 30, 000.
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Figure 3.1: Illustration of the data structure for fast decoding of SAT -ranges.
cccctgcggggccg$ gives an example string T . (a) shows the sorted positions of every
non-unique 2-mer in the string. The label on top of of each list indicates the 2-mer
and its SAT -range. (b) Data structure LT,2,2,3,κ that indexes each 2-mer by the starting
position of each SAT -Range. The 2-mers ct and tg are not indexed as they occur
uniquely in T . cc is not included as it has four occurrences.

l-mer size Size of LT,l,δ,D,κ

18 2.5 GB

25 1.6 GB

30 495 MB

37 361 MB

68 244 MB

75 199 MB

90 140 MB

100 116 MB

Table 3.2: Size of the data structure LT,l,δ,D,κ for different values of l, where T is the
hg19 genome, δ = 4 and D = 30, 000. The size excludes the sizes of BWT [1..n] and Dκ
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3.8 Fast Decoding

Now, given LT,l,δ,D,κ and the SAT -range [i, j] of a pattern P of length l, we can use the

algorithm SA to Loc in Algorithm 3.6 to get all of its occurrences in T efficiently. If P

occurs at most δ times, or more than D times, we use the method given in Algorithm3.5

to obtain each SAT [i], . . . , SAT [j] (Lines 9-14). Otherwise, we use LT,l,δ,D,κ to find all

the occurrences as follows. First, the array S containing the starts of SAT -ranges is

binary searched for i. If S[k] contains i, then SUM [k] will contain the position of the

RSAT containing all the SAT -values of [i, j] (Line 4).

The time taken for decoding an SAT -range of a pattern P is O(occ) if the number

of occurrences of P in T is larger than δ but does not exceed D. Otherwise, it will

take an average time O(occ log n). However, in practice, we will discard patterns with

occ > D, and will be using the decoding method described by Lemma 3.7.1 to decode

unique reads. Therefore, for sufficiently long P , we would be able to decode SAT -ranges

in an O(occ) average time using the new data structures.

Algorithm 3.6: SA To Loc([i, j], LT,l,δ,D,κ)

Data: [i, j] is an SAT interval
Result: Find all locations corresponding to [i, j]
if (j − i) > δ and (j − i) ≤ D then1

Binary search S for the key i;2

if S[k] = i then3

return RSAT [SUM [k]], . . . , RSAT [SUM [k + (j − i)]− 1];4

else5

return ∅;6

end7

else8

H = ∅;9

for k = i, .., j do10

L = Decode(k,Dκ, BWT [1..n]);11

H = H ∪ L;12

end13

return H;14

end15
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3.9 Relationship Between Suffix Trie and Other Indices

The relationship between the suffix trie and the suffix tree is clear. Each node in the

suffix tree corresponds to a node in the suffix trie, and the internal nodes with one

outgoing edge in the suffix trie will be absent in the suffix tree. Let the suffix tree be

constructed so that the edge labels produced in a breadth first search at each node will

always be lexicographically sorted in the descending order. If we now do a depth first

search, each leaf in the suffix tree will correspond to the SA-values from bottom to the

top. Now consider an internal node, and let P be the string obtained by concatenating

the edge labels from the path from the root to the node. Then, the subtree under the

internal node will correspond to the SA-range of strings having P as the prefix.

3.10 Forward and Backward Search

The backward search for a string is done in a somewhat unnatural way from right to left.

However, sometimes algorithms require patterns to be searched from left to right. Let

T ∗ be constructed by reversing T [1, n− 1], and appending a “$” to it. Now, searching

for a pattern P in T is equivalent to searching for the reverse of the pattern in T ∗.

in terms of the BWT terminology, searching for P in T is equivalent to performing a

backward search for the reverse of P in T ∗. This backward search would actually search

characters in P from left to right. This method of searching for a substring is called the

forward search, and the index of T ∗ is called the forward index.



Chapter 4

Survey of Alignment Methods

4.1 Introduction

Sequence alignment is a classical problem, and its applications to biology have been

around since late 1960’s [72] and with the work of Needleman and Wunsch [113], became

well established. As biological data grew at a rapid pace, better algorithms that can

deliver results fast on available computing resources were needed. Algorithms like

BLAST [7], BLAT [58] and BWT-SW [66] were able to provide efficient alignments of

long sequences (usually generated by Sanger sequencing) to large databases. However,

with the advent of NGS, it was necessary to align millions of queries to large genomes,

and the existing software were not designed for such a task. Furthermore, the NGS

sequences carried different error profiles from Sanger sequencing, had additional error

information and sometimes used special encoding schemes. Therefore, a new generation

of read aligners were born specifically to handle NGS reads.

43
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Character Name of the operation Edit operation

m Match Reference and the read bases are matched.

r Mismatch Replace current base with a different base.

i Insert Insert a base to the read.

d Delete Delete a base from the read.

Table 4.1: The list of possible text operations in an edit transcript. A string can be
transformed into another string by applying these operations from left to right on the
original read.

4.2 Basic Concepts

4.2.1 Alignments and Mapping Qualities

Given a reference genome T and a read R, the function of an aligner is to return the

most likely position(s) in the genome where R might have originated from. The positions

that an aligner returns are called hits, mappings or alignments. Generally, a hit or

a mapping is considered to be correct if it overlaps the neighbourhood of the origin

of the read. However, an alignment is considered to be correct only if the placement

of the bases of the read are correctly given. The exact way a read is aligned to a

substring T ′ of T can be described by a so-called edit transcript. An edit transcript is

a string on the alphabet {m, r, i, d}. Each letter in an edit transcript describes a text

operation that can be performed on the read, and when these operations are applied

from left to right on the read, T ′ can be produced. Table 4.1 indicates these text

operations. A common way to indicate an alignment is to use the CIGAR (Compact

Idiosyncratic Gapped Alignment Record) code. The CIGAR code encodes the edit

transcript so that the number of times a text operation must be performed is followed

by a corresponding CIGAR operator. Operator for matches and replacements are

both denoted by M. The operators for insertion and deletions are I and D respectively.

A soft-clip operator, denoted by S, can appear at the ends of a CIGAR string, and

indicates that the corresponding bases should be clipped or ignored.
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When determining the goodness of alignments, two scores are generally used. The

first score is the Hamming distance which can be used when there are no indels in the

alignment. The Hamming distance is the number of mismatches in the read alignment.

Note that to calculate the Hamming distance, the read and T ′ must have the same

length, and the transcript should only use the letters m and r. The second score,

called the edit distance or the Levenshtein distance, is obtained by assigning values

to each character in the edit transcript of the read alignment and summing them up.

There are other scoring schemes that adds a penalty whenever a contiguous set of

indels are encountered (gap-open penalty) and some scoring schemes do not penalise

indels that occur at the beginning and the end of the alignment. Hamming distance

calculation can be done in O(|R|) time while finding the best alignment with the other

scores need dynamic programming methods that take O(|R||T |) time. Two popular

dynamic programming approaches used to determine the optimal alignments are the

Smith-Waterman [133] and the Needleman-Wunsch [113] methods.

A good aligner will also return a value, called the mapping quality or the mapQ, for

each mapping to indicate the correctness of the mapped location. In cases where the

mapping location for a read cannot be resolved unambiguously, the aligner will assign a

mapping quality of 0 to the mapping.

4.3 Seeds

In the previous chapter, we have seen efficient methods to search for exact matches.

When inexact matches of a string are searched for, a common technique is to use the

“seed and extend” method. A seed is a subsequence of the query string. In the seed

and extend method, a filtration step identifies all occurrences of a seed in the reference

genome. It narrows down the possible locations of inexact matches of the query string.

Then, a verification is run on these locations to see if an inexact match for the whole

query exists, using a criterion like the edit or the Hamming distance. This step is called
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the extension step.

The most basic type of seed is a contiguous seed, which is a q-mer substring of the

query string. Classic aligners like BLAST and MegaBlast [156] use this type of seeds,

where they search for 11-mer and 28-mer seeds respectively. The dilemma faced when

using contiguous seeds is that if the seed is small, the search becomes more sensitive

but will return many false locations to verify. On the other hand longer seeds will miss

out some correct hits. In [91] it was noted that a compromise could be made using

‘spaced seeds’, where non-consecutive characters of the query are used as a seed. Such a

seed can be specified using a template consisting of 1’s and 0’s, where 1 stands for a

base that will be sampled, and 0 stands for a base that will be ignored. The weight of a

spaced seed is the number of 1’s in its template. For example the template 010101 is of

weight 3, and specifies that the seeds are to be constructed by sampling the characters

in even-numbered positions of a string of length 6. When the read length, the sensitivity

required and the memory usage are specified, [83] shows how to construct the minimal

number of spaced seeds.

Seeds are used in conjunction with an index. In the context of aligners, either the

reference genome or the reads can be indexed. It is common practice to use a hash

table as the index. Hash tables for large references require a lot of memory when the

length of the seed is large. Processing reads in batches and hashing them is less memory

intensive, but may become time consuming as it is not a one-time operation like hashing

the reference.

4.4 Mismatch Scanning With Seeds

According to the pigeon-hole principle, if a query string R has k-mismatches and it is

partitioned in to (k + 1) parts, at least one of the partitions should contain an exact

match. Using this method, we can design k + 1 contiguous seeds having a weight of

at most d|R|/(k + 1)e to detect k-mismatch hits. However, gapped seeds with higher
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weights can be designed to handle mismatches by dividing the query into k+r segments,

which results in at least r exact matching seeds.

4.5 q-grams

When there are indels in the query string, seeding methods described above will in

general fail. q-gram method are more suitable to handle these type of cases. The

q-grams are similar to contiguous seeds, but the way they are used is somewhat different.

Instead of relying on a single long seed to initiate hit verification, q-gram methods

rely on t matching q-grams clustering into a small region to initiate verification. This

number t is decided by the q-gram lemma [19, 55] which states that if a query of length

w has at most k mismatches and indels, the query and a length w substring in the

reference shares at least t = (w + 1)(k + 1)q common q-grams.

4.6 Brief Overview

In this section we will give a brief overview of how sequence aligners evolved. In the

beginning, the read lengths produced by the popular NGS technologies were quite small.

For example the earliest reads produced by the Illumina and SOLiD sequencers were

around 25-36bp in length. The major concern when aligning reads of this length is

mismatches, and if reliable indel detection was needed, paired end reads had to be

used. Therefore, the very first generation of sequence aligners concentrated on devising

efficient methods to map reads allowing mismatches. A seminal publication that set the

tone for this generation of mappers is MAQ [77].

The earliest algorithms for finding mismatch hits were seed and extend methods [26,

77, 132]. These algorithms did not scale well with the read length and the number of

mismatches. However, it was observed that errors tend to accumulate at the end of

the reads so that most of the reads can be aligned reliably by mapping their first 28
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bases allowing at most two mismatches [77]. Therefore, a popular approach was to

first map this high quality part of the read allowing around two or three mismatches.

Once the high quality part of a read was anchored, the rest of it can be aligned around

the anchor [69, 74]. Nevertheless, some aligners performed mapping by covering the

whole read with seeds [83, 132]. Although mismatch-based seed extension is fast, its

not the most accurate in the presence of indels and fails to take full advantage of the

encoding scheme of SOLiD. Therefore, some programs used a dynamic programming

approach [122, 45] for seed extension.

Along with NGS, computing resources available for processing evolved. Computers

having or exceeding 4GB of memory became increasingly common. Taking advantage

of this fact, the Bowtie [69] aligner broke new grounds by using the FM-index to

index the reference genome. Using clever heuristics, it provided sequence alignments

that are accurate, sensitive and upto 35-300 times faster compared to its competitors.

This launched the next generation of fast sequence aligners that included BWA [74],

SOAP2 [80] and BWA-SW [75]. BWA suite became the de facto standard for accurate

aligners and Bowtie became the de facto standard for efficient aligners. Another change

that can be observed during this period is that the aligners shifted to indexing the

reference rather than the reads.

As longer reads became available, they were more likely to be affected by structural

variations, reference mis-assemblies and indels. Therefore, mapping allowing mismatches

was not sufficient and the handling of indels became important. Some popular aligners

(e.g. [69, 77]) required paired end reads to resolve indels. However, for read lengths of

around 75bp, the approach of anchoring the high quality part of the read and extending

it allowing variations still produced good results at an acceptable speed [74]. Although

some aligners designed to handle shorter reads can be tuned to find indels, it will badly

affect the run time. Due to these considerations, the general approach shifted towards

using multiple seeds spread throughout the read [68, 75] or q-mers [145] and finding
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local matches. In a sense, the strategies have come a full circle to resemble those of

classical aligners like BLAST.

A large number of sequence aligners have being developed as shown by Figure 4.1.

These aligners make various improvements over seeding strategies, methods of seed

extension, ranking of alignments and the types of indexes used. However, their basic

methodologies have not changed radically.

Figure 4.1: The graph shows the details of a collection of peer-reviewed sequence
aligners and their publication date. The graph plots DNA aligners in blue, RNA aligners
in red, miRNA aligners in green and bisulphite aligners in purple. An update of a
previous version is plotted connected by a grey horizontal line to the original mapper.
Reproduced from Fonseca et. al. [38]
.
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4.7 Seed-Based Aligners

The main differences between seed-based aligners are the methods they use to design

seeds and hashing tables. Old aligners like Eland [26] and MAQ designed the seeds

based on the pigeon-hole principle. These use a k + 2 partitioning scheme, with Eland

using four partitions and MAQ using around five partitions, limiting their ability to

handle mismatches at 2 and 3 mismatches respectively. RMAP uses k + 1 templates to

find k mismatch mappings. However, due to the small weight of the templates, large

values of k will deteriorate its performance. ZOOM uses more sophisticated methods to

design a minimum number of spaced seeds according to a given set of specifications.

The memory required by the hash tables can be quite large, especially when the

reference is hashed. SOAP [79] using a 12bp seed requires 14GB of memory to index

the human genome, which is quite high even by todays standards. A simple strategy

to reduce the index size is to skip some bases of the reference when building an

index [40, 89, 110], which results in the loss of sensitivity. A clever seed design by

PerM [22] uses what is called a single periodic spaced seed. These seeds require only

a single index since the seeds are generated by sliding a single template across the

read. The resulting index requires only 4.5 bytes per base to index the human genome.

BFAST [45] uses a novel two level indexing scheme to index spaced seeds of large weight.

An advantage of indexing the reads is that the amount of memory used can be made

flexible. However, this approach might not always be effective when the number of reads

mapped is small as it carries the overhead of scanning the genome [74]. Modern aligners

usually do not index the reads. One reason is that the processors are now equipped

with sufficient memory to carry a genomic index. Another reason is that the increase of

the volume of data generated by NGS makes hashing of reads take a similar or a larger

amount of memory compared with indexing the genome [48].

Table 4.2 summarizes some of the features of popular seed and q-gram based aligners.
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4.8 Suffix Trie Based Methods

In the last two years suffix trie based methods, especially those based on the FM-index,

have become increasingly popular. The first uses of suffix trie based methods in sequence

alignment can be traced to the programs MUMer [64], OASIS [103] and Vmatch [63].

The first two are based on suffix trees. The last one is based on a data structure

called the enhanced suffix array that can simulate any operation on a suffix tree with

the same time complexity [1]. The BLAST-like alignment program BWT-SW used

an implementation of the FM-index, and practically demonstrated the utility of the

FM-index in sequence alignment. Although there are suffix array and enhanced suffix

array based aligners developed in recent times [44, 130], it is doubtful whether they

can sufficiently outperform the FM-index based methods to justify their large memory

footprint.

FM-index can be used not only to find exact matches, but also to find inexact

matches. This can be done näıvely by introducing mismatches and indels to the query

string and searching for their exact matches. A more refined approach is to traverse the

suffix/prefix trie in a depth-first search for the query string while introducing mismatches

and indels. However, introduction of mismatches and insertions will make the search

space grow exponentially.

To tame this exponential growth, the aligners attempt to prune the search space

using various methods. Bowtie uses the pigeon-hole principle and forces mismatches to

one half of the read when searching for a single mismatch. BWA can determine some

branches in the search trie that will result in excessive number of differences with the

query string and prune them. SOAP2 uses seeds obtained by dividing the read into

k + 1 partitions. The exact matches of the seeds are searched for using a suffix trie

traversal, and switching between prefix and suffix trie traversals, k mismatch hits can be

enumerated [65]. The switching between the two modes of traversals can be easily done

using the bi-directional BWT [65]. Bowtie and BWA uses the forward and backward
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FM-indexes for traversing prefix and suffix tries.

Using pruning techniques, two or three mismatch hits can be efficiently enumerated

in a read length of around 25-32 bases [69, 74]. In a real life dataset, the high quality

region is predominantly error free, and high mismatch hits are rare. Therefore, the

high quality region of a read can be anchored fast, and extended. As the read lengths

become longer, the approach shifts towards locating seeds with a very low number of

mismatches and aligning them to the query using a dynamic programming method. The

original BWT-SW algorithm performs sequence alignment by sampling the substrings

of the prefix tree of the reference and aligning them against the query using dynamic

programming. BWA-SW speeds up this process by aligning the prefix trie of the

reference against the prefix DAWG of the query using heuristics. Bowtie2 [68] samples

a set of seeds from the query string and maps them against the reference allowing at

most one mismatch. These mappings are then prioritized using some heuristics and are

extended with a fast SIMD-accelerated dynamic programming method. CUSHAW2 [86]

uses maximal exact match regions of the read as seeds. BLASR [21] and GEM [94]

choose seeds that do not occur more than a given number of times in the reference.

Table 4.3 provides information about some of the suffix trie based methods that are

available.

4.9 Aligners and Hardware Improvements

Modern computers have grown quite powerful in the last few years. Processors capable

of processing Single-Instruction Multiple-Data (SIMD) instructions have now become

commonplace. Sequence aligners have benefited by these developments. The FM-index

relies on bit counting, and this can be performed efficiently using SIMD instructions.

The implementation of BWT-SW comes with such a routine, and completely eliminates

one lookup table needed for the FM-index using SIMD instructions. Many processors

contain native bit counting instructions, and we can expect these to be utilised in future.
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Another area that benefits from SIMD instructions is the dynamic programming

used in the seed extension. SIMD based algorithms have been devised that can speed

up the standard Smith-Waterman algorithm several times [118, 34]. These algorithms,

along with the Myers bit vector algorithm [111] are used by aligners for performing fast

dynamic programming [68, 122].

GPU’s are becoming common now, and the amount of memory they have keep

on increasing. GPUs carry the potential for enormous amount of parallel processing.

GPU’s have been used to speed up dynamic programming [87]. [88] managed to

implement a complete BWT based alignment pipeline, and since then several GPU

based aligners [60, 84, 90] have been introduced.
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Eland [26] X X Can be considered as the first specialized short read aigner.
Designed to map Illumina reads. Allows two mismatches.

MAQ [77] X X First mapper to produce a mapping quality.

ZOOM [83] X X Can use custom designed seeds according to the mapping criteria
and memory availability. Indels are handled by enumerating
possible indel patterns in the seed regions.

Stampy [89] X X Uses contiguous seeds of length 15. Hashes every 6th base of the
reference. Sensitivity is very high, especially for large indels.

SeqMap [53] X X Indels are handled by simulating them in the reads during hash-
ing.

RMAP [132] X X Mapping can be done so that low quality bases are always treated
as matches. No limit in read length and the number of mis-
matches.

mrFast [6] X X Aimed at returning all hits, and at copy number variation
studies.[6]

Razers [145] X X Can map reads at a guaranteed sensitivity that user specifies,
with lowered sensitivity resulting in significantly higher speeds.

SOAP [79] X X A large amount of memory (∼14GB) is required for human-sized
genomes.

PerM [22] X X Single periodic spaced seeds reduce hash table size.

SHRiMP [22] X X Aimed at accurately mapping SOLiD reads.

BFAST [45] X X Uses empirically derived optimal seed templates for fixed read
and genome sizes. Data structure enables using larger q-mers
(e.g. q = 22 for long reads).

Hobbes [4] X X Fast method when finding multiple hits.[4]

SRmapper [40] X X Uses a relatively small amount of memory (∼2.5GB) for hashing
a human sized genome.

SeqAlto [110] X X Achieves speeds comparable to suffix-trie based methods. Uses
an adoptive process to stop searching seeds when a confident
alignment is found.

Table 4.2: Summary of several seed and q-mer based aligners.
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Bowtie [69] X Conducts a quality-aware, greedy, randomized, depth-first search
for alignments.

BWA [74] X Provides a good balance of speed, sensitivity and accuracy.

BWA-SW [75] X Modification of BWT-SW algorithm for short reads. Indexes
both reads and genomes.

SOAP2 [80] X Uses bi-directional BWT.

Segemehl [44] X One of the earliest attempts at gapped alignment with suffix
tries. Processing chromosome by chromosome reduces memory
requirement to 6GB.

Bowtie2 [68] X Indels can be found from a single read in contrast with Bowtie 1.
Good balance of sensitivity and speed.

CUSHAW2 [86] X Maximal exact matches of the query are used as seeds. Perfor-
mance improves for longer reads.

BLASR [21] X X Aligner is designed for PacBio reads.

GEM [94] X Extremely fast algorithm. Use filtration methods to limit search
space.

Masai [130] X X X Uses a special kind of seeding called approximate seeds.

Table 4.3: Summary of several prefix/suffix trie based aligners.



Chapter 5

Survey of RNA-seq Alignment

Methods

5.1 Introduction

Apart from the general difficulties faced when mapping NGS reads, mapping RNA-seq

reads presents unique challenges. RNA-seq reads are in general made out of different

exonic segments of the genome. These segments can have different sizes and the intronic

distances between them can be as small as several bases or as large as hundred thousand

bases. To complicate matters further pseudogenes, which are genetic sequences that

bear a resemblance to the real genes, can result in false mappings due to their similarity

with actual genes. However, most of the splicings occur near highly conserved motifs

and the size distribution of exon lengths and intron lengths have been studied for many

species. This information can be used to guide the RNA-seq mapping process.

Generic sequence aligners described in the previous chapter serve a limited purpose in

the analysis of RNA-seq reads. They can be used to map the reads to a reference cDNA

database for quantification purposes [109], or to identify known splice junctions [23, 150].

However, when de novo splicing events are to be found, specialised aligners are required

56
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that take into account the nature of RNA-seq reads. In the following sections we will

survey the methods used by these specialized RNA-seq aligners.

5.2 Evolution of RNA-seq Mapping

Expressed sequence tag (EST) [2] technology was a predecessor to RNA-seq, and

produced relatively long reads that were several hundred bases long. Several methods

have been used to align them [58, 131, 153, 70] that take into account the nature of

splice sites. However, these methods are not very useful to align the first generation of

NGS reads due to their shorter length and larger volume. Earliest studies used known

exons to align RNA-seq data [109]. The splice junctions were detected by mapping the

reads to a database created by concatenating adjacent exons. If a read maps to one of

these, and cannot be mapped to the reference genome, a splice junction can be called.

One of the earliest RNA-seq mappers is QPALMA [14]. QPALMA is a machine

learning algorithm, and requires a known set of splice junctions as a training set.

Furthermore, it was not a very fast algorithm. Tophat [137] can be considered as

the first RNA-seq aligner that was able to do de novo splice junction discovery at a

reasonable speed. Tophat creates an approximation of the transcriptome using the

coverage of reads that can be mapped to the reference allowing a few mismatches. Then,

splice junctions are searched for in the initially unmapped reads using this tentative

transcriptome as the guide.

When the read length of NGS reads increased, fast seed-based methods were used to

discover splice junctions. For example, a 50bp read can be split into two 25bp seeds, and

each part is likely to occur only a small number of times in the reference. These seeds

can be rapidly aligned using a fast aligner like Bowtie. Assuming that the seeds come

from an exonic region, the junction can be resolved using a seed-and-extend method.

However, the extension step is not straightforward. This method of RNA-seq alignment

is called split-mapping. Split-mapping has the ability to precisely determine the splice
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junctions using a single read.

5.3 Classification of RNA-seq Mappers

5.3.1 Exon-First and Seed-Extend

According to [39], RNA-seq methods can be broadly classified into two classes called

exon-first and seed-extend. According to this classification, the exon-first approach maps

the whole read into the reference first. We will call this step the exon mapping step.

The idea is that most of these reads probably originated completely inside the exons.

Those reads that remain unmapped are called the initially unmapped reads (IUM [137]).

They are analysed for splice junctions (See Figure 5.1(a)). If the read length is too

long, exon mapping may be done by dividing the reads into shorter sub-reads. Aligners

in this category include TopHat, MapSplice [142], HMMsplicer [29], SOAPsplice [50],

PASSion [155] and TrueSight [81].

The second class of mappers do not try to make an initial distinction between

exonic reads and those containing junctions. They will simply divide a read into

seeds, map the seeds to the genome and examine them for splice junctions (See Figure

5.1(b)). Aligners in this category include QPALMA, MapNext [10], PALMapper [52],

SpliceMap [9], SplitSeek [8], GSNAP [152], Supersplat [18] and SeqSaw [143].

Although many mappers perform an initial exon mapping, how much they depend

on the resultant mapping for junction finding varies from aligner to aligner. For example,

Splicemap detects junctions completely independent of the exon mapping. However, in

Tophat and G-Mo.R-Se [27] it is an integral part of the junction finding process.

Tophat and G-Mo.R-Se use the exon mapping to generate an approximation of the

transcriptome, which is called the tentative transcriptome, as follows. Tophat maps

reads allowing upto 10 hits. The read islands that are formed by this mapping are
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Figure 5.1: An illustration of exon-first and seed-extend methods. The black and white
boxes indicate exonic origins of some reads. (a) Exon-first methods align the full reads
to the genome first (exon read mapping), and the remaining reads called IUM reads
are aligned next, usually by dividing them into smaller pieces and mapping them to
the reference. (b) Seed-extend methods map q-mers of the reads to the reference (seed
matching). The seeds are then extended to find splice sites (seed extend). Reproduced
from Garber et. al. [39]
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joined together if they are nearby, or extended by attaching about 45bp from their

flanking regions. G-Mo.R-Se [27] clusters unique reads and those clusters that have

sufficient coverage are retained to create tentative exons called covtigs. The IUM’s are

then mapped so as to form junctions near the endpoints of the covtigs and islands.

A disadvantage of these two methods is that the read coverage needs to be high in

order to get a reliable approximation of the actual transcriptome, and isoforms with

a low level of expression may not be detected. However, this method can be used to

detect junctions out of reads that retain only a very small portion (like 5bp) from one

exon, and is one of the best practical methods to handle very short reads around 36bp.

Exon mapping can speed-up the RNA-seq alignment process as it is a quick way

to identify probable junction reads, which can be further investigated using more

time consuming methods. However, there is a danger of losing real junction reads by

accidentally mapping them at the exonic mapping stage, for example due to the presence

of retrotransposed pseudogenes (These pseudogenes are created when the mRNA

transcript of a gene is inserted to a chromosome by spontaneous reverse transcription.)

Aligners can use an annotation of a known transcriptome [41, 59] to make exon mapping

more accurate. For the reference genome of a highly polymorphic species, seed and

extend methods give better performance [105].

5.3.2 Annotation-Based Aligners

Genomic annotations of good quality have been produced in recent times for a large

number of species. Some methods takes advantage of these annotations to align reads.

RNA-Mate [23] and X-Mate [150] map reads to the reference genome and to a library

of known junctions. Reads that fail to map are mapped recursively by trimming them

at the low-quality ends. SpliceSeq [123] aligns reads to a database of known splicing

patterns represented as gene transcript splice graphs. These aligner might be useful when

de novo discovery of splice junctions is not needed, for example when the expression of
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known genes are being studied. In fact, many aligners support some form of annotation

usage. These aligners might use the annotation to make the junction predictions more

accurate during or after performing de novo junction finding [9, 137, 10], or they might

map the reads to the annotation before de novo junction discovery [59, 41].

5.3.3 Learning-Based Approaches

One of the earliest aligners, QPALMA, uses support vector machines to find junctions.

However it cannot perform true de novo junction discovery since it requires an initial set

of junctions as a training set. However, the hidden Markov model based HMMsplicer

creates its own training data set. It does so by splitting the IUM reads into halves,

mapping them to the reference and retaining the aligned halves as the training set.

PALMapper [52] is a version of QPALMA that has been sped up by replacing its core

aligner with a new aligner called GenomeMapper [128].

Most RNA-seq aligners assume a mammalian gene model of the reference, and

are biased towards canonical and semi-canonical junctions. However, learning-based

methods can perform unbiased splice junction discovery and might be more suitable for

species whose gene models are not known. A summary of some of RNA-seq mappers is

given in Table 5.1

5.4 Splice Junction Finding

To determine a splice junction, we need a read that passes over the junction. The first

step to identifying junctions from such a read involves determining a segment each from

the distinct exons that constitute the junction. Then the precise break point can be

determined by extending them.

There are several ways of determining the exonic parts of the junctions. One way is

to partition the read into q-mers and to find two q-mers that are not too close to form

a contiguous block, perhaps allowing some margin for small indels. Then a junction
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QPALMA [14] X Uses support vector machines for splice prediction.

G-Mo.R-Se [27] X X Method is somewhat similar to Tophat.

HMMSplicer [29] X Uses a hidden Markov model of splice junctions.

Tophat [137] X X Depends on building a tentative transcriptome.

Tophat2 [59] X X Does not totally rely on tentative transcriptome. Can handle
indels.

SpliceMap [9] X X Uses one half of the read as a primary anchor, and a 10bp residue
as secondary anchor.

MapSplice [142] X X One of the most sensitive mappers.

MapNext [10] X X Very high memory usage.

SOAPSplice [50] X X Can align to junctions reads having at least 8bp from one exon.

SpliceSeq [123] Dependant on a genomic annotation.

SplitSeek [8] X X Designed for SOLiD reads.

Supersplat [18] X X Very high memory usage (around ∼ 14GB).

RUM [41] X Uses BLAT to align IUM reads.

PASSion [155] X X Can align only paired reads.

GSNAP [152] X X Very sensitive method.

OLEgo [151] X X Targeted at finding small exons.

STAR [30] X X X Very fast aligner. Uses longest exact matches as seeds.

SeqSaw [143] X X Memory requirement can be high.

TrueSight [81] X X X Uses a machine learning approach to junction finding.

PALMapper [52] X X Modification of QPALMA.

RNA-Mate [23] Maps using an annotation.

X-Mate [150] Enhanced version of RNA-Mate.

Table 5.1: Summary of several RNA-seq aligners. Splice model denotes the approach
taken to resolve a junction. Biased methods prefer or only consider known junction
signals, while unbiased methods do not prefer any known junction signal type.
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search between these two q-mers can be initiated [142, 10, 8, 151]. Another method

anchors one part of the read to the genome. Next, a substring from the un-anchored

part of the read is taken, and the neighbourhood of the primary anchor is searched for

its occurrences. If the substring can be found, using it as the second anchor, a junction

search can be initiated [9, 142, 151, 50].

A third method to identify junctions involves searching IUM reads for splice junctions

deduced from a tentative transcriptome [137, 27]. To facilitate this, a hash table is

built to query occurrences of q-mers in the IUM reads. Examining the edges of exons

in the tentative transcriptome for splice motifs, a possible list of donor and acceptor

sites can be drawn up. From this list, by pairing suitable acceptors and donors, a set of

tentative junctions can be found. Then, q-mers near these tentative junctions are taken,

and reads containing these q-mers are identified using the hash table. Finally, junctions

are validated by aligning these reads onto them.

Determining the exact breakpoint of a splice junction can be done by searching for

junction motifs during the extension. Many aligners search for only conservative and

semi-conservative junction signals. If an unbiased junction search is performed, factors

like the number of mismatches in the alignment [9] and read coverage [8] can be used.

However, the junctions that do not contain canonical splicing signals usually tend to be

false junctions.



Chapter 6

k-Mismatch Alignment Problem

6.1 Introduction

Due to the differences between the sampled genome and the reference genome, and

the errors introduced during the sequencing, NGS reads need to be mapped allowing

a reasonable number of errors. Mapping NGS reads in general require the ability to

handle indels. However, for platforms like Illumina and SOLiD, most of the reads can

be aligned allowing mismatches only. In fact, some popular aligners like Bowtie [69]

only consider mismatches in alignment, while many others consider only mismatches by

default [83, 145]. Also, there are experiments where a large number of mismatches are

allowed, sometimes along with indels [32, 97]. Therefore, the k-mismatch problem, i.e.

mapping a short read allowing k-mismatches to a reference genome is an interesting

problem in bioinformatics.

Although sequence aligners can handle a small number of mismatches efficiently,

the running times will increase rapidly when the number of mismatches increases. For

hash-based aligners, the number of seeds required will increase with the number of

mismatches, and the mapping slows down due to the increase in hash table lookups

and the seed extensions. BWT-based aligners become slow due to the rapid increase of
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branches that needs to be traversed as the number of mismatches increases. As shown

in Section 6.6, aligners can be slow or inadequate to handle even moderate numbers of

mismatches. To overcome the slowdown with large mismatches, aligners use various

heuristic methods. These methods can cut down the alignment time dramatically.

However, applying these heuristics to solve the k-mismatch problem will result in a loss

of sensitivity and accuracy.

Different types of experiments require different types of mappings. The most basic

type of alignment reports the first hit of a read satisfying a given mismatch threshold.

However, in many experiments, hits are required to satisfy some form of a uniqueness

criterion. Other situations might require reporting multiple hits for each read. For

example, in ChIP-seq experiments, scientists might prefer to map reads uniquely for

better accuracy or they might allow multiple mapping for better sensitivity. Many

RNA-seq pipelines need an external aligner to produce mappings of a given read, which

are then post-processed for splice junctions. These pipelines usually require multiple

mappings of a given read [9, 142, 137], since the first or the unique hits may map the

read to pseudo-genes or map a read covering a splice junctions to a contiguous region

in the genome. Although an aligner can be designed to perform extremely well for

a first hit search, it might perform relatively slow for multiple and unique mappings.

Therefore, it is preferable to have a mapping algorithm that can efficiently handle all

these common requirements.

I introduce a new exact method BatMis (Basic Alignment Tool for Mismatches)

that solves the k-mismatch problem much faster than existing methods. BatMis does not

use heuristics. It is an exact method which aligns a read to the reference genome with

the minimum number of mismatches and can align a read allowing up to 10 mismatches

in the whole read. Our benchmarks show that BatMis is at least as fast as the current

aligners. It also shows that in many cases, BatMis can compete favorably even when

compared with the heuristic modes of other aligners. The material in this Chapter is
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based on my publication Tennakoon et al [135].

6.2 Problem Definition

We will now define the k-mismatch mapping problem. Let X and Y be two strings of

equal length. Denote the Hamming distance between X and Y by d(X,Y ). Consider a

genome T and a string R. The k-mismatch problem is to find all positions i such that

d(R[1, |R|], T [i, i+|R|−1]) ≤ k. We are also interested in reporting the occurrences in the

order of increasing mismatches, i.e., we report i before i′ if d(R[1, |R|], T [i, i+ |R|−1]) <

d(R[1, |R|], T [i′, i′ + |R| − 1]).

6.3 Description of the Algorithm

Consider a reference T . Let R be a read and K be a mismatch threshold. Solving the

k-mismatch problem is to find the set of all strings x in T such that d(x,R) ≤ K. Let

Hk
R be the set of all substrings x in T such that d(x,R) = k for k = 1, . . . ,K. Then,

our aim is equivalent to computing
⋃K
k=0H

k
R.

We define Rl = R[1, b|R|/2c] and Rr = R[b|R|/2c+ 1, |R|] to be the left and right

halves of R respectively. Our proposed algorithm BatMis is a seed-and-extend method.

It has two phases. Phase 1 finds all substrings in T which look similar to Rl and Rr by

recursion. Precisely, it computes the set of seeds Hk
Rl

and Hk
Rr

for a set of values of k

not exceeding bK/2c. In Phase 2, the patterns found in Phase 1 are extended to get all

k-mismatch patterns of R.

6.3.1 Seeding

Lemma 6.3.1 provides us with a minimal set of Hk
l and Hk

r guaranteed to find all

k-mismatch patterns of R with this algorithm.
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Lemma 6.3.1. Consider a read R and a string R′ of equal length such that d(R,R′) ≤ k,

where k ≥ 1. We have two cases.

• Case 1: k is even. We have either d(R′l, Rl) ≤ k/2 or d(R′r, Rr) ≤ k/2− 1.

• Case 2: k is odd. We have either d(R′l, Rl) ≤ (k−1)/2 or d(R′r, Rr) ≤ (k−1)/2.

Proof. When k is even, from the pigeon hole principle, we have the cases d(R′l, Rl) ≤ k/2

or d(R′l, Rl) > k/2. In the first case, the proof is obvious. In the second case we have

d(R′r, Rr) ≤ k − d(R′l, Rl) ≤ k − k/2− 1 = k/2− 1.

Hence case 1 follows. Similarly, we can show that case 2 is true.

We can now re-state the algorithm as follows. When k is even, we extend patterns

in
⋃k/2
i=0H

i
Rl
∪
⋃k/2−1
i=0 H i

Rr
to obtain all k-mismatch patterns of R. When k is odd, we

extend patterns in
⋃(k−1)/2
i=0 H i

Rl
∪

⋃(k−1)/2
i=0 H i

Rr
to obtain all k-mismatch patterns of

R.

6.3.2 Extension

The phase 2 of the algorithm where the extension of patterns are performed, is done

using the procedures PExt and SExt. Given a set X of substrings of T , PExt(X,R, k)

performs prefix extension of the strings x in X to form another set Y of strings y = x ·α

of T until every string y ∈ Y satisfies either (1) |y| = |R| and d(y,R) ≤ k or (2)

d(y,R[1, |y|]) = k + 1. Similarly, SExt(X,R, k) performs suffix extension of the strings

x in X to form another set Y of strings y = α · x of T until every y ∈ Y satisfies either

(1) |y| = |R| and d(y,R) ≤ k or (2) d(y,R[|R| − |y|+ 1, |R|]) = k + 1. The procedures

use the following recurrences and their pseudocodes are shown in Algorithms 6.1-6.2.

• If |X| > 1, PExt(X,R, k) =
⋃
x∈X PExt({x}, R, k)
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• If X = {x}, PExt({x}, R, k) =


{x}, if |x| = |R| or d(x,R[1, |x|]) = k + 1⋃

σ∈Σ
x·σ∈T

PExt({x · σ}, R, k), otherwise

• If |X| > 1, SExt(X,R, k) =
⋃
x∈X SExt({x}, R, k)

• If X = {x}, SExt({x}, R, k) =


{x}, if |x| = |R| or d(x,R[|R| − |x|+ 1, |R|]) = k + 1⋃

σ∈Σ,
σ·x∈T

SExt({σ · x}, R, k), otherwise

Algorithm 6.1: PExt(X,R, k)

Data: A set X of substrings in T of length at most |R| and have less than k
mismatches with a prefix of R.

Result: A set {z | x ∈ X, z = x · y ∈ T, |z| ≤ |R|, d(z,R[1, |z|]) = k + 1}∪
{z | x ∈ X, z = x · y ∈ T, |z| = |R|, d(z,R) ≤ k}.

Set S = ∅;1

if |X| > 1 then2

for each x ∈ X do3

S = S ∪ PExt({x}, R, k);4

end5

else6

Let x be the string in X;7

if d(x,R[1, |x|]) ≤ k and |x| < |R| then8

for x · σ ∈ T where σ ∈ {a, c, g, t} do9

S = S ∪ PExt({x · σ}, R, k);10

end11

else12

S = S ∪ {x};13

end14

end15

return S16
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Algorithm 6.2: SExt(X,R, k)

Data: A set X of substrings in T of length at most |R| and have less than k
mismatches with a suffix of R.

Result: A set
{z | x ∈ X, z = y · x ∈ T, |z| ≤ |R|, d(z,R[|R| − |z|+ 1, |R|]) = k + 1}∪
{z | x ∈ X, z = y · x ∈ T, |z| = |R|, d(z,R) ≤ k}.

Set S = ∅;1

if |X| > 1 then2

for each x ∈ X do3

S = S ∪ SExt({x}, R, k);4

end5

else6

Let x be the string in X;7

if d(x,R[|R| − |x|+ 1, |R|]) ≤ k and |x| < |R| then8

for σ · x ∈ T where σ ∈ {a, c, g, t} do9

S = S ∪ SExt({σ · x}, R, k);10

end11

else12

S = S ∪ {x};13

end14

end15

return S16



CHAPTER 6. K-MISMATCH ALIGNMENT PROBLEM 70

6.3.3 Increasing Efficiency

Given these two procedures, the k-mismatch patterns of R can be computed as fol-

lows. When k is even, we report {x ∈ PExt(
⋃k/2
i=0H

i
Rl
, R, k)∪SExt(

⋃k/2−1
i=0 H i

Rr
, R, k) |

|x| = |R|, d(x,R) = k}. When k is odd, we report {x ∈ PExt(
⋃(k−1)/2
i=0 H i

Rl
, R, k) ∪

SExt(
⋃(k−1)/2
i=0 H i

Rr
, R, k) | |x| = |R|, d(x,R) = k}.

The above procedure not only computes all k-mismatch patterns of R, but also

reports them in the increasing order of the number of mismatches. However, it is slow

since it performs a lot of redundant computations. We can modify the seed extension

routine to avoid redundant computations. We divide our seed extension procedure into

K + 1 iterations. For the kth iteration where k = 0, 1, . . . ,K, our procedure tries to

obtain Hk
R, i.e., all k-mismatch patterns of R. In the 0th iteration, we set H0

R = {R}

if R exists in T ; and set H0
R = ∅ otherwise. For the remaining iterations, we will

not generate Hk
R starting from the scratch. Instead, our routine will check all the

unsuccessfully extended patterns from the (k − 1)th iteration and see if they can be

extended and become a k-mismatch pattern of R. Precisely, the kth iteration is divided

into two stages. The first stage tries to extend those unsuccessfully extended patterns

from the (k−1)th iteration. The second stage tries to recover the remaining k-mismatch

patterns by extending a special set of seeds that guarantees to generate all the remaining

k-mismatch patterns with no redundancy.

6.3.4 Utilizing Failed Extensions

Before we give the details of Phase 2, we need some definitions to describe the set

of unsuccessfully extended patterns from the (k − 1)st iteration. By Lemma 6.3.1,

if k − 1 is odd, we need to extend the patterns in
⋃(k−2)/2
i=0 H i

Rl
∪

⋃(k−2)/2
i=0 H i

Rr
to

obtain all the (k − 1)-mismatch patterns of R. If k − 1 is even, we need to extend the
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patterns in
⋃(k−1)/2
i=0 H i

Rl
∪

⋃(k−3)/2
i=0 H i

Rr
to obtain all the (k − 1)-mismatch patterns

of R. When the extended patterns accumulate k mismatches, their extensions are

stopped and are marked as unsuccessfully extended patterns. These unsuccessfully

extended patterns are included in PREkR and SUF kR depending on whether they have

k mismatches with a prefix or a suffix of R respectively. Formally, they are defined as

follows. (Note that dk/2e − 1 = (k − 2)/2 if k − 1 is odd and (k − 1)/2 if k − 1 is even.

Also, bk/2c − 1 = (k − 2)/2 if k − 1 is odd and (k − 3)/2 if k − 1 is even.)

• Let PREkR be the set of substrings x in T such that d(x,R[1, |x|]) = k, x[|x|] 6=

R[|x|] and d(x[1, |Rl|], Rl) ≤ dk/2e − 1.

• Let SUF kR be the set of substrings x in T such that d(x,R[|R| − |x|+ 1, |R|]) = k,

x[1] 6= R[|R| − |x|+ 1] and d(x[|x| − |Rr|+ 1, |x|], Rr) ≤ bk/2c − 1.

Intuitively, PREkR contains a subset of the shortest substrings of T having exactly

k mismatches with a prefix of R, and SUF kR contains a subset of shortest substrings of

T having exactly k mismatches with a suffix of R. The following lemma states how to

compute the sets H1
R, PRE

2
R, and SUF 2

R.

Lemma 6.3.2. Consider a read R. Let P = PExt(H0
Rl
, R, 1) and S = SExt(H0

Rr
∪

SUF 1
R, R, 1).

a) H1
R = {x ∈ P ∪ S | d(x,R) = 1}.

b) PRE2
R = {x ∈ P | d(x,R[1, |x|]) = 2}.

c) SUF 2
R = {x ∈ S | d(x,R[|R| − |x|+ 1, |R|]) = 2}.

Proof. By Lemma 6.3.1, for any string R′ which has 1 mismatch with R, we have either

R′l = Rl or R′r = Rr. Hence, H1
R contains all strings in P ∪S whose patterns have exactly

1 mismatch with R. The equations for PRE2
R and SUF 2

R follow by definition.
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6.4 The BatMis Algorithm

The following two lemmas state the recursive formulas to compute Hk
R, PRE

k+1
R and

SUF k+1
R for k ≥ 2.

Lemma 6.4.1. Consider a read R and suppose k is odd. Let P = PExt(PREkR, R, k)

and S = SExt(H
bk/2c
Rr

∪ SUF kR, R, k).

a) Hk
R = {x ∈ P ∪ S | d(x,R) = k}.

b) PREk+1
R = {x ∈ P | d(x,R[1, x|]) = k + 1}.

c) SUF k+1
R = {x ∈ S | d(x,R[|R| − |x|+ 1, R|]) = k + 1}.

Proof. Let R′ be any string in T such that d(R′, R) = k, where k is odd. By Lemma 6.3.1,

we have either (1) d(R′l, Rl) ≤ (k − 1)/2 = dk/2e − 1 (i.e. R′l ∈
⋃dk/2e−1
i=0 H i

Rl
) or (2)

d(R′r, Rr) ≤ (k − 1)/2 = bk/2c (i.e. R′r ∈
⋃bk/2c
i=0 H i

Rr
). If R′ satisfies (1), there should

be some λ, where |R′l| ≤ λ ≤ |R′|, such that d(R′[1, λ], R[1, λ]) = k, with R′[λ] 6= R[λ].

By definition, R′ ∈ {x ∈ P | d(x,R) = k}; if R′ satisfies (2), R′ ∈ {x ∈ S | d(x,R) = k}.

Hence, Hk
R ⊆ {x ∈ P ∪ S | d(x,R) = k}. Since Hk

R contains all the k-mismatch strings

of R in T , we have Hk
R ⊇ {x ∈ P ∪ S | d(x,R) = k}. From the last two relations the

first identity can be obtained.

By definition,

PREk+1
R = {x ∈ PExt(∪d(k+1)/2e−1

i=0 H i
Rl
, R, k) | d(x,R[1, |x|]) = k + 1}

= {x ∈ PExt(∪dk/2e−1
i=0 H i

Rl
, R, k) | d(x,R[1, |x|]) = k + 1}

= {x ∈ P | d(x,R[1, |x|]) = k + 1}

Using similar arguments, we can prove the third statement.

Lemma 6.4.2. Consider a read R and suppose k is even. Let P = PExt(H
bk/2c
Rl

∪

PREkR, R, k) and S = SExt(SUF kR, R, k).
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a) Hk
R = {x ∈ P ∪ S | d(x,R) = k}.

b) PREk+1
R = {x ∈ P | d(x,R[1, |x|]) = k + 1}.

c) SUF k+1
R = {x ∈ S | d(x,R[|R| − |x|+ 1, |R|]) = k + 1}.

Proof. The proof is similar to that of Lemma 6.4.1.

Algorithm 6.3: BatMis(R,K)

Data: Read R and a mismatch threshold K
Result: Report Hk

R for k = 0, 1, . . . ,K

/* Phase 1: Compute Hk
Rl
, Hk

Rr
for k = 0, 1, . . . , bK/2c */

Compute {Hk
Rl
| k = 0, 1, . . . , bK/2c} by calling BatMis(Rl, bK/2c);1

Compute {Hk
Rr
| k = 0, 1, . . . , b(K − 1)/2c} by calling BatMis(Rr, b(K − 1)/2c);2

/* Phase 2: Compute Hk
R for k = 0, . . . ,K */

Set H0
R = {R} if R in T and ∅ otherwise;3

for k = 1 to K do4

if k = 1 then5

P = PExt(H0
Rl
, R, 1);6

S = SExt(H0
Rr
, R, 1);7

else if k is odd then8

P = PExt(PREkR, R, k);9

S = SExt(H
bk/2c
Rr

∪ SUF kR, R, k);10

(Hk
R, PRE

k+1
R , SUF k+1

R ) = Extend(PREkR, H
bk/2c
Rr

∪ SUF kR, R, k);11

else12

P = PExt(H
bk/2c
Rl

∪ PREkR, R, k);13

S = SExt(SUF kR, R, k);14

(Hk
R, PRE

k+1
R , SUF k+1

R ) = Extend(H
bk/2c
Rl

∪ PREkR, SUF kR, R, k);15

end16

Hk
R = {x ∈ P ∪ S | d(x,R) = k, |x| = |R|};17

PREk+1
R = {x ∈ P | d(x,R[1, |x|]) = k + 1};18

SUF k+1
R = {x ∈ S | d(x,R[|R| − |x|+ 1, |R|]) = k + 1};19

end20

return (H0
R, H

1
R, . . . ,H

K
R )21

Algorithm 6.3 gives the final BatMis algorithm BatMis(R,K), which computes

all k-mismatch patterns of a read R for 0 ≤ k ≤ K. It uses Lemmas 6.3.2-6.4.2. The
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first phase (lines 1− 2) divides R into two equal halves Rl and Rr and it recursively

calls BatMis(Rl, bK/2c) and BatMis(Rr, b(K − 1)/2c) to compute Hk
Rl

and Hk
Rr

for

0 ≤ k ≤ bK/2c and 0 ≤ k ≤ b(K − 1)/2c respectively. The second phase iteratively

computes Hk
R for k = 0, . . . ,K. It first computes H0

R (line 3), H1
R, PRE

2
R, and PRE2

R

by Lemma 6.3.2 (lines 5− 7). Then, the program applies Lemmas 6.4.1 and 6.4.2 to

compute (Hk
R, PRE

k
R, SUF

k
R) iteratively for k = 2, . . . ,K (see lines 8− 17). Finally, the

program reports Hk
R for k = 0, . . . ,K.

6.5 Implementation of BatMis

In order to execute BatMis, we need to find all the occurrences of strings corresponding

to H i
Rl
, H i

Rr
, PREjR, and SUF jR for 0 ≤ i ≤ bK/2c, 0 ≤ j ≤ K. Furthermore, we need

an efficient way to extend them. To solve this problem, we build two FM indexes FMT

and FMT ∗ corresponding to T and its reverse T ∗ (see Section 3.10) . All strings in

H i
Rl

and PREjR are represented as SAT ∗-ranges, while all strings in H i
Rr

and SUF jR

are represented by their SAT -ranges, where 0 ≤ i ≤ bK/2c, 0 ≤ j ≤ K. The extension

of SAT ∗-ranges are done using forward searches. Similarly, the extension of SAT -ranges

are done using backward searches. The strings in Hk
R will in general contain a mixture

of SAT and SAT ∗- ranges, and it might be necessary to convert SAT ranges to SAT ∗

ranges or vice versa. This conversion is done by taking the string corresponding to

SAT (or SAT ∗) range and performing a forward (or backward) search on it. To speedup

pattern searching, we build a table containing the SA-ranges of all substrings of length

at most 6. This table can be used to calculate the SA-ranges corresponding to the first

few bases of a string quickly.

BatMis concatenates individual chromosomes of a genome into a single genome.

The exact algorithm is run on this single genome. It might happen that a read will align

to a chromosome boundary. These boundary errors occur very rarely. For example, in
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the datasets I tested in Section 6.6 at most two such errors occurred per dataset. This

accuracy is quite sufficient for practical purposes, but I have included a post-processing

script to thoroughly resolve reads with boundary errors.

The algorithm is implemented in C/C++. We use the FM-index routines from

BWT-SW [66]. For decoding SAT and SAT ∗ ranges, SAT and SAT
∗ are sampled at

every 8th position. Since storing the sampled SA-ranges take a lot of memory, the

program can optionally convert all SAT ranges to SAT ∗ ranges (or vice versa) and use

only one sampling. For the human genome, if only one sampling is used, the decoding

algorithm can be run under 4GB of RAM.

Furthermore, the recursions are unrolled for efficiency. For mismatch thresholds less

than 5, the algorithm is implemented as stated. When scans are performed allowing

a large number of mismatches, storing SUF iR and PREiR require a lot of memory. To

reduce the memory usage, for k > 5, the set of k-mismatch hits, Hk
R, is computed

directly based on Lemma 6.3.1. Although this approach reduces the memory required

to store SUF iR and PREiR for i > 5, it will also generate duplicate hits. Post-processing

steps are performed to remove these duplicate hits.

6.6 Results

There are a vast number of sequence aligners that can perform exact k-mismatch

alignment. Different aligners have different policies regarding how to rank the hits

and how to handle uncalled bases (e.g. N’s in the read), which makes straightforward

comparison difficult. To allow us to compare different aligners fairly, we use data sets

without uncalled bases. We test each program’s ability to report the least mismatch

hits, the unique hits and multiple hits. By the least mismatch hit of a read R in the

reference T , we mean any position i such that d(R, T [i, i+ |R| − 1]) ≤ k, and for any

other position j we have d(R, T [j, j + |R| − 1]) ≥ d(R, T [i, i+ |R| − 1]). By a unique hit

of a read R in the reference T , we mean a unique lowest mismatch hit of R in T .
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For comparison with our algorithm, we chose BWA (version 0.5.9-r16) to represent

aligners of the BWT family, RazerS2 to represent q-gram methods and ZOOM (Linux64

demo version 1.5.5.20120225072719) to represent methods that use gapped seeds. These

programs are among the best in the literature for handling a large number of mismatches.

We did not use the popular aligner Bowtie for our tests since its design is based on

using heuristics for handling high mismatches and it does not have true k-mismatch

handling capabilities for k > 3. In the version 2 of Bowtie, we can only set the number

of mismatches in a seed region to 0 or 1. Therefore, it cannot be used in the experiments

given here. All the experiments were done on a Linux server running on 2 x 6-Core

Intel Xeon X5680 Processors (3.33Ghz), with 144GB RAM. Each aligner was run in a

single core, and the user time was reported.

All tested programs were run in their default settings with appropriate options set

for ignoring indels and enabling exact or heuristic mapping as needed. The demo version

of ZOOM is only fully sensitive up to four mismatches. Because of this limitation,

ZOOM was run allowing up to four mismatches only. Both BatMis and RazerS2 can

report least mismatch hits and unique hits. For BWA, the default setting will report a

unique hit if it exists or will otherwise report a random least mismatch hit. For ZOOM,

the default mode outputs only the unique hits; it was made to output least mismatch

hits with the -mk option. BWA, ZOOM and BatMis used the same reference genome

where uncalled bases in the genome were replaced with a random nucleotide. For BWA

and BatMis, the total time for the alignment and decoding the output is reported. For

BatMis, post processing was done to recover hits with boundary errors, and this time

was added to the total time reported.

6.6.1 Ability to Detect Mismatches.

In this section we examine the robustness of mismatch mappings of the selected align-

ers. We randomly extracted two sets of 51bp and 100bp reads from hg18. Each



CHAPTER 6. K-MISMATCH ALIGNMENT PROBLEM 77

dataset contained 100,000 reads. New k-mismatch datasets were created by introducing

exactly k mismatches uniformly at random to all reads in the original dataset for

k = 0, 1, 2, 3, 4, 5, 8, 10. If an aligner performs k-mismatch mapping correctly, it must be

able to map all the k-mismatch reads to the reference genome allowing k-mismatches.

Table A.3 in the Appendix summarizes the results. BWA missed some hits with a

large number of mismatches for 100bp reads. It was able to map all the reads with up

to five mismatches, but was only able to map 97291 and 15124 of reads having 8 and

10 mismatches respectively. Other aligners were able to map back all the reads. This

result suggests that BatMis, ZOOM and Razers2 can detect k-mismatches effectively

but BWA might miss some hits when k is large.

6.6.2 Mapping Real Data

This section studies the performance of different algorithms using real data. We first

check the performance of each aligner when reporting the least mismatch hits. Many

biologists prefer to have unique hits as a criterion to filter out noise. Therefore, we also

measure the performance of different aligners on finding unique hits in real data.

The evaluation uses the Illumina sequencing datasets ERR000577 and ERR024201

taken from the European Nucleotide Archive. The datasets contained reads of lengths

51bp and 100bp respectively. These datasets are paired end reads, and we chose the

datasets containing the forward reads. Reads containing uncalled bases were filtered

out, and the first 1,000,000 reads were selected for benchmarking. These sets of reads

were mapped to the reference genome hg18 allowing different numbers of mismatches.

The results of these mappings are given in Tables 6.1 and 6.2. ZOOM and Razers2

produce a small number of false mappings and BWA misses some hits. However, BatMis

produces accurate mappings. For the 51bp dataset, the number of missing or invalid

hits reported is negligible. However, BWA mappings become very unreliable as the

number of mismatches are increased. Overall, BatMis is the only aligner that is fully
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51 bp 100bp

2 mis 3 mis 4 mis 5 mis 4 mis 5 mis 8 mis 10 mis

BatMis 905121 940232 960246 972729 928493 935087 951483 960707

BWA 905121 940232 960246 972726 928493 935087 942562 930632

ZOOM 905121 940233 960247 - 928493 - - -

RazerS2 905121 940232 960246 972729 928493 935087 951483 960707

Table 6.1: Table showing the least mismatch mappings reported by aligners allowing
different numbers of mismatches. 1 000 000 reads from the datasets ERR000577 (51bp)
and ERR024201 (100bp) were mapped. All mappers produce the same number of hits
upto 2 mismatches and 5 mismatches for 51bp and 100bp reads respectively. BatMis
and RazerS2 consistently performs well across all mismatches. However, other aligners
report false mappings or under reports hits at high mismatches. The extra mappings in
the bold entries for ZOOM are due to incorrect mappings.

accurate across all read lengths and mismatch thresholds.

Figure 6.1 shows the comparison of the time taken to report the least mismatch

and unique hits. The time is shown scaled logarithmically since the mapping time of

BatMis can sometimes be several orders of magnitudes faster than the competitors. For

all the read lengths and mismatch settings tested, BatMis is the fastest.

6.6.3 Multiple Mappings

We next benchmarked the time taken by each aligner to produce multiple mappings of

a given read. We define multiple mappings for a mismatch threshold k to be all the

possible mappings of a read that have at most k mismatches. The 100bp real life data

set used in the previous section was used to check multiple mappings. BatMis and

BWA have options to scan all possible hits with less than k mismatches. For ZOOM

and Razers2, such a mode is not present. Therefore, they were set to produce the first

100,000 hits for each read. ZOOM and BWA gave a small number of false hits mainly

due to boundary errors. The results for the mappings are given in Table 6.3 and the

time taken for the mappings are given in Figure 6.2.
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51bp 100bp

3-mis 4-mis 5-mis 4-mis 5-mis 8-mis 10-mis

BatMis 843466 856383 863707 887947 892698 903577 909360

BWA 843466 856383 863705 887947 892698 897553 889370

ZOOM 843467 856384 887947

RazerS2 843468 856383 863707 887948 892701 903579 909362

Table 6.2: Table showing the unique mappings reported by aligners allowing different
numbers of mismatches. 1 000 000 reads from the datasets ERR000577 (51bp) and
ERR024201 (100bp) were mapped. All aligners report same hits upto 2 mismatches and
3 mismatches for 51bp and 100bp reads respectively. Only BatMis performs consistently
across all mismatches. Other aligners report false mappings or under reports hits at
high mismatches. The extra mappings in the bold entries for ZOOM and RazerS2 are
due to incorrect mappings.

(a) Timings for 51bp least mismatch hits. (b) Timings for 100bp least mismatch hits.

(c) Timings for 51bp unique hits. (d) Timings for 100bp unique hits.

Figure 6.1: Timings for searching for least mismatch hits and unique hits in the two
real life datasets ERR000577 (51bp) and ERR024201 (100bp). Each library contained 1
000 000 reads. The time is shown in logarithmic scale.
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1-mis 2mis 3-mis 4-mis 5-mis

BatMis 12709391 31001496 59121695 96502481 143315831

BWA 12709417 31001544 59121789 96501738 143186148

ZOOM 12709421 31001568 59121802 96502628

RazerS2 12709391 31000921 59119338 96498204 143309572

Table 6.3: Number of multiple mappings reported by aligners for different numbers of
mismatches. 1 000 000 reads from the 100bp library ERR024201 were aligned. Bold
text shows mappings that contain invalid alignments. The maximum number of invalid
alignments reported is 168 by BWA at 5 mismatches. BatMis can recover all the correct
mappings reported by other programs.

Figure 6.2: Timings for reporting multiple mappings allowing different numbers of
mismatches. 1 000 000 reads from the 100bp library ERR024201 were mapped. The
time axis is logarithmically scaled. BatMis consistently reports the fastest timing.

BatMis reports all the true hits found by other aligners and is faster than them

when performing multiple mappings. All aligners report about the same number of hits,

with the largest number of incorrect mappings reported being 168. The details of the

incorrect mappings for each aligner is given in Table A.1 in the Appendix.

6.6.4 Comparison Against Heuristic Methods

Instead of searching for the exact solution, BWA and RazerS2 can employ heuristics

to speed up mapping. BWA will first find hits in a seed region allowing at most two
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mismatches, and extend the rest of the read allowing a given number of mismatches

in the full read. RazerS2 has a heuristic mode where the reads can be mapped with

99% accuracy. Heuristics may miss some hits. This will result in incorrectly calling

uniquely mapped reads. Table 6.4 shows the number of true unique hits recovered using

heuristics modes of BWA and RazerS2 against the exact algorithm of BatMis. Table 6.5

shows the timings. The mapping procedure was similar to that in Section 6.6.2, except

that BWA was run in its seeding mode and RazerS2 was run with its default sensitivity

of 99%.

The results show that BatMis is much faster than RazerS2 in all cases. BWA

performs very well in its seeded mode on real data for long reads. For 51bp reads,

BatMis is faster than BWA and produces more mappings. For 100bp reads, BatMis is

faster than BWA up to 5-mismatches. At 8 and 10 mismatches the speeds are similar,

with BatMis again producing more hits. The false unique hits reported by the aligners

in their heuristic modes are negligible, and a reasonable number of correct unique hits

were recovered. Table A.2 in the Appendix gives details about falsely mapped reads.

Table A.4 in the Appendix shows the statistics for obtaining multiple hits with

BWA in its heuristic mode and with BatMis. RazerS2 was not considered for this test

as it is very slow even for finding unique hits. We can see that BatMis is still faster or

has comparable speed with BWA. The heuristics of BWA can produce exact results up

to two mismatches. For the 100bp reads, the heuristic mode of BWA misses between

2%-9% hits, and for 51bp reads it will miss 11%-30% hits when mapped allowing 3 to

5 mismatches.

6.7 Discussion

The solution for the k-mismatch mapping is important to sequence mapping. My

algorithm BatMis can solve the k-mismatch problem exactly and efficiently. The key

idea of BatMis is the recursive partitioning of the read so that a non-redundant set of
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2-mis 3-mis 4-mis 5-mis

5
1
b
p

BatMis 817844 843466 856383 863707

BWA 817844 841850 (467) 852875 (1400) 858635 (2540)

RazerS2 816536 (119) 842838 (107) 855989 (185) 863604 (93)

1
0
0
b
p BatMis 881586 892698 903577 909 360

BWA 881207 (48) 887122 (167) 810186 (1592) 904356 (2782)

Razers2 881586 887947 903569 (4) 909347 (22)

Table 6.4: Number of unique mappings reported when heuristic methods are used by
BWA and Razers2. The 51bp and 100bp reads used in the previous experiments were
mapped with the seeded mode of BatMis and the default alignment mode of Razers2
which can produce 99% accurate results. BatMis produces the largest number of correct
hits.

51bp 100bp

2 mis 3 mis 4 mis 5 mis 2 mis 3 mis 4 mis 5 mis

BatMis 38 55 125 191 44 96 805 1389

BWA 191 397 438 445 257 484 764 922

RazerS2 10567 10669 11817 16049 34387 23575 26244 36688

Table 6.5: Timings for finding unique hits when mapping reads under the heuristic
modes of BWA and RazerS2. BatMis is either the fastest or has a comparable speed to
the fastest aligner.
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seeds is identified for k-mismatch mapping. BatMis incrementally and systematically

searches for mismatches, investigating possible k-mismatch hits found during k − 1

mismatch scans for k > 1. This minimises redundant searches and provides a narrower

search space for BatMis compared to the other aligners.

We checked the ability to find least mismatch hits, unique hits and multiple hits

of some of the current state of the art aligners that solve the k-mismatch problem.

Our results show that some aligners cannot reliably map reads with a large number

of mismatches. On the other hand, BatMis was able to recover all the hits and was

faster. Finally, BatMis is faster or has a similar performance when compared with

the heuristic modes of other aligners. These results show that BatMis is a robust

aligner that performs well at all mismatch thresholds. BatMis is a useful alternative for

mapping NGS reads when we want to perform multiple mapping, unique mapping or

when we want to tolerate a large number of mismatches.



Chapter 7

Alignment With Indels

7.1 Introduction

The previous chapter introduced a fast and an exact solution for mapping reads allowing

mismatches. Although the BatMis algorithm can be modified to handle indels by

simulating them during suffix and prefix extensions, its performance would deteriorate

like the other trie based methods even when handling moderately sized indels. A

long read containing structural variations will fail to align to a contiguous area in the

reference genome even if mismatches and indels are allowed. In such cases, trying to map

the whole read will fail and the correct approach would be a seed-based method. The

aligner must map reads having a mixture of indels and mismatches and pick the best

alignment out of many possible alignments. Furthermore, a modern aligner is expected

to return a mapping quality reflecting the confidence of the mapping. Therefore, a good

aligner must take in to consideration all these factors.

In this chapter, we introduce BatAlign, our solution for mapping long reads. The

basic algorithm is designed to handle reads of around 100bp, but can be extended

to handle longer reads of around 250bp. We use a seed-and-extend approach. The

seeds are chosen to be 75 bp substrings of the read and mapped allowing mismatches

84
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and indels. The indels are efficiently handled using the data structure introduced in

section 3.7. In contrast to the existing aligners, a systematic scan is done to select

the best seeding positions using two methods called reverse alignment and deep scan.

The final extension of seeds is done using a fast Smith-Waterman method and a novel

semi-global alignment algorithm. The result is a fast and accurate aligner that can

produce better alignments than BWA at a speed comparable to Bowtie2.

7.2 Dynamic Programming and Sequence Alignment

Similarity between two sequences S1 and S2 can be determined in two ways. The first

method is by globally aligning the two, i.e. determining the best alignment between the

two complete sequences. The second method is by locally aligning the two sequences,

where the best matching segments of the two sequences are determined. If the sequences

have a high similarity, global alignment is more suitable. If the sequences are divergent,

local alignment is preferred. A hybrid mode of alignment is the semi-global alignment,

where global alignment is attempted, but gaps at the ends of the sequences are ignored.

This method is appropriate when one sequence is made out of a portion of the other

sequence.

To determine a best match objectively, an alignment score is used. Mismatches,

matches and indels are given different penalties and are added together to get the

alignment score. Sometimes, an affine penalty is used, where the existence of a gap

is given a fixed penalty, and the extension of the gap is penalized linearly. The start

of a gap is given a higher penalty and each extension of the gap is penalised less. For

semi-global alignments, the start and end gaps are not penalised. The best alignment

in terms of such a scoring function is deemed the best alignment.

Finding the best score for these types of alignments is generally done using dynamic

programming. The standard methods for determining global and semi-global alignments

is the Needleman-Wunsch algorithm [113]. The standard algorithm for determining the
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local alignment is the Smith-Waterman algorithm [133]. The time complexity of these

algorithms is O(|S1||S2|). However, if the number of allowed mismatches and indels are

restricted to k, “banded” versions of these algorithms can be used to bring the time

complexity down to O(k|S1|), where S1 is the query string.

7.3 The Pairing Problem

Given two patterns P1 and P2 of length l, we say that P1 and P2 have a pairing within

a distance d if these patterns can be found at most a distance d away from each other,

with P1 having the least genomic co-ordinate. If x and y are respective occurrences

of P1 and P2 within a distance d, this pairing can be represented by the ordered pair

(x, y). Let OccT (P ) denote the number of times the pattern P occurs in T . We will now

describe how the data structure LT,l,δ,D,κ described in Section 3.7 allows us to efficiently

find pairings of P1 and P2 that are within a distance d, and when OccT (P1) < D and

OccT (P2) < D. Precisely, we have the following cases;

1. If OccT (P1) < δ and OccT (P2) < δ, we find all locations of P1 and P2 using

Algorithm 3.5. Then these locations can be cross checked to obtain all pairings of

P1 and P2.

2. If OccT (P1) < δ and OccT (P2) ≥ δ, we obtain all the locations of P2 from LT,l,δ,D,κ.

Since they are sorted by their position, we can check to see if any occurrence of P1

(found using Algorithm 3.5) can be paired with an occurrence of P2 by performing

a binary search.

3. If OccT (P1) ≥ δ and OccT (P2) < δ , this case can be solved similar to the previous

case, by looking up all the occurrences of P1 from LT,l,δ,D,κ and pairing them with

all the occurrences of P2 (found using Algorithm 3.5).

4. If OccT (P1) ≥ δ and OccT (P2) ≥ δ, all the occurrences of P1 and P2 are obtained
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from LT,l,δ,D,κ. These two lists are merge sorted. If an occurrence of P1 is followed

by an occurrence of P2, and they satisfy the distance constraint, they are reported.

Note that if either OccT (P1) ≥ D or OccT (P2) ≥ D, then all of their occurrences

can be found using Algorithm 3.5 and sorted by genomic locations, and one of the above

methods can be applied to find the pairings. This process is slow. However, these cases

would be rare if D is chosen sufficiently large, and can be ignored in practice.

7.4 Mapping Reads With Indels

We will now discuss a method of mapping a read having a single indel. If R is the

read, the indel might be completely contained in its left half Rl or the right half Rr.

The other possibility is that the indel might be present in both the left and the right

halves of R. In the former cases, the indel can be found by using Rl and Rr as seeds,

and extending the seed locations allowing an indel. This method can identify an indel

having a maximum size of d|R|/2e. For the latter case, we will make use of the pairing

algorithm described in section 7.3.

We choose P1 = R[1, l] and P2 = R[|R| − l + 1, |R|], i.e., P1 and P2 are the prefix

and suffix l-mers of R respectively. If there is an indel of size less than or equal to d

between P1 and P2, we should be able to find a pairing of P1 and P2 within a distance

d+ l. Once all such locations are identified, they can be verified. This method is capable

of identifying an indel having a maximum size of |R| − 2l. Overall, we can detect indels

of size min(b|R|/2c, |R| − 2l).

Algorithm 7.1 gives the full details of mapping a read allowing k mismatches and

one indel. The only difference from the previous description is that Rl, Rr, P1 and P2

are mapped allowing upto k mismatches. Furthermore, care is taken in Line 10 so that

the total number of mismatches in P1 and P2 does not exceed k.
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Algorithm 7.1: Find Indel(R, T, k, d, LT,l,δ,D,κ)

Data: A read R, a reference T , a mismatch threshold k, indel size d and the data
structure LT,l,δ,D,κ

Result: Alignments of R having at most k mismatches and an indel of size less
than or equal to d

/* Case 1: Indel is in one half of the read */

X1= The set of k mismatch hits of R[1, R|/2] in T ;1

H1= The set of hits having k mismatches and one indel obtained by extending2

hits in X1;
X2= The set of k mismatch hits of R[|R|/2 + 1, R|] in T ;3

H2= The set of hits having k mismatches and one indel obtained by extending4

hits in X2;

/* Case 2: Indel is in both halves of the read */

for j = 0 to k do5

Xj= The set of hits of R[1, l] in T having j mismatches;6

Yj= The set of hits of R[|R| − l + 1, R|] in T having j mismatches;7

end8

for j = 0 to k do9

H = H ∪ { Pairings of Xj and Yk−j that are within a distance l + d.};10

end11

Hits = The set of hits in H that can be aligned to have k mismatches and one12

indel;
return H1 ∪H2 ∪Hits.13
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7.5 Reverse Alignment

The basic approach of seed based aligners is to first map the seeds allowing a low

number of mismatches, and then after a possible elimination of some of these seeds

(e.g. based on repetitiveness, after too many extensions etc.) the rest of the seeds are

extended. This approach could possibly filter out the correct alignment, resulting in an

incorrect mapping. To minimize this problem we use a strategy called reverse-alignment.

Reverse-alignment searches for the best possible alignment first. This is in a sense the

reverse of what seed based aligners do, as they first map the seeds and then search for

the best alignment.

Given a read R, reverse-alignment incrementally finds the hits of R with the most

likely combination of mismatches and indels. We define a function F as F (i) = (pi, qi),

where i, pi and qi are non-negative integers. pi and qi represent the number of mismatches

and indels in an alignment respectively. This function determines the likelihood of

a given mismatch/indel combination. If a < b, then the probability of the correct

alignment of a read having a (pa, qa) mismatch/indel combination is higher than that

of having a (pb, qb) mismatch/indel combination. Reverse-alignment incrementally tries

to map R allowing F (i) mismatch/indel combinations for i = 1, 2, . . .. We will describe

how to define F in the following section.

7.5.1 Determining F

In real-life, the likelihood of an indel in a genome is an order of magnitude less than

that of a SNV (Single Nucleotide Variation). The likelihood of finding multiple indels

within a read becomes small as the length of R becomes small. If the sequencing is

error-free, we can expect mismatches in a read R to appear at a rate equal to the

expected number of SNVs in a segment of length |R| in the reference genome. However,

empirical studies show that, for Illumina and SOLiD reads, the majority of mismatch

errors are due to sequencing errors. A general heuristic for such platforms is to set the
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mismatches in a read due to sequencing errors and/or SNVs to be about ∼ 5% of the

read length [74]. Furthermore, indels occur at a rate of ∼ 0.02% [157] in the human

genome . Based on these statistics, for a read of length around 75 bp, we can set one

indel and four mismatches as a reasonable upper bound for the number of indels and

mismatches to be allowed in a mapping. The definition of F used by default is to set

F (i) such that F−1(n1, n2) < F−1(n1 + 1, n2) for n1 ≤ 4 and F−1(5, 0) < F−1(0, 1)

for i = 1, 2 . . . 9. That is, we set F (1) = (0, 0), F (2) = (1, 0), F (3) = (2, 0), F (4) =

(3, 0), F (5) = (4, 0), F (6) = (5, 0), F (7) = (0, 1), F (8) = (1, 1) and F (9) = (2, 1).

7.6 Deep-Scan

During reverse-scanning, in terms of mismatches and indels, the combination F (i) is

better than that of F (i + 1). However, it may be possible that, when the quality

information is taken into account, the hits having F (i+ 1) mismatches and indels are

the better ones. To give an example, suppose there is a two mismatch hit with both

the mismatches appearing at very high quality base, and a three mismatch hits whose

mismatches are at very low quality bases. We would want to prefer the latter over the

former as the best hit if the likelihood of having two SNV’s in the read is small for the

read length and the reference genome under consideration. Because of this reason, when

we want to determine the best hits, it is always better to consider hits that are similar to

the best hits as determined by the function F . We can do this by reporting all the hits

F (j), where F (i) is the best mismatch/indel combination for R and i < j ≤ 9. However,

this scheme would be too time consuming to implement in practice, and we use the

following strategy. If there are multiple hits having F (i) mismatch/indel combination,

we stop the reverse-alignment scanning. Otherwise, if i < 9, we scan one level deeper

and report all the hits having F (i+ 1) mismatch/indel combination.
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7.7 Quality-Aware Alignment Score

Sequencing data usually produce a quality score that indicates the reliability of bases

called at each position of a read. If the probability of the ith base of a read being correct

is P (i), the quality score Q(i) assigned to that base is given by P (i) = 1− 10−Q(i)/10.

Assuming that there is no bias to a particular set of nucleotides when a base gets

miscalled with another nucleotide, the probability of the ith base of a read being

miscalled is 1− P (i)/3.

For a given alignment, we can compute a quality-aware alignment score based on an

affine scoring scheme as follows. The score for a match or a mismatch at R[i] is the phred

scaled value of P (i) (i.e. −10 logP (i)). When indels are present, positive gap open and

extend values are chosen. These values are the Phred scaled probabilities calculated for

gap openings and extensions using data from human resequencing projects by Novoalign

(www.novocraft.com). Based on this scoring scheme, lowest scoring alignments are the

most likely alignments.

7.8 The BatAlign Algorithm

In the previous chapter we have described how to find mismatch hits incrementally, and

the Algorithm 7.1 shows how to find indels allowing mismatches. In fact, Find Indel can

be unrolled and re-ordered so that indel hits having K mismatches are reported before

those having K + 1 mismatches. Therefore, reverse-scan can be easily implemented.

The BatAlign algorithm for mapping reads having around 75 bases is described in

Algorithm 7.2. It has two basic steps. In the first step it gathers a likely set of candidate

hits. In the second stage, if there is a unique alignment it is reported. Otherwise, for

each of the candidate hits its quality-aware alignment score is found. If the difference

between the two lowest quality-aware alignment scores is greater than some cutoff (set

at 10 by default) the lowest scoring alignment is reported. If this cutoff is set high, we
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can be more confident that the hit having the lowest quality-aware alignment score is

more likely to be the correct hit than the next best alignment.

Algorithm 7.2: BatAlignShort(R, T, F,M,G)

Data: A read R, a reference T , a reverse-alignment function F where F (i) is
defined for i = 1, . . . ,M , the threshold for reporting multiple hits G

Result: The best alignment for R
/* Step 1: Gather candidate hits */

C = ∅;1

for i = 0 to M do2

H1=Hits of R in T having F (i) mismatch/indel combinations;3

if H1 is not empty then4

if H1 contains unique hit and i < M then5

H2=Hits of R having F (i+ 1) mismatch/indel combinations;6

C = H1 ∪H2;7

else8

C = H1;9

end10

end11

end12

/* Step 2: Report hit */

if C contains a unique hit then13

Report unique hit in C;14

else15

Find alignment scores of hits in C;16

if alignment score difference of the two lowest scoring hits < G then17

Report the lowest scoring hit;18

end19

Report no alignment;20

end21

When aligning reads longer than 75 bases, the read will be divided into as many

non-overlapping 75bp seeds as possible. Precisely, when |R| > 75, the seeds for the

read R are given by R[75i+ 1, 75(i+ 1)], where i = 0, . . . , b|R|/75c. Each of these are

aligned to the genome with the BatAlignShort algorithm. If the top hit of two of

these seeds fall into the neighbourhood of each other, the whole read is aligned to the

neighbourhood of the leftmost seed. Otherwise all the candidate hits found by the seeds
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are extended, and the lowest scoring alignment is reported if the difference of the two

lowest scoring alignments is larger than 10.

7.9 Extension of Seeds

Seed verification needs to be done in the Find Indel algorithm. For small read lengths,

we can expect the neighbourhood where seeds map to be similar to the read. Therefore,

semi-global alignment is a good choice for seed extension. We have developed a fast

semi-global alignment algorithm that can be used to extend seeds allowing at most one

indel and a small number of mismatches. When the alignment score of the semi-global

alignment drops below 90% of the maximum alignment score (i.e. the score for an

exact match), a Smith-Waterman alignment is done, as it may be able to find a better

local alignment in these cases. We use a fast implementation of the Smith-Waterman

method that uses SIMD and SSE2 instructions [158] based on the Farrar’s method [34].

This algorithm determines the best alignment in two steps: First it will calculate the

best Smith-Waterman score and then it will perform a banded alignment to get the

trace-back of an optimal alignment from the DP-table.

When compared with a version that completely relies on the Smith-Waterman

method for seed extension, we have noticed a 30% speed up of BatAlign’s running time

when the fast semi-global alignment is used in conjunction with the Smith-Waterman

method. Next, we will describe this algorithm.

7.10 Fast Method for Seed Extension

In this section, we will describe a method faster than the Smith-Waterman method that

can be used to extend seeds, assuming only one indel exists in the best alignment. We

will use the following terminology. Define µ1 and µ2 to be the mismatch and match

penalties respectively, and let GP (d) be the gap penalty for an indel of size d. Let
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H(X1, X2) be the Hamming distance and AS(X1, X2) be the semi-global alignment

score between the two strings X1 and X2 calculated using penalties µ1, µ2 and GP .

Finally, when |X1| = |X2| and the alignment between them does not contain gaps, define

ASHam(X1, X2) = µ1H(X1, X2) + µ2(|X1| −H(X1, X2)). Intuitively, ASHam(X1, X2) is

the global alignment score of an alignment that does not have indels in it. We will

assume that the penalties are chosen so that the best alignment will have the best

alignment score.

7.10.1 Special Case of Alignment

We will first introduce an algorithm to efficiently compute the alignment of two strings

R and G assuming that in their best alignment (1) there is a maximum of one indel

whose size does not exceed D bases, (2) the number of mismatches do not exceed M

and (3) there are no gaps at the start and the end of the alignment. If the indel appears

after the kth base in G and R, the alignment score of such an alignment is given by

ASHam(G[1, k], R[1, k]) +GP (d) + ASHam(G[k+ 1 + d1, |R|+ d1− d2], R[k+ 1 + d2, |R|]).

In this formula, if there is an insertion of size d1 in R, we set d = d1 and d2 = 0. If there

is a deletion of size d2 in R, we set d = d2 and d1 = 0. We will describe our algorithm

for the case where an insertion is present in R.

Algorithm 7.3: Scan Insert Sizes(R,G,D,M)

Input: two strings R and G, a maximum insert size D, a maximum mismatch
number M .

Output: Insert Sizes returns possible sizes of inserts that can occur in
R[1, |R|/2].

Insert Sizes = ∅;1

for i = 1 to D do2

if Hamming distance between G[|R|/2 + 1 + i, |R|+ i] and R[||R|/2 + 1, |R|]3

does not exceed M then
Add i to Insert Sizes;4

end5

end6

return Insert Sizes7
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Algorithm 7.4: Get Best Hit(R,G, Insert Sizes)

Input: two strings R and G, list of possible sizes of inserts in R[1, |R|/2
Insert Sizes

Output: Insert having the best score, along with its size and location in R
Max Score = −∞;1

foreach i in Insert Sizes do2

for x = 1 to |R|/2 do3

Score = alignment score of R and G[1, |R|+ i] with an insertion of size i4

at position x;
if Score > Max Score then5

Best Hit = (i, x, Score);6

Score = Max Score;7

end8

end9

end10

return Best Hit11

We will start with a solution to find inserts in the left half of R. The key idea

is simple. If an insertion of size i exists in the left half of R, then the right half

R[|R|/2 + 1, |R|] must align to G[|R|/2 + 1 + i, |R|+ i] with a Hamming distance less

than M (See Figure 7.1(B)). Such an alignment narrows down the region an insertion

can occur, and the exact position of insertions can be then verified by examining this

region. Procedure Scan Insert Sizes described in Algorithm 7.3 returns the possible

sizes of inserts that satisfy this condition. It does so by trying all the possible values

i for the size of an insert (Line 2) to see if the right half of R can be mapped to

G[|R|/2 + 1 + i, |R|+ i] allowing at most M mismatches (Line 3).

Next, we will show how to find the most likely location for an insertion if its

size is known. Note that if the insertion is the region G[x + 1, x + i], then G[1, x]

and G[x + i + 1, |R| + i] must align to R[1, x] and R[x + 1, |R|] respectively (see

Figure 7.1(B)). The corresponding alignment score is given by ASHam(R[1, x], G[1, x]) +

GP (i) + ASHam(R[x+ 1, |R|], G[x+ i+ 1, |R|+ i]). We can find the most likely location

for an insertion by finding the location that maximizes this alignment score.
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Based on this idea, the procedure Get Best Hit given in Algorithm 7.4 takes a

list of possible insert sizes, and reports an optimum alignment having an insert in the

left half of R. Taking a possible size of an insertion i from the list Insert Sizes, and

assuming that the insert is located after the xth base, Get Best Hit will calculate its

alignment score (Lines 2-4). Finally, it will find a best alignment along with the score

(Lines 5-8) and return it. Note that the location of the insertion x and the size of the

insertion i are sufficient to specify the alignment.

We now have a method to detect a best alignment containing an insertion in the left

half of a string. We can use this method recursively to find all the insertions in R as

follows. The insertions can be in either the left or the right halves of a string R. First,

we look for insertions in the left half of R. Next, if the left half of R can be aligned

with G[1, |R|/2] allowing M ′(< M) mismatches, we recursively look for insertions using

the same method by shifting R and G by |R|/2 + 1 bases to the right, and allowing

M −M ′ mismatches.

Using this technique, the function Fast Insert described in Algorithm 7.5 returns

an optimum alignment containing an insertion for a read R under the given criteria.We

will define Sj = |R|+ 1− d|R|/2je, and S0 = 1 for a non-negative integer j. In the jth

iteration, Fast Insert will be processing the substring R[Sj , |R|], which is the right half

of the string R[Sj−1, |R|] for j > 1. The function Fast Insert starts its jth iteration by

selecting the substring R′ = R[Sj , |R|] and G′ = G[Sj , |G|] from R and G respectively

(Line 2). Then it finds an optimum alignment of R having an insert in R′ (Lines 6-7),

and calculates its alignment score (Line 8). Next, to search for an insertion in the

right half of the string, we first check if H(R[1, R|/2], G[1, R|/2]) does not exceed M .

If this condition is satisfied, we recursively search for an insertion in the right half R′

(Line 11). The best scoring hit is then returned (Lines 12-13,16). The recursion stops

when the string consists of a single base (Line 3). We can similarly write a procedure

Fast Delete to return an optimum alignment having a deletion.
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Figure 7.1: (A) When performing seed extension, the seed portion of the reads R1
and R2 will be aligned to the genome. The seed will be on the left half of R1 and the
right half of R2. Neighbourhood of the area seeds mapped to will then be taken; G1 to
the right of R1, G2 to the left of R2. Semi-global alignment can then be done between
R1−G1 and R2−G2, which will extend the seeds to right and left respectively. This
semi-global alignments can have gaps at only the right and left ends respectively. (B)
When the read R contains an insert in the left half of R after the xth base, the right
half of the read can be mapped completely to the reference as shown.
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Algorithm 7.5: Fast Insert(R,G,D,M, j)

if j = 0 then Sj = 1 else Sj = |R|+ 1− d|R|/2je;1

R′ = R[Sj , |R|];G′ = G[Sj , |G|];2

if length of R′ ≤ 1 then3

return (0,0,−∞)4

end5

/* Find inserts in left half of R */

Insert Sizes = Scan Insert Sizes(R′, G′, D,M);6

(il, xl, Scorel) = Get Best Hit(R′, G′, Insert Sizes);7

if j 6= 0 then Scorel = Scorel + ASHam(R[1, Sj − 1], G[1, Sj − 1]);8

/* Find inserts in right half of R */

M ′ = H(R[1, Sj+1], G[1, Sj+1]);9

if M ′ < M then10

(ir, xr, Scorer) = Fast Insert(R,G,D,M −M ′, j + 1);11

if Scorer > Scorel then12

return (ir, xr, Scorer)13

end14

end15

return (il, xl, Scorel)16

7.10.2 Semi-Global Alignment for Seed Extension

When a seed extension is performed in BatAlign, a part of the read will be anchored

and the rest of the read will be extended (See Figure 7.1 (A)). Then the read alignment

will be a variant of the semi-global alignment with gaps being permitted in only one

side of the read. We will now discuss how to solve this problem. We will assume the

case where the left part of the read is anchored and is extended from left to right. In

this case, a gap is permitted only in the rightmost end of the read.

To solve this problem, we need to find a best alignment among (1) alignments

containing an indel at the rightmost end (2) alignments containing an indel in the middle

of R. The second case can be solved with the routines Fast Insert and Fast Delete.

For the first case, we can find all the possible cases of alignments having an indel at the

end and pick the best one. However, any indel at the end of R will not be penalized in

a semi-global alignment, and therefore any indel appearing after R will not contribute
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to the alignment score. In fact, we need to consider only the cases of insertions where

an insert of length i (i = 0, 1, . . . , D) appears in the region of R[|R| − i+ 1, |R|]. Their

alignment score will be simply ASHam(R[1, |R| − i], G[1, |R| − i).

Procedure Find Opt Right described in Algorithm 7.10.2 returns a best alignment

based on the above discussion. First it will find the best alignment with an indel at the

rightmost end of R by calculating all possible distinct alignment scores (Lines 2-7). Next,

it will find optimal scores allowing an indel in the middle of the read using Fast Insert

and Fast Delete routines(lines 8-9), and finally returns the alignment having the best

score (Line 10).

Algorithm 7.6: Find Opt Right(R,G,D,M)

Mis Score = −∞;1

for j = 0, 1, . . . , D do2

M = ASHam(R[1, |R| − j], G[1, |R| − j]);3

if M > Mis Score then4

(im, xm, Scorem) = (|R|, j,Mis Score);5

end6

end7

(ii, xi, Scorei) = Fast Insert(R,G,D,M, 1);8

(id, xd, Scored) = Fast Delete(R,G,D,M, 1);9

Report the alignment with largest score among Scorem, Scored and Scorei;10

A similar algorithm can be constructed for the case where the seed is taken from

the right side of the read, and the extension is performed from right to left.

7.11 Proof of Correctness

We will first prove that Fast Delete and Fast Insert will return an optimum alignment

when the indel is in the middle of the read.

Lemma 7.11.1. Algorithm Fast Insert returns an optimum alignment having M

mismatches and one insertion whose length does not exceed D in the middle of R.
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Proof. The recursion will stop when j = lg |R|, so the algorithm will terminate. The

jth Iteration of Scan Insert Sizes will return all possible sizes of insertions that are

allowed within R[Sj , Sj+1 − 1]. Get Best Size will then find all possible alignments

having an insertion of these sizes within R[Sj , Sj+1 − 1], and return an optimal one.

Since ∪lg |R|
j=0 R[Sj , Sj+1 − 1] = R[1, |R| − 1], all alignments having an insertion in the

middle of R will be considered, and an optimal alignment will be returned.

Lemma 7.11.2. Algorithm Fast Delete returns an optimum alignment having M

mismatches and one deletion whose length does not exceed D in the middle of R.

Proof. Proof is similar to that of Lemma 7.11.1.

Lemma 7.11.3. Algorithm Find Opt Right returns an optimum semi-global alignment

of R allowing M mismatches, one indel whose length does not exceed D and no gaps in

the leftmost end.

Proof. According to the conditions there are three possibilities; (1) There is no indel,

(2) the indel appears in the middle of the read or (3) the indel is at the rightmost end

of the read. Since an indel at the end of a semi-global alignment will not result in any

penalty, Lines 2-7 will find the first and the last cases. The other case is handled by

Fast Delete and Fast Insert as proven by Lemmas 7.11.1 and 7.11.2.

7.12 Complexity of the Algorithm

Before discussing the complexity of the algorithm, we will show a faster way of calculating

the alignment score given in Line 4 of Get Best Hit. As it is, the time complexity of

the calculation is O(|R|). However, with a pre-calculation for each i, it can be done

in constant time. Let Hl(x) = ASHam(R[1, x], G[1, x]) and let H i
r(x) = ASHam(R[x +

1, |R|], G[x + i + 1, |R| + i]). If we pre-calculate Hl(x) for x = 0, . . . , |R|/2 and pre-

calculate H i
r(x) for i = 1, . . . , |R|/2 and x = 1, . . . , D, then we can see that the alignment
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score in line 6 can be calculated as Hl(x) +H i
r(x) +GP (i) in constant time. The time

complexity of the pre-calculation step is O(|R|).

Lemma 7.12.1. The worst case running time of Get Best Hit is O(D|R|).

Proof. we pre-calculate Hl(x) for x = 0, . . . , |R|/2 at the start of the routine. Before

entering the loop in Line 3, we pre-calculate H i
r(x) for i = 1, . . . , |R|/2 and x = 1, . . . , D.

Then the calculation in Line 4 can be done in O(1) time. So the worst case time

complexity of the whole function is O(D|R|).

Lemma 7.12.2. The worst case running time of Fast Delete and Fast Insert is

O(D|R|)

Proof. The time taken for Scan Insert Size is α1D|R′| for some α1 > 0. The worst

case time taken for Get Best Hit is α2D|R′| for some α2 > 0. Therefore, the worst

case time taken for Fast Insert can be written as

T (|R′|) = αD|R′|+ T (|R′|/2)

for some α > 0 when constant time factors are excluded. The solution for this recursion

is T (|R′|) = 2αD|R′|; i.e., the time complexity is O(D|R|). Similar arguments can be

used to show that the worst case running time of Fast Delete is O(D|R|).

Lemma 7.12.3. The worst case running time of Find Opt Right is O(D|R|)

Proof. The running time of Lines 2-7 is O(|D|). Similar to Fast Insert, Fast Delete

can be shown to have a worst case running time of O(D|R|). Therefore the running

time of Find Opt Right is O(D|R|).

The complexity of the worst case running time of the fast semi-global alignment

is similar to that of a banded semi-global alignment. However, in most cases the lists

Delete Sizes and Insert Sizes will return much less that D elements as assumed in
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the worst case analysis. If the best alignment is a mismatch alignment the chance of

these lists being empty is high. Furthermore, there is a high chance that if the indel is

actually in the left half of the read, the tests at Line 11 of Fast Delete and Fast Insert

will fail. Therefore, in practice, we can expect a much faster execution time than a

banded approach.

7.13 Increasing Sensitivity, Accuracy and Speed

In Section 7.5.1 we described our basic criteria for finding a suitable set of hits. This

criteria will miss enumerating the correct hit under three cases. (1) The read contains

mismatches and indels outside the scope the algorithm is set to handle. (2) The read

contains only m mismatches, but has a multiple mapping with less than m mismatches

or a unique mapping with less than m− 1 mismatches. (3) A read containing indels

with m mismatches might get mapped as a pure mismatch hit or as an indel hit having

less than m mismatches. We use several methods to recover these three kinds of hits.

During the seed extension stage, we might recover possible hits having more than

the number of mismatches and indels specified by the basic algorithm. Instead of

discarding them we will add them to the pool of candidate hits. If a hit found in the

mismatch scanning stage turns out to have an indel when the full-read extension is

done, an indel scan is forced. If the best alignment score happens to be larger than that

of a single indel hit, again an indel scan is forced. Finally, for reads having more than

one mismatch, the indel scanning is performed if the average quality of bases having

a mismatch is higher than that of the average base quality of the read. We allow one

high quality mismatch to consider the possibility of a SNP.

7.13.1 Making the Algorithms Faster.

We can use some strategies to speed-up the algorithms. The general idea is to limit the

number of hits enumerated in the deep-scan step and to avoid time consuming extension
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by Smith-Waterman method. These methods will result in a loss of accuracy and

sensitivity (For definition see Section 7.17.2). When extending the candidate hits we can

terminate the extension process if the extensions have not resulted in an improvement in

the alignment score for K successive steps. Furthermore, when an indel scan is forced,

the extension can be limited to those hits already having an indel. The most time

consuming part of our Smith-Waterman library is the trace-back step to get the exact

alignment. We can perform this step only on most promising extensions based on the

alignment score.

The methods in this section have been used in various combinations to produce

several modes of scanning that trade speed with accuracy and sensitivity.

7.14 Calculating the Mapping Quality

According to the SAM format definition, an aligner should output a mapping quality

(MapQ) calculated by the formula−10 log(probabilty of mapping position being wrong),

rounded to the nearest integer. In order to calculate this probability, we need to know

the probability that the read did not originate from the reference, the probability of the

read being incorrectly mapped and the probability that the aligner failed to enumerate

the hit etc [77, 89]. However, these probability cannot be calculated in practice and

various approximations are used.

The seminal paper describing mapping qualities [77] provided a formula for practical

calculation of mapping qualities, given by

min{q2 − q1 − 4.343 log n2, 4 + (3− k)(q̄ − 14)− 4.343 log p1},

where q1 and q2 are the sum of the base qualities at the mismatching bases of the

top and the second best hits, n2 is the number of hits having the same number of

mismatches as the second best hit, k′ is the number of mismatches in the first 28bp read,
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q̄ the average base quality of the same region and P1 is a certain probability calculated

during alignment. A popular approximation is the one used in BWA-SW, which uses

the empirical formula MapQ=250 · c1c2(S1−S2)/S1, where S1 and S2 are the alignment

scores of the top and second best alignments respectively, and c1 and c2 are values

that depend on the nature of the alignments. Bowtie returns a MapQ deduced from

simulated datasets. This value is based on the best and the second best alignment

scores and the nature of the alignment. However Rufallo et. al. [121] showed that

these approximations are far away from the theoretical mapping qualities. Therefore, in

practice, we can think of the mapping quality as a number that measures the accuracy

of the alignment, with 0 corresponding to an alignment on which we have no confidence

in.

We base our mapping quality along this line of thinking and take three factors in

to account. The first factor is the alignment score of the top hit and the second best

hit (if it exists). If the difference of the alignment scores between the top hit and the

second best hit (when it exists) is more than 10, we assign the hit a mapping quality of

0. The reasoning behind this is that the best and the second best alignment are too

similar to designate one hit as the best hit.

The second factor is the Smith-Waterman alignment score of the alignment. We

give an alignment score Sref to the final alignment to measure the likelihood of the

sequence appearing in the reference. In this alignment score, gaps are given an affine

penalty. Each mismatch is given a penalty between a minimum of M and a maximum

of N scaled on the quality of the mismatch base [69]. This scaling is done according to

the formula

M + (N −M)(min (Q, 40)/40),

where Q is the mapQ of the mismatching base. M and N are set at 6 and 2 [69]. A

mismatch on a higher quality base will incur a higher penalty. If this value is high, we

can be more confident about the alignment. The final factor is the repetitive nature
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of the read. During the alignment stage, we count how many alignments Smulti the

first half of the read will have when 0 mismatches are allowed. A larger value of Smulti

indicates a higher probability that the read will align merely by chance. However, to

avoid over penalizing highly repetitive alignments we limit Smulti to a maximum of 10.

The final mapping score is calculated by the formula 60+Sref−Smulti. The mapping

quality is capped at 60, we set it to be 60. If the mapping quality is negative we set it

to zero.

7.15 Results

We will first compare the results of our method BatAlign against a set of state of

the art aligners that have been published. The aligners compared were BatAlign

(r169), Bowtie2 (2.0.6), BWAShort, BWA-SW (0.6.1-r104), Stampy (v1.0.16), GEM

(3rd release) and SeqAlto (0.5-r123). Bowtie2 is the de facto aligner to benchmark fast

aligners. BWAShort and BWA-SW are the de facto aligners to benchmark for accurate

short read and long read mappings respectively. Stampy is very sensitive in the presence

of variations, and GEM is the fastest aligner available. Seqalto is another fast aligner

that is hash-based. These aligners feature a wide range of mapping techniques. We ran

Stampy standalone without using BWA as this mode is reported to be more sensitive.

We also ran Bowtie2 in the --local mode to increase sensitivity. All the other settings

were the default settings for all the programs. All the benchmarked aligners except

GEM produce a quality score. For each tool, the reference genome was indexed with

default indexing parameters. hg19 was used for all the experiments in this chapter. All

experiments were run on a Linux workstation equipped with Intel X5680 (3.33 GHz)

processor and 16GB RAM.
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7.16 Simulated Data

We will first present our comparison on a simulated datasets whose point of origin in

the genome are known. We generated two classes of simulated data. The first class

produced Illumina-like reads while the second class had one indel in each of its reads.

The first class of reads were generated using the ART simulator [51] excluding the

non-chromosomal sequences of hg19. We have chosen ART since the substitution errors

are simulated according to empirical, position-dependent distribution of base quality

scores; it also simulates insertion and deletion errors directly from empirical distributions

obtained from the training data derived from the 1000 genome project [25]. Empirical

read quality score distributions are provided by ART for read lengths of 75 bp, 100 bp

and 250bp. The number of mismatches and indels (SNVs, base-call errors or gaps) in a

simulated read was capped at 7% (an indel was counted as one error).

The second class of pure-indel reads was used to demonstrate the performance of

BatAlign on the recovery of indels. 16 sets of 75 bp reads were created. Each pure-indel

data set contained 1 million reads having one indel of a fixed length (since the average

density of an indel is one in 7.2kb of DNA [106]). Indel lengths ranged from 1 bp to 8

bp and each data set contained either insertions or deletions only.

7.17 Evaluation on ART-Simulated Reads

For this evaluation, we discarded mappings with mapQ = 0 for all methods as they

are considered ambiguous by the aligner. We then calculated the cumulative number

of correct and wrong alignments and drew the ROC curve thresholded by the mapQ.

Due to the inability to align some indels to their exact locations and the presence of

soft-clippings (i.e. segments at the ends of the reads that have been ignored in the

alignment), an alignment will be considered as a correct mapping if the leftmost position

was within 50bp of the position simulated by the simulator on the same strand. If the
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(a) ROC for 75 bp (b) ROC for 100bp

Figure 7.2: Mapping of simulated datasets containing reads of length 75bp and 100bp.
The reads were generated allowing 7% errors in a read, and a deviation of 50bp from
the exact origin of the read was allowed to account for alignment errors and clippings.

margin of error is decreased, it will improve the ROC of BatAlign even more compared

to the others. However it will misrepresent aligners that can recover short fragments of

a read. To be unbiased, we set the margin of error at 50 bp as chosen in the benchmarks

for Stampy and Seqalto. For a further discussion on this setting see [110]. Figure 7.2

shows the ROC curves for each method and dataset. BatAlign was more sensitive and

reported less wrong alignments than the other methods over a large range of mapping

quality cutoffs.

7.17.1 Multiple Mappings

For structural variation and copy number variation studies, multiple hits are of interest.

In this section we compare the multiple hits output from each aligner. We had all the

methods report the top 10 hits for each read (Stampy can only report at most 1 hit).

Since all the compared methods report hits of a read ranked by their likelihood of being

the correct hit, we report the correct hits broken down by their rank. The results are

shown in Table 7.1.

We can see that BatAlign recovered the most number of correct hits within its
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Rank of hits

1 2 3 4 5 6 7 8 9 10 Total

7
5
b
p

BatAlign 933560 11604 732 622 745 335 146 116 90 68 948018

Bowtie2 866410 10873 4095 1541 551 314 192 142 112 77 884307

BWA-SW 786309 2 0 0 0 0 0 0 0 0 786311

Stampy 902757 - - - - - - - - - 902757

GEM 893162 13603 5243 2231 1074 688 555 375 323 272 917526

BWA-Short 834519 10008 3535 1226 408 160 83 52 43 26 850060

Seqalto 885208 5692 1712 723 306 164 102 63 33 32 894035

1
0
0
b
p

BatAlign 924272 7599 941 728 851 332 182 108 101 63 935177

Bowtie2 866310 8685 2833 948 254 110 69 42 23 5 879279

BWA-SW 794661 7 0 0 0 0 0 0 0 0 794668

Stampy 913874 - - - - - - - - - 913874

GEM 875333 10327 3533 1445 638 377 283 193 163 178 892470

BWA-Short 484558 5207 1747 662 211 112 79 48 20 13 492657

Seqalto 890336 1821 515 194 91 44 38 11 3 8 893061

Table 7.1: The results of mapping simulated datasets of lengths 75bp, 100bp and 250bp
and reporting the top 10 hits. The correct hits are broken down by the rank of the hit.
For 75bp and 100bp reads, BatAlign produces the most number of correct hits within its
top 10 hits. For 250bp BatAlign misses only a small percentage of hits.

reported 10 hits on both datasets. In fact, BatAlign recovers more hits as the top hit

than all the other aligners do even after considering their top 10 hits. We attribute this

to the effectiveness of the reverse alignment strategy and deep-scanning. This will be

discussed more in Section 7.19.

7.17.2 Evaluation on Simulated Pure-Indel Reads

The reads generated by ART have only a ∼0.01% probability of containing an indel,

and the previous statistics do not properly demonstrate each programs ability to identify

indels. Therefore, we used the pure-indel read class to investigate the capabilities of

each aligner to identify indels of varying lengths. To get the overall picture of sensitivity

vs. accuracy we used the F -measure. (The sensitivity (SEN) and accuracy (ACC) are

given by the equations SEN = TP/(TP + FN) and ACC = TP/(TP + FP ), where

TP and FP are the number of true and false positives respectively. Then we have
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F -measure=2(SEN ∗ACC)/(SEN +ACC).)

Figure 7.3 plots the accuracy rates and F-measure graphs across all the pure-indel

datasets. BatAlign, Bowtie2 and Stampy had similar sensitivity across all the datasets

of varying indel sizes, while the other programs generally have problems maintaining

sensitivity when the size of the indel increases. We also observed that BatAlign had

the smallest drop of sensitivity from 92.0% to 91.4% when the insert size was increased.

In terms of accuracy, BatAlign has an average of 6.2%, 0.4%, 5.7%, 8.3%, 0.8% and

7.44% more specificity compared with Bowtie2, BWA-SW, Stampy, GEM, BWA-Short

and SeqAlto respectively. Figure 7.3(A-B) also show that BatAlign maintained a high

specificity even when the indel size increased. In terms of the F -measure, BatAlign

clearly outperformed other methods and had the highest F-measure. It was the only

program to have a stable F -measure of 95.5% across all indel datasets.

7.18 Mapping Real-Life Data

We downloaded 500k reads of 2 x 76 bp (DRA accession DRR000614, Sample: NA18943),

2 x 101 bp (SRA accession SRR315803, Sample: NGCII082 Mononuclear blood) and 2

x 150 bp (SRA accession ERR057562, Sample:ERS054071) paired-end datasets. The

sequencing platform used for the downloaded data was Illumina Genome Analyzer IIx for

the 76/101 bp datasets and Illumina MiSeq for the 150 bp dataset. In order to address

the lack of a ground truth, we mapped the paired-end reads as single-end reads and

calculated the fraction of reads that were mapped concordantly. We consider a pair of

reads to be concordant if they have the correct orientation and maps within 1,000 bp of

each other with a non-zero mapQ. (The distance 1000 is chosen since Illumina machines

normally cannot extract paired-end reads from DNA fragments of size longer than

1000bp.) If both ends of the paired-end reads were mapped but were not concordant,

they were marked as discordant. This form of verification [74] gauges the single-end

mapping algorithms with reads containing the true spectrum of polymorphisms.
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A B

C D

Figure 7.3: Comparison of aligners capabilities in detecting indels in pure-indel
datasets. The indel datasets were constructed by introducing indels of different lengths to
a million reads simulated from hg19 that were error free. Among the aligners BatAlign
shows the highest specificity and the best F-measure. It is also robust in detecting indels
of different lengths, as can be seen by its stability of the F-measure.
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(a) ROC for 76 bp (b) ROC for 101bp

(c) ROC for 150 bp

Figure 7.4: Mapping of real-life datasets containing reads of length 75bp, 101bp and
150bp. One side of paired-end datasets were mapped and if the mate of a read was
mapped within 1000bp with the correct orientation, the read was marked as concordant.

Figure 7.4 shows the ROC drawn with the number of concordant and discordant

reads and using mapping quality as the threshold. Consistent with the simulated data,

BatAlign reported more concordant mappings and less discordant mappings compared

to other methods over a large range of mapping quality cutoffs.

7.18.1 Running Time

BatAlign was developed focussing primarily on producing accurate alignments. From

Table 7.2, we see that the default mode of BatAlign can run in a reasonable time
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Figure 7.5: ROC curves of BatAlign’s fast modes compared with the ROC’s of other
aligners for a 100bp real life dataset. The faster modes of BatAlign still perform well
compared to other aligners.

compared to most of the fastest methods used in our comparisons. BatAlign trades

speed for accuracy and was not as fast as GEM and Bowtie2. From the evaluation of

simulated/real reads, the ROC curves show that BatAlign is more specific/concordant

over a large range of mapping qualities. Since this is so, we try to allow more flexibility

for the users by allowing BatAlign to run faster but with a slight decrease in accuracy.

The analysis of runtime was done with the same set of real data used in the previous

section to present realistic timings of all the compared programs. Table 7.2 shows the

runtimes and speedup factors between the programs, where Stampy was used as the

baseline for measuring the speedup factor. GEM is the fastest aligner, and BatAlign in

its turbo mode is the second fastest.

Figure 7.5 shows the ROC curves comparing different modes of BatAlign with other

methods. We observed that the discordance rates increased with decreasing running

times. This resulted from the reduction of search space in a bid for faster run times.

Since BatAlign always tries to scan for all candidate hits incrementally and report

the best hit, a reduction in search space will actually discard some concordant hits

prematurely and cause an increase in discordance rates.
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Program Runtime(seconds) Speedup factor

BatAlign - Default 583 6.3x

BatAlign - Fast 481 7.7x

BatAlign - Turbo 331 11.2x

GEM 214 17.3x

Bowtie2 459 8.0x

BWA-Short 598 6.2x

BWA-SW 639 5.8x

SeqAlto 677 5.5x

Stampy 3694 1.0x

Table 7.2: The timing for mapping real-life data set of length 101bp. The baseline for
speed comparison is taken to be Stampy, and the speedup of other methods compared
to it are given. The fastest timing is reported by GEM. BatAlign in its default mode
is slower than Bowtie, but faster than BWA aligners. In its faster modes, BatAlign is
faster than or has a similar timing to Bowtie2.

7.19 Discussion

Seeding methods are commonly used by aligners when aligning long reads due to the

higher prevalence of structural variations and indels in them. Usually the seed size used

is around 20-30 bases, and not many mismatches are allowed. Although these seeds

produce many potential hits, when the seeds are extended many of them turn out to

have a large edit distance from the original read. However, there is no proper way to

filter out these type of seeds without actually doing read extensions. We propose to use

larger seeds of around 75 bases, allowing a reasonable number of mismatches and indels

appropriate for such a length. The longer anchors will produce a smaller set of seeds.

Furthermore our reverse alignment strategy only inspects the most probable of these

seeds. The advantage of this strategy can be seen from table 7.1. The total number of

top 10 hits produced by BatIndel is less than the other aligners. However, it contains

the most number of correct hits, indicating the ability of reverse alignment to produce

a set of compact and accurate seeds.
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Another reason contributing to the accuracy of BatAlign is the deep-scanning. To

illustrate its effect, we mapped a million ART simulated 75bp reads with BatMis

and BatAlign. BatMis scans incrementally for mismatches, and reports the unique

hits without performing a deep-scan. Apart from indel scan and deep-scan, BatMis’s

mapping strategy is quite similar to that of BatAlign. Out of the million reads, BatMis

mapped 917789 hits correctly and 4,625 wrongly. For BatAlign, 894773 hits were

mapped correctly and 19 hits wrongly (We imposed a mapQ cutoff of 30 as a uniqueness

condition for BatAlign hits).

The mapping results show BatAlign to be an accurate aligner. Simulated data shows

that it is extremely robust when handling both insertions and deletions. Overall, its

speed is comparable to the fast aligners available today. Therefore, we can conclude

that BatAlign will be a useful option when mapping NGS reads.
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Chapter 8

RNA-seq Alignment

8.1 Introduction

RNA-seq mapping is one of the most difficult problems in sequence mapping. The-

oretically, it can be considered as mapping a read allowing multiple long gaps along

with mismatches. The mapped portions of the read would correspond to exonic regions

and gaps would correspond to intronic regions. However, for a genome like the human

genome, the smallest exon size can be as small as 2 bases while the intronic gaps can

span larger than 490,000 bases [124]. Therefore, practical solutions have to limit the

sizes of exons and introns allowed in a read.

Another problem faced in RNA-seq mapping is the presence of pseudogenes. Like

repeat regions for genomic mapping, these are a source of false mappings. We can

categorize RNA-seq reads as exonic and junction reads; If the whole read originates

completely within an exon we call it an exonic read. Otherwise, the read crosses one or

more splice junctions and is categorised as a junction read. If an aligner is very passive

towards filtering out pseudogenes, it will misalign junction reads. On the other hand if

an aligner is too aggressive towards junction finding, it will missalign exonic reads.

In this chapter, we introduce BatRNA. BatRNA uses the BatAlign algorithm and

115
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efficient splice junction detection algorithms based on the data structure described in

section 3.7. BatRNA is a fast aligner and is the fastest among the compared methods

that use a similar amount of memory. In addition, it can correctly resolve junctions

containing only a small part of their constituent exons. BatRNA can strike a good

balance between mapping junction and exonic reads; BatAlign is used to align exonic

reads accurately and the splice junction detection algorithms can identify junctions that

occur commonly.

The algorithm has two passes. The first pass identifies a set of confident junctions.

This set of junctions is used in the second pass to resolve junctions from reads having

only a short overhang aligning with a constituent exon, and to correct junctions that

were misaligned by BatAlign as exonic reads. This two-pronged approach results in

better mapping than algorithms that rely solely on split mapping or transcriptome

methods.

8.2 An Alignment Score for Junctions

Suppose a read R contains a single junction consisting of two parts R1 = R[1, r] and

R2 = R[r + 1, |R|]. These will correspond to two exonic segments in the reference

genome T1 = T [x, x+ r − 1] and T2 = T [y, y + |R| − r − 1] respectively. We can denote

this splice junction using the 4-tuple (R, x, y, r). We will now propose a method to

assign a score to such a junction alignment. One obvious score is the Hamming distance

SHam(R, x, y, r) = H(R1, T1) + H(R2, T2) between the segments. A larger Hamming

distance implies a weak alignment.

Most splice junctions exhibit strong and conserved motifs near acceptor and donor

sites. A recent study [67] show that out of 53,295 confirmed junctions, 98.12% sites

have the canonical GTAG signal. Next, semi-canonical junctions occur very rarely with

0.76% sites having the GCAG signal and 0.10% the ATAC signal. The rest of the

junctions show 177 types of diverse signals. We will assign a score Stype(R, x, y, r) to
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(a) Human (b) Arabidopsis

(c) Mouse (d) Fruit fly

Figure 8.1: Intron size distributions in human, mouse, Arabidopsis thaliana and fruit
fly genomes. The inset histograms continue the right tail of the main histograms. For
the histograms, bin sizes of 5 bp are used for Arabidopsis and fruit fly, while 20 bp bins
are used for human and mouse. Source [47]

the junction (R, x, y, r) by giving the highest score to the canonical junctions (default

3), second highest to the semi-canonical junctions (default 2) and the least score to

any other junctions (default 0); i.e, a higher value of Stype indicates a more confident

junction.

The next score Sintron takes in to account the size of the intron contained in the

splice junction. Figure 8.1 shows the distribution of intron sizes for four different species.

They all show a sharp peak at around 100 bp. The distribution of intron size is very

tight for the relatively compact genomes of arabidopsis and fruit fly, but the human

and mouse have a long tail. Very low and very high intron lengths are rare. A score can
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be assigned based on intron length distribution so that intron sizes with most number

of introns are penalized less. Based on the general shape of the intron size distribution,

a straightforward scoring method is to use a logarithmic score so that longer introns

get a lower score [30]. On the other hand we can attempt to model the exact intron

distribution [43], but that kind of precision is not really necessary. Instead, we partition

the possible intron lengths into four ranges based on [67]. Let K be a near the peaks

in the intron size distribution of the reference genome. The intron sizes falling into

intervals [K,2kb),[2kb,5kb),[5kb,30kb),[0,K) and [30kb,∞] will be assigned scores in

decreasing order. If we set K = 100, the first two intervals will contain about 55% and

21% of human introns respectively, while the final interval will contain only less than

5% of all human introns. This partitioning is generally good for most species.

The final alignment score for a junction ASjunc is given by ASjunc(R, x, y, r) =

Stype(R, x, y, r) + Sintron(R, x, y, r)− SHam(R, x, y, r). A higher junction score implies

a higher confidence in the junction alignment.

8.3 Basic Junction Finding Algorithm

Let R be a read containing a single junction, and assume that at least l bases from

the constituent exons of the junction are present in R. If the maximum intron size

we allow is D, then the l-mer prefix and suffix of R must be at most D + |R| − 2l

bases apart. If we assume that they contain no mismatches, to resolve the junction in

R we can first find all the pairings of the l-mer prefix and suffix that are a distance

D + |R| − 2l apart using the methods described in section 7.3. Then the alignment

scores of possible junctions occurring between these pairings can be computed. Finally,

the highest scoring junction can be reported as the most likely junction.

Algorithm 8.1 describes a procedure Find Single Junc to enumerate the highest

scoring junctions in the read following this idea. The algorithm has two steps. Step 1

(Line 1) finds all pairings of the l-mer prefix and suffix of R within a valid distance to
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contain a junction. If a junction exists, it must lie in R[l + 1, |R| − l]. Step 2 calculates

the alignment score for all the possible junctions of all the pairings found (Lines 3-5).

If (x, y) is a pairing, it would mean that the alignment score would be caculated for

all the junctions (R, x, y − (|R| − r − l), i) for i = l + 1, . . . , |R| − l. Finally, the best

junctions are reported (Lines 6-8, 12).

Algorithm 8.1: Find Single Junc(R, T,D).

Input: a read R, a reference T , a maximum intron length D
Output: Junctions with the optimum alignment scores
X= Pairings of R[1, l − 1] and [|R| − l, |R|] within a distance D + |R| − 2l apart ;1

Max Score = −∞; Best Junc = ∅;2

foreach pairing (x, y) in X do3

for each junction between (x, y) do4

S = Alignment score of the junction;5

if Max Score ≤ S then6

if Max Score < S then Best Junc = ∅;7

Add junction to Best Junc;8

end9

end10

end11

return Best Junc;12

8.4 Finding Multiple Junctions

Consider a reference genome T and a read R. We now aim to align the read R onto

the genome T allowing multiple junctions. Precisely, we partition R into segments

R0, . . . , Rp and align Rj without gaps to Tj = T [ij , ij + |Rj | − 1], for j = 0, . . . , p,

satisfying the following conditions.

1. For each segment Rj where 0 < j < p, |Rj | ≥ λ > 0.

2. The distance between segments Tj and Tj+1 given by dj = ij+1− ij −|Rj | satisfies

0 < D1 < dj < D2.
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3. In any splice junction inside R, the l(< λ) bases to the left and the right of the

junction are present in R.

The Tj ’s and Rj ’s correspond to exons and the condition 1 limits the minimum

size of an exon allowed inside R. The dj are the intron sizes, and D1 and D2 are the

smallest and largest intron sizes allowed.

The basic idea of finding multiple junctions is to find the junctions in the read R

from left to right one by one, examining l bases at a time. The algorithm is based on

the following lemma.

Lemma 8.4.1. Consider a read R which aligns to the genome T according to the above

criteria. For any position a, there are three possible cases:

1. There are no junctions in R[a, a+ l − 1].

2. There is exactly one junction in R[a, a+ l − 1], and R[a+ l,min(a+ 2l − 1, |R|)]

has no junction.

3. There are two junctions, the first of which is in R[a, a+ l − 1] and the second is

in R[a+ l,min(a+ 2l − 1, |R|)].

Proof. For any other possibility, we would need to have more than one junction inside

R[a, a + l − 1] or R[a + l,min(a + 2l − 1, |R|)]. Then, at least one exon would be

completely contained in one of these segments. Since we have the restriction of the

minimum size of an exon being λ > l, this would be impossible. Note that if λ > 2l,

case 3 is not possible.

We will also need the following lemma for Algorithm 8.2.

Lemma 8.4.2. Suppose there is a single junction in R[a, b], where a < b < a+λ. Then

[b+ 1, a+ λ− 1], is part of an exon to the right of the junction.
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Proof. If the junction starts at a, then R[a, a+ λ− 1] is part of an exon. If the junction

occurs at b, R[b,min(b+λ−1, |R|)] will be a part of an exon to the right of the junction.

Therefore, their intersection given in the lemma is part of an exon for any junction

occurring between R[a, b].

Corollary 8.4.3. For b = a+ (λ− l)− 1, [b+ 1, b+ l] is part of an exon of length l to

the right of the junction.

Proof. Follows trivially from Lemma 8.4.2 by substituting b = a+ (λ− l)− 1.

8.5 Algorithm for Multiple Junctions

We will describe an algorithm that can partition a read R into junctions consistent with

the conditions set in the previous section. The process starts by assuming that the

leftmost l bases of R lies completely inside an exon. This should be true if R satisfies

condition 3. Then we move from left to right l bases at a time, either extending the

current exon or finding junctions within the l bases. If we find a junction at the xth

base, we report it and start this process fresh, this time starting at the (x+ l)th base of

R.

Suppose we are currently at the ath base of R, and R[a − l] is part of an exon.

Then all the junctions that can be found in the l bases R[a, a+ l − 1] can be found as

follows. If case 2 is true we can find all the possible junctions in R[a − l, a + 2l − 1]

using Algorithm 8.1. If case 3 is true, the junctions start somewhere in R[a, i], where

i = 1, 1, . . . , l− 1, and will extend at least l bases according to condition 3. We can find

all these junctions by using Algorithm 8.1 on R[a− l, a+ i+ l− 1] for i = 0, 1, . . . , l− 1.

Based on this idea, the procedure Seek Junc described in Algorithm 8.2 reports a

set of putative transcripts for a read R. Each transcript is represented as a set of m

junctions (Si, pi, qi, ri), where i = 1, 2, . . . ,m. Seek Junc is a recursive algorithm that

searches l bases of R at each recursion for a junction or exonic region from left to right.
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Seek Junc takes a suffix S of R, and three numbers a, L and j as arguments. Trans

is an array containing a partial transcript consisting of junctions found before entering

the current iteration of Seek Junc. S[1, a] will be part of a putative exon. L is the

number of putative junctions in Trans; i.e. Trans[1], . . . , T rans[L] will contain the

junctions 1 to L that were discovered in R[1, a − 1] in the order they were found. If

L 6= 0, T [j, j + a− 1] will be the exonic region corresponding to S[1, a].

The routine will first check if there are less than l bases to be processed (Line 2). If

this is the case, and a junction has already been found (L > 0) we try to match the

remainder of S with the reference (Line 3). The match will be determined based on the

number of mismatches and/or the quality of mismatches. If a match is confirmed, then

the transcript Trans is reported (Line 4).

If there are more than l bases left, a junctions search and exon extension is performed

based on the three cases given in Lemma 8.4.1. We first try to extend a known junction

or the a-mer prefix of S right by l bases (Line 12). A successful extension is determined

based on the number of mismatches and/or the quality of mismatches. If the extension

is successful, the string S[a+ l, |S|] is recursively examined with Seek Junc (Line 13).

Next we consider the case 2 of Lemma 8.4.1, where junctions between S[a, a+ l− 1]

will be added. We do this by using Find Single Junc on S[a − l,min(a + 2l, |S|)].

If (S, p, q, r) is such a junction, it needs to be further validated (Line 17). For the

validation, we match S[1, a + r] and T [p − r − a, p] taking into account the number

and/or the quality of mismatches. Furthermore, if j 6= 0, then the condition p = j + r

must be satisfied so that it is consistent with the last junction found and T [j, p] will

form a contiguous exon. Finally, the junction must satisfy the constraints of the intron

sizes. If the junction is valid, it will be added to the current partial transcript (Line 18).

Then, S is trimmed near the junction, and Seek Junc is called recursively to search for

the remaining junctions on the trimmed read (Line 19).

Finally, a search is made for junctions due to small exons given by case 3 of
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Algorithm 8.2: Seek Junc(S, a, L, j, T rans)

Input: S[a, |S|] is the part of the read being searched for junctions, L is the
number of junctions stored in putative transcript Trans, T [j, j + a− 1] is
corresponding to putative exon S[1, a] if j 6= 0.

Output: Report possible transcripts
if L > 0 then1

if a > |S| − l then2

if S[a+ 1, |S|] and T [j + a, j + |S| − 1] match then3

Report Trans;4

end5

else6

if S[a+ 1, a+ l] and T [j + a, j + a+ l − 1] match then7

Seek Junc(S, a+ l, L, j, T rans);8

end9

end10

else11

/* -------------------- Extend exon ----------------------- */

if S[1, a] can be extended l bases then12

Seek Junc(S, a+ l, L, j, T rans);13

end14

end15

if a > l then16

/* ------------------Single Junction----------------------- */

foreach each valid junction (S, p, q, r) between S[a, a+ l] do17

add junction to Trans[L];18

Seek Junc(S[r + 1, |S|], 1, L+ 1, q, T rans);19

end20

/* --------------- Small exon if 2l > λ -------------------- */

for i = a to a+ l − 1 step (λ− l) do21

for each valid junction (S, p, q, r) between S[i, i+ (λ− l)] do22

add junction to Trans[L];23

Seek Junc(S[r + 1, |S|], 1, L+ 1, q, T rans);24

end25

end26

end27
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Lemma 8.4.1. When λ > 2l this part of the algorithm is not necessary. Note that

there are actually two junctions within S[a, a + 2l − 1], but we only search for the

leftmost junction. We only need to check the interval S[a, a + l − 1] for junctions.

A näıve search for these junctions can be done by using Find Single Junc on the

strings S[a − l, a + i + l − 1] for i = 0, 1, . . . , l − 1. However, according to Corollary

8.4.2, if there is a junction inside [a+ i(λ− l), a+ (i+ 1)(λ− l)− 1], then the l bases

starting at a + (i + 1)(λ − l) must be part of the exon to the right of the junction.

Therefore, if we use Find Single Junc with S[a+ i(λ− l)− l, a+(i+1)(λ− l)+ l−1] for

i = 1, . . . , b(l− 1)/(λ− l)c all the possible junctions can be found more efficiently(Lines

21,22). If junctions are found, similar to case 2 of Lemma 8.4.1, their consistencies are

checked. Then S is trimmed at the junction and Seek Junc called using the trimmed

S (Line 24).

8.6 Details of Implementation

The most time consuming part in the Seek Junc algorithm is the finding of small

exon junctions corresponding to case 3 of Lemma 8.4.1. Furthermore, it generates

a high number of false hits. We set l = 18 and assume that λ > 2l. This choice

of λ > 36 is valid for more than 99% of exons. The number of mismatches allowed

must also be set low for faster speeds. We allow only one mismatch in the l-mers used

in Find Single Junc by default. The extension of junctions is done so that at each

extension, the total quality of mismatches do not exceed that of a single high quality

mismatch.

Sometimes the algorithm fails to find junctions due to having too many mismatches

near ends or due to the presence of residues of length less than l from some exon. Some

of these junctions can be recovered by trimming the reads from the ends and using

Seek Junc on the trimmed reads. If a read fails to produce junctions, it can be further

trimmed. The trimming is applied 5 bases at a time until junctions are found or until



CHAPTER 8. RNA-SEQ ALIGNMENT 125

the trimmed read size becomes less than 50 bases.

8.7 Mapping with BatAlign

For the human genome, the average length of an exon is around 235bp and about 33-38%

of the reads would contain more than one junction in a 100bp read [59]. This would

suggest that most of the reads would either contain a single junction or no junction at

all. In either case, most of the reads would contain a sizeable portion (for 100bp reads

larger than 50 bases) from an exon. Although BatAlign is basically designed to map

reads allowing mismatches and a single short indel, the previous statistic suggests that

BatAlign can be useful in two ways as a pre-mapper for RNA-seq reads.

The first use of BatAlign is to map exonic reads. This case is exactly similar to

mapping normal genomic reads, and with BatAlign’s high accuracy, we can expect

exonic reads to be aligned quite reliably. However, we have to consider the possibility

of a junction read mapping to a pseudogene during this step. If the alignment is weak

we will consider the read for junction finding.

The second use of BatAlign is to find an anchor for one side of a junction in junction

reads. BatAlign can perform local alignment, so if there is a sufficiently long portion of

an exon, BatAlign may recover it. We can inspect the alignment given by BatAlign and

choose the largest contiguous region in the alignment as a potential exonic region. Using

this as an anchor point, we can examine its neighbourhood for a potential junctions.

The procedure BatAlign Junc recovers junctions based on this idea and is given in

Algorithm 8.3. The procedure is passed the largest contiguous segment in the alignment

R[x, y] and the corresponding substring in the reference genome T [x′, y′]. For example,

if the alignment is given by the CIGAR string “5M6D6M1I25M”, the largest matching

segment will correspond to the alignment 25M, and it is assumed that this portion is

from the exon to the right of the junction. BatAlign Junc first checks to see if there

is a sufficiently large anchor of Min bases from the read that can potentially be from
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the left side of the junction (Line 4). Then it will search for all the occurrences of

this anchor in a neighbourhood D bases (with default value of D = 20, 000) away

from the right anchor T [x′, y′] (Line 5). Next, the alignment scores of all the junctions

(R, x′, q − |R| + r + 1, r) (where r = 1, . . . , x − 1) between the right and left anchors

are calculated (Lines 7-8). The best scoring junctions are stored in Juncs (Lines 9-11).

Similarly, Lines 16-27 will try to find a junction to the right of the largest matching

segment by finding a right anchor.

8.8 BatRNA Algorithm

BatRNA algorithm puts together the basic algorithms given in the previous sections.

BatRNA consists of two passes through the reads. In the first pass, a reliable set of

exons and junctions will be found, and a set of reads that possibly contain junctions are

separated. In the second pass, these separated hits are checked to see if they contain a

junction found in the first pass.

The first pass starts by mapping all the reads with BatAlign. If a read maps

without indels and mismatches, it is assumed to be a correct exonic read and is reported.

Otherwise, Seek Junc is run to discover potential transcripts. If a potential transcript

cannot be found, reads are trimmed at the ends as described in Section 8.6 and

Seek Junc is run on the trimmed reads until a potential transcript is not found. If there

is no potential transcript even after this stage the alignment produced by BatAlign is

examined. If it contains soft clippings or more than two indels, BatAlign Junc is used

to find a junction using the largest contiguous part of the alignment as an anchor.

At the end of this first pass, if a read produces potential transcripts as well as

an alignment by BatAlign, we determine which one is the better one. The potential

transcripts are assigned a score S′Mis − S′type + S′Gap Size + S′Trim, where S′Mis is the

number of mismatches in the potential transcript alignment, S′type is a score based on

the presence of canonical/semi-canonical motifs at the splice junctions, S′Gap Size is a
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Algorithm 8.3: BatAlign Junc(R, T,D,Min, (x, y), (x′, y′)).

Input: a segment R[x, y] that aligns with the substring T [x′, y′] of T , a
maximum intron length D, and a minimum anchor size Min

Output: Find Junctions in the neighbourhood of T [x′, y′]
R[x, y]= Largest contiguous portion in the alignment of R;1

T [x′, y′]= Region in T that aligns with R[x, y];2

Max Score = −∞;Juncs = ∅;3

/* Find junctions to the left */

if x > Min then4

Res = occurrences of R[1,Min] in T [x′ −D, y′];5

foreach T [p, q] in Res do6

foreach junction in T [q, x′] do7

Score = alignment score of the junction;8

if Score >= Max Score then9

if Score > Max Score then Juncs = ∅;10

Max Score = Score; Add junction to Junc;11

end12

end13

end14

end15

/* Find junctions to the right */

if y < |R| −Min then16

Res = occurrences of R[|R| −Min+ 1, |R|] in T [y′, y′ +D − 1];17

foreach T [p, q] in Res do18

foreach junction in T [y′, p] do19

Score = Alignment score of the junction;20

if Score >= Max Score then21

if Score > Max Score then Juncs = ∅;22

Max Score = Score; Add junction to Junc;23

end24

end25

end26

end27
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score based on the intron sizes of the junctions and finally S′Trim a penalty based on

the number of bases trimmed from the read. The least scoring potential transcripts are

chosen as the best potential transcripts. If the score of the best potential transcripts is

less than the total number of indels and mismatches in the BatAlign alignment, and

there is a unique best potential transcript, it is reported. If the score is smaller the

BatAlign alignment is passed to the second stage. Otherwise, both the best potential

transcript and the BatAlign hit is output with a mapping quality 0.

8.8.1 Realignment of Reads

The purpose of the second stage of the alignment is to correct misalignments by BatAlign.

One reason for such misalignments is that sometimes Seek Junc and BatAlign Junc

fail to align a read having just a few bases from a constituent junction. To correctly

align these reads, we first see if there are any junctions from the first pass that overlap

the BatAlign mapping. If there is such a junction, we try to re-align the read to this

junction. If the re-alignment is successful, the junction is reported. Otherwise, the

BatAlign alignment is reported.

Procedure Realign Junc Left given in Algorithm 8.4 is based on this idea and

shows how to re-align a BatAlign mapping that maps part of the exon in the left side of a

junction correctly. Juncs will contain the high confident junctions discovered in the first

pass. A junction in Junc will overlap with the BatAlign mapping if the distance between

the donor site and the BatAlign mapping is smaller than |R|. Each of the junctions in

Junc will be examined to see if the left hand side of one of these junctions will overlap

with the BatAlign mapping (Lines 2,3). Let δ = |R| − (p+ r − x) be the length of the

segment of R that does not overlap with the left side of the junction. If there is an

overlap, T1 = [x, p+ r− 1] should overlap R1 = [1, |R| − δ] and T2 = [q, q+ δ− 1] should

overlap R2 = [|R| − δ + 1, |R|] (Lines 4-6). For a confident overlap, we will assume that

the number of mismatches in the overlap does not exceed k, and store the confident
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Algorithm 8.4: Realign Junc Left(R, T, (x, y), Juncs).

Input: a set of junctions Juncs, a read R that that BatAlign maps to T [x, y]
Output: Re-alignment of R to a junction in Juncs
Hits = ∅;1

foreach J = (R, p, q, r) in Juncs do2

if p+ r > x and p+ r − x < |R| then3

δ = |R| − (p+ r − x);4

T1 = [x, p+ r − 1]; T2 = [q, q + δ − 1];5

R1 = [1, |R| − δ]; R2 = [|R| − δ + 1, |R|];6

if H(T1, R1) +H(T2, R2) < k then7

add (R, x, p, |R| − δ) to Hits;8

end9

end10

end11

if |Hits| = 1 then12

Report Hits;13

end14

junctions in Hits (Lines 7,8). If there is only one such possible match it is reported

(Lines 12-13). A similar algorithm Realign Junc Right can be constructed to re-align

junction hits whose right hand side is correctly mapped by BatAlign.

8.9 Results

To demonstrate the performance of BatRNA with existing methods, we chose a set of

state-of-the art aligners; OLego version 1.1.1, MapSplice version 2.1.2, STAR version

2.3.0e and TopHat2 version 2.0.8b. All the experiments were done on a system with

an Intel Xeon X5680 processor and 144GB of RAM. 20 threads were used in all the

mappings. We will asses the performance of each aligner on a set of simulated data and

on a set of real life data.

The simulated datasets were generated by the BEERS package distributed with

RUM [41]. The master configuration files used for the simulation were downloaded from

RUMs website and are based on the hg19 RefSeq database. Each dataset consists of 2
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million RNA-seq reads. Datasets of 76 bp and 100 bp read lengths were generated for

our experiments. Additionally, BEERS was configured not to simulate reads coming

from novel splice events by using the option palt 0. For testing the performance of real

life data, we used the RNA-seq dataset ERP001196. This 90bp data set was generated

from an Illumina HiSeq 2000 machine in a transcriptome study of humans [134].

8.10 Accuracy and Sensitivity in Simulated Data

We assessed the sensitivity and accuracy (For definition see Section 7.17.2) of each

method using simulated reads for which their correct alignments were known. For each

method and each dataset, we recorded the number of correct and wrong alignments.

As mappings with zero mapQ will not be used by most downstream analysers like

Cufflinks [138], these mappings are discarded. We then further categorise the reads

in to exonic and junction reads. Due to the inability in aligning some indels back to

their exact locations and the presence of soft-clippings, an alignment will be considered

correct if the leftmost position falls within 50 bp of the Oracles position or if at least

one intron gap was correctly identified.

Junctions Exons

correct wrong %correct correct wrong %correct F-measure

1
0
0
b
p

BatRNA 374496 20555 94.80 1506146 3628 99.76 96.32%

MapSplice 378214 27837 93.14 1521271 26967 98.26 96.07%

STAR 351931 50168 87.52 1522616 22366 98.55 94.98%

Olego 324820 20915 93.95 1496843 2445 99.84 94.75%

TopHat2 344165 19879 94.54 1499603 47746 96.91 94.28%

7
6
b
p

BatRNA 305421 23226 92.93 1584764 3855 99.76 96.51%

MapSplice 307093 30650 90.93 1604210 35266 97.85 96.11%

STAR 277200 58975 82.46 1602617 28961 98.22 94.75%

Olego 252820 25207 90.93 1575932 2687 99.83 94.84%

TopHat2 268674 19348 93.28 1580547 25915 98.39 94.97%

Table 8.1: Statistics for different aligners when a simulated dataset of 2000 000 reads
were mapped. The best two statistics of each column are shown in bold letters.
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1 2 3 4 5 6 7 8 9 Total

1
0
0
b
p

BatRNA 32.45 47.21 51.73 53.78 51.67 53.24 55.17 58.20 60.80 52.55

Olego 30.39 28.93 24.08 16.96 9.85 5.05 2.11 47.82 50.94 26.84

MapSplice 33.39 38.04 46.10 52.87 57.39 58.42 60.01 60.84 61.08 53.18

STAR 33.16 32.95 32.66 32.81 33.57 33.33 33.57 32.74 35.54 34.18

TopHat2 46.66 46.53 47.35 47.50 48.38 47.21 48.19 49.11 48.63 47.86

7
6
b
p

BatRNA 37.03 55.01 59.82 62.42 59.51 60.13 62.95 67.02 70.14 60.49

Olego 35.10 34.42 28.49 20.60 11.14 5.49 2.53 55.42 61.41 31.73

MapSplice 37.42 43.90 52.28 60.82 64.98 64.50 66.77 67.76 69.54 60.23

STAR 37.79 38.50 37.91 38.03 38.32 36.93 37.99 38.18 41.01 39.19

TopHat2 52.30 53.17 53.38 53.36 53.07 50.65 51.48 52.07 53.26 52.66

Table 8.2: Table showing the total percentage of junctions having short residues of size
1bp-9bp that were recovered by each program. The final column gives the total percentage
of junctions having less than 9 bases that were recovered.

Table 8.1 shows the results of this experiment. When discovering junctions accurately,

BatRNA shows the best performance in terms of sensitivity and accuracy. When exonic

reads are mapped it is not the best in terms of sensitivity, but shows quite good accuracy.

Overall, it retains the best F-measure (For definition see Section 7.17.2) when the whole

mapping is considered. We have marked in bold the top two performing aligners for

each statistics. It can be seen that BatAlign is always among the best two aligners for

each category, except for the sensitivity of exons. This statistic shows that BatRNA is

generally the best aligner both for mapping junction reads and exonic reads.

8.11 Mapping Junctions With Small Residues

When a sizeable portion of the exons of a junction are present in a read it is relatively

easy to find junctions. However, when there is only a short residue (i.e a short fragment)

from an exon, most aligners fail to align them. Table 8.2 shows the ability of each

aligner to detect junctions with small residues ranging in size from 1bp-9 bp. For

the smallest residue of 1bp, Tophat recovers the most junctions. For other very small

residues around 2bp-4bp, BatRNA shows the best recovery rate. MapSplice shows the
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(a) 76bp (b) 100bp

Figure 8.2: Total number of correct hits plotted against the total number of wrong hits
for 0-3 mismatch hits. Only the high quality hits with mapQ>0 were considered.

best recovery for 5bp-7bp residues, but BatRNA catches up fast. In total, MapSplice

and BatRNA recovers about the same percentage of short residues. It can be seen that

except for 1bp residues, BatRNA and MapSplice are always among the top two.

8.12 Accuracy of High Confident Mappings

Next, we show the accuracy of mappings having a small number of mismatches. These

are likely to be the most accurate mappings. In this analysis we remove those hits with

mapQ 0. For aligners outputting multiple hits, only the top hit is retained. We plot the

total correct number of mappings against the total wrong mappings thresholded by the

number of mismatches. Figure 8.2 shows the resulting graph. The graph shows that

generally, BatRNA produces high quality alignments.

8.13 Real-Life Mappings

We mapped a sample of 2 million real life reads to determine the performance of each

aligner on real life data. We then isolated a reliable set of hits from this mapping by

throwing away multiple hits and those having a mapQ 0. Since we do not know where
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Aligner Known Junctions Known Exons Time (s)

BatRNA 45352 657986 81

MapSplice 41523 657675 418

STAR 43928 657075 11

Olego 44872 657665 272

Tophat2 30142 649459 694

Table 8.3: The results of validating the junctions and exonic mappings found by each
aligner on a real dataset containing 2 000 000 reads. The validation was done against
known exons and junctions in the Refseq.

the reads originated from, we make this filtering very stringent to get the most accurate

hits by considering only those hits having 0 mismatches. We next consider mappings

containing junctions and exons separately. We validate these hits by comparing against

known junctions and exons in the Refseq annotation. Table 8.3 shows the results. All

the aligners recover about the same number of exons. However, BatRNA shows a

better junction recovery. We determined the timings for the mappings. The timing for

STAR does not take into account the time taken to load its index (around 30 seconds)

compared to negligible time to load indexes by other programs. The timings show that

STAR is extremely fast. The next best timing was given by BatRNA. BatRNA shows a

considerable speed advantage over the other aligners except STAR.

Unlike in the case of DNA sequence alignment, we cannot reliably validate con-

cordantly mapped reads based on a maximum insert size. This is because the intron

size between two exons can be several thousand bases long, thus placing an actually

concordant pair of reads very far apart in the genome after mapping. Therefore, we did

not attempt this type of validation.

8.14 Discussion

RNA-seq mapping is a complex problem in mapping reads. A good RNA-seq mapper

should be able to map both exonic and junction reads reliably. Our solution BatRNA
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is capable of doing both, and can sensitively detect splice junction even if only a small

residue of exonic regions are present. It is faster than all solutions except STAR.

However, when compared with STAR’s high memory usage of around 30 GB, BatRNA

might be a better solution for smaller computer systems.

Mapping simulated reads show that BatAlign can map purely exonic reads with

an accuracy close to 99.8%. However, it will misalign junction reads, or will recover

only a local alignment of them. We use these facts to our advantage and use BatAlign

as a pre-mapper. When BatAlign’s output is used with the result of junction finding

algorithms, the best alignments can be determined.

BatRNA uses fast FM-index based junction finding algorithms. The algorithms are

designed with parameters to be sensitive to most small exons. Furthermore, a second

pass is done over non-junction hits to see if these can be re-aligned to junctions that

have already been found. The end result is an aligner that is sensitive at detecting

junctions.

Overall, the experiments indicate that it is among the best in most categories of

performance. Therefore, it offers an attractive alternative for many users.
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Chapter 9

Conclusion

9.1 Introduction

In this thesis I address the problem of aligning NGS reads efficiently and accurately.

Various data structures have been used to align NGS reads. However, the current trend

of sequence mapping algorithms is to utilise BWT based techniques. This has resulted

in the introduction of many light-weight and fast sequence aligners. I have introduced

several algorithms to align different types of NGS data and a new data structure based

on the BWT.

The first algorithm BatMis can efficiently perform k-mismatch mapping and is

the fastest among the compared methods. The new data structure I introduced is

designed to find occurrences of l-mer patterns in a reference efficiently. Algorithms

can be designed using this data structure so that gapped alignments can be performed

efficiently. Combining these new algorithms, I presented practical solutions to mapping

DNA and RNA-seq reads.

135
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9.2 BatMis

When I started my Ph.D., the length of the sequences available were around 36 bp.

The aligners designed at that time were concentrating on aligning these reads with

mismatches, which was quite a reasonable method for reads having such a short length.

Furthermore, the use of BWT to bioinformatics applications was novel, and BWA-SW

was the only known program to use it. In this backdrop, BatMis was designed to provide

a fast solution to read alignment allowing only mismatches, with a memory constraint

of 4GB which was the commonly available memory configuration for PC’s at that time.

BatMis outperforms other aligners in terms of mapping reads allowing mismatches.

However, a large percentage of reads can be mapped back allowing only a low number of

mismatches, and in general the gain in mapping allowing a large number of mismatches

is low. For example, for the 35 bp dataset SRR001115, we found that 79.6% reads

can be mapped back at 4 mismatches. If we increase the number of mismatches to 5,

only an additional 2.9% mappings were gained. The difference between the mappings

discovered when using high mismatches and employing heuristics was not significant.

Furthermore, the extra mapping we gain tend to be noisy due to high mismatch content.

Nevertheless, the exact solution of k-mismatch mapping for small reads does have its

uses. In many pipelines (e.g. RNA-seq), a read is fragmented in to small chunks and all

the k-mismatch alignments of each chunk are inspected for further downstream filtering.

BatMis will be very good at handling this kind of tasks. Based on the benchmark

results, BatMis would give the best results faster or at a similar speed compared to

other aligners. For example, BatMis was used as the mapper for the ChIA-PET [73]

pipeline. In this pipeline, the fragments of paired end reads are mapped allowing a

single mismatch and the resulting mapping was used to find chromatin interactions.

The bisulphite mapper BatMeth [82] also uses the BatMis algorithm at its aligning

stage to produce multiple hits. The choice of BatMis as the aligner is a major factor in

BatMeth being one of the fastest and accurate bisulphite aligners.
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From the feedback from users, BatMis is being used for mapping of ancient DNA.

The ability of BatMis to allow large number of mismatches is useful for mapping DNA

to distant reference genomes. Also, the algorithm has been incorporated into pipelines

that look for CRISPR off-target sequences, where sequences of around 23 bp are mapped

back allowing up to four mismatches to the human genome.

As the length of NGS reads became longer, BatMis needed to incorporate indel

handling abilities as well. Although early releases of BatMis were able to detect one

mismatch by simulating an indel during the search process, I needed to develop a more

versatile aligner that can handle longer reads and indels.

9.3 BatAlign

BatAlign is my solution to general DNA read mapping. The benchmark tests show that

it can be run at speeds comparable to the Bowtie aligner with an accuracy comparable

to the BWA aligner. This makes it an attractive choice for people seeking a good

balance of speed and accuracy. Simulated data show that BatAlign is the most robust

aligner when mapping reads containing long indels.

BatAlign uses BatMis for mismatch mapping. Novel algorithms using my new data

structure are used to find indels. Furthermore, a new semi-global alignment method and

an accelerated Smith-Waterman algorithm are used with a seed and extend approach

to handle long reads.

While the introduction of faster and accurate algorithms is always good, current

sequencing depth and read length along with clever downstream analysing packages (e.g.

GATK [100], Dindel [5]) has helped close the gap between aligners when it comes to

SNV discovery and small indel detection. However, our group is working on improving

the detection of structural variations, on which the aligner design may make a noticeable

difference.

Our group now has a version of BatAlign that can handle paired-end reads. Our
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experiments on simulated reads indicate that many aligners either map discordant reads

as concordant reads or vice versa with a bias. That is, aligners prefer to either form

concordant reads or discordant reads. The first type of aligners will miss real structural

variants, while the second type will produce false structural variants. We have observed

that our paired-end version of BatAlign is among the best at correctly determining

concordant and discordant reads. With this line of work, we believe that BatAlign will

be the aligner of choice for detecting structural variants.

BatAlign is designed with aligning reads having similar profile to Illumina reads and

a reference genome having a polymorphism rate similar to the human genome. BatAlign

will not be ideal when the reference genome is highly polymorphic or when aligning

reads to unfinished genomes. An aligner like Stampy would be more suitable for these.

Nevertheless, BatAlign can be used effectively on cancer genomes.

9.4 Improving Results

BatAlign and BatMis were designed primarily to solve the mapping problem rather

than the alignment problem. In fact, the alignment problem is best tackled by methods

that take in to account the global mapping, and not by aligners that map individual

reads. We now have variant calling software like Samtools [76] that re-align reads based

on the nature of multiple reads mapping to a given region. GATK can post process

an alignment file and output the corrected alignments. These tools can be used in

conjunction with BatAlign to improve the final result to obtain the best alignment.

9.5 BatRNA

BatRNA uses BatAlign to map exonic reads and anchor possible junction reads. The

reads are also processed for junctions using fast junction finding algorithms based

on my novel data structure. BatRNA attempts to avoid pseudogenes by comparing



CHAPTER 9. CONCLUSION 139

the junction mapping and the exonic mapping. The junction mapping algorithms are

designed to be sensitive, and even those junctions having a small residue from an exon

can be discovered. Although it is slower than the aligner STAR, its run time is much

faster than other programs. However, STAR uses 30GB of memory which might pose a

problem for some users. Overall, experiments show that it has a good accuracy and

sensitivity among all the programs compared.

Currently, BatRNA is run on de novo mode. However, with many genomes being

well annotated for genes, it is good to have the option of using these annotations

as guides during the mapping. This will lead to an increase in both the sensitivity

and accuracy. Another problem associated with RNA-seq mapping is the presence of

pseudogenes. If the aligner is aggressive towards eliminating pseudogenes, exonic hits

will be classified as junctions hits. On the other hand, an aligner that is more passive

about junctions will map reads to pseudogenes. However, table 8.1 shows that BatRNA

is not too aggressive on both cases. We can use a database of known pseudogenes to

further reduce the number of false mappings in future.

Single-cell data analysis has recently started to become popular. A problem with

single-cell data is the lower abundance of transcripts compared to multi-cell samples.

Therefore, it is important to achieve a good sensitivity in these datasets. I will be trying

to improve BatRNA to address this concern in future work.

9.6 BWT-based Algorithms

The BWT-based algorithms are fast at performing exact searches. However, current

BWT-based methods are not effective when a large number of mismatches are present.

For example, the alignment method of bowtie is quite good at handling one-mismatch

mapping and the cases of two mismatches that appear in the same half of the read.

However, the method is difficult to extend as the configuration of mismatches becomes

more complex. Similarly, the pruning strategies used by BWA fail almost totally when
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the mismatch number is high. Compared to these aligners, BatMis select a set of

non-redundant seeds, and does an incremental mismatch scan. Unlike other aligners, it

makes extensive use of failed alignments at the previous stage of mismatch scanning.

Overall, this will give BatMis a narrower search space to work with.

The BWT-based data structure used by BatAlign and BatRNA speeds up indel and

splice junction searches. While most aligners search for a seed and extend method to look

for indels, BatAlign can use the data structure in many cases to locate a narrower set

of regions containing possible indels. This lookup, together with a fast novel algorithm

to screen indels gives an advantage to BatAlign. When splice junctions are searched,

current algorithms generally try to splice together clusters of seed mappings or extend

them. However, BatRNA can quickly locate and initial set of possible junctions using

the new data structure, and systematically extend them. This extension can also make

use of the novel data structure to locate nearby junctions.

Oveall, we can conclude that the Bat family of aligners gain a speed advantage

over other aligners due to their algorithms being more integrated with the BWT data

structure.

9.7 Criteria for Benchmarking

There is a large number of aligners currently available in the literature. Some of these

aligners are no longer maintained (e.g. Maq), cannot work with current sequencing data

(e.g. G-Mo.R-Se) or are too specialised (X-mate). While it is not practical to make an

exhaustive test against all the available aligners, I have made comparisons with peer

reviewed aligners that are reputed for speed (GEM,Bowtie2,STAR) and are reputed for

accuracy (BWA,Stampy,MapSplice). The general observation is that Speed is gained at

the sacrifice of accuracy in all classes of aligners.

For the simulation datasets, we used the ART simulator. It was the only available

simulator that can simulate quality scores realistically. In the absence of a ground
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truth, it is difficult to directly measure the correctness of real life data. In the case of

DNA reads, a test measuring the concordance of paired reads was used as this test has

now become a somewhat standard method of gauging the accuracy of an aligner. For

RNA-seq reads, we use the well annotated RefSeq database for verification of known

junctions and exons. This approach too is a standard benchmarking method.

9.8 Future Directions

Analysing reads having thousands of bases will be common in the near future. Although

the algorithms given in this thesis can be extended to handle them, it may be possible

to produce faster and better alignments for these types of reads using different data

structures. Also, the dynamic programming algorithms will be extremely slow at lengths

of this magnitude. I will continue to generalise the fast global alignment method

described in this thesis to handle such cases.

While still being a luxury for the average computer lab, large genome centers are

comfortable with allocating 30-100 GB memory to a user. Targeting these users, faster

algorithms can be developed if data structures other than the BWT are considered. For

example, one of the reasons for STAR being fast is its use of suffix array based methods.

Another idea is to find a data structure that can do inexact matches. With this

kind of a data structure, a query for say 1 mismatch hits would immediately give all the

possible one mismatch hits, or a set of hits that contain all the one mismatch hits. If

such an index is available, we can speedup BatMis by doing fast multi-mismatch scans

where, for example, both exact matches and one-mismatch hits can be found in just

one pass of the algorithm.

Furthermore, there are other sequence mapping problems that involve extremely

large databases. A database like the nt-database keeps growing year by year, and

indexing it efficiently is an interesting question. We plan to focus our attention on

applying the methods developed in this thesis to such large databases.
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Appendix A

Additional Mapping Results

A.1 List of Publications

A.1.1 Journal Publications

1. BatMis: A fast algorithm for k-mismatch mapping (Bioinformatics, 2012)- Chan-

dana Tennakoon, Rikky W. Purbojati and Wing-Kin Sung

2. BatMeth: improved mapper for bisulfite sequencing reads on DNA methyla-

tion.(Genome Biology, 2012)- Jing-Quan Lim, Chandana Tennakoon, Guoliang Li,

Eleanor Wong, Yijun Ruan, Chia-Lin Wei and Wing-Kin Sung

3. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma

(Nature Genetics, 2012)- Wing-Kin Sung, Hancheng Zheng, Shuyu Li, Ronghua

Chen, Xiao Liu, Yingrui Li, Nikki P Lee, Wah H Lee, Pramila N Ariyaratne,

Chandana Tennakoon, Fabianus H Mulawadi, Kwong F Wong, Angela M Liu,

Ronnie T Poon, Sheung Tat Fan, Kwong L Chan, Zhuolin Gong, Yujie Hu,

Zhao Lin, Guan Wang, Qinghui Zhang, Thomas D Barber, Wen-Chi Chou, Amit

Aggarwal, Ke Hao, Wei Zhou, Chunsheng Zhang, James Hardwick, Carolyn Buser,

Jiangchun Xu, Zhengyan Kan, Hongyue Dai, Mao Mao, Christoph Reinhard, Jun
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Wang and John M Luk

4. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end

tag sequencing (Genome Biology, 2010)- Guoliang Li,, Melissa J Fullwood, Han Xu,

Fabianus Hendriyan Mulawadi, Stoyan Velkov, Vinsensius Vega, Pramila Nuwan-

tha Ariyaratne, Yusoff Bin Mohamed, Hong-Sain Ooi, Chandana Tennakoon,

Chia-Lin Wei, Yijun Ruan and Wing-Kin Sung

A.1.2 Poster Presentations

1. Fast and Accurate Alignment with BatAlign (International Conference on Genome

Informatics 2013) - Jing-Quan Lim, Chandana Tennakoon and Wing-Kin Sung

A.2 Additional Mapping Results

We have given below some additional mapping results for BatMis.

A.3 Software

The source code for the software can be downloaded from the following locations:

1. BatMis: https://code.google.com/p/batmis/

2. BatAlign: https://bitbucket.org/drcyber/batindel/

3. BatRNA: https://bitbucket.org/drcyber/rnaseq/

Test data sets for BatAlign and BatRNA can be found in http://compbio.ddns.comp.nus/ limjingq/RNA

and http://compbio.ddns.comp.nus/ limjingq/BATALIGN.
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1-mis 2mis 3-mis 4-mis 5-mis

BatMis 0 0 0 0 0

BWA 26 48 94 124 168

ZOOM 30 72 107 147

RazerS2 9 9 9 9 9

Table A.1: Number of incorrect multiple mappings reported by aligners for different
numbers of mismatches. BatMis does not report any incorrect hits.

2-mis 3-mis 4-mis 5-mis

5
1
b
p BWA 0 467 1400 2540

RazerS2 119 107 185 93

1
0
0
b
p BWA 48 167 1592 2782

Razers2 0 0 4 22

Table A.2: Number of incorrect unique hits reported by BWA and Razers2 for different
numbers of mismatches when run in their heuristic modes.

0 Mis 1 Mis 2 Mis 3 Mis 4 Mis 5 Mis

5
1
b
p Batmis 100000 100000 100000 100000 100000 100000

BWA 100000 100000 100000 100000 100000 100000

ZOOM 100000 100000 100000 100000 100000

Razers2 100000 100000 100000 100000 100000 100000

0 Mis 1 Mis 2 Mis 3 Mis 4 Mis 5 Mis 8 Mis 10 Mis

1
0
0
b
p Batmis 100000 100000 100000 100000 100000 100000 100000 100000

BWA 100000 100000 100000 100000 100000 100000 97291 15124

ZOOM 100000 100000 100000 100000 100000

Razers2 100000 100000 100000 100000 100000 100000 100000 100000

Table A.3: Number of least mismatch hits reported by aligners when mapping simulated
k-mismatch datasets containing 100 000 reads. Ideally, each program should report 100
000 hits.
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2 Mis 3 Mis 4 Mis 5 Mis

1
0
0
b
p BatAlign 31001496 59121695 96502481 143315831

BWA 31001496 58148475 91804113 130088604

1 Mis 2 Mis 3 Mis 4 Mis

5
1
b
p BatAlign 87004377 221353752 482270385 972545515

BWA 87004377 221353752 426489802 688550754

Table A.4: Number of multiple mappings reported by BWA in its heuristic mode and
with the exact algorithm of BatMis for a 100bp dataset containing 1 000 000 reads.




