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Summary

Annual reports submitted by corporations, regulatorily mandated in

virtually every country of the globe, comprise one of the most scrutinized

classes of documents in the world of corporate finance. In these reports,

companies are required to disclose risks that might impact its business

in the risk disclosure section of the annual report, where the various

risks types facing the company are described in free form text. Such

risks are the subject to much analysis in the investment community,

particularly by analysts at institutional investment firms and form a

basis of the market movement of the company’s equity value.

The goals of analyzing risk disclosure text are twofold: (1) to interpret

the “overall risk sentiment” embodied in the disclosure section, and (2)

to extract the various individual risk types enumerated in the section.

Clearly, both of these objectives can be reduced to the solving of

text analysis problems. In the first, i.e., risk sentiment identification,

complications arise as a result of different industry segments having

differing risk disclosure “patterns”. In the second case, the existing

methods to extract risk types all rely on dictionary based or supervised

learning methods which work out to be extraordinarily manual effort

intensive.

In this context we provide new solutions to these problems in this thesis.

In particular, this thesis is comprised of three studies. First, we study
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the problem of cross-industry risk sentiment analysis, where a sentiment

classifier is trained on the annotated training data from one industry

(i.e., the source industry) but is meant to be used in another (i.e., the

target industry). Cross-industry risk sentiment analysis allows the reuse

of the annotated training data in source industries, and thus could

reduce the amount of manual effort to annotate the training data in the

target industry. However, conventional supervised learning methods

usually lead to low performance for this problem due to different word

“patterns” across industries. We therefore propose an extended LDA

(Latent Dirichlet Allocation) topic model, which could bridge the gaps

between the source and target industries in the low-level word feature

space by learning a new high-level topic feature space in a supervised

way. Evaluations are conducted on nine standard testing datasets and

one real-world risk disclosure dataset, and the results demonstrate the

effectiveness of our proposed method.

Second, we study the problem of extracting various risk types (e.g.,

funding risk, infrastructure risk, etc.) from textual risk disclosures.

To this end, we propose an extended LDA topic model, which could

infer topics (i.e., risk types) covered in a set of risk disclosures, and

identify the risk types of specific sentences. Different from existing

methods, our method does not assume pre-defined categories (i.e., risk

types), and thus could reduce the amount of manual effort substantially.

We use our model to examine the risk disclosures in 10-K forms from

2006 to 2010. The results demonstrate that our model outperforms all

competing methods, and could find more meaningful topics that are

representative for risk types. Third, we continue the analysis of risk

types extracted in the second study by examining the market reactions

x



to them. Specifically, we conduct an empirical study to investigate

whether and how risk disclosures will affect the post-disclosure risk

perceptions of investors at the individual risk type level. Different

from prior studies, our results lend support for all three competing

arguments on the effects of risk disclosures, depending on the specific

risk types disclosed. Our findings have implications for both managers

and regulators.

In summary, the main contribution of this thesis is the development of

two extended topic models for identifying risk sentiment and extracting

various risk types from textual risk disclosures. The proposed methods

could facilitate the analysis of corporate risk disclosures by reducing the

amount of human effort substantially. Moreover, the proposed methods

enable the empirical study of market reactions to risk disclosures at

the individual risk type level. The findings of our empirical study

reconcile the conflicting arguments about the effects of risk disclosures

on post-disclosure risk perceptions of investors in accounting literature.
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Chapter 1
Introduction

1.1 Background and Motivation

Corporate disclosure is an important way for management to communicate firm

performance and governance to various stakeholders, especially outside investors,

and is critical to the functioning of an efficient capital market (Healy and Palepu,

2001). There are various sources from which the disclosure is provided, including

the regulated financial reports (e.g., corporate annual reports), voluntary commu-

nications (e.g., management forecast, conference calls, and press releases), and the

information intermediaries (e.g., financial analysts, industry experts, and financial

press). Among these different sources, annual reports submitted by firms comprise

one of the most scrutinized classes of documents in the world of corporate finance.

Due to the importance of these reports, their filing is typically mandated by the

relevant regulatory agency in the country of the corporation’s domicile. Most U.S.

public companies, for example, are required by the U.S. Securities and Exchange

Commission (SEC) to issue an annual report in a well-defined format (specified

in the SEC 10-K form). In these reports, companies are required to disclose risks

that might impact its business in the risk disclosure section, where the various

risks types facing the company are described in free form text. Such risks are

believed to be the basis of the market movement of the company’s equity value,
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Chapter 1. Introduction

and are the subject of much analysis by both researchers in the financial accounting

community and practitioners in the investment community, particularly analysts

at institutional investment firms.

The fundamental problem of analyzing textual risk disclosures is to glean the

useful and actionable information from the large amount of unstructured text.

Specifically, the goal of this text analysis problem is to categorize the information

contained in text into manageable numeric variables of interest. To this end,

many prior studies (Li, 2010b) have largely relied on the manual text analysis

approaches. Although these approaches can be more precise, they are quite resource

(e.g., personnel, time) consuming, as they require manual exhaustive text perusal.

Consequently, the follow-up studies are limited to the small-size samples, resulting

in many undesirable issues, such as the difficulty with replication and limited

generalizability of the empirical results (Li, 2010b).

To mitigate the cost of manual analysis, there is a growing body of research,

especially in the financial accounting domain, which adopts automatic text analysis

techniques for analyzing textual disclosures (Refer to Section 2.3 for a review of this

line of research). These automatic approaches can reduce the amount of human

effort to a large extent, and enable the large-sample text analysis. Despite their

advantages over the manual approaches, the existing automatic approaches still

require high start-up costs of human effort to use. For example, the two most

successful and widely adopted types of automatic methods are the dictionary based

methods (Loughran and McDonald, 2011) and supervised learning methods Li

(2010a). Both of them assume the pre-defined, mutually exclusive, and exhaustive

categories (i.e., variables of interest), which usually require high-levels of substantive

knowledge and much human effort to obtain (Quinn et al., 2010). In addition,

they both have costly prerequisite tasks to perform before the usage. Specifically,

2



Chapter 1. Introduction

dictionary based methods require the building of an appropriate dictionary of words

and phrases that are used to indicate the membership in a particular category, and

supervised learning methods require a subset of hand-coded texts that will serve

as training data for the algorithms.

The motivation of this thesis is therefore to further mitigate the cost of existing

automatic text analysis techniques adopted in the financial accounting domain.

In particular, we are motivated to provide more effective and efficient solutions

for analyzing corporate risk disclosures, which require less (or minimal) cost of

human effort to use. In this respect, one of the most promising ideas is the use

of the topic models (Blei, 2012), which are algorithms for discovering the main

themes (i.e., topics) that pervade a large and otherwise unstructured collection of

documents, and do not require any prerequisite manual tasks such as annotations.

Refer to (Quinn et al., 2010) for a summary of relative costs associated with major

text analysis methods, including dictionary based methods, supervised learning

methods, and topic modeling based methods. The role of topic models for text

analysis is described below.

1.1.1 The Role of Topic Models

Topic models are a type of statistical model for automatically discovering the

abstract “topics” that occur in a collection of documents. The main idea behind

the models is the assumption that each document is a mixture of topics, and each

topic is a probability distribution over words. To illustrate how topic models work,

a real-world example is provided below.

Suppose we are given a collection of seminar abstracts 1; how can we know: (1)

1A collection of 591 seminar abstracts has been collected at the School of Computing, National
University of Singapore, from June 2010 to April 2013.
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Chapter 1. Introduction

the common themes that pervade these abstracts, and (2) the themes associated

with each abstract.

Figure 1.1: Word cloud of the collection-wide frequent words.

The most simple approach might be the manual inspection of each individual

abstract, but this is infeasible for large numbers of abstracts due to limited human

efforts. A more scalable approach might be to examine the word frequencies in the

whole collection. Figure 1.1 shows the word cloud of the top 200 most frequent

words after the removal of the non-meaningful stopwords. In a word cloud, the

font size is proportional to the frequency in the collection. As can be observed,

this method yields few insights into the common themes, since the predominant

words are shared across different themes.

A more sophisticated method might be to cluster (Han et al., 2006) each abstract

into one cluster, hoping that the clusters could be used to represent the themes.

However, almost all abstracts cannot fit into one single cluster (theme). For example,

the seminar abstract in Figure 1.2 exhibits different themes (e.g., computational

biology and statistical models), implying that it probably belongs to multiple clusters.

Topic models could solve this problem by allowing each document to exhibit multiple

4



Chapter 1. Introduction

topics (themes). The input of the model is a collection of unstructured texts, while

the output consists of two components: (1) the collection-wide topics, and (2) the

document-wide topic proportions (as well as the topic assignment for each word).

Figure 1.2 presents an example of the outputs of topic modeling on the collection of

seminar abstracts. At the collection level, we obtain a list of topics in which each

topic is represented by a set of words ordered by the corresponding probability 2.

At the document level, we obtain the topic proportions.

Figure 1.2: An example of the output of topic models.

Topic models discover the latent semantic topics by only looking at the text, i.e.,

the co-occurrences of words in documents. In particular, the objective of the

models is to find the optimal set of latent variables (i.e., topics) that can generate

the observed words in documents with maximum likelihood, based on the assumed

generative process. However, it is not uncommon that original topic models might

discover some topics which appear reasonable but not well-aligned with users’ goals

in a specific application (Blei, 2012). For example, for the task of extracting risk

types (which is one of our research problems that will be introduced later), the

direct application of original topic models will lead to the discovery of topics that

2We only present a portion of the topics that are discussed in the abstract. The full list of
topics is available at http://www.comp.nus.edu.sg/~baoyang/files/nussoc-seminars/all_
topics.html
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Chapter 1. Introduction

are not meaningful for representing risk types (i.e., the variables of interest). To

address this issue, many prior studies propose to extend the original topic models

by incorporating additional information accompanied with text, such as document

labels, document sources, sentence structures, and so on. The intuition is that

textual documents are not just text, and the inclusion of appropriate additional

information could steer the model towards topics that are better aligned with

the user’s goals in the different contexts. Section 2.2 provides a review of such

extended topic models. In this thesis, we continue this line of research on extending

topic models with the purpose of providing solutions with low costs to be used for

analyzing corporate risk disclosures.

1.2 Research Problems

In this thesis, there are two primary goals of analyzing corporate risk disclosures:

(1) to interpret the “overall risk sentiment” embodied in the disclosure section,

and (2) to extract the various individual risk types enumerated in the section.

Clearly, both of these objectives can be reduced to the solving of text analysis

problems. We also conduct an empirical study to examine the market reactions

to the individual risk types extracted by our proposed solution. The research

problems to be investigated in the thesis are elaborated below.

1.2.1 Cross-Industry Risk Sentiment Analysis

Our first goal is to interpret the “overall risk sentiment” embodied in the disclosure

section in corporate reports, in particular the “Management Discussion and Analysis”

(MD&A) section in 10-K forms. This risk sentiment analysis (Loughran and

McDonald, 2011; Li, 2010a) aims to identify the managers’ tone in their risk

6



Chapter 1. Introduction

disclosures (either positive or negative), and can be seen as the application of the

well-known sentiment analysis (Pang and Lee, 2008) in the financial accounting

domain. To solve this problem, there are two types of existing methods, namely

the dictionary based methods, and the supervised learning methods. Although

the majority of existing works rely on dictionary based methods (Loughran and

McDonald, 2011), supervised learning methods have been demonstrated to be more

effective in recent studies (Li, 2010a). However, it has been recently shown that

sentiment classification (i.e., the supervised learning method) is highly sensitive

to the domain from which the training data is annotated (Pang and Lee, 2008;

Liu and Zhang, 2012). Specifically, a sentiment classifier trained using opinionated

documents from one domain (i.e., the source domain) usually performs poorly

when it is applied to opinionated documents from another domain (i.e., the target

domain). The reason for this is that word patterns used in different domains to

express sentiment can be quite different. In our case, we also suffer from this

problem since firms from different industries (i.e., domains) often use industry-

specific words to express the risk sentiment. For example, when describing the

“product approval” risk, firms in the airline industry tend to use the words like

“flying test” while those in the pharmaceutical industry are likely to use the words

like “clinical trial”. To address this issue, the most straightforward solution is to

manually annotate sufficient training data in the target domain, and then apply

the conventional supervised learning methods. However, the manual annotation of

training data can be quite time-consuming and expensive.

To bridge this gap, in this thesis, we study the problem of cross-industry sentiment

analysis, where the risk sentiment classifier is trained using the annotated training

documents from one industry (i.e., the source industry), but is meant to be applied

in another industry (i.e., the target industry). In particular, our goal is to train a

robust sentiment classifier by reusing the available annotated data in the source

7



Chapter 1. Introduction

industry. This classifier should be able to mitigate the word pattern difference

between the source and target industries, and accurately predict the risk sentiment

in the target industry.

1.2.2 Extracting Individual Risk Types

Our second goal is to extract various individual risk types from the textual disclo-

sures, in particular the “Risk Factors” section (i.e., item 1A) in 10-K forms. At

a high level, risk types refer to general factors that present elements of risk to a

corporation, such as litigation, human resources, catastrophe, and so on. To solve

this problem, all existing methods, namely the dictionary based methods and the

supervised learning methods that will be reviewed in Chapter 2 later, assume a

pre-defined set of categories (i.e., risk types). This assumption poses no challenge

if researchers have a set of categories for texts in mind. For example, if researchers

aim to identify positive and negative tone of textual statements, the categories are

quite explicit (i.e., positive and negative). In most cases, however, the categories

might be hard to derive beforehand. Take our case for example. The risk factors

affecting firms are (a) unpredictable and (b) differ from firm to firm. Clearly, a pri-

ori knowledge of what a corporation might perceive as risk is impossible to achieve.

Without this knowledge, it would be impossible to apply dictionary or supervised

learning methods to identify what types of risks are disclosed. Unfortunately, all

prior work is based on the notion of pre-defined risk types. What is clearly needed

is not only the ability to quantify risk types, but also to discover these risk types.

To bridge this gap, in this thesis, we study the problem of extracting individual risk

types without pre-defining them. Specifically, our goal is to estimate rather than

pre-define a set of categories (i.e., risk types), and simultaneously assign sentences

to those categories.

8
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1.2.3 Market Reactions to Individual Risk Types

In addition to the two primary goals aforementioned, we conduct a follow-up

study to examine the market reactions to the individual risk types in textual

disclosures. In prior literature, there are competing arguments on whether and

how risk disclosures affect the risk perceptions of investors. The first argument is

that risk disclosures are by and large boilerplate, and therefore have no impact on

investors (Schrand and Elliott, 1998). One the other hand, there are also empirical

findings that risk disclosures are informative. In particular, some studies suggest

that investors’ risk perceptions will increase with more risk disclosures, while the

others suggest that investors’ risk perceptions will decrease. Recently, Kothari et al.

(2009) argue that previous mixed findings are due to the tone of risk disclosures.

Specifically, favorable disclosures will decrease investors’ risk perceptions while

unfavorable disclosures will increase them.

Different from prior studies, in this thesis, we hypothesize that the effects of risk

disclosures will depend on the their semantic content, i.e., the specific risk types

disclosed. In particular, we conduct an empirical study to examine whether and

how individual risk types extracted from textual risk disclosures will affect the

post-disclosure risk perceptions of investors.

1.3 Contributions

The main contributions of this thesis are summarized as follows.

First, we propose an extended topic model, called PSCCLDA, and its learning

algorithm for cross-industry risk sentiment analysis of corporate risk disclosures. As

far as we know, this is the first work that introduces the cross-domain learning (also

9
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called transfer learning) (Pan and Yang, 2010) into the field of financial accounting.

Our model could mitigate the distributional difference between the source and

target industries in the low-level word feature space by learning a new high-level

topic feature space in a supervised way. This could reduce the amount of human

effort for analyzing risk disclosures by reusing the annotated data available in the

source industries. Evaluations are conducted on nine standard testing datasets and

one real-world risk disclosure dataset, and the results demonstrate the effectiveness

of our proposed method.

Second, we propose an extended topic model, called Sent-LDA, and its learning

algorithm for extracting individual risk types (e.g., funding risk, infrastructure

risk, etc.) from textual disclosures without pre-defining them. As far as we

know, this is the first work that introduces the unsupervised learning into the

field of financial accounting. Our model could estimate rather than pre-define a

set of categories (i.e., risk types), and simultaneously assign sentences to those

categories. This could reduce the amount of human effort substantially when

analyzing corporate risk disclosures. Experimental results show that our proposed

method outperforms all competing methods, and could discover more meaningful

topics that are representative for risk types. We further visualize our learned

model in a publicly available system 3. The system facilitates the navigation of

large amount of textual risk disclosures by our target user-base, including financial

analysts, business managers or academic researchers.

Third, our empirical study on market reactions to individual risk types contributes

to the literature on examining the effects of risk disclosures. This is the first

study that examines the effects of risk disclosures at the individual risk type level.

3The system is available at http://www.comp.nus.edu.sg/~baoyang/10kslda/browse/
topic-list.html
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Different from prior studies, our results provide support for all three competing

arguments regarding whether and how risk disclosures (in section 1A of 10-K

form) affect the risk perceptions of investors, depending on the specific risk types

disclosed. We find that around two thirds of risk types lack informativeness and

have no significant influence. Moreover, we find that the informative risk types

do not necessarily increase the risk perceptions of investors – the disclosure of

three types of systematic and liquidity risks will increase the risk perceptions of

investors, while the other five types of unsystematic risks will decrease them. Our

findings reconcile the conflicted arguments on the effects of risk disclosures, and

have implications for both researchers and practitioners in the field of financial

accounting.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, we review the literature on related works. We begin with the

introduction of topic models and its learning algorithms, as well as several related

probabilistic models of text. Then, we review the extended topic models in previous

works, including supervised topic models, cross-collection topic models, and topic

models incorporated with sentence structure. Finally, we review the existing

methods for text analysis, including the dictionary based and supervised learning

methods that have been adopted in the financial accounting domain, and the

unsupervised learning and cross-domain learning methods that have not been

adopted yet.

In Chapter 3, we present our solution for cross-industry risk sentiment analysis.

We begin with an overview of the study, and then provide the problem formulation.

11
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Next, we describe our proposed model, called PSCCLDA (Partially Supervised

Cross-Collection LDA), and its learning algorithm. Finally, we show the exper-

imental evaluation of our model for both the general task of cross-domain text

classification, and the specific task of cross-industry risk sentiment analysis in the

financial accounting domain.

In Chapter 4, we present our solution for extracting individual risk types from

textual disclosures without pre-defining them. We begin with an overview of the

study, and then provide the problem formulation. Next, we describe our proposed

model, called Sent-LDA (Sentence-based LDA), the intuition behind the model,

and its learning algorithm. After that, we show the experimental evaluation of our

model for the task of risk type extraction from textual disclosures. Finally, we

demonstrate a browser of textual risk disclosures, which visualizes the outputs of

our learned model.

In Chapter 5, we continue the analysis of the extracted risk types in Chapter

4. Specifically, we conduct an empirical study to investigate whether and how

individual risk types in risk disclosures will affect the post-disclosure risk perceptions

of investors. We begin with an overview of the study, introducing the conflicted

findings in previous studies. Next, we present the research question and our

hypothesis, and then describe the data preparation. After that, we elaborate

our econometric model, including the model specification and estimation results.

Finally, we discuss the main findings and the implications of our study.

In Chapter 6, we conclude the thesis by providing concluding remarks, limitations,

and possible directions for future work.

12



Chapter 2
Literature Review

In this chapter, we provide a review of previous works that are related to this thesis.

We first introduce the topic models, including related probabilistic models of text,

LDA topic model, and its learning algorithms. We then review some extended

topic models that are closely related to our studies. Finally, we review the existing

methods for text analysis, including the dictionary based and supervised learning

methods that have been adopted in the financial accounting domain, and the

unsupervised learning and cross-domain learning methods that have not been

adopted yet.

2.1 Topic Models

There are various types of probabilistic models of text, which have been widely used

in the fields of text miming, natural language processing and information retrieval

(Sun et al., 2012). For example, NB (Naive Bayes) classifier (McCallum et al., 1998),

perhaps the simplest statistical model for classification, has been widely applied in

text mining. HMM (Hidden Markov Model) (Rabiner, 1989), which is a powerful

statistical model for modeling sequential or time-series data, has been successfully

used in many text-related tasks such as the part-of-speech tagging (Kupiec, 1992)

in NLP (natural language processing). CRF (Conditional Random Fields) (Lafferty

13
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et al., 2001), which is another probabilistic model for sequential data, has been

proven to be superior than the HMM model for labeling or segmenting sequential

data in many NLP tasks such as part-of-speech tagging (Lafferty et al., 2001) and

shallow parsing (Sha and Pereira, 2003). N-gram language model (Ponte and Croft,

1998), which assigns a probability to a sequence of words by means of a probability

distribution, has been widely applied in information retrieval.

While there are many types of probabilistic models of text, this thesis focuses on

one of them, called topic model, which aims to uncover the underlying semantic

structures in unstructured texts. The idea of the topic model is to treat a document

as the mixture of topics where a topic is a probability distribution over words.

The first milestone of topic model is the PLSA (Probabilistic Latent Semantic

Analysis) model proposed by Hofmann (1999a). Later, the LDA (Latent Dirichlet

Allocation) model is proposed by Blei et al. (2003), which generalizes the PLSA by

casting a generative Bayesian framework to avoid the over-fitting issue suffered by

the PLSA (Blei et al., 2003). The main advantage of formulating the LDA as a

generative model is that it can be easily extended for discovering topics that are

better aligned with the users’ goals in different contexts (Blei, 2012). Due to this

advantage, we mainly focus on LDA topic model in this thesis. Specifically, we aim

to extend the original LDA model for better analyzing corporate risk disclosures.

2.1.1 LDA Topic Model and Related Probabilistic Models

To better understand how topic models work, we first describe the high-level

framework of topic modeling technique defined by Blei (2012). This framework

contains four key components, including observed data, model assumption, inference

algorithm and discovered structure.

14



Chapter 2. Literature Review

• Observed data. Observed data is simply a collection of documents, each of

which is a set of discrete words. It should be noted that the topic models

are not limited to model textual data, and can be applied for modeling other

types of discrete data such as images represented by bag-of-features (Li and

Perona, 2005).

• Model assumption. Model assumption of topic models can be thought of as

a story in statistical language about how the observed data (i.e., a collection

of documents) is generated. Different models (e.g., PLSA and LDA) make

different assumptions, which are usually described using the graphical models

as will be shown in Figure 2.3 and 2.4 later.

• Inference algorithm. Inference algorithms for topic models are used to

estimate the model parameters and latent variables defined in the model

assumption. Two most widely used inference algorithms are collapsed Gibbs

sampling (Griffiths and Steyvers, 2004) and variational method (Blei et al.,

2003), which will be reviewed in Section 2.1.2.

• Discovered structure. As previously described in Section 1.1.1, there are

two components of the discovered structure: (1) the inferred topics at the

collection level, and (2) the topic proportions at the document level. There

are different ways to present the discovered structure, and visualization

techniques are usually used for improving the representation (Chuang et al.,

2012).

In the following, we introduce the LDA topic model, and some related probabilistic

models of text, including the unigram model, the mixture of unigrams, and the

PLSA topic model.
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Unigram Model

The unigram model is the simplest language model which assumes that a word

sequence is generated by sampling each word independently. The graphical rep-

resentation of unigram model is shown in Figure 2.1. As can be seen, there are

no latent variables in the model, and each word w is sampled independently from

some distribution. When modeling the discrete textual data, the multinomial dis-

tribution is usually used for unigram model, which in turn serves as the component

for more complicated mixture models such as topic models (Nigam et al., 2000;

Blei et al., 2003). Formally, let M be the number of documents in the corpus, N be

the total number of words in a document, V be the set of words in the vocabulary,

the probability of the word sequence w1, w2, ..., wN (wi ∈ V ) in a document d is

defined as:

p(d) =
N∏
i=1

p(wi)

where p(wi) follows a multinomial distribution Multinomial(θ) over all words in

the vocabulary.

Obviously, the unigram model makes the strict assumption that all words are

generated independently. To capture the dependency between words, the unigram

model can be generalized to the so-called n-gram model in which the occurrence of

a word depends on the preceding n− 1 words. Despite its simplicity, the unigram

model has been demonstrated to be quite effective for various tasks like information

retrieval, while the more sophisticated n-gram models tend not to improve much

over it (Zhai, 2008).
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M

w N

Figure 2.1: Graphical representation of unigram model.

Mixture of Unigrams

The unigram model assumes that all words in the collection are generated from

one single multimonial distribution. This implies that it only allows one topic

in the whole collection of documents, if we treat the multinomial distribution

as a “topic”. The mixture of unigrams model (Nigam et al., 2000) relaxes this

unrealistic assumption by assuming that there are multiple topics in the collection

of documents. More specifically, it augments the unigram model with a discrete

latent topic variable z, as shown in the graphical representation in Figure 2.2. In the

model, each document is generated by first choosing a topic z, and then generating

the N words in the document independently from the conditional multinomial

distribution p(w|z). Formally, the probability of the word sequence w1, w2, ..., wN

(wi ∈ V ) in a document d is defined as:

p(d) =
∑
z∈Z

p(z)
N∏
i=1

p(wi|z)

where p(z) is a multinomial distribution over a fixed set of topics Z.

Although the mixture of unigrams model assumes the multiple topics in the text

collection, it is still restrictive since it only allows one topic for each document.

The breakthrough idea of topic models is to allow each document to exhibit
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multiple topics. This idea leads to two milestones in topic modeling, i.e., the

PLSA (Probabilistic Latent Semantic Analysis) and the LDA (Latent Dirichlet

Allocation).

M

wz
N

Figure 2.2: Graphical representation of mixture of unigrams.

Probabilistic Latent Semantic Analysis

The PLSA (Probabilistic Latent Semantic Analysis) topic model was established in

three papers (Hofmann, 1999a,b, 2001). It is also called PLSI (Probabilistic Latent

Semantic Indexing), especially by researchers in the field of information retrieval.

The graphical model of PLSA is given in Figure 2.3. As can be seen, each document

is represented as a mixture of |Z| latent topics, and each latent topic z is represented

as a multinomial distribution over words p(w|z) in the corpus. To generate a word

w in a document d, a topic z is first generated from the document-specific mixture

of topics p(z|d), and then the word is generated using the multinomial distribution

associated with that topic. Thus, each word is generated from a single topic and

words in the same document can be generated by multiple topics. The PLSA is,

therefore, more flexible than the aforementioned mixture of unigrams or the cluster

model (Dhillon and Modha, 2001) which constrains all words in a document to

be associated with a single topic. Formally, the joint probability of an observed

document (d, w) is defined as:

18



Chapter 2. Literature Review

p(d, w) = p(d)p(w|d) = p(d)
∑
z

p(w|z)p(z|d)

The PLSA relaxes the simplifying assumption made in the mixture of unigrams

model that each document is generated from only one topic. Specifically, it allows

each document to exhibit multiple topics, and p(z|d) can serve as the mixture

weights of the topics for a particular document d. However, the PLSA is not a

well-defined generative model of documents and cannot be naturally applied to a

previous unseen document. This is because d is a dummy index into the list of

documents in the training set, and the topic proportion p(z|d) is only estimated for

those training documents. Besides, the number of model parameters (i.e., p(z|d))

will grow linearly with the number of training documents. making the model prone

to the over-fitting issue.

d

M

wz
N

Figure 2.3: Graphical representation of PLSA model.

Latent Dirichlet Allocation

To overcome the limitations of the PLSA, Blei et al. (2003) proposed the LDA

(Latent Dirichlet Allocation) topic model which treats the topic mixture weights as

a |Z|-parameter hidden random variable (Dirichlet distribution) rather than a large

set of individual parameters which are explicitly linked to the training documents.

Girolami and Kabán (2003) showed that the PLSA is a MAP (Maximum A

Posteriori) estimated LDA model under a uniform Dirichlet prior, and therefore
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the perceived shortcomings of the PLSA can be resolved and elucidated within the

LDA framework.

The graphical model of LDA is given in Figure 2.4. As can be seen, the LDA

assumes that each document is associated with a multinomial θ over topics, where

each topic z is associated with a multinomial β over the words in the vocabulary.

To generate a word, a topic z is first chosen according to the topic proportion θ,

and then the word is picked based on the chosen topic z. To complete the model,

the Dirichlet prior α and η is placed over θ and β respectively. These priors are

chosen due to the conjugation between the multinomial and Dirichlet distribution

(Blei et al., 2003), which could result in the computational convenience.

h

M
N

wzqa

b

K

Figure 2.4: Graphical representation of LDA model.

Formally, let M , N , K, V be the number of documents in a corpus, the number of

words in a document, the number of topics and the vocabulary size, respectively.

Dirichlet(·) and Multinomial(·) are Dirichlet and Multinomial distribution with

parameter (·) respectively. βk is the V-dimensional word distribution for topic

k, and θd is the K-dimensional topic proportion for document d. η and α are

the hyper-parameters of the corresponding Dirichlet distributions. The graphical

representation of LDA is shown in Figure 2.4, and the corresponding generative

process is:
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1. For each topic k ∈ {1, ..., K}:

(a) Draw a distribution over vocabulary words βk ∼ Dirichlet(η)

2. For each document d:

(a) Draw a vector of topic proportions θd ∼ Dirichlet(α)

(b) For each word wd,n in document d

i. Draw a topic assignment zd,n ∼Multinomial(θd)

ii. Draw a word wd,n ∼Multinomial(βzd,n)

This generative process implies the joint probability of the observed documents

(w) and hidden variables (z, θ, β) as follows:

p(w, z, θ, β) =

(∏
d

p(θ|α)

)(∏
z

p(β|η)

)(∏
wi

p(wi|βzi)p(zi|θdi)

)

2.1.2 Learning Algorithms for LDA Model

We now introduce the learning algorithms for the LDA topic model. The key

inferential problem for learning the LDA model is that of computing the posterior

distribution of the hidden variables (i.e., topic assignments z for words and topic

proportions θ for documents) given the model parameters (i.e., topic distributions

β and hyper-parameters) and the observed documents (i.e., observed words w):

p(θ, z|w,α,β) =
p(θ, z,w|α,β)

p(w)
(2.1)

Unfortunately, this distribution is intractable to compute in general (Blei et al.,

2003). The learning algorithms for topic models usually approximate the Equa-

tion 2.1 by forming an alternative distribution over the latent topic structure
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that is adapted to be close to the true posterior. These algorithms generally

fall into two categories (Blei, 2012): sampling based algorithms and variational

algorithms. Sampling based algorithms attempt to collect samples from the poste-

rior to approximate it with an empirical distribution. The most commonly used

sampling algorithm is the collapsed Gibbs sampling method proposed by Griffiths

and Steyvers (2004). An alternative to the sampling based algorithms are the varia-

tional methods. Rather than approximating the posterior with samples, variational

methods posit a parametrized family of distributions over the hidden structure

and then find the member of that family that is closest to the posterior. Thus,

the inference problem is transformed to an optimization problem. One commonly

used variational method is variational EM (Expectation Maximization) algorithm

proposed by Blei et al. (2003).

In the following, we describe some details of both the collapsed Gibbs sampling

and variational EM algorithms for learning the LDA model. These two algorithms

form the basis for the derivation of learning algorithms of our proposed models.

Collapsed Gibbs Sampling

There are two parameters of the LDA to be estimated, namely the topic probability

over terms φ 1 and the topic proportions of document θ. Gibbs sampling is an

effective strategy for estimating these two parameters. It is an approximate iterative

technique which is a special form of Markov Chain Monte Carlo (MCMC) (Bishop

and Nasrabadi, 2006).

Rather than explicitly estimate φ and θ, Gibbs sampling method approximates the

1For convenience, we abuse the notation here. For variational methods, the topic-word
distribution is usually denoted as β such as in (Blei et al., 2003). But for Gibbs sampling
methods, φ is more often used to denote the topic-word distribution while β is used to denote its
hyper-parameters.
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posterior distribution of topics given observed words p(z|w) by means of Monte

Carlo algorithm. Specifically, it iterates over each word token in the text collection

in a random order and estimates the probability p(zi = k) of assigning the current

word token i to a topic k, conditioned on the topic assignments to all other word

tokens z−i as follows:

P (zi = k|z−i, w, α, β) ∝

(
ndi−i,k + α

ndi−i,· + Tα

)(
nwi
−i,k + β

n
(·)
−i,k +Wβ

)
(2.2)

where ndi−i,k is the number of times that topic k is assigned to some words in

document di, not including the current instance i; nwi
−i,k is the number of times

that word wi is assigned to topic k, not including the current instance i; T is the

number of topics; W is the number of distinct words in the vocabulary; α and β are

the symmetrical hyper-parameters for the document-topic and topic-word Dirichlet

distributions, respectively. A missing subscript or superscript (e.g., n(·)
−i,k) indicates

a summation over that dimension. −i indicates that the counts are calculated by

omitting the current instance i.

In each iteration, a topic is sampled, based on Equation 2.2, for each word in

the collection. After sufficient iterations, the sample obtained can be used to

approximate the model parameters. Specifically, the topic-word distribution φ and

the document-topic distribution θ can be estimated as follows:

φwk =
nwk + β

n
(·)
k +Wβ

(2.3)

θkd =
nkd + α

n
(·)
d + Tα

(2.4)

The Gibbs sampling method for the LDA described here is first proposed by
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Griffiths and Steyvers (2004). More precisely, it is called collpased Gibbs sampling

due to the fact that θ and φ are integrated out when deriving Equation 2.2. The

detailed derivation of the above equations can be found in (Heinrich, 2005).

Variational Methods

Variational methods are another type of learning algorithms that have been suc-

cessfully applied to many kinds of topic models, where corpus size and vocabulary

dimension are large (Wainwright and Jordan, 2008). The basic idea of variational

methods is to introduce a variational distribution q(θ, z|γ, φ) to approximate the

intractable posterior distribution p(θ, z|w, α, β) in Equation 2.1, where γ and φ

are variational parameters. To get a tractable variational distribution, Blei et al.

(2003) break the coupling between θ and β as shown in Figure 2.4, and define the

variational distribution as the following factorized form:

q(θ, z|γ, φ) = q(θ|γ)q(z|φ) (2.5)

where q(θ|γ) follows a Dirichlet distribution and q(z|φ) follows a Multinomial

distribution.

The next step is to formally specify an optimization problem to determine the

values of γ and φ. In particular, Blei et al. (2003) show that finding an optimal

lower bound on the log likelihood results in the following optimization problem:

q(γ∗, φ∗) = argmin(γ,φ)D(q(θ, z|γ, φ)||p(θ, z|w, α, β)) (2.6)

which is a minimization of the Kullback-Leibler (KL) divergence (Bishop and

Nasrabadi, 2006) between the variational distribution and the actual posterior
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distribution. One method to minimize this function is to use an iterative fixed-point

method (Blei et al., 2003), yielding update equations of:

φni ∝ βiwnexp {Eq[log(θi)|γ]} (2.7)

γi = αi +
N∑
i=1

φni (2.8)

Here, the expectation in the φ update in Equation 2.7 is computed as:

Eq[log(θi)|γ] = Ψ(γi)−Ψ(
k∑
j=1

γj) (2.9)

where Ψ is the first derivative of the log gamma function, which can be computed

via a Taylor approximation.

It is worth mentioning that Equations 2.7 and 2.8 have an appealing intuitive

interpretation. The Dirichlet update is a posterior Dirichlet given expected ob-

servations taken under the variational distribution, E[zn|φn]. The multinomial

update is akin to using Bayes theorem, i.e., p(zn|wn) ∝ p(wn|zn)p(zn), where p(zn)

is approximated by the exponential of the expected value of its logarithm under

the variational distribution, and p(wn|zn) = βznwn .

The variational inference described above assumes that we have known the topic-

word distribution β, and the hyper-parameter α. But how to find β and α? To tackle

this problem, Blei et al. (2003) propose the so-called variational EM algorithm which

uses the EM (Expectation Maximization) algorithm with variational distribution.

Specifically, we can find the empirical Bayes estimates for the LDA model via an

alternating variational EM procedure which maximizes a lower bound with respect
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to the variational parameters γ and φ, and then maximizes the lower bound with

respect to the model parameters α and β by fixing the values of the estimated

variational parameters.

The detailed derivation of the variational EM algorithm for LDA can be found in

(Blei et al., 2003). The derivation yields the following iterative algorithm:

• E-step: For each document, find the optimized values of the variational

parameter {γ∗d , φ∗d : d ∈ D}. This is done by variational inference described

previously in this section.

• M-step: Maximize the resulting lower bound on the log likelihood with

respect to the model parameters α and β. The objective is to find the

maximum likelihood estimates with expected sufficient statistics computed

in the E-step.

These two steps are iterated alternately until the lower bound on the log likelihood

converges.

It should be noted that we can choose to update the hyper-parameter α using

Newton-Raphson method as in (Blei et al., 2003), or keep it fixed during the EM

iterations. But for the collapsed Gibbs sampling method, all the hyper-parameters

are fixed and have to be pre-set empirically.

2.2 Extended Topic Models

Original topic models (i.e., PLSA and LDA) discover the latent semantic topics by

only looking at the text, i.e., the co-occurrences of words in documents. However,

it is not uncommon that original topic models might discover some topics which

are reasonable but not well-aligned with the users’ goal in a specific application
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(Blei, 2012). To address this issue, many prior studies propose to extend the

original topic models by incorporating the additional information accompanied

with text. The intuition is that the documents are not just text, and the inclusion

of appropriate information could steer the model towards topics that are better

aligned with the user’s goals in different contexts.

In the following, we review three types of extended topic models that are closely

related to our studies. In particular, the supervised topic models and the cross-

collection topic models are related to the study in Chapter 3, and the topic models

incorporated with sentence structure are related to the study in Chapter 4.

2.2.1 Supervised Topic Models

Original topic models (i.e., PLSA and LDA) are unsupervised models which could

discover the broad patterns (i.e., topics) in a document collection without any

supervision. However, they are usually inadequate for the prediction tasks, such as

document classification and sentiment analysis (Blei and McAuliffe, 2008). Consider

the task of predicting a movie rating from its associated review text. Intuitively,

good predictive topics should be able to distinguish words like “excellent”, “terrible”,

and “average”, without regard to genre. But it is possible that the topics estimated

by an unsupervised topic model will correspond to genres, if that is the dominant

thematic structure in the text collection.

To address this issue, some supervised topic models are recently proposed with

the purpose of enhancing topic models for prediction tasks. The basic idea is to

incorporate the associated labels to be predicted into the generative process of

the extended models. This allows the model to explicitly explore the associations

between labels and topic features so that more predictive topics can be discovered.
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Examples of such models include the supervised LDA (Wang et al., 2009a; Blei and

McAuliffe, 2008), the labeled LDA (Ramage et al., 2009), the partially labeled LDA

(Ramage et al., 2011), the DiscLDA (Lacoste-Julien et al., 2008), the Dirichlet-

multinomial regression model (Mimno and McCallum, 2008), and the MedLDA

(Zhu et al., 2009).

2.2.2 Cross-Collection Topic Models

Original topic models have been demonstrated to be effective in modeling a single

collection of textual documents. However, as indicated in (Zhai et al., 2004), they

are inadequate for modeling text from different collections for two reasons. First,

the structure of collections will be completely ignored, and the extracted topics

might only represent some but not all collections. Second, it is hard to identify

whether a topic represents the common information across collections or the specific

information of a particular collection.

To bridge this gap, two variants of topic model are proposed to model multiple text

collections. The first variant, called CCMix (Cross-Collection Mixture), is proposed

by Zhai et al. (2004). It extends the PLSA model by explicitly distinguishing

common topics that characterize the common information across all collections

from specific topics that characterize the collection-specific information. Common

topics and collection-specific topics are aligned under the same set of indices and

the number of topics in each collection are forced to be the number of common

topics. The second variant, called CCLDA (Cross-Collection Latent Dirichlet

Allocation), is proposed by Paul and Girju (2009). It further extends the CCMix

by replacing the PLSA framework with that of the LDA. Thus, it is actually a

Bayesian version of the CCMix model.
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The cross-collection topic models have been successfully applied for many problems.

The most direct application is the comparative text analysis. For example, they

have been used for the comparative text analysis of news articles about wars (Zhai

et al., 2004) and the cross-cultural analysis of blog articles (Paul and Girju, 2009).

In addition, they have been extended for modeling multiple text streams with

temporal dynamics (Hong et al., 2011).

It is also natural to extend the cross-collection topic models for the task of cross-

domain text classification (which will be reviewed in Section 2.3.4 later), if we

treat documents in each domain as a collection. However, as far as we know, there

are no such attempts previously. In Chapter 3, we will further extend the CCLDA

model to a supervised version which could be directly applied for the cross-domain

text classification in general, and the cross-industry risk sentiment analysis in

particular.

2.2.3 Topic Models Incorporated with Sentence Structure

Original topic models make the “bag-of-words” assumption, which states that the

order of words in a document does not matter. This simplified assumption is clearly

unrealistic, since the change of word order will probably result in the change of

meaning expressed in a sentence or a document. Therefore, some researchers have

recently proposed to relax or modify the unrealistic “bag-of-words” assumption for

uncovering more meaningful topics. The basic idea is to incorporate the information

of word order into the model. For example, Griffiths et al. (2005) proposed a model

which considers the order of a sequence of words by allowing the model to switch

between the LDA model and the standard HMM (Hidden Markov Model) model.

Wallach (2006) proposed to combine the LDA model and the bigram model by

assuming that the generation of a word is conditioned on both the topic and the
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preceding word. Blei and Lafferty (2006) proposed the dynamic topic model which

considers the temporal order of documents by modeling a topic as a sequence of

distributions over words rather than a single distribution.

In this direction, our work in Chapter 4 is closely related to the topic models

incorporated with sentence structure. Specifically, there are some recently proposed

models which exploit the sentence structure for modifying the “bag-of-words”

assumption. Distinct from our proposed “one topic per sentence” assumption in

Chapter 4, all these methods allow each sentence to include multiple topics, and

use various means to incorporate sentence structure. The most straightforward

method is to treat each sentence as a document and apply the LDA model on

the collection of sentences rather than documents. Despite its simplicity, this

method, called Local-LDA (Brody and Elhadad, 2010), has been demonstrated to

be effective in discovering meaningful topics while summarizing consumer reviews.

Another variant (Titov and McDonald, 2008; Chang and Chien, 2009; Wang et al.,

2009b; Du et al., 2010; Lin et al., 2011) models the sentence-wide topic proportion

in addition to the document-wide topic proportion in original LDA model. In

particular, the topics of words in a sentence are allowed to be sampled from either

document-wide or sentence-wide topic proportions. These sentence-wide topic

proportions are used to model the emphasis of each sentence and can be varied

across sentences in a document. More recently, Lu et al. (2011) compared several

aforementioned methods (Titov and McDonald, 2008; Du et al., 2010; Brody and

Elhadad, 2010) for the task of labeling sentences with ratable aspects (i.e., topics)

in product reviews, and found that the Local-LDA (Brody and Elhadad, 2010)

performs best despite its simplicity.
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2.3 Existing Methods for Text Analysis

This thesis is closely related to the well-known research area on automated text

analysis, which aims to quantify textual information into numeric variables of

interest. As surveyed in (O’Connor et al., 2011), there is an increasing interest

in the use of automated text analysis in the services of social science questions.

They argue that automated text analysis, which draws on techniques developed

in natural language processing, information retrieval, text mining and machine

learning, should be properly understood as a class of quantitative social science

methodologies. Although still in its growing stage, automated text analysis has

been applied in many fields of social science, including political science (Grimmer,

2010), economics (Aral et al., 2011), psychology (Tausczik and Pennebaker, 2010)

and others. In this section, we mainly focus on the application of automatic text

analysis in the field of financial accounting.

The most common use of automated text analysis in social science is to assign texts

to categories. After categorizing, texts can be easily quantified using aggregated

counts of categories. Take the corporate risk disclosure for example. Many financial

accounting researchers are interested in the tone (either positive or negative) and

the types of risks (e.g., potential lawsuits, catastrophes, etc.) contained in the

textual disclosures. In this scenario, the goal is to categorize each unit (e.g., word

or sentence) of disclosure documents into one or more categories (i.e., positive or

negative sentiment, or various risk types), and to aggregate counts across categories

for quantifying each document.

Manual categorization is very resource (personnel, time) consuming. Even if the

coding rules are developed and coders are trained, coders are still required to read

each individual document. Automated text analysis could mitigate the cost of
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manual categorization, by reducing the amount of human effort.

In this section, we review four types of existing methods for automated text analysis,

including: (1) dictionary based methods, (2) supervised learning methods, (3)

unsupervised learning methods, and (4) cross-domain learning methods. The first

two types of methods have been successfully applied in the financial accounting

domain, while the latter two types of methods have not been adopted yet.

2.3.1 Dictionary Based Methods

Dictionary based methods are the most simple and intuitive automated text

categorization methods. The idea is to first build a dictionary of key words or

phrases for indicating the membership of categories. Once the dictionary is built,

it can be used to classify documents into categories or measure the extent to which

documents belong to a particular category.

Due to its simplicity, dictionary based methods have been widely adopted for

text analysis in financial accounting research. For example, they have been used

for measuring the tone and sentiment of textual disclosures, such as corporate

annual reports (Kothari et al., 2009; Feldman et al., 2010; Kravet and Muslu,

2013; Loughran and McDonald, 2011), news articles (Tetlock, 2007; Tetlock et al.,

2008), earning announcements (Rogers et al., 2011), investor message boards

(Antweiler and Frank, 2004), Initial Public Offering (IPO) prospectus (Loughran

and McDonald, 2013), and so on.

To build the dictionary for sentiment analysis, a commonly used source for word

classification is the Harvard Psychosociological Dictionary, particularly the Harvard-

IV-4-TagNeg (H4N) file. Recently, Loughran and McDonald (2011) showed that

word lists created for other disciplines (i.e., H4N file) misclassified common words
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in financial text, and developed an alternative dictionary that better reflects the

tone in financial context.

Apart from the tone (sentiment), there are some other variables of interest to

quantify in financial disclosures, including amount, readability and risk type (Li,

2010b). Take the risk type, which is most related to this thesis, for example.

Campbell et al. (2014) created a keyword list by risk category based on the

dictionaries used in prior works and then used this list for classifying risk disclosures

in section 1A of 10-K forms into five categories, including systematic, idiosyncratic,

financial, tax and legal risks.

Dictionary based methods require researchers to identify words that separate cate-

gorizations beforehand. In other words, researchers have to decide how categories

should be assigned to documents using the defined dictionary. This may lead to

inefficiencies when the dictionaries are applied outside the domain in which they

were originally developed.

2.3.2 Supervised Learning Methods

Supervised learning methods provide an alternative method for assigning documents

(or other units of analysis) to pre-defined categories. The idea is that: (1) human

coders first categorize a set of documents by hand; (2) the algorithm then learns

how to assign categories to documents using coded data (training set). Supervised

learning methods have two major advantages over dictionary based methods

(Grimmer and Stewart, 2013). First, it is necessarily domain specific and therefore

avoids the problems of applying dictionaries outside their intended area of use.

Specifically, researchers have to develop coding rules for the variables (categories)

of interest, forcing them to be clear about the definition and measurement of those
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variables. Second, they are easy to be validated using clear performance statistics.

Owing to its advantages, supervised learning methods have been successfully

applied for text analysis in social science research (Hopkins and King, 2010), and

have been recently introduced into the field of financial accounting for analyzing

textual disclosures. For example, Li (2010a) used a Naive Bayesian classifier,

one of the most popular supervised learning methods, to classify the tone and

content of forward-looking statements in corporate 10-K and 10-Q filings. Huang

and Li (2011) developed a multi-label text classification algorithm to classify risk

disclosures in “Risk Factor” section of 10-K form into 25 risk types. Humpherys

et al. (2011) proposed to use linguistic features to distinguish fraudulent from

non-fraudulent 10-K reports using off-the-shelf supervised classifiers. Cecchini et al.

(2010) developed a method for automatically creating an ontology for texts in

MD&A section of 10-K forms, which could then be used for classifying financial

events of firms.

2.3.3 Unsupervised Learning Methods

Dictionary and supervised learning methods assume a pre-defined set of categories.

In contrast, unsupervised learning methods are a class of methods that learn under-

lying features of text without explicitly imposing categories of interests. They are

usually called unsupervised clustering methods, where “clustering” means unsuper-

vised “categorization”. Unsupervised clustering methods use modeling assumptions

and properties of the texts to estimate a set of categories and simultaneously assign

documents (or other units of analysis such as sentences) to those categories. They

are valuable since they could identify organizations of texts that are theoretically

useful but perhaps understudied or previously unknown (Grimmer and Stewart,

2013).
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The problem of unsupervised clustering methods, as indicated by Grimmer and

King (2011), is that it requires a single, precisely defined objective function

that works across applications. This is infeasible given that human beings are

typically optimizing a (mathematically ill-defined) goal of “insightful” or “useful”

conceptualizations. In other words, it is not uncommon that unsupervised models

yield clusters that do not correspond to what the user had in mind. Grimmer and

Stewart (2013) pointed out that there are two strategies to tackle this problem.

• Strategy 1. The first strategy is to allow users to efficiently search over

the potential categorization schemes for identifying interesting or useful

organizations of the texts. For example, Grimmer and King (2011) developed

a computer-assisted method for the discovery of insightful conceptualizations

in the form of clustering of input objects.

• Strategy 2. The second strategy is to incorporate context specific structure

into the analysis through a model. The inclusion of this additional information

often leads to more interesting clustering, but need the variation of models.

For example, Grimmer (2010) proposed a statistical model that attends

to the structure of political rhetoric when measuring expressed priorities:

statements are naturally organized by author. Their expressed agenda model

exploits this structure to simultaneously estimate the topics in the texts, as

well as the attention political actors allocate to the estimated topics.

As far as we know, no previous works attempt to use unsupervised clustering

methods for categorizing corporate risk disclosures. In Chapter 4, we will report

the first work to simultaneously discover the topics (risk types) in the data, assign

sentences (risk factors) to their likely topics, and quantify the attention each

disclosure document dedicated to the estimated topics.
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2.3.4 Cross-Domain Learning Methods

Conventional supervised learning algorithms assume that the training and testing

data follow the identical distribution. However, in practice we may have a source

domain with plentiful labeled training data, but need to classify the unlabeled

data from a target domain which has a different distribution from the source

domain. Suppose, for example, we want to classify blog articles into some pre-

defined categories (e.g., sports, politics, etc.). There are usually no labeled data

in this target domain (i.e., blog articles) but abundant labeled data in another

source domain such as news articles which are well-organized in news websites like

CNN.com and BBC.com. The data distributions in these two domains might be

quite different because of different word usages or writing styles. In this scenario,

the performance of supervised learning algorithms will normally drop due to the

violated assumption of identical distribution. To tackle this problem, cross-domain

learning (also called domain adaptation or transfer learning) methods have been

recently proposed (Pan and Yang, 2010).

As surveyed in (Pan and Yang, 2010), there are different settings of cross-domain

learning. This thesis focuses on the transductive learning setting – there are no

labeled data in the target domain but abundant labeled data in the source domain,

and the learning tasks in both domains are the same. The existing methods for

transductive cross-domain learning can be roughly categorized into two types (Pan

and Yang, 2010), including instance-based methods and feature representation

based methods. Here, we only review the feature representation based methods,

which are closely related to our work in Chapter 3.

Feature representation based methods aim to induce a common feature represen-

tation for reducing the distributional difference between the source and target

domains. To this end, one type of algorithms attempts to make use of the domain-
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independent “pivot features” to align the domain-specific features. For example,

Blitzer et al. (2006) proposed the SCL (Structural Correspondence Learning) algo-

rithm to learn a low-dimensional latent feature space by exploring the relationships

between “pivot features” and “non-pivot features”. Pan et al. (2010) proposed

the SFA (Spectral Feature Alignment) algorithm to align domain-specific words

from different domains into united clusters, with the help of domain-independent

“pivot features”. Then the domain-independent and domain-specific features are

co-clustered into a common latent space. However, the success of this kind of

methods crucially depends on the auxiliary tasks for selecting “pivot features”,

which can be a non-trivial engineering problem for many different applications.

Different from these algorithms, our proposed model in Chapter 3 does not rely on

any auxiliary tasks.

Another type of algorithms, which are closely related to our work, seeks to take

advantage of the topic modeling technique to induce the high-level topic feature

space. For example, Xue et al. (2008) proposed the TPLSA (Topic-bridged PLSA)

model which extends the PLSA by introducing the supervision of labeled data in

the training domain via the pair-wise constraints. However, the TPLSA does not

explicitly model the domain-independent and domain-specific topics and simply

assumes that the topics are shared by all domains. Zhuang et al. (2010) proposed

the CDPLSA (Collaborative Dual-PLSA) model which extends the Dual-PLSA

in (Yoo and Choi, 2009). The Dual-PLSA separately models the word topics and

document topics. The CDPLSA further assumes that word topics and document

topics are respectively independent of the data domain, while the association

between word topics and document topics is stable across domains. Although

it is claimed that the word topics in different domains are semantically related

to each other, the CDPLSA actually only extracts domain-specific (word) topics.

Different from the TPLSA and the CDPLSA, Li et al. (2012) proposed the TCA
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(Topic Correlation Analysis) method which explicitly extracts the shared topics and

domain-specific topics, and utilizes the correlations between them for cross-domain

learning. Their experimental results show that the TAC outperforms the TPLSA

and the CDPLSA. However, it requires an additional step to align domain-specific

topics and the information of labels in the training domain is not utilized (as

supervision) for learning the latent topics.

As far as we know, no previous works attempt to use cross-domain learning methods

for analyzing corporate risk disclosures. In Chapter 3, we will report the first

work on the risk sentiment analysis of corporate risk disclosures in the context of

cross-domain (i.e., cross-industry) learning.
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In this chapter, we present an extended LDA model and its learning algorithm for

cross-industry sentiment analysis of corporate risk disclosures.

3.1 Overview

Risk sentiment analysis (Loughran and McDonald, 2011; Li, 2010a) aims to identify

the managers’ tone in their risk disclosures (either positive or negative), and can be

seen as the application of the well-known sentiment analysis (Pang and Lee, 2008)

in the financial accounting domain. To solve this problem, there are two types of

existing methods, namely the dictionary based methods and the supervised learning

methods as reviewed in Section 2.3. Although the majority of existing works rely

on dictionary based methods (Loughran and McDonald, 2011), supervised learning

methods have been demonstrated to be more effective in recent studies (Li, 2010a).

However, it has been recently shown that sentiment classification (i.e., supervised

learning method) is highly sensitive to the domain from which the training data is

annotated (Pang and Lee, 2008; Liu and Zhang, 2012). Specifically, a sentiment

classifier trained using opinionated documents from one domain (i.e., the source

domain) usually performs poorly when it is applied to opinionated documents from

another domain (i.e., the target domain). The reason for this is that word patterns
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used in different domains to express sentiment can be quite different. In our case,

we also suffer from this problem since firms from different industries (i.e., domains)

often use industry-specific words to express the risk sentiment. For example, when

describing the “product approval” risk, firms in the airline industry tend to use

the words like “flying test” while those in the pharmaceutical industry are likely to

use the words like “clinical trial”. To address this issue, the most straightforward

solution is to manually annotate sufficient training data in the target domain, and

then apply the conventional supervised learning methods. However, the manual

annotation can be quite time-consuming and expensive.

With the purpose of learning more robust classifiers in cases where available

annotated training data comes from domains that differ from the target domain

(i.e., the domain in which the learned classifier is meant to be applied), cross-domain

learning (also called domain adaptation or transfer learning) methods have been

recently proposed (Jiang, 2008; Pan and Yang, 2010). As reviewed in Section 2.3.4,

one of the most promising ideas is to induce a new feature representation so that

the distributional difference between domains can be reduced and a more accurate

classifier can be learned in the new feature space. Based on this idea, there are

some recent works which attempt to employ topic models (e.g., LDA, PLSA) to

transform the original word feature space to a new latent topic feature space. The

underlying assumption of these topic modeling based methods is that the induced

topic features may bridge the gaps between domains by linking domain-specific

word features together. This is illustrated in Figure 3.1. Specifically, it is quite

common that different domains tend to use different words (wsi and wti) to describe

the same topic (ti). If wsi and wti can be projected into the same topic ti shared by

domains, the knowledge (e.g., the associations between features and class labels)

in the source domain can be transferred to the target domain.
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Figure 3.1: Topics as features for bridging domains.

However, we observe two limitations of existing topic modeling based methods for

cross-domain learning. First, the label information (e.g., risk sentiment labels) in

the training domain cannot be utilized (as supervision) for inducing topic features

since the standard topic models are unsupervised. This may lead to the topic

features that are not predictive for labels. Specifically, Long et al. (2012) recently

demonstrated that the optimal capability of knowledge transfer cannot be achieved

if the label information is not used to reinforce the learning of topic features.

Second, all induced topics features are assumed to be domain-independent and

shared by domains. Unfortunately, this might not be the case since standard topic

models can not explicitly distinguish domain-specific and domain-independent

topics. Some recent works (Titov, 2011) noticed this issue and proposed to only

induce the domain-independent common features that can generalize between

domains. More recently, Li et al. (2012) demonstrated that the alignment of

domain-specific latent features, in addition to the domain-independent features,

can further improve the cross-domain learning. These two limitations are formalized
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in (Ben-david et al., 2006), which theoretically demonstrated that the designed

feature representation should simultaneously minimize the difference between the

source and target domains and the empirical training error in the source domain.

To address the two observed limitations above, in this study, we propose an

extended LDA topic model for the problem of cross-domain text classification (in

general), and cross-industry risk sentiment analysis (in particular). Specifically,

our proposed model could (1) explicitly distinguish the domain-independent and

domain-specific topics by resorting to the cross-collection topic models (which have

been reviewed in Section 2.2.2), and (2) exploit the label information for inferring

more predictive topics by embedding the supervised logistic regression model in the

similar way as the supervised topic models (which have been reviewed in Section

2.2.1).

The rest of this chapter is organized as follows. Section 3.2 describes the problem

formulation. Section 3.3 elaborates our proposed model and its learning algorithm.

Section 3.4 presents the experiments for evaluating the proposed model. Finally,

Section 3.5 provides a brief summary of the study in this chapter.

3.2 Problem Formulation

In this study, we investigate the problem of cross-industry sentiment analysis,

where the risk sentiment classifier is learned using available annotated training data

from one industry (i.e., the source industry), but is meant to be applied in another

industry (i.e., the target industry). It should be noted that the sentiment analysis

is essentially a text classification problem, which aims to classify a document (or

other unit of analysis such as sentence or paragraph) into two (binary classification)

or more (multi-class classification) sentiment categories (e.g., positive, negative,
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neutral). Actually, cross-domain sentiment analysis is usually generalized to the

cross-domain text classification problem in existing literature (Pan et al., 2010).

Similarly, our cross-industry risk sentiment analysis is a special case of cross-domain

text classification, and each industry can be seen as a domain. It should also be

noted that there are different learning settings for cross-domain text classification

(Pan and Yang, 2010). This study particularly focuses on the transductive cross-

domain learning setting, in which both the annotated training data in the source

domain and the unannotated testing data in the target domain will be utilized for

learning the classifier. To sum up, this study investigates the problem of cross-

domain text classification in general, and cross-industry risk sentiment analysis in

particular 1.

More formally, our problem is defined as follows. Given a source domain (industry)

Ds = {(xs1, ys1), ..., (xsNs
, ysNs

)} with Ns labeled documents, and a target domain

(industry) Dt = {xt1, ..., xtNt
} with Nt unlabeled documents, our task is to assign a

binary class label y ∈ {− 1, 1} (−1 denotes the negative risk sentiment label and 1

denotes the positive label) to each unlabeled document xti in the target domain

(industry) Dt. We assume that training and testing documents come from related

but different domains (industries) Ds and Dt, and the word feature spaces of the

source and target domains (industries) are different, i.e., X s 6= X t.

3.3 Proposed Model

In this section, we elaborate our proposed model and its learning algorithm for

cross-domain learning.

1For convenience, we sometimes use the term “cross-domain text classification” and “cross-
industry risk sentiment analysis” interchangeably in the rest of this chapter.
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3.3.1 Model Description

Before describing our model, we first define some notations. We use the convention

that lowercase letters denote values (e.g., y, zdi , xdi , etc.), and bold letters denote

vectors (e.g., x, ψ, η, etc.). For convenience, we summary the frequently used

notations in Table 3.1.

Table 3.1: Notations for PSCCLDA model.

Symbol Description

Ds, Dt source/target domain

di word index of document d

zdi topic index of word di

xdi switching variable of word di

cd collection index of document d

yd class label of document d

φCz common topic z

φSc,z specific topic z of collection c

ψc,z switching variable distribution

η logistic regression coefficients

zd empirical topic distribution for document d

θd topic proportion for document d

αc collection-specific hyper-parameter for θd

βC hyper-parameter for φCz

βS hyper-parameter for φSc,z

γ hyper-parameter for ψc,z

Bern(·) Bernoulli distribution with parameter (·)

Mult(·) Multinomial distribution with parameter (·)

Beta(·) Beta distribution with parameter (·)

Dir(·) Dirichlet distribution with parameter (·)

We now proceed to describe our proposed model, called PSCCLDA (Partially

Supervised Cross-Collection LDA). The goal of our model is to induce a new topic
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feature space in which we can achieve better performance for cross-domain learning.

On one hand, it is intuitively necessary to model documents in each domain as a

separate collection due to the distributional difference between domains. To this end,

we seek to take advantage of the CCLDA (Cross-Collection LDA) (Paul and Girju,

2009) to model documents from multiple collections and explicitly distinguish

the collection-independent and collection-specific topics. On the other hand,

although the CCLDA could better model documents from multiple collections, it is

inadequate for inducing predictive topic features due to its unsupervised learning

fashion. We thus propose to further extend the CCLDA to a supervised version

for exploiting the label information. We call our model “partially supervised” since

we only observe the class labels in the training source domain.

The graphical representation of our model is shown in Figure 3.2, and the corre-

sponding generative process associated is as follows:

1. For each topic z, draw a collection-independent multinomial distribution

φCz ∼ Dir(βC)

2. For each collection c,

(a) For each topic z, draw a collection-dependent multinomial distribution

φSc,z ∼ Dir(βSc,z)

(b) For each topic z, draw a beta distribution ψc,z ∼ Beta(γ)

3. For each document d,

(a) Draw a topic mixture θd ∼ Dir(αc)

(b) If d is from collection c in source domain Ds, draw a class label yd ∈

{−1, 1} ∼ Bern(logistic(−ydηTz)), where z is the empirical topic

frequencies in d

45



Chapter 3. Cross-Industry Risk Sentiment Analysis

(c) For each word position i in d,

i. Draw a topic assignment zdi ∼Mult(θd)

ii. Draw a switching variable xdi ∼ Bern(ψc,z)

iii. If xdi = 0, draw a word di ∼Mult(φCz );

If xdi = 1, draw a word di ∼Mult(φSc,z)

M

C

T×C

T×C

T

y fC

a

N

z fS

h

wq

y g

bC

bS

xc

Figure 3.2: Graphical representation of PSCCLDA model.

In our model, there is a set of C collections, and each collection c corresponds to

a domain in the context of cross-domain learning. The class labels are observed

in the source domain (collection) but not in the target domain (collection). Each

collection c is associated with a set T S of collection-specific topics, and a set TC of

common topics shared by all collections. Similar to the models proposed in (Paul

and Girju, 2009; Hong et al., 2011), we assume that there is the same number of

elements in all topic sets (i.e., |TC | = |T S| = |Z|), and the specific topics in different

collections are forcibly indexed using the same set of topic ids ({1, 2, ..., |Z|}) as

the common topics. This enables the alignment of the unrelated specific topics in

different collections under the same topic index. Thus, the total number of topics

in our model is (C + 1) · |Z|. Each topic is defined as a multinomial distribution

over a fixed vocabulary. Particularly, the collection-specific topics φS are drawn

from a collection-specific Dirichlet distribution Dir(βS) while the common topics
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φC are drawn from a collection-independent Dirichlet distribution Dir(βC). Each

collection-topic pair (c, z) is associated with a Bernoulli distribution with the

parameter ψ. The parameter ψ follows a Beta distribution Beta(γ), and indicates

how likely a word is assigned to a common topic. The hyper-parameter γ is the

prior knowledge of ψ. For each word di in document d, we draw a switching

variable xdi ∼ Bern(ψ) which is a binary random variable for deciding whether a

topic is collection-independent or collection-specific. Similar with the LDA, each

document d has a topic proportion θd ∼ Dir(αc) over the shared topic indices.

Different from the CCLDA, our model embeds the logistic regression model for

incorporating the class labels accompanied with documents in the training source

domain. In particular, each observed class label yd ∈ {−1, 1} is drawn from

Bern(logistic(−ydηTzd)) where logistic(t) =
1

1 + e−t
is a logistic function.

3.3.2 Learning Algorithm

Exact inference of topic models is often intractable. To learn our model, we employ

a stochastic EM framework (Doyle and Elkan, 2009; Hong et al., 2011) which

combines the functional optimization problem with Gibbs sampling. Specifically, in

E-steps, we fix the logistic coefficients η, and sample the hidden variables z and x,

gather useful counts and update the new document representation zd. In M-steps,

we update the logistic regression coefficients η by maximizing the joint likelihood

of all observed data and hidden variables, which is equivalent to minimizing the

objective function of the associated logistic regression model. In this way, our

model follows the theory in (Ben-david et al., 2006) to induce the new topic feature

representation by explicitly minimizing the difference between the source and target

domains and the empirical training errors in the source domain.

In the following, we elaborate the update formulas in E-step and M-step of our
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learning algorithm.

E-step

Let hyper-parameters {αc,βC ,βS,γ} be denoted as Ψ, and hidden variables

{φC ,φS,θ,ψ} as Φ. The joint distribution of the observed variables and hidden

variables, after integrating out Φ, is:

p(x, z,w, c,y|Ψ,η)

=

∫
p (x, z,w, c,y,Φ|Ψ,η) dΦ

=
∏
c

∏
z

B
(
γ + nxc,z

)
B (γ)

∏
d

B (αcd + nzd)

B (αcd)∏
z

B
(
βC + nwz,x=0

)
B
(
βC
) ∏

c

∏
z

B
(
βS + nwc,z,x=1

)
B
(
βS
)

∏
d

1

1 + e−yd·ηT zd

(3.1)

Here, B(·) denotes the function B(v) =

∏
i Γ(vi)

Γ(
∑

i vi)
, where v is a vector and Γ(·) is

the gamma function. nxc,z is a 2-dimensional vector (nx=0
c,z , n

x=1
c,z ) whose elements

are the number of word tokens di in collection c which satisfy zdi = z & xdi = 0

and zdi = z & xdi = 1 respectively. Similarly, nzd is a |Z|-dimensional vector where

each element is the number of word tokens di in document d which satisfies zdi = z.

nwz,x=0 is a |W |-dimensional vector where each element is the number of word tokens

w assigned to the common topic z. nwc,z,x=1 is a |W |-dimensional vector where each

element is the number of word tokens w assigned to the collection-specific topic z

in the collection c.

In E-steps, we conduct the collapsed Gibbs sampling using the following updating
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formulas which are derived based on equation 3.1:

p(zi|z−i,x,w, c,y,Ψ,η)

∝1 + e−yd·η
T zdeyd·ηzi/nd

1 + e−yd·ηT zd
×
(
nzi,−id + αcdzi

)

×


nwi,−i
zi,xi

+ βC

n
(·),−i
zi,xi +WβC

, if xi = 0

nwi,−i
cd,zi,xi

+ βS

n
(·),−i
cd,zi,xi +WβS

, if xi = 1

(3.2)

p(xi|x−i, z,w, c,y,Ψ,η)

∝1 + e−yd·η
T zdeyd·ηzi/nd

1 + e−yd·ηT zd
×

(
nxi,−icd,zi

+ γxi

n
(·),−i
cd,zi + γx0 + γx1

)

×


nwi,−i
zi,xi

+ βC

n
(·),−i
zi,xi +WβC

, if xi = 0

nwi,−i
c,zi,xi

+ βS

n
(·),−i
c,zi,xi +WβS

, if xi = 1

(3.3)

Here, the superscript −i denotes a counting variable which excludes the i-th word

index in the corpus, and the superscript (·) denotes a counting variable which

sums over all elements in the corresponding vector. nzi,−id is the number of word

tokens assigned to the topic zi in the document d, excluding the current word

index i. nxi,−icd,zi
is the number of word tokens assigned to the collection-independent

(if xi = 0) or collection-specific (if xi = 1) topic zi in the collection cd, excluding

the current word index i. nwi,−i
zi,xi

and nwi,−i
c,zi,xi

is the number of times that the word

token wi is assigned to the collection-independent and the collection-specific topic

zi in the collection c respectively. We assume that the elements of the vector βC

and βS have the identical value βC and βS respectively.
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M-step

In M-steps, we update the logistic coefficients η by maximizing the joint likelihood

in Equation 3.1. Since we fix the counts gathered in the E-step, this is equivalent

to learning a new logistic regression model where each document d is represented

by zd newly updated in the E-step. Specifically, we learn a L2-regularized logistic

regression model which solves the following unconstrained optimization problem:

min
η

1

2
ηTη +R

∑
d

log
(

1 + e−yd·η
T zd
)

(3.4)

where R is a regularization parameter and set to 1.0 in our model. We apply the

trust region Newton method (Lin et al., 2008; Fan et al., 2008) for optimization.

Overall Algorithm for Cross-Domain Learning

Having described the update formulas in E-steps and M-steps, we now present the

algorithm for leveraging our model for cross-domain text classification.

Algorithm 1 PSCCLDA for Cross-Domain Text Classification
Input: labeled training data in the source domain Ds; unlabeled testing data in the

target domain Dt; number of topics K; number of iterations Tem and Tgibbs
Output: predicted class label of each unlabeled document d in target domain Dt
1: Initialize hidden variables z and x in the model
2: for t := 1→ Tem do
3: E-step:
4: for te := 1→ Tgibbs do
5: Run collapsed Gibbs sampling for all documents using Equation (3.2) and (3.3)
6: end for
7: Update topic frequency zd for each document d
8: M-step:
9: Update logistic regression coefficients η using Equation (3.4)
10: end for
11: Predict class label of each document d in target domain Dt using Equation (3.5)

The overall procedure is depicted in Algorithm 1. We first learn our model by

50



Chapter 3. Cross-Industry Risk Sentiment Analysis

alternately running E-step and M-step for Tem iterations (or until convergence).

Each domain is treated as a collection, and the model is initialized randomly. In

E-steps, we run Gibbs sampling for Tgibbs iterations. During the sampling, if a

document is labeled (i.e., from the training source domain), we use the exact update

formulas in Equation 3.2 and 3.3; if a document is unlabeled, (i.e., from the target

domain), we use the update formulas in Equation 3.2 and 3.3 by removing the

first term containing the class label yd. When the sampling is finished, we update

the empirical topic frequency zd using the last sample obtained. In particular,

zd is a 2 ∗ |Z| dimensional vector where the first |Z| dimensions correspond to

the collection-independent topics zC ∈ {1...Z} in turn, and the remaining |Z|

dimensions correspond to the collection-specific topics zS ∈ {1...Z} in turn. Each

element in zd is the normalized frequency of the corresponding topic nz/nd where

nd is the total number of tokens in the document d. In M-steps, we update the

logistic coefficients η using the Equation 3.4.

When the model is learned, we can directly use the last updated zd of unlabeled

documents and logistic coefficients η for predicting. Specifically, we predict the

class label of the unlabeled document d using the following equation:

p(yd|zd) =
1

1 + e−yd·ηT zd
(3.5)

If p(yd = 1|zd) ≥ 0.5, the predicted class label is 1; otherwise, the predicted class

label is −1.

3.4 Experiments

In this section, we evaluate the effectiveness of our proposed PSCCLDA model

for the problem of cross-domain text classification in general, and cross-industry
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sentiment analysis in particular.

3.4.1 Data Preparation

In the following, we describe the data preparation for the evaluation on two tasks,

including the cross-domain text classification and the cross-industry risk sentiment

analysis.

Data Preparation for Cross-Domain Text Classification

To evaluate the performance for cross-domain text classification, we use the nine

datasets provided by Li et al. (2012) 2, which are generated from two widely used

text classification datasets, i.e., 20Newsgroups 3 and Reuters-21578 4. The nine

datasets are generated by using the hierarchical category structures in the same

way as many previous studies on cross-domain learning (Li et al., 2012; Xue et al.,

2008; Zhuang et al., 2010; Pan and Yang, 2010; Jiang, 2008; Long et al., 2012).

Specifically, both the 20Newsgroups and the Reuters-21578 datasets are organized

under top categories, e.g., comp (computer), rec (recreation), sci (science), and

talk in the 20Newsgroups dataset, and orgs, people, places in the Reuters-21578

dataset. Each top category contains sub-categories. For example, under the top

category “comp”, there are sub-categories such as “comp.graphics”, “comp.os.ms-

windows.misc”, “comp.sys.ibm.pc.hardware” and “comp.sys.mac.hardware”. The

datasets for cross-domain text classification are generated as follows. Suppose we

have two top-categories A and B, which contain four sub-categories A1, A2, A3, A4

and B1, B2, B3, B4 respectively. The task is defined as the top-category binary

2Available at http://www.cse.ust.hk/TL/index.html.
3Available at http://people.csail.mit.edu/jrennie/20Newsgroups
4Available at http://www.daviddlewis.com/resources/testcollections
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classification in the cross-domain context, i.e., to classify documents into either A

or B. To generate the training data in the source domain, we randomly choose two

sub-categories for each top-category, and merge all documents in the chosen sub-

categories (e.g., A1, A2, B1, B2). The documents in the remaining sub-categories

are merged as the testing data in the target domain (e.g., A3, A4, B3, B4). In this

way, the data in the source domain and target domain are related (since they come

from the same top-category) but distributed differently (since they come from the

different sub-categories).

Table 3.2 shows the statistics of the nine datasets generated as described above.

In the “Dataset” column, we list the name of each dataset based on the defined

classification task. For example, “comp vs rec” denotes the dataset in which the

task is the binary classification of two top categories “comp” and “rec”. In the

“Instances” column, we present the number of instances for both labeled data (l) in

the source domain and unlabeled data (u) in the target domain. In the “Features”

column, we show the distributional difference between domains where |Fs−t| is the

number of word features that exclusively appeared in the source domain, and |Fs∩t|

is the number of word features that appears in both the source and target domains.

A larger ratio |Fs−t|/|Fs∩t| indicates more salient distributional difference between

domains.

Data Preparation for Cross-Industry Risk Sentiment Analysis

To prepare the data for the evaluation on cross-industry risk sentiment analysis,

we collect and extract the “Management Discussion and Analysis” (MD&A) section

in 10-K forms. The MD&A is one of the most examined sections in the 10-K

form, and is mandated by the Securities and Exchange Commission (SEC) since

1980. This disclosure section is intended to access a company’s finical condition
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Table 3.2: Statistics of datasets for cross-domain text classification.

Dataset
Instances Features

l u |Fs−t| |Fs∩t| |Fs−t|/|Fs∩t|

comp vs rec 3933 3904 3475 11646 0.2984

comp vs sci 3911 3901 3092 12564 0.2461

comp vs talk 3654 3464 4434 13654 0.3247

rec vs sci 3591 3958 4456 13194 0.3378

rec vs talk 3690 3525 4954 13867 0.3573

sci vs talk 3373 3818 3698 15129 0.2444

orgs vs people 1237 1208 230 4090 0.0562

orgs vs places 1061 1043 178 3892 0.0457

people vs places 1077 1077 233 3833 0.0608

and results of operations, and allows company management to tell its story in its

own words in a way that investors can understand. According to the SEC (2014),

the MD&A section should present “the company’s operations and financial results,

including information about the company’s liquidity and capital resources and any

known trends or uncertainties that could materially affect the company’s results”,

and may also discuss “management’s views of key business risks and what it is

doing to address them”. In our experiment, the task is to predict the risk sentiment

embodied in the MD&A section in the context of cross-industry learning.

Specifically, we collect the 10-K forms from 1996 to 2006, and then extract the

MD&A section in 10-K forms as disclosure documents. Each document is processed

by lowercasing and removing punctuations, stopwords, and meaningless marks. The

membership of industry is determined by SIC (Standard Industrial Classification)

code as in (Frankel et al., 2002). Since we have no ground-truth labels of risk

sentiment, we use the stock return volatility (SRV ) as a proxy for risk (Kogan
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et al., 2009) – higher SRV indicates higher level of risk. We assume that the

MD&A section is informative for investors (Li, 2010a), and the market will react

to it after the filing. Therefore, we label a document as “positive” if the SRV 12

months before the filing date (SRV −12) is smaller than the SRV 12 months after

the filing date (SRV +12), and “negative” otherwise.

Figure 3.3 shows the distribution of the number of observations (i.e., documents)

across industries. To reduce the imbalance of the dataset, we only retain 7 out

of 13 industries whose number of observations are larger than 1600, including

“computer”, “extractive”, “manufacture”, “pharmaceutical”, “retail”, “service”, and

“transportation” industry.

We create 42 tasks of the cross-industry risk sentiment analysis by paring the 7

industries in our sample. For each industry pair, one industry is regarded as the

source industry (for training), and the other one is regarded as the target industry

(for testing).
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Figure 3.3: Data distribution across industries.
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3.4.2 Experimental Settings

We now describe the experimental settings, including the benchmark methods and

the performance metric.

The benchmark methods used in our experiments include two conventional su-

pervised classification algorithms, namely the SVM (Support Vector Machine)

implemented in (Fan et al., 2008) and the LG (Logistic Regression) implemented

in (Fan et al., 2008), and four state-of-the-art cross-domain text classification

algorithms that have been reviewed in Section 2.3.4, including the SFA (Spectral

Feature Alignment) (Pan et al., 2010), the TPLSA ( Topic-bridge PLSA) (Xue

et al., 2008), the CDPLSA (Collaborative Dual-PLSA) (Zhuang et al., 2010) and

the TCA (Topic Correlation Analysis) (Li et al., 2012).

In our evaluation on the cross-domain text classification, we aim to demonstrate

the superiority of our proposed model over existing cross-domain learning meth-

ods. Therefore, we compare our model with both the two conventional supervised

classification algorithms and the four state-of-the-art cross-domain text classifica-

tion algorithms. On the other hand, in our evaluation on the cross-industry risk

sentiment analysis, we aim to show that our model could outperform the existing

methods that have been adopted in the financial accounting domain. Therefore, we

only compare our model with the two conventional supervised learning methods.

For the conventional supervised algorithms SVM and LG, we perform the classifi-

cation in a traditional way. Specifically, we train the classifier using the labeled

documents in the source domain and directly use the trained model to predict

the class labels of unlabeled documents in the target domain. The parameters

are set to the default values as in Fan et al. (2008). The performance of these

two conventional classifiers serve as the baselines for the cross-domain learning
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methods. For the competing cross-domain learning methods, we mainly choose

the topic modeling based methods because we focus on exploring how to extend

original topic models for cross-domain learning in this study. The parameters are

set as in the original papers (Pan et al., 2010; Xue et al., 2008; Zhuang et al., 2010;

Li et al., 2012).

To measure the performance, we use the common metric classification accuracy,

which is defined as the proportion of correctly classified examples (i.e., documents).

3.4.3 Evaluation on Cross-Domain Text Classification

We now present the experimental results of the evaluation on the cross-domain

text classification.

Overall Performance

In Table 3.3, we show the performance comparison of our proposed PSCCLDA

model with all benchmark methods, including the two conventional supervised

classifiers and the four competing cross-domain learning methods, on all the nine

datasets. Since our model is randomly initialized, we run the model 3 times and

report the “mean ± standard deviation” in the column “PSCCLDA”. For our model,

the parameters are tuned on the “comp vs rec” dataset and then applied to all the

other datasets. In particular, the number of the topic indices |Z| is set to 5 and 6

for the datasets generated from 20Newsgroups and Reuters-21578 respectively; γ

is set to (20, 1), indicating that the domain-independent topics (x = 0) are more

likely to be chosen than the collection-specific topics (x = 1); the number of EM

iterations Tem is set to 50 and the number of iterations for Gibbs sampling Tgibbs is

set to 6.
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As can be seen in Table 3.3, our PSCCLDA model performs best on 7 out of 9

datasets. Two exceptions are that the SFA performs best on the “comp vs talk”

dataset and the TCA performs best on the “rec vs talk” dataset. Not surprisingly, all

the cross-domain learning methods perform better than the conventional supervised

classifiers (i.e., LG and SVM), demonstrating that the distributional difference

between domains indeed deteriorates the performance of the supervised classifiers.

On average, our model outperforms all the other methods with the classification

accuracy 88.0%. We also conduct the t-test at the 95% confidence level over all

nine datasets, and the tests show that the performance improvement of our model

over the benchmark methods is statistically significant (p-value < 0.05).

Table 3.3: Performance comparison for cross-domain text classification.

Datasets LG SVM SFA TPLSA CDPLSA TCA PSCCLDA

comp vs rec 0.906 0.895 0.939 0.910 0.914 0.940 0.958±0.012

comp vs sci 0.759 0.719 0.830 0.802 0.877 0.891 0.900±0.014

comp vs talk 0.911 0.898 0.971 0.938 0.955 0.967 0.967±0.005

rec vs sci 0.719 0.696 0.885 0.928 0.872 0.879 0.955±0.016

rec vs talk 0.848 0.827 0.935 0.849 0.912 0.962 0.958±0.019

sci vs talk 0.780 0.747 0.854 0.890 0.862 0.940 0.947±0.013

orgs vs people 0.681 0.670 0.671 0.746 0.808 0.792 0.807±0.013

orgs vs places 0.692 0.669 0.683 0.719 0.714 0.730 0.742±0.036

people vs places 0.513 0.520 0.506 0.623 0.548 0.626 0.690±0.057

average 0.757 0.738 0.808 0.823 0.829 0.859 0.880

Notes: The performance is measured by the classification accuracy. The best performance is
highlighted in bold font.

Convergence and Parameter Sensitivity

We now examine the convergence and parameter sensitivity of our model.

First, we need to ensure the performance convergence for our model since we use

an EM-style learning algorithm. Figure 3.4 presents the model performance in
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Figure 3.4: Performance convergence.

terms of the classification accuracy by varying the number of EM iterations. As

can be seen, the performances of our model on all datasets increase quickly during

the first 10 iterations, and then tend to converge to the constant values. This

observation demonstrates that our model could ensure the convergence on all the

nine datasets.

Second, we need to ensure that our model is not sensitive to the model parameters

that have to be empirically set. There are two important parameters in our

PSCCLDA model, including the number of topic indices |Z|, and the hyper-

parameter γ which could be interpreted as the prior belief on the proportion of

domain-independent and domain-specific topics. To investigate the effects of these

two parameters, we show the performance of our model on all the datasets by

varying one parameter while fixing the other one.

In Figure 3.5, we fix the parameter γ to its default value (20, 1), and vary the

number of topics from 2 to 20. As can be seen, the model performance is relatively

stable when the number of topics is larger than 5. This demonstrates that our

59



Chapter 3. Cross-Industry Risk Sentiment Analysis

model is not very sensitive to the parameter |Z|.

In Figure 3.6, we fix the parameter |Z| to 5 and 6 for datasets generated from the

20Newsgroups and Reuters-21578 datasets respectively, and vary γx=0 from 0.5 to

100 while fixing γx=1 to 1. As can be seen, the model performance is relatively

stable when γx=0 is larger than 20. This demonstrates that our model is not

sensitive to the parameter γ. It is interesting to notice that the performance of

our model will drop when γx=0 ≤ γx=1, indicating that the collection-independent

topics have more predictive power than the collection-specific topics in the context

of cross-domain learning.
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Effects of Domain Difference

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 2 3 4 5 6 7 8 9

im
p

ro
v
e

m
e

n
t

dataset

PSCCLDA over LG
PSCCLDA over SVM

Figure 3.7: Performance improvement of PSCCLDA.
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Figure 3.8: Performance improvement of SFA.

Here, we conduct an analysis on the effects of the distributional difference between

domains on the relative improvement of the cross-domain learning methods over

the supervised ones. We use the KL (Kullback Leibler) divergence to quantify

the domain difference for the nine datasets in Table 3.2, and rank them from 1

(smallest difference) to 9 (largest difference) in an ascending order. Figure 3.7

shows the performance improvement of our PSCCLDA model over the conventional

supervised methods in terms of the classification accuracy. We expect a decreasing

improvement from the dataset 1 to 9, since it is intuitive that a salient difference
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will indicate a difficult cross-domain learning task. However, our observation is

contradictory to this intuition, which implies that the relative improvement of the

cross-domain learning methods over the supervised ones may not be dependent on

the distributional difference between domains. To further verify this observation,

we examine the performance improvement of the SFA model, which is another

type of cross-domain learning method as reviewed in Section 2.3.4. Specifically ,

as shown in Figure 3.8, the performance improvements of the SFA model over the

supervised classifiers are not dependent on the distributional difference between

domains. This observation is consistent with prior works (Dai et al., 2007), but

has no theoretical explanation yet. We believe that more deep analysis on this

counter-intuitive observation is needed in future, and the explanation for it will

shed light on the design of more robust cross-domain learning methods.

3.4.4 Evaluation on Cross-Industry Risk Sentiment Anal-

ysis

Here, we present the experimental results of the evaluation on cross-industry risk

sentiment analysis. Figure 3.9 shows the performance comparisons between our

PSCCLDA model and two conventional supervised learning methods (i.e., SVM and

LG) for 42 tasks of cross-industry risk sentiment analysis as described in Section

3.4.1. We observe that the conventional supervised learning methods perform poorly

in the context of cross-domain learning – the SVM achieves 52.60% classification

accuracy on average while the LG achieves 52.94% on average. This is only slightly

better than the random guess (50% accuracy). In contrast, our PSCCLDA model

could lead to roughly 6% performance improvement over the supervised learning

methods, achieving 58.14% classification accuracy on average. This demonstrably

shows the effectiveness and superiority of our proposed PSCCLDA model over the
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existing supervised learning methods for the cross-industry risk sentiment analysis.
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Figure 3.9: Performance comparisons for cross-industry risk sentiment analysis.

3.5 Summary

In this chapter, we study the problem of cross-domain text classification in general,

and cross-industry risk sentiment analysis in particular. To solve the problem,

we propose an extended LDA topic model, called PSCCLDA, and its learning

algorithm. With the purpose of overcoming two observed limitations of the existing

methods, our proposed model explicitly distinguishes the domain-independent

and domain-specific topics by resorting to the cross-collection topic models, and

exploits the label information for inferring more predictive topics by embedding the

supervised logistic regression model. Experimental results on nine standard datasets

demonstrate the effectiveness of our model for cross-domain text classification in

general, and its superiority over the state-of-the-art cross-domain learning methods.

Experiential results of the 42 tasks for cross-industry risk sentiment of the MD&A

disclosures show the effectiveness of our proposed model, and its superiority over

the existing supervised learning methods that have been adopted in the financial

accounting domain.
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In this chapter, we present an extended LDA model and its learning algorithm for

extracting individual risk types from corporate risk disclosures without pre-defining

them.

4.1 Overview

The annual report issued by a corporation is an important source of information

for its stakeholders, such as investors, to obtain a detailed picture of the company’s

business, the risks it faces and its operating and financial results. The filing of

annual reports is typically mandated by the relevant regulatory agency in the

country of the corporation’s domicile. Most U.S. public companies, for example,

are required by the U.S. Securities and Exchange Commission (SEC) to issue an

annual report called 10-K form. In addition to the quantitative financial data

detailed in these reports, one of the most analyzed elements in the 10-K form

are the risk disclosures about the corporation, since stakeholders are particularly

sensitive to risks. These risk disclosures are considered so important, that starting

in 2005, the SEC requires that all firms include a separate section (section 1A) in

their 10-K form to discuss “the most significant factors that make the company

speculative or risky” (SEC (2005), Regulation S-K, Item 503(c)). This section has
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turned out to be one of the most examined and debated segments of corporate

annual reports (Campbell et al., 2014).

Conceptually, there are many potential variables of interest from these risk disclo-

sures. Some of these variables, as surveyed by Li (2010b), include the amount, tone,

and transparency (or readability) of disclosures. In this study, we are particularly

interested in another important variable, the risk type, which has been paid less

attention than the variables identified previously (Mirakur, 2011; Campbell et al.,

2014; Huang and Li, 2011). At a high level, risk types refer to general factors that

present elements of risk to a corporation, such as litigation, or natural disasters.

We should also note that the risk disclosure section in an annual report appears as

a free-form textual segment, i.e., completely unstructured text.

Discovering and quantifying variables of interest from large amount of unstructured

text is a nontrivial task for social science researchers. They have struggled when

confronted with this problem, since it is difficult, indeed infeasible, to manually

perform exhaustive text perusal, even in a moderately sized corpus. For example,

Mirakur (2011) has manually categorized 29 risk types for 122 randomly selected

firms. This sample is far less than 1% of the total number of published 10-K forms.

In this scenario, it is tempting to apply automated text analysis to this important

problem. Indeed, researchers have gone down this path: Campbell et al. (2014) use

a pre-defined dictionary to quantify five risk types in 10-K forms: idiosyncratic,

systematic, financial, tax, and litigation risks. Huang and Li (2011) propose a

supervised learning method to automatically categorize risk factors reported in

section 1A of 10-K forms into 25 risk types. As reviewed in Section 2.3, this work

falls into two categories of automated text analysis: dictionary based and supervised

learning based.

Dictionary and supervised learning methods assume a pre-defined set of categories.
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This assumption poses no challenge if researchers have a set of categories for texts

in mind. For example, if researchers aim to identify positive and negative tone of

textual statements (a common theme of work), the categories are quite explicit

(i.e., positive and negative). In most cases, however, the categories might be hard

to derive beforehand. Take our case for example. The risk factors affecting firms

are (a) unpredictable and (b) differ from firm to firm. Clearly, a priori knowledge

of what a corporation might perceive as risk is impossible to achieve. Without

this knowledge, it would be impossible to apply dictionary or supervised learning

methods to identify what types of risks are disclosed in section 1A of 10-K forms.

Unfortunately, all prior work is based on the notion of pre-defined risk types. The

drawback of this assumption is further indicated by the salient difference between

pre-defined risk types defined in (Mirakur, 2011; Campbell et al., 2014; Huang and

Li, 2011). What is clearly needed is not only the ability to quantify risk types, but

also to discover these risk types.

To bridge this gap, in this study, we report the first general work on extracting

individual risk types from textual disclosures without pre-defining them. Specifi-

cally, we propose an unsupervised topic model which could estimate rather than

pre-define a set of categories (risk types) and simultaneously assign sentences (risk

factors) to those categories.

The rest of this chapter is organized as follows. Section 4.2 describes the problem

formulation. Section 4.3 elaborates our proposed model and its learning algorithm.

Section 4.4 presents the experiments for evaluating the proposed model. Finally,

Section 4.6 provides a brief summary of the study in this chapter.
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4.2 Problem Formulation

Given a collection of documents containing disclosed risk factors, our task is to

(1) estimate a set of risk types at the collection level, and (2) simultaneously map

each risk factor to the most suitable risk type. To get a feel for our problem,

consider Apple Inc.’s 10-K form in 20061. In section 1A of this form, the summary

headings of three sample risk factors are listed in Table 4.1 2. We assume that

each risk factor only discusses one risk type. Our proposed method would take all

the disclosed risk factors as input and yield a set of risk types and then map each

risk factor to a risk type. For instance, for the factors disclosed in Table 4.1, our

method would yield the following risk types: Lawsuits (RT1), Catastrophes (RT2)

and Human Resources (RT3). Further it would map the first risk factor in Table

4.1 to RT1, the second factor to RT2 and the last factor to RT3. Finally, this

disclosure document (if only contains these three risk factors) could be quantified

as a vector [1, 1, 1] where each dimension corresponds to a risk type.

Table 4.1: Three sample risk factors in a disclosure document.

The matters relating to the investigation by the Special Committee of the
Board of Directors and the restatement of the Company’s consolidated financial
statements may result in additional litigation and governmental enforcement
actions.

War, terrorism, public health issues, and other circumstances could disrupt
supply, delivery, or demand of products, which could negatively affect the
Company’s operations and performance.

The Company’s success depends largely on its ability to attract and retain key
personnel.

1http://www.sec.gov/Archives/edgar/data/320193/0001104659-06-084288.txt
2It should be noted that we focus on the analysis of the summary headings of these risk factors

in section 1A “Risk factors” of 10-K forms, but ignore their detailed explanations. The unit of
analysis in our problem is the sentence since each risk factor is described using only one sentence
in most cases.
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4.3 Proposed Model

In this section, we elaborate our proposed model and its learning algorithm.

4.3.1 Model Description

Our idea for solving the formulated problem is to make use of the topic model,

hoping that the discovered topics are meaningful for representing risk types. Once

such model is learned, individual risk types (i.e., topics) can be automatically

discovered from the collection of disclosure documents, and each word (or sentence)

can be assigned to the most probable risk types (i.e., topics) (Recall that one output

of topic model is the topic assignments for words in each document). However, as

we will show later in Section 4.4, the original LDA topic model is not adequate

because the discovered topics are not meaningful for representing risk types. To

address this issue, our strategy is to extend the LDA model by incorporating

appropriate additional information with the purpose of steering the model towards

topics that are meaningful for representing risk types.

We first elaborate the intuition behind our model. The original LDA model is

based on the “bag-of-words” assumption which states that the order of words in a

document does not matter. This assumption is illustrated on the left side of Figure

4.1, where each dash denotes a word, each color denotes a topic, and connected

dashes represent a sentence. Specifically, LDA model assumes that each word

can belong to any topic based on the document-wide topic proportion (i.e., a

multinomial distribution). This implies that it makes no difference whether or not

two words are in the same sentence. But this assumption is clearly unrealistic in

our case, since we observe, as will show in Section 4.4.1 later, that each sentence in

a document is only regarding one risk type (i.e., topic) in most cases. Intuitively,
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sentence boundaries convey the information about what words should be grouped

into the same topic, and this information should be able to enhance the model by

steering it towards more meaningful topics for representing risk types. In contrast,

under the “bag-of-words” assumption, the boundaries between sentences will be

ignored and the words in a sentence will be sampled independently from each other.

This might result in scenarios where each word in a sentence is sampled from a

different topic, severely violating our observation.

TopicsTopics

Figure 4.1: Intuition of our Sent-LDA model.

Based on our intuition, we propose to take the boundaries between sentences into

account and assume that all words in a sentence are sampled from the same topic.

This “one-topic-per-sentence” assumption is illustrated on the right side of Figure

4.1. This relaxes the “bag-of-words” assumption in the sense that the words in

different sentences are no longer interchangeable and the sampling of the words

in the same sentence are dependent on each other. It is worth mentioning that

some recently proposed methods, as reviewed in Section 2.2, do exploit sentence

structures to enhance the LDA model. Distinct from our proposed “one-topic-per-

sentence” assumption, all those methods allow each sentence to include multiple

topics, and use different methods to incorporate sentence structure.

We now proceed to describe our proposed model, called Sent-LDA (Sentence-based
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LDA). Let M , S, N , K, V be the number of documents in a corpus, the number of

sentences in a document, the number of words in a sentence, the number of topics

and the vocabulary size, respectively. Dirichlet(·) is a Dirichlet distribution with

parameter (·) and Multinomial(·) is a multinomial distribution with parameter (·).

βk is the V-dimensional word distribution for topic k, and θd is the K-dimensional

topic proportion for document d. η and α are the hyper-parameters of the

corresponding Dirichlet distributions. The generative process of our Sent-LDA is

changed to:

1. For each topic k ∈ {1, ..., K}:

(a) Draw a distribution over vocabulary words βk ∼ Dirichlet(η)

2. For each document d:

(a) Draw a vector of topic proportions θd ∼ Dirichlet(α)

(b) For each sentence s in document d

i. Draw a topic assignment zd,s ∼Multinomial(θd)

ii. For each word wd,s,n in sentence s:

A. Draw a word wd,s,n ∼Multinomial(βzd,s)

Figure 4.2 presents the graphical representation of our Sent-LDA model, which

adds a sentence layer in the original hierarchy of LDA in Figure 2.4.

4.3.2 Learning Algorithm

We now present the learning algorithm for our proposed model. As reviewed in

Section 2.1.2, there are two commonly used learning algorithms, including Gibbs

sampling and variational EM. There are many discussions on the advantages and
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Figure 4.2: Graphical representation of Sent-LDA model.

disadvantages of them, and some previous studies (Teh et al., 2007; Asuncion

et al., 2009; Wallach et al., 2009a; Zhai et al., 2012) have attempted to compare

their performance. However, the findings are mixed. Following Blei and Jordan

(2006), we resort the empirical experiments for comparing the different learning

algorithms in our context. Note that Jo and Oh (2011) have proposed a model that

is equivalent to our Sent-LDA model assumption, but used the collapsed Gibbs

sampling (CGS) method for learning. As we will demonstrate later, this Sent-LDA-

CGS model performs even worse than the original LDA model for our problem. In

contrast, we propose the variational EM learning algorithm for Sent-LDA model

which performs best among competing methods.

Approximate Inference

In posterior inference, we compute the conditional distribution of latent variables

given a set of observed documents. This conditional distribution for our Sent-LDA

is as same as that of LDA shown in Equation 2.1. However, the interpretation of

the vector z is changed. Specifically, since we only draw the topic assignment for

each sentence (the words in a sentence share the same topic assignment) rather
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than each word, z is now the vector of topic assignments for sentences rather than

words in a document.

Variational methods consider a simple family of distributions over the latent

variables, indexed by free variational parameters, and try to find the setting of

those parameters that minimizes the Kullback Leibler (KL) divergence to the

true posterior. In Sent-LDA model, the latent variables are the per-document

topic proportion θ and the per-sentence topic assignment z. Similar to variational

method for LDA, we use the following variational distribution:

q(θ, z|γ,φ) = q(θ|γ)
S∏
s=1

q(zs|φs)

as a surrogate for the posterior distribution in Equation 2.1.

We now describe how to set the variational parameter γ and φ via an optimization

procedure. We bound the log likelihood of a document using Jensen’s inequality.

By omitting the variational parameters γ and φ, we have:

logp(w|α, β) = log

∫ ∑
z

p(θ, z, w|α, β)dθ

= log

∫ ∑
z

p(θ, z, w|α, β)q(θ, z)

q(θ, z)
dθ

≥
∫ ∑

z

q(θ, z)logp(θ, z, w|α, β)dθ −
∫ ∑

z

q(θ, z)logq(θ, z)dθ

= Eq[logp(θ, z, w|α, β)]− Eq[logq(θ, z)]

= L(γ, φ;α, β)
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By expanding the lower bound L using the factorization of p and q, we have:

L(γ, φ;α, β)

=Eq[logp(θ|α)] + Eq[logp(z|θ)] + Eq[logp(w|z, β)]− Eq[logq(θ)]− Eq[logq(z)]

=logΓ(
K∑
j=1

αj)−
K∑
i=1

Γ(αi) +
K∑
i=1

(αi − 1)(ψ(γi)− ψ(
K∑
j=1

γj))

+
S∑
s=1

K∑
i=1

φsi(ψ(γi)− ψ(
K∑
j=1

γj))

+
S∑
s=1

K∑
i=1

φsi

Ns∑
n=1

V∑
j=1

wjnlogβij

− logΓ(
K∑
j=1

γj) +
K∑
i=1

logΓ(γi)−
K∑
i=1

(γi − 1)(ψ(γi)− ψ(
K∑
j=1

γj))

−
S∑
s=1

K∑
i=1

φsilogφsi

where ψ is the first derivative of the logΓ function, Ns is the number of words in

sentence s, and wjn equals to 1 if word wn is the j-th word in the vocabulary, and

0 otherwise. Each line on the right hand side of the second equal sign corresponds

to each term on the right hand side of the first equal sign. Note that the difference

between our expanded lower bound and that of LDA in (Blei et al., 2003) lies in

the second, third and fifth terms due to the additional sentence layer.

Maximizing lower bound L(γ, φ;α, β) with respect to the variational parameters γ

and φ, we obtain the following update equations:

φsi ∝ (
Ns∏
n=1

βiwn)exp(ψ(γi)− ψ(
K∑
j=1

γj))

γi = αi +
S∑
s=1

φsi

where φsi is the probability that sentence s is generated by topic i, and γi is the
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i-th component of posterior Dirichlet parameter.

Parameter Estimation

Given a corpus of documents, we aim to find parameters α and β that maximize the

log likelihood of the observed data. To achieve this objective, we use a variational

EM procedure as in (Blei et al., 2003). In the E-step, we find the optimizing values

of the variational parameters for each document. This is done as described in the

previous inference subsection. In the M-step, we find the maximum likelihood

estimates of parameters α and β using expected sufficient statistics computed in

the E-step. These two steps are repeated until the lower bound on log likelihood

converges.

By fixing the values of variational parameters and maximizing the lower bound of

likelihood with respect to the model parameters, we obtain the M-step update for

the multinomial parameter β:

βij ∝
M∑
d=1

S∑
s=1

Ns∑
n=1

K∑
i=1

φdsniw
j
dsn

where βij is the probability that j-th word is generated by topic i, all words wdsn

in sentence s share the same φsi, and wjdsn equals to 1 if word wdsn in sentence s of

document d is the j-th word in the vocabulary and 0 otherwise.

For the Dirichlet parameter α, we cannot derive the closed form of its M-step

update. We use the Newton-Raphson algorithm described in (Blei et al., 2003) to

find its optimal value.
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4.4 Experiments

In this section, we evaluate the effectiveness of our proposed Sent-LDA model for

extracting individual risk types without pre-defining them.

4.4.1 Data Preparation

We first describe the data preparation for our experiments, including the data

collection, training set construction, accuracy of data extraction, and validation of

our key “one-topic-per-sentence” assumption.

Data Collection

To collect our dataset, we extract the textual risk factors in section 1A (a newly-

created section since 2005) of each 10-K form as a document. The 10-K forms

across five years from 2006 to 2010 are collected from EDGAR databases on the

SEC’s website 3. For each risk factor, we only retain the summary heading as

shown in Table 4.1. Due to the inconsistent file format (e.g., TXT or HTML)

and form layout (e.g., headings are highlighted using different fonts or capitalized

letters), it is quite challenging to automatically extract these risk factors from 10-K

forms. To deal with these issues, we parse the HTML files into a tree structure

and then scrape the needed information using pre-defined heuristic rules. For the

TXT files, we create a set of heuristic rules, taking into account the section title,

section position, section length and so on, to retain the needed risk factors. Since

our heuristics depend on the structure of the form text, we might end up with

some “noise”, i.e., mis-extracted content. As we will report later in this section, we

3http://www.sec.gov/edgar/searchedgar/ftpusers.htm
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manually analyze the accumulated text, and find that the relative amount of such

noise is quite low, indicating good quality of extraction. Through this process, we

obtain our dataset consisting of 14, 799 documents and 322, 287 sentences (21.78

sentences per document on average) of risk factor disclosures in section 1A of 10-K

forms.

Training Set Construction

In order to compare our unsupervised method with supervised methods, we have

to construct a training set for learning supervised models. The construction of

training set consists of two steps. First, we have to pre-define a set of risk types

(categories) and create a coding scheme accordingly. To this end, we directly adopt

the taxonomy of risk types proposed by Huang and Li (2011) who are experts in

financial accounting and have defined 25 risk types by reading hundreds of annual

reports. In addition to those 25 risk types, we add the other two categories for

coding, namely “Other risk types” and “Not a risk type”. “Other risk types” is

added since we find that there are many risk factor sentences that do not belong

to any of those 25 risk types; “Not a risk type” is added since there are some

mis-extracted content as aforementioned. Second, we have to select a subset of risk

factors (sentences) that are representative of the corpus. Since random sampling

is most appropriate for obtaining a representative sample (Grimmer and Stewart,

2013), we randomly sample 3, 000 out of 322, 287 sentences for labeling.

We recruited four graduate students to label the sampled risk factor sentences.

These students are native English speakers and have taken courses in financial

accounting. Each student labels 1, 500 out of 3, 000 risk factors and each risk factor

is labeled by two students. Before labeling, they are briefed on the definition and

trained on a number of real labeled examples of each risk type. As an incentive,
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each student was paid $50. To measure the inter-rater agreement when labeling

the training set, we calculate Cohen’s Kappa and the corresponding maximum

Kappa. The maximum Kappa is usually reported to assist the interpretation of

Kappa value as suggested by Sim and Wright (2005). In our case, Cohen’s Kappa

value is 0.5679 (with Max Cohen’s Kappa value of 0.8612), indicating a moderate

strength of inter-rater agreement according to Sim and Wright (2005). To ensure

the consistency, we only retain the risk factor sentences whose labels are agreed

upon by all annotators. This leads to a set of 1, 842 examples. After removing

examples labeled with “Other risk types” and “Not a risk type”, we obtain a training

set of 1, 327 examples.

Accuracy of Data Extraction. Due to the heuristic nature of our extraction

procedure as described previously, we end up with some mis-extracted sentences of

disclosures. During the manual labeling procedure, these sentences are awarded the

label of “Not a Risk Type”. At the end of the labeling task, we counted the number

of such mis-extracted sentences, and found that only 17 of the 1842 extracted

sentences (0.92%) possessed a “Not a Risk Type” label, indicating the robustness

of our extraction heuristics.

Validation of “One-Topic-Per-Sentence” Assumtion. To validate our funda-

mental assumption that each sentence only discusses one topic, we additionally

require that each annotator records all risk factors that might belong to mul-

tiple labels. It turns out that there are only 11 such risk factors, making up

0.83% (11/1327) of the total. Clearly, in an overwhelming majority of cases, there

is a one-to-one mapping between sentences and topics. This validates the key

“One-Topic-Per-Sentence” assumption of our proposed model.
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4.4.2 Experimental Settings

We now describe the experimental settings for our evaluation, including benchmark

methods, and their parameter settings.

To compare the performance of our proposed method with other unsupervised

learning methods, we adopt two benchmark models: the original LDA model and

the Local-LDA model. The Local-LDA (Brody and Elhadad, 2010) directly applies

LDA on the collection of sentences rather than documents, and is demonstrated

to be competitive as reviewed in Section 2.2.3. To examine the effect of learn-

ing algorithms, we learn each model with two learning algorithms, namely the

variational EM (VEM) and the collapsed Gibbs sampling (CGS) algorithm. By

pairing each model with each learning algorithm, we obtain six methods denoted as

Sent-LDA-VEM, Sent-LDA-CGS, Local-LDA-VEM, Local-LDA-CGS, LDA-VEM

and LDA-CGS respectively. Sent-LDA-VEM is our proposed method while the

others are benchmarks. It is worth noting that Sent-LDA model assigns topics at

the sentence level while LDA and Local-LDA assign topics at the word level. To

use LDA and Local-LDA for our task, it requires an additional step to calculate

the sentence-level topic assignment based on the inferred topics of words in the

sentence.

To perform fair comparisons, we use the same parameter settings for all methods.

Specifically, for the variational EM learning algorithms, the maximum number of

EM iterations is 1000, and the likelihood convergence criteria is 1×10−5. For the

collapsed Gibbs sampling, we set the hyper-parameters as suggested by Griffiths

and Steyvers (2004) – α is set to 50/k where k is the number of topics, and η is

set to 0.1. The number of iterations is set to 2000.

To compare the performance of our proposed method with supervised learning meth-
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ods, we implement the state-of-the-art categorical K-nearest neighbors (CKNN)

algorithm (Huang and Li, 2011) for categorizing textural risk factor disclosures.

Since we assume that the each risk factor is only regarding one risk type, we simply

classify each risk factor with the most probable risk type generated by CKNN

algorithm.

4.4.3 Evaluation of Model Fit

In this section, we evaluate our proposed model in terms of several objective

measures of model fit that are commonly used for unsupervised topic models,

including perplexity, empirical likelihood, and silhouette coefficient.

Predictive Power

The most typical evaluation of topic models involves measuring how well a model

performs when predicting unobserved documents. Specifically, when estimating

the probability of unseen held-out documents given a set of training documents,

a “good” model should give rise to a higher probability of held-out documents.

To measure the predictive power of competing models, we use a metric, called

perplexity, that is conventional in language modeling (Azzopardi et al., 2003). The

perplexity can be understood as the predicted number of equally likely words for a

word position on average, and is a monotonically decreasing function of the log

likelihood. Thus, a lower perplexity over a held-out document is equivalent to a

higher log likelihood which indicates better predictive performance. Formally, for

a test set Dtest of M documents, the per-word perplexity is defined as:

perplexity(Dtest) = exp(−
M∑
d=1

logp(wd)/
M∑
d=1

Nd)
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where Nd is the number of words in document d. To ensure consistency of evaluation

across models when computing perplexity, we follow Teh et al. (2008)’s approxima-

tion of the predictive likelihood p(wd|Dtrain) using p(wd|Dtrain) ≈ p(wd|θ̂d), where

θ̂d is a point estimate of the posterior topic proportions of the document d.
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Figure 4.3: Held-out perplexity as a function of the number of topics.

Figure 4.3 shows the predictive power of each model in terms of the held-out

per-word perplexity by varying the number of topics (the deviations are shown

as error bars). This figure is obtained via 10-fold cross validation as in (Blei and

Lafferty, 2007). Specifically, we first divide the data into ten folds. For each fold

i and each model, we fit the model to the data that are not in fold i and then

use the fitted model to do inference for the data in fold i. Then the held-out

metrics (e.g., per-word perplexity) in each fold can be computed. As can be seen,

our proposed Sent-LDA-VEM performs best and achieves the lowest perplexity

for all the number of topics. In terms of the effects of learning algorithms, it is

interesting to observe that collapsed Gibbs sampling leads to better performance

than variational EM for LDA and Local-LDA, but results in worse performance

80



Chapter 4. Extracting Individual Risk Types

for Sent-LDA. In terms of the effects of the number of topics, the perplexities of

all methods monotonically decrease with the increase of the number of topics, but

tend to converge to a fixed value eventually. When the number of topics is larger

than 30, the perplexity tends to be steady.

To test the significance of performance difference between benchmark methods and

our proposed method, we present the perplexity of all methods with 30 topics and

conduct the paired t-tests with our proposed Sent-LDA-VEM as shown in Table

4.2. As can be seen, our proposed Sent-LDA-VEM significantly outperforms all

the benchmark methods at a 1% significance level.

Table 4.2: Comparison between models in terms of the held-out perplexity.

LDA-CGS LDA-VEM LLDA-CGS

Mean 632.91 967.11 524.47

Std (± 8.26) (± 16.84) (± 8.74)

t-value -57.90 -92.24 -31.44

p-value 0.0000 0.0000 0.0000

LLDA-VEM SLDA-CGS SLDA-VEM

Mean 973.78 804.33 389.04

Std (± 18.13) (± 10.17) (± 10.45)

t-value -88.39 -90.08 -

p-value 0.0000 0.0000 -

To examine the efficiency of different combinations of models and learning algo-

rithms, we plot the per-word perplexity and the empirical log-likelihood of the

training data during model learning. We plot the model performance as a function

of the number of iterations of the learning algorithm in Figure 4.4. We also plot

the model performance as a function of running time in Figure 4.6 since VEM

algorithms usually need dozens of iterations to converge, while CGS algorithms

require thousands of shorter iterations (Zhai et al., 2012). As shown in Figure
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4.4 and 4.6, all the algorithms tend to converge quickly (within 50 iterations, and

100 seconds). When converged, our Sent-LDA-VEM model achieves the lowest

per-word perplexity and highest log-likelihood. Note that VEM algorithms will

stop when the convergence criteria are met, but it is difficult to determine the

convergence criteria for CGS algorithms (Zhai et al., 2012).
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Figure 4.7: Empirical log-likelihood as a function of time.
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Cluster Quality

Cluster quality refers to the extent to which intra-cluster similarities outdistance

inter-cluster similarities. To measure the cluster quality of competing models, we

use the silhouette coefficient metric (Rousseeuw, 1987). For a given point i, the

silhouette of i is defined as s(i) = (b(i)− a(i))/max{a(i), b(i)}, where a(i) is the

average distance between point i to all other points in the same cluster, and b(i) is

the average distance between point i to the points in the nearest cluster which i is

not a member. The silhouette of a data sample is the average of silhouette of all

points. The silhouette is bounded between −1 (for bad clustering) and +1 (for

highly dense clustering).

Table 4.3 shows the silhouette coefficient for all methods with 30 topics. Here,

we treat each sentence as a data point, and the most probable topic as the

corresponding cluster. For calculating, we use Euclidean distance. Test statistics

are computed via 10-fold cross validation in the same way as that in Table 4.2. As

can be seen, our Sent-LDA-VEM performs best among all models. It significantly

outperforms LDA-CGS, LDA-VEM, Local-LDA-VEM, but performs equally well

as Local-LDA-CGS and Sent-LDA-CGS.

It should be noted that silhouette coefficient assumes hard clustering while topic

models actually perform soft clustering where each object might belong to multiple

clusters (topics) with different probabilities. Thus it is not as suitable as other

metrics like perplexity or those that will be introduced later. But its advantage is

that it does not require ground-truth data which might be expensive to obtain for

unsupervised learning methods.
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Table 4.3: Comparison between models in terms of the silhouette coefficient.

LDA-CGS LDA-VEM LLDA-CGS

Mean -0.06358 -0.08186 -0.03284

Std (± 0.01066) (± 0.01847) (± 0.00786)

t-value 7.19 7.70 0.84

p-value 0.0000 0.0000 0.4112

LLDA-VEM SLDA-CGS SLDA-VEM

Mean -0.12421 -0.02975 -0.02932

Std (± 0.05267) (± 0.00673) (± 0.01064)

t-value 5.588 0.12 -

p-value 0.0000 0.9152 -

4.4.4 Evaluation of Discovered Information

The objective measures reported in the previous section are essential for evaluating

the model, and have been commonly used in the computer science community.

However, it is more important to evaluate the quality of the discovered information

if the goal is to use unsupervised topic models for social science research (Chang

et al., 2009; Grimmer and Stewart, 2013). To this end, we evaluate the quality of

the discovered information below.

Labeling Topics

Before using or validating the topics learned by topic models, the topics need to

be labeled so that we could determine what each topic measures. There exist

some automatic labeling methods (Mei et al., 2007), but they are not suitable in

cases where the labeling requires domain knowledge (financial knowledge in our

case). Actually, in most topic model research, it is customary to manually label
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topics to ensure the high labeling quality (Chang et al., 2009). We thus design a

manual labeling procedure which makes use of human experts’ domain knowledge.

In particular, we first adopt 25 risk types defined by Huang and Li (2011) as the

set of candidate labels, and attempt to map topics to these 25 labels as well as

possible. For the topics that cannot be mapped to any of those 25 labels, we mark

them with “Other risk types”, and label them later with new meaningful label

names suggested by domain experts.

To execute this procedure, we recruit two human annotators to label the topics

learned by LDA-CGS, Local-LDA-CGS, and Sent-LDA-VEM. The number of

topics for each model is set to 30, and the most effective learning algorithm is

chosen for each model. To ensure consistency, the annotators are selected from

four human “labelers” chosen for creating the training set. They first perform the

mapping on their own. Table 4.4 reports the inter-rater agreement for mapping

the topics of each model. As can be seen, the annotators achieve almost perfect

agreement (kappa = 0.8400) for Sent-LDA-VEM model, substantial agreement

(kappa = 0.6296) for Local-LDA-CGS model, and moderate agreement (kappa =

0.4958) for LDA-CGS model. This observation demonstrates the superiority of

our Sent-LDA-VEM model since good topics should be more representative for

risk types and thus easier to be labeled. After the independent mapping, the

annotators get together to achieve consensus, and then decide the labels for topics

marked with “Other risk types”. Figure 4.8 presents the labeled topics learned by

our Sent-LDA-VEM model with 30 topics. Each topic is visualized using word

clouds, where the font size corresponds to the probability of the word occurring in

the topic.

Here, we take Figure 4.8 as an example for illustrating how our unsupervised

topic model can be used for suggesting a classification scheme for supervised
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Table 4.4: Inter-rater agreement for labeling topics.

Cohen’s Kappa Max Cohen’s Kappa p-value

LDA-CGS 0.4958 0.6639 0.0000

Local-LDA-CGS 0.6296 0.7407 0.0000

Sent-LDA-VEM 0.8400 0.8400 0.0000

Figure 4.8: Labeling of visualized topics.

Notes: Topics learned by our Sent-LDA-VEM are visualized using word clouds.
Risk type labels defined in (Huang and Li, 2011) are italicized, and new risk type
labels are italicized, bolded and preceded by “*”. Topic 1 to 30 are displayed from
left to right, top to bottom.
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methods when the taxonomy is unclear. As admitted by Huang and Li (2011),

their taxonomy of 25 risk types is defined based on their subjective judgment, and

“some important risk factor types may be left out”. This is further confirmed by the

fact that we find additionally 498 examples (accounting for 37.6% (498/1327) of

total training examples) labeled with “Other risk types” that cannot be categorized

into any of their 25 risk types when constructing our training set described in

Section 4.4.1. As shown in Figure 4.8, our learned topics via unsupervised topic

model could find all those 25 risk types although some highly related types are

merged together. More importantly, we find some additional risk types including

“cost risks”, “debt risks”, “property risks”, “investment risks”, “tax risks”, “credit

risks” and “accounting risks”. We have verified the joint significance of these newly

discovered risk types which will appear in our empirical study later. Thus, if we

resort to our unsupervised method when defining the taxonomy for supervised

learning method, we could reduce the risk of missing some important risk types.

Validating Topics

To validate the quality of topics, most topic modeling works only provide qualitative

assessments of inferred topics (as lists of ranked keywords) and simply assert that

topics are semantically meaningful. Chang et al. (2009) emphasize that not

measuring the internal representation (latent topics) of topic models is at odds

with their presentation and development. To address this issue, Chang et al. (2009)

and Grimmer and King (2011) have recently developed some measures based on

elicited judgment by subject experts. In the following, we employ a number of

such measures to quantitatively validate our inferred topics.

• Semantic Validation:
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The semantic coherence of topics is perhaps the most important indicator of the

quality of topics. Different from standard clustering methods, topic models yield a

set of keyword lists (or more formally, multinomial distributions over words) for

each cluster (topic). Semantic coherence of a topic refers to how well the topic

matches a human concept based on its keyword list.

To quantitatively measure the coherence of topics, we adopt the word intrusion

task designed by Chang et al. (2009). In the word intrusion task, the subject is

presented with six randomly ordered words. The task of the subjects is to find the

word which is out of place or does not belong with others, i.e., the intruder. When

the set of words minus the intruder makes sense together, the subjects should easily

identify the intruder. For example, for a set words {dog, cat, horse, apple, pig, cow},

the word “apple” is easily identified as the intruder since all the other words refer

to animals. In contrast, for a set of words {car, teacher, cat, pig, bike, cup} which

lacks coherence, it is difficult to identify the intruder.

To construct the set to present to the subjects, we follow the procedures by Chang

et al. (2009). First, we randomly select a topic inferred by a model, and select the

five most probable words from that topic. In addition to these words, an intruder

word is selected at random from a pool of words with low probability in the current

topic (to reduce the possibility that the intruder comes from the same semantic

group) but high probability in some other topic (to ensure that the intruder is not

rejected solely due to rarity). All six words are then shuffled and presented to the

subjects. The model precision MP k
m of k-th topic inferred by model m in word

intrusion task is defined as the fraction of subjects agreeing with model:

MP k
m =

1

S

∑
s
1(imk,s = wmk )
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where imk,s is the intruder word selected by subject s among S subjects, wmk is the

true intruder word, 1(·) is an indicator function which equals to 1 if (·) is true,

and 0 otherwise. The model precision MPm of model m is simply the average of

corresponding MP k
m over topics.
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Figure 4.9: Model precision of the word intrusion task.

Figure 4.9 shows boxplots of model precision of three models (LDA-CGS, Local-

LDA-CGS and Sent-LDA-VEM) with different number of topics (T30, T40, T50).

The most effective learning algorithm is chosen for each model, and the number of

topics is set to 30, 40, 50 because the perplexity in Figure 4.3 begins to converge

in the range [30, 50]. We observe that the model precision will be affected by the

number of topics. Specifically, our Sent-LDA-VEM performs better than the other

two models when the number of topics is set to 30 and 40, but worse when the

number of topics is set to 50. Overall, our proposed Sent-LDA-VEM model with

30 topics performs best. It is interesting to observe that the model performance
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in the word intrusion task is not consistent with the performance in terms of the

predictive power as shown in Figure 4.3. This means that a model with more

predictive power does not necessarily ensure a higher quality of inferred topics in

terms of semantic coherence. This observation is consistent with that in (Chang

et al., 2009), and sheds some light on the model selection and model parameter

(i.e., number of topics) settings, which we will discuss later in Section 4.4.6.

• Predictive Validation:

Quinn et al. (2010) and Grimmer (2010) argue that if topics are valid, external

events should explain sudden increases in attention to the topics. Following these

works, we perform a similar predictive validation using external events.
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Figure 4.10: Predictive validation of the topic “Macroeconomics risks”.

Figure 4.10 plots the number of risk factors (sentences) released each month about

“Macroeconomics risks” inferred by our Sent-LDA-VEM model. The count of risk

factors doubles around the year 2009, probably due to the financial crisis. This

shows that the external event (financial crisis) predicts the spikes in attention in
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textual corporate risk disclosures.

• Topic Assignment Validation:

Recall that the output of topic models has two components: one is the makeup of

topics, which is validated via the word intrusion task previously; the other one is

the topic assignment for each word (LDA and Local-LDA) or sentence (Sent-LDA)

in documents. Consequently, it is also important to test whether the association

between a document and a topic makes sense.

In order to provide an intuitive example of topic assignments for sentences (risk

factors) by using our proposed Sent-LDA-VEM model, we conduct a case analysis

of Apple Inc’s 10-K from the year 2006 and present some examples of topic

assignments in Table 4.5. The number of topics of Sent-LDA-VEM is set to 30 and

the word cloud of each topic label can be found in Figure 4.8. One observation

is that each risk factor indeed discusses only one risk type (topic), which again

confirms our key intuition that each sentence (risk factor) can be only assigned for

one topic. Another observation is that the assigned topic label well categorizes the

corresponding risk factors.

Here, we only conduct a small-scale qualitative validation of topic assignments for

our Sent-LDA-VEM model with 30 topics. The complete topic assignments for risk

factors in our dataset are visualized in our publicly available system 4. Later, we

will also present the quantitative validation of topic assignments when comparing

our models with the supervised ones.

4http://www.comp.nus.edu.sg/~baoyang/10kslda/browse/topic-list.html
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Table 4.5: Examples of topic assignments for risk factors disclosed by Apple Inc.
in 2006.

[Topic Label] Risk factors

[T1: human resources risks] The Company’s success depends largely on its
ability to attract and retain key personnel.

[T2: intellectual property risks] The Company’s business relies on access
to patents and intellectual property obtained from third parties, and the
Company’s future results could be adversely affected if it is alleged or found to
have infringed on the intellectual property rights of others.

[T3: potential/ongoing lawsuits] Unfavorable results of legal proceedings
could adversely affect the Company’s results of operations.

[T5: catastrophes] War, terrorism, public health issues, and other circum-
stances could disrupt supply, delivery, or demand of products, which could
negatively affect the Company’s operations and performance.

[T7: macroeconomic risks] Economic conditions and political events could
adversely affect the demand for the Company’s products and the financial
health of its suppliers, distributors, and resellers.

[T12: volatile stock price] The Company’s stock price may be volatile.

[T20: international risks] The Company’s business is subject to the risks
of international operations.

[T22: new product introduction] The Company must successfully manage
frequent product introductions and transitions to remain competitive and
effectively stimulate customer demand.

[T23: suppliers risks] Future operating results are dependent upon the
Company’s ability to obtain a sufficient supply of components, including micro-
processors, some of which are in short supply or available only from limited
sources.

[T27: infrastructure] Failure of information technology systems and breaches
in the security of data upon which the Company relies could adversely affect
the Company’s future operating results.

93



Chapter 4. Extracting Individual Risk Types

4.4.5 Comparison with Supervised Learning Method

Although we have reported several evaluations of our proposed unsupervised topic

model, one might still be skeptical regarding its performance due to the lack of

ground-truth data. For this reason, there is, typically, much confidence in the

evaluation results of supervised methods since the availability of ground-truth

data is a prerequisite for learning and thus can be utilized when validating. In

order to alleviate this skepticism and conduct an equally valid evaluation of our

unsupervised method, we construct a training set as in Section 4.4.1 and use it as

the ground-truth data for the task of risk factor classification.

In order to use the output of our unsupervised topic model for risk factor classifi-

cation defined in (Huang and Li, 2011), we first need to map the inferred topics

to their pre-defined 25 risk types as shown in Figure 4.8. After mapping, we can

easily classify the risk factors into risk types based on the assigned topics. To

compare the performance of unsupervised methods with the supervised ones, we

implemented the state-of-the-art categorical K-nearest neighbor (CKNN) algorithm

proposed by Huang and Li (2011) for risk factor classification.

Table 4.6 shows the 5-fold cross-validation classification accuracy of the supervised

CKNN method with different number of neighbors k, and our Sent-LDA-VEM with

number of topics T = 30. As can be seen, CKNN performs best when k = 5, we

thus conduct the t-test for all the other methods paired with it. The performance of

our proposed Sent-LDA-VEM model is not significantly (p-value=0.3720) different

from the best supervised method CKNN (k = 5), which indicates that it performs

equally well as the state-of-the-art supervised learning methods.

At this point, it is useful to reiterate Grimmer and Stewart (2013)’s observation,

that the validation of unsupervised methods in an supervised way does not obviate
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Table 4.6: 5-folded cross validation classification accuracy.

CKNN CKNN CKNN CKNN

k=2 k=5 k=10 k=15

Mean 0.8130 0.8362 0.8308 0.8233

Std (± 0.0155) (± 0.0216) (± 0.0294) (± 0.0170)

t-value 1.9507 - 0.3331 1.0517

p-value 0.0869 - 0.7476 0.3237

CKNN LDA-CGS LLDA-CGS SLDA-VEM

k=20 T=30 T=30 T=30

Mean 0.8308 0.0520 0.6060 0.8255

Std (± 0.0145) (± 0.0088) (± 0.0285) (± 0.0134)

t-value 0.5017 75.2459 14.3963 0.9457

p-value 0.6294 0.0000 0.0000 0.3720

the need for unsupervised methods. This kind of validation is possible only after

the unsupervised methods suggest a classification scheme, and provides one direct

test to ensure that the output of an unsupervised method is just as valid, reliable

and useful as the supervised methods.

4.4.6 Choosing the Number of Topics

Our proposed Sent-LDA topic model is parametric, and the number of topics

must be set beforehand. Determining the number of topics (clusters) is one of

the most difficult questions in unsupervised learning. There are some methods

that attempt to estimate the number of clusters automatically, but recent studies

show that the estimated number of clusters are strongly model dependent (Wallach

et al., 2010). It is also problematic to solely use fit statistics (e.g., perplexity,

silhouette coefficient), because Chang et al. (2009) report that there is often a
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negative relationship between the best fitted model and the substantive information

provided. Recently, Grimmer and Stewart (2013) noticed this issue and argued

that model selection should be recast as a problem of measuring substantive fit

rather than statistical fit.

To determine the number of topics for our proposed model, we decide to take into

account both the statistical fit (i.e., perplexity as shown in Figure 4.3) and the

substantive fit (i.e., semantic coherence as shown in Figure 4.9). On one hand,

choosing the number of topics based on perplexity relies on the assumption that

the goal is to optimize the predictive power of the model. However, in the context

where we seek to utilize unsupervised topic models for social science purposes, our

goal is the revelation of substantively interesting information. To this end, we turn

to substantive fit (semantic coherence). It turns out that measuring substantive

fit (model precision in word intrusion task) needs human judgment, which is time

consuming. Thus we need to employ statistical fit to reduce the set of candidate

models. Taking our proposed Sent-LDA-VEM model as an example, we first choose

30, 40 and 50 to be the potential number of topics since its perplexity in Figure

4.3 tends to converge in the range [30, 50]. Then we compare the performance of

our Sent-LDA-VEM with 30, 40 and 50 topics as shown in Figure 4.9. Finally, we

choose the number of topics to be 30 at which the model performance in word

intrusion tasks is demonstrably the best.

4.4.7 Complexity Analysis

To demonstrate the efficiency of our proposed Sent-LDA-VEM model, we use

LDA-VEM model as a baseline and compare their computational complexities.

We first analyze the computational complexity of the variational EM algorithm

for LDA-VEM. The time complexity of E-step is O(MN2K) where M is the
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number of documents in the corpus, N is the maximum document length in the

corpus and K is the number of topics. Actually, we only need to compute the

posterior multinomial for the unique terms of each document in each iteration of

the variational inference, where the number of unique terms of a document must

be slightly smaller than N . On the other hand, the time complexity of M-step is

O(V K) where V is the vocabulary size. Thus, the main computational bottleneck

of the variational EM algorithm for LDA is the E-step.

Next, we analyze the computational complexity of our derived variational EM

algorithm for Sent-LDA model. The time complexity is as same as that of LDA-

VEM except that the time complexity of E-step for our model is O(MS2K) where

S is the number of sentences in a document. This is because we assume that all

words in a sentence belong to the same topic and thus only need to compute the

posterior multinomial for each sentence in a document. Thus, it is obvious that

our Sent-LDA-VEM model is more efficient than LDA-VEM model since S will be

definitely much smaller than N. In particular, in the same Linux system with dual

3.00GHz CPU and 4.0GB memory, to train a model with 30 topics against our

dataset, it takes 12.51 seconds on average for each iteration of our Sent-LDA-VEM

algorithm but 48.63 seconds on average for each iteration of LDA-VEM algorithm

5. More importantly, as shown in Figure 4.4 and 4.6, our Sent-LDA-VEM method

converges quickly to a much lower perplexity than the LDA-VEM and all the other

benchmark models.

5We use the implementation of variational EM for LDA available at: http://www.cs.
princeton.edu/~blei/lda-c/index.html
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4.5 A Browser of Textual Risk Disclosures

Here, we present the visualization of the outputs of our learned Sent-LDA-VEM

model with 30 topics. The visualized model could serve as a browser of corporate

risk disclosures 6. To visualize our model, we adapt the TMVE (Topic Model

Visualization Engine) (Chaney and Blei, 2012) which is originally developed for

LDA model.

The browser visualizes the topic distributions per document, topic distributions

per term, term distributions per topic, list of terms per topic, and relative presence

of topics in all documents. For each topic page (top right in Figure 4.11), the

most probable terms are listed on the left side in a descending order, and related

documents and topics are listed in the middle and right part respectively. For each

document page (bottom right in Figure 4.11), the topic proportion is shown on the

left side, while the original text and related documents are shown in the middle

and right part respectively. For each term page, related terms, documents and

topics are listed.

We present an example in Figure 4.11 to demonstrate how to use the browser to

navigate the document collection. Beginning in the upper left, we see a set of topics

(risk types), each of which is a topic labeled by 3 most probable terms. We click on

a topic about “intellectual property protection” and choose a document associated

with this topic, which is the risk factor disclosures of a firm called “E Digital” in

2008. The page of this document in the bottom right includes its content and topic

proportions. We then explore a related topic about “stock price and shares”, which

is also discussed in the document. By repeating the process in this example, we

can explore more documents in the collection.

6The browser is available at: http://www.comp.nus.edu.sg/~baoyang/10kslda/browse/
topic-list.html
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Figure 4.11: A browser of textual risk disclosures.

4.6 Summary

In this chapter, we study the problem of extracting individual risk types from

risk disclosures without pre-defined them. To solve this problem, we propose an

extended LDA topic model, called Sent-LDA, and its learning algorithm. Based

on our “one-sentence-per-topic” observation, our model incorporates the additional

information of sentence structure by assuming that each sentence is generated

by only one topic. To demonstrate the effectiveness of our proposed model, we

conduct experiments to evaluate both the statistical fit (measured by conventional

metrics including perplexity and silhouette coefficient) and the substantive fit

(i.e., the quality of discovered information measured by human judgment). We

show that our proposed model (i.e., Sent-LDA model coupled with variational EM

learning algorithm) outperforms all competing unsupervised methods, and could

find more meaningful topics for representing risk types. We also show that our

proposed unsupervised model performs equally well with supervised method, but

could reduce the amount of human effort to a large extent by estimating rather
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than pre-defining risk types. We further visualize the outputs of our learned model,

which could serve as a browser facilitating the navigation of large amount of textual

risk disclosures.
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Chapter 5
Market Reactions to Individual Risk

Types

In this chapter, we continue the analysis of extracted risk types in the previous

study in Chapter 4. In particular, we conduct an empirical study to investigate

whether and how individual risk types in corporate risk disclosures will affect the

post-disclosure risk perceptions of investors.

5.1 Overview

Corporate disclosure is an important way for management to communicate firm

performance and governance to various stakeholders, especially outside investors,

and is critical to the functioning of an efficient capital market (Healy and Palepu,

2001). Specifically, it is believed that adequate corporate disclosures could enhance

the information reflected in stock price in the sense that they reduce the informa-

tion asymmetry between outside investors and informed market participants like

company management (Healy and Palepu, 2001). Therefore, they will result in

many desirable consequences, including the efficient allocation of resources in an

economy, capital market development, liquidity in the market, decreased cost of

capital, lower return volatility, and high analyst forecast accuracy (Diamond and
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Verrecchia, 1991; Healy and Palepu, 2001; Bushman and Smith, 2001; Core, 2001;

Easley et al., 2002; Easley and O’hara, 2004; Lambert et al., 2007).

Regulators, such as SEC, have also realized the importance of the corporate

disclosures, and believed that investors will benefit from the disclosures about the

risks and uncertainties of firms. Beginning 2005, the SEC mandated firms to include

a “risk factor” section in their 10-K forms to discuss “the most significant factors

that make the company speculative or risky”. Despite this effort, whether corporate

risk disclosures, especially those in this newly-created risk disclosure section, are

truly informative to investors remains an open empirical question (Kravet and

Muslu, 2013; Campbell et al., 2014). Specifically, there are competing arguments

about whether and how risk disclosures will affect investors’ risk perceptions.

The first argument is that risk disclosures are by and large boilerplate (null

argument). There is a long-standing criticism that risk disclosures in financial

reports are unlikely to be informative (Schrand and Elliott, 1998). The critics

argue that the managers are likely to disclose all possible risks and uncertainties

without considering their impacts on firms, and thus the disclosed risks are vague

and boilerplate in nature.

The second argument is that risk disclosures reveal previously unknown risk

factors and contingencies, thereby increasing investors’ risk perceptions (divergence

argument). For example, Campbell et al. (2014) find that the lengths of section

1A in 10-K forms (in which companies state their risk factors) are associated

with low bid-ask spreads (a proxy for information asymmetry) and high beta and

stock return volatility (a proxy for investors’ assessments of fundamental risk)

in the following year. Kravet and Muslu (2013) find that annual increases in

risk disclosures are associated with increased stock return volatility and trading

volume around and after the filings, suggesting that textual risk disclosures increase
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investors’ risk perceptions.

The third argument is that risk disclosures resolve a firm’s known risk factors and

contingencies, thereby reducing users’ risk perception (convergence argument). For

example, Rajgopal (1999) find that oil and gas firms’ disclosures about market

exposures are associated with stock return sensitivities to oil and gas prices.

Linsmeier et al. (2002) find that after firms disclose mandated information about

their exposures to interest rates, foreign currency exchange rates, and energy prices,

trading volume sensitivity to changes in these underlying market rates and prices

declines, even after controlling for other factors associated with trading volume.

Kothari et al. (2009) argue that the previous mixed evidence is due to the assumed

unidirectional relation between risk disclosures and the measures of market reactions

(e.g., cost of capital, stock return volatility). They thus hypothesize that the

disclosure tone will affect the direction of the relation, and test a directional

relation – favorable disclosures will result in lower return volatility while unfavorable

disclosures will lead to higher return volatility.

In this study, we examine the market (investors) reactions to the corporate risk

disclosures. We also believe that the relation between disclosures and market

reactions is directional. But different from Kothari et al. (2009), we hypothesize

that the direction of the relation depends on the semantic content of disclosures,

i.e., the individual risk types extracted using the proposed method in the previous

study in Chapter 4.

The rest of this chapter is organized as follows. Section 5.2 presents the research

question and our hypothesis. Section 5.3 describes the data preparation, including

sample selection, variable description and sample statistics. Section 5.4 presents

our econometric model specification, its estimation results, and some tests of the

explanatory power of risk type variables. Section 5.5 discusses the main findings
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and their implications. Finally, Section 5.6 provides a brief summary of the study

in this chapter.

5.2 Research Question and Hypothesis

In this study, we examine the information content of corporate risk disclosures in

the newly-created “risk factor” section in 10-K forms. Specifically, our research

question is: whether and how individual risk types in textual disclosures will affect

the post-disclosure risk perceptions of investors.

Textual risk disclosures present investors with firms’ assessments about future

contingencies, and they differ from other corporate disclosures in that they guide

investors about the range of future performance rather than the level of future

performance (Kravet and Muslu, 2013). Therefore, we hypothesize that the

informative textual risk disclosures will change investors’ risk perceptions, i.e., the

range and confidence level in their predictions of the firms’ future performance.

Besides, existing literature suggests a unidirectional relation between disclosures

and market reactions (Kravet and Muslu, 2013). We move the literature forward

by testing directional links – investors’ risk perception will depend on the specific

risk types disclosed. We limit our analysis to the newly-created risk disclosure

section, i.e., section 1A in 10-K forms, since we know that the tone of this section is

negative/pessimistic (Campbell et al., 2014). This allows us to test our hypotheses

with the control of the disclosure tone.

104



Chapter 5. Market Reactions to Individual Risk Types

5.3 Data Preparation

In this section, we describe the data preparation for our empirical study on the

effects of risk disclosures on investors’ risk perceptions.

Our initial sample includes all 10-K forms collected from 2006 to 2010 in the

previous study as described in Section 4.4.1. We remove all 10-K forms that lack

necessary stock data (e.g., stocks’ daily closing price around the day of filing of

10-K form) from Compustat and CRSP databases. Our final sample is composed

of 7, 679 firm-year observations of 1, 924 unique firms ranging from 2006 to 2010.

To avoid an unbalanced sample, we ensure that each firm has at least 3-year

observations.

The main variables in our final sample are summarized below. The summary

statistics of these variables are shown in Table 5.1.

• Dependent variable

– SRV Ait: firm i’s stock return volatility during the first two months

after the filing of disclosures in year t

The dependent variable of interest in our study is the post-disclosure risk

perceptions of investors. This variable is measured using stock return volatility,

which is a prominent proxy for diverging investor opinions in the finance

literature (Shalen, 1993; Garfinkel, 2009). Following Kravet and Muslu (2013),

we predict higher daily stock return volatility during the first two months after

the filings of disclosures than the last two months before the filings, reflecting

the increased range and reduced confidence level in investors’ prediction of

future performance. On the other hand, if risk disclosures resolve known

risk factors, investors will converge in their predictions and increase their

confidence level, indicating a lower post-disclosure stock return volatility.
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Table 5.1: Summary statistics.

Variable Mean Std. Dev. Min Max

logSRVA (post-disclosure risk perception) -7.193569 1.309828 -12.91094 2.397478

logSRVB (pre-disclosure risk perception) -7.138248 1.236654 -12.0007 1.37464

Price (stock price) 23.099 30.7174 0.06 767.5

logSize (market value of equity) 20.14738 1.89597 13.25745 26.14966

logTrd (trading volume) 12.34596 2.480582 0 19.97997

Eps (earning per share) 0.7405169 6.935572 493.73 110.36

Wc (word count) 137.432 71.29546 0 556

topic1 (human resources risks) 0.8221123 0.7065545 0 5

topic2 (intellectual property & licensing risks) 0.8464644 1.225116 0 9

topic3 (product defects lawsuits) 0.82081 0.9561522 0 13

topic4 (regulation changes: legislation) 0.4952468 0.8091989 0 9

topic5 (catastrophes & input prices) 0.8669098 1.410339 0 19

topic6 (volatile stock price) 0.6322438 0.8943585 0 9

topic7 (shareholder’s interest) 0.6017711 1.371396 0 17

topic8 (macroeconomic & cyclical industry risks) 0.9795546 1.216999 0 15

topic9 (cost risks) 0.430655 1.343795 0 29

topic10 (rely on large customers) 0.5349655 0.8099056 0 6

topic11 (competition risks) 1.008986 0.9760335 0 9

topic12 (volatile stock price) 0.8441203 1.191728 0 12

topic13 (debt risks) 0.5012371 0.9245951 0 11

topic14 (funding risks) 0.6129704 0.8844219 0 9

topic15 (financial condition risks) 0.7318661 1.382401 0 16

topic16 (property risks) 0.4777966 1.566448 0 16

topic17 (investment risks) 0.7330382 2.296263 0 42

topic18 (regulation changes: environment) 1.174632 1.15501 0 14

topic19 (tax risks) 0.7092069 1.996208 0 23

topic20 (international risks) 0.8910014 1.065195 0 11

topic21 (credit risks) 0.415028 0.8383478 0 13

topic22 (volatile demands & production introduction) 0.6799062 0.9849882 0 18

topic23 (supplier risks) 1.039849 1.521993 0 14

topic24 (accounting risks) 0.4309155 0.7761337 0 11

topic25 (production introduction) 1.164344 3.636352 0 33

topic26 (downstream risks) 0.4211486 1.233909 0 30

topic27 (infrastructure risks) 0.5014976 1.160349 0 12

topic28 (credit risks) 0.5037114 1.28771 0 20

topic29 (acquisition & restructuring risks) 1.102748 1.144197 0 15

topic30 (infrastructure & operation disruption) 1.016148 2.006242 0 21

Notes: The number of observations is 7679. Column “Mean”, “Std. Dev.”, “Min”, “Max means” represent
the mean, standard deviation, minimum value, and maximum value of corresponding variables in the
sample.
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• Independent variables of interest

– RiskDisclosure: individual risk types in disclosures

The independent variables of interest in our study are the individual risk

types contained in risk disclosures. These risk type variables are extracted in

the previous study in Chapter 4. Specifically, we extract 30 individual risk

type variables using our proposed Sent-LDA-VEM model (with 30 topics).

Risk types are aggregated at the document level, and each document (i.e.,

“risk factor” disclosure section in a 10-K form) is a firm-year observation.

That is, each risk disclosure document will be quantified into a vector with 30

dimensions, and each dimension corresponds to a risk type. The extracted 30

risk types are shown in Figure 4.8 in the previous chapter. For convenience,

we index them using topic ids, as shown in Table 5.1.

• Control variables

To obtain unbiased estimates of the effects of individual risk types on investors’

risk perceptions, we control for important relevant factors suggested by prior

literature (Kravet and Muslu, 2013; Campbell et al., 2014) as follows.

– SRV Bit: firm i’s stock return volatility during the two months before

the filing of disclosures in year t;

– Priceit: firm i’s closing stock price at the filing day of risk disclosures

in year t

– LogSizeit: the log of firm i’s market value of equity at the filing day of

risk disclosures in year t

– LogTrdit: the log of firm i’s trading volume at the filing day of risk

disclosures in year t
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– Epsit: firm i’s earning per share at the filing day of risk disclosures in

year t

– Wcit: the word counts of textual risk disclosures of firm i in year t

– Dummies: a set of time dummies at the yearly level, and a set of

industry dummies based on firms’ standard industrial classification code

Since we intend to use the fixed effect model later, we need to verify whether the

number of risk types of individual firms change over time. To this end, we plot

the heat map of the count matrix of risk types as shown in Figure 5.1. In the

figure, each column corresponds to a company (excluding those with missing values

during the five-year observation period), and every five rows (separated by the

dashed lines) correspond to a successive five-year observation of the count of a

particular risk type. The meaning of the gray scale is indicated in the right side of

the figure. We observe that there are indeed time-series variations of risk types for

each individual company since there are observable color changes in each column.

If there are no time-series variations, there will be no color changes and what we

observe will be areas with a single solid color.

5.4 Econometric Model

In this section, we present the econometric model for our empirical study, including

its model specification and estimation results.

5.4.1 Model Specification

We model the influence of individual risk types on the post-disclosure risk per-

ceptions of investors. We estimate a fixed effects linear panel model as shown in
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Figure 5.1: Heatmap of the count matrix of risk types.
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Equation 5.1.

logSRV Ait = αi + β1 · logSRV Bit + β2 · Priceit + β3 · logSizeit + β4 · logTrdit

+ β5 · Epsit + β6 ·Wcit + βT ·RiskDisclosureit + εit

(5.1)

where αi captures unobserved firm specific effects, εit is the residual random error

term, and βs are the model coefficients of interest. In particular, logSRV Ait is

the dependent variable, i.e., post-disclosure risk perceptions of investors. The

independent variables of interest are 30 individual risk types extracted, denoted

as RiskDisclosureit. Their corresponding coefficients βT interpret the influence

of risk types on the dependent variable. To obtain unbiased estimates of the

effect of risk disclosures on investors’ risk perceptions, we control for important

relevant factors at different levels, including: (1) SRV Bit, firm i’s stock return

volatility during the two months prior to the filing of risk disclosures in year t;
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(2) Priceit, firm i’s closing stock price at the filing day of risk disclosures in year

t; (3) LogSizeit, the log of firm i’s market value of equity at the filing day of

risk disclosures in year t; (4) LogTrdit, the log of firm i’s trading volume at the

filing day of risk disclosures in year t; (5) Epsit, firm i’s earning per share at the

filing day of risk disclosures in year t; (6)Wcit, the word counts of textual risk

disclosures of firm i in year t; (7) a set of time dummies at the yearly level and a

set of industry dummies based on firms’ standard industrial classification code.

5.4.2 Estimation Results

We first estimate a fixed effects (FE) model of investors’ post-disclosure risk

perceptions (SRV A) on all control variables. This baseline model is presented in

column (3) of Table 5.2. As can be seen, the control variables have some explanatory

power and their coefficients have the expected signs. Specifically, investors’ pre-

disclosure risk perceptions SRV B, the log of firms’ size (LogSize) and the log of

firms’ trading volume (LogTrd) are significantly associated (positively, negatively

and positively respectively) with post-disclosure risk perception. More importantly,

we find that the word counts of risk disclosures are significantly and positively

associated with the post-disclosure risk perception. Particularly, an additional

unique word is associated with a 0.11% increase in investors’ post-disclosure risk

perception. This finding is consistent with the previous studies in (Campbell et al.,

2014; Kravet and Muslu, 2013).

We next estimate a full fixed effects (FE) model by further including all risk types.

This full model is presented in column (1) of Table 5.2. We choose the FE model

rather than a random effects (RE) model because the Hausman test suggests that

the RE estimates are inconsistent (χ2 = 221.89, p = 0.000).
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Table 5.2: Estimation results.

Variable (1) FE (2) RE (3) FE-Controls

topic1 -0.0623** (0.050) -0.0458*** (0.006)

topic2 -0.0399 (0.185) 0.0069 (0.588)

topic3 0.0108 (0.629) 0.0106 (0.378)

topic4 -0.0826*** (0.006) -0.0344** (0.02)

topic5 -0.0208 (0.261) -0.0145 (0.125)

topic6 -0.0120 (0.627) -0.0050 (0.698)

topic7 0.0181 (0.295) 0.0119 (0.223)

topic8 0.0295** (0.039) 0.0226** (0.014)

topic9 0.0312 (0.113) 0.0208** (0.028)

topic10 -0.0155 (0.545) -0.0087 (0.536)

topic11 -0.0255 (0.263) -0.0265** (0.020)

topic12 0.0189 (0.342) 0.0096 (0.354)

topic13 0.0075 (0.748) 0.0080 (0.520)

topic14 0.0551** (0.015) 0.0326** (0.012)

topic15 -0.0217 (0.241) -0.0087 (0.336)

topic16 -0.0118 (0.626) 0.0213* (0.055)

topic17 0.0107 (0.401) 0.0147** (0.014)

topic18 -0.0364* (0.061) -0.0251** (0.012)

topic19 -0.0134 (0.367) -0.0241*** (0.002)

topic20 0.0126 (0.563) -0.0024 (0.825)

topic21 0.0026 (0.911) -0.0131 (0.345)

topic22 -0.0106 (0.646) 0.0014 (0.910)

topic23 0.0024 (0.897) -0.0014 (0.877)

topic24 -0.0039 (0.860) 0.0005 (0.971)

topic25 0.0167 (0.203) 0.0035 (0.507)

topic26 -0.0250 (0.275) -0.0119 (0.226)

topic27 -0.0410* (0.056) -0.0147 (0.164)

topic28 0.0578*** (0.002) 0.0203** (0.044)

topic29 -0.0108 (0.487) -0.0224** (0.018)

topic30 -0.0279* (0.066) -0.0105 (0.135)

LogSRVB 0.4252*** (0.000) 0.5213*** (0.000) 0.4324*** (0.000)

Price 0.0002 (0.824) 0.0010** (0.011) 0.0002 (0.858)

LogSize -0.4415*** (0.000) -0.2260*** (0.000) -0.4513*** (0.000)

LogTrd 0.0479*** (0.000) 0.0799*** (0.000) 0.0499*** (0.000)

Eps 0.0001 (0.968) -0.0038*** (0.006) -0.0001 (0.942)

Wc 0.0017** (0.025) 0.0009** (0.018) 0.0011*** (0.002)

Intercept 3.9039*** (0.000) 0.0994 (0.747) 4.0595*** (0.000)

Time dummies -included- -included- -included-

Industry dummies -included- -included- -included-

Hausman test χ2 = 211.89, p = 0.000

Notes: p-values in parentheses. *** significant at 1% level; ** significant at 5%
level; * significant at 10% level.
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Table 5.3: BIC differences between OLS models using risk type variables inferred
by different models.

BIC BIC Difference with (3) Evidence

(1) LDA-CGS -7254.387 8.036 strong support for (3)

(2) Local-LDA-CGS -7257.063 5.360 positive support for (3)

(3) Sent-LDA-VEM -7262.423 - -

The guideline by Raftery (1995) for interpreting the magnitude of absolute BIC
difference: weak (0-2), positive (2-6), strong (6-10), very strong (> 10).

5.4.3 Explanatory Power of Risk Type Variables

To test the joint significance of our discovered risk type variables (topic1 to

topic30), we conduct a likelihood ratio test on the nested models “FE full” and “FE

Controls” in column (1) and (3) of Table 5.2. The result of likelihood ratio test

(χ2[30] = 85.36, p = 0.000) shows the joint significance of our risk type variables.

More importantly, we have demonstrated in Chapter 4 that our Sent-LDA-VEM

model could find incremental information, i.e., risk types that are ignored by (Huang

and Li, 2011) when pre-defining the categories for supervised learning methods. In

order to test the joint significance of our additional risk types, we conduct another

likelihood ratio test on two nested models – “FE full” model and “FE full” model

excluding the 8 risk types (i.e., the new risk types preceded by asterisk as shown in

Figure 4.8, which are not found in 25 risk types defined by Huang and Li (2011)).

The result of the likelihood ratio test (χ2[8] = 18.95, p = 0.015) demonstrates

the joint significance of our incremental risk type variables. This implies that

adding our newly discovered risk types as predictor variables results in statistically

significant improvement in terms of the model fit.

As shown in the previous study in Chapter 4, original LDA model and Local-LDA

model are less effective than our proposed Sent-LDA-VEM model in terms of both
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statistical fit and substantive fit. Although the topics generated by the less effective

methods might be not meaningful for representing risk types, we test whether these

topics (as variables in the econometric model) could lead to a better econometric

model fit. To assess the model fit, we choose to use BIC (Bayesian Information

Criterion) statistic rather than Pseudo R2. This is because BIC penalizes for

including variables that do not significantly improve fit and allows the comparisons

of both the nested and non-nested models (Raftery, 1995). In particular, we run

the OLS (ordinary least squares) model using the same dependent and independent

variables listed in column (1) of Table 5.2. We run the model three times where,

on each occasion, we generate 30 topics by using LDA-CGS, Local-LDA-CGS,

and our proposed Sent-LDA-VEM model respectively. The most effective learning

algorithm is chosen for each model. Table 5.3 reports the BIC model fit for all

three topic models. According to the guidelines stipulated by Raftery (1995), the

difference of 8.036 in BIC between LDA-CGS and Sent-LDA-VEM provides the

strong support for our Sent-LDA-VEM model; and the difference of 5.360 in BIC

between Local-LDA-CGS and Sent-LDA-VEM provides the positive support for

our Sent-LDA-VEM model.

5.5 Findings and Implications

In this section, we discuss our main findings about the effects of individual risk

types on the post-disclosure risk perceptions of investors. Our discussion is based

on the estimation results of the full FE model as shown in column (1) in Table

5.2. Interestingly, our findings provide support for all three competing arguments

about whether and how risk disclosures will affect investors’ risk perceptions (as

introduced in Section 5.1).
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Support for Null Argument

First, we find that 22 out of 30 risk types have no significant influence on the

post-disclosure risk perceptions of investors. This finding lends support to the

null argument that risk disclosures are by and large boilerplate. Indeed, there

is a long-standing criticism that risk disclosures in financial reports are unlikely

to be informative (Schrand and Elliott, 1998). To deal with this issue, SEC has

repeatedly called for increased focus and specificity in risk disclosures, and warned

firms to “avoid generic risk factor disclosures that could apply to any company”. To

examine whether the effort of SEC has paid off, some recent studies investigate the

impact of risk disclosures in 10-K forms and reject the null argument that they lack

informativeness (Kothari et al., 2009; Campbell et al., 2014; Kravet and Muslu,

2013). One limitation of these studies is that they cannot drill down into analyzing

fine-grained risk types due to the lack of methods for measuring qualitative textual

information.

Different from these studies, our finding suggests that around two thirds (22 out of

30) of the different types of risk disclosures are still not informative enough. For

example, topic11 (Competition risks) is one risk type that is frequently reported

by firms, but most of its disclosures are quite uninformative and simply say

that the firm “operates in a competitive industry”. Another example is that

topic6 and topic12 (Volatile stock price risks) do not significantly affect the risk

perceptions of investors. This is a little surprising since this risk type should be

the exact information that the investors need when making decisions. One possible

explanation is that investors do not trust the prediction of future stock performance

by the firms themselves, but instead make their own assessments based on other

indirect but reliably disclosed information. While superficially not very useful,

all of our insignificant associations shed light on what types of risk disclosures

114



Chapter 5. Market Reactions to Individual Risk Types

lack informativeness. Accordingly, regulators like SEC could make new policy for

requiring firms to increase their informativeness.

Support for Divergence Argument

Second, we find that 3 out of 30 risk types, including topic8 (Macroeconomic risks),

topic14 (Funding risks) and topic28 (Credit risks), are positively associated with

the post-disclosure risk perceptions of investors. Specifically, an additional sentence

of disclosure about “Macroeconomic risks”, “Funding risks” and “Credit risks” will

lead to a 2.95%, 5.51% and 5.78% increase of the post-disclosure risk perceptions

at 5%, 5%, 1% significant level respectively.

The results suggest that the forward-looking statements (in section 1A of 10-K form)

about the systematic risks (i.e., macroeconomic risks) are informative, and will

increase the post-disclosure risk perceptions of investors (measured by stock return

volatility), even if the source of disclosure is the firm itself. This might be due to the

prior evidence that systematic (economic-wide) risks cannot be eliminated through

diversification, and thus the investors should incorporate this risk into firm value

(Fama and French, 1993). The results also suggest that the disclosures of liquidity

risks (i.e., funding risk and credit risk which may be compounded by liquidity risk)

are informative and will increase the post-disclosure risk perceptions of investors.

This is consistent with the prior evidence that liquidity-related forward-looking

statements have more predictive power in forecasting future liquidity situations

and future earnings (Li, 2010a).

This finding is partially consistent with recent studies (Campbell et al., 2014;

Kravet and Muslu, 2013) which support the divergence argument for the risk

disclosures in 10-K form. In particular, Campbell et al. (2014) found a positive

association between the length of risk disclosures and post-disclosure market-based
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assessment of firm risk, suggesting that investors incorporate information conveyed

by risk disclosures into their assessments of firm risk and stock price. Kravet and

Muslu (2013) found that annual increases in risk disclosures are associated with

increased stock return volatility around and after the filings, suggesting that risk

disclosures increase the risk perceptions of investors. Different from those previous

studies, we identify the specific risk types that have impacts rather than mix them

together.

Support for Convergence Argument

Third, we find that 5 out of 30 risk types, including topic1 (Human resources

risks), topic4 (Regulation changes: shareholders’ interests), topic18 (Regulation

changes: environment), topic27 (Infrastructure risks: information security), and

topic30 (Infrastructure risks: disruption), are negatively associated with the post-

disclosure risk perceptions of investors. At 1% significance level, an additional

sentence of disclosures about “Regulation changes: shareholders’ interests” will

lead to a 8.26% decrease of the post-disclosure risk perceptions respectively. At 5%

significance level, an additional sentence of disclosures about “Human resources

risks” will lead to a 6.23% decrease of the post-disclosure risk perceptions. At 10%

significant level, an additional sentence of disclosures about “Regulation changes:

environment”, “Infrastructure risks: information security” and “Infrastructure risks:

disruption” will lead to a 3.64%, 4.10% and 2.79% decrease of the post-disclosure

risk perceptions respectively.

Interestingly, these risk types (i.e., human resources, infrastructure, and regulation

changes) are unsystematic (i.e., firm-specific or industry-specific) risks. Since

the unsystematic risks can be diversified, some prior studies (Campbell et al.,

2014) argue that investors should not react as strongly to systematic risks which
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cannot be diversified. Our results suggest that the informative disclosure of

certain unsystematic risks will even decrease the post-disclosure risk perceptions of

investors. One possible explanation might be that those legal risks (i.e., regulation

changes) and firm-specific risks (i.e., human resources and infrastructure) could

reduce the information difference across investors by increasing the quantity of

public information. As suggested by Easley and O’hara (2004), private information

increases the risk to uninformed investors of holding the stock, and firms can reduce

their cost of capital by affecting the precision and quantity of information available

to investors.

This finding is contradictory to recent studies (Kothari et al., 2009; Campbell et al.,

2014; Kravet and Muslu, 2013) which lend support to the divergence argument

for the risk disclosures in 10-K form. The reason is probably that those previous

studies cannot drill down into the fine-grained risk types, and thus cannot discover

these risk type specific relationships.

Implications

The findings of our empirical study have practical implications for managers and

regulators. First, our findings provide managers with more precise understanding

on the effects of risk disclosures at the individual risk type level. Although risk

disclosures are generally pessimistic, they do not necessarily increase investors’

post-disclosure risk perceptions. Besides, since the disclosures by the firm itself

can have a significant impact, managers could take active measures to influence

investors by carefully choosing the quantity of each risk types to disclose. Second,

our findings show that one third of the disclosed risk types are informative while

the rest two thirds lack informativeness. This challenges the findings of prior

studies (Campbell et al., 2014) that the disclosures in newly added section 1A of
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10-K forms are informative in general. Since our empirical study sheds some light

on what types of risk disclosures lack informativeness, regulators like SEC could

make corresponding policies for requiring firms to improve the informativeness of

those disclosures.

5.6 Summary

In this chapter, we continue the analysis of extracted risk types in the previous

study in Chapter 4. In particular, we conduct an empirical study to investigate the

effects of individual risk types on the post-disclosure risk perceptions of investors.

Different from prior works, our empirical study provides support for all three

competing arguments regarding whether and how risk disclosures affect the risk

perceptions of investors, depending on the specific risk types disclosed. Specifically,

we find that: (1) around two thirds of risk types have no significant influence

on the post-disclosure risk perceptions of investors, lending support for the null

argument that risk disclosures are by and large boilerplate; (2) the disclosure

of 3 types of financial and systematic risks will increase the post-disclosure risk

perceptions of investors, lending support for the divergence argument; and (3) the

disclosure of 5 types of legal and idiosyncratic risks will decrease the post-disclosure

risk perceptions of investors, lending support for the convergence argument. Our

findings have implications for both managers and regulators.
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Conclusion

In this chapter, we provide concluding remarks for the thesis. Specifically, we

summarize each study and recap the corresponding contributions. We then identify

the limitations of the studies, and finally discuss the possible directions for future

research.

6.1 Concluding Remarks

This thesis is comprised of three studies. First, we study the problem of cross-

domain text classification (in general), and cross-industry risk sentiment analysis

(in particular). To solve this problem, we propose an extended LDA topic model,

called PSCCLDA, and its learning algorithm. With the purpose of overcoming

two observed limitations of existing methods, our proposed model could explicitly

distinguish the domain-independent and domain-specific topics by resorting to

the cross-collection topic models, and exploit the label information for inferring

more predictive topics by embedding the supervised logistic regression model.

Experimental results on nine standard dataests demonstrate the effectiveness of

our model for cross-domain text classification in general, and its superiority over

the state-of-the-art cross-domain learning methods. Experiential results of 42 tasks

for cross-industry risk sentiment on MD&A disclosures in 10-K forms show the
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effectiveness of our proposed model, and its superiority over existing supervised

learning methods that have been adopted in the financial accounting domain.

Second, we study the problem of extracting individual risk types from risk disclo-

sures without pre-defined them. To solve this problem, we propose an extended

LDA topic model, called Sent-LDA, and its learning algorithm. Based on our

“one-sentence-per-topic” observation, our model incorporates the additional infor-

mation of sentence structure by assuming that each sentence is generated by only

one topic. To demonstrate the effectiveness of our proposed model, we conduct

experiments to evaluate both the statistical fit (measured by conventional metrics

including perplexity and silhouette coefficient) and the substantive fit (i.e., the

quality of discovered information measured by human judgment). We show that

our proposed model (i.e., Sent-LDA model coupled with variational EM learning

algorithm) outperforms all competing unsupervised methods, and could find more

meaningful topics for representing risk types. We also show that our proposed

unsupervised model performs equally well as supervised methods, but could reduce

the amount of human effort to a large extent by estimating rather than pre-defining

risk types. We further visualize the outputs of our learned model, which could serve

as a browser facilitating the navigation of large amount of textual risk disclosures.

Third, we continue the analysis of extracted risk types in the previous study. In

particular, we conduct an empirical study to investigate the effects of individual risk

types on the post-disclosure risk perceptions of investors. Different from prior works,

our empirical study provides support for all three competing arguments regarding

whether and how risk disclosures affect the risk perceptions of investors, depending

on the specific risk types disclosed. Specifically, we find that: (1) around two thirds

of risk types have no significant influence on the post-disclosure risk perceptions of

investors, lending support for the null argument that risk disclosures are by and
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large boilerplate; (2) the disclosure of 3 types of financial and systematic risks will

increase the post-disclosure risk perceptions of investors, lending support for the

divergence argument; and (3) the disclosure of 5 types of legal and idiosyncratic

risks will decrease the post-disclosure risk perceptions of investors, lending support

for the convergence argument. Our findings have implications for both managers

and regulators.

In summary, the main contribution of this thesis is the development of two variants

of LDA topic model for identifying risk sentiment and extracting various risk

types from textual risk disclosures. The proposed methods can facilitate the

analysis of corporate risk disclosures by reducing the amount of manual effort

substantially, and are among the first to introduce the cross-domain learning and

unsupervised learning methods into the field of financial accounting. Moreover,

by taking advantage of the proposed method, an empirical study is enabled to

examine the market reactions to risk disclosures at the individual risk type level.

The findings reconcile the conflicting arguments on the effects of risk disclosures

on post-disclosure risk perceptions of investors in accounting literature.

6.2 Limitations

The studies in this thesis are not without limitations, which are summarized below.

Limitations of Our Model for Cross-Industry Analysis

Our PSCCLDA model for cross-industry analysis is subjected to several limitations.

First, our model is limited to binary classification tasks. To model the observed

class labels (e.g., risk sentiment labels) of documents in the training source domain,

we embed the logistic regression model into the unsupervised cross-collection LDA
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model. Logistic regression model is an effective generative classifier but can only

be applied for binary classification problem. Since we might have multiple risk

sentiment labels (e.g., positive, negative and neutral) in some cases, it is more

desirable to design a model that can be directly used for multi-class classification

problem in the context of cross-domain learning. To this end, one possible solution

is to generalize the logistic regression model to the softmax regression model (Wang

et al., 2009a), which could be directly applied for the multi-class classification

problem (e.g., cross-industry sentiment analysis in our case).

Second, our PSCCLDA model is not non-parametric. There are two important

parameters to be set, including the number of topics and the importance weight

of collection-independent and collection-dependent topics. Although we have

demonstrated that our proposed model is not sensitive to these parameters in

Section 3.4, these parameters might need to be carefully tuned when the model is

applied for a new problem. In this sense, a non-parametric model is more preferable.

One possible solution might be the hierarchical Dirichlet process (Teh et al., 2005)

which could automatically infer the number of topics from data.

Third, our PSCCLDA model is actually a general cross-domain text classification

algorithm, which is not optimized for the specific task of cross-industry risk

sentiment analysis. For better performance, the model should be augmented with

existing domain knowledge in the context of risk sentiment analysis. One possible

augment might be the inclusion of the prior knowledge of risk sentiment words

(Loughran and McDonald, 2011) via the Dirichlet prior as in (Jo and Oh, 2011).

Limitations of Our Model for Extracting Individual Risk Types

Our Sent-LDA model for extracting individual risk types is subjected to several

limitations. First, we do not explore the correlations between the learned topics
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(i.e., risk types). Clearly, some risk types are more related with each other and

should be merged together. It would be useful to explore these correlations and

perform a hierarchical clustering (Han et al., 2006) of the learned topics so that

we can obtain a more concise taxonomy of risk types.

Second, our Sent-LDA model is not non-parametric. There is one important

parameter, i.e., the number of topics, that needs to be carefully chosen. Although

we have discussed how to set this parameter in Section 4.4.6, it is not an easy

task to choose its optimal value. One possible solution might be the hierarchical

Dirichlet process (Teh et al., 2005) which could automatically infer the number of

topics from data.

Third, our Sent-LDA model does not support the interactive model learning.

We have elicited the human judgments for evaluating the quality of discovered

information of our model. These human judgments from domain experts are

valuable domain knowledge which could be in turn incorporated into the model

for enhancement. However, our current model does not provide the mechanism,

such as in (Hu et al., 2011), to incorporate expert feedback for adjusting the model

leaning in an interactive manner.

Limitations of Our Empirical Study on Effects of Individual Risk Types

Our empirical study on the effects of individual risk types is not without its

limitations. First, we only look at risk disclosures from regulated corporate annual

reports (i.e., 10-K forms), but do not consider risk disclosures from other sources,

such as voluntary communications and information intermediaries. The disclosures

from various sources have different levels of credibility and timeliness (Kothari

et al., 2009), which should be taken into account when examining the effects of

risk disclosures.
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Second, we do not consider the tone (sentiment) of the extracted risk types. Some

prior studies (Kothari et al., 2009) provide the evidence that the tone of risk

disclosures will affect the risk perceptions of investors. Therefore, the tone, in

addition to the risk types, should be taken into account when examining the effects

of risk disclosures. To this end, we need to design novel text analysis methods

which can simultaneously extract the individual risk types and identify the tone

associated with them.

6.3 Directions for Future Work

Apart from the future work for addressing the aforementioned limitations, there

are some interesting future research directions as discussed below.

More Robust Evaluation Methods

The evaluation of unsupervised topic models is an interesting direction for future

research. The challenge of evaluating topic models lies on their unsupervised nature

(Grimmer and Stewart, 2013). When the model is extended to a supervised version,

such as our PSCCLDA model proposed in Chapter 3, it is easy to perform evaluation

in the same way as the supervised models. But if the model is unsupervised, there

usually lacks the ground-truth data for evaluation. Conventionally, unsupervised

topic models are evaluated in terms of the statistical model fit, using metrics such

as perplexity and empirical likelihood (Wallach et al., 2009b). Recently, some

researchers begin to notice the limitations of the exiting evaluation methods for

unsupervised topic models. Particularly, some researchers (Chang et al., 2009;

Grimmer and Stewart, 2013) argue that the quality of the discovered semantic

structure is more important than the statistical fit when evaluating topic models,

124



Chapter 6. Conclusion

especially when the models are employed for social science research. Von Luxburg

et al. (2012) also suggest that unsupervised methods should always be studied and

evaluated in the context of their end-use. We take a small step in this direction by

proposing and evaluating an unsupervised topic model for the exploratory analysis

of corporate risk disclosures. However, it is still an open question for designing

more robust evaluation methods so that the user could trust the model describing

text that he/she has never read.

More Scalable Inference Algorithms

Another possible direction for future research is to improve the scalability of the

model inference for the LDA and its variants. Existing learning algorithms for

the LDA-style models require heavy computations. Due to the prevalence of large

datasets, there is a need to design more scalable and efficient learning algorithms.

In this direction, there have been some attempts to design the scalable parallel

framework for learning the LDA model, such as the Hadoop MapReduce framework

in (Ahmed et al., 2012; Zhai et al., 2012). In future, it will be extremely useful

to design such scalable framework for the extended topic models, such as those

proposed in this thesis.

More Empirical Studies on Individual Risk Types

There are many opportunities to examine the effects of risk disclosures at the

individual risk type level. Financial accounting researchers have long recognized

the importance of corporate disclosures, and have conducted various empirical

studies to examine their effects (Healy and Palepu, 2001). A prerequisite for this

line of research is the effective text analysis method for quantifying the variables of

interest from text, including amount, tone, and readability (Li, 2010b). However,
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few studies examine the effects of another important variable, i.e., individual risk

type, due to the lack of effective methods for extracting them. Our proposed

solution for extracting this variable enables the empirical inactivation of corporate

risk disclosures at the individual risk type level. In the thesis, we only examine

the effects of risk disclosures on the post-disclosure risk perceptions of investors.

In future, there are many other dependent variables that can be investigated, such

as future earnings, abnormal returns, accounting frauds, and so on.
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