
Noise-Robust Speech Recognition

Using Deep Neural Network

Bo Li

Department of Computer Science

School of Computing

National University of Singapore

A thesis submitted for the degree of

Doctor of Philosophy

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48685462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:li-bo@outlook.com
http://www.comp.nus.edu.sg
http://www.comp.nus.edu.sg
http://www.nus.edu.sg

NOISE-ROBUST SPEECH RECOGNITION USING

DEEP NEURAL NETWORK

BO LI

(B.Eng. NWPU)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

Acknowledgments

First of all, I would like to express the utmost gratitude to my supervisor, Dr. Khe

Chai Sim, for his guidance, suggestion and criticism throughout my study in National

University of Singapore. His responsibility to students is impressive, which has been

invaluable to me. I learned a lot from his strictness in mathematics, strong motivation

of concepts and clear logic flow during presentation and writing. The firm requirements

and countless guidance on these aspects have given me the ability and confidence to

carry out the research work of this thesis as well as the work in future. By initiating

well-targeted questions, offering experienced suggestions and having constructive dis-

cussions, he is without doubt the most important person that has helped me make this

work possible!

Special thanks go to Prof. Steve Renals, Prof. Tan Chew Lim, Assoc. Prof. Wang

Ye, Prof. Chua Tat Sen and Prof. Ng Hwee Tou for their invaluable feedbacks and

suggestions at different stages of my PhD study. Their insight, experience and wide-

range knowledge have benefited me a lot. Besides, I would like to thank Prof. Ng Hwee

Tou for providing financial support for my study through the MDA supported CSIDM

program. I would also like to thank Dr. Golam Ashraf for his guidance in the first two

years of my PhD study. His great passion and thrivingness on challenge and creativity

influence me a lot.

I owe my thanks to my colleagues in the Computational Linguistic Lab for the help

and encouragements they have given to me. Particular thanks must go to Guangsen

Wang, Shilin Liu, Xuancong Wang, Thang Luong Minh and Lahiru Thilina Samarakoon

for various discussions. There are many other individuals to acknowledge, but my

thanks go to, in no particular order, Xiong Xiao, Lei Wang, Dau-Cheng Lyu, Xiaohai

Tian and Bolan Su. I must also thank the technical service team for their excellent

work in maintaining the computing facilities and the staff of the Deck canteen for their

kindness especially when I was frustrated.

I cannot imagine a life in Singapore without the support from my wife, Xiaoxuan

i

Wang. She has shared my excitement, happiness as well as disappointment and sadness.

Her support both emotionally and financially is the source of the energy for me to finish

my study.

Finally, the biggest thanks go to my parents to whom I always owe everything! For

many years, they have offered everything possible to support me, despite my lack of

going back home since I entered college.

ii

Table of Contents

Acknowledgements i

Table of Contents iii

Summary vii

List of Acronyms ix

List of Tables xi

List of Figures xiii

List of Symbols xv

List of Publications xvii

1 Introduction 1

1.1 Automatic Speech Recognition . 3

1.2 Deep Neural Networks for ASR . 8

1.3 Major Contributions . 10

1.4 Organization of Thesis . 11

2 Noise-Robust Speech Recognition 13

2.1 Model of the Environment . 13

2.2 Feature-based Compensation . 16

2.2.1 Noise-Robust Features . 16

2.2.2 Feature Enhancement . 17

2.3 Model-based Compensation . 18

2.3.1 Single Pass Re-training . 19

2.3.2 Maximum Likelihood Linear Regression 20

iii

2.3.3 Parallel Model Combination . 21

2.3.4 Vector Taylor Series Model Compensation 22

2.4 Uncertainty-based Scheme . 24

2.4.1 Observation Uncertainty . 24

2.4.2 Uncertainty Decoding . 25

2.4.3 Missing Feature Theory . 25

2.5 Noise Estimation . 27

2.6 Summary . 28

3 Deep Neural Network 29

3.1 Deep Neural Network Acoustic Model 29

3.1.1 Multi-Layer Perceptron . 29

3.1.2 Deep Neural Network . 33

3.1.3 Hybrid DNN-HMM AM . 38

3.2 DNN AM’s Noise Robustness . 40

3.2.1 Conventional Noise-Robust Features 41

3.2.2 Speech Enhancement Techniques 42

3.3 A Representation Learning Framework 43

3.3.1 Layered Representation Learning in DNN AM 45

3.3.2 Noise Robustness in Different Representations 46

3.3.3 Learning Robust Representations for DNN 48

3.4 Summary . 49

4 Noise-Robust Input Representation Learning 51

4.1 VTS-based Feature Normalization . 52

4.1.1 Feature Normalization . 53

4.1.2 VTS Model Compensation . 55

4.1.3 VTS-MVN . 57

4.1.4 Feature-based VTS . 59

4.1.5 Adaptive Training . 60

4.1.6 Discussions . 60

4.2 Deep Split Temporal Context . 61

4.2.1 Split Temporal Context . 62

4.2.2 Deep Split Temporal Context . 63

4.2.3 Learning Algorithm . 64

4.2.4 Discussions . 65

4.3 Spectral Masking . 65

4.3.1 Spectral Masking System . 66

4.3.2 Mask Estimation . 68

iv

4.3.3 Linear Input Network Adaptation 72

4.3.4 Discussions . 76

4.4 Summary . 77

5 Noise-Robust Hidden Representation Learning 79

5.1 Hidden-Activation Masking . 80

5.1.1 Assumptions . 80

5.1.2 Ideal Hidden-Activation Mask . 82

5.1.3 Comparisons . 85

5.1.4 Discussions . 87

5.2 Noise Code . 87

5.2.1 IHM and Sigmoid Function . 88

5.2.2 Learning Algorithm . 89

5.2.3 Comparisons . 91

5.2.4 Discussions . 92

5.3 Summary . 92

6 Experiments 93

6.1 Datasets . 93

6.1.1 The Aurora-2 Corpus . 93

6.1.2 The Aurora-4 Corpus . 94

6.2 Noise-Robust Input Representations . 95

6.2.1 VTS-MVN . 95

6.2.2 DSTC . 100

6.2.3 Spectral Masking on Aurora-2 104

6.2.4 Spectral Masking on Aurora-4 112

6.3 Noise-Robust Hidden Representations 116

6.3.1 IHM . 116

6.3.2 Noise Code . 118

6.4 Summary . 120

7 Conclusions 123

7.1 Summary of Results . 124

7.2 Future Work . 125

Bibliography 127

v

vi

Summary

Speech-based services are becoming widely adopted in real world applications. Devel-

oping Automatic Speech Recognition (ASR) systems that would be much more robust

against variations and shifts in acoustic environments, external noise sources and com-

munication channels is of crucial importance to the success of speech-based applications.

Recently, Deep Neural Networks (DNNs) have been successfully integrated into ASR

systems. Although they have much better generalization capabilities against variations

than conventional systems, the gap between the performance on clean and noisy speech

is still large. Additionally, many existing noise-robust feature extraction techniques and

speech enhancement algorithms have been found to be ineffective for DNNs.

In this thesis, we address the DNN-based noisy speech recognition problem by learn-

ing robust representations. A Mean Variance Normalization technique is first devel-

oped to improve the robustness of the normalized feature representations. It integrates

independently estimated noise statistics using the Vector Taylor Series model compen-

sation. This technique is hence referred to as the VTS-MVN. It reduces noise variations

in original feature representations and makes them more suitable for acoustic modeling.

Due to the borrowed noise statistics, the gain is limited. DNNs’ discriminative learn-

ing and complex nonlinearity further prevent the incorporation of the widely adopted

noise model. We thus investigate DNNs’ implicit environment modeling capability by

employing a long temporal span of speech information. The change of the input dimen-

sion leads to a dramatical increase in the model size. A Deep Split Temporal Context

(DSTC) system is then proposed. It models each sub-context separately and generates

multiple representations that collectively yield better phonetic predictions.

The VTS-MVN and the DSTC implicitly improve the input representation robust-

ness by learning reliable parameter estimations. To explicitly address the noise varia-

tions in input features, we revisit the missing feature theory and develop a DNN-based

spectral masking system. Effective noise reductions and strong complementariness have

been observed. By further addressing the training and testing mismatch problem, we

vii

can achieve the best performance on two benchmark tasks. DNN itself learns levels

of representations to disentangle variations. The success of our spectral masking tech-

nique suggests its limitations in factoring out noise specific variations, which may still

exist in those automatically learned hidden representations. An Ideal Hidden-activation

Mask (IHM) is developed to identify and discard noise-prone latent feature detectors.

With IHMs, the generated hidden representations are immune to input noise. This

IHM has no noise-type dependency and is also more robust against estimation errors.

A further analysis of the IHM leads to a noise code technique which simulates the

IHM effects by attenuating the sigmoid activation functions with linearly estimated

bias shifts. Moreover, the codes capturing environment statistics are estimated within

the original DNN’s learning framework towards the ultimate phonetic predictions.

Improved noise robustness has been obtained using the proposed techniques on two

benchmark tasks, Aurora-2 and Aurora-4. The spectral masking approach successfully

yields the best reported performance in the literature on both tasks at the time of

writing and is one of the most promising noise-robust techniques for DNN-based ASR

systems.

viii

List of Acronyms

AFE Advanced Front-End

AM Acoustic Model

ASR Automatic Speech Recognition

CD Contrastive Divergence

CMS Cepstral Mean Subtraction

CMVN Cepstral Mean Variance Normalization

CNN Convolutional Neural Network

CSN Cepstral Sub-bank Normalization

DBN Deep Belief Network

DCT Discrete Cosine Transform

DNN Deep Neural Network

DRDAE Deep Recurrent Denoising AutoEncoder

DSTC Deep Split Temporal Context

EBP Error Back-Propagation

EM Expectation Maximization

FBank Filter-Bank

fMLLR feature-based Maximum Likelihood Linear Regression

GMAPA Generalized Maximum A Posterior spectral Amplitude estimator

GMM Gaussian Mixture Model

GRBM Gaussian-Bernoulli Restricted Boltzmann Machine

HEQ Histogram EQualization

HMM Hidden Markov Model

IBM Ideal Binary Mask

IDCT Inverse Discrete Cosine Transform

IHM Ideal Hidden-activation Mask

IRM Ideal Ratio Mask

KL Kullback-Leibler

ix

LIN Linear Input Network

LM Language Model

LVCSR Large Vocabulary Continuous Speech Recognition

MAP Maximum A Posterior

MAPA Maximum A Posterior spectral Amplitude estimator

ME Mask Estimator

MFCC Mel Frequency Cepstral Coefficient

MFT Missing Feature Theory

MLLR Maximum Likelihood Linear Regression

MLP Multi-Layer Perceptron

MLSA Maximum Likelihood Spectral Amplitude estimator

MMSE Minimum Mean Square Error spectral estimator

MSE Mean Square Error

MVA Mean subtraction Variance normalization with Autoregressive moving

average filtering

MVN Mean Variance Normalization

NAT Noise Adaptive Training

NN Neural Network

OOV Out-Of-Vocabulary

PER Phoneme Error Rate

PLP Perceptual Linear Predictive

PMC Parallel Model Combination

RASTA Relative Spectra

RBM Restricted Boltzmann Machine

RNN Recurrent Neural Network

SNR Signal-to-Noise Ratio

SPR Single Pass Re-training

SS Spectral Subtraction

STC Split Temporal Context

T-F Time-Frequency

VTS Vector Taylor Series

WER Word Error Rate

WSJ Wall Street Journal

x

List of Tables

3.1 WER(%) performance of the multi-style GMM and DNN on Aurora-2. . 40

3.2 WER(%) performance of the multi-style GMM and DNN on Aurora-4. . 41

3.3 WER (%) performance of different robust feature extraction methods in

both GMM-HMM and DNN-HMM systems on Aurora-2. 42

3.4 WER (%) performance of different feature enhancement algorithms for

the clean-data trained AMs on Aurora-2. 43

6.1 A summary of the Aurora-2 corpus. 94

6.2 A summary of the Aurora-4 corpus. 95

6.3 WER (%) performance of VTS-MVN on clean trained models with MFCC

features on Aurora-2. 96

6.4 WER (%) performance of VTS-MVN on multi-style trained models with

both MFCC and FBank features on Aurora-2. 97

6.5 WER (%) performance of VTS-MVN on clean trained models with MFCC

features on Aurora-4. 99

6.6 WER (%) performance of VTS-MVN on multi-style trained models on

Aurora-4. 99

6.7 WER (%) performance of multi-style trained NNs with different struc-

tures on Aurora-2. 101

6.8 WER (%) performance of DSTC systems with different number of partial

contexts on Aurora-2. 102

6.9 WER (%) performance of DSTC systems with different number of partial

contexts on Aurora-4. 103

6.10 WER (%) performance of different masks for both the clean trained and

multi-style trained DNN AMs on Aurora-2. 105

6.11 WER (%) performance of different RBM-DNN configurations on Aurora-2.107

6.12 WER (%) performance of RBM-DNN based spectral masking system on

Aurora-2. 107

xi

6.13 WER (%) performance of RBM-DNN AM adaptation with LINs on

Aurora-2. 108

6.14 WER (%) and MSE performance of ME adaptation using generative

LINs on Aurora-2. 109

6.15 WER (%) and MSE performance of ME adaptation using LIN sharing

on Aurora-2. 110

6.16 WER (%) performance of spectral masking with LIN adaptations on

Aurora-2. 110

6.17 WER (%) performance of LINs with different structure constraints on

Aurora-2. 111

6.18 WER (%) performance of different masking algorithms on Aurora-4. . . 113

6.19 WER (%) performance of different RBM-DNN setups on Aurora-4. . . . 113

6.20 WER (%) performance of AM adaptation with different LINs on Aurora-4.114

6.21 WER (%) performance of spectral masking with different LIN adapta-

tions on Aurora-4. 115

6.22 WER (%) performance of utterance-based LIN adaptation on Aurora-4. 116

6.23 WER (%) performance of different masks on Aurora-4. 117

6.24 WER (%) performance of noise codes with different experiment config-

urations on Aurora-4. 120

6.25 Reported average WER(%) performance of multi-style trained systems

on Aurora-2. 121

6.26 Reported average WER(%) performance of multi-style trained systems

on Aurora-4. 121

xii

List of Figures

1.1 The generic automatic speech recognition system architecture. 4

1.2 Major computational components for the MFCC feature extraction. . . 4

1.3 Phoneme representation of the word “Hello”. 5

1.4 The GMM-HMM speech recognition system architecture. 7

2.1 Noise sources and distortions that can affect speech. 14

2.2 Simplified noisy acoustic environment model. 15

2.3 Methods of reducing the acoustic mismatches. 15

2.4 The standard feature compensation process. 16

2.5 An example regression tree for adaptation. 20

2.6 Feature compensation with uncertain observations. 24

2.7 Uncertainty decoding. 25

3.1 The structure of a neural network with 1 hidden layer. 30

3.2 A single computation layer of neural networks. 31

3.3 A Restricted Boltzmann Machine. 34

3.4 A comparison among a Restricted Boltzmann Machine (RBM), a Deep

Belief Net (DBN) and a Deep Neural Network (DNN). 38

3.5 The hybrid DNN-HMM system architecture. 39

3.6 Effectiveness of spectral restoration techniques on multi-style trained

DNNs on Aurora-2. 44

3.7 Different representations of the utterance “8055” under clean and noisy

(train noise with 0dB SNR) conditions. 47

4.1 A comparison between the two MVNs using only the first two dimensions

of FBank features on Aurora-2. 53

4.2 A visual illustration of the VTS-MVN process. 58

4.3 A comparison of different shallow neural network structures. 62

4.4 A comparison of different deep neural network structures. 63

4.5 The proposed system simplification for spectral masking. 68

xiii

4.6 Two proposed mask estimators. The models inside the dashed box are

those from the original DNN AM. 69

4.7 Spectrograms of the same speech “8055” under different conditions. . . 69

4.8 Comparisons of state-dependent bases (blue bars) and speech spectral

envelops (red contour) on Aurora-2. 71

4.9 System architecture comparisons between the conventional DNN based

acoustic model (the lightly shaded upper part) and the proposed spec-

tral masking system (the unshaded lower part). The linear input net-

work (LIN) adaptation transformations for the mask estimator and the

acoustic model are represented as LINME and LINAM respectively. . . . 73

4.10 Mask estimator adaptation using LINs borrowed from acoustic models. . 75

5.1 The average KL-divergence between noisy and clean hidden representa-

tions at different hidden layers of the baseline DNN on Aurora-4. 81

5.2 The similarity function for the IHM. 83

5.3 WER(%) performance of applying the default IHM (λ = 1.0 and κ = 0.5)

at different hidden layers of the baseline DNN on Aurora-4. 84

5.4 WER(%) performance of applying the IHM at the first hidden layer of

the baseline DNN with different λ values and fixed κ = 0.5 on Aurora-4. 85

5.5 WER(%) performance of applying the IHM at the first hidden layer of

the baseline DNN with different κ values and fixed λ = 2.0 on Aurora-4. 85

5.6 The the discarding ratios of active hidden features (> 0.001) by applying

the IHM at the first hidden layer of the baseline DNN with different κ

values and fixed λ = 2.0 on Aurora-4. 86

5.7 Sigmoid functions with different shifting offsets. 89

5.8 The model structure of a DNN with an input noise code vector. 90

6.1 WER(%) performance of DNNs with different number of hidden layers

using MFCC features on the Aurora-4 clean training task. 98

6.2 WER(%) performance of DNNs with different number of hidden layers

using 40D FBank features on the Aurora-2 multi-style training task. . . 100

6.3 WER(%) performance of DNNs with different number of hidden layers

using 24D FBank features on Aurora-2. 104

6.4 WER reductions of system “C” from system “A” on Aurora-2. 108

6.5 WER reductions of system “A+LIN” from system “A” on Aurora-2. . . 108

6.6 WER reductions of system “D” from system “C” on Aurora-2. 110

6.7 WER reductions of system “D+LIN” from system “D” on Aurora-2. . . 111

6.8 A comparison of the estimated IBM, IRM and IHM using relative WER

reductions from the baseline system on Aurora-4. 118

xiv

List of Symbols

E the energy function

LC the local SNR criterion for binarizing mask values

Z the partition function

α the momentum weight

β the threshold parameter of the IRM

A the transformation matrix

B the mask basis matrix

C the Discrete Cosine Transform

C† the pseudo-inverse Discrete Cosine Transform

F the diagonal matrix involved in VTS

I the identity matrix

J the Jacobian matrix

T the transformation matrix

W the weight matrix of a neural network layer

Σ the covariance matrix of a Gaussian

µ the mean vector of a Gaussian

a the visible bias vector of an RBM

b the bias vector

c the noise code vector

d the target posterior probability vector

h the hidden activation vector of a neural network layer

o the speech observation vector

p the posterior output vector of a neural network

ε the floor constant

η the learning rate

γ the HMM state posterior

κ the threshold parameter of the IHM

xv

λ the slope parameter of the IHM

D the KL-divergence distance measure

E the model cost function

O the speech observation sequence

S the HMM state sequence

W the word sequence

φ(x) the sigmoid function

ψ(x) the softmax function

σ the standard deviation of a visible unit

τ the parameter update index

θ the complete set of model parameters

ξ the slope parameter of the IRM

ζ the input offset of sigmoid functions

c the Gaussian weight coefficient

m the mask computed at each feature component

n the time-domain speech and noise sample index

q the similarity value between two hidden activations

r the SNR computed at each T-F unit

s the HMM state

t the time frame index

u the channel distortion signal

v the visible input vector

x the clean speech signal

y the noisy speech signal

z the additive noise signal

xvi

List of Publications

Journals

• Bo Li, Khe Chai Sim; A Spectral Masking Approach to Deep Neural Network
based Robust Speech Recognition, [under review] Transactions on Audio, Speech,
and Language Processing, IEEE/ACM, 2013.

Conferences

• Bo Li, Khe Chai Sim; Modeling Long Temporal Contexts for Robust DNN-based
Speech Recognition, submitted to Interspeech, ISCA, 2014.

• Bo Li, Khe Chai Sim; An Ideal Hidden-Activation Mask for Deep Neural Net-
works based Noise-Robust Speech Recognition, in Proceedings of ICASSP, IEEE,
2014.

• Bo Li, Khe Chai Sim; Improving Robustness of Deep Neural Networks via Spectral
Masking for Automatic Speech Recognition, in Proceedings of ASRU, IEEE, 2013.

• Zhiyan Duan, Haotian Fang, Bo Li, Khe Chai Sim, Ye Wang; The NUS Sung
and Spoken Lyrics Corpus: A Quantitative Comparison of Singing and Speech,
in Proceedings of APSIPA, IEEE, 2013.

• Bo Li, Yu Tsao, Khe Chai Sim; An Investigation of Spectral Restoration Al-
gorithms for Deep Neural Networks based Noise Robust Speech Recognition, in
Proceedings of Interspeech, ISCA, 2013.

• Bo Li, Khe Chai Sim; Noise Adaptive Front-End Normalization based on Vector
Taylor Series for Deep Neural Networks in Robust Speech Recognition, in Pro-
ceedings of ICASSP, IEEE, 2013.

• Bo Li, Khe Chai Sim; A Two-stage Speaker Adaptation Approach for Subspace
Gaussian Mixture Model based Nonnative Speech Recognition, in Proceedings of
Interspeech, ISCA, 2012.

• Guangsen Wang, Bo Li, Shilin Liu, Xuancong Wang, Xiaoxuan Wang, Khe Chai
Sim; Improving Mandarin Predictive Text Input by Augmenting Pinyin Initials
with Speech and Tonal Information, in Proceedings of ICMI, ACM, 2012.

xvii

• Itamar Arel, Shay Berant, Tsvi Slonim, Ami Moyal, Bo Li, Khe Chai Sim; Acous-
tic Spatial-temporal Modeling using Deep Machine Learning for Robust Phoneme
Recognition, in Proceedings of Signal Processing Conference, AFEKA, 2011.

• Bo Li, Khe Chai Sim; Hidden Logistic Linear Regression for Support Vector
Machine based Phone Verification, in Proceedings of Interspeech, ISCA, 2010.

• Bo Li, Khe Chai Sim; Comparison of Discriminative Input and Output Transfor-
mations for Speaker Adaptation in the Hybrid NN/HMM Systems, in Proceedings
of Interspeech, ISCA, 2010.

xviii

Chapter 1
Introduction

From prehistory to the multimedia digital age, speech communication has been the

dominant mode of human social bonding and information exchange. With the advance-

ment of technology, various machines and devices have been invented and adopted to

ease humans’ lives. The vision of communicating with these machines in speech has

been a collective dream for many decades. Automatic Speech Recognition (ASR), the

transcription of speech signals into word sequences, is the first step towards speech

communication with machines. In contrast to the development of the first speech

synthesizer in 1936 by AT&T, the first automatic speech recognizer, a simple digit

recognizer, appeared in 1952 [1]. In 1969, John Pierce of Bell Labs said that ASR will

not be a reality for several decades. However, the 1970s witnessed a significant the-

oretical breakthrough in speech recognition - Hidden Markov Models (HMMs) [2, 3].

Since then, the multidisciplinary field of ASR has proceeded from its infancy to its

coming of age and into a quickly growing number of practical applications and com-

mercial markets. HMMs were extensively investigated and became the most successful

technique for acoustic modeling in speech recognition. The maximum likelihood based

Expectation Maximization (EM) algorithm and the forward-backward (Baum-Welch)

algorithm have been the principal means by which the HMMs are trained with data

for more than 30 years. Over the past few years the striking progress in large-scale

speech recognition has been attributed to the successful development and application

of discriminative learning [4, 5, 6, 7]. Moreover, the success in learning Deep Neural

Networks (DNNs) has further boosted the recognition performance towards humans’

expectations since 2009 [8]. It has been reported that a Phoneme Error Rate (PER)

of 17.7% has been achieved in 2013 [9] on the benchmark TIMIT phoneme recognition

task, on which the expected human performance is 15% PER [10].

With the introduction and development of advanced statistical models and dra-

matically increased computing power, significant progress in ASRs has been achieved.

1

1. INTRODUCTION

Continuous speech recognition has become the main research interest after simple con-

nected and isolated word recognition was well dealt with. The size of the recognition

vocabulary increased from 998 words in the Resource Management task (1988-1992) to

20000 in the Wall Street Journal (WSJ) task (1993-1995). A recognition system with

a vocabulary size of the order of the WSJ task is often referred to as a Large Vocab-

ulary Continuous Speech Recognition (LVCSR) system. With the rise of deep neural

networks for speech recognition, many industry level systems have been deployed such

as Google’s voice search and YouTube’s video transcription, Apple’s Siri etc. These

systems usually have even bigger dictionaries [11]. Besides the vocabulary size, the

difficulty of evaluation tasks has also been increased in other aspects to approximate

a more realistic and practical recognition problem. For example, the acoustic environ-

ment of the evaluation data has changed from a quite laboratory condition to realistic

noisy ones. More natural and spontaneous speech with severe signal degradation, such

as conversational telephone speech, has also been introduced to the evaluation since

1998. Up to now, the state-of-the art ASR systems are built for the spontaneous nat-

ural continuous large vocabulary speech.

As speech recognition tasks become more and more difficult, many challenging prob-

lems of acoustic modeling emerge. One of the main challenges is the diverse acoustic

conditions of the recorded speech data. Speech might be recorded in different acoustic

environments or with different channel distortions. Though these acoustic conditions

do not reflect the words people speak, the additional non-speech variations introduced

could confuse the statistical ASR systems and usually cause severe performance degra-

dation. This happens because of the mismatches between the data used for acoustic

model training and the testing speech that we want to recognize. It is usually unavoid-

able for practical applications, especially under noisy conditions, as noise is inherently

unstable. It is also impossible to have training data that could cover all possible noise

environments. Although the recently developed DNNs have been shown to have much

better generalization capabilities than traditional Gaussian Mixture Models (GMMs),

their degradation under adverse environments is still severe and below humans’ ex-

pectations. With the rapid adoption of DNNs in industrial level applications, their

noise robustness needs to be more and more urgently addressed. This work began by

investigating various noise robustness techniques successfully developed for the GMM-

HMM systems. However, due to the inherently different model formulations between

a discriminative DNN and a generative GMM, most of those techniques are either

ineffective or inapplicable. Techniques specific to DNNs are in high demand. A noise-

robust representation learning framework is hence proposed in this work and several

techniques are successfully developed. They include the Vector Taylor Series - Mean

Variance Normalization (VTS-MVN), the Deep Split Temporal Context (DSTC), the

2

1. INTRODUCTION

spectral masking approach for improving the input feature noise robustness, the Ideal

Hidden-activation Mask (IHM) and the noise code technique to learn robust latent

representations. Greater details will be presented in the remaining chapters. In this

chapter, we will review the basic ASR system and discuss the model and the problem

to be studied.

1.1 Automatic Speech Recognition

The task of a speech recognition system is to generate a word sequence from a given

speech signal, which is commonly represented as a waveform. Mathematically, the ASR

is formulated as an optimization problem:

W∗ = arg max
W

p(W|O) = arg max
W

p(O|W) p(W) (1.1)

where W∗ represents the target word sequence we would like to obtain, W represents

all the possible word sequences and O represents the speech signal we have observed.

The ASR problem is to find the most probable W given the speech observation O.

Using Bayes rule, it is further decomposed into two sub-components: the probability

of the speech observation given a word sequence, p(O|W), and the probability of the

corresponding word sequence, p(W).

Based on the above mathematical foundation, a conventional engineering approach

to the ASR problem includes following components: a feature extraction module, an

acoustic model, a lexicon and a language model. The general processing pipeline is illus-

trated in Figure 1.1. The feature extraction module pre-processes and transforms the

speech signal into a new set of feature representations that have discarded unnecessary

variations and maintained only the linguistic-related information. This representation

is then forwarded to the acoustic model which generates a likelihood representation

of the input. The likelihood is commonly in the granularity of the phoneme or sub-

phoneme units. The likelihood representation is further combined with the language

model through the mapping defined by the lexicon to form a probabilistic search space.

By searching for the word sequence that has the highest probability, we can finally

obtain the output word representation of the original input speech signal.

Feature Extraction

Analogue speech signals are usually sampled by hardware devices into digital waveform

signals which have rather high dimensions. For example, for the telephone speech with

an 8kHz sampling frequency and 8-bit sample size, there will be full 8000 8-bit values

at each second. Moreover the large variations in the time-domain waveform signals

3

1. INTRODUCTION

Feature
Extraction

Acoustic
Model

Language
Model

Lexicon

Decoding “Hello”

Figure 1.1: The generic automatic speech recognition system architecture.

also prohibit their direct use in speech recognition systems. A compact frequency-

domain representation is preferable. The most widely adopted feature representation

is the cepstral domain Mel Frequency Cepstral Coefficient (MFCC). The computation

process for MFCCs is illustrated in Figure 1.2.

Pre-emphasis Windowing FFT

Mel Filtering Log DCT

Figure 1.2: Major computational components for the MFCC feature extraction.

A pre-emphasis filter is firstly applied to the original speech signals using the first

order difference. A windowing function is then carried out to slice the signal into over-

lapping segments with fixed length and hop size. Usually, we use 25ms for the window

size and 10ms for the hop size. Each segment is usually referred to as a speech frame. In

our case, there will be 100 frames per second and 15ms overlapping between successive

frames for smooth transitions. The Hamming window function is adopted to taper the

samples inside each window so that discontinuities at the window edges are attenuated.

The short time Fast Fourier Transform (FFT) is further employed to convert the time

domain signals into frequency representations for improved compactness, which can

be conveniently presented as a spectrogram for visual inspection. Motivated by the

process of human speech perception, this frequency representation is first mapped onto

the Mel frequency scale and then recombined inside each equidistant channel with a

triangular shaped frequency window. Consecutive channels are half-overlapped also to

maintain smooth changes from one channel to another. Motived by the fact that we

do not hear loudness on a linear scale, the logarithm compression function is adopted

[12, 13]. Flooring thresholds are also commonly employed to adjust the feature value

4

1. INTRODUCTION

ranges. This representation is commonly referred to as the log-Mel domain Filter-Bank

(FBank) representation. Through this processing, the feature dimension for each frame

has been largely reduced to only 20 ∼ 30 ; but this is still a little high for the traditional

GMM-HMM systems. A Discrete Cosine Transform (DCT) is further adopted to both

de-correlate the FBank feature dimensions and further reduce the dimensionality. The

resulting feature is usually referred to as the MFCC feature, which commonly has a

dimension of 13. As a time series signal, sequential information is crucial to ASRs.

Dynamic features [14] that capture the temporal information in the speech are often

appended. The first order and second order dynamic features (also known as the delta

and accelerator coefficients) may be computed. They have been shown to be particu-

larly useful in addressing the conditional independence assumption of HMMs. Namely,

the observation probability of a particular feature frame is independent of others given

the HMM state.

Lexicon

A lexicon defines the mapping between a word and its corresponding linguistic unit rep-

resentation. For example, the entry for the word Hello and its phoneme representation

is given by

Hello → HH AH L OW

Figure 1.3: Phoneme representation of the word “Hello”.

For word-based systems, the lexicon is trivially a self-mapping. While for phonetic

ones, the CMUDict 1 is one of the most commonly used lexicons in speech recognitions.

Furthermore, the lexicon also determines the vocabulary for an ASR system, which

is the set of possible words the recognizer could output. Words that do not appear in the

lexicon are called Out-Of-Vocabulary (OOV) words. The OOV word rate is measured

against a corpus of texts that represent the domain within which the recognizer will

operate. Too high an OOV rate would render the ASR system useless. The vocabulary

size has a direct impact on the system performance. Increasing the vocabulary size

reduces the OOV rate; at the same time, it also enlarges the search space and decoding

complexity.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

5

1. INTRODUCTION

Acoustic Model

An Acoustic Model (AM) captures feature variations for different linguistic units in

ASR systems. The choice of speech units depends on specific applications. There is

usually a trade-off between the number of speech units and the size of the final acoustic

model. For small or medium vocabulary isolated word recognition, word-based models

may be used; while for a large vocabulary system, a phoneme or sub-phoneme model is

more preferable. Besides, the amount of training data available also affects the choice

of speech units. With sufficient training data, context dependent models are always

better in capturing the co-articulation effects in speech.

To model the time structure of speech signals, HMMs are commonly adopted in

the ASR community. A linear three-hidden-state HMM (Figure 1.4) is usually used for

each linguistic unit. Those hidden states correspond to the starting, middle and ending

parts of a phonetic unit. Two dummy states, which do not consume any observations,

also exist to ease the concatenation of different phonetic HMMs together to form higher

level ones. For example, the concatenation of the sequence of HMMs corresponding to

the phonemes of a word would yield the HMM for that word. Similarly, a sentence

HMM could be constructed from the word HMMs. For each HMM state, a GMM is

normally used to represent the distribution of all the speech features corresponding to

that specific state. The acoustic model probability p(O|W) for the GMM-HMM could

be computed by:

p(O|W) =
∏
i

p(Oi|Wi)p(Wi|Wi−1), (1.2)

whereWi is the ith word in the sequenceW and Oi is the feature sequence correspond-

ing to the the word Wi. p(Wi|Wi−1) is the transition probability from word Wi−1 to

Wi. It is commonly provided by a separate model, i.e. the language model, which is

independent of the acoustic model and will be discussed in the following section. With

a lexicon, we could further have

p(Oi|Wi) =
∏
j

p(Oi,j |Wi,j)p(Wi,j |Wi,j−1), (1.3)

where Wi,j is the jth linguistic unit of the word Wi and Oi,j is the feature sequence

corresponding to the linguistic unit Wi,j . The transition probability between linguistic

units, p(Wi,j |Wi,j−1) is usually set to 1 for simplicity. Furthermore, down to the frame

level, we have

p(Oi,j |Wi,j) =
∏
t

p(ot|st) p(st|st−1), with p(s1|s0) = 1.0 (1.4)

6

1. INTRODUCTION

s2 s3 s4

o

l2 l3 l4

Hidden Markov
Model

l(o, s)

Gaussian Mixture
Model

Acoustic Feature Vector

Figure 1.4: The GMM-HMM speech recognition system architecture.

where st is the HMM state that the tth feature frame of Oi,j belongs to and p(st|st−1)

is the HMM state transition probability from state st−1 to state st. Combining equa-

tions (1.2), (1.3) and (1.4), for a length T feature sequence O, we could simply compute

the likelihood using the following formula:

p(O|W) = p(O|S) (1.5)

=

T∏
t=1

p(ot|st) p(st|st−1), (1.6)

where S is the state sequence derived from the word sequence W using the lexicon

and the HMM. The transition probability p(st|st−1) is a mix of the word transition

probability provided by the language model, the pronunciation probability provided by

the lexicon and the HMM state transition probability provided by the acoustic model.

For a GMM-HMM AM, each state is modeled by a mixture of Gaussians and the

emission probability could be computed by

p(ot|st) =
∑
m

cstmN (ot|µstm,Σstm), (1.7)

where cstm, µstm and Σstm are the weight coefficient, the mean vector and the covari-

ance matrix of the mth Gaussian in the GMM corresponding to the state st.

7

1. INTRODUCTION

Language Model

A general form of stochastic Language Models (LMs) may be used to compute the

probability that a sentence comes from a specific language as follows:

p(W) = p({W1,W2, · · · ,WN})

= p(W1)
N∏
i=2

p(Wi|{W1,W2, · · · ,Wi−1}) (1.8)

whereWi represents the ith word in the lengthN word sequenceW = {W1,W2, · · · ,WN}.
The most widely used language model is the n-gram LM. Despite its simplicity, the

n-gram language model has been proven to be remarkably powerful and resilient. It

approximates the probability of a word to be dependent only on the n− 1 most recent

history. Mathematically,

p(Wi|{W1,W2, · · · ,Wi−1}) ≈ p(Wi|{Wi−n+1,Wi−n+2, · · · ,Wi−1}). (1.9)

Typical forms of n-gram are the bigram (n = 2), trigram (n = 3) and 4-gram (n = 4)

LMs.

1.2 Deep Neural Networks for ASR

The HMM has always been the gold standard in speech recognition systems for dealing

with the temporal variabilities of speech signals. The GMM is popular in modeling

the acoustic variations for each state of the HMM. GMM-HMM ASR systems are

effective under many circumstances, but they do suffer from some major limitations.

For example, it is difficult to model the temporal dependencies among the adjacent

feature frames in GMMs and most commonly the feature dimensions are assumed to

be independent so that a diagonal covariance for the Gaussian is sufficient. Besides,

to model non-Gaussian distributions, such as a plane in a high dimensional space, a

large bunch of Gaussians are required for a good approximation. There have always

been attempts to overcome these limitations by adopting more advanced statistical

models. Between the end of the 1980s and the beginning of 1990s [15], some researchers

proposed to replace GMMs with Neural Networks (NNs) [15, 16, 17] for generating state

posteriors rather than likelihoods.

The use of NNs have several potential advantages over GMMs. Firstly, NNs are

capable of directly modeling a long span of acoustic feature vectors. The temporal

dependencies between feature frames together with the correlations among different

feature dimensions could be well captured. Secondly, they are discriminative classifiers,

which model the classification boundaries rather than the data distributions. This could

8

1. INTRODUCTION

avoid the improper data distribution assumptions brought by generative models such

as GMMs. NNs also allow an easy way of combining diverse features and use far more

samples to constrain each parameter, as usually one single model is used to generate

all the linguistic class posteriors.

Despite the advantages of NNs’ over GMMs, they did not become the main stream

technique for ASR systems. One major problem is the difficulty of learning a suffi-

ciently large model that is capable of robustly predicting the HMM state posterior

vectors with hundreds or thousands of dimensions. Another aspect lies in the hardware

computation capability that is also limiting the learning of complex NNs. Before 2006,

the hybrid NN-HMM has only been shown to outperform the conventional GMM-HMM

systems for context independent phoneme recognitions and cannot beat state-of-the-

art GMM-HMM LVCSR systems with various optimization techniques applied. The

breakthrough of training NNs with more than two hidden layers, namely Deep Neu-

ral Networks (DNNs), in the machine learning community has triggered revolutionary

changes in various research communities and also generated great interest from indus-

tries. They have opened up a new paradigm, deep learning, in machine learning for

artificial intelligence. This breakthrough has been one of the three technical advances

that have appeared on the front page of the New York Times in recent years [18]. The

other two happened when a computer beat the world’s number 1 chess player [19] and

when Watson beat the world’s best Jeopardy players [20]. Speech recognition is one of

the early adopters of deep learning techniques and the first success occurred in 2009

[8]. The hybrid NN-HMM system using DNNs for acoustic variation modeling, which

will be referred to as the hybrid DNN-HMM system in the remaining part of the the-

sis, has been shown to largely outperform the sophisticatedly optimized GMM-HMM

systems in many applications. [21] showed that the DNN-based AMs dramatically out-

perform GMMs on a small-scale phoneme recognition task. It was later extended to a

large vocabulary voice search task in [22] and similar improvements were reported. Re-

search groups such as Microsoft [22, 23, 24], Google [11, 23], IBM T. J. Watson [23, 25]

etc. have also observed impressive gains from using DNN AMs on large vocabulary

continuous speech recognition tasks.

These advances in speech recognition technology speed up the adoption of ASR

systems in real world applications such as Apple’s Siri, Google and Microsoft’s voice

search etc. As speech recognition technology is transferred from the laboratory to the

marketplace, robustness in recognition is becoming increasingly important. Robustness

refers to the need of maintaining good recognition accuracies even when the quality of

the input speech is degraded, or when the acoustical, articulatory, or phonetic charac-

teristics of speech in the training and testing environments differ. Obstacles to robust

recognition include acoustical degradation produced by additive noise, the effects of

9

1. INTRODUCTION

linear filtering, nonlinear transduction or transmission, as well as impulsive interfering

sources, and changes in articulation produced by the presence of high-intensity noise

sources. Creating and developing systems that would be much more robust against the

variabilities and shifts in acoustic environments, reverberations, external noise sources,

communication channels (e.g., far-field microphones, cellular phones), speaker charac-

teristics (e.g., speaker style, nonnative accents, speaking rate), and language charac-

teristics (e.g., styles, dialects, vocabulary, topic domain) has always been the dream

of ASR researchers. Despite the impressive improvements of DNNs over GMMs, large

degradation still exists when there are mismatches between training and testing speech.

Hence, the training samples are often expected to contain large variations, with the hope

of covering all possible noise conditions. However, in practice, it is impossible to obtain

such a large training corpus due to the inherent variability of noise.

1.3 Major Contributions

To tackle the noise robustness problem of DNNs, state-of-the-art techniques proposed

for the conventional GMM-HMM systems are firstly investigated. However, many of

those techniques have been found to be ineffective for DNNs.

In this thesis, a DNN-specific noise-robust representation learning framework is

proposed. It addresses the robustness problem by generating different levels of noise-

invariant representations. Two general types of representations are studied, namely the

input feature representations and the DNN-generated hidden representations.

To improve the noise-robustness of the input feature representations, we have devel-

oped a Vector Taylor Series - Mean Variance Normalization (VTS-MVN) technique to

improve the reliability of the normalized input representation, a Deep Split Temporal

Context (DSTC) algorithm to model the long-temporal context-expanded input repre-

sentation and a DNN-based spectral masking approach to reduce the noise variations

in the input spectral feature representation.

Following the idea of masking away noise variations, we further propose an Ideal

Hidden-activation Mask (IHM) for the hidden representations. Different from the spec-

tral masking, the IHM operates on the distributed latent representations automatically

learned by the DNN and identifies latent feature detectors that are invariant to varia-

tions caused by noise. A further analysis of the IHM leads to a noise code technique

that simulates the IHM effects by attenuating the sigmoid activation functions with

linearly estimated bias shifts. In this way, the code vectors capturing environment

statistics can be estimated within the original DNN AM towards the ultimate phonetic

predictions. No extra DNN for mask estimations is required.

All the proposed techniques are evaluated on two benchmark noisy speech recogni-

10

1. INTRODUCTION

tion tasks, Aurora-2 and Aurora-4. Improved noise-robustness has been obtained and

the spectral masking approach has been shown to yield the best reported results on

both tasks at the time of writing.

Details about these techniques will be presented in the following chapters and the

structure of this thesis is firstly explained in the following section.

1.4 Organization of Thesis

The remaining part of this thesis is organized as follows:

Chapter 2 first discusses how the noise affects the speech signal and then reviews

state-of-the-art noise-robust speech recognition techniques successfully developed for

the GMM-HMM systems. They are grouped into three categories, namely the feature-

based enhancement, the model-based compensation and the uncertainty-based schemes.

This review will server as the foundation for our following exploration of noise-robust

techniques for the DNN-HMM system.

Chapter 3 starts with the detailed formulation of the DNN acoustic model. A fur-

ther justification of the noise-robust problem of DNNs is conducted. It narrows down

to two major noise variations that we will focus on in this study, namely the addi-

tive noise and the channel distortion. Following that, ineffectiveness of many existing

GMM-based noise-robust techniques is reported and the importance of developing DNN

specific techniques is discussed. Motivated from the development of deep learning al-

gorithms, a representation learning framework is proposed to address the DNN AM’s

noise robustness. A preliminary study of the noise effects on those different levels of

representations is conducted which confirms the feasibility of the proposed approach.

Chapter 4 presents three techniques we have successfully developed to improve the

noise robustness of the input representations. They are the Vector Taylor Series - Mean

Variance Normalization (VTS-MVN) for the normalized representation, the Deep Split

Temporal Context (DSTC) for the context-expanded representation and the spectral

masking for the input spectral representation.

Chapter 5 describes two techniques that address the noise variations in DNNs’ au-

tomatically learned latent representations. The first one, the Ideal Hidden-activation

Mask (IHM), extends the spectral masking approach into DNNs’ hidden-activation do-

mains. Further understanding of the IHM leads to the second technique, the noise code,

which integrates the masking effect into the DNN acoustic model’s hidden activation

functions directly.

Chapter 6 justifies the various noise-robust representation learning techniques in-

troduced in this thesis on two benchmark noisy speech recognition tasks, Aurora-2

and Aurora-4. Clear performance improvements have been obtained. A performance

11

1. INTRODUCTION

comparison between our proposed techniques and those reported in the literature is

presented at the end of this chapter.

Chapter 7 concludes the thesis by emphasizing the major contributions and dis-

cussing some potential future research directions.

12

Chapter 2
Noise-Robust Speech Recognition

Understanding the distortions noise brings to speech, the difficulties it presents to

current models and the solutions successfully developed to conventional GMM-based

systems are of great importance to the success of finding new noise-robust algorithms

for the DNN-based ASRs. In this chapter, a generic environmental model is firstly de-

scribed and state-of-the-art noise robust techniques developed for conventional GMM-

HMM systems are thoroughly reviewed. These techniques are grouped into three broad

categories, namely the feature-based enhancement, the model-based compensation and

the uncertainty-based schemes. For the feature-based approaches, different noise-robust

feature parameterizations and speech enhancement algorithms are discussed. Com-

monly adopted model-based compensations are then reviewed, which include the Sin-

gle Pass Re-training (SPR), the Maximum Likelihood Linear Regression (MLLR), the

Parallel Model Combination (PMC) and the Vector Taylor Series model compensation

(VTS). Following that, uncertainty-based techniques that treat the unknown environ-

ment as uncertainties in speech signals are presented. As one of the uncertainty-based

schemes, the Missing Feature Theory (MFT) is revisited , which is motivated from the

human speech perception process. At the end, a brief discussion on the estimation of

environment model parameters concludes this chapter.

2.1 Model of the Environment

Noise is inherently unpredictable which makes it impossible to name and list all the

noise types that a speech recognizer could encounter. Fortunately, noise may be ap-

proximately characterized by a model of the acoustic environment. The production of

the underlying speech signal is influenced by stress, emotion and noise. What is spoken

can then be colored by additive background noise, channel distortions either due to

the microphone or network, and finally possible noise at the near end of the speech

13

2. NOISE-ROBUST SPEECH RECOGNITION

Speaker

Lombard Effect

Microphone
Distortion

umic

Transmission
Distortion

utrans

Additive Transmission Noise
ztrans

Reciever Noise
znear

Speech
Recognition

Systemy
Noisy Speech

x
Clean Speech

Ambient Noise
zenv

Stress/
Workload

Figure 2.1: Noise sources and distortions that can affect speech.

recognition system. This is summarized in a model from [26] shown in Figure 2.1 and

equation (2.1).

y(n) =

[({[
x(n)

∣∣∣Workload

Stress

Noise

]
zenv(n)

+ zenv(n)
}
∗ umic(n) + ztrans(n)

)
∗ utrans(n)

]
+ znear(n) (2.1)

This model accounts for changes in speech production due to the task workload,

stress or surrounding noise by conditioning x(n) on these factors. The last factor,

noise, is the cause of the Lombard effect: as the level of noise increases, speakers tend

to hyper-articulate and emphasize vowels while consonants become distorted [27]. It

is well known that recognition performance degrades significantly for stressed speech,

such as Lombard, angry or loud speech compared to neutrally produced speech [28, 29],

which recognizers are trained on. Attempts to address these effects have been beneficial

[30, 31]; however, in this work, their effects on speech production will not be directly

dealt with.

In the model given in equation (2.1), a major source of corrupted noise is the ad-

ditive ambient environmental noise, zenv(n), present when the user is speaking. The

combined speech and noise signal is then captured and filtered by the microphone im-

pulse response, umic(n), which can be another large source of distortion. Transmission

may also add noise, represented by ztrans(n) and utrans(n), although it is expected to

be small. The noise at the receiver side znear(n) is also expected to be minimal. Hence,

equation (2.1) may be simplified by combining the various additive and convolution

noise sources into a single additive noise variable, z(n), and a linear channel convo-

lution noise variable, u(n). Doing so gives this standard, commonly adopted model

[32, 33, 34, 35, 36] of the noisy acoustic environment in time domain as shown in

Figure 2.2. The noisy signal is now given by

y(n) = x(n) ∗ u(n) + z(n) (2.2)

where y(n) is the noise-corrupted speech and x(n) is the clean speech. Note that z(n)

is a microphone and channel filtered version of the actual ambient noise zenv(n) present

14

2. NOISE-ROBUST SPEECH RECOGNITION

Channel Distortion
u

Additive Noise
z

Noisy Speech
y

Clean Speech
x

Figure 2.2: Simplified noisy acoustic environment model.

with the speaker and therefore dependent on u(n); still for simplicity, they are assumed

to be independent.

With this noise environment model, after applying the front-end processing steps

discussed in Section 1.1, we could determine the interaction between speech and noise

both in the FBank domain:

y(FBank) = x(FBank) + u(FBank) + log
(
1 + exp(z(FBank) − x(FBank) − u(FBank))

)
(2.3)

and in the MFCC domain:

y(MFCC) = x(MFCC) + u(MFCC) +C log
(

1 + exp
(
C†(z(MFCC) − x(MFCC) − u(MFCC))

))
(2.4)

where x
(FBank)
t , y(FBank), u(FBank), z(FBank) are the FBank representations and x(MFCC),

y(MFCC), u(MFCC), z(MFCC) are the MFCC representations of the clean speech, noisy speech,

channel and additive noise. log and exp functions operate in an element-wise manner

that yield a vector of the same dimensionality as the input vector. C and C† are the

DCT transform and its pesudo-inverse. Equations (2.3) and (2.4) clearly show that the

corrupted speech is a complicated non-linear function of the channel, noise and clean

speech.

Training
Conditions

Testing
Conditions

Feature Space Model Space

Front-End
Feature Compensation

Back-End
Model Compensation

Clean Speech

Noisy Speech

Clean
Acoustic Model

Noisy
Acoustic Model

Figure 2.3: Methods of reducing the acoustic mismatches.

To robustly recognize noise corrupted speech, ideally, a noise invariant speech pa-

rameterization should be found. This has not been proven to be possible for widely

varying levels of noise. Hence in the literature, most techniques focus on reducing the

15

2. NOISE-ROBUST SPEECH RECOGNITION

mismatch between the training and usage conditions. They can be grouped into two

distinct approaches as shown in Figure 2.3. Front-end noise compensation approaches

modify noise corrupted observations to provide an estimate of the feature vector that

more closely resembles the clean speech found in training. These estimates can then

be decoded using the clean-trained acoustic models. Back-end acoustic model com-

pensation updates the clean-trained acoustic models to a corrupted model set that

better matches the noise-corrupted observations in the target environment. Many of

the adaptation techniques may also be used for noise robustness.

2.2 Feature-based Compensation

As shown in Figure 2.3, one approach to improve ASR robustness is to remove the

training and testing mismatch in the feature space. That is to de-noise the incoming

observations to obtain the matched pseudo-clean speech observations. This de-noising

results in features that better match the original clean speech that the acoustic model is

trained on. For enhancement, it is often the case that the corrupted speech is mapped

deterministically to a clean speech estimate, given some estimate of the noise. Figure 2.4

outlines the standard feature compensation process. There are various methods to

compute the pseudo-clean speech features, which can be broadly classified into those

that enhance the spectral domain, and those that compensate the cepstral parameters.

Feature
Compensation

Decode

Speech/Noise
Model

Clean
Acoustic Model

x̂
Corrupted

Speech
Hypothesis

y

Figure 2.4: The standard feature compensation process.

2.2.1 Noise-Robust Features

A straightforward solution to the problem of environmental noise is to build a system

that is immune to it. The shift from using log-spectral features, i.e. FBanks, to cepstral

features such as MFCCs [12] and Perceptual Linear Predictives (PLPs) [37], could be

considered as moving towards a more robust parameterization. However, those param-

eters on their own are not immune to noise. A relative spectral (RASTA) processing

technique has hence been developed for PLP features, namely the RASTA-PLP, to

make them less sensitive to slowly changing or steady-state noise factors in speech [38].

In the framework of noise-robust speech recognition, an inherently robust front-end

would remove the dependency of the observations from the noise and allow decoding

16

2. NOISE-ROBUST SPEECH RECOGNITION

with the noisy observations directly. Many front-end parameterizations have been pro-

posed for their robustness against noise, including Cepstral Mean Subtraction (CMS)

[39], Cepstral Mean Variance Normalization (CMVN) [40], Cepstral Sub-band Nor-

malization (CSN) [41], Mean subtraction Variance normalization with Autoregressive

moving average filter (MVA) [42], Histogram EQualization (HEQ) [43] and Advanced

Front-End (AFE) [44]. The CMS is the simplest parameterization and the CMVN has

an additional variance normalization. These two methods are more generic and the

CMVN is de facto a common practice for the neural network’s inputs to guarantee a

zero-mean and unit-variance input feature distribution. The CSN further assumes that

the high frequency band of the decomposed speech are mainly noise and thus could be

simply zeroed out. Only the lower frequency band is normalized using CMVN. Fur-

thermore, instead of normalizing the whole utterance based on the complete statistics,

MVA uses an autoregressive moving average filter to gradually carry out the CMVN

normalization. This would be more adaptive to utterances with fast noise changes.

While the HEQ has a slightly different assumption that the mismatch could be reduced

by simply matching the overall training and testing distributions, it may thus limit

its effectiveness and the histogram-based distribution modeling also limits its perfor-

mance. The AFE tries to explicitly estimate the noise and remove it from the noisy

speech. Although these approaches could yield gains for noisy speech, some can degrade

the performance in clean environments. Moreover, this additional processing further

complicates the speech-noise interaction function.

2.2.2 Feature Enhancement

An early method of addressing additive noise is Spectral Subtraction (SS) [45]. The

noise magnitude spectrum is estimated from frames that are classified as not having

speech. This estimate of the noise can then be subtracted from the corrupted signal

to yield an enhanced feature vector assuming the noise is additive and varies slowly in

time. A general form for SS is

|x̂f,t|α = max(|yf,t|α − E{|zf,t|α}, ε) (2.5)

where x̂f,t and yf,t are the spectrum value of the estimated clean speech and input noisy

speech. E{|zf,t|} is the expected value of the noise spectrum. Power SS results from

α = 2 and magnitude SS at α = 1 [46]. They remove the additive noise in the power

spectral domain or magnitude spectral domain respectively. This technique is fairly

effective although the negative spectra problem it results must be addressed with the

floor constant ε, and a voice activity detector is needed to provide a background noise

estimate. Magnitude SS assumes the speech and noise are in phase, which is generally

17

2. NOISE-ROBUST SPEECH RECOGNITION

not true. By contrast, power SS assumes the noise and speech are uncorrelated, which

should give better results.

The enhancement can also be improved by having a more detailed model of the

speech rather than a simple global one. This motivates state-based speech enhancement

where improved results can be attained by aligning a simple front-end HMM to the

corrupted speech and using the state statistics to more informatively enhance the speech

using Wiener filters. The corrupted speech models of the front-end HMM can be

recursively estimated from a combination of the clean and noise models using an EM

algorithm as suggested in [47]. Since the corrupted state sequence maps to the clean

sequence in a one-to-one fashion, the clean speech state sequence can be obtained. This

allows for better estimates of the clean and noisy speech statistics, by using the state

rather than global statistics, for use in the enhancement process. Enhancement with

auto-regressive HMMs of speech is studied in [48, 49, 50].

As discussed in [51], speech enhancement can be viewed as minimizing the average

distortion between an estimator of the clean speech vector x̌t and the hidden, true

clean speech vector xt. If the distortion measure is the Euclidean norm ‖ · ‖ then this

leads to the following MMSE estimate of clean speech

x̂t = arg min
x̌t

E{‖xt − x̌t‖2|O}. (2.6)

2.3 Model-based Compensation

Rather than updating the features, the acoustic model parameters can be compensated

to match the noisy test conditions. This is the other main noise robustness approach

illustrated in Figure 2.3. An obvious example of updating the models is to re-train

them with data from the new environment. This may be referred to as matched or

multi-pass training. While matched training usually yields the best results in a variety

of papers surveyed [52, 53, 54], it is not very practical since large amounts of noisy

training data are required and the noise condition may vary. Artificial methods of

corrupting the training data have been explored which also yield good results. Samples

of noise, such as those from the NOISEX-92 database [55], can be added to the clean

training data to generate noise-corrupted training data. This provides good results

for levels of noise down to 6∼10dB. However, matched training cannot easily address

changing noise conditions. Adding a variety of noise samples to clean training data is

known as multi-style or multi-condition training [56, 57], which has shown to improve

noise robustness [58].

Due to the unpredictable nature of noise, it is not possible to account for all noise

conditions that may be encountered by including them in the training data. Thus

other acoustic model compensation methods that update the model parameters may

18

2. NOISE-ROBUST SPEECH RECOGNITION

be categorized as either: adaptive, where sufficient corrupted speech data are available

to update the acoustic models to match the noisy speech observations; or predictive,

where a noise model is combined with the clean speech models to provide a corrupted

speech acoustic model using some model of the acoustic environment. If sufficient data

from the target environment is available a Single Pass Re-training (SPR) would give a

matched model, otherwise Maximum A Posterior (MAP) [59] and Maximum Likelihood

Linear Regression (MLLR) transforms can be considered. Besides these adaptive forms,

predictive forms such as Parallel Model Combination (PMC) and Vector Taylor Series

(VTS) are also very effective. The noisy speech acoustic models can be predicted

from the clean acoustic models by combining them with a model of the noise. With

the compensated noisy acoustic model, decoding could be performed directly using

unaltered noisy observations. The next few subsections will discuss various methods of

deriving the noisy model. Firstly the adaptive methods SPR and MLLR are reviewed,

and then we will discuss the predictive forms PMC and VTS.

2.3.1 Single Pass Re-training

When re-training acoustic models directly with corrupted speech training data, the

state posteriors may be poor due to noise. This will reduce the variations between

states and blur the boundaries between distinct regions of speech [33]. SPR [33] is

a method of re-estimating the acoustic models that avoids these issues. If a stereo

database is available, the state posteriors can be estimated using clean speech while

the distribution parameters are estimated using the noise-corrupted data. For example

the noise compensated model mean may be estimated as follows

µ̂sm =

∑T
t=1 γsmt ot∑T
t=1 γsmt

(2.7)

where γsmt is the component posterior obtained from clean observation data. This rep-

resents an ideal form of model compensation since the state posteriors and component

weights are estimated from clean data, but the distribution parameters are the ML

estimates for noisy data.

With SPR though, the corrupted speech distributions may still be badly modeled

since each Gaussian distribution is only shifted and scaled, whereas corrupting noise

may yield a bimodal distribution. This is a general problem for all model compensation

techniques that yield a Gaussian distribution as the compensated distribution for each

Gaussian in the uncompensated acoustic model. In reality, a stereo database is not

usually available and the matched noisy data with labels is also often limited. For

data from the target environment without labels, we could first recognize them and

use the erroneous transcripts as training supervisions. The errors, however, would

19

2. NOISE-ROBUST SPEECH RECOGNITION

cause an imperfect model estimation and sometimes may even lead to degradation.

SPR is also a limited off-line compensation technique not suitable for varying acoustic

environments. It is unfeasible to have the entire training database on-line and corrupt

it using samples of the current noise to re-train the model parameters. Nevertheless,

SPR, when possible, is a useful method for evaluating model compensation schemes

since it provides a reasonable upper limit baseline.

2.3.2 Maximum Likelihood Linear Regression

MLLR adaptation [60, 61] estimates an affine transformation of the acoustic model

parameters. The transformation maximizes the likelihood of the available adaptation

data. Since the amount of adaptation data is usually limited compared to the amount

of data available for training the acoustic models, it is useful to share the data such that

a single transform is estimated from observations associated with many components.

MLLR transforms have the following form

µ̂sm = A(rm)µsm + b(rm) (2.8)

This transforms the component mean µsm, estimated in training conditions, to an

adapted mean µ̂sm, such that it matches the test adaptation conditions. The super-

script rm indicates that the transform applied to acoustic model component m is based

on the regression class r that component m belongs to. The total number of class R is

usually small, especially compared to the number of model components. The cluster-

ing may be represented using a regression class tree, an example of which is shown in

Figure 2.5.

Global

Speech

Consonant

Voiced Unvoiced

Vowel Pause Background

Silence

Figure 2.5: An example regression tree for adaptation.

If sufficient data is available, then all the base classes, the leaf nodes in the tree,

20

2. NOISE-ROBUST SPEECH RECOGNITION

may each have their own transform. However if there is insufficient data to reliably

estimate a transform, as indicated by the dashed node, the class may revert back to

using the transform of its parent. The adaptation data for estimating this transform

is aggregated from its children. How much data is sufficient for a transform to be

estimated is empirically determined by a split threshold; this depends on the complexity

of the transform, e.g. a diagonal matrix transform requires less data than a full matrix.

The use of a regression tree gives an elegant way to scale the number of transforms to

the available data. In the example tree, the unvoiced consonant models would use the

consonant transform, which is trained on the combined data from voiced and unvoiced

consonant observations. In practice a data-driven clustering approach is commonly used

to generate regression trees [62, 63]. This may be achieved through k-means clustering

and a Kullback-Leibler (KL) divergence measure [63, 64] or simpler centroid-splitting

with an Euclidean distance measure [65].

MLLR is often compared to MAP adaptation [59]. MAP produces an adapted model

set that may be considered a weighted combination of well-trained, but mismatched,

prior models and those estimated from the limited matched test adaptation data. It was

shown that MLLR is more effective with less adaptation data than MAP for speaker

adaptation, however, with an adequate amount of data MAP outperforms MLLR [13].

This is because MAP has greater flexibility to individually update each acoustic model

component.

A slightly different form of affine transformation is further proposed by constraining

the transformation of both the mean and variance model parameters to be the same

µ̂sm = A(rm)µsm + b(rm) (2.9)

Σ̂sm = A(rm) ΣsmA
(rm)>. (2.10)

This constrained form is called Constrained MLLR [60] or feature-based MLLR (fM-

LLR) [66] as the transforms can be efficiently applied in the feature space.

The estimation of these adaptation transforms always requires a transcription of the

adaptation data. If the transcription is known, the adaptation is supervised; otherwise,

in an unsupervised training, an initial recognition pass over the data gives a hypothe-

sized transcription. A moderate initial recognition error rate is crucial; otherwise the

adaptation may even degrade the performance.

2.3.3 Parallel Model Combination

PMC combines separate noise and speech models to form a corrupted speech model

directly for use in the recognition process. It assumes the component posteriors remain

unchanged in noisy speech [67]. Therefore only the model component distributions need

21

2. NOISE-ROBUST SPEECH RECOGNITION

to be updated. In non-iterative forms of PMC, each clean speech model component is

combined with the noise model via a mismatch function to yield an updated component.

Specific additive, convolutional, additive and convolutional, and bandwidth limited

channel mismatch functions can be found in [52]. The log-normal approximation is

a popular and efficient choice that assumes the sum of two log-normal distributions

is approximately log-normal, however it cannot be applied with delta and delta-delta

parameters due to the resulting complexity of the forms [68]. Another approximation is

the log-add, which may be used to update the component means of the static dimensions

µ
(sm)
y,i = log

(
exp(µ

(sm)
x,i) + exp(µz,i)

)
= µ

(sm)
x,i + log

(
1 + exp(µz,i − µ(sm)

x,i)
)

(2.11)

where all the parameters belong to the log-spectral domain.

As discussed with SPR, the transform of each Gaussian component in the clean

model to reflect the noise does not give a good model of the overall corrupted speech

distribution. The iterative PMC addresses this issue by representing each compo-

nent with multiple components and iteratively re-estimating the GMM modeling the

corrupted speech based on state alignments from the clean speech model [33]. This

increases the number of components in the overall system. Alternatively, a data-driven

iterative PMC [33] directly estimates the corrupted speech distribution by drawing

sample corrupted speech vectors from combinations of the clean and noise models to

re-estimate the GMM on a per state basis. The efficient log-add approximation can

be used to combine the model and the overall number of components can remain un-

changed; however, around 25∼1000 observations need to be generated per Gaussian

in the system [52]. This data-driven PMC could give results equivalent to matched

systems at levels below 20dB Signal-to-Noise Ratio (SNR) [67]. However, this iterative

estimation is computationally expensive.

2.3.4 Vector Taylor Series Model Compensation

As the discussion of PMC shows, deriving a corrupted speech output distribution, given

the clean acoustic model and a noise model, is not straightforward. Directly determining

the expected value of equation (2.4) is problematic due to the non-linear effect of noise

on cepstral speech features. For convenience it is repeated here without the domain

superscript for brevity and we use inverse DCT rather than the pseudo-inverse here for

the purpose of theoretical derivation:

y = x+ u+Clog
(
1 + exp

(
C−1(z − x− u)

))
. (2.12)

22

2. NOISE-ROBUST SPEECH RECOGNITION

Many approximations to this function have been proposed, such as selecting the maxi-

mum of either the noise or speech, i.e. noise masking [69] or PMC as discussed in the

previous section. Another approach is to linearize it with a truncated VTS [34, 70, 71]

to individually update each model component. The first-order VTS approximation of

the static corrupted speech may be expressed as

yvts = y|
µ
(sm)
0

+ J (sm)
x (x− µ(sm)

x) + J (sm)
z (z − µz) + J (sm)

u (u− µu) (2.13)

where |
µ
(sm)
0

indicates that the Taylor series expansion is evaluated at the point µ
(sm)
0 =

{µ(sm)
x ,µz,µu} with the clean speech component mean µ

(sm)
x , the additive noise mean

µz and channel noise mean µu.

The Jacobian matrices involved in equation (2.13) could be computed as follows

J (sm)
x =

∂y

∂x

∣∣∣∣
µ
(sm)
0

=

[
∇xy1

∣∣∣
µ
(sm)
0

· · · ∇xyi

∣∣∣
µ
(sm)
0

· · · ∇xyDs

∣∣∣
µ
(sm)
0

]>

=

∂y1
∂x1

∣∣∣
µ
(sm)
0

· · · ∂y1
∂xDs

∣∣∣
µ
(sm)
0

...
. . .

...
∂yDs
∂x1

∣∣∣
µ
(sm)
0

· · · ∂yDs
∂xDs

∣∣∣
µ
(sm)
0

 = I −CFC−1 (2.14)

J (sm)
u =

∂y

∂u
= J (sm)

x (2.15)

J (sm)
z =

∂y

∂z
= CFC−1 (2.16)

where Ds is the number of static components in the feature vectors. I is the identity

matrix. C and C−1 are the DCT and IDCT matrices. The elements of the diagonal

matrix F are computed as

fii =
exp((c−1

ī
)>(z − x− u))

1 + exp((c−1
ī

)>(z − x− u))

∣∣∣∣
µ
(sm)
0

=
exp((c−1

ī
)>(µz − µ

(sm)
x − µu))

1 + exp((c−1
ī

)>(µz − µ
(sm)
x − µu))

(2.17)

The term cī is a row vector corresponding to the ith row of the DCT matrix C. The

terms fii vary from 0 to 1 depending on the ratio of the speech to the noise. If the

noise level µn is greater than the speech µ
(sm)
x in the log-spectral domain, then fii → 1

and J
(sm)
x tends to zero; otherwise if little noise is present, fii → 0 and J

(sm)
x tends to

identity. The term J
(sm)
z behaves in the opposite manner to J

(sm)
x .

23

2. NOISE-ROBUST SPEECH RECOGNITION

With this linear approximation, we could hence derive the noisy mean of all the

Gaussians using maximum likelihood estimations. Whereas for the noise variance, an

iterative first-order gradient-based optimization scheme is often used.

2.4 Uncertainty-based Scheme

Another category of techniques integrate both the front-end and the back-end jointly

and treat the unknown target environment as uncertainties in speech. They have been

loosely applied in a variety of contexts to describe various robustness techniques for

ASR. The concept of uncertainty decoding is distinct from uncertain observation decod-

ing [72, 73] and uncertain model parameters [74]. For Missing Feature Theory (MFT)

[75, 76], data imputation with soft data is an observation uncertainty approach. In con-

trast, data marginalization can be construed as a limited form of front-end uncertainty

decoding, restricted to the spectral domain, and where features are either completely

certain or uncertain. These different uncertainty-based techniques are elaborated in

the following subsections.

2.4.1 Observation Uncertainty

Feature compensation schemes, such as speech enhancement, provide an estimate of the

clean speech to the decoder. This assumes the enhancement is exact and the estimate

is the true value. However, it may be reasonable to consider that the de-noising process

is not exact and there is some residual uncertainty that may be passed to the decoder.

Hence in the observation uncertainty approach, instead of using a point estimate of the

features as shown in Figure 2.4, the clean speech posterior is passed to the decoder as

shown in Figure 2.6.

Feature
Compensation

Decode

Speech/Noise
Model

Clean
Acoustic Model

p(x|y)
Corrupted

Speech
Hypothesis

y

Figure 2.6: Feature compensation with uncertain observations.

If the clean speech estimate is now considered a multivariate Gaussian distribution,

the decoding likelihood requires an integration over the true clean speech space. Some

enhancement schemes have been extended to provide this uncertainty, such as samples

computed from the formants [77], a polynomial function of the SNR [73], a parametric

model of the clean speech [78], Weiner filtering [79] and a particle filter [80]. Although

it is widely used, including the variance has not been well motivated in the literature.

24

2. NOISE-ROBUST SPEECH RECOGNITION

Perhaps this is why the variances need to be scaled before being added in the model-

based feature enhancement with uncertainty [81]; the variances are considered too large

[82], adding the variance of the delta-delta features did not improve results [78, 82] or

there is degradation compared to the non-uncertainty form in high SNRs [79].

2.4.2 Uncertainty Decoding

Uncertainty decoding first appears in the context of SPLICE [83] and Algonquin [84].

The unknown noise parameter is directly integrated out through the whole noise pa-

rameter space. The integration is commonly approximated by the corrupted speech

conditional distribution. To avoid a 3-dimensional decoding, it assumes the noise is

stationary and a single noise condition is involved. Ideally, the form of the corrupted

speech conditional distribution should be independent of the acoustic model complexity

and make the marginalization with the clean speech models tractable. If the conditional

distribution takes a Gaussian-distributed form, then the integral is also a Gaussian dis-

tribution with a variance that is the sum of the variances of the two parts of the inte-

grand. Hence uncertainty decoding may be viewed as passing the corrupted conditional

density function to the decoder as shown in Figure 2.7. Examining this distribution in

more detail may yield insights into what approximations are appropriate to best model

it with parameters that are efficient to compute, yet minimizing the cost of updating

the acoustic model.

Feature
Compensation

Decode

Speech/Noise
Model

Clean
Acoustic Model

p(y|x)
Corrupted

Speech
Hypothesis

y

Figure 2.7: Uncertainty decoding.

There are several approaches to model the corrupted speech conditional distribution.

Using a joint distribution of the clean and corrupted speech to derive it leads to joint

uncertainty decoding [85]. Approximating it through an application of Bayes’ rule and

using the SPLICE form of the clean speech posterior gives the SPLICE with uncertainty

form [83].

2.4.3 Missing Feature Theory

Missing Feature Theory (MFT) treats heavily noise-corrupted elements of a spectral do-

main feature vector as unreliable (missing) and those less distorted as reliable (present)

[75, 76]. This is motivated from studies indicating humans can recognize speech from a

25

2. NOISE-ROBUST SPEECH RECOGNITION

“very small proportion of clean frequency channels at any point in time” [86]. Detecting

missing areas of speech is a key aspect of MFT. It is done using a variety of possible

measures including SNR-based ones [75, 86], “harmonicity”, a combination [87] or a

Bayesian classifier using a variety of features [88]. It is conducted at a spectral level

because de-correlating transforms such as the DCT spreads single unreliable spectral

channels to all dimensions in the cepstral space. Once parameters have been labeled as

missing or present, the missing ones can be restored [88] or marginalized over [75, 87].

Thus missing feature techniques fall under two approaches: imputation and marginal-

ization. Both identify regions of the noisy spectral feature vector y that are missing.

For example

y =

[
yp

ym

]
(2.18)

where yp are the components that are considered present, and ym are the missing

values. The total number of elements on both the left and right side of the equation

are the same.

The two approaches differ in how to handle missing areas. Imputation replaces

missing values with estimated values. The reconstructed feature vector is then used as

if it was a clean speech vector, and is thus similar to enhancement schemes. Marginal-

ization classifies solely on yp by marginalizing out the missing components. Decoding

proceeds only with the present features. While this form of decoding with missing

features is efficient, a form of bounded marginalization gives much better results by

providing a bound on the integration. It was concluded that marginalization gave su-

perior accuracy to imputation in the spectral domain [75, 88]. However, marginalization

requires changes to the recognizer and is limited to using only spectral features whereas

imputation can be used as a general front-end enhancement system by transforming

the restored features into the cepstral domain [88]. The difficulty for marginalization

in MFT is that it is carried out in the spectral domain, while most state-of-the-art

systems operate in the cepstral domain. It also unnecessarily applies a hard decision

on the reliability of the features, whereas uncertainty decoding is domain-agnostic and

also avoids this hard decision.

In [86, 87], MFT imputation has been modified to use a soft mask. Instead of ap-

plying a hard decision to each channel, the decision is a weighted sum of the present

and missing outcomes. It has also been extended by considering the features as soft

data [86]. This applies to unreliable, missing features and is similar to observation

uncertainty methods described here. Distributions are evaluated as forms for the ev-

idence probability density function rather than a standard Gaussian. The delta form

is equivalent to data imputation; the uniform distribution was found to be better than

26

2. NOISE-ROBUST SPEECH RECOGNITION

the bounded Gaussian. Overall, [76] has found that recognition with data imputation

transformed to the cepstral domain is superior to spectral domain marginalization. It

also concludes that marginalization approaches in the cepstral domain are generally

ineffective as shown in [89].

2.5 Noise Estimation

For many noise compensation techniques a model of the noise is necessary. Frequently,

an additive noise model is estimated from background, non-speech areas, such as the

first and last 10 ∼ 30 frames of each utterance. This has worked well for Algonquin

enhancement [90], VTS feature compensation [91], MBFE [92], and Weiner filtering [79].

However, a robust voice activity detector is required and generally detecting speech

becomes more difficult as the noise level increases. Furthermore, while this approach

may provide a good model for short utterances, some sentences may be sufficiently long

that the noise environment changes while speech continues to be spoken. Even on the

Aurora-2 [58], which is a short artificially corrupted digit string recognition task, some

gains are obtained by updating the model during the speech; for example, in [93] the

noise model is updated every 100 frames.

It is not straightforward to estimate a convolutional noise model using just the

background segments of an utterance. In conjunction with a background estimated

additive noise model, the channel noise may be estimated over the entire utterance

using EM [94]. In contrast, [34] provides an EM-based framework to estimate both

the means of the additive and convolutional noise in a maximum likelihood fashion

in the log-spectral domain for only the static features. This allows for unsupervised

noise estimation of the full noise model whilst the speaker is still speaking. The form

of maximization of the static additive and convolutional noise means described here is

based on the maximum likelihood formulation introduced in [34], but in the cepstral

domain. The first-order VTS approximation may be used to express the static corrupted

speech mean as a function of initial and new additive and convolutional noise means

µ̂(sm)
y ≈ E

{
y|
µ
(sm)
0

+ J (sm)
x (x− µ(sm)

x) + J (sm)
z (z − µz) + J (sm)

u (u− µu)
}

= µ(sm)
y + J (sm)

z (µ̂z − µz) + J (sm)
u (µ̂u − µu) (2.19)

assuming that the speech and noise are independent. The terms with the Jacobian

matrices will vanish when the estimated value and the current value of the noise means

converge. The noise means are estimated in an ML fashion such that when they are

combined with the clean speech acoustic model, they maximize the likelihood of some

corrupted speech data from the mismatched test condition. The clean acoustic model

27

2. NOISE-ROBUST SPEECH RECOGNITION

parameters and the static additive noise variance are unchanged throughout the noise

mean estimation process. The component posterior is computed from the complete

data set which requires a hypothesis from an initial decoding run. The noisy speech

acoustic model used to compute the posteriors is generated by combining the clean

speech model and the current noise model using VTS compensation, but only for the

static cepstral dimensions and with the zero-order form of the corrupted speech mean.

The maximization step differs by using the form given in equation (2.19). To find

updates of the additive and convolutional noise, the auxiliary function is differentiated

with respect to the parameter sought and equated to zero to solve. A key simplifying

factor is that the Jacobian matrices are considered constant although they are functions

of the noise. The detailed derivations could be found in [36].

2.6 Summary

This chapter reviews the existing literature of noise-robustness techniques developed

mainly for the GMM-HMM systems. They could be generally categorized into three

broad classes, namely feature-based enhancement, model-based compensation and un-

certainty decoding. For feature-based approaches, there is no assumption of the back-

end models used for AMs. They are hence directly applicable to the DNN-HMM sys-

tems. While for the model-based approaches, Gaussian models are required. Moreover,

the complex nonlinear interaction between noise and speech and the layered nonlinear

transformations involved in the DNN make them much more difficult to be integrated

into DNNs. For the uncertainty decoding, similarly, the model-based uncertainty de-

coding is hard to be incorporated into DNNs. But the MFT techniques mainly focus

on features and can be investigated for the use in DNNs.

28

Chapter 3
Deep Neural Network

The Deep Neural Network (DNN) is a layered model mimicking the hierarchical struc-

ture of the human perception system. It shares the same biological motivation as the

well known Multi-Layer Perceptron (MLP). The major difference comes from the depth

of the model and how those many layers are optimized. Historically, MLPs use only one

or two hidden layers due to the limited computation power and difficulties in optimizing

models with too many layers. Those have only become practical recently through the

use of huge clusters or GPU-based machines and the discovery of layer-wise training

either generatively or discriminatively. Each layer in a DNN nonlinearly transforms its

input representation into a higher level, more abstract representation that better mod-

els the underlying factors of the data. With multiple layers’ nonlinear transformations,

different levels of representation are learned. Those from the lower layers of the DNN

usually capture more detailed feature variations in the original observation space; those

from the higher layers reflect more about the structure and abstract concepts that lead

to better discrimination among observations from different classes. In this chapter, we

first review the MLP model and then discuss the DNN. Following that, we present how

the DNN is adopted for acoustic modeling, i.e. the hybrid DNN-HMM AM. With this

hybrid DNN-HMM AM, we will justify its noise robustness and investigate the effects

of conventional noise-robustness techniques. Based on those investigations, we propose

to address DNN’s noise-robustness from a representation learning perspective.

3.1 Deep Neural Network Acoustic Model

3.1.1 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a feed forward neural network model that maps

sets of input data onto a set of appropriate outputs. It is one of the widely used neural

network structures in speech recognitions, due to its simplicity compared with other

29

3. DEEP NEURAL NETWORK

Output Layer

Hidden Layer

Input Layer

Figure 3.1: The structure of a neural network with 1 hidden layer.

types of neural networks such as the Recurrent Neural Network [95] and the Time Delay

Neural Network [96, 97, 98]. In this work, we mainly focus on MLPs and will also refer

to them as Neural Networks (NNs) for simplicity.

An NN typically consists of multiple layers of nodes with each layer connected

to another in a feed forward manner. These inter-layer connections can be of either

dense or sparse. In practice, a full connectivity is commonly adopted to simply avoid

deciding which connection link to discard. Based on each layer’s functionality, it is

usually referred to as an input layer, a hidden layer or an output layer, as shown in

Figure 3.1. The NN with more than two hidden layers is now commonly referred to

as a deep NN (DNN). The input layer of the NN has no computation capability as it

simply attaches the observations to the network. Each hidden layer of the NN takes in

the activations of the layer below and computes a new set of nonlinear activations for

the layers above. The output layer generates either a value in regression or a posterior

vector in classification using the activations from the last hidden layer. The NN could

thus be further deemed as a cascade of many simpler nonlinear computation layers as

illustrated in Figure 3.2.

For an NN with L computational layers, there will be one input layer, (L − 1)

hidden layers and one output layer. As the input layer has no computation involved,

it is hence not counted. The input to the lth hidden layer is the activation of the layer

below, hl−1, with h0 being the input. Each hidden layer computes the activation hl

via a linear transformation using a weight matrix W l and a bias vector bl followed by

a nonlinear squashing function fl(x) [99], i.e.

hl = fl(W l hl−1 + bl) for 1 6 l < L (3.1)

30

3. DEEP NEURAL NETWORK

W

b

(a) Graphical model representation.

W

b

(b) Simplified representation.

Figure 3.2: A single computation layer of neural networks.

where the nonlinear function fl(x) usually operates in an element-wise fashion on the

input vector. The most commonly used hidden activation function is the sigmoid

logistic function, which is defined as follows for a K-element input vector x:

φ(x) = sigmoid(x)

=
[

1
1+exp(−x1)

1
1+exp(−x2) · · · 1

1+exp(−xK)

]>
. (3.2)

Although different hidden layers or even different units in the same hidden layer could

have different activation functions, the same nonlinearity is commonly used in all the

hidden units for simplicity without affecting the NN’s approximation capability. Given

the input, the computation of the hidden activations is independent. Each sigmoid

hidden unit could be deemed as carrying out a logistic linear regression feature extrac-

tion process [100] which refines the input representation to a better one. With multiple

hidden layer transformations, the final set of hidden activations i.e. hL−1 is a high level

abstract representation of the observation. It has reduced noise variations and more

task-specific information. Using this representation, the discrimination among different

classes is much clearer and the prediction can be done using a weak classifier.

The output layer i.e. the Lth layer of the NN thus acts as the functional role of

the whole NN that is to predict either a value or a class label. It simply carries out

a similar linear regression as hidden layers do using a weight matrix W L and a bias

vector bL. However, a different task-dependent nonlinear function is usually adopted.

For regression tasks, a linear or sigmoid function is often used; while for classification

tasks, the softmax function is adopted which converts the values of arbitrary ranges

into a probabilistic representation. The generated output values could be interpreted

as posterior probabilities for each of the classes given the input observation. For a

31

3. DEEP NEURAL NETWORK

K-element vector x, the softmax function is defined as

ψ(x) = softmax(x)

=
1∑K

j=1 exp(xj)

[
exp(x1) exp(x2) · · · exp(xK)

]>
. (3.3)

The computations involved in an L-layer NN could be summarized in the following

equations:

hl = φ(W l hl−1 + bl) for 1 6 l < L (3.4)

p = ψ(W L hL−1 + bL) (3.5)

where h0 is the input vector forwarded to the NN and p is the output posterior vector

generated from the NN assuming a classification task.

The parameters for an L-layer NN are {(W 1, b1), (W 2, b2), . . . , (W L, bL)}. They

are usually randomly initialized and then discriminatively updated using the Error

Back-Propagation (EBP) algorithm [101]. It evaluates the prediction cost at the output

layer by measuring the discrepancy between the target outputs and the actual outputs

produced for each training case and back-propagates the error derivatives through all

the hidden layers to the input. For classification problems, a natural cost function, E ,

is the cross entropy between the target probability d and the output of the NN p,

E = −
∑
i

di log pi (3.6)

where the target probabilities di, typically taking values of one or zero, are the super-

vision information provided to train the NN. By computing the gradient of the cost

function with respect to each of the model parameters, we could update the parameters

for the lth layer by

W l(τ) = W l(τ − 1) + ∆W l(τ) (3.7)

bl(τ) = bl(τ − 1) + ∆bl(τ) (3.8)

where

∆W l(τ) = α∆W l(τ − 1) + η
∂E

∂W l(τ − 1)
(3.9)

∆bl(τ) = α∆bl(τ − 1) + η
∂E

∂bl(τ − 1)
. (3.10)

The learning rate η controls the speed of weight changes at each update iteration τ and

the momentum coefficient α smooths the gradient computed for the current weight,

32

3. DEEP NEURAL NETWORK

thereby damping oscillations across ravines and speeding progress down ravines. For

both efficiency and reliability considerations, a small random mini-batch of training

samples rather than the whole training set is commonly used at each update. To avoid

over-fitting, large weights can be penalized in proportion to their squared magnitude,

or the learning can simply be terminated at the point at which the performance on a

held-out validation set starts degrading [15].

Theoretically speaking, single-hidden-layer NNs are capable of approximating any

function, given that sufficient hidden units are available [102, 103]. However, it is

impractical to train a single hidden layer NN with infinite hidden units due to the

limited training samples and computation resources. Using multiple hidden layers

with moderate dimensions has been shown to yield better performance. However the

gradient-based EBP is only effective for one or two hidden layers [104, 105, 106]. With

more than two hidden layers, the gradient diminishing problem usually leads to local

optima for the EBP algorithm [107]. Those models generalize poorly on unseen data.

However, NNs with many hidden layers and units per layer are flexible models and are

capable of modeling very complex and highly nonlinear relationships between inputs

and outputs. It is rather important for high quality acoustic modeling. At the same

time, the increased amount of model parameters may capture some spurious regular-

ities that are an accidental property of particular examples in the training set. This

is also one of the major reasons for poor generalization. Weight penalties or early

stopping could be adopted to address the over-fitting problem but only by removing

much of the modeling power. Very large training sets [108] can reduce the over-fitting

while preserving the modeling power, but they make the training very computationally

expensive. A better training method that could fully explore the training information

to build multiple layers of nonlinear feature abstractions would be the key.

3.1.2 Deep Neural Network

DNNs are effectively MLPs with many (> 2) hidden layers. The computation of an

L-layer DNN is the same as those listed in equations (3.4) and (3.5). The key is how the

diminishing gradient problem of the EBP learning algorithm is addressed. In 2006, a

fast learning algorithm was proposed for Deep Belief Nets (DBNs) [109], which provides

a practical way of building deep layered neural networks and triggered great interest

in learning deep models. The essence of learning deep models lies in the unsupervised

generative pre-training utilizing Restricted Boltzmann Machines (RBMs). This genera-

tive pre-training puts the model into a space that is near to a better optimum. It hence

enables the learning of deep models with better generalizations. For DNNs adopted in

this work, we simply borrow the RBM pre-training process for model initialization and

then fine-tune it using the standard EBP algorithm with supervision labels.

33

3. DEEP NEURAL NETWORK

v

h

W

b

a

Figure 3.3: A Restricted Boltzmann Machine.

Generative Pre-Training

Instead of directly learning the model that discriminates between different classes, we

start from understanding the underlying structure of the data. This is achieved through

a layer-wise learning algorithm [109] that gradually estimates a new layer of nonlinear

feature transformation on top of the representations generated from the existing layers.

More specifically, at each time an RBM layer is fitted to the current “data”.

An RBM is an undirected generative model (Figure 3.3) consisting of a layer of

stochastic binary visible units that represent the binary input data and a layer of

stochastic binary hidden units that model the significant non-independences between

the visible units [110]. The connections only exist between the visible and the hidden

units and there are no visible-visible or hidden-hidden connections. This structure

avoids the “explaining away” problem [111] often encountered in other latent variable

models. The RBM belongs to the Markov Random Field (MRF) model family, but it

differs from most MRFs in several ways: it has a bipartite connectivity structure, it

does not usually share weights between different units, and a subset of the variables

are unobserved, even during training. Moreover, this bipartite-structured undirected

RBM is ideal for layer-wise pre-training.

Mathematically, an RBM defines the joint probability of the observable vector, v,

and the latent vector, h, via an energy function, E,

p(v,h) =
1

Z
exp(−E(v,h)), Z =

∑
v′,h′

exp(−E(v′,h′)) (3.11)

where Z is the so-called partition function.

34

3. DEEP NEURAL NETWORK

Efficient RBM Learning

The RBM energy function defining the joint configuration (v,h) of the visible and

hidden units is given by

E(v,h) = −a>v − b>h− h>Wv

= −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

hjwjivi (3.12)

where vi and hj are the binary states of visible unit i and hidden unit j, ai and bj

are the corresponding biases, and wij is the weight between them. The RBM model

parameters are {W ,a, b}. Based on the joint probability defined in equation (3.11),

the probability that a particular visible vector, v, is generated from the model could

be obtained by summing over all possible hidden vectors

p(v) =
1

Z

∑
h̄

exp(−E(v, h̄)). (3.13)

The derivative of the log probability of a training set with respect to a model parameter

is surprisingly simple

1

N

N∑
n=1

∂ log p(v(n))

∂wji
= 〈vihj〉data − 〈vihj〉model (3.14)

1

N

N∑
n=1

∂ log p(v(n))

∂ai
= 〈vi〉data − 〈vi〉model (3.15)

1

N

N∑
n=1

∂ log p(v(n))

∂bj
= 〈hj〉data − 〈hj〉model (3.16)

where N is the size of the training set and the angle brackets are used to denote ex-

pectations under the distribution specified by the subscript that follows. The simple

derivative in the above equations leads to a simple learning rule for performing stochas-

tic steepest ascent in the log probability of the training data:

∆wji = η(〈vihj〉data − 〈vihj〉model) (3.17)

∆ai = η(〈vi〉data − 〈vi〉model) (3.18)

∆bj = η(〈hj〉data − 〈hj〉model) (3.19)

where η is the learning rate. Momentum terms such as those in equations (3.9) and

(3.10) are also commonly included, which are omitted in the above equations just for

simplicity.

35

3. DEEP NEURAL NETWORK

The absence of direct connections between hidden units in an RBM makes it much

easier to get an unbiased sample of 〈vihj〉data. Given a randomly selected training case,

v, the binary state of each hidden unit j, hj , is set to one with the probability of

p(hj = 1|v) = φ(bj +wj·v) = φ(bj +
∑
i

wjivi) (3.20)

and vihj is then an unbiased sample of 〈vihj〉data. Similarly, the absence of direct

connections between visible units also ease the computation of the probability that the

state of a visible unit i is turned on given a hidden vector h. It can be computed as

p(vi = 1|h) = φ(ai + h>w·i) = φ(ai +
∑
j

hjwji). (3.21)

Getting an unbiased sample of 〈vihj〉model, however, is much more difficult. It can

be done by starting at any random state of the visible units and performing Gibbs

sampling until convergence. Each epoch of Gibbs sampling consists of updating all of

the hidden units in parallel using equation (3.20) followed by updating all of the visible

units in parallel using equation (3.21). The convergence usually requires a rather long

or infinite time. A much faster learning procedure named Contrastive Divergence (CD)

has been proposed in [110]. It starts by setting the states of the visible units to a

training vector. Then the binary states of the hidden units are all computed in parallel

using equation (3.20). Once the binary hidden states have been chosen, a reconstruction

of the visible units is produced by setting each vi to one, if the probability given by

equation (3.21) is above 0.5 and 0 otherwise. Finally the hidden units are updated

again using the reconstructed visible states. This whole procedure is a full iteration of

the contrastive divergence (CD-1). The change in a weight parameter could then be

obtained by

∆wji = η(〈vihj〉data − 〈vihj〉CD-1) (3.22)

∆ai = η(〈vi〉data − 〈vi〉CD-1) (3.23)

∆bj = η(〈hj〉data − 〈hj〉CD-1) (3.24)

Contrastive divergence works well even though it is only a crude approximation to

the gradient of the training data log likelihood [110]. Using more iterations of Gibbs

sampling before collecting the statistics could give better generative RBMs; but for

the purposes of pre-training, CD-1 is sufficient. To suppress sampling noise in the

learning, real-valued probabilities rather than binary samples are generally used in the

reconstruction of the visible units and the subsequent states of the hidden units. But

it is important to use sampled binary values for the first computation of the hidden

36

3. DEEP NEURAL NETWORK

states because the sampling noise actually acts as a very effective regularizer that avoids

over-fitting [112].

Modeling Real-Valued Data

For the ASR problem, real-valued input features are commonly used. To extend the

binary RBM for real-valued data, Gaussian noise is added to each visible unit and the

RBM energy function is modified to accommodate this modification, which leads to the

Gaussian-Bernoulli RBM (GRBM):

E(v,h) =
∑
i

(vi − ai)2

2σ2
i

−
∑
j

bjhj −
∑
i,j

hjwji
vi
σi

(3.25)

where σi is the standard deviation of the Gaussian noise for the visible unit i. The two

conditional distributions required for CD-1 learning could be derived accordingly:

p(hj = 1|v) = φ(bj +
∑
i

wji
vi
σi

) (3.26)

p(vi|h) = N (vi; ai + σi
∑
j

hjwji, σ
2
i) (3.27)

where N (µ, σ2) is a Gaussian distribution with mean µ and variance σ2. Learning

the standard deviations of a GRBM is problematic for reasons described in [112]. For

pre-training using CD-1, a common practice is to normalize the data so that each

coefficient has zero mean and unit variance. We could then simply remove the variable

σ by setting it to 1. Furthermore, the noise adding to the visible reconstructions is also

bypassed to avoid the errors in determining the noise levels.

Discriminative Fine-Tuning

After training one RBM on the original data, the inferred states of the hidden units can

be used as new data for training another RBM that learns to model the dependencies

between the hidden units of the first RBM. This procedure can be repeated as many

times as desired to produce many layers of nonlinear feature detectors that represent

progressively more complex statistical structure in the original data. The pre-trained

RBMs are then stacked to form a single multilayer generative model, a DBN [109]. The

whole DBN is then updated jointly. Only the bidirectional connections of the top RBM

remain and the other RBMs are converted to top-down directed layers(Figure 3.4).

For classification, there is no need to maintain the generative capability of the

DBN. Furthermore, some researchers find that the generative pre-training is also not

crucial[113, 114]. By growing the network layer by layer using the basic EBP algorithm,

37

3. DEEP NEURAL NETWORK

GRBM

W 1

RBM

RBM DBN

DNN

b1

a1

W 2

b2

a2

copy

W 3

b3

copy
a3

W 3

W>
2

W>
1

W 4

W 3

W 2

W 1

b3

b2

b1

a1

b1

b2

b3

b4

Figure 3.4: A comparison among a Restricted Boltzmann Machine (RBM), a Deep
Belief Net (DBN) and a Deep Neural Network (DNN).

they could obtain similar performance to those models pre-trained using RBMs. In

this thesis, we still keep the pre-training process and only jettison the probabilistic

framework to use the trained stack of RBM weights in the reverse direction as a way

of initializing all the feature detection layers in a discriminative DNN (Figure 3.4).

This is because the pre-training helps the DNN learning to start from a better seed

model using a data-driven approach rather than figuring out manually on different

datasets. Besides, the task independent pre-training also plays an important role in

the techniques we have developed to improve DNNs’ robustness, such as the sharing of

RBMs among different sub-context DNNs in the Deep Split Temporal Context (DSTC)

system (cf. Section 4.2) and between the acoustic model and the mask estimator in the

spectral masking system (cf. Section 4.3). In this study, after DNN is initialized using

pre-trained RBMs, a final randomly initialized softmax layer is usually appended. As

conventional shallow MLPs, the whole DNN model is then discriminatively updated

using the standard EBP algorithm.

3.1.3 Hybrid DNN-HMM AM

Since the late 1980s there have been attempts to adopt NNs for speech recognition.

Some researchers initially tried to emulate HMMs with NNs [115, 116], which strength-

ened the idea that NNs could be effectively used for speech recognition. Although at

that time the emulation of HMMs did not overcome their limitations, the sequential

training algorithm introduced in their work have recently been shown to further improve

DNNs’ performance. Based on the probabilistic interpretation of the NNs’ outputs [15],

they were proposed to replace the GMMs for the estimation of the state-posteriors for

HMMs , i.e. p(s|o). To compute a Viterbi alignment or to run the forward-backward

decoding algorithm within the HMM framework, we need to convert posteriors to like-

lihoods p(o, s) by dividing the frequencies of each HMM states, p(s) [15]. It has been

shown in the literature that this conversion is not crucial to many recognition tasks;

however, it may be important when the target classes are highly unbalanced.

38

3. DEEP NEURAL NETWORK

s2 s3 s4

o

p2 p3 p4

Hidden Markov Model
(Context Dependent)

p(s|o)

Output Layer

(L− 1)th Hidden Layer

Input Layer

Deep Neural Network

Acoustic Feature Vector

1st Hidden Layer

Figure 3.5: The hybrid DNN-HMM system architecture.

Due to the difficulty in training deep NNs before 2006, the hybrid NN-HMM is only

used to predict context independent phoneme states. The dimension of these posteriors

are usually around one hundred. With the development of deep learning algorithms,

DNNs have been adopted to replace the shallow NNs in the hybrid NN-HMM system

for speech recognition since 2009 [8], which will be referred to as the DNN-HMM model.

After obtaining promising performance on the benchmark TIMIT phoneme recognition

task, DNNs are used to predict posteriors for thousands of context dependent phoneme

states in the conventional large vocabulary speech recognition systems. Dramatic im-

provements over the complicatedly engineered GMM-HMM systems have been reported

by many research groups [23], which clearly demonstrates the effectiveness of DNNs for

speech recognition. This is quickly making DNN the new standard for speech recogni-

tion systems, which is the main subject of our investigation in this work. For future

references, this standard context dependent hybrid DNN-HMM system is illustrated in

Figure 3.5.

39

3. DEEP NEURAL NETWORK

Table 3.1: WER(%) performance of the multi-style GMM and DNN on Aurora-2.

Test Set Condition GMM DNN

Clean 0.6 0.4

A seen noise 12.3 4.6

B unseen noise 10.4 5.3

C seen & unseen noise + channel 17.9 5.1

3.2 DNN AM’s Noise Robustness

Although DNNs have already largely outperformed GMMs on various ASR tasks, their

performance in real world scenarios is still far from humans’ expectations. In [23], the

hybrid DNN-HMM system reduced the Word Error Rate (WER) of the GMM-HMM

system from 52.3% to 47.6% on a 1400-hour YouTube transcription task. Despite the

relative 9% WER reduction, the system is still making mistakes almost half of the time.

Further investigation of the problem reveals that the training and testing mismatch is

the major reason for the limited performance of the DNNs. These mismatches come

from a large number of potential variations in the data, such as acoustic environments,

sound reverberations, external noise sources, communication channels, speaker char-

acteristics, language characteristics and etc. Hence to improve DNNs performance for

real world applications, these mismatch problems must be addressed. In our study, we

mainly focus on two of the above mentioned variations, namely the additive noise and

the channel distortions.

To validate that these two factors do degrade the DNN AM’s performance, we

evaluate it on two benchmark noisy speech recognition tasks: the noisy digit speech

recognition task, Aurora-2 [58], and the medium vocabulary noisy speech recognition

task, Aurora-4 [117]. Details about these two corpora will be discussed in Section 6.1.1

and 6.1.2 respectively. In these corpora, the additive noise and the channel distortions

are added manually to simulate the real world noisy speech. This artificial noisy speech

could help us rule out other factors and focus specifically on a particular noise variation.

The DNN AM investigated here is trained from the multi-style training data, which

could give the model a sense of noisy speech. Depending on each specific test scenario,

the noise may be different and we can study the generalization capabilities of DNNs

across different noise types.

The recognition performance for these two tasks are tabulated in Table 3.1 and

Table 3.2. Detailed experimental setups could be found in Section 6.2.1. From these

two tables, DNNs consistently outperform GMMs by a lot. On Aurora-2, the multi-style

trained DNN AM has a performance of 0.4% WER on clean data; while for the same

set of noise conditions, the testing performance is already far away (4.6% vs. 0.4%).

On noise types that have not been encountered during the DNN’s training, further

40

3. DEEP NEURAL NETWORK

Table 3.2: WER(%) performance of the multi-style GMM and DNN on Aurora-4.

Test Set Condition GMM DNN

A clean 8.7 5.0

B noise 16.6 8.8

C channel 18.8 9.0

D noise + channel 31.9 20.1

degradation occurs (5.3% vs. 4.6%). Similarly for the additional channel distortions, it

degrades further (4.6% vs. 4.6%). From these experiments, even if the DNN is trained

on the matched noisy data, its performance is far from what could be obtained for

clean speech. On this particular dataset, it performs more than 10 times worse on

noisy speech than on clean speech, not mentioning the further degradation brought by

unseen noise and channel distortions.

On the Aurora-4 dataset, the training and testing has the same set of noise types

and channel distortions. No mismatches exist. Comparing set B and C with set A, clear

degradation is observable when either additive noise or channel distortions exist and

channel distortions have slightly worse performance than additive noise. Furthermore,

when both these two types of variations exist in the speech, the WER increases up to

about 4 times of it in the case of clean speech.

All these studies suggest that the two noise factors, additive noise and channel

distortions, do degrade the DNN AM’s performance dramatically. Recognizing the

matched noisy speech is already a challenging task for DNNs. With mismatched noise

conditions, they perform even worse and the problem is even challenging. The large

performance differences between clean and matched noisy speech may also imply that

simply collecting more and more noisy speech is not guaranteed to improve DNNs’

performance on noisy speech to reach the level of performance in the clean-like case.

Techniques specifically addressing the noise variations are crucial to DNNs robustness

on noisy speech.

We start with investigations of existing feature-based noise-robust techniques. As

they only modify features and have no back-end model requirements, we could directly

apply them to our DNN AMs. Two broad categories of techniques are explored. They

are feature normalization approaches and feature enhancement techniques.

3.2.1 Conventional Noise-Robust Features

Feature normalization algorithms aim at removing noise corruptions in speech features

extracted from noisy speech. Various normalization methods and feature extraction

processes refined with those normalization methods have been shown to be effective

for the GMM-HMM AMs in the literature. To further understand the DNN’s noise

41

3. DEEP NEURAL NETWORK

Table 3.3: WER (%) performance of different robust feature extraction methods in
both GMM-HMM and DNN-HMM systems on Aurora-2.

System
Test Set

Avg.
A B C

GMM MFCC

CMS 7.29 7.45 6.86 7.27
CMVN 6.87 7.50 7.31 7.21
CSN 6.35 6.97 6.53 6.63
HEQ 6.91 7.32 7.05 7.10
MVA 6.27 6.95 6.52 6.59
AFE 5.86 6.65 7.06 6.42

DNN MFCC

CMS 5.80 6.77 5.78 6.18
CMVN 5.35 6.42 5.72 5.85
CSN 5.27 6.67 5.81 5.94
HEQ 5.62 6.62 5.95 6.09
MVA 5.24 6.66 5.84 5.93
AFE 5.06 6.50 7.15 6.05

DNN FBank MVN 4.55 5.68 5.62 5.22

robustness, we evaluate the following techniques for the DNN-HMM AMs: Cepstral

Mean Subtraction (CMS), Cepstral Mean and Variance Normalization (CMVN), Cep-

stral Sub-band Normalization (CSN), Histogram EQualization (HEQ), Mean subtrac-

tion Variance normalization with Autoregressive-moving-average filtering (MVA) and

Advanced Front-End (AFE). The comparison is illustrated in Table 3.3. For GMM

AMs, those complex engineered features do reduce WERs; however, for DNN AMs,

the simple CMVN is sufficient. The CMVN processing is actually a necessary feature

processing step that is already required by the DNN itself. This is because for our first

layer GRBM, we restricted all the visible units to have unit variances. These results

may suggest that with DNNs’ superior variation modeling capability, some feature en-

gineering steps are not necessary. Furthermore, if we use FBank features rather than

the MFCCs together with Mean Variance Mormalization (MVN), we could get even

better performance. This further confirms that for DNNs, many feature engineering

techniques developed for the GMMs with limited modeling capacities are not neces-

sary and sometimes they even harm the DNNs’ performance, as any feature extraction

corrupts the original signals.

3.2.2 Speech Enhancement Techniques

Instead of those normalization-based noise reduction techniques, various algorithms

using the speech and noise interaction model to estimate the clean speech features

from the noisy ones have been successfully developed in the literature. These are

usually referred to as feature-based speech enhancement techniques. Many existing

42

3. DEEP NEURAL NETWORK

Table 3.4: WER (%) performance of different feature enhancement algorithms for the
clean-data trained AMs on Aurora-2.

AM SNR Baseline MMSE MLSA MAPA GMAPA

GMM
clean[127] 0.36 0.39 0.34 0.36 0.33
Avg.[127] 40.56 31.72 36.88 31.91 29.14

DNN

clean 0.32 0.60 0.53 0.64 0.94
20dB 1.53 1.47 1.38 1.49 1.81
15dB 3.15 3.11 2.93 3.12 3.58
10dB 8.25 8.31 7.91 8.32 8.71
5dB 20.29 20.60 19.33 20.64 19.83
0dB 43.55 43.94 41.92 44.13 42.44
Avg. 15.35 15.48 14.46 15.54 15.28

GMM-HMM ASR systems employ enhancement schemes as a pre-processor to improve

the speech quality. Generally speaking, speech enhancement algorithms can be grouped

into three categories, namely filtering, spectral restoration, and speech model techniques

[118]. We mainly investigate the spectral restoration approach for DNN AMs, which

estimates a gain function to perform the noise reduction in the frequency domain.

Specifically, the Minimum Mean Square Error spectral estimator (MMSE) [119, 120,

121, 122], Maximum A Posterior spectral Amplitude estimator (MAPA) [118, 123, 124],

Maximum Likelihood Spectral Amplitude estimator (MLSA) [118, 125, 126] and the

Generalized MAPA (GMAPA) [127] are justified. The performance of those techniques

on the clean-trained DNN is tabulated in Table 3.4 and on the multi-style trained one

is illustrated in Figure 3.6.

When AMs are trained on the clean speech, all the enhancement methods have

large improvements on the GMM; however, for the DNN, only the MLSA is effective

in obtaining clear gains. Methods like MMSE and MAPA perform even worse than the

baseline system without any enhancement. It may be due to the fact that DNNs are

capable enough to reduce noise variations through their multiple layered representation

learning. When the features are enhanced in an imperfect way, the errors incorporated

may override the gain the enhancement brings to a powerful model. Furthermore, if

the DNN AM is trained on multi-style data, the gain from the MLSA enhancement

also diminishes when more hidden layers are used (Figure 3.6).

3.3 A Representation Learning Framework

From those initial investigations, DNNs are good at modeling the training data vari-

ations. With multi-style data, DNNs could dramatically improve the performance on

noisy speech; but the performance is still several times higher than what could be ob-

43

3. DEEP NEURAL NETWORK

1 2 3 4 5 6 7 8

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

Number of Hidden Layers

W
o
rd

 E
rr

o
r

R
at

e
(%

)

Baseline

MMSE

MLSA

MAPA

GMAPA

Figure 3.6: Effectiveness of spectral restoration techniques on multi-style trained DNNs
on Aurora-2.

tained on clean speech. Addressing the noise corruption directly rather than simply

adding more training data is still compulsory. Conventional feature-based approaches

such as normalization and enhancement techniques lose their effectiveness on DNNs

and sometimes they even hurt DNNs’ performance. While for model-based techniques,

they all assume the Gaussian-based AMs and are difficult to be ported to DNNs. Fur-

thermore, due to DNN’s multiple layers’ nonlinearities, integrating the environment

model (equation (2.3) or (2.4)) into DNNs will lead to a complex optimization problem

without closed-form solutions.

In this thesis, instead of treating the DNN as a black-box model that converts input

features to output posteriors, we interpret it as a stack of nonlinear feature transfor-

mation layers, each of which converts its input feature into a higher level abstract

representation that has less noise variations and better discrimination. These transfor-

mation layers are sequentially integrated and jointly estimated to optimize the output

predictions towards the supervision labels. Each level of the transform layers captures

different aspects of the data and collectively they make the DNN a much better model

in representing the data. Unlike the conventional feature engineering process, the hu-

man designed features focus only on representing the data and are independent of the

ultimate tasks. For this representation learning in DNNs, we have the unsupervised

stage of RBM pre-training to understand the data characteristics and moreover, we also

have the second stage of supervised fine-tuning that further adjusts the transformations

to yield superior classification performance for the final classification layer. With these

two stages of learning, the lower layers commonly learn more local information and the

44

3. DEEP NEURAL NETWORK

higher layers capture the abstract structures. Similar observations have been made in

vision research. An example of different levels of representations learned by DNNs for

the face recognition problem is depicted in [128]. At the lowest level, the DNN takes

in pixels and first learns to detect edges from them. With different edge patterns, an-

other level of object part representations is captured, such as eyes, noses etc. for face

recognition. Finally, the DNN combines those parts to represent different faces.

3.3.1 Layered Representation Learning in DNN AM

In the signal processing literature, various speech representations have been developed.

Most of them are based on our limited understanding of the human speech perception

process. In the conventional ASR systems, they are mainly the time-domain waveform,

the frequency-domain spectral feature (including the power spectrum and the FBank)

and the cepstral feature representations. With the fast adoption of DNNs in ASR sys-

tems, many researchers have started questioning whether MFCCs are the best features

for DNNs. Many results have shown that FBanks usually yield better performance than

MFCCs [21, 129, 130, 131]. One probable reason is that with the improved modeling

capability of DNNs, relatively raw representations with less information loss are more

preferable. There are also some other interesting work [132] that tries to abandon all

the signal processing and build models directly on the time-domain waveform signals.

Although moderate performance has been achieved, they usually involve a rather com-

plex model training compared to the conventional processing. To the knowledge of the

author, before we obtain a thorough understanding of how we humans process the large

amount of raw information, it would not be viable for computers to deal with those

raw information by simply collecting more data and increasing the model size. With

improved machine learning techniques and statistical models, we may need to discard

some of the human-designed feature engineering steps and let the model automatically

learn them from the data. In the literature, Convolutional Neural Network (CNN) has

been developed for many applications with the emphasis on learning invariant features

[133, 134, 135, 136]. It uses local filtering and pooling techniques to obtain translation

invariant internal feature representations. Ultimately, it could be treated as a DNN

with special model structures. In this study, we mainly focus on the noise robustness of

the basic DNNs. The features we adopted as DNNs’ inputs are spectral domain FBank

features rather than the commonly used MFCC features in GMM based systems.

From the perspective of representation learning, an L-layer DNN AM could be

summarized as carrying out the following series of representation transformations on

top of the human engineered spectral features:

• The input spectral feature representation: ot

45

3. DEEP NEURAL NETWORK

• The normalized feature representation: o′t

o′t = fMVN(ot) = Σ−
1
2 (ot − µ) (3.28)

• The context expanded representation with the window length of (2w + 1): h0,t

h0,t =
[
o′>t−w · · · o′>t · · · o′>t+w

]>
(3.29)

• The hidden-activation representation: hl,t

hl,t = φ(W l hl−1,t + bl), for 1 6 l < L (3.30)

• The output posterior representation: pt

pt = ψ(W L hL−1,t + bL) (3.31)

The subscript t is the frame index for each feature vector in the speech feature sequences.

(Σ,µ) are the MVN parameters where the diagonal covariance is commonly used.

(W l, bl) are the transformation parameters for the lth layer in the L-layer DNN.

3.3.2 Noise Robustness in Different Representations

With all these different representations involved in the DNN AMs, understanding how

the noise factors affect them is important to finding effective solutions. However, due

to the different generation processes involved in each of the representations, they vary

greatly both in dimensions, ranges and magnitudes. All these increase the difficulty

of obtaining a consistent evaluation measure to justify their reactions to noise factors.

Instead of using a numerical measurement, we visualize these different representations of

a speech utterance under both the clean and noisy conditions in Figure 3.7. Intuitively,

the noise corruption largely decreases the discrimination information of those linguistic

units. The background energy is increased and the speech discrimination is decreased.

The structure information for those linguistic units becomes less distinguishable.

For the human engineered representations, including the waveform, the power spec-

trum (129D) and the FBank (24D), the noise corruptions are more observable. While

for the 1024D hidden representations learned by DNNs, namely the H1, H2, H3 and

H4 activations, the noise effects are less intuitive. One major reason for this is the

arrangement of the hidden feature dimensions. Although the ordering of those hidden

feature dimensions has no effect on the DNN model, it is crucial to human eyes, as

humans are more efficient in handling well structured patterns. A good topic to study

46

3. DEEP NEURAL NETWORK

clean noisy
W

av
ef

o
rm

P

o
w

er
 s

p
ec

tr
u
m

F

B
an

k

H
1

H
2

H
3

H
4

P
o
st

er
io

r

Figure 3.7: Different representations of the utterance “8055” under clean and noisy
(train noise with 0dB SNR) conditions.

47

3. DEEP NEURAL NETWORK

may be how to better visualize the hidden representations. As this thesis focuses on

improving machine learning models rather than human understandings, we will not

explore in that direction. Although it is hard to find detailed differences between the

clean and noisy hidden representations, one general observation is that the noisy hidden

activations are more dense. It means there are many hidden units that are inactive for

the clean speech now become activated due to noise. Finally, for the 181D posterior

representation, which is generated from the output layer of the DNN and represents the

probability of the input feature vector belongs to each state of the whole word HMMs,

the four digits are clearly observable for the clean speech. For the noisy speech, we

could clearly see that the first digit and the initial part of the fourth digit are incorrectly

recognized. Moreover, the high sparsity in the posteriors further confirms the sharp-

ness of the posteriors generated by DNNs. This sharpness means that DNNs are very

confident in their predictions even if they are wrong. It is good when the predictions

are correct; but if wrong, they are difficult to correct, unless there is an even stronger

language model constraint.

Simply speaking, from this intuitive study of various representations involved in

the DNN AMs for speech recognition, we have found the existence of noise variations

through out the hierarchy. To address the noise robustness of DNNs, improving the

noise robustness of these representations is a promising direction.

3.3.3 Learning Robust Representations for DNN

The performance of many machine learning methods is heavily dependent on the choice

of data representation on which they are applied. For example [137], in arithmetics,

addition is much simpler than multiplication in our conventional decimal representa-

tion of numbers. However, if we use the set of prime factors to represent each number,

multiplication would be simplified to a union of two sets. But addition would become

much more difficult. For that reason, much of the actual effort in deploying machine

learning algorithms goes into the design of preprocessing pipelines that result in a

hand-crafted representation of the data that can support effective machine learning.

Such feature engineering is important but labor-intensive and highlights the weakness

of many traditional learning algorithms: their inability to extract and organize the dis-

criminative information from the data. Feature engineering is a way to take advantage

of human ingenuity and prior knowledge to compensate for that weakness. In order

to expand the scope and ease the applicability of machine learning, it would be highly

desirable to make learning algorithms less dependent on feature engineering [138, 139].

Deep learning algorithms such as DNN are exactly the kind of representation learning

procedure that discovers multiple levels of representations, with higher-level features

representing more abstract aspects of the data. More importantly, it usually employs

48

3. DEEP NEURAL NETWORK

shallow (single-layer) representation learning as subroutines.

In speech recognition, we have found that the multiple levels of representations

learned by DNNs could dramatically improve the ASR performance. In addition, we

have also observed that there is still space for improvement in those representations,

especially under noisy conditions. Hence in this thesis, we will work towards the same

objective, that is, to obtain better representations for improved ASR performance from

a slightly different perspective. Specifically, we want to further refine the representa-

tions to be invariant to noise corruption. The main reason for this comes from our

observation that existing representations learned by DNNs are capable of yielding very

good performance when used on clean speech. But when the noise factor is introduced

into speech signals, dramatic degradation occurs. This may suggest that the existing

representations are already good enough to capture the linguistic discriminations in the

speech signal and what they lack is the robustness to additional noise factors. Hence

exploring techniques to improve the noise-robustness of the various representations

discussed in Section 3.3.1 would be promising.

Based on the types of representations, we group them into two categories: namely

the input representations which are independent of the DNN’s layer parameters and

the hidden representations that are computed using the DNN’s layer parameters. The

input representations include the input feature representation ot, the normalized rep-

resentation o′t and the context expanded representation h0,t. Techniques specific to

improve the input representations’ noise robustness are presented in Chapter 4. The

hidden representations are the hidden activations from those L − 1 hidden layers of

the DNN AM. They are further refined using algorithms developed in Chapter 5. The

output-posterior representation pt is only used for the final decision making. Although

it is also possible to address the mismatches caused by noise in the output-posterior rep-

resentations [140], the gains are relatively small due to the difficulty incurred by their

sharpness. Hence, in this study, the output-posterior representation is not investigated.

3.4 Summary

In this chapter, the DNN model and how its usage in acoustic modeling in ASRs are

reviewed. Despite the significant improvements obtained by DNNs over the conven-

tional GMMs, we have observed that two of the variation factors, namely additive

noise and channel distortion, dramatically degrade the DNN’s performance. By further

investigating the conventional noise robustness techniques, few gains can be obtained

for DNN AMs. The superior variation modeling capabilities in DNNs yield improved

performance, and at the same time also increase the difficulty of making further im-

provements. By studying the effects of noise on different levels of representations, we

49

3. DEEP NEURAL NETWORK

find that there are still noise variations throughout the representation hierarchy. We

hence propose to address the issue of the DNN AM’s noise robustness by reducing noise

variations in different representations.

50

Chapter 4
Noise-Robust Input

Representation Learning

In this chapter, we focus on improving the noise robustness of the input feature rep-

resentations for the DNN AM. We start with an investigation into the reliability of

the mean and variance normalization parameters for generating the normalized feature

representations (equation (3.28)). By treating these parameters as a single Gaussian

front-end of DNNs, the conventional GMM-based VTS model compensation technique

becomes applicable. A VTS-based feature normalization technique is hence developed.

Following that, we investigate the possibility of using wider input features for context

expanded representation (equation (3.29)). It is inspired by the fact that human au-

ditory periphery has a short-term memory of the order about 200ms, which is much

longer than the usual 25ms-long speech frames used for ASRs. Meanwhile, the DNN is

superior in modeling variations. With this long span of speech inputs, it may be capable

of identifying a better environment estimation by itself, which would probably further

improve recognition performance. This leads us to develop the Deep Split Temporal

Context (DSTC) modeling technique. With these two techniques, clear performance

improvements have been observed on the Aurora-2 task. However, with more training

data, such as on the Aurora-4 task, the gain is relatively small. To further address the

noise variations in the input features explicitly, a DNN-based spectral masking approach

that mimics human speech perception’s “separation-prior-to-recognition” process is de-

veloped. It removes noise-dominant time-frequency components in the power spectrum

used for the FBank feature extraction. This technique, to our knowledge, has yielded

the best reported recognition performance on both the Aurora-2 and the Aurora-4 tasks

as the time of writing.

51

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

4.1 VTS-based Feature Normalization

Based on the initial investigations presented in Section 3.2, DNNs have demonstrated

superior capabilities in modeling acoustic variations over conventional GMMs. Many

robust feature extraction algorithms and speech enhancement techniques successfully

developed for GMMs seem automatically learned by DNNs from multi-style data. To

further improve their robustness against noise, we need techniques that are more tar-

geted for DNNs.

In [141], the Recurrent Neural Network (RNN) has been shown to generalize much

better than GMMs and MLPs on the Aurora-2 task [58]. It has similar performance to

DNNs but requires much more training computation due to its increased complexity.

In [142], a Deep Recurrent Denoising AutoEncoder (DRDAE) is trained on the stereo

data to reconstruct clean utterances from noisy input features. It has been shown

to outperform the SPLICE denoising algorithm [143] and the hand-engineered AFE

denoising system [144]. The DRDAE makes no assumption on how the noise affects

the signal, or the existence of distinct noise environment. It is thus more dependent

upon the training data to provide a reasonable sample of noise environments that could

possibly be encountered at test time.

Model-based approaches, utilizing explicit models of noise and channel distortions

and their interactions with speech, are a well-established and continually evolving re-

search paradigm in noise-robust speech recognition. The VTS compensation method

[145] and the corresponding Noise Adaptive Training (NAT) [146] have been widely

adopted in Gaussian-based GMM-HMM systems. Due to the many layers of non-

linearities, and non-Gaussian-based formulation, deriving an analytical approach to

directly compensate the DNN model is much more difficult. In [147], a Factorial Hid-

den Restricted Boltzmann Machine (FHRBM) is proposed to explicitly model noise

distribution, and how such noise affects speech. However, because of un-observed noise

parameters in the input layer of the FHRBM, the inference is intractable, and scales

exponentially with the number of hidden units. Variational approximations have to be

used. Additionally, even in the preliminary experiments reported in [147], the FHRBM

did not achieve the best performance.

In this section, we tackle the noise robustness problem through learning a more

reliable normalized feature representation for the DNN AM. This is achieved by treating

the normalization process as a single Gaussian front-end, and applying conventional

VTS model compensation to it. The compensation takes in both the Gaussian front-end

and an estimation of the current environment, and generates another Gaussian front-

end that better represents current noise conditions. With this new Gaussian front-

end, normalization is more reliable and the better-normalized representation would

then lead to improved recognition performance. To fully benefit from the powerful

52

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

modeling capability of the DNN and avoid potential mismatches brought by different

normalizations, an adaptive training algorithm has been further developed.

4.1.1 Feature Normalization

Features sent to NNs are commonly required to have similar dynamic ranges. It avoids

the undesirable problem of imbalance caused by different feature magnitudes. To de-

crease the additional computation incurred, a simple MVN (equation (3.28)) has be-

come a standard processing step for NNs. Moreover, specifically for DNNs, due to

the use of the unit-variance GRBM (equation (3.25)) for the initialization of the input

layer, this MVN process is even more important. Conventionally, two types of MVNs

are adopted, which are the global MVN and the utterance-based MVN. The global

MVN estimates the mean and variance normalization parameters of the entire training

data. It assumes that the training and testing data come from the same underlying

data distribution, and we can hence use the training estimation for testing data nor-

malization. However, in practice, due to various factors, this assumption is hard to

guarantee. The other one, i.e. the utterance-based MVN, estimates the parameters

from each individual test utterance. This makes no assumption that the training and

testing data must come from the same data distribution. But it may have the problem

of being unreliable due to having limited data available for parameter estimations.

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

12

clean
noisy
normalized clean
normalized noisy

(a) Global MVN.

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

12

clean
noisy
normalized clean
normalized noisy

(b) Utterance-based MVN.

Figure 4.1: A comparison between the two MVNs using only the first two dimensions
of FBank features on Aurora-2.

A comparison between these two MVN approaches is carried out on the Aurora-

2 corpus. For an intuitive understanding, we illustrate the data distribution using

only the first two dimensions of the FBank feature vectors. The results are depicted in

53

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

Figure 4.1. The original data distributions of the clean training and noisy testing speech

are depicted with blue plus signs and red circles on the top right part of each figure.

A clear distribution mismatch is observable. Using the global MVN (Figure 4.1a),

the clean training and noisy testing data are mainly shifted; but the corresponding

distributions remain mismatched. With the utterance-based MVN (Figure 4.1b), the

training and testing data are both shifted and scaled to have a better match. The

corresponding distributions overlap with each other after normalization. It suggests

that the mismatch between the clean training and noisy testing data is reduced through

the normalization process. If the underlying distribution of training and testing data

is the Gaussian distribution with just different mean and variance parameters, this

utterance-based MVN would normalize both of them to be the normal distribution and

hence remove the mismatch. However, for real speech signals, this Gaussian assumption

is hard to maintain. It hence only has limited capability in reducing the distribution

mismatches.

Besides the functionality differences between these two MVN processes, they could

also incur different time latencies for real time ASR systems. For the global MVN,

there is no MVN estimation latency as the parameters are computed a priori and

repeatedly used for every testing utterance. However, for the utterance-based MVN,

the normalization mean and variance are unavailable before the utterance finishes. The

recognition process can only start after the whole utterance is spoken and the MVN

statistics are ready. This additional MVN estimation latency is unavoidable for the

utterance-based MVN. A simple way to address this latency is to incrementally update

the MVN parameters. However, the invalid Gaussian distribution of the data and the

limited samples used to update the MVN statistics would limit its effectiveness.

From the above comparisons, both the commonly adopted MVNs have their pros

and cons. An MVN that has the same reliability as the global MVN, and also the

mismatch reduction capability of the utterance-based MVN, is more desirable. We

hence propose using the Vector Taylor Series - Mean and Variance Normalization (VTS-

MVN), which utilizes the global MVN to gain prior information for improved reliability,

and incorporates the current environment information through the VTS compensation

to improve efficacy. This process is similar to the model-based VTS compensation for

the GMM-HMM system. The only difference lies in how many Gaussians are involved.

The conventional VTS compensation is applied to all the Gaussians in the GMMs for

each HMM state, while for our DNNs, the compensation occurs in the single Gaussian

normalization front-end. As only one Gaussian is involved, it would be more efficient

than the conventional method.

54

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

4.1.2 VTS Model Compensation

The model compensation scheme combines the clean-trained model and noise distribu-

tions with the mismatch function to find the parameters for the noise-corrupted speech

model. The clean model in our VTS-MVN process is the single Gaussian with mean

and variance estimated from the whole training data (equation (3.28)). We borrow the

noise estimations from the conventional VTS compensation process. The formulation of

the speech and noise interaction model, i.e. the noise environment model, is discussed

in Section 2.1. The mismatch function for the static features in the cepstral feature

domain is derived in equation (2.4), which is re-stated here for easy reference:

y(s) = x(s) + u(s) +C log
(
1 + exp

(
C†(z(s) − x(s) − u(s))

))
(4.1)

where the superscript (MFCC) for the feature domain in the original equation is replaced

with (s) to distinguish the static coefficients from the dynamic ones (∆) and (∆2)

in the following equations. The y(s),x(s),u(s), z(s) are the static coefficients of the

cepstral feature vectors corresponding to the distorted speech, clean speech, channel and

additive noise, respectively. C and C† are the discrete cosine transform and its pseudo-

inverse. For DNNs, the FBank features are more favorable than the MFCC features, so

we would like to apply the VTS compensation in the FBank feature domain. However,

due to the dependencies among FBank feature dimensions, the underlying GMMs have

to adopt full covariances to achieve comparable performance as the MFCC features,

which will greatly increase the amount of training data and computations. As the

conversion from the FBank spectral features to the MFCC cepstral features is simply a

linear transformation using the DCT transform C, we hence, in this study, first use the

conventional cepstral feature based GMM-HMM systems for VTS compensation. After

obtaining the noisy model parameters in the cepstral domain, we simply reverted them

back to the FBank spectral domain by multiplying them with the pseudo-inverse DCT

transform C†. Due to the non-linearity of the mismatch function, it is hard to directly

incorporate equation (4.1) into the ASR systems. The first-order VTS approximation

[145] of it could be expressed as

y
(s)
vts = y(s)|

µ
(s)
0

+ Jx(x(s) − µ(s)
x) + Jz(z

(s) − µ(s)
z) + Ju(u(s) − µ(s)

u) (4.2)

where |
µ
(s)
0

indicates an evaluation of equation (4.1) at the Taylor series expansion point

µ
(s)
0 = {µ(s)

x ,µ
(s)
z ,µ

(s)
u } with the static speech component mean µ

(s)
x , the static additive

noise mean µ
(s)
z and the static channel noise µ

(s)
u . The Gaussian component index m

in the original equation (2.13) is omitted as there is only one Gaussian for our DNN

normalization front-end. The Jacobian matrices could be computed similarly using

55

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

equations (2.14), (2.15), (2.16).

Computing the mean of the noisy speech, i.e. the expected value of equation (4.2),

is straightforward, since it is a linear function of three vectors: the additive noise, the

clean speech, and the channel noise. This may be expressed as

µ(s)
y = E{y(s)} ≈ E{y(s)

vts} = y(s)
∣∣
µ
(s)
0

= µ(s)
x + µ(s)

u +C log
(
1 + exp

(
C−1(µ(s)

z − µ(s)
x − µ(s)

u)
))
. (4.3)

The covariance of the linear corrupted speech function is simply the sum of the trans-

formed covariances of the clean speech, additive noise and channel

Σ
(s)
y,full = E{y(s) y(s)>} − µ(s)

y µ(s)>
y ≈ E{y(s)

vts y
(s)>
vts } − µ(s)

y µ
(s)>
y

≈ JxΣ(s)
x J

>
x + JzΣ

(s)
z J

>
z + JuΣ

(s)
u J

>
u (4.4)

assuming the clean speech, additive noise and channel noise are independent of each

other. The term Σ
(s)
z denotes the variance of the static additive noise and Σ

(s)
u the

variance of the static channel noise. Since the Jacobian matrices Jx, Jz and Ju are

full, the corrupted speech covariance matrix will also be full and is usually diagonalized

for standard decoders. It is often assumed that the channel noise does not change

in each particular utterance. Hence, we have Σ
(s)
u = 0. The static corrupted speech

variance could finally be computed by

Σ(s)
y ≈ diag

(
JxΣ

(s)
x J

>
x + JzΣ

(s)
z J

>
z

)
. (4.5)

These update formulas assume that the noise-corrupted clean speech Gaussian com-

ponent may be approximated by another Gaussian distribution. This is clearly not

optimal, since the corrupted speech distribution can be bimodal. Nevertheless, for

efficiency, this approximation is often maintained.

Standard acoustic models use simple differences or linear regression to compute

delta parameters to model the dynamic features of speech. This complicates the com-

pensation of these features for noisy conditions, for example, making it difficult to

apply the log-normal approximation to compensate the dynamic covariance matrices.

A continuous time approximation [33] is often used to derive the compensated dynamic

parameters. The final compensation formulas are summarized here. Assuming that

the additive noise is stationary, E{z(∆)} = 0, and the channel noise is constant, i.e.

h(∆) = 0, the delta noisy speech mean may be approximated by

µ(∆)
y ≈ E

{
∂y

(s)
vts

∂t

}
= E

{
∂y

(s)
vts

∂x(s)

∂x(s)

∂t
+
∂y

(s)
vts

∂z(s)

∂z(s)

∂t
+
∂y

(s)
vts

∂u(s)

∂u(s)

∂t

}
≈ Jxµ(∆)

x . (4.6)

56

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

Similarly for the dynamic noisy speech variance,

Σ(∆)
y ≈ E

{
∂y

(s)
vts

∂t

∂y
(s)
vts

∂t

>}
− µ(∆)

y µ(∆)>
y ≈ diag

(
JxΣ

(∆)
x J>x + JzΣ

(∆)
z J>z

)
. (4.7)

Following the same procedure, the accelerate parameters are

µ(∆2)
y ≈ Jxµ(∆2)

x (4.8)

Σ(∆2)
y ≈ diag

(
JxΣ

(∆2)
x J>x + JzΣ

(∆2)
z J>z

)
. (4.9)

To summarize, the noisy speech mean µy and variance Σy could be approximated

using the clean speech mean µx and variance Σx with the additive noise mean µz and

variance Σz, and the channel noise mean µu:

µy =

 µ
(s)
y

µ
(∆)
y

µ
(∆2)
y

 ≈

µ

(s)
x + µ

(s)
u +C log

(
1 + exp

(
C−1(µ

(s)
z − µ(s)

x − µ(s)
u)
))

Jxµ
(∆)
x

Jxµ
(∆2)
x

 (4.10)

Σy =

Σ
(s)
y 0 0

0 Σ
(∆)
y 0

0 0 Σ
(∆2)
y

≈ diag(

JxΣ
(s)
x J

>
x + JzΣzJz 0 0

0 JxΣ
(∆)
x J>x + JzΣ

(∆)
z Jz 0

0 0 JxΣ
(∆2)
x J>x + JzΣ

(∆2)
z Jz

).

(4.11)

The environment distortion parameters {µz,Σz,µu} are borrowed from the con-

ventional GMM-HMM systems, and are estimated per test utterance using an iterative

EM algorithm [36]. The standard VTS compensation assumes a clean speech model. To

utilize the multi-style training data, noise adaptive training (NAT) has been proposed

[146].

4.1.3 VTS-MVN

Our proposed VTS-MVN process that integrates the merits of both the global MVN

and the utterance-based MVN is illustrated in Figure 4.2. In our VTS-MVN, the

commonly constant feature normalization parameters {µ,Σ} are now time-dependent

and will be referred to as {µ(τ),Σ(τ)} with τ indicating the time dependency. The

57

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

Speech

Signals

Noise Tracker

VTS Compensation

Normalization FE AM

Global MVN

Figure 4.2: A visual illustration of the VTS-MVN process.

feature normalization of equation (3.28) now becomes

o′t = fMVN(ot) = (Σ(τ))−
1
2 (ot − µ(τ)). (4.12)

Initially, we set µ(0) = µ(Global) and Σ(0) = Σ(Global). At a certain time τ during the

recognition process, the normalization parameters {µ(τ),Σ(τ)} are obtained by com-

pensating the global MVN prior with the current environmental parameter estimation

{µ(τ)
z ,Σ

(τ)
z ,µ

(τ)
u }. These parameters are generated from a noise tracking component,

which in our setup is the existing GMM-HMM system.

We use different time index variables for the feature vectors and the MVN esti-

mations. It allows different time resolutions to be used, because normally finer time

granularities are needed for the feature steam. For noise tracking, if we keep τ = 0,

the VTS-MVN reverts to the global MVN as we never update the normalization pa-

rameters through out the recognition process. In an extreme case, if we update the

VTS-MVN parameters at each time frame, we are effectively doing a frame-dependent

MVN which is usually unreliable. If τ is set to be the length of each utterance, and

the noise tracker is simply computing the mean and variance of all the seen feature

vectors, this system is then effectively doing an utterance-based MVN. Compared to

the simple MVN calculation, our VTS-based noise tracker is more reliable. Generally

speaking, the granularity of the time index τ , i.e. the update frequency of the noise

tracker in our VTS-MVN system, effectively balances among reliability, latency and

mismatch reduction capabilities. Deciding when to update the estimation is crucial. In

our experiments, we use the utterance-based VTS-MVN and focus on evaluating the

reliability gains from using the VTS-MVN derived from the prior global MVN. The

reason for choosing τ to be the utterance length is that in the Aurora-2 corpus, the

58

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

average utterance length is around 1.7s including the starting and ending pauses. It

mimics the application scenario of recognizing short segmented speech data well, where

the simple utterance-based MVN estimation is unreliable.

From another perspective, the normalization process defined in equation (3.28)

could be represented as a linear input layer in front of the DNN with the bias b and

the weight matrix W as

b =
[
−µ1
σ1
−µ2
σ2
· · · −µD

σD

]>
(4.13)

W = diag
([

1
σ1

1
σ2
· · · 1

σD

]>)
(4.14)

and

o′t = W ot + b. (4.15)

The µ and Σ are initialized to the global MVN {µ(Global),Σ(Global)}. With the update

of the environment estimations, the µ and Σ are accordingly updated to {µ(τ),Σ(τ)},
which then leads the updated layer weight parameters W (τ) and b(τ). The final nor-

malized features are

o′t = W (τ) ot + b(τ). (4.16)

As the compensation updates the DNN layer weights directly, it could be considered

as a simple model-based compensation for the DNN to a certain degree.

4.1.4 Feature-based VTS

From the feature normalization perspective, our VTS-MVN compensates the normal-

ization parameters to generate reliable normalization feature representations, which

may look like a feature-based VTS. However, they are quite different. From [145], a

GMM that represents the clean speech feature distribution has to be estimated. The

pseudo-clean features are computed using the MMSE from the noisy observations. With

the first-order VTS approximation, they are computed as

o′
(MMSE)
t = E(o′t|ot) =

∫
o′t p(o

′
t|ot)do′t

= ot −
K−1∑
k=0

p(k|ot)

(
µu +C log

(
1 + exp

(
C−1(µz − µx,k − µu)

)))
(4.17)

where p(k|y) is the posterior probability for the kth Gaussian in the noise-compensated

GMM given the noisy feature y. The µx,k is the mean of the kth Gaussian in the

59

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

clean GMM. Compared to this feature-based VTS, our approach (equation (4.16)) not

only shifts the noisy speech, but also scales it to estimate the pseudo-clean speech.

The additional scaling step actually captures the variance changes between the clean

and noisy speech. Moreover, multiple Gaussians usually have to be estimated for the

feature-based VTS, while only a single Gaussian is involved in our approach.

4.1.5 Adaptive Training

Similar to the GMM-HMM, the VTS compensation assumes that the prior model is

to be trained on clean data. When dealing with the multi-style data, the NAT is

commonly adopted. Furthermore, as the single Gaussian based global compensation

may limit its capability, we hope to relieve this limitation by using the DNN’s powerful

variation modeling capability through the adaptive training framework. A NAT based

on our front-end VTS compensation is thus developed and the detailed training steps

are presented in Algorithm 1.

Algorithm 1 Noise adaptive training of the VTS-MVN compensation for the hybrid
DNN-HMM speech recognition system.

1: Train a DNN model from the multi-style data and estimate the initial environment
distortion parameters from the beginning and ending frames for each utterance (20
frames in our experiments);

2: Compensate the current DNN front-end and estimate a new set of distortion pa-
rameters with the current DNN;

3: Re-train the DNN with the new noise compensated front-end;
4: Go back to step 2 until the recognition accuracy converges on a cross validation

set. After the adaptive training, the distortion parameters are discarded and only
the pseudo-clean DNN is kept for testing.

4.1.6 Discussions

Our VTS-MVN technique treats the global normalization mean and variance as a prior

Gaussian representing the whole training data distribution of the dataset. Although

it is a rather crude approximation, it works well in practice (cf. Section 6.2.1). For

each testing utterance, this Gaussian is compensated using the first-order VTS model

compensation technique to yield a noisy Gaussian where the data samples of the testing

utterance are believed to be sampled from. The noisy Gaussian is then used to normal-

ize the testing utterance before it is forwarded to DNNs. It is effectively estimating the

MVN parameters for each testing utterance, which can directly be accumulated from

that utterance, i.e. the utterance-based MVN. However, our method is more robust on

short segments of speech data and has less latencies. In our approach, the global MVN

parameters serve as the prior model, and the environment parameters are estimated

60

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

from the target utterance using a GMM-HMM system. For the utterance-based MVN,

when the speech variation is relatively small across the utterance, we may face the risk

of removing both the noise and speech information. Most importantly, experimental

results presented in Section 6.2.1 verify that the improved reliability from using this

approach could lead to better performance compared to the simple utterance-based

MVN.

4.2 Deep Split Temporal Context

The short-term memory of the auditory periphery in mammals [148, 149, 150] appears

to be of the order of about 200ms. This means that the human auditory system can

effectively utilize rather large time-spans of the audio signals. This is a time-span

on a greater order of magnitude than that of the temporal window used in a typical

short-term speech analysis for ASR. For example in Section 1.1, the commonly used

time-span of each MFCC frame is only 25ms.

DNNs are becoming popular in ASRs. They have been shown to generalize much

better than traditional models. The use of context windows to increase the input

time-span plays an important role for them to outperform the conventional GMMs.

Moreover, from the previous section, the borrowed noise estimations from the GMM-

HMM for the whole utterance limit the effectiveness of the VTS-MVN. Estimating

noise parameters in DNNs is more desirable. However, due to the discriminative na-

ture of DNN learning, the high error rates in the decoded hypotheses and the limited

enrollment data, learning the noise parameters in the DNN learning framework is chal-

lenging. As DNNs are superior at modeling variations, we are thus interested in whether

they can automatically capture the noise environment variations from the inputs. To

investigate the DNNs’ environment learning capabilities, a long, or rather long, span

of input features has to be used. With more input information, a better environment

estimation may be achieved. In the literature, conventional noise tracking methods

also utilize longer speech signals. In this work, we hence investigate the use of a long

temporal-span context-expanded representations (equation (3.29)) to enable DNNs for

a better understanding of the noise environment, which may further lead to improved

noise robustness under adverse environments. To model a large input context window,

increasing the input layer dimensionality is compulsory. Additionally, the increase of

the input dimension also leads to an exponential increase in the number of input varia-

tions. The use of many high-dimensional hidden layers is crucial for improving DNNs’

capacity. However, this often leads to the problem of over-fitting on small datasets.

Recently, a dropout technique is proposed to reduce the over-fitting by randomly

omitting some of the feature detectors on each training case to achieve promising im-

61

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

provements on the TIMIT phoneme recognition task [151]. Similarly, a sparse variant

of the DNN has also been proposed earlier for vision tasks [152]. In this work, we are

motivated by the Split Temporal Context (STC) system [153] to explore the input in-

dependence inside a context window. Based on the recent progress in deep learning, we

first simplify the original STC system and further propose a Deep Split Temporal Con-

text (DSTC) system to incorporate the high-level abstraction-learning capabilities of

DNNs. Experimental results on Aurora-2 in Section 6.2.2 show that the DSTC system

not only generalizes better than basic DNNs but also has lower model complexity.

4.2.1 Split Temporal Context

Before the success of training DNNs, the shallow NN (Figure 4.3(a)) with 1 or 2 hidden

layers is commonly adopted in the hybrid NN-HMM systems [15]. Due to its shallow

structure, the acoustic modeling capability is limited. One of the early systems that

aims to improve its performance is the STC system (Figure 4.3(b)) [153], which assumes

the independence of the left and right acoustic context and models them separately.

Another NN is used to merge the two sets of partial context predictions to give the

final decision. It can robustly model long-term acoustic dependencies and thus improves

recognition performance. Recently, there is much interest in understanding the NN’s

capabilities in learning high-level abstract representations rather than just taking it

as a black-box classification model. It can be easily formulated as a layered feature

extraction and a linear classification with softmax normalization. It may be better to

directly combine the partial context abstractions and leave the uncertainties to the final

decision layer rather than making predictions based on the incomplete information.

This leads to our revised STC system (Figure 4.3(c)), which combines the hidden

representations instead of the output posteriors. Additionally, we hypothesize that

with a good feature representation, a linear classifier is sufficient. The merging NN in

the original STC is thus simplified into a single softmax layer.

(a) Shallow NN (b) Original STC (c) Proposed STC

Input Layer Hidden Layer Output Layer

Figure 4.3: A comparison of different shallow neural network structures.

62

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

4.2.2 Deep Split Temporal Context

The DNN with multiple hidden layers (Figure 4.4(a)) has shown its superior feature

abstraction capabilities, which makes it a perfect fit for the STC system (Figure 4.4(b)).

However, one may argue that the DNN is already good enough to capture long term

dependencies. It is true that with its multi-layered abstraction, the DNN has already

largely outperformed the shallow NN. However, if the training data is relatively small

and the potential testing variations are huge, we need to build a large model to guar-

antee model capacity, which then has the problem of over-fitting. The DSTC system

(Figure 4.4(c)) is thus proposed, for addressing this issue. By assuming the indepen-

dence in the input context window, we can use smaller DNNs to model the partial

contexts separately. Due to the human speech production mechanism, there are strong

co-articulation effects in speech which are reflected by local context dependencies. How-

ever, the long term dependencies are more associated with the grammars and meanings

of the language rather than acoustics. It is thus safe to assume independence between

short term acoustic contexts within a wide context window, which will also be validated

later in the experiments.

... ...

Input Layer Hidden Layer Output Layer

(c) Deep Split Temporal Context (DSTC)

(b) STC with DNNs

(a) DNN

... ...

...

...

... ...

Figure 4.4: A comparison of different deep neural network structures.

63

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

4.2.3 Learning Algorithm

Algorithm 2 Training a 2-block (i.e. left- and right-context) DSTC system on (2 ∗
w + 1) frames of acoustic contexts with N hidden layers in each DNN using features
ot and labels lt for each time slice t. The final system consists of the left context DNN
Mleft, the right context DNN Mright and the final softmax layer Msoftmax.

1: Initialise n = 0, x = {
[
oTt · · · oTt+w

]T | for all t}, y = {lTt | for all t};
2: step 1. Shared Pre-training of the DNN M0. begin
3: while n < N do
4: Train an RBM using x;
5: Set x to the hidden activations of the current RBM;
6: n = n+ 1;
7: end while
8: Stack the N RBMs together;
9: Append a randomly initialized classification layer to the stacked RBMs to form

our initial DNN, M0;
10: end
11: step 2. Parallel fine-tuning of partial context DNNs. begin
12: step 2.1. Fine-tune the left context DNN Mleft. begin

13: Set x = {
[
oTt−w · · · oTt

]T | for all t};
14: Fine-tune M0 until converge;
15: Remove the final softmax layer to get Mleft;
16: Forward x through Mleft to generate hleft;
17: end
18: step 2.2. Fine-tune right context DNN Mright. begin

19: Set x = {
[
oTt · · · oTt+w

]T | for all t};
20: Fine-tune M0 until converge;
21: Remove the final softmax layer to get Mright;
22: Forward x through Mright to generate hright;
23: end
24: end
25: step 3. Train the final softmax layer Msoftmax. begin

26: Set x =
[
hTleft hTright

]T
;

27: Train Msoftmax from random initialization.
28: end

The training algorithm for the DSTC system is detailed in Algorithm 2. Although

there are multiple partial context DNNs in the DSTC system, the training cost is

actually reduced, compared to training a DNN with the same hidden-capacity on the

complete context. When training the partial context DNNs, the unsupervised pre-

training is shared and only the fine-tuning, which can be further parallelized, differs.

In our experiments, we run 200 epochs for the input-to-hidden layer and 100 epochs

for all the other layers in the pre-training phase, while maximum 20 epochs are used

for fine-tuning. The main computation burden is the unsupervised pre-training. The

64

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

additional softmax merging layer is a simple linear regression, which is much faster than

DNN trainings. Moreover when comparing the DNN (Figure 4.4(a)) and the DSTC

(Figure 4.4(c)), we are effectively replacing the DNN’s full weight matrices with block

diagonal ones, which reduces the number of model parameters. Examining the DSTC

structure, one may wonder whether the DSTC’s merging at the last hidden layer is

optimal. Our experimental results (cf. Section 6.2.2) have shown that learning a better

set of partial feature representations is much more important than adopting a complex

back-end classification model.

4.2.4 Discussions

This study verifies that the increase of the context window size of the context expanded

representations (equation (3.29)) improves DNNs’ noise robustness by providing suf-

ficient information for DNNs to automatically obtain better environment estimations.

Detailed experimental verification will be presented in Section 6.2.2. To address the

dramatic increase of the model size caused by the increase of the input dimensions and

variations, a DSTC system is proposed. It builds upon small partial context DNNs with

shared unsupervised pre-training. It is capable of maintaining a high model capacity

while using relatively fewer model parameters. The training cost is much lower than a

single fully connected DNN with the same model capacity. Most importantly, the sepa-

rate modeling of the partial-contexts of the rather long context window of input features

does improve the generalization capability of the DNN. As previously discussed, we are

motivated by existing work, such as the dropout and the sparse model. However, those

techniques do not change the model structure and cannot reduce the training cost. On

the contrary, the dropout fine-tuning often requires hundreds of epochs to reach the

optimum. Moreover, those techniques can all be applied directly to the partial DNNs

of our DSTC system.

4.3 Spectral Masking

DNNs have shown superior capabilities in learning input variations not only from com-

parisons with traditional GMM-HMM systems but also because of the ineffectiveness

of conventional feature-based noise robustness techniques. The previously discussed

techniques, the VTS-MVN and the DSTC, do yield improved recognition performance.

However, the gain on larger datasets are limited. For the VTS-MVN, it works with the

assumption of the unreliability of the utterance-based MVN statistics. When dealing

with normal speech where utterances are long, this assumption no longer holds and the

benefit of using the VTS-MVN diminishes. For the DSTC, the challenge lies in how

to first construct huge models using available computation power that could over-fit

65

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

on the given corpora. We can only see the benefit of employing DSTC after that as

its structure constraints could maintain a high model capacity but with less number of

model parameters. Simply speaking, the gain of the DSTC comes from constraining the

parameters of over-fitted DNN models. Hence, having over-fitted DNNs on the training

data is compulsory for the effectiveness of the DSTC. However, with large amounts of

data, building such models is difficult.

In searching for methods that could lead to further performance gains, insights from

the human speech perception process may be helpful. The human auditory system is

capable of efficiently identifying and separating speech and noise prior to understanding

[154]. Therefore, in this section, we investigate this “separation-prior-to-recognition”

process via spectral masking for noise-robust speech recognition. Firstly, a DNN-based

Mask Estimator (ME) is developed. Estimated masks are then used to transform the

noisy speech power spectrum into noise-invariant representations. Due to the use of

DNNs for the mask estimation, the ME suffers from the mismatch problem. We propose

to adopt the Linear Input Network (LIN) adaptation technique in our system. The LIN

is effective in reducing training and testing mismatches for AMs. But the estimation of

LINs for the MEs requires stereo data, which is not available during testing. To solve

this problem, we modify the DNN to have an RBM input layer, namely the RBM-DNN.

A LIN transform could then be estimated for the RBM front-end in an unsupervised

manner, using contrastive divergence [109]. To further improve the robustness, we also

replace the AM DNN with an RBM-DNN. Most importantly, by sharing the input

RBM layer between the AM and the ME, the ME LIN transform could be learned by

back-propagating the AM prediction errors.

4.3.1 Spectral Masking System

One important property of auditory nerve responses in human speech perception is that

they respond preferentially to certain frequencies [155]. Motivated by the phenomenon

of masking in the auditory perception, source segregation in computational auditory

scene analysis is achieved by computing a mask to weight the Time-Frequency (T-F)

representation, such as the spectrogram of acoustic signals. The mask applies a weight

to each T-F unit, such that the spectral-temporal regions that are dominated by speech

are emphasized, and regions that are dominated by other sources, such as noise, are

suppressed. The values in the mask may be binary or real-valued. In the latter case, the

mask value may be interpreted as the ratio of the target energy to the mixture energy, or

the probability that the T-F unit belongs to the target speech. A time-frequency weight

of this kind was first employed in the binaural source separation algorithm described

in [156], and has subsequently been adopted by other researchers [157, 158]. Recently,

these methods have also seen many applications in robust ASRs [159, 160].

66

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

With stereo data, Ideal Binary Masks (IBMs) [161] have been shown to substan-

tially improve the intelligibility of speech with background noise [162]. The IBMs are

computed in the power spectrum domain using:

m
(IBM)
t,c =

{
1 if r

(SNR)
t,c > LC

0 otherwise,
(4.18)

where LC is a local SNR criterion [162] and r
(SNR)
t,c represents the local SNR at the time

frame t and the frequency channel c. It is computed as

r
(SNR)
t,c = 10 log10

x(t, c)

z(t, c)
(4.19)

and x(t, c) and z(t, c) are the corresponding speech and noise energies. IBMs are used

in a direct spectral masking manner to remove noise-dominated T-F units [160, 163].

Optionally, the discarded T-F units can be reconstructed by using the information

from the speech-dominated units [76]. IBMs cannot be obtained in practical situations

for spectral masking, since they are computed using stereo data. Therefore, various

classification-based algorithms for IBM predictions have been developed [164, 165, 166,

167]. With the fast adoption of DNNs in various machine learning tasks, [167] and

[168] have replaced their original support vector machine mask estimators with DNNs.

In their work, an ensemble of different features are used as DNNs’ inputs and the mask

estimation is performed in two stages. Firstly, a total number of 27 DNNs using a

single-frame input and 1,024 units per hidden layer are trained. In the second stage,

a shallow neural network is estimated to give the final mask estimation by combining

multiple frames of output predictions from the first stage DNNs. After masking, another

reconstruction DNN is used to convert the masked partial spectral features to clean

features, which are then used as inputs for the final acoustic model DNN.

In this study, we first propose to simplify the conventional spectral masking system.

A visual comparison between the conventional spectral masking system and our simpli-

fied one is illustrated in Figure 4.5. The simplification mainly consists of two aspects:

firstly, the features used for the prediction of IBM masks are reduced to include only the

FBank features which are exactly the same as the input to acoustic models. As FBank

features are drawn from human auditory systems, we believe the information captured

is sufficient for both the mask estimation and acoustic modeling. Moreover, the use of

the same inputs for the mask estimator and the acoustic model allows for the sharing

of input transformations which is the key to ensuring the effectiveness of this spectral

masking technique. Secondly, the simplification occurs because of how the masking

is conducted. Although many researchers discussed the direct use of these spectral

masks, feature reconstructions or uncertainty decoding are always adopted to address

67

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

Power Spectrum

FE

Speech

Signals

FBank FE

Specific Feature

Ensemble
Mask Estimator

Reconstruction

AM

(a) The conventional spectral masking system.

Power Spectrum

FE

Speech

Signals

FBank FE

Specific Feature

Ensemble
Mask Estimator

Reconstruction

AM

(b) The proposed simplified spectral masking system.

Figure 4.5: The proposed system simplification for spectral masking.

the missing information. From our experience in using enhanced features for DNN

AMs, the masked partial features are more preferable to the imperfectly reconstructed

pseudo-clean features. Additionally, from [167, 168], both the reconstruction and the

acoustic modeling are using NNs (either shallow or deep). It may hence be possible to

use a single DNN to jointly reconstruct the features and predict phonetic labels from

partial inputs. Another probable reason for direct masking to become applicable would

still be the improved modeling capabilities of DNNs over GMMs. Recently, [160] also

reports that the use of direct masking is promising.

4.3.2 Mask Estimation

In our simplified spectral masking system (Figure 4.5b), the key component is the mask

estimator. The quality of the estimated masks is crucial, as the masks decide which

time-frequency information is passed to the acoustic model. Various classification-based

algorithms for IBM predictions have been developed [164, 165, 166, 167, 167, 168]. For

practical applications, an important consideration is the additional cost brought by

68

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

RBM

DNN

Existing DNN AM State-

dependent

IBM Bases

F
B

an
k

s

E
st

im
at

ed

 M
as

k
s

(a) State-dependent estimator.

RBM

DNN

Existing DNN AM

F
B

an
k
s

E
st

im
at

ed

 M
as

k
s

DNN

Initialize

(b) DNN-based estimator.

Figure 4.6: Two proposed mask estimators. The models inside the dashed box are
those from the original DNN AM.

(a) Clean speech (b) With train noise (SNR=0dB)

(c) With IBM (d) With ideal state mask

(e) With state-dependent mask (f) With DNN-based mask

Figure 4.7: Spectrograms of the same speech “8055” under different conditions.

the mask estimation, which should not be too taxing on the whole system. With

this in mind, we propose two IBM estimation algorithms that reuse models from the

existing DNN AM. They are the state-dependent (Figure 4.6a) and the DNN-based

(Figure 4.6b) mask estimators.

State-dependent IBM Estimation

Compared to noise, speech is a kind of signal with more structure, which is also reflected

by the capability of clustering speech features into phonetic clusters for recognition us-

ing statistical machine learning methods. Although IBMs depend on both speech and

noise due to the local SNR computation, structure information about speech would

also be crucial for identifying the speech-dominate units. For a specific phonetic state

69

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

cluster, different IBM realizations should share similar structures. Based on this as-

sumption, we propose a state-dependent IBM estimation approach. Utilizing the pho-

netic state clustering of the original recognition system, the IBM vectors for each time

frame are grouped according to their corresponding speech feature vectors. There are

several advantages of borrowing speech clusters rather than directly clustering IBM

vectors. First, it saves the computational cost for the additional clustering. Secondly,

the spectral feature based clustering would be more robust than the 0-1 based masks

and thirdly, it also relieves the clustering process from being constrained by the limited

stereo data.

After clustering, a canonical IBM pattern, which will also be referred to as an IBM

basis, could then be estimated for each state cluster. In this research, we simply use

the mean IBM vector of each state cluster as the basis for that specific phonetic state.

The average IBM vector is interpreted as the expected probability for each T-F unit

being marked as speech. With this set of state-dependent IBM bases, B, the estimated

mask vector for each test feature vector ot, is computed by

mt = Bpt, (4.20)

where pt is the original DNN AM posterior probability vector computed in equa-

tion (3.31) and is directly borrowed as the IBM basis coefficient vector. This process

is also depicted in Figure 4.6a. The mask values estimated in this way are in the range

of [0, 1], rather than a discrete 0 or 1, as seen in IBMs. In consideration of the possible

errors in estimations for B and pt, we take the estimated soft masks directly for spec-

tral masking without binarization. Our approach differs from [169] in the way these

phonetic dependent mask patterns are used. Instead of using them to refine a current

estimation, we directly compose masks from them.

To gain an intuitive understanding on the effectiveness of our simple state-dependent

mask estimation, spectrograms with and without masking are plotted in Figure 4.7. For

Figure 4.7d, we use the ideal posterior vector pt computed from the forced alignment

of the test speech with true references to justify the effectiveness of the IBM bases

without worrying about errors in posterior predictions. Due to the use of soft masks,

noise cannot be completely removed; but compared to Figure 4.7b, the speech formant

structure becomes much clearer in the masked spectrum. In practice, we use the existing

DNN AM to generate pt and the spectrogram in Figure 4.7e looks slightly noisier than

Figure 4.7d but is still much better than Figure 4.7b. Furthermore, in Figure 4.8 two

samples of IBM bases (blue bars) and the corresponding normalized speech spectral

envelopes are plotted. A strong correlation could be observed, which also validates our

previous assumption.

70

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

(a) The 11th HMM state of “6”. (b) The 14th HMM state of “0”.

Figure 4.8: Comparisons of state-dependent bases (blue bars) and speech spectral en-
velops (red contour) on Aurora-2.

DNN-based IBM Estimation

In the state-dependent approach, we borrow the posterior information generated from

the original DNN. In this section, we revisit the learning procedure for DNNs. A

commonly adopted DNN training recipe [112] is to firstly pre-train a stack of RBMs in

an unsupervised way and then discriminatively fine-tune the whole DNN. The learned

RBMs are capable of extracting general purpose high-level abstractions that are good

representations of the original data, and the fine-tuning stage that comes after further

optimizes them towards a specific task. Hence, if we optimize these RBMs for the

prediction of IBMs rather than phonetic labels in the fine-tuning stage, the network

would then be capable of generating masks for any given inputs (Figure 4.6b).

The DNN ME predicts a mask vector mt. Its c-th component, mt,c, represents the

probability, P (m
(IBM)
t,c = 1|h0,t), that the cth power spectral component of the observa-

tion ot is dominated by speech. The DNN input at time t consists of a window of (2w+1)

adjacent feature frames after normalization, i.e. h0,t =
[
o′>t−w · · · o′>t · · · o′>t+w

]>
.

The computation performed by an L-layer DNN ME is as follows:

hMEl,t = φ(W ME
l h

ME
l−1,t + bMEl), for 1 6 l < L (4.21)

mt = φ(W ME
L h

ME
L−1,t + bMEL), (4.22)

where W ME
l and bMEl are the model parameters for the l-th layer in the DNN ME; hMEl,t is

the input to the (l+ 1)-th layer. φ(x) is the sigmoid non-linearity. In training, the ME

model parameters θME = {(W ME
l , b

ME
l)|1 6 l 6 L} are firstly initialized using the pre-

trained RBMs, and then fine-tuned using the standard EBP algorithm [101] to minimize

the Mean Square Error (MSE) over the set of training samples O = {o1, · · · ,oT }:

θME = arg min
θME′

1

2

T∑
t=1

∑
c

(mt,c −m(IBM)
t,c)2. (4.23)

71

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

To avoid the potential errors brought by binarizing the estimated masks, we also directly

apply the DNN-generated real-valued masks to the noisy speech through a component-

wise multiplication. An example of the masked power spectrogram obtained using our

mask estimator DNN is illustrated in Figure 4.7f. From the visual comparison, this

mask generates the most clean-like spectrogram.

Our DNN-based IBM predictor differs from [167] in two major aspects. Firstly, we

use a single DNN initialized with existing pre-trained RBMs to directly predict masks

from a window of temporal adjacent acoustic frames. In their approach, a bunch of

DNNs are built from scratch to predict the the mask value for each frequency chan-

nel, and an additional MLP is involved to smooth out the prediction with temporal

information captured in the masks. Secondly, the features for mask predictions are dif-

ferent. In our approach, we use the commonly adopted 24D FBank features. However,

in [167], an ensemble of different features are concatenated to form the static input co-

efficients, which include 13D RASTA filtered perceptual linear predictive coefficients,

13D MFCCs, 15D amplitude modulation spectrogram, and 6D pitch-based features.

Generally speaking, our approach makes it much easier for an existing DNN-HMM

system to incorporate the spectral masking.

With the masks generated from the mask estimator, either a state-dependent one

or a DNN-based one, the noisy speech power spectrum values are directly scaled. This

way of applying masks is referred to as soft masking, which allows the circumvention of

the extra step of determining proper binarization thresholds and potential errors when

converting real-valued masks to binary ones. From the masked power spectrum, a new

set of FBank features that are more invariant to noise, could be extracted accordingly.

Using these noise-invariant features, the existing DNN AM can be retrained to yield a

more robust phoneme posterior prediction.

4.3.3 Linear Input Network Adaptation

In speech recognitions, besides the noise corruption, large mismatches between the

training and testing data are usually unavoidable due to the inherent variability of noise.

Performance degradation is expected when the system is used in unknown noise condi-

tions. This has also been observed for the DNN-based ASR systems in [141, 170, 171]

and in our initial investigation on the DNN AM’s noise robustness (Table 3.1 and

Table 3.2). We hence propose to adopt a Linear Input Network (LIN) adaptation tech-

nique [140, 172, 173] to address the mismatch issue. Firstly, the mismatch problem

affects the DNN-based ME. Erroneous mask estimations dramatically degrade the sys-

tem performance, as observed in [164, 165, 166, 167]. However, it is not possible to

directly estimate the LINs for the mask estimation DNNs during testing because it

requires the IBM supervision labels. The computation of IBMs further requires par-

72

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

pthAM0,t

S
pe

ct
ra

l F
ea

tu
re

S
pe

ec
h

Te
xt

F
B

an
k

F
B

an
k

S
pe

ct
ra

l F
ea

tu
re

S
pe

ec
h

F
B

an
k

LINAM Te
xt

D
ec

od
in

g

......

Acoustic Model
Conventional DNN with LIN Adaptation

Proposed Spectral Masking System
with LIN Adaptation

xt hAM0,t pt

D
ec

od
in

g

LINME
......

Mask Estimator

M
as

ki
ng

......

Acoustic Model

LINAM

xt hME0,t mt xt'

Figure 4.9: System architecture comparisons between the conventional DNN based
acoustic model (the lightly shaded upper part) and the proposed spectral masking
system (the unshaded lower part). The linear input network (LIN) adaptation trans-
formations for the mask estimator and the acoustic model are represented as LINME

and LINAM respectively.

allel clean and noisy speech data, which is impossible to obtain during testing. Two

approaches are proposed to solve this problem: the RBM-based LIN adaptation and

the LIN sharing method. Secondly, the mismatch also happens in the masked fea-

ture domain. Although masking aims to remove noise such that the features are more

similar to clean speech, it is usually unable to achieve this objective because of mask

estimation errors (Figure 4.7f vs. Figure 4.7a). Moreover, even ideally masked features

(Figure 4.7c) are different from clean speech (Figure 4.7a). Retraining the AM with

masked features is compulsory. However, the different mask estimation accuracies of

the ME DNN in the training and testing data may also cause potential mismatches

between the masked features. Adopting additional adaptation transforms for the AM

DNN is necessary and beneficial. Our final spectral masking system with a LIN adap-

tation is depicted in Figure 4.9. For comparison, a conventional DNN-HMM system

with LIN adaptation is also illustrated in Figure 4.9. In this section we first review the

LIN adaptation for the AM DNN and then present the proposed ME DNN adaptation.

Acoustic Model Adaptation

The LIN adaptation represents the training and testing mismatch with a weight matrix

T LIN and a bias vector bLIN. Instead of directly forwarding the observation to the DNNs,

the LIN transformed one is used:

h′
0,t = gLIN(h0,t) = T LIN h0,t + bLIN. (4.24)

It effectively adds an additional input layer to the original model without nonlinearity,

which is why it is referred to as the LIN transform. The estimation of LIN transforms

73

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

is based on the EBP and hence follows exactly the same procedure as the AM DNN

training:

T LIN(τ + 1) = T LIN(τ) + ∆T LIN(τ), (4.25)

bLIN(τ + 1) = bLIN(τ) + ∆bLIN(τ) (4.26)

and

∆T LIN(τ) = α∆T LIN(τ − 1) + η ∗ ∂E
∂T LIN(τ)

, (4.27)

∆bLIN(τ) = α∆bLIN(τ − 1) + η ∗ ∂E
∂bLIN(τ)

(4.28)

where τ is the update iteration index, α is the momentum coefficient and η is the

learning rate. Commonly, we start with T LIN(0) = I and bLIN(0) = 0. Supervision

labels are required for the gradient computation. For unsupervised AM adaptation,

we could use the recognition hypotheses. One potential problem is that the hypothesis

errors may impede adaptation gain.

Mask Estimator Adaptation

Unlike the AM, no proper supervision labels could be used for ME adaptations. To

solve this problem, we propose to use an RBM as the input layer for the DNN, which is

referred to as the RBM-DNN. The RBM layer could be deemed as a statistical feature

extractor that transforms the spectral acoustic features to hidden representations. With

this generatively-trained RBM, we could estimate the LIN transform using CD [109].

The RBM energy function with the LIN is:

E(gLIN(h0,t),h1,t) =− hT1,tW 1 gLIN(h0,t)− bT1 h1,t − aT1 gLIN(h0,t) (4.29)

where W 1, b1,a1 are the RBM parameters and the subscript 1 implies it is the first

layer of the RBM-DNN. a1 is the input bias. The update of the LIN parameters by

optimizing the testing data log likelihood using CD is:

∆T LIN(τ) = α∆T LIN(τ − 1) + η ∗ (〈h0,t h
T
1,tW 1〉data − 〈h0,t h

T
1,tW 1〉model), (4.30)

∆bLIN(τ) = α∆bLIN(τ − 1) + η ∗ (〈W T
1 h1,t〉data − 〈W T

1 h1,t〉model). (4.31)

One major concern about the RBM-based generative LIN estimation is that the limited

adaptation data may be insufficient to move the existing model parameters from the

current local optimum to a better one.

Another approach to adapting the ME is to borrow transforms those are esti-

74

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

Acoustic

Model

Mask

Estimator

LIN

FBanks

Recognition Hypotheses

(a) Training the LIN with AMs.

Acoustic

Model

Mask

Estimator

LIN

FBanks

Masks

(b) Applying the LIN for MEs in testing.

Figure 4.10: Mask estimator adaptation using LINs borrowed from acoustic models.

mated with a different objective. This is motivated from the success of borrowing

the fMLLR transform from the GMM-HMM system to the shallow [140] and deep

[174, 175, 176, 177] neural network acoustic models. Although there is no strict for-

mulation to guarantee the validity of this kind of transform sharing, it is commonly

deemed as a generic feature transformation that reduces mismatches. Unlike the system

in [167, 168], the use of the same inputs between our AM and ME allows the exchange

of feature transforms. We hence investigate the borrowing of adaptation transforms

from the AM DNN to the ME DNN (Figure 4.10). We estimate the LIN transforms

by back-propagating the recognition errors through the AM (Figure 4.10a) and during

testing, this LIN is directly applied to the ME (Figure 4.10b). In addition, we also

adopt the RBM-DNN for acoustic modeling in our system and further constrain the

AM and the ME to share the same RBM input layer. Empirically, we have shown that

the LINs estimated for the AM RBM-DNN perform much better for the ME RBM-

DNN than those estimated for the pure DNN-based AM. One possible explanation is

that the shared RBM serves as a regularization term to ensure that the LIN is suitable

to generate shared hidden representations for both tasks.

Structure Constraints for LIN

The use of long-span acoustic features in DNNs is important to their superior perfor-

mance, but it also causes a large increase in the number of adaptation parameters in

the LIN transforms. For example, for the conventional MFCC-based GMM system, the

fMLLR adaptation transform has around 1.5k parameters; while for a 11-frame input

window DNN, the LIN transform has 184.5k parameters. With the same amount of

limited enrollment data, the estimation of maximum likelihood based fMLLR is un-

doubtedly more reliable than that of the discriminative LIN. For a window of (2w+ 1)

75

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

frames input, i.e. h0,t =
[
o′>t−w · · · o′>t · · · o′>t+w

]>
, the LIN transform also has

a similar block structure:

T LIN =

T−w,−w · · · T−w,0 · · · T−w,w
...

...
. . .

...
...

T 0,−w · · · T 0,0 · · · T 0,w

...
...

. . .
...

...

Tw,−w · · · Tw,0 · · · Tw,w

, (4.32)

where each T i,j is a transform similar to a fMLLR. T i,i models the intra-frame correla-

tion and T i,j with i 6= j models the inter-frame correlation between frame i and j. To

reduce the number of parameters in LIN, we begin with removing all the inter-frame

correlations by constraining T i,j = 0 for all i 6= j. This kind of LIN is referred to as the

block diagonal LIN - “LIN(blk)”. Furthermore, we could constrain all the intra-frame

correlations to use the same transform. This is referred to as the shared block diagonal

LIN, i.e. the “LIN(shd)”. It has a comparable number of parameters to the fMLLR.

In [168], a diagonal LIN has been adopted, which will be referred to as the “LIN(dig)”.

With this strong constraint, the LIN is effectively estimating the MVN statistics and

is only used in utterance-based adaptations. The estimation of these variations is the

same as the basic LINs, except for the additional structure constraints that have to be

applied after each iteration of parameter update.

4.3.4 Discussions

In this study, we design a spectral masking system based on the existing studies. Firstly,

the conventional spectral masking system is simplified to use only the FBank features

as inputs and the feature reconstruction module after masking is discarded. After

removing those components, the performance of the mask estimator become even more

crucial to the success of the masking approach. Experimental justification will be

presented in Section 6.2.3 and Section 6.2.4. To estimate high-quality masks, two mask

estimation algorithms are further proposed, which both utilize the powerful DNNs.

Although masking is effective in removing noise corruptions, the training and testing

mismatch is another major factor that dramatically degrades ASR performance. The

use of statistical models, including DNNs, renders the mismatch problem more crucial.

To address the mismatch problem, we adopt the simple Linear Input Network (LIN)

adaptation into our spectral masking system. Since the estimation of the LINs for the

mask estimation DNNs requires stereo data, the LINs estimated for the acoustic model

DNNs are used to adapt the mask estimators during testing. For the borrowing of

the LINs to work well, the first layers of both the DNNs are constrained to share the

76

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

same parameters, which are learned during the pre-training stage. Besides improving

the reliability of transformation sharing, RBM-DNN has also been found to give a

better performance compared to the pure DNN-based acoustic models on noisy speech.

By combining the spectral masking for noise removal and the linear input network

adaptation for mismatch reduction, we achieve the best average WER performance on

both the Aurora-2 and Aurora-4 tasks. The detailed experiments could be found in

Section 6.2.3 and Section 6.2.4.

4.4 Summary

In this chapter, we start with the investigation into the noise robustness of the nor-

malization feature representations (equation (3.28)). The use of utterance-based MVN

is always desirable. However, when the speech segment for recognition is short, the

estimation of utterance-based MVN statistics is unreliable. To address this problem, a

VTS-MVN technique that utilizes the global MVN as a priori and estimates environ-

ment parameters with a conventional maximum likelihood based GMM-HMM system.

Based on the frequency of the environment parameter updates, the VTS-MVN could

be easily adjusted to balance between reliability and effectiveness. Following that, we

investigated the effectiveness of adjusting the window length for the context-expanded

representation (equation (3.29)). Benefiting from DNNs’ superior modeling capabili-

ties, the use of longer contextual inputs do help improve DNN AM’s generalization on

unseen noise. However, the increase of the input dimensions leads to an exponential

increase of input variations. Increases in DNN capacity are necessary for improved

performance, which usually causes over-fitting problems. A DSTC algorithm is hence

proposed, to build high capacity DNNs with relatively less weight parameters.

Although the VTS-MVN and DSTC have shown effectiveness in improving DNNs’

noise robustness, they do have strong assumptions which may limit their effectiveness

on scenarios that invalidate the assumptions. The VTS-MVN works well for short

utterances. For long sentences, the simple utterance-based MVN is sufficient (cf. Sec-

tion 6.2.1). The DSTC is effective only when the over-fitted DNN has an over-fitting

problem on the training data (cf. Section 6.2.2). To further address the general noise

corruption problem explicitly, we mimic the separation-prior-to-recognition process of

human speech perception and develop a DNN-based spectral masking system. It differs

from conventional masking systems that use large ensembles of various kinds of fea-

tures. Instead, the same FBank feature is used for both mask estimation and acoustic

modeling. The use of the powerful DNNs for acoustic modeling enables the direct use

of the masked partial features without doing any feature reconstruction. The spec-

tral masking has been experimentally verified to be effective in noise reduction but

77

4. NOISE-ROBUST INPUT REPRESENTATION LEARNING

the DNN-based mask estimator cannot generalize well to unseen noise conditions (cf.

Section 6.2.3 and Section 6.2.4). To address the degradation caused by mismatches,

the LIN adaptation is incorporated into our spectral masking system. Two adaptation

algorithms, namely the RBM-based generative adaptation and the transform sharing,

are proposed to adapt the mask estimator, as the lack of supervision labels renders

the direct adaptation of the ME impossible. The final spectral masking with the LIN

adaptation system has been shown to yield the best performance in the literature on

both the Aurora-2 and the Aurora-4 tasks as the time of writing. Detailed perfor-

mance comparisons among different techniques developed in the literature and justified

on these two corpora could be found in Section 6.4.

78

Chapter 5
Noise-Robust Hidden

Representation Learning

The success of masking the noise variations in the input feature representations for the

DNN AM further intrigues the interest in understanding the noise robustness of the

automatically learned hidden representations in DNNs. With a deep layered structure,

there are usually many more levels of hidden representations compared to the single

input representation. Every hidden layer takes in the representation generated by the

layers below and extracts a relatively higher level of abstraction for the layers above.

Within this layered hierarchy, the lower layers are found to capture more local and

feature-dependent information, while the higher layers capture more task-specific dis-

criminations. In this chapter we extend our study of masking out noise variations into

the hidden representations. Unlike spectral masking, it is hard to find a physical expla-

nation for the hidden activations. The definition of the spectral IBM is not applicable in

the hidden representation domain. Instead of distinguishing between speech and noise,

we define an Ideal Hidden-activation Mask (IHM) that identifies the noise-invariant

hidden units. With this IHM, we are capable of improving the DNN AM’s performance

without additional adaptations. This suggests that the IHM is more robust to estima-

tion errors in the masks, compared to the spectral masking. The current IHM follows

exactly the same system structure as the spectral masking that employs an additional

DNN as the mask estimator. By further analyzing the effects of masking the hidden

activations, it is found that the masking could be simulated by attenuating the sigmoid

activation function with a bias shift. This shifting offset can be further decomposed

into the product of a code vector and a transformation matrix, which are optimized to

minimize the differences between the generated hidden activations of noisy speech and

corresponding clean speech. The code vector is hence referred to as the noise code due

to this noise variation minimization objective.

79

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

5.1 Hidden-Activation Masking

The spectral masking approach, especially augmented with the LIN adaptation, has

shown some impressive results in improving DNNs’ noise robustness (cf. Section

4.3.1, Section 6.2.3 and Section 6.2.4). It is adapted from humans’ separation-prior-to-

recognition speech perception process [154, 155]. Masks are adopted to separate speech

from noise in the power spectral domain, where the noise and speech energy are assumed

to interact in an additive manner. An Ideal Binary Mask (IBM) [161, 178] is commonly

used to identify each unit in the power spectral representation of the noisy signals as

speech dominant or noise dominant. The IBMs are theoretically defined to be binary,

but due to the potential estimation errors and the need to select proper binarization

thresholds, the estimated masks are usually used in a soft masking manner. That is to

say, the estimated real-valued IBMs are directly used without binarization to scale the

noisy spectral energy rather than having to do a binary selection. The scaled spectral

energies are deemed as estimations of clean speech energies. These real-valued masks

could be interpreted as the expected probabilities of the corresponding time-frequency

components being speech dominant. More intuitively, they are the estimated speech

ratio in the noisy components. As the use of real-valued masks rather than the binary

ones are becoming more and more popular, directly adopting a soft mask through-out

the training and testing may render improved performance. Recently, an Ideal Ratio

Mask (IRM) in the same power spectral domain has been developed and shown to

be more effective than the IBMs [167]. While continuing the investigation of learning

noise-robust representations for DNN AMs in this research, we are interested in extend-

ing the idea of masking into DNNs’ hidden layers. An Ideal Hidden-activation Mask

(IHM) is hence developed. Unlike the spectral masks separating speech dominant and

noise dominant units, the IHM evaluates the noise invariance of each hidden unit and

discards those generating inconsistent activation levels for speech from different noise

conditions.

5.1.1 Assumptions

The DNN’s hidden representations are firstly learned in an unsupervised manner to

capture the underlying data distribution of the input features and then discrimina-

tively fine-tuned to optimize a specific task. These multiple levels of automatically

generated representations have been found to gradually capture various aspects of the

data and collectively yield the superior modeling capability of DNNs. It is hence im-

portant to justify the necessity of employing the masking technique into these hidden

representations before conducting further investigations.

One of the conditions for adopting the masking technique is the existence of varia-

80

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

tions caused by noise. Different noise in the speech signals may cause variations in the

corresponding feature representation. In the human-engineered power spectral domain,

these variations are clearly observable through a simple visual comparison between the

clean and noisy speech power spectrum (Figure 3.7). However, the visual inspection

fails to give us sufficient discrimination between the clean and noisy hidden represen-

tations as they are optimized for machines rather than humans. The performance

degradation on both the Aurora-2 (Table 3.1) and the Aurora-4 (Table 3.2) may give

us some hints about the possible noise variations in DNNs’ hidden representations. A

more direct comparison would be helpful. Based on the probabilistic interpretation

of these hidden representations, a mathematical justification using the KL-divergence

is carried out. For each hidden unit, the activation value is in the range between 0

and 1 as a result of the sigmoid nonlinearity. It could be deemed as the probability of

this unit being activated by the given input signal. For the tth input observation, the

KL-divergence at the lth hidden layer is computed as

D(KL)(h
(clean)
l,t ||h(noisy)

l,t) =
∑
f

ln
(h(clean)

l,t,f

h
(noisy)
l,t,f

)
h

(clean)
l,t,f (5.1)

where h
(clean)
l,t and h

(noisy)
l,t are the clean and noisy hidden activation vectors for the lth

hidden layer at the time frame t respectively. For a given test set, this KL-divergence

is averaged across all the feature frames. The KL-divergences for all the six hidden

layers of the baseline DNN on the Aurora-4 task between the clean speech (test set

01) and the other 13 speech sets with different noise (test set 02 ∼ 14) are depicted in

Figure 5.1.

01 02 03 04 05 06 07 08 09 10 11 12 13 14
0

200

400

600

800

1000

Test Set

K
L

−
D

iv
e

rg
e

n
ce

H1
H2
H3
H4
H5
H6

Figure 5.1: The average KL-divergence between noisy and clean hidden representations
at different hidden layers of the baseline DNN on Aurora-4.

From this comparison using KL-divergence, more noise variations are seen in the

lower layer hidden representations than the higher ones. This is consistent to the

observations other researchers have found that the lower layers are more dependent on

81

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

the input features. It also suggests that for DNNs, a sufficient number of hidden layers

is compulsory to achieve its better variation-modeling capabilities. For our six hidden

layer DNN, although much smaller, the last hidden layer, i.e. the 6th hidden layer -

H6, still has noise variations that generates noticeable KL-divergence values. Hence we

are more confident of improving the DNN AM’s noise robustness by adopting proper

masks to reduce the noise variations in their hidden representations.

Besides the assumption of the existence of noise variations, another major concern is

whether there is redundancy in the DNN’s hidden representations. Generally speaking,

the masking technique will discard parts of the information in existing representations.

The masking technique helps only if information redundancy exists. Otherwise, the

degradation caused by information loss may overwhelm the gains brought by masking.

The simplest way to justify this assumption would be to evaluate the masks directly,

which is deferred to the next section after we present the definition of our ideal hidden-

activation mask.

5.1.2 Ideal Hidden-Activation Mask

Speech data arises from the rich interaction of many sources. These factors interact in a

complex way that complicates the recognition task. If we could identify and isolate these

factors, we would largely ease the learning problem. The powerful advantage of DNNs

over GMMs in modeling large acoustic variations also comes from DNNs’ high-level

abstraction capabilities in identifying the underlying factors. With the guidance of task-

specific supervisions at the final output layer, the distributed hidden representations

at each layer try to encode only the underlying speech-dependent factors and discard

noise factors in its input features. Using many layers’ nonlinear transformations, DNNs

could encode a rather complex relationship between the original acoustic features and

the target classification labels. However, due to the commonly adopted gradient-based

learning, the supervision strength decreases through many layers’ back-propagation

and the confusion increases. The layers near inputs are believed to maintain more

redundancies to avoid missing any potential clues. When the testing data is similar

to the training data, these redundant feature detectors have similar active levels as

those that have been seen during training and hence will not cause any problems.

But when there are noise variations, they may become unexpectedly active and lead

to possible performance degradation. We thus propose to mask away the unreliable

feature detectors in DNN layers for improved noise robustness.

Due to the lack of intuitive relationships between the hidden units and the target

classification labels, we use parallel speech data to guide the learning of noise-invariant

hidden detectors. By comparing the hidden activations generated from noisy and cor-

responding clean speech, we can identify activations that are consistent between them.

82

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

The corresponding feature detectors (i.e. the hidden units) will then be marked as

noise-invariant. This mask is named as the Ideal Hidden-activation Mask (IHM). By

applying this IHM, the hidden representations will become less noise-prone and the fol-

lowing DNN layers may easily yield correct predictions. The mathematical formulation

of the IHM is defined as follows:

m
(IHM)
l,t,f =

{
1 if ql,t,f > κ

0 otherwise,
(5.2)

ql,t,f = exp{−λ ∗ (h
(clean)
l,t,f − h(noisy)

l,t,f)2} (5.3)

where ql,t,f denotes the similarity between the DNN’s clean hidden activation, h
(clean)
l,t,f ,

and the DNN’s noisy hidden activation, h
(noisy)
l,t,f , of the fth hidden unit in the lth hidden

layer at the tth time frame. The parameter λ controls the shape of the similarity curve

and κ is the threshold deciding whether a detector is noise-invariant. By default, we

use the setting of λ = 1.0 and κ = 0.5. The similarity curves (equation (5.3)) with

different λ values are plotted in Figure 5.2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

λ=1.0

λ=0.5

λ=2.0

λ=3.0

λ=4.0

λ=5.0

| h
l,t,f

(clean)
 − h

l,t,f

(noisy)
 |

q
l,
t,
f

Figure 5.2: The similarity function for the IHM.

To validate the redundancy assumption, we apply the IHM with the default setup

to all six hidden layers of the baseline DNN on the Aurora-4 task. The final recognition

performance per test set is illustrated in Figure 5.3. Applying the IHM at any of the

83

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

hidden layers improves the recognition performance on all the noisy test sets. The

largest gain is obtained by applying the IHM at the first hidden layer (H1), which may

be due to the existence of large noise variations. Except for the H1, the performance

difference gained by applying the IHM among the other hidden layers is relatively small.

It suggests that applying the IHM to reduce noise variations at earlier stages is better.

In the following explorations, we will focus mainly on the first hidden layer.

01 02 03 04 05 06 07 08 09 10 11 12 13 14

5

10

15

20

25

Test Set

W
E

R
(%

)

Baseline
H1
H2
H3
H4
H5
H6

Figure 5.3: WER(%) performance of applying the default IHM (λ = 1.0 and κ = 0.5)
at different hidden layers of the baseline DNN on Aurora-4.

Due to the existence of the two parameters, λ and κ, in the definition of the IHM

(equations (5.2) and (5.3)), it may require additional efforts to determine the appro-

priate values for them in practice. We thus investigate the sensitivity of the IHM to

different values of these two parameters. Firstly, the results of using different λ with

κ = 0.5 are presented in Figure 5.4. The performance difference is relatively small,

except for λ = 0.5, which is equivalent to the baseline. This is because from Figure 5.2,

the configuration λ = 0.5 and κ = 0.5 simply generates all-one masks. Among all the

values we have investigated, λ = 2.0 is slightly better; we thus use this value for the

following investigations.

Next, we vary the threshold parameter κ while fixing λ = 2.0. When κ = 0.1,

nothing will be masked away (Figure 5.2). When κ = 0.9, we mask away 37.0% of

the active H1 hidden activations (those with values above 0.001) on average. We could

still obtain a relative 29.0% average WER improvement on all the 14 test sets. While

changing the κ from 0.2 to 0.6 (Figure 5.5), the WER performance only has small

variations and reaches the minimum at κ = 0.4, which yields the average WER of

8.2% and the IHM average discarding ratio is 18.9%. The per test set IHM activation

discarding ratios for κ = 0.9 and κ = 0.4 are also compared in Figure 5.6.

From the above investigation into the two parameters, λ and κ, the proposed IHM

is relatively less sensitive to the specific value used for those two parameters. It is good,

as no tedious tuning is required. In our study, we will use λ = 2.0 and κ = 0.4 for all

84

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

01 02 03 04 05 06 07 08 09 10 11 12 13 14

5

10

15

20

25

Test Set

W
E

R
(%

)

λ=0.5

λ=1.0

λ=2.0

λ=3.0

λ=4.0

λ=5.0

Figure 5.4: WER(%) performance of applying the IHM at the first hidden layer of the
baseline DNN with different λ values and fixed κ = 0.5 on Aurora-4.

01 02 03 04 05 06 07 08 09 10 11 12 13 14

5

10

15

20

25

Test Set

W
E

R
(%

)

κ=0.1

κ=0.2

κ=0.3

κ=0.4

κ=0.5

κ=0.6

κ=0.9

Figure 5.5: WER(%) performance of applying the IHM at the first hidden layer of the
baseline DNN with different κ values and fixed λ = 2.0 on Aurora-4.

the experiments.

In practice, the lack of parallel data for testing utterances requires the estimation of

IHMs. In our study, a DNN-based mask estimator is learned, with the training IHMs as

supervision targets. During testing, we directly use m
(IHM)
l,t,f = ql,t,f to alleviate potential

errors in the mask estimation.

5.1.3 Comparisons

The IHM is developed by extending the spectral masking approach into the DNN’s

hidden representations. It is hence important to understand the similarities and differ-

ences. For a more complete comparison, a recently proposed IRM [167, 168] is firstly

described. The IRM is defined as:

m
(IRM)
t,c = (1 + exp(−ξ ∗ (r

(SNR)
t,c − β)))−1 (5.4)

85

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

01 02 03 04 05 06 07 08 09 10 11 12 13 14
0

10

20

30

40

50

Test Set

IH
M

 D
is

c
a

rd
in

g
 R

a
ti
o

(%
)

κ=0.4

κ=0.9

Figure 5.6: The the discarding ratios of active hidden features (> 0.001) by applying
the IHM at the first hidden layer of the baseline DNN with different κ values and fixed
λ = 2.0 on Aurora-4.

where r
(SNR)
t,f is the instantaneous local SNR of the time-frequency unit at the time frame

t and the frequency channel c (equation (4.19)). ξ controls the slope of the sigmoid

function and β corresponds to the LC. By tuning ξ and β, we can control the range

of SNRs to focus on while training the mask estimators. As suggested in [167], ξ = 0.2

and β = −6 dB are adopted.

These three masks, namely the IBM, the IRM and our IHM, require stereo training

data, which is indicated by the word “ideal” in their names. This may also be one

of the reasons that these masks could further improve DNN AMs’ performance. The

information captured in these masks by comparing the parallel clean and noisy data is

different from that learned by the DNN AM.

The IBM and the IHM are binary masks defined for selection purposes. The IBM

selects speech-dominant time-frequency units and discards noise-dominant units, while

the IHM chooses hidden feature detectors in the DNN that are invariant to input

variations caused by noise. This invariance is measured by the changes in the activation

values. If the hidden feature detector generates similar activation values for both the

clean speech frame and the same frame under noise conditions, we will say this detector

is invariant to noise corruptions. The IRM differs from them by generating scaling

ratios. It is defined to be the ratio of the pure speech energy to the mixture of speech

and noise. However, in practice, to avoid the potential errors brought by binarizing the

masks, even for the IBM and the IHM, we simply apply the estimated real-valued masks

in a similar way to the IRM. Hence, the differences between the binary masks and the

real-valued masks only exist in the training phase when parallel data is available.

The major difference between the spectral masks, the IBM and the IRM, and the

proposed IHM, is the feature domain where masks are applied. The human-designed

power spectrum domain is used for the spectral masks. The IHM is applied in the

86

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

automatically-learned hidden representation domain. Due to the feature domain differ-

ences, the spectral masks are dependent on the SNR while the proposed IHM is based

on the similarities between the clean and noisy activations. Ultimately, the spectral

masks rely on the ratio between the speech signal and the noise, but the Euclidean

differences between hidden units determine the IHM values. This may give IHMs more

robustness as the change of speech energy only will not change the computed IHM

value but do generate different spectral mask values.

The proposed IHM may look similar to the dropout technique [151], but they are

different. The masking noise found in the dropout encourages a faster breaking of

symmetry by randomly discarding some of the hidden activations. However, the IHM

is a deterministic way of identifying the noise-invariant hidden detectors. The IHM

may provide some insights in understanding the dropout. Meanwhile, the randomness

in the dropout may reduce more variations beside noise-prone activations. It would

serve as the guidance for our future development of the IHM.

5.1.4 Discussions

In this section, we extend the idea of masking away noise variations from the input rep-

resentations to the hidden representations for improving DNN AMs’ noise robustness.

Unlike the traditional spectral masking techniques such as the IBM and the IRM, the

SNR is undefined in those hidden representations. A similarity-based IHM is hence pro-

posed. It operates at the DNN’s distributed hidden representation space and removes

the hidden feature detectors that generate inconsistent activation levels on noisy and

corresponding clean speech. Moreover, the IHM is also found to be more independent

towards the various noise types. Detailed experimental verifications on Aurora-4 are

presented in Section 6.3.1.

5.2 Noise Code

The use of IHM further confirms the incorporation of additional parallel information

improving DNN AMs’ noise robustness. However, the current approach adopts a sep-

arate DNN for the estimation of masks computed from stereo training data. Although

sharing the unsupervised RBM pre-training already reduces the training cost signifi-

cantly, the use of two DNNs for recognition may still be over taxing. Hence, in this

study we investigate alternative ways to achieve the same hidden-activation masking

effects but with reduced computational complexities.

87

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

5.2.1 IHM and Sigmoid Function

For a given feature vector ot, after feature normalization (equation (3.28)) and context

expansion (equation (3.29)), we have the input vector h0,t. As found in the previous

discussions, the first hidden layer, H1, is the most effective place for applying the IHM.

We will also focus on H1 of the DNN AM for this study. The H1 hidden activation

vector h1,t is computed as

h1,t = φ(W 1 h0,t + b1). (5.5)

For simplicity, the frame index subscript t and the layer index 1 of the model parameters

are omitted and the hidden activation vector h1 now is

h1 = φ(W h0 + b). (5.6)

With the same input h0, the multi-layer DNN-based mask estimator computes the

mask vector m1 for the 1st hidden layer using equations (4.21) and (4.22). The cth

component of the masked hidden vector ĥ1 is computed as

ĥ1,c = m1,c ∗ h1,c (5.7)

where m1,c and h1,c are the cth component of the mask vector m1 and the original

hidden activation vector h1 respectively. When the binary mask vector is used, i.e.

m1,c can only be 1 or 0, equation (5.7) could be rewritten as

ĥ1,c =

{
h1,c = φ(w>c h0 + bc) if m1,c = 1

0 if m1,c = 0
(5.8)

where wc is the cth row vector of the weight matrix W and bc is the cth component of

the bias vector b.

The standard sigmoid activation function is defined as

φ(x) =
1

1 + exp(−x)
, (5.9)

which is also plotted as the red curve in Figure 5.7. Adding an extra shifting variable

ζ to the input variable x, we have the function φ(x + ζ), which can be obtained by

shifting the standard sigmoid curve along the x-axis direction by −ζ. The plots for

function φ(x+ ζ) with different ζ values are illustrated in Figure 5.7.

From a different perspective, if we fix the value x, with ζ < −6− x, we effectively

turn off this function by setting all the output values to 0. It could also be represented

88

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζ=3.0

ζ=2.0

ζ=1.0

ζ=0.5

ζ=−3.0

ζ=−2.0

ζ=−1.0

ζ=−0.5

x

s
ig

m
o

id
(x

+
ζ
)

Figure 5.7: Sigmoid functions with different shifting offsets.

as

φ(x+ ζ) =

{
φ(x) if ζ = 0

0 if ζ < −6− x
(5.10)

To zero out the function value, ζ depends on the value of x. In practice, we could

simply find a value that is smaller than any possible x for ζ.

Comparing equation (5.8) and equation (5.10), we could reformulate the computa-

tion of the masked hidden vector as

ĥ1,c = φ(x1,c + ζc) (5.11)

where x1,c = w>c h0 + bc and we use ζc to suggest different shifting offsets could be used

for different hidden units. This is actually approximating the masking effects at the

hidden units by incorporating an additional bias to shift the sigmoid function. From

equation (5.7) and equation (5.11), we could further derive the effective mask value

m1,c as

m1,c =
φ(w>c h0 + bc + ζc)

φ(w>c h0 + bc)
. (5.12)

5.2.2 Learning Algorithm

Based on the current approximation, we are effectively replacing the previous mask

vector m1 with the bias offset vector ζ. It has to be noted that although ζ itself is not

89

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

dependent on time, the masking effect it causes is still time-dependent which could be

seen from equation (5.12). To get rid of the extra DNN-based ME, we hence estimate

ζ within the DNN AM using

ζ = Tc (5.13)

where c is the code vector which will be appended to the input vector h0 and T is

the corresponding code transformation matrix. The same code transform T will be

used for all the test utterances, but the code vector is utterance-dependent, which will

effectively generate frame dependent masks together with the input vector.

By incorporating this code vector c and transformation T , the final hidden activa-

tion vector h1 is computed as

h1 = φ(
[
W b T

]
∗

h0

1

c

)

= φ(Wh0 + b+ Tc) (5.14)

h0

c

W

T

Figure 5.8: The model structure of a DNN with an input noise code vector.

To train such a systems (Figure 5.8), we start with a standard DNN AM without

c and T . After we obtain the weights W and b, we then modify the DNN AM’s

input layer to support the additional code vector. The code transformation matrix T

is randomly initialized and the code vector c is initially set to 0 to ensure that the

learning starts from the baseline DNN. Due to the utterance dependence of the code

vector c, utterance-based learning rather than the conventional batch-based learning

is adopted. For each utterance, the existing code vector is loaded or 0 is used for the

first epoch. Both T and c are updated using EBP. After training, the code vector for

this utterance is saved and a new utterance and the corresponding code vector will be

loaded. The code transformation matrix T will be updated using all the training data.

The code vector c and the code transformation weight matrix T are introduced to

90

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

estimate the bias shift vector ζ, with the objective of mimicking the hidden masking

technique. Hence the estimation of these parameters are also based on the difference

between the hidden activations generated from noisy and corresponding clean speech.

The objective function is defined as

E =
1

2

∑
c

(h
(noisy)
1,t,c − h(clean)

1,t,c)2, (5.15)

where h
(noisy)
1,t,c and h

(noisy)
1,t,c are the first hidden layer activations of noisy and corre-

sponding clean speech. From this objective function, the code vector c and the code

transformation T are explicitly optimized to reduce the mismatches caused by noise.

They are hence addressing noise corruptions. The code vector is effectively coding the

noise statistics for a given utterance. This is also why we refer to this approach as the

noise code method. However, when testing without the parallel data, the noise code has

to be estimated using the DNN AM’s erroneous predictions. As all the modifications

and computations are in the first hidden layer, the learning of c and T is actually done

within a single DNN layer, which greatly reduces the training cost. Due to the changes

in the first hidden layer activations caused by the use of noise codes, the remaining

layers are re-trained after the estimation of all the noise code vectors is finished.

5.2.3 Comparisons

The major novelty of our noise code approach is the use of noise codes to incorporate

additional parallel data information into the DNN AM. This clearly distinguishes our

approach from existing ones using similar coding ideas. In [179], a neural network

that has terminals for acoustic patterns and speaker parameters as inputs and class

labels as outputs is proposed. The network is hence trained to “tune in” the speaker

parameters to a particular speaker. Recently, it is ported to noisy speech recognition

by appending a noise vector to the input [180]. Instead of learning the code vector from

data, it is simply set to the average of feature vectors corresponding to the beginning

and ending silences. The code transformation matrix is learned by back-propagating

the DNN AM’s prediction errors. Due to the over simplified code estimation and the

same prediction error guided transformation matrix optimization, the gains obtained

are negligible.

In [181, 182], a “speaker code” technique is proposed. Although it addresses speaker

differences rather than noise variations, the concept is the same. Their approach oper-

ates similarly between the input layer and the first hidden layer. However, an additional

adaptation DNN is used and the code vector is appended to each of the layers except

for the output layer. All the model parameters including the adaptation DNN, the

code vector, and the code transformation matrices corresponding to different layers,

91

5. NOISE-ROBUST HIDDEN REPRESENTATION LEARNING

are estimated by back-propagating the DNN AM’s prediction errors. On their specific

task addressing speaker mismatches, improvements have been reported but the use of

testing references for the estimation of speaker code vectors is undesirable for prac-

tical applications. It is interesting to know how well their technique performs when

code vectors are estimated using erroneous recognition hypotheses rather than true

references.

5.2.4 Discussions

In this section, we further analyze the ideal hidden-activation mask and find the mask-

ing could be simulated by using additional shifts in the sigmoid activation functions

of the hidden units. This shifting offset is further decomposed into a product of a

code vector and a transformation matrix. Borrowing the similar learning objective of

the hidden masking, we estimate these parameters to minimize the mean square error

between the generated hidden activations of the noisy speech and the corresponding

clean speech. With this objective, the code vector is effectively capturing the noise

statistics of each utterance and is referred to as the noise code. Our approach differs

from others that adopt the similar idea of code vectors in the objective functions, as all

the existing ones use the AM’s prediction errors. Our objective utilizes parallel data

information that is different from what the DNN AM has seen during training and is

more promising in improving its noise robustness.

5.3 Summary

In this chapter, we extend the concept of masking away noise variations into automatically-

learned DNN hidden representations. Although these representations already have a

much better reliability for the phonetic predictions, an investigation reveals that noise

variations and redundancies exist. Following the spectral masks, an Ideal Hidden-

activation Mask (IHM) is first proposed to identify hidden feature detectors that are

noise-invariant. A DNN-based mask estimator is then optimized with IHMs on the

training data as supervision labels. By furthering analyzing the effects of masking the

hidden units, it is found that the masking could be approximated using additional bias

shifting in the sigmoid activation functions. This bias shifting offset is further repre-

sented as a product of a code vector and a transformation matrix. We then propose to

estimate them using a similar objective to the masking approaches. This hence makes

the code vector a noise specific one, thus the method is referred to as the noise code

approach.

92

Chapter 6
Experiments

In this chapter, we justify the effectiveness of our proposed techniques in improving

the noise robustness of the DNN AM. Firstly, the two benchmark datasets, Aurora-2

and Aurora-4, are introduced. The proposed noise-robust input feature representation

learning techniques, including the VTS-MVN, the DSTC and the spectral masking, are

thoroughly experimented with and discussed. Following that, the evaluation of tech-

niques aiming at reducing noise variations in hidden representations, namely the IHM

and the noise code, is presented. Finally, we conclude this chapter with a comparison

between the performance we have achieved and those reported in the literature.

6.1 Datasets

6.1.1 The Aurora-2 Corpus

The benchmark noisy speech recognition dataset, Aurora-2 [58], consists of two sets of

training data, one for clean training and the other for multi-style training. All the data

is sampled at 8kHz. Each of them comprises 8440 utterances, and is equally split into

20 subsets. For the multi-style training data, all the utterances in the same subset share

the same noise condition and there are totally 4 different noise scenarios (train, babble,

car and exhibition hall) at 5 different SNRs (20dB, 15dB, 10dB, 5dB and clean). All

three test sets, A, B and C, are used for evaluation. Set A has the same noise types as the

multi-style training data and set B has four new noise types, namely restaurant, street,

airport and train station. For set C, there are only two noise scenarios (train and street)

but with additional channel distortions. For all three test sets, a total of 6 different

SNRs are used for evaluation purposes, which have one additional 0dB compared to

the training set. A summary of the Aurora-2 corpus is presented in Table 6.1.

Standard complex back-end GMM-HMM systems are built separately for the clean

and multi-style training data using utterance-based CMVN normalized MFCC features

93

6. EXPERIMENTS

Table 6.1: A summary of the Aurora-2 corpus.

Train Test
cleantr multitr A B C

of Utterances 8440 8440 28*1001 28*1001 14*1001

Duration (hours) 4.13 4.13 13.81 13.81 6.90

of Environments 1 20 28 28 14

of Noise Types 0 4 4 4 2

SRN Range (dB) - 5 ∼ 20 0 ∼ 20 0 ∼ 20 0 ∼ 20

of Speakers 110 110 104 104 104

by maximizing the training data likelihood. The 16-state word-based HMM and the

5-state silence model are adopted, leading to a total of 181 HMM states. These GMM-

HMM systems are used to generate the per frame DNN training labels. No language

model is used for this task and an equal probability digit-loop is adopted for decoding

only. The open source Kaldi toolkit [183] is used.

6.1.2 The Aurora-4 Corpus

Aurora-4 [117] is a medium vocabulary noisy speech recognition task based on the

WSJ corpus [184]. Each utterance is recorded at 16kHz and down-sampled to 8kHz to

simulate the telephone channel. In our experiments, only the original 16kHz data is

used. Similarly, two training sets, one with only the clean speech and the other with

multi-style speech, are used. Each of the two training sets consists of 7138 utterances.

For the multi-style training data, one half of the utterances are recorded using the

primary Sennheiser microphone and the other half are recorded using one of 18 different

secondary microphones. Both halves include a combination of clean speech and speech

corrupted by one of six different noise types (street traffic, train station, car, babble,

restaurant, airport) at 10dB ∼ 20dB SNRs. The evaluation set is derived from the

WSJ0 5K closed vocabulary task which consists of 330 utterances from 8 speakers.

This test set is recorded by the primary microphone and a secondary microphone.

These two sets are then each corrupted by the same six noise types used in the training

at 5dB ∼ 15dB SNRs, creating a total of 14 test sets. The types of noise are common

across the training and testing data, but the SNRs differ. To ease system comparisons,

these 14 test sets are further grouped into four broad sets: clean, noisy, clean with

channel distortions, noisy with channel distortions, which are referred to as set A, B, C

and D respectively. A summary of the Aurora-4 corpus is listed in Table 6.2.

Two context-dependent GMM-HMM systems are trained using maximum likelihood

estimation on the two training sets and they have 3358 and 3257 senones respectively.

The input features are 39D MFCC features including static, first and second order

94

6. EXPERIMENTS

Table 6.2: A summary of the Aurora-4 corpus.

Train Test
cleantr multitr A B C D

of Utterances 7138 7138 330 6*330 330 6*330

Duration (hours) 15.15 15.15 0.67 4.02 0.67 4.02

of Environments 1 14 1 6 1 6

of Noise Types 0 6 0 6 1 6

SRN Range (dB) - 10 ∼ 20 0 5 ∼ 15 0 5 ∼ 15

of Speakers 83 83 8 8 8 8

delta features. Utterance-based CMVN is performed. These models are used to align

the corresponding training data to create senone labels for training the DNN-HMM

systems. Decoding is performed with the standard WSJ bi-gram language model. The

open source Kaldi toolkit [183] is used.

6.2 Noise-Robust Input Representations

6.2.1 VTS-MVN

In this section we justify the effectiveness of our proposed VTS-MVN technique for

improving the DNN AM’s noise robustness on the Aurora-2 task. The recognition per-

formance is evaluated using the WER criterion. Due to the large number of subsets

involved in the evaluation, we report the average WER on each broad set for compar-

isons.

Clean Training

The VTS-MVN is first evaluated on the clean trained models with MFCC features. The

39D MFCC features consist of 13D cepstral features projected down from 26 FBanks,

13D delta and 13D accelerator parameters. The 0th cepstral coefficient is used instead

of the log energy. Both a GMM AM and an 8-hidden-layer (8H) DNN AM are trained.

The DNN AM uses a context window of 9 frames and 512D hidden layers. The DNN

configuration is chosen based on our initial experiments presented in Section 3.2.2.

The global MVN is used for the baseline DNN. The performance of these two baseline

systems are tabulated in Table 6.3 in the row “-” and “Global-MVN” respectively.

From the results, we can see that both the clean GMM and DNN dramatically degrade

in noisy conditions.

A 2048-component GMM is estimated for the feature-based VTS compensation

(“VTS(ftr)” in Table 6.3) and 4 iterations of noise estimations are conducted for the

model-based VTS compensation (“VTS(mdl)” in Table 6.3). The WERs on all the three

95

6. EXPERIMENTS

Table 6.3: WER (%) performance of VTS-MVN on clean trained models with MFCC
features on Aurora-2.

System Clean
Test Set

A B C Avg.

GMM
- 0.4 39.1 40.0 39.1 39.5

VTS(ftr) 0.4 14.1 13.2 14.8 13.9
VTS(mdl) 0.4 8.9 8.4 9.7 8.8

DNN

Global-MVN 0.3 39.3 40.2 37.3 39.2
UTT-MVN 0.2 15.2 12.6 14.5 14.0
VTS(ftr) 0.2 10.4 9.4 10.6 10.0

VTS-MVN 0.2 15.7 13.6 15.8 14.9

test sets are greatly reduced, especially with model-based VTS, from 39.5% to 8.8%.

The feature-based VTS is directly applicable to the DNN, which yields an average WER

of 10.0%. Using the proposed VTS-MVN with borrowed distortion parameters from the

GMM-HMM system reduces the baseline WER from 39.2% to 14.9%. Although it is not

as effective as the VTS on GMMs, the single Gaussian-based VTS-MVN does reduce

the DNN baseline WER by more than half. One probable explanation is that with

thousands of Gaussians in the GMM system, the VTS compensation is more effective.

For comparison, we also train a DNN using the utterance-based MVN and the results

are listed in the row “UTT-MVN”. Our VTS-MVN performs slightly worse than the

simple UTT-MVN. This may be due to the different normalization techniques used for

training and testing. Namely, the DNN model is trained with data processed using

UTT-MVN; but the testing data is normalized using VTS-MVN.

Multi-style Training

Next we justify its effectiveness on the multi-style trained models. Except for the multi-

style training data, all the configurations are the same. The recognition performance

of the two baselines are listed in the Table 6.4. The baseline DNN system has a relative

31.5% error reduction over the GMM baseline system, clearly indicating its better

acoustic modeling capability. Comparing among the three test sets, the DNN performs

much better on data with seen noise (Set A) and degrades on Set B with unknown noise

and on Set C with additional channel distortions.

Although the VTS compensation works with the clean speech model assumption, it

still performs well for the multi-style models. It may imply that VTS is not restricted

to additive noise and channel distortions but also addresses the more general data

mismatch problem between training and testing. “VTS(mdl)” consistently outperforms

“VTS(ftr)” on the GMM-HMM system; however for the DNN, our simple VTS-MVN

is still worse than the “VTS(ftr)”, 7.0% vs. 6.7%.

96

6. EXPERIMENTS

Table 6.4: WER (%) performance of VTS-MVN on multi-style trained models with
both MFCC and FBank features on Aurora-2.

System Clean
Test Set

A B C Avg.

- 0.6 12.3 10.4 17.9 12.7

GMM
VTS(ftr) 0.5 8.0 7.7 8.0 7.9

MFCC
VTS(mdl) 0.5 7.0 6.9 7.2 7.0
NAT(ftr) 0.5 6.7 6.4 7.0 6.6

NAT(mdl) 0.5 6.5 6.1 6.8 6.4

Global-MVN 0.4 6.4 8.5 13.7 8.7
UTT-MVN 0.5 5.1 6.3 5.8 5.7

DNN VTS(ftr) 0.6 6.6 6.9 6.5 6.7
MFCC VTS-MVN 0.3 6.7 6.8 8.3 7.0

NAT(ftr) 0.7 6.5 7.5 6.8 6.9
NAT-MVN 0.2 4.7 5.7 5.3 5.2

Global-MVN 0.3 5.7 7.8 12.1 7.8
UTT-MVN 0.3 4.6 5.7 5.6 5.2

DNN VTS(ftr) 0.7 7.3 7.8 7.9 7.6
FBank VTS-MVN 0.2 5.9 7.4 6.7 6.6

NAT(ftr) 0.9 9.9 11.6 11.0 10.8
NAT-MVN 0.2 4.2 5.7 5.3 5.0

After VTS compensation, the GMM renders a similar performance among the three

test sets, while the WER of our approach differs greatly. This may be attributed to

the fact that the distortion parameters are not directly optimized for the DNN. We

then investigate the adaptive training for both the two systems. For the feature-based

NAT, “NAT(ftr)”, the canonical models are re-estimated on the pseudo-clean features

after the distortion parameter estimation. From our experiments, one full iteration

of re-training gives the best recognition performance for both the “NAT(ftr)” and the

model-based NAT, “NAT(mdl)” (Table 6.4). After re-training the DNN with the VTS-

MVN we could achieve an average WER of 5.2%, which is relatively 18.8% lower than

the GMM NAT’s 6.4% and 8.8% lower than the DNN utterance-based MVN’s 5.7%.

This suggests the superior modeling capability of DNNs could relieve the limitation of

the single Gaussian based VTS-MVN. For the feature-based NAT, slight degradation

over the “VTS(ftr)” has been observed, 6.9% vs. 6.7%. However the DNN frame

accuracy on the training data does improve a lot. It may be explained by imperfect

feature compensation that may discard potentially useful information and also bring

in unwanted distortions.

With DNN AMs, FBank features have been found to outperform MFCCs [21]. We

hence further evaluate our VTS-MVN using the 40D FBank features together with the

log energy, delta and accelerator parameters. Nine contextual frames are employed and

97

6. EXPERIMENTS

a total of 8 hidden layers are trained. Due to the much higher input feature dimension,

123D vs. 39D, the size of each hidden layer is set to 1024 instead of 512, which is used for

MFCC features. Using FBank features gives us the best baseline DNN (“Global-MVN”

in Table 6.4). Due to the correlations among each FBank feature dimensions, which

are not well modeled by the diagonal GMMs, the feature-based VTS compensation

performs worse and degrades greatly in the “NAT(ftr)”. With our NAT-MVN, a WER

of 5.0% is achieved, which is a relatively 21.9% error reduction from the GMM-based

NAT model.

Aurora-4

Aurora-2 is a simple task, we are hence interested in how this technique performs on a

relative complex task, Aurora-4. Similarly, we first apply the VTS-MVN on the clean

trained DNN using 39D MFCC features. Different from the Aurora-2 setup, 11 adjacent

frames are used as the input and 2048 hidden units are used for each hidden layer due

to the increased task complexity. We keep adding hidden layers until a degradation is

observed. From Figure 6.1, 6 hidden layers give the best performance, which is hence

used as our baseline DNN for the Aurora-4 clean training task.

1 2 3 4 5 6 7
0.0

10.0

20.0

30.0

40.0

50.0

60.0

Number of Hidden Layers

W
o

rd
 E

rr
o

r
R

at
e

(%
)

Set A Set B Set C Set D Avg.

Figure 6.1: WER(%) performance of DNNs with different number of hidden layers
using MFCC features on the Aurora-4 clean training task.

For comparisons, we also apply the model-based VTS compensation to the con-

ventional GMM system. Experimental results in Table 6.5 show that our VTS-MVN

improves the clean trained baseline DNN. But it is not as effective as the conventional

VTS on GMMs.

Next, a conventional GMM using 39D MFCC features and a w9-2048D-6H DNN

using 72D FBank features are trained with the multi-style training data of Aurora-

4. Model-based VTS compensations are experimented with and results are listed in

98

6. EXPERIMENTS

Table 6.6. For the multi-style trained DNN, the simple UTT-MVN yields the best

performance. It could probably due to the longer length of utterances in Aurora-4

compared to Aurora-2. The direct utterance-based MVN is already reliable enough for

DNNs.

Table 6.5: WER (%) performance of VTS-MVN on clean trained models with MFCC
features on Aurora-4.

System
Test Set

A B C D Avg.

GMM
- 7.3 41.9 40.8 59.7 47.0

VTS(mdl) 7.3 15.8 14.7 24.0 18.6

DNN
UTT-MVN 5.9 32.6 30.5 48.6 37.4
VTS-MVN 5.6 27.0 17.3 40.3 30.5

Table 6.6: WER (%) performance of VTS-MVN on multi-style trained models on
Aurora-4.

System
Test Set

A B C D Avg.

GMM - 12.4 19.9 28.2 36.1 26.9
MFCC VTS(mdl) 13.5 16.9 19.3 23.9 19.8

DNN
UTT-MVN 5.0 8.8 9.0 20.1 13.4

FBank
VTS-MVN 5.8 12.8 32.2 27.7 20.0
VTS-NAT 4.8 9.3 10.7 22.8 14.9

Discussions

The simple utterance-based MVN is effective in removing noise variations for improved

robustness. The proposed VTS-MVN could further improve DNNs’ performance on

short utterances when adaptive training is adopted to address the potential mismatch

caused by different normalization used in training (i.e. UTT-MVN) and testing (i.e.

VTS-MVN). The VTS-MVN is more efficient than GMM-based VTS as only one sin-

gle Gaussian is involved per utterance. On Aurora-2, the NAT-MVN could yield a

relatively 18.8% WER reduction over the GMM-based NAT system. Moreover, using

FBank features, we could achieve a relatively 21.9% improvement against the GMM

NAT system. However, this approach is not as effective as VTS on clean trained speech

models. One possible improvement would be to estimate the environment distortion

parameters directly from the DNN instead of borrowing them from the GMM. Further-

more, this approach assumes the direct utterance-based MVN estimation is unreliable,

which is true for short utterances such as those in Aurora-2. When we apply this tech-

99

6. EXPERIMENTS

nique on Aurora-4, no gain could be obtained. Using the simple utterance-based MVN

is sufficient for long utterances.

6.2.2 DSTC

In this section, we study how to effectively model long span of speech signals using

DNNs on Aurora-2. With longer input information, a better environment estimation

could be obtained automatically in DNN AMs, which leads to improved generalization

performance on unseen conditions. Only the multi-style training data is used in this

study. The 40D FBank coefficients and the energy term together with their delta

and accelerator parameters are adopted. A baseline DNN with a context window of

9 frames (w9) is trained. We keep adding 1024D hidden layers until degradations are

observed. From Figure 6.2, the first degradation happens when 7 hidden layers are

used. Although using 8 hidden layers is the best configuration among all the DNNs we

experimented with, the performance improvement is relatively small compared to the

increased number of parameters. We hence decide to use the w9-1024D-6H DNN as

our baseline system, which has the average performance of 5.3% WER over all the test

sets.

1 2 3 4 5 6 7 8 9 10
4.5

5.0

5.5

6.0

6.5

7.0

7.5

Number of Hidden Layers

W
o

rd
 E

rr
o

r
R

at
e

(%
)

Set A Set B Set C Avg.

Figure 6.2: WER(%) performance of DNNs with different number of hidden layers
using 40D FBank features on the Aurora-2 multi-style training task.

Structure Comparisons

NNs are inherently capable of modeling acoustic contexts. However, the training of

shallow NNs can easily get over-fitted if the data is not sufficient, which is shown by

the dramatic increase in WERs (Table 6.7) of the 1H shallow NNs (Figure 4.3a) when

doubling the contexts from 4 frames on each side to 8 frames, i.e. from w9 to w17

input. All the w17-1H NNs perform worse than the w9-1H NN.

100

6. EXPERIMENTS

One way to increase the input context and the model capacity while maintaining

a reasonable model size is to explore the potential independence structures in the

wide context and model them separately with smaller NNs. The original STC system

(Figure 4.3b) is first built with the existing w9-1024D-1H NN. It gives a WER of 7.0%,

which is the lowest among all the existing w17 systems but still higher than the w9-

1024D-1H NN. We believe the reason is the information loss in the early decisions made

by each sub-context NNs where the posteriors are combined. Moreover, the model size

is actually not reduced. With our proposed STC system (Figure 4.3c), we can achieve

a WER of 6.1% which is a relative 7.6% improvement over the w9-1024D-1H NN.

Another way is to use many layers of nonlinear processing. As seen from the WERs

of different 6H DNNs (Figure 4.4a) in Table 6.7, they are much more robust than shallow

NNs and can further improve performance, but have the requirement of increasing the

model capacity by using higher dimensional hidden layers. It can be attributed to the

increased input variations caused by the expansion of the input context. The w17-

3072D-6H DNN has the lowest average WER of 5.1% with 54.2 million parameters

compared to the w9-1024D-6H DNN’s 5.3% WER and 6.6 million parameters.

Table 6.7: WER (%) performance of multi-style trained NNs with different structures
on Aurora-2.

System Model Capacity
WER (%)

A B C Avg.

w9-1024D 6.3 6.6 7.3 6.6

1H NN (Figure 4.3a)
w17-1024D 6.8 7.1 8.3 7.2
w17-2048D 7.1 7.9 8.8 7.8
w17-3072D 7.5 8.9 9.7 8.5

1H STC (Figure 4.3b) w17-2048D 6.6 6.8 8.0 7.0

1H STC (Figure 4.3c) w17-2048D 5.8 6.0 6.8 6.1

w9-1024D 4.6 5.9 5.7 5.3

6H DNN (Figure 4.4a)
w17-1024D 4.9 5.9 5.9 5.5
w17-2048D 4.6 5.6 5.5 5.2
w17-3072D 4.7 5.3 5.3 5.1

w17-2048D M1 4.9 6.4 6.6 5.8
w17-2048D M2 4.8 6.8 6.4 5.9

6H DSTC w17-2048D M3 4.5 6.8 6.4 5.8
(Figure 4.4b & 4.4c) w17-2048D M4 4.6 6.6 6.3 5.7

w17-2048D M5 4.4 6.2 6.1 5.5
w17-2048D M6 4.4 5.6 5.6 5.1

Next we use the w9-1024D-6H DNN as partial context DNNs to build our DSTC

systems merging at different hidden layers (Figure 4.4b), which are effectively w17-

2048D-6H systems. “Ml” indicates the merging occurs at the lth hidden layer. From

101

6. EXPERIMENTS

Table 6.7, it can be seen that the DSTC system merging at the last hidden layer

performs the best. It indicates the importance of learning a better partial context

feature representation over focusing too much on modeling the correlations. This DSTC

that merges at the last hidden layer (Figure 4.4c) gives a WER of 5.1% with only 13.1

million parameters.

More Partial Context Blocks

To further explore the potential of the DSTC technique, a much wider context of 33

frames is used, which corresponds to 0.33 seconds of speech. Similarly, we build our

DSTC systems by reusing the existing DNNs. With the w17-2048D-6H DNN, we could

split the w33 input window into left and right partial contexts, i.e. 2 blocks. While

using the w9-1024D-6H DNN, the input window is split into 4 blocks. For comparison

purposes, we also build a single DNN modeling the whole w33 input directly, which can

be seen as a 1-block system. From results in Table 6.8, we could achieve a WER of 4.8%

with four w9-1024D-6H DNNs to model the 33 acoustic context frames. Although the

improvement over the 2-block system is small, the 74.0% relative parameter reduction

over the single DNN system is attractive. One probable explanation is that the DNN’s

model capability is more related to the number of hidden units rather than the number

of connections. Furthermore, with eight w9-1024D-6H DNNs we build a w65-8192D-6H

DSTC which gives the best 4.4% WER with 52.5 million parameters. It has a relative

12.0% WER reduction and 48.2% parameter reduction over the best single DNN, i.e.

the “1-block” w33-4096D-6H system.

Table 6.8: WER (%) performance of DSTC systems with different number of partial
contexts on Aurora-2.

System
Model Model Size WER (%)

Capacity (million) A B C Avg.

1-block w33-4096D 101.3 4.8 5.1 5.3 5.0

2-block w33-4096D 51.3 4.4 5.1 5.2 4.8

4-block w33-4096D 26.3 4.2 5.2 5.1 4.8

6-block w49-6144D 39.4 4.0 4.9 4.9 4.5
8-block w65-8192D 52.5 4.0 4.7 4.8 4.4

Additionally, to validate the independence assumption, we modify the 4-block DSTC

system to overlap each block with its previous one by half of the partial context win-

dow. It gives an effective w34-6144D-6H DSTC system and achieves the same 4.8%

WER as the 4-block system, which indicates that the explicit modeling of the partial

context dependencies is unnecessary. This may be because the inherent sliding window

processing of the hybrid system has already captured the dependencies.

102

6. EXPERIMENTS

Aurora-4

To further understand the effectiveness of the proposed DSTC system, we test it on the

Aurora-4 multi-style training task. The same w11-2048D-6H DNN used in Section 6.2.1

is adopted as our baseline DNN. Only the best DSTC configuration found in previous

experiments on Aurora-2 is evaluated and the results are tabulated in Table 6.9. With

the 3-block DSTC system, we could obtain only slightly improvement over the baseline

DNN. It can be attributed to the higher task complexity of Aurora-4 compared to

Aurora-2. The increase of the context window not only provides more information for

the target class, but also brings in even more noise variations.

Table 6.9: WER (%) performance of DSTC systems with different number of partial
contexts on Aurora-4.

System
Model Model Size WER (%)

Capacity (million) A B C D Avg.

Baseline w11-2048D 29.3 5.0 8.8 9.0 20.1 13.4

2-block w22-4096D 35.9 5.2 9.0 8.9 20.3 13.6

3-block w33-6144D 42.6 5.1 8.9 9.3 19.6 13.2

4-block w44-8192D 49.3 5.1 9.2 9.4 20.2 13.6

Discussions

In this section, we have justified the effectiveness of our proposed Deep Split Temporal

Context (DSTC) system to improve the generalization capability of DNNs for noise

robust ASRs. The DSTC system uses multiple smaller DNNs to robustly model a long

span of acoustic contexts of speech signals. Those partial context DNNs share the

unsupervised pre-training phase which largely reduces the DSTC system training cost.

Due to the independent modeling of each partial context, the whole DSTC system has

fewer model parameters than a DNN with the same hidden capacity. On the Aurora-2

multi-style training task, our DSTC system outperforms the best single DNN by 12.0%

WER (4.4% vs. 5.0%), as well as a 48.2% model parameter reduction. However, when

we apply this technique on the Aurora-4 task, only small gains could be achieved. One

probable explanation is that the DSTC assumes the expansion of the context window

will bring more discriminative information for the target class than the distraction

noise variations. However, on Aurora-4, the discrimination among thousands of states

is much more challenging than the 181 states used for the Aurora-2 task. The dramatic

increase of the input variations caused by the increased input context window size can

only make the problem even harder.

103

6. EXPERIMENTS

6.2.3 Spectral Masking on Aurora-2

In this part, we investigate the biologically motivated spectral masking approach for

DNN-based noise robust speech recognition. Unlike the VTS-MVN and the DSTC

techniques, the spectral masking directly addresses noise variations in the power spec-

trum domain. In this study, the 24D FBank features, together with the delta and

the accelerator parameters, are used as input feature representations. Utterance-based

MVN is adopted for simplicity. A consecutive 11 frames of the acoustic features are

concatenated as the input to the DNNs. Baseline DNN AMs on the Aurora-2 task have

four 2048D hidden layers, which is decided based on results in Figure 6.3. IBMs are

computed from the parallel training data using equation (4.18) with LC = 0. Due to

the computation of IBMs, both the clean and multi-style training data are required.

Except for that, all the model trainings only employ either the clean or multi-style

training data.

1 2 3 4 5
14.0

15.0

16.0

17.0

18.0

19.0

Number of Hidden Layers

W
o
rd

 E
rr

o
r

R
at

e
(%

)

Set A

Set B

Set C

Avg.

(a) Clean training.

1 2 3 4 5
4.0

4.5

5.0

5.5

6.0

6.5

Number of Hidden Layers

W
o
rd

 E
rr

o
r

R
at

e
(%

)

Set A

Set B

Set C

Avg.

(b) Multi-style training.

Figure 6.3: WER(%) performance of DNNs with different number of hidden layers
using 24D FBank features on Aurora-2.

Mask Estimations

We first justify the effectiveness of spectral masking with ideal masks, including the

IBM and the ideal state-dependent mask, and then compare the two mask estimation

approaches we have proposed, namely the state-dependent and the DNN-based mask

estimations. The results of applying these masks to the clean trained DNN AM are

tabulated into the upper half of Table 6.10. The average 16.1% WER of the baseline is

far from humans’ expectations. Applying IBMs, we could obtain a 3.7% WER, clearly

indicating the potential of spectral masking for improving DNNs’ noise robustness. To

first justify the effectiveness of the estimated IBM bases, we use the true reference to

generate the state-level alignment. Based on that alignment, a set of ideal posterior

104

6. EXPERIMENTS

vectors are constructed by setting the correct label state to have value 1 and all the

others to 0 for each feature frame. With these ideal posteriors (“Ideal” in Table 6.10),

the state-dependent IBM bases could reduce the WER to less than 1.0%. Although the

ideal posteriors may bring additional information for recognition, the less than 1.0%

WER does imply its potential. However, when the posteriors from the baseline are

used for the state-dependent mask estimation (“State”), a rather small improvement

could be obtained (from 16.1% to 14.6%). The quality of the posteriors is thus cru-

cial to the effectiveness of this state-dependent mask. Using a DNN-based estimator,

a 7.2% WER could be achieved. The gap between the IBM’s performance and our

estimators’ performance is still quite large. Besides the accuracy of the mask estima-

tors, another probable reason is the mismatch between the clean trained model and the

masked features. In our study, the masked partial features are directly used without

reconstruction, which may cause a mismatch problem. From the early visual inspection

(Figure 4.7), the masked features are expected to be different from the clean ones.

Table 6.10: WER (%) performance of different masks for both the clean trained and
multi-style trained DNN AMs on Aurora-2.

Style
Masking WER (%)

Train Test A B C Avg.

clean -

- 16.9 14.7 17.2 16.1
IBM 3.6 3.4 4.3 3.7
Ideal 0.7 0.8 0.8 0.8
State 15.0 13.6 15.7 14.6
DNN 5.9 8.4 7.3 7.2

multi

-

- 4.6 5.3 5.1 5.0
IBM 4.0 4.0 4.5 4.1
Ideal 0.4 0.5 0.5 0.5
State 5.1 6.8 6.3 6.0
DNN 5.3 9.0 6.9 7.1

IBM IBM 1.1 1.0 1.2 1.1
State State 5.2 7.1 6.5 6.2
DNN DNN 4.1 6.3 5.4 5.2

One possible way of addressing the mismatch problem is the use of multi-style

training data. In “multi” part of Table 6.10, without any masking, the DNN baseline

already has a 5.0% WER. It suggests the importance of data samples from target

environments in achieving good generalization capability for DNNs. Ideal masks could

further reduce WERs. With estimated masks, we could achieve better performance

than the clean system but worse performance than the “multi” baseline. This suggests

that the variations of multi-style data improve DNNs’ robustness to masked features

but there are still mismatches. Retraining the DNN with masked multi-style data

105

6. EXPERIMENTS

would be the best choice. From the last three lines of results in Table 6.10, the IBM

could yield around 1% WER for all three test sets. The DNN estimator improves from

7.1% to 5.2%, however, it is still a little worse than the baseline’s 5.0%. This has to be

attributed to the quality of the estimated masks.

From this study, the ideal masks suggest great potential but the estimated masks

cannot even outperform the multi-style baseline DNN. Comparing the two mask es-

timations, the DNN-based one is consistently better. We will hence focus our study

on the DNN-based mask estimator for the multi-style DNN. Comparing the baseline

“multi” DNN and the one retrained on features filtered by DNN predicted masks, we

could observe a rather different WER breakdown on each test set. The DNN mask

reduces the WER on set A from 4.6% to 4.1%, indicating its effectiveness for known

noise. However, for unseen noise in set B, the performance degrades from 5.3% to 6.3%,

implying that the DNN mask estimator does not generalize well to unseen noise. This

also suggests that using no mask is more preferable than using unreliable ones for the

hybrid DNN AM. Similarly, the performance degrades on set C due to the unseen noise

and additional channel distortions. This indicates that the spectral masking is effective

but reliable masks have to be estimated.

RBM-DNN vs. DNN

To address the mismatch problem in the DNN ME through adaptation, a RBM-DNN is

proposed. Prior to adapting the ME, it is interesting to understand the effect of using

an RBM input layer. We hence experiment with different combinations of generative

(“gen”) and discriminative (“dis”) depths in the AM DNN. We use the term “gener-

ative” only to indicate the layers are trained in a generative manner. Experimental

results are tabulated in Table 6.11 with the first row as the baseline DNN system.

With the same number of hidden layers, the RBM-DNN with only 1 RBM performs

the best. It has lower WERs on all the 3 sets than the standard DNN. While keeping

the same number of discriminative layers, adding only one RBM input layer is the best.

As the RBM-DNN is both faster (1 less layer for fine-tuning) and more robust than

the DNN, we hence take the RBM-DNN with 1 generatively trained RBM layer and 3

discriminatively tuned DNN layers as our new baseline.

Spectral Masking using RBM-DNN

Next, we revise the spectral masking system to use the RBM-DNN instead of the

standard DNN for both the mask estimation and the acoustic modeling. Moreover,

this RBM input layer is shared between these two RBM-DNNs. For easy reference, we

denote the baseline RBM-DNN AM as system “A”. The masked features are firstly

decoded with the baseline RBM-DNN AM (i.e. system “B” in Table 6.12). The

106

6. EXPERIMENTS

Table 6.11: WER (%) performance of different RBM-DNN configurations on Aurora-2.

of Hidden Layers Test Set
Avg.

Total gen dis A B C

4 0 4 4.6 5.3 5.1 5.0

4

1 3 4.5 5.1 5.0 4.9
2 2 4.9 5.3 5.2 5.1
3 1 5.7 5.6 5.8 5.7
4 0 7.4 6.8 7.6 7.2

5
0 5 4.5 5.5 5.3 5.0
1 4 4.7 5.1 5.1 4.9

6
0 6 4.6 5.4 5.2 5.0
2 4 4.7 5.2 5.1 5.0

7
0 7 4.5 5.5 5.2 5.0
3 4 5.1 5.4 5.4 5.3

mismatches between the noisy features and the masked partial features lead to an

increase in the WER, from 4.9% to 6.9%. After retraining the RBM-DNN AM with

the masked training data, i.e. system “C” in Table 6.12, the performance is improved

to 5.2% WER. However, it is still worse than system “A”. From the detailed WER

reductions of system “C” compared to “A” in Figure 6.4, masking helps in reducing

WERs in matched conditions, and degrades in all the unknown conditions. For most

of the matched noise types, the masking system “C” has larger improvements on lower

WERs. For speech-like babble noise (A2 in Figure 6.4), our masking system also fails.

Table 6.12: WER (%) performance of RBM-DNN based spectral masking system on
Aurora-2.

System
Masking Test Set

Avg.
Train Test A B C

A × × 4.5 5.1 5.0 4.9

B × X 5.2 8.6 6.9 6.9

C X X 3.9 6.3 5.4 5.2

Acoustic Model Adaptation with LINs

To address the mismatch problem, we first investigate the effectiveness of LINs for

AMs. An initial decoding is required to generate adaptation hypotheses. One LIN is

estimated for each noise condition. For Aurora-2, each test set contains 1001 utterances

from the same 104 speakers. It counts up to around half an hour of speech data. All the

utterances in one test set share the same noise condition and SNR. Hence, the estimated

LIN transforms are noise- and SNR-dependent and speaker-independent. The LINs are

initialized to be identity and estimated using EBP. To avoid over-fitting, 10% of the

107

6. EXPERIMENTS

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2
−6.0

0.0

6.0

Noise Type

W
E

R
 R

e
d
u
c
ti
o
n
(%

)

20dB 15dB 10dB 5dB 0dB

Figure 6.4: WER reductions of system “C” from system “A” on Aurora-2.

adaptation data is used for cross-validation. Experimental results in Table 6.13 show

that the LIN adaptation could slightly improve the baseline system “A” on both set

B and set C, but slight degradation on set A has been observed (from 4.5% to 4.6%).

From Figure 6.5, LINs could hardly give improvements on matched conditions as the

AM RBM-DNN has already captured those variations from the training data. LINs

are sensitive to the hypothesis errors as they degraded dramatically for speech at 0dB

in set A2 and A3. On unseen noise types, LINs are effective in improving performance

by minimizing mismatches.

Table 6.13: WER (%) performance of RBM-DNN AM adaptation with LINs on Aurora-
2.

System LIN
Test Set

Avg.
A B C

A × 4.5 5.1 5.0 4.9

A+LIN X 4.6 5.0 4.9 4.8

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2
−3.0

0.0

1.0

Noise Type

W
E

R
 R

e
d
u
c
ti
o
n
(%

)

20dB 15dB 10dB 5dB 0dB

Figure 6.5: WER reductions of system “A+LIN” from system “A” on Aurora-2.

108

6. EXPERIMENTS

Mask Estimator Adaptation with Generative LINs

To adapt the ME, we firstly justify the effectiveness of the generatively trained LIN.

From Table 6.14, the LIN increases the mask estimation errors in terms of MSE. But

it does not affect the recognition performance much. One explanation is that the LINs

are estimated for data reconstruction rather than mask or phoneme predictions. The

LIN may only have captured some generic mismatches, which are not useful to both

the mask estimation and the phoneme recognition.

Table 6.14: WER (%) and MSE performance of ME adaptation using generative LINs
on Aurora-2.

Task LIN
Test Set

Avg.
A B C

MSE
× 5.49 6.95 5.97 6.17
X 5.52 7.04 6.01 6.23

WER(%)
× 3.9 6.3 5.4 5.2
X 4.0 6.3 5.4 5.2

Mask Estimator Adaptation using LIN Sharing

Next, we investigate the applicability of borrowing transforms from AMs to MEs. Both

the proposed RBM-DNN and the standard DNN are studied. LINs are estimated

using the corresponding AMs and then directly applied to MEs. Both mask estimation

and speech recognition performance are reported in Table 6.15. For mask estimation,

sharing LINs for the DNN-based system slightly degrades performance. For our RBM-

DNN, the LIN improves mask estimation on both set B and C. Slight degradation on set

A is observed. To justify how these changes in masks affect recognition performance,

we decode the masked features generated from those adapted MEs. For the DNN

system, the mask estimation degradation increases recognition errors. Conversely, large

improvements have been seen for our ME RBM-DNN by borrowing LINs. The average

5.2% WER of the spectral masking system “C” (Table 6.12) is reduced to 4.9% (the

last row in Table 6.15, which will be referred to as system “D”). Although the adapted

ME do not perform well on set A, the degradation is smaller than the improvements on

set B and C. From the detailed WER reductions in Figure 6.6, the degradation on set A

mainly happens on the lowest SNR. It is probably due to errors in the hypotheses for

LIN estimations. The shared LINs do address the mismatch problem by giving clear

improvements on all the cases in set B and C. Hence we may say that our RBM-DNN

is not only more robust than the standard DNN, but also more reliable in sharing

transforms.

109

6. EXPERIMENTS

Table 6.15: WER (%) and MSE performance of ME adaptation using LIN sharing on
Aurora-2.

Task Model LIN
Test Set

Avg.
A B C

MSE
DNN

× 5.58 6.97 6.05 6.23
X 5.67 6.95 6.02 6.25

RBM-DNN
× 5.49 6.95 5.97 6.17
X 5.58 6.89 5.88 6.16

WER(%)
DNN

× 4.6 5.3 5.1 5.0
X 4.3 6.0 5.3 5.2

RBM-DNN
× 3.9 6.3 5.4 5.2
X 4.1 5.7 5.0 4.9

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2
−2.0

0.0

4.0

Noise Type

W
E

R
 R

e
d
u
c
ti
o
n
(%

)

20dB 15dB 10dB 5dB 0dB

Figure 6.6: WER reductions of system “D” from system “C” on Aurora-2.

AM Adaptation with Spectral Masking

To address the potential mismatches in the masked feature domain, we further adapt

the AM of the system “D” with another set of LINs. It will be referred to as system

“D+LIN”. The results are listed in Table 6.16 and the detailed WER reductions are

illustrated in Figure 6.7. The best average 4.7% WER is achieved which is also better

than the system “A+LIN”. Most of the gains come from lower SNRs. Comparing

system “A+LIN” (Figure 6.5) and system “D+LIN” (Figure 6.7), the use of masking

enables a more effective LIN adaptation, especially for low SNR noisy speech.

Table 6.16: WER (%) performance of spectral masking with LIN adaptations on
Aurora-2.

System
LIN Test Set

Avg.
ME AM A B C

C × × 3.9 6.3 5.4 5.2

D X × 4.1 5.7 5.0 4.9

D+LIN X X 4.1 5.3 4.8 4.7

110

6. EXPERIMENTS

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2
−1.0

0.0

2.0

Noise Type

W
E

R
 R

e
d
u
c
ti
o
n
(%

)

20dB 15dB 10dB 5dB 0dB

Figure 6.7: WER reductions of system “D+LIN” from system “D” on Aurora-2.

Constraining the LIN Transforms

Adaptation with LIN has improved system performance consistently. But the errors

in the supervision hypotheses for LIN estimations have always been causing degra-

dation on set A. To improve the adaptation robustness against supervision errors, we

propose to reduce the number of parameters by constraining the LINs. This leads to

the block diagonal LIN, “LIN(blk)”, and the shared block diagonal LIN, “LIN(shd)”.

They are firstly evaluated in the system “A+LIN”. Results in Table 6.17 show that the

constraints fail to result in any improvement. Despite this, we still borrow those trans-

forms for our ME. Results in Table 6.17 for the system “D” show that these constraints

improve our masking system. The gains may come from the ME’s high sensitivity to

mismatches. For the ME, each sigmoid output is independent of the others, while for

the AM, shifts in the final prediction could probably be normalized away due to the

softmax nonlinearity. Moreover, by further adapting the AM in our masking system

with constrained LINs, the best average WER 4.6% is achieved (the system “D+LIN”

in Table 6.17).

Table 6.17: WER (%) performance of LINs with different structure constraints on
Aurora-2.

System
LIN Test Set

Avg.
ME AM Type A B C

A+LIN − X
full 4.6 5.0 4.9 4.8
blk 4.8 5.1 4.9 4.9
shd 4.9 5.1 4.9 5.0

D X ×
full 4.1 5.7 5.0 4.9
blk 3.9 5.5 4.9 4.7
shd 3.9 5.6 4.9 4.8

D+LIN X X
full 4.1 5.3 4.8 4.7
blk 3.9 5.2 4.7 4.6
shd 3.9 5.2 4.7 4.6

111

6. EXPERIMENTS

Posterior Interpolation

Comparing the WER breakdowns of the conventional system “A+LIN(blk)”, i.e. with-

out masking, and the proposed masking system “D+LIN(blk)” in Table 6.17, some per-

formance complementariness is observable. System “A+LIN(blk)” performs the best

on set B, while system “D+LIN(blk)” has the best performance on set A and C. In this

experiment, we simply average the posteriors generated from these two systems and

an average 4.3% WER is achieved. No further gain could be achieved by tuning the

posterior interpolation weight from 0.0 to 1.0 by 0.1 each time.

6.2.4 Spectral Masking on Aurora-4

In view of the success on Aurora-2, we further justify the effectiveness of the spectral

masking approach on a larger dataset, Aurora-4. The IBMs are computed using parallel

training data with the threshold of LC = −6dB. Baseline DNNs are trained using 24D

FBank features together with the delta and accelerator parameters. Utterance-based

MVN is adopted. A context window of 11 adjacent frames is used as the DNN input.

The DNN with 6 2048D hidden layers yields the best 13.8% WER (cf. Section 6.2.1).

With two additional iterations of re-alignment and re-training, we could further reduce

the average WER to 13.4%. No further improvement could be obtained by doing more

iterations.

Mask Estimations

Different masks are first evaluated on the clean trained DNN-HMM system. As the

state-dependent mask estimator does not perform well on Aurora-2, we hence exper-

iment only with the DNN-based one. Results are reported in Table 6.18. Unlike on

Aurora-2, the IBM only yields slight improvement (from 29.2% to 26.2%) and is outper-

formed by the DNN-based mask estimation. One probable explanation is that binary

masks may introduce more variations than soft masks used in our DNN-based masking.

Next the multi-style trained system “multi” is used to evaluate these masks. Compar-

ing the “mutli” baseline to the “clean” one, it performs better under noisy conditions

but degrades the performance on clean data, which may be due to the high complexity

of the Aurora-4 task (more than 3000 senones vs. 181 states on Aurora-2 for discrimi-

nation). Directly decoding masked features gives slightly worse performance, especially

for the IBM. It could be attributed to the fact that masked features are more similar

to clean features rather than noisy ones, which leads to large mismatches between the

model and the feature. To address this problem, retraining the DNN with masked fea-

tures yields improved performance. However, for the DNN-based mask estimator, the

retrained system has a WER of 13.6% and is still higher than the multi-style baseline’s

112

6. EXPERIMENTS

13.4%, which is similar to what we have observed on Aurora-2.

Table 6.18: WER (%) performance of different masking algorithms on Aurora-4.

Style
Masking WER (%)

Train Test A B C D Avg.

clean -
- 4.1 22.7 21.7 41.1 29.2

IBM 4.1 20.0 21.7 36.9 26.2
DNN 4.1 14.3 21.1 34.8 22.8

multi
-

- 5.0 8.8 9.0 20.1 13.4
IBM 5.0 19.0 9.0 24.1 19.5
DNN 5.1 12.4 10.4 26.0 17.6

IBM IBM 4.9 6.5 8.0 12.2 8.9
DNN DNN 4.7 9.3 8.4 20.3 13.6

RBM-DNN vs. DNN

Similarly, we justify the effect of using RBM-DNN vs. DNN on Aurora-4 first. The

results are listed in Table 6.19. The two RBM-DNN systems that have one RBM

front-end perform the best, 13.2% and 13.1%. This further verifies that adopting the

generatively trained RBM front-end is helpful but having too many RBMs also degrades

the performance. The RBM-DNN with 1 RBM layer and 6 discriminatively tuned DNN

layers is then used as our new baseline system on Aurora-4.

Table 6.19: WER (%) performance of different RBM-DNN setups on Aurora-4.

of Hidden Layers Test Set
Avg.

Total gen dis A B C D

6

0 6 5.0 8.8 9.0 20.1 13.4
1 5 4.9 8.6 9.1 19.8 13.2
2 4 5.6 9.0 10.3 20.1 13.6
3 3 6.5 9.7 11.5 21.1 14.5

7
0 7 5.0 8.8 8.8 20.1 13.3
1 6 5.1 8.6 9.6 19.4 13.1

8
0 8 4.9 8.7 8.9 20.3 13.4
2 6 5.4 8.9 9.7 19.8 13.4

Acoustic Model Adaptation

First, we evaluate the performance of different LIN adaptations on this AM RBM-

DNN. One LIN transform is estimated for each test set using EBP with recognition

hypotheses. Each set has 330 utterances, corresponding to 40 minutes of speech. 10%

of these are used for cross validation to avoid over-fitting. The utterances come from 8

113

6. EXPERIMENTS

different speakers. A slight difference from Aurora-2 is that they have different SNRs.

Hence, the estimated test set dependent LINs capture only the noise mismatches and

are speaker- and SNR-independent. Results in Table 6.20 show that all the LINs are

effective in reducing WERs on all the test sets, even including the clean set A. This could

be attributed to the multi-style training data. Compared to Aurora-2, the acoustic

modeling complexity is much higher for this task. The AM cannot maintain both a

superior clean performance and a better generalization on noisy speech. Degradation

on the clean speech of the multi-style model is hence expected. The LIN transforms

seem capable of fixing this problem. The largest relative improvement, 14.6% (from

9.6% to 8.2%) is obtained on set C. It clearly suggests the effectiveness of LINs in

addressing the channel mismatch. Although for the best LIN(shd), the absolute gain

on set D (from 19.4% to 18.2%) is much larger than that on set B (from 8.6% to 7.9%).

The relative improvement is almost the same, 8.3% on set D vs. 8.2% on set B.

Table 6.20: WER (%) performance of AM adaptation with different LINs on Aurora-4.

System LIN
Test Set

Avg.
A B C D

A × 5.1 8.6 9.6 19.4 13.1

A+LIN
full 4.8 8.1 8.2 18.7 12.4
blk 4.6 8.0 8.3 18.3 12.2
shd 4.6 7.9 8.2 18.2 12.1

Spectral Masking with LIN Adaptation

In this experiment, we justify our proposed spectral masking system on Aurora-4.

Firstly the direct use of ME RBM-DNN degrades the performance from 13.1% (system

“A” in Table 6.20) to 13.5% (system “C” in Table 6.21). However, our masking system

does give improvements on set A (from 5.1% to 4.7%) and C (from 9.6% to 8.7%). It is

interesting to see improvements on speech with only channel distortions as the masking

is defined to remove additive noise. One probable explanation is that the scaling of the

component-wise soft-masking is effectively doing a mean and variance normalization in

the power spectrum domain. For set B and D, unreliable mask estimation is probably

the reason for degradation. Borrowing LIN transforms from the AM to the ME, i.e.

in system “D”, could only bring the performance back to the baseline performance

(13.1%). But the different WER breakdowns may imply a difference between them. It

is also similar to what we have observed on Aurora-2. By further adapting the AM of

system “D”, which leads to system “D+LIN”, we finally achieve the best average WER

of 11.8% (LIN(blk)) with spectral masking. Comparing the “A+LIN” in Table 6.20

and our “D+LIN”, the WER reductions are relatively small. However, the differences

114

6. EXPERIMENTS

in the generated hypotheses are statistically significant [185]. For LIN and LIN(blk),

the p-values are all smaller than 0.001 and for LIN(shd), it is 0.018. These suggest

large differences in the recognition hypotheses between these two systems despite the

similar average WER performance.

Table 6.21: WER (%) performance of spectral masking with different LIN adaptations
on Aurora-4.

System
LIN Test Set

Avg.
ME AM Type A B C D

C × × - 4.7 9.2 8.7 20.2 13.5

D X ×
full 4.7 9.0 8.5 20.0 13.4
blk 4.6 9.1 8.5 19.8 13.3
shd 4.6 8.9 8.5 19.6 13.1

D+LIN X X
full 4.7 8.1 7.3 18.1 12.1
blk 4.5 7.9 7.5 17.7 11.8
shd 4.4 8.0 7.6 17.7 11.9

Posterior Interpolation

To explore the differences between the system “A+LIN” and “D+LIN”, we simply

average the two sets of posteriors. Only the block-diagonal version of LIN is experi-

mented with, and an average WER of 11.4% is achieved. The performance gains on

almost all the test sets clearly indicate the complementariness between these two sys-

tems. Adjusting the interpolation weight from 0.0 to 1.0 by 0.1 could not give any

further improvement. To the best of our knowledge, this 11.4% WER is currently the

best reported performance on Aurora-4.

Utterance-based adaptation

Till now, we estimate the LIN from a set of adaptation data for all the experiments.

Relaxing this condition is desirable for real world applications. In this experiment we

justify the effectiveness of our proposed spectral masking system in an utterance-based

adaptation scenario. One LIN will be estimated for each test utterance. The learning

is exactly the same as previous ones except for the fact that no cross validation is used.

The LIN is hence trained until no further training frame accuracy improvement could

be achieved. Due to having rather limited data, only the LIN(shd) is evaluated. Results

in Table 6.22 show that we can adapt system “A” from WER of 13.1% to 13.0% with

LIN(shd). To further reduce the model parameters, we keep only the diagonal elements

of the LIN transform [168], which is referred to as “dig”. With it, a slightly better AM

adaptation performance (12.9%) could be achieved. Using LIN(dig) in our proposed

115

6. EXPERIMENTS

“D+LIN” system, we could reduce the average WER to 12.3%. Similarly, the posterior

averaging further reduces it to 12.1%. Compared to using only the AM adaptation

(“A+LIN”), the masking system is much more effective.

Table 6.22: WER (%) performance of utterance-based LIN adaptation on Aurora-4.

System
LIN Test Set

Avg.
Type A B C D

A+LIN shd 5.0 8.6 9.6 19.4 13.0

A+LIN
dig

5.1 8.5 9.3 19.2 12.9
D+LIN 4.8 8.2 8.2 18.3 12.3

PosterInter 5.1 8.0 8.8 17.9 12.1

6.3 Noise-Robust Hidden Representations

6.3.1 IHM

With the success of spectral masking in reducing noise variations in the spectral fea-

ture representations, we become interested in further extending the idea of masking

into the DNN’s hidden representations. Through the initial justifications on the noise

robustness of those hidden representations, we do find the existence of noise variations

and information redundancies. In this section, we hence evaluate the proposed hidden

masking approach on the Aurora-4 task.

Comparisons with IBM and IRM

We compare our proposed IHM with the existing spectral masking techniques, namely

the IBM and the IRM for noisy speech recognition on Aurora-4. Firstly, the ideal

masks are only applied to the test sets, and evaluated with the baseline DNN. This is

denoted as “E1” in Table 6.23. The real-valued IRM yields lower WERs than both the

two binary masks due to the richness of its scaling-based masking. Our IHM largely

outperforms the IBM, of which the large degradation comes from the mismatch between

the masked features and the training data. To reduce this mismatch we retrain the

baseline DNN with ideally masked training data, which is denoted as “E2” in Table 6.23.

With retraining, all the three masks have achieved further WER reductions. The IRM

still performs the best and our IHM and the IBM have similar WERs. The dramatic

change in IBM performance from “E1” to “E2” further confirms the differences between

the masked and the original features.

The investigations on ideal masks could tell us the potential of different masks in

removing noise corruptions. However, for real applications, the lack of ideal masks

poses a great challenge for all the masking techniques. The errors in the estimated

116

6. EXPERIMENTS

Table 6.23: WER (%) performance of different masks on Aurora-4.

System Test Set
Avg.

Name Train Test Type A B C D

Baseline 5.0 8.8 9.0 20.0 13.4

E1 × Ideal
IBM 5.1 19.1 19.1 27.1 21.5
IRM 5.1 5.7 7.4 8.3 6.9
IHM 5.0 5.9 8.0 11.2 8.2

E2 Ideal Ideal
IBM 4.8 5.9 9.4 8.4 7.1
IRM 4.4 4.5 6.4 6.0 5.3
IHM 5.0 5.6 6.9 9.3 7.2

E3 Ideal Est.
IBM 4.9 12.7 10.3 27.4 18.3
IRM 4.5 10.2 9.3 24.6 15.9
IHM 5.1 9.3 8.9 20.4 13.7

E4 Est. Est.
IBM 4.6 9.3 8.4 21.5 14.1
IRM 4.7 9.0 8.2 21.2 13.9
IHM 4.9 8.8 8.8 19.7 13.2

E5 Est. Est.
IBM 4.7 8.3 8.2 19.0 12.6
IRM 4.9 8.4 8.0 19.1 12.7
IHM 4.9 8.5 8.8 19.5 13.0

masks may even outstrip the gains obtained. Finding a mask that is both effective in

variation removal and robust to estimation errors is crucial to practical applications.

We hence build three 6-hidden layer DNN-based mask estimators respectively. Details

about the learning of the mask estimators can be found in [186]. In the “E3” part of

Table 6.23, we first evaluate the estimated masks with the ideally masked DNN, i.e.

the DNN used in “E2”. All the masks degrade the performance and our proposed IHM

shows the least degradation. It suggests that the errors in the estimated masks are

crucial. To address the mismatch between the ideal masks and the estimated masks,

we retrain the baseline DNN with the estimated masks instead of the ideal ones. From

the “E4” results of Table 6.23, our IHM performs the best and is the only one that

improves over the baseline DNN’s performance. The improvement is also statistically

significant at the level of p = 0.05, using the matched pair sentence segment word

error method. By further comparing the relative WER reductions of these masks in

Fig. 6.8, spectral masking is preferable when the noise is simple (such as the car noise

in set 02), but it degrades to a large extent when the additive-noise assumption fails

or mismatches exist. The proposed IHM aims to identify the noise-invariant feature

detectors and is hence more reliable across different noise types. On some sets (such

as 03, 06, 07, 11 and 12), degradation has been observed for all the masks, which may

require better mask estimations.

In Section 6.2.3 and Section 6.2.4, although the estimated spectral masks cannot

117

6. EXPERIMENTS

01 02 03 04 05 06 07 08 09 10 11 12 13 14
−15

−10

−5

0

5

10

Test Set

R
e
la

ti
v
e
 W

E
R

 R
e
d
u
c
ti
o
n
 (

%
)

IBM

IRM

IHM

Figure 6.8: A comparison of the estimated IBM, IRM and IHM using relative WER
reductions from the baseline system on Aurora-4.

improve the baseline DNN’s performance, they do provide complementary information

to yield gains by averaging the two sets of posteriors. We thus average the posteriors

generated from “E4” and the baseline respectively. The results reported in “E5” of

Table 6.23 reconfirm the finding in Section 6.2.3 and Section 6.2.4, and further gains

are achieved for all three masks, with the IBM benefiting most from the posterior

averaging.

Discussions

From these experiments, the proposed Ideal Hidden-activation Mask (IHM) at the first

hidden layer of the DNN acoustic models further improves their noise robustness for

speech recognition. Our IHM identifies noise-invariant hidden feature detectors and

discards those that are dependent on noise. Experimental results on the Aurora-4

dataset show that the proposed IHM is more robust to the mask estimation errors.

Unlike the spectral masks, the IHM has no noise type assumptions and could obtain

consistent gains across different test sets.

6.3.2 Noise Code

In this section, we will discuss the further development of our hidden masking technique.

Instead of using an additional DNN for the estimation of masks, we proposed to use

a noise code approach that is directly integrated within the existing DNN AM. This

noise code technique estimates a generic transformation matrix and a environment-

dependent noise code, the product of which distributes the bias shifts to each hidden

unit. These shifts attenuate the original hidden activation values and have a similar

effect as applying soft masks.

118

6. EXPERIMENTS

Experiment Setup

Similar to previous experiments, we use the 24D FBank features together with the delta

and the accelerator parameters as the input feature representation. Utterance-based

MVN is adopted for feature normalization and a context window of 11 adjacent frames

is used for context expansion. The multi-style trained 6 hidden-layer (6H) DNN has

an average WER of 13.4%.

Unlike previous experiments, the noise code c is environment-dependent. We can

use the codes estimated on training for testing purpose only if we know the exact

training and testing noise condition mapping. Generally speaking this is an impractical

assumption. Hence, the code vector c has to be estimated either from some supervised

enrollment data or using unsupervised test data. This is similar to the LIN adaptation

technique but with much fewer parameters.

Specific to the Aurora-4 corpus, the transformation is estimated from the training

data and the code vectors are estimated from the development set (referred to as

“dev”) which has exactly the same complete set of noise conditions as the testing.

Besides this standard setup, we justify the benefit of using more enrollment data from

the extra development data (referred to as “dev330”) that is commonly not utilized.

Additionally, there is indeed a mapping between conditions in the multi-style training

data and the testing data, which allows us to estimate code vectors during training

(referred to as “train”).

Due to the different data-dependency of the two parameters, we could either learn

them jointly or alternatively. In the joint training, both of them are updated after each

training batch; while for the alternative training, only one set of parameters will be

updated at a specific epoch and the training alternates between them. We will refer to

these two training manners as “joint” and “alter” respectively.

Effectiveness for Recognition

We firstly use the proposed parallel data based objective for learning the noise code

parameters. However, the training fails to converge. One probable reason is that a

constant shift is hard to address the large noise variations in the first hidden layer. By

reverting to the standard AM DNN training, performance gains could be observed. The

results are tabulated in Table 6.24. The code vector used in our experiments has the

same dimensionality of 32. The improvements are relatively small. This may be due to

the fact that with the DNN AM’s multi-layered back propagation, the error signals are

rather weak for the learning of effective noise code parameters. Comparing Table 6.23

and Table 6.24, it is possible to see that the noise code approach indeed approximates

the effect of the IHM by yielding similar performance.

Our noise code approach is similar to the “speaker code” technique in [181, 182].

119

6. EXPERIMENTS

Despite the fact that one additional adaptation NN is used, we still justify its effective-

ness on our noisy speech recognition task. Similarly, we estimate the one hidden layer

adaptation NN and the transformation matrices on the training data. Three sets of

code vectors estimated on “train”, “dev” and “dev330” are evaluated. None of them

could reach the baseline DNN AM’s performance. The code vectors estimated on the

training data give the averaged 13.7% WER, which has the smallest degradation.

Table 6.24: WER (%) performance of noise codes with different experiment configura-
tions on Aurora-4.

System Test Set
Avg.

Training Data A B C D

Baseline 5.0 8.8 9.0 20.0 13.4

joint
train 5.2 8.8 8.9 20.0 13.4
dev 5.1 8.7 8.9 19.9 13.3

dev330 5.1 8.7 8.9 19.7 13.2

alter
train 5.3 8.8 8.9 20.1 13.4
dev 5.2 8.8 8.9 19.9 13.3

dev330 5.2 8.7 9.0 19.8 13.2

Discussions

From this study, we verified the idea of approximating the hidden masking effect within

the original DNN AM. No extra mask estimation DNNs are required anymore. A

noise vector representing the environment statistics and a matrix that transforms it to

the bias shifts of the sigmoid hidden activation functions are the only modifications.

However, due to the large noise variations in the first hidden layer representations and

the simple linear noise correction process of the noise code approach, the performance

gains are relatively small. The idea of integrating the effect of the code vector using

an extra DNN to address the speaker variations [181, 182] has also been tested for

our noisy speech recognition problem. It fails to improve the baseline DNN as well,

which suggests that exploring different but helpful information for DNNs could be more

effective.

6.4 Summary

In this chapter, we justified the effectiveness of our proposed techniques in improving

different representations’ noise robustness of the DNN AM. Those techniques include

the VTS-MVN for the normalized input representation, the DSTC for the context

expanded input representation and the spectral masking with LIN adaptation for the

spectral feature representation, the IHM and the noise code for hidden representations.

120

6. EXPERIMENTS

Table 6.25: Reported average WER(%) performance of multi-style trained systems on
Aurora-2.

System WER(%)

Projection-based fMLLR [187] 8.6
Lasso4 [188] 7.9
MMSE-SPLICE [189] 7.8
VTS [146], CAUG-LM [190] 7.7
CMN [146] 7.1
Extended VTS [191] 7.0
PLP-Tandem [192] 6.9
AFE [146, 193] 6.8
CMVN [146] 6.5
NAT [146] 6.3
VTS + CMVN [194] 6.2

DNN 5.2
VTS-MVN (DNN) 5.0
RBM-DNN 4.9
RBM-DNN+LIN 4.8
Masking 4.7
ESSEM-MCM [195] 4.6
DSTC 4.4
Masking (Posterior Average) 4.3

Table 6.26: Reported average WER(%) performance of multi-style trained systems on
Aurora-4.

System WER(%)

VQ-mask [196] 25.8
VTS [197] 17.9
NAT [197] 16.0
SGMM NAT+JUD [198] 15.7
MPE-NAT [199] 15.3
NAT + Derivative Kernels [197] 14.8

NAT + Joint MLLR/VTS [200] 13.4
DNN [24] 13.4
IHM, Noise Code 13.2
RBM-DNN 13.1
Dropout+NAT [24] 12.4
RBM-DNN+LIN 12.2
cFDLR [168] 12.1
Masking 11.8
Masking (Posterior Average) 11.4

As benchmark tasks, many researchers have contributed their efforts in advancing the

recognition performance on the Aurora-2 and the Aurora-4 tasks. We hence summarize

the various reported results in Table 6.25 and Table 6.26 with our results in bold fonts.

121

6. EXPERIMENTS

122

Chapter 7
Conclusions

This thesis has investigated the noise-robust automatic speech recognition problem us-

ing Deep Neural Networks (DNNs). Despite the large improvements reported in the

literature by adopting DNNs for acoustic modeling, severe degradation has also been

observed when they are used under adverse noise conditions. Additionally, many of the

existing compensation techniques have been found to be ineffective in DNNs. Based

on the DNN’s layered representation learning, a specific noise-robust representation

learning framework is proposed in this study. The main contributions of this research

are the techniques we have developed to address the noise variations in different levels

of representations of the DNN AM. More specifically, a Vector Taylor Series - Mean

Variance Normalization (VTS-MVN) technique is developed to improve the reliability

of estimating utterance-based MVN statistics from short utterances. With this VTS-

MVN, the normalized input representation is made more reliable and effective for the

DNN AM. After that, the context expanded representation is studied. Longer contexts

have been found to be crucial for DNNs to automatically learn the environment statis-

tics. A Deep Split Temporal Context (DSTC) technique is hence developed, to model

the long span of speech context information for improved generalization capabilities in

unknown noise conditions. Besides these two techniques that improve the reliability

of existing representations under noise conditions, a spectral masking technique tar-

geted at directly reducing noise variations has also been developed, first for the input

spectral feature representation and then extended to the DNN AM’s hidden represen-

tations. Finally, the noise code technique has been proposed to mimic the effect of

masking without the use of extra mask estimation DNNs. Experimental evaluations

have been conducted on the benchmark Aurora-2 and Aurora-4 tasks, and clear perfor-

mance gains have been achieved. Our system has successfully yielded the best reported

performance on both the Aurora-2 and the Aurora-4 datasets at the time of writing

when using the spectral masking with LIN adaptation approach.

123

7. CONCLUSIONS

The following part of this chapter reviews the key findings in more details and

concludes this thesis with discussions on potential future directions.

7.1 Summary of Results

The VTS-MVN is a kind of feature normalization technique. In comparison to other

techniques, the VTS-MVN is more flexible in balancing the normalization reliability,

effectiveness and timeliness. It utilizes the global MVN as the prior MVN estimation

when no or not enough target speech information has been observed. Once a reliable

target environment estimation is obtained, the VTS-MVN adopts the model-based

VTS compensation to update the global MVN toward that specific testing environment.

Depending on the update schedule, the VTS-MVN could revert to the global MVN if no

update is done, and mimic the utterance-based MVN if the noise statistics are updated

per utterance. Experimental results on Aurora-2 verifies the effectiveness of the VTS-

MVN. However, the gains over utterance-based MVN is relatively small. Moreover, for

long utterances, utterance-based MVN is usually sufficient.

To utilize a longer span of acoustic information, the DSTC technique models the

partial contexts independently and a final linear classifier is good enough for phonetic

prediction. Effectively the DSTC builds large models in terms of both depth and

width with a relatively small amount of parameters by identifying block structures.

With these structure constraints, better generalization capabilities have been observed

on the Aurora-2 task. However, the DSTC fails to achieve similar improvements on

Aurora-4 due to the higher complexity of the task and the difficulty of building huge

DNNs that have the same degree of over-fitting on Aurora-4 as on Aurora-2.

The spectral masking technique directly addresses the noise corruption by removing

the noise-dominant time-frequency units in the power spectral domain. Masks are used

to separate speech and noise information. The estimated spectral masks are effective

in reducing noise variations. However, due to the use of DNNs for the mask estima-

tion, generalizations in unseen noise conditions are poor. By further incorporating the

Linear Input Network (LIN) adaptation for both the mask estimator and the acoustic

model, large error reductions could be achieved. Compared to the conventional spectral

masking, the success of our approach lies in the use of direct masking, that gets rid of

potential errors brought by the extra reconstruction process and the LIN adaptation

that addresses the mismatch problem of statistical mask estimation models.

Finally, by extending the spectral masking into hidden representations, the Ideal

Hidden-activation Mask (IHM) is proposed. Through the investigation of IHMs, noise

variations are found in all levels of the representations learned automatically by DNNs

with lower layers having more. Improved robustness could be achieved by masking

124

7. CONCLUSIONS

away those variations, which also suggests redundancies inside DNNs’ hidden repre-

sentations. Furthermore, by formulating the masking as the effect of attenuating the

sigmoid functions’ activation levels, the noise code technique has shown its potential in

approximating the masking effect without additional DNNs. Although the gains from

using these hidden masking techniques are relatively smaller than spectral masking,

they have shown better robustness against mask estimation errors.

7.2 Future Work

The focus of this work is on the DNN acoustic model. It has less model assumptions and

better variation modeling capabilities than the conventional Gaussian Mixture Model

(GMM). Due to the underlying differences, many popular techniques developed for

GMM-based systems are not effective for DNNs. One of the common beliefs is that

DNNs are capable of learning better predictions automatically from large amounts

of data. In our study, for a given dataset, exploring different information could still

improve their performance. The masking method is effectively injecting parallel clean

and noisy speech difference information into DNNs which may not be explored in the

standard learning algorithms. And the noise code method injects the noise factors into

the DNN model. However, the current noise codes are optimized within the original

DNN learning framework, which may be the reason for its limited effectiveness. A

potential direction would be to estimate those noise codes reliably for a different but

helpful objective, such as minimizing the clean and noisy representation differences.

Besides the objective, the noise code is currently estimated per noise condition.

Even under the same noise condition, variations still exist. For the masking approach,

a mask vector will be produced for each feature frame. From the feature transformation

perspective, the masks could be treated as frame-dependent diagonal linear transforms.

This hence has far greater correction capabilities but also requires much higher accuracy

than utterance-dependent or condition-dependent transformations. It may also be the

reason for the limited gains obtained by the current noise code method. Estimating

much more reliable noise codes with finer granularities could probably lead to improved

noise robustness.

In this research, we only focus on the additive noise and channel distortions. In

reality, there are many other types of noise, such as reverberation noise, interfering

speech and so on. Extending the masking technique into those problems would be

promising. However, the challenge remains the same, i.e. how to reliably estimate

masks under different scenarios.

The masks investigated in this work are all referred to as “ideal” masks because of

the use of parallel clean and noisy data. In practice, it is impossible to obtain such

125

7. CONCLUSIONS

data since they are mainly artificially created. Masks encoding similar complementary

information as those “ideal” masks, but generated from realistic recordings, would be

more desirable. One possible direction is to explore the information differences among

speech that has been recorded from microphone arrays. Human beings have two ears

to receive and process speech information. Utilizing multiple microphones would be

helpful to ASRs. Although this kind of parallel data is more practical to collect, how

effective the masks derived from these data needs to be justified first.

126

Bibliography

[1] K. Davis, R. Biddulph, and S. Balashek, “Automatic recognition of spoken digits,” The Journal

of the Acoustical Society of America, vol. 24, p. 637, 1952. 1

[2] J. Baker, “The DRAGON system – An overview,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 23, no. 1, pp. 24–29, 1975. 1

[3] F. Jelinek, “Continuous speech recognition by statistical methods,” Proceedings of the IEEE,

vol. 64, no. 4, pp. 532–556, 1976. 1

[4] W. Macherey, L. Haferkamp, R. Schlüter, and H. Ney, “Investigations on error minimizing train-

ing criteria for discriminative training in automatic speech recognition,” in Proc. Interspeech.

ISCA, 2005. 1

[5] E. McDermott, T. J. Hazen, J. Le Roux, A. Nakamura, and S. Katagiri, “Discriminative training

for large-vocabulary speech recognition using minimum classification error,” Audio, Speech, and

Language Processing, IEEE Transactions on, vol. 15, no. 1, pp. 203–223, 2007. 1

[6] D. Povey, “Discriminative training for large vocabulary speech recognition,” Cambridge Univer-

sity, vol. 79, 2004. 1

[7] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, and G. Zweig, “fMPE: Discriminatively

trained features for speech recognition,” in Proc. ICASSP, vol. 1. IEEE, 2005, pp. 961–964. 1

[8] A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition,” in NIPS

Workshop on Deep Learning for Speech Recognition and Related Applications, 2009. 1, 9, 39

[9] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural net-

works,” in Proc. ICASSP. IEEE, 2013. 1

[10] B. Schrauwen and E. Antonelo, “TIMIT benchmark results,” 03 2010. [Online]. Available:

http://organic.elis.ugent.be/organic/benchmarks/287 1

[11] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “An application of pretrained deep neural

networks to large vocabulary conversational speech recognition,” Tech. Rep. 001, Department of

Computer Science, University of Toronto, Tech. Rep., 2012. 2, 9

[12] S. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic word

recognition in continuously spoken sentences,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 28, no. 4, pp. 357–366, 1980. 4, 16

[13] X. Huang, A. Acero, H. W. Hon et al., Spoken language processing. Prentice Hall, 2001, vol. 15.

4, 21

[14] S. Furui, “Speaker-independent isolated word recognition using dynamic features of speech spec-

trum,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 34, no. 1, pp. 52–59,

1986. 5

[15] H. Bourlard and N. Morgan, Connectionist speech recognition: A hybrid approach. Springer,

127

http://organic.elis.ugent.be/organic/benchmarks/287

1994. 8, 33, 38, 62

[16] Y. Bengio, “Artificial neural networks and their application to sequence recognition,” Ph.D.

dissertation, McGill University, 1991. 8

[17] N. Morgan, Q. Zhu, A. Stolcke, K. Sonmez, S. Sivadas, T. Shinozaki, M. Ostendorf, P. Jain,

H. Hermansky, D. Ellis et al., “Pushing the envelope-aside [speech recognition],” Signal Processing

Magazine, IEEE, vol. 22, no. 5, pp. 81–88, 2005. 8

[18] J. Markoff, “Scientists see promise in deep-learning programs,”

11 2012. [Online]. Available: http://www.nytimes.com/2012/11/24/science/

scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html 9

[19] D. McClain, “Once again, machine beats human champion at chess,” 12 2006. [Online].

Available: http://www.nytimes.com/2006/12/05/crosswords/chess/05cnd-chess.html 9

[20] J. Markoff, “Computer wins on ‘jeopardy!’: trivial, it’s not,” 2 2011. [Online]. Available:

http://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html 9

[21] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling using deep belief networks,” Audio,

Speech, and Language Processing, IEEE Transactions on, vol. 20, no. 1, pp. 14–22, 2012. 9, 45,

97

[22] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep neural networks

for large-vocabulary speech recognition,” Audio, Speech, and Language Processing, IEEE Trans-

actions on, vol. 20, no. 1, pp. 30–42, 2012. 9

[23] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,

T. N. Sainath et al., “Deep neural networks for acoustic modeling in speech recognition: The

shared views of four research groups,” Signal Processing Magazine, IEEE, vol. 29, no. 6, pp.

82–97, 2012. 9, 39, 40

[24] D. Yu, M. Seltzer, J. Li, J. Huang, and F. Seide, “Feature learning in deep neural networks - a

study on speech recognition tasks,” in Proc. ICLR, 2013. 9, 121

[25] A. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. Hinton, and M. A. Picheny, “Deep

belief networks using discriminative features for phone recognition,” in Proc. ICASSP. IEEE,

2011, pp. 5060–5063. 9

[26] J. H. Hansen, “Analysis and compensation of speech under stress and noise for environmental

robustness in speech recognition,” Speech communication, vol. 20, no. 1, pp. 151–173, 1996. 14

[27] J. C. Junqua and Y. Anglade, “Acoustic and perceptual studies of Lombard speech: Application

to isolated-words automatic speech recognition,” in Proc. ICASSP. IEEE, 1990, pp. 841–844.

14

[28] S. E. Bou Ghazale and J. H. Hansen, “A comparative study of traditional and newly proposed

features for recognition of speech under stress,” Speech and Audio Processing, IEEE Transactions

on, vol. 8, no. 4, pp. 429–442, 2000. 14

[29] J. C. Junqua, “The Lombard reflex and its role on human listeners and automatic speech recog-

nizers,” The Journal of the Acoustical Society of America, vol. 93, p. 510, 1993. 14

[30] S. E. Bou Ghazale and J. H. Hansen, “Duration and spectral based stress token generation

for HMM speech recognition under stress,” in Acoustics, Speech, and Signal Processing, IEEE

International Conference on, vol. 1. IEEE, 1994, pp. I–413. 14

[31] O. Siohan, Y. Gong, and J. Haton, “A Bayesian approach to phone duration adaptation for

Lombard speech recognition,” in Proc. Eurospeech. ISCA, 1993. 14

[32] A. Acero, “Acoustical and environmental robustness in automatic speech recognition,” Ph.D.

dissertation, Carnegie Mellon University, 1990. 14

[33] M. Gales, “Model-based techniques for noise robust speech recognition,” Ph.D. dissertation,

Cambridge University, 1995. 14, 19, 22, 56

128

http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
http://www.nytimes.com/2006/12/05/crosswords/chess/05cnd-chess.html
http://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html

[34] P. Moreno, “Speech recognition in noisy environments,” Ph.D. dissertation, Carnegie Mellon

University, 1996. 14, 23, 27

[35] C. P. Chen, “Noise robustness in automatic speech recognition,” Ph.D. dissertation, University

of Washington, 2004. 14

[36] H. Liao, “Uncertainty decoding for noise robust speech recognition,” Ph.D. dissertation, Cam-

bridge University, 2007. 14, 28, 57

[37] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,” the Journal of the Acous-

tical Society of America, vol. 87, no. 4, pp. 1738–1752, 1990. 16

[38] H. Hermansky and N. Morgan, “RASTA processing of speech,” Speech and Audio Processing,

IEEE Transactions on, vol. 2, no. 4, pp. 578–589, 1994. 16

[39] M. Westphal, “The use of cepstral means in conversational speech recognition,” in Proc. Eu-

rospeech. ISCA, 1997. 17

[40] S. Molau, F. Hilger, and H. Ney, “Feature space normalization in adverse acoustic conditions,”

in Proc. ICASSP, vol. 1. IEEE, 2003, pp. I–656. 17

[41] S. S. Wang, J. W. Hung, and Y. Tsao, “A study on cepstral sub-band normalization for robust

ASR,” in Proc. ISCSLP. IEEE, 2012, pp. 141–145. 17

[42] C. P. Chen and J. A. Bilmes, “MVA processing of speech features,” Audio, Speech, and Language

Processing, IEEE Transactions on, vol. 15, no. 1, pp. 257–270, 2007. 17

[43] F. Hilger and H. Ney, “Quantile based histogram equalization for noise robust large vocabulary

speech recognition,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 14,

no. 3, pp. 845–854, 2006. 17

[44] ETSI, “Speech processing, transmission and quality aspects (STQ); distributed speech recogni-

tion; advanced front-end feature extraction algorithm; compression algorithms,” ETSI ES, vol.

202, no. 050, p. v1, 2007. 17

[45] P. Lockwood and J. Boudy, “Experiments with a nonlinear spectral subtractor (NSS), hidden

Markov models and the projection, for robust speech recognition in cars,” Speech communication,

vol. 11, no. 2, pp. 215–228, 1992. 17

[46] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” Acoustics, Speech

and Signal Processing, IEEE Transactions on, vol. 27, no. 2, pp. 113–120, 1979. 17

[47] Y. Ephraim, D. Malah, and B. H. Juang, “On the application of hidden Markov models for

enhancing noisy speech,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 37,

no. 12, pp. 1846–1856, 1989. 18

[48] Y. Ephraim, “A Bayesian estimation approach for speech enhancement using hidden Markov

models,” Signal Processing, IEEE Transactions on, vol. 40, no. 4, pp. 725–735, 1992. 18

[49] B. Logan and A. Robinson, “Enhancement and recognition of noisy speech within an autore-

gressive hidden Markov model framework using noise estimates from the noisy signal,” in Proc.

ICASSP, vol. 2. IEEE, 1997, pp. 843–846. 18

[50] C. Seymour and M. Niranjan, “An HMM-based cepstral-domain speech enhancement system,”

in Proc. ICSLP, 1994, pp. 1595–1598. 18

[51] Y. Ephraim, “Statistical-model-based speech enhancement systems,” Proceedings of the IEEE,

vol. 80, no. 10, pp. 1526–1555, 1992. 18

[52] M. Gales, “Predictive model-based compensation schemes for robust speech recognition,” Speech

Communication, vol. 25, no. 1, pp. 49–74, 1998. 18, 22

[53] Y. Gong, “Speech recognition in noisy environments: A survey,” Speech communication, vol. 16,

no. 3, pp. 261–291, 1995. 18

[54] U. Yapanel, J. H. Hansen, R. Sarikaya, and B. Pellom, “Robust digit recognition in noise: An

evaluation using the Aurora corpus,” in Proc. Eurospeech. ISCA, 2001. 18

129

[55] A. Varga and H. J. Steeneken, “Assessment for automatic speech recognition: II. NOISEX-92: A

database and an experiment to study the effect of additive noise on speech recognition systems,”

Speech Communication, vol. 12, no. 3, pp. 247–251, 1993. 18

[56] L. Deng, A. Acero, M. Plumpe, and X. Huang, “Large-vocabulary speech recognition under

adverse acoustic environments,” in Proc. ICSLP, vol. 3, 2000, pp. 806–809. 18

[57] R. Lippmann, E. Martin, and D. Paul, “Multi-style training for robust isolated-word speech

recognition,” in Proc. ICASSP, vol. 12. IEEE, 1987, pp. 705–708. 18

[58] H. G. Hirsch and D. Pearce, “The Aurora experimental framework for the performance evaluation

of speech recognition systems under noisy conditions,” in ASR2000-Automatic Speech Recogni-

tion: Challenges for the new Millenium ISCA Tutorial and Research Workshop (ITRW), 2000.

18, 27, 40, 52, 93

[59] J. L. Gauvain and C. H. Lee, “Maximum a posteriori estimation for multivariate Gaussian mixture

observations of Markov chains,” Speech and Audio Processing, IEEE Transactions on, vol. 2,

no. 2, pp. 291–298, 1994. 19, 21

[60] M. Gales, “Maximum likelihood linear transformations for HMM-based speech recognition,”

Computer speech and language, vol. 12, no. 2, 1998. 20, 21

[61] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear regression for speaker adapta-

tion of continuous density hidden Markov models,” Computer Speech & Language, vol. 9, no. 2,

pp. 171–185, 1995. 20

[62] M. Gales, The generation and use of regression class trees for MLLR adaptation. University of

Cambridge, Department of Engineering, 1996. 21

[63] K. Shinoda, “Speaker adaptation with autonomous control using tree structure,” in Proc. Eu-

roSpeech. ISCA, 1995. 21

[64] T. Watanabe, K. Shinoda, K. Takagi, and K.-I. Iso, “High speed speech recognition using tree-

structured probability density function,” in Proc. ICASSP, vol. 1. IEEE, 1995, pp. 556–559.

21

[65] S. Young, G. Evermann, M. Gales, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey,

V. Valtchev, and P. Woodland, The HTK book version 3.4. Cambridge University Engineering

Department, 2006. 21

[66] G. Saon, G. Zweig, and M. Padmanabhan, “Linear feature space projections for speaker adapta-

tion,” in Proc. ICASSP, vol. 1. IEEE, 2001, pp. 325–328. 21

[67] M. Gales and S. Young, “Robust speech recognition in additive and convolutional noise using

parallel model combination,” Computer Speech & Language, vol. 9, no. 4, pp. 289–307, 1995. 21,

22

[68] M. Gales and S. Young, “An improved approach to the hidden Markov model decomposition of

speech and noise,” in Proc. ICASSP, vol. 1. IEEE, 1992, pp. 233–236. 22

[69] A. Varga, R. Moore, J. Bridle, K. Ponting, and M. Russel, “Noise compensation algorithms for

use with hidden Markov model based speech recognition,” in Proc. ICASSP. IEEE, 1988, pp.

481–484. 23

[70] A. Acero, L. Deng, T. Kristjansson, and J. Zhang, “HMM adaptation using vector Taylor series

for noisy speech recognition,” in Proc. ICSLP, vol. 3, 2000, pp. 869–872. 23

[71] D. Y. Kim, C. Kwan Un, and N. S. Kim, “Speech recognition in noisy environments using first-

order vector Taylor series,” Speech Communication, vol. 24, no. 1, pp. 39–49, 1998. 23

[72] J. A. Arrowood, “Using observation uncertainty for robust speech recognition,” Ph.D. disserta-

tion, Georgia Institute of Technology, 2003. 24

[73] J. A. Arrowood and M. A. Clements, “Using observation uncertainty in HMM decoding,” in

Proc. ICSLP, 2002. 24

130

[74] Q. Huo and C. H. Lee, “A Bayesian predictive classification approach to robust speech recog-

nition,” Speech and Audio Processing, IEEE Transactions on, vol. 8, no. 2, pp. 200–204, 2000.

24

[75] M. Cooke, P. Green, L. Josifovski, and A. Vizinho, “Robust automatic speech recognition with

missing and unreliable acoustic data,” Speech communication, vol. 34, no. 3, pp. 267–285, 2001.

24, 25, 26

[76] B. Raj and R. M. Stern, “Missing-feature approaches in speech recognition,” Signal Processing

Magazine, vol. 22, no. 5, pp. 101–116, 2005. 24, 25, 27, 67

[77] J. N. Holmes, W. J. Holmes, and P. N. Garner, “Using formant frequencies in speech recognition,”

in Proc. Eurospeech. ISCA, 1997. 24

[78] L. Deng, J. Droppo, and A. Acero, “Dynamic compensation of HMM variances using the feature

enhancement uncertainty computed from a parametric model of speech distortion,” Speech and

Audio Processing, IEEE Transactions on, vol. 13, no. 3, pp. 412–421, 2005. 24, 25

[79] M. Benitez, J. Segura, A. Torre, J. Ramirez, and A. Rubio, “Including uncertainty of speech

observations in robust speech recognition,” in Proc. ICSLP, 2004. 24, 25, 27

[80] M. Wolfel and F. Faubel, “Considering uncertainty by particle filter enhanced speech features

in large vocabulary continuous speech recognition,” in Proc. ICASSP, vol. 4. IEEE, 2007, pp.

IV–1049. 24

[81] V. Stouten, H. Van Hamme, and P. Wambacq, “Accounting for the uncertainty of speech esti-

mates in the context of model-based feature enhancement,” in Proc. ICSLP, 2004. 25

[82] L. Deng, J. Droppo, and A. Acero, “Exploiting variances in robust feature extraction based on a

parametric model of speech distortion,” in Proc. ICSLP, vol. 4, no. 1, 2002, p. 1. 25

[83] J. Droppo, A. Acero, and L. Deng, “Uncertainty decoding with SPLICE for noise robust speech

recognition,” in Proc. ICASSP, vol. 1. IEEE, 2002, pp. I–57. 25

[84] T. T. Kristjansson, “Speech recognition in adverse environments: A probabilistic approach,”

Ph.D. dissertation, University of Waterloo, 2002. 25

[85] H. Liao and M. Gales, “Joint uncertainty decoding for noise robust speech recognition,” in Proc.

Interspeech. ISCA, 2005. 25

[86] A. Morris, J. Barker, and H. Bourlard, From missing data to maybe useful data: Soft data

modelling for noise robust ASR, 2001. 26

[87] J. Barker, M. Cooke, and P. Green, “Robust ASR based on clean speech models: An evaluation

of missing data techniques for connected digit recognition in noise,” in Proc. Eurospeech. ISCA,

2001. 26

[88] B. Raj, M. Seltzer, and R. M. Stern, “Robust speech recognition: The case for restoring missing

features,” in Proc. Eurospeech. ISCA, 2001. 26

[89] H. Van Hamme, “Robust speech recognition using missing feature theory in the cepstral or LDA

domain,” in Proc. Eurospeech. ISCA, 1973. 27

[90] B. Frey, L. Deng, A. Acero, and T. Kristjansson, “ALGONQUIN: Iterating Laplaces method to

remove multiple types of acoustic distortion for robust speech recognition,” in Proc. Eurospeech.

ISCA, 2001. 27

[91] J. Segura, M. Benitez, A. De La Torre, S. Dupont, and A. Rubio, “VTS residual noise compen-

sation,” in Proc. ICASSP, vol. 1. IEEE, 2002, pp. I–409. 27

[92] V. Stouten, J. Duchateau, P. Wambacq et al., “Evaluation of model-based feature enhancement

on the Aurora-4 task,” in Proc. Eurospeech. ISCA, 2003. 27

[93] V. Stouten, P. Wambacq et al., “Model-based feature enhancement with uncertainty decoding

for noise robust ASR,” Speech communication, vol. 48, no. 11, pp. 1502–1514, 2006. 27

[94] V. Stouten, K. Demuynck, P. Wambacq et al., “Robust speech recognition using model-based

131

feature enhancement,” in Proc. Eurospeech. ISCA, 2003. 27

[95] T. Robinson and F. Fallside, “A recurrent error propagation network speech recognition system,”

Computer Speech & Language, vol. 5, no. 3, pp. 259–274, 1991. 30

[96] S. Makino, T. Kawabata, and K. Kido, “Recognition of consonant based on the perceptron

model,” in Acoustics, Speech, and Signal Processing, IEEE International Conference on, vol. 8.

IEEE, 1983, pp. 738–741. 30

[97] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition using

time-delay neural networks,” Acoustics, Speech and Signal Processing, IEEE Transactions on,

vol. 37, no. 3, pp. 328–339, 1989. 30

[98] M. Franzini, K. F. Lee, and A. Waibel, “Connectionist Viterbi training: A new hybrid method

for continuous speech recognition,” in Proc. ICASSP. IEEE, 1990, pp. 425–428. 30

[99] R. O. Duda, P. E. Hart et al., Pattern classification and scene analysis. Wiley New York, 1973,

vol. 3. 30

[100] B. Li and K. C. Sim, “Hidden logistic linear regression for support vector machine based phone

verification,” in Proc. Interspeech. ISCA, 2010. 31

[101] D. E. Rumelhart, G. Hinton, and R. J. Williams, “Learning representations by back-propagating

errors,” Cognitive modeling, vol. 1, p. 213, 2002. 32, 71

[102] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal ap-

proximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989. 33

[103] V. Kuurkova, “Kolmogorov’s theorem and multilayer neural networks,” Neural networks, vol. 5,

no. 3, pp. 501–506, 1992. 33

[104] F. Rosenblatt, “Principles of neurodynamics, perceptrons and the theory of brain mechanisms,”

DTIC Document, Tech. Rep., 1961. 33

[105] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal representations by error propa-

gation,” DTIC Document, Tech. Rep., 1985. 33

[106] P. Werbos, “Beyond regression: New tools for prediction and analysis in the behavioral sciences,”

1974. 33

[107] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proc. AISTATS, 2010. 33

[108] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big, simple neural nets

for handwritten digit recognition,” Neural computation, vol. 22, no. 12, pp. 3207–3220, 2010. 33

[109] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural

computation, vol. 18, no. 7, pp. 1527–1554, 2006. 33, 34, 37, 66, 74

[110] G. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural compu-

tation, vol. 14, no. 8, pp. 1771–1800, 2002. 34, 36

[111] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausble Inference. Morgan

Kaufmann Pub, 1988. 34

[112] G. Hinton, “A practical guide to training restricted Boltzmann machines,” in Neural Networks:

Tricks of the Trade. Springer, 2012, pp. 599–619. 37, 71

[113] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-dependent deep

neural networks,” in Proc. Interspeech. ISCA, 2011. 37

[114] D. Yu, L. Deng, F. Seide, and G. Li, “Discriminative pretraining of deep neural networks,” May

2013, uS Patent App. 13/304,643. 37

[115] J. S. Bridle, “Alpha-Nets: A recurrent neural network architecture with a hidden Markov model

interpretation,” Speech Communication, vol. 9, no. 1, pp. 83–92, 1990. 38

[116] L. T. Niles and H. F. Silverman, “Combining hidden Markov model and neural network classi-

fiers,” in Proc. ICASSP. IEEE, 1990, pp. 417–420. 38

132

[117] N. Parihar and J. Picone, “Aurora working group: DSR front end LVCSR evaluation

AU/384/02,” Inst. for Signal and Information Process, Mississippi State University, Tech. Rep,

2002. 40, 94

[118] J. Chen, J. Benesty, Y. Huang, and E. J. Diethorn, “Fundamentals of noise reduction,” in

Springer Handbook of Speech Processing, J. Benesty, M. Sondhi, and Y. Huang, Eds. Springer

Berlin Heidelberg, 2008, pp. 843–872. 43

[119] P. Scalart and J. Vieira Filho, “Speech enhancement based on a priori signal to noise estimation,”

in Proc. ICASSP, vol. 2. IEEE, 1996, pp. 629–632. 43

[120] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean square error short-time

spectral amplitude estimator,” Acoustics, Speech and Signal Processing, IEEE Transactions on,

vol. 32, no. 6, pp. 1109–1121, 1984. 43

[121] R. Martin, “Speech enhancement based on minimum mean-square error estimation and super-

Gaussian priors,” Speech and Audio Processing, IEEE Transactions on, vol. 13, no. 5, pp. 845–856,

2005. 43

[122] J. H. Hansen, V. Radhakrishnan, and K. H. Arehart, “Speech enhancement based on generalized

minimum mean square error estimators and masking properties of the auditory system,” Audio,

Speech, and Language Processing, IEEE Transactions on, vol. 14, no. 6, pp. 2049–2063, 2006. 43

[123] T. Lotter and P. Vary, “Speech enhancement by MAP spectral amplitude estimation using a

super-Gaussian speech model,” EURASIP Journal on Applied Signal Processing, vol. 2005, pp.

1110–1126, 2005. 43

[124] S. Suhadi, C. Last, and T. Fingscheidt, “A data-driven approach to a priori SNR estimation,”

Audio, Speech, and Language Processing, IEEE Transactions on, vol. 19, no. 1, pp. 186–195,

2011. 43

[125] R. McAulay and M. Malpass, “Speech enhancement using a soft-decision noise suppression filter,”

Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 28, no. 2, pp. 137–145, 1980.

43

[126] U. Kjems and J. Jensen, “Maximum likelihood based noise covariance matrix estimation for

multi-microphone speech enhancement,” Proc. EUSIPCO, 2012. 43

[127] Y. C. Su, Y. Tsao, J. E. Wu, and F. R. Jean, “Speech enhancement using generalized maximum

a posteriori spectral amplitude estimator,” in Proc. ICASSP. IEEE, 2013. 43

[128] N. Andrew, “Learning feature hierarchies and deep learning,” in ECCV-2010 Tutorial: Feature

Learning for Image Classification, 2010. 45

[129] J. Li, D. Yu, J.-T. Huang, and Y. Gong, “Improving wideband speech recognition using mixed-

bandwidth training data in CD-DNN-HMM,” in Proc. SLT. IEEE, 2012, pp. 131–136. 45

[130] A. Mohamed, G. Hinton, and G. Penn, “Understanding how deep belief networks perform acoustic

modelling,” in Proc. ICASSP. IEEE, 2012. 45

[131] B. Li and K. C. Sim, “Noise adaptive front-end normalization based on vector Taylor series for

deep neural networks in robust speech recognition,” in Proc. ICASSP. IEEE, 2013. 45

[132] N. Jaitly and G. Hinton, “Learning a better representation of speech soundwaves using restricted

Boltzmann machines,” in Proc. ICASSP. IEEE, 2011, pp. 5884–5887. 45

[133] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” The

handbook of brain theory and neural networks, vol. 3361, 1995. 45

[134] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks applied to house num-

bers digit classification,” in Proc. ICPR. IEEE, 2012, pp. 3288–3291. 45

[135] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A convolutional neural-

network approach,” Neural Networks, IEEE Transactions on, vol. 8, no. 1, pp. 98–113, 1997.

45

133

[136] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying convolutional neural net-

works concepts to hybrid NN-HMM model for speech recognition,” in Proc. ICASSP. IEEE,

2012, pp. 4277–4280. 45

[137] C. Zhang, 08 2013. [Online]. Available: http://freemind.pluskid.org/machine-learning/

deep-learning-and-shallow-learning/ 48

[138] Y. Bengio, “Learning deep architectures for AI,” Foundations and trends in Machine Learning,

vol. 2, no. 1, pp. 1–127, 2009. 48

[139] Y. Bengio, “Deep learning of representations: Looking forward,” CoRR, vol. abs/1305.0445, 2013.

48

[140] B. Li and K. C. Sim, “Comparison of discriminative input and output transformations for speaker

adaptation in the hybrid NN/HMM systems,” in Proc. Interspeech. ISCA, 2010. 49, 72, 75

[141] O. Vinyals, S. V. Ravuri, and D. Povey, “Revisiting recurrent neural networks for robust ASR,”

in Proc. ICASSP. IEEE, 2012. 52, 72

[142] A. L. Maas, Q. V. Le et al., “Recurrent neural networks for noise reduction in robust ASR,” in

Proc. Interspeech. ISCA, 2012. 52

[143] L. Deng, A. Acero, L. Jiang, J. Droppo, and X. Huang, “High-performance robust speech recog-

nition using stereo training data,” in Proc. ICASSP, vol. 1. IEEE, 2001, pp. 301–304. 52

[144] ETSI, “Advanced front-end feature extraction algorithm,” in Technical Report. ETSI ES 202

050, 2007. 52

[145] P. Moreno, B. Raj, and R. Stern, “A vector Taylor series approach for environment-independent

speech recognition,” in Proc. ICASSP, vol. 2. IEEE, 1996, pp. 733–736. 52, 55, 59

[146] O. Kalinli, M. Seltzer, J. Droppo, and A. Acero, “Noise adaptive training for robust automatic

speech recognition,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 18,

no. 8, pp. 1889–1901, 2010. 52, 57, 121

[147] S. Rennie, P. Fousek, and P. Dognin, “Factorial hidden restricted Boltzmann machines for noise

robust speech recognition,” in Proc. ICASSP. IEEE, 2012, pp. 4297–4300. 52

[148] C. G. Gross and R. Jung, “Handbook of sensory physiology,” 1993. 61

[149] L. Aitkin, C. Dunlop, and W. Webster, “Click-evoked response patterns of single units in the

medial geniculate body of the cat,” Journal of Neurophysiology, 1966. 61

[150] J. C. Stevens and J. W. Hall, “Brightness and loudness as functions of stimulus duration,”

Perception & Psychophysics, vol. 1, no. 5, pp. 319–327, 1966. 61

[151] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural

networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580, 2012. 62, 87

[152] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for visual area v2,” in Proc.

NIPS, 2008. 62

[153] P. Schwarz, P. Matejka, and J. Cernocky, “Hierarchical structures of neural networks for phoneme

recognition,” in Proc. ICASSP. IEEE, 2006. 62

[154] J. Boldt, “Binary masking & speech intelligibility,” Ph.D. dissertation, Aalborg Universitet, 2011.

66, 80

[155] D. L. Wang, G. J. Brown et al., Computational auditory scene analysis: Principles, algorithms,

and applications. Wiley interscience, 2006. 66, 80

[156] R. Lyon, “A computational model of binaural localization and separation,” in Proc. ICASSP.

IEEE, 1983. 66

[157] G. J. Brown, “Computational auditory scene analysis: A representational approach,” Ph.D.

dissertation, University of Sheffield, 1992. 66

[158] D. L. Wang and G. J. Brown, “Separation of speech from interfering sounds based on oscillatory

correlation,” Neural Networks, IEEE Transactions on, vol. 10, no. 3, pp. 684–697, 1999. 66

134

http://freemind.pluskid.org/machine-learning/deep-learning-and-shallow-learning/
http://freemind.pluskid.org/machine-learning/deep-learning-and-shallow-learning/

[159] A. Narayanan and D. L. Wang, “The role of binary mask patterns in automatic speech recognition

in background noise,” The Journal of the Acoustical Society of America, vol. 133, p. 3083, 2013.

66

[160] W. Hartmann, A. Narayanan et al., “A direct masking approach to robust ASR,” Acoustics,

Speech and Signal Processing, IEEE Transactions on, 2013. 66, 67, 68

[161] D. L. Wang, “On ideal binary mask as the computational goal of auditory scene analysis,” Speech

separation by humans and machines, 2005. 67, 80

[162] D. L. Wang, U. Kjems, M. Pedersen, J. Boldt, and T. Lunner, “Speech intelligibility in back-

ground noise with ideal binary time-frequency masking,” The Journal of the Acoustical Society

of America, vol. 125, p. 2336, 2009. 67

[163] W. Hartmann, A. Narayanan et al., “Nothing doing: Re-evaluating missing feature ASR,” Re-

construction, 2011. 67

[164] M. Seltzer, B. Raj, and R. M. Stern, “A Bayesian classifier for spectrographic mask estimation

for missing feature speech recognition,” Speech Communication, 2004. 67, 68, 72

[165] S. Keronen, H. Kallasjoki et al., “Mask estimation and imputation methods for missing data

speech recognition in a multisource reverberant environment,” Computer Speech & Language,

2012. 67, 68, 72

[166] J. F. Gemmeke, Y. J. Wang et al., “Application of noise robust MDT speech recognition on the

SPEECON and speechdat-car databases.” in Proc. Interspeech. ISCA, 2009. 67, 68, 72

[167] A. Narayanan and D. L. Wang, “Ideal ratio mask estimation using deep neural networks for

robust speech recognition,” in Proc. ICASSP. IEEE, 2013. 67, 68, 72, 75, 80, 85, 86

[168] A. Narayanan and D. L. Wang, “Investigation of speech separation as a front-end for noise robust

speech recognition,” OSU-CISRC-6/13-TR14, 2013. 67, 68, 75, 76, 85, 115, 121

[169] A. Narayanan and D. L. Wang, “Coupling binary masking and robust ASR,” in Proc. ICASSP.

IEEE, 2013. 70

[170] B. Li, Y. Tsao, and K. C. Sim, “An investigation of spectral restoration algorithms for deep

neural networks based noise robust speech recognition,” in Proc. Interspeech. ISCA, 2013. 72

[171] B. Li and K. C. Sim, “Noise adaptive front-end normalization based on vector Taylor series for

deep neural networks in robust speech recognition,” in Proc. ICASSP. IEEE, 2013. 72

[172] J. Neto, L. Almeida, M. Hochberg, C. Martins, L. Nunes, S. Renals, and T. Robinson, “Speaker-

adaptation for hybrid HMM-ANN continuous speech recognition system,” 1995. 72

[173] V. Abrash, H. Franco, A. Sankar, and M. Cohen, “Connectionist speaker normalization and

adaptation,” in Proc. Eurospeech. ISCA, 1995. 72

[174] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep convolutional neural

networks for LVCSR,” in Proc. ICASSP. IEEE, 2013, pp. 8614–8618. 75

[175] J. Gehring, W. Lee, K. Kilgour, I. Lane, Y. Miao, A. Waibel, and S. V. Campus, “Modular

combination of deep neural networks for acoustic modeling,” in Proc. Interspeech. ISCA, 2013.

75

[176] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl, G. Saon, H. Soltau, T. Beran, A. Y. Ar-

avkin, and B. Ramabhadran, “Improvements to deep convolutional neural networks for LVCSR,”

in Proc. ASRU. IEEE, 2013, pp. 315–320. 75

[177] Y. Q. Wang and M. Gales, “TANDEM system adaptation using multiple linear feature trans-

forms,” in Proc. ICASSP. IEEE, 2013. 75

[178] U. Kjems, J. Boldt et al., “Role of mask pattern in intelligibility of ideal binary-masked noisy

speech,” The Journal of the Acoustical Society of America, 2009. 80

[179] J. S. Bridle and S. Cox, “RecNorm: Simultaneous normalisation and classification applied to

speech recognition,” in Proc. NIPS, 1990, pp. 234–240. 91

135

[180] M. Seltzer, D. Yu, and Y. Q. Wang, “An investigation of deep neural networks for noise robust

speech recognition,” in Proc. ICASSP. IEEE, 2013. 91

[181] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation of hybrid NN/HMM model for speech

recognition based on discriminative learning of speaker code,” in Proc. ICASSP. IEEE, 2013.

91, 119, 120

[182] O. Abdel-Hamid and H. Jiang, “Rapid and effective speaker adaptation of convolutional neural

network based models for speech recognition,” in Proc. Interspeech. ISCA, 2013. 91, 119, 120

[183] D. Povey, A. Ghoshal et al., “The Kaldi speech recognition toolkit,” in Proc. ASRU. IEEE,

2011. 94, 95

[184] J. Garofalo, D. Graff, D. Paul, and D. Pallett, “CSR-I (WSJ0) complete,” in LDC93S6A, 2007.

94

[185] S. L. Chow, Statistical significance: Rationale, validity and utility. Sage, 1996, vol. 1. 115

[186] B. Li and K. C. Sim, “Improving robustness of deep neural networks via spectral masking for

automatic speech recognition,” in Proc. ASRU. IEEE, 2013. 117

[187] G. Saon, H. Huerta, and E. Jan, “Robust digit recognition in noisy environments: The IBM

Aurora 2 system,” in Proc. Interspeech. ISCA, 2001. 121

[188] X. Xiao, J. Li, E. Chng, and H. Li, “Lasso environment model combination for robust speech

recognition,” in Proc. ICASSP. IEEE, 2012. 121

[189] J. Droppo, “Feature compensation,” Techniques for Noise Robustness in Automatic Speech Recog-

nition, 2012. 121

[190] A. Ragni and M. Gales, “Structured discriminative models for noise robust continuous speech

recognition,” in Proc. ICASSP. IEEE, 2011. 121

[191] R. van Dalen and M. Gales, “Extended VTS for noise-robust speech recognition,” Audio, Speech,

and Language Processing, IEEE Transactions on, 2011. 121

[192] D. Ellis and M. Reyes-Gomez, “Investigations into tandem acoustic modeling for the Aurora

task,” in Proc. Eurospeech. ISCA, 2001. 121

[193] D. Macho, L. Mauuary, B. Noé, Y. Cheng, D. Ealey, D. Jouvet, H. Kelleher, D. Pearce, and

F. Saadoun, “Evaluation of a noise-robust DSR front-end on Aurora databases,” in Proc. ICSLP,

2002. 121

[194] J. Droppo and A. Acero, “Environmental robustness,” in Springer Handbook of Speech Processing.

Springer, 2008. 121

[195] Y. Tsao, J. Li, C. H. Lee, and S. Nakamura, “Soft margin estimation on improving environment

structures for ensemble speaker and speaking environment modeling,” in Proc. IUCS, 2009. 121

[196] M. Van Segbroeck and H. Van Hamme, “Vector-quantization based mask estimation for missing

data automatic speech recognition,” in Proc. ICSLP, 2007. 121

[197] A. Ragni and M. Gales, “Derivative kernels for noise robust ASR,” in Proc. ASRU. IEEE, 2011,

pp. 119–124. 121

[198] L. Lu, A. Ghoshal, and S. Renals, “Noise adaptive training for subspace Gaussian mixture

models,” in Proc. Interspeech. ISCA, 2013. 121

[199] F. Flego and M. Gales, “Discriminative adaptive training with VTS and JUD,” in Proc. ASRU.

IEEE, 2009, pp. 170–175. 121

[200] Y. Q. Wang and M. Gales, “Speaker and noise factorization for robust speech recognition,” Audio,

Speech, and Language Processing, IEEE Transactions on, vol. 20, no. 7, pp. 2149–2158, 2012.

121

136

	Acknowledgements
	Table of Contents
	Summary
	List of Acronyms
	List of Tables
	List of Figures
	List of Symbols
	List of Publications
	1 Introduction
	1.1 Automatic Speech Recognition
	1.2 Deep Neural Networks for ASR
	1.3 Major Contributions
	1.4 Organization of Thesis

	2 Noise-Robust Speech Recognition
	2.1 Model of the Environment
	2.2 Feature-based Compensation
	2.2.1 Noise-Robust Features
	2.2.2 Feature Enhancement

	2.3 Model-based Compensation
	2.3.1 Single Pass Re-training
	2.3.2 Maximum Likelihood Linear Regression
	2.3.3 Parallel Model Combination
	2.3.4 Vector Taylor Series Model Compensation

	2.4 Uncertainty-based Scheme
	2.4.1 Observation Uncertainty
	2.4.2 Uncertainty Decoding
	2.4.3 Missing Feature Theory

	2.5 Noise Estimation
	2.6 Summary

	3 Deep Neural Network
	3.1 Deep Neural Network Acoustic Model
	3.1.1 Multi-Layer Perceptron
	3.1.2 Deep Neural Network
	3.1.3 Hybrid DNN-HMM AM

	3.2 DNN AM's Noise Robustness
	3.2.1 Conventional Noise-Robust Features
	3.2.2 Speech Enhancement Techniques

	3.3 A Representation Learning Framework
	3.3.1 Layered Representation Learning in DNN AM
	3.3.2 Noise Robustness in Different Representations
	3.3.3 Learning Robust Representations for DNN

	3.4 Summary

	4 Noise-Robust Input Representation Learning
	4.1 VTS-based Feature Normalization
	4.1.1 Feature Normalization
	4.1.2 VTS Model Compensation
	4.1.3 VTS-MVN
	4.1.4 Feature-based VTS
	4.1.5 Adaptive Training
	4.1.6 Discussions

	4.2 Deep Split Temporal Context
	4.2.1 Split Temporal Context
	4.2.2 Deep Split Temporal Context
	4.2.3 Learning Algorithm
	4.2.4 Discussions

	4.3 Spectral Masking
	4.3.1 Spectral Masking System
	4.3.2 Mask Estimation
	4.3.3 Linear Input Network Adaptation
	4.3.4 Discussions

	4.4 Summary

	5 Noise-Robust Hidden Representation Learning
	5.1 Hidden-Activation Masking
	5.1.1 Assumptions
	5.1.2 Ideal Hidden-Activation Mask
	5.1.3 Comparisons
	5.1.4 Discussions

	5.2 Noise Code
	5.2.1 IHM and Sigmoid Function
	5.2.2 Learning Algorithm
	5.2.3 Comparisons
	5.2.4 Discussions

	5.3 Summary

	6 Experiments
	6.1 Datasets
	6.1.1 The Aurora-2 Corpus
	6.1.2 The Aurora-4 Corpus

	6.2 Noise-Robust Input Representations
	6.2.1 VTS-MVN
	6.2.2 DSTC
	6.2.3 Spectral Masking on Aurora-2
	6.2.4 Spectral Masking on Aurora-4

	6.3 Noise-Robust Hidden Representations
	6.3.1 IHM
	6.3.2 Noise Code

	6.4 Summary

	7 Conclusions
	7.1 Summary of Results
	7.2 Future Work

	Bibliography

