
 

 

MODELING, MONITORING, AND CONTROL OF PH-SHIFT 
REACTIVE CRYSTALLIZATION 

 

 

 

 

 

 

SU QINGLIN 

(B. Eng., M. Eng., Xiamen University, China) 

 

 

 

 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

2013 

  



 



 

  



 



 

i 
 

 

 

Acknowledgements 
 

I would like to express my heartfelt gratitude to my supervisor, Prof. Min-Sen Chiu, 

for his constant and patient guidance throughout my PhD study at National University 

of Singapore. Grateful acknowledgement is made to Prof. Richard D. Braatz at 

Massachusetts Institute of Technology for his sincere and constructive co-supervision 

of my research work. This thesis would not have been completed without their 

insightful elicitation and detailed comments on each step I made.      

     I sincerely thank the faculty in the Chemical and Biomolecular Engineering 

Department for their responsible teaching and professional nurturing to foster a sense 

of chemical engineering with special thanks to Prof. Lakshminarayanan Samavedham 

and Prof. Jian-Wen Jiang for their valuable inputs and advices during Oral Qualifying 

Examination. I warmly thank all my lab mates, Cheng Cheng, Yasuki Kansha, Martin 

Wijaya Hermanto, Xin Yang, Vamsi Krishna Kamaraju, Yan Li, Wen Huang for their 

excellent referential work, altruistic help, and moral support rendered to me.  

     Continuous and considerate assistance from laboratory staffs, Ms. Fam Hwee 

Koong Samantha, Mr. Boey Kok Hong, and Mr. Rajamohan s/o K Suppiah, to make a 

computing platform ready and available for my research, are really appreciated. I am 

also indebted to the National University of Singapore for the outstanding research 

facilities, friendly academic and administrative staffs, and the research scholarship 

provided for my research. 

     My sincere thanks also goes to my friends, Saw Eng Toon, Lim Khun Yeow 

Ashley, Cheng Xi Yu, Sha Meng, Naviyn Prabhu, Mohammad Sadegh Tavallali, and 

so on. Their ceaseless encouragement has been a great source of energy and they 



ACKNOWLEDGEMENTS                                                                                                                   
 
 

ii 
 

often gave me much needed laughter. Their friendship has been a tremendous source 

of comfort.  

    I am very grateful to my family who have never limited my ambitions and have 

always had absolute confidence in me. Their moral understanding and encouragement 

have, and continues to, inspire me to go through the unknown and challenges in the 

life. Words cannot express how much I love them and how grateful I am to them. 

    Lastly, the work in this thesis would not have been possible without the people who 

have been showing their solicitude to me, I hope this thesis would console them a bit.      



iii 
 

 

 

 Contents 
 

 Acknowledgements                                                                                   i 

Table of Contents                                                                                    iii 

 Summary                                                                                                vii 

 List of Tables                                                                                           xi 

 List of Figures                                                                                       xiii 

 Nomenclatures                                                                                     xvii 

1  Introduction                                                                                          1 

    1.1  Motivation                                                                                                          1 

     1.2  Contributions                                                                                                      3 

     1.3  Thesis organization                                                                                            6 

2  Literature Review                                                                                 7 

    2.1  Crystallization fundamentals                                                                              7 

            2.1.1  Crystal morphology and habit                                                                  7 

            2.1.2  Supersaturation                                                                                         8 

            2.1.3  Mechanism and kinetics                                                                         10 

            2.1.4  Crystal size distribution                                                                          13 

            2.1.5  Polymorphism                                                                                        14 

      2.2  Recent development on the modeling, monitoring, and control of 
         crystallization processes                                                                                  15 

            2.2.1  Modeling of crystallization processes                                                    15 

            2.2.2  Multivariate statistical monitoring                                                         18 

            2.2.3  Control of crystallization processes                                                       19 



CONTENT 
 
 

iv 
 

3  Modeling of the pH-shift Reactive Crystallization of  
  L-glutamic Acid                                                                                   23 

    3.1  Introduction                                                                                                      23 

     3.2  Mathematical model                                                                                         25 

            3.2.1 Species balance model                                                                             25 

            3.2.2  Population balance model                                                                      28 

            3.2.3  Crystallization mechanism and kinetics                                                 30 

           3.2.4  Numerical solution                                                                                32 

     3.3  Bayesian inference                                                                                          34 

     3.4  Results and discussion                                                                                    37 

            3.4.1  Experimental data                                                                                 37 

            3.4.2  Parameter estimation                                                                            39 

            3.4.3  Model validation                                                                                   41 

    3.5  Conclusion                                                                                                      50 

4  Statistical monitoring of the pH-shift Reactive Crystallization 
    of L-glutamic Acid                                                                              51 

     4.1  Introduction                                                                                                      51 

     4.2  Methodologies                                                                                                             53 

            4.2.1  Principal component analysis                                                                            53 

            4.2.2  Multiway principal component analysis                                                            55 

            4.2.3  Multiway partial least squares                                                                            58 

     4.3  Moving-window MPCA monitoring                                                                            59 

     4.4  Case study                                                                                                                     61 

            4.4.1  Nominal process                                                                                                 61 

            4.4.2  Off-line training                                                                                                  62 

            4.4.3  On-line application                                                                                              64 

     4.5  Conclusion                                                                                                                    71 

5  Direct Design & Control of the pH-shift Reactive  
    Crystallization of L-glutamic Acid                                                    73 

    5.1  Introduction                                                                                                       73 

    5.2  Conventional C-control strategy                                                                       75 



CONTENT                              
 
 

v 
 

     5.3  JITL-based C-control strategy                                                                          78 

     5.4  Polymorphic purity control strategy                                                                 81 

     5.5  Results and discussion                                                                                      83 

            5.5.1  Nominal optimal trajectories                                                                  83 

            5.5.2  Training database for JITL modeling                                                     84 

          5.5.3  Case studies of process uncertainties                                                      84 

     5.6  Conclusion                                                                                                        92 

6  Nonlinear MPC Control of the pH-shift Reactive 
   Crystallization of L-glutamic Acid                                                    93 

    6.1  Introduction                                                                                                       93 

    6.2  Conventional EPSAC algorithm                                                                       96 

    6.3  The JITL-based EPSAC design                                                                        99 

           6.3.1  JITL local state-space model                                                                   99 

          6.3.2  The proposed EPSAC algorithm                                                           103 

     6.4  Results and discussion                                                                                   109 

            6.4.1 Nominal performance                                                                           109 

            6.4.2  Effects of model-plant mismatch                                                         112 

    6.5  Conclusion                                                                                                      119 

7  Integrated B2B-NMPC Control of the pH-shift Reactive 
    Crystallization of L-glutamic Acid                                                  121 

    7.1  Introduction                                                                                                     121 

     7.2  Batch-to-Batch (B2B) control strategy                                                           124 

     7.3  Integrated B2B-NMPC control strategy                                                         127 

     7.4  Results and discussion                                                                                    132 

            7.4.1  Process and controllers specification                                                   132 

            7.4.2  Results comparison and discussion                                                      133 

     7.5  Conclusion                                                                                                     142  

8  Conclusions and Future Work                                                        143 

     8.1 Conclusions                                                                                                    143 



CONTENT 
 
 

vi 
 

      8.2 Suggestions for future work                                                                           145 

References                                                                                             149 

Publications and Presentations                                                           163 



vii 
 

 

 

Summary 
 

Crystallization is one of the most important unit operations for separation and 

purification in process manufacturing industries, by which solid crystals with high 

purity are precipitated from a solution. There are three common ways to induce the 

crystallization, viz., by cooling, antisolvent addition, and chemical reaction. With the 

recent research development prompted by the process analytical techniques (PAT) in 

batch cooling and antisolvent crystallization processes, the reactive crystallization 

process has also gained increasing interest due to its importance to process industries. 

This thesis investigated the modeling, monitoring, and control of a semi-batch pH-

shift reactive crystallization process using the polymorphic L-glutamic acid as a 

model compound. 

      For better understanding of the effects of operating condition on crystalline 

product qualities, a first-principles mathematical model for the pH-shift reactive 

crystallization process was developed. The kinetic parameters were estimated by 

Bayesian inference from experimental data available in the literature, from which 

marginal probability distributions of the parameters can be obtained by Markov Chain 

Monte Carlo (MCMC) simulation. Validation results showed that the model 

predictions were in good agreement with the experimental observations. This model is 

the first result published to address the high supersaturation level, viz., kinetically 

controlled polymorphic crystallization, in the pH-shift reactive crystallization process 

using L-glutamic acid as a model compound.  

     Next, a moving-window multiway principal component analysis (MPCA) was put 

forward for online monitoring in the pH-shift reactive crystallization process. The 

moving-window idea of building multiple MPCA models at different time points was 

successfully introduced to tackle the transitional phase changes due to process 
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nonlinearity and time-varying characteristics observed in the reactive crystallization 

process. In comparisons with the conventional MPCA and multiway partial least 

squares (MPLS), the proposed method not only efficiently detects the abnormal batch, 

but also reflects the contributions of the control actions to revert the process to in-

control state. This is a significant advantage for batch process operation when 

feedback control to reduce the false alarms works.  

      Direct design and control strategy, such as concentration control (C-control), has 

been popular in cooling and antisolvent crystallization for years. In this thesis, the 

JITL-based C-control strategy was developed by extending the conventional C-

control strategy to incorporate a process model so that better performance can be 

achieved to cope with the highly nonlinear dynamics inherent in pH-shift reactive 

crystallization process. Additionally, it was found that tracking the polymorphic 

purity trajectory achieved much better performance than that of the solute 

concentration trajectory, indicating the deficiency of C-control strategy in dealing 

with the complicated polymorphic crystallization, whereas the polymorphic purity 

control gives improved performance because it is closely related to the progress of 

polymorphic crystallization and hence is more direct to the product quality. 

     Despite the success of model predictive control (MPC) in continuous process 

industries, the implementation of MPC or nonlinear model predictive control (NMPC) 

strategies in the batch/semi-batch crystallization process is rather limited, particularly, 

in the shrinking horizon mode for batch-end product quality control. Toward this end, 

the extended prediction self-adaptive control (EPSAC), which is one of the NMPC 

techniques that iteratively linearizes the nonlinear process model around the base 

input and output trajectories using convolution models, was reformulated as the JITL-

EPSAC based on state-space models, which is the emerging trend in NMPC designs. 

Simulation studies showed the proposed EPSAC method outperformed its 

conventional counterpart in final product quality control for the pH-shift reactive 

crystallization process.        
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      In an attempt to correct the bias left uncorrected during online batch-end product 

quality control in the presence of model-plant mismatch, a new integrated B2B-

NMPC control strategy based on a MPLS model and the JITL-EPSAC technique was 

also proposed, exploring the repetitive nature of batch process to update the model 

kinetic parameters using information from previous batches. Comparing to the 

conventional B2B control strategy, the new integrated JITL-EPSAC scheme showed a 

much smoother and faster convergence to the set point of final product quality under 

multiple shifts of abnormal scenarios, showing its capability to maintain consistent 

production of on-spec product. This has never been demonstrated by direct design and 

control or NMPC control discussed in previous works.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

Crystallization is one of the oldest unit operation for separation and purification in 

process manufacturing industry, including fine chemical, pharmaceutical, and food 

industries, where high purity is of the crucial requirement of the crystalline products. 

In addition to the molecular purity, control of polymorphic purity, crystal size 

distribution, crystal shape, and enantiomeric purity is of increasing interest recently. 

However, despite its long history and vast application in industries, crystallization 

process is still not very well understood as it involves many complex mechanisms 

(e.g., nucleation, crystal growth, fine dissolution, agglomeration, polymorph transfer, 

growth dispersion, etc.) (Towler et al., 2004; Hursthouse et al., 2009). Besides, 

crystallizations of small volume and high-value-added products are usually operated 

in batch or semi-batch mode. These make the consistent production of quality 

crystalline products very challenging. 

      The supersaturation, which is the difference between solute concentration and 

solute solubility, is usually treated as the driving force for crystallization process. The 

size, shape, and polymorphic purity of product crystals are dependent on the 

supersaturation profile achieved during crystallization process. Three common ways 

to generate supersaturation are by cooling, antisolvent addition, and chemical reaction. 

In cooling and antisolvent crystallizations, supersaturation results from reducing the 

solute solubility to be lower than the solute concentration by decreasing the solution 

temperature and increasing antisolvent mass fraction, respectively. While in reactive 
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crystallization, supersaturation results from increasing the solute concentration to be 

higher than the solute solubility by generating more solute through chemical reaction. 

     In reactive crystallization, the generation rate of supersaturation is usually very fast 

and the supersaturation level is high (Roelands et al., 2005; 2007; Qu et al., 2009). As 

a consequence, the formation of crystals results from rapidly occurring process, such 

as nucleation, crystal growth, agglomeration and attrition. In the case that the 

crystallizing solute is capable of forming different polymorphs, viz., a substance can 

have more than one crystal form and each form exhibits distinct solubility, the lower 

of the solubility, the more stable of the crystal form, the well known Ostwald's rule of 

stages predicts that the least thermodynamically stable form is produced first by 

spontaneous crystallization, which is subsequently transformed into a more stable one 

(Ostwald, 1897; Ng et al., 1996). However, this rule is not always valid since the high 

supersaturation level in reactive crystallization process leads to the reduced effects of 

this thermodynamic factor when the difference between their supersaturation levels 

due to the solubility difference becomes negligible. As a result, the kinetic factor 

becomes the controlling factor for the polymorph form formation. For example, the 

unexpected formation of the stable polymorph of L-glutamic acid was observed in a 

high supersaturation level during pH-shift precipitation (Roelands et al., 2005; Alatalo 

et al., 2008; Qu et al., 2009). Hence, this is very different from the thermodynamically 

controlled cooling or antisolvent crystallization whose supersaturation level is usually 

limited with an attempt to avoid the occurrence of the spontaneous nucleation. 

     Although semi-batch reactive crystallization is commonly employed in industrial 

practice for producing amphoteric compounds with pH-shift method (Black and 

Davey, 1988; Zhu and Garside, 1997), such as pharmaceutical intermediates and 

amino acids (Sheng et al., 2006), research studies of applying process system 

engineering tools to this process remain largely open in the literature. Recently, 

Borissova et al. (2005) presented the first mathematical model for the semi-batch pH-

shift reactive crystallization, which used L-glutamic acid as a model compound. 

Alatalo et al. (2008) and Qu et al. (2009) applied the process analytical technologies 

(PAT) of attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) and 
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Raman spectroscopy to in-line monitoring of the semi-batch pH-shift reactive 

crystallization process. In addition, Alatalo et al. (2010a; 2010b) and Hatakka et al. 

(2010) implemented the supersaturation and polymorphism control to the semi-batch 

pH-shift reactive crystallization of L-glutamic acid. 

      Encouraged by the importance of reactive crystallization in pharmaceutical and 

fine chemical industries, this study investigates the modeling, monitoring, and control 

of the reactive crystallization of L-glutamic acid, wherein the sodium glutamate reacts 

with sulfuric acid to form L-glutamic acid. 

1.2 Contributions 

The main contributions of this thesis in the area of modeling, monitoring, and control 

of semi-batch pH-shift reactive crystallization process can be summarized as follows: 

(1)  Process model based on first principles of chemical engineering can 

furtherance the understanding of crystallization process and facilitate the 

determination of optimal operating condition, as well as enhance the process 

control in manufacturing industry. In this study, a mathematical model for 

semi-batch pH-shift reactive crystallization of L-glutamic acid is developed 

that takes into account the effects of protonation and deprotonation in the 

species balance of glutamic acid, crystal size distribution, polymorphic 

crystallization, and non-ideal solution properties. The polymorphic 

crystallization mechanisms of α- and β- forms of glutamic acid are addressed 

by considering primary and secondary nucleation, size-dependent growth rate, 

and mixing effects on nucleation. The kinetic parameters are estimated by 

Bayesian inference from batch experimental data collected from literature. 

Probability distributions of the estimated parameters in addition to their point 

estimates are obtained by Markov Chain Monte Carlo (MCMC) simulation. 

Moreover, the developed model appears to be the first model developed for 

high supersaturation level compared to past studies on the modeling of 

reactive crystallization of L-glutamic acid (Borrisova et al., 2005). 
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(2)  With the recent rapid development of in situ real-time measurement for 

crystallization process (Qu et al., 2009), such as ATR-FTIR, focused beam 

reflectance measurement (FBRM), particle vision measurement (PVM) and 

Raman spectroscopy, more and more process data are now becoming available  

for developing multivariate statistical process control (MSPC) tools to 

efficiently monitor, diagnose and control of crystallization process, which are 

critical for achieving process safety, consistency and quality improvement. 

Among the MSPC tools, the multi-way principal component analysis (MPCA) 

and multi-way partial least squares (MPLS) were introduced for batch process 

monitoring decades ago (Nomikos and MacGregor, 1994; 1995a; 1995b). To 

tackle the transitional phase changes due to process nonlinearity and time-

varying characteristic in the semi-batch reactive crystallization (Golshan et al., 

2010; Zhao et al., 2007; 2011), an integrated monitoring method based on 

moving window MPCA model together with batch-wise unfolding of batch 

data arrays using crystallizer volume as an indicator variable is developed in 

this work. Simulation results showed that, compared to the conventional 

MPCA or MPLS method, the proposed monitoring scheme is not only able to 

efficiently detect the abnormal batch, but also reflects the contributions of the 

control actions to revert the process to in-control state. 

(3)  Although concentration control (C-control) strategy has been shown to give 

effective and robust control performance for batch/semi-batch cooling and 

antisolvent crystallizations in recent years (Nagy et al., 2008a; Woo et al., 

2009; Hermanto et al., 2009), no research work was reported concerning the 

application of C-control to the more challenging semi-batch pH-shift reactive 

crystallization. To this end, this study presents detailed analysis to show that it 

is not feasible to apply the conventional C-control to semi-batch pH-shift 

reactive crystallization. To circumvent this problem, a variant of C-control 

strategy by incorporating the Just-in-Time Learning (JITL) method to cope 

with strong process nonlinearity inherent in the pH-shift reactive 

crystallization is developed in this study. Besides, a new polymorphic purity 
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control is also proposed with an aim to control the polymorphic crystallization 

observed in the process.   

(4)  Model predictive control (MPC) or nonlinear MPC (NMPC) strategy is of 

increasing interest to both the academic and industrial sectors to address 

important control problems. However, its implementation to crystallization 

processes has been rather limited (Nagy and Braatz, 2003; Hermanto et al., 

2009; Mesbah et al., 2011; Nagy and Braatz, 2012). To the best of our 

knowledge, there is no paper reported in the literature concerning the MPC or 

NMPC of semi-batch reactive crystallization. Among the NMPC design 

methods, the extended prediction self-adaptive control (EPSAC) algorithm 

iteratively linearizes the process around the base input and output trajectories 

using convolution models (De Keyser and Cauwenberghe, 1985; Ionescu and 

De Keyser, 2005; Rueda et al., 2005; De Keyser and Donald III, 2007; Tamas 

et al., 2007). However, the prediction of such models for operating points 

further away from the current sampling instant in the prediction horizon 

becomes less accurate due to process nonlinearity. This may even become 

worse when the EPSAC is applied in batch process control, where control 

objective is often to control the product quality at batch end (Hermanto et al., 

2009; Su et al., 2012c). Therefore, a new EPSAC algorithm based on the JITL 

method is developed in this work. In the proposed JITL-based EPSAC design, 

the linearization is achieved by a set of local state-space models identified by 

the JITL method along the base trajectory. Simulation results of end-product 

quality control for the reactive crystallization process validate that the 

proposed EPSAC algorithm provides better control performance than its 

previous counterpart. 

(5)  In view of the fact that batch processes are operated in a repetitive mode, it is 

advantageous to implement the batch-to-batch (B2B) control to the reactive 

crystallization process, which uses information from previous batches to 

iteratively update the process model in order to obtain optimal batch operation. 

Moreover, the B2B control can be further enhanced by integrating the batch-

to-batch control and NMPC (B2B-NMPC) strategies (Chin et al., 2000; Lee et 
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al., 2002; Paengjuntuek et al., 2008; Hermanto et al., 2011). In this study, a 

new integrated B2B-NMPC control strategy is developed based on the 

interaction between a first-principles model and a multi-way partial least 

square (MPLS) model (Nomikos and MacGregor, 1995b), where the MPLS 

model utilizes the initial conditions, measurement trajectories and end-point 

product qualities to estimate the kinetic parameters in the first-principles 

model. In doing so, while the NMPC performs online control to handle the 

constraints and disturbances, the B2B control refines the model iteratively by 

inferring from the previous batch operations. Simulation studies show that the 

proposed B2B-NMPC control strategy produces faster and smoother 

convergence while meeting all the constraints requirement, compared to the 

standard B2B control strategy. 

1.3 Thesis organization 

This thesis is organized as follows. In the next chapter, literature review on the 

fundamental of crystallization and the recent development of the modeling, 

monitoring, and control of crystallization process are presented. Chapter 3 presents 

the development of a first-principles model for semi-batch pH-shift reactive 

crystallization of L-glutamic acid, and Chapter 4 investigates the use of multivariate 

statistical monitoring for the reactive crystallization process. Five control strategies 

including the JITL-based C-control, polymorphic purity control, NMPC, B2B, and 

B2B-NMPC control strategies are discussed in Chapters 5 to 7. Finally, conclusions 

from the present work and suggestions for the future work are given in Chapter 8. 
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Chapter 2 

Literature Review 

 

This chapter presents a brief review on the fundamentals of crystallization process, 

including the definition, supersaturation, mechanism and kinetics, crystal size 

distribution, and polymorphism. Subsequently, recent developments on the modeling, 

monitoring, and control of batch/semi-batch crystallization processes are reviewed. 

2.1 Crystallization fundamentals 

Crystallization is usually defined as the process of precipitating solid solute from a 

solution,  by which an ensemble of randomly organized molecules or ions dissolved in 

the solution come together to form an ordered three-dimensional molecular array 

which is called crystal (Toschev, 1973; Randolph and Larson, 1988; Davey and 

Garside, 2000). Due to the limited space and tight bonding nature of the atoms in this 

molecular array, or to be exact, the lattice structure of crystal, contaminants are not 

able to fit within this structure, which leads to the high purity of crystalline product. 

Hence, crystallization plays a vital role in the separation and purification process of 

manufacturing domains, such as fine chemical, pharmaceutical, and food industries, 

where purity is of the crucial requirement.        

2.1.1 Crystal morphology and habit 

Known as a supramolecular process, crystallization results in solid particulate crystals 

whose overall external shape and appearance are often described by terms of 

morphology and habit. Crystal morphology describes the appearance of faceted 

crystals due to the specific crystallographic faces showing, while crystal habit 

characterizes the crystal shape given by the relative length to width of the crystal 
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faces. Figure 2.1 gives an illustration of crystal morphology and habit (Toschev, 

1973; Randolph and Larson, 1988).  

 
Figure 2.1: Schematic of crystal with different morphologies and habits. (a) Same 

morphology but different habit. (b) Same habit but different morphology. 

      Only certain morphologies are possible for any given crystal system (molecular 

lattice structure), but both morphology and habit depend on growth conditions and 

can vary with the level of supersaturation (Randolph and Larson, 1988; Gunawan et 

al., 2004; Ma et al., 2007). However, it is essential to note that due to the symmetric 

growth of crystal in most cases, such like a cube that the ratio among the length, 

width, and height remains the same as the cube is growing into a larger one, changes 

in morphology and habit are often neglected. Therefore, the characteristic length L , 

which is thought of as a length passing through the center of mass of the crystal and 

intersecting two opposing surfaces, and the volumetric shape factor vk , which is a 

dimensionless constant ratio relating crystal volume v  to the cube of length L , are 

both conveniently adopted to define the size and form of the crystal, respectively.   

2.1.2 Supersaturation 

Crystallization from solution occurs only if the solute concentration in a solvent 

exceeds its solubility. Such a solution is said to be supersaturated, where the 

difference between solute concentration and its solubility is usually termed as 

supersaturation and is treated as the driving force for crystallization processes 

(Randolph and Larson, 1988). Hence, the characterization of supersaturation is 

critically important for modeling of crystallization process. However, the definition of 
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supersaturation has not been received common agreement, as evidenced by various 

definitions reported in the open literatures. 

     From the thermodynamics perspective, the driving force for crystallization is the 

difference in chemical potential of the solute in solution and in crystal (Lundager 

Madsen, 1987; Randolph and Larson, 1988; Torrent-Burgués, 1994; Prausnitz et al., 

1999; Mangin et al., 2009): 

                       *ln lnc aRT RT S
a

µ µ µ  ∆ = − = = 
 

                                                 (2.1) 

                       * * *

a CS
a C

γ
γ

= =                                                                                    (2.2) 

where µ and cµ are the chemical potentials of the solute in solution and crystal, 

respectively; the superscript "*" means solution in its equilibrium state; a is the solute 

activity; γ  is the activity coefficient, C is the solute concentration, and S is usually 

defined as the relative supersaturation. However, the absolute supersaturation, 
*S C C= − , is also used in the literature (Ono et al., 2004; Borissova et al., 2005; Hu 

et al., 2005; Hojjati et al., 2007; Nagy, 2009). 

      Between the two definitions mentioned above, the relative supersaturation is more 

popularly used. For example, relative supersaturation was used in the studies of 

closed-loop implementation of a supersaturation control strategy (Grӧn et al., 2003), 

estimation of kinetic parameters for the polymorphic transformation of L-glutamic 

acid crystals (Hermanto et al., 2008), the crystallization of a salt of a weak organic 

acid and base (Jones et al., 2005), and a series of crystallization studies investigated 

by Mazzotti's group (Schӧll et al., 2006a ; 2006b; 2007; Lindenberg et al., 2008; 

Lindenberg and Mazzotti, 2009; Cornel et al., 2009). Besides, Togkalidou et al. 

(2004) compared the identification results obtained from using relative and absolute 

supersaturation. Kee et al. (2009a) also compared the two supersaturations in the 

selective cooling crystallization of the α-form L-glutamic acid. It was found that the 

relative supersaturation provided more promising result. Similar comparative study 

can also be found by Alatalo et al. (2010a), where relative supersaturation achieved 
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better control performance. In view of this, the relative supersaturation is employed in 

our work. 

2.1.3 Mechanism and kinetics 

The crystallization processes consist of two frequently observed phenomena, 

nucleation and crystal growth, which directly contribute to the final crystalline 

product properties (Randolph and Larson, 1988). Nucleation is the step of creating a 

new solid phase from a supersaturated homogeneous phase, where the solute 

molecules dispersed in the solvent start to aggregate together to form stable clusters of 

nanometers under the current operating condition. These stable clusters are referred as 

the nuclei. It is at the stage of nucleation that atoms arranged in a defined and 

repeated manner that defines the internal crystal structure. The crystal growth is the 

subsequent growth of the nuclei, where the solute molecules moving from the bulk 

solution adsorb on the nuclei solid surface and are incorporated into the crystal lattice, 

resulting in the growth of nuclei to become crystals of visible size. As 

aforementioned, supersaturation is the driving force of crystallization, by which the 

rate of nucleation and crystal growth is driven, hence nucleation and crystal growth 

continue to occur simultaneously while the supersaturation exists.  

     The following discusses the nucleation and crystal growth with more details from 

the perspective of engineering purpose. 

     There are several mechanisms proposed for nucleation that are commonly lumped 

into one of the two categories (Randolph and Larson, 1988; Hermanto et al., 2008), 

viz., primary and secondary nucleation, as shown in Figure 2.2. Mechanism of 

formation of nuclei that is independent of the presence of other suspended crystals is 

classified as primary nucleation and is usually further partitioned as homogeneous 

nucleation and heterogeneous nucleation. Homogeneous nucleation occurs in the pure 

bulk solution and is associated with high levels of supersaturation, where the classical 

thermodynamic free energy minimization is used to derive the rate of homogeneous 

nucleation (Walton, 1969). In the heterogeneous nucleation, foreign surfaces and 
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particles promote nucleation as a result of an ordering process caused by interactions 

across the interface (Walton, 1969), which leads to a much lower supersaturation level 

that primary nucleation can occur. However, the supersaturation levels of 

heterogeneous nucleation are still too high for good crystal growth and production of 

crystals of desirable morphology (Clontz and McCabe, 1971). 

 
Figure 2.2: Nucleation mechanism. 

     Secondary nucleation describes the nucleation that takes place due to the presence 

of other solute crystals. Hence, the secondary nucleation always accompanies the 

primary nucleation and is the dominate mechanism in most industrial crystallizations 

(Randolph and Larson, 1962; Bostaris, 1976; Grootscholten et al., 1982). Secondary 

nucleation is more easily controlled than primary nucleation and occurs at 

supersaturation levels conductive to good crystal quality. There are a variety of 

proposed mechanisms whereby the crystals promote formation of new crystals 

(Clontz and McCabe, 1971; Johnson et al., 1972; Strickland-Constable, 1972; 

Botsaris, 1976; Randolph and Larson, 1988; Hermanto, 2008). The mechanism of 

secondary nucleation is usually simplified by assuming an empirical functional form. 

For example, the following expression is commonly used to describe secondary 

nucleation: 

                         ( )exp / b j
b b k

dNB k E T S
dt

µ= = −                                                      (2.3) 
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where N is the number of nuclei formed per unit volume, t  is the time,  bk , b , bE , 

and j are empirical constants, kµ is the kth moment of the crystal size distribution 

(CSD), R is the universal constants, and T is the temperature. 

        There are also many attempts that have been made to explain the mechanism and 

rate of crystal growth (White and Wright, 1971; Randolph and White, 1977; Girolami 

and Rousseau, 1985; Zumstein and Rousseau, 1987; Randolph and Larson, 1988; 

Janse and De Jong, 2005), which can be classified into three categories, namely, 

surface energy, diffusion, and adsorption-layer theories (Mullin, 1961). The surface 

energy theories are based on the postulation of Gibbs (1878) and Curie (1885) that the 

shape a growing crystal assumes is that which has a minimum surface energy. The 

diffusion theories originated by Noyes and Whitney (1897) and Nernst (1904) 

presume that matter is deposited continuously on crystal face at a rate proportional to 

the difference in concentration between the point of deposition and the bulk of the 

solution. It is also suggested that crystal growth is a discontinuous process, taking 

place by adsorption, layer by layer, on the crystal surfaces (Mullin, 1961). Moreover, 

growth rate is further complicated by a phenomenon known as growth rate dispersion. 

It describes the situation in which not all of the crystals grow at identical or constant 

rates though the crystallizer conditions remain constant. 

       For engineering purpose, the semiempirical power law has become the standard 

representation of the growth rate, which assumes the following form, 

                         1 2exp( / ) g g
g g

dLG k E RT L S
dt

= = −                                                   (2.4) 

where gk , 1g , 2g , and gE , are empirical constants. Also notice that the growth rate is 

dependent on the crystal size L  by power law. If 1 0g = , G  is size-independent and 

this assumption is usually referred to as McCabe's L∆ law. However, there are several 

examples of systems that violate this assumption. Size-dependent growth rate is 

usually attributed to either bulk diffusion effects or the Gibbs-Thomson effect. 

Garside et al. (1976) presents a theory of size-dependent surface integration kinetics. 
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2.1.4 Crystal size distribution 

Crystallization is a typical particulate process, wherein the size of solid crystal may 

vary in a wide range and is generally characterized by the distribution of size or 

crystal size distribution (CSD). This is opposed to liquid or gaseous product, which is 

assumed to be continuous and homogeneous phase. The crystal size distribution can 

be the major determining factor for the end-use property of a particulate product, for 

example, filtration rate, dissolution rate, and bulk density (Randolph and Larson, 

1988), and therefore affects the downstream processing, including filtration, drying, 

and milling (Borrisova et al., 2005). To this end, this section attempts to summarize 

the properties and equations of the crystal size distribution that are important to 

describe the crystallization process in a quantitative way. 

       The size distribution of final crystals in batch/semi-batch crystallization process 

is mainly resulted from the simultaneous nucleation and crystal growth while 

supersaturation exists. It is well understood that the earlier the nucleus is born in the 

solution, the longer time of growth it experiences and the larger size of final crystal. 

Besides, for a seeded crystallization process, where the crystallization is initiated by 

adding fine crystals, known as seeds, into the solution upon which crystal growth 

occurs, the size distribution of seeds also affects the final crystal size distribution. 

While in case that the nucleation could be efficiently suppressed in some seeded 

crystallization processes by lowering supersaturation level or adding additive 

(Kitamura, 2009; Kee et al., 2009a), the size distribution of final crystals is often 

much broader than the size distribution of seeds, which is often attributed either to the 

size-dependent growth rate or to the growth dispersion. In addition, factors like 

morphology change, polymorphic transformation, breakage, aggregation, and 

agglomeration also play vital roles in the final crystal size distribution in some 

circumstances (Randolph and Larson, 1988). 

      The most common way of tracking the CSD in batch crystallization processes is 

by the use of population balance equation, which describes the material balance that 

accounts for the distribution of different size crystals in the crystallizer, as shown 
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below, assuming perfect mixing, no morphology change, no agglomeration and 

breakage. 

                                   ( )( ) ( ) ( ), , , ,N G S T L N B S T N L
t L

δ∂ ∂
+ =

∂
                          (2.5) 

where δ is the Dirac delta function, nucleation rate B and crystal growth rate G can be 

calculated using Eqs. 2.3 and 2.4, respectively.  

 
Figure 2.3: Information diagram showing interaction of crystallization factors. 

     The complex interaction of the crystal size distribution with the crystallization 

kinetics of nucleation and growth (Randolph and Larson, 1988) is illustrated in Figure 

2.3, wherein the crystal surface area connects the mass balance and the population 

balance and also affects the nucleation in the form of the secondary nucleation. 

2.1.5 Polymorphism 

For some compounds, they can crystallize into more than one crystal form with 

different properties such as crystal morphology and habit, density, dissolution rate, 

bioavailability, melting point, hardness, and electrical properties. This is known as 

polymorphism that has attracted much research interest recently (Ono et al., 2004; 

Kee et al., 2009a; Hermanto et al., 2009; 2011), particularly in the pharmaceutical 

industry where safety and reliability are of paramount importance. For example, the 

unexpected appearance of a second polymorphic form of an active pharmaceutical 

ingredient used for the treatment of HIV resulted in substantially different dissolution 

and absorption characteristics, which highlights the importance of polymorphism in 
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the pharmaceutical industry (Blagden and Davey, 1999). It is noted that for our model 

compound, L-glutamic acid, the metastable α and stable β polymorphic forms are 

studied in their competitive crystallization behavior and transformation recently, 

which is reviewed in the rest of this subsection. 

    In Ono et al. (2004), the transformation of metastable α-form to the stable β-form 

of L-glutamic acid was observed to involve the dissolution of the α-form and the 

ensuing nucleation and growth of the β-form. Furthermore, the growth rate of the β-

form was the rate-limiting step in the transformation. It was concluded by Roelands et 

al. (2005) that under high supersaturation level, both forms nucleate slowly but the β-

form nucleates at the highest rate. Without mixing effect, the large number of β-form 

crystals depletes most of the supersaturation. With mixing, the fast-growing α-form 

crystals first reach the critical size for attrition. From that moment attrition generates a 

large number of secondary α-form nuclei that rapidly deplete the solution. This is in 

accordance with the experimental results observed in the studies by Alatalo et al. 

(2008) and Qu et al. (2009). Further study on the polymorphic precipitation 

mechanism was reported by Roelands et al. (2007) who observed different 

polymorphic behavior at low ( 13S ≤ ) and high ( 17S ≥ ) supersaturation.  

2.2 Recent development on the modeling, monitoring, and control of 

crystallization processes 

Process system engineering (PSE) is a broad category of engineering tools that 

include analysis, modeling, simulation, optimization, design, control, and operation of 

process system for the purpose of efficiently converting raw material to desired end 

product. The following is intended to summarize the recent development and 

application of PSE tools in terms of modeling, monitoring, and control of the 

batch/semi-batch crystallization processes. 

2.2.1 Modeling of crystallization processes 

As aforementioned in the previous section, modeling of the crystallization processes 

can be conveniently casted into three parts, single particle model (i.e., nucleation and 
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crystal growth), population balance model (e.g., crystal size distribution), mass 

balance equations (e.g., supersaturation), which comprise several nonlinear algebraic 

equations, partial differential equations (PDEs), and ordinary differential equations 

(ODEs), respectively. Among them, the PDE solver for population balance model has 

been received quite a lot of interests in the past few years (Costa et al., 2007).   

     For one-dimensional population balance model, viz., only the characteristic length 

is considered, conventional algorithms for hyperbolic partial differential equations are 

reported to be effective, for example, method of moments (for size-independent 

growth), method of characteristics, finite volume method (FVM) (Koren, 1993; 

Qamar et al., 2006; Mesbah et al., 2009), finite element method (FEM), weighted 

essentially non-oscillatory methods (Hermanto et al., 2009), as well as the combined 

quadrature method of moments and method of characteristics (Aamir et al., 2009). 

Recently, an entropic lattice Boltzmann method is proposed and shown to provide the 

same level of accuracy as the FVM methods with lower computational cost 

(Majumder et al., 2010). 

      For multi-dimensional population balance model, for example, the length and 

width of the crystal are considered individually, a pioneering work was reported by 

Gunawan et al. (2004) where high-resolution FVM method was developed to solve 

the multi-dimensional population balance models with orders-of-magnitude lower 

computational cost than other finite difference methods. Experimental investigation of 

the growth rate of the length and width of the needle-shaped β-form glutamic acid was 

reported in Ma et al. (2007), wherein the 2-dimensional population balance model was 

solved utilizing the method of classes, one of the discretization techniques that 

integrate population balance model over small interval of the particle size domain. 

      Generally, system identification and parameter estimation can be difficult for 

batch process due to the time-varying process dynamics, especially when the system 

is of large scale. Advantages of using Bayesian estimation over the weighted least 

squares for parameter estimation are well documented in the literature over the years, 

including in chemical reactions (Box and Draper, 1965), heat transfer in packed beds 

(Duran and White, 1995), microbial systems (Bois et al, 1997; Pouillot et al., 2003; 

Coleman and Block, 2006), microelectronics processes (Gunawan et al., 2003). 
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Recently, Hermanto et al. (2008) reported for the first time the application of this 

method in estimation of kinetics for the polymorphic transformation of L-glutamic 

acid crystals. The popularity of Bayesian inference is based on the fact that it is able 

to include prior knowledge in the statistical analysis and the resulting posterior 

distribution for the estimated parameters can be used to accurately quantify the 

accuracy of model prediction, which can be further incorporated into robust control 

strategies (Nagy and Braatz, 2003).  

     With the advances of chemometrics, for example, ATR-FTIR, Raman 

spectroscopy, and FBRM, people are gaining more and more insight into the 

crystallization processes. For example, Schӧll et al. (2006a; 2006b) estimated the 

characteristic nucleation and growth rates of the two polymorphs in the solvent-

mediated polymorphic transformation (SMPT) of L-glutamic acid. The growth 

mechanism of α-form in a temperature range of 25-45 oC and in a relative 

supersaturation range of 1-3 were studied by Schӧll et al. (2007). Hermanto et al. 

(2008) presented a comprehensive model for the polymorphic transformation of L-

glutamic acid crystals in a batch cooling crystallization, where first-order moments of 

both α and β polymorphs from FBRM were utilized to validate the model. By 

measuring the induction time at different supersaturations of the pH-shift 

crystallization of L-glutamic acid in stirred batch reactor using ATR-FTIR and 

FBRM, together with independently measured growth kinetics, the nucleation rates 

taking into account of temperature were developed by Lindenberg and Mazzotti, 

(2009). A mathematical model of the polymorphic transformation process was 

developed by Cornel et al. (2009), who suggested an attrition-based secondary 

nucleation mechanism for the β polymorph.  

      In the context of pH-shift reactive crystallization which is also commonly 

employed in industrial practice, modeling of this process remains largely open in the 

literature. To our knowledge, Borrisova et al. (2005) presented the first and only 

mathematical model for pH-shift reactive crystallization, which used L-glutamic acid 

as a model compound. Their model assumed ideal solution properties and a simple 

empirical power-law kinetic mechanism and did not include polymorphic 

crystallization phenomena and mixing effects on secondary nucleation. This motivates 
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this study to develop a more comprehensive model which includes the effect of non-

ideal solution property, mixing effect and the marginal distributions of the kinetic 

parameters. 

2.2.2 Multivariate statistical monitoring 
On-line monitoring, diagnosis, and control of batch or semi-batch crystallization 

process are needed for various reasons such as safety, consistency, and quality 

improvement. With the recent development of in situ real-time measurement for 

crystallization processes, discussed previously, more and more process data are now 

becoming available for developing multivariate process system engineering tools to 

efficiently monitor, diagnose, and control of crystallization processes. 

     Different from the continuous operation, historical batch process data are 

composed of three dimensional array X ( I × J × K), where I is the number of batches, 

J is the number of variables, and K is the number of sampling times in a given batch. 

To apply the multivariate statistical process control methods, for example, the 

multiway principal component analysis (MPCA) (Nomikos and MacGregor, 1994), X 

should be rearranged in a two-dimensional dataset X (I × JK) as shown in Figure 2.4 

by the widely applied batch-wise unfolding method, which captures the correlation 

information of the variables both within-time and time to time in terms of auto-

correlated and cross-correlated relationships in process data. Furthermore, batch 

processes with multiple phases or transitional changes due to process nonlinearity are 

commonly encountered in process industries (Camacho et al., 2006; 2009). Process 

dynamics and correlations among variables also tend to change with these transitions 

across the batch, which is often the case in batch crystallization process due to the 

strong sensitivity of crystallization kinetics to supersaturation, temperature, and total 

crystal surface area in solution.  Traditional approach where the MPCA model is 

constructed from data representing the whole batch process would not be sufficient to 

capture the varying process dynamics and correlation structure. Therefore, the use of 

multi-phase models offers several advantages (Zhao et al., 2007; Golshan et al., 

2010). One approach is to build PCA models applicable to every sampling time point 
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based on a moving window along the batch-wise unfolded dataset as depicted in 

Figure 2.4. In this technique, a window with a fixed-size is selected at each sampling 

time in a way that the data of the current time is located at the front of the window, 

upon which a PCA model is built. 

 
Figure 2.4: Batch-wise unfolding of batch process data. 

     In addition, the assumption that all batches have equal batch time does not usually 

hold, for example, longer batch time is typically needed due to the slower crystal 

growth rate compared with normal operating condition (Nagy et al., 2008a; Woo et 

al., 2009). To address this problem, different methods using rescaled batch time as a 

maturity index and tracking the batch operation with an indicator variable or using 

local batch time as the response vector were proposed in the literature (Zhao et al., 

2011). Furthermore, data resampling and interpolation were also employed to 

calculate the corresponding measurements at regular interval of the maturity index. In 

this study, the crystallizer volume in place of batch time was proposed as an indicator 

variable which progressed monotonically in time and had the same starting and 

ending value for each batch.  

2.2.3 Control of crystallization processes 

The prevalence and high value of crystallization processes in pharmaceutical, fine 

chemical, and food industries have motivated the development of many control 

strategies (Rawlings et al., 1993; Braatz, 2002; Fevotte, 2002; Yu et al., 2004; 

Fujiwara et al., 2005). The solute concentration is a critical state variable to control 

during a crystallization, as the crystallization kinetics are usually written in terms of 
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the solute concentration, or equivalently, the supersaturation. A control strategy for 

batch and semibatch crystallizations that has become popular in recent years is to 

determine the optimal solute concentration or supersaturation trajectory against other 

system state throughout the run, and then design a feedback control system to 

maintain the optimal relationship between the states (Zhou et al., 2006; Hermanto et 

al., 2007; Nagy et al., 2008a; Woo et al., 2009). Detailed uncertainty and disturbance 

analyses carried out both experimentally and in simulation studies have shown that 

the approach ensures the consistent production of large crystal by suppressing 

excessive nucleation and the formation of undesired polymorphs (Kee et al., 2009a; 

2009b). This so called concentration control (C-control) approach, in which 

trajectories of concentration vs. temperature or concentration vs. antisolvent mass 

fraction are tracked throughout the run, has been implemented in many cooling and 

antisolvent crystallizations (Zhou et al., 2006; Nagy et al., 2008a; Cote et al., 2009; 

Kee et al., 2009a; 2009b; Woo et al., 2009). 

     An advantage of the C-control is that it can be implemented without having to 

estimate the crystallization kinetics and cannot overshoot the desired concentration 

trajectory provided that the solubility curve is monotonic and the crystallization 

dynamic is slow compared to the control of cooling temperature or antisolvent 

addition within one sampling interval (Su et al., 2012a). However, the tracking is also 

conservative in that it will increase the overall batch time, which lowers the 

productivity of the equipment (Nagy et al., 2008a; Hermanto, 2008). 

     Furthermore, the implementation of C-control in both cooling and antisolvent 

crystallization relies only on the solute concentration trajectory, which is usually 

monotonically decreasing in these processes. However, its tracking performance may 

be too sluggish when applied to a reactive crystallization (Borrisova et al., 2005; 

Alatalo et al., 2008; Qu et al., 2009) where crystallization rate within one sampling 

interval can switch from very slow to very fast. Moreover, when competitive 

polymorphic crystallization occurs, for example, the polymorphs crystallize 

competitively under high supersaturation (Roelands et al., 2005; 2007), then the 

tracking of a concentration vs. temperature or concentration vs. antisolvent mass 

fraction trajectory may become inefficient as it only considers the total consumption 
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rate of solute by crystallization without providing information about their respective 

crystallization kinetics. One objective of this thesis is to extend the C-control to 

semibatch  reactive crystallization to investigate these potential issues in more detail. 

     Driven by stringent specifications on product quality, tighter environmental 

regulation of effluent streams, and higher competition in the process industries, such 

as the pharmaceutical manufacturing, the development of nonlinear model predictive 

control (NMPC) techniques is of interest to both the academic and industrial sectors. 

The main benefit of NMPC lies in its capability to handle nonlinearities and time-

varying characteristics inherent in process dynamics by performing real-time dynamic 

optimization with constraints and bounds imposed on both system states and 

manipulated variables (Manenti, 2011; Darby and Nikolaou, 2012). Toward this end, 

various NMPC design methods were developed using different techniques to deal 

with process nonlinearity, including successive linearization (Lee and Ricker, 1994), 

neural networks (Peng et al., 2007), robust control (Nagy and Braatz, 2003; Nagy and 

Allgöwer, 2007), multiple local models (Özkan et al., 2000; Cervantes et al., 2003; 

García-Nieto et al., 2008; Kuure-Kinsey and Bequette, 2010;), and hybrid models 

(Hermanto et al., 2011). 

    Among various NMPC design methods, the extended prediction self-adaptive 

control (EPSAC) algorithm (De Keyser and Cauwenberghe, 1985) adopted a unique 

approach to predict process variables through iterative optimization around the pre-

specified base input trajectory and corresponding base output trajectory. In this 

manner, the outputs in the prediction horizon are obtained as the sum of a base term 

and an optimization term. The former is computed based on a nominal process model 

using the current values of input variables obtained from the predefined base input 

trajectory, while the latter obtained from a finite step response or impulse response 

model, from which a quadratic programming (QP) problem is formulated and can be 

solved iteratively (Hermanto et al., 2009). Though successful applications of EPSAC 

have been reported in the literature (De Keyser and Cauwenberghe, 1985; Gálvez-

Carrillo et al., 2009; Niño et al., 2009), which includes the control of a polymorphic 

crystallization (Hermanto et al., 2009; 2011), one potential drawback of the previous 

EPSAC algorithms is the incorporation of finite step response or impulse models in 
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the formulation of the control algorithm. Since parameters of these two convolution 

models are obtained by introducing a step change to the current input value specified 

by the base input trajectory, those model parameters obtained far away from the 

current sampling instant become less accurate due to process nonlinearity, leading to 

inevitable modeling error that degrades the achievable control performance. This 

shortcoming may become even worse when the EPSAC is applied to batch process 

control, where the objective is often to control the product quality at batch end. As a 

large number of step response parameters are needed at the beginning of the batch run 

to predict the future process outputs for the remaining batch time, this eventually 

leads to inaccurate predicted outputs and poor control performance as a result. Hence, 

another aim of this thesis is to formulate the EPSAC algorithm using state-space 

models due to its inherent flexibility to represent stable, integrating, and unstable 

processes (Garcia et al., 1989; Morari and Lee, 1999; Qin and Badgwell, 2003; 

Froisy, 2006; Manenti, 2011; Darby and Nikolaou, 2012), and to validate its 

applicability in the pH-shift reactive crystallization process. 

     Owing to the repetitive nature of batch process operation, it would be possible to 

improve the operation of the next batch using the information of the current and 

previous batches, which has initiated the learning type control, for example, iterative 

learning control (ILC), repetitive control (RC), batch-to-batch, or run-to-run control 

(Bonvin, 1998; Bonvin et al., 2006; Ahn et al., 2007; Wang et al., 2009). Though 

batch-to-batch control strategy has been widely studied in most chemical processes 

such as polymerization process (Clarke-Pringle and MacGregor, 1998; Doyle III et 

al., 2003; Xiong and Zhang, 2003; Zhang, 2008), rapid thermal processing (Lee and 

Lee, 2007), and so on, the application to crystallization processes, however, has been 

very limited until recently, when the NMPC and B2B techniques were integrated 

using a hybrid model to compensate the uncertainties in crystallization kinetics 

(Hermanto et al., 2011). Thus, it is also of interest to investigate the application of 

batch-to-batch control and integrated batch-to-batch and NMPC control to the pH-

shift reactive crystallization process. 
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Chapter 3 

Modeling of the pH-shift Reactive 

Crystallization of L-glutamic Acid 

 

In this chapter, a comprehensive kinetic model of the pH-shift reactive crystallization 

of L-glutamic acid was developed based on the in situ monitored experimental data 

available in the literature, from which the crystallization kinetic parameters were 

estimated by the state-of-the-art Bayesian estimation method.  

3.1 Introduction 

The pH-shift reactive crystallization is one of the most commonly used reactive 

crystallizations for separation and purification of amino acids and other amphoteric 

chemicals (Black and Davey, 1988; Zhu and Garside, 1997), wherein acid or base 

solution is continuously added into the crystallizer that is initially filled with saturated 

solution to induce chemical reactions transforming a high soluble solute into a less 

soluble one, which is then precipitated from the solution. Despite the rising research 

interest in the pH-shift reactive crystallization (Borissova et al., 2005; Alatalo et al., 

2008; 2010a; 2010b; Qu et al., 2009), mathematical modeling of this process remains 

largely open in the literature. 

      The weighted least squares (Bard, 1974; Bates and Watts, 1988; Mendes and Kell, 

1998) has been applied to the kinetic parameters estimation for various crystallization 

systems (Ono et al., 2004; Schӧll et al., 2006b; Caillet et al., 2007; Fevotte et al., 

2007; Kee et al., 2011). When the weighted least squares method is used for 

parameter estimation, the linearized statistics or the likelihood ratio approach is often 
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used to quantify the parameter uncertainties (Beck and Arnold, 1977; Hermanto, 

2008). In the linearized statistics approach, the model is linearized around the optimal 

parameter estimates and the parameter uncertainty is represented by a χ2 distribution. 

As a consequence, this method gives inaccurate uncertainty estimate for highly 

nonlinear processes (Beck and Arnold, 1977). In the likelihood ratio approach, model 

nonlinearity is taken into account while approximating the distribution which is 

analogue to the well-known F statistic (Beck and Arnold, 1977). Nevertheless, this 

method also falls short to address the physical constraints on the model parameters. 

      Unlike the weighted least squares method, the Bayesian inference (Gelman et al., 

2004) avoids the presumed probability distribution function for estimated parameters. 

Besides, it is able to include prior knowledge in the statistical analysis, such as 

constraints on estimated parameters, resulting in models with higher predictive 

capability, particularly for highly nonlinear processes.  

     The Bayesian philosophy differs from the frequentist in the use of the term 

"probability" (Gelman et al., 2004). Frequentist, upon which the weighted least 

squares is based (Beck and Arnold, 1977), restricts the application of the term 

probability to summaries of hypothetical replicate data sets, while Bayesian uses 

probability to describe the unknown quantities (Hermanto, 2008). This essential 

difference, in turn, results in the difference between their descriptions of estimation 

result. The frequentist interval estimate is called a confidence interval, it is an interval 

determined by the replicate observations. In other words, this confidence is only a 

description of the mechanisms providing the interval rather than of the interval itself. 

For example, it assumes the unknown parameter as a fixed quantity, which is either in 

the interval or not in the interval. Therefore, there is no probability involved with the 

parameter itself. In contrast, parameters are random variables and are described by 

their own probability distribution in Bayesian method (Bretthorst, 1990; Coleman and 

Block, 2006), from which intervals are drawn and termed as credible intervals that 

can be directly regarded as having a high probability of containing the unknown 
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quantity. Hence, Bayesian inference facilitates a common sense interpretation of 

statistical conclusion.     

     This chapter is organized as follows. The next section describes the development 

of a mathematical model for semi-batch pH-shift reactive crystallization process using 

L-glutamic acid as a model compound. This is followed by the brief introduction of 

Bayesian inference for model parameter estimation. The results of model parameters 

estimation obtained using experimental data from literature are discussed, followed by 

the conclusions in the last section. 

3.2 Mathematical model 

3.2.1 Species balance model 

For the model compound of L-glutamic acid (GA), the dissolution of monosodium 

glutamate (MSG) in pure water due to protonation and deprotonation mechanism can 

be represented by (Borrisova et al., 2005):  

           1 3
(aq) 1Glu Glu H       6.20 10aK                                                              (3.1) 

             1 5
(aq) 2Glu Glu H       4.57 10aK                                                          (3.2)      

           1 2 10
3Glu Glu H        2.14 10aK                                                     (3.3) 

           (aq) (solid)Glu Glu
Ksp                                                                                               (3.4) 

where Glu1+ is the protonated form with an overall charge of +1; Glu1− is the 

deprotonated form with an overall charge of −1, viz., MSG; Glu2− is the fully 

deprotonated form with an overall charge of −2; (aq)Glu and (solid)Glu are the GA 

zwitterion with an overall charge of zero in aqueous solution and solid, respectively; 

Kai (i = 1, 2, 3) are the respective equilibrium constants; and Ksp is the solubility 

product for GA (Alatalo et al., 2010a; 2010b). The four solute-related species can 
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coexist in the solution, which change their respective concentrations or fractions in 

solution with varying pH, as shown in Figure 3.1. 

 

Figure 3.1: Mole fractions of different ionic species of L-glutamic acid in the solution 
as a function of pH. 

      In the experimental system of Alatalo et al. (2008), the crystallizer was initially 

filled with MSG solution and then sulfuric acid was continuously pumped into the 

crystallizer, which produced glutamic acid according to the overall reaction:             

                    2 4 2 4

1 1
Na-Glu H SO Glu(aq) Na SO

2 2
                                        (3.5) 

With continuous addition of the sulfuric acid, decreasing the pH of the solution favors 

the conversion of sodium glutamate into glutamic acid. However, due to the 

protonation/deprotonation as indicated in reactions (3.1) to (3.3), glutamic acid will be 

further protonated. For any particular value of the pH within the range of operation, 

there are always at least two species in the solution as shown in Figure 3.1. 

  It is usually assumed that the species balance for glutamic acid in solution will 

reach dynamic equilibrium instantaneously when sulfuric acid is added into the 

crystallizer (Borrisova et al., 2005). For the various species in solution, only the 

zwitterion glutamic acid precipitates because of its lowest intrinsic solubility. Either 

or both of two polymorphic forms of glutamic acid, namely, metastable α-form and 

stable β-form, can nucleate or grow competitively in solution depending on the 
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solution concentration. As the β-form is more stable, a solution-mediated polymorphic 

transformation (SMPT) from metastable α-form to the stable β-form takes place, 

when * *C C C   , as shown below (Cisternas et al., 2006; Alatalo et al., 2008):             

                       Dissolution
(solid) (aq)α -Glu Glu                                                           (3.6) 

                           
Crystallization

(aq) (solid)Glu β -Glu                                                               (3.7)   

with the intrinsic solubility of two polymorphs given as follows:          

                      * 27.4 10   mol/LC
                                                                         (3.8)           

                     * 25.6 10    mol/LC
                                                                        (3.9) 

 The dissociations of sulfuric acid and the autoprotolysis of water are also 

considered:            

                      +
2 4(aq) 4H SO HSO H                                                                   (3.10)                          

                          2 +
4 4HSO SO H         0.0105asK                                                       (3.11) 

                         + 14
2H O H OH       1 10  (25 C)wK                                             (3.12) 

 The solution during crystallization conditions has sufficient water that 2 4H SO  

rapidly dissociates with subsequent formation of 4HSO . Furthermore, the activity-

based equilibrium constant a cK K K , where cK is the concentration-based 

equilibrium constant and K is computed by activity coefficients, is employed to deal 

with the non-ideal solution properties, which is less restrictive compared to Borrisova 

et al. (2005) where ideal solution was assumed. The activity coefficient of electrically 

neutral glutamic acid, (aq)Glu , is assumed to be one. The activity coefficients, i , for 

other ions are calculated based on the modified Bates-Guggenheim equation with 

parameter values A = 1.175 and B = 0.15 (Alatalo et al., 2008):           

                      2ln
1 1.5

c
i i c

c

I
Az BI

I
   


                                                            (3.13) 
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where cI and z denote the ion strength and ion charge, respectively. 

3.2.2 Population balance model 

The crystal size distribution is an important concern in industrial manufacturing, due 

to its effect on product performance and on downstream processing, such as washing, 

filtering, drying, and milling (Borissova et al., 2005). During crystallization the size 

distribution can be affected by many factors, such as nucleation, the size distribution 

of crystal seeds, growth dispersion, breakage, attrition, agglomeration, polymorphism, 

and changes in morphology. 

 For a perfectly mixed batch crystallizer, in which it is assumed that (a) crystal 

nuclei are of negligible size, (b) crystal breakage and agglomeration are negligible, 

and (c) crystal shape are uniform, the crystal size distribution can be expressed as the 

distribution of the number of crystals over the size range, as characterized by the 

population balance equation:          

              
   

0,    ,i i iN V G N V
i

t L
 

 
  

 
                                                          (3.14) 

where L is the characteristic length of the i polymorphic form of glutamic acid, m; Ni 

is the number density of the i polymorphic form, #/m4; V is the solution volume, m3; 

Gi is the growth rate of the i polymorphic form, m/s. Because the solution volume of a 

semi-batch crystallizer is time-varying, it is convenient to redefine the number density 

on the basis of the total operating volume of the system such that (Borissova et al., 

2005; Nagy et al., 2008b):                

               i if N V                                                                                                  (3.15) 

               
 

0i ii
G ff

t L


 

 
                                                                                                     (3.16) 

where if is the number density over the total solution volume, #/m; and the boundary 

conditions are:             
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                ,

0    unseeded
,0

seededi
seed i

f L
f L


 


                                                         (3.17)              

             ,0,i i inf t f                                                                                             (3.18) 

where  ,seed if L is the size distribution of crystal seeds for the i polymorphic form;  

,i inf is the population density of nuclei for the i polymorphic form at size zero, which 

can be obtained as follows:              

                 ,
i

i in
i

BV
f

G
                                                                                            (3.19) 

where Bi is the nucleation rate of the i polymorphic form, #/(m3·s).  

 Based on the crystal size distribution, the average length, total number, surface 

area, volume, and mass of the crystals can be computed from the nth moments of the 

size distribution,                

               , 0
     0,1,2,3,n

i n iL f dL n


                                                            (3.20) 

where ,0i  is the total number of crystals for the i polymorphic form in the 

crystallizer, ,1i is the total length, ,1 ,0/i i   is the number-averaged length, ,2i is 

proportional to the total surface area, and ,3i  is proportional to the total volume of 

the crystals. 

    The total concentration of the various glutamic ions ,T GluC , links the species 

balance and population balance models together:                

            2 1 1
( ), aqT Glu GluGlu Glu Glu

C C C C C                                                          (3.21)             

            
   0 00

,3 ,3 ,3 ,3, 0
,

v vT Glu
T Glu

Glu

k kC V
C

V MW V
              

                     (3.22) 
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where 0
,T GluC is the initial total concentration of various glutamic species, 0V  is the 

initial solution volume, i  is the density of glutamic acid of the i polymorphic form, 

vik  is the volumetric shape factor of the i polymorphic form, 0
,3i  is the initial total 

volume of the i polymorphic form, and GluMW  is the molecular weight of glutamic 

acid. 

3.2.3 Crystallization mechanism and kinetics 

The crystallization mechanism includes nucleation and crystal growth, which are both 

driven by supersaturation. In this context, for a highly saturated solution during a pH-

shift reactive crystallization, it is appropriate to use the relative supersaturation 

definition (Prausnitz et al., 1999; Togkalidou et al., 2004; Kee et al., 2009a)              

                        *
      , .i

i

C
S i

C
                                                                         (3.23) 

 This study considers both primary and secondary nucleation of α- and β-forms and 

the effect of mixing intensity, I, is also taken into account in the nucleation. 

Furthermore, the effect of α-form crystals on the secondary nucleation of β-form 

crystals was also considered, to take into account that β-form crystals can nucleate 

from the surface of α-form crystals. The growth and nucleation expressions are 

assumed to have similar dependencies on supersaturation as reported in past studies 

(Schöll et al., 2006a; 2007; Lindenberg et al., 2008), with a length-dependent term 

included in the crystal growth kinetic expression. The expressions for the 

crystallization kinetics are:  

    α-form crystallization kinetics when 1S  :    

        
 

 ,1 ,4,2 ,3 ,5, 2
, 1 , 22ln exp ln

ln

b bb b bb
b b

E
B k S I k m S I

S

   
     



 
   
 
 

                (3.24)       

      , 1
, 1 , 0 exp b

b b

E
k k

RT


 
 

  
 

                                                                                 (3.25) 
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      , 1
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E
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                                                                                (3.27) 

    β-form crystallization kinetics when 1S  : 
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, 1

, 1 , 0 exp( )g
g g

E
k k

RT


                                                                                                     (3.31) 

where im  is the mass concentration of the i polymorphic form of glutamic acid in the 

solution, kg/m3; ,0iL  is the critical characteristic length of the i polymorphic form, m; 

R is the universal gas constant, 8.314 J/mol·K; and T is the temperature, K.  

The mixing intensity is calculated by (Cornel et al., 2009)                

                 
5 3

p imp sN D N
I

V
                                                                                        (3.32) 

where pN  is the power number for the stirrer type, impD  is the impeller diameter, m, 

and sN  is the stirring rate, s−1. 
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     Finally, when the solute concentration is below the solubility of the α-form 

glutamic acid, the polymorphic transformation from the α- to β-form may occur 

through SMPT. Thus, it is necessary to consider the dissolution of the α-form in the 

kinetic scheme, which is given as (Hermanto et al., 2008; Cornel et al., 2009)              

              , 1     1dG k S S                                                                         (3.33)    

where ,dk   is the dissolution rate constant. The dissolution of β-form is avoided after 

the crystallization occurs, and so is not considered in this study. 

3.2.4 Numerical solution 

The mathematical model combining all the above equations consists of partial 

differential equations (PDEs), ordinary differential equations (ODEs), and nonlinear 

algebraic equations that need to be solved simultaneously. In order to obtain the 

crystal size distribution of both polymorphs, numerical techniques that reduce the 

PDEs into ODEs by discretization of the length axis are common choices. The high-

resolution finite-volume method with second-order accuracy and flux-limiting 

functions (Mesbah et al., 2009) was used here. The characteristic crystal length L was 

first discretized as shown in Figure 3.2, which is the same as in the standard finite 

volume method. The equations obtained after discretization are (Koren, 1993; Qamar 

et al., 2006; Mesbah et al., 2009)      

        0iif GL   

     1 ,0
2

 0 :  in inif i Gf G f   

              1 2
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Figure 3.2: Cell-centered finite volume grid. 

Using the Matlab ODE solver ode45, these ODEs were solved simultaneously 

with the conservation equations: 

                            
dV

F
dt

                                                                                     (3.34) 
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                           , ,T Glu T GludC C dV

dt V dt
                                                                  (3.35) 

                           Na Na
dC C dV

dt V dt

 

                                                                     (3.36) 

                         , , 0,T S T S SdC C C FdV

dt V dt V
                                                          (3.37) 

                           2
4 4

,T S HSO SO
C C C                                                                      (3.38) 

where F is the sulfuric acid addition flowrate, m3/s; 
Na

C   is the concentration of 

sodium ion, mol/m3; ,T SC  is the total concentration of sulfuric related ions, mol/m3; 

and 0,SC  is the concentration of sulfuric acid added into the system, mol/m3. 

3.3 Bayesian inference 

The parameters in the first-principles model in the last section were determined by 

Bayesian estimation. For ease of reference, a brief summary of Bayesian inference is 

provided  in this section. Readers can refer to the literature (Bretthorst, 1990; Carlin 

and Louis, 2000; Gelman et al., 2004; Hermanto et al., 2008) for detailed discussions 

on this topic. 

      The main idea of Bayesian inference lies in Bayes' rule: 

                                  
 

Pr Pr
Pr

Pr


y θ θ
θ y

y
                                                         (3.39) 

where θ is a vector of unknown parameters and y is a vector of the observations, such 

as measurements of state variables at different time points, to be used to infer θ. 

 Pr θ  is the prior distribution of θ,  Pr y θ  is referred as the sampling distribution 

for fixed parameters θ and is also referred to as the likelihood function  L θ y  when 

the data y are known and the parameters θ are unknown.  Pr θ y  is referred as the 
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Bayesian posterior distribution of θ and  Pr y  acts as a normalizing constant to 

ensure that the Bayesian posterior integrates to unity, which is often neglected as it 

does not affect the shape of the posterior distribution of θ. 

      The critical point about Bayesian inference, as shown in Eq. (3.39), is that it 

provides a principle way of combining new evidence with prior beliefs, through the 

application of Baye's rule. Contrast this with frequentist inference, which relies only 

on the evidence as a whole, with no reference to prior beliefs. Baye's rule can be 

applied iteratively. That is, after observing some evidence, the resulting posterior 

probability can then be treated as a prior probability, and a new posterior probability 

computed from new evidence. This allows for Bayesian principles to be applied to 

various kinds of evidence whether viewed at all once or over time. This procedure is 

term Bayesian updating (Gelman et al., 2004). 

     When the model structure is assumed correct and the measurement noise is 

distributed normally with zero mean and unknown variance, then the likelihood 

function can be characterized as follows (Hermanto et al., 2008): 

                | , |sysL Lθ y θ σ y                              

                           
,

1 1
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θ
                     (3.40) 

where ,
T

sys   θ θ σ  is the vector of parameters of interest, which consists of the 

system/model (θsys) and noise (σ) parameters, jky  and ˆ jky  are the measurement and 
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predicted value of the jth variable at sampling instance k, respectively, Nm is the 

number of measured variables, ,d jN  is the number of time samples of the jth variable, 

and σj is the standard deviation of the measurement noise in the jth variable. This 

likelihood function assumes that the measurement noises are independent. 

     An informative prior distribution  Pr θ  that specifies the minimum and maximum 

possible values of θ is used in this study: 

                                min max 
Pr

0

if

otherwise

 
 


1 θ θ θ
θ                                               (3.41) 

which means that all values of θ between θmin and θmax have equal probability.  

     The product of the likelihood  L θ y and prior distribution  Pr θ  specifies the 

Bayesian posterior, which is the joint probability distribution for all parameters after 

data have been observed, and from which all parameter estimates of interest (e.g. 

means, modes, and credible intervals) are calculated. However, the conventional 

approach to calculate the above estimates often involves complicated integrals of the 

Bayesian posterior density which are analytical intractable. To overcome this 

drawback, Markov Chain Monte Carlo (MCMC) integration (Tierney, 1994; Liu, 

2001; Gelman et al., 2004) was applied to compute these integrals in an efficient 

manner. MCMC does not require approximation of the posterior distribution by a 

Gaussian distribution (Chen et al., 2004; Coleman and Block, 2006; Lang et al., 

2007). Therefore, in this study, the MCMC integration (Gelman et al., 2004) was 

applied to compute the mean, mode, and credible intervals (aka Bayesian confidence 

intervals) associated with each of the parameters in an efficient manner.  

      The Markov chain is a sequence of random variables θ0, θ1, ... , drawn from 

approximate distributions and then corrected to better approximate the Bayesian 

posterior distribution, for which, for any s, the distribution of θs+1 given all previous 

θs depends only on the most recent value, θs. During application, several parallel 

chains can be drawn. Parameters from each chain c, ,c sθ , s = 1, 2, 3, ... , are produced 

by starting at some point ,0cθ  and then, for each step s, drawing , 1c sθ  from a jumping 
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distribution  , 1 ,|c s c s
sT θ θ  that depends on the previous draw, ,c sθ . The jumping 

probability distributions must be constructed so that the Markov chain converges to 

the target posterior distribution. Here, the combination of differential evolution (DE) 

with MCMC was adopted to construct the Markov chains (Ter Braak, 2006). For 

monitoring the convergence of the chains, potential scale reduction factors  ˆ
iR  were 

adopted to monitor the convergence of the Markov chains (Gelman et al., 2004), 

which are calculated from 
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where ,c s
i  is the simulation draws of parameter i from step chain c at step s, Bi and 

Wi are the between- and within- sequence variances of parameter i, respectively, m is 

the number of parallel chains, with each chain of length n. When ˆ
iR  is near 1 for all 
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θi, then the simulation is stopped and the probability distribution of each parameter 

can be observed by plotting the Markov chains in histograms, and the mean, mode, 

and credible intervals can be calculated accordingly. 

 

3.4 Results and discussion 

3.4.1 Experimental data 

The model parameters in the mathematical model of the previous sections were fit to 

some of the experimental data of Qu et al. (2009), with the remaining data used for 

model validation. Other physical parameters for glutamic acid crystallization could be 

found in literature (Hermanto et al., 2009). For ease of reference, the experimental 

procedure conducted in Qu et al. (2009) is briefly summarized here. 

The precipitation experiments were performed in a 1-liter jacketed crystallizer 

equipped with a thermostat and an overhead stirrer. The experiments were carried out 

in semi-batch mode starting from 650 mL of initial solution of MSG in the 

crystallizer. During the precipitation, 320 mL of sulfuric acid solution with the same 

molarity as MSG was pumped into the crystallizer at a fixed flow rate of 8 mL/min. 

All experiments were carried out at 25oC, and were monitored in situ using a pH 

meter, attenuated total reflection Fourier transform infrared (ATR-FTIR) 

spectroscopy, and a Raman immersion probe. The ATR-FTIR and Raman probes 

were used to measure the glutamic acid concentration and polymorphic mass fraction 

of the α form, respectively, throughout the batch. The size distribution of product 

crystals was determined at the end of each batch. As large fluctuations in the reported 

Raman measurement was observed for the first half of the batch, the Raman 

measurement could be influenced by the size or the amount of crystals present in the 

solution. As a result, the fluctuated data were not used for parameter estimation. To 

achieve good fitting for the polymorphic purity experimental data, a mass 
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concentration correction term, Ramanm , kg/m3, was used to calculate the α-form 

polymorphic mass fraction, ,mF  : 

                                     ,m
Raman

m
F

m m m



 


 

                                                    (3.49) 

      There were eight sets of experimental data as summarized in Table 3.1, where six 

experiments (E1 to E3 and E6 to E8) were used to estimate the model parameters by 

Bayesian inference and the data from the remaining two experiments (E4 and E5) 

were used for validation. 

 

3.4.2 Parameter estimation 

There are twenty-nine model parameters to be estimated, which include twenty-six 

kinetic parameters, two power numbers for the impellers, and the aforementioned 

Raman correction term. Besides, four additional measurement noise parameters for 

pH, ATR-FTIR, Raman measurement, and crystal size distribution were also 

estimated (see Table 3.2). Since all the experiments were conducted at constant 

temperature, the estimated kinetic parameters in crystallization mechanism (3.25), 

(3.27), (3.29) and (3.31) were , 1bk  , , 1gk  , , 1bk   and , 1gk   instead. Table 3.2 shows 

the mean, mode, and 95% credible intervals of the estimated parameters obtained by 

Bayesian inference. For the sake of limited space, only the marginal probability 

distributions of the estimated parameters for the α-form nucleation kinetics are shown 

in Figure 3.3. These distributions can be incorporated into model predictive control 

and other control algorithms that have been designed to be robust to stochastic 

parameter uncertainties (Nagy and Braatz, 2003). 

The initial parameters for the Markov chains were first obtained by minimizing 

the weighted difference between the experimental measurements jky  and model 

predictions ˆ jky . 
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where ,q jw  is a weighting factor that is the inverse of an estimate of the error variance 

2
j . Initially, j  was set to the standard deviation of the actual measurement. A set of 

parameters were then estimated by solving the optimization problem (3.50). The 

standard deviations for the errors in the jth measured variable were then re-estimated 

and used as j  to iteratively solve the parameter estimation optimization of (3.50) 

until no significant difference between the given and estimated standard deviations 

was detected (Kee et al., 2011). 

Figures 3.4 to 3.7 compare model predictions, using the mode estimates of the 

parameters in Table 3.2, with the experimental data used in fitting the model 

parameters.  For the glutamic acid concentration measurement given in Experiment 

E3 in Figure 3.4, the solute concentration reflects the combined effects of the solute 

generation, dilution, and lumped depletion due to the nucleation and growth of the α 

and β polymorphs. The steep decrease of the solute concentration after 1000 s is in 

correspondence to the sharp increase of the α-form polymorph mass fraction in Figure 

3.6(E3) and the increase in pH for a short period of time displayed in Figure 3.7(E3). 

In addition, dome-shaped concentration profiles as seen in Figure 3.4 and similar CSD 

results as observed in Experiments E1 and E2 of Figure 3.5 were observed in the other 

experiments. The change in the stirring rate from 250 to 500 rpm resulted in stronger 

secondary nucleation in Experiment E2 than E1, as indicated in nucleation kinetics 

(3.24) and (3.28), which made the crystal size distribution shift to the smaller size 

range, as shown in Figure 3.5. Similar results were also obtained for other 

experiments that had high stirring rate. 

As in Figure 3.5, the predicted CSDs are bimodal whereas the experimental CSD 

are unimodal. the small peek of the predicted crystal size distribution at less than 100 

m for E2 in Figure 3.5 is too small to be observable within the accuracy of a CSD 

measurement. For E1, the first peek of the predicted crystal size distribution occurs at 
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about 100 μm. The particle size distributions were experimentally determined by Qu 

et al. (2009) after the crystals were filtered and dried (Hatakka et al., 2010), and the 

images in Fig. 4 of their work show a population of much smaller crystals adhered to 

the surface of larger crystals, but such a smaller population of crystals does not appear 

in the experimental CSD data in their Fig. 10 that were used in this study and partly 

shown in Figure 3.5. Smaller crystals often have a tendency to stick to the surface of 

larger crystals, which would cause any small crystals associated with the first peak in 

the CSD to show up in the measured CSD by Qu et al. (2009) as parts of larger 

crystals. 1  Such a systematic experimental bias in the CSD measurements would 

explain both why our mathematical model predicts a higher amount of small crystals 

and a smaller amount of the largest crystals than reported in the CSDs in the original 

experimental work (Qu et al., 2009). Potential biases in measured crystal size 

distributions are well established in the literature (Rawlings et al., 1993; Loizeau et 

al., 1994; Abbas et al., 2002). 

3.4.3 Model validation 

With the mode estimates of the parameters in Table 3.2, validation of the developed 

model using the datasets from Experiments E4 and E5 are provided in Figures 3.8 and 

3.9. The data from Experiments E4 and E5 were not used in the above parameter 

estimation, and the experimental conditions are different from Experiments E3 and E6 

in the stirring rate and impeller type used, respectively. The α-form mass fraction in 

Experiments E4 and E5 have a high degree of fluctuation in the first half of the batch 

which is why equation (3.49) used to alleviate this data limitation. The rather precise 

pH measurements in both experiments are very well predicted by the model (see 

Figure 3.9). The good agreement of the validation results shown in Figures 3.8 and 

3.9 provides some confidence that the first-principles model of pH-shift reactive 

crystallization can be used in process control studies, as long as the control systems 

are designed to be reasonably robust to model uncertainties. 

                                                            
1 It is challenging to quantify a population of small crystals stuck to the surfaces of a 
much larger population of large crystals. 
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Table 3.1: Summary of experimental data. 

No. 
Reagent 

concentration 
Mixing 

intensity 
Impeller type Measurement data 

E1 0.75 M 250 rpm 
Six flat blade disc 
turbine 

pH value                                       ∎ 
Glutamic acid concentration        ⧠ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ∎ 

E2 0.75 M 500 rpm 
Six flat blade disc 
turbine 

pH value                                       ⧠ 
Glutamic acid concentration        ⧠ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ∎ 

E3 1.00 M 250 rpm 
Six pitched blade 
turbine 

pH value                                       ∎ 
Glutamic acid concentration        ∎ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ⧠ 

E4 1.00 M 500 rpm 
Six pitched blade 
turbine 

pH value                                       ∎ 
Glutamic acid concentration        ⧠ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ⧠ 

E5 1.25 M 250 rpm 
Six flat blade disc 
turbine 

pH value                                       ∎ 
Glutamic acid concentration        ⧠ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ⧠ 

E6 1.25 M 500 rpm 
Six pitched blade 
turbine 

pH value                                       ∎ 
Glutamic acid concentration        ⧠ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ⧠ 

E7 1.50 M 250 rpm 
Six flat blade disc 
turbine 

pH value                                       ∎ 
Glutamic acid concentration        ⧠ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ⧠ 

E8 1.50 M 500 rpm 
Six pitched blade 
turbine 

pH value                                       ∎ 
Glutamic acid concentration        ⧠ 
Polymorphic mass fraction          ∎ 
Crystal size distribution               ⧠ 

*   Due to the fact that feeding up would cause imperfect mixing, which was inconsistent with 

the assumption of perfect mixing in the model, this paper only considers data sets that 

employed feeding down.   

 *  ∎: Data available, ⧠ : Data unavailable. 
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Table 3.2: Estimated model parameters. 

Kinetics Parameter Mean Mode 95% Credible Interval 

α nucleation 

,  9.83 × 1010 9.99 × 1010 (7.20, 12.31) × 1010 

,  5.21 × 10−1 5.01 × 10−1 (3.78, 6.75) × 10−1 

,  1.04 × 101 1.04 × 101 (0.90, 1.22) × 101 

,  9.59 × 10−1 9.73 × 10−1 (7.78, 11.40) × 10−1 

,  6.99 × 107 6.74 × 107 (5.28, 9.03) × 107 

,  9.81 × 10−1 9.18 × 10−1 (7.37, 12.40) × 10−1 

,  4.93 × 10−1 4.96 × 10−1 (3.43, 6.25) × 10−1 

,  9.64 × 10−1 9.96 × 10−1 (6.90, 11.72) × 10−1 

α  growth 

,  9.68 × 10−7 9.84 × 10−7 (7.43, 11.58) × 10−7 

,  4.93 × 10−1 5.16 × 10−1 (3.46, 6.16) × 10−1 

,  8.27 × 10−1 8.88 × 10−1 (5.43, 10.18) × 10−1 

,  10.14 × 10−4 9.91 × 10−4 (7.32, 12.95) × 10−4 

β nucleation 

,  5.03 × 1014 4.86 × 1014 (3.80, 6.30) × 1014 

,  5.30 × 100 4.75 × 100 (4.05, 6.91) × 100 

,  3.09 × 101 3.10 × 101 (2.68, 3.63) × 101 

,  1.01 × 100 1.02 × 100 (0.81, 1.20) × 100 

,  7.39 × 107 7.15 × 107 (5.62, 9.53) × 107 

,  9.75 × 10−1 9.32 × 10−1 (7.61, 11.79) × 10−1 

,  7.63 × 107 7.46 × 107 (6.09, 9.90) × 107 

,  9.52 × 10−1 9.20 × 10−1 (7.29, 11.68) × 10−1 

,  9.81 × 10−1 9.71 × 10−1 (7.22, 12.25) × 10−1 

,  10.02 × 10−1 9.60 × 10−1 (7.16, 13.13) × 10−1 

β growth 

,  1.14 × 10−7 1.07 × 10−7 (0.93, 1.40) × 10−7 

,  2.69 × 100 2.58 × 100 (1.97, 3.53) × 100 

,  8.70 × 10−1 8.81 × 10−1 (6.67, 10.61) × 10−1 

,  2.71 × 10−4 2.77 × 10−4 (1.74, 3.49) × 10−4 

Power 
Number 

∗ 6.28 × 10−1 6.04 × 10−1 (5.11, 7.84) × 10−1 
# 5.68 × 10−1 5.84 × 10−1 (4.00, 6.89) × 10−1 

Raman 
Corrections  5.08 × 10−1 5.12 × 10−1 (3.63, 6.55) × 10−1 

Measurement 
noise 

 2.02 × 10−1 1.99 × 10−1 (1.61, 2.46) × 10−1 

 1.78 × 10−2 1.78 × 10−2 (1.39, 2.27) × 10−2 

 1.04 × 10−1 1.05 × 10−1 (0.84, 1.29) × 10−1 

 1.46 × 10−3 1.41 × 10−3 (1.11, 1.96) × 10−3 

* : six pitched blade turbine;  # : six flat blade disc turbine  
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Figure 3.3: The marginal distributions of parameters obtained for α-form nucleation 
kinetics. 
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Figure 3.4: Comparison between the model predictions and experimental 
measurements for the glutamic acid concentration in Experiment E3 (solid line: model 

predictions; circles: experimental data). 

 

 

Figure 3.5: Comparison between the model predictions and experimental 
measurements for the crystal size distribution (lines: model predictions; markers: 

experimental data;  solid line and circle: E1;  dash line and square: E2). 
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Figure 3.6: Comparisons between model predictions and experimental measurements 
for the α-form polymorphic mass fraction (solid lines: model predictions; circles: 

experimental data). 
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Figure 3.7: Comparisons between model predictions and experimental measurement 
for the solution pH (solid lines: model predictions; circles: experimental data). 
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Figure 3.8: Validation results for the α-form polymorphic mass fraction (solid lines: 
model predictions; circles: experimental data). 
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Figure 3.9: Validation results for the solution pH (solid lines: model predictions; 
circles: experimental data). 
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3.5 Conclusions 

A mathematical model is developed for the semi-batch pH-shift reactive 

crystallization of L-glutamic acid, taking into account the species balance of the 

glutamic-related ions, non-ideal solution properties, polymorphic crystallization 

kinetics, mixing effects, and population balances of the solute crystals. For the 

population balance model, a finite volume method is employed to reduce the PDEs 

into a set of ODEs that are then solved together with the nonlinear algebraic equations 

for the species balances. Experimental data from literature are used to estimate the 

model parameters using Bayesian inference. The agreement between the experimental 

data and the predicted outputs of the resulting mathematical model is sufficiently 

good to justify the use of the model in process control studies. 
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Chapter 4 

Statistical monitoring of the pH-shift 

Reactive Crystallization of L-glutamic Acid 

 

In this chapter, an integrated monitoring method based on moving window MPCA 

with batch-wise unfolding of process data array using crystallizer volume as an 

indicator variable is presented for the semi-batch pH-shift reactive crystallization 

process of L-glutamic acid under study in this thesis.  

4.1 Introduction 

For low-volume, high-value added products, such as fine chemicals, pharmaceuticals, 

and biomolecules, crystallization processes are commonly operated in batch or semi-

batch mode to achieve agile and flexible operation. With the recent development of in 

situ real-time measurements for crystallization processes (Alatalo et al., 2008; Qu et 

al., 2009), such as attenuated total reflection Fourier transform infrared spectroscopy 

(ATR-FTIR), focused beam reflectance measurement (FBRM), particle vision 

measurement (PVM), and Raman spectroscopy, more and more process data are now 

becoming readily available for developing multivariate process system engineering 

tools to efficiently monitor, diagnose, and control of crystallization processes, which 

are critically important for various reasons such as safety, consistency, and quality 

improvement. However, few investigations regarding the monitoring of crystallization 

processes are available in the literature, especially for the more complex reactive 

crystallization.  
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     Both cooling and antisolvent crystallization processes are normally monitored 

using the ATR-FTIR for solute concentration (Kee et al., 2009a) or augmented with 

the Raman spectroscopy for polymorphic crystallization (Hermanto et al., 2008; Qu et 

al., 2009) because they are often operated within the metastable zone with limited 

supersaturation level and are therefore thermodynamically controlled, meaning that as 

long as the solute concentration or supersaturation is well monitored and controlled 

around the prescribed level, the final product qualities could be guaranteed. This 

explains why the concentration control (C-control) as well documented to be robust 

for these crystallization processes (Zhou et al., 2006; Nagy et al., 2008a; Woo et al., 

2009; Kee et al., 2009a).          

     However, unlike batch cooling or antisolvent crystallization processes, the semi-

batch pH-shift reactive crystallization process (Borissova et al., 2005; Alatalo et al., 

2008; Qu et al., 2009) is often operated with relatively high supersaturation level and 

is kinetically controlled, and it even become more complicated in case of the 

competitive polymorphic crystallization, which is observed in the semi-batch pH-shift 

reactive crystallization of L-glutamic acid where metastable α-form and stable β-form 

nucleate and grow simultaneously and competitively. In this case, the solute 

concentration is a combined result of the polymorphic crystallization as well as the 

effects of reaction and dilution by sulfuric acid addition. Owing to the complexity and 

nonlinearity in process dynamics resulting from the high supersaturation level, 

multivariate monitoring technique is proposed for the pH-shift reactive crystallization 

process in this chapter.   

     Research approaches to batch process monitoring have seen the use of state 

estimation approaches (Jazwinski, 1970), knowledge-based approaches (Ramesh et 

al., 1989), and multivariate statistical approaches (Nomikos and MacGregor, 1995a). 

The first method takes advantage of a mechanistic model to describe the process and 

the monitoring procedure is based on the state estimation method. The second 

approach uses expert systems and artificial intelligence methods to process the data, 

hence it relies on the knowledge of the operators and engineers about the process. The 

last method is based on the philosophy of statistical process control (SPC), which has 



CHAPTER 4.  STATISTICAL MONITORING OF THE PH-SHIFT REACTIVE 
CRYSTALLIZATION OF L-GLUTAMIC ACID                             

 
 

53 
 

found its wide applications due to its simplicity and efficiency, among which the 

multiway principal component analysis (MPCA) and multiway partial least squares 

(MPLS) were introduced for batch process modeling and monitoring decades ago 

(Nomikos and MacGregor, 1994; 1995a; 1995b). Generally, a vast amount of 

historical database on the measurement profiles is needed with completed batch runs 

that produce on-spec products. Subsequent to data acquisition, multivariate statistical 

analysis methods can thus be used to empirically model the successful historical 

operation batches. The variation within this data serves as reference distribution, 

against which the performance of independent new batches can then be compared 

(Zhao et al., 2011). Applications and extensions of these methods have been reported 

extensively. For example, to address the uneven batch time problem, handling 

methods were reported, such as using rescaled batch time as a maturity index, 

tracking the batch progress with an indicator variable, or using local batch time as the 

response vector (Zhao et al., 2011). To deal with the multiple phases or transitional 

changes due to process nonlinearity and time-varying characteristics, ideas of building 

multiple MPCA models at different operation regions were also suggested (Zhao et 

al., 2007; 2011; Doan and Srinivasan, 2008; Golshan et al., 2010; Sun et al., 2011).  

     Motivated by the aforementioned discussion, an integrated monitoring method 

based on moving window MPCA model together with batch-wise unfolding of batch 

data array using crystallizer volume as an indicator variable is proposed in this work. 

4.2 Methodologies 

4.2.1 Principal component analysis 

Principal component analysis (PCA) is a well-known multivariate statistical method 

that decomposes a set of observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables using an orthogonal transformation. 

Subsequently, the dominant correlations are extracted and contained in these 

uncorrelated variables which are also termed as principal components. These principal 

components are guaranteed to be independent only if the data set is jointly normally 
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distributed. In this regard, original process data are usually preprocessed by mean-

centering and variance-scaling of each variable (Geladi and Kowalski, 1986).  

      PCA decomposes a data matrix X (I × J) consisting of J measurement variables 

for I observations into a series of np principal components,      

                                         
1

r np
T

r r
r





 X t p E                                                                      (4.1) 

where rp  is a loading vector of J × 1, rt  a score vector of I × 1, and E the residual. 

This factoring procedure of (4.1) can be done either by eigenvalue decomposition of 

the covariance matrix of / ( 1)T I Σ XX  (Cheng and Chiu, 2005; Fujiwara et al., 

2009) or by singular value decomposition (SVD) of the data matrix X. Usually, the 

principal components are ordered such that the first one describes the largest variation 

in the data X, the second one the second largest variation, etc.. Besides, each 

succeeding component is orthogonal to the proceeding components. Hence, only a 

few of them are needed to explain most of the significant variation in the 

observations. In such a way, PCA provides a simpler and more parsimonious 

description of the data covariance structure than the original data (Nomikos and 

MacGregor, 1994), which shows its applicability to efficiently monitor the 

multivariate continuous process where a large number of variable measurements can 

be lumped together and viewed in a reduced space, and variations in the process 

variance can be indicated by just few statistical indices. 

      For example, if the first np principal components are selected for process 

monitoring, the prediction of PCA model is calculated as follows when a new 

measurement data newx  (J  × 1) arrives (Geladi and Kowalski, 1986; Cheng and Chiu, 

2005; Golshan et al., 2010). 

                                             ˆ new npx P t                                                                    (4.2) 
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where 1 2, , ,np np   P p p p  , and T
np newPt x  is the score vector of np × 1 

corresponding to newx . The resulting residual is defined as: 

                                              ˆ T
new new np np new   e x x I P P x                                   (4.3) 

Then the two commonly used statistical variables of Hotelling's 2T  and sum of 

squares of the residuals Q can be calculated by t and e, respectively, to be compared 

against their respective control limits (Jackson and Mudholkar, 1979; Cheng and 

Chiu, 2005; Fujiwara et al., 2009). 

                                             2 1T
npT  t Λ t                                                                  (4.4)   

                                            TQ  e e                                                                          (4.5) 

where npΛ  is a diagonal matrix constructed by the first np eigenvalues of Σ . For a 

normally operated process, these two statistics will remain within their control limits. 

4.2.2 Multiway principal component analysis 

Complexities in batch process, such as finite duration, presence of significant 

nonlinearity, absence of steady-state operation, as well as the fact that the measured 

variables are autocorrelated in time and extremely highly correlated with one another 

at any given time, lead to the direct use of the PCA method impossible in batch 

process monitoring. To accommodate these difficulties in batch process, a 

multivariate statistical method of multiway principal component analysis (MPCA) is 

introduced by Nomikos and MacGregor (1994), summarizing both the variables and 

their time histories, which is then statistically and algorithmically consistent with 

PCA and has the same goals and benefits (Wold et al., 1987). 

     In batch process, large number of multivariate observations taken throughout the 

normal batch history are composed of a three-dimensional array X (I × J × K), where I 

is the number of batches, J is the number of variables, and K is the number of 

sampling intervals in a given batch. The objective of MPCA is to unfold this three-
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way array X into a two-dimensional matrix so that the ordinary PCA can be applied 

(Nomikos and MacGregor, 1994). For example, X can be rearranged into a two-

dimensional dataset X (I × JK) by the widely acknowledged batch-wise unfolding 

method (Camacho et al., 2009), viz., putting each of its slices (I × J) side by side 

along the time index K, which allows to analyze the variability among the batches in 

X with the information in the data with respect both to variables and their time 

variation are summarized. Besides, by subtracting the mean from each column in X, 

viz., mean-centering, MPCA removes the average trajectory from each of the 

variables and explains the variation of the variables about their average trajectories. 

Hence, the central idea of MPCA for batch process monitoring is to use the results of 

this analysis as the reference distribution to characterize the normal operation of the 

process and to evaluate the behavior of new batches by comparing against this 

reference distribution.  

      However, a problem arises during the on-line application of the MPCA as the new 

observation vector newx  (KJ × 1), representing the entire trajectories history, is not 

complete until the end of the batch. For example, if the process is at the kth time 

interval, newx  has only its first kJ rows complete, and it is missing all the future 

observations. Several approaches have been studied to overcome this deficiency 

(Golshan et al., 2010). The objective of all these approaches is to fill in the future 

values in the newx  vector in such a way that the predicted t scores at each time will be 

as close as possible to those that would be predicted, if one had the full newx  matrix. It 

was assumed by (Nomikos and MacGregor, 1994; 1995a) that the future deviations in 

newx  from the mean trajectory will remain constant at their current values for the 

duration of the batch or that the future observations are in perfect accordance with 

their mean trajectories as calculated from the reference database X (Nomikos and 

MacGregor, 1995b). Nelson et al. (1996) presented an analysis of several methods 

including the Single Component Projection (SCP) method, the Projection to the 

Model Plane (PMP) method, and the Conditional Mean Replacement (CMR) method. 

Arteaga and Ferrer (2002) also discussed the method of Trimmed Score Regression 
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(TSR). The PMP method projects the new vector of observations with missing data 

onto the plane defined by the model of principal components and the resulted missing 

part of the data vector would be consistent with the model (Golshan et al., 2010). 

Caution must be used at the beginning of a new batch in which this method may give 

quite large and unexplainable t scores because there is so little information to work 

with (Nomikos and MacGregor, 1995b). 

     For a new observation newx , the PMP divides it into two parts (Golshan et al., 

2010): 

                                        * #,T T T
new new new   x x x                                                           (4.6) 

where *
newx  corresponds to the past data and #

newx  to the missing future data. The 

loading matrix can also be divided into two parts in the same way as newx .                                 

                                          * #[ , ]T T TP P P                                                               (4.7) 

Thus, the MPCA model of the form of Eq. (4.1) can also be partitioned as:                        

                                          
* *

# #

new
new

new

   
    

  

x P t
x

x P t
                                                    (4.8) 

Then the known part of the data can be used for score estimation, as shown below. 

                                            1* * * *ˆ T T
np np np new


t P P P x                                                     (4.9) 

where only the first np principal components are considered in the MPCA model. 

Thus, in this way, the conventional monitoring scheme of PCA of Eqs. (4.2-4.4) can 

be followed for batch process monitoring. However, it is also noted that, instead of 

the Q statistic of Eq. (4.5) in PCA, it is more convenient in MPCA to use the squared 

prediction error (SPE) and its corresponding control limits only with the latest on-line 

measurements at time interval k (Nomikos and MacGregor, 1995a; 1995b): 
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2

1 1

kJ

k
c k J

SPE c
  

  e                                                   (4.10) 

4.2.3 Multiway partial least squares 

Batch-end product qualities are important controlling factors for its end-user 

performances, which are measured only upon the completion of the batch. Usually, a 

range of quality measurements are made on a sample of the product in a quality 

control laboratory. Though recent development in the process analytical technologies 

(PAT) has made the real-time measurement of product quality possible (Braatz, 2002; 

Yu et al., 2004; Nagy and Braatz, 2012), this does not change the fact that there is a 

time lag between the measurement and the batch-end product qualities. Hence, most 

batch or semi-batch processes are operated, in some sense, in an open loop manner 

with respect to the batch-end product quality variables (Nomikos and MacGregor, 

1995b), unless they are predicted and controlled on-line (Hermanto et al., 2009; 

2011). As a result, batch processes usually suffer a lack of reproducibility from batch 

to batch variations due to disturbances. And these variations may be difficult for an 

operator to discern, but could have an adverse effect on the final product quality. In 

light of this, the mulitway partial least squares (MPLS) was proposed by Nomikos and 

MacGregor (1995b) to take into account the final product qualities in batch process 

monitoring.  

     As aforementioned, the MPCA grounded on the statistical process control (SPC) 

schemes only makes use of process measurement trajectories taken during the batch, 

i.e., the unfolded data matrix X. While measurements on batch-end product quality 

variables, e.g., Y (I × M), where M is the number of quality variables, are only to help 

classify whether a batch is normal or not. However, in MPLS, both the process data 

(X) and product quality data (Y) can be used in an interactive fashion while the same 

multivariate SPC monitoring ideas that are developed using MPCA can be directly 

extended (Nomikos and MacGregor, 1995b). Analogous to MPCA, the relation 

between MPLS and PLS is that MPLS is equivalent to performing ordinary PLS on an 

unfolded two dimensional measurement data X and a product quality data Y.  
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     For example, MPLS decompose the X and Y matrices into a summation of np 

scores vectors ( rt ) and loading vectors ( rp ), plus some residual matrices E and F: 

                                      
1 1

,   
r np r np

T T
r r r r

r r

 

 

    X t p E Y t q F                               (4.11) 

This decomposition summarizes and compresses the data with respect to both x and y 

variables and time into low dimensional spaces that describe the operation of the 

process which is most closely related to final product quality (Nomikos and 

MacGregor, 1995b). Thus, MPLS not only extracts and monitors the information from 

the process measurement trajectories that is more relevant to the final quality 

variables compared to MPCA, as by Eqs. (4.2-4.4, and 4.10), but also provides on-line 

predictions of the final product qualities, as by the predictability of the PLS model of 

Eq. (4.11).     

     For the missing data problem in on-line monitoring, instead of Eq. (4.9), MPLS 

adopts the following equation for PMP method:   

                                                 1# # #ˆ T T
np np np new


t W P W x                                          (4.12) 

where W (KJ × np) is the weight matrix in PLS algorithm (Geladi and Kowalski, 

1986).  

4.3 Moving-window MPCA monitoring 

Batch processes with multiple phases or transitional changes due to process 

nonlinearity and time-varying characteristics are commonly encountered in industries 

(Camacho et al., 2006; 2009). Process dynamics and correlations among variables 

also tend to change with these transitions across the batch. Traditional SPC 

approaches, such as MPCA and MPLS, in which the PCA or PLS model is 

constructed from measurement trajectory data representing the whole batch process 

would not be accurate to capture the varying process dynamics and correlation 

structure. And this is getting worse during on-line application when there is a need for 
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missing data imputation. Therefore, the use of multi-phase models offers several 

advantages (Doan and Srinivasan, 2008; Golshan et al., 2010; Zhao et al., 2011; Sun 

et al., 2011). One approach is to build MPCA models applicable to every time point 

based on a moving window along the batch-wise unfolded dataset as depicted in 

Figure 4.1. In this technique, a moving window with a fixed-size of Ws is selected at 

each sampling time in a way that the data of the current time k is located at the front 

of the window, upon which a MPCA model is built based on  k sI JWX . 

 

Figure 4.1: Schematic of moving-window MPCA approach along the batch-wise 
unfolded dataset. 

     During implementation, when new observation  , 1k new JWsx  at sampling time k 

is available, two statistical indices T2 and Q can be calculated with corresponding 

MPCA model at time k, as shown below. 

                                      2 1T
k k np kT  t Λ t                                                                         (4.13) 

                                  
 

2

1

kJ

k
c k Ws J

Q c
  

  e                                                               (4.14)  

where kt is the corresponding score vector for the new observation ,k newx calucated 

based on the respective MPCA model. Additionally, since the current measurement is 

at the front of the moving window, there is no missing data in the ,k newx .   

Moving Window
J × kJ × (k - Ws) 

Current 
I 

J × K

Dataset X  
(Batch-Wise Unfolded) 

Dataset Xk
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    Statistical confidence limits for Hotelling's T2 are calculated using the F-

distribution for MPCA model at sampling time k as follows (Cheng and Chiu, 2005): 

                      
 2

, , 1,

1
k np I

np I
T F

I np 





                                                          (4.15) 

where α is the confidence limit, expressed as a fraction; , 1,np IF   is the F-distribution 

with degrees of freedom np and 1I   at significance level α. Similarly, confidence 

limits for the square prediction error Q at each sampling time can be calculated on the 

basis of the chi-squared distribution (Jackson and Mudholkar, 1979; Cheng and Chiu, 

2005): 
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1

T
k k

k I



X X

Σ                                                                               (4.19)  

where i  are the eigenvalues of the matrix kΣ  and are arranged in descending order, 

,kQ is the confidence limit at sampling time k at the α level and az  is the Normal 

variable at significance level α which has the same sign as h0.  

4.4 Case study 

4.4.1 Nominal process 

A first-principles mathematical model developed in Chapter 3 from the reported 

experiments was used to simulate the semi-batch pH-shift reactive crystallization of 

L-glutamic acid. The nominal operating procedure is summarized. The crystallizer is 

initially half-filled with 0.65 L monosodium glutamate (MSG, 1.0 mol/L), then the 
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sulfuric acid (SA, 1.0 mol/L) is continuously added to generate the glutamic acid and 

to induce the crystallization without seeding. The addition flowrate of SA is 

constrained between 0 and 16 mL/min with a maximum crystallizer volume of 0.97 L. 

The default batch time and sampling interval are 40 min and 1 min, respectively. A 

nominal flowrate profile for SA is selected for producing on-spec product in terms of 

polymorphic purity, mean crystal size, and product yield, which are randomly chosen 

from a Pareto front of a multi-objectives optimization (Su et al., 2012a). Details of the 

multi-objective optimization will be further discussed in Chapter 5.   

4.4.2 Off-line training 

Measurement trajectories of pH value, crystallizer volume, solute concentrations by 

ATR-FTIR, mean crystal size by FBRM or PVM, and polymorphic purity of 

metastable α polymorph by Raman spectroscopy, as well as two batch-end product 

qualities, are collected for off-line training database of X and Y, respectively. Two 

batch-end product quality variables are defined as below: 

                  2

, , , 1 0.8255 0.01* 0.2506 0.8088tf s tf y tfQuality P M P          (4.20) 

             0, 2,

1,

 2 1tf tf

tf

m m
Quality

m
                                                                          (4.21) 

where P  is the polymorphic purity of α-form; sM  is the volume based mean crystal 

size, m; and yP  is the product yield of crystals, the subscript tf means the batch end; 

im  is the ith moment of crystal size distribution. Quality 2 is the coefficient of 

variation of the crystal size distribution. Fifty normal batches were generated to 

construct the database, wherein nominal addition profile of sulfuric acid was 

implemented with a Normal noise of N (0, 1.0) at each time interval and varying 

initial concentrations of monosodium glutamate and sulfuric acid with noise of N (0, 

0.02) for each batch to serve as the common operational disturbances in batch 

process. Additional database of 10 bathes was also generated for the validation 

purpose. Variations of the batch-end product qualities in the reference and validation 

database can be found in Figure 4.2. 
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     Very often the assumption that all batches have equal batch time does not hold in 

crystallization process, for example, the sluggish crystal growth rate may result in 

longer batch time to finish the batch (Zhou et al., 2006; Nagy et al., 2008a). To 

efficiently monitor the progress of crystallization as well as the control actions when 

abnormal batches occur (Su et al., 2012a; 2012c), for the studied semi-batch 

crystallization process, the crystallizer volume in place of batch time was employed as 

an indicator variable which progresses monotonically in time and has the same 

starting and ending value for each batch, i.e., from 0.65 to 0.97 L. Accordingly, data 

resampling and interpolation were also employed to calculate the corresponding 

measurements at regular intervals of the crystallizer volume (Zhao et al., 2011). 

Besides, data preprocessing of mean centering and variance scaling was also 

employed to the data matrices of X and Y.  

     The combined effects of reaction, dilution and kinetically controlled crystallization 

of the studied process result in the highly nonlinear behavior of system dynamics and 

the time-varying characteristics, as well as the transitional changes of correlation 

among measured variables, as shown in Figure 4.3 for the measurement data X. There 

are no distinct phases but transitional changes from upper left to the lower right. 

Hence, monitoring scheme based on the proposed moving window MPCA together 

with batch-wise unfolding of batch data arrays using crystallizer volume as an 

indicator variable was considered for the case study, and was compared with the 

conventional MPCA and MPLS methods using the same reference database. 

      First, proper training of the reference database for MPCA, MPLS and moving-

window MPCA was made individually to best explain the variations in the database 

by choosing the number of principal components used, which was 3 for both MPCA 

and MPLS, and 1 for moving-window MPCA. The fewer principal components for 

moving-window MPCA is because of the smaller dataset kX within the moving 

window. The size of the moving window was also fine-tuned to be 4 for the proposed 

method. And note that at the start of the batch, the size of the moving window is 

increased from 1 until it reaches the desired window size.  
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      Figure 4.4 shows the monitoring result of 10 normal batches in the validation 

database for MPCA, MPLS and moving-window MPCA. It is observed that the SPE 

statistics of MPCA and MPLS, though few overshoots of the control limits are found, 

can be well constrained within their control limits of 99%; while the Q statistic of 

moving-window MPCA is much better that most of the data are within the limit of 

95%. Additionally, the Q statistic and its control limits are also much smoother than 

that of SPE. Owing to the missing data imputation in MPCA and MPLS, the T2 

statistics suffer large errors at the beginning of the batch since there is no enough 

information to infer the score vectors. Whereas, this is not the case in the moving-

window MPCA as no missing data problem is arisen and the T2 statistics are always 

within the control limit of 99%.     

      The predicted measurements by MPLS are also provided in Figure 4.2, in that it is 

observed that MPLS can make good predictions of the batch-end product qualities. 

4.4.3 On-line application 

For on-line application purpose, monitoring statistics are conveniently plotted against 

the batch time instead of the regular crystallizer volume intervals. This favors the 

monitoring when the total batch time is extended due to process uncertainties. Three 

case studies are considered in this work to compare the on-line monitoring 

performances of MPCA, MPLS and moving-window MPCA.     

    The first case study situated the batch process subject to the initial concentration 

disturbance of sulfuric acid, which was increased from the nominal 1.00 to 1.10 

mol/L. Figure 4.5 shows the resulted monitoring performances by MPCA, MPLS and 

moving-window MPCA. All the monitoring methods were able to detect the 

abnormality at about 5 minutes after the start of the batch first by SPE or Q statistics. 

Then the T2 statistics continued the violation of the control limits throughout the rest 

of the batch. However, it should be pointed out that the initial violations of the T2 

statistics of MPCA and MPLS observed in Figure 4.5 may be either due to the 

missing data imputation or the abnormal initial operating conditions. Therefore, there 
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may be difficult to tell whether a violation is a false alarm at the beginning of the 

batch for MPCA and MPLS.  

    The second case study considered an abnormal scenario in the crystallization 

kinetics where the α-form crystal growth rate was decreased by 20% while the 

nominal optimal addition flowrate profile was followed. The monitoring 

performances of MPCA, MPLS and moving-window MPCA are given in Figure 4.6. 

The detection of the abnormality was made at about 20 minutes after the start of the 

batch by both two statistics in any of the three monitoring methods, demonstrating the 

capability of the multiway schemes in the batch process monitoring (Nomikos and 

MacGregor, 1994; 1995b). 

     The third case study was to implement the polymorphic purity control, which will 

be discussed in Chapter 5,  to handle the growth rate uncertainty considered in the 

second case study. The control scheme was found to be able to bring the batch process 

back to the normal by tracking the predefined nominal optimal trajectories and 

accordingly slowing down the sulfuric acid addition and extending the batch time. 

The monitoring results are shown in Figure 4.7, where the moving-window MPCA 

correctly reflects the efficiency of the control scheme, whereas the MPCA and MPLS 

are less promising with several false alarms at the later phase of the batch time in the 

Q statistic. Advantage of the moving-window MPCA to correctly reflect the control 

actions is largely due to the fact that it concentrates only on individual phase of the 

batch operation, meaning that control actions against the kinetic uncertainties in 

previous phases are not accumulated to the later phase, which segments and alleviates 

the overall violation of the corrected batch operation against the reference 

distribution. To some extent, this is necessary and reasonable as it is obvious from the 

perspective of process dynamics that the current system dynamics are mostly affected 

by previous system states that are within a limited time range (Camacho et al., 2009). 

While the MPCA and MPLS focus on the measurement trajectories taken throughout 

the whole batch considering the equal contributions of the operation from each time 

point.  
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Figure 4.2: Predictions of the batch-end product qualities by MPLS (□: process data; 
○: predicted data; the first 50 batches are in the training database, the last 10 batches 

are unseen data). 
 

 

Figure 4.3: Correlation of measured variables after batch-wise unfolding and data 
preprocessing. 
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Figure 4.4: Monitoring with MPCA (top), MPLS (middle) and moving-window 
MPCA (bottom) for 10 unseen normal process.  
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Figure 4.5: Monitoring with MPCA (top), MPLS (middle) and moving-window 
MPCA (bottom) for Case 1: initial concentration disturbance.  
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Figure 4.6: Monitoring with MPCA (top), MPLS (middle) and moving-window 
MPCA (bottom) for Case 2: kinetic uncertainty without control. 
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Figure 4.7: Monitoring with MPCA (top), MPLS (middle) and moving-window 
MPCA (bottom) for Case 3 : kinetic uncertainty with control. 
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4.5 Conclusions 

By constructing the MPCA models at each operating time point, the moving-window 

MPCA is able to handle the process nonlinearity and time-varying characteristics in 

the batch processes. Advantages of the proposed method compared to the 

conventional MPCA and MPLS were demonstrated in the application to a semi-batch 

pH-shift reactive crystallization of L-glutamic acid, where the moving-window 

MPCA can not only efficiently detect the abnormal batch, but also reflect the 

contributions of the control actions to revert the process to in-control state. This is 

significant in batch process operation and monitoring to reduce the false alarms. 
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Chapter 5 

Direct Design & Control of the pH-shift 

Reactive Crystallization of L-glutamic Acid 

 

The direct design and control strategy is well documented to be robust against the 

crystallization kinetic uncertainties in cooling and antisolvent crystallization 

processes. This chapter investigates the feasibility to extend this control strategy to 

the semi-batch pH-shift reactive crystallization process of L-glutamic acid studied in 

this thesis as well as to develop new control strategies for this process. 

5.1 Introduction 

The prevalence and high value added of batch and semi-batch crystallization 

processes in pharmaceutical, fine chemical, and food industries have motivated the 

development of many control strategies (Rawlings et al., 1993; Braatz, 2002; Fevotte, 

2002; Yu et al., 2004; Fujiwara et al., 2005). The direct design and control strategy 

which avoids the development of first-principles model has been received many 

applications in research and in industry for cooling and antisolvent crystallization 

(Ward et al., 2011; Tabora, 2012). 

     The solute concentration is a critical state variable for controlling crystallization 

processes, as the crystallization kinetics are usually written in terms of the 

supersaturation, which is the difference between the solute concentration and a 

saturated concentration. To this end, a direct design and control strategy for batch and 

semi-batch crystallizations that has become popular in recent years is to determine an 

optimal solute concentration or supersaturation trajectory against other manipulated 
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system state throughout the run, and then design a feedback control system to 

maintain the optimal relationship between the states (Zhou et al., 2006; Nagy et al., 

2008a). Similar studies can also be found in tracking of necessary conditions of 

optimality (Srinivasan et al., 2008). Detailed uncertainty and disturbance analysis 

carried out both experimentally and in simulations have shown that the approach 

ensures the consistent production of large crystals by maintaining the supersaturation 

level within the metastable zone and suppressing excessive nucleation and the 

formation of undesired polymorphs (Kee et al., 2009a; 2009b; Yu et al., 2011). This 

so-called concentration control (C-control) approach, in which the trajectories of 

concentration vs. temperature or concentration vs. antisolvent mass fraction are 

tracked throughout the batch, has been implemented in many cooling and antisolvent 

crystallizations (Zhou et al., 2006; Nagy et al., 2008a; Kee et al., 2009a; 2009b; Cote 

et al., 2009; Yu et al., 2011; Tabora, 2012).  

    However, application of C-control to the more challenging semi-batch pH-shift 

reactive crystallization processes that are also common in industrial practice receives 

little attention. This motivates this work to investigate whether conventional C-control 

strategy can be successfully applied to a semi-batch pH-shift reactive crystallization 

using L-glutamic acid as a model compound. However, since our analysis shows that 

the straightforward extension of C-control is not feasible due to highly nonlinearity of 

the corresponding desired concentration trajectory, which has a dome-shaped profile 

resulting from the combined effects of reaction, crystallization, and dilution, an 

enhanced C-control strategy by incorporating the Just-in-Time Learning (JITL) 

method (Cheng and Chiu, 2004; Su et al., 2012a; 2012b), which has good predictive 

performance to provide useful information for C-control design to track the dome-

shaped concentration trajectory closely for improved control performance, is 

developed in this study.  

     On the other hand, unlike the cooling and antisolvent crystallizations that are 

thermodynamically controlled with a limited supersaturation level, for a kinetically 

controlled and polymorphic crystallization process with relatively high 

supersaturation, the polymorphic purity is an important system state indicating the 
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competitive mechanism of polymorphic crystallization, which can be measured on-

line by Raman spectroscopy (Alatalo et al., 2008; Qu et al., 2009).  Thus, other than 

controlling the solute concentration, direct design and control based on the 

polymorphic purity, i.e., polymorphic purity control, is also suggested for the studied 

reactive crystallization process with an aim to directly control the product property of 

interest.   

     This chapter is organized as follows. The next section reviews the conventional C-

control strategy applied to batch cooling crystallization. Section 5.3 gives detailed 

account of the proposed JITL-based C-control strategy. The direct design and control 

strategy based on polymorphic purity is introduced in Section 5.4, followed by the 

simulation studies comparing the proposed methods with the optimal flowrate control 

in Section 5.5. Finally, concluding remarks are made. 

5.2 Conventional C-control strategy 

Two methods for implementing conventional C-control have been employed for batch 

cooling crystallization with main difference in the choice of set point for a lower-level 

PID control loop, i.e., concentration set point (Nagy et al., 2008a) or temperature set 

point (Zhou et al., 2006), as outlined in Figure 5.1. It was argued that the controller 

tuning is much more difficult for the former, particularly for complicated 

crystallization systems (Alatalo et al., 2010b), so this study considers only the latter 

approach. 

      For illustration purpose, the implementation of conventional C-control for batch 

cooling crystallization (Zhou et al., 2006) is schematically shown in Figure 5.2, where 

the solid curve represents the desired concentration vs. temperature trajectory. 

     Suppose the process is operated at point A with current solute concentration C(k) 

and temperature T(k), C-control determines new set point Tset(k) for the temperature 

controller by drawing a horizontal line from point A to intersect the target trajectory at 

point B as shown in Figure 5.2, from which Tset(k) is specified to be the abscissa of 

point B. The physical significance of horizontal line aforementioned is that C-control 
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assumes negligible crystallization effect on the solute concentration when the solution 

is cooled down from the current temperature T(k) to new set point Tset(k). In practice, 

although the lower-level PID temperature controller can track new set points by the 

next sampling instant, i.e., T(k+1) = Tset(k), the process cannot reach to point B as 

solute concentration at the next sample, C(k+1), should be smaller than C(k) due to 

crystallization effect, which is shown by the vertical line connecting point B to point 

E in Figure 5.2. Hence, by repeating the procedure of A→B→E, the desired trajectory 

can be tracked fairly closely by implementing C-control provided that the deviation 

between B and E is small, which is the case when the crystallization kinetics are slow 

within one sampling instant. This control strategy can be similarly applied to 

antisolvent crystallization by replacing the concentration vs. temperature trajectory by 

the concentration vs. antisolvent mass fraction trajectory (Zhou et al., 2006) and 

taking into account the dilution effect (Woo et al., 2009). 

 

Figure 5.1: Implementation of conventional C-control using a concentration (top) or 
temperature (bottom) feedback controller. 
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Figure 5.2: Conventional C-control for a batch cooling crystallization. 

      Although conventional C-control has received successful applications for both 

batch/semi-batch cooling and antisolvent crystallizations, it cannot be applied to 

control a more complicated semi-batch pH-shift reactive crystallization whose desired 

concentration vs. volume trajectory to be tracked by the C-control is dome-shaped 

(see Figure 5.3) resulting from the combined effects of reaction, crystallization, and 

dilution (Borissova et al., 2005; Alatalo et al., 2008; Qu et al., 2009). Consequently, 

the implementation of conventional C-control is not feasible because when the 

process is operated at the left-hand side of the dome-shape trajectory, for example 

point A in Figure 5.3(a) with current solute concentration C(k) and corresponding 

solution volume V(k), the implementation of conventional C-control is to draw a 

horizontal line from point A to intersect with the dome-shape curve at point B and the 

set point Vset(k) is specified to be the corresponding abscissa of point B. However, as 

can be seen from Figure 5.3(a), Vset(k) is smaller than V(k), which is not possible to be 

implemented as solution volume increases monotonically since the start-up of process 

operation. On the other end, when the process operation lies at the right-hand side of 

the trajectory, for example at the point E, corresponding to current solute 

concentration C(m) and solution volume V(m), it is possible to implement the 

conventional C-control in a similar fashion as what is practiced for cooling and 

antisolvent crystallization. 
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Figure 5.3: Applications of (a) conventional C-control and (b) proposed C-control for 
a semi-batch pH-shift reactive crystallization. 

     Therefore, to cope with challenging process characteristics inherent in semi-batch 

pH-shift reactive crystallization that impede the implementation of conventional C-

control strategy, a variant of conventional C-control is developed in the next section 

to achieve improved performance.  

5.3 JITL-based C-control strategy 

Before we discuss the proposed C-control strategy, it is worthwhile pointing out that 

the conventional C-control strategy is in fact a model-based controller design method, 

which motivates the development of proposed C-control strategy. Suppose the desired 
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concentration vs. temperature trajectory for cooling crystallization in Figure 5.2 is 

given by  

                                               ( ) ( )C k f T k                                                   (5.1) 

where f denotes the nonlinear function describing the desired trajectory between 

process output C and process input T. Furthermore, given the nonlinear function g 

representing input and output relationship for cooling crystallization system, the 

following equation holds.  

                                      
 

   
1

1
T k

T k
C k C k g T dT


                                         (5.2) 

    The implementation of C-control is to solve the following optimization problem 

subject to constraints, if any, to track the desired trajectory of Eq.(5.1).                 

                         arg min 1 1setT k f T k C k       

                                   
 

   
1

arg min 1
T k

T k
f T k C k g T dT


        

                                   
 

   arg min
setT kset

T k
f T k C k g T dT                       (5.3) 

where a lower level PID temperature controller is assumed to reach new set point 

within one sampling instant, i.e., T(k+1) = Tset(k).  

      As discussed previously, conventional C-control strategy illustrated in Figure 5.2 

neglects the crystallization effect when temperature decreases from T(k) to Tset(k), 

meaning that ( ) 0g T  or equivalently,    1C k C k   based on Eq. (5.2). 

Therefore, the optimal solution for Eq. (5.3) can be obtained by solving Eqs. (5.1) and 

(5.2) simultaneously, which is equivalent to the conditions inferred by the intersect B 

in Figure 5.2. In the case of semi-batch antisolvent crystallization, the C-control 

problem can be analogously formulated by replacing temperature T  in Eqs. (5.1) to 

(5.3) by W which is the mass fraction of antisolvent. Therein, the corresponding 
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( )g W only considers the dilution of solute concentration resulting from the addition of 

antisolvent (Woo et al., 2009). 

    Motivated by the on-going analysis, by replacing the temperature T in Eqs. (5.1) to 

(5.3) by volume V, a model-based C-control approach by incorporating a process 

model capable of predicting the solute concentration in complicated pH-shift reactive 

crystallization is developed in the ensuing discussion. Suppose the process is operated 

at point A in Figure 5.3(b) with current volume V(k) and solute concentration C(k), 

the proposed C-control determines new set point Vset(k) for the volume controller by 

predicting the dotted line A→D to intersect the desired trajectory at point D and the 

set point Vset(k) is specified to be the corresponding abscissa of point D, i.e., Vset(k) = 

V(k+1). Therefore one key step to determine the intersect is to predict future 

concentration at point D, C(k+1), by the process model using current and past process 

data V(k) and C(k) as well as a pre-specified Vset(k). The intersect D is then obtained 

when the point [V(k+1), C(k+1)] discussed above is located at desired trajectory.  

     In this paper, a data-based Just-in-Time Learning (JITL) modelling method (Cheng 

and Chiu, 2004; Fujiwara et al., 2009; Ge and Song, 2010; Su et al., 2012b) is 

incorporated for the proposed C-control strategy. There are three main steps in the 

JITL methods to predict future process output corresponding to a query data: (a) 

relevant data samples in the reference database are searched to match the query data 

by some nearest neighbourhood criterion; (b) a local model is built based on the 

relevant data; (c) model output is calculated based on the chosen local model and the 

query data. The local model is then discarded right after the prediction is obtained. 

When the next query data comes, a new local model will be built according to the 

above procedure. In the proposed C-control design, future solute concentration 

C(k+1) is predicted by the JITL method using the following ARX model:  

                                      
21 11 1k k kC k C k V k V k                                   (5.4)      

     The implementation of proposed JITL-based C-control is summarized as 

following: 
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     (1)  At sampling instant k, both C(k) and V(k) are measured; 

     (2)  For a chosen value of Vset(k), which by assumption is the solution volume at 

the k + 1 sampling instant, i.e., V(k+1) = Vset(k);  

     (3)  The predicted concentration at the k + 1 sampling instant, C(k+1), is obtained 

by the JITL method using query data q = [C(k), V(k), V(k+1)]; while the solute 

concentration (k+1) in the target trajectory corresponding to V(k+1) is readily 

obtained, for example, by interpolation; 

      (4)  By comparing C(k+1) and (k+1), the bisection method is used to update  

Vset(k) subject to constraints due to the minimum and maximum flowrates;  

      (5)  Repeat Steps 2 to 4 until Vset(k) converges and this corresponding Vset(k) is set 

as the set point for the lower-level PID controller. 

5.4 Polymorphic purity control strategy 

It is worthwhile pointing out that the simplicity and robustness of the conventional C-

control strategy in batch cooling crystallization mainly rely on the monotonic 

decreasing relationship between solute concentration and temperature. Thus, a simple 

intersection in the desired trajectory, as shown in Figure 5.2, is possible to find a 

feasible temperature setpoint. Similar observation is also found for batch antisolvent 

crystallization. Although solute concentration is used in the proposed JITL-based C-

control strategy for a challenging semi-batch reactive crystallization, however, with 

the recent development of in situ real-time measurements for crystallization processes 

that may also show monotonic decreasing or increasing and are more product quality 

related, alternative system state variable can also be considered in the direct design 

and control. For example, the polymorphic purity by Raman spectroscopy (Alatalo et 

al., 2008; Qu et al., 2009), which is an important system state, particularly, for the 

polymorphic crystallization encountered in the studied process, showing a monotonic 

increasing throughout the batch. Besides, batch time is also an important system state 

that behaves monotonic increasing throughout the batch. If the batch time is plotted 
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against the desired optimal crystallizer volume trajectory as shown in Figure 5.4, then 

tracking this time vs. crystallizer volume trajectory, actually, is the optimal flowrate 

control, wherein the nominal optimal flowrate profile is followed.  

 

Figure 5.4: Batch time and local batch time. 

      Therefore, by combining the batch time and one of those monotonically increasing 

product property variables would also lead to a desired optimal trajectory that can be 

tracked on line by simple intersection. For example, the local batch time, lT , defined 

in such a way that the batch time is scaled by those interested product property 

variables, M,  shown as follows.                   

                                        
w

l
max

M
T t

M

 
   

 
                                                    (5.5) 

where t is the batch time, Mmax is the nominal maximum value of this variable at the 

batch end, w is a tuning parameter balancing priorities between batch time and state 

tracking. Therefore, the local bath time is devised to reflect the progress of the 

interested state variable inside the crystallizer and take control actions accordingly. 

Similar to Eqs. (5.1) to (5.3), the implementation of local batch time tracking can be 

represented as follows                                  
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                                      ( )lT f V                                                                             (5.6)                    

                             
1 ( 1)

w

l
max

M k
T k t k

M

 
     

 
                                            (5.7) 

                               arg min 1set set
lV k f V k T k                               (5.8) 

where the process model (5.7) neglects the crystallization effect by assuming

   1M k M k  . As the crystal property M is only directly affected by 

crystallization effect, the volume set point for next sampling time, Vset(k), is obtained 

by solving Eqs. (5.6) and (5.7) simultaneously as schematically shown in Fig. 5.4. In 

the next section, the α-form polymorphic purity is incorporated to characterize the 

local batch time which is referred as the polymorphic purity control in this thesis. 

5.5 Results and discussion 

5.5.1 Nominal optimal trajectories 

The first-principles mathematical model developed in Chapter 3 from the published 

data (Alatalo et al., 2008; Qu et al., 2009) was used to simulate the semi-batch pH-

shift reactive crystallization of L-glutamic acid. The nominal experimental procedure 

can be found in Chapter 4. For ease of reference, this procedure is also briefly 

summarized here. The 0.97 L crystallizer is initially filled with 0.65 L of monosodium 

glutamate (MSG) of 1.0 mol/L and the default batch time is 40 min. The manipulated 

variable is the addition flowrate of sulfuric acid (SA) of 1.0 mol/L, which is 

constrained between 0 and 16 ml/min while adjusted every minute to achieve the 

maximum polymorphic purity of α-form, volume-based mean crystal size, and 

product yield of the final crystalline product at the batch end. The Pareto-optimality 

front for this multi-objective optimization is shown in Figure 5.5, which is solved 

using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002). 

The chosen optimal operating point is denoted by the star symbol in Figure 5.5 and 

the corresponding optimal state trajectories are shown in Figures 5.6 and 5.7. 
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5.5.2 Training database for JITL modeling  

To proceed to the proposed JITL-based C-control strategy, reference database for the 

JITL method is generated using process data of fifty batches obtained by perturbing 

the nominal optimal flowrate profile corresponding to the volume profile given in 

Figure 5.6(a) with a normal distribution of N(0, 1.0) at each sampling instant and 

varying initial concentrations of monosodium glutamate and sulfuric acid with N(0, 

0.02) for each batch. This database is the same as that used for process monitoring 

discussed in Chapter 4. The resulting concentration data used to construct reference 

database are shown in Figure 5.8. To evaluate prediction accuracy of the JITL method 

with local model given in Eq. (5.4), ten additional batches of process data are used for 

the validation test. As can be seen from Figure 5.9, JITL method gives accurate 

prediction of solute concentration. 

5.5.3 Case studies of process uncertainties 

To evaluate the performances of the proposed JITL-based C-control and polymorphic 

purity control, uncertainties in the kinetics of crystal growth and nucleation of the 

polymorphic crystallization system, i.e., α- and β-form polymorphs of L-glutamic 

acid, as well as the disturbances in feeding concentrations are considered. For the 

purpose of comparison, optimal flowrate control obtained by the multi-objective 

optimization is used as the benchmark design.  

    The first case study considers a 20% reduction of the growth rate of α-form crystal. 

Figure 5.10 shows that the JITL-based C-control gives the best tracking of the 

nominal optimal concentration vs. volume trajectory, which is denoted by the optimal 

trajectory in Figure 5.10, compared with the other two control strategies. This 

demonstrates the capability of the proposed C-control to handle nonlinearity in the 

nominal optimal trajectory. However, the improvement of three important 

performance indices for crystallization, i.e., polymorphic purity, mean crystal size and 

product yield, attained by the proposed C-control is modest as shown by Table 5.1 

and Figure 5.11, where the evolution of three performance indices is shown. This 
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finding is in sharp contrast to batch cooling or antisolvent crystallization processes, 

where conventional C-control strategy has produced robust performance by only 

tracking the nominal optimal concentration trajectory. The degraded performance of 

C-control in this particular pH-shift reactive crystallization process is because the 

glutamic acid concentration is affected by competing polymorphic crystallizations and 

the relative rates of these competing processes cannot be observed by measuring only 

the glutamic acid concentration. For example, the stable β-form polymorph can 

consume the solute at the expense of the α-form that is less active than normal for a 

20% decrease in crystal growth rate. In contrast, applications of conventional C-

control to the cooling and antisolvent crystallization processes are operated under 

condition that either the formation of alternative polymorphic forms is suppressed or 

only one polymorph can grow and other polymorphs dissolve (Hermanto, 2008; Kee 

et al., 2009a; 2009b).  

      On the other hand, the direct design and control by polymorphic purity gives quite 

promising result as shown in Figure 5.11 and Table 5.1, with the three performance 

indices trajectory closest to the optimal trajectory, as well as their batch-end values 

approach the nominal optimal. This is because the polymorphic purity more directly 

reflects the progress of a polymorphic crystallization than the concentration. The 

tracking of the nominal optimal local batch time trajectory, with a weight of w = 1, 

based on polymorphic purity is shown in Figure 5.12. Actually, the control actions 

started only after the polymorphic purity measurements by Raman spectroscopy were 

steadily available at the batch time of 12 minute, before that the nominal optimal 

flowrate profile is followed. The corresponding control actions or flowrate profiles of 

the three controllers are given in Figure 5.13, wherein the extended total batch time 

are observed for JITL-based C-control and polymorphic purity control. 

    Next, performance of the three controller designs is compared when 20% reduction 

of nucleation rate of the α-form crystal is considered. In this case, the JITL-based C-

control also gives best tracking of the nominal optimal concentration vs. volume 

trajectory (Su et al., 2012a), but with only slight improvement over the flowrate 

control in the three performance indices as indicated by Table 5.1 and Figure 5.14. It 
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is noted that the polymorphic purity control gives higher polymorphic purity and 

larger crystals than those obtained by the optimal flowrate control (see Table 5.1 and 

Figure 5.14).  

    Lastly, process disturbances in the initial concentration of MSG and the feed 

concentration of SA are taken into account. It is assumed that the former is decreased 

to 0.95 mol/L and the latter increased to 1.05 mol/L so that higher supersaturation is 

generated at the initial phase of the batch but less durable at the later phase of the 

batch (see Figure 5.15). High supersaturation favors growth of the α-form polymorph, 

which increases the crystal product yield, as seen in Table 5.1. Also observed is that 

polymorphic purity control gives the best control performance, though the C-control 

achieves the best tracking of the optimal concentration trajectory in Figure 5.15. 

  

Table 5.1: Summary of the three case studies. 

Case study Controller 
Batch time, 

min 
Polymorphic 

purity 
Mean crystal 

size, m 
Product 

yield 

Nominal case Flowrate control 40 0.826 250.615 0.809 

-20% of 
growth rate for 

the α-form 
crystals 

Flowrate control 40 0.707 210.839 0.804 

JITL-based C-
control 

44 0.736 219.721 0.816 

Polymorphic purity 
control 

42 0.793 241.432 0.806 

-20% of 
nucleation rate 
for the α-form 

crystals 

Flowrate control 40 0.793 247.389 0.808 

JITL-based C-
control 

41 0.799 249.311 0.815 

Polymorphic purity 
control 

40 0.832 265.166 0.810 

Excess SA  
(MSG = 0.95 
mol/L, SA = 
1.05 mol/L) 

Flowrate control 40 0.798 241.818 0.820 

JITL-based C-
control 

40 0.797 243.240 0.818 

Polymorphic purity 
control 

41 0.806 245.251 0.821 
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Figure 5.5: Pareto-optimality front obtained for optimal control of a semi-batch pH-
shift reactive crystallization. 

 

 

Figure 5.6: Optimal profiles for (a) solution volume, (b) solute concentration, and (c) 
concentration vs. volume trajectory. 
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Figure 5.7: Optimal trajectory for the three performance indices. 
 

 

Figure 5.8: Solute concentration data generated to construct reference database for the 
JITL method. 
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Figure 5.9: Validation result for the JITL method (root mean squared error = 0.0012). 
 

 

Figure 5.10: Concentration vs. volume trajectories obtained for 20% reduction of 
growth rate for the α-form crystal. 
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Figure 5.11: Profiles of the three performance indices obtained for 20% reduction of 
growth rate for the α-form crystal. 

 

 

Figure 5.12: Local batch time tracking by polymorphic purity control for 20% 
reduction of growth rate for the α-form crystal. 
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Figure 5.13: Flowrate profiles obtained for 20% reduction of growth rate for the α-
form crystal. 

 

 

Figure 5.14: Profiles of the three performance indices obtained for 20% reduction of 
nucleation rate for the α-form crystal. 
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Figure 5.15: Concentration vs. volume trajectories obtained for step disturbances in 
initial MSG and SA feed concentration. 

 

5.6 Conclusions 

This chapter extends the idea of C-control strategy to the studied semi-batch pH-shift 

reactive crystallization process by incorporating a process model to better cope with 

the highly nonlinear dynamics inherent in the process. Another direct design and 

control strategy based on polymorphic purity is also proposed by the definition of 

local batch time. Although the JITL-based C-control is more robust in tracking the 

nominal optimal concentration trajectory, the performance improvement gained is 

either modest or marginal. This may imply that the solute concentration measurement 

cannot fully reflect the complexity of competitive polymorphic crystallization. 

Whereas the polymorphic purity control achieves much better performance, as it is 

closely related to the progress of polymorphic crystallization and is more direct to the 

product quality than the concentration. 
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Chapter 6 

Nonlinear MPC Control of the pH-shift 

Reactive Crystallization of L-glutamic Acid 

 

The development of nonlinear model predictive control (NMPC) techniques has been 

received intensive interests in past decades. However, NMPC techniques that are 

specifically designed for batch process are rather limited (Morari and Lee, 1999; Qin 

and Badgwell, 2003; Bonvin et al., 2006). This chapter focuses on the development of 

an improved extended prediction self-adaptive control (EPSAC) technique and its 

application to control a semi-batch pH-shift reactive crystallization process.    

6.1 Introduction 

With the stringent specification on product quality, tighter environmental regulation 

of effluent stream, and higher competition in the process industry, the development of 

nonlinear model predictive control (NMPC) is of interest to both the academic and 

industrial sectors. The major advantage of NMPC lies in its capability of handling 

nonlinearities and time-varying characteristics inherent in the process dynamics in 

addition to address constraints and bounds imposed on both state and manipulated 

variables by performing the real-time dynamic optimization (Manenti, 2011; Darby 

and Nikolaou, 2012). Toward this end, various NMPC design methods were 

developed using different techniques to deal with process nonlinearity, including 

successive linearization (Lee and Ricker, 1994), neural networks (Peng et al., 2007), 

robust control (Nagy and Braatz, 2003; Nagy and Allgöwer, 2007), multiple models 

(Özkan et al., 2000; Cervantes et al., 2003; Garcia-Nieto et al., 2008; Kuure-Kinsey and 

Bequette, 2010), and hybrid models (Hermanto et al., 2011).  
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    Among various NMPC design methods reported in the literature, the extended 

prediction self-adaptive control (EPSAC) or its variants adopted a unique approach of 

successive linearization based on the given input trajectory (De Keyser and 

Cauwenberghe, 1985). In the EPSAC design framework, the model prediction 

consists of a base and an optimized term. The former is computed from a nominal 

process model using the current values of input variables obtained from the 

predefined base input trajectory and the corresponding output variables, while the 

latter from a finite step or impulse response model obtained along this trajectory. 

Gálvez-Carrillo et al. (2009) extended the EPSAC algorithm by integration with a 

dead-time compensator and reported its application to a solar power plant. Hermanto 

et al. (2009) employed the EPSAC to a polymorphic batch crystallization system with 

constraints imposed on state variables, better performance was achieved compared to 

that obtained by quadratic dynamic matrix control (QDMC) based on a set of models 

obtained by successive linearization at different sampling instants (Garcia and 

Morshedi, 1986).  

     However, one potential drawback of the previous EPSAC methods is the 

incorporation of a convolution model in the formulation of the control algorithms. 

Since model parameters are obtained by introducing a step change to the current input 

value specified by the base input trajectory, the predicted outputs by such model for 

sampling instants further away from the current sampling instant become less accurate 

due to process nonlinearity, leading to inevitable modeling error that degrades the 

achievable control performance. This shortcoming may even become worse when the 

EPSAC is applied in batch process control with operation objective to control the 

product quality at batch end. As a long prediction horizon is needed at the beginning 

of the batch run to predict the future process outputs for the remaining batch time, this 

eventually leads to inaccurate predicted outputs and poor control performance as a 

result.  

       Instead of convolution models, state-space model offers an attractive option due 

to its inherent flexibility to represent nonlinear process and to allow a more 



CHAPTER 6. NONLINEAR MPC CONTROL OF THE PH-SHIFT REACTIVE 
CRYSTALLIZATION OF L-GLUTAMIC ACID                              

 

95 
 

approaches to modeling unmeasured disturbance in the estimator (Darby and 

Nikolaou, 2012). For example, Lee and Ricker (1994) designed an extended Kalman 

filter NMPC based on successive linearization, where a series of linear state-space 

models were constructed for future sampling instants in the prediction horizon. Their 

linearization started from the current sampling instant and linearized forwardly by 

calculating Jacobin matrix of the nonlinear model. Cervantes et al. (2003) put forward 

a nonlinear model predictive control based on Wiener piecewise linear models. The 

Wiener model consists of two blocks, a linear state-space model cascaded with an 

invertible continuous piecewise linear functions, to represent the nonlinear dynamic 

of the system. To explore the special structure of Wiener model, various control 

schemes were developed with an aim to take advantage of the simple dynamics of 

linear block in the Wiener model. In this work, a linear MPC algorithm is applied 

based on the linear block to enjoy the computational simplicity. García-Nieto et al. 

(2008) reported a NMPC application based on local model networks to a diesel 

engine. A set of linear local state-space models were identified offline upon selected 

operating points in the system state space. Basis functions which represent the 

distance between the current operating point and those selected operating points were 

used as weights to sum up all the predictions from each local model. Peng et al. 

(2007) presented a NMPC scheme using local ARX state-space models whose model 

parameters were estimated using RBF neural network. Motivated by the 

aforementioned discussion, the aim of this chapter is to formulate the EPSAC 

algorithm using state-space models for its inherent flexibility to represent stable, 

integrating, and unstable processes (Garcia et al., 1989; Morari and Lee, 1999; Qin 

and Badgwell, 2003; Froisy, 2006; Manenti, 2011; Darby and Nikolaou, 2012). 

Specifically, a new EPSAC algorithm based on the Just-in-Time Learning (JITL) 

method is developed in this chapter. In the proposed JITL-based EPSAC design, the 

optimized term is obtained by a set of local state-space models identified by the JITL 

method along the base trajectories. To evaluate the performance of proposed design 

for batch process control, simulation results of implementing the JITL-based EPSAC 

to pH-shift reactive crystallization process are presented and discussed in detail. 
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     This chapter is organized as follows. The conventional EPSAC algorithm is 

reviewed in section 6.2, followed by the development of proposed JITL-based 

EPSAC algorithm in section 6.3. Section 6.4 discusses the case studies of the 

proposed EPSAC algorithm applied to the semi-batch pH-shift reactive crystallization 

of L-glutamic acid. Finally, concluding remarks are drawn in the last section.  

6.2 Conventional EPSAC algorithm 

NMPC refers to model based predictive control schemes that are based on nonlinear 

models and/or consider a non-quadratic cost function and nonlinear constraints 

(Allgöwer et al., 2004), whose optimal problem to be solved online at every sampling 

instant is shown below (Hermanto et al., 2009): 

                                              min ,
k

k kJ
u

x u                                                              (6.1) 

subject to 

        1 1,k k k kf   x x u w                                               (6.2) 

        1k k k d d ξ                                                             (6.3) 

         ,k k k k kg  y x u d v                                            (6.4) 

         ,k kh x u 0                                                             (6.5) 

where J is the objective function; kx , ku , ky , and kd are the vectors of xn system 

state variables, un inputs, yn measured variables, and yn unmeasured disturbances at 

the kth sampling instant; and kw , kξ , and kv are the vectors of noise on the state 

variables, unmeasured disturbances, and the measured variables, respectively. The 

system dynamics are described by the vector function f, the measurement equations 

by the vector function g, and the linear and nonlinear constraints for the system are 

described by the vector function h.  
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    The EPSAC strategy considers that the future response can be expressed as the 

cumulative result of two effects: (1) a base response that accounts for the effect of 

past control, a base future control scenario, and the effect of future disturbances; and 

(2) an optimizing response that accounts for the effect of the optimizing future control 

actions (Gálvez-Carrillo et al., 2009), as schematically illustrated in Figure 6.1. The 

future sequences of the input variables k iu  is considered as the sum of the base input 

, b k iu  and future incremental control actions k i u :  

                                  , , 0, 1, , 1k i b k i k i ui N     u u u                               (6.6) 

where uN is the control horizon and k i  u 0 for ui N . Then the future trajectories 

of process variables can also be considered as the cumulative result of these two 

effects: 

                                  , , , 1, 2, ,  k i b k i l k i pi N    x x x                                  (6.7) 

where pN is the prediction horizon and , b k ix
 
is calculated using the normal model of 

Eq. (6.2) and the predetermined sequence of , b k iu . On the other hand, , l k ix is 

obtained by implementing impulse inputs  1 1,  ,  ,  k k k i    u u u . A similar 

decomposition into the sum of two parts is also applied to the nonlinear constraints of 

Eq. (6.5) to arrive at a quadratic program (QP) problem. The soft-constraint approach 

was used to provide a numerical convergence of QP optimizer (Scokaert and 

Rawlings, 1999; Hermanto et al., 2009). 

     The key idea of EPSAC is to predict nonlinear process variables by iterative 

linearization with respect to future trajectories so that they converge to the same 

nonlinear optimal solution (Rueda et al., 2005; Hermanto et al., 2009; Gálvez-Carrillo 

et al., 2009). Generally, the conventional EPSAC algorithms use convolution models 

to perform linearization around the future trajectories in order to calculate the 

optimized term , l k ix in Eq. (6.7) from k i u in Eq. (6.6).  
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Figure 6.1: The variables decomposition in EPSAC method. 

     It is worth pointing out that the superposition principle underlying the linearization 

schemes given in Eqs. (6.6) and (6.7) by previous EPSAC designs becomes invalid 

for the cases of highly nonlinear and time-varying process characteristics with 

requirement of long prediction horizon. This is because the process dynamics at the 

current sampling instant where a convolution model is obtained for model prediction 

is different from those far away in the prediction horizon, resulting in inaccurate 

model prediction and consequently has inevitable adverse effect on the control 

performance achieved by the EPSAC control strategy. To partially address this 

shortcoming brought about by using the convolution models in the EPSAC design, 

complicated weights in the objective function were designed and fine-tuned to 

improve end product quality control of a batch crystallization process (Hermanto et 

al., 2009). A detailed analysis of the aforementioned results reveals that the resulting 

fine-tuned EPSAC design with complicated weights attempts to suppress future 

control moves deep in the control horizon so that the achievable control performance 

of the EPSAC design is not compromised by the poor prediction of convolution 
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models. This observation is consistent with our analysis that the predictive 

performance of convolution models would deteriorate for those future sampling 

instants in the prediction horizon distant from the current sampling instant. Motivated 

by this observation and to avoid the tedious design of the weights by trial and error as 

well as the time-consuming tuning of weights to achieve good control performance, a 

systematic EPSAC design framework without resorting to the convolution models is 

developed in the next section. 

6.3 The JITL-based EPSAC design 

6.3.1 JITL local state-space model 

Generally, linear or nonlinear processes operated within a narrow range of an 

operating point, i.e.,  0 0,  x u , could be described by a state-space model as shown 

below:                                  

  1k i k i k i    x Ax Bu                                                          (6.8) 

where k ix is the deviation between system state vector x and the chosen operating 

point 0x , viz., 0k i k i  x x x , at kth sampling instant, the deviation variable for 

process input vector is also defined accordingly, 0k i k i  u u u , A is a x xn n  

matrix, and B is a x un n  matrix. 

      Analogically, considering the reference trajectory of  , , ,  b k i b k i x u in Figure 6.1, 

a series of local state-space models could also be obtained at each sampling instant in 

the prediction horizon as follows:  

, 1 , l k i k i l k i k i k i      x A x B u                                           (6.9)  

    The implementation of using Eqs. (6.8) and (6.9) in nonlinear modeling is 

illustrated in Figure 6.2, where Eq. (6.8) employs a single linear model obtained at 

point 0x to approximate process nonlinearity, while Eq. (6.9) requires a set of linear 
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local models constructed for each sampling instant in the reference trajectory bx for 

the same purpose. It is obvious from Figure 6.2 that the latter gives more accurate 

description of the base trajectory. Thus, Eq. (6.9) is inherently more advantageous 

than Eq. (6.8) for nonlinear trajectory modeling and therefore is more suitable for  the 

ESPAC design as it can lessen the aforementioned drawbacks due to the use of 

convolution models in majority of ESPAC design. It also note that the proposed 

method is in fact a multiple model approach, which has been extensively applied and 

incorporated into controller design for nonlinear processes (Lee and Ricker, 1994; 

Foss et al., 1995; Dharaskar and Gupta, 2000; Özkan et al., 2000; Cervantes et al., 

2003; Peng et al., 2007; García-Nieto et al., 2008). 

  

 

Figure 6.2: Modeling of nonlinear processes using one local state-space model given 
in Eq. (6.8) (top) and multiple state-space models given in Eq. (6.9) (bottom). 

    In this work, the JITL method is implemented to obtain a set of models given in Eq. 

(6.9). The JITL method has received increasing research interest and has been applied 

to soft sensing, process monitoring, and controller design recently (Cheng and Chiu, 
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2004; 2005; 2007; 2008; Hlaing et al., 2007; Kalmukale et al., 2007; Kansha and 

Chiu, 2008; 2010; Nuella et al., 2009; Fujiwara et al., 2009; Ge and Song 2010; Kano 

et al., 2011; Su et al., 2012b; Yang et al., 2012). The JITL method is a data-based 

methodology to approximate a nonlinear system by a local model valid in the relevant 

operating regimes. Its essence lies on the idea of model on demand. When a query 

data comes, there are generally three steps, viz., relevant data selection from reference 

database according to some similarity criterion, local model construction based on the 

relevant data, and model prediction using the local model. 

    Without the loss of generality, consider the following 2 × 2 state-space model:  

                                  
1 11,1 1,2 1,1 1,2 1
, 1 , 
2 22,1 2,2 2,1 2,2 2
, 1 , 

l k l kk k k k k

l k l kk k k k k

x xa a b b u

x xa a b b u








        
         
        

                (6.10) 

where , 
i
l kx is the ith state variable in the optimized term , l kx and the remaining 

symbols have obvious definitions.  

     Then a reference database  ,Y Ψ designed for the first state variable 1x could be 

constructed from process data as follows, 

                                  1 1 1
2 3,  ,  ,  

T

nx x x   Y                                                          (6.11)  

                                 

1 2 1 2
1 1 1 1

1 2 1 2
2 2 2 2

1 2 1 2
1 1 1 1n n n n

x x u u

x x u u

x x u u   

 
 
   
 
  

Ψ
   

                                              (6.12) 

where each corresponding row in Y  and Ψ together represent a sample data and n is 

the number of sample data collected in the reference database.  

      During the implementation of the proposed EPSAC design, with a query data 

1 2 1 2
, , , ,,  ,  ,  k b k b k b k b kx x u u   q  obtained at the kth sampling instant from the reference 

trajectories of bx and bu , a relevant dataset  ,l lY Ψ consisting of l samples is 
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selected from  ,Y Ψ according to similarity criterion, for example, distance and 

angular metrics proposed by Cheng and Chiu (2004). By subtracting , 1b kx and kq

from each row of lY  and lΨ , respectively, resulting lY and lΨ , all the sample data 

relevant to the kth operating point are in the same form as the optimized term, viz., 

deviation variables. Therefore, coefficients for the first state variable could be simply 

obtained, for example, using least squares:  

  11,1 1,2 1,1 1,2,  ,  ,  
T T T

k k k k l l l la a b b


    Ψ Ψ Ψ Y                              (6.13) 

     The aforementioned procedure can be similarly applied to the second state variable 

in Eq. (10) to obtain the corresponding coefficients and hence the matrices kA and kB . 

The detailed information on the JITL methodology can be referred to the latest JITL 

algorithm by Su et al., (2012b), which is termed as the JITL with reference to the 

query point. 

     It is noted that with the availability of nonlinear process model of Eq. (6.2), a data-

rich reference database of (6.11) and (6.12) could be generated off-line for the JITL 

method to accurately obtain the coefficient matrices kA and kB  on line in a relatively 

time-saving fashion. Analogous to the finite step/impulse response model that 

perturbs the nonlinear process model of Eq. (6.2) on line to obtain corresponding 

coefficients, the proposed method also needs to perturb the process model off-line to a 

certain extent to obtain a representative database for each state variable of interest. Or 

equivalently, it can be claimed that JITL remodels the nonlinear process model of Eq. 

(6.2) in a data-based manner and in a linear form which is only valid around the 

reference trajectories bx and bu . Note that bx and bu are not fixed trajectories, they 

are updated after each iteration within EPSAC algorithm. Additionally, with the 

development of parallel computing technology, for example the parfor command in 

Matlab environment, each local state-space model coefficient matrices kA and kB or 

even each row inside those matrices could be computed independently and in a 

parallel way to make good use of the multi-core hardware computing environment. 
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This is because the reference trajectories bx and bu  are already known before 

identifying each local state-space model, this is different from the successive 

linearization techniques (Lee and Ricker, 1994), and moreover, they can also be 

incorporated to update the database on-line (Kansha and Chiu, 2009). 

6.3.2 The proposed EPSAC algorithm 

After obtaining the local state-space models in the base trajectories, then considering 

a process with the prediction horizon pN and control horizon uN , the sequence of 

, l k ix  can be calculated as follows:  

      , 1 , l k k l k k k  x A x B u  

      , 2 1 , 1 1 1l k k k l k k k k k k       x A A x A B u B u        

          

      

1 1 1

, , 1 1
1 2

1 1

u u u

u

u u

k N k N k N

l k N i l k i k k i k k
i k i k i k

k N k N

 



     

  
    

   

     
        
     


  x A x A B u A B u

B u
 

          

      

1 1 1

, , 1 1
1 2

1

1 1 1 1

p p p

p

p

u u p p

u

k N k N k N

l k N i l k i k k i k k
i k i k i k

k N

i k N k N k N k N
i k N

 

 

     

  
    

 

       
 

     
             
     

 
    
 

  



x A x A B u A B u

A B u B u 

 

      It is noted that , l k x 0  , and k i  u 0  for ui N then                                                 

l lX G U                                                                       (6.14) 

where , 1 , 2 , ,  ,  ,  
p

T
T T T

l l k l k l k N  
   X x x x , 1 1,  ,  ,  

u

TT T T
k k k N        U u u u , and 
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                 (6.15) 

       In summary, the future system state variables in the control horizon can be 

conveniently represented in matrix form as                                            

b l X X G U                                                                 (6.16) 

where 1 2,  ,  ,  
p

T
T T T
k k k N  

   X x x x and , 1 , 2 , ,  ,  ,  
p

T
T T T

b b k b k b k N  
   X x x x , as well as 

the control trajectory defined as :  

                                           b  U U U                                                                (6.17) 

where 1 1,  ,  ,  
u

TT T T
k k k N     U u u u and , , 1 , 1,  ,  ,  

u

TT T T
b b k b k b k N     U u u u . 

       With Eqs. (6.16) and (6.17), the conventional routine for a quadratic cost function 

with nonlinear soft constraints could be straightforwardly implemented to obtain the 

optimal control moves of U . The detailed derivation and implementation procedure 

of the proposed control strategy are summarized as follows. 

        Consider an optimization problem J defined as :         

   min
T T

d p d uJ


    
U

P P W P P U W U                          (6.18) 
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where P , dP , and U are the matrices of the interested product quality, desired 

product quality, and the change in input variables, respectively, given by        

                                 1 2,  ,  ,  
p

T
T T T
k k k N  

   P p p p                                                (6.19) 

                         , 1 , 2 , ,  ,  ,  
p

T
T T T

d d k d k d k N  
   P p p p                                      (6.20)  

                         1 1 1 2,  ,  ,  
u u

TT T T T T T
k k k k k N k N           U u u u u u u              (6.21) 

and pW and uW are the weight matrices for the product quality and the change in 

input variables, respectively. Then P and U can be decomposed into         

                                 b l b l     P MX M X G U MX MG U                       (6.22) 

where M is designed to extract out the interested combination of product quality 

variables, defined as:          

                                 

1

2

p

k

k

k N







 
 
   
 
  

0m 0

0m0
M

m0 0




 


                                           (6.23) 

       When the first state variable is selected:  

 1 2 1
1,  0,  0,  ,  0

p x
k k k N n   

   m m m                      (6.24) 

       Equation (6.22) is further simplified as:            

b pl P P G U                                                                      (6.25) 

where             

b bP MX                                                                              (6.26)         

pl lG MG                                                                            (6.27) 
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where plG is the state-space model coefficient matrix corresponding to the product 

quality variable, and bP is the predicted product quality calculated using the nonlinear 

model with predetermined future inputs , , 1 , 1,  ,  ,  
u

TT T T
b b k b k b k N     U u u u , and 

          , , 1 , 1 , , 1 , 2,  ,  ,  
u u

TT T T T T T
b b k b k b k b k b k N b k N           U u u u u u u                   (6.28)           

         

 
  
 
  

I 0 0 0

I I 0 0
C

0 0 I I




    


                                                                            (6.29) 

           b    U U C U                                                                                      (6.30) 

       Hence, the minimization problem becomes:

       min
T T

b pl d p b pl d b u bJ W W


            
U

P G U P P G U P U C U U C U      

min 2( ) 2T T T T T T
pl p pl b d p pl u b uU


          

U
U G W G U P P W G U U C W C U W C U    

min T T


   

U
U Γ U Φ U                                                                                       (6.31) 

where 

              T T
pl p pl u Γ G W G C W C  

               2
TT T

b d p pl b u
    Φ P P W G U W C  

     The minimization is subject to the constraints  , ,j jh j k  x u 0 , where k is 

the current sampling instance. For notational convenience,  ,j jh x u 0  is denoted as 

jh , which can be decomposed into the base and linear part , , j b j l j h h h . Therefore, 

the matrix form of the constraints in the control horizon is   
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 b hl H G U 0                                                                                     (6.32) 

where hlG is the state-space model coefficient matrix corresponding to the constraints 

function jh  and , ,,  ,  
p

T
T T

b b k b k N
   H h h .  

    When the constraints are highly nonlinear, handling (6.32) directly will sometimes 

cause difficulty for the quadratic programming (QP) used for the optimization to find 

a feasible solution. Convergence was provided by the soft-constraint approach, which 

replaces the minimization problem with              

,
min scJ
U ε

                                                                             (6.33) 

subject to                 

b hl H G U ε                                                                (6.34) 

ε 0                                                                                 (6.35) 

where T T
scJ J    ε W ε ε w , ε is a vector of slack variables, W is a diagonal 

matrix of positive weight, and w is a vector of positive elements. This modified 

minimization problem can be written as 

                                 *

,
min T T T T

scJ W 
     

U ε
U Γ U Φ U ε ε ε w                  

,
min T T T Tw



 


                     U ε

Γ 0 U U
U ε Φ

0 W ε ε
 

min T T 
Π

Π ΛΠ τ Π                                                        (6.36) 

subject to          

b hl    
       

H G I
Π 0

0 0 I
                                                (6.37) 
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where 
TT T   Π U ε , 

 
  
 ε

Γ 0
Λ

0 W
, and 

TT T
   τ Φ w . 

To summarize, the procedure for implementing the EPSAC strategy based on JITL-

based local models at each sampling instant k is: 

(1) Obtain bU by the following method:    

 If k = 0 and iter = 1, bU is specified to be the control actions implemented in 

the previous batch; 

 If k > 0 and iter = 1, bU is set as the optimalU obtained at the previous sampling 

instant of the current batch, where iter is the iteration count; 

 If k > 0 and iter > 1, the updated bU from the previous iteration is used. 

   (2) Given the predicted state variables, obtain bP and bH by using bU as the input to 

the nonlinear process model (6.1) to (6.5). 

   (3) Obtain the state-space model coefficient matrices plG and hlG by using JITL 

with reference to the query point. 

   (4) Obtain * * * TT T   Π U ε from the solution to the minimization problem (6.36) 

and (6.37), then update the element of Ub using               

 , , b k j b k j k j   u u u  

where 0,  ,  1uj N  .  

     (5) Calculate *pl

hl

err 
 

  
 

G
U

G
. If err is greater than a specified tolerance, iter = 

iter + 1, and go back to Step (1). Otherwise, set optimal bU U and implemented 

the first element of optimalU to the process. 

 



CHAPTER 6. NONLINEAR MPC CONTROL OF THE PH-SHIFT REACTIVE 
CRYSTALLIZATION OF L-GLUTAMIC ACID                              

 

109 
 

6.4 Results and discussion 

6.4.1 Nominal performance 

The conventional EPSAC and the proposed JITL-EPSAC techniques were applied to 

the semi-batch pH-shift reactive crystallization process of L-glutamic acid presented 

in Chapter 5. As discussed in Chapter 5, the polymorphic purity of metastable α-form, 

viz., P , is an important state variable reflecting the progress of the studied 

polymorphic crystallization system. Thus, it was chosen as the primary controlled 

product quality at the end of the batch, while the other two variables of interest are the 

volume-based mean crystal size ( sM , m ) and crystalline product yield ( yP ). The 

nominal input trajectory was chosen to the optimal input trajectory corresponding to 

the optimal operation point selected from the Pareto front discussed in Chapter 5, 

meaning that the batch-end product qualities [ , ,s yP M P ] is chosen as [0.8255, 250.6, 

0.8088]. The constraint for the sulfuric acid addition flowrate ( F , mL/min) is 

between 0 and 16 mL/min, which remains the same as that considered in Chapter 5. 

The total batch time is 40 minutes with a sampling interval of 1 minute. 

       To proceed the JITL modeling of the crystallization process, the following local 

state-space model is considered: 

                                

 
 
 
 

 
 
 
 

 

, 1 ,

, 1 ,

, 1 ,

, 1 ,

l k l k

s sl k l k

k k k

l k l k

l k l k

P P

M M
F

C C

V V

 











   
   
   

    
   
   
      

A B                                      (6.38) 

where C (mol/L) is the glutamic acid concentration and V is the solution volume in a 

crystallizer with capacity of 0.97L. 

     To generate reference database for the JITL identification of local state-space 

models of Eq. (6.38), one hundred batches process data were obtained by introducing 

step changes of random magnitude with N(0, 1) to the constant addition flowrate of 8 
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mL/min as shown in Figure 6.3. To validate the predictive performance of the JITL 

method, another unseen batch of process data, which was not used in the reference 

database, was obtained and shown in Figure 6.4. It is clear that the JITL prediction 

has good agreement with the actual process data. 

     For comparison purpose, an EPSAC algorithm developed by Hermanto et al. (2009) 

was introduced in this work. The proposed JITL-EPSAC algorithm differs from the 

EPSAC by Hermanto et al. (2009) only in the plG and hlG , as shown in Eq. (6.15) 

and (6.32), respectively, where the conventional algorithm uses a finite step response 

model to develop these two dynamic matrices. Both controllers use a 

prediction/control horizon starting from current time to the batch end, viz., shrinking 

horizon mode. 

     Firstly, both EPSAC controllers were initialized with a reference addition flowrate 

trajectory set as the nominal constant 8 mL/min. The control actions were activated 

only after measurements of polymorphic purity by Raman spectroscopy were steadily 

available, the same as that in polymorphic purity control in chapter 5. The maximum 

iteration number inside both EPSAC algorithms were limited to one, viz., no iteration 

was utilized. The effect of increasing maximum iteration number will be discussed 

later. No-model plant mismatch was considered at this stage and all the state variables 

in the nonlinear process model were measureable or observable as studied by Mesbah 

et al., (2011) and Hermanto et al., (2009). Tuning parameters of pW and uW for 

product quality and control moves were specifically fine-tuned for conventional 

EPSAC as 51 10 I  and unit matrix I , respectively. These two weights were also 

applied to the proposed JITL-EPSAC algorithm. Thus, the differences in control 

performance between two EPSAC algorithms were purely resulted from the use of 

either finite step response model or JITL local state-space model. 

     The performance of the two EPSAC algorithms are shown by EPSAC-1 and JITL-

EPSAC, respectively, in Figure 6.5, where JITL-EPSAC could meet the control target 

with a smooth addition flowrate trajectory, while EPSAC-1 failed to meet the target 
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and the input trajectory varied greatly in the later phase of the batch. As discussed in 

the introduction section, using a finite step response model established at current time 

to predict the controlled variable deep in the prediction horizon is inappropriate for 

nonlinear process. In contrast, JITL-EPSAC algorithm specifically designs local state-

space models at each sampling instant in prediction horizon, as shown in Figure 6.2. 

Consequently, process nonlinearity is taken into account, resulting in more accurate 

prediction of end point of product property. 

     Toward this end, one remedial approach in conventional EPSAC for batch process 

control is by the use of an adaptive weight of uW  which penalizes control moves 

deep in the control horizon, as reported in Hermanto et al. (2009). Similar weight was 

also implemented in Lee and Ricker (1994) for successive linearization. However, the 

tuning of uW  maybe time consuming and has a risk of obtaining local optimal 

solution. A fine-tuned uW  that improves the batch-end property control with smooth 

control moves is suggested below: 

                             5

,
1 10 1 60 1 ,    1, ,u ui i

i i N        W                                   (6.39) 

where  
,u i i

W  is the diagonal elements of matrix uW ; uN  is the control horizon. The 

corresponding control performance of EPSAC is shown by EPSAC-2 in Figure 6.5.  

     It is worth mentioning that the main idea of EPSAC is to iteratively linearize along 

the reference trajectories, thus the maximum iteration number places an important 

effect on the control performance of EPSAC. The influence of maximum iteration 

number on the convergence of the product quality variables is illustrated in Figure 

6.6, from which the proposed JITL-EPSAC shows steady convergence to the desired 

polymorphic purity P  and mean crystal size sM  with maximum iteration number 

ranging from 1 to 10, only slight variation is observed for the product yield yP . It is 

noted for the EPSAC-2 that there is no much improvement by increasing the 

maximum iteration number. This is resulted from the use of a conservative weight of 

uW  of Eq. (6.39), which penalizes more on the control moves. While the EPSAC-1 
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seems to be steadily improved by increasing the maximum iteration number larger 

than 7. Therefore, for conventional EPSAC, if the finite step response model is not 

accurate for highly nonlinear process, there is no guarantee that maximum iteration 

number helps to smoothly improve the EPSAC performance. Moreover, the larger the 

maximum iteration number, the much more heavy of the computational burden for a 

nonlinear MPC algorithm.   

6.4.2 Effects of model-plant mismatch 

Generally, model-plant mismatch is, in reality, inevitable for any model-based control 

approaches. To investigate the influence of parameter uncertainties on the 

performance of EPSAC algorithms, two case studies of kinetic uncertainties were 

introduced to the reactive crystallization process. Case 1 considered a 20% decrease 

of the α-form growth rate, which was the same as that in chapter 5. The case 2 

introduced a 20% magnitude of variation to four model kinetic parameters of their 

Mode value reported in Table 3.2, which were set as , 1(1 20%) bk  , , 1(1 20%) gk  , 

, 2(1 20%) gE  , , 1(1 20%) gk  . Maximum iteration number of 10, 2 and 2 were 

employed for the EPSAC-1, EPSAC-2 and JITL-EPSAC, respectively. The results are 

illustrated in Figures 6.7 and 6.8, indicating that the superiority of JITL-EPSAC to 

EPSAC algorithm is also maintained under the model-plant mismatch, from which the 

robustness of the JITL-EPSAC algorithm could be confirmed.  

     Additionally, it should be pointed out that for case 1, though both the polymorphic 

purity control in chapter 5 and the JITL-EPSAC in this work could alleviate the 

influence of the model-plant mismatch, deviations of the batch-end product qualities 

from the desired set point are both encountered, this shows the importance of 

mitigating the model-plant mismatch in the control practices, which will be further 

discussed in the following chapter.  
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Figure 6.3: Illustration of the four batches process data used for the reference database 
by the JITL method (solid line: nominal data; dash line: four batches process data).  
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Figure 6.4: Validation results for JITL method (solid line: process data; dash line: 
JITL prediction; RMSE: root mean square error). 
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Figure 6.5: Performance comparison between EPSAC and JITL-EPSAC for the 

reactive crystallization. 
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Figure 6.6: Effect of maximum iteration number on EPSAC and JITL-EPSAC control 
performances. 
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Figure 6.7: Performances of batch-end property control by EPSAC and JITL-EPSAC 
for the reactive crystallization under model-plant mismatch of case 1. 
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Figure 6.8: Performances of batch-end property control by EPSAC and JITL-EPSAC 
for the reactive crystallization under model-plant mismatch of case 2. 
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6.5 Conclusions 

The use of finite step/impulse response model for trajectory linearization in EPSAC 

algorithm is only valid in linear or mildly nonlinear process. In order to enhance the 

efficiency of linearization along the reference trajectory for EPSAC applications in 

nonlinear processes, the idea of local state-space models identified by JITL method is 

proposed in this study. Local state-space models can well represent the high 

nonlinearity and the time-varying characteristic of chemical processes, particularly in 

batch/semi-batch processes. Easier weight tuning, smoother control moves, less 

computational burden and better control performance of the proposed JITL-EPSAC 

algorithm over conventional EPSAC algorithm for batch-end property control are 

demonstrated in the semi-batch pH-shift reactive crystallization process. 
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Chapter 7 

Integrated B2B-NMPC Control of the pH-

shift Reactive Crystallization of L-glutamic 

Acid 

 

The disadvantageous open-loop nature of batch-to-batch (B2B) control strategy has 

brought about the integration of B2B with on-line controller design techniques. A new 

integrated B2B-NMPC control strategy is proposed in this study to update the model 

parameters from batch to batch using multiway partial least squares (MPLS) model. 

The resulting new process model is then incorporated into NMPC design for the next 

batch to achieve better (closed-loop) control performance than that obtained by the 

B2B control in an open-loop manner.   

7.1 Introduction 

In industrial practices, batch process is usually repeatedly proceeded with routine 

recipes to produce on-spec customized products, the repetitive nature of which in turn 

helps to boost the learning-type control methods, such as iterative learning control 

(ILC) and batch-to-batch (B2B) or run-to-run (R2R) controls (Wang et al., 2009). 

Batch-to-batch control uses information obtained from previous batches to optimize 

batch operation for next batch with an aim to improve the tracking of final product 

qualities, which can also address the problems of model-plant mismatches or 

unmeasured disturbances in batch processes (Xiong et al., 2005).  
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    Batch-to-batch control, which was first proposed in the beginning of 1990s, has 

been studied extensively in the past decade (Zafiriou et al., 1995; Bonvin, 1998). For 

example, Clarke-Pringle and MacGregor (1998) introduced the batch-to-batch 

adjustments to optimize the molecular-weight distribution. Doyle et al. (2003) 

developed batch-to-batch control based on a hybrid model to realize the particle size 

distribution control. Zhang (2008) reported a batch-to-batch optimal control of a batch 

polymerization process based on stacked neural network models. However, B2B 

control strategies often suffer from its open-loop nature, as the correction is not made 

until the next batch. On the other hand, with the ability of on-line control strategies, 

such as model predictive control (MPC), to respond to disturbances occurring during 

the batch and batch-to-batch control to correct bias left uncorrected, integration of 

both strategies becomes interesting to researchers (Chin et al., 2000; Lee et al., 2002), 

which were mostly based on linear time varying (LTV) models. Implementations of 

the integrated batch-to-batch control for product quality improvement of batch 

crystallizers are also reported by Paengjuntuek et al. (2008) and Hermanto et al., 

(2011).  

       It is worth mentioning that an integrated B2B-NMPC design based on a hybrid 

model was recently developed for a batch polymorphic crystallization process 

(Hermanto et al., 2011). The hybrid model, consisting of a nominal first-principles 

model and a series of correction factors based on batch-to-batch updated PLS models, 

was used to predict the process variables and final product quality. One major benefit 

of such hybrid model is the ability to harness the extrapolative capability of the first-

principles model while the PLS model provides a means for simple model updating 

(Hermanto, 2008). Though faster and smoother convergence was observed than that 

of a conventional B2B control strategy to handle uncertainties in kinetic parameters, 

the reported method might be restrictive due to a correction factor specifically 

designed at each sampling instant for each on-line measurement and for each product 

quality at the batch end. Two scenarios of kinetic uncertainties were considered 

independently with their respective initial databases. However, the transition between 

these two scenarios was not investigated, without which the demonstration of the 
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merits of B2B control strategy that is capable of learning from the batch-to-batch 

operation is impossible. Thus, from this point of view, the batch-to-batch learning and 

updating capabilities of the reported method were not adequately demonstrated.  

     Encouraged by the previous works and the benefits of integrated B2B-NMPC 

control strategy, a new integrated B2B-NMPC control strategy is proposed in this 

chapter. First, note that during the batch production, not only the process is repeated 

from batch to batch, but also the control algorithm undergoes repetition. Previous 

efforts tend to concentrate on the former, for example, a bias term or a correction 

factor is measured after the finish of a batch or calculated from a historical operating 

database, respectively, and is added to the online control algorithm for use in the next 

batch (Zhang, 2008; Hermanto et al., 2011). Addition of these accessional terms 

assumes that same deviations will persist during the next batch. Though simple and 

efficient in some batch process, it may not work properly for a highly nonlinear 

process, particularly when on-line control is combined with the B2B control as they 

work at a relatively different time scale. To the contrary, in our new proposal, a 

historical database of the control algorithm runs is used to update the control 

algorithm in such a direct manner that a data-based multiway partial least squares 

(MPLS) model utilizes the initial conditions, measurement trajectories, and end-point 

product qualities of previous batch operation to re-estimate the kinetic parameters in 

the first-principles model embedded in the nonlinear model predictive control 

(NMPC) for implementation in the next batch.  Therefore, the NMPC performs the 

online control to handle the constraints and disturbances while the B2B control refines 

the model iteratively by inferring from the previous batch operations (Paengjuntuek et 

al., 2008). The proposed B2B-NMPC algorithm is implemented to the semi-batch pH-

shift reactive crystallization process to optimize the addition flowrate profile in order 

to produce products on specification. 

      This chapter is organized as follows. The batch-to-batch control strategy 

considered for comparison purpose is introduced in the next section, which is then 

followed by the integrated B2B-NMPC control strategy in Section 7.3. Applications 

of the conventional B2B and integrated B2B-NMPC to the semi-batch pH-shift 
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reactive crystallization of L-glutamic acid are illustrated and discussed in Section 7.4. 

Lastly, concluding remarks based on their control performances are given.  

7.2 Batch-to-Batch (B2B) control strategy 

A batch-to-batch control strategy based on the interaction of a first-principles model 

and a multiway partial least squares (MPLS) model is introduced in this study, the 

benefit of which lies in its ability to exploit the extrapolative power of first-principles 

model while the inevitable model-plant mismatch resulting from the uncertainties in 

model parameters is addressed through a MPLS model using data from previous 

operations. 

    From the perspective of Baye's theory, unknown model parameter shows a 

probability distribution of certain shape (Gelman et al., 2004), which is distinct from 

the notion of treating a unknown parameter as a fixed quantity. To update model 

parameters, rigorous procedures, such as design of experiments (DoE), are generally 

required (Englezos and Kalogerakis, 2000). Though effective, they are not efficient, 

particularly for large and complex systems due to the heavy cost in experiment and 

computation. To this end, an alternative method based on a data-based technique is 

proposed for the B2B scheme in this research. 

     Firstly, it is shown in Chapter 3 that probability distributions of unknown model 

parameters could be conveniently summarized by 95% credible intervals, among 

which some span considerable wide range. Therefore, it initiates the idea to identify 

those kinetic parameters provided that enough system dynamic information is 

obtained, for example, on-line measurement profiles and batch-end product qualities 

available at the end of each batch. In light of this, the idea of MPLS model, which is 

previously used in Chapter 4 for process monitoring and batch-end product quality 

prediction, could serve similar purpose here in that it uses the available initial 

conditions, measurement trajectories, and batch-end product qualities to form an 

unfolded dataset X in order to predict the corresponding kinetic parameters Y.  
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     It is worth mentioning that the initial database for such MPLS model could be 

simply generated by running the first-principles process model with random 

combinations of kinetic parameters picked up from their credible intervals and with 

nominal input profiles subject to some normal disturbances. As this is generated off-

line, selections of measurement profiles and product quality variables, as well as the 

size of the database and number of principle components used, can be well controlled 

to give predictions of kinetic parameters with good accuracy. Furthermore, the 

database and MPLS model can also be updated in a batch-to-batch manner during 

their on-line applications, say, B2B control of a batch process. As the process model 

is repeatedly updated at the batch end to compute the optimal input profile for the 

next batch, MPLS model is readily updated from batch to batch by simply running the 

simulation mention above based on the newly updated first-principles process model.  

      

Figure 7.1: The proposed B2B control strategy based on the MPLS model. 
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    When it comes to the prediction of kinetic parameters after each batch, similar 

procedures of MPLS as that used for process monitoring in Chapter 4 are considered 

(Geladi and Kowalski, 1986; Nomikos and MacGregor, 1995b). Nevertheless, to 

avoid abrupt substantial changes in model parameters, averages of parameter 

predictions obtained from the previous batches are usually adopted as follows. 

                                                   
1

1 j

j k
k j mm   

 y y                                                   (7.1) 

where jy  is an average of parameter predictions for the jth batch based on those from 

the previous m batches, which is then incorporated into the first-principles model 

embedded  in the B2B control strategy as illustrated in Figure 7.1. 

    In the batch-to-batch control strategy, the objective function to be minimized for 

the jth batch is as follows:  

                     2

B2B U Umin T T
p d dJ d d     

U
W P P U W U U W U                         (7.2) 

where 

                    ,0 ,1 , 1, , ,
TT T T

j j j N   U u u u , 

                    ,1 ,0 ,2 ,1 , 1 , 2, , ,
TT T T T T T

j j j j j N j N       U u u u u u u , 

                    ,0 1,0 ,1 1,1 , 1 1, 1, , ,
TT T T T T T

j j j j j N j Nd          U u u u u u u , 

and P and dP  are the predicted and desired final product qualities, respectively, ,j ku  

is the input vector at the kth sampling instant of jth batch, N is the total number of 

samples in one batch, pW is the weight vector corresponding to the final product 

quality, UW  and dUW  are the weight matrices to penalize excessive changes in the 

input variables for within-batch and inter-batch, respectively.  

     The above minimization problem is subject to the first-principles process model 

updated after each batch and inequality constraints ( ) 0H U . Differential evolution 
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(DE) (Storn and Price, 1997; Lampinen, 2002; Hermanto et al., 2011) or sequential 

quadratic programming (SQP) (Nocedal and Wright, 2006) technique can be 

implemented to solve the above minimization problem. The resulting optimal input U 

obtained is then implemented in an open-loop manner for the next batch.  

7.3 Integrated B2B-NMPC control strategy 

As aforementioned, the main drawback of a standard batch-to-batch control strategy 

results from its open-loop nature, where the correction is not made until the next 

batch. Therefore, the control performance of the current batch depends only on the 

accuracy of the process model, which is updated based on the information of previous 

batch. Consequently, its control performance may become sluggish or even diverging 

when the updated model is still not accurate, which is likely the case in the first few 

batches (Hermanto, 2008; Hermanto, et al., 2011). In light of this, combinations of the 

best efforts of B2B and online control strategies receive great interests decades ago. 

For example, it is possible and beneficial to integrate the nonlinear model predictive 

control (MMPC) technique proposed in Chapter 6 into the batch-to-batch control 

strategy to develop a new integrated B2B-NMPC control strategy, wherein both 

control strategies complement each other in an interactively way such that the online 

control can be tackled effectively by NMPC whose embedded nonlinear process 

model is refined through the batch-to-batch control by re-estimating model parameters 

from the previous batches (Paengjuntuek et al., 2008). 

     In the proposed integrated control strategy, the updating policy of the first-

principles model in B2B as shown in Figure 7.1 remains the same. Whereas, the 

objective function to be minimized at every sampling time is as follows: 

                       2

B2B-NMPC U Umin T T
p d dJ d d    

U
W P P U W U U W U                  (7.3) 

where 

                 , , 1 , 1, , ,
TT T T

j k j k j N    U u u u , 

                 , , 1 , 1 , , 1 , 2, , ,
TT T T T T T

j k j k j k j k j N j N         U u u u u u u , 
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                 , 1, , 1 1, 1 , 1 1, 1, , ,
TT T T T T T

j k j k j k j k j N j Nd            U u u u u u u , 

and UW  and dUW  are the weight matrices which penalize excessive changes in the 

input variables which occur within-batch and inter-batch, respectively. The above 

minimization problem is subject to process model and inequality constraints 

( ) 0H U . 

     The NMPC strategy considered here is based on the JITL-EPSAC technique (Su et 

al., 2012c) as described in Chapter 6 to achieve the desired final product qualities in a 

shrinking horizon way, where similar representations of P , U , and dU in Eq. (7.3) 

can be decomposed into: 

                                b pl P P G U                                                                        (7.4) 

                                b    U U C U                                                                     (7.5) 

                                       b prevd   U U U U                                                                (7.6) 

where bP  is product quality calculated using the first-principles model with updated 

model parameters and with predetermined future inputs , , 1 , 1, , ,
TT T T

b b k b k b N    U u u u ,

plG  is the state-space model coefficients matrix corresponding to the product quality, 

1, 1, 1 1, 1, , ,
TT T T

prev j k j k j N       U u u u  is the input sequence implemented in the previous 

batch, , , 1 , 1, , ,
TT T T

b b k b k b N       U u u u  is the change in the predetermined future 

inputs, and matrix C is as shown below. 

                             

 
  
 
  

I 0 0 0

I I 0 0
C

0 0 I I




    


                                                         (7.7) 

      Therefore, the minimization problem (7.3) becomes: 
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                             2 min T T
B B NMPCJ


    

U
U Γ U Φ U                                          (7.8) 

where 

                            T T
pl p pl u dU  Γ G W G C W C W  

                               2
TTT T

b d p pl b u b prev dU
        

Φ P P W G U W C U U W  

     Analogously, the inequality constraints ( )H U can be decomposed into: 

                        0b hl H G U                                                                        (7.9) 

where hlG  is the state-space model coefficient matrix corresponding to the 

constraints and bH  is the constraints calculated using the updated first-principles 

model with predetermined future inputs bU . In this study, the soft-constraints 

approach (Hermanto et al., 2011) is utilized and the minimization problem is modified 

as follows: 

                        sc, B2B-NMPC,
min

U
J

 
                                                                        (7.10) 

subject to 

                          b hl H G U ε                                                                      (7.11) 

                              ε 0                                                                                        (7.12) 

where sc, B2B-NMPC B2B-NMPC
T TJ J    ε W ε ε w , ε is a vector of slack variables, W is a 

diagonal matrix of positive weight, and w is a vector of positive elements. 

       Hence, the solution to the modified minimization problem is as follows: 

            *
sc, B2B-NMPC

,
min T T T TJ W 

     
U ε

U Γ U Φ U ε ε ε w                  
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,

min T T T Tw


 


                     U ε

Γ 0 U U
U ε Φ

0 W ε ε
 

                            min T T 
Π
Π ΛΠ τ Π                                                                 (7.13) 

subject to          

                             b hl    
       

H G I
Π 0

0 0 I
                                                         (7.14) 

where 
TT T   Π U ε , 

 
  
 ε

Γ 0
Λ

0 W
, and 

TT T
   τ Φ w . 

In summary, the procedure of implementing the integrated B2B-NMPC control 

strategy for each batch j and sampling time k is as follows: 

  (1) Prepare the database matrices X and Y for the MPLS model as follows: 

 if j = 1, the database matrices X and Y for the MPLS model can be obtained 

by offline simulation runs. For example, input sequences around the optimal 

input trajectory for the nominal first-principles model, as well as a random 

combinations of model parameters selected from their probability 

distributions, are implemented to the process model and the resulting state 

variables profiles are used to construct the database. 

 if j > 1, update the database matrices by including the previous simulation 

runs computed by NMPC during the online control into the database. In this 

study, the moving window approach is adopted, where the dataset from the 

earliest runs is removed every time a new dataset is included. 

(2) Update the process model: collect the initial conditions, measurement 

trajectories and batch-end product qualities from previous batch to form vector 

newx  and predict the model parameters newy  through the updated MPLS model. 

And average the prediction of model parameters by Eq. (7.1) 
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 (3)  Obtain bU by the following method:    

 If k = 0 and iter = 1, bU is chosen from the nominal operating point which 

was used in the previous batches; 

 If k > 0 and iter = 1, bU is set as the optimalU obtained in the previous 

sampling instance; 

 If iter > 1, the updated bU from the previous iteration is used;  

where iter is the iteration count. 

 (4) Obtain bP  and bH  by using bU  as the input to the updated first-principles 

process model. In this study, it is assumed that the state variables are 

measured.  

 (5) Obtain the state space model coefficient matrices plG and hlG by using JITL 

with reference to the query point. 

    (6) Obtain * * * TT T   Π U ε from the solution to the minimization problem (7.13) 

and (7.14), then update the element of Ub using               

 , , b k j b k j k j   u u u  

where 0,  ,  1j N  .  

   (7) Calculate *pl

hl

err 
 

  
 

G
U

G
. If err is greater than a specified tolerance, iter = 

iter + 1, and go back to Step (3). Otherwise, set optimal bU U and implemented 

the first element of optimalU to the process. 

   (8)  If the end of the current batch is reached, repeat from step (1) and go to the next 

batch. 
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7.4 Results and discussion 

To illustrate and compare the control performances of the standard B2B and 

integrated B2B-NMPC control strategies, simulation studies of their applications to 

the semi-batch pH-shift reactive crystallization of L-glutamic acid were investigated. 

Details of the reactive crystallization process for controlling purpose can be found in 

Chapters 3 and 6 with some of the features specifically defined as follows.  

7.4.1 Process and controllers specification 

Three scenarios of the crystallization process are summarized in Table 7.1 with four 

crystallization kinetic parameters of α and β polymorphs, which have relatively high 

sensitivities to the process, were taken into account, while others remained the same 

as in Table 3.2. Of the three scenarios, the Case 1 considers a nominal crystallization 

process, Case 2 has fast nucleation and slow growth rate parameters, while Case 3 has 

slow nucleation and fast growth rate parameters. The process was first started in Case 

1 and then shifted to abnormal Case 2 after the first batch and stayed at this scenario 

until the 30th batch. From batch 31 to batch 60, the process entered the Case 3, after 

which it resumed to the nominal Case 1 from the 61th batch till the 90th batch.  

     The first batch was initialized with a nominal optimal flowrate profile as shown in 

Figure 7.2, which was obtained under nominal process by JITL-EPSAC in Chapter 6 

to achieve a desired α-form polymorphic purity, P , of 0.8255. In addition, the initial 

database for MPLS model was generated by introducing random disturbances of N(0, 

0.5) to this nominal optimal flowrate profile at each sampling instant, with some of 

them depictured in Figure 7.2. Besides, variations of the four studied kinetic 

parameters within their respective 95% credible intervals were also introduced during 

the simulation runs for initial database generation. With the recent development in 

process analytical techniques (PAT), more abundant process data are now available, 

though correlated to each other. Nevertheless, initial concentrations of monosodium 

glutamate and sulfuric acid, complete state variable trajectories of pH value, 

crystallizer volume, solute concentrations by ATR-FTIR, mean crystal size by FBRM 
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or PVM, the zeroth and first moments of crystal size distribution by FBRM, and 

polymorphic purity of α-form by Raman spectroscopy, as well as the batch-end 

product yield, are all collected to construct the unfolded dataset X, similar as that in 

Chapter 4 for process monitoring. While the four kinetic parameters formed the 

dataset Y. Totally 200 batches of simulation runs were used to construct the MPLS 

model with the number of principle components fine-tuned as 7 by cross-validation. 

Incidentally, during the online application, here we assumed that all these state 

variables are measured or observable by observers, such as extended Kalman filter 

(EKF) or unscented Kalman filter (UKF) (Hermanto et al., 2009; Mesbah et al., 2011; 

Li et al., 2012). Additional unseen 30 batches were employed for validation test given 

in Figure 7.3, which shows the MPLS model is capable of inferring the kinetic 

parameters from the provided system dynamic information.  

     It should be pointed out that this initial database was used for both B2B and B2B-

NMPC control strategies and was then updated by their control techniques 

individually during on-line implementation for all the 90 batches, from which the 

merit of the batch-to-batch control can be demonstrated by gradually learning, from 

the previous batches, the system dynamic information while the process suffered from 

shifting among scenarios of abnormality. 

       For the controller implementation, the minimization problem of (7.2) for standard 

B2B was solved by the DE method (Lampinen, 2002; Hermanto et al., 2011), while 

the integrated B2B-NMPC was transferred to a soft-constrained problem of (7.10) and 

therefore a time-saving quadratic programming method was conveniently adopted 

(Hermanto et al., 2009; 2011). The tuning parameters for the studied two controllers 

are listed in Table 7.2.  

7.4.2 Results comparison and discussion 

For the batch-end product quality control of α-form polymorphic purity, performances 

of the B2B and integrated B2B-NMPC control strategies, when crystallization process 

underwent from Case 1 to Case 2 during the first 30 batches, are illustrated in Figures 
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7.4 and 7.5 for addition flowrate profiles of sulfuric acid, respectively. Figure 7.6 

shows the final product quality, while Figures 7.7 and 7.8 demonstrate the 

convergences of the four kinetic parameters. 

     It is observed that the integrated B2B-NMPC shows smoother and faster 

convergences in both flowrate profile and final product quality compared to the 

standard B2B control strategy, though not only the penalty weights for excessive 

changes inter and within the batches are the same for both control strategies, as shown 

in Table 7.2, but also the kinetic parameters updated by MPLS model converged at 

nearly the same rate, as can be seen from Figures 7.7 and 7.8. This well explains the 

fact that the open-loop nature of B2B results into the unsatisfied control performance 

when the model-plant mismatch are large. On the other hand, the robustness of the 

proposed JITL-EPSAC in Chapter 6 is further enhanced since under large model-plant 

mismatch, the JITL-EPSAC gradually improved the final polymorphic purity with the 

embedded first-principles model refined by MPLS model from batch to batch. 

     The second simulation study considered the crystallization process shifted from 

Case 2 to Case 3 in the 31th batch and continued the Case 3 to the 60th batch. 

Interestingly, the standard B2B slowly reached the final product quality set point, 

however, it then diverged as shown in Figure 7.6. To the contrary, the integrated B2B-

NMPC more steadily reduced the unexpected high polymorphic purity to the set point 

to maintain a constancy of the product quality. Worth to note is that the database for 

MPLS model was not regenerated around the current flowrate profile, but renewed by 

gradually incorporating the simulation runs computed by B2B or integrated B2B- 

NMPC techniques, upon which the convergences of the four kinetic parameters by 

MPLS model can also be found in Figures 7.7 and 7.8, respectively. 

     Lastly, the crystallization process returned to the nominal Case 1 from abnormal 

Case 3 after the 61th batch. Consistent results as of the above simulation studies for 

both control strategies are observed as given in Figures 7.6 and 7.8 for batches from 

61 to 90.  
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Table 7.1: Variations in model kinetic parameters for B2B control study: Case 1 is the 
nominal model, Case 2 has fast nucleation and slow growth rate parameters, Case 3 
has slow nucleation and fast growth rate parameters. 

Cases , 1bk   , 2gk   , 2gE   , 1gk   

1 111.00 10  79.84 10  0.888 71.07 10  
2 111.20 10  77.87 10  1.066 70.86 10  
3 110.80 10  61.18 10  0.710  71.28 10  

 

Table 7.2: Tuning parameters for two controllers. 

B2B Control B2B-NMPC Control 
1p W  1p W  

  5

,
1 10U i i


  W *   5

,
1 10U i i


  W  

  4

,
1 10dU i i

 W    4

,
1 10dU i i

 W  

 W I   

 1,1, 1
T

 w    

             * The diagonal elements of matrices, where i = 1, ..., N. 

 

Figure 7.2: Flowrate profiles for initial database generation of MPLS model (solid 
line: nominal optimal flowrate trajectory; dash line: random flowrate profiles around 

the nominal one). 
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Figure 7.3: Validation result of MPLS model for kinetic parameters estimation (dash 
line: process value; symbol: predicted data by MPLS). 
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Figure 7.4: Flowrate profiles of B2B control strategy from nominal process of Case 1 
to abnormal Case 2.  
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Figure 7.5: Flowrate profiles of B2B-NMPC control strategy from nominal process of 
Case 1 to abnormal Case 2.  
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Figure 7.6: Polymorphic purity of B2B (top) and B2B-NMPC (bottom) control 
strategies for Case 1, Case 2 and Case 3 (dash line: final quality setpoint; solid line: 

final quality). 
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Figure 7.7: Kinetic parameters updating of B2B control strategies for Case 1, Case 2 
and Case 3 (dash line: process value; solid line: estimated value). 
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Figure 7.8: Kinetic parameters updating of B2B-NMPC control strategies for Case 1, 
Case 2 and Case 3 (dash line: process value; solid line: estimated value). 
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7.5 Conclusions 

A new integrated B2B-NMPC control strategy based on a MPLS model and the JITL-

EPSAC technique was proposed in this chapter. The MPLS model is capable of 

inferring the model kinetic parameters from the system dynamic information obtained 

from previous batches, which updates the first-principles model for the JITL-EPSAC. 

While the robustness of the JITL-EPSAC helps to improve the batch-end product 

quality online even under large model-plant mismatch. Moreover, the proposed 

integrated B2B-NMPC was applied to the studied semi-batch pH-shift reactive 

crystallization process and also compared to a standard B2B control strategy. The 

simulation results showed that the proposed integrated control strategy performed a 

much smoother and faster convergence to the final product quality set point under 

multiple shifts of abnormal scenarios, showing the capability to maintain consistent 

production of on-spec product, which has never been demonstrated by direct design 

control or NMPC control discussed in previous works. 
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Chapter 8 

Conclusions and Future Work 

 

8.1 Conclusions 

In the wake of the recent research development prompted by the process analytical 

techniques (PAT) in batch cooling and antisolvent crystallization processes, the 

reactive crystallization process has also been receiving increasing interest (Borissova 

et al. 2005; Alatalo et al., 2008; Qu et al., 2009) due to its importance and wide 

application in industry. This thesis investigated the modeling, monitoring, and control 

of a semi-batch pH-shift reactive crystallization process using the polymorphic L-

glutamic acid as a model compound. 

      Chapter 3 presented a first-principles mathematical model for the semi-batch pH-

shift reactive crystallization process taking into account the effects of protonation and 

deprotonation of glutamic acid, crystal size distribution, polymorphic crystallization, 

and non-ideal solution properties. The kinetic parameters were estimated by Bayesian 

inference from experimental data available in the open literature (Alatalo et al., 2008; 

Qu et al., 2009), such as pH value, solute concentration by attenuated total 

reflectance-Fourier transformed infrared (ATR-FTIR), polymorphic purity by Raman 

spectroscopy, etc., from which marginal probability distributions of the parameters 

can be obtained by Markov Chain Monte Carlo (MCMC) simulation. Validation 

results showed that the model predictions were in good agreement with the 

experimental observations. To the best of our knowledge, this model is the first one in 

the literature capable of dealing with high supersaturation level, viz., kinetically 

controlled polymorphic crystallization, 
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     A moving-window multiway principle component analysis (MPCA) was put 

forward in Chapter 4 for online monitoring in the reactive crystallization process. 

Various in situ measurements, such as focused beam reflectance measurement 

(FBRM), could be incorporated to construct a batch-wise unfolded dataset 

summarizing a reference distribution of normal batches, against which the 

performance of independent new batches can be compared (Zhao et al., 2011). The 

moving-window idea of building multiple MPCA models at different time points was 

successfully introduced to tackle the transitional phase changes due to process 

nonlinearity and time-varying characteristics inherent in the pH-shift reactive 

crystallization process. In comparison with the conventional MPCA and multiway 

partial least squares (MPLS) (Nomikos and MacGregor, 1994; 1995a; 1995b), the 

proposed method can not only efficiently detect the abnormal batch, but also reflect 

the contributions of the control actions to revert the process to in-control state. This is 

a significant advantage in batch process operation to reduce the false alarms when 

control actions are implemented and working.  

      In Chapter 5, direct design control strategies based on solute concentration and 

polymorphic purity were developed to track the predetermined nominal optimal solute 

and polymorphic purity trajectories, respectively. The first method is the JITL-based 

C-control strategy capable of coping with highly nonlinear dynamics encountered in 

pH-shift reactive crystallization process. The second method tracked the polymorphic 

purity trajectory and achieved better performance than that of the solute concentration 

trajectory, indicating the deficiency of C-control strategy in dealing with the 

complicated polymorphic crystallization, whereas the polymorphic purity control 

gives improved performance because it is closely related to the progress of 

polymorphic crystallization and hence is more direct to the product quality. 

     Chapters 6 and 7 focused on the implementation of nonlinear model predictive 

control (NMPC) strategies in the batch/semi-batch crystallization process, which is 

rather limited, particularly, in the shrinking horizon mode for batch-end product 

quality control. Toward this end, the extended prediction self-adaptive control 
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(EPSAC), which iteratively linearizes the nonlinear process dynamics around the base 

input and output trajectories using convolution models, was reformulated as the JITL-

EPSAC in Chapter 6 using state-space models. Simulation studies showed the 

proposed EPSAC method outperformed the previous ESPAC method developed by 

Hermanto et al. (2009) in final product quality control for the pH-shift reactive 

crystallization process, as well as the ease of tuning of weights and reduction of 

computational efforts. 

      In an attempt to correct the bias left uncorrected during online batch-end product 

quality control in the presence of model-plant mismatch, a new integrated B2B-

NMPC control strategy based on a MPLS model and the JITL-EPSAC technique was 

proposed in Chapter 7 to explore the repetitive nature of batch process to update 

kinetic parameters in the process model using process information from previous 

batches (Paengjuntuek et al., 2008). Comparing to the conventional B2B control 

strategy, the new integrated JITL-EPSAC scheme showed a much smoother and faster 

convergence to the set point of final product quality under multiple shifts of abnormal 

scenarios, showing its capability of maintaining consistent production of on-spec 

product. This has never been demonstrated by direct design control or NMPC control 

discussed in previous works (Hermanto et al., 2011).   

8.2 Suggestions for future work 

To improve the current studies in the semi-batch pH-shift reactive crystallization 

process, further investigations are suggested as follows. 

     First, it would be of importance to further determine the root causes of the 

discrepancies between model predictions of crystal size distribution and experimental 

data in Chapter 3, for example, applying the ultrasound to the slurry samples to assure 

the disperse of small crystal particles adhered to the larger ones before laser 

diffraction measurement. Breakage and agglomeration effects could also be taken into 

account in the population balance model to characterize the possible effects of mixing 

intensity on secondary nucleation and large particles observed in crystal size 
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measurement. In respect to the noises of Raman spectroscopy and corresponding 

correction term for polymorphic purity measurement, further confirmations from 

experimental observations and more detailed calibration method are motivated.        

     Besides, the current work in Chapter 4 only took into account the monitoring effort 

of the multivariate statistical process control (MSPC) (Nomikos and 

MacGregor,1995a; Kano et al., 2011), which could be followed by the diagnosis step 

in future to detect the causes of the monitoring alarms, as well to classify the 

abnormal scenarios into several categories, such as, excessive nucleation, sluggish 

crystal growth, containments in solvent, or detector fouling, in order to take remedial 

control actions or emergent procedures accordingly (Kamaraju and Chiu, 2012). 

     In Chapter 5, instead of using the phase diagram of glutamic acid solubility against 

the temperature, alternative solubility of glutamic acid considering other ionic species 

against pH value at constant temperature (Hatakka et al., 2010) could also be 

considered for the direct design and control to calculate the pH value set point using 

the same JITL framework developed in this thesis. By including the dynamics of PID 

controller designed to regulate pH value, a comparative study of different direct 

design and control strategies, including the proposed polymorphic purity control by 

local time, is worthwhile investigation 

     In Chapters 6 and 7, other than the uncertainties in kinetic parameters considered 

to evaluate the robustness of proposed JITL-EPSAC and integrated B2B-NMPC 

techniques, other uncertainties due to the model structure and initial conditions of the 

crystallization process can be investigated in the future case studies. Furthermore, to 

address the possible slow convergence of the B2B-NMPC, the effect of weight 

parameters designed for the objective function on the convergence speed of the B2B-

NMPC warrants further studies.              

     Furthermore, the computational cost is always one of the largest barriers for the 

practical implementation of nonlinear model predictive control (NMPC), in which the 

state variables estimation by observers, like unscented Kalman filter (UKF) 

(Hermanto et al., 2009; 2011; Mesbah et al., 2011), and the modeling of crystal size 
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distribution by population balance model are always computationally demanding, in 

particular for reactive crystallization systems, where the mass balance equations are 

highly complex and interactive with population balance model. In this respect, it has 

been investigated that by tracking the necessary conditions of optimality, assuming it 

exists, the optimality of product quality is enforced by implementing the fundamental 

controllers, such as PI- or PID-type controllers (Welz et al., 2008; Srinivasan et al., 

2008; Gros et al., 2009; Chachuat et al., 2009). Hence, it would be of both theoretical 

and practical interests to apply those techniques to the semi-batch pH-shift reactive 

crystallization process in the future. 

      Lastly, crystallization is generally only one of the major separation and 

purification steps in process industries, for example, the reactive crystallization is 

usually serving as those initial steps to separate the product from raw materials, 

further unit operations, such as recrystallization, filtration, grinding, etc., are of 

equivalent importance in determining the end-user product qualities (Randolph and 

Larson, 1988). Therefore, from a plant-wide point of view, complete flow sheet 

simulation, monitoring, and control of a pilot- or large-scale crystallization process is 

alluring and contributing to the industrial practices, which is a good way for the 

current work in this thesis to be further directed.  
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