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SUMMARY

Next generation sequencing (NGS) techniques accelerate the genomic

and transcriptomic studies by providing high throughput, low cost se-

quencing. However, the overwhelming sequencing data poses demand-

ing challenges for data analysis and management. In this dissertation,

we discuss about two methods that process large-scale NGS data, i.e.,

PETA (Paired End Transcriptome Assembler) and UASIS (Universal

Automated SNP Identification System). Both of them are practical and

powerful tools to provide enhanced NGS services.

The first study deals with the problem of de novo transcriptome assem-

bly. Overwhelming RNA-seq reads, which are often very short, pose a

significant informatics challenge to reconstruct the full picture of tran-

scriptome, especially when a high-quality reference genome sequence is

not available to serve as a guide. Although the third-generation sequenc-

ing is able to provide full-length cDNA reads, we observe that they still

suffer from high error rates and low abundance. Accurate and efficient

assemblers are still essential for transcriptome analysis.

Nowadays, transcriptome assembly generally follows the development

of genome assembly, in which coverage information is widely and reli-

ably used for contig extension, error detection and correction. However,

highly fluctuated coverage in RNA-seq libraries makes genome assem-

blers inadequate to handle alternative splicing patterns. The data struc-

ture de Bruijn graph is widely used in transcriptome assembly projects.

Since the reads are chopped into short k-mers and the paired-end in-

formation is lost, current assemblers do not fully utilize the information

extracted from the datasets. They usually map the paired-end reads

back to the graph structure at a later stage. But the mapping task

itself is difficult especially when the graph is complex.



We develop a new de novo transcriptome assembler called PETA (Paired

End Transcriptome Assembler). We claim that the full utilization of raw

reads and paired-end information is able to construct a cleaner splicing

graph and generate more accurate and reliable transcriptome. We follow

the classical overlap-layout-consensus scheme and use the full reads for

extension, which are usually much longer than k-mers and hence more

reliable. Paired-end information is widely used for contig extension,

validation and graph processing. It is especially good at assembling low

coverage regions where k-mer based methods may fail. Our experiments

show that PETA outperforms other state-of-art de novo assemblers.

High-quality transcriptomes help researchers to do thorough Genome-

Wide Association Studies (GWAS), which typically focus on associa-

tions between Single Nucleotide Polymorphism (SNPs) and traits of

major diseases, such as cancer. RNA-seq has been applied to iden-

tify the isoforms that are differently expressed between the normal and

tumor samples. More researchers are utilizing RNA-seq techniques to

detect SNPs in the transcriptomes. For all of these GWAS applications,

PETA serves as a fundamental component, from which other analysis

can be performed. However, we have observed some problems in the

management of SNPs.

As NGS techniques become popular, overwhelming data introduces chaos

for efficient management of genomic variants, especially SNPs. There

has been an explosion of data available for public use. SNP databases

such as dbSNP, GWAS (formerly HGVbaseG2P), HapMap and JSNP

have collected millions of records. But the same SNP may be assigned

different identities in these databases. Our second study proposes a

novel nomenclature to achieve better management of SNPs on human

genome. We develop a SNP nomenclature centralization application

called UASIS (Universal Automated SNP Identification System) to re-

solve the heterogeneous representations of SNPs.

UASIS is a web application for SNP nomenclature standardization and

translation. Three utilities are available. They are UASIS Aligner,

Universal SNP Name Generator and SNP Name Mapper. UASIS maps

SNPs from different databases, including dbSNP, GWAS, HapMap and



JSNP etc., into an uniform view efficiently using a proposed universal

nomenclature and state-of-art alignment algorithms.

The thesis contributes to the bioinformatics community by providing

two powerful tools, PETA and UASIS, to interpret and analyze large

scale of Next Generation Sequencing data. They serve as fundamental

components to provide accurate transcriptomes and better data man-

agement for related studies like gene expression analysis and GWAS.
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Glossary

RNA Ribonucleic acid, which carries the

genetic information that directs

the synthesis of proteins.

mRNA Messenger RNA. An RNA product

that is transcribed from the DNA

and ultimately transported to a ri-

bosome where it is translated into

protein.

cDNA Complementary DNA. DNA syn-

thesized from a messenger RNA

(mRNA) template in a reaction

catalyzed by the enzyme reverse

transcriptase and the enzyme DNA

polymerase.

NGS Next Generation Sequencing. A

new set of technologies producing

thousands or millions of sequences

concurrently.

RNA-seq (or mRNA-seq) The most pop-

ular protocol for measuring RNA

levels using NGS technologies.

Read A sequence of DNA bases gener-

ated by a sequencer.

Mate In a paired-end RNA-seq library,

the two in-paired reads are called

the mate (or mate read) of each

other.

Insert size The distance between the paired

reads on the sequenced DNA or

cDNA.

de novo assembly Constructing a transcrip-

tome in the absence of an assem-

bled genome sequence for the or-

ganism.

EST Expressed Sequence Tag, a short

subsequence of a cDNA sequence

to identify genes.

PETA Paired End Transcriptome Assem-

bler. It is the name of our assem-

bler.

K-MER A length-k DNA nucleotide se-

quence.

TEMPLATE A sequence of nucleotide char-

acters. It grows longer and longer

when PETA runs.

JUNCTION A connection between two tem-

plates.

TAIL A subsequence located at either

end of a template. Its length is de-

fined by users and must be shorter

than the read length. It is used to

extend templates.

SPLICING GRAPH A graph whose ver-

tices are exonic segments and edges

are the connection among the ver-

tices. Each vertex has a set of in-

coming and outgoing edges.

COMPONENT A subgraph of the splicing

graph. All components are discon-

nected. Every vertex/edge belongs

to a unique component. There is

no edge between any vertices from

different components.

xvi
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Introduction

1.1 Transcriptomics

The sequencing of the human genome in 2001 is a milestone in the scientific land-

scape and a springboard for genetic studies (1). With the availability of the whole

human genome (GRCh37/hg19), researchers easily identify disease-causing muta-

tions in more than 2850 genes that are responsible for a large number of Mendelian

disorders. They also detect statistically significant associations of about 1100 loci

to more than 165 complex diseases and traits (2).

Nonetheless, studying human genetic disorders is a complex task, especially

for multifactorial diseases like cancer and neurodegenerative diseases (ND) (3).

Through genome-wide association studies (GWAS), about 88% of the genetic vari-

ants (single nucleotide polymorphisms (SNPs)) associated to complex diseases and

traits are found to be located within intronic or intergenic regions (4). This evi-

dence strongly indicates that these mutations are likely to have causal effects by

influencing gene expression rather than affecting protein function. Thus, despite

a deep genetic knowledge for many human genetic diseases, to date most of the

studies do not provide relevant clues about the real contribution, or the functional

role, of such DNA variations to disease onset.

In this scenario, whole-transcriptome analysis (termed transcriptomics (5)) is

increasingly acquiring a pivotal role as it represents a powerful discovery tool for

giving functional sense to the current genetic knowledge of many diseases.

1



1.2 Complex Transcriptome

The transcriptome is the complete set of transcripts in a cell, and their quantity,

for a specific developmental stage or physiological condition. It is indicative of gene

activity. Identifying the full set of transcripts, including large and small RNAs,

novel transcripts from unannotated genes, splicing isoforms and gene-fusion tran-

scripts serves as the foundation for a comprehensive study of the transcriptome (6).

The key aims of transcriptomics are: to catalogue all species of transcripts, includ-

ing mRNAs, non-coding RNAs and small RNAs; to determine the transcriptional

structure of genes, in terms of their start sites, 5’ and 3’ ends, splicing patterns and

other post-transcriptional modifications; and to quantify the changing expression

levels of each transcript during development and under different conditions (7).

A transcriptome consists of a small percentage of the genetic code that is tran-

scribed into RNA molecules - estimated to be less than 5% of the genome in humans

(8). By studying transcriptomes, we hope to determine when and where genes are

turned on or off in various types of cells and tissues. The number of transcripts can

be quantified to get some idea about the level of gene activity or expression in a

cell.

Besides GWAS studies, transcriptome analysis is a very powerful tool for vari-

ous applications. The transcriptome of stem cells and cancer cells is of particular

interest for researchers who seek to understand the processes of cellular differentia-

tion and carcinogenesis (9). And the transcriptome of human oocytes and embryos

is utilized to understand the molecular mechanisms and signaling pathways con-

trolling early embryonic development. It could theoretically be a powerful tool in

making proper embryo selection in in vitro fertilisation (10).

1.2 Complex Transcriptome

Over the past decade, advances in high throughput sequencing and innovations in

biochemical techniques have revealed a complex picture of the eukaryotic transcrip-

tiome (7).

A gene can be expressed to different proteins with diverse biological functions.

The key regulation mechanism is named alternative splicing, which keeps only a

set of selected exons during transcription. Different combinations of exons result

in proteins with different functions. Considering that only 1.2% of the transcribed

2



1.2 Complex Transcriptome

RNAs are finally translated to produce proteins (8), the regulated process alterna-

tive splicing is playing a key role during gene expression. In this process, particular

exons of a gene may be included within, or excluded from, the final processed mes-

senger RNA (mRNA), resulting differences in the proteins from alternatively spliced

mRNAs. Notably, alternative splicing allows the human genome to direct the syn-

thesis of many more proteins than would be expected from its 20,000 protein-coding

genes.

Alternative splicing is essentially universal in human multi-exon genes. Most

genes that contain three or more exons give rise to alternative isoforms that may

vary with the cell types or states. And these alternative spliced forms often have

different, even antagonistic functions (11). For example, Figure 2.3 illustrates the

spliced variants of human gene LRRCC1. In human genome, more than 75% of the

genes have at least three exons (12) (Figure 1.1).

Figure 1.1: Distribution of number of genes against number of exons - Only

24% of the genes contain less than three exons.

Figure 1.2: Transcript variants of gene LRRCC1 - All 5 transcript variants of

gene LRRCC1 annotated in UCSC.

Based on our observations, out of the 22,680 protein-coding genes annotated

in Ensembl database, 81.6% of them have at least two transcript variants. The

distribution is shown in Figure 1.3.
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Figure 1.3: Distribution of number of protein-coding genes against number

of transcript variants - There are totally 4,164 genes with only one transcript variant.

In an extreme case, the Drosophila Dscam gene generates more than 1,000

isforms, which are hypothesized to provide distinct identities to individual neuronal

dendrites and to avoid self-interaction between the processes of a single neuron (13).

Moreover, long intergenic noncoding RNAs (ncRNAs) have been discovered

more than the protein coding RNAs, exceeding 23,000 transcriptional units in mouse

(14, 15). Many genes utilizes multiple promoters, and the position of the RNA 5’

transcription start sites may shift under different environmental conditions.

1.3 Transcriptome Analysis and Gene Expression

Sequencing of RNA has long been recognized as an efficient method for gene dis-

covery and remains the gold standard for annotation of both coding and noncoding

genes (16). There are mainly two categories of technologies to deduce and quan-

tify the transcriptome, i.e., hybridization-based and sequencing-based approaches.

Hybridization-based approaches typically involve incubating fluorescently labelled

cDNA with custom-made microarrays or commercial high-density oligo microar-

rays (17, 18, 19). Specialized microarrays have also been designed. For example,

arrays with probes spanning exon junctions can be used to detect and quantify

distinct splicing isoforms (20). Hybridization approaches have high throughput

and relatively low cost. But they rely upon existing knowledge about the genomic

sequences. They also require high background levels owing to cross-hybridization

(21). Moreover, comparing expression levels across different experiments is often

difficult and can require complicated normalization methods.
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Sequence-base approaches directly determine the cDNA sequences by traditional

Sanger sequencing technology. Initially, cDNA or Expressed Sequence Tag (EST)

libraries are sequenced (22, 23). But it suffers from low throughput, expensive cost

and generally not quantitative. Another set of tag-based methods are then devel-

oped to overcome these limitations. They include serial analysis of gene expression

(SAGE) (24, 25), cap analysis of gene expression (CAGE) (26), and massively paral-

lel signature sequencing (MPSS) (27). Tag-based approaches give high throughput

and high resolution gene expression analysis. But the clear shortcoming is that they

are based on expensive Sanger sequencing. Moreover, only some of the transcripts

are analysed and isoforms are generally not distinguishable from each other.

Recently, advances in RNA sequencing are achieved as a result of new sequencing

methods called Next Generation Sequencing (NGS), which generates large volume

of short reads, providing high resolution to single nucleotide base. The details are

included in next section.

1.4 Next Generation Sequencing

Maxam-Gilbert sequencing and Sanger sequencing (28) are called first generation

sequencing technologies. Although they are introduced at the same time, Sanger

sequencing becomes the golden standard due to its higher efficiency and lower ra-

dioactivity. The sequencing cost and speed are improved continuously. The human

genome project uses Sanger sequencing to construct the euchromatic sequence of the

human genome (29). In 2005, the 454 sequencer publishes a significant improvement

in sequencing technologies. It sequences the genome of Mycoplasma genitalium in

a single run (30). In 2008, the 454 sequences the genome of James Watson (31),

marking another milestone in the extraordinarily fastmoving sequencing field. The

advantages in throughput, cost and speed brought forward by 454 are remarkable.

It marks the beginning of the Next Generation Sequencing (NGS) technologies, also

known as the Second Generation Sequencing (SGS) technologies.

Competitors appear within a short time. In 2006, scientists from Cambridge

introduce the Solexa 1G sequencer, claiming to resequence a human genome for

about $100,000 within three months (32). In the same year, another competing

sequencer the Agencourts SOLiD comes to the commercial market. It is also able

to sequence complex human genome with comparable cost and speed. All of the
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three companies are acquired by more established companies (454 by Roche, Solexa

by Illumina and Agencourt by ABI). More commercial sequencers are also pro-

vided by the Polonator (Dover/Harvard), the HeliScope Single Molecule Sequencer

technology (Applied Biosystems and Helicos) and PacBio (Pacific Biosciences).

Comparing with traditional Sanger sequencing, NGS techniques are based on

cyclic-array (33). Different sequencing platforms are quite diverse in sequencing

biochemistry as well as in how the array is generated, but the work flows are con-

ceptually similar (34). In shotgun sequencing with cyclic-array methods, common

adaptors are ligated to the fragmented genomic DNA, which is then subjected to dif-

ferent protocols that give an array of millions of spatially immobilized PCR colonies

or polonies. Then the polonies are tethered to a planar array, after which a single

microliter-scale reagent volume is applied to manipulate the arrays in a highly par-

alleled manner. Finally imaging-based detection is used to acquire sequences on all

tethers in parallel.

NGS platforms provide sequencing services with higher throughput and much

lower cost. Figure 1.4 and 1.5 show the dramatical drop of the sequencing costs per

genome and per Mb (35) since 2001.

Figure 1.4: Cost per genome - The sequencing cost per genome from Sep 2001 to

Jan 2014. Source: http://www.genome.gov/sequencingcosts/

NGS motivates a vast volumn of applications, allowing for huge advances in

many fields related to the biological sciences (36). Figure 1.6 briefs some of the

important NGS applications in the academy and industry (37).
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Figure 1.5: Cost per Mb - The sequencing cost per Mb from Sep 2001 to Jan 2014.

Source: http://www.genome.gov/sequencingcosts/

Figure 1.6: NGS applications - The applications accelerated by NGS technologies
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In the following subsections, we check existing NGS platforms and then brief

three major NGS applications.

1.4.1 NGS Platforms

As costs fall and sequencing quality climbs, NGS sequencers are no longer confined

to a handful of high-powered genomics centers, but are appearing in even small

laboratories (38). A substantial proportion of researchers carry out their NGS

activities at commercial service provider. Figure 1.7 is a complete list of current

NGS platforms in academy and industry (38). Based on some marketing surveys

(39), Illumina HiSeq 2000/1000 is the most popular NGS platform in the market

(more than 30% of the respondents).

Figure 1.7: NGS platforms - Existing NGS sequencers. Some of them are termed

Third Generation Sequencing, such as PacBio

Figure 1.8 lists the cost of mainstream sequencers in 2008 (34). Since the initia-
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tion of 1000 genome project, the cost of sequencing an individual genome has been

rapidly decreasing and will likely reach $1000 per person within in near future (37).

Figure 1.8: Cost of NGS platforms - The cost is based on survey in 2008.

1.4.2 Whole Genome Sequencing and GWAS

Emergence of NGS techniques boosts a huge wave of whole genome sequencing.

According to the online GOLD database of Complete Genome Projects, there are

totally 18,940 genomes sequenced up to now. Majority of them are finished within

the last 20 years. More and more species, such as Baiji (Lipotes vexillifer) (40) and

mulberry tree Morus notabilis (41), are being sequenced. The existence of reference

genome largely aids the understanding of all related fields.

Sequence analysis has been widely used to guide the therapy of various complex

diseases such as cancer (42, 43). The NGS approach holds advantages over tradi-

tional methods, including the ability to fully sequence large numbers of genes in a

single test and simultaneously detect deletions, insertions, copy number alterations,

translocations, and exome-wide base substitutions in all known cancer-related genes.

It is much easier and cheaper to sequence the whole genome of patients at different

stages, such that studying the development of the cells is possible.

All of these initiate the substantial advances in Genome-Wide Association Study

(GWAS). A genome-wide association study is an approach that involves rapidly

scanning markers across the partial or complete set of genomes, of many people to

find genetic variations associated with a particular disease (44). With the associa-

tion information, researchers are able to develop better strategies to diagnose, treat

and prevent the diseases. The advances include type 1 (45) and type 2 diabetes

(46), inflammatory bowel disease (47), etc.

GWAS typically focuses on the associations between Single Nucleotide Poly-

morphism (SNPs) and traits of complex diseases. The associated SNPs are then

considered to mark a region of the human genome which influences the existence
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of diseases. Researchers usually sequence the genome of tumor and normal samples

to identify the associations. More and more studies utilize NGS sequencing to ob-

tain transcriptome of the samples and analyze the different sets of SNPs and genes

expressed (48, 49, 50).

1.4.3 ChIP-Seq

ChIP-Seq combines chromatin immunoprecipitation (ChIP) with massively parallel

DNA sequencing to identify binding sites of DNA-associated proteins (51). The

main purpose of ChIP-seq is to generate a genome-wide map of a variety of histone

modifications to define different types of chromatin domains and their relationship

to the regulatory state of genes.

In 2007, the Solexa massively parallel sequencing technique is applied to chromatin-

immunoprecipitated material from human CD4+ T cells (52), where two DNA-

binding proteins - RNA polymerase II (RNA POL II) and the chromatin boundary

marker CTCF - are analyzed. In addition, the ENCODE and modENCODE con-

sortia have designed and performed more than a thousand individual ChIP-seq

experiments for more than 140 different factors and histone modifications in more

than 100 types of cells from four different organisms D. melanogaster, C. elegans,

mouse, and human (53).

1.4.4 RNA Sequencing

RNA-seq is a technology that uses the capabilities of NGS techniques to reveal a

snapshot of RNA presence and quantity of a particular cell at a given moment,

restricted in some circumstances. Since our first study is utilizing RNA-seq data,

we are going to discuss more details about the advantages, data characteristics and

bioinformatics applications of RNA-seq in next chapter.

1.5 Challenges of NGS

We have described various advantages brought by Next Generation Sequencing.

However, NGS introduces more computational and management challenges due to

higher error rates, shorter read length and unprecedented volumes of data. Table 1.1
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compares the data characteristics between NGS sequencers and traditional Sanger

sequencing techniques (54).

Sequencer 454 GS FLX HiSeq 2000 SOLiDv4 Sanger 3730Xl

Sequencing

mechanism

Pyrosequencing Sequencing

by synthesis

Ligation, two-

base coding

Dideoxy chain

termination

Read

length

700bp 50SE, 50PE,

101PE

50+35bp,

50+50bp

400-900bp

Accuracy 99.9% 98% 99.94% 99.999%

Reads 1M 3G 1200-1400M -

Output

data/run

0.7G 600G 120G 1.9-84Kb

Time/run 24 Hours 3-10 days 7 days for SE

14 days for PE

20 Mins - 3 Hours

Table 1.1: Comparison of data characteristics

Various bioinformatics tools are developed to capture the NGS wave (34). Some

important computational tools include: (i) full/spliced alignment of short reads to

reference genome; (ii) base-calling and/or polymorphism detection; (iii) genome/transcriptome

assembly from single-end or paired-end reads; (iv) genome annotation, management

and visualization.

The most demanding challenge is the overwhelming NGS data. Considering

the capabilities of current computers, the data processing time falls far behind the

data generation rates. This doesn’t even count the time to perform thorough data

analysis. High performance computing and cloud computing are steadily applied

to the NGS data processing and management.

According to a recent survey conducted by Bio IT World (39), more than 50% of

the 232 respondents suggest that the biggest challenge for NGS to move to the clinic

is data analytics and data management. For example, we have observed that for

an identical SNP, there exists multiple identities in public datasets. That results in

ambiguities and confusion for researchers. In our second study UASIS, we actually

propose an integrated platform for better SNP management.
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1.6 Contributions of the Thesis

With the rapidly evolving NGS technologies, overwhelming NGS data has posed

critical challenges to the whole bioinformatics community. In this thesis we intro-

duce two powerful tools, PETA and UASIS, for better interpretation and manage-

ment of the NGS data.

We have developed a de novo transcriptome assembly tool PETA (Paired End

Transcriptome Assembler) to efficiently construct accurate and full-length tran-

scripts from RNA-seq reads, without the existence of the reference genome.

Although researchers have sequenced a large number of genomes in the last 20

years, a lot of studies are conducted without the reference genome. Due to com-

plexity of eukaryotic species, they are difficult to sequence completely. According

to the statistics from GOLD Genomics Online Database (55), currently the number

of completed eukaryotic genomes is 918, which is much lower than the number of

bacterial genomes (17,692).

Our assembler contributes to the transcriptomics study by providing a powerful

tool to reconstruct a full picture of transcriptome in the cell. PETA, as the name

indicates, is tailored for paired-end RNA-seq reads. PETA is based on a classical

overlap-layout-consensus strategy to grow longer contigs. The reads supported by

their mates will be weighted heavily to contribute more to the determination of

next base. It also ensures that every transcript reported is supported by paired-

end reads whose insert size is within the correct range. We utilize the full-length

paired-end reads to construct a simpler, cleaner and more reliable graph structure

and capture all splicing patterns in a conservative manner.

The experiments on Schizosaccharomyces pombe and human RNA-seq datasets

shows advanced features comparing with existing assemblers.

In the second study UASIS (Universal Automated SNP Identification System),

we propose a novel SNP nomenclature, which use unique information of a SNP to

define the identities. The universal nomenclature is informative, unambiguous and

easy to maintain.

Meanwhile, we develop three utilities, namely UASIS Aligner, Universal SNP

Name Generator and SNP Name Mapper. The integrated application maps the

SNP identities from different databases, including dbSNP, GWAS, HapMap and
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JSNP etc. It is extremely useful when the researchers are working on literature of

specific SNPs.

1.7 Organization of the Thesis

Here is the organization of the remaining content of the thesis. In Chapter 2, we

brief some biological backgrounds to help understand the thesis better. We also

introduce more details about RNA-seq protocols and applications. Chapter 3 dis-

cusses the problem of transcriptome assembly and existing approaches. The Prob-

lem Statement can be found in Chapter 4, where we formulate the transcriptome

assembly problem in a systematic manner. Meanwhile, we illustrates the workflow

of PETA in a global view. Chapter 5 focuses on the hashing strategies we utilize

for fast pairwise alignment, which is needed to pick overlapping reads efficiently.

Chapter 6 and Chapter 7 describe the core implementation of our assembler, in-

cluding read extension, graph construction and transcripts extraction. In Chapter

8 we show and analyze the experimental results on two real RNA-seq datasets.

In Chapter 9, we introduce the novel integrated system UASIS in the perspective

of data management. We discuss problems of current SNP nomenclatures and then

introduce the implementations of UASIS. Finally we conclude the thesis.
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2

Basic Biology and RNA

Sequencing

In this chapter, we brief some biological backgrounds, including Single Nucleotide

Polymorphism (SNP) and RNA-seq protocol. We summarize the RNA-seq tech-

niques and the data characteristics. Since PETA is tailored to paired-end RNA-seq

reads, we will introduce the paired-end protocols. The emerging/future RNA-seq

techniques are also introduced.

2.1 Basic Biology

2.1.1 DNA

Human beings are keeping high enthusiasm in understanding the nature. How does

the life evolves? Why are some people healthy and others ill? In April 1953, James

Watson and Francis Crick present the double helix structures of Deoxyribonucleic

acid, or DNA, starting another amazing era. The sentence ”This structure has novel

features which are of considerable biological interest” may be one of science’s most

famous statements (56).

DNA is the molecule that carries genetic information from one generation to the

other. Almost all species - bacteria, plants, yeast and animals - use DNA as the same

building blocks, except that some viruses use RNA instead. Most DNA molecules
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consist of two biopolymer strands coiled around each other to form a double helix

structure. The two DNA strands are composed of four kinds of nitrogen-containing

nucleotides: guanine (G), adenine (A), thymine (T), and cytosine (C), as well as a

monosaccharide sugar called deoxyribose and a phosphate group. The nucleotides

are paired following the base pairing rules (A with T and C with G). Hydrogen

bonds bind the nitrogenous bases of the two separate polynucleotide strands to

make double-stranded DNA. Figure 2.1 illustrates the DNA structure.

Figure 2.1: Double helix structure of DNA - DNA is a winning formula for

packaging genetic material. The structure is identical within almost all species.

DNA strands have directionality. One end of a DNA polymer contains an ex-

posed hydroxyl group on the deoxyribose; this is known as the 3’ end of the molecule.

The other end contains an exposed phosphate group; this is the 5’ end. In conver-

sion, we also name the direction of the strand from 5’ to 3’ as the forward direction,

and the opposite direction is named the backward direction.

Usually, we do not take the 3-dimensional structure into consideration. Instead,

we use only sequential nucleotide bases to represent the DNA. For example, the

human genome is composed of approximately 3 billion base pairs. However, the

real topology of DNA is more complex. The two strands may be bend to interact

with specific proteins during gene expression.
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2.1.2 Single Nucleotide Polymorphism (SNP)

SNP, or Single Nucleotide Polymorphism, is defined as a polymorphism at a single

base with a frequency of more than 1% in the population (57, 58). Alternative bases

at the locus of SNPs are called alleles. They occur more frequently in non-coding

regions than coding regions. On human genome, there is one SNP in every 300

nucleotides on average. Majority of the SNPs do not have affects on health. But

some of them are proved to influence complex diseases. For example, the APOE

gene influences postmenopausal osteoporosis through SNP-SNP interactions (59).

SNPs are the most common type of genetic variations among people. Around

90% of the genome variations are limited to SNPs (60). As of 13 May 2014, dbSNP

has already collected 62,387,846 SNPs on human genome. They have been used in

Genome-Wide Association Studies (GWAS), for instance, as high-resolution mark-

ers in gene mapping related to diseases or normal traits.

2.1.3 Gene

The concept of gene has evolved and becomes more complex (61). Generally speak-

ing, ”A gene is a locatable region of genomic sequence, corresponding to a unit of

inheritance, which is associated with regulatory regions, transcribed regions, and

or other functional sequence regions” (61, 62). It is a blueprint for a protein, which

determines the functionality of the cells.

A gene consists of transcribed regions and regulatory regions. A typical struc-

ture of a gene is shown in Figure 2.2, where the exons will be transcribed to form

RNA molecules and the introns will be spliced out. However, the same gene may be

expressed differently in different cells, which means, a gene may produce different

proteins depending on the regulations. In this case, the concept of an exon/intron

is not absolute. As novel transcripts are keeping being discovered, some introns are

found to be transcribed. In convention, as long as a DNA segment is transcribed

into at least one RNA molecules, we categorize it to be an exon.

Figure 2.2: Gene structure - Exons and introns of the gene.
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Despite of the importance of genes, only 1.5 percent of the DNA in the genome

actually codes for genes (29). Majority portion of the genome is transcribed to

introns, retrotransposons and seemingly a large array of noncoding RNAs (63, 64).

The vast majority of the genome is far from well understood.

2.1.4 RNA and Alternative Splicing

Ribonucleic acid (RNA) is a family of large biological molecules that play important

roles during gene expression. Cellular organisms use messenger RNA (mRNA) to

convey genetic information using the nucleotides guanine (G), adenine (A), uracil

(U), and cytosine (C). mRNAs direct synthesis of specific proteins, while many

viruses encode their genetic information using an RNA genome.

There are also non-coding RNAs (ncRNAs) that are important in gene regu-

lation. The most prominent ones are transfer RNA (tRNA) and ribosomal RNA

(rRNA). A tRNA is a small RNA with about 80 nucleotides. It transfers a specific

amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis

during translation. rRNAs are the catalytic component of the ribosomes. Other

members of the large RNA family include mircoRNA (miRNA), piwi-interacting

RNA (piRNA), small interfering RNA (siRNA) and many more.

Synthesis of a single strand RNA is usually catalyzed by the enzyme RNA poly-

merase using DNA as a template, a process known as transcription. The immature

pre-mRNAs are often modified by enzymes after transcription. For example, al-

ternative splicing removes the introns on the pre-mRNAs. Then another process

translation will synthesize a protein using the mRNA as the template.

There are millions of proteins in human cells, while the number of protein-coding

genes are approximated to be around only 20,000. Alternative splicing makes it

possible for a gene to code for multiple different proteins. In this process, particular

exons of a gene may be included within, or excluded from the processed mRNA. The

process is illustrated in Figure 2.3. Alternative splicing is a normal phenomenon

in eukaryotes. Based on our observations, more than 80% of the genes in Ensembl

database record at least two transcript variants.
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Figure 2.3: Transcript and translation - The same gene can be translated into

three different proteins through alternative splicing.

2.1.5 Complementary DNA (cDNA)

In genetics, complementary DNA (cDNA) is the DNA sequence synthesized from

a mRNA template in a reaction performed by the enzymes reverse transcriptase

and DNA polymerase. cDNA is a synthesized chemical product, rather than a real

molecule in the cells. Due to the single-strand feature and degradation, RNAs are

more susceptible than DNA. In this case, the term cDNA is typically used to refer

to an mRNA transcript’s sequence, expressed as DNA bases (GCAT) rather than

RNA bases (GCAU).

Complementary DNA is often used in gene cloning or as gene probes or in the

creation of a cDNA library. To sequence a RNA, researchers usually synthesize the

cDNA library at the first place.

2.1.6 Sequencing

Sequencing is the process of determining the primary structure of a stretch of bi-

ological molecules (DNA, RNA, etc.). The result is a symbolic linear depiction

known as a sequence which succinctly summarizes much of the atomic-level struc-

ture of the sequenced molecule. A sequence is represented by strings of nucleotide

bases (A, C, U/T, and G). Due to the double helix structure of DNA, the length

of a sequence is usually in the unit of base pair, or bp. For example, the complete

human genome is sequenced in 2004, with around 3 billion base pairs.
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2.2 RNA Sequencing

Before the complete of human genome in 2004, predictions about the protein-coding

genes are error prone and the roles of noncoding RNAs (ncRNAs) are very limited.

Introns, interspersed repeated sequences and transposable elements are considered

as junk DNA and evolutionary debris, and alternative splicing is an exception rather

than the rule.

In 2008, RNA-seq (RNA sequencing), which sequences the complete RNA collec-

tion using Next Generation Sequencing techniques at massive scale, starts to reveal

the complex picture of various transcriptomes in a high resolution. It outperforms

other techniques by providing lower cost, higher coverage, better resolution and

faster speed. New methodologies of RNA-seq have been providing a progressively

better understanding in the transcriptomes of prokaryotes and eukaryotes (65).

”RNA-seq is expected to revolutionize the manner in which eukaryotic transcrip-

tomes are analyzed” (7). Since the first wave of RNA-seq applications introduced

by (66, 67, 68, 69), RNA-seq has been applied to various transcriptome projects.

All these studies bring more comprehensive understanding of transcription start-

ing sites, the cataloguing of sense and anti-sense transcripts, improved detection

of splicing patterns and fusion genes. It even allows the selection of specific RNA

molecules before sequencing, allowing more focused studies on targeted molecules.

Figure 2.4 compares three categories of RNA analysis techniques microarray, EST

sequencing and RNA-seq (7).

Although diverse RNA-seq protocols use different approaches, all of them share

a general idea as shown in Figure 2.5 (7, 65). First of all, a population of RNA

(total or partial) is converted to a cDNA library with adaptors attached to one

end or both ends. Each molecule, with or without amplification, is then deeply

sequenced on some NGS platforms. Filtering strategies may be applied to clean

and report the single-end or paired-end reads.

Meanwhile, advances of RNA-seq accelerate the developments of Genome-Wide

Association Studies (GWAS), which help to diagnose, treat and prevent complex

diseases such as diabetes and cancer (70).

19



2.2 RNA Sequencing

Figure 2.4: Comparison of three RNA analysis techniques - RNA-seq provides

single-base resolution, high coverage and reads with less noise.

Figure 2.5: General Procedure of RNA-seq - The general process to generate

RNA-seq reads.
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2.3 Challenges of RNA-seq

Similar to other NGS techniques, RNA-Seq faces several computational challenges,

including the development of efficient methods to store, retrieve and analyze large

amounts of data. The bioinformatics tools must reduce errors in image analysis and

base-calling and remove low-quality reads. We here discuss about the characteristics

of RNA-seq data and the algorithmic challenges to develop supporting tools.

2.3.1 Sequencing Errors

All library construction approaches of RNA-seq experiments introduce unavoidable

biases, which can lead to the erroneous interpretation of the data (71, 72).

The ideal approach should be able to identify and quantify all kinds of RNAs

in full-length, including long mRNAs and other smaller regulation RNAs. During

library construction, large RNA molecules must be fragmented into smaller pieces

(200bp to 500bp) to be compatible with most deep sequencing technologies. The

common methods for fragmentation include RNA fragmentation (RNA hydrolysis

or rebulization) and cDNA fragementation (DNase I treatment or sonication). RNA

fragmentation introduces little bias over the transcript body, while the transcript

ends are depleted (7). Conversely, cDNA fragmentation favours the 3’ end of the

transcripts.

During the PCR amplification, it is known that not all fragments are amplified

with the same efficiency. Many identical short reads can be obtained from the

cDNA libraries. These could be genuine reflection of abundant RNAs, or may be

PCR artefects. One way to distinguish these reads is to compare reads from multiple

replicates.

Moreover, producing strand-specific RNA-seq data is currently laborious be-

cause of many extra tedious steps or direct RNA-RNA ligation (69).

Biases also happen for RNA-seq extraction using Trizol (73). Selective loss

occurs for GC poor or highly structured small RNAs at low RNA concentrations.

There are many more errors can be introduced during library preparation (71).

Sequencing errors occur in the RNA-seq data as a result of mistakes in base

calling or the insertion/deletion of a base. For example, the error rate of Illumina

GenomeAnalyzer is up to 3.8%. PacBio, which produces longer reads with length
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of around 2500bp, reports a error rate as high as 15%. Although error correction

algorithms are developed (74), it is still a problem for RNA-seq applications.

2.3.2 RNA-seq Alignment

Once the short RNA-seq reads are obtained, the first task is to map the reads to

the reference genome. There are powerful pairwise alignment tools, such as MAQ

(75), Bowtie/Bowtie2 (76) and BWA (77). However, due to alternative splicing,

some short transcriptomic reads span the exon junctions. Such that two portions

of the reads should be aligned to two different positions on the genome. For com-

plex transcriptomes it is even more difficult since alternative splicing occurs more

frequently.

For large transcriptomes, alignment is complicated because a read can be uniquely

mapped to multiple locations on the genome. Short reads from highly repetitive

regions have high copy numbers. A possible solution is to assign the multi-matched

reads based on the reads mapping to their neighbouring unique regions. Alter-

natively, if the RNA-seq is constructed following a paired-end protocol, which se-

quences both ends of a DNA fragment, the multi-matched reads can be assigned to

a unique locus based on their paired reads.

A lot alignment tools are developed to map the spliced reads, including the

BLAST-like alignment tool (Blat) (78), GEM (79), MapSplice (80) and TopHat

(81).

2.3.3 Transcriptome Assembly

Transcriptome assembly is another important fundamental application for down-

stream analysis. It assembles contigs/transcripts which can be used to identify and

quantify the genes expressed in the sample. Based on the assembly strategies, there

are three kinds of assemblers. The transcripts are assembled with or without the

reference genome. And some transcriptome assemblers combine the two strategies

to achieve better results. We describe more details about this topic in next Chapter.
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2.4 Paired-end RNA-seq

A RNA-seq library can be designed to be paired-end (PET), which provides extra

information for transcriptomics. The principal concept of the PET strategy is

the extraction of only short tag signature information from both ends of target

DNA fragments. The distance between pairs of reads can be estimated based on

sequencing protocol. By mapping the paired tag sequences to reference genomes,

researchers are easier to determine the boundaries of the target DNA fragments in

the genome landscape. The process is illustrated in Figure 2.6 (82).

Paired-end RNA-reads provide extra information to determine the origin of the

reads. The distance between paired reads (or insert size) is roughly 200bp to 500bp,

which is able to go across large portion of repetitive regions. For transcriptomics,

the paired-end reads can be utilized to identify novel splicing events and fusion

genes (83). Our assembler PETA makes full use of the paired-end information to

reconstruct accurate transcripts.

2.5 Long Read RNA-seq

As NGS technologies evolve rapidly, read length from third generation RNA se-

quencers is getting longer. Pacific Biosciences (PacBio) develops a pioneering tech-

nique SMRT (84), short for single molecules real-time, to provide commercial Long

Read RNA-seq service. The sequencer PacBio RS is capable of generating reads

up to several kilobases (averaging 3,146 bases), which may cover a single transcript

to its full length (85, 86) without any assembly process. In future, if this technol-

ogy reaches a throughput that is comparable to the second-generation technologies,

the transcriptome analysis would be much easier. The assembly process will be

probably eliminated (6).

PacBio is capable of generating sequence without bias. It is also able to generate

regions with high GC content. However, there are limitations to apply the long read

RNA-seq to practical applications (86, 87). First of all, the error rate is too high

to be acceptable. In experiments, the sequencing error rate is as high as 15%.

Secondly, the throughput is moderate (50,000 reads per single molecule real time

(SMRT) cell). Meanwhile, advantages in read length come at a much greater cost

per nucleotide (87).
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Figure 2.6: Schematic view of PET methodology - PET construction can be

done through cloning-based or cloning-free procedures. Most NGS sequencers support

paired-end sequencing.
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PacBio provides error correction tools to clean the reads. Some researchers

combine the reads from second and third generation sequencing to obtain a com-

prehensive characterization of the transcriptome of the human embryonic stem cell

(86). From this perspective, transcriptome assembly process is still an essential step

for thorough analysis.
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Transcriptome Assembly

3.1 Introduction

Compared with traditional Sanger sequencing technique, NGS platforms achieve

significantly lower production costs and higher throughput (34). However, the reads

produced by NGS are much shorter than Sanger reads, currently 400-500 basepairs

(bp) for 454, 50-200bp for Illumina and 100bp for SOLiD. Large volume of NGS

short reads pose significant challenges for bioinformatics tools. At the early stage

of commercial availability, a variety of software tools are tailored to process and

analyse the data. They include: (i) alignment of sequence reads to a reference; (ii)

base-calling and/or polymorphism detection; (iii) de novo assembly, from paired or

unpaired reads; and (iv) genome browsing and annotation. Shendure and Ji (34)

gave a list of NGS tools available.

In this study, we focus on the assembly applications only. First of all, it involves

piecing together millions of low quality, short reads. Typical RNA-seq libraries are

very large (tens to hundreds of gigabases), which require strong computational

power and large memory. A dozen genome assemblers are developed for NGS data,

including ALLPATHS (88), Velvet (89), ABySS (90) and PE-Assembler (91), etc.

But these tools cannot be directly applied to RNA-seq libraries.

First of all, DNA sequencing depth is supposed to be uniform across the whole

genome. But the coverage of RNA-seq can vary by a several orders of magnitude.

Genome assemblers frequently make use of the uniform coverage to perform er-

ror detection/correction and distinguish repeat regions, such as Pebble and Rock
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Band algorithms in Velvet (89). But these approaches cannot be transplanted to

transcriptome assembly directly. Secondly, availability of strand specific RNA-seq

protocols is more common (92). We need to take advantage of the strand informa-

tion to improve the performance (93, 94). Finally, the same gene could be expressed

differently, resulting in various combinations of the exons. This makes genome as-

semblers inadequate to resolve the ambiguities (6).

The aim of a transcriptome assembler is to reveal the transcription structure

from millions of short reads. Ideally, it should be able to report a set of transcripts

under the particular environment, as well as all splicing patterns accurately. The

overall strategy is to investigate the overlapping between reads and reconstruct the

transcripts.

Currently, transcriptome assemblers mainly fall into three categories: reference-

based (or ab initio), de novo (without a reference) and the combined strategy.

Two leading reference based packages are Cufflinks (9) and Scripture (95). Figure

3.1 illustrates the overall strategy of the reference based assemblers (6). Generally

speaking, all reads are mapped to the reference genome using a splice-aware mapper

(Tophat (96) for Cufflinks and Scripture). Available mappers include SpliceMap

(97), MapSplice (98) and GSNAP (99), etc. Then a graph is built by clustering the

short reads. Finally, individual isoforms are determined after traversing the graph.

De novo approaches assemble the transcripts directly from the RNA-seq libraries

without the help of reference genome. They are mostly based on de Bruijn graph

(100, 101, 102, 103, 104) as shown in Figure 3.3. Different tools implement various

customizations on the graph. Details of the de Bruijn graph and comparison of

current de novo transcriptome assemblers are given in Section 3.2.

Some researchers talked about combining the former two strategies to create

a more comprehensive transcriptome (105). By combining the two approaches,

one can take advantages of the high sensitivity of reference based assemblers and

leverage the strong capability of novel transcript detection of de novo assemblers.

3.2 Current Approaches

In this Section, we review de novo transcriptome assembly approaches specifically.

Since most of state-of-art de novo assemblers are based on de Bruijn graph, we first
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Figure 3.1: Reference-based transcriptome assembly -

Figure 3.2: De Bruijn graph -
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introduce the graph structure briefly. Then we compare the strategies employed

by leading assemblers Trans-ABySS (106), Trinity (107), Oases (108), IDBA-Tran

(103) and SOAPdenovo-Trans (104). Meanwhile, we analyse the advantages and

disadvantages of them.

3.2.1 De Bruijn Graph

de Bruijn graph was originally invented by the Dutch mathematician Nicolass de

Bruijn to solve the ”superstring problem” (109). It was firstly brought to bioinfor-

matics in 1989 to assemble k-mers generated by sequencing by hybridization (110).

Here a k-mer means a sequence of characters with a length k.

In bioinformatics, de Bruijn graphs are applied for assembly applications. A

de Bruijn graph is a directed graph where an edge represents a k-mer and a node

is assigned a (k − 1)-mer. In the graph, a node is directly connected to another if

there exists a k-mer whose prefix is the (k − 1)-mer of the former node and whose

suffix is the latter (Figure 3.3).

Figure 3.3: A sample de Bruijn graph - Right side is the de Bruijn graph.

Here k value is 3. The sequences on the edges represent k-mers. Numbers on the

edges indicates an Eulerian cycle , which produces a candidate circular genome ”ATG-

GCGTGCA”.

Every read is first broken into overlapping k-mers. For example, in Figure 3.3,

the read ”CGTGCAA” is broken into k-mers ”CGT”, ”GTG”, ”TGC”, ”GCA” and

”CAA”. For all k-mers detected in the reads, nodes are created to model the con-

nectivity. This process constructs a de Bruijn graph. Then the assembly problem

is transformed to an equivalent problem of finding an Eulerian cycle (Eulerian path

if the chromosome is linear). An Eulerian cycle is a path which visits all edges only

once and ends at the node where it begins. Finding an Eulerian cycle allows one

to reconstruct the genome by forming an alignment in which each successive k-mer

is shifted by one position. It avoids computationally expensive tasks such as large
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volumn of pairwise alignments. An Eulerian cycle is a candidate of the original

genome (102), as Figure 3.3 shows. For transcriptome assembly, an Eulerian path

gives one candidate transcript.

Euler’s theorem had proved that there must be an Eulerian cycle as long as we

have located all k-mers present in the genome (102, 111).

In real assembly applications, de Bruijn graphs are customized to tackle poten-

tial problems. There are some hidden assumptions in a de Bruijn graph that are

not held true for real datasets. For example, theoretically it is required that all

k-mers present in the genome can be generated, all k-mers are error free and each

k-mer appear at most once. However, sequencing error is very common for NGS

projects. It introduces a large number of false nodes, resulting in a massive graph

with millions of possible (mostly implausible) paths.

Modifications are applied to make de Bruijn graph applicable. A ”read break-

ing” procedure helps to ensure that all k-mers appearing in the genome are detected

(112). In 2001, an error correction strategy of the reads was applied before the real

assembly process was started (100). The error correction is now commonly used.

Later, an algorithm was proposed to remove short and noisy vertices from the de

Bruijn graph efficiently. Meanwhile, to handle repeats, k-mer multiplicity, which

indicates how many time a k-mer appears, was integrated into the graph.

Modern genome assemblers based on de Bruijn graph include EULER-SR (113),

Velvet (89), ALLPATHS (88), ABySS (90) and SOAPdenovo (114). For comparison

of these genome assemblers, please refer to (115, 116).

There are three major problems in the de Bruijn based approaches (117).

• Incorrect k-mers: sequencing errors will result in very complicated graph

structure, from which the plausible paths are difficult to be determined.

• Gap problem: when k value is large or for those regions with low sequencing

depths, some k-mers are missing.

• Branching problem: for repeat regions or highly similar transcripts, there

maybe too many available branches. If k value is small, this problem becomes

severe.
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3.2.2 De Novo Transcriptome Assemblers

Table 3.1 is a list of state-of-art transcriptome assemblers. Within the eight de novo

packages, ”Multiple-k” is a general strategy which is employed by many assemblers.

For example, Rnnotator (118) is a pipeline based on Velvet (89). Oases (108) is a

transcriptome version of Velvet. It reports the transcripts that are merged from the

resulting transcripts of multiple runs (with differnt k). Trans-ABySS runs ABySS

multiple times for 26 ≤ k ≤ 50 (106). IDBA-UD (119) focuses on a microbial

environment for single cell sequencing. It also relies on the results of running Velvet

with multiple k values. IDBA-Tran (103) starts from a lower k value (20) to build

a noisy de Bruijn graph first, and then use the vertices as input to build a cleaner

graph with a longer k. This strategy works to prune false connections in the graph.

Assembler De novo? Parallelism Support

paired-

end

reads?

Support

stranded

reads?

Support

mul-

tiple

insert

size?

output

tran-

script

counts

Reference

G-Mo.R-Se No None No No No No (120)

Cufflinks No MP Yes Yes Yes Yes (9)

Scripture No None Yes Yes Yes Yes (95)

ERANGE No None Yes Yes Yes Yes (68)

IsoLasso Yes None Yes No No No (121)

Multiple-k Yes None Yes Yes Yes No (122)

Rnnotator Yes MPI Yes Yes Yes Yes (118)

IDBA-UD Yes MP Yes Yes Yes Yes (119)

IDBA-Tran Yes MP Yes Yes Yes Yes (103)

Trans-

ABySS

Yes MPI Yes No Yes Yes (106)

Trinity Yes MP Yes Yes No Yes (107)

Oases Yes MP Yes Yes Yes no (108)

SOAPdenovo-

Trans

Yes MP Yes Yes Yes no (104)

Table 3.1: Comparison of current transcriptome assemblers. MP: multiple processor

support; MPI: Message-passing interface support

Trans-ABySS (106), Trinity (107) and Oases (108) are all based on de Bruijn

graph. Trans-ABySS and Oases derive from genome assemblers ABySS and Velvet

respectively.

From our observations, roughly speaking, the assembly process can be divided
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into four major steps: error detection/correction, graph construction, and tran-

scripts determination. In following paragraphs, we are going to compare the strate-

gies employed by current assemblers (mainly ABySS, Trinity and Oases) for every

step.

3.2.2.1 Error Detection/Correction

As we mentioned in the previous section, sequencing errors will result in complex

graph structure. Since the first error correction algorithm was proposed in 2001

(100), error detection/correction is now a common step of assemblers. Prepro-

cessing the raw reads reduces the variation of gene coverage while improving the

computational performance of the assembly.

Almost all researchers chose to use k-mer frequency to filter out reads that

contain sequencing errors (88, 91, 106, 107, 118). The rationale behind is that if

a read contains some sequencing errors, its k-mers would appear in the RNA-seq

library for much less times. First of all, all reads are broken into k-mers. Then the

occurrences of these k-mers are counted and ordered. k-mers with lower multiplicity

than some threshold will be marked as error. Rnnotator removes the duplicate

reads at the same time. Trans-ABySS performs the error removal after the graph

has been constructed. And IDBA-UD used multiple depth relative thresholds to

remove erroneous k-mers in both low-depth and high-depth regions. Trinity removes

those k-mers that are <5% abundant as compared with the most highly abundant

k-mers of the group. It also identifies the seed k-mers with higher information

content (Shannon’s Entropy (123)).

The methods to deal with errors are relatively similar. The basic idea is to bias

towards k-mers with higher frequency.

3.2.2.2 Graph Construction

Oases and Trans-ABySS don’t construct the de Bruijn graph directly. They make

use of the resulting contigs from Velvet and ABySS. Another common strategy is

that they both run with multiple k values and merge the contigs to form a basis for

further processing. Some internal algorithms are altered or abandoned because of

the different characteristics of genome assembly and transcriptome assembly. For
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example, the Pebber and Rock Band algorithms from Velvet are not used in Oases

since they assume uniform coverage across the genome.

IDBA-Trans goes further to implement a more sophisticated approach. They

build and improve the de Bruijn graphs gradually with increasing k values. The

contigs from previous iteration is applied as input to construct the graph in next

iteration. IDBA-Trans is especially good at detecting and correcting erroneous

branches.

After the set of contigs are obtained, Oases corrects the contigs with a set of

dynamic filters (similar to TourBus) and static filters (remove contigs with low cov-

erage). While Trans-ABySS merges the resulting contigs by utilizing the alignment

tool BLAT (78).

Trinity uses a different approach. Its Inchworm module first assembles reads

into unique sequences of transcripts using a greedy k-mer-based approach. A k-

mer dictionary is created like other assemblers. Inchworm starts from the most

frequent k-mers. Within those k-mers which share a (k − 1)-mer with it, the one

with largest frequency is chosen. This process iterates until it cannot be extended

further. Inchworm reports a set of contigs which are unique and frequent.

Second utility of Trinity called Chrysalis then clusters Inchworm contigs into

sets of connected components, and constructs complete de Bruijn graphs for each

component. The concept of ”component” is similar to ”loci” of Oases. Ideally,

all transcripts from one gene should be assembled into a connected component of

contigs. But in real applications, due to sequencing errors, repeat patterns and

common sequence patterns, a loci/component sometimes represents fragments of

genes, or clusters of homologous sequences. Chrysalis groups the components by

checking the overlapping between contigs and the reads spanning the junction across

both contigs. Then it constructs de Bruijn graphs for each component with k value.

After the graph is built, these tools usually traverse the graph multiple times

to simplify the structure. For example, Butterfly from Trinity merges consecutive

nodes in linear paths to form a longer sequence, and it also removes edges that

represent minor variants.
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3.2.2.3 Transcripts Determination

The algorithms from Trinity and Oases to report transcrips are similar. The edges

in the de Bruijn graph are weighted based on the k-mer frequency from the original

set of reads. A dynamic programming algorithm is then applied to find those paths

with higher scores. By the help of read pairs, they reduce the combinatorial paths

to a smaller number.

Every plausible path is reported as a transcript by Trinity. But Oases goes

further to merge transcripts by Oases-M, which runs Oases multiple times with

a set of k values. The resulting transcripts are then combined to build another

de Bruijn graph with another parameter kMERGE . Then this de Bruijn graph is

processed similarly to report the final transcripts. Graph merging itself is a com-

plicated problem (103). The implementation of Oases is more difficult than others.

IDBA-Tran contributes by introducing different pruning thresholds for the compo-

nents. To distinguish the lowly expressed transcripts with the segments resulted

from high sequencing errors, IDBA-Tran adopts a statistic module to determine a

specific threshold δ for every component, which filters out the erroneous branches

in the graph. Since the value δ is derived from the read coverage within the single

component, it is more accurate.

We did not find any post-processing steps from Trans-ABySS.

To draw a conclusion, most of the modern de novo transcriptome assemblers are

based on de Bruijn graph. The graph theory ensures the efficiency and correctness

of the algorithms. However, they suffer from the potential problems in practical

applications as we mentioned in Section 3.2.1. These tools suffer severely from

sequencing errors, low-expressed genes and repeats. Although researchers tried to

tackle these problems by various sophisticated algorithms, they result in compli-

cated graph processing procedures and transcript differentiation mechanism.

Moreover, we observe that for paired-end RNA-seq libraries, these assemblers

are not able to make use of the paired-end information until the Transcripts De-

termination stage because the reads are broken into k-mers in the very beginning.

We can only find one study in the literature that used paired-end information when

constructing the de Bruijn graph (124). But it was only a prototype and no ex-

periments were conducted. EBARDenovo employs a similar strategy to PETA, i.e.,

use paired-end reads to help extend the low coverage regions. However, it does
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not build a graph structure to resolve the complexity of transcriptome, making it

inadequate for a general transcriptome assembly application.

Some research groups had compared the existing tools based on some practical

datasets (125, 126). But they lacked of standard evaluation metrics. In this study

we use a set of evaluation metrics proposed by (6). These measures are expected

to be better because they evaluate the performance from various perspective. We

will give clear definitions of these metrics in Section 8.

In this study, we return to the traditional overlap-layout-consensus scheme. Our

contributions are the full utilization of paired-end information during the assembly.

With paired-end reads, we are able to construct a much cleaner graph from the

very beginning. In next chapter, we demonstrates the strategies of our de novo

transcriptome assembler PETA.
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Problem Statement

4.1 De Novo Transcriptome Assembly

The transcriptome reflects the genes that are being actively expressed at the given

time. Studying the transcriptome is necessary to understand the processes of cellu-

lar differentiation (127), molecular mechanisms controlling early embryonic devel-

opment (128) and the underlying mechanism of diseases like cancer (129, 130). The

transcriptome assembly problem is to identify the full set of transcripts, including

large and small RNAs, novel transcripts from unannotated genes, splicing isoforms

and gene-fusion transcripts (65, 131).

Clearly, exons from different variants of the same gene may contain identical

exon fragments. In the de novo assembly, we are blind to the boundaries of exons

and other regions. So we are more generally interested in common parts of the

transcript variants rather than simply in common exons. Similar to (131), we

define the concept of a block.

Definition 1. A block is a maximal sequence of adjacent exons or exon frag-

ments that always appear together in a set of transcript variants.

According to this definition, a variant can be represented by a sequence of blocks.

A block doesn’t necessarily associate with exon structure. It either belongs to a

variant completely, or is skipped. Figure 4.1 illustrates how a block is inferred from

the variants.

Four blocks A, B, C and D are created from the figure. Between two consec-
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Figure 4.1: Block definition - The left part is a diagram of a gene with three

variants. In our diagrams, rectangles represent exons or exon fragments, and horizontal

solid lines are the intervening parts that are not contained in a particular variant

(introns). Vertical dashed lines defines four blocks A, B, C, and D. The three variants

can thus be described by the sequences ABCD, C, and AD. The corresponding splicing

graph is drawn in the right part where vertices are blocks and edges are block junctions

pointing in the direction of transcription, from 5’ end to 3’ end. The graph is completed

by two additional vertices s (as the starting vertex) and f (as the final vertex). Vertex

s is connected to all first blocks of the variants, and vertex f is connected to all last

blocks.

utive blocks, a block junction represents the connection between them. Under this

definition, a block can be an exon-intron-exon structure like C, or could be some

portion of an exon like A. A block junction may across two exon segments that are

far way, such as AD.

Given a set of variants S0, a splicing graph is a directed acyclic graph whose

vertices are blocks and edges are the block junctions. As long as there exists some

block junction between two blocks, an edge is added to the splicing graph. Addi-

tionally, a starting vertex s and a final vertex f are added to the graph. Given two

adjacent vertices u and v, an edge e connecting from u to v is represented as (u,

v). The formal definition of a splicing graph is:

Definition 2. A splicing graph G is a directed acyclic graph (V, E), where V

represents the set of blocks and E the set of edges such that E ⊆ {{u, v} : u, v ∈ V }

We can infer limited number of directed paths as we traverse the splicing graph.

A path must starts from the vertex s and ends at the vertex f, and it consists of

a subset of vertices and edges of from the splicing graph. A variant corresponds

to a path or a continuous subsequence of a path. For example, the first transcript

variant in Figure 4.1 is captured by a path sABCDf. However, a path from the

vertex s to the vertex f doesn’t necessarily correspond to any expressed variants.
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For example, the annotated transcripts is S0 = ABCD,C,AD, but the paths sCDf

and ABC are also contained in the graph. Theoretically, if there are N blocks in

the splicing graph, there are 2N − 1 possible paths.

We now formulate the problem of de novo transcriptome assembly as follows:

Problem Statement. Given a set S = {x1, ..., xk} of candidate variants which

are paths from the splicing graph, and a set of constraints {C1, ...Cm}, each indicat-

ing the total abundance of a subset of variants of S, report a subset of S such that

all constraints are best satisfied.

In our application, a constraint Cj reflects the number of sequence reads map-

ping to a particular block junction j, called the abundance of the block junction, and

the corresponding subset of variants will be all variants of S that contain junction

j. Figure 4.2 illustrates an example about how to define the constraints.

Figure 4.2: Constraints on the paths - The raw reads are mapped to the graph,

including the block junctions. In the figure above, there are 8 blue reads assigned to

the block C. And the 3 red reads are assigned to the block junction (C, D).

4.2 PETA: Paired-End Transcriptome Assembly

Started from next Chapter, we describe the details of our de novo transcriptome

assembler called PETA (Paired End Transcriptome Assembler).

Due to sequencing errors and repeat patterns in the transcriptome, a de Bruijn

graph contains a lot of false connections, resulting a very complicated graph struc-

ture (132). The success of a de Bruijn graph assembler relies on sophisticated

error detection and correction afterwards. For example, Trinity abandons a con-

nection if there are not enough k-mers to support it (5%). IDBA-Tran breaks the

graph into components and then defines specific thresholds based on some statis-

tical model. In addition, existing assemblers require a critical parameter k, which
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is the k-mer length for extension. A longer k ensures longer transcripts, while a

shorter k gives higher sensitivity. To achieve a good trade-off between specificity

and sensitivity, many assemblers, such as Oases and IDBA-Tran, accept multiple k

values and merge the graphs or transcripts later. But it introduces more complexity

for implementation.

We claim that full utilization of raw reads and paired-end information is able to

construct a cleaner splicing graph and provide more accurate and reliable transcrip-

tome. PETA follows the traditional overlap-layout-consensus scheme. It maintains

a pool of reads to get next consensus base and extends the template base by base. It

tackles the above issues by fully utilizing paired reads to help extend the templates,

merge templates and validate graph paths.

In the following sections, we introduce preliminary observations on real RNA-

seq libraries. First of all, we specify the definitions and notation to avoid ambiguity.

Secondly, since two real RNA-seq datasets are used throughout the whole study, we

first describe the S.pombe and Human RNA-seq libraries as well as the annotation

transcripts used for the evaluations. From the real data, we investigate the useful-

ness of paired-end information in RNA-seq reads. In Section 4.6 we do some study

to determine the key parameter L which is the minimal overlapping length between

adjacent reads.

4.3 Definitions and Notation

To avoid confusion, we describe the specific meaning of the terms/concepts we are

using in this study. You can also turn to Section Glossary for a quick reference.

Four possible nucleotides are encoded as two binary digits as follows:

f(A) = 002, f(C) = 012, f(G) = 102, f(T ) = 112 (4.1)

We rely heavily on the paired-end reads. In a paired-end RNA-seq library, the

two in-paired reads are called the mate (or mate read) of each other.

During assembly, a template is a nucleotide sequence being extended base by

base from a pool of reads. As PETA proceeds, the template grows longer and longer.

The pool is maintained on the fly, whose reads overlap at least with the template
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tail for L bases, which is a user defined parameter. For each read in the pool, a

cursor value pointing to the next candidate nucleotide is maintained. An integer

value weight is assigned to each read based on three features: overlapping length

with the template, number of mismatches on the overlapping region and whether

the mate of the read has been used by the template. After extending a template by

one base, the cursor values on every read of the pool will be updated accordingly.

An example is given as Figure 4.3.

Figure 4.3: Pool and cursor - Reads 1-4 are in the pool. Every read in the pool

overlaps with the template for at least L bases. The reads are laid based on the cursor

values. In this particular case, the next base should be T. If there are more than one

possible base, we pick the one with heaviest weight value.

Since some transcripts share common segments, there are connections among

the templates. A connection between two templates represents a probable block

junction between two hidden blocks, which are portions of the two templates. A

connection connects either end of the branch template to some locus (usually in the

middle) on the main template. For instance, in Figure 4.4a, the template above

is the branch template, and the one below is the main template. There are two

connections between them.

Figure 4.4: Connections between templates - In the left figure, there are two

template connections. The sequences in the same color define four blocks. The left

connection defines a block junction between the Block 1 and Block 2. And the right

connection defines a block junction between Block 3 and Block 4. The corresponding

splicing graph is shown in the right figure.

From the templates and all connections among them, the splicing graph can be

constructed. We will describe the detailed implementation in the coming chapters.
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4.4 Real Datasets

In order to deal with transcriptomes with different levels of complexity, we select

two RNA-seq datasets that are well studied. The first one is a simpler transcrip-

tome with moderate transcript variants. While the second one is complex human

transcriptome. The annotated transcripts are used as reference. The aim of the

assembly is to reconstruct as many full-length transcripts as possible. Meanwhile,

longer transcripts are preferred.

The first dataset is from Schizosaccharomyces pombe, which is sequenced and

prepared by (133). S.pombe, also called ”fission yeast”, is a species of yeast. It is

used as a model organism in molecular and cell biology. It is a unicellular eukaryote,

whose cells are rod-shaped. The transcriptome of this dataset is well annotated by

Broad Institute, which is downloaded as the reference transcripts 1.

The second dataset SRX011545 is from human genome 2. The dataset is used

by Oases (108) as well. The annotated transcripts are downloaded from Ensembl

database 3.

Statistics of the two dataset are listed in Table 4.1.

4.5 Useful Paired-end Information

Our assembler fully utilizes the paired-end information to get longer and more

reliable transcripts. An important hypothesis is that the paired reads are of high

quality: both reads of a pair actually origin from a unique transcript variant and

the distance between them is within the correct range.

To validate this hypothesis, we align all RNA-seq reads on to the set of annotated

transcripts using BWA (paired-end mode) (77). A pair is claimed to be a good one

if:

• Both reads are aligned to the same transcript.

• The alignment directions of the two reads are the same.

1Broad Institute: http://www.broadinstitute.org
2http://www.ebi.ac.uk/ena/data/view/SRX011545
3http://asia.ensembl.org/index.html
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4.6 Determine the Overlapping Length

S.pombe Human

Platform Illumina Illumina

Source ENA ENA

Study ID SRX040570 SRX011545

Paired Yes Yes

Strand specific Yes No

Read length 68bp 45bp

# of reads 18,353,817 * 2 23,458,222 * 2

Mean insert size 326bp 200bp

Standard deviation of insert size 78bp 62bp

File size 2.7Gb 2.5Gb

Hashtabe size 3.5Gb 4.5Gb

Table 4.1: Dataset

• The distance between the two reads are within the correct range. The range

is [(insert size - 2.5 * standard deviation), (insert size + 2.5 * standard

deviation)].

Based on this role, we observe that the good read pairs for S.pombe and human

datasets are 95% and 90% respectively. These numbers do not include the reads

with two many mismatches. So the real good pairs are even more. The numbers

indicate that, instead of being located at multiple positions for single reads, majority

of the paired-end reads can be uniquely located to the transcript variants.

4.6 Determine the Overlapping Length

Since we are using classic approach overlap-layout-consensus to extend the tem-

plates, the first step is to get the reads that overlap with the template tail, whose

length L is a key parameter specified by the users. It is similar to the length of

k-mers for assemblers Trinity and IDBA-Tran. Larger value promises better speci-

ficity, but the sensitivity is scarified to some extend. While too short overlapping

length will create too many connections among the templates, making a complex

splicing graph.
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4.7 PETA

To provide a feasible L value to adjust the tradeoff, we align the RNA-seq reads

to the annotated transcript and check the least overlapping length between adjacent

reads. Here we use Blat (78) to perform the single-end alignment. Because instead

of reporting the best hit by BWA, Blat reports more alignments if a read is mapped

to multiple locations. On every annotated transcript, we order the alignment hits by

the mapping locations in a increasing order. Then the overlapping length between

adjacent hits are counted. We finally collect the numbers of hits for every possible

overlapping length. For example, for S.pombe dataset, there are 769 locations where

the two adjacent reads overlap for 25bp.

The results show that, for S.pombe dataset, there are only accumulatively 24,348

reads (out of totally 34 million reads) that overlap with its adjacent hit for less

than 26bp. The same number for human dataset is 693,544. We can conclude

that for S.pombe, 25bp is a feasible number (<1%), which hopefully to assembly

continuous transcripts. However for the human dataset, more than 15% of the reads

overlap with adjacent reads for at most 25bp. Considering that the size of human

transcriptome is much larger, and there are 254,555 reads show empty overlap with

their adjacent reads, we conclude that the human dataset is more noisy.

We finally set 25bp as the default L value, because a lower value will largely

increase the number of reads in the pool.

4.7 PETA

4.7.1 Implementations

PETA is hosted at http://caishaojiang.com/peta, where the source codes and user

manual can be found. It is mainly implemented in programming languages C/C++.

It can be run only on a 64bit Linux-like operating system, such as Ubuntu, CentOS

and Fedora. Python scripts for data preparation and evaluation are also included in

the package. Currently multi-threading feature is implemented only at the hashing

step.
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4.7 PETA

4.7.2 Workflow

Figure 4.5 is an overview of the PETA workflow. PETA consists of three major

steps. First of all, a hash table is built from the raw RNA-seq reads. The hash

table does not include the sequences of reads, but a list of k-mer occurrences on the

reads. It is efficient to build a hash table. We spend 15 minutes and 23 minutes for

the S.pombe and human datasets respectively. The details are explained in Chapter

5.

Then we start linear extension from high abundance reads. Paired-end infor-

mation is utilized to ensure that we are assemblying longer and reliable templates.

After all reads are consumed, we obtain a list of disconnected templates with reads

assigned to them. Based on the overlap between templates and the paired reads

spanning on the templates, we merge and connect certain templates to make them

ready for constructing the splicing graph. These processes are described in Chapter

6.

Chapter 7 constructs the splicing graph, removes cycles in the graph and per-

forms an expectation-maximization algorithm to report a final list of validated tran-

scripts. In Chapter 8, we show the evaluation criteria, experiments design and the

assembly results of different de novo assemblers. We also analyze the advantages

and disadvantages of PETA. Some failed cases are analyzed in detailed.
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4.7 PETA

Figure 4.5: PETA workflow - The rectangles and longer lines in the figure represent

templates, vertices and final transcripts. The short lines represent single-end or paired-

end reads. The program is executed linearly, following the process from top to bottom
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5

Hashing

In PETA, pairwise alignment is an essential component to align the template tail to

the whole RNA-seq library to select those reads containing the tail. The alignment

is implemented by a hash table approach. In this section, we introduce the process

to build a hash table from the raw RNA-seq reads. We also explain every parameter

to feed in to the hashing problem. Then we show how the pairwise alignment is

performed. Finally, we also discuss the accuracy and limitation of our hashing

strategy.

5.1 Build a Hash Table

PETA performs mapping by searching for k-mers occurrences in the reads first. A

k-mer is some length-k substring from a RNA-seq read. It is used as a key in the

hashtable to index the RNA-seq reads. A longer k-mer is more specific and is less

likely to have collision in the hashtable, while it will occupy more space. A short

k-mer is more sensitive. However, there will be more noise hits. With length k,

there are 4k possible combinations of k-mers. Currently we set the k-mer length to

11 by default.

Hashing in PETA is based on the approach introduced by SSAHA (134). The

details are illustrated in Figure 5.1. The size of the array k-mer is 4k. The size of

the array pos depends on the number of k-mers to be hashed. PETA hashes a fixed

number of k-mers for every read. It is determined by a set of user parameters as

illustrated in Figure 5.2. PETA splits every read into blocks. For each block, PETA
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5.1 Build a Hash Table

Figure 5.1: k-mer searching of SSAHA hashing strategy - Two one-dimension

arrays k-mer and pos are created. Values of k-mer are indexes of pos array. Array pos

maintains occurrences of k-mers in RNA-seq reads. In the example above, two arrows

point out the occurrences of k-mer ”AT”. The hashtable has three hits for the k-mer,

which appears in read 7, 5 and 14 at the positions of 0, 4 and 24 respectively.
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5.1 Build a Hash Table

always hashes 2 k-mers, which start with the first and second letters of the block.

Another parameter is ”interleaving size” i. It means that ”for every i nucleotides,

PETA will pick one to hash”. For example, a read is ”ACGTA”, if i equals 2, the

first, third and fifth nucleotides are picked to form a k-mer to hash, i.e., ”AGA”.

It avoids too many hits for some highly repetitive patterns such as continuous A’s.

Generally speaking, the number of k-mers from one read is calculated by:

Min((l − ki), 2b, ( l − ki
s

+ 1) ∗ 2) (5.1)

Where l is the read length, k is the k-mer length, b is the number of blocks, s is

the block size, and i is the interleaving size. So the storage cost for the hashtable

is:

ht size = (4k + n k −mer ∗N) ∗ u (5.2)

Figure 5.2: Determine k-mers to hash - A read is divided into 4 blocks (differen-

tiated by background colors). Letters in read color are starting position of the k-mers.

Interleaving size is set to 2. k-mer length is 7 for illustration. In conclusion, PETA

will hash 4 k-mers from this read.

Where N is the total number of RNA-seq reads, and u represents the size of

an integer. PETA supports 64-bit machines only, so u is 8 bytes by default. It

is recommended to set the parameters such that b ∗ s roughly equals the read

length l, such that the whole read is covered. Meanwhile, in order not to make the

hashtable too large, 8 to 10 k-mers are recommended to hash for each read. In our

experiments, the size of hashtable is 1.1 to 1.5 times of the RNA-seq library size.
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5.2 Pairwise Alignment

The hashing step reads in and processes the sequences chunk by chunk. So the

memory usage is relatively consistent regardless how large the library is. Of course,

large libraries take longer time. When performing alignment, the original reads are

required to be loaded as well.

5.2 Pairwise Alignment

With the hashtable, we are able to find the reads which contain a particular k-

mer. Next we are going to discuss how to perform pairwise alignment for a tail.

Mismatches are allowed during this process.

The first step is to identify all reads that align to the tail of the template allowing

at most δ mismatches (by default δ is 2). To speed up the process, we use hashing as

follows. First, all possible k-mers in the tail are obtained using the same parameters

”k-mer length k” and ”interleaving size i”. For example, assume k is 4 and i is 2.

Then a tail ”ACGTACGT” has k-mers ”AGAG” and ”CTCT”. The length of a

tail is specified by the users. Please note that this value should not be smaller than

(k ∗ i− 1). Otherwise, PETA could not obtain any k-mer from the read. For a tail

with length t, there are (t− k ∗ i+ 1) k-mers.

PETA then searches for these k-mers in the hashtable as shown in Figure 5.1. A

hit corresponds to a read which contains the particular k-mer, but it doesn’t mean

that the tail is a substring of this read. Hits of all k-mers are combined together.

PETA iterates through all reads to conduct base-by-base matching. During the

matching process, the number of mismatches are counted on the fly. All reads with

more than δ mismatches are thrown away. Remaining reads are reported as the

result the pairwise alignment. Introducing indels would make PETA spend much

more time, here we do not support gap alignment.

Finally, the time complexity of pairwise alignment is analysed as followed. To

align a tail onto the RNA-seq library, the time efficiency is linear to the number of

hits. Searching in the hashtable takes expected constant time. To allow mismatches,

we go through every hit base by base. Suppose there are h hits and the read length

is l, the time efficiency to get qualified reads is O(h ∗ l + C), where C is some

constant. For the tails which have frequent k-mers in the library, the number of

hits would be large. Thus PETA runs slower when extending the high coverage

regions.
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5.3 Accuracy and Limitations

Both strand specific and non-strand specific libraries can be processed by PETA.

If the query is from a non-strand specific library, we first align the query, and then

align the reverse complement of it. After the position value are modified accordingly,

we combine the resulting hits together. So running PETA on non strand specific

libraries doubles the time.

5.3 Accuracy and Limitations

Results of PETA’s pairwise alignment are suboptimal. In this section, we discuss

about the performance of our pairwise alignment algorithm. Meanwhile, we point

out some limitations of it. It this section, an ”incorrect” k-mer is some k-mer with

mutated nucleotides.

Let’s have a look at the case of no mismatches first. To obtain all qualified reads,

we need to make sure that all qualified reads hash at least one k-mer that can be

inferred from the tail. For a RNA-seq read, we hash two k-mers for every block

(Refer to Figure 5.2. Block size is s), the longest substring without any hashed

k-mer has length:

min t = (s− 2) + (k ∗ i− 2) (5.3)

Our cleaning algorithm is similar to the one in PE-Assembler (91). First, we

calculate the k-mer frequency for each read. For instance, in Figure 5.2, the length

of the longest substring without a hashed k-mer is 15. That is, the substring starting

from position 2 (with length 15) has no k-mer hashed. Any substring with length

longer than 15 has at least one k-mer hashed. So as long as the length of tail is

longer than 15, all reads having this tail are guaranteed to be found.

This hashing-based pairwise alignment suffers from mismatches because every

mismatch in the read will result in multiple wrong k-mers. PETA guarantees to

find all reads allowing one mismatch under some conditions. Basically, we need to

specify a longer tail.

min t = s+ (k ∗ i− 2) (5.4)
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5.3 Accuracy and Limitations

For the example, in Figure 5.2, the value of min t is 17. Imagine that the sixth

nucleotide ’C’ is mutated, then the k-mer 2 and k-mer 3 are contaminated. PETA

has to rely on k-mer 1 or 4 to retrieve this read. So the longest substring without

a correct hashed k-mer starts at position 1.

Our approache has some limitations. Since hashing strategy is suboptimal, not

all positive hits are guaranteed. For example, if the read length is shorter than 2ki

and the interleaving size is 2, a continuous 2-base error in the middle of read will

make this read not obtainable by PETA. In Figure 5.2, if 10th and 11th letters

’TA’ are both mutated, all 4 k-mers would be polluted, because every k-mer in the

read has one base error. If the error occurs in either end of the read, we would

expect that at least some k-mers in the read are not affected. However, it does not

affect the overall performance. Because when the read length is longer than 2ki,

the problem is gone. Even if the read length is as short as 35bp, we can disable the

interleaving (set size to 1) and use continuous k-mers instead. Of course, in this

case users need to consider the tradeoff on the sensitivity gain by spaced seeds and

continuous seeds.

To draw a conclusion, our alignment module is able to get all reads with no more

than one mismatches. And most of reads with two mismatches can be obtained.

The time efficiency is O(h ∗ l + C).
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6

Extension and Connection

In this Chapter, we introduce the procedure to assemble the raw reads into a list of

disconnected templates. We claim that our templates are accurate and more likely

to from continuous transcripts. Meanwhile, the connections are reliable and they

capture the real splicing events. The underlying rational of our advantages are:

• The reads with longer overlap with the template are more reliable.

• The reads with paired support are more reliable.

Different from k-mer based assemblers such as Oases and Trinity, we use the

raw reads to assemble contigs directly. We believe that the raw reads, which are

usually longer than the k-mers, are more reliable. Although PETA requires a similar

parameter k, this value is not so sensitive comparing with other applications. The

main reason is that we are able to go through lowly expressed regions by utilizing

the paired-end information. This is a significant advantage of PETA.

We first illustrate how to determine the starting reads. Then we describe the

strategy to maintain the pool to extend a template. Finally we show the usage of

paired reads to connect separated templates.

6.1 Starting Reads

Linear Extension extends a template from some starting read. But some reads are

with low quality if:
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6.2 Linear Extension

• The read has some sequencing error.

• The read does not overlap with others.

To ensure that we start from some high-quality reads, we group the reads by

mapping each other (allowing two mismatches). The mapping is performed by a

multi-thread pairwise alignment process on the hashtable, so it is very efficient. For

a RNA-seq library of 7.5 million reads, PETA takes around 3 minutes to finish the

grouping (4 threads). A read with more similar reads is supposed to be from some

highly expressed transcript, which is believed to be more reliable. Meanwhile, since

we group by reads, which are usually much longer than L, it shows less bias towards

short repeat patterns.

The raw reads are sorted decreasingly by the number of similar reads. PETA

picks the most frequent reads to extend until all reads are used. This strategy

guarantees to reconstruct those highly expressed transcripts. A read will be marked

as USED if some template uses all bases from it. A USED read would not be

considered for extension any more.

There are some reads remaining after the starting reads are consumed. These

reads may be from lowly expressed genes. We then pick those reads with higher

k-mer frequency as starting reads and repeat the iterations.

6.2 Linear Extension

The basic idea to extend a template is as illustrated in Figure 4.3. A template is

extended base by base. During extension, a pool of reads are maintained on the

fly. Each read in the pool maintains a value called cursor, which points to the

next nucleotide contributed by the read. All nucleotides at the cursor determine a

consensus character to append to the template in every iteration. A read is added

to the pool if it overlaps with the template tail. It will stay in the pool until its

cursor moves to the end, and then this read will be marked as USED.

To determine the next nucleotide, we assign different weights on the pool reads

based on its overlapping length with the template, number of mismatches on the

overlapped subsequence, and the paired-end support. For instance, in Figure 4.3,

Read 4 is assigned a heavier weight comparing with Read 1, because the overlapping
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6.2 Linear Extension

length between Read 4 and the template is longer. In addition, Read 3 has one

mismatch with the template. Its weight is decreased by 1. In the pool, a read is

allowed to have at most two mismatches. Otherwise, it is likely to origin from some

junction, or it is because of sequencing errors. Such a read is removed from the

pool and reset to be FRESH again. This strategy will ’squeeze’ out the reads with

erroneous bases and improve the accuracy.

De novo assemblers usually suffer from low coverage regions and sequencing

errors. Low overage results in fragmented contigs, and sequencing errors introduce

many false branches in the graph. Some assemblers propose to use a shorter k-mer.

However, it introduces false connections between transcripts from different genes.

Even worse, shorter k-mer results in a more complicated graph. We observe that a

read is more reliable if its mate is already used by the same template before. So we

utilize the paired reads to tackle this problem in two novel ways.

First of all, to determine the next nucleotide of the template, we assign a much

heavier weight to the reads whose mates are already used by the same template

before. This heuristic is clearly illustrated in Figure 6.1. In conclusion, the weight

of a read in the pool is calculated by:

weight = (overlapping length−mismatches) ∗ (paired weight) (6.1)

Where paired weight is by default 1000 if its mate is used by the same template.

Otherwise, the value is 1. The heavy weight ensures that paired reads are always

maintained on the same template. Such a template is more likely to be a continuous

region from some transcript. The weights are given in Table 6.1.

Feature Score

Overlapping 1 * (length of overlapped segments between the read and template)

Mismatches -1 * (number of mismatches on the overlapped segments)

Mate support 1000

Table 6.1: Weights for Read Features

We also utilize the paired-end reads when the pool is empty. It helps to extend

the regions with low coverage. In this case, we add a read to the pool if it satisfies

three conditions: 1. Its mate is used by the template before; 2. If the read is added,
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6.3 Template Merging

Figure 6.1: Weights in the pool - The short bars represent RNA-seq reads. Paired

reads are connected by a dashed line. The longer bar at the bottom represents the

template. The rectangle at the top-right corner is the current pool. There are three

reads in the pool. The read in dark blue color is assigned a much heavier weight

because its mate is used on the same template.

the distance between the read and its mate is within the correct range; 3. It overlaps

with the template tail for at least 11bp. The correct range is defined as [(insert size

- 2.5 * standard deviation of insert size), (insert size + 2.5 * standard deviation of

insert size)] Although the overlapping length is as short as 11bp, we can use them

for extension with high confidence. This strategy works well for transcripts longer

than the insert size.

The reads on a template are marked as USED and would not be used for Read

Extension any more. In the end, the templates do not share any segments longer

than the tail length. Meanwhile, the template identity and the locus are stored as

attributes of the USED reads.

The pesudocode is showed in Algorithm 1.

6.3 Template Merging

However, the complexity of transcriptome lies in various splicing patterns of the

genes. It is very common that variances of a gene share long exonic segments.

In previous section, we obtain a list of disconnected templates, which are not

supposed to share any segments longer than the read length. From our observations,

although some transcripts indeed exist, they are fragmented into smaller portions

whose overlapping length is short. To deal with these simple cases, we perform

merging under some restrict thresholds. Figure 6.2 shows two templates that are

supposed to be merged to form a longer template.

We categorize the reads on a template into three types. The first type is called
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6.3 Template Merging

Figure 6.2: Merging templates - Two templates A and B are merged. The short

lines represent the RNA-seq reads. There are three paired-end reads spanning A and

B. The distances of the three pairs are within the feasible range. And the right end of

template A and the left end of template B overlaps.

Paired, which means that the two reads of a pair are both mapped to the template,

i.e., the black color reads in Figure 6.2. There also exist Unpaired reads (in red

color and blue color) whose mates are not mapped to the template. It can be

caused by high sequencing error on the mates or alternative splicing. The third

type, a Spanning pair (in blue color), means that each read of a pair locates on a

different template. And the distance between the spanning pairs should be within

the feasible range.

When we attempt to merge two templates, first of all we define the feasible range,

which is [(insert size - 2.5 * standard deviation), (insert size + 2.5 * standard

deviation)] We would merge two templates if all of the following conditions are

satisfied:

• The similarity score of the right end of template A and the left end of template

B is at least 4.

• There are at least two spanning pairs.

• For all Unpaired reads within the feasible range, at least 50% of them are

spanning pairs.

The merging strategy is conservative because the similarity score between two

templates is allowed to be as low as 4. It means that 4bp overlapping is already

acceptable. The similarity is obtained by a customized Smith-Waterman algorithm
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6.4 Template Connection

(Algorithm 2). We believe that enough spanning reads indicate that the two tem-

plates are from the same transcript and should be merged. Our experiments show

that this strategy adds around 350 full-length transcripts for S.pombe.

Since a transcript may be fragmented into more that two segments, we perform

the merging iteratively until none of the templates can be merged.

To adapt to insertions and deletions, we implement a customized Smith-Waterman

algorithm to compare the sequences. Since we are only interested in moderately

similar cases, we allow only two indels and at most two mismatches. Generally, the

implementation occupies O(N) memory space. If the two sequences are not similar,

it will stop after a few iterations. The running time for the worst cases are O(N2).

Here N is the smaller length of the two sequences. The pesudocode is shown in

Algorithm 2.

6.4 Template Connection

After merging, the templates become longer but stay unconnected. As we men-

tion previously, alternative splicing makes the transcripts from the same gene share

exonic segments. During Template Connection, we connect the templates by intro-

ducing block junctions between them. In this way, the blocks and block junctions

are both defined. Two types of connection are performed.

Ideally, the existing templates should not share any regions longer than the read

length. Because as long as a read is used by some template, it is ”frozen” and would

not be use by another template any more. In this case, if two transcript variants

ABC and AC coexist, we would likely obtain two templates AC and dBe, where d

and e are short segments from the junction reads, so d and e should be subsequence

of AC.

Before connection, a small hash table is built for all 11-mers on all templates.

The purpose of the template hash table is to efficiently identify those templates

that share a subsequence with each other. The hashing strategy is exactly the same

as the hash table for reads. The only difference is that the size of reads is much

larger. The interleaving (Chapter 5) value for template hash table is 1.

The template hash table enables us to select those templates overlap with each

other. If there are two segments shared by the two templates, we try to connect
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6.4 Template Connection

both ends of the branch templates. The strategy is illustrated in Figure 6.3.

Figure 6.3: Both end connection - Connect both ends of the branch template to

the main template. Similar to merging, the paired-end reads are used for conservative

validation

From common 11-mers found on the two templates, we can easily discover the

maximum segments shared by them (the blue+red and orange+blue regions in left

part of Figure 6.3).

Then criteria to validate the connection are similar to merging. The difference

is that we require there are spanning paired-end reads at both portion of the main

template. In Figure 6.3, the branch template may be an exon that is contained in

another transcript variant.

Sometimes only one end of a branch template can be merged. For example, two

variants ABC and ABD. We likely to get two templates with sequences ABC and

D. Then we need to connect left end of the later template to the former template.

The criteria for one end connection is also the same as the both end connectioin.

The conservative manner creates the connections cautiously. That ensures all

our edges in the splicing graph are supported by paired-end reads. From the S.pombe

experiments, we can conclude that the connection strategy adds around 50 full-

length transcripts in the results.
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6.4 Template Connection

Input : Q: a starting read

Hash: hashtable of RNA-seq reads

Output: T : a template

1 TemplateExtension {

2 T = Q; // Initialize the template;

3 tail = k-length subsequence at the end of Q;

4 pool = Empty;

5 while True do

6 // Align the tail and add overlapped reads to the pool;

7 AlignTail(Hash, pool, tail);

8 // The pool is empty, add overlapped reads with

paired-end support;

9 if IsEmpty(pool) then AddOverlapMates(pool);

10 if IsEmpty(pool) then break;

11 // Assign weights to reads and get consensus base;

12 next base = DetermineNextBase(pool);

13 ExtendTail(tail, next base);

14 ExtendTemplate(T, next base);

15 // Update the cursor value; remove reads from pool;

16 Forward(pool);

17 // Remove reads with more than 2 mismatches from the

pool;

18 RmHalfClipReads(pool);

19 end

20 }
Algorithm 1: Template Extension from a starting read Q
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6.4 Template Connection

Input : A: sequence A; B: sequence B

M : minimum score

Output: True if A and B are similar; False otherwise

1 SmithWaterman {

2 rows = Length(A);

3 columns = Length(B);

4 previous row = Integer[columns+ 1];

5 current row = Integer[columns+ 1];

6 for i = 1 to rows do

7 for j = 1 to columns do

8 up = previous row[j] + SCORE GAP ;

9 left = previous row[j − 1] + SCORE GAP ;

10 if A[j − 1] == B[i− 1] then

11 up left = previous row[j − 1] + SCORE MATCH;

12 end

13 else

14 up left = previous row[j − 1] + SCORE MISMATCH;

15 end

16 current row[j] = Max(up, left, up left);

17 end

18 for j = 1 to columns do

19 previous row[j] = current row[j];

20 max score =

current row[j] > max score?current row[j] : max score;

21 end

22 if (max score + (rows - i)) * SCORE MATCH < M then

Return False;

23 end

24 Return True;

25 }
Algorithm 2: Customized Smith-Waterman algorithm for global align-

ment
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7

Graph Processing

Until now, we have assembled a list of connected templates, where the connections

are highly reliable because we use paired-end information for validation. However,

from the Problem Statement section 4, we know that even if the block junctions are

true, there could be still some paths that are not real transcript variants. In this

chapter, we discuss how we construct and process the splicing graph. And finally we

explain how the EM algorithm is applied to determine the valid set of transcripts.

7.1 Graph Construction

Figure 7.1 illustrates the workflow to break templates and add edges between the

vertices. The templates with length 0bp (Template B) will be erased. And the

junctions with same locus will be merged into one breaking point (Locus 917). In

this example, template A consists of four blocks.

If we build the splicing graph from k-mers without validation, the graph struc-

ture would be more complicated due to sequencing errors and global common pat-

terns. It is difficult to remove false connections given large amount of short vertices.

Our splicing graph eliminates a lot of false connections from the very beginning.

The graph construction is intuitive. First of all, we identify and order the con-

nection locus on a template. Every locus is a breaking point to break the template.

For example, in Figure 7.1, Template A has three connection locus (locus 917 is

duplicated). Each template is broken into unique continuous blocks, i.e., vertices
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7.1 Graph Construction

Figure 7.1: Graph construction example - Template B is with length 0bp. It

simply connects two portions of Template A tegother. For clear illustration, we draw

a short bar as Template B. It is likely that Template A is constructed first. Later

Template B and C are connected to Template A.

in the splicing graph. Nearby vertices from the same template have connections

between them naturally. Lastly we create edges between vertices from different

templates and form the splicing graph.

Let the number of vertices be V and the number of edges be E, the complexity

to construct the graph is O(V + E), since we visit every vertex and edge in linear

time.

After construction, we apply some heuristics to simplify the splicing graph.

Although the splicing graph is clean, there are probably short vertices that represent

minor deviation (supported by comparatively few reads). For example, if a template

connects to the end of another template, the last vertex from this template is short

and should be removed.

More importantly, there may be cycles in the splicing graph. These cycles

are caused by either repeat patterns or some sequencing errors. Since we extract

some paths as transcripts, these cycles should be broken before determining the

combinatorial paths. In graph theory, it is a classic problem called ’Detection of

Strongly Connected Components (SCC)’. An SCC is a subgraph where every vertex
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is reachable from any of other vertices. There are many sophisticated solutions to

tackle this problem. Tarjan’s algorithm is a famous one (135). Its complexity is

O(V + E). We implement Tarjan’s algorithm and detect the SCCs in the splicing

graph. For these SCCs, we simply remove some edges from it to break the cycles.

This process is repeated iteratively until there is no cycle in the graph.

Until this step, we have constructed a clean and reliable splicing graph. Ideally,

the transcripts from the same genes are closely located together in the graph. Look

at the graph globally, we can find ’clusters’ of vertices and edges. They have few

connections between each other. These ’clusters’ are named components by Oases,

Trinity and IDBA-Tran. Instead of dealing with the whole graph, a better and

common solution is to break the graph into smaller components and deal with the

components more efficiently.

PETA uses the same strategy to process the splicing graph. Since PETA

achieves a clean graph, the decomposition is not complicated. If it detects that

two clusters are connected by very few edges, it removes the edges if there are not

enough paired-end reads spanning these clusters. Disconnected subgraphs are then

stored as components. From our experiments, the most complicated components

contain around 200 vertices, which can be processed with moderate memory and

running time.

7.2 EM Algorithm: Transcripts Extraction

With RNA-seq reads, the prediction of exons and splicing events are now resolvable.

However, the reconstruction of full-length mRNA transcripts remains challenging,

especially for genes with highly complex alternative splicing patterns.

This study does not include the quantification analysis. Our aim is to report all

transcripts that are expressed. We apply a state-of-art statistical test to determine

an optimal set of paths that explain the reads best. This approach is proposed

by DiffSplice (136), a reference-based software to optimize differential transcription

problem in the splicing graph. We construct the splicing graph in a de novo manner

(previous sections), and then apply the DiffSplice Expectation-Maximization (EM)

algorithm to determine the probability of component paths given the read coverage

on them. Our contribution lies in applying the sophisticated statistical model to de

novo assembly application successfully.
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In this chapter, we first give an overview about existing approaches to tackle the

problem. Then in section 7.2.2, we describe our implementation to adapt DiffSplice

algorithm to our Transcript Extraction module.

7.2.1 Overview

To give an impression about the complexity, Figure 7.2 is the splicing graph of 7

human transcripts from the same gene ENSG00000174564. In the graph all splicing

events are real. There are 35 combinatorial paths, within which only 7 of them cover

the correct transcripts.

Figure 7.2: 7 transcripts from gene ENSG00000174564 - The graph is con-

structed from a simulated dataset. The labels in vertices are in the format of [vertex

id: vertex length].

Existing approaches to extract full-length transcripts are categorized into three

categories. The first category, like Cufflinks, performs transcripts inference and

abundance estimation followed by differential test of relative abundance. This

method is ideal, but it relies on accurate transcript quantification, which itself is

a challenging problem. Although sophisticated techniques and/or statistical mod-

els are applied, the quantification of transcripts are ’unidentifiable’ in some cases

(136, 137).

The second strategy indirectly detects differential transcription by aggregating

changes of multiple features (138, 139). For example, a statistical test called Maxi-

mum Mean Discrepancy is used to compare read coverage on all exons (138). Trinity

develops a dynamic programming algorithm to append plausible edges to existing

paths, with the help of read support and paired-end reads. But they are not able

to optimize the global features. For example, Trinity only captures one full-length

transcript from the example in Figure 7.2.

Approaches in last category examines the transcripts on annotated alternative

splicing events in existing databases. They are proved to be reliable. But the

disadvantage is that the performance replies on the annotation quality. We are
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working on do novo assembly of transcriptome, whose corresponding genome is

usually not ready. So this approach is not suitable for this application.

DiffSplice proposed a state-of-art algorithm for transcript differentiation. It first

maps the reads on to the reference genome to build a splicing graph. The splice

graph is further decomposed to smaller units called Alternative Splicing Modules

(ASMs). Then it applied the statistical test for every ASM to determine the ex-

pression levels of all paths.

7.2.2 Implementations

In statistics, an expectation-maximization (EM) algorithm is an iterative method

for finding maximum likelihood of parameters in statistical models, where the model

depends on unobserved latent variables (140).

DiffSplice is designed for reference-based applications, while we reimplement its

EM algorithm in a de novo manner to assign expression abundance to candidate

paths. Instead of mapping reads to the reference genome, we map the reads to

our splicing graph (including vertices and edges). Our implementation is slightly

different from the DiffSplice package, but the performance is promising based on our

experiment results. For the example in Figure 7.2, our program is able to extract all

7 expressed transcripts exactly. Our experimental results also prove its capability

for transcription determination.

We describe the statistical model of DiffSplice briefly (136).

Read coverage is the only feature used by the Expectation-Maximization (EM)

algorithm. The aim is to get a subset of paths from all combinatorial paths, such

that these paths will ’explain’ the read coverage to fit in the ideal distribution

optimally. On every vertex and edge, there are reads assigned to them. But RNA-

seq reads are usually shorter than 100bp, we cannot distinguish where a read is

really from. For instance, two transcripts share a long vertex. We don’t know

from which transcript the read origins. Every combinatorial path is assigned a

probability, indicating how large the chance that this path is expressed.

Assume the sequencing procedure as a random sampling process, in which all

reads are sampled independently and uniformly (141). When Nt, the number of

reads from a path t, is large enough, we have:
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Ce|t ∼ N(Ct,
r(lt − le)Ct

ltle
) (7.1)

Where Ce|t represents the read coverage on exonic segment e from path t. Ct

is read coverage on path t. And r denotes the length of a read. Both vertices

and edges are treated as segments here, denoted as e. They are both continuous

segments on paths. The length of edges le are decided by moving some bases from

probable left and right vertices. From the equation, the Ce|t values for different

elements are unbiased for Ct. The variance of Ct varies according to the coverage

Ct and the segment length le.

The length of an edge is not longer than 2 ∗ (r − 1). This is slightly different

from DiffSplice, whose edge length is the read length r. The reads at the junction

areas are resided on the edges.

We get all combinatorial paths from a component. The number of paths may be

large. So we validate and remove some paths from consideration. The rationale is

that there must be some reads covering vertices that are shorter than read length.

By ’covering’, we mean that a read spans on the short vertex itself, as well as its

previous and next vertex. This strategy will remove those false paths resulted from

short common patterns.

From the distribution function, we can derive the likelihood function, which is

maximized by EM algorithm. The likely function and the maximization process is

the same as DiffSplice (136), so we do not include them in this paper.

The EM algorithm converges after some iterations. We stop the iterations when

the probability change in two consecutive iterations is smaller than 0.000001 or it

reaches the maximum iteration number 200000. The paths with a probability values

larger than 2% are reported as the transcripts.
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Experiments and Discussions

In the experiments, we compared the performance of PETA with state-of-art de

novo transcriptome assemblers Oases, Trinity, Cufflinks and IDBA-Tran.

We use the evaluation metrics proposed by (6), which would be described clearly

in Section 8.1. Transcripts reported by the assemblers are aligned to the annotated

transcripts by Blat (78), which provides a good trade-off between accuracy and

efficiency. The results are derived from the alignment hits.

The datasets we use for evaluation are described in Section 4.4. They are RNA-

seq libraries from S.pombe and human with around 40 million reads.

The performance of PETA is comparable with other de novo assemblers. The

content is organized as followed. We first give clear definitions and implications

of the evaluation metrics. Then we show the evaluation results on the two real

datasets. We also run the assemblers on a subset of the S.pombe dataset. The

performance comparison shows that PETA is able to deal with RNA-seq with low

abundance. Finally we show the experimental results and analyze the advantages

and limitations of PETA.

8.1 Evaluation Metrics

The ultimate goal of transcriptome assemblers is to reconstruct all expressed tran-

scripts in full length. Obviously, the number of full length transcripts is a critical

criteria for evaluation (106, 107, 108). In this study, we conclude that a reference
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transcript is assembled in full length if there is such an assembled transcript that

covers at least 99% length of it, allowing at most 10 mismatches and indel base

pairs. We set the criteria stringent because we find that some transcripts are highly

similar. Theoretically, an optimal assembler is able to get all transcripts in the

Oracle set. But in practice, some repeat segments or highly similar regions are

difficult to go through.

In addition, we adopt the evaluation metrics suggested by (6) to evaluate the

performance of the assembled transcriptome, given the Oracle set as reference tran-

scripts, which has been introduced in the section above. The aim is to reconstruct

all full length transcripts in the Oracle set.

The alignment is performed by Blat (78), which provides a good trade-off be-

tween efficiency and accuracy. We run Blat with default parameters. The command

is like: ”blat oracle set.fa contigs.fa -ooc=11.ooc contigs.oracle.psl”.

8.1.1 Accuracy

The accuracy metric is defined as the percentage of the correctly assembled bases

estimated using the set of reference transcripts (N). It indicates how accurate the

assembler is. Accuracy can be formally written as:

Accuracy = 100 ∗
∑M

i=1Ai∑M
i=1 Li

(8.1)

where Li is the length of the alignment between a reference transcript and an

assembled transcript Ti, Ai is the number of correct bases in transcript Ti, and

M represents the number of best alignments between assembled transcripts and

reference.

Highly similar transcripts may result in misleading accuracy values. For exam-

ple, transcripts SPBC29A3.12 T0 and SPAC24H6.07 T0 locate at chromosome 1

and chromosome 2 respectively, but they are 90% similar. So for two alignments

on the same transcript, we keep the one with less mismatches only.
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8.1.2 Completeness

The completeness metric is defined as the percentage of reference transcripts covered

by all the assembled transcripts. The covered regions may not be continuous. It is

written as:

Completeness = 100 ∗
∑N

i=1 I(Ci ≥ δ)
N

(8.2)

where N is the number of reference transcripts, Ci represents the percentage

of bases of the ith reference transcript, i, that are covered by some assembled

transcripts. The indicator function, I, gives a value as either 1 or 0. If Ci is greater

than some user defined threshold δ, say, 80%, the indicator function I would give

a value 1. This metric indicates how many reference transcripts are reconstructed

with at least δ percentage, regardless how fragmented the assembled transcripts

are.

8.1.3 Contiguity

The contiguity metric is defined as the percentage of expressed reference transcripts

covered by a single, longest assembled transcript. It is similarly written as:

Completeness = 100 ∗
∑N

i=1 I
′(Ci ≥ δ)
N

(8.3)

where the indicator function I ′ gives value 1 if there exists such a single, longest

alignment which represents a percentage greater than some user defined threshold

δ, say, 80%.

As a supplementary metric, we also derive N50 value of the longest alignments.

For every reference transcript, we pick the longest continuous alignment into the

list H. The size of H is then the same as the number of reference transcripts. The

N50 value is calculated as:

Aligned N50 = N50(H) (8.4)

Greater N50 value indicates better contiguity. For reference, the optimal N50

is also calculated based on the total length of all reference transcripts.
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8.1.4 Chimerism

A chimeric transcript is an assembled transcript that contains non-repetitive frag-

ments (at least 50bp) from two or more different reference genes. They can arise

from biological sources (gene fusions or trans-splicing), experimental sources (inter-

molecular ligation) or informatics sources (misassemblies). Misassembled chimeric

transcripts can be distinguished from true chimaeras by determining whether the

number of reads spanning the chimeric junction is significant when compared to

the number of reads spanning other segments of the transcript. Paired-end reads

spanning the chimeric junction also help for distinguishment.

Table 8.1 summaries the metrics we are using.

Metric Description Example

Full length transcripts 99% covered, < 10bp indels and mismatches 2,000

Accuracy How accurate of the assembled bases 95.2%

Completeness 80% Percentage of reference transcripts with >

80% covered

98.6%

Contiguity 80% Percentage of reference transcripts

with > 80% of continuous region covered

94.3%

Aligned N50 N50 of longest continuous alignments 1,700

Chimerism Percentage of assembled transcripts aligned

to different genes

4.3%

Table 8.1: Evaluation Metrics

The tail length (k) for running PETA is set to 25 (read length is 68bp). The pa-

rameters we used to run Trinity were ”–SS lib type FR –CPU 8 –min contig length

100”. Other assemblers are run with the default parameters.

We develop our evaluation module in Python, which is also available on the

homepage. The transcripts reported by the assemblers are aligned to annotated

transcripts in Blat with default parameters. For the accuracy metric, we count the

correct bases obtained by the assemblers. However, at a single locus, an assembler

may report two transcripts but with different nucleotides due to sequencing errors

or SNPs. So we take the longest continuous alignment for consideration only. A
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longer transcript is supposed to be more reliable. If the bases on a long transcript

is not correct, its performance is worse.

A transcript is categorized as full-length if there an alignment on a transcript

such that:

• The similarity is larger than 99%.

• The alignment covers 99% of the transcript.

• There is no more than 1 indel on both query and reference transcripts.

• The number of mismatches and indel bases are no more than 10bp.

8.2 Results of S.pombe Dataset

The evaluation results of the S.pombe dataset are visualized in the Figure 8.1 and

Figure 8.2. We can conclude that PETA outperforms other assemblers in terms

of full-length transcripts number, aligned N50 and contiguity 80%. Only another

de novo assembler IDBA-Tran is comparable with PETA. And surprisingly, the

reference based assembler Cufflinks shows a bad performance. That is because

there are not many splicing events in the S.pombe dataset, and Cufflinks does not

merge disjointed transcripts if they don’t have enough overlapping length. The

results suggest that de novo transcriptome assemblers have their advantages given

simpler transcriptomes.

Figure 8.1: Number of full-length and Aligned N50 of S.pombe -

71



8.3 Results of Human Dataset

Figure 8.2: Accuracy, Completeness 80% and Contiguity 80% of S.pombe -

We intersect the full-length transcripts obtained by PETA, IDBA-Tran and

Trinity. Although the read coverage is on average as high as more than 30X, the

set of transcripts are diverse to some extend. In next section, we dive into the

implementation details to investigate the reasons why PETA fails to assemble some

transcripts.

8.3 Results of Human Dataset

We also run PETA, IDBA-Tran, Trinity and Cufflinks on the human RNA-seq

dataset SRX011545. Since the human transcriptome is much more complex, the

performance of Cufflinks is much better than other three de novo assemblers. The

comparison can be found in Figure 8.4 and 8.5.

PETA obtained fewer full-length transcripts than IDBA-Tran, but is much bet-

ter than Trinity. The results suggest that PETA performs well even if the tran-

scriptome is complex. But since the template connection of PETA relies on the

paired-end reads locally, errors may be introduced to PETA results.

8.4 Evaluation on Dataset with Lower Coverage

Higher coverage is a big advantage of RNA-seq. Recently, single cell RNA-seq is

becoming more popular in studying the transcriptomes at different time frames.

The median read coverage across expressed transcripts is 53.8% in the Quartz-Seq

72



8.4 Evaluation on Dataset with Lower Coverage

Figure 8.3: Intersection among PETA, IDBA-Tran and Trinity for S.pombe

-

Figure 8.4: Number of full-length and Aligned N50 of human dataset -
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Figure 8.5: Accuracy, Completeness 80% and Contiguity 80% of human

dataset -

method, compared with 84.4% in conventional RNA sequencing (142). We claim

that PETA performs even better for low coverage datasets.

In order to benchmark the performance of the assemblers given a dataset with

lower coverage, we select a subset of the S.pombe dataset. The accession id is

SRR097897 1. The size is one quarter of the full S.pombe dataset. There are 7.5

million paired-end reads with length 68bp.

The results are listed in Table 8.2. We run Cufflinks, Trinity, IDBA-Tran and

PETA on the same dataset. The aim is to obtain as many full-length transcripts

in the annotated reference.

Metric Cufflinks Oases Trinity IDBA-Tran PETA

# of contigs 3,951 8,102 7,952 6,023 8,165

Full length 3,244 3,247 3,077 3,575 3,694

Aligned N50 1,682 1501 1,422 1,544 1,569

Accuracy 99.98% 99.93% 99.97% 99.97% 99.97%

Completeness 80% 91.98% 87.43% 85.47% 86.38% 88.42%

Contiguity 80% 78.26% 73.80% 70.83% 78.92% 80.85%

# of chimaeras 160 80 47 67 97

Chimerism 4.05% 1.14% 0.59% 1.11% 1.19%

Table 8.2: Experiment Results

1SRR097897: http://sra.dnanexus.com/runs/SRR097897
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The alignment results are analyzed to obtained the results in Table 8.2. Figure

8.6 and 8.7 compares the performance in charts.

Figure 8.6: Number of full-length and Aligned N50 of SRR097897 -

Figure 8.7: Accuracy, Completeness 80% and Contiguity 80% of SRR097897

-

From the results we can conclude that PETA obtains the most full-length tran-

scripts and its contiguity 80% is the highest. It indicates that PETA is able to

capture full-length transcripts while keeping the accuracy. Trinity achieves best

Completeness 80%, however, it reports lower value of contiguity 80%, which in-

dicates that Trinity has difficulty in resolving the alternative splicing. Out of all

assemblers, Oases performs significantly worse than others. We suspect that the

merging various contigs from different k-mer graphs are still challenging in practical

implementations.
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We also draw the Venn diagram among the full-length transcripts obtained by

PETA, IDBA-Tran and Trinity. It is shown in Figure 8.8.

Figure 8.8: Intersection among PETA, IDBA-Tran and Trinity for

SRR097897 - The numbers in the diagram are the numbers of full-length transcripts.

The intersection results indicates that even if PETA obtains most full-length

transcripts, he still miss 99 transcripts obtained by IDBA-Tran and Trinity. Com-

paring the result of IDBA-Tran and Trinity, they also report a different set of

transcripts.

Based on the observation above, we can prove that transcriptome is complex.

Even for a transcriptome with a few alternative splicing, the complete set of ex-

pressed variants are hard to be reported. We discuss more about this set of results

in Section 8.6.

To draw a conclusion, PETA performs the best in terms of most evaluation

metrics. It reports accurate full-length transcripts efficiently, especially good at

assembling low coverage transcripts.
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8.5 PETA Browser

In order to investigate the assembly process in detailed, we have developed a visual-

ization web application PETA Browser to visualize the assembled contigs and raw

reads aligned to the annotated transcripts. It is a powerful tool to help researchers

to find enough information about the assembly process. The main feature of the

visualizer is to show alignments to the annotated transcripts.

An alignment is represented by a solid rectangle, which occupies one row on the

webpage. The blue color in rectangle means that the reverse complement of the

query is mapped. Otherwise, the alignment is in green color. Red bars at the head or

tail indicate the soft-clipped portion of the alignment. For paired-end reads, if both

of them are found, they are connected by a solid gray line. Otherwise, a red triangle

is appended to the alignment. PETA Browser is able to show the mismatches (small

red bar on the rectangle), insertion (a yellow bar on the rectangle) and deletion (a

dashed line connecting fragmented portions).

Once the mouse is moved onto an alignment, a tooltip box will pop up to display

detailed information of the alignment. It includes the name of the query, number of

mismatches and insertion bases, the position of its mate read, etc. A vertical ruler

is shown to help to locate interested regions. As the mouse moves, a number is

updated to show the current locus on the transcripts. The users can also configure

the plotting parameters such as defining the height of the alignment rows.

Figure 8.9 is a screen shot of PETA Browser.

PETA Browser is implemented in Python, using the web framework Django.

And the real-time plotting is fulfilled by HighCharts.js 1, which draws high resolu-

tion SVG images on the webpage.

It accepts the standard PSL alignment files produced by the mapper Blat. It is

easy to be configured. As long as the users provide a list of annotated transcripts

and the alignment files, PETA Browser will handle all interaction requests.

The source code of PETA Browser is also provided as an open-source package

at the homepage http://www.caishaojiang.com/peta.

1HighCharts.js: http://www.highcharts.com/
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8.5 PETA Browser

Figure 8.9: PETA Browser - For an annotated transcript SPBP23A10.02 T0, fol-

lowing information is collected to help the testing: (1). the yellow curve indicates

whether there are repetitive 25-mer within the transcript. For example, the value at

locus 100 is 1, meaning that the 25-mer starting at locus 100 appears only once within

the transcript. (2). assembled contigs. PETA have reported two contigs, which are

plotted right under the yellow curve. The color of contig alignments are darker and

the height is greater. (3). raw reads. We map the reads to the annotated transcript

and visualize them. (4). coverage is calculated.
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8.6 Discussions

The experiments show that the performance of PETA is comparable with other

assemblers. In this section, we analyze the different performance of PETA and

IDBA-Tran in detailed.

From the Venn diagram in Figure 8.8, we can find that PETA reconstructs 208

full-length transcripts that are missed by IDBA-Tran. After investigations, we find

that PETA assembles through the low coverage regions with the help of paired-end

reads. It is the largest advantage of PETA.

However, it misses some full-length transcripts that are reported by IDBA-Tran.

Here we investigate the 87 missing cases (from the S.pombe dataset SRR097897)

using PETA Browser and analyze the limitations of PETA.

Figure 8.10 categorizes the missing cases into six types. In the following sub-

sections, we analyze them case by case.

Figure 8.10: Reasons for missing full-length transcripts - Majority of the

missing cases are because of squeezing effect and missing reads

8.6.1 Squeezing Effect

We define the Squeezing effect as the phenomenon that bad-quality reads are squeezed

to form other noisy templates which are hard to distinguish in some cases.

Due to the sequencing errors, some reads are of low quality: too many mis-

matches, insertion/deletion on the reads and artefacts. Since we allow at most two
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mismatches, the low-quality reads would not be used for the extension. These reads

are squeezed out during the extension. If there are multiple low-quality reads that

are overlapped, later PETA may start extension from some of them and assemble

another template, which is very noisy. We have observed many cases. Figure 8.11

illustrates this case.

Figure 8.11: Squeezing effect - The solid black line at bottom represents a template,

and shorter lines represent reads. The dashed lines connecting two reads indicate

paired-end reads. The four gray reads with red dots represent the reads with too many

mismatches. PETA will construct two templates A and B finally.

Squeezing effect is difficult to solve because the noisy templates may be also

supported by paired-end reads, such as the example in Figure 8.11. In the connec-

tion stage, template A and B may be connected because of the paired-end support!

Currently PETA performs similarity checking before the connection. However, we

also observe that in some cases, two transcript variants from different location of

the genome can be highly similar (>80%). In this case, it is difficult to distinguish

the noisy templates from the valid templates.

Around 44% of the missing cases are caused by squeezing effect. We need to

design more sophisticated approaches to deal with this case.

8.6.2 Reads are Missing

Around 40% of the missing cases are because that we do not utilize some reads.

Ideally PETA should consume all of the raw reads in the dataset. However, if we

try to start extension from every read, it is too time consuming to be acceptable.

That is why we perform grouping of the reads to determine the starting reads. In

this case, after assembly, actually there are still some reads which are useful but

are not touched.

That may result in three kind of missing transcripts:
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• The transcript expression level is very low. Only a few reads origin from it.

All of the reads on the transcript are not used by PETA.

• Short exons (<100bp) are not captured because there are few reads at the

junction. And these reads are not used.

• At the head/tail of a transcript, the overlapping length is too short and there

are few reads at the head/tail. So the head/tail portion is missing. An

example is shown in Figure 8.12.

For IDBA-Tran and Trinity, since they build the graph by exhaustively consum-

ing all k-mers in the reads, they are able to fully utilize all k-mers.

Figure 8.12: Reads are missing - Only one contig is reported by PETA. At the

head of the transcript, the four reads are not utilized.

There is always trade-off between efficiency and accuracy. To capture such kind

of missing transcripts, a better solution is that, after linear extension, identify high

quality reads in the remaining unused reads and extend them.

8.6.3 Short Branches at Head/Tail

6 missing cases are caused by ambiguities at the head/tail area of the transcripts.

Figure 8.13 illustrates an example.

PETA Performs connection between templates. However, to avoid the squeezing

effects, we don’t allow introducing blocks that are both short and at the head/tail

of a template (refer to Section 7). In this case, we will pick the direction with more

reads supporting the extension.
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Figure 8.13: Ambiguities at head/tail - At the begging region of the transcript

SPBP23A10.02 T0, there are two groups of reads (green and blue color) supporting

different branches to extend.

Unfortunately, such cases seem not solvable by PETA.

8.6.4 Low-Quality Reads for Merging

This is a minor case for the missing transcripts. At a region where the overlapping

length between reads are short, there is some read with insertion/deletion that

covers the region. K-mer based IDBA-Tran can utilize it, but PETA cannot pick

the read for extension, resulting two disjointed templates. Figure 8.14 is an example.

Figure 8.14: Low-quality reads for merging - The read 4204045 has a 1bp inser-

tion. PETA cannot make use of it for extension.
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UASIS - Universal Automated

SNP Identification System

9.1 Backgrounds

9.1.1 Heterogeneous Representations of SNPs

SNP, or Single Nucleotide Polymorphism, is defined as a bi-allele polymorphism at

a single base with a frequency of more than 1% in the population (57, 58). Around

90% of the genome variations are limited to SNPs (60), which have been proven to

be of great value for medical diagnostics and developing pharmaceutical products.

They can also help identify multiple genes associated with complex diseases such

as cancer and diabetes (143, 144, 145).

With the publication of the Human Genome Project (HGP) and emergence of

next generation high-throughput sequencing techniques, there has been an explo-

sion of data available for public use. SNP databases such as dbSNP (146), GWAS

(formerly HGVbaseG2P) (147), HapMap (148) and JSNP (149) have collected mil-

lions of records. dbSNP, the largest one maintained by the National Center for

Biotechnology Information, has collected 38,077,719 SNPs (rs#’s) for Homo sapi-

ens to date (May 24, 2011, Build 132). The amount of data has been growing

significantly. In addition, there are many more SNP databases, either public or

private, that are used for pharmacogenetic research. An universal nomenclature is

critical for clear, unequivocal and effective communication.
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However, it is widely recognized that heterogeneity of SNP nomenclatures and

notations has complicated the process (60, 150, 151, 152, 153). Table 9.1 lists the

numerous alternative manners of designating a SNP in major databases. To make

matter worse, private databases continue to use non-conventional representations

that enlarge the set of possible nomenclatures as shown in Table 9.2 (60).

Database SNP Names

dbSNP rs3737965

ss4923964, ss69366921

HGVBaseG2P HGVM2256489

HGVS NM 001286.2:c.87+45G>A, NM 021735.2:c.87+45G>A

NM 021736.2:c.87+45G>A, NM 021737.2:c.87+45G>A

NT 021937.19:g.7871183G>A

JSNP IMS-JST083663

PharmGKB rs3737965@chr1:11789038

HapMap rs3737965

Table 9.1: Alternative Names of an SNP

There are many reasons for the existence of differing nomenclatures. Although

Human Genome Variation Society (HGVS) has recommended widely-used guide-

lines for mutation notation, researchers of each laboratory have strong emotional

attachment to their own naming system (154). Research articles that first report

novel SNPs do not always follow the HGVS guidelines, and the final genomic se-

quence is complied over many separate entries. Previous nomenclatures sometimes

subsist for historical reasons. For example, rs28942082 is still recorded as ”FH

NAPLES” or ”Bly544Val” in OMIM (see Table 9.2).

9.1.2 Problems of Current SNP Nomenclatures

Unambiguous and correct descriptions of SNPs in databases and in the literature

are of utmost importance, not in the least since mistakes and uncertainties may

lead to undesired errors in clinical diagnosis. HGVS nomenclature guidelines were

proposed in as early as 1998 (155) then extended later on (156, 157). The guidelines
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dbSNP rs28942082

Genome-browser-like Syntax Chr19:11,087,877-11,087,877 G/T

Chr19:11087877 G/T

Others geneA,11,EXON,108,T,hetero

geneAsynonym,11,108,exon,GT

proteinB, Gly564Val; proteinB, Bly544Val

0014 FH NAPLES

Table 9.2: Alternative Names of an SNP

have since been improved regularly1. However, the sole existence of the guidelines

by themselves is not sufficient. The standardization of SNP identification is far

from complete (150, 151, 153).

It is clear that dbSNP is becoming a major center for deposition of SNPs from

various sources. The SNP nomenclature of dbSNP, rs#, is unique, clear and stable.

It has been widely adopted and heavily referenced in the literature. JSNP, GWAS,

HapMap and PharmGKB provide corresponding rs# when displaying their own

records. We highly respect its authority.

It is noted that overlapping of SNPs is very low (around 1%) among recognized

databases (151). JSNP reported only 20.9% identity compared to dbSNP (149).

Researchers have to submit their SNPs to dbSNP before they can get a rs#. How-

ever, some SNPs discovered in the research or diagnostic laboratory may even never

be reported in any publication or database. Some SNPs have considerable delays

in their public release due to commercial agreements, legal considerations or ethical

reasons (145, 158). They are unlikely to be assigned identifiers that can be uni-

formly used later on. Even for dbSNP itself, there are many rs#’s abandoned due

to regular clustering (159). These identifiers may have been cited in publications,

leading to confusion and ambiguity.

Another candidate is HGVS mutation nomenclature guidelines, which are largely

adopted by researchers and enforced by some journals. The format is like ”<Accession

Number>.<version number>(<Gene symbol>):<sequence type>.<mutation>”. How-

ever, it is not universally applied as a standard, since it is complex and not unique.

1http://www.hgvs.org/mutnomen/
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Table 9.1 gives five alternative names that are legal for a SNP, where the coordi-

nate systems are based on different reference sequences. The mutation position is

obtained based on some reference sequences. In addition, reference sequences are

evolving with each new version. That makes the names unstable. More effort is

thus required to translate data in published papers and databases between different

versions of reference sequences (160, 161). Finally, the names may be too long and

complex to remember and communicate.

Current SNP nomenclatures, including rs#, are mostly arbitrary combination

of letters and digits maintained by manual curation. The major problem is that

they are not informative and only available within a single database. Automatic

ways of mapping SNPs based on their names are rare. One way is to perform

searching in available databases separately, and then compare the obtained records

manually. For example, given only SNP names, we are unable to answer these kind

of simple questions: What SNPs have been discovered on gene CHR1 (chromosome

5, locus 26648951..26653073)? or What diseases have been found closely associated

to rs28942082? HGVS nomenclature is searchable and informative, but suffers from

complexity and non-unique feature.

With differring nomenclatures, it is difficult to cross reference SNPs among the

various databases. Research based on the data only from one SNP database will

lead to an incomplete compilation of variants and inadequate genomic analysis.

For researchers who track SNPs through literature scanning, it is very difficult to

gain a global picture from overwhelming publications since SNPs are not uniformly

searchable in the literature. It is also not possible to search by position or polymor-

phism information. That could be a tough data mining challenge, which consumes

considerable resources and time. From the discussion above, we believe that the

existing SNP nomenclatures do not provide a universal standard.

9.1.3 SNP Standardization and Database Integration

Tremendous efforts have been made to keep SNP data uniformly. Besides the contin-

uous development of HGVS nomenclature guidelines, SNP databases are integrating

data from more sources.

GWAS, previously HGVbaseG2P, is one of the largest SNP databases (162, 163).

It gathers information of SNPs from the literature, their own and collaborative
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discovery efforts and unsolicited submissions. It exchanges core data with db-

SNP regularly. The pharmacogenomics knowledge base (PharmGKB) allows cross-

referencing against dbSNP, JSNP and HapMap, as well as other sources such as

UCSC Genome Browser (164).

Some applications focus on retrieving SNPs fulfilling certain criteria such as

locus and haplotype tagging. SNPper is web-based platform to search and export

SNP records from dbSNP (165). TAMAL (Technology And Money Are Limiting)

provides a query portal to latest versions of five SNP sources (HapMap, Perlegen,

Affymetrix, dbSNP and the UCSC genome browser) (166). It helps to select SNPs

that are likely involved in the genetic determination of human complex traits. LS-

SNP annotates from dbSNP the coding of non-synonymous SNPs (nsSNPs) that

will result in mutation in protein (167). Other works place emphasis on intragenic

SNPs (168).

Among the previous works carried out, Mutalyzer sequence variation nomencla-

ture checker (153) and SNP-Converter (60) are similar to the work described here.

These two applications aim to support HGVS nomenclature guidelines. Mutalyzer

checks if an SNP name follows the HGVS guidelines. Furthermore, it is capable of

generating legal identifiers given the pivot features of a SNP. SNP-Converter con-

verts whatever SNP names into HGVS names by exploring certain gene databases

to determine the correct locus. It treats the integration process as a knowledge

mining task. SNP-Converter is based on a complete SNP notation in XML format,

acting as an ontology, to create a uniform semantic environment (60, 169).

9.2 Implementations: Universal SNP Nomenclature and

UASIS

From the discussions above, it is clear that dbSNP is an important database that

cannot be ignored by any application. However, it does take considerable effort to

translate nomenclatures among the SNP databases. To overcome the shortcomings

of rs# and HGVS nomenclatures, we propose a universal nomenclature and UASIS

(Universal Automated SNP Identification System). We believe our nomenclature

is a good complement to rs# and HGVS, acting as a bridge connecting various

databases, including private and unpublished ones.

87



9.2 Implementations: Universal SNP Nomenclature and UASIS

A system of nomenclature has to strike a compromise between the convenience

and simplicity required for everyday use and the need for adequate definition of the

concepts involved (170). In 2006, Human Variome Project Meeting gathered leading

representatives to discuss key problems of human gene variation industry (152). The

meeting gave 96 recommendations. Two of them regarding to ”Nomenclatures and

Standards” are:

4*. Develop tools to accurately translate and search earlier nomenclature sys-

tems into successor systems.

6. The most current genome build be unambiguously adapted as the reference

sequence, and that a standard be developed for the submission of all variant data

that includes both a genome coordinate as well as sufficient flanking sequence to

map the variation independently.

UASIS is inspired from these two requirements. UASIS proposes a universal

nomenclature for SNPs with the form ”<human genome version> . <chromosome

number>:<locus>:<alleles>”. Detailed specification is shown in Table 9.3. Accord-

ing to this specification, SNP rs3737965 is represented as HG19.1:11789038:G/A,

indicating a pair of alleles ”G” and ”A” at position 11789038 of chromosome 1, and

the position is based on human reference genome version 19. Note that for indels,

the polymorphism occurs at the position given. For example, ”1234insT” means

that ”T” is placed at position 1234, and the original one, say, ”C” is at position

1235.

Syntax Example Description

HG(numeric version) HG19 Complete human reference genome

by UCSC. ’19’ is version number

Chr number 1..22, X, Y Chromosome numbers

Numeric 21898363 1-based position

Nucleotides A, C, G, T, N N for unclear nucleotide

/ G/A Substitution: alleles are ’G’ and ’A’

ins insA Insertion: ’A’ is inserted

del delT Deletion: ’T’ is deleted

Table 9.3: Universal SNP Nomenclature
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Compared to HGVS guidelines, we fix the coordinate to be the whole human

genome. And we give only one position without ” ”, since we consider only single bi-

allele mutations. The first advantage is that it allows for succinct comparison using

the accession numbers. The nomenclature is based on the human reference genome

and not any arbitrary reference sequences, resulting in the generation of unique

identifiers. All SNPs would be given the same prefix ”HG19” currently. Secondly,

it is unambiguous, informative and stable since the name consists of all necessary

information to uniquely define an SNP. More importantly, UASIS nomenclature

gives names that are searchable and comparable. It helps SNP tracking in the

literature if universally adopted.

Another difference is the representation of mutations. HGVS guidelines use a

”>” symbol to mean ”changed to”. Here we only list all possible alleles delimited

by a ”/”. ”A/T” means that the major allele could be either ”A” or ”T”. Normally

the first is the one on the reference genome. This definition is for simplicity. Deter-

mining the frequency of alleles requires more effort in the laboratory. In different

populations or laboratory testings the results could be non-identical. For SNPs

which have more than two alleles, the ”>” symbol will lose its clarity, leading to

ambiguity. This syntax is also used by other browser viewers (60). But we would

recommend that the leftmost allele should be the major allele.

The most important advantage of UASIS nomenclature is that, unlike rs#, it

does not depend on any particular database. The naming process of an SNP can be

done automatically, regardless of the database maintaining it, or the contig the SNP

is derived from, etc. Researchers do not necessarily submit to a particular database

to get identifiers. They will get names instantaneously without waiting for manual

approval using UASIS. Although dbSNP designates a ss# once a SNP is submitted,

the ss# suffers similar problems of rs#. For private SNPs that cannot be published

due to various reasons, UASIS nomenclature is obviously a better choice.

UASIS nomenclature is not intended to replace the rs# since rs# already has

significant influence on SNP nomenclatures. rs#’s are simple, unique and stable.

Actually, UASIS nomenclature is a good complementary to rs#, playing a similar

role as ss#. But we believe that it is more than ss# and it will benefit the whole

process of SNP standardization. One disadvantage of our notation is that it depends

on the human reference genome. That is an unavoidable trade off given all attractive

benefits of our universal nomenclature. But HG19 is considered as ”finished” by
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the Genome Reference Consortium. We expect a much lower updating frequency

of human genome in future.

UASIS is a web-based server system (http://www.uasis.tk) for annotating novel

SNPs and cross-referencing among databases instantaneously. There are utility

tools available, i.e., UASIS Aligner and Universal SNP Name Generator. For newly

discovered SNPs, UASIS aligner performs efficient sequence alignment and checks

whether the polymorphism has been deposited in main databases, including GWAS,

dbSNP, JSNP and HapMap. In addition, for each mutation, UASIS provides an

identifier based on our proposed nomenclature as described above. These identi-

fiers can be used immediately and instantaneously. In this way, researchers are

free to map SNPs among various nomenclatures. More databases like PharmGKB

are currently in the process of being integrated into UASIS. Universal SNP Name

Generator and SNP Name Mapper take in information of a SNP and perform cross-

checking among main databases.

UASIS is available at http://www.uasis.tk since August 2010. It is implemented

in PHP and MySQL, and designed for various types of web browser. Detailed

information on the use of UASIS is provided online at the website.

9.2.1 UASIS Aligner

9.2.1.1 Input

Users upload flanking sequences of SNPs explicitly or by uploading a file in FASTQ

format. They could choose underlying alignment tool, which chromosome to align,

and how many mismatches allowed according to query characteristics. The human

reference genome used is based on HG19, downloaded from UCSC1. Figure 9.1

showes the screenshot using the sample data.

9.2.1.2 Sequence Alignment

Efficiency and accuracy are critical for real time systems like UASIS. Bowtie (171)

and BWA (77) are winners (159). They are able to align thousands of sequences ev-

ery second. Both tools are developed based on Burrows-Wheeler Transform (BWT)

(172) data structure and FM-index (173). Bowtie is customized for short reads

1http://genome.ucsc.edu/
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Figure 9.1: Input of UASIS Aligner - Users could choose to upload the flanking

sequences of SNPs as file, or input the sequences directly. Currently we support FASTQ

format only. Other parameters include which chromosome to align and how many

mismatches allowed.
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around 35 base pair. It supports up to 3 mismatches by enumerating all possible

permutations. This strategy makes it ultra fast, but it does not support gapped

alignment. BWA employs roughly the same idea but it implements gapped align-

ment.

Query sequences are uploaded and aligned to reference human genome by ex-

ecuting Bowtie or BWA. Then UASIS checks whether the query SNP exists in

dbSNP, GWAS, JSNP or HapMap by inspecting the allele position. UASIS is very

responsive since the alignment tools are efficient.

9.2.1.3 Output

Alignments will be listed in tabular form, including query id, allele position, alleles,

UASIS identifier, dbSNP rs#, GWAS id, JSNP id, HapMap id. Given the polymor-

phism position, we are able to obtain corresponding identifiers recorded in dbSNP,

JSNP and HapMap. If no record is found in a database, a ”none” message will be

displayed for that database. Results in SAM format can be downloaded for further

analysis. Figure 9.2 illustrates the sample output of UASIS Aligner.

Figure 9.2: Result of UASIS Aligner - Align the flanking sequences of SNPs

submited by users. The alignment is performed by Bowtie or BWA. If the SNP is

found, search it in databases dbSNP, JSNP, GWAS and HapMap.

9.2.2 Experiments

To evaluate the accuracy and efficiency of UASIS, we conducted experiments on

simulated and real SNPs with length 35, 76, 128 and 512bp, and performed cross-
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checking between dbSNP and JSNP. CPU time on a quad core of a 2.4 GHz Xeon

E5620 processor with 16G RAM and accuracy in percentage are evaluated (see

Table 4).

94771 reads were simulated from the human genome (Build 37.1) using MetaSim

(174) package following the error pattern of Sanger reads. Meanwhile, 72241 flank-

ing sequences were downloaded from public databases dbSNP1 and JSNP2. For

Bowtie, we use the options ”–best -k 2 -v 3”, meaning that it will report at most

two hits allowing three mismatches in decreasing quality order. And for BWA, the

options are ”-n 3 -o 3”, meaning that the edit distance is at most three and there

are at most three gaps.

For both dataset, all three tools were found to show reliability. As the read

length grows, the accuracy improves. Bowtie generated higher error rate since it

does not support gapped alignment. But Bowtie was very efficient, taking less than

4 seconds to process.

UASIS is also introduced briefly on CBAS-SYMBIO3 2010 held in Singapore.

Approximately 30 people outside UASIS group have tested it.

9.3 Universal SNP Name Generator

Similar to Mutalyzer (153), our generator takes in all pivot features that define a

SNP uniquely. The features include reference genome, chromosome, position and

alleles. Please note that for the mutation position of SNPs, different databases

use different coordinate. dbSNP, the largest public one, uses 1-based positions.

However, in the dump database files, the position is 0-based. And JSNP uses 1-

bases positions in its dump database file. Here we choose 1-based strategy for

consistency. The generator performs validation strictly to ensure the user input is

legal. Figure 9.3 is a screenshot of the input page.

But instead of HGVS names, we generate our UASIS identifiers as the result,

as well as corresponding HGVS names and access ids in dbSNP, GWAS, HapMap

and JSNP. Currently GWAS is not providing downloadable SNP files, so we utilize

the online query system of GWAS with rs# as the keyword. HGVS and JSNP

1ftp://ftp.ncbi.nih.gov/snp/organisms/human 9606/rs fasta/
2http://snp.ims.u-tokyo.ac.jp/map/Dump/
3http://symbio2010.rsg.sg/
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Figure 9.3: Input of Universal SNP Name Generator - Show the input options

of Universal SNP Name Generator. Users are supposed to provide human genome

version, chromosome number, locus and alleles.

identifiers are obtained from local databases recording relationship between them.

When performing the cross-referencing, we only check whether there is a SNP at

the same locus, regardless the alleles. But it is now sufficient for researchers. More

functionality is under development. Figure 9.4 is the output of sample data.

Figure 9.4: Result of Universal SNP Name Generator - Generate UASIS iden-

tifier given the pivot features. If there are records deposited in existing databases,

show corresponding identifiers and links.
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9.4 SNP Name Mapper

The SNP Name Mapper performs similar task to Name Generator. However, it is

more suitable for researchers who have some SNPs at hand, and would like to know

what related works have been done in the literature. Users are required to provide

an existing SNP name from certain database. For example, ”rs3897” from dbSNP.

If the input name is not valid, a ”None” message will be displayed.

Figure 9.5 illustrates a sample output of this utility. We also generate corre-

sponding identifier following our universal nomenclature (see Section Implementa-

tion). The alleles information can only be obtained from two sources. If a JSNP

record exists, there is alleles deposited. Otherwise, we search the online query sys-

tem of dbSNP and parse the result page to extract the alleles information. If no

rs# is available, we would not generate UASIS identifier.

Figure 9.5: Result of SNP Name Mapper - Generate UASIS identifier given

a particular SNP name. If there are records deposited in existing databases, show

corresponding identifiers and links.

9.5 Availability and Requirements

Project name: UASIS (Universal Automated SNP Identification System)

Project home page: http://www.uasis.tk with no requirement of log-in
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9.5 Availability and Requirements

Operating system(s): e.g. Platform independent

Programming language: C++ and PHP web interface
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Conclusion

In this dissertation, we discuss two studies based on Next Generation Sequencing

(NGS) data. They are PETA (Paired End Transcriptome Assembler) and UASIS

(Universal Automated SNP Identification System) respectively.

NGS RNA-seq technologies have started to reveal the complex landscape and

dynamics of the transcriptome in an unprecedented level of sensitivity and accuracy.

It has been applied to successfully capture transcriptome from yeast to human.

Characteristics of RNA-seq data pose great challenges for accurate transcriptome

assemly, especially for species without a high-quality reference genome.

Current de novo transcriptome assemblers are mostly based on de Bruijn graph,

which has inherited problems in dealing with sequencing errors and low-expressed

genes. Paired-end information is lost when constructing the graph. This important

information is only used for post-processing.

In this study, we implement a new de novo transcriptome assembler PETA

(Paired End Transcriptome Assembler), which weights heavily on paired-end infor-

mation of RNA-seq libraries. We return to the overlap-layout-consensus approach.

Paired-end information is used for contig extension, merging and validation.

PETA first creates a hashtable for the RNA-seq library to speed up the pairwise

alignment. Then all reads are grouped to find frequent ones as the starting point

of assembly. With the help of paired-end reads, we are able to recover the lowly

expressed transcripts. The resulting graph structure is much cleaner comparing with

the de Buijn graphs constructed from k-mers. We developed sophisticated graph
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processing algorithms. Finally, we apply a powerful statistical model to optimize

the read distribution among the paths, such that we are able to pick correct paths

as our final transcripts.

Our experiments showed that PETA outperforms other start-of-art assemblers,

including Trinity, Oases, Cufflinks and IDBA-Tran in terms of number of full-length

transcripts, aligned N50, accuracy, completeness, contiguity and chimerism. Our

implementation is efficient and scalable. We believe PETA performs well for large-

scale RNA-seq libraries. It helps to reveal the complex expression of transcriptome.

Compared with PETA, a powerful software to assemble RNA-seq data without

reference genome, UASIS focuses on data management of SNPs resulted by over-

whelming NGS data. Differing SNP nomenclatures have been a large concern for

a long period. UASIS (Universal Automated SNP Identification System) proposes

an informative, unique and unambiguous nomenclature that serves as a good com-

plement to the present methods of identifying SNPs. The universal nomenclature

is important for naming newly discovered or unpublished SNPs. The most signifi-

cant advantage is that it provides a bridge to cross reference SNP identifiers among

various databases. UASIS is a platform to perform pairwise sequence alignment

and cross referencing in real time (<20s). Currently SNPs from dbSNP, GWAS,

JSNP and HapMap can be mapped to one another. More databases are being in-

tegrated into UASIS. UASIS not only helps to achieve uniform notation of SNPs in

the literature, but also aid in determining accurate SNP genotypes and haplotypes.

This thesis contributes to the bioinformatics community by providing two pow-

erful tools for efficient processing and management of NGS data, especially for

transcriptomics studies and related fields like GWAS.
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