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Abstract and Summary

• How many witnesses do we have to measure to determine whether a generic

unknown quantum state is entangled or not?

This question is answered by Zhu et. al. [ZTE10]:

• As many as the dimension d of the state space: By measuring a set of witness

operators which collectively form an informationally complete (IC) probability

operator measurement (POM).

It is well known that by utilizing the very definition of witness operators, one might

be able to directly detect entanglement without necessarily knowing what the iden-

tity of the state. If one is lucky, then one such witness measurement will do. How-

ever, in general, infinitely many witness measurements are needed, if one ignores

the detailed information that each measurement provides. In contrast, with all the

witness measurements taken collectively as an IC POM, although one might not

be able to detect entanglement from these individual measurements, one can still

reconstruct the state using various tomographic techniques. With the reconstructed

state at hand, identification of entanglement is then straightforward. While design-

ing experiments for high dimensional quantum states is a difficult subject,

• for bipartite qubit photonic systems, one can realize the measurement of the

witness operators readily, using existing linear-optics devices. In fact,

Zhu et. al. [ZTE10] had described an elegant scheme for such an experiment:

By systematically measuring the eigenbases of the witnesses, one can further

simplify the problem to measuring only six witness families for this particular

state space of 16 dimensions.



XVI Abstract and Summary

The main objective of this project is straightforward:

• Based on the proposed scheme, we carry out the witness-family experiments,

and eventually verify an efficient method for entanglement detection.

That is, we build up an experimental set-up that performs the witness-family mea-

surements, such that by investigating and analyzing the results obtained from using

various states with known degrees of entanglement, the validity of the scheme shall

be tested and verified.

This thesis summarizes the effort in pursuing our goal to verify an efficient scheme

for detecting entanglement. The organization of this thesis is as follow: In Part I,

essential theoretical concepts of relevance are firstly reviewed. In the first chapter, a

brief recap of some basic concepts of the characterization and detection of quantum

states are presented. Readers who are familiar with concepts like POM, quantum

state tomography, witnesses, and etc., may skip Chapter 1 and proceed to Chap-

ter 2. In Chapter 2, we address the principles of entanglement identification and

its realization in our experiment, where in going beyond the original experimental

proposal, adaptive schemes are introduced to further speed up the entanglement

detection. Related topics about the quantum resources used, i.e. photons and their

polarizations, are also discussed.

In Part II, we report our experimental effort. In Chapter 3, the actual imple-

mentation of the witness-family measurements is presented in full details. We also

summarize the effort in generation of various states which are used as test sources

for the entanglement-detection scheme. To highlight, we introduced a novel, con-

trollable and simple way of generating mixed two-photon states with various degrees

of entanglement, with the help of variable polarization rotators. This work has been

published in June 2013 in New Journal of Physics [DLT+13], with the arxiv preprint

version available at http://arxiv.org/abs/1304.2101. In Chapter 4, the findings

of our experiment are reported. Results, data analyses and discussions are presented

in detail. As of now (April 29, 2014), a manuscript reporting our findings is submit-

ted to a peer-reviewed journal for publication; an arxiv preprint of the manuscript

is available at http://arxiv.org/abs/1402.5710.

http://arxiv.org/abs/1304.2101
http://arxiv.org/abs/1402.5710
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Lastly, we conclude the findings of our project, and appendices are attached for

more detailed discussions on selected topics.
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Chapter 1

Background Concepts I

This chapter serves to recall some relevant preliminary concepts, namely on the

studies of quantum states.

1.1 Quantum states: A brief review

1.1.1 Pure states

In quantum theory, the optimal knowledge or description of a basic quantum system

is symbolized by the state vector, usually denoted as | 〉 (or 〈 |), called the Dirac’s ket

(or bra). For example, a ket |h〉 symbolizes a photon with horizontal polarization.

In addition, the sets of kets and bras form Hilbert spaces of dimension D that are

dual to each other1. Introducing an orthonormal basis, say {|k〉}k=1,2,··· ,D for the

ket space of dimension D, the inner product tr{| 〉〈k|} = 〈k| 〉 represents the overlap

of | 〉 with |k〉, which is in general a complex number with a magnitude normalized

to not greater than unity. Thus, one can write

| 〉 =
D∑
k=1

|k〉〈k| 〉, (1.1)

which expresses a ket in terms of a chosen basis. In the example of photon polar-

ization, the dimension of the Hilbert space is two, since any polarization can be

decomposed into linear combination of two independent ones. Such a system of

1Formally, Hilbert spaces are infinite-dimensional vector spaces. Taking it for granted, we shall
include (and hereafter, focus only on) finite-dimensional vector spaces as Hilbert spaces.
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two-dimensional Hilbert space is called a qubit, and the most popular orthogonal

basis is perhaps {|h〉, |v〉}, where |v〉 represents vertical polarization.

For a system composed of two subsystems, called a bipartite system, the extension

of symbols for states is straightforward, with the tensor product ⊗ between the

two subsystems’ states. For instance, |h〉A ⊗ |h〉B, or simply |hh〉, identifies a pair

of horizontally polarized photons from subsystems A and B. Immediately, one can

anticipate legitimate states with no classical description through the superposition

of such product states: Consider the singlet Bell ket, |Φ−〉 = 1√
2
(|hv〉− |vh〉), which

says that if one photon is determined as horizontally polarized, it will be vertical

for the other. This characteristic of having correlated polarizations persists, even if

the measurement was done in any other orthogonal basis. That is, we obtain less

information about the photons as individuals, but gain in knowledge about them as

a pair. This kind of intimate quantum correlation between two subsystems, which

is non-classical in nature, is known as entanglement. More precisely, for a k-partite

system, one calls the ket entangled if it is a superposition ket, which cannot be

factorized completely into tensor products of kets of all individual subsystems.

1.1.2 Mixed states

It is evident that more generally, the ket or bra notation alone is not sufficient to

describe all quantum systems accurately. For instance, we might have situation such

as the system is in thermal equilibrium with the environment, or more generally, we

might find the need to deal with an ensemble of systems, instead of just one. Such

a generic ensemble could consist of purely identical copies of a quantum system,

or mixtures of different ones. The generalization of the ket/bra is the statistical

operator, ρ, which allows description of broader classes of physical systems. Another

common and well-accepted terminology for the statistical operator is the “state”.

Then, the first kind of ensemble above is known as pure states, and the second kind

as mixed states.

The generic form of statistical operator is ρ =
∑
i

|i〉gi〈i|, where |i〉 is the ket of the

i-th type system, and gi is its weight in the mixture. Note that this decomposition

is generally not unique: There are infinitely many as-if realities for a given state,
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with pure states being the exception. Then, the generalization of entanglement are

as follows:

• States which can be written as ρ =
∑
i

giρ1,i ⊗ ρ2,i · · · ⊗ ρk,i are known as

separable,

• states which are not separable are (fully) entangled.

Physically speaking, a separable state describes a mixture of systems which can be

obtained by preparing all individual subsystems of the k-partite separately and in

well-defined states. In other words, all the subsystems retain their individuality,

and have no quantum correlations with each other.

Two remarks are in order: First, we refer the dimension d of the state space (the

space of all statistical operators) as the number of entries of the density matrix,

i.e. the representation of statistical operator in any basis. For example, bipartite

qubit systems have a d =16-dimensional state space. Secondly, we call states with

n non-zero eigenvalues as rank-n states. For instance, pure states are rank-1 states,

mixtures of two orthogonal pure states are rank-2 states.

Purity

A simple measure of mixedness of the state ρ is given by its purity, P = tr{ρ2}. The

values of the purity are bounded between 1/
√
d and one. It equals to one if and only

if ρ is pure, and equals to 1/
√
d when ρ is completely mixed, i.e. ρ = 1/

√
d, where 1

is the identity operator. Obviously, the completely mixed state is a rank-
√
d state.

1.2 POM and quantum state tomography

1.2.1 POM

We now review the subject of measurement in quantum mechanics. As measure-

ments are operations acting on the system, they are represented by measurement

operators Ma, with a labeling the outcomes of the measurement. Regardless of the

details of the measurement, such as the exact physical nature of the measurement,

or the state of the system after the measurement, a consistent measurement theory

must satisfy the following two criteria:
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• The probability of occurrence, pa, for the outcome of measurement operator

Ma must be non-negative,

• the probabilities for all outcomes are summed to unity, assuming no losses.

We remark that the probabilistic nature of measurement outcomes is inherent in

quantum phenomena. To proceed, following Schwinger [Sch00, Sch01], we can think

of the act of measurement as a two-step process: First we annihilate selectively,

followed by re-creation, or update, of the quantum system into a new state. That

is, a unit prototype for selective measurement operator looks like

Ma = |a〉〈b|, (1.2)

such that when applied on the state | 〉, the outcome is the new state |a〉, happened

with a probability that is proportional to the overlap 〈b| 〉. It is evident that only

the annihilation or selection stage should matter for the probability of the outcome,

and hence we anticipate that

0 ≤ pa = pr{Ma, | 〉} = pr{|a〉〈b|, | 〉} = f(|b〉, | 〉) = f(〈b| 〉) ≤ 1. (1.3)

The function f can be determined from considering first the special case of projective

measurement, in which Ma = |a〉〈a|, and 〈a|a′〉 = δ(a, a′). Together with Eq. (1.1),

∑
a

pa = 1 = 〈 | 〉 =
∑
a

〈 |a〉〈a| 〉 =
∑
a

∣∣∣〈a| 〉∣∣∣2, (1.4)

identifying f(x) = |x|2. This generalizes to

pa =
∣∣∣〈b| 〉∣∣∣2 = 〈 |b〉〈a|︸ ︷︷ ︸

M†a

a〉〈b|︸︷︷︸
Ma

〉 = 〈 |M †aMa| 〉 = tr{Ma| 〉〈 |M †a}, (1.5)

and thus,

pa = tr{MaρM
†
a} = tr{M †aMaρ}. (1.6)

Hence, as far as probabilities are concerned, the set of positive operators, called the

probability operator measurement (POM), {Πa ≡ M †aMa}, is of direct importance.
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Evidently,
∑
a

Πa = 1, and the expression Eq. (1.6), which relates the probabilities

of event occurrence to the quantum states, is known as Born’s rule.

More generally, one can do the reverse, in an axiomatic way: Starting by observ-

ing the operators {Πa = M †aMa} are positive, and demanding
∑
a

Πa = 1, the

expressions of tr{Πaρ} indeed form a legitimate probability distribution. While it

is obvious that any measurement settings can thus be described by a POM, the

converse is true as well: Given a POM, it can always be realized, though the actual

implementation can be non-trivial. This can be proved as the Naimark’s theorem

[Hay06, Per95]. An example is the Bell measurement for a qubit pair, which requires

enlargement of the Hilbert space for additional degrees of freedom [KW98].

IC POM

From the general expression of the statistical operator above, it has the property

tr{ρ} = 1, as well as being a positive operator, i.e. its expectation value, 〈 |ρ| 〉,

for any | 〉, is always not smaller than zero. These two properties imply that to

fully characterize a state, we only need to determine d− 1 numbers (recall that the

entries of an arbitrary matrix of the same dimension will have 2d numbers to be

determined, since each entry is generally complex). Physically speaking then, we

need to perform measurements to acquire at least d independent outcomes to obtain

enough information about the state2.

Set of measurement operators which provides enough information to characterize

an unknown state is called an informationally complete (IC) POM. For minimal IC

POM, exactly d outcomes are measured. Generally, due to the statistical nature

of quantum measurement outcomes, measurements on many identical copies of the

state are needed in order to obtain a precise and reliable state identification.

1.2.2 Quantum state estimation

The inference and reconstruction of a quantum state from the measurement results is

known as quantum state tomography. A popular method used is called the maximum

2We need d (instead of d − 1) independent outcomes because the total number of measured
copies are usually not known a prior.
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likelihood estimation method [Fis22, Hel76].

Maximum likelihood (ML) estimation

Suppose we performed an experiment on a prepared “true” state ρtrue, and obtained

the frequencies {fj} for the POM {Πj}. That is, for the outcome labeled j, Nj

occurrences were registered out of the total N copies measured, such that fj =

Nj/N , and N =
∑

j Nj , assuming no losses. By denoting pj = tr{Πjρ} as the

probability of getting the outcome j for the state ρ, the likelihood L for given ρ to

produce the observed data event is then

L({Nj}|ρ) =
∏
j

p
Nj
j . (1.7)

Given no prior knowledge about the system, one estimates the state which maxi-

mizes the likelihood, ρML, as the true state ρtrue. For an IC POM, this maximum-

likelihood (ML) estimator is unique. Ideally, ρML should coincide with ρtrue, and

satisfy tr{ρMLΠj} = pj = fj . Realistically however, there are unavoidable fluc-

tuations in the outcomes due to statistical nature of quantum phenomena, and

possibly imperfections in real experimental set-up. It is then almost certain that

ρML will not coincide with ρtrue. Of course, if there is no imperfection in the set-up,

when the measurements are performed over a reasonably large number of copies

of the system, ρML will be close to ρtrue, and ρML → ρtrue when N → ∞. That

is, ML estimators are consistent estimators. Efficient computer algorithms to per-

form maximum-likelihood quantum state estimation are readily available, as can be

obtained from references [PR04, ŘHKL07].

Maximum-likelihood-maximum-entropy (MLME) estimation

If the measurement does not form an IC POM, one could then have many estimators

which are consistent with the experimental data with equally high likelihood. To still

have a unique identification of the state, additional constraints need to be enforced.

One such method is known as the maximum-likelihood-maximum-entropy (MLME)

scheme, in which after the maximum-likelihood estimation stage, one chooses the

estimator that maximizes the von Neumann entropy S(ρ) = −tr{ρ log2 ρ} [TZE+11,
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TSE+12]. For a given set of frequencies {fj}, this MLME estimator ρMLME is unique.

As the entropy is a measure of uncertainty in a physical system [NC10], the MLME

estimator corresponds to the least-bias and most conservative guess for true state

consistent with the measurement data.

Fidelity

To measure how “close” the estimator is to the target ρtrue, the fidelity, F , which

generalizes the overlap between two kets, is used [Joz94, NC10]. For any ρ and ρ0,

the fidelity is given by

F = tr
{√√

ρρ0
√
ρ
}

= tr{|√ρ√ρ0|}. (1.8)

Obviously, F = 1 when the two states are identical, and F = 0 when they correspond

to blends of orthogonal states, i.e. ρ =
∑
j

|φj〉gj〈φj |, ρ0 =
∑
j

|ψj〉fj〈ψj |, where

〈ψj |φk〉 = 0 ∀{j, k}. When both states are pure, F reduces to the absolute value of

their overlap, F = |〈ψ|φ〉|.

1.3 Witnesses and entanglement quantification

Entanglement is one active topic of current research, where the quantum correlation

between subsystems is at the heart of many interesting fields, like quantum key dis-

tribution [Eke91], quantum teleportation [BPM+97], and demonstration of various

concepts of quantum mechanics [AGR81, CS78]. While it is not our aim here to

study various applications and usefulness of quantum entanglement, conscientiously

knowing its importance in the above fields, we are concerned with how to efficiently

verify whether a state is entangled or separable. For this purpose, we review briefly

the geometry of the state space first.

Geometry of quantum states

The set of all separable states is a convex set. That is, mixtures of separable states

will remain separable, which is both physically and mathematically obvious. An-
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other example is the ML convex set, i.e. the set of estimators of maximum likelihood

obtained from informationally incomplete POM. Mixtures of such estimators maxi-

mize the likelihood, as well.

However, the set of entangled states are not convex. A simple counter-example

is an equal mixture of |Φ+〉 = 1√
2
(|hv〉 − |vh〉) with |Φ−〉, which results in ρ =

|hv〉12〈hv|+ |vh〉
1
2〈vh|, which is clearly a separable state.

1.3.1 Witness operator

This special closure or convex property of the separable states invites another way

of describing entanglement: There must exist [HHH96, Ter00] a Hermitian operator

W , called the entanglement witness or witness operator, such that if the state ρ0 is

entangled,


tr{Wρ} ≤ µ for all separable states,

tr{Wρ} > µ for some entangled states, including ρ0.

(1.9)

µ is called the threshold of the witness operator, and when the second inequality

above is satisfied, one says that this witness operator detects the state ρ. As a

concrete example, for a bipartite qubit system, W = |Φ+〉〈Φ+| is a witness with

threshold µ = 1/2.

One particular important kind of witness operator is an optimal witness WOpt: No

other witnesses can detect all the entangled states detected byWOpt, plus some other

states [LKCH00]. Geometrically, a witness does nothing but defines a hyperplane

in the state space, which separates a partial set of entangled states from all other

states. Then, an optimal witness defines a hyperplane in the state space which

touches the convex set of separable states, see Fig. 1.1 for simple illustration3.

1.3.2 Quantification of entanglement

The singlet Bell ket, |Φ−〉, for example, shows maximum correlation between the two

subsystems, independent of the basis of observation. On the other hand, separable

3The figure shown is for demonstration only: The actual convex state space is not elliptical in
its boundary as drawn, but generally complex and abstract.
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Figure 1.1: Geometry of states and entanglement witnesses.

states preserve individual knowledge about the subsystems, and measurements shall

review no such quantum correlation among them. Naturally then, one expects

some quantitative measures of entanglement, which vary smoothly from separable to

maximally entangled states. Indeed, there are a plethora of such measures, stemmed

from various (geometrical, algebraic, operational) considerations [BŻ06].

For our work, we choose to use the concurrence C, and its square, the tangle T , which

for bipartite qubit, has the advantage of having available analytical expressions, as

our basic measures of entanglement [Woo98, CKW00]. The analytical expression

for concurrence is

C[ρ] = max{0, λ1 − λ2 − λ3 − λ4}, (1.10)

where λj ’s are the eigenvalues, in decreasing order, of the Hermitian matrix R ≡√√
ρρ̃
√
ρ. Here, ρ̃ = ΣρTΣ, where ρ and Σ = Y ⊗Y , Y being the y-Pauli operator,

all are expressed in the standard basis {|vv〉 , |vh〉 , |hv〉, |hh〉}, i.e.

Σ = Y ⊗ Y =


〈v| 〈h|

|v〉 0 −i

|h〉 i 0

⊗

〈v| 〈h|

|v〉 0 −i

|h〉 i 0



=



〈vv| 〈vh| 〈hv| 〈hh|

|vv〉 0 0 0 −1

|vh〉 0 0 1 0

|hv〉 0 1 0 0

|hh〉 −1 0 0 0


. (1.11)
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For all separable states, their concurrences are zero, and for maximally entangled

states, C = 1.

Entanglement of formation

The reason why the concurrence is a measure of entanglement is not so obvious

from its expression alone4. To make the connection, we need the concept of the

entanglement of formation, which is intended to quantify the resources needed to

create a given entangled state [BDSW96, Woo98].

Consider a bipartite qubit system described by ρ. If one of the subsystems, called

A, is measured with Πj , the probability of this outcome is then

pj = tr{ρ(ΠA
j ⊗ 1B)}

= trAtrB{ρ(ΠA
j ⊗ 1B)} = trA{ΠA

j trB{ρ}}, (1.12)

where the superscripts A, B label the two subsystems, and trA is partial trace

w.r.t subsystem A, for instance. Without making reference to subsystem B, the

statistical operator describing A is thus ρA ≡ trB{ρ}. For pure states, if ρ = |ψ〉〈ψ|

is entangled, then ρA must be a mixed state, since A admits no description by purely

a ket. The higher the mixedness of ρA, the more entangled ρ is. Another natural

measure of the mixedness, besides the purity, is the von Neumann entropy, S(ρ).

S(ρ) = 0 if and only if ρ is pure, and S(ρ) = 1 for a maximally entangled state. Since

any bipartite ket |ψ〉 admits a Schmidt decomposition, i.e. it can always be written

as |ψ〉 =
∑
j

√
pj |j〉A|j〉B with

∑
j

pj = 1 for some kets |j〉A and |j〉B, where the

sets of kets |j〉A and
∣∣j〉

B
form orthogonal bases in their individual Hilbert spaces

for subsystems A and B, we can then define the amount of entanglement E for pure

states as the entropy of either of the two subsystems A and B:

0 ≤ E(|ψ〉〈ψ|) = −tr(ρA log2 ρA) = −tr(ρB log2 ρB) = −
∑
j

pj log2 pj ≤ 1. (1.13)

For mixed states, the entanglement of formation EF is the generalization of E above.

4For the author, that is.
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First, write ρ =
∑
i

|i〉gi〈i|, and consider all its possible blends. EF is then defined

as the (weighted) average entanglement of the pure states of the decomposition,

minimized over all the as-if realities:

EF(ρ) = min
∑
i

giE(|i〉〈i|). (1.14)

Note that EF = 0 if and only if ρ admits at least one possible realization by blends

of factorizable states, i.e. ρ is separable. Also, if ρ is pure, EF reduces to E above.

EF can then be considered as the amount of entanglement needed to create ρ, or

the least expected entanglement of any ensemble of pure states realizing ρ.

The minimization problem of EF is extremely difficult to solve, but fortunately, for

a bipartite qubit system, an explicit formula can be given. It is given by [Woo98]

EF(ρ) = −

(
1 +
√

1− C2

2

)
log2

(
1 +
√

1− C2

2

)

−

(
1−
√

1− C2

2

)
log2

(
1−
√

1− C2

2

)
, (1.15)

where C is the concurrence given in Eq. (1.10). Since EF(ρ) is a monotonic function

of C, the concurrence is therefore a justified entanglement measure in its own right.



14 1. Background Concepts I



Chapter 2

Background Concepts II

This chapter introduces further concepts that are directly related to the project

and the experiment performed. They include the principles of the entanglement-

detection scheme that our experiment shall perform, topics on realization of two-

photon polarizations as quantum systems, and the implementation of witness-family

measurements.

2.1 Principles of entanglement detection

Entanglement verification in this experiment is in essence comprised of three major

principles.

• Firstly, we try to detect entanglement in a straightforward manner through

a set of independent witness-family measurements. This is done by checking

an inequality criterion that is based on the very definition of entanglement

witnesses.

• The set of witness bases above are chosen to form an IC POM. Then, secondly,

when the state is not detectable individually by such inequalities, we perform

quantum state tomography to obtain the ML estimator. We can then evaluate

the concurrence or the tangle of the estimator to determine its separability.

• Thirdly, we introduce an “add-on package” to the above two principles. In

essence, before the IC POM is realized, we make use of partial information

obtained from each witness-family measurement to assist the detection scheme.
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2.1.1 Detection of entanglement by witness basis

Witness basis for bipartite qubit system

For a two-qubit system, it can be shown that one can construct a class of optimal

witness operators, WOpt(α), such that their eigenkets are two product kets and two

Bell kets. For details, please see Appendix A.

In summary, in terms of polarization qubits, such a witness basis is given by

{|vv〉〈vv|, |hh〉〈hh|, |Φ+〉〈Φ+|, |Φ−〉〈Φ−|}. Their associated eigenvalues are (p −

1)/2, (−1− p)/2,−q/2, q/2 respectively, where p and q are related by p =
√

1− q2,

and 0 < α = 1
2 arcsin(q) ≤ π

4 . Its witness threshold is µ = 0.

The ability to obtain witness operators with such simple eigenbasis shall proved to

be useful and crucial for our project. Since eigenvalues are just numbers associated

with the eigenvectors, measurement in the eigenbasis is effectively providing mea-

surement results for a class of operators. That is, we are in fact measuring a whole

one-parameter family of witnesses in one-go. Hence, we shall describe measurements

performed on eigenbasis of such optimal witness as “witness-basis measurements”,

or equivalently, “witness-family measurements”. In addition, a simple criterion to

detect entanglement can be obtained by considering such witness-family measure-

ments.

Entanglement criterion

Recall that for a given state ρ, it is entangled when the measurement results confirms

tr{Wρ} > µ. For the optimal witnesses above, we then have the violation of the

inequality tr{ρWopt(α)} ≤ 0 as the detection criterion for Wopt(α).

Now, since the measurement is the same for all witness parameter α, we can apply

a stricter criterion, by which detection of entanglement is indicated by the violation

of

min
α

{
tr{−ρWOpt(α)}

}
≥ 0. (2.1)

Denoting the expectation values p1 = tr{ρ|vv〉〈vv|}, p2 = tr{ρ|hh〉〈hh|}, p3 =

tr{ρ|Φ+〉〈Φ+|} and p4 = tr{ρ|Φ−〉〈Φ−|}, we have
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min
α

{
tr{−ρWOpt(α)}

}
= min

α

{
p1 cos2(α) + p2 sin2(α) + (p3 − p4) sin(α) cos(α)

}
= min

α

{p1 + p2
2

+
(p3 − p4

2

)
sin(2α) +

(p1 − p2
2

)
cos(2α)︸ ︷︷ ︸

1
2

√
(p1−p2)2+(p3−p4)2 sin

(
2α+tan−1

(
p1−p2
p3−p4

))
}

=
p1 + p2

2
− 1

2

√
(p1 − p2)2 + (p3 − p4)2. (2.2)

Thus, the witness criterion now reduces to the simple inequality

S(p1, p2, p3, p4) ≡ 4p1p2 − (p3 − p4)2 ≥ 0. (2.3)

In our experiment, we measure the frequencies fj for the four eigenkets, and then

evaluate S(f1, f2, f3, f4) to check for the witness criterion. This is justified for mea-

surements performed over a large number of copies of the quantum state.

2.1.2 Witness bases as IC POM

For a fixed basis, Eq. (2.3) is a sufficient but not necessary criterion for entangle-

ment detection. That is, an entangled quantum state need not violate it. If this is

the case, we then need to perform another measurement, using a different optimal

witness basis, and check the inequality again. This can be achieved by perform-

ing local unitary transformations to the initial witness basis1. If we were to rely

on each measurement separately, we would have to measure infinitely many wit-

nesses to obtain conclusive results. This problem can however be overcame, if we

measure witnesses that form IC POM. As mentioned in Sec. 1.2.1, here, at least 16

independent measurement outcomes are needed to form an IC POM.

In this respect, the elegance of measuring witness bases shines once more: By one

such measurement, one gets three independent outcomes. As one can verify di-

rectly, for the witness basis given above, the set of corresponding observables are

1Or equivalently, we are changing the quantum states by local unitary transformations, and still
measure in the same old witness basis. Note that local unitary transformations do not change the
amount of entanglement.
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{Z1 + 1Z, ZZ, XX + Y Y }. Here, X,Y, andZ are the standard Pauli operators

X = |v〉〈h|+ |h〉〈v|,

Y = |h〉i〈v| − |v〉i〈h|,

Z = |v〉〈v| − |h〉〈h|, (2.4)

and product such as Z1, for instance, means that Z is applied on the first qubit and

the identity 1 on the second qubit. To obtain the rest 12 observables, we perform

unitary operations by applying U1 and U2 to the first and second qubit respectively.

A summary of the unitary operators applied, and the observables thus obtained, is

provided in Table 2.1, taken from [ZTE10].

Witness U1 U2 Observables

1 1 1 Z1 + 1Z, ZZ, XX + Y Y
2 1 X Z1− 1Z, ZZ, XX − Y Y
3 C† C X1+ 1Z, XY, Y Z + ZX
4 C† XC X1− 1Z, XY, Y Z − ZX
5 C C† Y 1 + 1X, Y X, ZY +XZ
6 C XC† Y 1− 1X, Y X, ZY −XZ

Table 2.1: The six witnesses that collectively form an IC POM, and the unitary
operators relating them.

Here, C is the Clifford operator that permutes the Pauli operators cyclically, i.e.

CX = Y C, CY = ZC, CZ = XC. More explicitly, we have

C =
1

2

(
1− iX − iY − iZ

)
= e−iπ

3
J · σ, (2.5)

where J = 1√
3
(ex + ey + ez) is the unit vector along the 1-1-1 axis, and σ are the

Pauli operators, in compact vectorial notation.

As a summary: Measurements on six witnesses are needed at most to detect

entanglement, should each of the entanglement-detection criteria Eq. (2.3) fail.

Since these six witnesses form an IC POM, state tomography can be performed

to obtain the ML estimator. One can then evaluate its tangle to check its

separability.
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2.1.3 Adaptive schemes

Suppose we start with witness 1 in Table 2.1, and inequality Eq. (2.3) is not violated.

The question is, which witness should we choose for the next measurement? Of

course, the simplest way is to pick the next one at random; let’s call this strategy

the Scheme A. On the other hand, aiming at reducing the average number of witness-

family measurements needed, one can expect that the Scheme A is rather ineffective.

Indeed, by making use of the information about the quantum state obtained from

previous measurement(s), there is an economic way of choosing the next basis, which

allows us to speed up the detection of entanglement [Teo13]. This is done by choosing

the witness with highest chance of violating the inequality as our next measurement

setting, which we summarize as the Scheme B below.

Adaptive scheme with no separability test (Scheme B)

1. First, randomly start with a witness from Table 2.1, and obtain the experimen-

tal frequencies fj for the eigenkets. If Eq. (2.3) is violated, then entanglement

is detected.

2. If Eq. (2.3) is not violated, perform quantum state tomography with the ex-

perimental frequencies to obtain the MLME estimator.

3. Evaluate the probabilities pj for the other five witnesses using ρ = ρMLME.

4. Choose the witness which has the smallest value of S(p1, p2, p3, p4). This

corresponds to the highest chance of violating the inequality, consistent with

the information available.

If the detection criterion Eq. (2.3) is not violated for the second witness, repeat the

scheme, but with the frequencies collected from all previous witnesses are used for

construction of the MLME estimator. Repeat this scheme until Eq. (2.3) is violated

for one witness, or else, after six witnesses, obtain the ML estimator and evaluate

its tangle directly.
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Adaptive scheme with separability test (Scheme C)

On top of the Scheme B, we can introduce an additional step for further improve-

ment. This is summarized as the Scheme C below.

• Compare the likelihood, Eq. (1.7), using ρMLME, with the maximum likelihood

attainable for all separable states.

• If the former is larger than the latter, this means the ML convex set contains

no separable states. The state is then determined to be entangled, since any

subsequent witness measurements correspond to reducing the dimension and

size of the ML convex set, and ultimately to a point estimator (the ML esti-

mator) for IC POM. This is true when the copies of quantum states measured

are large.

2.2 Photon polarization as qubit

Success in realizing bipartite photonic quantum systems relies fundamentally on a

nonlinear optical phenomena, called the Spontaneous Parametric Down-Conversion

(SPDC).

2.2.1 Source of biphoton: SPDC

A non-magnetic dielectric crystal, with no inversion symmetry, such as beta bar-

ium borate (BBO), has a property of nonlinear susceptibility [DGN99]. That is,

when the electric field E that passes through the material has high intensity, e.g.

electromagnetic (EM) waves of a strong laser beam, the material exhibits nonlinear

responses, such that the electric displacement vector D is not linearly proportional

to the E . That is, one has [MW95]

D = ε0E + P , (2.6)

where ε0 = 8.854× 10−12 F/m is the vacuum permittivity and P is the polarization

vector, expressible as power series in E :

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + +χ

(3)
ijklEjEkEl + · · · . (2.7)
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χ(n) is the susceptibility tensor of rank n+1, and is associated with nonlinear effects

of n-th order. One particular second-order nonlinear phenomena is the SPDC—

spontaneous generation of two photons from a single photon of higher energy. The

full and rigorous description of SPDC is a quantum electrodynamics exercise [MW95,

HM84, Blo96], which is rather non-trivial and not at the focus of our project. Here,

we shall be content with the following phenomenological description of SPDC.

In the crystal, a mother photon, called the pump, of frequency ωp and wave vec-

tor kp, spontaneously decay into two daughter (conventionally called signal and

idler) photons (ωs, k s;ωi, k i), see Fig. 2.1 for illustration. Conservation of energy

and momentum read

h̄ωp = h̄ωs + h̄ωi, (2.8)

h̄kp = h̄k s + h̄k i. (2.9)

Consider the case of degenerate down conversion, i.e. ωs = ωi. Then, using the

relationship k ≡ |k | = nω/c between the wave number and the frequency, where n

is the refractive index for frequency ω and c is speed of light in vacuum, we get

ωp = 2ωs = 2ωi, (2.10)

k2p =
(npωp

c

)2
=
(nsωp

2c

)2
+
(niωp

2c

)2
+ 2
(nsniω2

p

4c2

)
cosϑ, (2.11)

where ϑ is the angle between k s and k i. For ϑ 6= 0, we have non-collinear SPDC.

Since ns = ni, Eq. (2.11) reads

n2p = n2s cos2
ϑ

2
, (2.12)

which shows that ns needs to be at least not smaller than np. This condition can

be satisfied in crystals with birefringence properties.

Birefringence

Excellent coverage of the subject of birefringence or double refraction is available at

the classic books of Born&Wolf [BW99], and Landau [Lan98]. In essence, an EM
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Air

BBO Crystal

OA

Figure 2.1: Non-collinear degenerate SPDC: A two-dimensional illustration. Inside
the BBO crystal, the pump photon is spontaneously down-converted into signal and
idler photons of degenerate wavelength. The crystal’s optic axis and the pump’s
polarization are both in the plane of the page, making the pump an extraordinary
ray. The signal and idler have polarizations perpendicular to the page, i.e. they are
ordinary rays. This is known as Type-I phase matching, or ‘e→ o+o’ configuration.
In reality, there is a rotational symmetry around the axis of kp, so SPDC is observed
as rings in three-dimensional space, where ϕ is called the cone-opening angle.

wave traveling from vacuum into the birefringent crystal will generally be refracted

and subsequently propagate in two different directions, with orthogonal linear po-

larizations. One of the refracted waves, called the ordinary ray, always propagates

at a fixed speed, while the second refracted wave, called the extraordinary ray, trav-

els at the speed that depends on the phase-matching angle θ between the incident

wave vector and the optic axis (OA) of the crystal2. Equivalently, the two refracted

waves experience different refractive indices, labeled as no and ne(θ). Crystals with

no ≥ ne(θ) are known as negative crystals.

Phase matching

Equation (2.12) can now be satisfied, by using a negative crystal, such as BBO crys-

tal. This is done by specifically choosing the orientation of its optic axis such that

the pump travels as extraordinary ray with np = ne(ωp, θ), and the down-converted

light are produced as ordinary rays with ns = no(2ωp). Due to dispersive property

of material, no(2ω) is usually only slightly larger than ne(ω), hence restricting the

2We are considering uniaxial crystals only, and thus there is only one such axis.
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angle ϑ in Eq. (2.12) at small values. The above conditions used to produce SPDC

are known as Type-I phase-matching conditions. Finer discussions on birefringence

and analytic calculation for phase-matching conditions are included in Appendix B.

NIST Phasematch

Another efficient approach to obtain phase-matching conditions is by using available

free software, namely the NIST Phasematch programme, developed by National

Institute of Standards and Technology, U.S. Department of Commerce. By keying

in the values of the relevant parameters, such as the phase-matching angle θ etc.,

the software will generate intensity plot of the down-converted light, as function

of wavelength and the cone-opening angle ϕ in Fig. 2.1 above. A snapshot of the

programme is provided in Fig. 2.2.

Figure 2.2: NIST Phasematch software: By choosing the appropriate subjects or
functions from the database, as shown in the picture are Type-I phase match-
ing using BBO crystal, and inserting relevant values such as the crystal’s thick-
ness (800µm), the pump’s wavelength (404.6 nm), its full width at half maximum
(0.6 mm) and the phase-matching angle θ (29.6◦), the intensity spectra of the down-
converted light as a function of wavelength and cone-opening angle ϕ can be ob-
tained. As can be seen from the image, with the optic axis cut at 29.6◦, most of the
down-converted light emerged at an angle ϕ ≈ 4◦.
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2.2.2 Polarization manipulations using optical devices

In this project, polarization of the photon is our main quantum degree of freedom,

and its manipulations is done by using wave plates and beam splitters. For definite-

ness, the polarizations are defined according to the optical table’s reference frame.

That is, for light traveling parallel to the table surface, horizontal refers to a direc-

tion contained in the plane, while vertical refers to a direction perpendicularly up

to the table surface.

Wave plates

Wave plates (WPs), or retarders, change the polarization. The principle of opera-

tion of a retarder is rather simple: It divides an incident, polarized beam into two

linear components, changes their relative phase, then recombines them. Because

of the phase shift, the recombined beam thus has a new polarization, in general.

This change of relative phase can be accomplished by making the two components

travel at different speeds, i.e. experiencing different refractive indices. Evidently,

a birefringent material (usually quartz) is a good candidate for this purpose. The

component that travels faster defines the fast axis (for quartz, this is also the optic

axis), while the slow axis is defined by the corresponding slower component. These

two axes are orthogonal, and are made to form a plane perpendicular to the incident

light. Making reference to the lab’s coordinate, we calibrate the wave plates by the

angle θ between their fast axes and the vertical direction. It is 0◦ when the fast axis

is vertical, and 90◦ when it is horizontal, rotate in the anti-clockwise sense.

A half-wave plate (HWP) is a retarder whose thickness is cut such that the re-

tardance between the two beams is exactly π. The associated unitary operator

describing a HWP orientated at angle θ is then given by

UHWP(θ) =
(
|v〉 |h〉

) cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 〈v|
〈h|


=̂

 cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 , (2.13)

apart from irrelevant global phase factor.
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A quarter-wave plate (QWP) is another standard retarder, where the phase differ-

ence between the two beams is π/2. Expressed in the standard basis, a QWP is

represented by the matrix

UQWP(θ) =̂
1√
2

1− i cos(2θ) −i sin(2θ)

−i sin(2θ) 1 + i cos(2θ)

 . (2.14)

As an interesting and important remark, an arbitrary polarization transformation

can be achieved by sending the photon through a QWP, then through a HWP, and

finally through another QWP [EKW01].

Beam splitters

A beam splitter or partially-reflecting mirror, is a piece of material (e.g. fused silica)

that transmits and reflects light, with a specific ratio T : R, where T +R = 1, with

negligible losses. A beam splitter which reflects and transmits light independent of

their polarizations is known as a non-polarizing beam splitter (BS). Another kind of

beam splitter is known as polarizing beam splitter (PBS). It reflects photons with

vertical polarization, and transmits photon with horizontal polarization.

2.3 Realization of a witness-basis measurement

We now discuss the realization of a witness-basis measurement, using our optical

devices.

2.3.1 Hong-Ou-Mandel interferometer as witness basis

Consider a R : T BS, with losses negligible. At the scale of single photon, this

means the chances it will be reflected or transmitted is in ratio the R : T . As upon

measurement, a photon can only be either on the left side or the right side of the

BS, we can describe this path (or position) degree of freedom effectively as a qubit

system3. That is, we have the orthogonal kets {|a〉L, |a〉R} describing a left qubit

and a right qubit respectively, where “a” specifies the various properties (including

3As a side note, one can use the propagation of light (going left or right) to define the path
qubit, but of course the physics remains the same.
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polarization) carried by the photon. Assuming a symmetric beam splitter (i.e. its

two sides are of no difference) which does not distinguish the properties “a”, the

quantum mechanical description of the BS is then

UBS =


〈 |L 〈 |R

| 〉L i
√
R
√
T

| 〉R
√
T i

√
R

. (2.15)

More interestingly, instead of single photon, one can incident another photon from

the other side of the BS, such that the reflected and transmitted light propagate

exactly the same path as the transmitted and reflected light, respectively, of the

previous incident light. Then, we have essentially a two-qubit system. Before the

two photons meet, on one side of the BS, there is a left qubit |a〉L, and on the other

side, a right qubit |b〉R. When they strike on, the BS acts as a unitary scatterer :

|a〉L −→
√
T |a〉R + i

√
R|a〉L, |b〉R −→

√
T |b〉L + i

√
R|b〉R. (2.16)

Using Fock states |n,m〉 to represent n photons in the “mode” staying at left side

of the BS, and m photons staying at the right side, we take note of the following

three cases: (notation: |a〉L ⊗ |b〉R ≡ |ab〉)

• ‘Separable’ input: |ab〉, a and b are equal,

Output: −R|ab〉+ T |ba〉+ i
√
RT (|a〉L|b〉L + |a〉R|b〉R)

≡ (T−R)√
T 2+R2

|ab〉+ i
√
RT√

T 2+R2
(|0, 2〉+ |2, 0〉).

Special case, R = T = 1
2 : →bunching to one path.

• Indistinguishable entangled ‘bosonic’ input: 1√
2
(|ab〉 + |ba〉) ≡ |1, 1〉, a and b

have orthogonal polarizations,

Output: T−R√
2

(|ab〉+ |ba〉) + i
√

2RT (|a〉L|b〉L + |a〉R|b〉R)

≡ (T −R)|1, 1〉+ i
√

2RT (|2, 0〉+ |0, 2〉).

Special case, R = T = 1
2 : → bunching to one path.

• Indistinguishable entangled ‘fermionic’ input: 1√
2
(|ab〉− |ba〉) ≡ |1, 1〉, a and b

have orthogonal polarizations,

Output: − 1√
2
(|ab〉 − |ba〉) ≡ −|1, 1〉 → splitting to different paths.
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These interference effects, though usually referred to the “bosonic” type only, are

known as Hong-Ou-Mandel effect(s) [HOM87]. By now, the exact correspondence

between product states, Bell kets |Φ+〉 and |Φ−〉 with the three cases above should

be obvious. Hence, by putting one PBS at each arm after a 50:50 BS, it is obvious

that one is able to measure all the four eigenkets of the witness operator, through

the following distinctive features; see Fig. 2.3 as well.

Eigenket Photon counts (lh,lv,rh,rv)

|hh〉 (2,0,0,0) or (0,0,2,0)
|vv〉 (0,2,0,0) or (0,0,0,2)
|Φ+〉 (1,1,0,0) or (0,0,1,1)
|Φ−〉 (1,0,0,1) or (0,1,1,0)

Table 2.2: Signatures of eigenkets of the witness operators.

A remark: When the two photons are not indistinguishable, i.e. by carefully studying

their arrival times, frequencies, polarizations, or any other properties, such that

one is able to tell, in principle, whether the photons were originally left or right

qubits, there will be no interference effects observed. This is Bohr’s principle of

complementarity [Boh28, Sch60, Eng96]. For such distinguishable situations, in the

above cases, the photons are equally likely to bunch, or split.

BS

Figure 2.3: Realization of a witness-basis measurement using HOM interferences,
with the signatures given in the Table 2.2. As an example, when the detectors
at lh and lv ports both register photons simultaneously, this corresponds to a
measurement signature for the |Φ+〉 eigenket. The wave plates WPs are used to
change the witness basis for subsequent measurements, see Sec. 2.3.2.
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2.3.2 Change of witness basis to form POM

The previous discussion focuses on witness 1 in Table 2.1. To measure in the other

five bases, WPs, in the order of QWP-HWP-QWP, are installed at both input arms

to implement the unitary operators given in Table 2.1. The required angles for the

WPs to perform the unitary operations are summarized below:

1 = UQWP(0)UHWP(0)UQWP(0) =̂

1 0

0 1

 ,

X = UQWP(0)UHWP(
π

4
)UQWP(0) =̂

0 1

1 0

 ,

C = UQWP(0)UHWP(
π

4
)UQWP(

−π
4

) =̂
1√
2

1 −i

1 i

 ,

C† = UQWP(
−π
4

)UHWP(0)UQWP(0) =̂
1√
2

1 1

i −i

 ,

XC = UQWP(0)UHWP(0)UQWP(
−π
4

) =̂
1√
2

1 i

1 −i

 ,

XC† = UQWP(
π

4
)UHWP(0)UQWP(0) =̂

1√
2

 i −i

1 1

 . (2.17)

In the above equalities, we have ignored any irrelevant global phase. Note that the

matrix operation is always from right to left, i.e. the UQWP on the left corresponds

to the QWP that is closer to the BS in Fig. 2.3.
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Chapter 3

Witness-Family Measurements

Our experiment can be operationally divided into three stages: At first, there is the

controllable generation of two-photon polarization states, and at the end, there is

the detection of the photons using photon detectors, thereby completing the mea-

surement with the witness basis. In between these two, we have the manipulations

of photon polarization, leading to their interference at the beam splitter. In this

chapter, we describe, in detail, our effort in carrying out the experiment, according

to these three stages.

As a remark, all our experiments are performed on an optical table with tuned

damping (Newport, RS 2000), over a surface area of 1200× 1800 (mm).

3.1 Generation of two-photon states

To understand the experimental performances of the entanglement-detection scheme,

we generate three different classes of states as test sources. They are states of dif-

ferent ranks, namely rank-1 states, rank-2 states, and rank-4 states. Inasmuch the

technical aspects in generating these 3 classes of states are all slightly different, they

share the same photon sources and most of their experimental set-up. In fact, they

are all modified from a standard Bell state generation set-up which uses two-Type-I

crystal geometry [KWW+99]. Meanwhile, as the generation of rank-4 states is more

complicated, its discussion shall be postponed to Sec. 3.4.
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3.1.1 Bell states

a

HWP@ϑ

404.6nm Pump

BBO

State  generation

QP

Figure 3.1: Schematic for the generation of the Bell states and rank-1 states. A C-W
diode laser pumps two type-I BBO crystals with optic axes on orthogonal planes,
and the SPDC occurs in the non-collinear frequency-degenerate regime. When the
HWP is set at 22.5◦, it changes the vertically polarized pump photons to −45◦, and
thereby produces the Bell states. To generate the class of rank-1 states given in
Eq. (3.2), the HWP is set at ϑ. quartz plates (QP) are used to control the relative
phase between the generated states from the two crystals.

The schematic experimental set-up to generate Bell states is shown in Fig. 3.1. Two

similar BBO crystals of both 5 × 5 × 0.8 (mm) in length, width and thickness are

mounted together on a tunable stage (KM100PM, Thorlabs). The optic axes of

the first and second crystals are oriented in the vertical and horizontal planes re-

spectively, both making angles of 29.5◦ w.r.t. the pump’s propagation kp, which is

incident on the crystals normally. The pump originates from a frequency-stabilized

continuous-wave (C-W) diode laser (ONDAX, LM Series, ≈ 40 mW) at a wave-

length of 404.6 nm, or frequency ν = 7.410 × 1014 Hz, with beam size of about

0.8 × 0.6 (mm), slightly elliptical in shape. The laser is vertically polarized with

intensity ratio > 100 : 1 over its horizontal component, and is reported to have a

linewidth of about ∆ν = 160 MHz. Equivalently, the coherence length of the pump

laser is about Lc = 1.87 m1. To increase the yield of down-converted photons, we

place a lens of focal length 50 mm to focus the pump laser at the crystals.

By using a HWP at 22.5◦, the polarization of the pump photons can be changed

from vertical to −45◦ polarization. Then, as SPDC happens, the first crystal pro-

duces pairs of horizontally polarized photons from the pump’s vertical polarization

1There is an uncertainty about the exactness of this value, please see Appendix C for the
discussions. This dispute is of a minor concern though, as it has rather little effect on the experiment.



3.1. Generation of two-photon states 33

component2, while the second crystal produces pairs of vertically polarized photons

from the pump’s horizontal polarization component. With noncollinear SPDC, we

set the down-converted photons to travel in different directions with a cone-opening

angle of 3◦. Note that as the crystals are very thin, and the cone-opening angle

is small, the two SPDC cones overlap almost exactly with one another. For our

experiment, we shall collect only down-converted photons which travel along the

horizontal plane as our two-qubit systems. Since the coherence length of the pump

is relatively long, the phase between the horizontally polarized and vertically po-

larized down-converted photon pairs are always locked together, and thus they are

described by

|ψ〉 =
1√
2

(|hshi〉+ eiφ|vsvi〉), (3.1)

where the subscripts s–signal and i–idler (hereafter omitted if no confusion) label

the spatial modes. The relative phase φ can be tuned by introducing a pair of

quartz plates in between the HWP and the crystals. By tilting these quartz plates,

and hence changing their effective thickness for which the pump is passing across,

the ellipticity of the pump’s polarization, i.e. the relative phase between its hori-

zontal and vertical components can be manipulated. This change of relative phase

is then transferred to the φ in Eq. (3.1). As a result, one can prepare the Bell

ket |Ψ−〉 = 1√
2
(|hh〉 − |vv〉)3. Note that if we now change the pump’s polarization

to 45◦ by changing the HWP to −22.5◦, the ket |Ψ+〉 = 1√
2
(|hh〉 + |vv〉) will be

obtained instead.

3.1.2 Rank-1 states

Rank-1 states can be produced from a straightforward generalization of above’s

methodology and set-up. Instead of setting the HWP at the pump at 22.5◦, by

turning it to an arbitrary angle 0◦ ≤ ϑ ≤ 90◦, the pump’s polarization changes from

|v〉 −→ cos(2ϑ)|h〉 − sin(2ϑ)|v〉. With SPDC, this generates the states

| 〉ϑ = cos(2ϑ)|hh〉 − sin(2ϑ)|vv〉. (3.2)

2This is actually a (good) approximation, as the down-converted photons are actually in general
not exactly horizontally polarized. For discussions about this issue, please see Appendix C.

3The detailed explanation on checking the correctness of φ will be given in Sub. 3.3.2.
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The purity of this class of states is 1, and the tangle is given by

T =
(

1− cos(8ϑ)
)
/2. (3.3)

3.1.3 Rank-2 states

HWP@22.5o

404.6nm Pump

BBO

VPR

State  Preparation

QP

VPR

Controller

Figure 3.2: Schematic for the generation of rank-2 states. A variable polarization
rotator (VPR) is added to the Bell state generation set-up, so that the pump peri-
odically changes between the +45◦ and −45◦ polarizations with controlled ratio.

In this project, the basic principle underlying the method of producing rank-2 states

is to generate incoherent mixtures of orthogonal Bell states with controllable weights.

This can be achieved, by introducing a new piece of instrument, namely a variable

polarization rotator (VPR), into our previous rank-1 set-up, as depicted in Fig. (3.2).

A VPR is an optical instrument which is able to change the polarization state of

the light into different possible states, according to some controlled parameters. In

our experiment, the VPR used is a liquid crystal retarder (LCR) (Meadowlark,

LRC-200).

The working principle of a LCR is rather straightforward. By applying electric volt-

ages across, hence changing the alignment of the liquid crystals inside, one obtains

an instrument which carries different possible retardances, according to the values

of the applied voltage. In particular, one can obtain a half-wave retardance (like a

HWP), as well as zero or no retardance at all. However, as introduced in Sec. 2.2.2,

whereas a HWP or QWP can be mounted on a rotator to rotate its fast and slow

axes at the desired angle θ, our LCR has its fast and slow axes fixed at θ = ±45◦.

To produce rank-2 states, we put the LCR at just after the laser source, but before

a HWP which is rotated at 22.5◦, and apply electric voltage in square waveforms
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across the LCR. It is configured so that zero retardance is obtained for the low

voltage of VL = 1.39 V, and half-wave retardance is obtained for the high voltage

of VH = 1.64 V. Then, when zero retardance is achieved, the pump polarization

entering the crystals remains at −45◦, and |Ψ−〉 is generated. When the half-wave

retardance is achieved, the pump polarization entering the crystal changes to 45◦,

and |Ψ+〉 is generated. By changing the duty cycle (DC) of the square wave, i.e. the

ratio of the duration of the high voltage to the period of the waveform, we can thus

obtain various blends of the two orthogonal Bell states with controllable weights.

That is, we are generating the incoherent mixture

ρ(α) = |Ψ−〉(1− α)〈Ψ−|+ |Ψ+〉α〈Ψ+|

=
1

2
(|hh〉〈hh|+ |vv〉〈vv|) +

(
α− 1

2

)
(|hh〉〈vv|+ |vv〉〈hh|), (3.4)

where α ∈ [0, 1] is equal to the duty cycle. The purity of this class of states is

P = 2
(
α− 1

2

)2
− 1

2
, (3.5)

and the tangle is given by

T =
(

1− 2α
)2
. (3.6)

Of course, to have a meaningful recognition of the states, the period of the square

wave must be significantly less than the total time of measurement. In our ex-

periment, the square wave is applied at a frequency of 1 Hz, and the total time of

measurement is 1 min for each state.

It is worth mentioning that by using more than one VPR, one can generate rich

classes of states. For example, in addition to the above configuration, one can

install another similar VPR at the signal arm, and independently control their DCs.

If both the DCs are totally uncorrelated and randomized, one obtains the completely

mixed state. In contrast, by carefully correlating their DCs, Bell diagonal mixed

states, which can be rank-3 or rank-4 states, can be generated. More generally,

by rotating the polarization of the pump beam to an arbitrary angle θ, one can

obtain mixtures of non-maximally entangled kets |Ψθ〉 = cos(2θ)|hh〉+ sin(2θ)|vv〉.

This enables the generation of even more states such as the Collins-Gisin states
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[CG04], given by ρCG = |Ψθ〉α〈Ψθ|+ |hv〉(1− α)〈hv|. Unfortunately, however, due

to limitations from our budget and instruments, we regret that these states have

not been generated and used for our witness project.

Lastly, we remark that a detailed study on the quality of the rank-2 states ρ(α) in

Eq. (3.4), and hence a confirmation on the validity of this method of states gener-

ation using VPRs, had been performed. These efforts of introducing a simple and

controllable way of generating mixed two-photon states, together with its verifica-

tion, earned us a publication in the New Journal of Physics. We refer the readers

to this work [DLT+13] for the details.

3.2 Manipulations and control of states

3.2.1 Manipulation & control

As they leave the crystals, the down-converted photons are collected into single-mode

optical fibers (SMF) using aspherical lenses with focal length of 11 mm, placed at

a distance of about 1050 mm from the BBOs4. To compensate or neutralize the

changes in polarization accumulated as the photons propagate inside the optical

fibers, manual polarization controllers (PCs) are introduced. A PC works by looping

the fibers in three consecutive spools of paddles which mimic the function of a QWP-

HWP-QWP configuration. These loops produce stress on the fibers which induce

effective birefringence on the fibers, where by turning the paddles, one is effectively

turning the fast axes of the fibers5. After restoring the polarizations, the down-

converted photons are out-coupled from the fibers with aspherical lenses of 4.51 mm

focal length.

3.2.2 HOM interferometer

Next, we direct the signal and idler photons to interfere at a non-polarizing 50 : 50

BS. The schematic of the set-up is given in Fig. 3.3. As interference effect relies on

non-distinguishability of the two parties, the signal and idler photons must reach

4See Appendix D for explanation on using this collection distance.
5See Appendix D for details on how to use the PCs.
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Figure 3.3: From its source, the signal and idlers are collected into SMFs, using
lenses (L). Their polarizations are maintained by using the PCs. The photons are
directed to interfere at the 50:50 BS, and guided to incident on two PBSs. The IFs
are interference filters. Set of wave plates are installed on both arms to perform
changes of witness basis. To distinguish the signatures of the four eigenkets of
the witness bases, eight detectors are used, and the coincidences between any two
detectors are (post-)processed by a coincidence programme &©.

at the same time to, and at the same spot of the BS, within very small margins of

errors.

To meet the requirement on their arrival times at the BS, in one arm (say, idler),

two mirrors are especially mounted on a motorized stage, which can translate with

a minimum step size of 0.5µm (OWIS, Precision Linear Stages Limes 80). The two

mirrors are installed such that the photon’s incident angles are 45◦ upon the mirrors,

and finally reflects into the reversed direction. This configuration of mirrors is also

known as an optical trombone. The translation of the linear stage is set in the same

axis as the light’s incident direction, such that only the distance traveled by the

light is altered, but not its path direction.

To make sure that the two light beams overlap well at the beam splitter, after they

meet at the BS, we maximize their coupling ratios into a distant SMF. Since coupling

into a SMF is very sensitive to minute changes, maximizing the coupling ratios for

both arms implies they must have followed (almost) the same path throughout, and

originated from the same spot at the BS. In our experiments, we maximize both

coupling ratios to about 70%.



38 3. Witness-Family Measurements

3.3 Detection and measurement

3.3.1 Witness-basis measurement

After their interference at the BS, the two photons are guided to incident on two

PBSs, as depicted in Fig. 3.3. Here, the down-converted photons are filtered with

interference filters (Andover) centered at 810 nm, with 10 nm full-width-at-half-

maximum (FWHM). To obtain the different signatures of the four eigenkets, we

need to be able to distinguish and register both one-photon and two-photon events.

For this purpose, we introduce four 50:50 BSs at the transmission and reflection

ports of the two PBSs. This results in eight output ports in total, which are di-

rected into eight single-photon detectors (Silicon Avalanche Photodiodes, quantum

efficiency ˜50%, Qutools Twin QuTD), using lenses and multi-mode fibers. This

configuration is used because our detectors are not able to distinguish one-photon

and two-photon events (they have a dead time of about 1µs), and hence the sig-

nature of (2,0,0,0) for |hh〉 in Table 2.2, for instance. By further splitting these

two horizontally polarized photons using the 50:50 BSs, we can then detect this

signature by registering the coincidences between D3-D4, and D5-D6 in Fig. 3.3,

and we must not forget to multiply by two to take into account the possibility of

two photons going to D3, for example. In our experiment, coincidence events are

registered and defined using a (TDC) time-to-digital converter (quTAU, Qutools)

with a time window of 5 ns. With this configuration, the signatures of witness-basis

measurement in Table 2.2 are now translated to Table 3.1. In reality, we are using

four multi-mode fused fiber optics couplers (Thorlabs, FCMM625-50A-FC) as our

four 50:50 BSs. Such fibers have one tip where the photons are coupled in, and two

other tips where they are coupled out.

Eigenket Coincidences between the detector pairs

|hh〉 2×(D3-D4), (D5-D6)×2
|vv〉 2×(D1-D2), (D7-D8)×2
|Φ+〉 (D1-D3), (D1-D4), (D2-D3), (D2-D4),
|Φ+〉 (D5-D7), (D5-D8), (D6-D7), (D6-D8),
|Φ−〉 (D1-D5), (D1-D6), (D2-D5), (D2-D6),
|Φ−〉 (D3-D7), (D3-D8), (D4-D7), (D4-D8),

Table 3.1: Signatures of measuring the eigenkets of witness operators, using the
configuration in Fig. 3.3.
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In practice, to evaluate this many coincidences between any two detectors (20 are

needed out of 28 in total) in one-go and on the fly using logic electronic circuits, is

not feasible. To overcome this, whenever a detector detects a photon and registers a

single count, a timestamp is assigned to this event. After the experiment is finished,

we then collect all these timestamps for all the eight detectors, and post-select

the coincidence counts between any two detectors. Coincidences are defined by

timestamps which differ by at most 5 ns. Using our TDC above, a resolution of

81 ps for the timestamps can be achieved. A sample of such click sequence is shown

in Fig. 3.4. Last but not least, we install sets of QWP-HWP-QWP at both signal and

idler arms, which are needed to realize all the witness bases in Table 2.1, according

to the values given in Eqs. (2.17). Note that they have been installed at before the

BS for HOM interference.

Figure 3.4: An excerpt from the real experimental data for witness basis 1 with the
|hh〉 ket, where ϑ = 90◦ in Eq. (3.2). The left column is the timestamp, where one
unit, or time bin, corresponds to 81 ps. The time window of 5 ns is then approximated
by 62 bins. The right column is the channel number, which corresponds to the
detectors shown in Fig. 3.3. Here, we have the mapping of channel numbers to
detectors by 0 ↔ D1, 1 ↔ D2, and so on. As an example, there is a coincidence
count between D5 and D6 as highlighted above. In our experiments, there are about
ten thousand such coincidence counts for each state and each witness basis.
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3.3.2 Polarization correlation test
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Figure 3.5: Schematic of the experimental set-up for polarization correlation test.
Using HWPs and PBSs, polarization correlation tests are performed in two bases,
namely the hv basis and ±45◦ basis. D1 and D2 are single-photon detectors, and
&© is the coincidence circuit.

Since all our state generations originated from the Bell states, the quality of the Bell

states must be insured. To check that the down-converted photons generated, as

expected from a Bell state, has a high degree of polarization correlation, polarization

correlation tests are performed. At one arm (say, signal), the HWP is fixed at 0◦

or 22.5◦ for analysis in the hv basis or ±45◦ basis respectively, while the HWP

at the other arm (idler) is rotated by angle θ/2. Both HWPs are followed by a

PBS, and the light that passes through the transmitted ports of the PBSs shall

be collected by two single-photon detectors, see Fig. 3.5. The coincidence rates

between the counts of the two single-photon detectors are then recorded. That is,

we are probing the values of tr{ρ| 〉〈 |}, where | 〉 = |hs〉(cos(θ)|hi〉 + sin(θ)|vi〉) or

|+45◦s 〉(cos(θ)|hi〉+sin(θ)|vi〉). Here, the coincidence events, defined by time window

of 5 ns, are evaluated on the fly, using our TDC.

A measure of polarization correlation is the visibility, defined as

V =

∣∣∣∣∣N0◦ −N90◦

N0◦ +N90◦

∣∣∣∣∣ (3.7)

for measurement in the hv basis, or

V =

∣∣∣∣∣N+45◦ −N−45◦
N+45◦ +N−45◦

∣∣∣∣∣ (3.8)
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for measurement in the ±45◦ basis. Here, Nθ is the coincidence rate when the HWP

in the idler arm is oriented at θ/2. Our experimental results with ρ = |Ψ+〉〈Ψ+|

are shown in Fig. 3.6. High visibilities (98.1± 1.4% and 97.3± 1.4% respectively) in

both the hv and ±45◦ bases indicate high quality of the produced Bell state.
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Figure 3.6: Polarization correlation analyses, for the Bell ket |Ψ+〉. The tests show
strong polarization correlation between the down-converted photons which is inde-
pendent of the measurement basis, and hence a confirmation of the highly-entangled
source. Not shown are the single counts of the two detectors, which are both about
22,000 counts per ten seconds, and are almost not modulated by θ.

3.3.3 Characterization of HOM interferometer

The quality of the HOM interferometer is equally important in this experiment. To

check it, we first prepare the photons in the ket |hh〉, and remove the two BSs in

front of the detectors D3, D6. Then, by translating the motorized stage in the idler

arm, and thus changing the differences in the photons’ arrival times at the beam

splitter, we obtain the so-called HOM dip, shown in Fig. 3.7. It plots the number of

coincidence rates between D3-D6 as a function of the stage position.

Quantitatively, we define the dip visibility, V as

V =
Nmax −Nmin

Nmax +Nmin
, (3.9)

where Nmax is the maximum coincidence rates at asymptote, and Nmin is the mini-
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Figure 3.7: The HOM dip. The stage position at around 130µm indicates almost
equal detection time for the photons, making them indistinguishable in principle.
A sharp decrease in the coincidence rates is thus observed, as the stage translates
along. The smooth curve is a fitted Gaussian, which corresponds to interference
filters with Gaussian profile.

mum coincidences rates at the dip. For the HOM dip above, the visibility obtained

is 94.5± 11.2%. This indicates that we have establishd a reliable interferometer.6

Two remarks about the stability of HOM interferometer are in order: Firstly, the

width of the HOM dip is proportional to the coherence length of the SPDC pho-

tons. Since SPDC is possible for non-degenerate wavelengths, the SPDC spectra

are usually quite broad, which results in very short coherence length. This is the

reason why interference filters are needed, apart from filtering stray photons. The

IFs effectively increase the coherence length of the SPDC photons by narrowing the

SPDC spectra. A wider dip provides more robustness to interferometric instability,

provided the disturbance is not too large. It also increases the overlap of the two

dips from the two crystals.

Thus, we need to identify any disturbance that induces interferometric instability,

and kept them minimal for at least the duration that is needed for our experiment.

In our experiment, we found that the air flow from the air-condition has brought

6Correspondly, for the ket |vv〉, we have a second dip. As their origins are two different crystals,
the dips are very close, but not exactly overlapping.
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significant instability to the HOM dip. By covering the set-up with hardboards, we

are then able to obtain a stable HOM dip for duration of at least ten minutes. The

result of this simple stability check is reproduced in the figure below.
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Figure 3.8: The coincidence counts at the HOM dip for ten minutes, both with cover
(red), and without cover (black). To observe the instability more clearly, the above
results were obtained without interference filters. Here, the maximum coincidence
rates Nmax is around 2000 counts per second.

3.3.4 Detector calibration

Detector efficiency

It was assumed implicitly that the detectors are perfect in our discussions in the

previous sections. However, in real experiments, all detectors have detection effi-

ciencies. For a detector with efficiency 50%, this means half the time, it will miss a

detection, even when the photons are not reaching within its dead time. Here, we

shall not be concerned with the physical reasons behind such detection inefficien-

cies, but rather, their consequences. In our experiment, we are using eight detectors,

where all of them have their own efficiencies. If these descrepencies are to be ig-

nored, wrong statistics will be obtained. To take this into account, we introduce

a renormalization to the statistics registered, such that the results obtained, after

these corrections, will reflect the true statistics, i.e. as if the detectors had equal
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efficiencies.

To do this, right before (or right after) the experiment, we calibrate the detector

efficiencies, by using the same, stable photon source. That is, by using a same photon

source, the number of photons, Nk, registered by each detector Dk, are recorded.

Then, the detector which gives the largest count, say Nk′ , will have its efficiency

normalized to 1. All other detectors will then have their relative efficiencies given

by ηk = Nk/Nk′ . To renormalize the statistics, for every Nk photons detected by

Dk, we divide by ηk, to include the missing detections. This correction scheme

works similarly for coincidence events. For example, suppose D3 and D4 registered

N coincidences, then we renormalize it to N/(η3η4).

Single counts

Another type of correction to the statistics is known as the elimination of accidental

coincidences. Accidental coincidences are coincidence events that come from photons

which are not conjugate pairs of the SPDC, but perhaps some stray photons, or

the minimum background count of the detectors (which is on average about 700,

typically). Evidently, the larger the single counts of the two detectors, the larger the

possibility of registering such accidental coincidences. Quantitatively, the accidental

coincidence rates are estimated by

∆n =
Nj

ηj
× Nk

ηk
×∆t, (3.10)

where Nj/ηj and Nk/ηk are the respective renormalized single count rates of the

two detectors of interest, and ∆t is the time window defining the coincidence events.

As a concrete example, in our experiment, ∆t = 5 ns and Nj , Nk ≈ 2000Hz, telling

us ∆n ≈ 0.05Hz, which is a rather small correction.

3.4 Rank-4 states

The kind of rank-4 states that we are generating is known as the Werner states

[Wer89]:

ρ(λ) = |Φ−〉λ〈Φ−|+ (1− λ)
1

4
. (3.11)
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It can be thought as mixtures of the singlet Bell state with the unpolarized light,

or the completely mixed state, in the proportion of λ : (1 − λ). The purity of this

class of states is

P =
1

4

(
1 + 3λ2

)
, (3.12)

and the tangle is given by

T =
(3λ− 1

2

)2
η
(
λ− 1

3

)
, (3.13)

where η(·) is the Heaviside unit step function.

Due to lack of instruments, our rank-4 states are not generated in a direct manner,

as compared to the previous two classes of states. Instead, we first look at the

expected statistics of polarization correlation test and witness-basis measurement

using the Werner states.

3.4.1 Expected statistics

Bell component:

As a first step, observe that polarization correlation test performed in the ±45◦

determines λ experimentally. The visibility, according to Eq. (3.8), is

V =

∣∣∣∣∣ λ
2

λ
2 + 1−λ

2

∣∣∣∣∣ = λ. (3.14)

Note that if there are N copies of the Werner states, which can be thought as

mixtures of Nλ copies of the singlet Bell state and N(1−λ) copies of the completely

mixed state, {N+45◦ , N−45◦} for these two components, separately, are {0, Nλ/2}

and {N(1− λ)/4, N(1− λ)/4}.

1
4 component:

Now, if we perform our measurement with witness basis 1, for the |Φ−〉 component,

we expect Nλ/8 coincidences registered for each of the eight detector pairs for

eigenket |Φ−〉 in Table 3.1, and no counts for the other three eigenkets. For the
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completely mixed state component, we expect N(1 − λ)/4 coincidences for each of

the signatures. That is, we expect N(1−λ)/16 coincidences for each of the detector

pairs for |hh〉 and |vv〉 eigenkets (which needs to be multiplied by two later), and

N(1− λ)/32 for each of the sixteen detector pairs for |Φ+〉 and |Φ−〉 eigenkets.

3.4.2 Generating Werner states

To generate the Werner states experimentally, we now briefly review the method-

ology adopted from reference [LHLLK06]. First, produce the Bell ket |Ψ−〉 =

1√
2
(|hh〉 − |vv〉), using the method discussed in Sec. 3.1.1. Then, by installing a

HWP at 45◦ in the signal arm, we obtain the Bell ket |Φ−〉. Next, by introducing

a very weak laser source which is coupled to two collimators using a fused fiber,

we intentionally introduce additional photons to all the detectors, through the un-

used port of the two PBSs in Fig. 3.3. They are added very carefully such that the

total registered single counts (i.e. without efficiencies correction) for each of the

eight detectors are roughly the same. Typically, before these additional photons

are included, the single counts for the detectors are about 2000 per second. In our

experiment, we add these additional photons such that the single count rates are

about 4000 Hz for each detector.

Bell component:

We first perform polarization correlation test, which also serves as a good check for

the quality of our singlet Bell state. Here, we differentiate the raw coincidence counts

from those of post-(detector efficiencies and accidental coincidence corrections) with

N r and N c. We also modify the convention from previous sections, such as writing

N c(+45◦), instead of N c
+45◦ . In particular, for quantities that only refer to the Bell

state component, we provide a subscript b.

The visibility for our Bell state is then

V =

∣∣∣∣∣N c
b(+45◦)−N c

b(−45◦)

N c
b(+45◦) +N c

b(−45◦)

∣∣∣∣∣. (3.15)

The single counts for the two detectors, which are about 4000 Hz as mentioned, are

also recorded; we shall label them as N ′1 and N ′2.
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1
4 component:

Now, we increase the time window defining the coincidence events to ∆t2, say, 100 ns.

Then, the component that is purely related to the accidental coincidences can be

obtained as N r − N r
b ≡ N1. Note that according to Eq. (3.10), if N ′1 and N ′2 are

multiplied by γ′1 and γ′2 respectively, N1 will then be γ′1γ
′
2N1. The visibility, V ,

which will determine the parameter λ of our Werner states experimentally, is then

given by (assuming now there is a need for γ′1 and γ′2)

V = λ =
Nmax −Nmin

Nmax +Nmin
, (3.16)

where Nmax = N c
b(−45◦) + γ′1γ

′
2N1(−45◦), and Nmin = N c

b(+45◦) + γ′1γ
′
2N1(+45◦).

In essence, to obtain various λ, and hence different Werner states, we just need

to apply different time windows ∆t to include appropriate amount of accidental

coincidences to the detector pairs.

3.4.3 Link to witness-basis measurement

To extend and apply the methodology above to our experiment, we must carefully

conserve and map all the relation between the statistics of polarization correlation

test to the ones of the witness-basis measurement, according to Sec. 3.4.1 above. Of

course, when performing the witness-basis measurement, the set-up for the addi-

tional photons and the detectors are left untouched as above.

Bell component:

For the singlet Bell state, i.e. when ∆t = 5 ns, we record down the coincidences

between the detector pairs as summarized in Table 3.1. Of course, for any detector

pairs Dj-Dk, first there is the raw coincidence counts with the label N r
b(j, k), and

then there is the corrections discussed in Sec. 3.3.4, giving us the new count N c
b(j, k).

The sum of the corrected counts for the four eigenket signatures then gives us the

total number of biqubits; we can also estimate this number by taking the average

of the sum for the six different witness bases. This sum, ideally, must tally with

Nb, total ≡ 2×(N c
b(−45◦)+N c

b(+45◦)) above. Realistically, in our experiment, some

losses are unavoidable, and we have only about 60% of Nb, total for our witness-family
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measurements. Hence, consciously aware of these losses, we multiply all the counts

of the four signatures by a factor of about 5/3, and label them as N c
h, N

c
v , N

c
+, N

c
−,

respectively.

1
4 component:

We now extend ∆t beyond 5ns. As before, we obtain first the raw coincidence counts

of the detector pairs, N r(j, k). To single out the completely mixed state component,

we minus away all the raw coincidence counts for the Bell state component, i.e.

N r(j, k)−N r
b(j, k) ≡ N1(j, k). Since ideally, for the completely mixed state, all the

detector pairs should share same amount of coincidences (except those responsible

for the product eigenkets which differ by a factor of two), see Sec, 3.4.1, we normalize

the single counts N1, N2, · · · according to a chosen one, say Nk′ . Also, we must

not forget that the sum of N1(j, k) for all pairs should ideally tally with 4γ′1γ
′
2N1

obtained from the polarization correlation test, where γ′1 ≡ N ′1/Nk′ , γ
′
2 ≡ N ′2/Nk′ .

Then, with γj ≡ Nk/Nk′ , we have N1(j, k)→ γjγkN1(j, k)

8
for the (j, k) pairs that

measures the two Bell eigenkets, and N1(j, k) → γjγkN1(j, k)

4
for the (j, k) pairs

that measures the two product eigenkets. We remind the readers not to confuse γj

with ηj , where the latter is the detector efficiency.

Finally, the full witness measurement result for a Werner state is the addition of the

counts from the singlet Bell state component, with the counts from the completely

mixed state component. As an example, for the signature of the eigenket |hh〉, the

total coincidence counts are

Nh = N c
h + 2× γ3γ4N1(3, 4)

4
+ 2× γ5γ6N1(5, 6)

4
. (3.17)

3.5 A discussion: How the experiment is actually per-

formed

With all these individual pieces about the experiment and its implementation ex-

plained, we are now ready to discuss an important point on the actual procedure in

running the experiment. In reality, the experiment is done with the following steps:
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1. First, prepare the quantum states.

2. Perform witness-family measurements. For each state, always perform

measurements in all the six bases, and record down the frequencies and

sequences for each of the detector clicks for each basis.

3. With the measurement results of all the six bases available at hand, we start

with randomly analyzing one of the basis. The evaluation then follows the

two adaptive schemes highlighted in Sec. 2.1.3, to determine if the state is

entangled. Repeat this for all states measured.

The reason why we always measure all the six bases and perform the analysis after-

wards, but not performing a real time entanglement detection which stops as soon

as the state is determined as entangled, is twofold. Firstly, the measurement results

of these six bases, which form an IC POM, allow us to reconstruct the state by us-

ing ML estimation. This allows us to check, for consistency, that we are generating

the intended states with high precisions or fidelities. The second reason is, with all

these results of different bases available, we can perform data manipulations and

analyses in a much convenient way. For example, for a same state, we do not need

to do the experiment six different times. Rather, we just analyze the results we had,

by choosing different starting basis. All these data also allow us to perform error

analysis by using various statistical techniques, which will be covered in the next

chapter.
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Chapter 4

Results

In this chapter, we include the results for (i) the fidelities of the generated states,

(ii) witness-family measurements, and (iii) error analyses.

4.1 Fidelities

As mentioned in the previous chapter, we adopt the strategy of always performing IC

measurements followed with post-entanglement detections, such that we can check

on the quality of the generated states, through ML state estimation technique. All

bases are measured for one minute, which corresponds to qubit copies of about

10,000.

4.1.1 Rank-1 states

For rank-1 states, we generated 21 states from the class of

| 〉ϑ = cos(2ϑ)|hh〉 − sin(2ϑ)|vv〉, (4.1)

with tangle given by Eq. (3.3).

The fidelities of the ML estimators with the target states, as well as their purities

and tangles, are summarized in Table 4.1. Note that the fidelities are smaller than

99.4%, which is consistent with the limit given by the Migdall effect, as discussed

in Appendix C. Plot of tangle of the ML estimators are illustrated in Fig. 4.1.
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ϑ (degree) Purity Fidelity Tangle (Theory) Tangle (Experiment)

0 |hh〉 0.990 0.988 0 0.008

5 0.981 0.987 0.117 0.108

10 0.963 0.983 0.420 0.336

15 0.973 0.978 0.750 0.656

20 0.959 0.981 0.970 0.865

22.5 |Ψ−〉 0.943 0.976 1.000 0.880

25 0.922 0.971 0.970 0.839

30 0.922 0.966 0.750 0.654

35 0.931 0.974 0.420 0.326

40 0.967 0.986 0.117 0.070

45 |vv〉 0.983 0.992 0.000 0.004

50 0.945 0.983 0.117 0.147

55 0.919 0.974 0.420 0.378

60 0.918 0.957 0.750 0.726

65 0.946 0.959 0.970 0.885

67.5 |Ψ+〉 0.951 0.976 1.000 0.882

70 0.970 0.983 0.970 0.848

75 0.955 0.975 0.750 0.630

80 0.966 0.982 0.420 0.333

85 0.979 0.987 0.117 0.091

90 |hh〉 0.984 0.989 0.000 0.001

Table 4.1: Rank-1 states: Fidelities of the ML estimators with the target states given
by Eq. (4.1) are computed. The tangles of the ML estimators are also compared with
the expected value of Eq. (3.3). The purity of the ML estimators are also included;
theoretically, they should be one.
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Figure 4.1: Plot of tangle of the ML estimators, compared with the theoretical curve
given by Eq. (3.3). The error bars are smaller than the symbols used.
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4.1.2 Rank-2 states

For rank-2 states, we generated 21 states from the class of

ρ(α) = |Ψ−〉(1− α)〈Ψ−|+ |Ψ+〉α〈Ψ+|. (4.2)

The purity and tangle are given by Eq. (3.5) and Eq. (3.6), respectively.

The fidelities of the ML estimators with the target states, as well as their purities

and tangles, are summarized in Table 4.2. As above, the fidelities are smaller than

99.4%. Plots of purity and tangle of the ML estimators are illustrated in Fig. 4.2.

α Purity (Th) Purity (Ep) Fidelity Tangle (Th) Tangle (Ep)

0 |Ψ−〉 1 0.943 0.976 1.000 0.880

5 0.905 0.864 0.945 0.810 0.729

10 0.82 0.821 0.933 0.640 0.623

15 0.745 0.700 0.960 0.490 0.407

20 0.68 0.670 0.952 0.360 0.336

25 0.625 0.606 0.978 0.250 0.213

30 0.58 0.586 0.965 0.160 0.165

35 0.545 0.555 0.974 0.090 0.112

40 0.52 0.524 0.975 0.040 0.058

45 0.505 0.513 0.980 0.010 0.029

50 0.5 0.516 0.986 0.000 0.029

55 0.505 0.529 0.980 0.010 0.043

60 0.52 0.543 0.983 0.040 0.055

65 0.545 0.575 0.985 0.090 0.113

70 0.58 0.596 0.985 0.160 0.161

75 0.625 0.636 0.989 0.250 0.251

80 0.68 0.686 0.979 0.360 0.336

85 0.745 0.734 0.973 0.490 0.408

90 0.82 0.840 0.964 0.640 0.601

95 0.905 0.878 0.982 0.810 0.707

100 |Ψ+〉 1 0.951 0.976 1.000 0.882

Table 4.2: Rank-2 states: Fidelities of the ML estimators with the target states given
by Eq. (4.2) are computed. The tangles of the ML estimators (Ep) are also compared
with the expected value of Eq. (3.6) (Th). The purities of the ML estimators are
also included; they are to be compared with Eq. (3.5).
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Figure 4.2: Plots of tangle and purity of the ML estimators, compared with the
theoretical curves given by Eq. (3.6) and Eq. (3.5) respectively. The error bars are
smaller than the symbols used.

4.1.3 Rank-4 states

For rank-4 states, we generated 22 states from the class of

ρ(λ) = |Φ−〉λ〈Φ−|+ (1− λ)
1

4
. (4.3)

The purity and tangle are given by Eq. (3.12) and Eq. (3.13), respectively.

The fidelities of the ML estimators with the target states, as well as their purities

and tangles, are summarized in Table 4.3. To confess a point, we have ‘normalized’

the state with time window ∆t = 5 ns as our Bell ket |Φ−〉 (see discussion in Sec. 3.4).

This is, of course, an idealization, since one would never measure a visibility of 1

in experiment (even after deducting all accidental counts). The measured visibility

was actually 97.7%, with the corresponding tangle T ≈ 0.932.

Notice that as the weight of the white noise dominates, the fidelity increases beyond

99.1%. In fact, as we increase the time window, the number of copies of the Bell

state remains at about 10,000, while the qubit pairs from the white noise increases

to about 6,000 for ∆t = 5000 ns. This reduction in contribution from systematic

error as the λ decreases from one to 1
3 is also well captured in the plot of purity and

tangle shown in Fig. 4.3.
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∆t (ns) λ Purity(Th) Purity(Ep) Fidelity Tangle(Th) Tangle(Ep)

5 |Φ−〉 1 0.965 0.870 0.959 1 0.760

50 0.960 0.941 0.846 0.977 0.882 0.707

100 0.939 0.912 0.821 0.976 0.826 0.656

250 0.883 0.834 0.761 0.971 0.679 0.540

500 0.804 0.734 0.687 0.964 0.498 0.403

750 0.741 0.662 0.627 0.975 0.375 0.305

1000 0.681 0.598 0.574 0.984 0.272 0.226

1250 0.631 0.549 0.532 0.988 0.200 0.167

1500 0.587 0.508 0.498 0.990 0.145 0.124

1750 0.551 0.477 0.470 0.992 0.106 0.091

2000 0.516 0.450 0.447 0.993 0.075 0.067

2250 0.485 0.426 0.426 0.994 0.052 0.047

2500 0.456 0.406 0.410 0.995 0.034 0.033

2750 0.433 0.390 0.395 0.995 0.022 0.023

3000 0.411 0.377 0.382 0.996 0.014 0.015

3250 0.390 0.364 0.372 0.996 0.007 0.009

3500 0.372 0.354 0.362 0.996 0.003 0.005

3750 0.357 0.346 0.354 0.997 0.001 0.003

4000 0.342 0.338 0.347 0.997 0.0002 0.001

4250 0.327 0.330 0.340 0.997 0 0.0001

4500 0.316 0.325 0.334 0.997 0 0

5000 0.292 0.314 0.324 0.998 0 0

Table 4.3: Rank-4 states: Fidelities of the ML estimators with the target states given
by Eq. (4.3) are computed. The tangle of the ML estimators (Ep) are also compared
with the expected value of Eq. (3.13) (Th). The purity of the ML estimators are
also included; they are to be compared with Eq. (3.12). The last two states are not
used for testing the witness-family measurements.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 Ep
 Theory

T

(a) Tangle

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0
 Ep
 Theory

P

(b) Purity

Figure 4.3: Plots of tangle and purity of the ML estimators, compared with the
theoretical curves given by Eq. (3.13) and Eq. (3.12) respectively. The error bars are
smaller than the symbols used.
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4.2 Simulation results

There are infinitely many quantum states in the state space, but there are limited

resources in our experiment. Hence, before focusing on the experiment results that

we have, we use computer simulations to study the general performance of the

witness-family measurements for general states.

To be specific, we perform computer simulations for arbitrary rank-1 and rank-4

states. For each of these two classes, we randomly generated 10,000 states, and then

perform the simulated witness-family measurements. To summarize the performance

of the witness-family measurements, we plot the cumulative histogram of number

of states detected, as the number of witnesses needed increases. In accordance with

our theoretical prediction, in the order of schemes A to B to C, the histogram should

show largest, smaller, and smallest average number of witnesses needed to detect

the states.

T
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Figure 4.4: Cumulative histograms showing the number of witnesses needed to
detect 10,000 states, using various schemes proposed in Sec. 2.1 As a general trend,
scheme C gives the best performance, followed by scheme B and A. Note that scheme
C not only reduces the average witnesses needed, but it also increases the number
of states detectable without performing quantum state tomography.

The simulation results, shown in Fig. 4.4, confirms our prediction.1 For rank-1

states and rank-4 states, using scheme A or B, about 2% and 67% of the states

1These results were actually reproduced from Yong Siah Teo’s PhD thesis [Teo13], where the
original results were presented separately in ordinary histograms rather than cumulative histograms.
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are undetected by the six witness bases without performing the full quantum state

tomography. With scheme C which introduced the additional step of separability

check, the percentage of undetected pure states is reduced to practically zero and

one needs no more than five witness bases to detect entanglement for the rest of the

pure states. The improvement is even more dramatic for the mixed states, with a

reduction from about 67% to 2.7%. Another observation is, the mean number of

witness bases needed to detect entanglement for mixed states is higher than that

for pure states. This is not surprising, since mixed states generally have lower

entanglement and are, therefore, harder to detect.

4.3 Experimental results

For the specific classes of states that we generate experimentally, similar histograms

can be plotted, too. To make fair comparison with the experimental results, we

simulate randomly 10,000 states from exactly these three classes of states. For

direct comparison, we present the results in the form of non-cumulative histograms,

where the experimental and simulation results are put side-by-side.

The histogram results are shown in Fig. 4.5. Unshaded histograms are simulated

results, while shaded histograms are experimental results. For the first row, i.e.

histograms (a) and (d), we have results for rank-1 states. Similarly, the second and

third row show the results for rank-2 and rank-4 states, respectively. Meanwhile,

the first column, i.e. histograms (a), (b) and (c) summarizes the results obtained

by using scheme B, while the second column summarizes the results for scheme C.

Not shown here are the histograms summarizing the results for detection scheme A,

i.e. detection scheme with randomized settings. For the three classes of states we

are considering, such histograms are the trivial ones: Since there is only one basis

that can detect entanglement by violating the inequality Eq. (2.3)2, with a non-

adaptive and randomized settings, we will get a constant or flat histogram, with

equal probability of 1/6 for any number of witness needed.

As clearly illustrated by the histograms, we can see that the adaptive Scheme C

generally reduces the average number of witnesses needed to detect the states.

2For rank-1 and rank-2 states, it is witness basis 2, while for rank-4 states, it is witness basis 1.
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Figure 4.5: Histograms of percentage of states detected versus the number of wit-
nesses needed. For both simulations (unshaded) and experimental (shaded) results,
the number of states are about 10,000. The first row, i.e. (a) and (d), shows the
results for rank-1 states. Similarly, the second and third row show the results for
rank-2 and rank-4 states respectively. The first column, i.e. histograms (a), (b) and
(c) summarizes the results obtained by using scheme B, while the second column
summarizes the results with scheme C. The high fidelities (≈ 99%) of the histograms
show that the experimental and simulation results agree very well.

Qualitatively, we see very positive results, where the simulation and experimental

histograms are indeed very similar. To be more precise, we calculate the fidelity be-

tween the experimental histograms with their corresponding simulation histograms.

By definition, given two distributions, say {pi} and {qi} where
∑

i pi =
∑

i qi = 1,

their fidelity, which is given by F =
∑

i

√
piqi, is a popular measure of the “closeness”

between two distributions. If the two distributions are identical, F = 1; if there is

no overlap between them, F = 0. For our experimental and simulation results, we

obtain high fidelities (≈ 99%) between the simulation and experimental histograms,

which means our experimental results agree very well with the simulation results.
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4.4 Statistical analysis: Bootstrapping

The histograms shown above are obtained by starting the measurement with a

randomly chosen witness basis, for each of the states. Inevitably then, if we re-run

our measurements, we are very likely to obtain another set of histograms that is not

identical with the above one, even if we are using exactly the same states and the

same measured frequencies. In general, how would this randomness in initializing

our bases measurement affect the trend of the histograms?

Practically, there are limitations in real experiments. As we have discussed in the

previous chapter, there are many sources of errors in our experiment, including

imperfections of the states or the measurements, as well as finiteness of the state

sampling size. These give rise to small deviations or fluctuations to the measured

frequencies, as compared to the ideal situations. Hence, even if we were to repeat the

experiment for many times, we are very likely to obtain different values of measured

frequencies, which scattered around their mean values. Of course, we have tried to

minimize our experimental errors so that they have been kept at a minimum level, so

that we are quite positive that our witness-family measurements schemes are quite

robust to small errors of such— as can be seen from the results in Fig. 4.5 and their

fidelities— such deviations or fluctuations in the data should still not be forgotten.

To complete our understanding about the performance of our witness-family mea-

surements protocol, we thus need to include a quantitative analysis on the effect of

random starting basis, with fluctuations in statistics included. In a verbatim way,

we would like to now “add error bars” to the histograms shown in Fig. 4.5. The

most natural and fair way to produce such error bars is to repeat the experiments

for each state for many times. Then, we can average over all such ensembles to ob-

tain a mean fidelity, and also the standard deviation. However, such approach would

take us a very long time to collect enough data that are statistically representable.

Hence, this method is ruled out for practical purposes.

Since the effect of random starting basis and data fluctuations on the histograms are

propagated through complicated numerical calculations of MLME estimators and

numerical searches over state space to obtain the likelihood (for Scheme C), estimat-
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ing the error bars through a parametric way is almost immediately impossible. To

solve this issue, we shall utilize a non-parametric statistical analysis method known

as the bootstrapping technique [Che99, Dav97]. To apply this technique, let us first

extract all the coincidences sequence from the click sequence shown in Fig. 3.4, and

then label them from 1 to N , according to their timestamps. Then, by using a

(pseudo-)random number generator, we generate N numbers with values from 1 to

N randomly assigned to them. Note that these values are randomly assigned and

repeated indices are therefore allowed. In essence, we are generating a bootstrap se-

quence: A random sequence, weighted by a prior sequence, which is, in our case, the

experimental coincidence sequence. Finally, by picking the coincidences according

to this bootstrap sequence, we obtain a new sequence of coincidences count. By

construction, it is in general different from the original one, but there is no intended

bias from the original coincidence sequence.

For our experiment, with our state sample size as large as 10,000 copies, we generate

one hundred bootstrap sequences. Then, each of these bootstrap sequence gives us a

histogram similar to Fig. 4.5. We also perform computer simulations for one hundred

times (which can be easily done and no bootstrap technique is required), such that

there are also one hundred simulation histograms. Since there is no reason to favour

a particular simulation histogram, we average these hundred histograms to obtain

a single, average simulation histogram. Then, for each of the bootstrap histogram

for our experimental data, we can compute its fidelity with the average simulation

histogram. With hundred ensembles, we can also obtain standard deviations for the

distributions of the number of witnesses needed; they will serve as the “error bars”

for our histograms.

The results are shown in Fig. 4.6, where we shall focus on rank-1 and rank-2 states

only, as unfortunately bootstrapping cannot be done easily due the the way we

generate our rank-4 states. Reported together with the histograms are the average

fidelities between the bootstrap histograms and the average simulation histograms.3

Assuming a normal distribution for large ensemble size, measure of one standard

3Note that due to non-linearity in the definition of fidelity, average of the fidelities between
many distributions with a fixed reference distribution is, in general, different from the fidelity of
the average distribution with the fixed reference distribution. The latter is usually larger than the
former.
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Figure 4.6: Histograms for simulated (unshaded), and experimental (shaded) re-
sults, with error bars added using the technique of bootstrapping. The first and
second rows are histograms for rank-1 and rank-2 states respectively; the first and
second columns are histograms for scheme B and scheme C respectively. Here, both
the error bars for the simulation and bootstrap histograms are derived from 100
ensembles of about 10,000 qubit copies. The attached error bars represent one stan-
dard deviation of the number of witnesses needed. From the histograms, we see
clearly that the error bars for both simulation and experimental results are very
similar in size. The average fidelities are also high (≈ 95%).

deviation corresponds to confidence interval that covers about 68% of the data. Our

results show high fidelities4 (≈ 95%) and very similar standard deviation regions for

both simulations and experimental results, which again suggesting strong agreement

between them. Therefore, we see that small imperfections and experimental errors

negligible effects on the performance of the witness-family measurements.

Lastly, we report the average number of witnesses needed to detect entanglement.

For rank-1 and rank-2 states, we summarize them in the Table 4.4 below:

For rank-4 states, the average number of witnesses needed are 2.90 (simulation) and

2.63 (experiment) for scheme B, and 2.82 (simulation) and 2.62 (experiment) for

4If we use fidelity between average bootstrap histograms and average simulation histograms, we
will have F ≈ 99%
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Rank & Scheme Simulation Experiment

1B 2.7± 0.3 2.6± 0.3

1C 2.5± 0.2 2.3± 0.2

2B 2.7± 0.2 2.6± 0.3

2C 2.5± 0.2 2.3± 0.2

Table 4.4: Average number of witnesses needed (with standard deviations) to de-
tect entanglement for rank-1 and rank-2 states by using scheme B and scheme C
respectively. In general, scheme C has a smaller mean number of witnessed needed,
as well as a smaller spread.

scheme C. Of course, for all these three specific kind of states, for scheme A, the

mean number of witnesses needed is 3.5. Hence, quantitatively, we have obtained

consistent results that scheme C performs better than scheme B, and then scheme

A.



Conclusion

In this project, the following achievements have been made:

• We have performed and realized the experiments to detect entanglement, with

optimal-witness bases. In contrast to conventional witness experiments, we are

measuring a family of witness at one go.

• We have introduced a novel, yet very simple method of generating mixed states

by using the VPR.

• We have shown that adaptive measurement schemes allow us to reduce the

mean number of witnesses needed to detect entanglement.

In summary then, we have obtained a very positive, affirmative answer to the ques-

tion posted at the beginning: By measuring witness bases that form an IC POM,

we can verify the presence of entanglement for a given unknown state. In fact, we

have shown that by applying adaptive schemes which make use of information from

each measurements, we can further reduce the number of measurements needed to

obtain a conclusive identification on the separability of the given state.
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Appendix A

Witness Basis

According to the reference [LKCH00], one kind of optimal witness for bipartite

systems, known as optimal decomposable witness, is given by1

W = −QT2 , (A.1)

where T2 is the partial transpose on the 2nd subsystem, and Q is a given positive

operator which has no product kets in its range. Obviously, one subclass of such

operator would be projectors of entangled states, |Ψ〉〈Ψ|. In particular, for bipartite

qubit, consider the kind of entangled kets parametrized by α, with 0 < α ≤ π/4,

|Ψ〉 = cos(α)|vv〉+ sin(α)|hh〉. (A.2)

The partial transpose on the second qubit system for Q = |Ψ〉〈Ψ| is then

QT2 =|vv〉 cos2(α)〈vv|+ |hh〉 sin2(α)〈hh|

+ |vh〉 sin(α) cos(α)〈hv|+ |hv〉 sin(α) cos(α)〈vh|

=|vv〉 cos2(α)〈vv|+ |hh〉 sin2(α)〈hh|

+ |Φ+〉 sin(α) cos(α)〈Φ+| − |Φ−〉 sin(α) cos(α)〈Φ−|. (A.3)

Next, note that trace operation is not affected by partial transpose, i.e. tr{O} =

tr{OT2} for any operator O. In addition, taking partial transpose of a separable

1The definition of witnesses in ref.[LKCH00] differs by a negative sign.
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state results in another separable state, which is always positive. Thus,

tr{ρsepW} = tr{−ρsepQT2} = tr{−(ρsepQ
T2)T2}

= tr{−ρT2
sepQ} ≤ 0, (A.4)

i.e. the witness threshold µ is 0 for this class of optimal witnesses.



Appendix B

Birefringence and Phase

Matching

Before we show how one can obtain the required angle θ between optic axis (OA)

and the pump’s propagation kp to produce a noncollinear SPDC at desired cone-

opening angle ϕ, see Fig. 2.1, for the sake of completeness, we need to review the

subject of birefringence, in finer details than the one given in Sec. 2.2.

Birefringence

Maxwell’s equations in material with no free excess charges and currents read, in

cgs units,

∇ ·D = 0, ∇×E =
−1

c

∂

∂t
B ,

∇ ·B = 0, ∇×H =
1

c

∂

∂t
D . (B.1)

For linear dielectric material which is magnetically not active, the magnetic induc-

tion H (r , t) equals the magnetic field B(r , t), and the displacement vector D(r , t)

is linearly related to the electric field E(r , t), through D(r , t) =
↔
ε ·E(r , t). Here,

↔
ε is known as the dielectric tensor ; the material is said to be anisotropic when it is

not proportional to the identity tensor. In particular, consider plane monochromatic

electromagnetic (EM) waves of wave vector k and angular frequency ω propagating

in the material, i.e. E(r , t) = E0e
−i(ωt−k ·r). The two inhomogeneous Maxwell’s
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equations then give

ω

c
H = k ×E ,

ω

c
D = −k ×H . (B.2)

Define n = c
ωk , so that |n | is the refractive index n = c/v, where v is the speed of

light in the material, and using D(r , t) =
↔
ε ·E(r , t), Eqs. (B.2) give

D = −n(n ·E) + n2E , (B.3)

or Di = (n2δik − nink)Ek = εikEk, (B.4)

which shows that for unique and nontrivial solution for E , we have

det |n2δik − nink − εik| = 0. (B.5)

Except for exoctic material like gyrotropic media which we shall not consider, the

dielctric tensor is symmetric, and hence diagonalizable in certain unit basis, which

we shall called the principle axes {ex, ey, ez}. Evaluate the determinant in this

basis, one gets

n2(εxn
2
x + εyn

2
y + εzn

2
z)−

[
n2xεx(εy + εz) +n2yεy(εx + εz) +n2zεz(εx + εy)

]
+ εxεyεz = 0.

(B.6)

This is known as the Fresnel’s equation, one of the fundamental equations in crystal

optics. For uniaxial crystals, where εx = εy ≡ ε⊥ and εz ≡ ε‖ without lost of

generality, the Fresnel’s equation reads

(n2 − ε⊥)
(
ε‖n

2
z + ε⊥(n2x + n2y)− ε⊥ε‖

)
= 0, (B.7)

and the solutions are therefore

n2 = ε⊥, (B.8)

n2z
ε⊥

+
n2x + n2y
ε‖

= 1. (B.9)
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The principle axis that has different dielectric constant than the others is known

as the optic axis (OA), and if ε⊥ > ε‖, we have a negative crystal, as opposed

to ortherwise a positive crystal. The two solutions imply two possible ways of

propagation of light in the crystal. One of them is known as the ordinary ray,

propagating with constant speed determined by n =
√
ε⊥ ≡ no. Denoting θ as the

angle between OA and n , the second ray, known as the extraordinary ray, propagates

at speed determined by the equation

cos2(θ)

ε⊥
+

sin2(θ)

ε‖
=

1

n2
≡ 1

n2e(θ)
. (B.10)

Polarization of the rays

To investigate the polarizations, i.e. the directions of D of the ordinary and ex-

traordinary rays in such uniaxial crystal, consider first the energy density stored in

the electric field, i.e.

u =
1

8π
E ·D =

1

8π

∑
k,l

EkεklEl

=
1

8π

(D2
x +D2

y

ε⊥
+
D2
z

ε‖

)
, (B.11)

expressed once again in the principle axes. Since u is positive, Eq. (B.11) is geo-

metrically an ellipsoid equation. Also, since D and k are mutually perpendicular,

the possible directions for D are further restricted to an ellipse, obtained as the

boundary of the cross section of the ellipsoid, cut through the origin and is normal

to the k . Now, since we have either ordinary or extraordinary ray, we anticipate

that the D are further restricted to two points on the ellipse1. Introducing a unit

basis {eα, eβ, eγ} where k = |k |eγ , we have Dα = εαβEβ or Eα = (ε−1)αβDβ and

n = nγeγ , Eq. (B.3) reads

( 1

n2
δαβ − (ε−1)αβ

)
Dβ = 0, (B.12)

1More rigorously, one can show that Eq. (B.11) and D · k = 0, subjected to the constraint
Eq. (B.3) from Maxwell’s equation, is equivalent to finding the points of extremum distance on the
ellipse from the origin, which admits two solutions. They are the semiminor and semimajor axes,
of course.
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which can be further diagonalized such that

 1
n2 − ε−1i 0

0 1
n2 − ε−1j

Di

Dj

 = 0. (B.13)

D being nonzero requires ε−1i = 1/(n2o) and ε−1j = 1/(n2e) for instance, which in

return requires the polarizations of ordinary and extraordinary rays to be perpen-

dicular.

Finally, we can see that the only consistent D are the semiminor and semimajor axes

of the ellipse. The semiminor axis corresponds to the polarization of ordinary ray,

since when θ → 0 in Eq. (B.10), ne(θ → 0) → no, while the ellipse of D becomes a

circle. Though the D can have infinitely many possibilities now, they are essentially

perpendicular to OA and k . Since in principle one has no right to argue if a light

propagating with n = no is in principle a ‘real’ ordinary ray or ‘had originated from

an extraordinary ray with θ → 0’, all ordinary rays must be perpendicular to the

plane of OA and k . For k not collinear with OA, this is the semiminor axis of the

ellipse. For extraordinary ray, it is the semimajor axis, which is coplanar with OA

and k .

Phase matching for SPDC

In real experiment, pre-design of the set-up is crucial, such as to reduce the cost,

or to meet the requirement from a limited lab space. Suppose by using a pump

laser of wavelength 404.6 nm, we wish to obtain noncollinear degenerate SPDC with

a cone-opening angle ϕ of about 4◦, see Fig. 2.1 for illustration. Setting this as a

constraint, we would like to obtain the phase-matching angle θ.

First, we determine the angle ϑ/2, by the Snell’s law:

no(809.12 nm) sin(
ϑ

2
) = sin(4◦). (B.14)

Note that n for both ordinary and extraordinary rays are usually decreasing func-

tions of wavelength, i.e. n(404.6 nm) > n(809.12 nm) due to dispersive property of

the crystal. In general, for each wavelength λ, the values of ε⊥ and ε‖ character-
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izing the material are different. After much effort from the community, they can

be summarized in the emperical Sellmeier formula [DGN99]: for BBO crystals, it

reads

ε⊥(λ) = 2.7359 +
0.01878

λ2 − 0.01822
− 0.01354λ2, (B.15)

ε‖(λ) = 2.7353 +
0.01224

λ2 − 0.01667
− 0.01516λ2, (B.16)

where λ is in unit of µm. Since we are targeting Type-I phase matching with

‘e→ o + o’ configuration, we are looking for

ε⊥(809.2 nm) = 2.75654,

ε⊥(404.6 nm) = 2.86277,

ε‖(404.6 nm) = 2.45607. (B.17)

Eqquation (B.14) then gives

ϑ

2
= arcsin

( sin(4◦)√
2.75654

)
= 2.408◦. (B.18)

Lastly, we obtained the required ne(404.6 nm, θ) by Eq. (2.12), i.e.

n2e(404.6 nm, θ) = 2.75654 cos2(2.408◦) = 2.75167 (B.19)

and solve Eq. (B.10) inversely, giving us θ = 29.59◦. This agrees very well with the

results obtained from NIST Phasematch programme.

An important remark on the technical side of the experiment is this: Should we

have chosen the cone-opening angle to be ϕ = 3◦, the phase-matching angle needed

would have been θ = 29.26◦. Since 29.26◦ is relatively close to 29.59◦, this shows

that by turning the pitch of the platform where the crystal is mounted on (assuming

a vertically polarized pump), there are flexibilities in tuning the cone-opening angle.

Usually, such standard platform (e.g. KM100PM, Thorlabs) allows adjustment of

about ±3◦ for both the yaw and pitch degrees of freedom, which allows θ to vary

from about 26.6◦ to 32.6◦, corresponds to cone-opening angle from 0◦ to about 9.10◦.
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Appendix C

Coherence Length and the

Migdall Effect

In this appendix, we discuss two issues that we faced in controlling the quality of

our photonic systems. They are: the coherence length of the pump laser, and the

so-called Migdall effect [Mig97, RUK11] on the polarization of the down-converted

photons.

Coherence length

The (longitudinal or temporal) coherence length of a laser measures its degree of

phase stability or phase coherence [MW95]. In essence, for a given coherence length

Lc, the phase of the light within spatial intervals of Lc will be strongly correlated.

Another quantity of same physical significance is the coherence time τc, which is

given by Lc/c, where c is the speed of light.

The coherence time of a light is inversely proportional to its effective spectral width

or bandwidth ∆ν, where the proportional factor depends on the definition of the

bandwidth [MW95, ST91]. Usually, ∆ν · τc is about from 0.1 to 1. As commented

in the reference [MW95], “different definitions may lead to results of quite different

orders of magnitude . . . caution must be exercised . . . ”.

When our pump laser was first bought, the specification sheet from the company

states that the bandwidth is about 160 MHz. Using ∆ν · τc = 1, we then have
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Lc ≈ 1.87 m. As this value is much larger than the thickness of our crystals, the

phase of the pump across them will be strongly correlated, and Eq. (3.1) is applicable.

As a careful measure, we also determine the bandwidth of the laser with our own

optical spectrum analyzer (Ando/Yokogawa AQ-series), which has a resolution limit

of 0.05 nm (wavelength). A frequency bandwidth of ∆ν is equivalent to having

∆λ = (c∆ν)/ν2, in terms of wavelength bandwidth. Then, one has the relationship

Lc ≈ λ2/∆λ. The result from our spectrum analyzer was in agreement with the

manufacturer’s report: For ∆ν = 160 MHz, ∆λ = 8.7 × 10−14 m, we obtained the

resolution limit for our spectrum analyzer, indeed.

Unfortunately, the laser broke down just not too long before the project was starting

for serious. The visibility of polarization correlation analysis for the supposedly Bell

state was dropped to about 92%. We then re-checked the bandwidth of the pump

laser by using the spectrum analyzer and found that it had increased to about 0.1 nm

to 0.3 nm (which corresponds to Lc ≈ 0.5 mm), and was unstable throughout the

day.

The laser was then sent for repair, where the manufacturer inspected that “the

output of the diode is damaged . . . there are additional structures that is not typical

of our diodes in the output beam . . . the power has dropped to 17 mW”. The repair

cost us about SGD1000, and the newly reported bandwidth from the manufacturer

is ∆λ ≈ 0.037 nm. This corresponds to Lc ≈ 4 mm.

However, by using our own spectrum analyzer, we found disagreement with the

reported values from the manufacturer, as we obtained a value of about 0.12 nm

instead. The issue was raised to the manufacturer, who replied “. . . we have these

instruments as well and we never measure the linewidth to be at the resolution limit

of the instrument . . . using a higher resolution (0.020 nm) Yokogawa, the diode was

measured to the attached test report [0.037 nm]”. Also, taking into account different

possible definitions of the bandwidth and coherence length, a definite value for the

coherence length was then never exactly pinpointed.

We settle this issue of uncertainty in coherence length with the experimental ob-

servations that high visibilities of the polarization correlation analysis, using the

Bell states, were consistently obtained thereafter, see Sec. 3.3.2. In addition, high
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fidelities of the produced states, see Sec. 4.1, also convinced us that we are in the

safe region where the coherence length is indeed long enough to make sure that

Eq. (3.1) is satisfied. With this, we can put aside this issue of coherence length in

this project, at least to first order.

Migdall effect

First, recall that for Type-I phase matching or ‘e −→ o + o’ configuration, the

pump laser will experience extraordinary refractive index, while the signal and idler

photons will experience ordinary refractive index, inside the negative crystal. In

particular, we are only interested in the situation where the propagation or wave

vectors of the down-converted photons and the pump are all contained in the same

plane parallel to the table surface, which we shall now call as the x-y plane.

Then, there are two particular cases. One is when the polarization of the pump and

the optic axis of the crystal are both contained in this x-y plane as well. Furthermore,

let the wave vector of the pump be along the x-axis. This results in the polarization

of the down-converted photons being perpendicular to the x-y plane, which we shall

call as the z-axis; see Fig. 2.1 for the illustration. Obviously, this corresponds to the

generation of |vv〉 ket in our two-type I crystal geometry, after we recognize the x-y

plane as the plane that defines horizontal polarization, and z-axis as the vertical

direction.

There is another situation, which corresponds to the generation of |hh〉 ket from

the second crystal. Here, the polarization of the pump is along the z-axis, and the

crystal optic axis (OA) is in the x-z plane. Since the polarization of the down-

converted photons must be perpendicular to the OA, it turns out that it cannot be

contained in the x-y plane, and hence the ket generated is actually not exactly |hh〉.

To obtain a quantitative measure about this discrepancy, consider the cone-opening

angle to be 3◦, and the angle between OA and the pump’s wave vector to be 29.5◦.
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Then, in the Cartesian coordinates, we have

OA=̂


cos(29.5◦)

0

sin(29.5◦)

 ; k s=̂


cos(2.408◦)

sin(2.408◦)

0

 , (C.1)

and the vector that is perpendicular to both is given by

J ≡ k s ×OA=̂


sin(2.408◦) sin(29.5◦)

− cos(2.408◦) sin(29.5◦)

sin(2.408◦) cos(29.5◦)

 . (C.2)

Compare this with the horizontal polarization |h〉 which is represented by

H =̂


cos(2.408◦)

sin(2.408◦)

0

×


0

0

1

 =


sin(2.408◦)

− cos(2.408◦)

0

 (C.3)

such that J ·H = |J | cos(γ), we find that the two vectors differ by γ ≈ 4.3◦. This

value can also be obtained using a more general method considered in the reference

[Mig97, RUK11].

The fidelity between the kets of |4.3◦s 4.3◦i 〉 and the |hh〉 is (cos(4.3◦))2 ≈ 99.4%,

which shows that inasmuch there is a intrinsic error in our generation of the photon

states, the errors are relatively small and can be ignored, to the first order approx-

imation. Of course, the value F = 99.4% will remind us about the limit of our

experimental precision; see Sec. 4.1 for the results. Unfortunately, due to limitation

of lab space, one hardly can reduce the cone-opening angle to smaller than 3◦.



Appendix D

SPDC Coupling and

Polarization Control

In the first part of this appendix, we explain why we put our lenses at about one

meter away from the crystals. In the second section, we discuss how to use the

manual polarization controllers to neutralize any unwanted polarization changes

due to fibers and any other optical component.

SPDC coupling

To collect the SPDC light as efficient as possible, the frequency spectrum of the

SPDC is first to be estimated. This can obtained conveniently by utilizing the

NIST Phasematch software mentioned in Sec. 2.2, see Fig. 2.2. In particular, we will

pay concern to wavelengths range in between 810 ± 10 nm, in accordance with the

specifications of our interference filters. This corresponds to spatial angles ∆θ ≈

4.10◦ − 3.95◦ = 0.15◦ ≈ 0.0026 rad1.

On the other hand, any optical fiber has its numerical aperture (NA), which can

be approximated as its maximum acceptance angle. For single-mode fibers that we

are using, their NAs are about 0.12. Hence, to couple in as much as possible the

down-converted photons, by putting the single-mode fiber tip at the focus of the

lens, the approximate optimal distance, d, measured from the SPDC source to the

1We used cone-opening angle of 3◦ instead 4◦ in our experiment, but no significant deviation is
expected.
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lens with focus f is given by, see Fig. D.1 for illustration,

d ≈ 0.12

0.0013
f ≈ 92. (D.1)

For f = 11 mm, we have d ≈ 1 m.

0.0013

d

SPDC

f

0.12
fiber

Figure D.1: Illustration of how the lens captures the SPDC photons at d distance
away, and couples them into the single mode with NA=0.12, located at its focus.

Polarization control

To make sure that all the unintended polarization changes due to the optical fibers,

and possibly mirrors and other optical components are compensated for, manual

polarization controllers are used. To do this, a light source from an auxiliary laser

of wavelength 810 nm is coupled into the single-mode fiber, through the lens that

collect the signal or idler photons. Just before the two mirrors in front of the lens,

see Fig. 3.1, a PBS is inserted, so that the input light is characterized by |h〉. A

second, and analyzing PBS is then inserted just before the BS used for the HOM

interference, with a power meter recording the intensity at the reflection output

port, i.e. the vertical component of the output light.

To neutralize any unwanted polarization changes, the paddles of the polarization

controllers are turned such that the power meter registers a minimum value. This

corresponds to having a channel with the operation |h〉 −→ eiφ1 |h〉, |v〉 −→ eiφ2 |v〉,

with φ1 not necessarily equals φ2. To make sure that φ1 equal to φ2, the input light

is set at 45◦ polarization with help of a HWP. Another HWP is also inserted in

front of the analyzing PBS such that the power meter now measures the intensity

of −45◦ polarization component. φ1 and φ2 are concluded to be equal, and hence a

identity or polarization preserving channel is established from the source of SPDC
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to just before the BS, when the power meter registers minima intensities in both

measurement bases. In our experiments, the suppression ratios, i.e. the ratios

of intensities at between the transmission and the reflection output port of the

analyzing PBS, are obtained to be about 70 for both bases.
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