
Understanding and Mitigating
Congestion in Modern Networks

Yin Xu
B.Sc. Fudan University

A THESIS SUBMITTED

FOR THE DEGREE OF PH.D. IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

Acknowledgement

I want to express my first and foremost gratitude to my supervisor, Prof. Ben

Leong. In these years, I have learned a lot from his patient and kind guidance in

research and also in life. I am grateful for his infinite patience and being extremely

supportive. He is like a beacon guiding my way to success and a bright future.

I am also grateful to my friends and collaborators: Wei Wang, Ali Razeen,

Wai Kay Leong, Daryl Seah, Jian Gong, Guoqing Yu, Jiajun Tan, Andrew Eng,

and Zixiao Wang. Without their assistance, I would not have finished all the work

on time. Every hour spent with them is a lifetime of wealth.

I would also like to acknowledge my parents for their selfless and noblest love.

It is at my mother and father’s knee that I acquire the noblest, truest and highest

dream. Thanks to them in helping me walk towards my dream.

Special mention goes to my wife, Yanping Chen, the most beautiful and won-

derful woman in the world. Her smile and encouragement provide me incessant

power to overcome all the tough problems during my research. She is the special

one that always stand behind my success. She is the only woman that hold up half

my sky. She provides me the most peaceful harbor, the home.

Finally, special thanks to my baby, Xinchen Xu. He is such a cute boy and I

love him so much. He is the new shining star of my life. Thank you for coming

into my life when I was experiencing a bottleneck in my research. It is his smile

and steps that motivate me to carry on.

i

Publications

• Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. “An End-to-End

Measurement Study of Modern Cellular Data Networks.” In Proceedings

of the 15th Passive and Active Measurement Conference (PAM 2014). Mar.

2014.

• Wai Kay Leong, Aditya Kulkarni, Yin Xu and Ben Leong. “Unveiling

the Hidden Dangers of Public IP Addresses in 4G/LTE Cellular Data Net-

works.” In Proceedings of the 15th International Workshop on Mobile Com-

puting Systems and Applications (HotMobile 2014). Feb. 2014.

• Wai Kay Leong, Yin Xu, Ben Leong and Zixiao Wang. “Mitigating Egre-

gious ACK Delays in Cellular Data Networks by Eliminating TCP ACK

Clocking.” In Proceedings of the 21st IEEE International Conference on

Network Protocols, Oct. 2013.

• Yin Xu, Ben Leong, Daryl Seah and Ali Razeen. “mPath: High-Bandwidth

Data Transfers with Massively-Multipath Source Routing.” IEEE Transac-

tions on Parallel and Distributed Systems, Volume 24, Issue 10, pp 2046-

2059, Oct. 2013.

• Yin Xu, Wai Kay Leong, Ben Leong, and Ali Razeen. “Dynamic Regula-

tion of Mobile 3G/HSPA Uplink Buffer with Receiver-side Flow Control.”

In Proceedings of the 20th IEEE International Conference on Network Pro-

tocols, Oct. 2012.

ii

Abstract

To design an efficient transmission protocol and achieve good performance, it is

essential to understand and address the issue of network congestion. With modern

networks, we now not only have new opportunities, but also have more challenges.

In this thesis, we investigate network congestion issues in the context of modern

wired Internet and cellular data networks.

In the wired Internet, the capacity of access links has increased dramatically

in recent times [47]. As a result, the bottlenecks are moving deeper into the In-

ternet core. When a bottleneck occurs in a core (or AS-AS peering) link, it is

often possible to use additional detour paths to improve the end-to-end through-

put between a pair of source and destination nodes. We propose and evaluate a

new massively-multipath (mPath) source routing algorithm to improve end-to-end

throughput for high-volume data transfers. We demonstrate that our algorithm

is practical by implementing a system that employs a set of proxies to establish

one-hop detour paths between the source and destination nodes. Our algorithm

can fully utilize the available access link bandwidth when good proxied paths are

available, without sacrificing TCP-friendliness. It can also achieve throughput

comparable to TCP when such paths cannot be found. For 40% of our test cases

on PlanetLab, mPath achieves significant improvements in throughput. Among

these, 50% achieves a throughput of more than twice that of TCP.

While the congestion in wired Internet is relative well studied, there are still

gaps in our understanding of congestion in cellular data networks. We believe that

it is critical to better understand the characteristics and behavior of cellular data

networks, as there has been a significant increase in cellular data usage [1]. With

both laboratory experiments and crowd-sourcing measurements, we investigate

the characteristics of the cellular data networks for the three mobile ISPs in Sin-

gapore. We found that i) the transmitted packets tend to arrive in bursts; ii) there

can be large variations in the instantaneous throughput over a short period of time;

iii) large separate downlink buffers are typically deployed, which can cause high

latency at low speeds; and iv) the networks typically implement some form of fair

queuing policy for all the connected devices. Our findings confirm that cellular

data networks behave differently from conventional wired and WiFi networks, and

iii

our results suggest that more can be done to optimize protocol performance in ex-

isting cellular data networks. We then measure and investigate the “self-inflicted”

congestion problem caused by a saturated uplink in cellular data networks. We

found that the performance of downloads in cellular data networks can be signif-

icantly degraded by a concurrent upload that saturates the uplink buffer on the

mobile device. In particular, it is common for the download speeds to be reduced

by over an order of magnitude from 2,000 Kbps to 100 Kbps.

To mitigate the uplink saturation problem, we propose a new algorithm called

Receiver-side Flow Control (RSFC) that regulates the uplink buffer on the data

senders of the cellular data networks. RSFC uses a feedback loop to monitor

the available uplink capacity and dynamically adjusts the TCP receiver window

(rwnd) accordingly. We evaluate RSFC on the cellular data networks of three

different mobile ISPs and show that RSFC can improve the download throughput

from less than 400 Kbps to up to 1,400 Kbps. RSFC can also reduce website load

times from more than 2 minutes to less than 1 minute some 90% of the time in

the presence of a concurrent upload. Our technique is compatible with existing

TCP implementations and can be easily deployed at the mobile proxies without

requiring any modification to existing mobile devices.

iv

Contents

1 Introduction 1

1.1 Addressing Congestion in the Wired Internet 2

1.2 Characteristics of Cellular Data Networks 4

1.3 Addressing Self-inflicted Congestion in Cellular Data Networks . 6

1.4 Contributions . 8

1.5 Organization of this Thesis . 9

2 Related Work 10

2.1 Massively-Multipath Source Routing 10

2.1.1 Internet Bottlenecks . 11

2.1.2 Detour Routing . 12

2.1.3 Multi-homing and Multipath TCP 15

2.1.4 Parallel TCP and Split TCP 16

2.1.5 Path Selection . 16

2.1.6 Multipath Congestion Control 18

2.1.7 Shared Bottleneck Detection 19

2.2 Measurement Study of Cellular Data Networks 20

2.2.1 Measurement of General Performance 20

2.2.2 Measurement of Interactions between Layers 22

2.2.3 Mobility Performance Measurements 23

2.2.4 Measurement of Power Characteristics 24

2.3 Problem of Saturated Uplink . 25

2.3.1 Previous Solutions . 25

2.3.2 Receiver-side Flow Control 28

2.3.3 TCP Buffer Management 29

3 Massively-Multipath Source Routing 31

3.1 System Design & Implementation 32

3.1.1 Proxy Probing . 34

3.1.2 Sequence Numbers & Acknowledgments 35

3.1.3 Path Scheduling & Congestion Control 38

v

3.2 Analysis of Multipath AIMD . 43

3.3 Performance Evaluation . 49

3.3.1 Is our model accurate? 49

3.3.2 Does mPath work over the Internet? 55

3.3.3 How often and how well does mPath work? 58

3.3.4 How many proxies are minimally required? 62

3.3.5 Is mPath scalable? . 62

3.3.6 How serious is reordering in mPath? 65

3.3.7 How should the parameters be tuned? 65

3.4 Summary . 68

4 Measurement Study of Cellular Data Networks 70

4.1 Methodology . 72

4.2 Packet Flow Measurement . 73

4.2.1 Burstiness of Packet Arrival 73

4.2.2 Measuring Instantaneous Throughput 76

4.2.3 Variations in Mobile Data Network Throughput 77

4.3 Buffer and Queuing Policy . 79

4.4 The Problem of Saturated Uplink 87

4.5 Summary . 91

5 Receiver-Side Flow Control 92

5.1 Receiver-Side Flow Control . 93

5.1.1 RSFC Algorithm . 94

5.1.2 Maximum Buffer Utilization 97

5.1.3 Handling Changes in the Network 99

5.1.4 Practical Deployment . 102

5.2 Performance Evaluation . 103

5.2.1 Reduction in RTT . 104

5.2.2 Improving Downstream Throughput 104

5.2.3 Improving Web Surfing 107

5.2.4 Fairness of Competing RSFC Uploads 108

5.2.5 Adapting to Changing Network Conditions 109

5.2.6 Compatibility with other TCP variants 111

5.3 Summary . 113

6 Conclusion and Future Work 114

6.1 Open Issues and Future Work . 117

vi

List of Figures

1.1 Massively-multipath source routing. 3

3.1 Overview of mPath. 34

3.2 Inference of correlated packet losses. 40

3.3 An example of bottleneck oscillation. 42

3.4 Model for a single user using multiple paths. 44

3.5 Model of a shared access link bottleneck. 46

3.6 An Emulab topology where mPath is able to find good proxied

paths. 50

3.7 Plot of congestion window over time for the topology in Figure 3.6. 50

3.8 Plot of congestion window over time for the topology in Fig-

ure 3.6 when only proxy 3 is used. 51

3.9 An Emulab topology where the access link is the bottleneck and

the proxied path is useless. 52

3.10 Plot of congestion window over time for the topology in Figure 3.9. 52

3.11 Plot of congestion window over time with competing mPath and

TCP flows for the topology in Figure 3.6. 53

3.12 An Emulab topology to investigate how mPath reacts to changing

path conditions. 54

3.13 Plot of throughput over time with interfering TCP flows on prox-

ied path 2 for the topology in Figure 3.12. 55

3.14 Plot of throughput against time for the path from pads21.cs.nthu.edu.tw

to planetlab1.cs.uit.no. 56

3.15 Plot of proxied path usage over time. 57

3.16 Plot of throughput against time for the path from planetlab2.cs.ucla.edu

to planetlab2.unl.edu. 58

3.17 Cumulative distribution of the ratio of mPath throughput to TCP

throughput for 500 source-destination pairs. 59

3.18 Plot of ratio of mPath throughput to TCP throughput against RTT. 60

3.19 Cumulative distribution of the time taken for mPath to stabilize. . 61

vii

3.20 Cumulative distribution of the ratio of mPath throughput to TCP

throughput when different numbers of proxies are provided by the

RS. 62

3.21 Cumulative distribution of mPath throughput to TCP throughput

with n disjoint source-destination pairs transmitting simultane-

ously when proxies and end-hosts are distinct nodes. 63

3.22 Cumulative distribution of mPath throughput to TCP throughput

with n disjoint source-destination pairs transmitting simultane-

ously when the end-hosts are themselves proxies. 64

3.23 Cumulative distribution of the maximum buffer size required for

500 source-destination pairs. 65

3.24 Plot of throughput against load aggregation factor α. 66

3.25 Plot of throughput against new path creation factor β. 67

3.26 Cumulative distribution of the maximum buffer size required for

different maximum proxied path RTTs τ. 68

3.27 Cumulative distribution of the number of usable proxies detected

for different maximum allowable proxied path RTTs τ. 68

4.1 Trace of the inter-packet arrival times of a downstream UDP flow

in ISP C. 74

4.2 Cumulative distribution of the inter-packet arrival times for ISP C. 74

4.3 Inter-packet arrival times and number of packets in one burst for

ISPCheck. 75

4.4 The accuracy of throughput estimation with different window. . . 77

4.5 Plot of cumulative distribution of the throughput for data from

ISPCheck. 78

4.6 The huge variation of the download and upload throughput. 78

4.7 The number of packets in flight for downloads with different packet

size. 80

4.8 In ISP A’s LTE network, the buffer size seems to be proportional

to the throughput. 80

4.9 Trace of the packets sent, lost and in flight in a UDP downstream

flow. 82

4.10 The bytes in flight for uploads with different packet sizes. 83

4.11 The number of packets in flight for two concurrent downloads. . . 85

4.12 Comparison of delay-sensitive flow and high-throughput flow. . . 86

4.13 The throughput and packets in flight of three downlink flows in

ISP C. 87

4.14 Comparison of RTT and throughput for downloads with and with-

out uplink saturation. 89

viii

4.15 Plot of ratio of downstream RTT and throughput, with and without

upload saturation, against the upload throughput. 89

4.16 The breakdown of the downstream RTT into the one-way up-

stream delay and the one-way downstream delay. 90

5.1 Packet flow diagram illustrating the various metrics. Solid lines

represent data packets, while dotted lines represent ACK packets. . 95

5.2 Packet flow diagram illustrating a typical scenario for buffer infla-

tion. 98

5.3 The bottleneck 3G link is virtually dedicated to each device. Mul-

tiplexing is done by the ISP in a schedule which is assumed to be

fair. 103

5.4 Cumulative distribution of RTT and throughput for TCP Cubic

and RSFC uploads. 105

5.5 Cumulative distribution of the throughput achieved by the down-

stream and upstream flows under different conditions. 105

5.6 Plot of ratio between RSFC’s downstream throughput to that of

TCP Cubic against the throughput of the benchmark upstream flow. 106

5.7 Cumulative distribution of the time taken to load the top 100 web-

sites under different conditions. 107

5.8 Cumulative distribution of the fairness between two RSFC up-

loads and the efficiency of two RSFC uploads compared to a sin-

gle TCP Cubic upload. 109

5.9 Plot of the average throughput achieved and RTT using RSFC

variant without RDmin and RTTmin update mechanism. 110

5.10 Plot of the average throughput achieved and RTT using full RSFC

algorithm. 110

5.11 Plot of the RTT for the transfer of 1 MB file using different TCP

variants at both sender and receiver side. In the legend, we indi-

cate first the mobile sender followed by the receiver. 111

5.12 Plot of downstream throughput when the upstream is saturated

with different algorithms over a 24-hour period. In the legend, we

indicate first the mobile sender followed by the receiver. 112

ix

List of Tables

4.1 Downlink buffer characteristics for local ISPs 81

4.2 The radio interface buffer size of different devices 84

x

Chapter 1

Introduction

As the Internet has evolved rapidly in recent years, conventional wisdom and as-

sumptions may not hold any more. In particular, we identified two major trends

for modern networks: i) the access link capacity of the wired Internet is increasing

dramatically [47]; ii) an increasing amount of Internet traffic is carried by the cel-

lular data networks [1]. In this thesis, we investigate the congestion problems for

these two scenarios and propose methods to mitigate the problems we identified.

For the wired Internet, bottlenecks have been observed to be shifting away

from the network edges and happen at the core link due to the growing capacity

of access links [8]. As the last mile bandwidth is set to increase dramatically over

the next few years [47], we expect that this trend will accelerate. In this sense, we

design and implement a new massively-multipath (mPath) source routing mecha-

nism to improve the utilization of the available last mile bandwidth when there is

core link congestion [98].

For cellular data networks, the characteristics and behavior are not well stud-

ied and the performance of the current transmission protocols is also far from

1

satisfactory. Hence, we first conduct a measurement study to understand the char-

acteristics and behavior of the cellular link [100]. In particular, we identify a

“self-inflicted” congestion problem caused by the saturated uplink. Then, we pro-

pose a Receiver-side Flow Control (RSFC) algorithm to solve the problem [99].

1.1 Addressing Congestion in the Wired Internet

Research has shown that there are often less-congested paths than the direct one

between two end-hosts over the Internet [81, 44]. These alternative paths through

the Internet core were initially not exploitable as bandwidth bottlenecks used to be

in the “last mile”. As last mile bandwidth is set to increase dramatically over the

next few years [47], we expect that increasingly the available bandwidth will be

constrained by core link bottlenecks. We now have the opportunity to exploit path

diversity and use multiple paths concurrently to fully saturate the available access

link bandwidth for high-volume data transfers, e.g. scientific applications [60] or

inter-datacenter bulk transfers [64].

While the idea of multipath routing is not new, previously proposed systems

either require multi-homing support [97] or the maintenance of an overlay net-

work with only a small number of paths [104]. Our approach is to use a large set

of geographically-distributed proxies to construct and utilize up to hundreds of

detour paths [81] between two arbitrary end-hosts. By adopting one-hop source

routing [38] and designing the proxies to be stateless, we also require significantly

less coordination and control than previous systems [104, 11] and ensure that our

system would be resilient to proxy failures. Our system, which we call mPath (or

massively-multipath source routing), is illustrated in Figure 1.1.

2

Query/

Response

Register

Access

Link

Access

Link

Direct Path

Registration

Server

Figure 1.1: Massively-multipath source routing.

There are a number of challenges in designing such a system: (i) good alter-

native paths may not always exist, and in such cases the performance should be

no worse than a direct TCP connection; (ii) when good alternative paths do exist,

we need to be able to efficiently identify them and to determine the proportion

of traffic to send on each path; and (iii) Internet traffic patterns are dynamic and

unpredictable, so we need to adapt to changing path conditions rapidly.

Our key contribution, which addresses these design challenges, is a com-

bined congestion control and path selection algorithm that can identify bottle-

necks, apportion traffic appropriately, and inter-operate with existing TCP flows

in a TCP-friendly manner. The algorithm is a variant of the classic additive in-

crease/multiplicative decrease (AIMD) algorithm [26] that infers shared bottle-

necks from correlated packet losses and uses an operation called load aggregation

to maximize the utilization of the direct path. The design goal of our algorithm is

to supplement the direct path by exploiting the proxied paths when the congestion

happens in the core link, without sacrificing the utilization of the direct path.

3

We model and analyze the performance of mPath to show that our algorithm

(i) is TCP-friendly, (ii) will maximize the utilization of the access link without

under-utilizing the direct path when there is free core link capacity, and (iii) will

rapidly eliminate any redundant proxied paths.

We validated our model with experiments on Emulab and evaluated our system

on PlanetLab with a set of 450 proxies to show that our algorithm is practical and

achieves significant improvements in throughput over TCP for some 40% of the

end-hosts. Among these, half of them achieves more than twice the throughput of

TCP. In addition, when good proxied paths cannot be found or the bottleneck is at

a common access link, mPath achieves throughput that is comparable to TCP and

stabilizes in approximately the same time.

1.2 Characteristics of Cellular Data Networks

Cellular data networks are carrying an increasing amount of traffic with their ubiq-

uitous deployments and have significantly improved in speed in recent years [1].

However, networks such as HSPA and LTE have very different link-layer proto-

cols from wired and WiFi networks. It is thus important to have a better under-

standing of the characteristics and behavior of cellular data networks.

In this thesis, we investigate and measure the characteristics of the cellular

data networks for the three ISPs in Singapore with experiments in the laboratory

as well as with crowd-sourced data from real mobile subscribers. The latter was

obtained using our custom Android application that was used by real users over

a 5-month period from April to August 2013. From our results, we make the fol-

lowing common observations on the existing cellular data networks: i) transmitted

4

packets tend to arrive in bursts; ii) there can be large variations in the instantaneous

throughput over a short period of time, even when the mobile device is stationary;

iii) large separate downlink buffers are typically deployed in mobile ISPs, which

can cause high latency at low speeds; and iv) mobile ISPs typically implement

some form of fair queuing policy for all the connected devices.

Our findings confirm that cellular data networks behave differently from con-

ventional wired and WiFi networks, and our results suggest that more can be done

to optimize protocol performance in existing cellular data networks. For exam-

ple, the fair scheduling in such networks might effectively eliminate the need for

congestion control if the cellular link is the bottleneck link. We have also found

that different ISPs and even different devices use different buffer configurations

and queuing policies. Whether these configurations are optimal and what makes

a configuration optimal are candidates for further study.

We further investigate the performance issues when there are concurrent up-

loads and downloads in cellular data networks. This problem has attracted much

attentions recently because the increasing popularity of mobile devices and online

social networks has caused simultaneous uploads and downloads to become com-

monplace in cellular data networks. For example, the fans at a recent sports event

uploaded 40% more data (such as photos and videos) than they downloaded [15].

It would therefore be not surprising to find users attempting to access websites

while photos and video are being uploaded in the background. Our measurement

study shows that in the presence of a simultaneous background upload, 3G down-

load speeds can be drastically reduced from more than 1,000 Kbps to less than

100 Kbps. With 3G poised to become even more ubiquitous [1], there is an urgent

need to understand and address this “self-inflicted” congestion problem.

5

Since upload speeds in cellular data networks are typically lower compared

to the download speeds, the downstream ACKs will be queued behind the data

packets in the uplink buffer when there are concurrent flows in both directions.

The ACKs can sometimes be severely delayed and cause the download speeds to

slow to a crawl. We confirm with experiments that the ACK delay is the main

cause of downlink under-utilization under such circumstances.

1.3 Addressing Self-inflicted Congestion in Cellular

Data Networks

While one might be tempted to think that the uplink saturation problem is a man-

ifestation of the well-known ACK compression problem [103], Heusse et al. re-

cently demonstrated that ACK compression rarely occurs in practice and even if it

does, it has little effect on performance [42]. Instead, they showed that the degra-

dation in performance is a result of the uplink buffer not being appropriately sized

for the available link capacity.

TCP buffer sizing is also a well-studied problem. There is an old rule of thumb

that the size of a general buffer should be set to the bandwidth-delay product [93]

(BDP). More recently, it was found that it should be set to BDP/
√
n, where n

is the number of long lived flows [13]. Unfortunately, these rules cannot be ap-

plied to cellular data networks directly because they exhibit significant spatial

and temporal variation. For example, we have observed that the available uplink

bandwidth can vary by as much as two orders of magnitude within a 10-minute

interval. Therefore, to fully utilize the available uplink capacity, we cannot use a

6

fixed buffer size at the cellular interface of the mobile devices. Instead, the size

of the uplink buffer needs to be dynamically adjusted according to the available

bandwidth.

In this thesis, we describe Receiver-side Flow Control (or RSFC), a method

to dynamically control the uplink buffer of the sender from the receiver. The

technique of using rwnd to control a TCP flow has been employed in other con-

texts [35, 87, 57, 54, 12, 24, 51]. However, to the best of our knowledge, we are

the first to apply this technique to improve the utilization of a 3G mobile downlink

in the presence of concurrent uploads.

The key challenge is for the TCP receiver to accurately estimate the current

uplink capacity and to determine the appropriate rwnd to be advertised so that the

number of packets in the uplink buffer is kept small without causing the uplink

to become under-utilized. To solve this challenge, our approach uses the TCP

timestamp to continuously estimate the one-way delay, queuing delay and RTT.

Then, our approach uses a feedback loop to continuously estimate the available

uplink bandwidth and advertises an appropriate TCP receiver window (rwnd) ac-

cording to the current congestion state. This approach can dynamically adapt to

the variations of the cellular link.

We evaluated RSFC extensively on three mobile ISPs using Android phones

and show that RSFC can significantly improve downlink utilization, especially

in an ISP with consistently low upload speeds. In our experiments, we found

that RSFC can improve download speeds from lower than 400 Kbps to up to

1400 Kbps and reduce the time taken to load websites in the presence of concur-

rent uploads from more than 2 minutes to less than 1 minute some 90% of the time.

We also showed that RSFC is compatible with existing TCP implementations.

7

1.4 Contributions

The key contributions of this thesis are two practical network protocols that can

be deployed immediately, mPath and RSFC. mPath is designed to mitigate core

link congestion problem in the wired Internet. RSFC is designed to mitigate “self-

inflicted” congestion problem in cellular data networks.

mPath is a new multipath source routing algorithm that uses multiple detour

paths concurrently to route around the core link congestion and better utilize the

access link. Our studies corroborate the fact that the congestion of the wired In-

ternet can happen in the Internet core quite often and show that detour paths are

useful to route around the core link congestion. The key mechanism is a combined

congestion control and path selection algorithm that can identify bottlenecks, ap-

portion traffic appropriately, and inter-operate with existing TCP flows in a TCP-

friendly manner. The major contributions and insights include: i) using the actual

data to probe the path conditions; ii) decoupling the congestion detection and the

sequence reordering by using two sequence numbers, a stream sequence num-

ber and a path sequence number; 3) inferring shared bottlenecks from correlated

packet losses and using an operation called load aggregation to maximize the uti-

lization of the direct path.

RSFC is a new flow control algorithm that only requires modifications at the

receiver side of the upstream and solves the “self-inflicted” congestion problem

caused by a saturated uplink buffer. Our studies show that the saturated uplink

buffer can degrade the downlink performance significantly. Our key approach and

contribution to solve this problem is a feedback loop that can dynamically adapt to

the variations of the cellular link, by i) using the TCP timestamp to continuously

8

estimate the one-way delay, queuing delay and RTT; ii) inferring whether the link

is congested using the queuing delay instead of the packet loss; iii) continuously

estimating the available uplink bandwidth and advertising an appropriate TCP

receiver window (rwnd) to regulate the send rate of the upstream flow.

1.5 Organization of this Thesis

The rest of this thesis is organized as follows: in Chapter 2, we provide an

overview of the related work. In Chapter 3, we discuss the massively-multipath

source routing system designed for the wired Internet. In Chapter 4, we show

our measurement studies about the characteristics and behavior of cellular data

networks and in particular, the “self-inflicted” congestion problem caused by the

saturated uplink. In Chapter 5, we describe a Receiver-side Flow Control (RSFC)

to solve the uplink saturation problem. In Chapter 6, we summarize this work and

discuss some of the open issues and future research directions.

9

Chapter 2

Related Work

In this chapter, we provide an overview of the existing literature related to this

thesis. We first discuss the work related to mPath in Section 2.1. Then, we discuss

some of the interesting findings of previous measurement studies in Section 2.2.

Finally, we discuss the previous work related to RSFC in Section 2.3.

2.1 Massively-Multipath Source Routing

In this section, we describe the prior work in the literature related to mPath. We

first discuss the Internet bottlenecks and the path diversity. Then, we proceed to

describe the previous solutions, including detour routing [81, 44, 11, 104, 38],

multipath TCP [97], parallel TCP [85, 40] and split TCP [67, 49, 16]. Finally,

we conclude with a discussion of three major components associated with multi-

path algorithms, namely path selection, congestion control and shared bottleneck

detection.

10

2.1.1 Internet Bottlenecks

Internet bottlenecks were commonly thought to occur at the access links. While

this was true years ago when the access link capacity was small, this thought no

longer holds true today. Akella et al. were the first to dispute this assumption,

by highlighting that nearly half of the Internet paths they investigated had a non-

access link bottleneck with an available capacity of less than 50 Mbps [8]. Hu

et al. suggested that bottlenecks could exist everywhere, at access links, peering

links or even inside Autonomous System (AS) with measurement studies using

Pathneck [44]. For example, they found that up to 40% of the bottlenecks are

located within an AS. Our current experience with mPath seems to corroborate

these findings. In addition, the last mile bandwidth is set to increase dramatically

over the next few years as the deployment of the fiber to the home [47], we expect

that this trend will accelerate and the end-to-end data transfers will be further

constrained by the core link bottlenecks.

The reason why the Internet bottlenecks happen at the core links is that the

BGP routing algorithm only selects one routing path, and the path is susceptible

to “hot potato” routing as the ISPs may attempt to maximize their own profit.

“Hot potato” routing has been shown to degrade the end-to-end performance sig-

nificantly [73] and cause delay Internet routing convergence problem [62]. The

sub-optimality of the direct routing path has also been proved by many researchers

who showed that there often exists better detour paths that are less congested than

the direct path between two end-hosts over the Internet [8, 44]. With all these

less congested detour paths, it is possible for us to use multiple paths concurrently

in order to fully utilize the available access link bandwidth for high-volume data

11

transfers, e.g. scientific applications [60] or inter-datacenter bulk transfers [64].

In this thesis, we investigate the possibility of using multipath and propose a new

massively-multipath sourcing routing method to exploit the path diversity to better

utilize the access link.

2.1.2 Detour Routing

The benefits of detour routing have been demonstrated by many researchers [81,

44, 105]. Savage et al. had earlier shown that some 30% to 80% of paths could

be improved by detour routing [81]. Hu et al. also found that 52.72% of overlay

attempts were useful out of 63,440 attempts [44]. Zheng et al. further investi-

gated the triangle inequality violations (TIVs) phenomenon of the Internet rout-

ing which suggested that it could be beneficial to relay the packets with some

intermediate nodes [105]. Many prior systems exploited this fact and tried to im-

prove the end-to-end performance by using one or few paths, including RON [11],

mTCP [104], Skype [59], ASAP [78] and one-hop source routing [38].

Anderson et al. built a resilient overlay network (RON) [11] based on detour

routing and showed that the system could recover from most of the outages and

path failures. RON enabled a group of nodes to communicate with each other so

that a better detour node could be selected when the original path failed. A better

detour node could help to route around most of the failures so that the recovery

would be faster. RON also tried to integrate the path selection with distributed

applications more tightly, so that the applications could select a path with best

quality using the most crucial metric, e.g. delay or throughput. They also showed

RON can decrease the delay and loss rate, and improve the throughput for some

12

data transfers. An interesting rule they discovered was that using one intermediate

node is enough to find good detour paths, which was also verified by another

work [38] and hence followed by mPath.

mTCP was built upon RON and was the first system that attempted to improve

the throughput by using multiple paths simultaneously [104]. The authors claimed

that it is inefficient to use conventional TCP congestion control mechanism when

the system operates over multiple paths. Instead, mTCP performed congestion

control for each subflow to minimize the negative influence of the poorer paths.

However, we found that such method would be too aggressive when the system

uses tens or hundreds of paths concurrently. The authors were also aware of this

problem and proposed a shared congestion detection mechanism to identify and

suppress subflows that traversed the same set of congested links. We found that

their method was not sufficiently adaptive and we proposed a mechanism that is

able to react to the shared congestion better. mTCP also used a naive path selection

method in that it selected the disjoint paths using traceroute. They claimed it

was impractical to use all the paths simultaneously. However, we found that it is

possible to dynamically add and remove the paths until all hundreds of paths are

used during transmission with little overhead and within an acceptable interval. In

addition, the detour paths go through the same bottleneck could actually be used

simultaneously for the purpose of load balance.

The most serious drawback of these two works is the scalability. RON incurs

a lot of communication overhead, and is hence not scalable to large networks.

mTCP is built upon RON and uses traceroute to find disjoint paths. Hence, it is

impossible to employ tens or hundreds of paths simultaneously in mTCP. mPath

differs from these systems in that it aims to maximize throughput by using hun-

13

dreds of light-weight proxies in a source routing manner instead of depending on

an overlay network.

Skype [59] and ASAP [78] also used overlay networks to reduce the latency

for VoIP applications. Skype was the most well known commercial application

that employed the relay nodes to improve the VoIP quality. The relay nodes in

Skype were used for two purposes: searching clients and relaying voice packets.

Ren et al. found three major issues of the Skype system: i) many relay peer se-

lections are sub-optimal; ii) the waiting time to select a relay node could be quite

long; and iii) there are many unnecessary probes in Skype, which reduce the scal-

ability. They then proposed a way to use information of the AS topology to select

the relay nodes. Our work differs with these two that we focus on the throughput

instead of the delays.

Gummadi et al. were the first to propose one-hop source routing to address

RON’s scalability issues [38]. They developed a random-k path selection algo-

rithm that the sender selected one or more intermediaries and attempted to reroute

the packets through them after it detected a path failure. If one of the random relay

node could bypass the failure point, the communication would be restored imme-

diately. The major challenge was how to select a good detour path. By comparing

the history-k (select the best k paths from previous transfers) and BGP-paths-k

(select the most disjoint k paths with the BGP routing information), they found a

random-k algorithm was already sufficient with least overhead. In their environ-

ment, k = 4 resulted in the best trade-off between accuracy and overhead. Our

work differs with theirs that we attempts to improve throughput by using multiple

paths simultaneously.

14

2.1.3 Multi-homing and Multipath TCP

Another common mechanism that can provide path diversity is multi-homing [7],

but it needs to be supported by the ISPs at the network-layer. Multipath TCP

(MPTCP) [97] was developed to support multipath TCP over multi-homing and

had also been proposed for use in intra-datacenter bulk transfers [77].

The design of MPTCP is similar with mPath in many factors. Like mPath,

MPTCP also uses two levels of sequence number, connection-level sequence num-

ber and subflow-level sequence number. The connection-level sequence number

can be used to order and reassemble the packets, similar as the function of stream

sequence number in mPath. The subflow-level sequence number can be used to

control the congestion and detect the losses, similar as the function of path se-

quence number in mPath. In this way, MPTCP is also able to retransmit the same

part of connection-level sequence space on different subflow-level sequence num-

ber. MPTCP is also similar with mPath in the congestion control algorithm that

both use a coupled algorithm and preserve the TCP-friendliness with the aware-

ness of the shared bottleneck problem.

The major difference between MPTCP and mPath is how they manage the

paths. MPTCP requires support of multi-homing and the number of paths is small.

mPath can exploit, but does not require, multi-homing. The potential number of

paths used by mPath can be much larger. Hence, in MPTCP, it seeks only to al-

locate traffic optimally over a fixed (and small) set of available paths, while in

mPath, it needs to solve two separate problems simultaneously: (i) identify good

proxied paths out of several hundred paths; and (ii) allocate the optimal amount

of traffic to the good proxied paths. Also, MPTCP and mPath take different ap-

15

proaches to distribute the data. MPTCP tries to balance the congestion among the

paths by considering the overhead of each path. However, mPath should maxi-

mize the usage of direct path because it involves the least resource requirement.

The proxied paths will only be used when they can help to route around the bot-

tleneck of the direct path. Another implementation difference is that MPTCP is a

direct extension of current TCP and it utilizes TCP option to include the additional

information, while mPath is an application-layer protocol works above UDP.

2.1.4 Parallel TCP and Split TCP

mPath also differs from Parallel TCP [85, 40] and Split TCP [67, 49, 16]. Par-

allel TCP was proposed to increase throughput by exploiting multiple TCP flows

at the expense of TCP-friendliness. In mPath, we strictly adhere to the AIMD

mechanism to maintain TCP-friendliness. Split TCP increases throughput by ex-

ploiting the pipeline parallelism of multiple low-latency segments, which requires

buffering of data at the proxies and breaks end-to-end guarantees. mPath does not

use this mechanism because we intend to maintain the end-to-end guarantees and

keep the proxies light-weight and stateless without buffering. mPath differs with

these two works that mPath improves the throughput by simply routing around

core link bottlenecks.

2.1.5 Path Selection

Path selection, that is finding an optimal detour path set, is one of the most cru-

cial component of a multipath system. One category of the mechanism is to dis-

cover and select the detour paths by active probing [104, 11, 59], which would

16

often decrease the scalability of the system. RON assessed the path quality of the

communication and evaluation between nodes [11]. mTCP was built upon RON

and discovered the disjoint paths with traceroute [104]. Fei et al. introduced a

heuristic, the AS-level earliest-divergence rule, that achieved a reasonable trade-

off between the accuracy and overhead [31]. In this rule, they claimed that if the

AS path to an intermediate node diverges early from the direct path, the AS path

from that nodes tends to merge back into the direct path relative late, hence the

detour path through that node is more disjoint with default path. With this rule,

they reduced the probing overhead from O(N2) to O(N) in the p2p environment.

Even in commercial software like Skype [59], the scalability is reduced because

of the unnecessary probes [78].

To improve the scalability, Gummadi et al. suggested that a random-k path se-

lection method was sufficient in their one-hop source routing system, after com-

paring with the history-k and BGP-paths-k mechanism [38]. While random-k is

much more scalable and incurs little overhead, it is not accurate all the time. In

mPath, we also select the proxied paths randomly as a first step. Then, a monitor

module will dynamically assess the path quality and adaptively add and drop paths

depending on their performance. We believe such a passive approach will intro-

duce least overhead and likely to be more scalable in practice. The only drawback

of this approach is that it requires a slightly larger buffer to handle the reordering,

which is acceptable in today’s computers.

17

2.1.6 Multipath Congestion Control

The conventional AIMD [26, 37] algorithm employed in TCP is easily imple-

mented and works well in achieving fair bandwidth distribution between com-

peting flows. Our congestion control algorithm is a variant of AIMD that uses

information from multiple paths in a correlated manner. This is similar to the idea

of Congestion Manager [19], where congestion control is performed for multi-

ple applications for a single host. While the more recent TCP variants like TCP

CUBIC [39] and Compound TCP [89] modified how the congestion window is

increased/decreased to improve the TCP efficiency, we do not implement them

because our purpose is to investigate the way to route around core link bottle-

necks by using multiple paths, not improve the TCP efficiency itself. We believe

our approach is compatible with the recent TCP variants.

In mTCP [104], congestion control is performed for each individual path with-

out coordination among paths. In our experiments, we found that this strategy

would be overly aggressive when there are a large number of paths and it has been

shown that coordinated congestion control is better [97, 58], so we also adopt a

coordinated approach. The congestion control algorithm of mPath is similar in

many ways to that of MPTCP proposed and analyzed by Raiciu et al. and we have

verified that our algorithm satisfies all the requirements that they proposed [97].

mPath differs from MPTCP in the design goal where mPath uses proxied paths

to supplement the direct path only when the direct path is constrained by the core

link bottleneck, while MPTCP tries to distribute the data fairly among the existing

paths according to the path conditions. Our key innovation is a load aggregation

mechanism that attempts to maximize the utilization on the direct path and causes

18

the congestion windows for redundant proxied paths to converge to zero.

There have also been a number of theoretical works on multipath congestion

control algorithms based on fluid models [41] and control theory [94]. Raiciu et al.

simulated these algorithms and found that they do not work well in practice [97].

2.1.7 Shared Bottleneck Detection

Several algorithms [80, 102, 104, 55] have been proposed to detect the shared bot-

tleneck. These algorithms are based on two fundamental observations: i) losses or

delays experienced by any two packets passing through the same point of conges-

tion exhibit some degree of positive correlation; ii) losses or delays experienced

by any two packets that do not share the same point of congestion will exhibit

little or no correlation [80]. Rubenstein et al. proposed correlation testing tech-

niques using either loss events or delays observed across paths [80]. FlowMate

inferred shared bottlenecks by computing the correlation in packet delay [102].

mTCP detected shared bottlenecks with a list of timestamps that record the time

of fast retransmit events [104]. Katabi et al. detected the shared congestion pas-

sively based on the observation that an aggregated arrival trace from flows that

share a bottleneck has very different statistics from those that do not share a bot-

tleneck [55]. In particular, the entropy of the inter-arrival times is much lower for

aggregated traffic sharing a bottleneck.

All these algorithms were designed to detect static shared bottlenecks with

the assumption that they do not change during the transmission. However, we

found that the bottleneck could potentially change over time when we use detour

paths. Hence, existing algorithms are not suitable for use in mPath. Instead, we

19

apply a simpler and more dynamic mechanism called loss intervals to quickly

infer whether the packet losses happen at the bottleneck in the direct path and

proxied paths.

2.2 Measurement Study of Cellular Data Networks

A number of measurement studies have been conducted under various kinds of

cellular data networks, from the older networks like GPRS [69], 3G/UMTS [27]

and 3G/CDMA [66] to the more recent networks like HSPA(+) [52, 90, 10, 75]

and LTE [46, 96]. In this section, we summarize some of the interesting findings

in the previous works.

2.2.1 Measurement of General Performance

Many existing works have measured the overall performance of the commercial

cellular data networks in terms of throughput and delay [52, 90, 10, 75, 86]. Gen-

erally, these results painted a positive picture of the cellular data networks that

the overall performance has improved significantly as the technology advanced.

For example, Tan et al. mentioned that the HSDPA performs much better than the

previous 3G/UMTS networks [90]. Sommers and Barford observed with a large

set of data from SpeedTest [3] that while most of the 3G networks perform worse

than WiFi network, the LTE has already outperformed the WiFi network [86]. We

also observe similar trend in our measurement studies.

One common finding of the previous works is that the throughput and latency

in cellular data networks may vary significantly [66, 90, 86]. Tan et al. observed

that the capacity varies not only across different ISPs, but also across different

20

cells from the same ISP and it is practically impossible to predict the actual cell

capacity with current known model [90]. Liu et al. found that the wireless chan-

nel data rate shows significant variability over long time scales on the order of

hours, but retains high predictability over small time scales on the order of mil-

liseconds [66]. Sommers and Barford observed that the variation of the cellular

data networks is much higher than that of the WiFi network [86]. Our measure-

ment result shows that the actual speed the users could achieve varies significantly

in minutes as the result of the resource sharing between users.

The huge queuing delay of the cellular data networks is also investigated by

many researchers [51, 90, 14, 29, 63]. Tan et al. observed that the queuing delay

for data services is significant and the average latency can be several seconds [90].

Jiang et al. measured the buffers of 3G/4G networks for the four largest U.S. car-

riers as well as the largest ISP in Korea using TCP and examined the bufferbloat

problem [51]. They observed that the delay of the cellular data networks can be

quite large because the existing of large buffers. Other works focused on mea-

suring and characterizing the delay of cellular data networks [14, 29, 63]. Our

work extends these works by investigating the buffer sizing and queuing policies

of different mobile ISPs, and we have found some surprising differences among

the three local ISPs, which resulted significant differences in the queuing delay.

Winstein et al. mentioned in passing that packet arrivals on LTE links do not

follow an observable isochronicity [96]. They examined the inter-packet arrival

time and proposed to use the pattern to estimate the number of packets that should

be sent in the near future. In our measurement studies, we provide the detailed

measurements that corroborate their claims made in [96], and discuss the impli-

cations of the observed burstiness on instantaneous throughput estimation.

21

2.2.2 Measurement of Interactions between Layers

Since there exists significant differences in the physical and MAC layer between

the cellular data networks and the conventional wired or WiFi networks [91],

many measurement studies were conducted to understand the effect of the wireless

channel to the applications and network protocols.

Cicco and Mascolo evaluated the congestion control algorithms of Reno, BIC

and Westwood TCP over the earlier UMTS network [27]. They found that i)

a single TCP connection will under-utilize the available downlink capacity, but

will fully utilize the uplink; ii) the three TCP variants they investigated perform

similar; iii) the queuing delay can be very large for the TCP. Our measurement

studies under the more advanced HSPA(+) network supplement their findings.

Liu et al. investigated the effects of cellular channel to the transport protocols

under the CDMA 1xEV-DO network [66]. They found that the loss-based TCP

variants perform similar in throughput and are unaffected by channel variations

due to the presence of large buffers, while the delay-based TCP like Vegas [22]

performs relatively worse. However, we find that the delay-based algorithm is

useful in controlling the queuing delay and with an effective buffer control mech-

anism, the performance degradation can be negligible.

Aggarwal et al. discussed the fairness of 3G/HSPA network and found that

the fairness of TCP is adversely affected by a mismatch between the conges-

tion control algorithm and the scheduling mechanism of Radio Access Network

(RAN) [6]. Our measurement results supplement their arguments that the fairness

is actually kept well when the link is not under-utilized. It seems that the fairness

control of the TCP is redundant and not necessary.

22

A recent study conducted by Huang et al. showed various interesting effects of

network protocols and application behaviors on the performance under the LTE

network [46]. They observed that: i) the LTE network has significantly shorter

state promotion delays and lower RTTs than those of 3G network; ii) many TCP

connections significantly under-utilize the available bandwidth. iii) the applica-

tion behaviors and parameter settings are not LTE-friendly. Based on these obser-

vations, they highlighted the needs to develop more LTE-friendly protocols. We

agree with their statements and we further examine the possibility of eliminating

the congestion control towards cross traffic in the cellular data networks.

2.2.3 Mobility Performance Measurements

Comparing to the conventional wired or WiFi networks, the cellular data networks

are more advantage in supporting the mobility. Many research works were con-

ducted to understand the influence of the mobility on the performance.

Tso et al. suggested that the mobility is a double-edged sword because it

could reduce the performance significantly and improve the fairness at the same

time [92]. They also observed that the triggering and the final results of handoffs

are often unpredictable. Liu et al. observed that the variation in mobile scenario is

much higher than stationary scenario and they found that the current mechanism

like opportunistic channel-aware scheduler is effective and typically yields more

gains for mobile scenario [66].

Deshpande et al. compared the 3G network and WiFi network performance

under vehicular mobility environment [28]. They found that WiFi network has

frequent disconnections but a faster speed when connected. The 3G network, on

23

the contrast, offers lower throughput but better coverage and connections. These

results suggested that a multipath solution using both 3G network and WiFi net-

work could be an effective design, which is also proposed in [97, 20, 25] and

adopted by the IOS 7 [21].

While these works provided us good insights about the performance under the

mobile scenario, we only focus on the stationary performance and do not investi-

gate the mobility issues in the current measurement studies. We are interested in

the performance under mobile scenarios, e.g. the performance under Mass Rapid

Transit (MRT) in Singapore, and leave it as a future direction of the research.

2.2.4 Measurement of Power Characteristics

Qian et al. undertook a detailed exploration of the power characteristics and the

radio resource control (RRC) state machine in the 3G/UMTS networks by analyz-

ing real cellular traces and measuring from real users [76]. By accurate interfering

of the RRC state machine, they characterized the behaviors of the RRC state ma-

chine. They also found that the RRC state machine may influence the performance

and power consumption a lot. Huang et al. followed this work and investigated

the RRC state machine and power characteristics in 4G/LTE networks [45].

While in our measurement studies, we do not measure the RRC state machine

and power characteristics directly, these observations assist us in the analysis of

the performance. For example, we observe that the delays of some very first pack-

ets are huge comparing to others, which can be explained by the state promotion

model of these two works. As our measurement studies mainly focus on the con-

tinuous performance of the cellular data networks, we ignore those initial packets

24

that we only measure the performance after the power state is promoted.

2.3 Problem of Saturated Uplink

The impact of saturated uplink on download performance is a well-studied prob-

lem. This problem was first characterized as the ACK compression problem that

the ACKs of the downstream TCP get compressed in the uplink buffer when up-

load speeds are low. The ACKs are then sent out in bursts, causing the self-

clocking mechanism of TCP to break [103, 53]. However, more recently, Heusse

et al. showed that in practice, the Data Pendulum effect is more prevalent than

ACK compression [42]. According to their observation, when there are concur-

rent upload and download connections, it is possible for the buffers on both sides

of the connections take turns to fill up and fully utilize their links while the other

idles, provided the buffer sizes are configured correctly. However, when the buffer

sizes are misconfigured relative to the link capacities, the link with lower capacity

and larger buffer will become the sole bottleneck. We have verified that in cellular

data networks, the uplink can become a bottleneck and cause the downlink to be

under-utilized quite often.

2.3.1 Previous Solutions

Many different solutions have been proposed to solve the uplink saturation prob-

lem, including: i) prioritizing the ACKs and optimizing how the ACKs are sent [53,

18, 70]; ii) using separate queues for ACKs and data packets [74]; iii) using

sender-side congestion control algorithms that are designed to achieve low delay,

like Vegas [22] and LEDBAT [84]; iv) using parallel TCP connections [85, 40];

25

v) eliminating TCP ACK clocking [65].

Balakrishnan et al. proposed many techniques to improve the performance for

the two-way traffic under the asymmetric links [18]. Their methods mainly focus

on optimizing the ACKs, including: i) decreasing the rate of acknowledgments on

the constrained reverse channel by ACK congestion control and ACK filtering; ii) a

TCP sender adaptation mechanism that reduces the source burstiness when ACKs

are infrequent; iii) scheduling the ACKs firstly at the reverse bottleneck router.

These techniques were further specified in RFC 3449 [17]. Similar, Ming-Chit et

al. proposed to vary the number of data packets acknowledged by an ACK based

on the estimated congestion window [70]. Kalampoukas et al. also examined the

methods like providing priority to ACKs and limiting the data packet queue [53].

They then suggested to use a connection-level bandwidth allocation mechanism

in order to guarantee a minimum throughput for the slow connection and make

the throughput of fast connection sensitive to only its own parameters. All these

techniques were proposed to solve the ACK compression problem, and hence they

were not sufficient to solve the uplink saturation problem caused by the Data

Pendulum effect.

A recent solution with the awareness of Data Pendulum effect was proposed

in order to achieve full resource utilization in both directions [74]. The key idea

of this work was an Asymmetric Queuing mechanism that serves the TCP data

and ACK traffic though two different queues. However, this work only provided

simulation results in residential broadband networks, and it is not clear whether it

could be deployed in cellular data networks practically.

There are also some sender-side congestion control algorithms that are de-

signed for the purpose of achieving low delay, like Vegas [22] and LEDBAT [84].

26

These works could potentially be used in cellular data networks, and actually in

our experiments, we found that the Vegas performed quite well in reducing the

uplink delay. However, these methods require client-side modifications, which

makes them harder to be deployed for all the mobile devices [4].

Parallel connections can also be used to improve the efficiency of the TCP [85,

40]. However, we verified with experiments that parallel TCP flows are not suffi-

cient to improve the downlink utilization because a slow and saturated uplink will

ultimately delay the ACKs and become the bottleneck.

RSFC is much easier and practical to deploy because it only needs minor mod-

ifications to the TCP stack at the receiver side of the upstream (which is the server)

but strictly no modifications at the mobile device or the router. The current archi-

tecture of the cellular data networks makes it even easier to deploy RSFC, that

it can be deployed at the ISP’s transparent proxies. More recently, Leong et al.

proposed a new TCP variant called TCP-RRE to solve a more general problem

caused by the asymmetric link in a different way. Their key idea is to mitigate

the egregious ACK delays by eliminating TCP ACK clocking at the sender side of

the downstream and use rate control instead of window-based congestion control.

However, this solution will still be constrained by the receive window, once the

ACKs are delayed too much, since it does not reduce the number of data packets

in the uplink buffer. We believe the combination of TCP-RRE and RSFC will

provide a more complete solution to this problem.

27

2.3.2 Receiver-side Flow Control

The technique of controlling the advertised receive window, rwnd, to regulate a

TCP flow is not new. Many previous works have used this technique in different

contexts and for various purposes [35, 87, 57, 54, 12, 24, 51].

Freeze-TCP [35] advertised a zero window from the mobile device when it

detected poor network conditions, i.e. a temporal high bit error rates of the wire-

less links or a temporary disconnection due to signal fading or handover. With

this method, the receiver could prevent the sender from sending any more packets

and reduce the sender’s effective congestion window. When the network condi-

tion has recovered, the receiver could indicate the sender to resume the sending

by advertising a normal window.

Spring et al. used receiver based congestion control policies to improve the

performance for different types of concurrent TCP flows [87]. By prioritizing the

various flow types with different value of rwnd, it could improve the response time

for interactive network applications while maintaining high throughput for bulk-

transfer connections. Key et al. exploited similar ideas to create a low priority

background transfer service [57].

The explicit window adaptation scheme proposed by Kalampoukas et al. also

used rwnd to control the downstream queue size to achieve fairness between

window-based and rate-based congestion control algorithm [54]. Andrew et al.

used a similar method to fairly share the available bandwidth between users [12].

Chan and Ramjee evaluated the impact of link layer retransmission and op-

portunistic schedulers on TCP performance [24, 23]. They then proposed Win-

dow Regulator algorithms that used the rwnd to convey the instantaneous wireless

28

channel conditions to the sender and an ACK buffer to absorb the channel vari-

ants. Their mechanisms work at the network layer and require the access to the

radio network controller (RNC).

Jiang et al. also proposed a dynamic receive window adjustment (DRWA)

mechanism to tackle the bufferbloat problem [51]. The bufferbloat problem, is a

phenomenon where an extremely long delay is caused by the oversized buffers [34].

In DRWA, it increases the rwnd when the current RTT is close to the observed

minimum RTT and decreases the rwnd when the RTT becomes larger due to queu-

ing delay.

In RSFC, we solved a different problem from these previous proposals that

our intention is to improve the downlink utilization in cellular data networks by

controlling the number of data packets queued in the uplink buffer when there

is concurrent download and upload. Our key contribution here is to apply this

technology in the scenario of cellular data networks.

2.3.3 TCP Buffer Management

Another category of solutions is to set the buffer size properly. The classic rule of

thumb was to set the buffer size to the bandwidth-delay product (RTT ×C) [93]

and more recently, it was suggested that it should be sufficient to set the buffer

size to (RTT ×C)/
√
n [13], where C is the data rate of the connection and n is

the number of long-lived flows. Enachescu et al. suggested to reduce the buffer

size further to O(logW), where W is the window size of each flow [30]. They

claimed that the buffer size could be reduced to a few tens of packets with only

trivial sacrificing in utilization, under the assumption that the data packets arrived

29

in a Poisson arrival pattern. A TCP pacing [5] method could be used to achieve

the Poisson arrival pattern.

However, unlike the Internet routers which typically have fixed throughput,

there can be significant variation in the cellular link speeds. Hence, a fixed-sized

approach to buffer sizing is not feasible in the cellular data network environment.

In order to fully utilize the available capacity of the uplink, a dynamic approach

to size the buffers properly is necessary. However, this method would incur sig-

nificant modifications at the mobile device side. Again, it is not easy for all the

mobile devices to be deployed with such mechanism [4]. We believe our tech-

niques of regulating the uplink queue length at the receiver side is a more feasible

and general way than controlling the buffer size directly at the sender side.

30

Chapter 3

Massively-Multipath Source

Routing

In the conventional wired Internet, the assumption was that the bottlenecks were

always at the access links. However, with the tremendous increase of the access

link speed, it was found that the bottlenecks were moving deeper into the core

Internet [8]. As last mile bandwidth is set to keep increasing dramatically over the

next few years [47], we expect that this trend will accelerate and end-to-end data

transfers will be increasingly constrained by core link bottlenecks. On the other

hand, research has shown that there are many detour paths that can potentially be

used to improve the overall performance [81, 44].

In this chapter, we investigate this problem and propose a new massively-

multipath (mPath) source routing system to exploit the path diversity and better

utilize the access link. Our key mechanism is a combined congestion control

and path selection algorithm that can identify bottlenecks, apportion traffic ap-

propriately, and inter-operate with existing TCP flows in a TCP-friendly man-

31

ner. The algorithm is a variant of the classic additive increase/multiplicative

decrease (AIMD) algorithm [26] that infers shared bottlenecks from correlated

packet losses and uses an operation called load aggregation to maximize the uti-

lization of the direct path.

We organize this chapter as follows: in Section 3.1, we describe the mPath

algorithm and the design of our system. In Section 3.2, we present a theoretical

model for our multipath congestion control algorithm. In Section 3.3, we present

our evaluation results.

3.1 System Design & Implementation

We first describe the design and implementation of the mPath source routing sys-

tem. As illustrated in Figure 1.1, the network is composed of a set of proxies that

are tracked by a central registration server (RS). Proxies in mPath are light-weight

because they do not maintain connection state. The destination address is embed-

ded in every data packet, so proxies can simply forward the packets received to

the destination node. The RS tracks the active proxies in the system and returns

a subset of the proxies to a source node when it needs to initiate a new mPath

connection. We currently implement the RS as a simple server application, but

it can be easily replaced with a distributed system for greater reliability and/or

scalability. The application at the end-hosts is provided with a connection-based

stream-like interface similar to TCP to perform the data transfer, even though the

underlying protocols supporting this interface are UDP-based and therefore con-

nectionless. Depending on the nature of the application supported, the proxies can

either be dedicated servers or mPath clients.

32

We use UDP instead of TCP for various practical reasons. For one, mPath

needs direct control over the packet transmissions (and retransmissions) to im-

plement the congestion control algorithm that coordinates between the different

mPath flows. Moreover, the use of TCP would limit the scalability of the system

since a source node might need to communicate with hundreds of proxies and

the overhead of opening and maintaining hundreds of TCP connections is exces-

sive. Given that the majority of hosts on the Internet are behind Network Address

Translators (NATs), it is also advantageous to use UDP because the NAT hole

punching process for UDP is typically simpler, faster and more likely to succeed

than that for TCP [83].

A data transfer begins when the source node establishes a direct connection to

the destination. Simultaneously, the source node also queries the RS to obtain a

list of available proxies. The data stream from the application is packetized and

the packets are initially sent only on the direct path. When congestion is detected

on the direct path, packets are forwarded via the proxies in an attempt to increase

the throughput. Acknowledgments for the received data packets are sent from the

destination back to the source along the direct path. A congestion manager and

scheduler module monitors the acknowledgments to determine the quality of the

various paths and controls the transmission and retransmission of packets. Finally,

packets are reordered at the destination to produce the original data stream. This

process is illustrated in Figure 3.1.

In general, the congestion control on the direct path is similar to TCP. Modi-

fications to the standard TCP AIMD algorithm were made to coordinate between

the multiple paths and ensure that the combined paths do not behave more aggres-

sively than TCP in increasing the overall congestion window. Also, we imple-

33

ACKs

Scheduler
& CM

Monitor
Proxy

Proxy

Proxy

Proxy

Receiver Reorder

Figure 3.1: Overview of mPath.

mented a simple algorithm to infer correlated losses between the direct path and

proxied paths, and a load aggregation mechanism to aggregate traffic onto the di-

rect path when a shared bottleneck is detected. Our algorithm causes the traffic on

redundant proxied paths to converge to zero over time. While the overall idea is

relatively simple, there are a number of implementation details required to get the

system to work in a practical setting. These details are described in the following

sub-sections.

3.1.1 Proxy Probing

Given the large number of proxies, each mPath connection starts with a prob-

ing phase that uses data packets to identify proxies that are unreachable, non-

operational or exhibit non-transitive connectivity [32]. As mPath is tolerant of

packet reordering and losses, it is acceptable to use data packets in the probing

process instead of active probe packets.

Probing starts immediately after the source establishes a direct connection

to the destination and receives a proxy list from the RS. To prevent path prob-

ing from interfering with the data transfer process, we limit the probing rate to

one probe every 250 ms, which is approximately the average inter-continental

34

roundtrip time [88]. Sending one probe packet every RTT will not likely interfere

with the data transfer because the sender is expected to forward tens or hundreds

of packets in one RTT. When the sender decides to probe a proxy, it will randomly

select a proxy from the proxy list and attempt to forward a data packet through

it to the destination. If the sender receives an ACK for the data packet within τ

seconds, the proxy is considered usable and is added to the available list, which

is the set of proxies that can be used to forward packets. On the other hand, if

the sender fails to receive an ACK within τ seconds after two consecutive prob-

ing attempts, the proxy will be marked as unusable. Once all the proxies in the

list have been probed, mPath will request for more proxies from the RS. Clearly,

the threshold τ limits the maximum RTT of the proxied paths in the system and

controls the trade-off between the quality of the paths selected and the size of the

buffer required at the destination to handle reordering. We show in Section 3.3.7

that a value of τ that is two times of the direct path’s RTT yields a sufficiently

large number of good proxied paths and an acceptable amount of reordering.

3.1.2 Sequence Numbers & Acknowledgments

TCP was designed for a single direct path and only needs one sequence number

to handle both ordering and the detection of packet loss. In mPath, packet trans-

mission across multiple paths can result in significant reordering at the receiver.

A single sequence number would suffice to preserve ordering. However, having

only one sequence number would make it harder to detect packet losses for indi-

vidual paths, which is needed for proper congestion control. We considered using

SACK and the scoreboard data structure proposed in mTCP [104] to record in-

35

formation for all the paths. However, we found this method to be inefficient in

handling hundreds of paths. Like MPTCP [97], we use two sequence numbers:

a stream sequence number and a path sequence number. The stream sequence

number is used to identify and retransmit lost packets, while the path sequence

number is used to detect packet loss and control the congestion window for each

path.

Acknowledgments. When the destination successfully receives a number of

packets, an ACK packet is sent back to the sender, which contains both the global

stream sequence number as well as a set of path entries for the paths on which

the receiver had received data packets. Like TCP, the receiver cumulatively ac-

knowledges the receipt of packets by sending back the stream sequence number

of the earliest missing packet. In addition, each ACK packet also contains a set

of path entries, each recording the largest sequence number seen and the accu-

mulated count of the packet losses observed on the associated path. The path-

level acknowledgment is based on the latest packet received rather than the earli-

est missing packet because we have decoupled stream ordering from path packet

losses and we can use new sequence numbers for retransmissions. This also al-

lows mPath to retransmit lost packets on a different path. The accumulated packet

loss count is included to ensure that the sender has a more accurate view of the

packet losses on each path. Given that there are occasional losses of ACK packets,

this allows the congestion control algorithm to recover in the event that it wrongly

infers that there are data packet losses.

Negative Acknowledgments. The sender is notified of the holes in the stream

sequence with a stream-level NACK (SNACK) packet and of holes in the path

sequence with a path-level NACK (PNACK) packet. As holes in the stream se-

36

quence can be the result of reordering across multiple paths, SNACKs are not sent

immediately when the holes are detected. Since only paths with RTTs less than τ

seconds are used as proxies, we wait up to τ seconds for holes in the stream se-

quence to be filled before sending a SNACK to avoid false positives. To prevent an

overflow of the receiver’s buffer arising from the delayed retransmission requests,

SNACKs will be sent immediately if the receiver’s buffer is more than half full.

When the sender receives a SNACK, it retransmits the required packets immedi-

ately but does not modify the congestion window. Unlike SNACKs, PNACKs are

sent as soon as packet losses are detected. The sender reacts to a PNACK accord-

ing to the congestion control algorithm and performs a quick retransmission with

a newly selected path.

ACKAggregation. mPath sends ACKs, SNACKs and PNACKs via the direct

return path. We found that it is quite common for ACKs to be lost when there is

congestion on the return path. If ACKs were sent for every packet, mPath might

experience greater ACK losses than TCP because the number of ACK packets

for mPath can exceed the number of data packets sent on the direct path if a

large number of data packets are sent along proxied paths. To reduce congestion,

we reduce the rate at which ACK packets are generated by aggregating up to 10

acknowledgments into a single ACK packet. To ensure that acknowledgments

are not delayed excessively, we also limit the delay to no more than 10 ms. We

also considered the possibility of using the proxied paths to send the ACKs, but

we found that it will only make the system more complicated and increase delay,

without achieving any benefits over our chosen method of using the direct return

path.

37

3.1.3 Path Scheduling & Congestion Control

As the quality of proxied paths can vary significantly and change over time, it is

not possible to statically determine the optimal set of paths. Previous work on

path selection is mostly based on active probing, i.e. using ping [11] or tracer-

oute [104], which incurs a large overhead and does not yield accurate results for

the entire transmission period. Our approach to path selection is to passively de-

tect changes in path quality and to dynamically react to these changes. This is

achieved with a multipath additive increase/multiplicative decrease (AIMD) algo-

rithm in a coordinated manner [97, 58]. As the direct path incurs less overhead

and typically has lower delay than the proxied paths, the design goal of our con-

gestion control is to use the direct path as much as possible and supplement the

direct path with the proxied paths only when the direct path is constrained by the

core link bottleneck.

Proxied Path Creation. mPath first sends packets on the direct path to the

destination. In this state, the system controls congestion, much like standard TCP,

by employing a ‘slow-start’ phase and halving the congestion window if loss is

detected. However, in addition to halving the congestion window, packet loss may

also trigger the creation of proxied paths. The number of new proxied paths to be

created when a loss is detected is a proportion β of the direct path’s congestion

window (and limited by the number of paths in the available list). We found that

β= 0.25 achieves a good trade-off between the time taken to find good proxies and

the utilization of the direct path. Proxies are chosen at random from the unused

proxies in the available list. If all the available proxies have been used before,

mPath chooses the best proxy that it has observed thus far. For each newly created

38

proxied path i, mPath also maintains a congestion window wi that is initially set

to one. To prevent rapid and uncontrolled creation of proxied paths, the system

will only create new paths after all existing paths have encountered loss.

Multipath AIMD. mPath eliminates bad paths and exploits good paths by

scaling congestion windows with an additive increase/multiplicative decrease (AIMD)

algorithm [26]. Like TCP, a packet loss causes the congestion window of the af-

fected path to be halved. The main difference between mPath and TCP is in how

the congestion windows are increased when ACKs are received. During slow-

start, the congestion window of the direct path will increase by one for every ACK

received. In congestion control mode, cumulative ACKs received will increase the

congestion window of either the direct path or the proxied paths. The congestion

window of the proxied paths is increased with probability P and the congestion

window of the direct path is increased with probability 1−P. The probability P

is obtained with the following formula:

P=
w0

W
ρ+

W −w0

W
(3.1)

where ρ is the proportion of proxied paths that have not encountered loss, w0 is

the congestion window of the direct path, and W = ∑wi is the total congestion

window (over all paths inclusive of the direct path). The intuition is to use P

to apportion the load between the direct path and the proxied paths according

to their states. If some proxied paths have never encountered loss, we would

like to increase their congestion windows rapidly; if all the proxied paths have

encountered loss, then any increase in the overall congestion window should be

divided between the direct and proxied paths according to their estimated relative

39

��������������������

Time

Proxied path

: Data packet

: Packet loss

Direct path

Proxied path

with correlated loss

without correlated loss

Loss interval

: ACK packet

Overlap in loss intervals

Figure 3.2: Inference of correlated packet losses.

available bandwidths.

When we decide to increase the congestion window of an existing proxied

path, mPath selects an active path that has recently received an ACK and increases

its congestion window by one. Paths that have never encountered loss are given

higher priority. If all the paths have encountered loss, the addition goes to path

i with probability wi

∑w j
, where w j is the congestion window of proxied paths that

have recently received ACKs.

Shared Bottleneck Detection. We need to identify the shared bottlenecks

between proxied paths and the direct path so that we can shift traffic to the di-

rect path. We use a simple but effective scheme to infer the existence of such

bottlenecks: mPath records the transmission time for every packet sent and the

loss detection time if an ACK arrives indicating that packets were not received.

Each path then maintains a time range (“loss interval”) indicating when the last

lost packet was detected and the time that the packet was sent on the path. If the

loss interval on the direct path overlaps with the loss interval on a proxied path,

we deduce that the packet losses are correlated and the paths share a common

bottleneck. This is illustrated in Figure 3.2.

40

One key drawback of this method is that it is likely to produce false positives.

However, we argue that if two paths do not share a bottleneck, a false positive

would require packet losses to occur on both paths within a window that is typi-

cally less than several hundred milliseconds. As losses happening on two indepen-

dent paths that do not share the same point of congestion will exhibit little or no

correlation [80], we expect the probability of such an event to be extremely low.

In addition, a single false positive will not influence our algorithm significantly

and the probability that several false positive shared losses will occur between the

direct path and the same proxied path is even lower (the probability would be pn,

where p is the probability of one false positive shared loss and n is the number of

false positive events). There are no false positives in our emulation experiments

and the good performance achieved in our PlanetLab experiments suggests that

false positives are not a significant concern.

Load Aggregation. Upon detecting the shared bottleneck, mPath will then

move a proportion min(α, w0

∑w j
) of the proxied path’s remaining congestion win-

dow to the direct path, where w j is the congestion window for the proxied path

that experienced correlated packet loss. The upper bound w0

∑w j
guarantees that the

congestion window of the direct path will not be more than w0. In other words,

mPath will decrease proxied path i’s congestion window wi to half for a normal

loss on that path, but decrease it to wi

2
(1−min(α, w0

∑w j
)) for a correlated packet

loss and add wi

2
min(α, w0

∑w j
) back to the congestion window of the direct path.

We call this operation load aggregation. We found that α = 0.5 achieves a good

trade-off between the utilization of good proxied paths and the direct path, and

reduces the utilization of bad paths relatively quickly.

We choose to gradually decrease the congestion window of a proxied path in-

41

15Mbps

5ms

10Mbps

100ms

8Mbps

90ms

8Mbps

30ms

15Mbps

5msSource

Proxy A

Destination

Figure 3.3: An example of bottleneck oscillation.

stead of dropping the path completely in order to prevent bottleneck oscillation.

We illustrated this with an example in Figure 3.3. In this example, the transmis-

sion is initially limited by the 10 Mbps core link bottleneck on the direct path. As

new proxied paths that can route around the core link bottleneck are found (e.g.

proxy A), the common access link with capacity 15 Mbps will become the new

bottleneck. When a correlated packet loss is detected at the new bottleneck, the

naive approach of dropping proxy A completely will cause the bottleneck to shift

back to the core. If mPath then uses proxy A (or some other good proxy) to im-

prove throughput, the bottleneck will eventually shift back to the 15 Mbps access

link and the system will oscillate. By aggregating the congestion windows of the

proxied paths to the direct path, the stability of the system is improved.

Handling Timeouts. Like TCP, mPath detects timeout for all paths with a

mechanism based on the estimated RTT for each path. The direct path reacts to a

timeout by reverting to the slow-start state. However, when a timeout occurs for a

proxied path, we drop it instead of reverting to slow-start since it is easy for mPath

to either find a replacement among the unused proxied paths or redistribute the

load across existing paths. The path can be dropped temporarily or permanently

depending on the historical contribution of the path. If the path’s contribution to

42

the throughput is significantly below average compared to other proxied paths in

its lifetime, it will be marked as unavailable and dropped permanently. Otherwise,

it will only be dropped temporarily and may be reused at a later time.

3.2 Analysis of Multipath AIMD

In this section, we extend the classic Chiu and Jain AIMD model [26] to analyze

multipath AIMD. We show that our algorithm (i) is TCP-friendly, (ii) maximizes

the utilization of the access link without under-utilizing the direct path when there

is free core link capacity, and (iii) rapidly eliminates any redundant proxied paths.

Following the notation in [26], we obtain the multipath model for a single

user, which is illustrated in Figure 3.4. The user imposes a total load of x on the

system, with a load of xi on each path i. Path 0 refers to the direct path, which has

a core link capacity of Xgoal0 , while paths 1 to n are the proxied paths available to

the user. Without loss of generality, we assume that k out of the n proxied paths

are limited by core (or AS-AS peering) link bottlenecks, each with a capacity of

Xgoali ,1 ≤ i ≤ k, while the remaining paths from k+1 to n are free of congestion

and can accept more load. The capacity at the access link bottleneck is denoted

with Xgoal . We also define Y to be the feedback vector to the user, which is a

tuple comprising of binary feedback values yi for each path i. A positive feedback

(yi = 0) implies that there is no packet loss on path i, while a negative feedback

(yi = 1) implies that congestion has occurred.

When a negative feedback is received, mPath will halve the load on the associ-

ated path, and if it is a correlated packet loss, mPath will perform load aggregation.

When a positive feedback is received, mPath will increase the load by one with

43

Access link

x1

xk+1

...
xn

xk

x0
User

...

Feedback Y = (y0, y1, . . . , yn)

x
Σ Xgoal

Xgoalk

Xgoal1

Xgoal0

Figure 3.4: Model for a single user using multiple paths.

probability xi
∑n
i=0 xi

, denoted by γi. Clearly, γi is less than 1 for each path i and

∑n
i=0 γi = 1 at the access link bottleneck where all paths are aggregated. Thus,

for one mPath flow, the additive-increase value on any path is always less than or

equal to that of TCP and the multiplicative-decrease value is always equal to that

of TCP. This implies that mPath is TCP-friendly. In addition, because the behav-

ior of mPath will be similar to that of TCP at the access link, mPath will compete

for resources fairly and efficiently [26].

There are three scenarios under which a bottleneck can occur: (i) the direct

path is limited by a core link bottleneck but there is insufficient free capacity on

the available proxied paths to saturate the access link; (ii) the direct path is limited

by a core link bottleneck and enough free capacity via other paths can be found to

saturate the access link; or (iii) the bottleneck is entirely at the access link.

(i) Core Link Bottleneck, Insufficient Capacity. The first case is where the

direct path experiences congestion on a core link and mPath cannot find a set of

alternative paths to fully saturate the common access link. Load aggregation will

ensure that any proxied paths sharing the same core link bottleneck as the direct

path will eventually be dropped, i.e. only the proxied paths that do not share a

bottleneck with the direct path will be retained. In the steady state, the congestion

44

windows of the active paths would be oscillating in a manner that is equivalent to

the semicoupled algorithm [97] for a= 1, where a is a constant that determines the

aggressiveness of the congestion control algorithm. Raiciu et al. [97] determined

that only the paths with loss rates satisfying the following condition will be used:

(1− pr)
1

x̂
= pr

x̂r

2
(3.2)

where x̂ is the average load of the user, and pr and x̂r are the loss rate and average

load on path r respectively. This condition follows from the intuition that paths

must either reach an equilibrium for the average increase and decrease of their

load or converge to zero and get dropped. In other words, mPath will distribute

as large a load as possible to paths with low loss rates and drop all the paths that

have loss rates too high to satisfy condition (3.2).

(ii) Core Link Bottleneck, Excess Capacity Sufficient. The second case is

where mPath is most effective. When there is a bottleneck on the direct path and

sufficient core link capacity exists, the additive-increase phase will fully saturate

the access link by utilizing the free capacity on proxied paths k+ 1 to n. This

occurs even with a small additive-increase value of γi < 1, for k+1 ≤ i≤ n, since

these paths experience minimal packet loss. On the other hand, the congested

paths 1 to k will experience packet loss and their loads will undergo multiplicative

decrease, eventually converging to zero.

(iii) Access Link Bottleneck. Finally, if the flow is limited by an access link

bottleneck, using multiple paths will not help. The proxied paths will experience

correlated packet losses with the direct path, and, over time, load aggregation will

move most of the traffic onto the direct path and cause the load for all the proxied

45

Feedback Y = (y0, yp)

xx0

xp
Xgoalp

Xgoal0 Σ XgoalUser

Figure 3.5: Model of a shared access link bottleneck.

paths to converge to zero.

We further analyze the performance of mPath for scenarios (ii) and (iii) in

more detail. We consider a simple flow where there is only one proxied path, with

a core link capacity of Xgoalp , sharing a common access link with the direct path, as

shown in Figure 3.5. We define the load at time t on the direct path’s core, proxied

path’s core and access link to be x0(t), xp(t) and x(t) respectively. Depending on

the feedback values received at time t, given by Y (t) = (y0(t),yp(t)), mPath will

derive the loads at time t+1 as follows:

1. Y (t) = (0,0). When positive feedback is received on both paths, the load

on the direct and proxied path is increased probabilistically:

x0(t+1) = x0(t)+1

with probability γ0 =
x0(t)

x0(t)+xp(t)

xp(t+1) = xp(t)+1

with probability γp =
xp(t)

x0(t)+xp(t)

(3.3)

2. Y (t) = (1,0). When only the direct path has negative feedback, we obtain:

x0(t+1) = x0(t)
2

xp(t+1) = xp(t)+1

(3.4)

46

3. Y (t)= (0,1). When only the proxied path has negative feedback, we obtain:

x0(t+1) = x0(t)+1

xp(t+1) =
xp(t)

2

(3.5)

4. Y (t) = (1,1). When negative feedback is received on both paths, the loads

will be halved and load aggregation (with parameter α) will be performed

to shift part of the load from the proxied path to the direct path:

x0(t+1) = x0(t)
2

+α
xp(t)

2

xp(t+1) = (1−α)
xp(t)

2

(3.6)

Now assume that Xgoal is saturated at time t. This implies that there will

be shared loss (i.e. Y (t + 1) = (1,1)), which will cause the overall load to be

halved (x(t + 1) = x(t)/2) and load aggregation to be performed according to

Equation (3.6). If bottleneck conditions do not change and there are no other

losses, it will take approximately x(t)/2 time intervals for Xgoal to be saturated

again to produce another shared loss, since the average increase for x(t) is 1 at

each time interval, as described by Equation (3.3). We can then deduce that after k

intervals of shared losses under these conditions, at time u= t+(k−1)x(t)/2+1,

the loads would be:

x0(u) =
x0(t)

2
+[1− (1−α)k]

xp(t)
2

xp(u) = (1−α)k
xp(t)

2

(3.7)

For scenario (ii), where the bottleneck is in the core and sufficient capacity

exists (i.e. Xgoalp is large), x0 and xp would increase until either Xgoal or Xgoal0

47

is achieved. If Xgoal is achieved first, correlated packet losses will be detected

and load will aggregate to the direct path at an exponential rate until there are

no more correlated losses as described by Equation (3.7). This behavior ensures

that the direct path is never under-utilized. The overall performance in this case

is the same as that for a normal TCP flow competing for resources constrained

by the access link bottleneck. If Xgoal0 is achieved first, mPath has over-utilized

the direct path and caused congestion, so x0 will be halved and xp will increase

(as described by Equation (3.4)) until Xgoal is achieved. This means that mPath

will always maximize the utilization of the access link without under-utilizing the

direct path when sufficient core link capacity is available.

For scenario (iii), where the access link is the bottleneck, the proxied path is

redundant. All losses will occur at the shared access link and load aggregation

will always be performed to shift traffic to the direct path. Thus, as described by

Equation (3.7), the load of the proxied path (xp) will be aggregated to the direct

path at an exponential rate until xp is reduced to zero (i.e. the path is dropped).

Like the classic AIMD model [26], we assumed a synchronous feedback/control

loop and omitted the RTTs of the paths in our analysis in order to keep the model

tractable. We can extend the model to consider paths with different RTTs, but do-

ing so will not shed significantly more insight. An extension of the classic AIMD

model incorporating the RTTs [101], showed that the system would simply be

biased against paths with longer RTTs. As mPath is a variant of AIMD, we can

expect similar results. We show in Section 3.3.1 that even with paths of varying

RTTs, mPath behaves as expected.

48

3.3 Performance Evaluation

We evaluated mPath by running experiments on both Emulab and PlanetLab to

show that mPath (i) behaves in a manner consistent with the model described in

Section 3.2, (ii) is practical and can often achieve significant improvements in

throughput, and (iii) is scalable and that end-hosts can be used as proxies. We

also investigated the trade-off associated with the choice of system parameters.

In our experiments, we compared mPath with TCP by sending continuous

streams of randomly generated data. However, we did not use the native imple-

mentation of TCP due to two issues: (i) bias towards different transport protocols

(e.g. by firewalls or routing policies) may skew the results; and (ii) PlanetLab

limits the TCP window size, which limits the maximum throughput attainable.

Therefore, we used an implementation of TCP (New Reno[43]) based on UDP,

which is available in UDT [36]. This implementation has been shown by its au-

thors to have similar performance to native TCP.

3.3.1 Is our model accurate?

We first verify the behavior of mPath with a series of experiments on Emulab,

to show that mPath (i) can significantly improve throughput when there is suf-

ficient core capacity and automatically distribute load over the paths according

to the available path capacities, performs no worse than TCP when (ii) there is

insufficient capacity in the core or (iii) the access link is the bottleneck, (iv) is

TCP-friendly, and (v) can dynamically adapt to changing network conditions.

(i) Core Link Bottleneck, Excess Capacity Sufficient. Our first set of exper-

iments was conducted on a topology containing a core link bottleneck as shown

49

20Mbps

5ms

10Mbps

30ms

5Mbps

100ms
5Mbps

60ms

20Mbps

5ms

Source

Proxy 3

Destination

Proxy 1

5Mbps

20ms

5Mbps

60ms

15Mbps

100ms

15Mbps

80ms

15Mbps

90msProxy 2

Figure 3.6: An Emulab topology where mPath is able to find good proxied paths.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

C
o
n
g
e
s
ti
o
n
 W

in
d

o
w

Time (minutes)

mPath (Overall)
Benchmark TCP

mPath (Direct path)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

C
o
n
g
e
s
ti
o
n
 W

in
d

o
w

Time (minutes)

mPath (Path 2)
mPath (Path 3)
mPath (Path 1)

Figure 3.7: Plot of congestion window over time for the topology in Figure 3.6.

in Figure 3.6. In this topology, we created three proxied paths, with one proxy

sharing a 10 Mbps core link bottleneck and all three proxies sharing a 20 Mbps

access link bottleneck along the direct path. We ran mPath for 30 minutes and

compared its performance to a TCP benchmark that was run for the same dura-

tion. As expected, mPath achieved an average throughput of 14.31 Mbps, and the

benchmark TCP flow achieved an average throughput of 7.21 Mbps.

The congestion windows of the various paths (direct path and three proxied

paths) used by mPath are shown in Figure 3.7. The congestion windows of the

proxied paths are labeled according to the proxies that they pass through. We also

plot the congestion window for the benchmark TCP flow and the overall mPath

congestion window over time for reference.

50

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Time (minutes)

mPath (Overall)

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Time (minutes)

mPath (Direct path)
mPath (Proxied path)

Figure 3.8: Plot of congestion window over time for the topology in Figure 3.6 when only proxy
3 is used.

Initially, the three proxied paths compete for bandwidth, with the congestion

window of the direct path increasing slowly to allow those of the proxied paths to

fully expand. In the process, mPath detects the shared bottleneck between path 1

and the direct path and applies load aggregation, causing path 1 to be dropped

11 minutes into the transfer when its congestion window is reduced to zero. This

leaves the system in a stable state where paths 2 and 3 efficiently exploit the access

link capacity that cannot be utilized by the direct path alone. Path 2 carries more

traffic because it has a larger core link capacity. Observe that load aggregation

also ensures that the direct path is fully utilized throughout the transfer, handling

a load of about 7 Mbps.

(ii) Core Link Bottleneck, Insufficient Capacity. To investigate how mPath

performs when there is insufficient core link capacity to saturate the access link,

we use the topology shown in Figure 3.6 but with proxy 1 and 2 removed. That

is, we have a 20 Mbps access link, a 10 Mbps core link bottleneck on the direct

path and a 5 Mbps alternative path via proxy 3. Our results from running mPath

and TCP individually for 10 minutes are shown in Figure 3.8. Clearly, mPath can

still effectively utilize all available capacity on both direct and proxied paths.

51

5Mbps

5ms

10Mbps

100ms

15Mbps

50ms
10Mbps

30ms

5Mbps

5msSource Proxy Destination

Figure 3.9: An Emulab topology where the access link is the bottleneck and the proxied path is
useless.

 0

 50

 100

 150

 200

 0 2 4 6 8 10

C
o
n
g
e

s
ti
o

n
 W

in
d

o
w

Time (minutes)

mPath (Overall)
Benchmark TCP

 0

 50

 100

 150

 200

 0 2 4 6 8 10

C
o
n
g
e

s
ti
o

n
 W

in
d

o
w

Time (minutes)

mPath (Direct path)
mPath (Proxied path)

Figure 3.10: Plot of congestion window over time for the topology in Figure 3.9.

(iii) Access Link Bottleneck. For this scenario, we designed a simple topol-

ogy where the access link is the only bottleneck in the system, as shown in Fig-

ure 3.9, and ran mPath and TCP individually for 10 minutes. The results in

Figure 3.10 show that mPath and TCP produce similar patterns for their con-

gestion windows and achieve about the same throughput: 4.36 Mbps for mPath

and 4.40 Mbps for TCP. Some traffic is sent along the proxied path at first, but

this drops significantly when mPath determines it is of no benefit and the proxied

path’s congestion window is aggregated to the direct path. This example verifies

that when a good proxies are not available due to an access link bottleneck, mPath

behaves much like TCP.

(iv) TCP-friendliness. We ran another experiment on the topology in Fig-

52

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

Time (minutes)

TCP-1 TCP-2

mPath TCP-3

mPath (Overall)
mPath (Proxied path)

TCP-1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

Time (minutes)

TCP-1 TCP-2

mPath TCP-3

TCP-2
TCP-3

mPath (Direct path)

Figure 3.11: Plot of congestion window over time with competing mPath and TCP flows for the
topology in Figure 3.6.

ure 3.6 to evaluate mPath in the presence of competing TCP flows. We started a

TCP flow (TCP-1) in the background, after which we started mPath to observe its

influence on TCP-1. Next, TCP-1 is terminated and another TCP flow (TCP-2)

is started to observe how mPath reacts to the new flow. Finally, mPath is stopped

completely and a third TCP flow (TCP-3) is started to provide us with a bench-

mark for two competing TCP flows. After starting/stopping a flow, we give the

system 20 minutes to stabilize before making the next change. The congestion

windows of the various flows over time are shown in Figure 3.11.

We found that running mPath in parallel with TCP causes the TCP conges-

tion window to drop by about 25% on average, which is better than the TCP-3

benchmark which causes a 50% drop as expected. When TCP-1 is terminated,

the direct path for mPath quickly soaks up all the excess bandwidth freed by the

departure of TCP-1. When TCP-2 is started, it is able to achieve a steady state

congestion window that is equivalent to that for TCP-1. The congestion windows

of the proxied paths remain fairly stable throughout because they do not share the

core link bottleneck with the direct path. These results show that, in the presence

53

20Mbps

5ms

10Mbps

30ms

5Mbps

100ms

5Mbps

60ms

20Mbps

5ms

Source

Proxy 3

Destination

Proxy 1

5Mbps

20ms

5Mbps

60ms

15Mbps

100ms

15Mbps

80ms
15Mbps

90ms

Proxy 2

A1
A2

A3

R1
R4

R3

B1
B2

B3

R2

8Mbps

5ms

15Mbps

5ms
6Mbps

5ms

Figure 3.12: An Emulab topology to investigate how mPath reacts to changing path conditions.

of good proxied paths, mPath can achieve an overall throughput surpassing that

of TCP while remaining TCP-friendly.

(v) Adapting to changing proxied path conditions. To show that mPath can

dynamically adapt to congestion on the proxied paths, we created a new topology

by adding some new nodes to the topology in Figure 3.6, as shown in Figure 3.12.

Under this new scenario, path 2 of the mPath flow is disrupted by incrementally

introducing three TCP flows that all use the path segment R3 to R4 to reduce the

available capacity of the segment. The results are shown in Figure 3.13. The

mPath flow is given 15 minutes to stabilize before we start the first TCP flow from

A1 to B1, which has an access link capacity of 6 Mbps. In this state, proxied

path 2 still has sufficient capacity to allow mPath to saturate the access link. After

another 15 minutes, we add a second TCP flow with an access link capacity of

8 Mbps from A2 to B2. Now path 2 does not have sufficient capacity and mPath

automatically redistributes some load to path 3. mPath’s overall throughput in the

steady state drops from 12.0 Mbps to 11.4 Mbps. When the final TCP flow from

A3 to B3 is started, the segment R3 to R4 becomes highly congested and causes

54

 0

 5

 10

 15

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (minutes)

TCP from A1 to B1

TCP from A2 to B2

TCP from
A3 to B3

mPath (Overall)
mPath (Direct path)

mPath (Path 2)
mPath (Path 3)
mPath (Path 1)

Figure 3.13: Plot of throughput over time with interfering TCP flows on proxied path 2 for the
topology in Figure 3.12.

significant packet losses on path 2. This leads to path 2 being dropped completely

within 2 minutes and an overall drop in the steady state throughput of mPath from

11.4 Mbps to 10.6 Mbps.

3.3.2 Does mPath work over the Internet?

To evaluate the performance of mPath over the Internet, we ran a series of experi-

ments on PlanetLab using approximately 450 proxies. In this section, we present

results from two representative experiments that demonstrate mPath (i) can im-

prove throughput while maintaining TCP-friendliness when good proxied paths

exist and (ii) performs no worse than TCP when a good proxied path cannot be

found.

Performance with good proxied paths. The first experiment follows the

same procedure as that of the Emulab experiment for TCP-friendliness described

in Section 3.3.1. The only difference is that we now give mPath an additional

20 minutes to stabilize, since we now have significantly more proxied paths and

it might take longer for good proxied paths to be found. The results from running

55

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (minutes)

TCP-1 TCP-2

mPath TCP-3

mPath (Overall)
mPath (Proxied path)

TCP-1

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (minutes)

TCP-1 TCP-2

mPath TCP-3

TCP-2
TCP-3

mPath (Direct path)

Figure 3.14: Plot of throughput against time for the path from pads21.cs.nthu.edu.tw to
planetlab1.cs.uit.no.

this experiment on PlanetLab nodes pads21.cs.nthu.edu.tw and planetlab1.

cs.uit.no are shown in Figure 3.14.

We observed similar behavior as that for the earlier corresponding Emulab ex-

periment. In both cases, mPath achieves a relatively large increase in throughput.

However, when TCP-1 terminates, the increase in throughput occurs on the prox-

ied paths, rather than on the direct path as observed on Emulab. This is because

the sender is given exclusive access to the topology in Emulab, while many users

may have flows passing through the same core link bottleneck on the Internet for

the PlanetLab experiment. Flows that pass through the same link will be given a

share of the freed bandwidth when a flow leaves. In this case, stopping the flow

of TCP-1 will only increase mPath’s share of the direct path by a small amount.

However, stopping TCP-1 also frees up bandwidth on the access link, which can

then be used to increase the congestion windows of the proxied paths. Since the

direct path is unable to supply enough bandwidth to fully utilize the access link,

the proxied paths will take up most of the slack.

To better understand the improvement in throughput achieved by mPath, we

56

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80

P
a

th
 C

o
u

n
t

Time (minutes)

Probed
Used

Available
Active

Figure 3.15: Plot of proxied path usage over time.

did traceroutes for the direct and proxied paths used in the experiment. The de-

fault route from pads21.cs.nthu.edu.tw to planetlab1.cs.uit.no used a

direct path from 211.79.48.190 to 109.105.98.41, which is a route across the

Indian Ocean to Europe. We found that the proxied paths that contributed most

to the throughput did not intersect with this route. In particular, most of the prox-

ied paths used crossed the Pacific Ocean, continental America, and the Atlantic

Ocean before reaching Europe. To some extent, this is not surprising because the

Earth is round and there are generally two ways to connect any two points on the

planet: clockwise and anti-clockwise.

We also examined how mPath finds and uses the proxies in the system to es-

tablish a stable set of proxied paths. Figure 3.15 is a plot of the distribution of

the proxies over time. The probing phase to determine the available proxies com-

pletes relatively quickly and takes approximately 2 minutes to build an available

list of approximately 400 proxies out of the 450 registered proxy nodes. mPath

attempts to use all the available proxies in 75 minutes while maintaining an ac-

tive set of between 10 to 20 proxies at any one time. Comparing these results

57

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (minutes)

mPath (Overall)
Benchmark TCP

mPath (Direct path)
mPath (Proxied path)

Figure 3.16: Plot of throughput against time for the path from planetlab2.cs.ucla.edu to
planetlab2.unl.edu.

with the evolution of throughput in Figure 3.14, it is clear that the system finds a

good working set of proxies long before it tries out all the available proxies. In

fact, enough good proxied paths were found almost immediately after starting the

transfer.

Performance without good proxied paths. In the second experiment, we

used a pair of nodes (planetlab2.cs.ucla.edu and planetlab2.unl.edu) for

which mPath failed to find any good proxied paths. The throughput achieved in

this experiment is shown in Figure 3.16. For this pair of nodes, we found that

all the proxied paths experienced a bottleneck at the same access link. We can

see from Figure 3.16 that the throughput achieved by mPath and TCP are similar.

mPath achieves its steady state throughput within 2 minutes and spends only about

12 minutes assessing the 450 available proxies before giving up.

3.3.3 How often and how well does mPath work?

We investigated the throughput achieved by mPath for approximately 500 source-

destination pairs (distinct from the proxies) on PlanetLab and compared it to the

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Ratio of Throughput (mPath/TCP)

TCP Benchmark
Same Continent

All
Different Continent

Figure 3.17: Cumulative distribution of the ratio of mPath throughput to TCP throughput for 500
source-destination pairs.

throughput achieved by TCP. Figure 3.17 shows the cumulative distribution of the

ratio of the throughput achieved by mPath to that of TCP over all the node pairs

tested. Each data point was obtained by running mPath for 30 minutes followed

by TCP for another 30 minutes on each pair of nodes.

We found that mPath performs at most 20% worse than TCP for a small num-

ber of node pairs, which we believe can be attributed to the natural temporal vari-

ance of the available bandwidth on the Internet due to congestion and cross-traffic.

To verify this, we ran a large number of TCP flows back-to-back for 30 minutes

on random node pairs and plot the ratio between these two flows in Figure 3.17

as “TCP benchmark”. The line provides us with a benchmark for what would

be considered performance equivalent to TCP. In this light, we consider mPath to

have achieved an improvement over TCP if it achieves a distribution that is to the

right of this benchmark line. We see that about 40% of the node pairs seem to

achieve an non-trivial improvement in throughput, with about half of these pairs

achieving more than twice the throughput achieved by TCP. This is a significant

proportion and it verifies our hypothesis that many of the bottlenecks for the di-

59

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 50 100 150 200 250 300 350 >350

R
a

ti
o

 o
f
T

h
ro

u
g

h
p

u
t
(m

P
a

th
/T

C
P

)

RTT (ms)

90th Percentile
Mean

Median
10th Percentile

Figure 3.18: Plot of ratio of mPath throughput to TCP throughput against RTT.

rect paths are in the core, at least for PlanetLab nodes. From our observations, we

found that the remaining 60% of node pairs could not improve their throughput

using mPath, possibly because they were limited by their access links. Even for

cases where mPath seems to perform more poorly than TCP, the distribution is

still on the right of the TCP benchmark line, suggesting that even when network

conditions deteriorate, mPath is likely able to ameliorate the degradation.

Intuitively, the distance between the sender and receiver would have a signif-

icant impact on how much mPath can improve the throughput. We expect that

if the sender and receiver are very close (e.g. in the same AS), the throughput

gains would only be marginal. This is evident in Figure 3.17, where we plot the

improvement ratio of node pairs that have been categorized according to whether

they are located on the same continent or on different continents. From these re-

sults, it is clear that the pairs located on different continents can achieve larger im-

provements and this conforms with our intuition. In addition, we plot the through-

put improvement ratio against the direct RTT between the sender and receiver (for

500 node pairs) in Figure 3.18. As expected, node pairs with a higher RTT have a

60

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to Stabilize (minutes)

Good proxied paths not found
Good proxied paths found

Figure 3.19: Cumulative distribution of the time taken for mPath to stabilize.

greater chance of benefiting from mPath and this suggests that mPath should use

proxied paths more aggressively if the direct path RTT is larger, but this remains

as future work.

To determine how quickly mPath can find a good set of proxies, we plot the

time taken for mPath to reach its steady state throughput in Figure 3.19. We see

that if good proxied paths exist, mPath can find them within 5 minutes for 80% of

the node pairs. If good proxied paths cannot be found, mPath gives up within 1 or

2 minutes 90% of the time.

Based on these results, we see that the practicality of using mPath largely de-

pends on the location of the bottleneck and the duration of transmission. If the

bottleneck is at the core, and the transmission takes longer than mPath’s stabiliza-

tion time, we can expect the throughput improvements shown earlier. On the other

hand, if the bottleneck is at the access link, or if the transmission duration is too

short, throughput gains with mPath will be marginal (if any). This suggests that

mPath is only suitable for high-volume data transfers.

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Ratio of Throughput (mPath/TCP)

1
10
50

100
200

All

Figure 3.20: Cumulative distribution of the ratio of mPath throughput to TCP throughput when
different numbers of proxies are provided by the RS.

3.3.4 How many proxies are minimally required?

We are also interested in the number of candidate proxies required for mPath to

find a good proxy set. In this experiment, we limited the size of proxy lists re-

turned by the RS and compared the throughput achieved by mPath to TCP. The

sizes of proxy sets investigated are 1, 10, 50, 100, 200, and all the available prox-

ies (approximately 450). As shown in Figure 3.20, the performance of mPath

improves up till about 50 proxies, after which the performance gains of having

more available proxies become negligible. This suggests that the RS should pro-

vide source nodes with at least 50 proxies. As these results are for a system where

only one mPath flow is active, it is possible that more proxies will be required in

practice.

3.3.5 Is mPath scalable?

Since mPath is expected to support a large number of users, we want to understand

how the performance of mPath will scale as the number of users in the system

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Ratio of Throughput (mPath/TCP)

100 pairs
50 pairs

1 pair

Figure 3.21: Cumulative distribution of mPath throughput to TCP throughput with n disjoint
source-destination pairs transmitting simultaneously when proxies and end-hosts are distinct
nodes.

increases. We used 200 PlanetLab nodes (distinct from the proxies), partitioned

them into 100 disjoint pairs of senders and receivers, and ran experiments with

1, 50 and 100 pairs of nodes transmitting to each other simultaneously. By using

four different random partitions, we obtained 400 data points for each of the three

scenarios. These results are shown in Figure 3.21.

Since mPath is useful only if it improves the throughput for a node pair sig-

nificantly, we focus on the proportion of node pairs for which mPath can achieve

throughput that is at least twice that of TCP. We had shown earlier that when

there is only one user, about 20% of the source-destination pairs can achieve

twice the throughput of TCP. As shown in Figure 3.21, for 50 and 100 concur-

rent users, this number drops to about 10% of the users. This can be explained as

follows: mPath consumes the unused bandwidth of proxies to improve throughput

and users who are concurrently sending or receiving data would compete for this

same bandwidth. If the amount of unused bandwidth is kept constant, then as the

number of concurrent users increases, the number of users who see an improve-

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Ratio of Throughput (mPath/TCP)

200 pairs
100 pairs
50 pairs

Figure 3.22: Cumulative distribution of mPath throughput to TCP throughput with n disjoint
source-destination pairs transmitting simultaneously when the end-hosts are themselves proxies.

ment in throughput would decrease. Hence, the scalability of mPath depends on

the amount of unused bandwidth available in the system, as expected. As we are

limited by the PlanetLab nodes available, we are not able to conduct larger scale

experiments to study this in greater detail.

Using client nodes as proxies is one potential way of improving the scala-

bility of mPath. To evaluate the feasibility of this approach, we devised an ex-

periment where 450 PlanetLab nodes are used as proxies and 50, 100 and 200

source-destination pairs are randomly selected from these proxies to concurrently

send/receive data. As shown in Figure 3.22, mPath is still able to improve the

throughput for some node pairs. For 50 and 100 pairs, about 10% of the pairs can

achieve at least twice the throughput of TCP. This drops to a very small number

for 200 pairs, but this is not entirely surprising as this means that some 400 out

of the 450 proxies are sending/receiving data. Since these proxies do not have

much unused bandwidth to be exploited, mPath is unlikely to be able to use them

to improve throughput. Our results suggests that if the number of users concur-

rently sending/receiving data is less than 50% of the total number of proxies, it is

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Buffer Size (MB)

TCP
mPath

Figure 3.23: Cumulative distribution of the maximum buffer size required for 500 source-
destination pairs.

feasible to use client nodes as proxies.

3.3.6 How serious is reordering in mPath?

The amount of reordering in the packets received directly affects the size of the

buffer required at the receiver. In this light, we quantify the impact of reordering

by recording the amount of buffer space used at the receiver (for both mPath and

TCP) during our experiments. In Figure 3.23, we plot the buffer usage for all the

node pairs evaluated in Section 3.3.3. From these results, we can see that a 25 MB

buffer is sufficient to handle the reordering in mPath. Since most modern desktops

have at least 4 GB of RAM, 25 MB is insignificant.

3.3.7 How should the parameters be tuned?

mPath is characterized by the parameters α, β and τ. In this section, we investigate

the trade-off for each of these parameters. We investigate the effect of α on Emu-

lab because of the controlled environment and the effect of β and τ on PlanetLab

65

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Path Aggregation Factor

mPath (Overall)
mPath (Good proxied paths)

mPath (Direct path)

Figure 3.24: Plot of throughput against load aggregation factor α.

because it was not practical to create hundreds of proxies on Emulab.

Load Aggregation (α). The first parameter, α, is the proportion of the con-

gestion window moved from a proxied path to the direct path when a correlated

packet loss is detected. If α is too large, it may result in low utilization of good

proxied paths and reduced throughput; if α is too small, it may take a long time

for bad proxied paths to converge to zero and cause the direct path to be under-

utilized. As shown in Figure 3.24, our experiments indicate that α > 0.75 would

lead to a decrease in overall throughput. We also found that when α≤ 0.25, mPath

would take more than 30 minutes to eliminate the bad proxied paths. Thus, we set

α = 0.5.

Proxied Path Creation (β). Next, we investigate β, the number of new paths

created as a fraction of the direct path congestion window when loss is detected.

This number trades off the time taken by mPath to find a good proxy set against

the utilization of the direct path. Using a pair of nodes observed to have good

proxied paths (planetlab6.goto.info.waseda.ac.jp to planetlab2.wiwi.

hu-berlin.de), we perform data transfers lasting 30 minutes and plot the through-

66

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

New Path Creation Factor

mPath (Overall)
mPath (Proxied paths)

mPath (Direct path)

Figure 3.25: Plot of throughput against new path creation factor β.

put achieved against β in Figure 3.25. The graph shows that when β ≥ 0.5, the

utilization of the direct path decreases, and when β > 0.75, there is even a slight

drop in the overall throughput. We also found that when β < 0.25, the time taken

to find good proxies increases significantly, and that beyond β = 0.25, there is no

substantial reduction in this time. Therefore, we set β = 0.25.

Maximum Allowable Proxied Path RTT (τ). Intuitively, the maximum al-

lowable RTT for the proxied paths is directly related to packet reordering and the

number of proxied paths that can be used, and these factors will affect the achieved

throughput. Figure 3.26 shows the effect of τ on the maximum buffer size required

at the receiver. Clearly, increasing τ results in greater reordering and thus larger

buffering requirements. Figure 3.27 shows the number of usable proxied paths as

we increase τ. We pick τ = 2×RTT0 because this provides a sufficient number

of proxies and because we found that increasing it beyond this value did not yield

significant improvements in throughput.

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Buffer Size (MB)

TCP
mPath with τ=1*RTT0

mPath with τ=1.5*RTT0
mPath with τ=2*RTT0
mPath with τ=4*RTT0

mPath without RTT limitation

Figure 3.26: Cumulative distribution of the maximum buffer size required for different maximum
proxied path RTTs τ.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Number of Usable Proxies Detected

mPath with τ=1*RTT0
mPath with τ=1.5*RTT0

mPath with τ=2*RTT0
mPath with τ=4*RTT0

mPath without RTT limitation

Figure 3.27: Cumulative distribution of the number of usable proxies detected for different maxi-
mum allowable proxied path RTTs τ.

3.4 Summary

In this chapter, we proposed and evaluated mPath, a practical massively-multipath

source routing system, that (i) is TCP-friendly, (ii) will maximize the utilization

of the access link without under-utilizing the direct path when there is free core

link capacity, and (iii) will rapidly eliminate any redundant proxied paths. This is

achieved with a modified AIMD congestion control algorithm that uses loss inter-

vals to infer shared bottlenecks and incorporates a load aggregation mechanism

68

to maximize direct path usage. We show with evaluation that mPath is able to

mitigate the problem of the core link congestion effectively. In the next chapter,

we will discuss the characteristics of cellular data networks and in particular, we

will discuss one of the access link congestion problem, namely “self-inflicted”

congestion problem.

69

Chapter 4

Measurement Study of Cellular

Data Networks

In recent years, cellular data networks are carrying an increasing amount of traffic

with their ubiquitous deployments [1]. However, networks such as HSPA and

LTE have very different link-layer protocols from conventional wired and WiFi

networks. It is thus important to have a better understanding of the characteristics

and behavior of cellular data networks.

In this chapter, we investigate and measure the characteristics of the cellular

data networks for the three ISPs in Singapore with experiments in the laboratory

as well as with crowd-sourced data from real mobile subscribers. We observed

several interesting behaviors that are different from conventional wired and WiFi

networks: i) transmitted packets tend to arrive in bursts; ii) there can be large

variations in the instantaneous throughput over a short period of time; iii) large

separate downlink buffers are typically deployed in mobile ISPs; and iv) mobile

ISPs typically implement some form of fair queuing policy.

70

These findings confirm that cellular data networks behave differently from

conventional wired and WiFi networks, which may be overlooked by the re-

searchers. These results also suggest that more can be done to optimize protocol

performance in existing cellular data networks. For example, the fair scheduling

in such networks might effectively eliminate the need for congestion control if the

cellular link is the bottleneck link. We have also found that different ISPs and

even different devices use different buffer configurations and queuing policies.

Whether these configurations are optimal and what makes a configuration optimal

are candidates for further study.

We further investigate the performance issues when there is concurrent up-

loads and downloads in cellular data networks. Our measurement study shows

that in the presence of a simultaneous background upload, 3G download speeds

can be drastically reduced from more than 1,000 Kbps to less than 100 Kbps. We

identify this problem as the “self-inflicted” congestion problem.

We organize this chapter as follows: in Section 4.1, we first describe our

methodology of the measurement studies. In Section 4.2, we investigate the packet

flow characteristics of cellular data networks, in particular, the bursty arrival pat-

tern of the packets and the variation of throughput. In Section 4.3, we measure

the buffer setting and queuing policy of cellular data networks. In Section 4.4,

we investigate the performance issues caused by a saturated upstream buffer in

cellular data networks.

71

4.1 Methodology

We first describe our measurement study methodology. Our experiments were

conducted on the cellular data networks of the three local ISPs in Singapore, which

we anonymize as A, B and C. Some measurements were taken in our laboratory

at the National University of Singapore, while the rest were crowd-sourced with

the assistance of real users using their personal mobile devices. For the laboratory

experiments, we purchased 3G/LTE cellular data plans from each ISP and took

measurements with different models of smartphones and USB modems. The LTE

data plans were backward-compatible with the older HSPA and HSPA+ networks

and allowed us to also access these older networks and use non-LTE-enabled mo-

bile devices.

To obtain crowd-sourced measurements, we developed and published a mea-

surement application, ISPCheck [2], on the Android Play Store. To date, it has

about 50 installations and the data presented in this paper was obtained over a

5-month period from April to August 2013. During this period, 6,048 sets of

experiments from 23 different users were collected, with 2,301 sets for HSPA net-

works and 3,747 sets for the faster HSPA+ networks. We did not include the data

for LTE networks because we had relatively little data for these networks, since

the LTE networks in Singapore are relatively new and the majority of subscribers

have not yet upgraded to LTE.

In our experiments, the measured UDP throughput was never lower than the

measured TCP throughput. This suggests that the local ISPs do not throttle UDP

flows, unlike the ISPs for other countries[92]. As such, we decided to use UDP

flow in all our experiments because using UDP provides us with full control over

72

the packet size and sending rate. Also, unless otherwise stated, the packet size

for our experiments was 1,420 bytes (including IP headers), since we found that

this was the default MTU negotiated by TCP connections in the local networks.

For the experiments conducted in the laboratory, we synchronized the clock of the

mobile phones to that of our server by pinging the phone over a USB connection

with our server. By using pings with RTTs that are less than 2 ms, we were able

to synchronize the clocks to within 1 ms accuracy. This allows us to count the

packets in flight and determine the exact one-way delay in our measurements pre-

cisely. While tcpdump was used to log the packets in our laboratory experiments,

we could not use it in ISPCheck because it requires root access to the device. So

ISPCheck simply logs packet traces at the application layer.

4.2 Packet Flow Measurement

In this section, we investigate the packet flow characteristics of cellular data net-

works. In particular, we demonstrate that the arrival pattern of cellular data pack-

ets is bursty, and it is thus necessary to take this pattern into account when we try

to estimate the instantaneous throughput for cellular data networks. Finally, we

investigate how the instantaneous throughput of cellular data networks vary over

time and find that it can vary by as much as two orders of magnitude within a

10-minute interval.

4.2.1 Burstiness of Packet Arrival

In cellular data networks, packets are typically segmented and transmitted over

several frames in the network link and then reconstructed at the receiver. Such

73

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20

In
te

r-
p

a
c
k
e

t
A

rr
iv

a
l
T

im
e

 (
m

s
)

Time (s)

Figure 4.1: Trace of the inter-packet arrival
times of a downstream UDP flow in ISP C.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Inter-packet Arrival Time (ms)

LTE 32.8Mbps
HSPA+ 6.6Mbps

HSPA 6.2Mbps
HSPA 2.2Mbps
HSPA 0.4Mbps

Figure 4.2: Cumulative distribution of the
inter-packet arrival times for ISP C.

networks also incorporate an ARQ mechanism that automatically retransmit erro-

neous frames, and this can cause packets to be delayed or reordered. To investi-

gate the effect of the link layer protocols on the reception pattern of IP packets,

we saturated the mobile link by sending UDP packets from our server to a mobile

device at a rate that is higher than the receiving rate. A HTC Desire (HSPA-only)

phone was used to measure existing HSPA networks and a Samsung Galaxy S4

phone was used to measure existing HSPA+ and LTE networks. We cannot use

the Galaxy S4 to measure HSPA networks because it would always connect to

existing HSPA+ networks by default.

One key observation is that packets tend to arrive in bursts. In Figure 4.1, we

plot the inter-packet arrival times of a representative trace from one of our experi-

ments. We can clearly see that packets tend to arrive in clusters at 10 ms intervals,

and that most packets tend to arrive within bursts of less than 1 ms interval. In

Figure 4.2, we plot the cumulative distribution of the inter-packet arrival times for

5 traces from different networks and bandwidths. From these results, we can see

that packet arrival is bursty at 10 ms intervals in HSPA networks and at 4 ms in

the faster HSPA+ and LTE networks.

74

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

HSPA+ Download
HSPA Download

HSPA+ Upload
HSPA Upload

(a) Inter-packet arrival time (ms)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

HSPA Upload
HSPA+ Upload

HSPA Download
HSPA+ Download

(b) Number of packets in one burst

Figure 4.3: Inter-packet arrival times and number of packets in one burst for ISPCheck.

In Figure 4.3(a), we plot the cumulative distribution of the inter-packet arrival

times for the crowd-sourced data collected with ISPCheck. In total, the ISPCheck

data set consisted of more than 1 million downstream packets and over 400,000

upstream packets. Again, we can see that the packets arrive in distinct bands

even when the packet traces are recorded at the application layer. We consider

packets that arrive within 1 ms of each other to constitute a burst, and plot the

cumulative distribution of burst sizes in Figure 4.3(b). We can see that the majority

of downstream packets arrive in bursts. This is likely because the downlink of

cellular data networks allows for the parallel transmission of frames which could

result in multiple packets being reconstructed at the same time at the receiver.

The arrival of packets at distinct intervals of either 10 ms or 4 ms is likely due

to the polling duty cycle of the radio driver in the mobile devices. We noticed that

older (and slower) phones like the HTC Desire had a longer interval of 10 ms,

while the newer Galaxy S4 has an interval of only 4 ms. To ascertain that this

was independent of the kernel tick interval, we performed the same experiments

over a 802.11g WiFi network, and we found that the arrival of packets was spread

uniformly over time and there was no distinct banding of packets.

75

4.2.2 Measuring Instantaneous Throughput

Our observation of bursty packet arrivals suggests that traditional bandwidth mea-

surement techniques involving packet pairs [56, 72] or packet trains [48, 79] will

not work well for cellular data networks. In order to obtain a reasonably good

estimate of the instantaneous throughput, we would likely have to observe at least

two bursts worth of packets, but even that might not be sufficient because of the

coarse granularity of the clock.

To investigate the effect of the bursty packet arrival on instantaneous through-

put estimation, we initiated a large number of saturating downstream flows of

UDP packets for 30 s over an extended period, until we found a trace where the

flow seemed to be stable and the average throughput over the entire period was

6.9 Mbps. Since the maximum speed of this data plan was 7.2 Mbps, we know

that this trace is one where there was very little interference from other users and

network traffic. Hence, any variations could be attributed to the burstiness of the

packet arrivals and the transmission medium.

The packet arrivals in the trace were segmented into bursts of packets all ar-

riving within 1 ms of each other. As before, the interval between the bursts was

approximately 10 ms. Next, we estimated the instantaneous throughput by using a

consecutive number of n bursts. That is, we ignored the first burst and divided the

data in the last n−1 bursts over the total time elapsed between the n bursts. We

computed all possible windows of n-bursts in the flow and plot the standard de-

viation and error between the estimates and the long-term average throughput of

6.9 Mbps (normalized against 6.9 Mbps) in Figure 4.4 for the estimates obtained

as n varies from 2 to 1,000.

76

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000
 0

 0.5

 1

 1.5

 2

 2.5

A
v
e

ra
g

e
 E

rr
o

r

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

M
b

p
s
)

Number of Bursts in the Measurement Window

Average Error
Standard Deviation

Figure 4.4: The accuracy of throughput estimation with different window.

As expected, the accuracy and the standard deviation of our estimates will im-

prove if we use a larger number of bursts. However, it is not feasible to use too

much data because doing so is not only costly, it might cause the measurement to

take too long and the resulting instantaneous measurement might not be too mean-

ingful. Our results in Figure 4.4 suggest that using 50 bursts of packets achieves a

reasonable trade-off between accuracy and data required. This translates to about

100 KB and 300 KB of data respectively, or at least 400 ms and 325 ms respec-

tively in terms of time, for measuring upstream and downstream throughput for

2 Mbps upstream/7.2 Mbps downstream HSPA networks.

4.2.3 Variations in Mobile Data Network Throughput

It is well-known that there is a large variance in the performance of cellular net-

works [66, 90]. In this section, we present our findings on the variations in the

networks that we investigated.

In Figure 4.5, we plot the cumulative distribution of the crowd-sourced data

obtained from ISPCheck. As expected, HSPA+ networks are generally faster

than HSPA networks. While HSPA+ can in principle achieve speeds higher than

77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Throughput (Mbps)

HSPA Upload
HSPA+ Upload

HSPA Download
HSPA+ Download

Figure 4.5: Plot of cumulative distribution of
the throughput for data from ISPCheck.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (minutes)

Download
Upload

Figure 4.6: The huge variation of the down-
load and upload throughput.

7.2 Mbps, we rarely found speeds higher than that because most of the local data

plans have a maximum rate limit of 7.2 Mbps. Overall, we see significant asym-

metry in the upstream and downstream data rates and also that the actual through-

put achieved by the local subscribers can vary significantly from a few Kbps to

several Mbps.

To understand temporary variation, we initiated a 10-minute long UDP flow

in the HSPA+ network of ISP C and maintained a constant number of packets in

flight to keep the buffer filled and ensure that the cellular link is always busy. We

estimated the instantaneous throughput over the entire period using windows of

50-packet bursts, as discussed in Section 4.2.1. We plot the estimated instanta-

neous throughput for both an upstream flow and a downstream flow in Figure 4.6.

We can see that not only does the throughput change fairly quickly, it also varies

by as much as over two orders of magnitude several times within a 10-minute in-

terval. This corroborates the claims of previous work [90, 96]. With such huge

variations over such short periods, protocols like TCP and HTTP might not work

well [46]. In fact, several unrelated experiments that we attempted with TCP on

these cellular data networks also suffered from serious under-utilization and time-

78

outs.

4.3 Buffer and Queuing Policy

This section highlights our measurements of the buffer configurations on both

ends of cellular data networks and our investigation into the queuing policies of

the three local ISPs.

Downlink Buffer Size. We estimate the buffer size by sending UDP packets

at a rate higher than the receiving rate, which causes the buffer to fill over time

with packets and eventually overflow. We can accurately determine the number of

the outstanding packets in the network, or the packets in flight, by synchronizing

the clock of our mobile phones to that of the server. Finally, we can estimate

the buffer size by subtracting the measured bandwidth-delay product from the

total packets in flight. Interestingly, we found that instead of being conventionally

sized in bytes, the downstream buffers at the ISPs are sized in packets. In these

experiments, we vary the size of a packet from 200 to 1,420 bytes. We could not

use packets smaller than 200 bytes because our receiving devices and tcpdump

are not able to process smaller packets fast enough when we try to saturate the

networks to measure the buffer size.

Figure 4.7 shows the plot of packets in flight against time for one of our exper-

iments using different packet sizes over ISP C’s HSPA network. We can see that

the number of the packets in flight plateaus at the same value for different packet

sizes. In this instance, the bandwidth delay product was small (≈ 50 packets), and

so we deduced that the buffer size was fixed at about 2,000 packets. We observed

similar behavior in the downstream buffers for all the networks studied, with the

79

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45

N
u

m
b

e
r

o
f
P

a
c
k
e

ts
 i
n

 F
lig

h
t

Time (s)

Pkt Size = 1420
Pkt Size = 1000
Pkt Size = 500
Pkt Size = 200

Figure 4.7: The number of packets in flight for
downloads with different packet size.

 0

 1

 2

 3

 4

 0 1 2 3 4 5

B
u

ff
e

r
S

iz
e

 (
M

B
)

Throughput (MB/s)

y = 0.8x

Figure 4.8: In ISP A’s LTE network, the buffer
size seems to be proportional to the throughput.

exception of ISP A’s LTE network.

We found that the downstream buffer for ISP A’s LTE network behaved quite

differently from the rest. As shown in Figure 4.8, the buffer size seems to be

a linear function of the throughput (c.f. y = 0.8x). In other words, the size of

the buffer appears to vary proportionally to the throughput in a way that keeps

the maximum queuing delay constant at 800 ms. We suspect that ISP A might

have implemented a Codel-like [71] mechanism in their network, i.e., packets are

timestamped when they arrive, and checked at the head of the queue. If they spent

longer than 800 ms in the buffer, they would be dropped. While there is certainly

an absolute limit of the buffer in terms of physical memory space, we were not

able to exceed that even when we send packets at the maximum supported data

rate. A summary of the estimated buffer sizes for all three local ISPs is shown in

Table 4.1.

Overall, we observed that the downstream buffers for most of the ISP networks

are fairly large. Because the variation in the throughput can be very large, it is

possible on occasion for the latency to become very high when throughput is too

low to drain the buffer fast enough [51]. By controlling the maximum time that a

80

Table 4.1: Downlink buffer characteristics for local ISPs

ISP Network Buffer Size Drop Policy

ISP A
HSPA(+) 4,000 pkts Drop-tail

LTE 800 ms AQM

ISP B
HSPA(+) 400 pkts Drop-head

LTE 600 pkts Drop-tail

ISP C
HSPA(+) 2,000 pkts Drop-tail

LTE 2,000 pkts Drop-tail

packet can spend in the buffer(like in ISP A’s LTE network), the maximum latency

can however be kept at a consistent and stable value (about 800 ms for ISP A’s

LTE network) independent of the throughput.

Drop Policy. In addition to the buffer size, we also investigated the drop

policy of the various ISPs by studying the traces of the packet losses and found

that a drop-tail policy was implemented in all the networks except for ISP B’s

HSPA(+) network and ISP A’s LTE network. We repeated our experiments several

times with different parameter settings and at different physical locations, and

consistently obtained similar results, which are summarized in Table 4.1.

We explain how we inferred the drop policies with the following examples:

in Figure 4.9(a), we plot the number of packets sent, packets lost and packets in

flight over time for ISP C’s HSPA(+) network, and in Figure 4.9(b), we plot a

corresponding trace for ISP B’s HSPA(+) network. Because the traces are ana-

lyzed offline, we could determine the lost packets by observing that they were

sent but never received. However, we cannot determine precisely when the packet

losses happened. Hence, the “Lost” line in our graphs refers to the time when

the lost packets were sent and not when they were actually dropped. We see in

Figure 4.9(a), that for ISP B’s network, packet losses only occur to packets sent

81

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10 12 14

N
u

m
b

e
r

o
f
P

a
c
k
e

ts

Time (s)

Sent
In Flight

Lost

(a) ISP C HSPA(+)

 0

 500

 1000

 1500

 2000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
u

m
b

e
r

o
f
P

a
c
k
e

ts

Time (s)

Sent
In Flight

Lost

(b) ISP B HSPA(+)

Figure 4.9: Trace of the packets sent, lost and in flight in a UDP downstream flow.

after time t = 5. This also coincides with the start of a plateau in the number of

packets in flight because we exclude known lost packets when plotting the num-

ber of packets in flight. Thus, we can infer that Figure 4.9(a) suggests a drop-tail

queue, where the buffer is fully saturated around time t = 5 and newly sent pack-

ets are dropped until no more packets are sent at time t = 7.2 and the buffer starts

to empty.

In contrast, Figure 4.9(b) paints a very different picture for ISP C’s network.

We see that packet losses start to occur very early in the trace and stop after time

t = 2.4, i.e., there were no losses for the final batch of 400 packets sent after time

t = 2.4. This suggests a drop-head queuing policy. In addition, the packets in

flight plateaus at a lower value before increasing to a peak from time t = 2.4 to

t = 3. The likely explanation for this phenomenon is that we exclude lost packets

from the packets in flight by assuming they were lost the moment they were sent.

However, for a drop-head queue, these lost packets would have occupied some

space in the buffer before they get dropped at the head of the queue. Thus, as long

as packets are being dropped in a drop-head queue, our estimate of the packets

in flight is likely an underestimate of the actual value. From time t = 2.4 to t =

82

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12

B
y
te

s
 i
n

 F
lig

h
t
(K

B
)

Time (s)

Pkt Size = 1420
Pkt Size = 1000
Pkt Size = 500
Pkt Size = 200

Figure 4.10: The bytes in flight for uploads with different packet sizes.

3, the older packets in the buffer are still being dropped but no new packet are

lost. Hence, the proportion of packets dropped decreases, which explains why our

estimate of the packets in flight continues to increase.

Uplink Buffer Size. The uplink buffer is at the radio interface of the mobile

device, and for all the mobile phones we tested, the buffer is sized in terms of bytes

rather than number of packets like the downlink buffer. In Figure 4.10, we plot the

bytes in flight over time for the experiments carried out on a HTC Desire phone.

We see that the number of bytes in flight remained constant for different packet

sizes. On the other hand, the Huawei USB modems we tested had a buffer that is

sized in terms of number of packets. Our results are summarized in Table 4.2.

Another interesting finding is that the newer Samsung Galaxy S3 LTE and

Galaxy S4 phones seem to buffer packets in the kernel (which is sized in packets),

in addition to the regular buffer in the radio interface (which is sized in bytes).

Our ISPCheck application is blocked from sending UDP packets once there are

about 200 packets in the kernel buffer. This behavior is unexpected because we

do not typically expect UDP packet transmissions to be blocked and indeed, this

is not observed in the older Android phones. It is plausible that the phone manu-

83

Table 4.2: The radio interface buffer size of different devices

Device Type Model Network Buffer Size

Android Phone

HTC Desire HSPA 64 KB

Galaxy Nexus HSPA+ 1.5 MB

Galaxy S3 LTE† HSPA+ 200 KB

LTE 400 KB

Galaxy S4† HSPA+ 200 KB

LTE 400 KB

USB Modem
Huawei E3131 HSPA+ 300 pkts

Huawei E3276 LTE 1,000 pkts
†These devices have additional buffering of 1,000 packets in the kernel.

facturers have come to realize that because the uplink bandwidth can sometimes

be very low, not blocking UDP transmissions would likely cause packets to be

dropped even before the phone can get a chance to transmit them, and thus have

modified the kernel to implement blocking even for UDP transmissions. To fur-

ther investigate this phenomenon, we tethered the phone to a desktop computer

via USB and used the desktop as the packet source, instead of an Android appli-

cation. By running tcpdump on the USB and the radio interfaces of the phone, we

can directly observe the flow of packets through the phone. In these experiments,

we found that the buffering in the kernel was 1,000 packets for both the Galaxy

S3 LTE and S4. There was no evidence that packets were buffered in the kernel

for the other Android phone models that we investigated.

Separate Downlink Buffers. Winstein et al. claimed that ISPs implement a

separate downlink buffer for each device in a cellular data network [96]. To verify

this claim, we performed an experiment where we started saturating UDP flows

to two mobile phones concurrently connected to the same radio cell. If there was

a common buffer, we will likely see differences as the packets for the two flows

84

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40 45

#
 o

f
P

a
k
c
e

ts
 i
n

 F
lig

h
t

Time (s)

Phone 1
Phone 2

Figure 4.11: The number of packets in flight for two concurrent downloads.

jostle for a place in the common buffer. Instead, in Figure 4.11, we can see that the

packets in flight reaches the same and constant value for both phones, indicating

that the buffer is not shared between the devices. We observed the same behavior

for all the three ISPs.

Queuing Policy and Fairness. To investigate if the ISPs implement a fair

scheduling algorithm such as Round Robin, Maximum C/I and Proportional Fair

as specified in [91], we ran the following experiment: using two mobile phones

connected to the same cell with the same signal strength, we sent a UDP flow to

one of the phones at the constant rate of one 50-byte packet every 10 ms. Af-

ter 2 minutes, we started a saturating UDP flow to the other phone using 1,420-

byte packets and saturated the buffer by maintaining 1,000 packets in flight. The

first flow mimics a low-throughput, delay-sensitive application, while the second

mimics a high-throughput application. In Figure 4.12, we plot the downstream

one-way delay of both flows together with the throughput of the second saturating

UDP flow. If the queuing policy were FIFO, we would expect that since flow 2

saturates the buffer, the one-way delay for flow 1 would greatly increase. Instead,

our results show that the delay of flow 1 remains low and stable throughout.

85

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300
 0

 0.5

 1

 1.5

 2

 2.5

 3

O
n

e
 W

a
y
 D

e
la

y
 (

s
)

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

Time (s)

OWD of flow 2
Throughput of flow 2

OWD of flow 1

Figure 4.12: Comparison of delay-sensitive flow and high-throughput flow.

To investigate if the scheduling policy is fair among devices, we designed

another experiment using three HTC Desire mobile phones connected to the same

cell with similar signal strength. A downstream flow was initiated to each phone:

i) a UDP flow that maintains 1,420 KB of data in flight, ii) a UDP flow that

maintains 64 KB of data in flight, and iii) a TCP flow whose maximum receiver

window is set at 64 KB. In Figure 4.13, we plot the throughput of all three flows

with the number of packets in flight. It turns out that the throughput is fairly

distributed among the three devices, independent of the number of packets or bytes

of data in their buffer. We repeated this experiment for the HSPA(+) networks of

all three local ISPs and found similar results.

We make several observations from the results of our experiments. First, all

the ISPs clearly implement some form of fair queuing and unlike in the core In-

ternet, UDP and TCP traffic seem to be treated equally by our local mobile ISPs.

Second, having more data in flight may not help increase throughput because flows

are effectively separated and do not compete for the same buffer space at a cellular

base station. Instead, if the throughput is low, saturating the buffer will only result

in increased latency. Third, since the fairness among connected mobile devices

86

 0

 1000

 2000

 3000

 4000

T
h

ro
u

g
h

p
u

t
(K

b
p

s
) UDP 1

UDP 2
TCP

 1

 10

 100

 1000

0 10 20 30 40 50 60

P
a

c
k
e

ts
 i
n

 F
lig

h
t

Time (s)

Figure 4.13: The throughput and packets in flight of three downlink flows in ISP C.

is enforced by a scheduling policy, congestion control at the transport layer (i.e.

TCP) may not be necessary across a cellular link. This suggests that if the cellular

link is the bottleneck link, which is common in the older HSPA networks, an end-

to-end approach to congestion control may be possible [96]. Also, it is possible

for an end-to-end flow to be split at the gateway of the cellular data network and

a more efficient protocol can be used on the cellular link [99, 65].

4.4 The Problem of Saturated Uplink

As shown in previous sections, the throughput of 3G network can vary by as much

as two orders of magnitude from a few Kbps to several Mbps and the buffer size

can be set to quite large. Inspired by the Data Pendulum effect [42], we are in-

terested in how these two properties will influence the performance of TCP when

there is concurrent uploads and downloads. In this section, we demonstrate and

explain why a concurrent upload can cause significant degradation to the down-

load throughput with laboratory experiments. We focus on the 3G network in this

section because the 4G/LTE network in our country is still not widely used and the

87

network is relative free and not yet congested. We believe our results can apply to

the 4G/LTE network when the number of 4G/LTE subscribers increases and the

congestion happens in the network.

Impact of Saturated Uplink. To verify that a saturated uplink can negatively

impact downstream performance, we ran an experiment with three independent

sets of TCP flows: (i) a download-only flow (d0) that downloads 1 MB of data

from a server, (ii) an upload-only flow (u0) that sends 1 MB of data to the server,

and (iii) an upload flow (u1) that continuously sends random data to the server

while a concurrent download flow (d1) downloads 1 MB of data from the server.

In a single run, these three sets of flows are run immediately one after another to

minimize temporal variance. This experiment was conducted continuously over

several days at 15-minute interval.

In Figure 4.14, we plot the performance of d1 against d0 and observe that

a saturated uplink can significantly increase RTTs and reduce the downlink uti-

lization. However, this phenomenon is not observed for all the experiments. In

particular, ISP B experiences very little degradation in performance even when

the uplink is saturated. We further investigated the relationship between the up-

load throughput and the downlink performance degradation by plotting the per-

formance ratio, d1/d0, against the throughput of u0 in Figure 4.15. We observed

that the downstream performance is particularly poor when the upload speeds are

low. For instance, ISP A consistently has low upload throughput and hence the

downstream performance is severely degraded. We show later in this section that

this poor downlink utilization can partially be explained by ACKs being delayed

at the uplink buffer.

We found it interesting that even when an ISP has a consistently high up-

88

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

R
T

T
 o

f
d

o
w

n
s
tr

e
a

m
w

it
h

 c
o

n
c
u

rr
e

n
t
u

p
lo

a
d

 (
s
)

RTT of downstream
without concurrent upload (s)

ISP A
ISP B
ISP C

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

T
h

ro
u

g
h

p
u

t
o

f
d

o
w

n
s
tr

e
a

m
w

it
h

 c
o

n
c
u

rr
e

n
t
u

p
lo

a
d

 (
K

b
p

s
)

Throughput of downstream
without concurrent upload (Kbps)

ISP A
ISP B
ISP C

Figure 4.14: Comparison of RTT and throughput for downloads with and without uplink satura-
tion.

 0.1

 1

 10

 100

 0 500 1000 1500

R
a
ti
o
 o

f
d
o
w

n
s
tr

e
a
m

 R
T

T

Upstream throughput (Kbps)

ISP A
ISP B
ISP C

 0.001

 0.01

 0.1

 1

 10

 0 500 1000 1500

R
a
ti
o
 o

f
d
o
w

n
s
tr

e
a
m

 t
h
ro

u
g
h

p
u

t

Upstream throughput (Kbps)

ISP A
ISP B
ISP C

Figure 4.15: Plot of ratio of downstream RTT and throughput, with and without upload saturation,
against the upload throughput.

load speed, as in the case of ISP B, the downlink utilization is still reduced by

a small amount. We investigated this further by repeating our experiments with

UDP flows. Even with UDP, the throughput of a download flow is degraded by a

concurrent upload. Since there are no ACKs for UDP flows, this suggests that mo-

bile downloads are naturally degraded by a concurrent upload, possibly because

of ISP-level air time scheduling. As this phenomenon is beyond our control, the

focus of this paper is on mitigating the problem of ACK delays, which clearly

significantly exacerbates the degradation when upload speeds are low.

Measuring One-Way Delays. To confirm our hypothesis that delayed ACKs

is a major reason for the poor downlink utilization, we set up an experiment in a

89

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120

D
e

la
y
 (

s
)

Packet arrival time (s)

RTT
Upstream

Downstream

Figure 4.16: The breakdown of the downstream RTT into the one-way upstream delay and the
one-way downstream delay.

loopback configuration. In this configuration, an Android phone was tethered to

a server machine via USB. Next, upload and download TCP flows were initiated

on the server and these flows were routed through the phone’s 3G link via the

USB connection and back to the server via the wired Internet. As the server is

both the source and destination of all the TCP packets, the timestamps are fully

synchronized and we can measure the one-way delay of the downlink (for data

packets from the server to the phone), and the one-way delay of the uplink (for

ACK packets from the phone to the server). In Figure 4.16, we plot the results

of this experiment conducted on ISP A. We found that there is significant asym-

metry in the delays and that the uplink one-way delay can be up to two orders of

magnitude larger than the downlink one-way delay.

The reason for such a huge uplink one-way delay is that the uplink buffer is

too large for the current uplink speed and it may take several seconds for the 3G

link to transmit all the data packets in the buffer. For example, it takes around

10 seconds to send 64 KB (which is the uplink buffer size of HTC desire as shown

in section 4.3) when the current uplink speed is 50 Kbps. In this sense, we propose

90

a method to regulate the uplink buffer in next section.

4.5 Summary

In this chapter, we described a measurement study of cellular data networks in

Singapore, and highlighted several interesting characteristics. We showed that the

packet arrivals tend to be bursty and that this burstiness needs to be taken into ac-

count when estimating instantaneous throughput. We verified that the throughput

of existing cellular data networks can vary by as much as two orders of magni-

tude within a 10-min interval, and found that mobile ISPs often maintain large

and separate downlink buffers for each user. The ISPs also implement some form

of fair queuing, but for different networks, the buffer management policies may

be quite different. We further investigated the performance issues when there are

concurrent uploads and downloads in cellular data networks, which we identify as

a “self-inflicted” congestion problem. In the next chapter, we propose a receiver-

side flow control algorithm to address this “self-inflicted” congestion problem.

91

Chapter 5

Receiver-Side Flow Control

In this chapter, we propose and evaluate Receiver-side Flow Control (or RSFC), a

method to dynamically control the uplink buffer of the sender from the receiver,

to solve the “self-inflicted” congestion problem caused by saturated uplink buffer.

The technique of using rwnd to control a TCP flow has been employed in other

contexts [35, 87, 57, 54, 12, 24, 51]. However, to the best of our knowledge,

we are the first to apply this technique to improve the utilization of a 3G mobile

downlink in the presence of concurrent uploads.

The key challenge is for the TCP receiver to accurately estimate the current

uplink capacity and to determine the appropriate rwnd to be advertised so that the

number of packets in the uplink buffer is kept small without causing the uplink

to become under-utilized. To solve this challenge, our approach uses the TCP

timestamp to continuously estimate the one-way delay, queuing delay and RTT.

Then, our approach uses a feedback loop to continuously estimate the available

uplink bandwidth and advertises an appropriate TCP receiver window (rwnd) ac-

cording to the current congestion state. This approach can dynamically adapt to

92

the variations of the cellular link.

We organize this chapter as follows: in Section 5.1, we first describe RSFC and

explain how it can dynamically control the size of the uplink buffer of a mobile

device. In Section 5.2, we evaluate the effectiveness of RSFC with experiments

on three local cellular data networks.

5.1 Receiver-Side Flow Control

In Section 4.4, we showed that the downstream performance can be severely de-

graded at a mobile sender when the uplink bandwidth is low and the ACKs for

the downstream data are delayed in the uplink buffer. One straightforward way

to eliminate the delay would be to use a small uplink buffer. However, doing so

will cause the uplink to be under-utilized when the available uplink bandwidth

increases at a later time. Another possible approach is to control the total amount

of data in flight so that the number of packets in the uplink buffer is large enough

to fully utilize the uplink capacity and yet not so large as to inflate the uplink

one-way delay unnecessarily. In fact, TCP Vegas [22] works in a similar man-

ner by using packet delays to detect impending congestion (arising from packets

building up in a buffer) in order to regulate the packet send rate. However, TCP

Vegas does not contend well with the common default TCP implementations and

it is thus not likely to be adopted as the default TCP implementation for mobile

devices anytime soon.

In our approach, which we call Receiver-side Flow Control (RSFC), we regu-

late the number of packets in the uplink buffer of a mobile sender at the receiver

by dynamically adjusting the advertised TCP receiver window (rwnd). The key

93

challenge is for the TCP receiver to accurately estimate the current uplink capac-

ity and to determine the appropriate rwnd to be advertised so that the number of

packets in the uplink buffer is kept small without causing the uplink to become

under-utilized.

Similar to previous work [61], we estimate delays using TCP timestamps, i.e.

using the TSval and TSecr fields in a received TCP packet. Our approach re-

lies only on the relative differences in the received timestamps and does not re-

quire synchronization between the TCP sender and receiver. One caveat is that

the granularity of TCP timestamps is not standardized and different devices may

increment the timestamps at different rates. In this paper, we work with a granu-

larity of 10 ms on both the mobile sender and the receiver. We expect this issue

to be less of a concern in the future because an IETF working group is currently

working on the standardization of the TCP timestamp granularity [82].

In the following sections, we first describe how our algorithm works in the

general case and then we analyze how the uplink buffer at the mobile sender be-

haves. Next, we explain how RSFC adapts to changes in the underlying delays

of the network. Finally, we briefly discuss how our algorithm can be deployed in

practice.

5.1.1 RSFC Algorithm

A typical sequence of packets in an upstream TCP flow is illustrated in Figure 5.1.

At time t = ts0
, a packet is sent and it is received at time t = tr1

after a transmission

delay tu. Note that ts and tr are recorded with respect to the sender’s and receiver’s

local clocks respectively. The receiver then sends an ACK packet with timestamp

94

��
��
��
��

��
��
��

��
��
��

Queuing

Delay

Downstream

Delay tu

ReceiverMobile
ts0

tr3

Rate ρ

Delay td

Upstream
Sender

tbuff

ts2

tr1
Timestamp
TSval = tr1
TSecr = ts0

Timestamp
TSval = ts2
TSecr = tr1

Timestamp
TSval = ts2
TSecr = tr1

RTT = tr3 − tr1
RD = tr3 − ts2

Figure 5.1: Packet flow diagram illustrating the various metrics. Solid lines represent data packets,
while dotted lines represent ACK packets.

fields TSecr = ts0
and TSval = tr1

. The sender receives the ACK packet after the

transmission delay td at time t = ts2
and immediately pushes a new data packet into

the buffer, with TSecr = tr1
and TSval = ts2

. After spending some time tbu f f in

the uplink buffer, the packet is sent and after the transmission delay tu, the packet

is received at time t = tr3
. Clearly, there is also a buffer at the downlink, but we

do not consider it in our model because as shown in Figure 4.16, the downlink

one-way delay is negligible and so the amount of time that a packet will spend in

the downlink buffer is also negligible.

The receiver tracks the following metrics for each mobile sender as soon as

packets are received: (i) the relative one-way delay (RD= tr3
− ts2

), (ii) the round-

trip time (RTT = tr3
− tr1

), and (iii) the rate at which packets are received (ρ). RD

and RTT will vary for different packets and the smallest RD and RTT observed

are recorded as RDmin and RTTmin respectively. Clearly,

RD = tbu f f + tu+ to f f set (5.1)

RTT = tbu f f + tu+ td (5.2)

95

where to f f set is the clock offset between the sender’s and the receiver’s clocks.

If the transmission delays tu and td are constant, it is reasonable to assume that

RDmin and RTTmin are obtained when tbu f f ≈ 0, i.e.

RDmin ≈ tu+ to f f set (5.3)

RTTmin ≈ tu+ td (5.4)

In other words, RD−RDmin is a good estimate t̂bu f f , the time that a packet spends

in the uplink buffer. Note that we only estimate t̂bu f f from RD and RDmin when

there are no packet losses and no re-ordering.

The effective TCP sliding window at the mobile sender is the minimum of the

TCP congestion window (cwnd) and the rwnd. By adjusting the value of rwnd,

the receiver can cap the growth of the sliding window. Recall that our objective is

to regulate the uplink buffer at the mobile sender so that the available capacity is

utilized while simultaneously minimizing the uplink delay. Therefore, using this

strategy, we advertise an appropriate value of rwnd based on the estimated t̂bu f f .

If t̂bu f f is larger than a threshold T , we say that the system is in the fast state

because there are too many packets in the uplink buffer. Conversely, if t̂bu f f ≤ T ,

we say the system is in the slow state since we can possibly allow more packets to

be sent or buffered. It remains for us to determine a value for T , which achieves

a good trade-off between delay and link utilization. With a small value of T , we

can achieve a lower delay at a higher risk of under-utilizing the upstream link. We

evaluated different choices of T and found that setting T = RTTmin keeps the RTT

below 1 second 80% of the time, while keeping the upload throughput similar to

that of TCP Cubic. Reducing T below RTTmin will reduce the throughput without

96

much reduction to the RTT. Thus, we set T = RTTmin in our implementation.

Fast State. In the fast state, our algorithm will freeze the growth of the TCP

buffer to prevent excessive delays, by advertising the rwnd as min(rwnd,⌈(ρ×

RTTmin)/MSS⌉×MSS), where ρ is the rate at which packets are received, MSS

is the Maximum Segment Size, and rwnd is the original rwnd computed by the

kernel. This sets the advertised window to the estimated bandwidth-delay product

(BDP) for the transmission. Note that we cannot advertise more than what is

originally allowed by the kernel to prevent overflowing the receiver’s buffer. Upon

receiving the new rwnd, the mobile sender will stop queuing more packets and its

buffer will start to empty. At some point, t̂bu f f will drop below T , causing the

algorithm to enter the slow state.

Slow State. In the slow state, we want to send more packets to ensure that

we fully utilize the available uplink capacity. To do so, we need to increase the

advertised rwnd. Like TCP slow start, we increase the rwnd by one MSS after the

receiver receives each data packet. Eventually, the TCP buffer at the sender would

begin to fill and t̂bu f f will start to increase until it exceeds T , and the algorithm

returns to the fast state.

5.1.2 Maximum Buffer Utilization

As the algorithm oscillates between the fast and slow states, the number of packets

in the uplink buffer would fluctuate over time. Hence, we need to ask and answer

the following question: what is the maximum time that we expect a packet to stay

in the uplink buffer? The answer will allow us understand the effect of selecting

different values for the threshold T , and yield important insight into how RSFC

97

A

A

A

B

C

Mobile
Sender Receiver

In slow state:

New packets are added
tbuff < T

tbuff < T

tbuff = 2T
RTTmin

tbuff = 2T +RTTmin

Received new rwnd
Buffer starts growing

tbuff = T
T

Buffer starts draining
rwnd frozen to BDP

Back to slow state:

tbuff ≤ T
rwnd += 1

In fast state:

rwnd += 1
tbuff ≤ T

Unacked packets < rwnd

tbuff > T
rwnd = MSS×
⌈(ρ×RTTmin)/MSS⌉

2T +RTTmin

Figure 5.2: Packet flow diagram illustrating a typical scenario for buffer inflation.

adapts to changing network conditions. In Figure 5.2, we illustrate the change in

the number of packets in the uplink buffer over time.

Suppose that the mobile sender starts in the slow state (i.e. t̂bu f f < T). The

receiver will continuously increase the advertised rwnd by one MSS for every

data packet received. The sender will add more packets to the buffer and at some

point, it will add a packet that needs to spend a time tbu f f = T in the buffer before

it is transmitted (See shaded packet in Figure 5.2). As this shaded packet moves

to the head of the buffer, the sender will continue to receive ACKs for the data

packets sent earlier, and the uplink buffer will continue to grow by one MSS for

each ACK. When the shaded packet reaches the head of the buffer, by definition,

the buffer queue would have reached a point such that the next packet queued will

have a tbu f f = 2T , since it took the shaded packet an amount of time equal to T to

reach the head.

98

Once the receiver receives the shaded packet, it switches to the fast state and

freezes the advertised rwnd. However, it will take a roundtrip time of RTTmin

from the time of transmission of the shaded packet for this frozen rwnd to reach

the sender. Therefore, until the new rwnd is received, the sender would keep queu-

ing new packets as it receives ACKs with increasing rwnd. When the new rwnd

is finally received, the buffer queue would be such that the next packet queued

(see packet A in Figure 5.2) will have tbu f f = 2T + RTTmin. This will be the

maximum buffer delay because the rwnd is now capped at the estimated BDP

⌈(ρ×RTTmin)/MSS⌉×MSS. Since we set T as RTTmin in our implementation,

the largest expected buffer delay tbu f f is 3×RTTmin.

At this point, the uplink buffer will start to drain and a new packet will only

be pushed into the uplink buffer when the number of unacknowledged packets

drops below rwnd. As rwnd is set to the BDP, which is the number of packets

in flight, the buffer will eventually be completely emptied. When this happens,

the new packet sent will spend a time tbu f f = 0 < T in the buffer. Hence, when

the receiver receives this new packet, the algorithm will revert to the slow state

and start increasing the rwnd by one MSS for each packet. Once again, it will

take a time of RTTmin from the transmission of the packet for the new rwnd to

reach the sender. Hence, in a typical scenario, the algorithm will spend at most

2T +2RTTmin in the fast state before going back to the slow state.

5.1.3 Handling Changes in the Network

Because the 3G uplink is a shared resource, the base station will allocate an

amount of air time to each mobile device depending on factors such as signal

99

quality and the number of connected devices. Hence, the available bandwidth and

associated network delays are expected to change over time. In other words, we

expect the variables ρ, td and tu to vary over time and RSFC needs to adapt to

these changes.

If there is a change only in the available bandwidth that results in a change of

the receive rate ρ, there will not be any impact on the algorithm because ρ is only

used to estimate the BDP in the fast state. When ρ changes, we simply update

our estimate of the BDP with the new ρ. Also, the switching between the fast and

slow states is independent of ρ and depends only on the delays tu and td .

Similarly, if there is a decrease in network delays tu and td , no special handling

is required. A decrease in either tu or td will cause RD or RTT to drop lower than

the previously recorded values of RDmin or RTTmin, and these two variables will

simply be updated. Even if we do not update RTTmin accordingly, the older (and

larger) value of RTTmin will simply result in an over-estimation of the BDP. This

means that the rwnd set in fast state will not allow the buffer to empty completely

and t̂bu f f will not be reduced to zero. As long as t̂bu f f remains small, the uplink

is still fully utilized and rwnd is still capped, there will be an upper bound on the

delay.

The challenge arises when either of the network delays, tu or td , increase. This

will eventually cause the algorithm to enter the fast state, since the increasing rwnd

in the slow state will cause the sender to queue packets until the t̂bu f f > T . In the

fast state, the BDP will be under-estimated because the estimated RTTmin< tu+td .

This causes rwnd to be set at a value lower than the actual capacity of the link.

The buffer will eventually empty, yet the low rwnd prevents new packets from

being sent, which causes the link to be under-utilized. In other words, an increase

100

in tu might be interpreted as an increase in t̂bu f f , which means that t̂bu f f can never

fall to zero. There are two possible situations:

(i) Enters Slow State. When the increase in tu is not large and t̂bu f f ≤ T , rwnd

will start increasing, allowing the sender to send more packets for every

ACK received. Since the link was previously under-utilized, this will result

in ρ increasing at the receiver. Eventually the algorithm will return to the

fast state. Hence, if we detect an increase in ρ in the most recent cycle of

slow and fast states, we can safely assume that link utilization had dropped

at some point and we update (increase) RDmin and RTTmin to the minimum

RD and RTT values observed in the most recent cycle of slow and fast states.

(ii) Stuck in Fast State. If the increase in tu is sufficiently large such that t̂bu f f >

T , the algorithm will end up getting stuck in the fast state and the link will

always be under-utilized. We showed earlier in Section 5.1.2 that the al-

gorithm will typically spend at most 2T + 2RTTmin in the fast state before

reverting to the slow state. Hence, we can deduce that something is wrong if

the algorithm spends significantly longer than 2T+2RTTmin in the fast state.

In this light, if we find that the algorithm stays in the fast state for longer than

2T + 3RTTmin, we will switch to a third special monitor state. Essentially,

we add an extra RTTmin to provision for possible transient changes in delays.

Monitor State. Like in the slow state, rwnd is increased by 1 for every data

packet received and we monitor ρ. There are two possible scenarios:

(a) If an increase is detected in ρ, we switch to the slow state. Simultaneously,

RDmin and RTTmin is updated to the minimum RD and RTT observed while

101

in the monitor state and rwnd is updated to ⌈(ρ×RTTmin)/MSS⌉×MSS ac-

cordingly with the new value of RTTmin.

(b) If ρ does not seem to increase even after RD increases by T , it suggests that

the link is still fully utilized, i.e. there are still packets in the uplink buffer.

We then halve both RDmin and RTTmin and switch to the fast state. This will

likely force the buffer to empty and cause RSFC to switch back to monitor

state. However, this time in the monitor state, we will likely end up in case

(a) above and both RDmin and RTTmin will be set to the correct values.

We demonstrate in Section 5.2.5 that the monitor state is crucial for RSFC to

achieve good link utilization in the presence of network variations.

5.1.4 Practical Deployment

RSFC requires minor modifications to the TCP stack at the TCP receiver, but

no modification needs to be made to an existing mobile device, though it does

require the TCP timestamp option to be enabled. A quick survey of the available

smartphones suggests that the TCP timestamp option is enabled by default for

both Android and iPhone (which together constitute about 93.2% of the global

smartphone market [33]) and disabled by default for Windows Mobile phones. In

this light, we believe that the majority of smartphones are RSFC-ready at present.

The current architecture of existing cellular data networks makes it relatively

straightforward to deploy our algorithm. Wang et al. observed that the proxies or

middleboxes are widely deployed in existing cellular data networks [95]. These

proxies or middleboxes are used to improve 3G performance by caching com-

monly accessed web content (such as images on popular websites) and in some

102

������
������

�	
�
��	��
�

�
���	����������
���	�

������	���������
��
���	�

�����	�������������
��	���������

��
������	���

������
������

��
 !

������

��������

Figure 5.3: The bottleneck 3G link is virtually dedicated to each device. Multiplexing is done by
the ISP in a schedule which is assumed to be fair.

cases, to perform QoS filtering on the traffic. We verified their observations that

all our three local mobile ISPs implement a transparent web proxy that intercepts

all HTTP connections, and effectively converts them into split TCP [67] connec-

tions. This situation suggests that we can deploy RSFC for an entire 3G network

easily by modifying the TCP stack on these proxies as illustrated in Figure 5.3.

5.2 Performance Evaluation

In this section, we present our evaluation results for RSFC. We begin by inves-

tigating RSFC’s effectiveness at reducing the RTT and in improving throughput.

Next, we evaluate how RSFC performs in two possible application scenarios: (i)

when users surf the web while there is a concurrent background upload, and (ii)

when there are simultaneous uploads. Finally, we demonstrate the necessity of

having to adapt to changing network conditions and also show that RSFC is com-

patible with other TCP congestion control algorithms.

All of the experiments in this section were conducted in our lab, on Android

phones, on all three local ISPs. The congestion control algorithm used on the

phones is TCP Cubic [39], which is the default TCP implementation in the An-

103

droid kernel. It is clear from our measurement results in Section 4.4 that ISP A has

the poorest upload performance in our lab. As to be expected, RSFC achieves the

greatest improvement in performance with ISP A’s network. For ISP B and ISP

C, where the upload speeds are relatively high, RSFC was less effective, though it

does not perform worse than the default TCP Cubic. Because our goal is to show

that RSFC can significantly improve downloads when mobile connectivity is less

than ideal (and almost all users will find themselves at such locations every once

in a while), we present only the results for ISP A, except where stated otherwise.

5.2.1 Reduction in RTT

To verify that RSFC can reduce the RTT for a TCP upload, we ran an experi-

ment where we uploaded 1 MB of data from the phone using TCP Cubic and

then repeated the process with RSFC. This experiment was repeated periodically

every 15 minutes over several days and the cumulative distribution of our results

is shown in Figure 5.4. We observe that in general, using RSFC results in much

lower RTT compared to TCP Cubic. TCP Cubic’s RTT is greater than 6 s 50% of

the time while the RTT with RSFC is close to 1 s more than 90% of the time. It

is also apparent that the upload throughput achieved by RSFC is almost identical

to that for TCP Cubic. This simple experiment shows that RSFC can achieve a

significant reduction in RTT without suffering any loss in upload throughput.

5.2.2 Improving Downstream Throughput

Next, we measured the improvement in downlink utilization achieved in the pres-

ence of a concurrent upload by running the following sets of experiments: (i) a

104

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

RTT (s)

RSFC
Cubic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Throughput (Kbps)

RSFC
Cubic

Figure 5.4: Cumulative distribution of RTT and throughput for TCP Cubic and RSFC uploads.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n

Downstream Throughput (Kbps)

With Cubic upload (d1)
With RSFC upload (d2)

Without upload (d0)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n

Upstream Throughput (Kbps)

RSFC upload (u2)
Cubic upload (u1)

Figure 5.5: Cumulative distribution of the throughput achieved by the downstream and upstream
flows under different conditions.

single TCP Cubic download flow (d0), (ii) a single TCP Cubic upload flow (u0),

(iii) a TCP Cubic download flow with a concurrent TCP Cubic upload flow (d1

and u1), and (iv) a TCP Cubic download flow with a concurrent RSFC upload

flow (d2 and u2). These experiments were run one after the other to minimize the

effect of temporal variance. In Figure 5.5, we plot the cumulative distribution of

the throughputs achieved.

As expected, the throughput of d1 is poor. It is lower than 400 kbps all the time

and it is close to 10 kbps 30% of the time. With RSFC, the downstream throughput

improves significantly and 50% of the time, it is greater than 400 kbps. When we

compare the throughputs of u2 and u1, we found that they are similar in spite of

the increase in downlink utilization for RSFC. This suggests that our approach of

105

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800

R
a

ti
o

 o
f
D

o
w

n
s
tr

e
a

m
 T

h
ro

u
g

h
p

u
t

Throughput of Benchmark Upstream (Kbps)

ISP A
ISP B
ISP C

Figure 5.6: Plot of ratio between RSFC’s downstream throughput to that of TCP Cubic against
the throughput of the benchmark upstream flow.

regulating the uplink buffer size is effective; the buffer always has packets to send

but the packets are not unnecessarily delayed. However, the throughput of d2 is

still not as good as the d0 benchmark. As discussed in Section 4.4, this is likely

due to the interactions between the concurrent flows arising from scheduling at

the 3G layer, which is beyond our control.

We also investigated how the current uplink capacity will affect the improve-

ment in the downlink utilization. In Figure 5.6, we compare RSFC to TCP Cubic

by plotting the throughput ratio d2/d1 against u0. We included the data points

from all three ISPs for a better overview. It is clear that RSFC achieves the great-

est improvement when the upload throughput is below 400 kbps. Figure 5.6 also

shows that RSFC does not achieve much improvements for ISP B and ISP C.

These two ISPs typically have higher uplink capacity, which makes it more un-

likely for the uplink buffer to be saturated. In such cases, RSFC has a similar

performance as TCP Cubic. Note that our experiments were conducted at a fixed

location where ISP B and ISP C seem to have significantly better performance

than ISP A. However, they could have lower upload speeds at other locations and

106

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Time (minutes)

Without Upstream
With RSFC Upstream
With Cubic Upstream

Figure 5.7: Cumulative distribution of the time taken to load the top 100 websites under different
conditions.

in those instances, RSFC would be helpful for ISP B and ISP C as well.

5.2.3 Improving Web Surfing

Next, we investigate how RSFC performs in a common scenario: surfing the web

while uploading data in the background. In this experiment, we visited the Alexa

Top 100 websites [9] under three conditions: (i) with a concurrent RSFC upload,

(ii) with a concurrent TCP Cubic upload, and (iii) without any concurrent uploads.

In Figure 5.7, we plot the cumulative distribution of the time taken to receive the

last byte of the last HTTP response. Without a concurrent upload, 90% of these

websites take less than 30 s to load. However, with a TCP Cubic upload, 70%

of them can take more than 2 minutes to load. Such performance degradation

will severely impact user-perceived performance of the mobile web access. RSFC

mitigates the impact of a concurrent upload as it reduce the load time to within

30 s for 70% of the websites and to within 1 minute for 90% of them.

107

5.2.4 Fairness of Competing RSFC Uploads

If there are multiple upload flows from a single 3G connection, RSFC will be

applied to each flow independently. The rate estimation and rwnd advertisement

for a flow would be done without considering the other flows. We attempt to

understand how well this simple scheme will perform in practice by running the

following experiment. We first upload 1 MB of data using a single TCP Cubic

flow as a reference. After the upload is complete, we start two concurrent RSFC

upload flows from the phone and upload 1 MB of data in total. This experiment

was repeatedly executed over a 24-hour period.

We quantified the fairness of the throughput utilization between the two RSFC

flows using the Jain fairness index [50], i.e. (R1 +R2)
2/(2× (R1

2 +R2
2)), where

R1 and R2 are the throughput of the two flows. We also compared the efficiency

of the throughput utilization for the RSFC flows to the TCP Cubic flow by com-

puting the ratio (R1+R2)/C, where C is the throughput of the TCP Cubic flow. A

cumulative distribution of our findings is shown in Figure 5.8.

We found that the two RSFC flows achieve very similar throughput. It turns

out that the oscillating nature of our algorithm, between the fast and slow states,

ensures that neither flow dominates the uplink. Hence, we conclude that RSFC

flows are relatively fair when they contend with each other. In terms of utiliza-

tion efficiency, the two concurrent RSFC flows seem to perform no worse than a

single TCP Cubic flow about 80% of the time and can occasionally achieve better

throughput since parallel TCP flows can generally better utilize the link capacity

compared to a single flow.

For the remaining 20% of the time, the two RSFC flows seemed to perform

108

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Fairness and Efficiency

RSFC Fairness
RSFC Efficiency
pTCP Efficiency

Figure 5.8: Cumulative distribution of the fairness between two RSFC uploads and the efficiency
of two RSFC uploads compared to a single TCP Cubic upload.

worse than a single TCP Cubic flow. To further investigate why this might be the

case, we ran a benchmark experiment where we compared the efficiency of two

parallel TCP Cubic upload flows against a single TCP Cubic flow. The results

of this experiment is labeled in Figure 5.8 as “pTCP Efficiency”. Since this new

curve was remarkably similar to the curve for the parallel RSFC flows, it suggests

that it is likely that the two RSFC flows performed worse 20% of the time because

of temporal variations in the 3G link.

5.2.5 Adapting to Changing Network Conditions

In Section 5.1.3, we described how RSFC updates RDmin and RTTmin to handle

variations of the 3G link capacity to maintain good link utilization. To evaluate

the necessity of updating RDmin and RTTmin, we ran an experiment where we

uploaded data for 60 s using a variant of RSFC that keeps the values to the lowest

measured from the start of the flow. We plot the resulting throughput and RTT

achieved in Figure 5.9.

At the start of the flow, the estimated RDmin and RTTmin are accurate and the

109

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

R
T

T
 (

s
)

Time (s)

Delay change not

detected, link

under-utilized.

Throughput
RTT

Figure 5.9: Plot of the average throughput achieved and RTT using RSFC variant without RDmin

and RTTmin update mechanism.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
h
ro

u
g
h
p
u
t

(K
b
p
s
)

R
T

T
 (

s
)

Time (s)

Throughput
RTT

Figure 5.10: Plot of the average throughput achieved and RTT using full RSFC algorithm.

uplink is fully utilized. There are network fluctuations in the middle of the flow

and after 25 s, the throughput is lower than that achieved during the first 10 s

even though the network conditions for both periods are similar. This is because

the underlying network delays decreased then subsequently increased, but their

estimates RDmin and RTTmin were not updated. Hence, the rwnd advertised is

smaller than the ideal value and the link is under-utilized.

We repeated this experiment with the default version of RSFC and our results

are shown in Figure 5.10. We can infer from the oscillations in the RTT that the

feedback mechanism of RSFC is operating correctly even though like before, there

110

 0.1

 1

 10

 0 5 10 15 20 25 30 35 40

R
T

T
 (

s
)

Time (s)

Cubic/Cubic
Westwood/Cubic
Westwood/RSFC

 0.1

 1

 10

 0 5 10 15 20 25 30 35 40

R
T

T
 (

s
)

Time (s)

Cubic/RSFC
Vegas/Cubic
Vegas/RSFC

Figure 5.11: Plot of the RTT for the transfer of 1 MB file using different TCP variants at both
sender and receiver side. In the legend, we indicate first the mobile sender followed by the receiver.

was a temporary decrease in the network delay at 5 s and a subsequent increase

at 20 s. This demonstrates that the mechanism to update RDmin and RTTmin is

effective and necessary to adapt to changing network conditions.

5.2.6 Compatibility with other TCP variants

We investigated RSFC’s compatibility with other sender-side TCP congestion

control algorithms by running a new set of experiments. In these experiments, we

uploaded 1 MB of data from the phone to a receiver and alternated the TCP imple-

mentation on the phone between Westwood [68], Vegas [22], New Reno [43] and

TCP Cubic [39]. We also varied the receiver-side algorithm on the server between

TCP Cubic and RSFC.

In Figure 5.11, we plot the RTT achieved in the different experiments (the re-

sults of New Reno at the sender is not shown because it is similar to TCP Cubic).

We see that if the receiver uses RSFC, then the RTT can be improved regardless of

111

 0

 200

 400

 600

 800

 1000

 1200

 1400

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

D
o

w
n

s
tr

e
a

m
 T

h
ro

u
g

h
p

u
t
(K

B
/s

)

Time of Day(24-hour)

Vegas/RSFC
Vegas/Cubic

Westwood/RSFC
Cubic/RSFC

Westwood/Cubic
Cubic/Cubic

 0

 50

 100

 150

 200

 250

 300

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00
U

p
s
tr

e
a

m
 T

h
ro

u
g

h
p

u
t
(K

b
p

s
)

Time of Day(24-hour)

Vegas/RSFC
Vegas/Cubic

Westwood/RSFC
Cubic/RSFC

Westwood/Cubic
Cubic/Cubic

Figure 5.12: Plot of downstream throughput when the upstream is saturated with different algo-
rithms over a 24-hour period. In the legend, we indicate first the mobile sender followed by the
receiver.

the algorithm used at the sender. We also ran the simultaneous upload and down-

load experiments described in Section 5.2.2 and plot our results in Figure 5.12.

Once again, as long as RSFC is enabled at the receiver, the downlink utilization

can be improved. This shows that RSFC is compatible with other TCP variants.

We noticed that the performance of Vegas/Cubic is slightly better than that for

Cubic/RSFC. This is to be expected as Vegas is more aggressive in controlling the

delays compared to RSFC. Moreover, TCP Vegas can immediately effect changes

on the sender whereas RSFC’s changes are delayed by at least one RTTmin. How-

ever, RSFC is fully compatible with TCP Vegas and is a compelling alternative to

deploying TCP Vegas on mobile devices.

112

5.3 Summary

In this chapter, we proposed and evaluated a new algorithm called Receiver-

side Flow Control (RSFC) and showed that it is effective at mitigating the “self-

inflicted” congestion problem. RSFC is compatible with existing sender-side TCP

congestion control algorithms, and is a practical technique that can be easily de-

ployed at proxies of cellular data networks without requiring any modifications of

the existing mobile devices. The key insight of our algorithm is a feedback loop

that can dynamically adapt to the variations of the cellular link, by i) using the

TCP timestamp to continuously estimate the one-way delay, queuing delay and

RTT; ii) inferring whether the link is congested using the queuing delay instead

of the packet loss; iii) continuously estimating the available uplink bandwidth and

advertising an appropriate TCP receiver window (rwnd) to regulate the sending of

the upstream.

113

Chapter 6

Conclusion and Future Work

In this chapter, we summarize our work and discuss some open questions and

possible directions for future research.

In this thesis, we investigated the congestion problems in the wired Internet

and in modern cellular data networks. For the wired Internet, we proposed and

evaluated a new massively-multipath (mPath) source routing algorithm to improve

end-to-end throughput for high-volume data transfers. For the cellular data net-

works, we conducted a thorough measurement study to understand the properties

of the cellular link and in particular we identify a “self-inflicted” congestion prob-

lem that is caused by the saturated uplink buffer. Then, we proposed and evaluated

a Receiver-side Flow Control (RSFC) algorithm to mitigate the uplink saturation

problem.

Congestion in Wired Internet

Our studies corroborate the fact that the congestion of the wired Internet can of-

ten happen in the Internet core and show that detour paths can be used to route

114

around core-link bottlenecks. There are typically many possible detour paths and

they can be easily constructed by simply employing a set of stateless and light-

weight proxies. A number of practical mechanisms can be integrated to make the

multipath solution more effective and efficient, including i) using the actual data

to probe and evaluate the network passively during transmission; ii) dynamically

adding or removing detour paths according to the path quality; iii) a coordinated

congestion control algorithm that can achieve TCP friendliness; iv) using loss in-

tervals to infer shared bottlenecks and v) using a load aggregation operation to

re-distribute the data load when the shared link is detected.

Multipath routing is currently not widely used in practice due to the lack of in-

frastructure support and limited availability of multi-homing, which are required

by existing solutions. Since mPath only requires stateless proxies to enable ef-

ficient multipath data transfers, we believe it is a more practical solution given

the state of existing network infrastructure. Another factor that has traditionally

hindered the adoption of multipath routing is the lack of use cases. However,

recent work on using multipath solutions to transfer bulk data between datacen-

ters [64, 77] shows that there are potential applications for high throughput multi-

path routing, and mPath can potentially be applied to these and other scenarios.

Congestion in Cellular Data Networks

We showed that the throughput of cellular data networks can vary by as much

as two orders of magnitude within a 10-minute interval, and found that mobile

ISPs often deploy large and separate downlink buffers for each user. ISPs also

typically implement some form of fair queuing, but for different networks, the

115

buffer management policies may be quite different. We further measured the in-

fluence of the saturated uplink to the downlink performance, which we identified

as “self-inflicted” congestion problem. We showed that the performance of a TCP

download can be significantly degraded by a simultaneous TCP upload.

We then proposed a new algorithm called Receiver-side Flow Control (RSFC)

and show that it is effective at mitigating the uplink saturation problem, especially

in situations where uplink bandwidth is low. RSFC is compatible with existing

sender-side TCP congestion control algorithms, and is a practical technique that

can be easily deployed at proxies of cellular data networks without requiring any

modifications of the existing mobile devices. Given that simultaneous uploads and

downloads are likely going to become more common in cellular data networks, we

believe that RSFC is an important mechanism for improving the user-perceived

performance of the mobile devices, even though its benefits may seem somewhat

indirect.

Generally, the congestion control mechanism of TCP does not work well

with modern cellular links, as demonstrated by our experiments and also other

work [46]. The TCP congestion control is required to maintain the fairness be-

tween flows in conventional networks where i) a single buffer is used for all com-

peting flows; ii) FIFO and drop-tail policy are employed; iii) no fair scheduling

is enforced. However, these conditions do not hold in cellular data networks be-

cause each subscriber typically has a dedicated buffer and the fair scheduling is

enforced by the ISPs. Hence, there is no need to enforce fairness between users at

transport layer and we can focus on optimizing performance instead.

RSFC is one attempt to optimize the performance for a single user and we

show that it is effective in solving the “self-inflicted” congestion problem. We

116

investigate several practical and effective mechanisms, including: i) using TCP

timestamp option to estimate many metrics like the one-way delay, queuing delay

and RTT; ii) the one-way delay is extremely useful in the asymmetric scenario; iii)

the queuing delay is a better indication of “self-inflicted” congestion than packet

loss when the buffer is huge; iv) the rwnd can play a more important role in flow

control, instead of just an indication of whether the receiver’s buffer is full.

6.1 Open Issues and Future Work

Recently, multipath solutions using WiFi and cellular data networks simultane-

ously have attracted much attention [97, 20, 25]. The recently released IOS 7 was

also found to be the first commercial system to incorporate MPTCP [21]. While

the goal of the MPTCP deployment is likely to better exploit the properties of dif-

ferent networks, we believe that the general principles of multipath TCP routing

discussed in this thesis is still applicable and more work remains to be done to

better understanding multipath solutions for mobile data networks.

The second possible application of multipath routing is to potentially enhance

the privacy and security for data transmission. In a single-path routing, all the in-

termediate nodes will have access to all the traffic for a flow that is routed through

it. This might give rise to certain privacy and security problems as the node can

potentially derive a unique profile and fingerprint for every flow that goes though

it. Multipath routing could potentially allow us to avoid this problem by ensuring

that no intermediate node has access to every packet in a data transmissions. It

is interesting to investigate how can we find an optimal set of disjoint paths and

distribute the data accordingly.

117

A third open question is motivated by our measurement studies. We have

found that different ISPs and even different devices use different buffer configura-

tions and queuing policies. It is unlikely that the chosen configurations and poli-

cies are all optimal. Whether these configurations are optimal and what makes a

configuration optimal are candidates for further study.

Finally, it might be worth investigating how can we optimize the transmission

protocols to be more cellular-friendly. In this thesis, we discuss one possible

mechanism called Receiver-side Flow Control [99] and we further investigate a

TCP rate control mechanism with the cooperation of other researchers [65]. Other

recent works also suggest that more can be done in optimizing the transmission

protocols for cellular data networks [46, 96]. If we can ignore the problem of

fairness and assume that the mobile ISP has fair queuing mechanisms that will

take care of that, we believe that there is scope to further optimize performance

for individual subscribers.

118

Bibliography

[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-

date, 20122017 .

[2] ISPCheck. https://play.google.com/store/apps/details?id=

com.ispcheck.

[3] SpeedTest. http://www.speedtest.net/mobile.php. [Online; ac-

cessed 16-September-2013].

[4] Atul Adya, Gregory Cooper, Daniel Myers, and Michael Piatek. Thialfi: A

Client Notification Service for Internet-Scale Applications. In Proceedings

of SOSP ’11, October 2011.

[5] Amit Aggarwal, Stefan Savage, and Thomas Anderson. Understanding

the Performance of TCP Pacing. In Proceedings of IEEE INFOCOM ’00,

March 2000.

[6] Vaneet Aggarwal, Rittwik Jana, Kadangode Ramakrishnan, Jeffrey Pang,

and N K Shankaranarayanan. Characterizing Fairness for 3G Wireless Net-

works. In Proceedings of LANMAN ’11, October 2011.

119

[7] Aditya Akella, Jeff Pang, Bruce Maggs, Srinivasan Seshan, and Anees

Shaikh. A Comparison of Overlay Routing and Multihoming Route Con-

trol. In Proceedings of SIGCOMM ’04, September 2004.

[8] Aditya Akella, Srinivasan Seshan, and Anees Shaikh. An Empirical Eval-

uation of Wide-area Internet Bottlenecks. In Proceedings of IMC ’03, Oc-

tober 2003.

[9] Alexa. Top Global Sites. http://www.alexa.com/topsites. [Online;

accessed 15-February-2012].

[10] Manuel Álvarez Campana, Enrique Vázquez, Joan Vinyes, and Vı́ctor Vil-

lagrá. Measuring Quality of Experience of Internet Access over HSDPA.

In Proceedings of WMNC ’08, October 2008.

[11] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris.

Resilient Overlay Networks. In Proceedings of SOSP ’01, October 2001.

[12] Lachlan L.H. Andrew, Stephen V. Hanly, and Rami G. Mukhtar. Active

Queue Management for Fair Resource Allocation in Wireless Networks.

IEEE Transactions on Mobile Computing, 7(2):231–246, February 2008.

[13] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing Router

Buffers. In Proceedings of SIGCOMM ’04, August 2004.

[14] Patrik Arlos and Markus Fiedler. Influence of the Packet Size on the One-

Way Delay in 3G Networks. In Proceedings of PAM ’10, April 2010.

120

[15] AT&T. A Different Take on the Big Game - Stats from the Stands. http://

www.attinnovationspace.com/innovation/story/a7780988. [On-

line; accessed 15-April-2012].

[16] François Baccelli, Giovanna Carofiglio, and Serguei Foss. Proxy Caching

in Split TCP: Dynamics, Stability and Tail Asymptotics. In Proceedings of

INFOCOM ’08, April 2008.

[17] Hari Balakrishnan, Venkata N. Padmanabhan, G. Fairhurst, and

M. Sooriyabandara. TCP Performance Implications of Network Path

Asymmetry. RFC 3449, December 2002.

[18] Hari Balakrishnan, Venkata N. Padmanabhan, and Randy H. Katz. The

Effects of Asymmetry on TCP Performance. In Proceedings of MobiCom

’97, September 1997.

[19] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan. An Inte-

grated Congestion Management Architecture for Internet Hosts. In Pro-

ceedings of SIGCOMM ’99, September 1999.

[20] Aruna Balasubramanian, Ratul Mahajan, and Arun Venkataramani. Aug-

menting Mobile 3G Using WiFi. In Proceedings of MobiSys ’10, June

2010.

[21] Olivier Bonaventure. Apple Seems to also Believe in Multipath

TCP. http://perso.uclouvain.be/olivier.bonaventure/blog/

html/2013/09/18/mptcp.html. [Online; accessed 30-September-2012].

121

[22] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: End to End Con-

gestion Avoidance on a Global Internet. IEEE Journal on Selected Areas

in Communications, 13(8):1465–1480, October 1995.

[23] Mun Choon Chan and Ramachandran Ramjee. TCP/IP Performance over

3G Wireless Links with Rate and Delay Variation. In Proceedings of Mo-

biCom ’02. ACM, September 2002.

[24] Mun Choon Chan and Ramachandran Ramjee. Improving TCP/IP Perfor-

mance over Third-Generation Wireless Networks. IEEE Transactions on

Mobile Computing, 7(4):430–443, 2008.

[25] Yung-Chih Chen, Yeon sup Lim, Richard J. Gibbens, Erich Nahum, Ramin

Khalili, and Don Towsley. A Measurement-based Study of MultiPath TCP

Performance over Wireless Networks. In Proceedings of IMC ’13, October

2013.

[26] Dah Ming Chiu and Raj Jain. Analysis of the Increase and Decrease Algo-

rithms for Congestion Avoidance in Computer Networks. Computer Net-

works and ISDN Systems, 17(1):1–14, June 1989.

[27] Luca De Cicco and Saverio Mascolo. TCP Congestion Control over 3G

Communication Systems: an Experimental Evaluation of New Reno, BIC

and Westwood+. In Proceedings of NEW2AN ’07, September 2007.

[28] Pralhad Deshpande, Xiaoxiao Hou, and Samir R. Das. Performance Com-

parison of 3G and Metro-Scale WiFi for Vehicular Network Access. In

Proceedings of IMC ’10, November 2010.

122

[29] Ahmed Elmokashfi, Amund Kvalbein, Jie Xiang, and Kristian R. Evensen.

Characterizing Delays in Norwegian 3G Networks. In Proceedings of PAM

’12, March 2012.

[30] Mihaela Enachescu, Yashar Ganjali, Ashish Goel, Nick McKeown, and

Tim Roughgarden. Routers with Very Small Buffers. In Proceedings of

IEEE INFOCOM ’06, April 2006.

[31] Teng Fei, Shu Tao, Lixin Gao, and Roch Guerin. How to Select a Good

Alternate Path in Large Peer-to-Peer Systems. In Proceedings of IEEE

INFOCOM ’06, April 2006.

[32] Michael J. Freedman, Karthik Lakshminarayanan, Sean Rhea, and Ion Sto-

ica. Non-Transitive Connectivity and DHTs. In Proceedings of WORLDS

’05, December 2005.

[33] Gartner. Market Share Analysis: Mobile Phones, Worldwide, 2Q13. http:

//www.gartner.com/id=2573119. [Online; accessed 3-October-2013].

[34] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark Buffers in the Internet.

Queue, 9(11):40–54, November 2011.

[35] Tom Goff, James Moronski, and D. S. Phatak. Freeze-TCP: A True End-

to-End TCP Enhancement Mechanism for Mobile Environments. In Pro-

ceedings of IEEE INFOCOM ’00, March 2000.

[36] Yunhong Gu and Robert L. Grossman. UDT: UDP-based Data Transfer for

High-Speed Wide Area Networks. Computer Networks, 51(7):1777–1799,

May 2007.

123

[37] Yunhong Gu, Xinwei Hong, and Robert Grossman. An Analysis of AIMD

Algorithms with Decreasing Increases. In Proceedings of GridNets ’04,

October 2004.

[38] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble, Henry M.

Levy, and David Wetherall. Improving the Reliability of Internet Paths with

One-hop Source Routing. In Proceedings of OSDI ’04, December 2004.

[39] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-Friendly

High-Speed TCP Variant. SIGOPS Operating Systems Review, 42(5):64–

74, July 2008.

[40] Thomas J. Hacker, Brian D. Athey, and Brian Noble. The End-to-end Per-

formance Effects of Parallel TCP Sockets on a Lossy Wide-area Network.

In Proceedings of IPDPS ’02, April 2002.

[41] Huaizhong Han, Srinivas Shakkottai, C. V. Hollot, R. Srikant, and Don

Towsley. Multi-Path TCP: A Joint Congestion Control and Routing Scheme

to Exploit Path Diversity in the Internet. IEEE/ACM Transactions on Net-

working, 14(6):1260–1271, December 2006.

[42] Martin Heusse, Sears A. Merritt, Timothy X. Brown, and Andrzej Duda.

Two-way TCP Connections: Old Problem, New Insight. SIGCOMM Com-

puter Communications Review, 41(2):5–15, April 2011.

[43] Janey C. Hoe. Improving the Start-up Behavior of a Congestion Control

Scheme for TCP. In Proceedings of SIGCOMM ’96, August 1996.

124

[44] Ningning Hu, Li Erran Li, Zhuoqing Morley Mao, Peter Steenkiste, and

Jia Wang. Locating Internet Bottlenecks: Algorithms, Measurements, and

Implications. In Proceedings of SIGCOMM ’04, September 2004.

[45] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata

Sen, and Oliver Spatscheck. A Close Examination of Performance and

Power Characteristics of 4G LTE Networks. In Proceedings of MobiSys

’12, June 2012.

[46] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu,

Z. Morley Mao, Subhabrata Sen, and Oliver Spatscheck. An In-depth Study

of LTE: Effect of Network Protocol and Application Behavior on Perfor-

mance. In Proceedings of SIGCOMM ’13, August 2013.

[47] iN2015 Infocomm Infrastructure, Services and Technology Development

Sub-Committee. Totally Connected, Wired and Wireless, June 2006.

[48] Manish Jain and Constantinos Dovrolis. End-to-end Available Bandwidth:

Measurement Methodology, Dynamics, and Relation with TCP Through-

put. In Proceedings of SIGCOMM ’02, August 2002.

[49] Rahul Jain and Teunis J. Ott. Design and Implementation of Split TCP in

the Linux Kernel. PhD thesis, Newark, NJ, USA, 2007.

[50] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A Quan-

titative Measure of Fairness and Discrimination for Resource Allocation

in Shared Computer System. DEC Research Report TR-301, September

1984.

125

[51] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. Tackling

Bufferbloat in 3G/4G Networks. In Proceedings of IMC ’12, November

2012.

[52] Marko Jurvansuu, Jarmo Prokkola, Mikko Hanski, and Pekka Perälä. HS-

DPA Performance in Live Networks. In Proceedings of ICC ’07, June 2007.

[53] Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. Improv-

ing TCP Throughput over Two-way Asymmetric Links: Analysis and So-

lutions. In Proceedings of SIGMETRICS ’98, June 1998.

[54] Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. Explicit

Window Adoption: A Method to Enhance TCP Performance. IEEE/ACM

Transactions on Networking, 10(3):338–350, June 2002.

[55] Dina Katabi, Issam Bazzi, and Xiaowei Yang. A Passive Approach for De-

tecting Shared Bottlenecks. In Proceedings of ICCCN ’01, October 2001.

[56] Srinivasan Keshav. A Control-Theoretic Approach to Flow Control. In

Proceedings of SIGCOMM ’91, September 1991.

[57] Peter Key, Laurent Massoulié, and Bing Wang. Emulating Low-priority

Transport at the Application Layer: a Background Transfer Service. In

Proceedings of SIGMETRICS ’04, June 2004.

[58] Peter Key, Laurent Massouli, and Don Towsley. Path Selection and Mul-

tipath Congestion Control. In Proceedings of IEEE INFOCOM ’07, May

2007.

126

[59] Wookyun Kho, Salman Abdul Baset, and Henning Schulzrinne. Skype

Relay Calls: Measurements and Experiments. In Proceedings of IEEE IN-

FOCOM ’08, April 2008.

[60] George Kola and Miron Livny. DiskRouter: A Flexible Infrastructure for

High Performance Large Scale Data Transfers. Technical Report CS-TR-

2004-1518, UW–Madison, 2003.

[61] M. Kühlewind and B. Briscoe. Chirping for Congestion Control - Imple-

mentation Feasibility. In Proceedings of PFLDNeT ’10, November 2010.

[62] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed

Internet Routing Convergence. In Proceedings of SIGCOMM ’00, August

2000.

[63] Markus Laner, Philipp Svoboda, Eduard Hasenleithner, and Markus Rupp.

Dissecting 3G Uplink Delay by Measuring in an Operational HSPA Net-

work. In Proceedings of PAM ’11, March 2011.

[64] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, and Pablo Ro-

driguez. Inter-Datacenter Bulk Transfers with NetStitcher. In Proceedings

of SIGCOMM ’11, August 2011.

[65] Wai Kay Leong, Yin Xu, Ben Leong, and Zixiao Wang. Mitigating Egre-

gious ACK Delays in Cellular Data Networks by Eliminating TCP ACK

Clocking. In Proceedings of ICNP ’13, October 2013.

127

[66] Xin Liu, Ashwin Sridharan, Sridhar Machiraju, Mukund Seshadri, and Hui

Zang. Experiences in a 3G Network: Interplay Between the Wireless Chan-

nel and Applications. In Proceedings of MobiCom ’08, September 2008.

[67] David A. Maltz and Pravin Bhagwat. TCP Splicing for Application Layer

Proxy Performance. Journal of High Speed Networks, 9(3):225–240, Jan-

uary 1999.

[68] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren

Wang. TCP Westwood: Bandwidth Estimation for Enhanced Transport

over Wireless Links. In Proceedings of MobiCom ’01, July 2001.

[69] M. Meyer. TCP Performance over GPRS. In Proceedings of WCNC ’99,

September 1999.

[70] Ivan Tam Ming-Chit, Du Jinsong, and Weiguo Wang. Improving TCP Per-

formance Over Asymmetric Networks. SIGCOMM Computer Communi-

cation Review, 30(3):45–54, July 2000.

[71] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. Queue,

10(5):20–34, May 2012.

[72] Vern Paxson. End-to-end Internet Packet Dynamics. In Proceedings of

SIGCOMM ’97, September 1997.

[73] Vern Paxson. End-to-end Routing Behavior In the Internet. SIGCOMM

Computer Communication Review, 36(5):41–56, October 2006.

128

[74] Maxim Podlesny and Carey Williamson. Improving TCP Performance

in Residential Broadband Networks: a Simple and Deployable Approach.

SIGCOMMComputer Communication Review, 42(1):61–68, January 2012.

[75] Jarmo Prokkola, Pekka Perälä, Mikko Hanski, and Esa Piri. 3G/HSPA Per-

formance in Live Networks from the End User Perspective. In Proceedings

of ICC ’09, June 2009.

[76] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Z. Morley Mao, Sub-

habrata Sen, and Oliver Spatscheck. Characterizing Radio Resource Allo-

cation for 3G Networks. In Proceedings of IMC ’10, November 2010.

[77] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,

Damon Wischik, and Mark Handley. Improving Datacenter Performance

and Robustness with Multipath TCP. In Proceedings of SIGCOMM ’11,

August 2011.

[78] Shansi Ren, Lei Guo, and Xiaodong Zhang. ASAP: an AS-Aware Peer-

Relay Protocol for High Quality VoIP. In Proceedings of ICDCS ’06, July

2006.

[79] Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, and

Les Cottrell. pathChirp: Efficient Available Bandwidth Estimation for Net-

work Paths. In Proceedings of PAM ’03, April 2003.

[80] Dan Rubenstein, Jim Kurose, and Don Towsley. Detecting Shared Conges-

tion of Flows Via End-to-End Measurement. IEEE/ACM Transactions on

Networking, 10(3), June 2002.

129

[81] Stefan Savage, Thomas Anderson, Amit Aggarwal, David Becker, Neal

Cardwell, Andy Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff

Voelker, and John Zahorjan. Detour: Informed Internet Routing and Trans-

port. IEEE Micro, 19(1):50–59, January 1999.

[82] R. Scheffenegger and M. Kuehlewind. Additional Negotiation in the TCP

Timestamp Option Field during the TCP Handshake. IETF Working Draft,

October 2011.

[83] Daryl Seah, Wai Kay Leong, Qingwei Yang, Ben Leong, and Ali Razeen.

Peer NAT Proxies for Peer-to-Peer Applications. In Proceedings of

NetGames ’09, November 2009.

[84] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay

Background Transport (LEDBAT). IETF Working Draft, October 2011.

[85] H. Sivakumar, S. Bailey, and R.L. Grossman. PSockets: The Case for

Application-level Network Striping for Data Intensive Applications using

High Speed Wide Area Networks. In Proceedings of SC ’00, November

2000.

[86] Joel Sommers and Paul Barford. Cell vs. WiFi: On the Performance of

Metro Area Mobile Connections. In Proceedings of IMC ’12, November

2012.

[87] Neil T. Spring, Maureen Chesire, Mark Berryman, Vivek Sahasranaman,

Thomas Anderson, and Brian Bershad. Receiver Based Management of

Low Bandwidth Access Links. In Proceedings of IEEE INFOCOM ’00,

March 2000.

130

[88] Stanford Linear Accelerator Center. The PingER Project. http://

www-iepm.slac.stanford.edu/pinger/site.html. [Online; accessed

19-September-2013].

[89] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. A Compound

TCP Approach for High-speed and Long Distance Networks. In Proceed-

ings of IEEE INFOCOM ’06, April 2006.

[90] Wee Lum Tan, Fung Lam, and Wing Cheong Lau. An Empirical Study on

the Capacity and Performance of 3G Networks. In Proceedings of INFO-

COM ’07, May 2007.

[91] Pablo Tapia, Jun Liu, Yasmin Karimli, and Martin J. Feuerstein. HSPA

Performance and Evolution: A Practical Perspective. WILEY, 2009.

[92] Fung Po Tso, Jin Teng, Weijia Jia, and Dong Xuan. Mobility: A Double-

Edged Sword for HSPA Networks. In Proceedings of MobiHoc ’10,

September 2010.

[93] Curtis Villamizar and Cheng Song. High Performance TCP in ANSNET.

SIGCOMM Computer Communications Review, 24(5):45–60, October

1994.

[94] Wei-Hua Wang, Marimuthu Palaniswami, and Steven H. Low. Optimal

Flow Control and Routing in Multi-Path Networks. Performance Evalua-

tion, 52(2-3):119–132, April 2003.

131

[95] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Morley Mao, and

Ming Zhang. An Untold Story of Middleboxes in Cellular Networks. In

Proceedings of SIGCOMM ’11, August 2011.

[96] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic

Forecasts Achieve High Throughput and Low Delay over Cellular Net-

works. In Proceedings of NSDI ’13, October 2013.

[97] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. De-

sign, Implementation and Evaluation of Congestion Control for Multipath

TCP. In Proceedings of NSDI ’11, March 2011.

[98] Yin Xu, Ben Leong, Daryl Seah, and Ali Razeen. mPath: High-Bandwidth

Data Transfers with Massively Multipath Source Routing. IEEE TPDS,

24(10):2046–2059, October 2013.

[99] Yin Xu, Wai Kay Leong, Ben Leong, and Ali Razeen. Dynamic Regulation

of Mobile 3G/HSPA Uplink Buffer with Receiver-Side Flow Control. In

Proceedings of ICNP ’12, October 2012.

[100] Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. An End-to-End

Measurement Study of Modern Cellular Data Networks. In Proceedings of

PAM ’14, March 2014.

[101] Yang Richard Yang, Min Sik Kim, Xincheng Zhang, and Simon S. Lam.

Two Problems of TCP AIMD Congestion Control. Technical Report TR-

00-13, Department of Computer Sciences, UT Austin, 2000.

132

[102] Ossama Younis and Sonia Fahmy. FlowMate: Scalable On-Line Flow Clus-

tering. IEEE/ACM Transactions on Networking, 13(2), April 2005.

[103] Lixia Zhang, Scott Shenker, and David D. Clark. Observations on the Dy-

namics of a Congestion Control Algorithm: The Effects of Two-Way Traf-

fic. In Proceedings of SIGCOMM ’91, September 1991.

[104] Ming Zhang, Junwen Lai, Arvind Krishnamurthy, Larry Peterson, and Ran-

dolph Wang. A Transport Layer Approach for Improving End-to-End

Performance and Robustness Using Redundant Paths. In Proceedings of

USENIX ’04, June 2004.

[105] Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy G. Griffin. Inter-

net Routing Policies and Round-Trip-Times. In Proceedings of PAM ’05,

March 2005.

133

