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Abstract

Virtually all fields of healthcare and biomedical research now rely on
imaging as their primary data source. Though more and more data
is being generated in the imaging centers, research shows that most
of this data is discarded in routine practice. Further, certain routine
practices in healthcare and biomedical research, such as radiological
reporting and gene-to-physiology mapping, still represent relics of the
pre-digital era that underutilize the available data and today’s compu-
tational technologies. The aim of this thesis is to use modern computer
vision, image processing and computer graphic technologies to design
reporting, analysis and diagnostic tools for healthcare and biomedical
applications that not only better utilize existing, otherwise discarded,
data but also uses modern techniques to enhance some of the archaic
methodologies.

More specifically, using discarded radiological annotations, we aim to
enhance traditional radiological reporting by proposing animated vi-
sual reports that highlight and position clinical findings in a three-
dimensional volumetric context as opposed to the historic text-based
white paper reports. In a second application on diagnosis of hepatic
tumors, we employ already diagnosed cases of liver tumors to propose
a fast content-based image retrieval system that assists experts in tumor
diagnosis by retrieving similar confirmed cases from a database based
on visual similarity of tumor images. As a third application we target the
low efficiency age-old histological methodology of gene-to-physiology
mapping and propose a defect detection framework that automatically
identifies physiological defects in micro-CT images of transgenic mice.
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Chapter 1

Introduction

1.1 Overview

Imaging is the elementary step in virtually all fields of biomedical and healthcare

research. Today, medical scans produce thousands of images and tera bytes of

data for a single patient in mere seconds. The global size of data in healthcare

is estimated to be 150 exabytes in 2011 and is increasing at between 1.2 and 2.4

exabytes a year (1 exabyte = 250 million DVDs of data). More data should mean

that care providers – from nurses and public health officials, to specialists – have

more insight into helping solve their patients’ problems. Unfortunately however,

research shows that healthcare providers discard 90% of the data they generate.

How can this existing discarded data be utilized to design better healthcare and

biomedical tools?

The second question to ponder upon is how elegantly this biomedical data

is analyzed and utilized in routine practices? Biomedical image processing has

been an active field of research for more than 30 years. Significant success has

1
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(a) (b)

Figure 1.1: (a) An example of a radiological markup on a medical exam. (b) The
corresponding text report that summarizes the radiological findings.

been achieved in solving traditional data analysis problems such as registration,

segmentation and classification. Unfortunately however, only very few of these

computational tools have been successful in making their way into the routine

workflow. As an example let us examine the clinical routine in a typical radiology

lab. The workflow involves a referring physician who requests an image exam

on a patient. This exam is interpreted by a radiologist. During interpretation the

radiologist may need to perform some image-based measurements or segment a

region of interest. Although automated measurements and segmentation are well-

addressed problems in the literature, most often than not, manual measurement

and manual segmentation is what a radiologist resorts to in routine practice. The

primary reason for this is the fact that these computational tools are not integrated

to the medical workstations that the radiologists typically use. Often, segmentation

requires radiologists to port the data into a separate segmentation capable work-

2
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station. Further, radiologists may also need to give additional redundant input,

such as seeds in case of segmentation, to initiate these tools.

After reading and interpreting the images, the radiologist prepares a text-based

exam report summarizing the findings. Figure 1.1 shows an example of a radiolog-

ical image markup and the corresponding text-based report. This text report is sent

to the referring physician who requested the exam and his patient. The benefits

of the visual markups made by radiologists on the images are well known in the

medical community [Reiner and Siegel 2006] and [Fan et al. 2011]. Interestingly

however, this information is lost in the workflow.

Further, once the diagnosis and treatment for this case is complete, this study is

almost never used again. Today, 3D scan of a single human body produces 24, 000

slices of 512 × 512 pixels which is approximately 20GB of data. Most of this data,

however, is discarded after the diagnosis and therapeutic success of this patient.

Existing confirmed diagnosis can be utilized to aid diagnosis of new radiological

cases in a content-based retrieval framework. A content-based diagnostic assistant

system retrieves from a database examples and also counter-examples of confirmed

cases that are similar to the case under diagnosis. Content-based retrieval systems,

though known to improve diagnostic accuracy [Chi et al. 2013b], have not found

their way into the routine clinical workflow. In clinical practice, diagnosis is still

carried out on case-by-case basis.

3
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(a)

(b)

Figure 1.2: (a) Each mutant mouse embryo undergoes 3D micro-CT imaging prior
to sectioning. The micro-CT machine in this figure is manufactured by Xradia Inc.,
model MicroXCT. (b) For phenotyping, experts still rely on microscopic evaluation
of the sections even though a complete 3D reconstruction of the embryo is available.
The microscope in this figure is from Omano Inc., model number OM118-B4 and
the mouse embryo section is available online at http://commons.wikimedia.org/
wiki/File:10dayMouseEmb.jpg under GNU free documentation license.

4
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Similarly, some areas of biomedical research also still rely on technologies from

the pre-digital era. For example, post-completion of the human genome project, the

emphasis is now on mapping each human gene to its physiological function. Ge-

netic engineering of human is practically and ethically not possible. Hence, mouse

is chosen as the model for genetic study. Large scale global efforts are underway

to systematically knock out each gene in the mouse body and study the effect that

it causes to the physiological makeup. In routine practice each genetically engi-

neered mouse is first imaged using a micro-CT scanner and then sectioned into

thin slices for observation under the microscope. Surprisingly, despite the avail-

ability of complete three-dimensional structure of each mouse, experts routinely

rely on microscopic evaluation of the mouse sections for physiological analysis

(Figure 1.2). This technique is not only antiquated but also underutilizes today’s

technologies and the available data.

1.2 Objectives

The objective of this thesis is two-fold. The first objective is to better utilize the

existing data in routine clinical and biomedical practice. The second objective

is to use modern computer vision, image processing and computer vision tech-

nologies to enhance certain archaic reporting and analysis tools used in healthcare

and biomedical research. More specifically, we target three clinically important

applications as described below.

Reporting still relies on age-old text-based paper reports. While interpreting

a radiological exam radiologists often make visual markups on the exam images.

These markups, though present in the radiological workflow, are often not used

5



CHAPTER 1. Introduction

by the physicians for diagnosis. Physicians typically rely only on the text-based

reports produced by radiologists that summarize the exam findings. These reports

not only lack the visual and contextual information of the pathology in the human

body but are also not a convenient medium to communicate with the patients. In

this thesis we aim to address this limitation in the current medical imaging and

reporting workflow, in particular the out-dated reliance of physicians on text-only

reports. Our goal is to use the existing radiological annotations and imaging data

to design a visual reporting framework that augments radiological text reports in a

format that is not only easily accessible, but is concise and visually informative to

the physicians and their patients. Further, using this visual summary generation

framework we want to be able to integrate computational tools, such as automated

three-dimensional (3D) segmentation, into the clinical routine. This can be achieved

by auto-generating seeds using existing radiological annotations. Segmentation

can enhance various applications in the clinical routine some of which, including

automated reporting and summary generation, are discussed in this thesis.

Diagnosis of hepatic tumors is very challenging in clinical practice and is highly

experience-dependent. Research shows that diagnosis varies largely with the

amount of imaging data available. Content-based access to existing tumor im-

ages has been proposed for assisting clinical decision making by re-using existing

confirmed cases. The idea is to retrieve from a database of confirmed cases, in-

stances that are similar to the one being currently diagnosed. The state-of-the art

content-based retrieval systems for hepatic tumors model the tumors in two dimen-

sions using a few slices of the 3D imaging data which is not only an incomplete

representation of the tumor but also underutilizes the available data. In this thesis

we quantitatively model hepatic tumors using 3D image-based spatio-temporal

6
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features and design a fast content-based retrieval framework that outperforms ex-

isting methods. Our system is faster and incorporates a wider range of tumor

pathologies than the existing systems.

Analysis of mouse images for detection of gene-induced physiological defects

still largely relies on microscopic evaluation of mouse sections regardless of the

availability of 3D micro-CT data. The state-of-the-art computational tools for

mouse physiology analysis only offer differential volumetric analysis of various

mouse organs between different transgenic mouse strains. A computational as-

sistant for defect detection is not investigated in the literature. In this thesis we

propose a generalized defect detection framework for genetically engineered pre-

natal mice that not only detects known defects automatically but also highlights

candidate genetic defects using micro-CT images of normal and transgenic mice

and computational tools like registration and deformation vectors.

1.3 Contributions

In terms of original contributions to the research community, the proposed work

makes the following:

1. Proposes a visual reporting framework that enhances the text-based radio-

logical reports by auto-generating an animated visual summary in the form

of a 3D volume rendering of the exam data with the radiological markups

embedded in it. The 3D volume spins to provide a comprehensive summary

of the important clinical content. In a user satisfaction study conducted with

physicians in Singapore it is found that the visual reports improve clarity of

communication between radiologists and physicians and assists physicians
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in communicating with their patients. An abstract of this work has been pub-

lished in the 98th annual meeting of the Radiological Society of North America

(RSNA) [Roy et al. 2011] and the full version of the work has been published

in the Springer Journal of Digital Imaging (JDI) [Roy et al. 2013a]. Using the

visual reporting framework we are the first to be able to integrate automatic

3D segmentation into the clinical workflow by automatically deriving seg-

mentation seeds from radiological annotations. An abstract of this work is

published in the 99th annual meeting of the RSNA [Roy et al. 2012a] and a full

paper is published in the IEEE International Conference on Bioinformatics

and Biomedicine Workshops (IEEE BIBMW’12) [Roy et al. 2012b].

2. Proposes 3D representation of hepatic tumors for the design of a fast content-

based retrieval system for focal liver lesions. In this work we model liver

tumors using 3D image-based spatio-temporal features and design a fast

tumor retrieval framework that outperforms existing state-of-the-art retrieval

systems which are typically based on two-dimensional (2D) features. With

fast query processing and high retrieval accuracy, the proposed system has the

potential to be used as an assistant to radiologists for routine hepatic tumor

diagnosis. This work is submitted to the IEEE Transactions on Biomedical

Engineering (IEEE TBME) and is currently undergoing review.

3. Proposes a generalized defect detection framework that automatically detects

known genetic defects and highlights candidate defective areas in 3D micro-

CT images of genetically engineered prenatal mice. The proposed framework

greatly enhances the throughput of the traditional histology-based defect

detection methodology by pruning the vast search space of novel defects and

8
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also highlighting candidate areas that are hard to recognize by human eye

due to lack of significant visual features. This work has been published in the

16th International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI’13) [Roy et al. 2013b].

1.4 Road Map

The rest of this thesis is organized as follows: Chapter 2 describes our visual report-

ing framework that uses computer graphics technologies to enhance radiological

reporting. In Chapter 3 we propose 3D features for a fast content-based image

retrieval system for liver tumors. Chapter 4 describes how simple image process-

ing techniques like registration and deformation vectors can be used to automate

the traditional and still state-of-the-art microscopic techniques used in mouse de-

fect detection. Chapter 5 concludes the thesis and outlines some future research

directions.
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Chapter 2

Visual Interpretation with

Three-Dimensional Annotations

2.1 Overview

Imaging is a vital component of modern medicine. A typical clinical workflow

involves a referring physician who requests an image exam and a radiologist who

interprets this exam and prepares an exam report. The exam interpretation often

involves using image-based tools to markup annotations on the exam’s images, for

example, drawing geometric primitives to denote lengths and volumes of interest,

drawing arrows with text annotations, and selecting key images from the exam that

represent images of clinical significance. A final text-based report is prepared to

summarize the key findings. The benefits of these radiological visual annotations

are well known in the medical community [Fan et al. 2011], [Armato 2003] and

[Reiner and Siegel 2006]. Unfortunately however, this information is not always

easily available to the referring physician. This could be due to several reasons
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starting from software incompatibilities between physician’s office desktops and

radiologist’s workstations to tedious workflows which require the physicians to

sift through exams that often contain thousands of images [Rubin 2000] to find

and match radiological annotations with the findings described in the report. In

addition, because the annotations are made only on a few key images, the context

of the annotation within the 3D volume may not always be clear, especially to the

patient.

In some cases, the radiological tool vendors employ proprietary annotation

implementations. As a result, it is often not possible to view annotations generated

in a radiologist’s workstation on other workstations like the ones present in the

referring physician’s offices or on data given to the patients (e.g., CDROMS). As

a result, referring physicians sometimes rely only on the text-based reports as the

primary means to interpret exams and communicate diagnosis to their patients. The

inherent disadvantages of text-based reports are well documented in the literature

[Reiner and Siegel 2006], [Schwartz et al. 2011] and [Bosmans et al. 2011].

In this chapter we propose to enhance this archaic radiological workflow, espe-

cially the reliance on text-based reports for communication between radiologists,

physicians and their patients by proposing a software framework that allows auto-

matic generation of 3D visual reports of exam findings. Our application framework,

called visual interpretation with three-dimensional annotations (VITA), extracts an-

notations made by radiologists and generates a visual summary in the form of an

animated 3D rotating volume of the exam with the radiologist’s annotations clearly

highlighted. VITA summaries are intended to augment radiologists’ text-based re-

ports by placing the annotation into a better visual context in the 3D volume.

This helps physicians in both understanding the radiological reports as well as

11
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communicating diagnosis to their patients.

Further, we use the image-based 2D annotations to derive higher order 3D prop-

erties of the radiological markup by automated segmentation to produce visual

reports that highlight segmented anatomy instead of the individual raw annota-

tions. This framework is the first to attempt integration of 3D segmentation into

the radiological workflow. We demonstrate the usefulness of 3D segmentation by

utilizing segmentation results to enhance important clinical applications such as

exam summarization, exam visualization and radiological reporting.

The rest of the chapter is organized as follows. Sections 2.2 and 2.3 give overview

of a typical clinical set-up and how annotations are performed in the radiological

workflow. Section 2.4 introduces the VITA framework. In Section 2.5 we describe

how individual 2D annotations can be clustered to obtain 3D characteristics of the

annotated anatomy. Usefulness of deriving the 3D characteristics is demonstrated

by enhancing three routine clinical applications.

2.2 Radiological Reporting Workflow

A typical radiology reporting workflow employed in clinical practice is pictorially

presented in Figure 2.1. Central to this framework is the Picture Archiving and

Communication System (PACS) server [Choplin et al. 1992] which is used as the

central repository of image-based studies and the Radiology Information System

(RIS) which is typically where the text-based report of the radiology exam is stored.

Medical images are stored in the PACS archive in the Digital Imaging and Com-

munications in Medicine (DICOM) format [NEMA 2008]. It is quite common that a

PACS server will be shared by a cluster of institutions via a service provider, while
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Figure 2.1: This figure gives an overview of a typical radiological reporting set-up
and explains how our visual report module can be integrated into the existing
workflow. Our framework can work either directly with Picture Archiving and
Communication System (PACS), Radiology Information System (RIS), or even an
external database that is cross-referenced via RIS.

RIS servers are operated by the institutions themselves. Under this framework, a

technologist performs an image-based exam on a patient that is sent to the PACS

server where a radiologist accesses the exam images and prepares a report for the

referring physician. This exam report is sent back to the PACS server with the

text-based portion also sent to the RIS server. The referring physician typically

receives the report via RIS. The text-report in the RIS system can sometimes refer

back to the original study in the PACS system.
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Figure 2.1 also outlines how our visual report module, VITA, integrates with

the current radiology workflow. VITA uses the exam images and annotations em-

ployed by the radiologist during exam interpretation to produce a visual summary.

This visual summary is sent to the PACS server as a new DICOM series which can

be downloaded by the referring physicians for diagnosis.

The key research challenge lies in exploiting annotations commonly made by

radiologists to produce a structured visual report. The VITA report is generated

as a series of DICOM images which is distributed back to the PACS archive. Since

the annotations are now embedded in the DICOM pixel data of the visual report,

many issues of software incompatibilities with regards to annotation implementa-

tion across PACS vendors are avoided. This also allows our VITA framework to

seamlessly integrate within the existing workflow as no additional input is needed

from the radiologists and the results are available in PACS. In addition, we have

the ability to produce video versions (e.g., AVI, MOV, or MPEG) of the VITA sum-

mary for sharing with patients and for situations when access to PACS or DICOM

viewers is not readily available.

2.3 Radiological Annotation Implementation

While PACS and DICOM are supported by all vendor software, the manner in

which proprietary software encodes annotations and markup is often a source of

incompatibility. Most software, however, use a structured format like Extendible

Markup Language (XML) to implement annotations. Further, in order to unify

annotations across PACS frameworks, the National Institutes of Health Cancer

Biomedical Informatics Grid (NIH caBIG) has initiated the Annotation and Image
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Markup (AIM) project [Channin et al. 2009], [Channin et al. 2010] and [Rubin et al.

2008a] which provides a standards-based annotation format that can be shared

between different PACS. With AIM it is now easy to extract and utilize annotations

generated using all PACS workstations compatible with the standard. A few PACS

implementations have incorporated AIM already [ClearCanvas 2008], [Rosset et al.

2004] and [Rubin et al. 2008b] and it is being used by other academic institutions

[Rubin et al. 2008b] and [Zimmerman et al. 2011] for radiological reporting. One

key benefit of AIM is that it provides a well-defined and structured format using

XML for radiological annotations that can be easily parsed. VITA supports the

AIM initiative and is compatible with its latest version. AIM has been chosen

as a representative standard to present the idea behind VITA; it is not hard to

incorporate other clinically used standards like Health Level 7 (HL7) in VITA to

implement the visual summaries. VITA has a built-in module to parse structured

annotation files. The current version parses the AIM schema and also XML-based

structured format used by ClearCanvas. The parser can be extended to read other

popular formats as well.

Other works described in prior literature have examined how to use annotations

to automatically generate text-based reports [Zimmerman et al. 2011], however,

VITA system is the first to target 3D visual reporting. The VITA system does not

require any high-level processing or understanding of the annotations; it simply

uses what is already provided by the radiologist in routine practice.
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Figure 2.2: The VITA framework uses radiologist annotations prepared using a
structured format (e.g., Extendible Markup Language (XML), Annotation Image
Markup (AIM)). Geometric primitives are extracted from the annotation encodings
and used to produce visual summary in the form of a rotating 3D volume rendering.

2.4 The VITA System

Our VITA system is developed in C++ using Nokia’s Qt cross-platform application

and UI framework [Nokia 2009] on an Intel core i5, 2.4 GHz processor with 3

Gigabyte Random Access Memory and NVIDIA GeForce GT 330M Graphics Card.

VITA can be used on standalone computer or with ClearCanvas PACS workstation.

ClearCanvas workstation is a free and open-source workstation with an active

developer community [ClearCanvas 2008]. It is currently used by more than 20, 000
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healthcare professionals worldwide and the clinical edition has been approved

by the Food and Drug Administration (FDA). ClearCanvas workstation allows

radiologists to draw geometric shapes over images, e.g., lines, ellipses etc and

associate text with the drawn geometry. This markup is saved either as ClearCanvas

study file in the XML format or in the unified AIM schema in both XML and

Digital Imaging and Communication in Medicine Structured Reporting (DICOM-

SR) format.

VITA has a built-in XML parser module that mines ClearCanvas study files and

AIM XML files associated with a medical exam to extract the annotated geometric

primitives, observations and text tags. The geometric primitives are sent to the

rendering engine of VITA which produces a visual summary in the form of a

3D volume animation that renders the volume as it spins 360◦ around the spinal

axis. The geometric primitives are distinctly highlighted in the volume. Figure 2.2

captures this pipeline.

VITA uses ray casting as the primary method to generate 3D volume images.

The core of the ray casting algorithm is to send one ray per screen pixel and

trace this ray through the volume. To exploit modern high-end Graphic Processing

Units (GPU), a GPU-based ray casting engine (using NVIDIA’s Cg toolkit [NVIDIA

2010]) has also been implemented which can render high quality volume images

at interactive speed. The ray casting engine takes the pixel data from the exam

images and the annotated geometric primitives to first compute a rotating volume

with geometry highlighted. The text tags and observations, if any, are then placed

over the corresponding geometry to generate the complete summary. Figure 2.3

outlines this procedure.

As the volume spins, the visual report is saved by generating image files in the
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Figure 2.3: VITA needs the original stack of DICOM images and the annotation in-
formation (e.g., geometry, text tags) to generate the visual summary. The geometry
is first embedded in the volume and the text tags are then overlaid to compute the
final report.

DICOM format at every 10◦ rotation of the volume. The Insight Segmentation and

Registration Toolkit (ITK) [ITK 1999] is used to generate the DICOM images. Open-

source DCMTK library from Offis [DMCTK 2003] is used to insert appropriate

DICOM tags that composes this new set of DICOM images into an image stack.

This new image stack forms an additional series in the original exam. VITA then

pushes this series to the PACS archive using DICOM message exchange functions

available in DCMTK. This summary series can now be downloaded by the referring
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physicians and played in cine mode in their respective DICOM viewers.

Although the VITA visual report is presently generated as a DICOM stack, it

is possible to prepare it in other more compact video formats such as MPEG4 or

Flash, which may be stored in other information systems such as the RIS. This

non-DICOM solution might prove to be more efficient for the referring physicians

and patients as the reports can now be entirely encapsulated without the need for a

DICOM viewer or PACS system allowing for easier access on mobile devices such

as tablets or smart-phones.

2.4.1 Results

A computer running ClearCanvas PACS workstation and the VITA application

was connected to a PACS server that contained CT and MR exam images from

the online cancer image archive [Armato et al. 2011]. Images were downloaded

from the PACS server onto the workstation and sample annotations were created

using ClearCanvas image-based measurement tools and the tools available with the

AIM plug-in. VITA parsed these annotation files using its inbuilt XML parser and

generated visual reports for each exam based on the respective annotations. These

reports were automatically sent by VITA to the PACS server over the network

as additional DICOM series to the respective exams. To communicate with the

PACS server, VITA requires the server name, server application entity title and the

port on which the server is running at the remote machine. The summary exams

were then downloaded and checked in another workstation to ascertain that all the

information was properly rendered and saved.

Figure 2.4 shows a snapshot of VITA. A ClearCanvas measurement tool was
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Figure 2.4: This figure shows a snapshot of VITA when used with ClearCanvas
PACS workstation. VITA reads the annotations made in ClearCanvas and embeds
them in the visual report.

used to mark an elliptical region of interest in an MR image of the brain. ClearCan-

vas workstation stores annotations generated using the measurement tools in the

XML format. Figure 2.4 shows the visual report generated by VITA using the ellip-

tical annotation. The geometric shape in the 3D visual summary shows the shape

and position of the radiologist’s annotation.

Figure 2.5 shows example images taken from a visual summary generated by

VITA. The annotations visible in this report were generated in the standardized

AIM schema using the AIM plug-in available in ClearCanvas workstation. The

images used in this figure are of a healthy patient; the annotations are representative

examples only.

20



CHAPTER 2. Visual Interpretation with Three-Dimensional Annotations

Figure 2.5: The visual summary consists of a rotating volume with annotations
distinctly highlighted. The volume spins to provide a comprehensive 3D context
of the important clinical observations. Θ in the figure demonstrates the angle of
rotation with respect to the spinal axis.

It is possible to control the way annotation text is overlaid on the geometry. For

example, VITA can place the text over the geometry and let both spin together, or

have the text stationary and color-code it with the respective spinning geometry.

Figure 2.6 shows examples of both the scenarios.

VITA can also selectively highlight important tissues while generating the visual

report. This is achieved by applying transfer functions to the exam images such

that only the relevant tissues are visible. Figure 2.7 shows images from two such
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Figure 2.6: It is possible to either let the text tags move with the geometry as the
volume spins or have the text stationary and color-coded with the geometry.

Figure 2.7: Certain body tissues can be highlighted using presets available in the
volume rendering module of VITA. The left image is generated using a preset
which accentuates bone tissues and the right image is generated by accentuating
the lung tissues.

22



CHAPTER 2. Visual Interpretation with Three-Dimensional Annotations

Figure 2.8: Once the visual report is placed back in the PACS archive as an additional
DICOM series, it can be accessed by clinicians in their respective DICOM viewers.
The animated summary can be viewed in the cine mode available in most DICOM
viewers.

reports. The left image is part of a visual report which selectively highlights the

bone tissues and the right image is from a report that shows no bone tissues but

emphasizes the lung tissues.

After VITA placed the visual reports in the PACS archive, studies having visual

reports were downloaded at another computer running a PACS workstation. Vi-

sual reports appeared along with pre-existing exam images. The animated visual

summary was viewed in cine mode which played the report images at the user de-

sired playback speed. Figure 2.8 shows a snapshot of the ClearCanvas workstation

displaying the visual report.
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Figure 2.9: This figure shows the results of a user satisfaction study performed with
seven referring physicians. Six out of seven participants strongly agreed that visual
summary improves clarity of communication between radiologists and referring
physicians and also agreed that visual summary aids patient communication. Six
participants were willing to use this service, if provided.

2.4.2 Evaluation by User Satisfaction Survey

To test the effectiveness of VITA, a user satisfaction study was conducted with seven

participating referring physicians. The participants were shown three anonymized

radiological reports along with the corresponding key images that had the graphical

overlays of the annotations. The first case reported a solitary pulmonary nodule

in lung CT exam, second case reported tumor in brain MR images and the third

case was about calcified lesion in the liver diagnosed in abdominal CT. For these

three cases participants were also given the visual summaries generated by VITA.

Physicians were asked three questions: 1) whether the VITA summaries improve

clarity of communication between referring physicians and radiologists; 2) whether

the VITA summaries would be useful in assisting physicians in communicating
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diagnosis to patients and; 3) whether they would be willing to use the VITA

service in their clinical routine if made available. The first two questions asked the

participants to rate their answers on a 5-point Likert scale with one being strongly

disagree and five being strongly agree.

Figure 2.9 shows the results of the evaluation survey. Six out of seven partic-

ipating referring physicians strongly agreed that 3D visual summaries improved

clarity of communication between radiologists and physicians and also strongly

agreed that 3D visual summaries would aid patient communication. One physician

agreed that visual report improves clarity of communication between radiologists

and physicians and was neutral on whether visual summary aided patient com-

munication. Six participants were willing to use the system in their routine clinical

practice. Comments from participants were also positive, samples include “it is a

new brilliant concept for patient understanding” and “this is an excellent interven-

tion which helps in better collaboration between physician and radiologist.” The

only physician who was neutral on using VITA commented that “3D rendering

does not add additional information for clinician. It looks nice for the layperson

i.e., patient, but clinical use is very limited.” Indeed for clinicians who are expert

readers of 2D radiological images, VITA visual reports do not add any additional

clinical content. However, for clinicians who do not have this expertise, the visual

reports represent the clinical findings in a more comprehensible way.

2.4.3 Discussion

Because VITA framework requires minimal changes to the current radiological

workflow, we can easily integrate it into existing systems. Currently, a typical
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clinical set-up uses PACS and Electronic Medical Record (EMR) servers to share

exam images and text-based reports among radiologists and doctors. The same

infrastructure, along with VITA, is sufficient to share the 3D visual summaries.

Radiologists can continue to use their native PACS workstations for annotations.

VITA reads these annotations and places a visual summary at the PACS server for

easy access to the physicians. In addition, VITA requires no user interaction, it can

run in the background and automatically generate and archive summary images.

If radiologists want to change the transfer function, it can be done by a single click.

VITA uses the computing power of GPU available in most modern computing

devices. The computation time depends upon the size of the medical exam and the

hardware used. On an average, for an exam consisting of 300 images, the total time

to compute visual summary is less than one minute on an Intel core i5, 2.4 GHz

processor with 3 Gigabyte RAM and NVIDIA GeForce GT 330M Graphics Card.

Usability is another aspect of deploying an application into a clinical routine.

We have demonstrated our VITA tool to a number of radiologists in Cornell Medical

Centre, New York and at the 98th annual meeting of the RSNA. VITA was appreci-

ated by radiologists and the initial feedback was positive even though information

about usability is yet unavailable.

In small-scale medical infrastructures (e.g., smaller community hospitals) it is

quite common that a PACS server will be shared by a cluster of institutions via a

service provider, while RIS servers will be operated by the institutions themselves.

In such scenarios it may not be practical for VITA to send data to the PACS server.

In such situations, the visual reports may be generated in MPEG4 or Flash formats

and placed at the RIS server or any external database maintained by the hospital’s

information system administration. Furthermore, reports in these compact video
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formats can be easily accessed in mobile computing devices that run no PACS

applications.

The recent trend towards patient empowerment advocates that patients’ access

to their imaging reports be facilitated [Hall 2009] and [Chiaramonte 2008] and

radiology reports, or the information in them should be made more patient-centric.

A recent article by Berlin [Berlin 2009] concludes that radiologists have a medical-

legal duty to directly communicate with patients. We believe that 3D images of

the VITA visual report are well suited for this patient-radiologist communication.

The 3D nature of the images in the visual report and the embedded annotations

therein can greatly enhance patients’ comprehension of the pathology. Patients

can be given visual reports in video formats like MPEG4 or Flash so that they can

view the important findings noted by the radiologist on the imaging study without

having to access a PACS workstation.

For optimum results it is desirable that radiologists associate some semantic in-

formation with the image markup. Nonetheless, for generation of visual summary

semantic tags are not a pre-requisite. By highlighting the geometric primitives

drawn by the radiologist in the visual summary, the annotations are put into a con-

text and the referring physicians and their patients get a better 3D comprehension

of the pathology which is lacking in the text reports and the key images. Further,

we believe that if radiologists know that their annotations will be used to generate

3D visual summaries that are useful to referring physicians and patients, they may

be more willing to add associated text annotations along with geometric primi-

tives. An idea for future work is to try to extract this additional text information

from the text-based report itself. This is a non-trivial problem given the potential

unstructured nature of the text reports.
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As referring physicians start to use VITA visual summaries, it is also possible

to develop a simple yet powerful visual reporting language that can allow radiol-

ogists to provide directives on how the visual summary should appear in order to

visually highlight salient findings to assist the referring doctor’s understanding of

the patient’s disease processes. For example, in a case where a patient has multiple

small lesions and one big lesion, the visual language can allow simple keyword

annotations, e.g., <highlight>Pulmonary lesion</highlight>, as a directive to the

volume rendering engine that this annotation should be displayed in a more promi-

nent manner. By defining a small set of simple tags, radiologists could have more

control over the final visual summary. This can help better guide the referring

provider’s focus towards key findings.

The current version of VITA tool is licensed under a BSD type license and is pub-

licly available at http://www.comp.nus.edu.sg/∼sharmili/projects/VITA/index.html

along with the source code and documentation.

2.5 Extracting Volumes from 2D Annotations

While working on 3D representation of the radiological annotations we found that

PACS workstations do not support volumetric annotations. As a result, radiologists

are forced to draw two or more line segments in different planes (i.e., axial, coronal,

sagittal) to denote a rough volume of an object (see Figure 2.10(a)). In addition, the

PACS software does not semantically link the line segments, instead, the radiologist

summarizes these measurements manually in a text-based report.

While simple 2D markup is the defacto method for radiological annotations, it

has been shown that segmentation of objects of clinical significance provides better
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(a) (b)

Figure 2.10: Routine radiological annotations. (a) Sample annotations (line seg-
ments) drawn over lung tumors in the axial and coronal planes. (b) Example of
XML meta-data defined by AIM to store these annotations.

diagnosis for various conditions [Kostis et al. 2003] and [Jirapatnakul et al. 2011].

Furthermore, accurate volumetric measurements can have important diagnostic

and therapeutic implications for certain diseases that rely on the rate of growth

not easily extrapolated from 2D measurements. Segmentation is a well-studied

problem in the medical image research community (see [Sharma and Aggarwal

2010] for a nice survey). Most area-based and volumetric segmentation, however,

are performed outside the PACS workstation. In addition, these algorithms require

user-supplied seeding or markup to initiate the segmentation procedure. This has

two negative consequences. First, because volumetric segmentation is outside

the conventional workflow it is not applied as often as it should be. Also, not

all radiologists (e.g., smaller community hospitals) have access to workstations

that provide segmentation capabilities. Second, when volumetric segmentation is

applied, the radiologist is required to make redundant markup or seeding that has

already been provided during the standard reporting workflow.

We propose an application framework to integrate volumetric segmentation

within the standard radiological reporting workflow. Specifically, we describe
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Figure 2.11: This figure gives an overview of how our application framework
integrates into a typical clinical set-up. The proposed application clusters existing
annotations into volumes and bootstraps 3D segmentation. The 3D information
is used to enhance applications such as reporting, visualization and summary
generation.

a clustering algorithm to extract volume data from unstructured line segments

present in standard radiological reports. These extracted volumes are then used to

bootstrap 3D segmentation. Residing on the radiologist’s PACS workstation, our

software parses the XML annotations to extract marked line segments. These line

segments are then clustered into volumes and subsequently 3D segmentation is

initiated. See Figure 2.11 for an overview of the proposed system.

2.5.1 Associating Line Segments to Volumes

As previously mentioned, the line segments are not semantically linked in the exam

annotations. Our challenge is to determine which segments are intended to denote

volumes (Figure 2.12) and which are not. The general practice in radiology is to

use line segments in two or more orthogonal planes to denote a volume. While
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Figure 2.12: Our input includes the images from the study and the annotations
reported by radiologists. We mine these annotations to get the unstructured line
segments. The line segments are then clustered to determine bounding volumes.
Information from the bounding volume is used to perform 3D segmentation.

ideally these line segments should intersect in the volumetric space, this may not

always be the case due to variations in radiological procedures and quantization

of the coordinate frames. It is however safe to assume that the segments should be

close to each other and in orthogonal planes and that the segments should overlap.

To determine which segments overlap and the distance between overlapping

segments, we use the segment ray distance method [Eberly 2006], described here

in brief. Given two segments S1 (between endpoints P0 and P1) and S2 (between

endpoints Q0 and Q1), the first step is to determine the closest points between the

lines on which these segments lie (Figure 2.13). Segment S1 is represented as the

points on L1 : P(s) = P0 + s(P1 − P0) = P0 + su where 0 <= s <= 1 and u = (P1 − P0)

is the line direction. Similarly, the segment S2 on L2 from Q0 to Q1 is given by the

points Q(t) = Q0 + tv with 0 <= t <= 1 and v = (Q1 −Q0). Let w = P(s) −Q(t) be a
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Figure 2.13: Given two segments, one between endpoints P0 and P1 and the other
between endpoints Q0 and Q1, we compute the closest points (P(sc) and Q(tc))
between the lines on which these segments lie. If P(sc) and Q(tc) lie within their
respective line segments, then the segments overlap otherwise not.

vector between points on the two lines.

There exists unique points, P(sc) and Q(tc), at which w is the shortest and the

two lines L1 and L2 are therefore closest. In addition, if L1 and L2 are non-parallel,

then w is perpendicular to both L1 and L2 s.t. w · v = 0 and w · u = 0.

Substituting w = P(sc) −Q(tc) = w0 + scu − tcv, where w0 = P0 −Q0, into each of

these equations, we obtain the following:

(u · v)sc − (v · v)tc = −w0 · v,

(u · u)sc − (v · u)tc = −w0 · u.

Solving these equations we find sc and tc for L1 and L2. If 0 <= sc <= 1 and

0 <= tc <= 1, the segments S1 and S2 overlap and |P(sc)−Q(tc)| gives the minimum

distance between them. However, if sc < 0 or sc > 1 and similarly for tc, then the

closest points between L1 and L2 do not lie within the respective segments S1 and

S2 and hence the two segments do not overlap.
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Algorithm 1 Cluster line segments into volumes.

1: A is the set containing all line segments in axial plane, set C contains all line
segments in coronal plane, setS contains all line segments belonging to sagittal
plane

2: P = Ø, P is the set that holds volume clusters
3: for i = 1:size(A) do
4: S1 = A(i) such that S1 < P
5: find (S2 ∈ C ∪ S) and (S2 < P) such that S1 and S2 form the closest pair
6: if (S2 ∈ C) then
7: find (S3 ∈ S) and (S3 < P) such that S1 and S3 form the closest pair
8: if S2 and S3 overlap then
9: (S1,S2,S3) form a cluster, P ← (S1,S2,S3)

10: else
11: (S1,S2) form a cluster, P ← (S1,S2)
12: end if
13: else
14: find (S3 ∈ C) and (S3 < P) such that S1 and S3 form the closest pair
15: if S2 and S3 overlap then
16: (S1,S2,S3) form a cluster, P ← (S1,S2,S3)
17: else
18: (S1,S2) form a cluster, P ← (S1,S2)
19: end if
20: end if
21: end for
22: Repeat steps 3 to 21 analogously for all segments in C and S

Using the distance calculation method we find a pair of segments from orthogo-

nal planes that are closest to each other. Then we search the third orthogonal plane

to check if there exists any segment which overlaps with this pair. For example, if

two segments, S1 and S2, are closest to each other and belong to axial and sagittal

planes respectively, then we search the coronal plane to find a line segment, S3,

which is closest to either S1 or S2. If S3 happens to overlap both S1 and S2 then

S1, S2 and S3 form a volume. Analogous logic is applied if S1 and S2 belong to

other orthogonal planes. See Algorithm 1 for further details. The point where all
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Figure 2.14: This figure shows segmentation results obtained by applying level set
segmenter on brain tumor and kidney. The figure shows that our automatically
seeded results are qualitatively similar to those obtained using manual seeding.

the line segments of a cluster overlap gives the location of the volume and the line

segments themselves subtend a bounding volume around the anatomy marked by

the radiologist. Figure 2.12 shows an example.

2.5.2 Bootstrapping and Accelerating Segmentation

The volume locations obtained by clustering the annotation data can be used to au-

tomatically seed segmentation algorithms. In our examples, we use the well-known

level set approach proposed in [Li et al. 2010]; other segmentation algorithms could

be used in a similar manner. Our seed is placed at the center of the bounding vol-

ume in the form of a cuboid that is 20% the size of the extracted bounding volume

in height and width and is of unit depth. Figure 2.14 shows segmentation results of

brain tumor and kidney obtained by automatic seed generated from the radiologi-

cal annotations. The results look qualitatively similar to those obtained by manual

seeding.

Table 2.1 shows the quantitative difference between the segmentation output

when the segmentation seed is automatically generated versus when the seeds are
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Table 2.1: This table provides quantitative difference between segmentation output
of level set segmentation algorithm when seeds are automatically generated by
clustering line segments versus when seeds are provided manually.

Pathology/ Auto Seed Manual Seed %Output
Anatomy Volume (cm3) Volume (cm3) Difference

Right Lung Tumor 2.96 3.05 2.9
Right Lung Tumor 5.30 5.34 0.7
Right Lung Tumor 6.94 6.76 2.6
Brain Tumor 55.66 55.28 0.7
Right Kidney 61.35 56.13 9.3

manually provided. In most cases the difference in output is less than 3% except

for the case where an entire kidney is segmented where the difference is 9.3%.

This happens because segmentation of kidney is inherently hard due to the organ’s

inhomogeneity caused by the presence of medulla.

In this work we use a level set segmentation algorithm for all images irrespective

of the body part being examined. Hence, the method is most effective when the

region to be segmented is homogenous and has a clear boundary. If we can design

an algorithm to automatically detect the examined body part from the exam images

and the annotations and subsequently initiate the most appropriate segmentation

algorithm available for that specific part, the accuracy of volumetric measurements

can be further improved.

The bounded volume obtained from annotations provide an approximate size

of the object’s structure. This can be used to accelerate the segmentation process by

restricting the volume on which segmentation is applied. Table 2.2 lists execution

times of the level set segmentation algorithm [Li et al. 2010] when the input is

bounded based on the size of the volume obtained from annotations versus when

the input is the entire data. The execution times are computed in MATLAB and for
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Table 2.2: This table compares time taken by level set segmentation algorithm to
segment anatomy when segmentation is bounded (tb) or unbounded (tub). Data
and anatomy sizes are given in pixels in [width,height,depth] format.

Pathology/ Data Size ∼Anatomy tb tub
Anatomy [w,h,d] Size (min) (min)

Right Lung Tumor [512, 512, 133] [26, 26, 07] 0.9 11.7
Right Lung Tumor [512, 512, 133] [26, 28, 07] 1.1 13.8
Right Lung Tumor [512, 512, 133] [30, 30, 07] 1.2 13.8
Brain Tumor [256, 256, 052] [60, 55, 25] 5.9 25.1

fair comparison, the seeds in both cases are kept identical. This table shows that by

simply leveraging the bounding volume information in the existing radiological

annotations we can achieve a significant increase in performance in addition to

avoiding redundant seeding.

2.5.3 Reporting and Visualization

We discussed in the previous section that physicians seldom have access to radiol-

ogist’s annotations. We have addressed this gap in communication by proposing

the VITA system. A typical output generated by VITA is shown in Figure 2.15(a).

VITA produces 3D volume renderings of the annotations within the context

of the whole volume. However, VITA does not attempt to derive any volumetric

properties based on individual annotations. Using the clustering algorithm de-

scribed in Section 2.5.1, we can now derive segmented volumes based on the 2D

annotations and generate enhanced visual summary (Figure 2.15(b)).

Automatic report generation from image annotations is another interesting ap-

plication [Zimmerman et al. 2011]. The existing approach in [Zimmerman et al.

2011] summarizes AIM annotations directly into the radiologist’s text-based report,
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(a) (b) (c)

Figure 2.15: (a) This is the output generated using VITA. (b) Our clustering al-
gorithm can generate a segmented volume of the anatomy using 2D annotations
prepared during reporting. (c) Volumetric measurements obtained from the seg-
mented volume can be used to automatically produce value-added radiology re-
ports.

but does not attempt to derive additional higher-level information based on the

annotations. For many exams, volumetric information forms the most critical part

of the report. Using our method, we can provide precise volumetric measurements

from segmented data that can be included during exam reporting as shown in

Figure 2.15(c).

2.5.4 Summary Generation

As opposed to communicating individual annotations to clinicians, as done in the

present clinical set-up, we propose to communicate important clinical findings by

automatically highlighting regions marked by the radiologist. Using the output

from our volume clustering algorithm, it is possible to extract images belonging

to marked volumes from the study, distinctly color the marked regions using

optimization based colorization techniques [Levin et al. 2004], and send them back
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Figure 2.16: Based on the clustered volumes, key images are automatically extracted
from the exam and colored to highlight the anatomy/ pathology marked by the
radiologist. This summary series is pushed back to PACS as an additional series to
the original exam.

to the PACS archive as an additional exam series. This has two-fold advantage.

First, the software incompatibilities in handling annotations is avoided because the

annotation information is embedded in the images and hence can be viewed in any

PACS workstation. Second, clinicians get direct access to the annotations in the

form of a concise series summarizing the study instead of having to sift through

entire exams to find the marked regions. See Figure 2.16 for an example.

2.5.5 Discussion

The impetus of this work is to better utilize the information already provided in the

routine radiological workflow. This allows us to avoid the need for the radiologist

to use additional software outside the PACS workstation or to make redundant

markup to perform segmentation. Our efforts point to an interesting chicken-and-

egg issue in current radiological practice. Specifically, since volume segmentation

is currently not integrated into PACS workstations, radiological protocols report

volumetric data in the form of simple length measurements (i.e., line segments).
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However, if volume segmentation is integrated into the PACS workstation this

would influence how annotations are performed and would likely allow markup

beyond basic geometric primitives. Nonetheless, we believe the work in this chap-

ter offers a useful strategy to help leverage existing data to bootstrap segmentation.

Furthermore, by demonstrating the benefits of using a standardized markup lan-

guage such as AIM, we hope to further the types of value-added processing that

can be exploited based on such structured information.
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Chapter 3

Content-based Image Retrieval

Framework for Focal Liver Lesions

3.1 Overview

As discussed in Chapter 1, clinical diagnosis today is performed on case-by-case

basis. Once a pathological case is successfully diagnosed and treated, the radiolog-

ical data and the diagnostic information for this case is routinely discarded. Huge

amounts of such data are generated in the hospitals that can be used to design diag-

nostic assistants for radiologists. Content-based access to medical images has been

proposed to make use of this huge data resource for supporting clinical decision

making by retrieving from the image database confirmed cases that are similar to

the one currently under investigation.

Figure 3.1 gives an overview of a typical content-based image retrieval (CBIR)

framework. Central to a typical medical CBIR system is the image database. Re-

gions of interest in the images are segmented and the relevant features, which could

40



CHAPTER 3. Content-based Image Retrieval Framework for Focal Liver Lesions

Figure 3.1: Overview of a content-based image retrieval system.

be density-based, texture-based, shape-based or other low level visual features are

extracted to represent the image content. These features are then indexed and

organized to form a feature database. Given a query image, in order to retrieve

similar images from the database, the regions of interest from the query image

are first extracted and the relevant features computed. The feature vector of the

query image is then compared against the feature vectors of all the images in the

database using a distance metric that measures the similarity between the query

image and the images in the database. The images of the database are then ranked

according to the distance of their feature vectors to that of the query image and the

top matches are retrieved.
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3.2 Focal Liver Lesion Characterization

Any wound, sore, ulcer, tumor or other tissue damage of an organ is termed as a

”lesion.” A focal lesion in the liver refers to an area of tissue damage in the liver

and is identified as a region of different echogenicity, attenuation or signal intensity

compared to surrounding liver parenchyma on ultrasound, CT and MR images re-

spectively. Focal liver lesions (FLLs) can be of different pathologies. Multi-phase

contrast-enhanced computed tomography is the primary imaging technique em-

ployed for the detection and characterization of FLLs [Ji et al. 2001], [Lencioni et al.

2006], [Kamel et al. 2003], [Francis et al. 2003], and [Kim et al. 2005]. It is observed

that visually similar FLLs tend to belong to the same pathological category [Doi

2007] and [Muller et al. 2004]. The ability to detect and accurately characterize FLLs

by qualitative visual inspection comes with years of training and experience and

hence is frequently dependent on who is performing the diagnosis. CBIR systems

are finding increasing use as diagnostic decision support systems. CBIR systems

assist radiological diagnosis by searching and retrieving from databases of medical

exams and reports confirmed cases that have image features similar to the case

under investigation [Muller et al. 2004], [Akgul et al. 2011] and [Long et al. 2009].

It has been observed in clinical practice that different FLLs exhibit different vi-

sual characteristics at various time points after intravenous contrast injection. This

evolution of visual features over time carry important diagnostic information and

greatly influences FLL classification. Multi-phase contrast-enhanced CT procedure

captures this transition by performing consecutive CT scans before and after injec-

tion of contrast. A non-contrast enhanced (NC) phase scan is usually performed

before contrast injection. The patient then receives intravenous contrast injection
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and three or more scans are obtained in the arterial (ART) phase (typically 25-40

seconds after start of injection), portal venous (PV) phase (60-75 seconds) and de-

layed (DL) phase (3-5 minutes). Diffusion of the contrast media over the different

phases enhances the vessels and the lesion tissues thereby assisting in lesion type

determination.

Figure 3.2 shows evolution of various lesions over different contrast phases.

Liver cysts are benign fluid-filled lesions and appear as round or oval smooth

edged regions with uniformly low density. Cysts do not show any enhancement

after intravenous contrast injection. Hemangiomas (HEMs) are benign and typ-

ically exhibit discontinuous nodular peripheral enhancement in the ART phase

with centripetal enhancement over time. Central fibrosis and calcification may

sometimes be observed due to thrombosis in the vascular channels. Focal nodular

hyperplasia (FNH) is a benign tumor-like mass, second only to HEM in frequency.

Without any contrast the lesion is usually hypo or isodense to the liver parenchyma.

FNH demonstrates bright arterial contrast enhancement except for the central scar;

pronounced central arteries may be visible. In the PV phase FNH becomes isodense

to liver. Metastatis (METS) on the other hand is a malignant tumor that usually

spreads from other cancer affected organs. METS enhance homogeneously with

contrast material administration, however, they have less well-defined margins

than cysts. They typically have a band-like peripheral enhancement in ART phase

and a washout in DL phase. Hepatocellular carcinoma (HCC) typically shows ART

phase hyper enhancement and washout in either PV or DL phases.
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Figure 3.2: This figure shows the visual appearance of various lesions over the
four phases. Images in a row are from the same lesion; cyst, hemangioma (HEM),
focal nodular hyperplasia (FNH), metastatis (METS) and hepatocellular carcinoma
(HCC), respectively and images in a column belong to the same contrast phase.
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FLLs exhibiting similar visual appearance usually correspond to the same dis-

ease category [Doi 2007] and [Muller et al. 2004], hence radiologists can detect

the lesion and recognize, to a certain extent, the pathological type of the lesion.

However, accuracy in characterizing FLL usually comes with experience. Radiolo-

gists may therefore benefit from an automatic method that can provide diagnostic

decision-support based on other radiologists’ experience.

3.3 Related Work

Considerable research is being carried out to automate classification of liver lesions

using image-based features. Some studies have reported texture-based classifi-

cation of liver lesions in non-enhanced CT and ultrasonography images using

techniques like neural networks [Gletsos et al. 2003] and fuzzy support vector

machines [Xian 2010]. In [Mougiakakou et al. 2007], the authors provide a compre-

hensive performance comparison of various texture-based classifier architectures

and conclude that a voting-based combination of three primary classifiers gives the

best classification results. The authors in [Yu et al. 2010] developed a CBIR system

to differentiate three types of hepatic lesions using global features derived from

non-tensor product wavelet filter and local features based on image density and

texture. However, clinical experience shows that non-enhanced CT captures lim-

ited diagnostic information. The enhancement patterns observed during various

phases of contrast-enhanced images are fundamental for identifying specific focal

lesions.

Some published studies have reported characterization of FLLs using multi-

phase features. In [Yu et al. 2012], the authors use spatially partitioned bag of
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visual words (BoW) and intensity, texture and shape-based features derived from a

few representative triple-phase image slices to differentiate three lesion types. The

features are averaged over all phases which leads to loss of temporal enhancement

information. The mean average precision of the retrieval system is reported to be

88%. In another study by the same group, the BoW-based method is improved to

obtain a precision of above 90% using a different set of lesions [Yang et al. 2012]. A

CBIR framework is proposed in [Chi et al. 2013b] to characterize six types of hepatic

tumors using multi-phase density and texture features. The texture features are

averaged over a bounding box around the tumor and tracked over multiple phases

to capture their temporal evolution. A system “Bull’s Eye Percentage” (BEP) score

of 78% is achieved. We provide a more detailed comparison of our method with [Yu

et al. 2012], [Yang et al. 2012], and [Chi et al. 2013b] in Section 3.6.

In [Costa et al. 2011], the authors use semantic features annotated by radiol-

ogists and image features derived from three orthogonal 2D planes of a single

phase CT image to train a random forest classifier that distinguishes benign from

malignant tumors in a retrieval framework. The framework is used to characterize

sub-centimeter liver lesions. Sub-centimeter lesions are often found indistinguish-

able in clinical practice and hence are left unclassified though closely monitored.

Further, authors in [Costa et al. 2011] neglect tumor temporal characteristics while

designing their features. Napel et al. in [Napel et al. 2010] use high level radiological

semantic features and single phase texture and boundary features to characterize

three lesion types. Semantic features are unstructured subjective descriptions made

by radiologists and are known to exhibit large inter-user variation. Studies show

that radiologists often use different terminologies to describe the same observation

in clinical routine [Sobel et al. 1996] and [Stoutjesdijk et al. 2005], hence utilization
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of semantic features in image retrieval may be highly correlated to the radiological

lexicon used in the particular clinical set-up.

The CBIR systems discussed thus far represent the FLLs using 2D features

derived from a few representative slices of the entire exam stack. Physiologically,

however, FLLs are 3D volumes. Hence, 2D features derived from a few slices is

clearly an incomplete tumor representation. Further, 2D features cannot wholly

capture the lesion volume, especially in cases of large and heterogenous lesions.

Medical image retrieval systems based on 3D features have not been reported

extensively in the literature. This is mainly due to the high computation time for

3D features, especially when retrieving high resolution datasets. In [Chi et al. 2013b]

authors represent 3D liver lesions by averaging 2D texture features extracted from

all the slices where the lesion is visible. However, spatial structural information

interlaced within the volume is lost when considering slice-by-slice 2D features

that only capture structures from the surface. Linear binary pattern (LBP) extracted

from three orthogonal 2D planes have been used to approximate 3D features for

fast retrieval of brain lesions in [Qian et al. 2011]. Again, by modeling the lesions

using only three image slices significant part of the lesion volume is neglected.

In [Burner et al. 2012], the authors use 3D LBP-based texture bags to retrieve lung

lesions. Feature computation time, however, is not reported.

In this chapter we propose a fast content-based retrieval framework for FLLs

based on 3D spatio-temporal features derived from 4-phase CT scans. All the

features are computer generated; no radiological labels are used. The proposed

retrieval framework identifies FLLs automatically and aligns the lesions in the

four phases using an automated registration pipeline. Regional image-based fea-

tures are computed from spatially partitioned lesion volumes and tracked over the
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four phases using feature temporal derivatives. Feature similarity is then used

to retrieve similar lesions from a database of confirmed cases. To the best of our

knowledge this is the first study to use 3D spatio-temporal features extracted from

multi-phase CT images in a CBIR framework for FLLs.

The rest of the chapter is organized as follows. In Section 3.4, we describe the

evaluation database and the techniques used in the proposed retrieval framework.

Section 3.5 illustrates the results and Section 3.6 provides a comparative discussion

of the proposed framework with existing FLL CBIR systems. We conclude the

chapter in Section 3.7.

3.4 Method

We propose a multi-phase CBIR for FLL characterization based on 3D spatio-

temporal features as outlined in Figure 3.3. The proposed framework consists of

two input/ output modules and three functional modules. The input to the system

is the multi-phase contrast enhanced CT scan with the query FLL labeled on one

phase using an automatic FLL detection method presented in [Chi et al. 2013a].

The output are the visually similar reference radiological cases. The functional

modules perform multi-phase image registration, focal lesion representation and

similarity assessment. Non-rigid B-spline based registration [Yushkevich et al.

2006] is employed for alignment of the FLL in the four phases of the CT scan.

The FLL is quantitatively represented using 3D spatio-temporal features extracted

from various regions within the FLL volume of interest (VOI). A FLL database

is constructed using the resulting feature vectors and the corresponding clinical

diagnosis. A L2-norm similarity measure between feature vectors of the query
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Figure 3.3: Outline of the proposed FLL content-based retrieval framework.

lesion and lesions in the database is used for retrieval. The retrieved results are

ranked on the basis of similarity score and presented as evidential support to the

radiologists.

3.4.1 Image Database

Institutional review board approval was obtained for retrospective analysis of 4-

phase contrast-enhanced CT images of 30 de-identified patients. CT scans were

acquired using a 64-detector SOMATOM sensation scanner (Siemens Medical So-

lutions, Forchheim, Germany) via a standard 4-phase contrast-enhanced imaging

protocol with a slice collimation of 0.6 mm, a matrix of 512 × 512 pixels and an in-

plane resolution of 0.59 − 0.78 mm. The raw data was reconstructed at an isotropic

resolution of 0.6× 0.6× 0.6 mm3. The evaluation database was constructed using 44
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confirmed lesions identified in the 30 patients. The 44 lesions consisted of five types

of lesions: cyst, HEM, FNH, METS, and HCC. There were 14 cases of cyst, 10 cases

of HEM, 5 cases of FNH, 11 cases of METS and 4 cases of HCC in the 44 confirmed

lesions. One representative lesion was identified in each patient for analysis. The

pathology type of the lesions were confirmed based on clinical features, CT scans,

data from other imaging modalities and biopsy, wherever needed.

3.4.2 Focal Liver Lesion Identification

We use a hybrid generative-discriminative method proposed in [Chi et al. 2013a] to

detect FLLs in a 3D image. The method first uses a generative model to represent

non-lesion components such as the healthy liver parenchyma and the enhanced

liver vasculature. The candidate FLLs are then identified within the liver vol-

ume by eliminating these non-lesion areas. False positives among the identified

candidate FLLs are then suppressed using a discriminative approach that uses

a lesion-likelihood measure comprising of three shape-based features: spherical

symmetry, compactness and size. All the detected FLLs are presented to an expert

who then selects one for further processing.

3.4.3 4-phase Lesion Alignment

As mentioned in Section 3.2, temporal evolution of FLL over different phases carry

rich diagnostic information. However, FLLs do not appear visually distinct in

all the phases hence making their identification difficult in all phases. A FLL is

typically detected in the phase in which it shows highest contrast with respect to the

liver parenchyma and is localized in the other phases using a non-linear B-spline
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Figure 3.4: This figure shows a central calcification inside a HEM. To capture the
spatial tissue characteristics we partition the lesion into three concentric discs.

registration [Yushkevich et al. 2006].

3.4.4 3D Spatio-Temporal Feature Design and Extraction

Visual patterns generated by intrusion of the contrast agent into the tumor volume

over time is the primary tool used for tumor differentiation in clinical practice.

Spatial visual characteristics such as ring enhancement, nodule-within-a-nodule

enhancement, pseduocapsule, true and pseudo central scars, peripheral washout

are fundamental to identifying specific focal lesions [Elsayes et al. 2005]. Inspired

from these features used in clinical decision making, we design spatio-temporal

features to model the tumor by dividing the VOI into three volumetric discs and

extracting features from these discs over the four phases. An example of volumetric

partitioning is shown in Figure 3.4. The innermost disc, Disc1, captures central

enhancement characteristics caused by structures such as the central scar, fibrosis,

calcification, necrosis, if any. The intermediate disc, Disc2, models the tumor tissue
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characteristics and the outermost disc, Disc3 is designed to represent features and

the enhancement pattern of the tumor boundary.

We use a standard distance transformation technique based on Euclidean dis-

tance to partition the tumor VOI [Rosenfeld and Pfaltz 1996]. Distance transfor-

mation converts a binary volume into a gray scale volume. The binary volume

in our case is the tumor VOI where voxels inside the tumor form the foreground

and the rest comprise the background. The tumor is assumed to be segmented

either manually or using existing tumor segmentation methods [Park et al. 2005]

and [Massoptier and Casciaro 2008]. Distance transformation of this binary volume

results in a gray scale volume where each voxel of the gray scale volume represents

the distance of that voxel from the closest background voxel in the binary volume.

Voxels in the gray scale volume are then grouped into three discs based on these

distance values. Typically a tumor is clearly visible in at least one of the four

phases. Segmentation is applied on the phase in which the tumor is most clearly

visible. Since all the four phases are registered, the same segmentation can be used

to delineate the tumor in other phases.

An additional benefit of tumor partitioning is the computational speed up. Im-

age features from each partition can now be computed in parallel. In effect the

tumor is now partitioned into three smaller sub-volumes and the computation

time is governed by the largest of these sub-volumes instead of the entire tumor.

In Section 3.5.2 we discuss in detail the speed up and enhancement in retrieval

performance achieved by tumor partitioning. Large computation time is the pri-

mary reason why 3D feature-based retrieval systems do not find use in the clinical

routine. As a measure to accelerate tumor processing time, instead of extracting

features from all voxels within the tumor partitions we perform a uniform sub-
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sampling of the voxels and use only the selected samples for feature computation.

In Section 3.5.3 we provide a detailed analysis of how the processing time and

retrieval performance vary with various amounts of sub-sampling.

Post partitioning various features such as those based on shape, user-supplied

semantics, texture, and intensity can be extracted from the partitions to model the

tumor. Shape features are important in modeling liver lesions. Slowly growing

benign lesions are often well circumscribed or encapsulated, while rapidly growing

malignant lesions tend to have an indistinct irregular shape and are not encapsu-

lated. Shape features are good at discriminating benign lesions form malignant

lesions. In this work we aim to characterize five types of FLLs that include three

types of benign lesions and two types of malignant lesions. Shape features have in-

sufficient power to differentiate among benign lesions, or among malignant lesions

[15]. In addition, FLLs are in general most distinctively observed only in one of the

phases, thus, accurate shape features can only be extracted from a single-phase.

They are basically single-phase features. Since we focus on features that have spa-

tial and temporal characteristics that evolve over the four phases of the CT scan,

we do not include shape features in our work. User-supplied semantic labels are

subjective and often unstructured description of the tumor characteristics that have

high inter-user variability. Hence, we do not want to use semantic features. Image

texture is widely used in the literature to model tumor tissues. Methods that model

texture are broadly categorized into statistical and structural approaches. Statisti-

cal approaches such as histogram of pixel gray levels and gray level co-occurrence

have been found to work best with images that have stochastic micro-textures as

against the structural approaches of textons, wavelet transforms and Gabor filters

which compute weighted mean of pixel neighborhoods and hence eliminate finer
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textural details [Qian et al. 2011] and [Maenpaa and Pietikainen 2005]. In this work,

we use density and gray level co-occurrence-based texture features derived from

the volumetric partitions and track their temporal evolution over the four phases.

More specifically, we define four 3D feature vectors to model a tumor as defined

below.

Density Feature

The density feature, F1, represents the ratio of average density inside the discs to

the average density of liver parenchyma. F1 measures lesion enhancement with

respect to the surrounding liver tissues and is defined as:

F1 = {DNC,DART,DPV,DDL
}, (3.1)

where DNC = {dNC
Disc1

/dNC
liver, d

NC
Disc2

/dNC
liver, d

NC
Disc3

/dNC
liver}. The variable dNC

Disci
measures the

average density inside Disci in the NC phase and the variable dNC
liver is the average

density of the healthy liver tissue in the NC phase. Variables DART, DPV and DDL

are defined in a similar fashion. The resulting density features obtained from all

phases are arranged into a 12-dimensional density feature vector representing the

FLL. The density feature aims to capture contrast enhancement and washout. For

example, if a lesion has |DART
| > |DNC

| and |DPV
| < |DNC

|, then the lesion is enhanced

in the ART phase due to contrast propagation and has a washout in the PV phase.
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Temporal Density Feature

The temporal density feature, F2, measures temporal enhancement of the lesion in

ART, PV and DL phases with respect to the NC phase. It is defined as:

F2 = {TDART/NC,TDPV/NC,TDDL/NC
}, (3.2)

where TDART/NC = {tdART/NC
Disc1

, tdART/NC
Disc2

, tdART/NC
Disc3

} and for i = 1, 2, 3

tdART/NC
Disci

=
dART

Disci
− dNC

Disci

dNC
Disci

, (3.3)

tdPV/NC
Disci

=
dPV

Disci
− dNC

Disci

dNC
Disci

, (3.4)

tdDL/NC
Disci

=
dDL

Disci
− dNC

Disci

dNC
Disci

. (3.5)

Similar definitions follow for TDPV/NC and TDDL/NC. Temporal density features

from the ART, PV and DL phases are encoded into a 9-dimensional feature vector

to model tumor temporal enhancement.

Texture Feature

We use a 3D gray level co-occurrence matrix (GLCM) to quantify the gray tone

distribution in the tumor sub-volumes. GLCM is an estimation of the joint proba-

bility distribution of a pair of gray level voxels. An element G(θ,d)(i, j) of the GLCM

matrix is the probability of the occurrence of gray levels i and j at distance of d

from each other along the direction θ. The variables i and j can vary from 1 to N,

where N is the number of gray levels in the volume. In 3D, θ can take 26 values
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resulting from linking a voxel to each of its 26 nearest neighbors. Since directions

that are 180◦ apart result in the same co-occurrence matrix, we only consider 13

unique directions. Given an offset d, we compute GLCM over all 13 directions and

use the average to make the texture rotation invariant. We vary d and choose the

value that gives the best retrieval results as described in Section 3.5.

Six texture coefficients: energy, entropy, inverse difference moment, inertia,

cluster shade and correlation as defined in [Haralick et al. 1973] are derived from

the rotation invariant GLCM. The texture feature, F3, is composed as follows:

F3 = {TART,TPV,TDL
}, (3.6)

where TART = {TART
Disc1

,TART
Disc2

,TART
Disc3
} represents the texture features derived from the

three discs in the ART phase. TART
Disci

= {tART
1Disci

, . . . , tART
6Disci
} where tART

kDisci
’s, k = {1, . . . , 6},

are computed as defined in Table 3.1 from the GLCM of Disci in the ART phase.

Similar definition applies for TPV and TDL. The resulting texture coefficients from

nine discs in ART, PV and DL phases are arranged into a 54-dimensional feature

vector which encodes the tumor texture.

Temporal Texture Feature

Similar lesions are known to show similar enhancement patterns. We aim to

quantify this by defining temporal texture, F4, as the normalized difference in

texture features at the three enhancement phases ART, PV and DL with respect to

the NC phase. F4 is defined as:

F4 = {TTART,TTPV,TTDL
}, (3.7)
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Table 3.1: This table describes the texture coefficients derived from the GLCM
matrix. The term g(i, j) represents the joint probability density of the gray level
pair (i, j).

Texture Coefficient Expression and Qualitative Analysis

Energy t1 =
∑N−1

i=0
∑N−1

j=0 g(i, j)2

Energy quantifies the repetition of gray

level pairs in an image.

Entropy t2 =
∑N−1

i=0
∑N−1

j=0 g(i, j)log2(g(i, j))

Entropy represents the randomness in the image.

Inverse Difference t3 =
∑N−1

i=0
∑N−1

j=0
1

1+(i− j)2 g(i, j)

Moment Inverse difference moment measures the

local homogeneity in the image.

Inertia t4 =
∑N−1

i=0
∑N−1

j=0 (i − j)2g(i, j)

Inertia gauges local variations in an image.

Cluster Shade t5 =
∑N−1

i=0
∑N−1

j=0 (i + j − µi − µ j)3g(i, j)

where, µi =
∑N−1

i=0 i
∑N−1

j=0 g(i, j),

and µ j =
∑N−1

i=0 j
∑N−1

j=0 g(i, j).

Cluster shade quantifies perceptual

uniformity and proximity.

Correlation t6 =
∑N−1

i=0
∑N−1

j=0
(i−µi)( j−µ j)g(i, j)

σiσ j

where, σi =
∑N−1

i=0 (i − µi)2 ∑N−1
j=0 g(i, j),

and σ j =
∑N−1

j=0 ( j − µ j)2 ∑N−1
i=0 g(i, j).

Correlation assesses the linearity of relationship

between various gray level pixel pairs.

where, TTART = {TTART
Disc1

,TTART
Disc2

,TTART
Disc3
} is the temporal texture in the ART phase

formulated as derivative of the six texture coefficients in each disc in the ART

phase; TTART
Disci

= {ttART
1Disci

, . . . , ttART
6Disci
}, i = {1, 2, 3}. Derivative of each texture coefficient
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is defined as:

ttART
kDisci

=

tART
kDisci
− median
P∈{ART,PV,DL}

tPkDisci

max
P∈{ART,PV,DL}

tPkDisci
− min
P∈{ART,PV,DL}

tPkDisci

(3.8)

for k = 1, . . . , 6. Texture derivative in PV and DL phases, TTPV and TTDL respec-

tively, are formulated analogously with the individual texture coefficient deriva-

tives defined as:

ttPV
kDisci

=

tPV
kDisci
− median
P∈{ART,PV,DL}

tPkDisci

max
P∈{ART,PV,DL}

tPkDisci
− min
P∈{ART,PV,DL}

tPkDisci

, (3.9)

ttDL
kDisci

=

tDL
kDisci
− median
P∈{ART,PV,DL}

tPkDisci

max
P∈{ART,PV,DL}

tPkDisci
− min
P∈{ART,PV,DL}

tPkDisci

. (3.10)

Texture derivatives computed for the three enhanced phases are organized into a 54-

dimensional temporal texture feature vector that represents the textural evolution

of the tumor. The four feature vectors F1, F2, F3 and F4 form the FLL model.

Since we use GLCM-based texture features in this work, it turns out that we can

further improve tumor processing speed by reducing the number of gray levels

used while populating the GLCM matrix. Each element (i, j) of the GLCM matrix

measures the probability of joint occurrence of gray level pairs i and j. Computing

3D GLCM in 13 directions using the original CT values is highly expensive both

computationally and in terms of memory requirement. We quantize down the

original CT values to fewer distinct gray levels in order to reduce the size and

computation time of the GLCM. Optimum number of gray levels can be determined

experimentally. Section 3.5 provides analysis of gain in computation time versus

retrieval performance for various gray level counts.
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3.4.5 Similarity Assessment and Evidence Rendering

Once the FLL feature vectors are constructed, similarity between a query FLL and

the model FLLs in the database can be measured using a L2 distance between the

respective feature vectors. Distance between two lesions FLL1 and FLL2 in L2 is

defined as:

DL2(FLL1,FLL2) =

4∑
i=1

wi||Fi
FLL1
− Fi

FLL2
||L2 . (3.11)

The term Fi
FLL1

represents the ith feature vector of FLL1 where i iterates over den-

sity, temporal density, texture and temporal texture feature vectors and wi is the

respective weight. Weight selection is elaborated in Section 3.5.

Model FLLs in the database are sorted in increasing order of their distance to

the query FLL and the closest matching FLLs are rendered to the radiologist. It is

also possible to predict the pathological type of the query FLL using BEP. BEP is

defined for each query as the percentage of correct retrievals with respect to the

query FLL’s class within the top 2C results where C is the size of the query FLL’s

class [Manjunath 2002]. The query FLL is predicted to belong to the class that has

the highest BEP score as follows:

Query ⊆ Ci

if, BEP(Ci) = max
k=1,2,...,5

(BEP(Ck)) (3.12)

where Ck represents the kth class of FLL pathology in the database. The term

BEP(Ci) represents the BEP score when query FLL is assumed to belong to class

Ci. The distance of the query FLL to a class Ck can be computed using average

distance to model FLLs belonging to class Ck retrieved within the top 2|Ck| results
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as formulated below:

Distance (Ck) =
1

NCk

NCk∑
i=1

DL2(FLLQuery,FLLi), (3.13)

where NCk is the number of FLLs belonging to class Ck retrieved in the top 2|Ck|

results.

Although a CBIR system can predict the pathological type of an unknown lesion,

the reason why CBIR systems find high acceptance in the clinical routine is their

capability of providing evidential support in favor and also against its prediction.

It is important for radiologists to not only look at examples of similar lesions from

the same pathology type but also refer to visually similar lesions belonging to a

different class of pathology for an informed diagnosis. For most queries, the CBIR

system renders more than one type of pathology in the top retrieved results thereby

making the radiologist aware of possible differential diagnosis.

3.5 Experiments and Results

The proposed CBIR framework is evaluated on a database of 44 FLLs identified

in 30 patients and comprising of 5 pathological types. One representative FLL is

chosen from each patient for analysis. Precision-recall curve and BEP score are

used to evaluate the retrieval performance of the proposed framework. Precision

is defined as the ratio of retrieved lesions that belong to the query class with respect

to the total number of lesions retrieved and recall is defined as the ratio of number

of retrieved lesions that belong to the query class with respect to all model lesions in

the database that belong to the query class. Leave-one-out cross validation scheme
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Figure 3.5: This figure plots the system BEP score for various values of offsets.
The offset, d, is the distance between gray level pairs used for computing GLCM
entries. The BEP score is observed to be higher for higher values of d.

is used to compute the precision-recall curves and the BEP scores.

3.5.1 Parameter Optimization

In this section we describe selection of offset (distance between gray level pairs for

GLCM computation) and feature weights (for inter-lesion comparison) respectively.

Offset

We compare the retrieval performance at various values of offsets, d, by computing

texture and temporal texture features from GLCM at d = 1, 2, . . . , 10, and measuring

the corresponding system BEP scores (Figure 3.5). Higher offsets produce better

results, albeit, using a smaller subset of the dataset. Large offsets cannot be used to
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Figure 3.6: This plot shows the variation in tumor volume (in cm3) for the five
tumor classes in the database.

model small tumors. In Figure 3.6 we plot tumor size distribution for the five classes

of lesions in our database. From experiments we observe that a maximum offset

of four is able to model all the tumors in our database and hence for subsequent

analysis we set d = 4.

Feature Weights

Similarity between two lesions is assessed using a weighted L2 difference between

the respective feature vectors as formulated in Equation (3.11). To compute the

optimum weights, we start with identical weights for density, temporal density,

texture and temporal texture features and perform a systematic greedy search for

the weights that maximize the total system BEP score. It is found that a weight

vector of [0.3 0.3 0.2 0.2] generates the best results. Figure 3.7 compares precision-
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Figure 3.7: This figure plots precision versus recall curves for different feature
weight vectors. Precision-recall curves for optimal and equal weight vectors are
observed to be close.

recall curves for various weight vectors including the optimal and equal weight

vectors.

3.5.2 Tumor Partitioning

As mentioned in Section 3.4, we partition the tumor into discs and extract features

from each disc to capture the spatio-temporal characteristics of the tumor. Figure 3.8

shows the gain in retrieval performance obtained by partitioning the tumor into

three discs against the case when tumors are represented by features extracted from

the whole VOI. Retrieval performance post-partitioning is clearly superior to the

non-partitioned case. Further, experimentally we found that an exact segmentation

of the tumor is not needed. This is because the features are averaged over all the
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Figure 3.8: This figure compares precision-recall curves when the lesions in the
database are volumetrically partitioned into three sub-volumes versus when they
are not. The retrieval performance obtained by non-partitioned lesions is found to
be inferior to that obtained by partitioned lesion representation.

voxels inside the respective discs.

3.5.3 Retrieval Performance and Processing Speed

Figure 3.8 plots the retrieval performance of the proposed retrieval framework in

terms of precision and recall. The system’s precision remains above 0.85 till a recall

of 0.6. The BEP score for the five lesion pathologies is tabulated in Table 3.2. The

global mean score of 82.6% demonstrates good discriminatory properties of the

3D spatio-temporal features. A more detailed examination of the results shows

excellent BEP scores, between 87% and 100%, for cyst, METS and HCC. This can be
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Table 3.2: This table enlists the Bull’s Eye Percentage for various lesion classes.

Lesion Class Bull’s Eye Percentage Score

Cyst 0.87

HEM 0.62

FNH 0.70

METS 0.94

HCC 1.00

contributed to the markedly different temporal enhancement of these three lesion

types. HEM and FNH, however, report lower BEP scores. Disc3, which captures

the peripheral enhancement, tends to show similar enhancement in ART phase for

both HEM and FNH. Further, Disc1 also shows similar temporal washout in the

DL phase for both HEM and FNH due to the occasional presence of a central scar

in FNH. This may explain why lower scores are obtained for HEM and FNH. FNH

is difficult to detect and it is well known clinically that they are called “stealth

lesions” if the ART phase enhancement is not well demonstrated.

Figure 3.9 shows the top retrievals for five query lesions, one from each lesion

class. Experiments show that for 98% query lesions, at least one lesion of the same

pathological type as the query lesion is rendered in the top two retrieval results.
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Figure 3.9: This figure shows the top retrieval results for five query lesions, one
from each of the five lesion classes. 66
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Figure 3.10: This figure plots the BEP scores and the processing times for various
amounts of volumetric sub-sampling.

Low query processing time is critical to make a system clinically viable in

addition to high retrieval accuracy. Various characteristics of our feature extraction

framework contribute to accelerating query processing time. Tumor partitioning

is the first contributor to computation acceleration. By partitioning the tumor into

smaller sub-volumes we can process all the sub-volumes concurrently in a multi-

core computing framework. This leads to a reduction in the processing time by

one third compared to the case when the tumor is processed as a whole.

Further, we perform sub-sampling of the sub-volumes instead of using each

voxel for feature computation. Figure 3.10 shows how the retrieval performance in

terms of system BEP score and the total feature computation time for all lesions in

the database vary with varying amounts of sub-sampling. The computation time is

measured using MATLAB R2011b without any GPU acceleration in an Intel Xeon
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Figure 3.11: This figure plots the BEP scores and the processing times for various
counts of distinct gray levels.

2.4 GHz 4 core processor with 6 GB RAM. We observe that there is no considerable

increase in BEP score with additional sampling, however, gain in speed up is

substantial when lower number of voxels are sampled. We use 25% sub-sampling

to compute features.

Use of GLCM for texture computation gives us another parameter to gain

additional speed up, namely, the number of distinct gray levels used for GLCM

computation. Larger the number of distinct gray levels, bigger is the GLCM matrix

and hence slower is the computation. We quantize down the original CT gray levels

to a lower number of distinct values and study its effect on the computation time

and the retrieval accuracy. Figure 3.11 plots the system BEP score versus number of

gray levels used for feature computation. Total time taken to compute 3D features

for all lesions in the database is also plotted against the number of gray levels. As
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Table 3.3: This table compares the processing times for some FLLs when tumor
partitioning, volumetric sub-sampling and gray level quantization are used to ac-
celerate feature computation versus when no acceleration is used. For acceleration
we use 25% sub-sampling and 60 gray levels.

FLL Size Processing time with Processing time without

(in cm3) acceleration (in min.) without acceleration (in min.)

69.6 0.08 2.41

133.6 0.19 5.34

184.1 0.26 7.66

286.4 0.33 8.95

328.1 0.46 12.84

expected, higher number of gray levels increases the computation time, however,

the gain in performance saturates after certain gray levels. We use 60 gray levels

for feature extraction.

Combining acceleration due to tumor partitioning, volumetric sub-sampling

and gray level quantization, Table 3.3 compares the total processing time for some

FLLs with and without computation acceleration. On average the computation

time with acceleration is more than 28 times faster than when no acceleration is

used.

3.6 Discussion

3.6.1 System Comparison

In this chapter we propose a retrieval framework for FLL characterization using 3D

image-based spatio-temporal features. No FLL CBIR systems based on 3D features

have been reported in the literature. The closest related works have studied lesion
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retrieval based on 2D features derived from representative slices of single or multi-

phase CT images [Yu et al. 2012], [Yang et al. 2012], [Chi et al. 2013b], [Costa

et al. 2011],and [Napel et al. 2010]. In the following paragraphs we compare the

proposed system with these prior studies in detail.

Yu et al. in [Yu et al. 2012] propose retrieval of three types of FLLs–cyst, HEM,

and HCC–using BoW and 2D image-based features. The lesions are spatially

partitioned and BoW histograms are computed for each partition. The visual vo-

cabulary for BoW histogram is constructed using image patches of the training

lesions without normalization. Additionally 93 image-based global features are

constructed from the un-partitioned tumor region of interest based on intensity,

GLCM, Gabor filter and tumor shape. The lesion is represented by averaging spa-

tial BoW and global image-based features across multiple phases. A mean average

retrieval precision of 88% is reported. In an extension to this work, the authors

in [Yang et al. 2012] eliminate lesion partitioning and use distance metric learn-

ing methods to compute similarity between global BoW histograms and report an

average precision of above 90% when evaluated on a database of cyst, HEM and

hepatomas. Processing time, however, is not reported. In [Yu et al. 2012] lesion

spatial-partitioning is used, though only to construct the BoW histograms. For

other image-based features no spatial information is preserved. Further, averaging

BoW and image features over multiple phases leads to loss of temporal information.

In [Yang et al. 2012] both spatial and temporal information is neglected for BoW

and image features. Pathologically, different lesions may appear visually similar

in some phases. By combining features from various phases, a good correspon-

dence between lesions in sequential phases is not guaranteed. Similar sequential

evolution of two lesions is essential for them to be categorized to the same patho-
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logical type. Further, from experiments we observe that computing GLCM texture

features over the whole tumor without acceleration is slow. Research shows that

computing texture using Gabor filter is even slower than GLCM [Qian et al. 2011].

We propose a much simpler modeling of tumors using density and only six GLCM-

based texture coefficients that preserve both spatial and temporal characteristics

of the tumor and are also faster to compute as against the elaborate modeling of

tumors proposed in [Yu et al. 2012] and [Yang et al. 2012] using 93 features and

BoW learning. When evaluated using cyst, HEM and HCC, our system achieves a

higher mean average precision of 92.4%.

In [Chi et al. 2013b], the authors design a FLL retrieval framework using GLCM-

based 2D temporal features derived from multi-phase CT images. The features are,

however, derived by averaging density and texture over a tumor bounding box.

The system is tested on a database of 69 FLLs comprising of six pathological types.

A BEP score of 78% is obtained. It is reported that for 90% query lesions, the

processing time is more than 10 minutes. 2D GLCM captures the joint probabil-

ity distribution of gray level pairs in only four directions: 0◦,45◦,90◦, and 135◦.

However, a 3D GLCM represents gray level distribution in 13 directions along

the 13 neighbors of a voxel. Averaging 2D features over multiple slices does not

accurately approximate the 3D texture. Further, by averaging features over the

whole bounding box, the authors dismiss the spatial enhancement characteristics

of the tumor. We use 3D regionally-partitioned temporal features in our system

and obtain a superior precision-recall curve and a higher system BEP score than

in [Chi et al. 2013b] with more than 20 times faster processing speed.

A CBIR system is proposed in [Costa et al. 2011] to differentiate cyst from

METS using radiological semantic labels and computer-generated features based
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on density histogram and its moments. The density histogram and its moments

are obtained from three orthogonal 2D cuts of a single-phase scan volume. A

random forest classifier is used to learn a discriminant distance between various

FLL attributes. The classification performance is measured using a receiver op-

erating characteristic curve. The framework proposed in [Costa et al. 2011] uses

only global density-based features derived from the lesion area and the whole liver

in a single contrast phase. Moments are well-known quantitative measures of the

global shape of a set of points. FLL shapes, however, are rarely used to differentiate

different lesions in the clinical routine. This may explain why inferior results are

obtained using moments as the discriminating features of the FLLs.

In [Napel et al. 2010], the authors propose retrieval of cyst, METS and HEM

using only a single image in the PV phase on a database of 30 images. Computer-

generated image-based features and higher level radiological semantic labels are

used to represent a FLL. Visual similarity between each pair of lesions is adjudged

by two senior radiologists based on texture, boundary shape and boundary sharp-

ness. The similarity measure between two FLLs is defined as 3/2/1 for very similar,

somewhat similar and not similar pairs respectively. The system is evaluated in

terms of precision and recall on how well the system retrieves visually similar

lesions in comparison to radiology experts. A mean precision greater than 90% is

achieved. The retrieval framework proposed in [Napel et al. 2010] is optimized and

characterized for retrieving visually similar lesions as perceived by expert radiolo-

gists as opposed to retrieving lesions belonging to the same lesion class. Retrieval

performance in terms of FLL characterization is not reported which makes a for-

mal performance comparison with our system difficult. Further, only one slice in

the PV phase, selected manually, is used for feature computation. Higher level
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Figure 3.12: This figure shows some cases where the top retrieved lesion does not
belong to the query lesion class.

radiological annotations that are inherently known to be subjective and widely

user-dependent are used to bridge the performance gap.

3.6.2 System Performance

For most cases the proposed CBIR system ranks lesions belonging to the same

pathological type as the query lesion higher than lesions from other pathological

groups. However, in certain cases lesions from a different lesion class may be

ranked higher as shown in Figure 3.12. This is due to variation in visual appearance

among lesions belonging to the same pathological group. In clinical practice other

higher level semantic information and clinical history are used to distinguish such
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Figure 3.13: This plot shows the variation in system BEP score with respect to the
database size.

cases. In this work we do not use any semantic information. However, in future

we would like to explore other features that are more efficient in distinguishing

visually similar lesions from different pathological classes.

3.6.3 Sensitivity to Database Size

In order to test the sensitivity of the proposed CBIR framework with respect to the

database size, we test the system performance in terms of the BEP score versus the

number of lesions in the database. Since our database is small, we want to check

whether the system has passed the knee point and the improvement in performance

curves have slowed down with respect to the database size. Figure 3.13 shows the

variation in the BEP score with respect to the number of lesions in the database.

From the figure we observe that there is no considerable improvement in the
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retrieval performance if we have a database size of larger than 40 lesions.

3.7 Conclusion

In this chapter we propose a retrieval framework for FLLs using a simple tu-

mor model based on 3D spatio-temporal features derived from 4-phase contrast-

enhanced CT images. Acceleration techniques are employed to speed up the

computationally heavy 3D feature extraction process known to be the primary

bottleneck in integration of 3D feature-based retrieval systems into the clinical rou-

tine. The proposed system is evaluated in terms of precision-recall and system BEP

score on a database of 44 lesions comprising of five pathological categories. The

proposed system performs better and faster than existing 2D feature-based FLL

CBIR systems.

In future work, we would like to conduct a clinical validation of the proposed

system and evaluate the system’s performance on a larger database that includes

more FLL pathologies. We acknowledge that the database used in this work, though

at par with some of the existing studies [Chi et al. 2013b] and [Napel et al. 2010], is

small. CBIR systems are known to improve radiological diagnostic accuracy [Chi

et al. 2013b], however, high processing times have rendered their integration into

the clinical routine impractical. By keeping the query processing time low and

including more pathological cases we hope to be able to integrate the proposed

system as a diagnostic assistant into the routine radiological practices.
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Chapter 4

Phenotype Detection in Mutant Mice

In addition to reporting and diagnosis, the third application we look at for out-

dated methodologies is analysis. Image analysis in certain biomedical research

applications still rely on microscopic evaluation, an example of which is gene-to-

physiology mapping. Completion of the human genome project brought compre-

hension of location and sequence of each human gene. Scientists now want to map

these individual genes to their corresponding physiological functionalities. Mouse

is chosen as the principal study model for this gene mapping due to its 99% genetic

similarity with human [Collins et al. 2007] and [Consortium 2002].

4.1 Overview

Gene targeting technology is being actively employed by many international orga-

nizations like Knockout Mouse Project (KOMP), the EUropean Conditional Mouse

Mutagenesis Program (EUCOMM), North American Conditional Mouse Mutagen-

esis Project (NorCOMM), and the Collaborative Cross to generate transgenic mouse
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lines by knocking out each of the approximately 25, 000 mouse genes (i.e., system-

atically removing each gene one by one and growing the mouse). High-throughput

phenotypic assessment systems are necessary to systematically analyze and inter-

pret the genetic information generated by these large-scale mutagenesis programs.

A significant proportion of the generated mice strains are embryonic lethal resulting

in the shift towards embryo-centric phenotyping.

Current embryo phenomic analysis largely relies on microscopic histological

examinations which is not only labor intensive, highly time consuming and prone to

distortion induced during sectioning but also has limited anatomical coverage. 3D

non-destructive volumetric imaging has been proposed as the next technology for

embryonic morphological analysis [Nieman et al. 2011]. Given that each individual

3D image can be very large, comparison of an ensemble of images for subtle

differences is not practical by traditional microscopic observation. Further, if more

than one mutant at multiple time points and under various experimental conditions

is to be evaluated, then the task of systematic anatomical analysis can quickly

become prohibitive. An automated protocol for the initial evaluation of mouse

phenotypes would clearly be beneficial in identification of anatomical differences

consistent over a mutant population.

4.2 Related Work

Worldwide efforts are underway to perform systematic anatomical analysis of

the 3D mouse data. Coarse phenotypes where organs are absent or grossly mal-

formed are easily detected without computer-aided mechanisms [Schneider and

Bhattacharya 2004]. The research community mainly focusses on semi-automatic
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differential volumetric analysis of morphological structures between normal and

gene knockout strains using average images representing the normal (also called

wild-type) and transgenic mice. In [Zamyadi et al. 2010], the authors use high

resolution magnetic resonance imaging, non-linear image alignment and statistical

analysis techniques to perform volumetric comparison of various organs including

heart, lung, brain and liver of two transgenic mice strains. In a more exhaustive vol-

umetric study the authors analyze volumetric variation of 48 anatomical structures

between two genetically engineered mice strains using micro Computed Tomogra-

phy (µCT) imaging, 3D mouse atlas and manual segmentation [Wong et al. 2012].

[Cleary et al. 2011] investigates volumetric difference of various brain structures in

two mice strains using magnetic resonance and 3D atlas.

Although evaluation based on average image may be beneficial for an initial

examination, phenotypes that are randomized in position and texture such as the

intestines and developing trabeculae of the heart [Nieman et al. 2011] or subtle

structural organ failures without large volume changes cannot be characterized

using this technique. Another body of work focusses on automatic/semi-automatic

detection of known abnormalities via segmentation [Hadjidemetriou et al. 2009]

and [Norris et al. 2013] or by better data visualization resulting from enhanced

tissue contrast [Degenhardt et al. 2010] and [Cleary et al. 2009]. Segmentation

techniques fail if the defect characteristics are unknown or if the anatomy is hard to

label such as bone joints. Enhanced visualization, while useful, still requires long

expert hours to identify phenotypes, possibly multiple, in each of the thousands of

mutant populations.

In this chapter, we present a generalized defect detection framework that auto-

matically computes candidate phenotypic areas without using atlas, segmentation
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Figure 4.1: Defect detection consists of two steps. A mean of the normal mouse
group is computed in the first step. In the second step, mutant group is registered
to the normal mean and the resulting deformations are analyzed to detect defects.

or any defect-specific features. Instead, our approach uses deformation fields that

are widely used to study anatomical variations [Zamyadi et al. 2010], [Wong et al.

2012], [Xie et al. 2010], and [Nieman et al. 2006]. We extract various features from

deformation fields obtained by registering mutant mice to a normal mean and

combine them to detect coarse, subtle as well as randomized defects (Figure 4.1).

Statistical characteristics of deformation fields have been previously studied to de-

tect gross defects in mice brain using multi-modality images [Nieman et al. 2006].

Our approach, however, targets a single imaging modality and successfully handles

both subtle as well as significantly differing anatomy.

The rest of the chapter is organized as follows. In Section 4.3 we describe in

detail the techniques used for automated defect identification. Section 4.4 shows

some results obtained by our defect detection framework. Section 4.5 discusses the

merits and de-merits of the proposed approach and concludes the chapter.
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4.3 Methods

4.3.1 Sample Preparation

This study is performed using C57BL/10 mutant mice generated at the National

Institute of Genetics, Japan. Post organogenesis, growth and development in

the embryo starts at ∼14.0 days post-coitum (dpc). Image registration cannot be

applied at stages earlier than this due to unformed or absent organs. Further, at a

relatively mature stage such as 15.5 dpc accurate registration of abdomen is difficult

to achieve due to variation in intestinal position and crowding within the abdominal

cavity [Wong et al. 2012]. Therefore, embryo samples at 14.5 dpc were collected

for this study. A total of 14 embryos were used out of which 3 were normal and 11

had chromosomal aberrations. Out of the 11 mutant embryos, 3 were homozyogote

generated by inbreeding C57BL/10 mice and 8 were heterozygote obtained by cross

breeding C57BL/10 and normal littermates. The samples were washed in phosphate

buffered saline and fixed in 4% paraformaldehyde until imaging. Before scanning,

embryos were soaked in 1 : 3 mixture of lugol solution and double distilled water.

Scan was carried out with the embryos fitted in 1.5 milliliters eppendorf tube fixed

using wet paper.

4.3.2 Imaging Protocol

Short scan times and excellent soft tissue contrast obtained by tissue staining [De-

genhardt et al. 2010] has made µCT a popular imaging technique for phenotyping

studies. Embryo samples used in this study were imaged on a Scanxmate-E090S

3D µCT system (Comscantecno, Japan). Keeping the X-ray source at 60kVp and
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(a) (b) (c) (d) (e)

Figure 4.2: This figure illustrates the steps in the computation of normal mean
image. (a) Acquisition volume, (b) extracted normalized embryo images, (c)-(e)
consensus average images at rigid, affine and B-Spline registration stages respec-
tively.

130mA, each specimen was rotated 360◦ in steps of 0.36◦ generating 1000 projections

of 640 × 480 pixels. The 3D µCT data was reconstructed at an isotropic resolution

of 9.5 × 9.5 × 9.5 µm3.

4.3.3 Normal Mouse Consensus Average Image

The proposed defect detection algorithm can be broadly broken down to two

major steps. The first step comprises of constructing a consensus average for

the normal mouse population. As the second step, mutant mouse image is non-

linearly registered to the normal mouse average and the resulting deformation field

is analyzed to detect the defective areas (Figure 4.1). This section details the first

step.

For computing the normal consensus average, embryo pixels are extracted

from the acquisition volumes in an automated fashion using simple operations like

Gaussian mixture modeling, thresholding and mathematical morphology such as

selection of connected components and erosion/ dilation. We model the voxels of

the acquisition volume using three Gaussian distributions. The three distributions
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represent the voxels belonging to gel/air, minimum CT value inside the mouse area

and the maximum CT value inside the mouse area. The Gaussian distribution that

has its peak at the minimum value correspond to the gel/air. By thresholding the

acquisition volume using the mean of this Gaussian distribution, we extract out

the mouse area. Figure 4.2(a) and (b) show examples of an acquisition volume

and the extracted embryo respectively. The intensity ranges of the embryos are

then normalized prior to registration. One embryo is selected and taken as the

reference, with all further processing performed in its image space. The others

are first spatially normalized using a rigid registration algorithm consisting of six

global degrees of freedom (DOF): three translation and three rotation parameters,

in order to correct the differing orientations of each embryo in the normalized

images. All the resulting images are then averaged into a new blurry reference

image (Figure 4.2(c)). This initial registration step, due to the rigid transformation,

does not affect the geometry of the subjects [Cleary et al. 2011]. Thus the average

image is not biased towards the selected embryo’s geometry. The embryos are then

aligned using affine registration (12 global DOF: three translations, three rotations,

three scales and three shears) to the previously created average image. Rigid and

affine registration is performed using a block matching technique. Figure 4.2(d)

shows the resulting average after affine registration. As a final step B-Spline-based

non-linear registration is applied to locally align the affine registered embryos

to the reference. The non-linear registration is formulated with a similarity en-

ergy function comprising of mutual information [Mattes et al. 2001] and a rigidity

penalty [Staring et al. 2007]. We use 32 histogram bins to compute mutual infor-

mation. Ten iterations of this registration are applied in a multi-resolution fashion

where the control point spacing gradually reduces to eight voxels. We use four
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resolutions of the images and an adaptive stochastic gradient descent optimizer.

The reference image is updated after each iteration leading to the final consen-

sus average (Figure 4.2(e)). Elastix toolbox is used to implement this registration

scheme [Klein et al. 2010].

4.3.4 Deformation Features and Masks for Defect Detection

To detect defects in mutant mice, they are registered to the normal average image

using the same three-stage registration pipeline as above except that in each stage

the reference is always kept fixed to the normal average. Registration of each mouse

results in the corresponding deformation field. These deformation fields encode

detailed description of the anatomical differences between each mutant embryo

and the normal group average, including the displacements, pose, and relative

scale of every anatomical feature.

We use the deformation fields to compute 3D Jacobian maps using determinant

of local Jacobian matrix at each voxel. F represents the deformation vector at voxel

(x, y, z). The Jacobian J(x, y, z) at voxel (x, y, z) is defined as:

J(x, y, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
1 + ∂Fx

∂x
∂Fx
∂y

∂Fx
∂z

∂Fy

∂x 1 +
∂Fy

∂y
∂Fy

∂z

∂Fz
∂x

∂Fz
∂y 1 + ∂Fz

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.1)

The Jacobian determinant is a local measurement of volumetric difference of each

mutant subject relative to the normal group average. Jacobian determinant greater

than one represents voxel expansion and less than one represents voxel compres-

sion. Jacobian of deformation is a popular tool to study inter-group structural
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(a) (b)

Figure 4.3: (a) Example of Jacobian masks, IJ, overlaid on mutant images. (b)
Example of stress masks, IS, overlaid on mutant images.

Table 4.1: This table compares VSD and polydactyly detection accuracy (in %) of
various features. VSD is assumed detected if the ventricular area is highlighted.

IJ IS (IJ ∩ IS) (IIV ∩ IJ) (IIV ∩ IS) (F2 ∪ F3) (F1 ∪ F4)
F1 F2 F3 F4 F5

VSD Sens. 88.8 100.0 88.8 77.7 77.7 77.7 100.0
VSD Spec. 50.0 100.0 100.0 100.0 100.0 100.0 100.0
Polydactyly Sens. 76.9 84.6 61.5 46.1 76.9 76.9 92.3
Polydactyly Spec. 48.4 80.6 87.1 90.3 87.1 87.1 87.1

differences [Xie et al. 2010], and [Nieman et al. 2006]. We apply Jacobian determi-

nant in phenotyping by computing a Jacobian mask, IJ, one for each mutant mouse,

that selects voxels at which Jacobian determinant is δ units away from one. IJ is

defined as:

IJ =

 1, if (1 − δ) ≤ J ≤ (1 + δ);

0, otherwise.
(4.2)

Figure 4.3(a) shows two Jacobian masks overlaid on a mutant embryo images.

δ is kept 0.5 for experiments. To better characterize the local morphological differ-

ences, the Jacobian map only included non-linear deformation. Global transforma-

tions such as scaling of the whole embryo was not taken into account. We realized,
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however, that Jacobian determinant fails for defects where volume changes are

minimal. Further, we find that Jacobian introduces numerous false positives by

highlighting areas that are found to be non-defective by the phenotyping experts,

thus resulting in low precision. Performance of IJ in detecting known defects such

as, Ventricular Septum Defect (VSD) and polydactyly is summarized in Table 4.1.

Detection specificity for both the defects is very low with IJ.

To capture subtle defects with low volumetric changes, we compute another

deformation feature that we call deformation stress. Deformation stress (Ds) is

computed by dividing the volume into small blocks and measuring the entropy of

deformation direction inside each block.

DS(v) = −
∑

u∈B(v)

p(θ(u)) log(p(θ(u)); (4.3)

B(v) in Equation (4.3) represents the block in which voxel v lies and θ(u) is the

displacement direction at voxel u. For experiments the volume was divided into

cuboids of size eight voxels. Using DS we compute a mask, IS, that chooses voxel

blocks that have high entropy of deformation direction and hence are undergoing

incoherent deformation. For experiments IS selected the top 50% blocks that exhib-

ited highest deformation entropy. Figure 4.3(b) shows examples of IS and Table 4.1

enlists its performance in detecting known phenotypes. Some false positives are

introduced due to inclusion of sources and sinks in the deformation field.

Since IJ and IS individually fail to detect all the defects and both introduce

false positives, a simple combination of the two does not give satisfactory results

as shown in Figure 4.4 and Table 4.1. In practice multiple mice from a mouse

line are imaged before phenomic analysis is performed. We introduce this group
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(a) (b)

Figure 4.4: (a) This figure shows detection results obtained by IJ ∪ IS. Simple
union does not work because it introduces the false positives of both the individual
components. (b) This figure shows detection results obtained using IJ ∩ IS. Many
true positives detected by the individual masks are left out when the two masks
are intersected.

Figure 4.5: Example of intensity variance masks, IIV, overlaid on mutant images.

information in defect detection by calculating voxel-wise intensity variance (VIV)

across the group of mutant mice that are registered to the normal mean. VIV is

defined as:

VIV(v) =
1

NM − 1

NM∑
i=1

(Mi(v) −NAvg(v))2. (4.4)

The variables NM, Mi and NAvg in Equation (4.4) are mutant mouse population size,

ith registered mutant mouse image and the normal consensus average respectively.
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From VIV we compute a mask IIV by selecting the top 50% voxels that have high

intensity variance and hence low registration accuracy (Figure 4.5).

(a)

(b)

Figure 4.6: (a) Defects detected by (IIV∩IJ). (b) defects detected by (IIV ∩ IS).

We find that many false positives introduced by IJ and IS are pruned when these

features are combined with IIV. Table 4.1 lists the accuracies when the detection

criterion is (IIV∩IJ), (IIV∩IS) or both combined. From experiments on C57BL/10

mutant mice we find that (IIV∩IJ) mainly captures VSD and unusually wide liver

lobe junctions. Figure 4.6(a) shows some detection results obtained by this factor.

The factor (IIV∩IS) captures polydactyly and unnatural position and deformations

of tail and limbs as shown in Figure 4.6(b).

It is possible that some inaccurately registered morphological structures are not

captured by the intensity variance mask. Uniform body cavities (dark regions)
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Figure 4.7: This figure illustrates regions detected by (IJ ∩ IS).

or muscular organs (like liver lobes and heart atria) are some examples where we

find that intensity variance is low due to spatially uniform intensity values even

though there is an abnormality. The factor (IJ∩IS) addresses regions where both

Jacobian and stress are high irrespective of the intensity variance. By adding this

term in the detection rule we are able to detect spatially uniform defective regions.

Some secondary phenotypes like enlarged heart atrium due to high blood pressure

induced by VSD are captured by this term as shown in Figure 4.7.

Combining the three terms we propose the defect detection rule as:

IDe f ect = (IIV ∩ IJ) ∪ (IIV ∩ IS) ∪ (IJ ∩ IS). (4.5)

Table 4.1 enlists the performance of this detection rule. Number of detected regions

can be readily increased or decreased by relaxing or tightening the thresholds while

generating the Jacobian, deformation stress and intensity variance masks. Simple

morphological operations like dilation and erosion are applied as noise reduction

measures to clean up the detection results.
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(a) (b)

Figure 4.8: (a) Defect detection results obtained using the complete detection rule
(Equation (4.5)) in the liver lobe junctions, heart and intestine of C57BL/10 mice.
(b) The left and right images depict a healthy heart and the misjudged defect
respectively.

4.4 Results

Complete phenomic analysis of a mouse strain is a very tedious and slow process.

C57BL/10 strain is still under investigation and hence full phenotypic characteristic

consisting of all phenotypic defects is yet unknown. Therefore, even though we can

evaluate the detection rule (Equation (4.5)) in terms of precision, a formal evaluation

of recall is not possible. VSD and polydactyly are two established genetic defects in

C57BL/10 mice. We compute sensitivity and specificity of the detection algorithm

with respect to these two defects.

When evaluated over the mutant database of three homozygote and eight het-

erozygote embryos, the algorithm detected all cases of VSD without generating any

false positives. Out of the 13 cases of polydactyly 12 were successfully detected

and one was missed. The missed case belonged to the only mouse in the database

that had its umbilical chord removed resulting in registration errors at the nearby

areas. Four false positive polydactyl cases were reported in situations where due

to high proximity toes of both the feet seemed fused in the 3D renderings.

To evaluate the rest of the detected areas, a user study was conducted with
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phenotyping experts having long experience in mouse imaging and phenotyping.

The expert comments were very encouraging and they noted that all the regions

detected by the algorithm had biological significance. Some of the areas were due

to genetic defects, some due to non-genetic defects and some due to organogenesis

or procedural interventions. After careful histological examination, it was found

that majority (57%) of the total detected regions belonged to genetic defects. Apart

from known phenotypes, the algorithm detected areas in the liver lobe junctions

that are candidate areas for potential phenotype of this mouse strain and are under

active phenotypic evaluation.

Malformed body cavities constituted 14% output regions. Though these re-

gions do not represent defects due to genetic makeup, they still signify biological

malformations. Another 8% regions were noted to be due to genesis and exten-

sive developmental remodeling of gonads at this gestational stage. The rest of

the output was attributed to blood clots, randomized umbilical chord regions and

pancreatic genesis.

When the detection rule was applied to wild-type mice, some areas were re-

ported. These areas represent blood clots, umbilical chord, malformed body cavi-

ties and pancreatic and gonadic organogenesis. One false positive was generated

for heart septal defect in a case where low spatial intensity variance makes the

judgement hard even for an unexperienced human eye (Figure 4.8(b)). With fur-

ther image processing it is possible to improve the detection accuracy by neglecting

the high intensity blood clots and masking out umbilical chord regions.
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4.5 Discussion and Conclusion

We propose a generic deformation-based defect detection framework for 3D µCT

images of mutant mice. Our system has the potential to greatly enhance pheno-

typing throughput by automatically detecting all known phenotypes. Unlike other

algorithms designed to detect specific known defects, our system also highlights

candidate novel defects that may not be readily recognized by human experts due

to absence of significant visual features. Owing to voxel-by-voxel analysis, defects

are localized to sub-structures and those affecting multiple structures are visualized

collectively. Though our evaluation database is small, the results clearly establish

the potential of the proposed system in patterning defects. Our framework can be

easily adapted to examine other 3D scan images amenable to registration. We ac-

knowledge that the registration method may effect the detection results, however,

the registration scheme used in this work is widely employed in mouse phenotyp-

ing [Zamyadi et al. 2010], [Wong et al. 2012], and [Cleary et al. 2011]. Deformation

field resulting from only the non-linear registration step is used for defect detection.

The detection performance is found to be fairly robust to parameter variation.

Since the proposed framework is independent of the defect features, classifi-

cation of defects into those that are genetically induced and those that are not is

out of scope for the current system. Currently we provide frequency of occurrence

as an indicator of whether or not a defect is genetic. As an example, since VSD

and polydactyly are detected in all homozygote embryos, the probability of these

defects being genetic is reported to be 100%. Similar probabilities are assigned to all

detected regions. As a future work it is possible to use advanced image processing

and statistical techniques to device classifiers that can differentiate between genetic
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and non-genetic defects.
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Conclusion

We set out to achieve two objectives in this thesis. The first objective was to better

utilize the existing data in routine clinical and biomedical practice and the second

objective was to use modern computer vision, image processing and computer

graphics technologies to enhance the archaic reporting, diagnosis and analysis

tools used in healthcare and biomedical research. In this chapter we summarize

how these objectives were realized by the systems proposed in this thesis.

5.1 The VITA System

In Chapter 2, we propose a visual reporting framework, called VITA, to enhance

traditional paper-based radiological reporting. VITA uses existing, otherwise dis-

carded, radiological image markups to generate visual reports that embed radiolog-

ical annotations in a 3D animated visualization of the exam data. Mining relevant

information from the radiological annotations was the main technical challenge in

this project. Placing the radiological findings in a 3D volumetric context within
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the body part being analyzed makes it easier for physicians and their patients to

comprehend the pathology. We validate that the visual reports generated by VITA

improve the clarity of communication between radiologists, physicians and their

patients via a user satisfaction study conducted with physicians in Singapore. By

better utilizing discarded data and using computer graphic technologies, the VITA

system aims to enhance the age-old paper-based radiological reporting routine.

As an extension to the VITA system, we cluster together individual annotations

that denote a volume and automatically perform 3D segmentation of the anatomy

marked by the radiologist. 3D segmentation, though rigorously studied in the

literature, is not used in the clinical routine. Traditionally, radiologists still use

manual segmentation or bounding box representation of 3D volumes. This is

mainly because most PACS vendors do not integrate 3D segmentation into their

systems. Further, radiologists are often required to provide redundant seeds to

initiate these segmentation routines. By utilizing the radiological annotations to

auto-generate segmentation seeds and integrating 3D segmentation into the VITA

system, we are able to integrate 3D segmentation into the clinical routine. Again,

we show that using discarded annotations we are able to provide radiologists

automated segmentation tools within their PACS systems thereby relieving them

from the tedious manual segmentation protocols.

5.2 Content-based Retrieval of Focal Liver Lesions

Chapter 3 proposes a fast content-based image retrieval framework for focal liver

lesions. Using existing confirmed cases of liver tumors, the retrieval framework

aids diagnosis of new tumors by retrieving from a database cases that appear
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visually similar to the one under investigation. A novel 3D spatio-temporal feature

extraction framework is proposed for an objective modeling of the tumor. Retrieval

systems have been proved to improve diagnostic accuracy. However, high query

processing times have rendered their use impractical in routine practices. We

propose acceleration techniques to make query processing real-time. With high

retrieval accuracy and fast processing the proposed system has the potential to

be used as a diagnostic assistant in routine radiological practices. Content-based

retrieval is yet another example of how existing data can be utilized to build

clinically useful diagnostic tools using simple image processing techniques.

5.3 Phenotyping of Mutant Mice

In Chapter 4 we examined mouse phenotyping, a key biomedical research applica-

tion that aims to map each mouse gene to its corresponding physiological function.

The ultimate goal of this research is to be able to map each human gene to its

corresponding physiological functionality in the human body. Routine mouse

phenotyping still relies on the laborious and extremely low throughput micro-

scopic examination of mouse sections even though prior to sectioning each mouse

undergoes a 3D scan. This 3D data, though available, is not used in practice. Using

this discarded 3D scan data we propose a generalized defect identification frame-

work that automatically highlights physiological defects in micro-CT images of

mutant mice using image processing techniques like non-linear image registration

and deformation vector analysis. We have developed a novel deformation feature

that is used to formulate the defect detection scheme. Since the proposed defect

detection framework does not use any defect-specific features, it can detect both
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known and novel defects. By pruning the vast search space of novel defects and

also highlighting candidate defective areas that are hard to recognize by human

eye due to lack of distinct visual features, the proposed defect detection framework

greatly enhances the extremely low throughput of traditional microscopic mouse

phenotyping.

5.4 Lessons Learned

While working with radiologists and phenotyping experts, we realized that inertia

to changes in the routine workflow is the main reason why computational tools

are not easily integrated into the routine practices. Hence, our efforts were contin-

uously directed towards making our application frameworks least demanding in

terms of user input and alterations to daily operations. Nonetheless, we believe

that if our solutions do not make their way into the routine workflow, resistance to

workflow changes will be the main malefactor.

5.5 Future Directions

There are several directions in which this thesis work could be extended, some of

which are summarized in the following:

The current version of the VITA system does not provide much control to ra-

diologists on how the visual reports will appear except for the choice of transfer

functions. The transfer functions are used only to highlight or suppress certain

types of tissues. As physicians start using VITA visual summaries, it is possible to

develop a simple yet powerful visual reporting language that can allow radiolo-
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gists to provide directives on how the visual summary should appear in order to

visually highlight salient findings to assist the doctor’s understanding of the pa-

tient’s pathology. For example, in a case where a patient has multiple small lesions

and one big lesion, the visual language can allow simple keyword annotations, e.g.,

<highlight>Pulmonary lesion</highlight>, as a directive to the volume rendering

engine that this annotation should be displayed in a more prominent manner. By

defining a small set of simple tags, radiologists could have more control over the

final visual summary. This can help better guide the physician’s focus towards key

radiological findings.

Currently VITA simply embeds the available textual and geometric annotations

in the 3D volume. If the radiologist does not associate any text tag with the

geometry, there is no textual information in the volume rendering. An idea for

future work is to extract text information from the radiological text report if no tag

is associated with a geometrical annotation. This, however, is a non-trivial problem

given the potential unstructured nature of the text reports.

The content-based retrieval system proposed in Chapter 3 is evaluated in a rel-

atively small database. Hence, database indexing did not play a critical role in the

system design. For larger databases indexing strategies make significant contribu-

tion to the retrieval speed. To keep retrieval systems real-time for larger clinical

databases, it is important to investigate design of efficient indexing structures for

fast data search and retrieval.

Chapter 4 proposes an automated defect detection framework for phenotyping

of transgenic mice. The defect detection framework is based on registration of

mutant mice to a normal mouse average and subsequent analysis of the result-

ing deformation vectors. The registration scheme used in the proposed system is
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the standard registration pipeline used for mouse phenotyping in the literature.

However, it is important to study the robustness of detection output when other

registration schemes are employed. Further, the current version of the defect de-

tection framework does not differentiate between genetic and non-genetic defects.

All possible defects are highlighted. As a future work it is possible to use advanced

image processing and statistical techniques to device classifiers that can differenti-

ate between genetic and non-genetic defects so that defects can be categorized and

selectively highlighted.
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