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Summary

Concurrent software system contains multiple processes running in parallel. These processes

synchronize with each other to perform collaborative tasks. Due to the complexity of concurrency,

it is difficult to ensure the implemented system satisfying the desired concurrent properties. Formal

mathematical models have been introduced to model the interaction between different processes

in concurrent systems. Communicating Sequential Processes (CSP), as a formal language, models

concurrent systems on event and channel communications. The concurrency related properties, rep-

resented as Linear Temporal Logic (LTL) formula, can be verified on the CSP model that represents

the system.

After validating the properties, a concurrent model is ready to be implemented in the program-

ming language used in target platform. Formal languages usually are in a high level of abstraction

and they are quite different to the programming languages used in implementation. It is desirable

to have a well-defined transformation from the abstract model to the low-level implementation. The

transformation shall guarantee the implementation preserve the properties that have been verified

on the formal model. On the other hand, there are situations when the systems are implemented

without formal design documents. Or during maintenances, the program has become inconsistent

to the original design documents. In these cases, the reverse transformation from the implemented

program to formal model helps to verify the concurrent properties on the implemented program.

This thesis discusses the transformations and verification on CSP# models and multi-threaded

C# programs. CSP# extends CSP to support shared variables and event-attached programs. These

program-friendly features in CSP# enable the transformations to use flexible boundaries between

formal models and the user-defined programs that are imported to the model.

Our first approach translates C# source code to CSP# models. The C# program’s class inheri-

tance relations and its fields are preserved as user-defined data structures. CSP# model imports these

user-defined data structures as shared variables. The communications between threads are captured

and represented as event and channel synchronizations in CSP#. For the features that are not sup-

ported in CSP#, such as thread creation, they are translated to processes based on their behaviors in



the program.

The second approach performs Virtual Machine based verification on C# programs. We add

a “modelchecking” mode in the Mono virtual machine. When running in this mode, it takes the

multi-threaded C# program as a LTS system and communicates with PAT framework to traverse its

state space. The tool allows different transition atomicity levels, such as IL (Intermediate Language)

level and source code level. The tool does not change the programs’ assemblies and each transition

is executed as its original behaviors on virtual machine. Deadlock-freeness and safety properties

defined on the program data can be verified by our VM-based verification tool.

The synchronization between threads in C# is based on shared memory communication, which

is different from the event and channel synchronization in CSP#. Our third approach first imple-

mented the CSP# operators in a C# library “PAT.Runtime”. The event synchronization is based

on the “Monitor” class in C#. The precondition layer and choice layer are added above the CSP

event synchronization to support CSP# specific features. We also developed a code generation tool

in PAT framework to transform CSP# models to multi-threaded C# programs, which use the CSP#

operators in “PAT.Runtime” to communicate between threads. We proved that the generated C# pro-

gram and original CSP# model are equivalent on the trace semantics. This equivalence guarantees

the validated properties of the CSP# models preserve in the generated C# programs. Additionally,

based on the existing implementation of choice operator, we redesign the synchronization mecha-

nism to remove the unnecessary communications among these choice operators. The experiment

results show the improved mechanism notably outperforms the JCSP library and our first version of

“PAT.Runtime” library.

Key words: Formal Verification, Model Checking, Concurrent Systems, CSP#, C#, Pro-

gram Verification, Multi-threaded, Monitor
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Chapter 1

Introduction

Developers spend many efforts to ensure the correctness of concurrent systems. In design phase,

concurrent systems are abstracted as formal models to describe the interaction between different

components. The requirements of the system are represented as properties of these models, then the

model checker can verify whether the models satisfy the properties. After verification, the validated

models are implemented on the target platform with specific programming languages. The com-

munications in the concurrent models are usually implemented using the programming languages’

built-in concurrency mechanisms or other third-party concurrency libraries. In the implementation

phase, one of the main concerns is to guarantee that the implemented program is consistent to the

original design model, and the validated properties are preserved in the implemented program. In

this thesis, we try to provide better transformations between the concurrent design models and the

implemented programs.

1.1 Concurrent System

A concurrent software system contains multiple computational processes running in parallel. Each

process performs a number of operations sequentially and they communicate with each other to

collaborate on complex tasks. The design models of the concurrent systems usually describe how

1
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the processes communicate with each other. These communications restrict the behaviors of the

processes in the system so that they do not perform the tasks in undesirable operation sequences.

The requirements on the system’s concurrency are represented as the properties of the system.

These properties define what kinds of operation sequences are allowed (or not allowed). Before

implementation, the properties are verified on the design model manually or automatically.

Formal mathematical models, such as Process Calculus[4], Petri Nets[85] and Actor model

[1], have been developed to describe the concurrent aspect of the systems. Developers can use

the formal models as the abstractions of the system states and the communications between the

processes. Model checkers can verify whether the system model satisfies the properties [5] by

traversing the state space of the model.

CSP (Communicating Sequential Processes) [46], as a member of Process Calculus, is one of

the popular formal languages to model concurrent systems since the 70s. It has been applied to

practical projects including the embedded systems, protocols and concurrent systems [12, 97, 57,

75]. CSP# [102] is based on classic CSP. It extends CSP with programming features such as shared

variables and event-attached program etc. In CSP#, the concurrent system is modeled as several

processes communicating with each other via events and channels. The trace of a process is the finite

sequence of the event and channel operations that the process has engaged. The system’s concurrent

behavior is represented as the possible traces that all the processes in the system can engage. PAT

(Process Analysis Toolkit) [71], as a model checker, can validate whether the concurrent properties

are satisfied on the CSP# model.

After the CSP# models are verified, they will be implemented in specific programming lan-

guages on the target platforms. The formal languages are quite different to the programming lan-

guages used in implementation. For example, the message passing communications in the process

calculus are different from the shared memory communications in the programming languages like

C# and Java. On the other hand, the object-related features in C# and Java, such as polymorphism

and automatic garbage collecting, are not intuitively supported in the modeling languages such as

CSP and CSP#. The concurrent models are usually in a high level of abstraction and they do not



1.1. CONCURRENT SYSTEM 3

include the low level detail of the system. In implementation phase, the additional codes are added

to the program to implement these low level functionalities. Well-defined transformation is needed

from CSP# models to the implementations in object-related languages. The transformation needs to

ensure the implementations preserve the verified properties of the CSP# models.

There are situations where we want to verify the concurrent properties on the implemented

programs instead of the models. For example, sometimes the programs are implemented with-

out detailed designs, or the design documents are inconsistent with the programs in maintenance.

In these situations, one possible solution is to translate the programs back to abstract models and

check the concurrent properties on the models. Another possible solution is to check the concur-

rent properties directly on the implemented programs, with customized Virtual Machine (VM) that

traverses the program’s state space on virtual machine.

We study both directions mentioned above, including transforming from models to programs

and from programs to models. For the languages, we focus on the transformation between CSP#

models and multi-threaded C# programs. As mentioned above, CSP# has extended classic CSP with

procedural program features and it can import user-defined class libraries into the models. These

program-friendly features allow CSP# to effectively model programs in object-oriented languages.

C# is a general-purpose, object-oriented programming language and it has been widely used

in industries. Its specification has been standardized in 2003 and updated in 2005 by ECMA Inter-

national [3]. C# language also has good built-in concurrency control, as the language features or

as libraries. Choosing C# as the programming language shall make this thesis more readable for

the industrial and academic readers. Although the approaches of the thesis are based on CSP# and

C#, the methodology and technique are general for process calculus and object-oriented languages.

The result of this thesis shall be applicable to other object-oriented programming languages and

CSP-like formal languages.
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1.2 Model and Program

Usually, a formal concurrent model contains not only the software system but also the user activities

and the environment. The software system model will later be implemented in the software system.

The user activities and the environment models help to create the simulation configuration and test-

ing cases for the software system, but they are not included in the software system. In this thesis, the

transformations are focusing on the software system model and its corresponding implementation

program.

For better understanding of the transformations between the CSP# model of the concurrent

system and its corresponding implementation in C#, we compare the abstract model and the imple-

mented program to discuss what have been abstract away in the model and how to manage them in

the implemented program.

The operational semantics of CSP# model can be expressed using a Labeled Transition System

(LTS) [102]. A LTS is a tuple (S,Σ,→, s0). It contains a set of states S and a set of labels Σ.

The transition is a relation from one state to another, with a label associated with the transition, i.e.

→⊆ S×Σ× S. We use s α−→ s′ to represent a transition (s, α, s′) ∈→. A LTS system has an initial

state s0 and it may have finite or infinite states. A CSP# model, represented as a LTS system, is

shown as (a) in Figure 1.1. Each edge represents a label transition and each vertex represents a state

in LTS.

In a multi-threaded C# program, the execution of each statement in each thread changes the

program state. For a specific thread, the method that it is executing can be represented as a flowchart.

In the flowchart, each process step (in rectangle) represents executing a statement. The flowchart

of a two-thread C# program is shown in (b) in Figure 1.1. For a single processor computer, the

operating system sequentially executes the statements in “run()” methods of the two threads. When

“T1” runs to the statement “send” and communicates with thread “T2”, it may be blocked on the

statement “send” if “T2” has not run to the statement “receive”. Here the “send” and “receive”

are the synchronized communication between threads. They do not return until the communication

succeeds. If “T1” and “T2” have reached the “send” and “receive” blocks, they both can successfully
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finish the communication and execute the following statements.

The LTS of (a) in Figure 1.1 is actually the CSP# model of the two-thread program in (b). The

communication of “send” and “receive” from “T1” and “T2” are explicitly modeled in the CSP#

model as a single event “send&receive”. Other statements are also modeled as individual events

in (a). These events may occur in multiple transitions in the LTS, starting from different program

states. For example, there are three transitions labeled as the event “b4”. As events in models

are considered as instantaneous, the time of the operating system executing these statements are

ignored.

The duration of the system staying in a state of LTS is ignored too. Suppose there is one

statement “b7” between “b1” and “b2”, and the CSP# model abstracts away this statement. The

reason may be that “b7” is a simple output statement or it does not change the program state. As

a result, the time that the system executes this statement may be happening in state “s1” or “s5”.

When the program is executing “b7”, the event “b2” is not enabled although there are transitions

labeled “b2” started from “s1” and “s5”. From the analysis, we can know that the program can stay

at any state in the LTS for a time interval. The length of this interval is decided by the operating

system or environment. The next enabled events in the CSP# model may not be enabled until the

end of this interval.

The CSP# model takes the scheduling as being non-deterministic. When certain properties

are verified on the model, the algorithm of the model checker may take the fairness assumptions

on the scheduling. For the multi-threaded C# program, it is the operating system that controls the

scheduling. The fairness in the model shall be implemented in the communications between threads.

To implement a CSP# model, the developers need to keep in mind about these differences

between the model and the program. The functionality codes that are not represented in the model

shall be added to the program carefully. They shall not change the concurrent aspect of the program.

Otherwise, the validated properties on the CSP# model may not preserve in the program.



1.3. RESEARCH GOALS 7

1.3 Research Goals

In the previous section, we discussed the difference between the CSP# model and its implemented

C# program. They shall be consistent on the concurrent behaviors that are defined in the CSP#

model but there are always more functional behaviors in the program. When we want to verify the

concurrent properties on the implemented program, stress testing [80, 105] cannot ensure the prop-

erties held on all situation. The transformation from C# program to CSP# model can exhaustively

verify the properties. In the transformation, we shall focus on the concurrent behaviors and control

the atomicity of the functional behaviors in resulted models. The other direction, to implement the

CSP# model, we need to clearly define how the concurrent behaviors of the CSP# model are rep-

resented in the program. Based on the equivalence on the model and the program, the properties

of the model can be preserved in the program. Additionally, we also need to ensure the functional

codes do not break the verified properties.

It is not easy to achieve above goals. The differences between the modeling language CSP#

and programming language C# need to be investigated carefully. The semantics of CSP# needs to

be projected to the C# program, as well as the properties. Making good use the language features

of CSP# helps the transformation on both directions, from the CSP# models to C# programs and re-

versely from programs to model. Balanced boundary between the CSP# model and the C# program

not only increase the efficiency of the transformations but also make both the model and program

more readable and easier to use in practice.

One way to verify the C# program is to translate the source code to a CSP# model. To balance

the complexity of the CSP# model, the translation shall emphasize on the inter-thread communica-

tions, using finer atomicity on them. Other operations in the C# program can allow more flexible

atomicity control. The properties are translated to formula and verified on the translated model. The

translation can be done manually or with the help of automatic tools.

Execute the C# program and examine the program state on virtual machine is another way to

verify the properties on implemented program. To traverse all the state space of the program, the

virtual machine needs to take over the thread or process scheduling of the operating system. It also
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needs to take the snapshots of the program states at each transition.

Using appropriate abstractions in two approaches above can increase the efficiencies of the

verifications. Depending on the application domain, the program may be divided into several layers

or components. Not every layer or component needs to be exhaustively traversed in the model. The

model checking algorithm may choose to completely traverse the state space on some components

and filter out unnecessary traverses on the other components. To control the atomicity of the tran-

sition is another way to abstract the programs. Using larger transition atomicity can significantly

reduce the state space of the programs. The algorithm can allow different types of atomicity on

different segments in the program.

To implement a C# program designed with CSP# model, developers can use the built-in thread

synchronization mechanism, which is based on share memory communication. This needs extra ef-

forts to represent the CSP# semantics in the built-in synchronization. Developers also need to prove

the implemented program is consistent with the design model, which is not easy and sometimes

error-prone.

The changes on the software design may happen from time to time, even after implementation.

The iterations on the design and implementation phases are sometimes unavoidable in practice. A

closer relation between the model and the implemented program helps to improve the development

efficiency. An automatic code generation tool to transform CSP# model to its implementation en-

ables developers to test the changed model right after it is verified. We would try to provide better

supporting facilities from CSP# model to the implemented C# program.

We summarize the research contributions of the thesis as follows.

• To enable the concurrent properties to be verified on the implemented C# program, we intro-

duce appropriate transformation from C# program to CSP# model. The first approach trans-

lates the C# programs to CSP# models. The program data are stored in the shared variables

and the methods in C# are translated to processes in CSP#.

• The C# program can be regarded as a LTS system at runtime. Our second approach verifies
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the properties of the C# program with PAT and a customized virtual machine (VM). The VM

does not to modify the behavior of the C# program and traverse the state space of it with

configurable atomicity.

• Define the CSP# semantics in the C# program. Based on this definition, we discuss the equiv-

alence between the CSP# models and C# programs and the properties of the CSP# models

that are preserved in the C# programs.

• Based on the equivalence on CSP# semantics, the CSP# operators can be implemented in a

C# class library. We can provide a code generation tool to transform the CSP# models to C#

programs with the verified properties preserved.

In Chapter 2 we review the background knowledge about CSP and CSP#. Chapter 3 intro-

duces the existing works related to this thesis. Our translation-based and VM-based verification

approaches are described in Chapter 4 and 5 respectively. We discuss the CSP# to C# approach and

the proof of equivalence in Chapter 6. An improved implementation of the CSP and CSP# opera-

tors is described in Chapter 7. Chapter 3 compares our three approaches to other related works of

software model checking. In Chapter 8, we compare our three approaches to other related works of

software, summarize the contributions and discuss possible future works.
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Chapter 2

Background

2.1 CSP and CSP#

CSP (Communicating Sequential Processes) was introduced by C. A. R. Hoare [48] in 1978. Since

then it has evolved and became a popular modeling language. It is suitable for modeling systems or

parts of the system where the communication and concurrency are the key concerns [65].

CSP model is composed of a set of sequential processes interacting with each other. The

primitives in CSP include events and primitive processes. The events are basic communication units

between processes in the system. Each event has a unique name. The set of all the event names

in the system is the alphabet of the system. An event communication can have one or multiple

processes synchronizing on an event in their alphabets. The processes can also communicate via

channels. A channel communication always involves one process performing the read operation

on the channel while the other process performing the write operation on the same channel. The

primitive processes include Skip and Stop. Skip represents a successful termination of a process.

Stop is a process that communicates nothing and it models the deadlock. The process is defined

as the operators that combine event synchronizations, channel operations, primitive processes and

subprocesses.

11
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The event can be in simple form or compound form. An event in simple form uses a lower-case

letter or word as its name, such as “a”, “b” and “enter”. A compound event has multiple letters or

words linked with “.” in its name, such as “a.b.c” and “enter.room1”. The input or output operations

to a channel are considered as channel events. A channel event name is composed with the channel

name, input or output symbols and the inputted or outputted data. For a channel named “ch”, “ch?x”

represents the event that read the data from “ch” and store it in “x”; “ch!3” represents the events

that outputs “3” to channel “ch”. Events are considered as atomic and instantaneous. An event is

enabled when the processes and its environment agree on this event and are ready to perform it.

A trace of a process is a finite sequence of the events’ names that the process has performed.

The traces of a process is the set of all possible traces that the process can perform. The traces of

a process P is denoted as traces(P). For two processes P and Q, we say that Q refines P on traces,

denoted as P v Q, if the traces of process Q is a subset of the one of P, i.e. traces(Q) ⊆ traces(P).

CSP# [102] is a modeling language based on classic CSP while it additionally offers rich

operations on global shared variables in the models. It shares the principle ideas as TCOZ [73,

72] that integrates the state specifications of the components with the interact operations between

themselves. The communication in CSP# is based on either the shared variables or the message

passing communication as in CSP.

Definition 1 The process definition in CSP# is formally defined as follows:

P = Stop | Skip | e→ P | e{prog} → P | ch!x→ P
| ch?x→ P | [b]P | if b {P}else{Q} | P; Q | P[]Q

| P ‖ Q | P ||| Q | P 4 Q

Here P and Q are the processes. Stop and Skip are built-in primitive processes. The e is

an event and ch is a channel (synchronous or asynchronous). x is either a simple or a complex

expression (i.e. .x.y.z). b is a boolean expression. prog is an optional block of C# program attached

on event e.

LetX denote the special event of the successful termination of a process; τ denotes the invisible
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event and αP denotes the alphabet set of process P. Here αP contains all the events in P excluding

X. eτ denotes any event excluding X. The Stop communicates nothing and Skip = X → Stop.

The event prefix e → P performs the event e and then performs as P. Likewise, the data operation

e{prog} → P first performs the C# code of prog on the global shared variables then the process

performs as P. The channel output ch!x→ P evaluates the expression x on global shared variables,

if the channel ch is not full, it sends the evaluated x to channel ch and behaves as P after that.

Similarly, the channel input ch?x → P evaluates x and reads the evaluated x from channel ch and

performs as P afterwards. The guarded process [b]P is blocked until expression b becomes true

and it performs as P after that. The conditional choice if b {P} else {Q} (also denoted as “IF”

operator) evaluates b first. If its value is true, the process behaves as P; Otherwise, it behaves as Q.

The sequential composition P; Q behaves as P till its termination and behaves as Q. The general

choice P[]Q can perform as P or Q, depending on whose first visible event is engaged first. If P

performs an event first, P[]Q behaves as P afterwards, otherwise it behaves as Q. For the parallel

composition P ‖ Q , P and Q run and synchronize on the events in αP ∩ αQ and they communicate

through global shared variables and channels too. In indexed interleaving P ||| Q, P and Q run

independently and only communicate through global shared variables and channels. The interrupt

P 4 Q behaves as P until the first event of Q is engaged, then the process behaves as Q afterwards.

CSP# supports process parameters 1 and shared variables used in the process definition. The

conditional expressions can contain the process parameters and shared variables. Shared variables

in CSP# can be read by conditional expressions and they can be read and written by event-attached

programs. Because both the evaluations of expressions and the executions of event-attached pro-

grams are atomic in CSP# models, the shared variables in the CSP# model do not suffer the data

race problem. The value changes on shared variables represent the shared memory communication

in the CSP# models.

CSP# also supports the combinations of shared memory and message passing communications.

Besides the general conditional choice, the atomic conditional choice operator (also denoted as

1The process accepts a set of parameters that can be used as read-only variable in the process. “Phil(i)” and “Fork(x)”
in the Dining Philosopher Problem in 2.2 are the processes with parameters “i” and “x”.
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“IFA”) in CSP# is defined as ifa(b) {P} else {Q}. It requires b being true and the first event of

P being engaged occurring atomically, or b being false and the first event of Q being engaged

occurring atomically. On the contrary, the process if (b) {P} else {Q} can go to the branch {P} at

the time when b is true, but later when the first event of P engages, b may have become false. The

blocking conditional choice operator ifb(b) {P} (also denoted as “IFB”) blocks the process until b

becomes true, but it does not require the first event of P to be engaged atomically. It is considered

as the complement of the guarded process.

Definition 2 A Labelled Transition System (LTS) is a tuple L = (S, s0,Act,T) where:

• S is a set of states;

• s0 ∈ S is an initial state;

• Act is the alphabet of the transition labels;

• T ⊆ S× Act × S is the labeled transition relation.

For a transition (s, e, s′) ∈ T (s, s′ ∈ S, e ∈ Act), we say that the system can reach state s from state

s by performing transition e. For simplicity, we use s e−→ s′ to denote (s, e, s′) ∈ T.

As mentioned in 1.2, the operational semantics of CSP# model can be expressed using a LTS

[102].2 The state of this LTS is the system configuration of the model. It is composed with three

parts (P,V,C). P is the current process expression, V is the current valuation of the global variables

and C is the current valuation of all the channels in the system. A transition is represented as

(P,V,C)
e−→ (P′,V ′,C′) which means the model at state (P,V,C) can perform event e and go to

state (P′,V ′,C′) .

The specific operational semantics for the CSP# model are defined as follows:
[ skip ]

(Skip,V,C)
X−→ (Stop,V,C)

2In this thesis, we discuss finite-state CSP# models
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[ event ]
(e→ P,V,C)

e−→ (P,V,C)

[ prog ]
(e{prog} → P,V,C)

e−→ (P, upd(V, prog),C)

C(ch) is not full
[ out ]

(ch!x→ P,V,C)
ch!eva(V,x)−→ (P,V,C′)

where C′(ch) = C(ch) ∪ eva(V, x)

C(ch) is not empty
[ in ]

(ch?x→ P,V,C)
ch?C(ch).head−→ (P,V,C′),

C′(ch) = C(ch)\C(ch).head

(P,V,C)
e−→ (P′,V ′,C′), V � b

[ guard ]
([b]P,V,C)

e−→ (P′,V ′,C′)

V � b
[ cond1 ]

(if b{P}else{Q},V,C)
τ−→ (P,V,C)

V 2 b
[ cond2 ]

(if b{P}else{Q},V,C)
τ−→ (Q,V,C)

(P,V,C)
e−→ (P′,V ′,C′)

[ seq1 ]
(P; Q,V,C)

e−→ (P′; Q,V ′,C′)

(P,V,C)
X−→ (P′,V ′,C′)

[ seq2 ]

(P; Q,V,C)
X−→ (Q,V ′,C′)

(P,V,C)
eτ−→ (P′,V ′,C′)

[ ch1 ]
(P[]Q,V,C)

eτ−→ (P′,V ′,C′)
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(Q,V,C)
eτ−→ (Q′,V ′,C′)

[ ch2 ]
(P[]Q,V,C)

eτ−→ (Q′,V ′,C′)

(P,V,C)
e−→ (P′,V ′,C′), e 6∈ αQ

[ par1 ]
(P ‖ Q,V,C)

e−→ (P′ ‖ Q,V ′,C′)

(Q,V,C)
e−→ (Q′,V ′,C′), e 6∈ αP

[ par2 ]
(P ‖ Q,V,C)

e−→ (P ‖ Q′,V ′,C′)

(P,V,C)
e−→ (P′,V ′,C′), (Q,V,C)

e−→ (Q′,V ′,C′)
[ par3 ]

(P ‖ Q,V,C)
e−→ (P′ ‖ Q′,V ′,C′)

(P,V,C)
X−→ (P′,V ′,C′), (Q,V,C)

X−→ (Q′,V ′,C′)
[ par4 ]

(P ‖ Q,V,C)
X−→ (P′ ‖ Q′,V ′,C′)

(P,V,C)
e−→ (P′,V ′,C′)

[ intl1 ]
(P ||| Q,V,C)

e−→ (P′ ||| Q,V ′,C′)

(Q,V,C)
e−→ (Q′,V ′,C′)

[ intl2 ]
(P ||| Q,V,C)

e−→ (P ||| Q′,V ′,C′)

(P,V,C)
X−→ (P′,V ′,C′), (Q,V,C)

X−→ (Q′,V ′,C′)
[ intl3 ]

(P ||| Q,V,C)
X−→ (P′ ||| Q′,V ′,C′)

(P,V,C)
e−→ (P′,V ′,C′)

[ intr1 ]
(P 4 Q,V,C)

e−→ (P′ 4 Q,V ′,C′)

(Q,V,C)
e−→ (Q′,V ′,C′)

[ intr2 ]
(P 4 Q,V,C)

e−→ (Q′,V ′,C′)

Given a process P in CSP#, we can verify whether P satisfies deadlock-freeness, divergence-

freeness, deterministic or nonterminating. For the safety properties, the reachability assertion checks
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whether P can reach a state (P′,V ′,C′) where V ′ satisfies proposition cond, i.e. eva(V ′, cond) =

true. PAT also supports the refinement / equivalence checking as FDR model checker [92] does.

The full set of Linear Temporal Logic (LTL[5]) formula can be verified on CSP# models.

Definition 3 A LTL formula F on CSP# is defined as

F = e | prop | �F | ♦F | X F | F1 U F2 | F1 R F2

Here e is an event or a channel input/output, prop is a proposition defined on V. �F means F holds

for entire subsequent paths; ♦F means F eventually has to hold in the subsequent paths; X F means

F holds for the next state; F1 U F2 means F1 will hold at least until F2 holds. F1 R F2 means F2

has to be true until and including the state where F1 become true, or if F1 never happens, F2 must

remain true.

The LTL can represent the liveness properties, which means something must eventually hap-

pen. When verifying liveness properties on model, fairness constraints are often adopted to rule out

the unrealistic scheduling on the model’s nondeterminism. Three levels of fairness are defined in

[103].

Definition 4 Let E =< S0, e0, s1, e1, . . . > be an execution of the model.

• E satisfies weak fairness if and only if for any e that eventually becomes enabled forever in E,

there are infinitely many i that ei = e;

• E satisfies strong local fairness if and only if for any e that is infinitely often enabled in E,

there are infinitely many i that ei = e;

• E satisfies strong global fairness if and only if for every transition s e−→ s′, if E has infinite

many i that si = s, then there are infinite j that sj = s, ej = e and sj+1 = s′.

With the fairness applied, the model checking algorithms do not take the unrealistic schedulings

on the nondeterminism in models. The liveness properties are usually verified with certain fairness
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constraint. When the model is implemented, the developer shall ensure the program’s behavior

conforms to the fairness constraint.

The case studies in this thesis use some concepts and techniques from probabilistic model

checking. Below we introduce the basic definition on the probabilistic model based on Markov

Decision Process (MDP) [13]. More information about probabilistic model checking can be found

on [64] and [45].

Besides the correctness of the concurrent system, sometimes it is useful to verify the quantita-

tive properties of the system. Adding the probabilistic aspect to the system modeling allows us to

calculate the probability that the model satisfy the property. In [104], the module PCSP was devel-

oped in PAT framework to support Probabilistic Model Checking. It introduces the PCSP# language

that extends CSP# to allow probabilistic choice in the models. The operational semantics of PCSP

model can be expressed using Markov Decision Process.

Definition 5 A Markov Decision Process is a tuple M = (S, s0,Act,Pr) where:

• S is a set of states;

• s0 ∈ S is an initial state;

• Act is the alphabet of the action labels;

• Pr : S × Act × S → [0, 1] is the transition probability matrix and Σ such that the labeled

transition relation.

PCSP# supports all the process definitions in CSP#. It introduces the Probabilistic Choice

operator “pcase” as follows.

P = {pr0 : P0; pr1 : P1; · · · ; prk : Pk; }

Here pri is a positive integer called probability weight. The process P has the probability pri
pr0+pr1+···+prk

to behave as process Pi.
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With the probabilistic extension, we can calculate the probability and maximum and minimum

probability that a PCSP# model satisfies a property. If the reward is defined on the events, we can

also use the probability model to calculate the estimated reward when it satisfies the property. [104]

and [99] give more information about probabilistic model checking in PAT framework.

2.2 PAT and CSP# model

PAT (Process Analysis Toolkit)[71, ?] is a general model checker framework which supports mod-

eling, simulating and reasoning of concurrent, real-time and probabilistic systems. It provides a

user-friendly simulator and model specific abstractions, such as process counter abstraction will

group the identical processes to make the verification more efficient.

PAT adopts a layered design and supports both explicit and symbolic model checking. Dif-

ferent model checkers have been developed efficiently under this flexible framework, such as the

PCSP module for the probabilistic CSP models [104, 99] and NesC for the sensor network pro-

grams [115, 114]. It has also introduced verification of linearizability, time refinement checking

and parallel verification etc.[70, 101]. PAT supports different levels of fairness [101], including the

strong and weak event fairness, the strong and weak process fairness, as well as the global fairness.

PAT supports CSP# model to be verified on the properties such as deadlock-freeness, divergence-

freeness, refinement and LTL properties etc.

An input file of the CSP# model is composed with three parts: the global definition, the process

definition and the assertion. The global definition declares the global shared variables that can be

accessed by all the processes in the model. The process definition describes how each process

behaves and how these processes communicate with each other. The assertion part contains the

properties to be validated on the model. We give two simple CSP# models in the remainder of this

section. They will be referred to in the subsequent chapters.

Figure 2.1 shows the classic dining philosopher problem be modeled in CSP#. This model

contains two philosophers and two forks. These two forks are shared by the two philosophers. In
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1 : #define N 2;
2 : Phil(i) = get.i.(i + 1)%N → get.i.i
3 : → eat.i→ put.i.(i + 1)%N → put.i.i→ Phil(i);
4 : Fork(x) = get.x.x→ put.x.x→ Fork(x)
5 : []get.(x− 1)%N.x→ put.(x− 1)%N.x→ Fork(x);
6 : College() =|| x : {0..N − 1}@(Phil(x) || Fork(x));
7 : #assert College() deadlockfree;
8 : #assert College() |= [] <> eat.0;

Figure 2.1: CSP# Model: Dining Philosophers Example

order to eat the spaghetti, a philosopher needs to acquire both forks, on his left side and on his

right side. As two philosophers sit facing each other, one’s left hand fork is shared as the other’s

right hand fork. Both philosophers are using the strategy that first tries to get the left fork then

the right one. The deadlock happens when each philosopher has grabbed the fork on his left hand

and keeps trying to grab the right one. Starvation happens when one philosopher always get both

forks before the other philosopher get the forks. In this example, we use the processes to model the

“philosophers” and the “forks”. When they synchronize on the “get.i.j”, it means philosopher “i”

has grabbed the fork “j”. Similar meaning applies to the event “put.i.j”. After a philosopher get two

forks, the one on his left and the one on his right, he can perform the “eat.i” event, which means

philosopher “i” is now enjoying his dinner.

In the model source file, line 1 defines a constant “N” that determines the number of the

philosophers. Line 2 to 3 describe the behavior of a philosopher, modeled as process “Phil”. It

takes an “i” as parameter, which is used as the identification number of the philosopher. The be-

havior of fork is modeled as process “Fork” in line 4 to 5. It will either be acquired by philosopher

“x” and be put down by the same philosopher, or be acquired by philosopher “(x-1)%N” and be put

down. The process “College” on line 6 is composed of “N” philosophers and “N” forks synchro-

nizing with each other by the parallel operator ||. Line 7 and 8 define two assertions to be verified

on the model. Specifically, line 7 verifies whether the model will go into deadlock status and line 8

verifies whether the philosopher “0” can always eventually have his dinner.

Another CSP# model is shown in Figure 2.2. This model defines a readers-writer lock that
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allows concurrent read and exclusive write on a shared queue data structure. This model uses the

shared variables to constrain the behaviors of the reading and writing threads.

Line 1 to 3 declare a constant “M” and two variables “writing” and “noOfReading”. The value

of the Boolean variable “writing” denote whether there is a thread writing on the queue. Initially, it

is set to “false”. The integer variable “noOfReading” denotes how many threads are reading on the

queue and it is set to “0” initially.

Line 4 to 12 are the process definitions (“Writer”, “Reader” and “ReadersWriters”). Before

starting to read or write, the processes use the guarded process to wait for specific condition. The

write process (line 4 to 6) waits until number of reading threads drops to 0 and no thread is writing,

i.e. “noOfReading == 0&&!writing”, then it atomically set the Boolean variable “writing” to true.

After writing, the write thread set the variable “writing” back to false to allow other thread to read

or write on the queue.

The read process (line 7 to 11) waits until the number of reading threads is less than the al-

lowed maximum number of concurrent read threads and no thread is writing, i.e. “noOfReading <

M&&!writing”. When the condition turns true, the read process atomically increase the number of

reading thread (i.e. “noOfReading”) by 1. After the reading operation, it decrease the “noOfRead-

ing” by 1.

The whole system starts as the process “ReadersWriters” that contains 4 reading threads and 4

writing threads running concurrently. They are composed with the interleave operator |||. That is,

they do not synchronize on any specific events, but they rely on the shared memory communication

based on the shared variables (“writing” and “noOfReading”).

Line 13 to 17 contains three properties to be verified on model process “ReadersWriters”. This

model is verified on deadlock-freeness, the safety property “exclusive” and the liveness property

“[]<>someonewriting”. Here the “exclusive” means the model shall not go to a situation that some

thread is writing on the queue while there are some threads reading on the queue simultaneously, i.e.

“!(writing == true&&noOfReading > 0)”. The liveness property “[]<>someonewriting” means

that there are always eventually some thread can enter the writing state (i.e. “writing == true”).
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1 : #define M 2;
2 : var writing = false;
3 : var noOfReading = 0;

4 : Writer() =
5 : [noOfReading == 0 && !writing]startwrite{writing = true; }
6 : → stopwrite{writing = false; } → Writer();
7 : Reader() =
8 : [noOfReading < M && !writing]
9 : startread{noOfReading = noOfReading + 1; }
10 : → stopread{noOfReading = noOfReading− 1; }
11 : → Reader());
12 : ReadersWriters() = ||| x : {0..3}@(Reader() ||| Writer());

13 : #assert ReadersWriters() deadlockfree;
14 : #define exclusive !(writing == true&&noOfReading > 0);
15 : #assert ReadersWriters() |= []exclusive;
16 : #define someonewriting writing == true;
17 : #assert ReadersWriters() |= [] <> someonewriting;

Figure 2.2: CSP# Model: Readers and Writers
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As we can see from the examples, CSP# is convenient to model imperative programs with

shared memory communication. Although classic CSP can also represent shared variables and

asynchronous channels, CSP# represents them in a natural way. Not only do these program-friendly

features make modeling object-oriented programs easier, but also they reduce the state space signif-

icantly. Moreover, CSP# has other syntax sugars to simplify the modeling on data operations and

flow control. Both designing and verifying in CSP# benefit from these features.
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Chapter 3

Related Works

3.1 Model Checking Program

One of the important dialect of CSP is the machine-readable CSP (usually denoted as CSPm) [94].

It is developed to describe the parallel systems in CSP and it can be read and verified by automatic

tools. CSPm supports the notation of CSP and it includes a functional programming language to

enhance the extensiveness and expressiveness. It contains a wide range of data types including

numbers, booleans, sequences, sets, tuples and user-defined types. Other features such as pattern

matching and lambda terms are added to CSPm. Although the syntax of CSPm is advanced and

powerful, its primary purpose is to define the processes in the system rather than the programs.

FDR (and its subsequence FDR2) is the first tool to support CSPm [90]. It is developed by

Oxford University Computing Laboratory and licensed by the Formal Systems (Europe) Limited.

Generally, FDR2 takes two CSPm models as inputs and verifies whether one of the processes is

the refinement of the other. One of these models is the specification of the system and has the

properties that the system shall satisfy. The other model is the detail design model of the system.

With the refinement checking, we can verify the design model has fulfilled the specification. FDR2

have been applied to model and verify different kinds of protocols and concurrent systems [89, 57].

The ProBE tool [92] from the same research group as FDR provide a graphical simulator for the

25
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processes written in CSPm.

SPIN [49, 51, 14] is a successful model checker since the 80s. SPIN aims to provide an

intuitive, program-like notation to specify the behavior of the processes and to validate the design

model satisfy the correctness requirement in LTL. The model in SPIN is specified in the Promela

language [53]. SPIN has a graphical front-end XSPIN for developing the model in Promela. With

the Promela parser and LTL parser, the model and the properties are compiled to an on-the-fly

verification C program. Running the verification program will give the result that the properties are

satisfied, or give the counterexamples that violate the properties.

SPARK Ada [11] has a tool “Examiner” to perform static analysis and property verification. A

Ravenscar profile [31, 2] is created on each task in the Ada program. The “Examiner” can verify

the program’s properties based on the Ravenscar profiles. FDR or other model checkers can be used

to perform model checking on these properties based on the Ravenscar profiles [26].

Microsoft CHESS project [79, 6] is designed to systematically test concurrent program, but it

checks the properties as model checkers do. CHESS controls the thread scheduling of the tested

program but it does not store the program state. CHESS enumerates all possible thread schedules

with the number of preemption bounded at user-defined number. Deadlock, livelock, data race and

assertions can be detected by CHESS.

Usually the stateless approaches can only apply model checking on the terminating programs.

In [78], the authors use an explicit fair scheduler on the CHESS tool. For a program that has

finite state in a fair scheduler, the extended CHESS tool can verify the safety properties on the

nonterminating program.

The C language is one of the most widely used programming languages. To check the C

source code for embed system grants interest of the researchers [96]. These embedded systems are

usually smaller and contain less states. BLAST [15, 43], SLAM [8, 9] and CBMC [22] are typical

model checkers in this category. BLAST and SLAM abstract the data predicate on the program and

convert it to boolean program[7] then use SAT solver [30] to verify the properties on them. Other

approaches, such as FeaVer [52], AX[50] and FocusCheck[58], translate the C source code to the
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input of general model checkers. In [76] Mercer et al use the GNU debugger to verify the machine

code of embedded systems.

Generally, for the object-oriented programming languages like C# and Java, their standard

language syntax and semantics have been defined. The transformation of the program can be con-

ducted on the intermediate language (IL) level or above. On the other hand, the programs of these

high-level languages are larger in scale so they usually suffer more on the space explosion problem.

Early version of Java Path Finder (JPF) [41, 42] translates the Java programs to Promela, the

input language of SPIN [14]. The classes in the Java program are represented as user-defined data

types in Promela. Each object is a record of its type and a unique object ID is assigned. The model

uses the object ID as reference to access the data. The methods of the class are translated to macros

that use the object ID and the original parameters as the macro parameters. The Java program’s

properties are represented as methods of the “Verify” class provided by JPF, then translated to LTL

formula in SPIN.

To address the dynamic features of Java, dSPIN [29, 27] and JCAT [28] add language exten-

sions on Promela. The object references are represented as the left and right value of the pointers

in dSPIN. The methods are represented as functions, which are also referenced by the pointers. The

heap data of Java programs are represented in the model’s global variables and the stack data are

stored with the process data in Promela. With these dynamic data be managed, the models of Java

programs can be verified by dSPIN.

Bogor[88, 32, 24] defines an intermediate language BIR to facilitate model checking on pro-

gram language. The object-oriented programming languages like Java can be easily translated to

BIR. On the other hand, it adopts the guarded command format for its control flow and this can be

projected to the semantics of other modeling languages conveniently.

After the implemented program has been translated into BIR, Bogor provides abstraction on

the program and checks the properties on the BIR level. The open framework approach of Bogor

allows convenient extensions to other programming languages and application domains[33, 10, 87].

LLVM2CSP [62, 63] generates CSP model on the intermediate representation (IR) from LLVM
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compiler. LLVM2CSP translates the program to an application-specific model, and then combines

it with the OS model and the hardware model. The combined model is in CSPm [94] and can be

checked with FDR2 model checker. LLVM2CSP works on the IR level, which is closer to the OS

and hardware, but as it adopts on the translation-based approach, it faces the similar difficulties in

scalability as the earlier version of JPF.

Started from version 2, Java PathFinder applied the modified virtual machine approach to

model checking Java program at byte-code level. It acts as another Java virtual machine above

the native Java virtual machine and internally applies software instrumentation on the Java program

running on it. The program state is the snapshot of the program stacks, local variables of all the

classes and objects. After executing a Java bytecode, JPF checks whether the verifying property is

satisfied. If not, it guides the program to continue traveling to n possible next states, given that there

are n enabled threads. The backtracking happens when all the next states have been visited before

or the program ends normally.

In JPF, most resources are taken up by the state storage. The state compression and symmetry

reduction are applied to dynamic allocated objects and stack data in JPF [68]. In [86] the author

applied symbolic execution [23, 59, 20] in Java PathFinder. Other researchers also extended Java

PathFinder to wider industrial practices and testing [84, 107, 40, 83] etc.

MoonWalker [19] is inspired by Java PathFinder but targets on C# program on .NET frame-

work. As .NET framework provides a layer that represents the program in its CIL (Common In-

termediate Language) bytecode, MoonWalker instruments the CIL bytecode to traverse the state

space of the program. The authors also implemented the Memoised Garbage Collector [81] and two

partial order reduction techniques to improve the performance of MoonWalker.

3.2 Implementing Concurrent Models

JCSP[108, 109] provides CSP operators in Java. It hides the built-in Java concurrent features,

such as mutex and monitor. Instead of using the explicit synchronizations, the Java program shall
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only rely on the JCSP library to communication between different components. JCSP supports

nondeterminism and fairness concepts via the “Alternative” class. Furthermore, JCSP adds two

concepts, poison and immunity, to channel. The Java programs can use the poison operation to

chain-terminate the components that have communication with an already terminated component.

The program can also assign different immunity levels on different channels to control how the

poison spread in the program. The poison only spreads when the immunity level of the channel is

less than the poison strength.

In [110] the authors proved that the operators of JCSP are equivalent to the ones in classic CSP.

With these CSP operators, the developer can implement a CSP model in Java with ease. However,

when these operators are used in the program, the operation atomicities of the program are hidden

in the program structures, making it difficult to check whether the properties of the CSP model are

preserved in the implemented program.

Similar to JCSP, CTJ [95, 44] provides the CSP operators in multi-threaded Java programs.

It replaces the OS scheduler to provide more flexibility. JCSProB [112, 111] apply JCSP’s idea to

provide the operators for the B+CSP model. JACK [36] is another CSP framework for Java program.

C++CSP [16, 18, 17] provides CSP operators in C++ language. CSP.NET [67] implements the JCSP

like operators in .NET framework.

Some modern program languages integrate CSP concepts, in the language itself or by external

libraries. For example, Occam [56] provides named channels, parallel and choice operators for

process communication. PyCSP [106] brings CSP to Python via external library. The Go language

[100] also uses CSP style channels for synchronization.

In [60, 61] the author proposed an approach which assigns the user-defined functions to CSP

events. Different from other approaches, it uses explicit simulator to manage the concurrent model.

As the concurrency are separated from the program’s sequential part, this approach allow the model

be verified on the concurrent aspect of the program.

CSP++[39, 38, 37] is a framework that uses CSPm in design phase and generates C++ source

code from the CSPm model. The properties of the CSPm model are verified by FDR model checker.
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The validated CSPm models can be automatically translated to C++ program as the concurrent

control layer. After the functionality codes are implemented in C++, CSP++ framework weaves

the control layer and the functionality codes into the final program. CSP++ implements a subset of

CSPM, but the validated properties of the CSPM model preserves in the weaved program. However,

the properties are based on the concurrent CSPM model and do not access the functionality codes.

In [44], Hilderink proposed a graphical notation of CSP. Based on this notation, gCSP [34]

provides a graphical tool to design model in CSP diagram. The design model in gCSP can also

generate code in Occam and C languages.



Chapter 4

C# Program to CSP# Model

4.1 Overview

Integrating the formal method into the software development process is one of the important goals

in software engineering. Verifying the equivalence between the system model and the implemented

program is part of the development loop. However, this verification is not trivial, as the implemented

program contains many functionality details. Manually converting the implemented program to a

formal model and verifying the properties on the formal model can solve the problem but it takes

a lot of time and efforts. The converting itself requires modeling specialists and even so, the man-

ual converting may still introduce errors. A solid and automatic transformation from program to

the modeling language helps to save these efforts and to avoid introducing errors. The automatic

transformation tool is also easier to deploy in the development loop.

The automatic transformed programs shall be easy to understand and ready to be verified on

properties. In order to do so, we choose some aspects of the program to be transformed to the

model, while the other aspects be simplified or abstracted away to some extent. We shall choose a

balanced boundary as it relates to the complexities of the models and the properties that we want

to verify. The features of the programming language and the modeling language also constrain on

what aspects need to be in the model while the others do not.

31
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As introduced in Chapter 1, we choose CSP# as the modeling language and C# as the pro-

graming language. In this chapter, we provide an approach that translates C# source codes to CSP#

models to verify concurrent properties. The targets are the multi-threaded C# programs that use C#

built-in synchronization between threads. The next chapter will describe another approach based

on the Mono virtual machine that executes C# programs. The virtual machine approach can reach

the lower level of the program executables. However, the simplification and abstraction are more

convenient to be applied on the source code level.

4.2 Analysis on C# and CSP#

Threading is the lightweight concurrent mechanism on today’s systems with multi-core processors.

Most modern programming languages have built-in supports for thread communication. They usu-

ally include the thread creation, mutual exclusion, waiting for specific event and thread interruption.

In C# programming language, the “lock” statement and the namespace “System.Threading” provide

the inter-thread communication based on monitor.

Figure 4.1 shows a multi-threaded Producer-consumer example in C#. The thread “Producer”

constantly puts new entries to the shared queue “buffer” while the thread “Consumer” keeps getting

these entries from the “buffer”. To prevent the “Consumer” from reading an empty queue, it will

wait on the monitor attached on the “buffer”. Each time the “Producer” puts an entry in the “buffer”,

it sends a notification to that monitor. If the “Consumer” thread is waiting on the “buffer”, it wakes

up and consumes the entries in the shared queue. The program first start two threads, a “Producer”

thread and a “Consumer” thread, by calling the “Start()” method of the thread object. The program

will also wait on the two threads’ terminations then exit the program. 1

Based on the Producer-consumer example, we discuss the typical thread communication in

C#. The object of “Thread” class is created with a method as parameter. This method designates the

behavior of the thread when it is executing. Calling the “ThreadStart()” method of the thread object

1Here both the “Producer” and the “Consumer” do not terminate and the program will keep running.
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1 p u b l i c c l a s s ProducerConsumer
2 {
3 p r i v a t e Queue < i n t > b u f f e r = new Queue < i n t > ( ) ;
4 p r i v a t e i n t c = 0 ;
5 p u b l i c vo id Run ( ) {
6 Thread t 1 = new Thread ( P r o d u c e r ) ;
7 Thread t 2 = new Thread ( Consumer ) ;
8 t 1 . S t a r t ( ) ; t 2 . S t a r t ( ) ;
9 t 1 . J o i n ( ) ; t 2 . J o i n ( ) ;

10 }
11 p r i v a t e vo id P r o d u c e r ( ) {
12 w h i l e ( t r u e ) {
13 l o c k ( b u f f e r ) {
14 b u f f e r . Enqueue ( c + + ) ;
15 Moni to r . P u l s e ( b u f f e r ) ;
16 }
17 }
18 }
19 p r i v a t e vo id Consumer ( ) {
20 w h i l e ( t r u e ) {
21 l o c k ( b u f f e r ) {
22 w h i l e ( b u f f e r . Count == 0)
23 Moni to r . Wait ( b u f f e r ) ;
24 Conso le . W r i t e L i n e ( " Consumed { 0 } " , b u f f e r . Dequeue ( ) ) ;
25 }
26 }
27 }
28 p u b l i c s t a t i c vo id Main ( ) {
29 new ProducerConsumer ( ) . Run ( ) ;
30 }
31 }

Figure 4.1: Producer-consumer Example in C#
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starts the thread’s execution.

The “lock” statement provides the mutual exclusion control in C#. A “lock” statement can be

represented as lock(obj){φ}. It accepts an object obj as argument. Multiple threads can try to lock

on the same object, but at any time only one will get the lock and be executing the code in φ. Other

threads are blocked on the beginning of the “lock” statement. When the thread runs to the end of

the “lock” statement, it unlocks the obj and unblocks one of other threads that are trying to lock this

object. This thread will be granted the lock of obj and it can execute φ in its “lock” statement.

Combining the use of the “lock” statement and the “Monitor” class, C# threads can wait on spe-

cific notifications attached on the shared objects. When a thread A is holding the lock of a specific

object obj, it can use “Monitor.Wait(obj)” to release the lock of obj and block itself, waiting for no-

tification on obj. When another thread B calls the “Monitor.Pulse(obj)” or “Monitor.PulseAll(obj)”,

it wake up one or all of the threads that are waiting on obj. These threads will wait to re-lock the

obj and then resume its execution on φ, from the statement right after “Monitor.Wait(obj)”.

In the C# programs, the statements related to thread communications are the main concerns

of the translated concurrent models. In CSP# models, these communications shall be represented

as the corresponding processes being blocked or unblocked on specific events. There are other

statements in the C# programs that neither locks the “Monitor” objects nor sends notifications on

them. These statements can still evoke communications between threads, given that they may read

and write on variables that are shared by multiple threads. If the statements only read or write on

the local variables of its own thread, they do not relate to thread communication. These statements

can be put in the CSP# model without modifications.

As introduced in Chapter 2, CSP# allows shared variables be imported to the models. The

processes may read the value of these variables in the conditional expressions, and read and write

them in the event-attached programs. The example in Figure 4.2 demonstrates the communication

between the event-attached program e{prog} and the conditional operator if (b){P}else{Q}.

If Sys chooses to perform the conditional operator of process P first, as the value of x does not

equal to 1 at the beginning, process P will perform as {e2 → Skip} after that. If Sys chooses to
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var x = 0;
P() = if (x == 1){e1 → Skip}

else{e2 → Skip};
Q() = eq{x = 1; } → Skip;
Sys() = P() ||| Q();

Figure 4.2: Communication via Shared Variable in CSP#

perform event eq{x = 1; } of process Q, the event-attached program sets the value of x to 1. Later

when Sys perform process P, as the conditional expression (x == 1) is true now, P will perform

as {e1 → Skip}. The communication between process P and Q are through the variable x. The

communications between C# threads can be conveniently represented as these communications via

shared variables.

4.3 Translation Outline

To translate a C# program to a CSP# model, our approach puts the program data in the user-defined

class library, which will be imported to the CSP# model as shared variables. The methods of the

classes in the program are translated to processes in the CSP# model. With the concurrent properties

provided by the user, PAT tool verifies whether the translated model satisfies these properties. An

overview of our approach is shown in Figure 4.3.

The translator takes a C# program’s source code ς as input and it outputs the CSP# model ε

and the source code of a C# class library ι. The model ε imports the class library ι and creates the

shared variables of the classes of ι in the CSP# model.

For each class cs in the C# source code ς , there are two classes {cd, cl} in class library ι to

manage the data related to cs. Class cd contains all non-static fields of class cs but it does not define

the methods in cs. Class cl contains the static fields of class cs. Furthermore, it has a list to store all

objects of class cd in the model. For an object of cd, its index in this list and the class cl info are

combined to be the object ID in the CSP# model. All the cd and cl objects are maintained in a class
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Figure 4.3: Process of Translation-Based Approach

“Memory”. For a CSP# model ε, it defines one shared variable “memory” of class “Memory”. In

the CSP# model ε, all the objects are referenced on their object ID. The “Memory” class provides

the “getter and setter” to access each field of the objects and classes. A stack structure is allocated

for each thread in the “Memory” class.

For each method m in class, a process pm is defined in the CSP# model. pm accepts the object

ID and the origin parameters of m as the process parameters. The local variables and the return value

are stored in the stack structure allocated for this thread. For the arithmetic and logical operators

in the expressions of the C# program, they stay intact as they are supported in the conditional

expressions in CSP#. 2

In general, each statement in method m is translated to one or more CSP# operators in the

model. The assignment statements are put in the prog in the event-attached program “→ e{prog} →”.

The selection statements (i.e. the “if” and “switch”) are translated to the general “IF” process in

CSP#. The iteration statements repeatedly execute a block of statements until the loop condition

becoming “false”. The statements in a loop in C# are put in a subprocess in CSP#, this subprocess

repeats itself until the loop condition become “false”.

2There are a few exceptions that the operators in CSP# expressions have different meaning compared to C#, for
example, the remainder operator “%” in C# can result negative value while the “%” in CSP# always get positive value.
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For the statements related to thread management, such as the “lock”, “Monitor.Wait()/Pulse()”

and “Thread.Start()”, they are translated to the specific operations on the object and thread data in

the “memory” object, or the channel operations for the whole program. The detailed translations of

them are described in next section.

The execution of the C# program starts from the static “Main()” method. Accordingly, the

CSP# model have a process “Main” to initialize the environment, create the objects and start the

subprocesses. Besides the process “Main”, a “CNT” process is in charge of the creations of every

new threads. When the C# program starts a new thread on the method m of object obj, the CSP#

model send the new thread ID, the object ID and the method ID to process “CNT” process. Based

on these IDs, “CNT” performs itself as CNT = pm || CNT; . As result, the new process pm run in

parallel with all other threads’ processes. The whole CSP# model is the parallel composition of the

process “Main” and “CNT”.

Prog() = pMain || CNT;

After the translation, the model checker PAT exhaustively explores the state space of the trans-

lated CSP# model and verify the properties. The properties shall be the LTL formula as defined in

2.1. The proposition in the LTL formula can access the global shared variables in the CSP# model.
3 If the property is not valid on the model, PAT provides the trace of the counter example. The

counterpart of this trace in the original C# program is the execution that leads to the violation of the

property.

4.4 Translation for Specific C# Statements

In this section, we introduce the translation of the statements in C# methods. Table 4.1 summarizes

the translation for each supported statement in C#. The first column lists the original C# statement.

The second column shows the translated CSP# processes for each of the C# statements. For some C#

3The data of the original C# program can be accessed via the “memory” variable in its translated CSP# model.
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C# statement Translated CSP# Additional Process Definition
υ=φ; τ{υ=ϕ}→Skip;
obj = new OBJ() obj = memory.OBJ create(); OBJ create() 4

if(cond){φ1}else{φ2} if(cond’){ϕ1} else {ϕ2};

(τ{init}→Skip);
L1()= ϕ;

for(init, cond, inc){φ}
if(cond’){L1()};

(τ{inc’}→Skip);
if(cond’){L1()};

while(cond){φ} if(cond’){L2()};
L2()= ϕ;
if(cond’){L2()};

do{φ}while(cond) L3();
L3()= ϕ;
if(cond’){L3()};

OBJ Lock(obj);
OBJ Lock()

lock(obj){φ} ϕ;
OBJ Unlock()

OBJ Unlock(obj);
Monitor.Wait(obj); OBJ Wait(obj); OBJ Wait(obj)
Monitor.Pulse(obj); OBJ Pulse(obj); OBJ Pulse(obj)
Monitor.PulseAll(obj); OBJ PulseAll(obj); OBJ PulseAll(obj)
thobj.Start(); Create thread!mid.thobj
return φ; ret = ϕ;

Table 4.1: CSP# Translation of C# statements

statements, such as the “for” or “lock”, additional CSP# subprocesses are needed for the translation.

The third column in the table lists the name of the additional subprocesses. Their specific definitions

will be given when we discuss the detail of each statement.

As stated in the previous section, the assignment statements in the method are translated to

the event-attached C# program. For an assignment statement φ ∈ m, the subprocess τ{φ} → Skip

is inserted to the process pm at the φ’s place. Here the event “τ” does not synchronize with other

process, so the event-attached program φ can be executed anytime when pm runs to this place.

The selection statements in C# language include “IF” and “switch” statements. Intuitively,

both of them can be represented as CSP# general “IF” statement. For a C# “IF” statement φ in the

form if (cond){φ1}else{φ2}, the corresponding subprocess is if (cond′){ϕ1}else{ϕ2} in translated

CSP# model. Here cond is a boolean expression in C#. cond′ is the CSP# condition expression

translated from cond, with proper substitutions on the object references. The ϕ1 and ϕ2 are the

4The “OBJ create()” is the translated CSP# process of the constructor method of the C# class “OBJ”
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translated subprocesses of φ1 and φ2. The C# “switch” statement can be represented as a set of C#

“IF” statements and be translated to CSP# “IF” subprocesses as well.

The iteration statements of C# include “while”, “do”, “for” and “foreach” statements. Here

we use the “for” statement as the general case to demonstrate the translation. A “for” statement φ

in C# method m is defined as for(init; cond; inc){φ1}. Here the init and inc are two statements.

init is executed once at the beginning when the “for” statement is executed. inc is executed at the

end of each iteration. The cond is a condition expression to decide when the iteration ends. At the

beginning of each iteration, the program evaluate whether cond holds. If cond is true, the program

continue the next iteration; if it is false, the “for” statement is finished and the program goes on by

executing the statement that follows the “for” statement.

In CSP#, we use the tail recursion on the CSP# process to implement the “for” statement in C#.

The C# method m is translated to process pm. To represent the “for” statement φ in pm, we create an

extra process Lφ to represent the repeated behavior of the original “for” statement.

Lφ = ϕ′1;
(τ{inc′} → Skip);
if (cond){Lφ}else{Skip};

Process Lφ first executes the translated body of the “for” statement ϕ1 then it executes the

“inc′” after it finished one loop. The last sub-process evaluates whether the looping condition cond′

is true. If not, the process terminates successfully. Otherwise it recurs back from the beginning of

process Lφ. After defining this Lφ, the φ in method m is translated to

τ{init′} → Skip;
if (cond){Lφ}else{Skip};

Here the init′ will be executed only once as the “for” statement is defined. Before going to subpro-

cess Lφ, the looping condition cond′ is evaluated. If it is true the process pm performs Lφ until cond′

become false. If it is evaluated to false at the beginning, process pm does not perform Lφ and the

looping block ϕ1 is not executed at all.
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The “System.Threading” namespace provides classes and interfaces for inter-thread commu-

nication. Here we focus on the use of the C# “lock” statement and the methods “Wait()”, “Pulse()”

and “PulseAll()” from “Monitor” class. They are fundamental for thread communication in C#

language and other thread communications can be translated in similar ways as they do.

In the translated user-defined library, two variables are attached to the class of “Obj”.

p u b l i c c l a s s Obj {

p u b l i c i n t LOCK;

p u b l i c i n t WAITING ;

. . .

}

A system channel “ch notify” is defined in the translated CSP# model.

channel ch notify 0;

The C# “lock” statement φ has the form lock(o){φ1}. Before executing the φ1, the program

enters the monitor of the object o. After φ1 it releases the acquired monitor of o. To represent the

entering and leaving of the monitor of object o, two subprocesses are created in the translated CSP#

model.

OBJ Lock(tid, oid) =
[0 == memory.OBJ Get LOCK(oid)]
(τ{memory.OBJ Set LOCK(oid, tid); } → Skip);

OBJ Unlock(tid, oid) =
assert(memory.OBJ Get LOCK(oid) == tid);
(τ{memory.OBJ Set LOCK(oid, 0); } → Skip);

Here the CSP# models use “memory.OBJ Get LOCK(oid)” 5 and “memory.OBJ Set LOCK(oid,

val)” to read and write the field “LOCK” of object o. The oid is the object ID of o in CSP# model.

5The “OBJ Get LOCK” is the “getter” method defined for accessing the “LOCK” field of the object via the global
shared variable “memory”. Similar case applies to the “OBJ Set LOCK”.
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Process OBJ Lock(tid, oid) waits the object’s “LOCK” become 0 and atomically set it to tid, the

current thread ID. Process OBJ Unlock(tid, oid) asserts the object’s “LOCK” equals to the current

tid and set it to 0 to release the lock.

With above two sub-processes, the lock(o){φ1} is translated to

OBJ Lock(tid, oid); ϕ1; OBJ Unlock(tid, oid)

The wait operation “Wait(o)” requires the thread already holds the monitor of o. Executing

“Wait(o)” will unlock the monitor and block the thread until other thread notifies it. The translated

CSP# process for the “Wait(o)” is shown as follows.

OBJ Wait(tid, oid) = atomic{
OBJ Unlock(tid, oid);
(τ{memory.OBJ Set WAITING(oid,memory.OBJ Get WAITING(oid) + 1); } →
ch notify?(oid)→
OBJ Lock(tid, oid));
}

Here the field “WAITING” of object o is used to keep track of the number of the threads that are

waiting on the object o. After unlocking the monitor and increasing the field “WAITING”, the

process “OBJ Wait” blocks itself on the channel read operation “ ch notify?(oid)”. The thread that

notifies on object o will use the channel write operation “ ch notify!(oid)” to wake up the thread that

is waiting on o.

Accordingly, the notify and notifyall operation are translated to processes “OBJ Pulse(tid, oid)”
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and “OBJ PulseAll(tid, oid)” as follows.

OBJ Pulse(tid, oid) = atomic{
If (memory.OBJ Get WAITING(oid) == 0){Skip}
else{

ch notify!(oid)→
τ{memory.OBJ Set WAITING(oid,memory.OBJ Get WAITING(oid)− 1); } → Skip;
}
}

OBJ PulseAll(tid, oid) = atomic{
If (memory.OBJ Get WAITING(oid) == 0){Skip}
else{

ch notify!(oid)→
τ{memory.OBJ Set WAITING(oid,memory.OBJ Get WAITING(oid)− 1); } →
OBJ PulseAll(tid, oid);
}
}

The processes first test whether there are some threads waiting on o. If no thread is waiting, the

processes do nothing and exit. Otherwise, the “OBJ Pulse()” performs the channel write operation

“ ch notify!(oid)” for one time. The “OBJ PulseAll()” performs the channel write operation “

ch notify!(oid)” for “WAITING” times, which will wake up every threads that are waiting on o.

In the translated CSP# model, when a process performs a subprocess pm that corresponds to

method m, pm registers the slots for its local variables in the “memory” object. The variable slots

can be referenced in the model by the thread ID and the variable index, which is assigned to each

local variable. The “memory” object also holds a variable ret for each thread to store the return

value of the called method. The “return” statement in C# is translated to the assignment on ret.

Table 4.2 gives a summary of the translation for different C# statements. We use φ to represent

the C# statements and ϕ to represent the translated CSP# process of φ. Some C# statements, such

as “for”, produce additional sub-processes in CSP#. The third column of the table lists these addi-

tional sub-processes. For simplicity in the table, we do not list the full process definitions for the

complicated sub-processes, such as “OBJ Wait()” and “OBJ Pulse()”.
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CSP# model Model after transformation
Stop Stop Stop
Skip Skip Skip
Prefix e->Q G(e){Q}
Data Op e{prog}->Q G(e{prog}){Q}
Channel Out ch!x->Q G(ch!x){Q}
Channel In ch?x->Q G(ch?x){Q}
Guarded [b](e->Q) G([b]e){Q}
General If if(b){Q}else{R} G([b]tau | [!b]tau){Q | R}
Atomic If ifa(b){e1->Q}else{e2->R} G([b]e1 | [b2]e2) {Q | R}
Blocking If ifb(b){Q} G([b]tau){Q}
General Choice (e1->Q)[](e2->R) G(e1 | e2){Q | R}
Parallel (e1->Q) || (e2->R) G(e1 | e2) {(Q || (e2->R)) | ((e1->Q) || R)}
Interleave (e1->Q) ||| (e2->R) G(e1 | e2) {(Q ||| (e2->R)) | ((e1->Q) ||| R)}

Table 4.2: Translation for Specific C# Statements

4.5 Case Study

In this section, we use two examples to demonstrate the translation from C# program to CSP# model.

The first example is based on the dining philosophers that is introduced in Chapter 2. This example

shows how the inter-thread communications in C# are represented in CSP# using shared memory

communications. The other example is based on a leader election algorithm in a ring network. With

customized translation for the “Random” objects in C#, the probability related properties can be

verified on the translated model of the algorithm.

4.5.1 Dining Philosophers Example

The dining philosophers problem is usually used to illustrate the synchronization problems that

different processes or threads are competing for resources. The forks 6 are taken as the resources

and the philosophers are the processes that try to use the resources. A multi-threaded C# version of

dining philosophers problem is shown in Figure 4.4 (before the end of this chapter).

6The forks here shall not be taken as the “fork()” in the programming languages, such as C language.
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In the C# program, the “Fork” is the shared object that can be “lock” by the philosopher threads.

Each “Philosopher” runs its own thread to sequentially “lock” the left-hand fork and the right-hand

fork. When a “Philosopher” thread holds the two forks’ locks, the philosopher thread can have

dinner. In the program, the thread output a line saying “Philosopher x is eating” (here the “x” is the

index number of the philosopher thread). The program’s static “Main()” method first creates N fork

objects, then starts N philosopher threads to try locking these fork objects.

From this C# source file, the translator generates a user-defined class library “DiningPhilCls.cs”

and the CSP# model file “DiningPhil.csp”. All of the “Fork”, “Philosopher” and “DiningPhil” class

in C# source have their corresponding classes in the user-defined class library.

For the simplest class “Fork”, although it does not have any fields or methods in original C#

source, it still needs to represent the monitor attached to it. So its corresponding class, also named

“Fork”, has two fields to model the monitor attached to every objects in C# program. To be exported

in the state of the program, it also provides a property “ID” and a method “GetClone()”. The classes

“ForkCls” and “Memory” use this property and method to exprot the program state. The translated

“Fork” class is shown in Figure 4.5.

The “ForkCls” class manages the list of the “Fork” objects in the program. When the translated

model is about to create an instance of “Fork”, the “ForkCls” creates the “Fork” object, inserts it in

the list, and returns the object ID. The “ForkCls” class is shown in Figure 4.6.

Similarly, class “Philosopher” has the two classes, “Philosopher” and “PhilosopherCls”, gener-

ated in the user-defined library. They help to maintain the “Philosopher” objects and to export their

data in the program state. The “Philosopher” class in C# has several fields. The “left” and “right”

are references to “Fork” objects. In CSP# model, the objects are referenced on the object ID. So

these object reference fields are translated to integer type in “Philosopher”. The translated C# code

is listed in Appendix A.2. The “run()” method of “Philosopher” is translated to a CSP# process

“Philosopher run(pid, obj)” in the model. The “pid” is the process ID that the model assigns to each

process when it is started in parallel with other processes. The parameter “obj” is the object ID for

the “Philosopher”. The translated process is listed as follows.



4.5. CASE STUDY 45

P h i l o s o p h e r _ r u n ( pid , o b j ) =

( Fork_Lock ( pid , memory . P h i l o s o p h e r _ G e t _ l e f t ( o b j ) ) ;

( Fork_Lock ( pid , memory . P h i l o s o p h e r _ G e t _ r i g h t ( o b j ) ) ;

( Fork_Unlock ( pid , memory . P h i l o s o p h e r _ G e t _ r i g h t ( o b j ) ) ;

( Fork_Unlock ( pid , memory . P h i l o s o p h e r _ G e t _ l e f t ( o b j ) )

) ) ) ) ;

The statement that prints to the screen is not in the translated CSP# model, as it has no effect when

the model is being verified. The “lock” statements are translated as the paired lock and unlock

subprocesses.

In the C# program, the “run()” method of “Philosopher” is used to start the new thread. In

the CSP# model, these new threads run as processes in parallel with the whole model. A process

“CreateNewThread” takes care of all the new parallel processes creation. When the model wants to

start a new process that run the “run()” method of “Philosopher”, the process “CreateNewThread”

starts the “Philosopher run” process, as shown below.

CreateNewThread ( ) = c r e a t e _ t h r e a d ? t i . p i d . o b j

−> i f (−1 == t i ) { Skip } e l s e { NewThread ( t i , p id , o b j ) } ;

NewThread ( t i , p id , o b j ) = c a s e {

( t i == 1) : P h i l o s o p h e r _ r u n ( pid , o b j )

d e f a u l t : Sk ip

} | | CreateNewThread ( ) ;

The static “Main()” method of class “DiningPhil” is translated to process “DiningPhil Main(pid)”.

It uses two loop statements to create the “Fork” objects and “Philosopher” objects and starts the

philosopher threads. The process “DiningPhil Main(pid)” creates one subprocess for each loop

statement. The detail of it can be found in Appendix A.1. The whole C# program is modeled as.

System ( ) = D i n i n g P h i l \ _Main ( 0 ) | | CreateNewThread ( ) ;

Here the “System” include two programs running as processes in parallel. The “DiningPhil Main”
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represent the program of the original C# program and the “CreateNewThread” simulates the behav-

ior of the operating system on creating new threads.

The properties can be defined on this program process “System()” and be verified by PAT model

checker. The deadlock-freeness property will be defined on it as “#assert System() deadlockfree;”.

With slightly modification, such as adding some tracing events or variables, the translated CSP#

model can be verified on more interesting properties including the ones in LTL formulas.

4.5.2 Leader Election Algorithm Example

Leader election is a common task in distributed system. Given a set of connected nodes, the leader

election algorithm chooses a unique node among them. In this section, we consider the C# program

simulating the leader election algorithm in a synchronous ring network.

The ring network contains N nodes connected as ring. The messages are sent in clockwise in

the ring. Each node can only receive the message from the node that precedes it, and it only sends

message to the node that follows it. There is a global clock to synchronize the communication in

the ring network. At each round, a node receives the message sent to it in the previous round, and it

can send the message to the next node in the ring.

The algorithm starts when each node chooses a random number from 0 to K as its ID. Each

round the nodes send their ID to the next node in ring. When the IDs are unique for each node, the

algorithm stops and the node with the maximum ID is the leader. If not, the nodes choose their new

random IDs and repeat the process. There are more details for the algorithm in [55].

In the C# program there are two classes “Counter” and “ProcSyn”. When the program is

running, the “Counter” object simulates the global clock in the ring network. N “ProcSyn” objects

are created and linked in the ring order. They represent the nodes in the network. The “Counter”

object controls the nodes to send and receive messages. When the leader is elected, it put the nodes

in the “Done” state and stops the program. The C# source code of the leader election algorithm is

included in Appendix A.3.
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Based on our translation approach, the C# program “LeaderSyn.cs” is translated to the user-

defined library “LeaderSynCls.cs” and a CSP# model file “LeaderSyn.csp”. In the original C#

program, each “ProcSyn” object chooses its new state based on its ID and the message it get on the

current round. The translations of these statements are similar as the dining philosopher example

in the previous section. The most difference is that the nodes call the “Random” object to choose

an ID. The “Random” is in the “mscorlib.dll” from the .NET framework and the source code of it

is not accessible. Here we introduce the customized translation for the“Random” class. Currently,

these customized translations are manually defined by users.

Based on the description of the “Random” class in .NET framework, calling “Next(1, K)” on a

“Random” object returns a number greater than or equal to “1” and less than “K”. The customized

translation for this method in CSP# is defined as follows:

RdmNext ( p i d ) =

( t a u { memory . S e t R e t ( pid , 1 ) ; } −> Skip )

[ ] ( t a u { memory . S e t R e t ( pid , 2 ) ; } −> Skip )

. . .

[ ] ( t a u { memory . S e t R e t ( pid , K − 1 ) ; } −> Skip ) ;

This customized translation adds the nondeterminism to the translated CSP# model. With this ran-

dom behavior of the program being modeled, we can use the PAT to verify whether the program may

deadlock, or whether the program can always eventually select a unique leader in the ring network.

# a s s e r t Prog ( ) d e a d l o c k f r e e ;

# d e f i n e s u c c e s s ( g o a l == 1 ) ;

# a s s e r t Prog ( ) r e a c h e s s u c c e s s ;

# a s s e r t Prog ( ) | = [] < > s u c c e s s ;

To verify the probabilistic properties on this leader election example, we manually substitute

the above customized translation for “Next(1, K)” to the probabilistic choice process as follows.

RdmNext ( p i d ) = p c a s e {



4.6. SUMMARY 48

1 : ( t a u { memory . S e t R e t ( pid , 1 ) ; } −> Skip )

1 : ( t a u { memory . S e t R e t ( pid , 2 ) ; } −> Skip )

. . .

1 : ( t a u { memory . S e t R e t ( pid , K − 1 ) ; } −> Skip )

} ;

With this modification, the translated CSP# model becomes a PCSP# model. We can verify the

model reaches the “success” state with the probability range. Furthermore, the PCSP# model can

be used to estimate the expected number of the communication rounds before the leader has been

elected. A “rew” event is added to each round of communication. The model define 1 weight on

this “rew” event. We can verify the model will reach the “success” state and calculate the estimated

reward when it reaches the state. The assertions for these properties are listed as follows.

# a s s e r t Prog ( ) r e a c h e s s u c c e s s wi th prob ;

# reward rew 1 ;

# a s s e r t Prog ( ) r e a c h e s s u c c e s s wi th reward ;

For the 3-node case, the verification takes about 7 second and give the result that the estimate

reward is about “4.0635”.

4.6 Summary

CSP# bases on classic CSP and adds various language features for intuitive system modeling. In

CSP#, the interaction between processes and the operation on the shared variables are integrated.

These features shorten the gap between the modeling language and the programing language. Mak-

ing uses of these helps on applying model checking on the software programs.

In our translation approach to verify C# program, CSP# provides the flexibilities on the bound-

ary between program and model. The user-defined class library contains the fields of the classes in

C# program. The inheritance and polymorphism are naturally preserved in the class library. The
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methods of the classes are translated to CSP# processes. They focus on the control flow and the

synchronization between threads.

For some complex statements, such as “wait” and “notify” on the monitor, the translations are

based on the equivalence on their behavior. The internal data representations for these statements

are different between the C# program and the translated CSP# model, but their behaviors have the

same effect from the translated model perspective. Using different translation on these statements

also influence the state space of the translated CSP# models.

The translated CSP# model allows us to traverse the original C# program state space on the

atomicity of the translation. The requirement can be verified as properties defined on the classes

and objects of the original program. With customized translations on specific statements or objects,

the properties including probability and rewards can be verified on the modified models.

In the implementation of PAT framework [103, 71], the states are internally represented as

string. Our translation based approach needs to provide the interfaces that PAT framework requires.

Integers and booleans can be directly used in CSP# and PAT. Other data need to be represented as

user-defined data types and be exported as strings in program states. The translation is also limited

on the source code level. The atomicity is at least on the statement level, unless using customized

translation. The errors on the lower level, such as the IL code level, may not be detected in the

translated CSP# model.
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1 p u b l i c c l a s s Fork
2 { }
3 p u b l i c c l a s s P h i l o s o p h e r {
4 i n t name ;
5 Fork l e f t ;
6 Fork r i g h t ;
7 p u b l i c P h i l o s o p h e r ( Fork le , Fork r i , i n t na ) {
8 l e f t = l e ;
9 r i g h t = r i ;

10 name = na ;
11 new Thread ( new T h r e a d S t a r t ( run ) ) . S t a r t ( ) ;
12 }
13 p u b l i c vo id run ( ) {
14 / / t h i n k !
15 l o c k ( l e f t ) {
16 l o c k ( r i g h t ) {
17 Conso le . W r i t e L i n e ( " P h i l o s o p e r {0} e a t i n g . " , name ) ;
18 }
19 }
20 } / / end run ( )
21 }
22 p u b l i c c l a s s D i n i n g P h i l {
23 p u b l i c c o n s t i n t N = 6 ;
24 s t a t i c p u b l i c vo id Main ( ) {
25 Fork [ ] f o r k s = new Fork [N ] ;
26 f o r ( i n t i = 0 ; i < N; i ++)
27 f o r k s [ i ] = new Fork ( ) ;
28 f o r ( i n t i = 0 ; i < N; i ++)
29 new P h i l o s o p h e r ( f o r k s [ i ] , f o r k s [ ( i + 1 ) % N] , i ) ;
30 }
31 }

Figure 4.4: Dining Philosophers Problem in C#
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1 p u b l i c c l a s s Fork
2 {
3 p u b l i c i n t LOCK = −1;
4 p u b l i c i n t WAITING ;
5 p u b l i c s t r i n g ID {
6 g e t {
7 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( " [ " ) ;
8 sb . Append (LOCK. T o S t r i n g ( ) + ’ , ’ ) ;
9 sb . Append (WAITING . T o S t r i n g ( ) + ’ , ’ ) ;

10 r e t u r n sb . T o S t r i n g ( ) . TrimEnd ( ’ , ’ ) + " ] " ;
11 }
12 }
13 p u b l i c Fork GetClone ( ) {
14 Fork f = new Fork ( ) ;
15 f .LOCK = t h i s .LOCK;
16 f . WAITING = t h i s . WAITING ;
17 r e t u r n f ;
18 }
19 }

Figure 4.5: Translated “Fork” class in User-defined Library
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1 p u b l i c c l a s s ForkCl s
2 {
3 L i s t <Fork > l i s t = new L i s t <Fork > ( ) ;
4 p u b l i c i n t C r e a t e O b j ( ) {
5 l i s t . Add ( new Fork ( ) ) ;
6 r e t u r n PcMacro . c r e a t e \ _ o b j e c t ( PcConst . Fork , l i s t . Count − 1 ) ;
7 }
8 p u b l i c Fork GetObj ( i n t o b j ) {
9 r e t u r n l i s t [ PcMacro . g e t \ _ i nd ex ( o b j ) ] ;

10 }
11 p u b l i c s t r i n g ID {
12 g e t {
13 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( " [ " ) ;
14 f o r e a c h ( Fork e l i n l i s t )
15 sb . Append ( ’ [ ’ + e l . ID + " ] , " ) ;
16 r e t u r n sb . T o S t r i n g ( ) . TrimEnd ( ’ , ’ ) + " ] " ;
17 }
18 }
19 p u b l i c ForkCl s GetClone ( ) {
20 ForkCl s f c = new ForkCl s ( ) ;
21 f o r e a c h ( Fork s i n t h i s . l i s t )
22 f c . l i s t . Add ( s . GetClone ( ) a s Fork ) ;
23 r e t u r n f c ;
24 }
25 }

Figure 4.6: Translated “ForkCls” class in User-defined Library



Chapter 5

VM-Based Verification

5.1 Overview

The approach discussed in the previous chapter is based on the translation from the C# source codes

to CSP# models. It is good enough to find out the logic errors in the C# programs. However,

the minimum atomicity of the CSP# model is on C# statement level. At the level of .NET virtual

machine, one C# statement is generally compiled to one or more Intermediate Language (IL) codes.

Verifying the C# programs on the IL code level helps on detecting errors at lower level. On the other

hand, the program’s source code is not always available but we still want to verify the concurrent

properties on that program. The translation-based approach usually cannot handle these situations.

A possible solution is to check the properties when the program is executed by the virtual machine.

This can provide the IL code level verification on the C# programs.

Debuggers are available in most development environments. It is used to examine the target

program at runtime. Usually it can stop the target program at specific breakpoints and access the

program’s data in memory. With necessary modification, the virtual machine and its debugger can

execute the target program to traverse all its possible states and validate the properties on each state.

Based on these analyses, we propose an approach to verify C# programs based on virtual machine.

53
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We take the multi-threaded C# program at runtime as a LTS model. The snapshot of the

program’s data in memory will be the state of the program. The execution of one or more IL

instructions of this program changes the state of the LTS. These executions compose the transition

relation of the model. The properties of the model can be defined on the states or on the traces of

the LTS.

When the multi-threaded C# program is running, the operating system chooses which thread to

be scheduled next. One execution of the program will only traverses one possible trace of the LTS.

Furthermore, some errors only happen in some rare cases. To check the properties defined on all

the traces of the system, we need a mechanism to visit all possible scheduling of the multi-threaded

program at runtime. If some trace violates the properties, this trace can be re-executed by the OS so

the developers can investigate the problems.

5.2 Taking Multi-Threaded C# Program as LTS

We focus on verifying single process multi-threaded C# programs. For such a program at runtime,

the state of the program contains the following three parts:

Static Data

The static data contains the static fields for each class in the program.

Dynamic Data

The dynamic data contains all the objects created in the heap. The object’s data includes all

its non-static fields.

Stack Data

A thread has its program context and its stack frame that provides the storage of the return

value, parameters and local variables for method calls. All these data are stored as the stack

data for each thread.
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Suppose a program P has n threads {T1,T2, ...,Tn}, we defined the program state as sP =

(C,D). Here C = {c1, .., cn} is the program context for each thread. The program data D =

{Ds,Dd,Dt} is composed with the program’s static data Ds, dynamic data Dd, and stack frame data

Dt.

When one thread ti in the program executes one IL code, the program context of this thread

changes from ci to c′i. The program contexts of all the other threads will remain unchanged, as these

threads are not be scheduled to run. Running the IL code also changes the program data from D to

D′. We use the thread ID ti and the address of the IL code aj as the label, so the transition can be

represented as s
(ti,aj)−→ s′. Here we also have s = (C,D), s′ = (C′,D′), C = {c1, .., ci, .., cn} and

C′ = {c1, .., c′i, .., cn}.

A sequence of program state < s0, s1, ..., sn−1 > is the program execution trace to sn−1, given

the followings:

1. s0 is the initial state of the progam;

2. si ∈ S with 0 6 i < n− 1;

3. there is a runnable transition (tj, ak) from state si to si+1 for 0 6 i < n− 2;

With the above definition, the C# program at runtime is represented as a LTS system. The

state space of the LTS represents the possible behavior of the C# program, given the atomicity of

the transition is small enough. The safety properties can be defined as the proposition on the all

the state S. The LTL properties in Section 2.1 are based on all possible trace of the program. The

Deadlock of the program is when there is at least one thread which has not reach its end, but the

program state si does not have a runnable outgoing transition from si.

5.3 Atomicity Control

The above LTS definition is based on the IL code level. The program’s state space on the IL level

is extreme large. Appropriate abstraction on the IL-based transition significantly reduces the time
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and space for checking properties on the model. Most programs use the packages provided by the

programming languages or third-party libraries. The interfaces of these packages are usually well

defined. If a method call to these packages does not directly change the value of the variables in the

properties, and the called method is thread-safe, we can abstract the method call as a single transition

in the LTS. This is similar to abstract the system at higher level. To allow flexible configuration,

we allow the users to decide the atomicity of the program, which influence how the program’s state

space to be traversed by the checking algorithms.

For flexibility, we suggest three typical atomicity configurations for a multi-threaded program.

The IL level atomicity takes every IL execution as a transition and labels it with its IL address.

The Source Code level atomicity models the execution of one line of source code to be a transition.

The label of this transition is the line number of the source code, which can be read from the debug

symbol file. The User-Defined level atomicity allows the users group one or more IL codes inside the

same block to be a transition. Providing this flexibility to the user can make the customized virtual

machine more useful. When there are blocks of code that are not related to synchronization between

threads, the user can mark them as a single atomic transition. Different kinds of abstractions can be

implement with user-defined atomicity. They can significantly reduce the state space when the C#

program is taken as a LTS. Currently, our tool supports atomicity on IL level and he source code

level.

Besides the atomicity configurations, the package filter contains the packages’ namespaces

which are considered as well tested. The code that calls the method in these namespaces will be

model as a single transition.

5.4 Traverse the State Space

Based on the configured atomicity, we use the Depth-First Search (DFS) to traverse the program’s

reachable state space. The search is on the compiled C# program running on the target environment,

so there is no false alarm on this VM-based property checking. The modified virtual machine runs

the program as usually. When it reaches the end of a transition, it checks the properties and stores the
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current program state, then continues traversing based on DFS. The outline of the traverse algorithm

is listed as follows.

1. Choose an unvisited transition started from current state, run to the end of this transition.

2. At the end of the transition, check whether the current program state violates the property. If

yes, stop and print out the trace from begin to current state.

3. Store the current data snapshot and the program context.

4. If the current state has been visited, backtrack to a state which has unvisited transition and

continue. If the traversing backtracks to the bottom of the stack and it has no unvisited tran-

sition, the search finishes and declares the property is satisfied.

5. If the current state is unvisited, push the state to the stack and query the possible transitions

started from it, then go to step 1.

Our tool currently can verify the deadlock-freeness and safety properties on the C# programs.

The safety properties are based on the program state. The verifications on the safety properties

only need read access to the program state. To verify the deadlock-freeness property, the algorithm

checks the outgoing transition on every state. If a non-terminal state has no transition started from

it, deadlock occurs on this state. If all non-terminal states have outgoing transition, the program is

deadlock-free. As verifying these properties does not change the program state, when the program

resumes, its behaviors as it was suspended by the debugger.

The backtracking will restore the program state on both the program context C and the program

data D. The program context C will be set for each thread in the program. The program data D are

restored for the whole program, as it is shared by all the threads.
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Figure 5.1: Process of VM-based Checking C# program

5.5 Implementation

Our tool targets multi-threaded C# programs running on .NET framework in Windows platform.

After the program was compiled, the modified Mono virtual machine (mono-runtime) executes

the program’s assembly with our customized “Model Checking” mode. At the same time, the CS

module in PAT acts as the backend control to communicate with mono-runtime via the soft debugger

interface.

As the Figure 5.1 shows, the original C# source file are compiled by the Mono project’s C#

compiler “mcs”. An extra class is built into the runnable assembly, to store the control informa-

tion used by our model checking. When the C# assembly is built, it runs as normal C# pro-

gram. The properties to be checked are represented as the attributes of the Main method of the

program. When the program is run on the modified mono-runtime virtual machine, switching on

the “–modelchecking” option will enable “Model Checking” mode. In this mode, the mono-runtime

will try to traverse all the possible traces of the program and verify the properties at the end of each

transition. The modified mono-runtime communicates with the PAT’s CS module via the “Soft

Debugger Wire Protocol”, which is similar to “Java Debug Wire Protocol” [69].

Since the original soft debugger of Mono does not provide thread scheduling, additional in-

ternal events are added to mono-runtime in order to control the state of each individual thread. At

each time, the chosen thread is woken up to execute one transition. The other threads are set to

wait on the internal events. Which thread to be woken up is chosen by PAT, based on the current
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program state. Each time the soft debugger finished one transition, it calls a preset method to check

the property on the program state. When a thread changes its status, especially from “running” to

“waiting”, the mono-runtime sends a special event to debugger thread. As the multi-threaded C#

program runs one transition from one thread each time, if the transition is blocked then there will not

be any runnable thread in the system. Getting this information the debugger thread will inform PAT

and let PAT decide whether it shall wake up another runnable thread or backtrack to the previous

state. Compared to the translation-based approach, which need to know explicitly what statement

may block the thread, the VM-based verification approach monitors each thread’s status and needs

not to recognize the transitions that communicate between threads.

5.6 Case Study

We use the classic dining philosopher problem with two philosophers to demonstrate our VM-based

verification tool. The C# source code of this example is shown in Figure 5.2. The line numbers in

the figure are the same as the ones in the C# source code file.

The objects “l1” and “l2” represent the two forks on the table. The C# program has two

threads running concurrently. Each of them represents a philosopher trying to get the forks. One

philosopher tries to get “l1” and “l2” sequentially, the other tries to get them in reverse order. The

deadlock happens when each philosopher has acquired one fork and keeps trying to get the other

fork.

Users can edit the C# source code and check the syntax in the built-in editor of PAT frame-

work. When the user finishes editing and chooses to verify the program, first the source code is

compiled to .NET assembly. The “deadlock-freeness” is put in the properties by default. The safety

property can be inputted as the “MCSharp” attribute for the “Main()” method of the C# program.

The safety property shall be a valid boolean expression on the program data. When compiling the

program, the PAT extracts the safety property and shows it with the “deadlock-freeness” property in

the verification window.
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06 : class PossibleDeadlock{
07 : public object l1 = new object();
08 : public object l2 = new object();
09 : public void Get12() {
10 : lock (l1) {
11 : lock (l2) {
12 : Deadlock.i + +;
13 : Console.WriteLine(“Got locks l1&l2”);
14 : Deadlock.i−−;
15 : }}}
16 :}
17 : class Deadlock {
18 : static public int i = 0;
19 : [MCSharp(“Deadlock.i == 2”)]
20 : public static void Main (string[] args) {
21 : PossibleDeadlock dl = new PossibleDeadlock();
22 : Thread sub = new Thread(new ThreadStart(dl.Get12)); sub.Start();
23 : lock(dl.l2) {
24 : lock(dl.l1) {
25 : Deadlock.i + +;
26 : Console.WriteLine(“Got locks l2&l1”);
27 : Deadlock.i−−;
28 : }}
29 : }
30 :}

Figure 5.2: Deadlock Example
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For the dining philosopher example, the verification on the “deadlock-freeness” gives the “Not

Valid” as result. The PAT tool also provides the trace from the program’s initial state to the deadlock

state as the counter example. Here the deadlock trace is represented as “ < Init -> t-0-Main-s-20 ->

t-0-Main-s-22 -> t-2-Get12-s-9 -> t-0-Main-s-23 -> t-2-Get12-s-10 -> t-0-Main-s-24> ”.

The symbol “->” links the program states together to form the trace. For each state, the number

after “t-” is the thread ID. The string after the thread ID is the current method name. In the example

they may be “Main”, “Get12” or “Get21”. The number after the “s-” is the line number in the source

code file.

Based on the trace we can track back how the deadlock happens. After the main thread “t-0”

started the sub-thread “t-2”, it got fork “l2” by event “t-0-Main-s-23”, and the thread “t-2” got fork

“l1” by the event “t-2-Get12-s-10”. The main thread “t-0” went on to try acquiring fork “l1” on “t-

0-Main-s-24” and was blocked there forever. When the VM-based verification tool tried to schedule

the sub-thread, it found all the threads in the program are blocked and at least one thread has not

reach its end, the tool declared the “deadlock” was found and printed out the trace.

Checking the safety property of “Deadlock.i == 2” in this example returns “NOT valid”. We

can see that the “Deadlock.i” cannot reach 2 unless both two threads acquire the two forks. Obvi-

ously, this does not happen in the C# program no matter what scheduling sequence.

We modified the source code in the example slightly, swapping the line 11 and 12, and line 24

and 25 as well. The changed source code is shown as follows.

. . . . . .
10 : lock (l1) {
11 : Deadlock.i + +;
12 : lock (l2) {

. . . . . .
23 : lock(dl.l2) {
24 : Deadlock.i + +;
25 : lock(dl.l1) {

. . . . . .
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Recheck the safety property “Deadlock.i == 2”, the tool confirms the property can be reached

with the trace “ < -> Init -> t-0-Main-s-20 -> t-0-Main-s-22 -> t-2-Get12-s-9 -> t-2-Get12-s-10 ->

t-0-Main-s-23 -> t-2-Get12-s-12 -> t-0-Main-s-24>”.

5.7 Summary

The CS module in PAT and the modified Mono virtual machine work together to verify properties

on C# programs. The “model checking” mode is added in the Mono virtual machine. When a C#

program is executed in this mode, the Mono virtual machine takes control of the thread scheduling

and divides the program by transitions at configurable atomicity. The virtual machine takes the

program state as snapshot at the end of each transition. PAT guides the Mono virtual machine to

execute the C# program forwards and backwards to traversing the state space of the program.

Our approach does not change either the programs’ assemblies or their behaviors on virtual

machine. The customized scheduling and the state extraction on C# program are implemented via

the debugger interface and embedded code on threading package of the Mono virtual machine. The

user can configure the atomicity of the traversing and filter specific domains in the verification,

making this approach more adaptable to different modeling and verification tasks. Currently it has

limitations that backtrack across multiple methods and the program states are constrained on the

information that the debugger can access.

Compared to the translation-based approach in the previous chapter, the VM-based approach

has both advantages and disadvantages. It does not require the source code of the C# programs.

Different from the translation-based approach which uses variables to logically represent the syn-

chronization, the VM-based approach captures the synchronization on thread states and program

counters in C# programs. As it works on lower level, it is easier to support other third-party concur-

rent libraries. However, VM-based approach generates more states in the LTS and this influences

the verification performance. The translation-based approach supports all the properties that can be

verified on CSP# models. After the translation, the user may add extra events in the model, or add

rewards on specific events. These features make the translation-based approach can fit in a vari-
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ety of applications. Currently, the VM-based approach only supports deadlock-freeness and safety

properties. In practice, it is good complement to testing and debugging at implementation stage.

Using the debugger interface and the internal data of the virtual machine to verify the pro-

gram is on the boundary of testing and model checking. Similar approaches can be applied to other

programming languages that use intermediate representation and virtual machine. VM-based veri-

fication approaches usually suffer from the state space explosion more severely. The storage of the

program state also costs large amount of memory. More efficient abstractions are needed on the

transition atomicity control and program state representation.
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Chapter 6

CSP# Model to C# Program

6.1 Overview

As mentioned in the Introduction chapter, CSP has become a popular formalism to model and verify

concurrent systems. In recent years, more and more methods and tools have been developed for CSP

to be used in the design phase [37, 93, 113, 34]. Some approaches also integrated CSP with other

modeling tools such as Z notation and B method [74, 77, 57, 98]. To facilitate implementing CSP

models, new programming languages are introduced with built-in support of the CSP operators, such

as Occam, Ada and Go etc. [91, 56, 82]. Other approaches provide the CSP operators as third-party

libraries [108, 95, 106]. With the further improvement on these methods and tools, CSP becomes

trendy in designing and implementing concurrent system in modern programming languages.

CSP# has supports for the program-friendly features such as shared variables and event-attached

programs. It allows the shared memory communication and message passing communication inside

the same model simultaneously. These language features provide flexibility on modeling the com-

plex distributed systems with CSP#. It is desirable for the developers to have a tool supporting CSP#

from design to implementation.

In this chapter, we propose an approach to use CSP# as a designing tool for concurrent sys-

65
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tem and provide the tool to help implementing CSP# models as multi-threaded C# programs. In

the approach, the CSP# model describes the communications between the processes in the system.

The other functional operations, which do not relate to concurrent control, are performed between

these communications. In implementation phase, the communications and other functional codes

are linked together to composite the system in C#. This constructive process needs to ensure the

implemented system preserve the properties that have been validated in CSP# models. We struc-

turally prove that the generated C# program is equivalent on the trace semantics to the original

CSP# model.

6.2 CSP# Semantics in C# Program

Our overall goal is to transform a CSP# model to a multi-threaded C# program that has the same

concurrent behavior as the original CSP# model. The communications between CSP# processes

are represented as communications between threads. All the processes, events and channels in the

CSP# model will have their corresponding classes in the generated C# programs. In this section,

we discuss and define the equivalence relation on the behavior between the CSP# model and the C#

program.

Let us start the discussion from event equivalence. Each event in the CSP# model shall have

a corresponding representation in the C# program. They can be a source code statement, a block

of statement, a method call etc. As the event is considered “instantaneous or an atomic action

without duration” [46], we would make the event corresponding code as simple as possible. Sup-

pose each event corresponds to one statement, the concurrent behavior of the C# program can be

represented by the possible sequences that the program executes these statements. When a CSP#

process performs an event, it needs to synchronize the other processes that have the events with the

same event name. Therefore, in the statement corresponding to the event in CSP#, the inter-thread

synchronization shall be conducted internally.

To make the generated C# program concise and readable, we choose to use a C# method call

in one thread to represent a CSP# event synchronization on one process. Based on this, we analyze
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the differences between the model checker running the CSP# model and the C# program running on

the operating system.

When we use a model checker to validate the CSP# model, the model checker can access all

the information of the processes. The model checker takes control of the execution of all processes.

Based on the current state of each process, the model checker knows what events are enabled and it

chooses to perform an event in the enabled event set. When the CSP# model performs the chosen

event, all the processes that have this event in their alphabets perform the same event and go to their

next states. The model checker then re-computes the enabled event set and makes its next move.

In the multi-threaded C# program, there is no central control to manage the current state for

the threads. Each thread only knows its alphabet and its current state. They have to choose one in

the enabled event set to execute. The operating system’s scheduler decides which thread is executed

next. Potential conflicts may occur when different threads have chosen different events to engage.

In the CSP# model, it is assumed that after one event finished, the next enabled event can

be performed immediately. On the contrary, after the C# program has finished executing an event

method call, when it reaches the next event method not only depends on the program itself, but

also depends on when the operating system schedules this thread to execute. Therefore, in the

C# program, there is always an interval between the end of the previous executed event and the

engagement of the next event. This is similar to how CSP deals with the time-consuming operations.

The duration of a time-consuming operation is represented as the two sequential events: the start

and the finish of the operation.

We define the equivalence of model and program on trace of the model and the trace of the

program’s execution. The visible events include the event engagements and the channel operations

in the CSP# model. In the C# program, there are specific critical sections corresponding to the

visible events in CSP# model. Each of these critical sections has one entrance and one exit. The

finish of a critical section means the engagement of the corresponding event in CSP# model. For

an execution of a C# program, the sequence of these critical sections be executed is defined as the

trace of this execution. These critical sections are encapsulated as methods of the classes that are
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defined in the concurrent library “PAT.Runtime”.

The transformed C# program shall also require multiple threads to engage a synchronized

event consecutively. Suppose threads {p1, p2, . . . , pn} are to engage event e. Here we denote the

engagement of thread pi on event e as pi.e. In the trace of the C# program, when event e is engaged,

all the n threads shall engage e. The engagements of all these threads shall occur consecutively, in

any possible permutation of {p1.e, p2.e, . . . , pn.e}. In the traces of the C# program we group these

consecutive event engagements {p1.e, p2.e, . . . , pn.e} from different threads and use a single event

e to substitute them. After the substitution, the possible traces of the C# program are the same as

one possible trace in the traces of the original CSP# model.

Based on the traces definition on C# program, the equivalence of the CSP# model and its

generated C# program is defined on their traces. A C# program G is traces equivalent to its CSP#

model M if traces(G) = traces(M).

We divide the source code in generated C# program into three kinds. The first kind is the

message passing communications between threads. They include the event synchronizations and

channel communications in CSP#. We use CSP# synchronization code to refer this kind of C# code.

The second kind is the data operation codes that include the C# code that access the shared

variables or the channel buffers. These data are shared globally in the program and they evoke the

shared memory communication in CSP#.

The first two kinds of C# code come from CSP# model and they control the communications

between threads. We refer them as communication code in the C# program. To ensure the atomicity

of these communications between threads, they are organized into individual critical sections. Each

of these critical sections corresponds to one CSP# communication.

The last kind of C# code does not come from CSP# model and they shall not influence the

communication code. We use non-communication code to refer them. The non-communication

code shall satisfy the following three conditions: (1) They do not access the shared variables or

channel buffers in CSP#; (2) They do not modify the control flow related to the communication
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code; (3) They need to finish in finite time. The non-communicating code can be inserted in the

intervals between two critical sections of CSP# communication. As the non-communication code

only causes delay between two communications, the traces of the program are not influenced by the

inserted non-communication code.

Here we choose the trace semantics of CSP# as it is well defined and observable. 1 The

CSP# model lies in the communication codes and it only manages the event traces and the variables

that may influence the event traces of the program. For the functionalities that do not go across

processes, the programmers can implement them by adding more data and operations in the non-

communication codes.

6.3 Thread Communication on CSP# Operator Level

With the equivalence defined on traces, this section discusses the implementation of the CSP# op-

erators in the C# program. The process level equivalence and the alphabet management will be

described in the next section.

6.3.1 Synchronization Using the “PAT.Runtime” Library

In our approach, all the communications across threads are conducted by the operator classes defined

in library “PAT.Runtime”. The generated C# programs interact with the object instances of these

CSP# operator classes. We use a simple event engagement to illustrate the relation between the

generated C# program and the objects of the CSP# operators.

As shown in Figure 6.1, the behaviors of process P = e → P are simulated by the processes

P′ and L. Process L actually conducts the synchronization on event e as process P does. Before and

after the e’s synchronization, process L synchronizes with process P′ on events st.e and ed.e. Here

1The proposition in the properties of CSP# may not preserve in the C# program. Appendix D presents a counter
example of these cases.
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Figure 6.1: Event Engagement Equivalence

{st.e, ed.e} only occur locally in the alphabets of processes P′ and L. After hiding these two local

events, it is easy to verify that process (P′ ‖ L)\{st.e, ed.e} is equivalent to the original process P.

We take the process L as a method call to the object of event e in the library. The process P′

will be a thread in the generated C# program. The interaction between P′ and L are actually that

the thread P′ calls the event’s method L. The st.e represents the C# instruction to call the event

method and ed.e represents the method’s return instruction. When the method returns, the e has

been engaged and process P′ can execute the code after the event e. All the behaviors of the origin

process P engaging e are now happening in this method call.

As discussed in the previous section, we encapsulate the process L as a method m of the CSP#

operator object Oe. The event synchronization on st.e represents the start of the method call to m and

ed.e represents the return of the method call. With this operator object Oe managed in the generated

C# program, the event synchronization behavior of P is represented as the program calls the method

Oe.m.

6.3.2 Shared Memory Communication

The shared memory communications in CSP# happen on the conditional operators and the data

operations. These communications start from a process P that is performing data operation prog to

the other processes that are waiting on conditional expressions. We use a simple example to explain

these communications. Two processes are in the model: a guarded process P = [b](ep → Skip)

and a data operation process Q = eq{b = true} → Skip. Suppose the boolean variable b is false at
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1 : public class Comm
2 : {
3 : boolean b = false;
4 : public void RunWait() {
5 : lock(this){
6 : while(!b){
7 : Monitor.Wait(this);
8 : }
9 : //now b is true
10 : }
11 : }
12 : public void RunPulse() {
13 : lock(this){
14 : b = true;
15 : Monitor.PulseAll(this); //notify b changed
16 : }
17 : }
18 : . . .

Figure 6.2: Wait and Notify Example

start, process P will be blocked at the guarded condition b. After process Q has engaged event eq

and executed the attached program “b = true”, process P can engaged ep as the guarded condition

b is satisfied. The communication starts from process Q when it finishes executing “b = true” to

process P when it is waiting on condition b.

The above communications in CSP# are similar to the wait and notify in multi-threaded C#

programs. One typical example in C# is shown in Figure 6.2. Suppose thread A is running the

“RunWait()” and thread B is running the “RunPulse()”. The initial value of b is false. At first,

thread A is blocked on “Wait()” at line 7 before b becomes true. When thread B gets the lock and

changes the value of b, it uses “PulseAll()” at line 15 to notify the threads that are waiting on the

same “Comm” object. After getting the notification, thread A resumes and gets out of the loop from

line 6 to 8. At this point, b is guaranteed to be true until A releases the lock at line 10.

Comparing the above C# program and the CSP# communication example, they have the same

behaviors based on the boolean variable b. We can use the wait and notify mechanism in C#
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to implement the communications from the CSP# data operations to the conditional expressions.

However, the atomic conditional choice (e.g. P = ifa(b){e1 → Q}else{e2 → R}) requires the

evaluation of the branch’s conditional expression (e.g. b or !b) and the engagement of the branch’s

first event (e.g. e1 or e2) happen atomically. Therefore, the message passing communication and the

shared memory communication cannot be detached into two steps. Waiting on the events to become

enabled and waiting the shared variables to be changed shall be represented in the same way in

communication between threads. In the C# program, a special event “dc” represents the notification

that the shared variables have been changed. This event has higher priority than any other events and

channel operations so that no other events can happen before the re-evaluations of the conditional

expressions. When a data operation prog finishes, it engages this “dc” event. All the processes

that are waiting on conditional expressions will engage “dc” event immediately and re-evaluate the

conditional expressions. With this “dc” event, a process can wait on message passing and shared

memory communications in one operator. It also enables the support for the atomic operators with

conditional expressions.

6.3.3 General Choice Operator in C#

To combine the message passing and shared memory communications, a general choice operator

is used in our concurrent library “PAT.Runtime”. It generalizes the event engagements (including

channel communication), choice operator and conditional operators in CSP#. The general choice

includes a set of alternative events with optional precondition and attached data operation on each

event. Based on the functionalities, the general choice operator is divided into three layers as shown

in Figure 6.3.

Each layer has two operations, one occurring before the event engagement and the other occur-

ring after it. The precondition layer is the lowest layer. It evaluates the preconditions {b1, . . . , bn}

for each branch before events engagement. If the precondition is true, the branch’s first events will

be put into the event set sc for next layer. After the event engagement and other layers’ operations,

the second operation in this layer sends “dc” notification if the engaged event has attached program

prog. In the middle is the choice layer. It allows trying and waiting on an event set sc. If there are
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Figure 6.3: General Choice Structure

preconditions on the branches, the data change event “dc” is also included in sc. After the event

engagement, at this layer the general choice operator removes itself from the waiting list of each

event in sc. The event layer is the uppermost layer. It engages the first enabled event ek in sc. The

non-determinism and fairness mechanism are based on the OS scheduler and the sequence to try the

events in sc. If presented, the data operations prog attached on event ek is executed right after the

event engagement. If the general choice operator engaged the “dc” event, it return to the start of

precondition layer, to re-evaluate the preconditions {b1, . . . , bn}.

The general choice operator is the fundamental synchronization unit in our “PAT.Runtime”. All

the synchronizations in CSP# can be represented using a general choice and a general conditional

choice operator. For simplicity, we define a general operator “G” to discuss the representations.

This operator can be represented as the CSP# model below.

G([b1]e1{prog1} | [b2]e2{prog2}){Q | R}
= ([b1]e1{prog1} → Q)[]([b2]e2{prog2} → R)

With the “G” operator, the event prefix process P = e → Q can be represented as P =

G(e){Q}. The atomic conditional choice P = ifa(b){e1 → Q}else{e2 → R} is represented as

P = G([b]e1 | [!b]e2){Q | R}.

When the parallel process P = (e1 → Q || e2 → R) is used as one of the branches of the
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CSP# model Model after transformation
Stop Stop Stop
Skip Skip Skip
Prefix e->Q G(e){Q}
Data Op e{prog}->Q G(e{prog}){Q}
Channel Out ch!x->Q G(ch!x){Q}
Channel In ch?x->Q G(ch?x){Q}
Guarded [b](e->Q) G([b]e){Q}
General If if(b){Q}else{R} G([b]tau | [!b]tau){Q | R}
Atomic If ifa(b){e1->Q}else{e2->R} G([b]e1 | [!b]e2) {Q | R}
Blocking If ifb(b){Q} G([b]tau){Q}
General Choice (e1->Q)[](e2->R) G(e1 | e2){Q | R}
Parallel (e1->Q) || (e2->R) G(e1 | e2) {(Q || (e2->R)) | ((e1->Q) || R)}
Interleave (e1->Q) ||| (e2->R) G(e1 | e2) {(Q ||| (e2->R)) | ((e1->Q) ||| R)}

Table 6.1: CSP# Operators Represented with “G” Operators

choice operator, the choice operator may choose one event in the possible first event sets of the

paralleled subprocesses. After the choice operator performs the chosen event, the whole parallel

process is started. This can also be easily represented with “G” operator as

P = G(e1 | e2){(Q || (e2 → R)) | ((e1 → Q) || R)}

The representation of interleave process is similar to the parallel process. The other representation

of the CSP# operators using “G” operators are listed in Table 6.1.

6.4 Process Level Implementation and Alphabet Management

6.4.1 Alphabet Management for the Processes

Processes are the basic units for composition in CSP# models. The process expression explicitly

defines the behavior of the process. It also implicitly defines the alphabet and first visible event set

for the process. In the C# program, process classes have to provide corresponding interfaces as in

the model. For a simple process P = e → Q, the alphabet αP contains e and αQ. The process Q
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needs to provide its alphabet αQ to process P. For the choice process P = Q[]R, P uses the first

visible event sets of two subprocesses Q and R to decide which branch to perform. Therefore, in the

C# program, each process class provides two methods: one represents its alphabet set and the other

represents its first visible event set.

We use κP to denote the first visible event set of process P and ρ(e) to denote the number

of threads that e is synchronized on. With the alphabet interface defined for process objects, the

alphabet management in C# program includes the following four scenarios.

• When a process calculates its alphabet, it adds all the events in process expression (e.g. e in

P = e→ Q) and the alphabet of all its subprocesses (e.g. αQ in P = e→ Q) to its alphabet.

• When a process calculates its first visible event set, it adds the first visible event set for each

of its branches. For a process defined as P = (e→ Q)[]R, the κP contains e and κR.

• For a parallel process P = Q || R, if an event e is in the alphabets of both Q and R (i.e.

e ∈ αQ and e ∈ αR), it will be synchronized by one more threads. Therefore, when P starts,

ρ(e) is increased by 1 and after both Q and R finish ρ(e) is decreased by 1.

• For a interleave process P = Q ||| R, if an event e is in the alphabets of both Q and R, an extra

event e′ is used to represent e in process R. Event e′ does not synchronize with e, but the other

processes which have e in their alphabets now alternatively synchronize to e or e′. When P

starts, process Q synchronizes e as usual and the e in process R is substituted by e′. For the

other processes in the model, if they have e in their alphabets, e[]e′ is used to substitute the e

in their alphabets. After both Q and R finish, the event e′ is removed from all the processes

that have e′ in their alphabets.

6.4.2 Interface of the Process Class

To provide the alphabet management discussed above, we use an abstract class “PatProc” in “PAT.Runtime”

library to manage the process interface. All the process classes need to inherit the “PatProc” class
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public class P : PatProc
{
. . .
static public HashSet〈string〉 Alphabet(. . . ){. . . }
public ChoiOptSet FirstOpts(. . . ){. . . }
constructor of process P
public void setParas(. . . ){. . . }
public void init(){. . . }
public void run(){. . . }
}

Figure 6.4: A Process Class Example

and implement its abstract methods. There are several events and data operations containers defined

in the fields of “PatProc”. The process classes use these containers to store the local events objects.

As shown in Figure 6.4 shows, a process class will implement the five abstract methods in

“PatProc”. The “Alphabet()” will provide the alphabet of process P given the parameters. The

“FirstOpts()” method returns a set that contains all possible first events with their preconditions.

The “setParas()” and “init()” methods are in charge of setting up the parameters and initialize the

subprocesses.

6.4.3 Transforming the Process Expressions

The “run()” method in the C# process class is directly transformed from the process expression

in CSP# model and it is structurally similar to the original process expression. The operators and

the alphabet for the process have been properly managed in the process’ initialization methods, i.e.

“setParas()” and “init()”. In the “run()” method, the statements that perform the CSP# operators

are organized similar to the process expression. In the following, we discuss the transformations of

different operators.

For the Stop, Skip, event and channel operators, their corresponding C# statements in the

“run()” method are relative simple. Table 6.2 lists their initialization code in the “setParas()” method
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Operator Initialization Execute
Skip evchs[“Skip”] = new PSkip(); evchs[“Skip”].exec();
Stop evchs[“Stop”] = new PStop(); evchs[“Stop”].exec();
→ e.i→ evchs[“e.i”] = new PEvent(“e”,paras[“i”],..); evchs[“e.i”].exec();
→ ch!i→ evchs[“ch!i”] = new PChannelOutput(“ch”,paras[“i”],..); evchs[“ch!i”].exec();
→ ch?i→ evchs[“ch?i”] = new PChannelInput(“ch”,paras[“i”],..); evchs[“ch?i”].exec();

Table 6.2: Generated C# Code for Simple Operators

in the column “Initialization”. The column “execution” are the statements which will be put in the

“run()” method of the process class.

For the data operation operator e{prog}, in CSP#, the e no longer synchronizes with other

events even if they have the same name. Only the prog will be put in the “run()” method. Before

and after the prog, the thread need to acquire and release the global data lock to prevent data race on

shared variables. The statements in prog are valid C# program so they do not need much transfor-

mation. The only difference is about how to access the variables and process parameters. In CSP#

these variables are globally accessible, but in C# program we use a “Glo” class to store the shared

variables. The process parameters are the fields of the process class. Appropriate prefixes are added

to the variables in prog before they are put in “run()” method.

“PAT.Runtime” provides a special class “TSeq” to sequentially executes the “run()” methods

of the processes in its internal stack. To perform a subprocess in C# program, we only need to

create the subprocess instance and put it in the “TSeq” object that is attached to current thread.

When the current “run()” method returns, the “TSeq” object automatically executes the “run()” of

the subprocess. For a sequence process P = Q1; Q2; . . . ; Qn, in the “run()” of P we add the

subprocesses in reverse sequence to current thread’s “TSeq” object. The last added process will be

at top of the internal stack of“TSeq”. Therefore, “TSeq” can execute these n subprocesses in the

correct sequence.

Both the parallel and interleave operators start multiple threads to execute their subprocesses

respectively. As discussed in the previous section, the alphabet sets shall be expanded before exe-

cuting these subprocesses. After these subprocesses finished, the alphabet sets will be contracted.
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With appropriate expansion and contraction on the alphabet sets, the parallel and interleave oper-

ators use the “run()” method of “PatParallel” class to start the subprocesses simultaneously. This

“run()” method returns only after all the subprocesses have finished their own “run()”.

The choice operator is the only operator for which the structure in the C# program is slightly

different from its corresponding process expression in CSP#. It uses the general choice operator

“PChoice” to gather the first possible events and their preconditions for all the branches. After

this initialization, calling the “select()” of the “PChoice” object will start the operator. After the

method returns, the returned value indicates which event it has performed. Base on the returned

index, a switch..case statement takes the program to the chosen branch. For an example P = (e1→

Q)[](e2→ R), the following pseudocode is in the “run()” method of process P .

Event[] ev = new Event[]{e1, e2};
PChoice pc = new PChoice(ev);
int sel = pc.select();
switch(sel) {

case 0 :
// go to branch Q

break;
case 1 :
// go to branch R

break;
}

The conditional operators, including case, guarded, IF, IFA and IFB, share the same code

structure as choice in the “run()” method. The difference is that for each branch, the conditional

operators will insert the appropriate conditional expression as the branch’s precondition. For the

case, IF and IFB, extra τ events are inserted at the beginning of each branch. The structures of

the C# code of these operators follow the “general operator” representations for CSP# operators in

Table 6.1.
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Figure 6.5: Atomic Process Example

6.4.4 Discussion on Atomic and Interrupt Operators

The atomic and interrupt operators are not supported in our tool by design. In theory, they can

be implemented as the other CSP# operators. In practice, they may bring down the concurrent

performance of the program. In this section, we use an example to discuss how the performance is

influenced.

The atomic operator is denoted as atomic{P}. It assigns the higher priority to the process inside

the atomic operator. When atomic{P} is performed as one process in the model, if P is about to

engage an enabled event, it will be engaged before any other events from the non-atomic processes

in the model. When atomic{P} is blocked on some event e, other processes are allowed to execute.

But once event e becomes enabled, process atomic{P} regains its higher priority and continue to

execute until it finishes or is blocked again.

When there is one or more atomic processes are blocked in the model, the corresponding

C# program may need extra communication between the threads corresponding to the non-atomic

processes. Let us consider the model as follows.
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P() = atomic{e1→ e2→ e3→ Skip};
Q() = e4→ e5→ e2→ Skip;
R() = e6→ e5→ e7→ Skip;
Sys() = P() || Q() || R();

The process P is an atomic so the model Sys will first engage event e1 and P will be blocked

on e2. At this point the processes Q and R are allowed to execute. The generated C# program in

this situation is shown in Figure 6.5. The O in the figure indicates the current PC position of the

thread. When thread R reaches the event e6 and thread Q is at the interval before event e4, R cannot

engaged e6 although it is enabled. The reason is that in the C# program, thread R does not know

whether Q will enable the atomic thread P, when Q finishes running the program in the interval. In

this case, the system cannot allow any non-atomic threads to engage an event until all the threads

finished their intervals. After one or more non-atomic threads engaged an event ei, the other threads

still cannot engaged the enabled events. They have to wait until the threads which engaged event ei

to finish their intervals again. This adds additional communication between the non-atomic threads

although they originally do not have to communicate.

The interrupt operator P 4 Q behaves as P normally. Once the first event of process Q is

engaged, P is interrupted and the process behaves as Q afterwards. Supposing the first event of Q

happens when P is in one of its intervals, i.e. running the non-communicating code between two

event engagements, there are two possible behaviors on P to stop itself. The first possible behavior

is that P do not stop immediately and it keeps on running until it is about to engage the next event.

The second possible behavior is that process Q actively stop P right after Q engage its first event.

Both cases produce the same trace as the CSP# model. However, the second possible behavior will

add the communications between threads happen the critical section and the non-communicating

code. Currently, we retain the implement of interrupt operator to avoid the ambiguity.
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6.4.5 The State Space of Generated C# Programs

CSP# can model both terminating and non-terminating multi-threaded programs. For terminating

programs, one execution traverses one route in its state space. This route ends with either a success

finish state or an error state. There are two kinds of non-terminating programs. Programs in the first

kind will constantly visit their initial states. Programs of the other kind do not visit the initial state

anymore from some point in their executions.

When the model checking algorithm verifies a CSP# model, it traverse all possible traces that

the model can produce under certain fairness constraint. For the generated program, its executions

are different to what model checking algorithm does. For example, the programs do not need to

backtrack to a previous state, nor do it store the visited states. As stated in Section 6.2, our code-

generation approach is based on the trace semantics. Given a model M and its generated program

G, traces(G) is equivalent to traces(M). This means the generated program G can also traverse

the state space as its model M does. For a terminating program, repeatedly executing the program

for infinite times will traverse the state space of its corresponding model. For a non-terminating

program that constantly visit its initial state, one execution of the program traverses its model’s state

space. For a non-terminating program that does not constantly visit initial state, we also need to

repeatedly execute it for infinite times to ensure it traverse the whole state space of the model.

Additionally, to ensure the repeated executions traverse the state space of the model, the pro-

gram shall behave with the fairness constraint as in the model checking algorithm. Our implementa-

tion of the CSP# operator supports the weak fairness as discussed in Section 2.1. When the operator

starts the “try and wait” operation on an event set sc, the operator tries to chooses an enabled event

ei in sc. If none of the events is enabled in sc, the operator waits on all the events in sc. If multiple

events are enabled in sc, one of them is chosen non-deterministically. Weak fairness guarantee if an

event is enabled after some point in the execution, it will be engaged infinitely often [103]. To fulfill

this constraints, we need to ensure no continuous enabled event in sc is ignored forever.

The implementation of general choice operator keeps track of the index of last engaged event ei

in sc. On the next time this operator is executed, this ei is given the lowest priority and the event ei+1
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is given the highest priority. Supposed the operator G has n events in sc, if an event e is continuously

enabled, the operator will eventually choose this event before its nth iterations. This is because at

most after n iteration on the operator, the event e will be set to the highest priority in sc. As for

at most every n iteration, the operator G will engage event e once. To keep the event e enabled

continuously, the model will have constantly engage the operator G if the number of processes (i.e.

ρ(e)) that has e in their alphabet does not change. If ρ(e) decreases, another operator G′ that still

has e in its s′c will guarantee e be engaged before at most n′ iterations on G′. When ρ(e) increases,

if there is a upper bound on ρ(e), the last operator G′′ to “try and wait” on e in its s′′c guarantee e

be engaged before at most n′′ iterations. If there is no upper bound on ρ(e), the model is an infinite

model, which falls outside the scope of this thesis.

We have discussed the fairness constraints on the model and the generated program, however,

in practices there are user activities in the non-communication code. For the (repeated) execution(s)

of the generated program to traverse the state space as the original model, these user activities shall

not violate the fairness assumption on the model.

6.5 The Proof of Correctness

In this section, we prove that the generated C# program performs the same possible traces set as

the original CSP# model does. This trace equivalence guarantees that the validated properties of the

model are preserved in the generated C# program.

The proof is discussed on different functionality layers as shown on Figure 6.6. The basic

event synchronization is implemented on C# “Monitor” class. For the shared memory and message

passing communication, we use CSP# to build the model of the general choice operator and validate

this model generates the same trace as the model of original CSP# operator. On the process and

model level, we prove that the “run()” methods in C# program have the same structures as process

expressions and executing the program produces a valid instance in the traces of the original CSP#

model.
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Figure 6.6: the Equivalence Hierarchy

6.5.1 CSP Operators Level Equivalence

For the implementation of CSP operator in program, The monitor [47, 54] is a fundamental mecha-

nism to synchronize between threads in the programming languages which adopt the shared memory

communication. Languages like Java and C# provide the built-in support for monitor. Monitors in

these languages usually at least provide mutual exclusion on specific objects and the waiting and

signaling between threads.

Common operations on a monitor object include enter, leave, wait, notify and notifyall. The

“enter(obj) ” operation allows a thread to “enter” the monitor “obj” if no other thread has already

entered, otherwise it blocks the thread until other thread “leave” the monitor and the operating sys-

tem’s scheduler chooses this thread to run. If a thread has entered the monitor “obj”, the “leave(obj)

” allow the thread to leave the monitor and other threads can enter the monitor “obj” thereafter.

The wait, notify and notifyall operations require the thread has already entered the monitor “obj”.

The “wait(obj)” operation leaves “obj” and blocks the thread until some other thread calls “no-

tify(obj)” and the operating system chooses this thread to be unblocked, or some other thread calls

“notifyall(obj) ” which unblocks all the threads that are waiting on “obj”.

JCSP [108, 110] is a Java implementation of classic CSP operators. The JCSP library includes

the event, channel, choice and parallel operators. For the convenience of development, JCSP also

added some additional features on event and channel, such as the bucket and poison structures, to
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better support terminating programs. In [110], Welch et al. used CSP to build the models of the Java

implementation of the operators. These CSP models are checked in the FDR tool to ensure they are

equivalent to the ones defined in CSP.

Welch et al. modeled the monitor’s communication on 5 CSP channels: claim, release, wait,

notify and notifyall. The model of the monitor is composed of two active processes: One ensures

only one thread can entered the monitor at any time. The other maintains the list of the threads that

are waiting on this monitor

To verify the implemented JCSP channel equivalence, Welch et al. used a CSP model contain-

ing process A send a message via channel c to process B (as in Figure 6.7). The JCSP implementation

model is processes Aj and Bj paralleling with JCSP’s channel model JCSPCHANNEL(c).

The JCSPCHANNEL(c) is composed with a monitor’s process (Monitor(c)), two variable pro-

cesses (Hold(c) and Empty(c)), process Read(c) and Write(c). The Read(c) is the abstracted from
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the method “read()” of class “One2OneChannel” in JCSP. In the method “Read()”, the statements

to operate on the monitor will be represented as the channel event on Monitor(c); the read and write

operations on the variables are represented as the channel events on Hold(c) and Empty(c).

Similar case is on process Write(c). The structure of the JCSPCHANNEL model is shown in

Figure 6.8.

The Aj synchronizes with the Write(c) on the beginning and ending of Write(c) to send the

message, Bj synchronizes with Read(c) at its beginning and ending. The synchronizations on the

beginning and ending represent a thread start calling the Java method “read()” and when “read()”

finishes, it returns to the program context which calls the method.

With the above models all in CSP, Welch et al.used FDR to check and confirm the equivalence

of these two models. Besides the channel, Welch et al. also verified the equivalence of other JCSP

operators including event, choice and parallel [110].

As the message passing communications in CSP# are equivalent to the ones in CSP, they are

implemented on C# “Monitor” class in the similar way as in Welch’s approach. The trace equiva-

lence of JCSP applies to the message passing operators in CSP#. Next, we discuss the equivalence of

CSP# specific operators, which include both message passing and shared memory communications.

6.5.2 CSP# Models of the Extended operators

We use atomic conditional choice as a typical CSP# extended operator to prove the correctness. The

other CSP# specific operators can be proved in similar way.

First we build the CSP# model of “PChoice” working with data-operation events. This model

ensures that the evaluation of the condition expressions will be mutually excluded from the data-

operation and it can be notified when shared variables have been changed. Based on the “PChoice”

model, after filled with the condition expressions and the branches of an IFA operator, we got the

process “G1” as follows.
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DataChg() = (dc→ G1());
G1() = (evstart→

if (b == TRUE) {
evend → (DataChg() [] CBranch(0))

} else if ( !(b == TRUE) ) {
evend → (DataChg() [] CBranch(1))

} else {
evend → DataChg()

}
) [] DataChg();

The “G1” do not accept dc between events “evstart” and “evend”. These two events model that

the precondition evaluation needs to acquire the global data exclusive lock. The data operations and

precondition evaluations are mutual excluded to each other. This is modeled by the process “GMul”

as follows.

GMul() = dcstart→ dcend → GMul() [] evstart→ evend → GMul();

Each data operation synchronizes on “dcstart” before accessing shared variables and synchro-

nizes on “dcend” after the operation ends. At the end of the data operation, it sends out the dc

notification. If the process “G1” has not visited the “CBranch” branches, it synchronize the dc and

restart the precondition evaluation. We use a process “Alt” to model there are always some processes

trying to set the variable b to true and some others trying to set it to false. An “OutSys” process

simulates at any time there may be some other event happening.

AT() = dcstart→ atomic{dt{b = TRUE} → dc→ Skip}; (dcend → Skip);
AF() = dcstart→ atomic{df{b = FALSE} → dc→ Skip}; (dcend → Skip);
Alt() = (AT() [] AF()); Alt();
OutSys() = os→ OutSys();

With above four parts of model, the CSP# model of the C# implementation of IFA, denoted as

M1m, is presented in following.



6.5. THE PROOF OF CORRECTNESS 87

M1() = Alt() || GMul() || G1() || OutSys();
M1m r() = start{b = FALSE} → M1();
M1m() = M1m r()\{evstart, evend, dcstart, dcend};

The origin CSP# IFA model, “G0”, is straightforward. Only an extra branch is added to allow

the dc event to happen. With the same processes “Alt”, “GMul” and “OutSys”, the process “M0m”

is modeled as follows.

G0() = (ifa(b == TRUE) {CBranch(0)}
else {CBranch(1)}
) [] (dc→ G0());

M0() = Alt() || GMul() || G0() || OutSys();
M0m r() = start{b = FALSE} → M0();
M0m() = M0m r()\{evstart, evend, dcstart, dcend};

Both “M0m” and “M1m” hide the events “evstart”, “evend”, “dcstart” and “dcend”. These

events are not in the trace of the IFA operator and they are only used to avoid data race. Using the

refinement checking in PAT tool, we get the desired result that “M0m” and “M1m” are equivalent

on their traces.

#assert M0m() refines M1m();
#assert M1m() refines M0m();

6.5.3 The Model Level Equivalence

As we have proved that the operators in “PAT.Runtime” library generate the equivalent visible trace

as their corresponding CSP# operators. At the process and model level, we will prove the generated

C# program at runtime is a bi-simulation of the Labelled Transition System of the CSP# model.

Definition 6 Given two LTS L0 = (S0,Σ,−→0, s0) and L1 = (S1,Σ,−→1, s1), p and p′ are two

states from S0 and S1. We say that p and p′ are bi-simulation of each other (denoted as p ≈ p′) if

and only if:
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• For all e ∈ Σ if p e−→0 q, then there exists p′ ∈ S1 such that p′ e−→1 q′ and q ≈ q′

• For all e ∈ Σ if p′ e−→1 q′, then there exists p ∈ S0 such that p e−→0 q and q ≈ q′

Two LTS are bi-simulation L0 ≈ L1 if and only if s0 ≈ s1.

In the LTS of CSP# model, a state is represented as (P,V,C) and a transition is represented as

(P,V,C)
e−→ (P′,V ′,C′). Here the valuation V contains all the globally shared variables in CSP#

model. In the generated C# program, these variables are put in the static fields of the “Glo” class.

The valuation C contains all the cached channel data on the model’s current state. In the generated

C# program, the cached channel data are stored in a first-in-first-out queue. When the C# program

starts, it initializes the values of these variables and channels. As long as the operation on these

variables and channels are equivalent, the valuation of V and C are equivalent for the CSP# model

and its generated C# program.

As defined in Section 6.2, the non-communication codes are not allowed to access the shared

variables and channel buffers. Therefore, only the message passing communications and data oper-

ation codes may change the values of V and C. In the generated C# programs, these two kinds of

codes come from our code generation tool. And in CSP#, the embedded event-attached programs

are in a subset of C# language. In the supported C# statements, they share the same operation se-

mantics. 2 In this way, if the process expression P in the CSP# model and the generated C# program

are equivalent, and the operator level guarantee the atomicity of the message passing communica-

tions and data operation codes, the state (P,V,C) will be equivalent. In the rest of this section, we

discuss the equivalence on process expression P.

In the generated C# program, the labeled transition e−→ is one thread running one or more state-

ments but at most one of these statement is event synchronization or channel read/write operation.

The success transition X−→ is a successful termination of a process or subprocess.

Given a process expression ε, the LTS with ε is denoted as Mε. We use η to denote the generated

C# program from ε. The LTS of the generated C# program is denoted as Cη.

2Except the remainder operator “%”.
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Theorem 6.5.1 The LTS of the η is bi-simulation of the LTS of origin process ε. i.e. Mε ≈ Cη.

Proof: As the operator level equivalence is validated in CSP# models, the proof focuses on the

generated C# program have the same possible transitions as in the CSP# model. We make a struc-

tural induction on the CSP# process definitions. Currently, the code generation tool supports the

following CSP# operators in the process definition.

P = Stop | Skip | e→ P | e{prog} → P

| ch!x→ P | ch?x→ P | [b]P

| if (b){P}else{Q} | P; Q | P[]Q

| P ‖ Q | P ||| Q

ε = Stop: CSP# defines Stop to have no transition out. The implementation of Stop in

“PAT.Runtime” is to block the thread forever. It will not perform any transition, so MStop ≈ CStop

ε = Skip: In CSP# model, Skip = X → Stop. The implementation of Skip in “PAT.Runtime”

is to exit the “Skip.run()” method. Nothing will be performed after the exit. Obviously, this means

first successfully exit the Skip and have no transition after that, i.e. CSkip = X → CStop. As

MStop ≈ CStop, so we have MSkip ≈ CSkip.

ε = e → Q: In LTS of CSP# model there is only one transition e−→from Mε to MQ. The

generated C# program η is shown in Figure 6.9(a). The “run()” method will first run to the method

call to engage event operator e. Executing the “exec()” method of the operator will either block

the thread till the event becomes enabled, or engaged e if it turns to enabled by this call. As the

non-communicating code cannot change the control flow of the “run()” method to skip this method

call, we get the generated C# program η always executes the engagement of e before it goes to call

the “Q.run()”. Because “exec()” of e is the corresponding critical section of e in the CSP# model,

assuming “Q.run()” is bi-simulate to MQ (by the induction base), we get the Mε ≈ Cη.
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Figure 6.9: Structure of the Generated “run()” Mehtods

Similar results apply to ε = e{prog} → Q, ε = ch!x → Q and ε = ch?x → Q. Each of

them only has one transition from Mε to MQ and this transition has corresponding single branch C#

statements from Cη to CQ ≈ MQ.

ε = Q; R: The CSP# model behaves like Q until Q’s successful termination and behaves as R

afterwards. So in Mε, there is one transition X−→ from the MQ to MR. The generated C# program

η is shown in Figure 6.9(b). η first executes “Q.run()” and after “Q.run()” successfully returns, it

executes“R.run()”. The successful return of the “Q.run()” is simulated toX, thus Cη ≈ Mε.

ε = Q[]R: Suppose Q and R each has only one possible first visible event, denoted as eq

and er respectively. According to the CSP# operational semantics, two transitions start from Q[]R:

(Q[]R,V,C)
eq−→ (Q′,V,C) and (Q[]R,V,C)

er−→ (R′,V,C). Here Q′ and R′ are the Q and R

processes with their first events being skipped. The generated C# program for Q[]R is a two-step

program, shown in Figure 6.9(c). The first part is running “select()” on the choice operator which
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contains the first event of Q and R. Here eq and er are the first events of Q and R respectively. The

choice operator may engage eq and return 0 or engage er and return 1, depending on the environment.

The second part is based on this return value, switching to “Q’.run()” if it returns 0, or to “R’.run()”

if it returns 1. The “Q’.run()” is starting the “run()” method of Q but skip the first event of it, so it is

bi-simulated to the Q′ in the original CSP# model. Same relation holds for the “R’.run()” and the R′.

Now we have two transitions from Cη: one engages eq and goes to CQ′ ≈ MQ′ , the other engages

er and goes to CR′ ≈ MR′ . So Cη ≈ Mε. When Q and R contain more than one first event, the

transition number will be the total number of the first events of Q and R. The bi-simulation relation

holds for the Cη and Mε.

Similar results apply to ε = [b]Q, ε = if b {Q}else{R} and other extended conditional

operators. They are different on the branch number and transition number, but all of them are

sharing the same structure in their “run()” method.

ε = Q ‖ R: According to the CSP# operational semantics, Mε has three sets of transitions

{eq, er, eqr}. Here eq is the first events of Q and eq ∈ αQ, eq 6∈ αR; er is the first events of R and

er ∈ αR, er 6∈ αQ; eqr is the common first events of Q and R, eqr ∈ αQ ∩ αR. The C# program for

Q ‖ R is shown in Figure 6.9(d). It first creates new threads and manage the alphabets for Q and R.

The events E = {e | e ∈ αQ ∩ αR} are expanded and each event in E will be synchronized by one

more process. After the alphabet management, the threads of Q and R synchronize on the invisible

“start” event, then execute their own “run()” methods. Based on the operator level equivalence, if

e ∈ αQ ∩ αR and it is the first event of both Q and R, e is enabled. For the cases that e ∈ αQ and

e 6∈ αR, or e ∈ αR and e 6∈ αQ, event e is also enabled. As for each transition in Mε there are

corresponding transition in Cη and vice versa, we have Mε ≈ Cη.

Similar results apply to ε = Q ||| R as the only difference is on how to expand the alphabets in

“DistributeEvent()”. For the interleave process, the “DistributeEvent()” will created an alternative

event e′ for each event e ∈ αQ ∩ αR. The other processes in the model will synchronize to e[]e′

if they originally synchronize to e. Subprocess Q will synchronize on original event e and R will

synchronize the alternative one e′.
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Above we have proved that for each case in the supported process definition, the generated C#

program at runtime is bi-simulated to the original LTS of the CSP# model. �

With this equivalence proved above, the properties on CSP# model will preserve on the gen-

erated C# program. The properties include deadlock-freeness, reachability on the event, and LTL

properties. For the CSP# model it also allows the formula F defined on the proposition on the

global variables. Currently the generated C# program does not preservation on these formulas. The

preserved LTL formula F is defined as F = e | �F | ♦F | X F | F1 U F2 | F1 R F2 .

6.6 Case Study

We demonstrate the C# code generation form CSP# model with two case studies. In the first exam-

ple, the Turn-Based Game, we demonstrate directly using the CSP# operators of “PAT.Runtime.dll”

in C# program. The detail about how to use the operators is discussed in Appendix E. In the second

example, the Concurrent Accumulator, we first design the concurrent system model in CSP# then

combine the model with user-defined data structures to generate the C# program.

6.6.1 Turn-Based Game

The concurrency library “PAT.Runtime” provides the CSP# operators as C# classes to communicate

between threads. From a CSP# model, the programmer can use these operators to implement the

model with ease. In this section, we demonstrate the usage of “PAT.Runtime” using a turn-based

game program as example. In a turn-based game there are n players connecting to a game server.

The server starts the game after all n players joined. At the beginning of each turn, each player

submits his action to the server. After all players have submitted their actions, the server sends all

the players’ actions to every player in the second half of that turn.

For the responsiveness, there is one client serving one player. A client has a “send” thread that

sends the action to server on each turn. It also has a “receive” thread that only waits to receive other
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players’ actions from server. The server has one “send” thread and one “receive” thread for each

client. The server side “receive” thread receives the action from the client-side “send” thread while

the server-side “send” thread sends the actions to the client-side “receive” thread. At server-side, a

“control” thread checks whether all the players have submitted their actions. After all the players

have submitted, this thread will inform all the “send” threads to reveal the actions.

Each pair of “send” and “receive” threads use channel to transmit the messages. Inside the

server or the client, the threads use the event to synchronize the beginning and the ending of each

turn. A thread needs to use the data operation to access the action queue. The “control” thread use

the guard operator to track the number of received action. For example, the server-side “receive”

thread is designed as the following process TbServerReceiveRd.

TbServerReceiveRd(i) =
ctos[i]?i→ enqueue.i{num = num + 1}
→ edHalfRound → TbServerReceiveRd(i);

The C# program implements the communication of this process in the “run()” method of class
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“TbServerReceiveRd” as follows.

1 : string str = (string)chReceive.read();
2 : GloBase.DataOpBegin();
3 : server.RoundQueue.Enqueue(str);
4 : GloBase.DataOpEnd();
5 : edCanReceive.sync();

The “chReceive” in line 1 is the channel object which links to the client. After reading from

channel, at line 2 to 4, the program uses the data operation to put the action to queue “RoundQueue”.

At line 5, the thread synchronizes on the object “edCanReceive”. This event object is synchronized

by the “control” thread and all the “receive” thread at server side.

The major part of the “run()” method of the “control” thread is as follows.

6 : int res = choices.select();
7 : GloBase.DataOpBegin();
8 : output the actions of the current round
9 : GloBase.DataOpEnd();
10 : edHalfRound.sync();
11 : edRoundEnd.sync();

The line 6 represents the waiting on all the player actions to be submitted. When the “select()”

returns, the “RoundQueue” has already contained all the actions. After the data operation that

processes the actions of the current round (line 7 to 9), the “control” thread synchronizes on “ed-

HalfRound” (line 10) to inform the server-side “send” threads to send all the actions to each players.

The “edRoundEnd” event (line 11) represents all the operations for this round have finished. It is

synchronized by the “control” threads and all the “send” thread at server-side.

After the implementation of client and server threads, they are organized in the program’s

“Main()” method. The program first creates the event and channel objects, initializes them with the

capacity based on the number of client. The server and client objects are created and linked via

these event and channel objects. At last the “Main()” method use a Parallel object to start them as

follows.
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12 : new Parallel(new CSProcess[]{server, client1, .., clientn})).run();

Compile and run the C# program, the client and server communicate correctly as desired. In

this case study, we can see that with a designed model in CSP#, it is convenient to implement the

model with the CSP# operators in “PAT.Runtime”. After initializing the event and channel objects,

the threads can communicate via these objects the same way as in CSP# model.

6.6.2 Concurrent Accumulator Development

In the previous turn-based game example, the event objects are manually created and linked between

multiple threads and objects. The developers have to ensure the control flow do not skip the CSP#

operators related statement in the program. Our code generation tool helps to ease these tedious

works with automatic alphabet management. The generated C# program has a clean structure that

is similar to the origin CSP# model. In this second case study, we demonstrate the development of

a multi-threaded accumulator to calculate the summation of array concurrently.

The array has n integer elements {d0, d1, .., dn−1}. The elements {d0, .., dn−2} contain the

numbers need to be added to dn−1. The result of the summation will be stored in dn−1. The program

will start m threads to sequentially read the array and add the result to dn−1. After all m threads

finished, dn−1 = m
n−2∑
i=0

di. Supposing each of these m threads has a read cache limit ki, when it

finishes reading ki elements, it adds the summation of the ki elements to the shared array’s n − 1

elements and starts a new round on the next element until it has added all the n− 2 elements.

The program is divided into three parts, each focuses on one aspect of the program. To avoid

data race on the shared array, we use CSP# to model a reader-writer lock to protect the shared

array. To access the data in the array and output result on screen, a user-defined class “Ldata” is

implemented as a dynamic class library “ldata.dll”. The CSP# model can import this library and use

the “Ldata” object in event-attached programs.

The m threads are modeled as m “adder” processes and their subprocesses in CSP#. They
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synchronizes with the reader-writer lock model and access the “ldata” objects via the data-operation

events. The variables in the condition expression, which control the flow of the model, are stored as

the global shared variables. The startup process “prog” initializes the “ldata” object and the control

variables, then start m “adder” processes and the reader-writer lock process in parallel. After the m

“adder” processes terminate, the model calls the “print()” method of “ldata” to output the result on

screen. The structure of the design is show in figure 6.11.

The development starts on implementing the “Ldata” class without concerning the concurrency,

then uses the reader-writer model to add concurrent protection to the shared array, the program-wide

functionalities are provided by the “Adder” model. The “Ldata” implementation is quite intuitive so

we start from discussing the development of the reader-writer lock model and the “Adder” model.

Reader-writer Lock Model

In the reader-writer lock model, we use an integer “noOfReading” to track how many threads are in

reading status and a boolean variable “writing” to track whether the writing lock is already acquired

by some thread. Whether a thread can enter the lock is protected by a Guarded condition. The

prerequisite for entering reader lock is “noOfReading >M && !writing” and the one for entering

writer lock is “noOfReading == 0 && !writing”. The “Controller” process ensures once a thread
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has been chosen to enter the lock, it atomically tests the prerequisites and set control variables

without being interrupted by other threads.

ReaderHead(i) = [noOfReading < M && !writing]startR.i
→ startreadop.i{noOfReading = noOfReading + 1; }
→ startRout.i → Skip;

ReaderTail(i) = [noOfReading > 0]endR.i
→ stopreadop.i{noOfReading = noOfReading− 1; }
→ endRout.i → Skip;

Reader(i) = ReaderHead(i); ReaderTail(i); Reader(i);

Writer(i) = [noOfReading == 0 && !writing]startW.i
→ startwriteop.i{writing = true; } → startWout.i
→ endW.i → stopwriteop.i{writing = false; }
→ endWout.i → Writer(i);

Controller() = (startR.0 → startRout.0 → Controller())
[] (endR.0 → endRout.0 → Controller())
[] (startW.0 → startWout.0 → Controller())
[] (endW.0 → endWout.0 → Controller())

...

The process “ReadersWriters” is the parallel of processes “Readers”, “Writers”, and “Con-

troller”. They form an autonomous component in the system. The requirement related to the reader-

writer lock can be verified on process “ReadersWriters”. For example, the requirement “when the

data is being written, no thread shall hold the reader lock. ” is represented as “!(writing == true

&& noOfReading >0)”.

RWReaders() = Reader(0) || Reader(1) || Reader(2);
RWWriters() = Writer(0) || Writer(1) || Writer(2);

ReadersWriters() = RWReaders() || RWWriters() || Controller();

#define exclusive !(writing == true && noOfReading > 0);
#assert ReadersWriters() |= [] exclusive;
#define someonereading noOfReading > 0;
#assert ReadersWriters() |= [] <> someonereading;
#define someonewriting writing == true;
#assert ReadersWriters() |= [] <> someonewriting;
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The Adder Process

The high-level functionalities are added to the program by the “Adder” process. Each “Adder”

process represents one of the m threads. They use the “Ldata” object to read and write on the shared

array.

As the design, when a thread wants to read the array, it shall synchronize with the “Reader-

sWriters” process on startR.i and endR.i events before and after the read operation respectively.

Similarly, before and after the write operation, the thread’s model shall synchronize the startW.i

and endW.i events as shown following.

startR.i → (read operation) → endR.i
startW.i → (write operation) → endW.i

The “Adder” process uses global shared variables to control the flow of the threads and to store

the summation of already read elements. They include the cur, cnt, gap and accu. The cur indicates

which element the thread is reading; cnt counts how many elements have been read at this round;

The gap is the capacity that the thread can read at one round; The accu stores the summation of the

previous read data from the shared array.

To decide whether the “Adder” process shall terminate, the IF operator tests the condition

“cur[i] <len”, where len equals to n− 1 defined above.
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GAdder(i) = if (cur[i] < len && cnt[i] < gap[i]) {
startR.i
→ s1{accu[i] = accu[i] + ldata.get(cur[i])}
→ s2{cur[i] = cur[i] + 1; cnt[i] = cnt[i] + 1}
→ endR.i → GAdder(i)

};

GWrite(i) = startW.i
→ s3{accu[i] = accu[i] + ldata.get(len); }
→ s4{ldata.set(len, accu[i]); }
→ s5{accu[i] = 0; cnt[i] = 0; }
→ endW.i → Skip;

LAdder(i) = if (cur[i] < len) {GAdder(i); GWrite(i); LAdder(i)};
Adder(i) = addstart{cur[i] = 0; cnt[i] = 0; } → LAdder(i);

Using predefined input data, the safety properties can be checked on the “Adder” process. For

example, the “exclusive” property can be checked on a specific array {d0, d1, .., dn−1}.

The complete CSP# model of the concurrent accumulator is listed in Appendix C.

Generating the Program

Above we have implemented the user-defined data structure “Ldata”and designed the “ReadersWrit-

ers” process and the “Adder” process. Lastly, a “Prog” process is added to do the initialization of

the data, and start the “ReadersWriters” process and the “Adder” process in parallel.

Choose the “Prog” as the start-up process, the code generation tool generates the C# project

from the CSP# model. There is one class for each process definition and one extra class “Glo”

is generated to hold the global shared variables. The project references to the dynamic libraries

“Ldata.dll”, “PAT.Common.dll” and “PAT.Runtime.dll”. The generate project is ready to build in

Visual Studio. Executing the program will print the result on screen. The “ReadersWriters” part is

non-terminating, so the program does not exit. The “Adder” part will do the calculate job, print out

the result and exit.
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Examine the source code of each process class, the “run()” methods have the same structures

as the process definition in CSP# model. The event name can be read on the event synchronization

statement. For example, the statement

evchs[“endRout.i”].exec();

represents the event “endRout.i”. The event name of data-operation is displayed in the comment

right after the entering of data-operation.

// event stopreadop.i
Glo.DataOpBegin();
Glo.noOfReading = (Glo.noOfReading − 1);
Glo.DataOpEnd();

Debugging the program is convenient as the statements in the “run()” methods can trace back

to the operators in the process expression. Other methods of the process classes are used to manip-

ulate the alphabets and process parameters. These methods are usually executed before or after the

process’ running.

The initialization of the program can be substituted to read the real data in practice. C# code

can be added in the “run()” methods of the processes. The inserted code shall not have side effect on

the shared variables of the CSP# model. For example, we can insert the C# code to print a message

if the summation in one round is greater than 10 as follows.

public void run()
{
...
// event s1
...
Glo.DataOpEnd();
if(Glo.accu[parai] > 10) {Console.WriteLine("accu > 10");}
// event s2
Glo.DataOpBegin();
...
}
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6.7 Summary

To expand the use of CSP# in development, we discussed the differences between the CSP# model

checked by model checker and the C# program running in the target platform. With these concerns

in mind, we chose the trace semantic to define the equivalence between CSP# model and the C#

program. Based on this equivalence, we designed the “PAT.Runtime” library to provide the CSP#

operators in C# programs. The basic event synchronization in this library is based on the moni-

tor class in C#. On the event synchronization, we add the choice layer and precondition layer to

implement the general choice operator of CSP#. The shared memory and message passing com-

munications are combined in the general choice operator to ensure the C# programs have the same

atomicity as the CSP# models. With the CSP# operators from “PAT.Runtime” library, the developers

can implement the CSP# model in a similar structure in C#.

With the alphabet and shared variable management being added to the “PAT.Runtime” library,

our code generation tool in PAT generates C# programs from verified CSP# models. Executing

the generated C# program produces the same possible traces set as the original CSP# model does.

From the operator to the model level, we proved the trace equivalence of the CSP# model and the

C# program. The generated C# program preserves the validated properties on traces of the original

CSP# model.

Two case studies are performed to demonstrate the usage of the “PAT.Runtime” and the code

generation tool. In the turn-based game example, the CSP# operators and the alphabets are manually

managed by developers. In the concurrent accumulator example, the C# project is automatically

generated from the original CSP# model. The process classes and their alphabets are managed

automatically.

With the “PAT.Runtime” library and the code generation tool, CSP# can be easier to be used in

the concurrent software development, from the design to the implementation phases. The represen-

tations of the requirement specification, design and implementation are consistent. Our approach

help improve the efficiency and reliability of software development with formal CSP# modeling.
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For the limitation, currently the developers need to ensure the non-communication codes do

not interfere the flow of the communication codes. A better cooperation between our tool and other

development tools is preferable. Fit the current semantics equivalence with the whole development

process shall further improve the consistency and efficiency of the concurrent software development.



Chapter 7

Improvement on the Implementations of

CSP# Operators

In last chapter, we proposed an approach to use CSP# from design to implementation phase in

development process. CSP# has demonstrated its advantages in modeling the system behaviors and

our tool generates the C# program with the designed behaviors. In this chapter, we discuss the

performance of the implementations of the CSP# operators in programming languages. Here the

CSP# operators are used to represent inter-thread communications based on monitor. To improve

the performance of the multi-thread programs that implement the CSP# models, we modify the

mechanism of event synchronization for CSP# operators.

7.1 Overview

In the programming languages like Java and C#, the monitor provides “mutual exclusion” and “wait-

ing and signaling” between threads. It is a concise and convenient synchronization tool in shared

memory concurrent system. For the popular CSP libraries, such as JCSP [108], CSP.NET [67] and

CTJ [95] etc., they use monitor to implement the message passing communication in Java or C#.

103
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More specific, the CSP processes are represented as threads in the program. When a process

is blocked by an event in the model, the corresponding threads will be waiting on a monitor object.

When the event becomes enabled, the thread will be notified via that monitor. However, the monitor

objects in program and the events in model are not one-to-one correspondence. A choice process

can nondeterministically wait on multiple events. In the program, the choice operator corresponds

to the monitor that the thread is waiting on. The first visible events on each branch of the choice

operator compose the condition variable for this monitor to be notified. Suppose a CSP# choice

operator is represented as follows.

P = (e1 → Q1() )
[] (e2 → Q2() )
. . .
[] (en → Qn() );

The process P is waiting on a monitor object and the event set {e1, e2, . . . , en} is the condition

variable of this monitor object.

As the threads in the program are running concurrently, two sets of threads can engage two

events at the same time. This violates the event atomicity in CSP. To prevent this violation, a global

lock is added to ensure that an event engagement can only happen after the previous event has

finished its engagement. Here the engagement includes the maintenance of the related monitors and

condition variables, which are done by different threads.

Optimizing the cooperation among the global lock, the monitors and the condition variables

shall improve the performance of the inter-thread communication via CSP operators. In this chap-

ter we investigate the synchronization of the CSP# operators in the “PAT.Runtime” library. With

rearrange the cooperation between locks and monitors, the duration of the event synchronization is

decreased and the communication to signal “the end of the event” is removed. With the optimiza-

tion, the running time of the programs using “PAT.Runtime” are decreased about 40%. It helps the

concurrency library “PAT.Runtime” be more practical for software development with CSP# as the

designing tool.
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7.2 Current Synchronization Mechanism

Let us first focus on the current implementation of the CSP event synchronization. This implemen-

tation is proposed by Welch et al in [110]. The choice operator1 is the basic unit for synchronization.

It contains the event set as its internal variables. A choice operator object has a “choice monitor”

that can be waited and notified. When it starts engagement, it actively acquires or releases the global

lock. The major activities of the choice engagement are shown in Figure 7.1. For a thread to engage

a choice operator, it may go into the 9 activities that are marked as “S1” to “S9” in Figure 7.1.

The “S1”, “S4”, “S6” and “S9” are related to the global lock. The global lock has 3 states:

available, enabling and releasing. When the global lock is in “available” state, any choice operator

can get the lock and change it to the “enabling” state. After the choice finishes trying all the events

in its event set, if a specific event is chosen to be engage, the choice operator can change the global

lock to “releasing” state; if none event is enabled, the choice operator leaves the lock and the state

of it changes back to “available”.

After an event is chosen to engage, the global lock enters the “releasing” state and the program

starts an “ending phase” for the threads related to this event. In this “ending phase”, the active thread

that starts the event engagement will notify every thread that are waiting on this event. In Figure

7.1, thread “T2” successfully starts the event engagement and notifies “T1” to resume its choice

engagement. Each thread that is resumed to finish the engagement needs to conduct two steps, i.e.

“S8” and “S9”. On step “S8” the choice operator removes itself on the events’ waiting list and on

step “S9” it registers on the global lock, informing that it has finished the maintenance. When all

these threads register the finish of the maintenance, the global lock set itself back to “available”

state. This is actually conducted by the last thread that registers to the global lock.

The event objects work as condition variables in the choice operators. It has internal manage-

ment on how many threads this event has to synchronize. A choice can have two operations on the

event object: “enable” and “disable”.

1In [110], it is called the “ALTing” construct. Here we use the choice operator as it is used in the rest of this thesis.
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Figure 7.1: CSP Choice Operator Communication

Suppose event e is synchronizing n threads. Let us discuss the event’s behavior when a choice

tries to “enable” event e, if this is not the nth thread to synchronize e, the event object put the

monitor object of the choice in the waiting list of e, and return false to inform the choice operator
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that it needs to wait. If this is the last (nth) thread to synchronize e, the event will be enabled by

this thread. After notifying the previous n− 1 threads to resume, the event return true so this thread

knows it can start the “ending phase” and do the maintenance on remove itself from the waiting list

of the other events objects.

The event’s “disable” operation is the only way that the choice operator remove itself from

the event’s waiting list. When the choice calls this operation on each event in its event set, only the

chosen event that is being engaged returns true, all the other events return false. Based on this return

value, the choice operator knows which event has been engaged.

7.3 Improving the Cooperation among events, choices and global lock

We have discussed the synchronization mechanism of CSP operators in last section. To improve

the performance of this mechanism, we first analyze the communication in it. Based on the analy-

sis, we propose a simplified cooperation mechanism among events, choices and global lock. This

cooperation mechanism is also adapted to support the CSP# operators in “PAT.Runtime” library.

7.3.1 Analysis the Functionalities in CSP Operator Synchronization

For the cooperation among the events, choices and global lock, we try to list the functionalities of

them and to see whether they need inter-thread communications.

The event object has a waiting list containing the monitors of choice operators that are waiting

on this event. This waiting list may be accessed by multiple threads concurrently. Therefore, a

“mutex” lock is attached to each event object to protect the waiting list. The “enable” and “disable”

operations on the event object need to acquire this “mutex” lock. Usually they do not send notifica-

tion to other threads. Only when the choice operator acts as the last thread to “enable” the event, it

actively notifies other threads that are in the waiting list of this event.

The global lock ensures no two events can occur simultaneously. When one event is engaging,
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it also ensure all the choice operators involved in this event synchronization will finish their mainte-

nance in the “ending phase”. Different from the mutual exclusion on event, which happens between

different threads when they want to access the same event, the mutual exclusion enforced by the

global lock happens between any two threads in the program.

In most cases, the choice operator uses the global lock and the event objects to communicate.

As shown in the Figure 7.1, if it is not the active thread to start the event engagement, it has to

acquire global lock at “S1” and release it at “S6”. The activities “S2” and “S3” is protected by the

global lock. If the choice is the last one to synchronize on the event object2, the choice operator

follows the route “<S1, S2, S3, S4, S5, S8, S9>” and this whole route of activities are protected by

the global lock. On step “S5” it notifies all other choices that are waiting on the same event ei. As

at this moment it has already changed the state of the global lock to “releasing” on step “S4”, all

the other choices are also protected by the global lock. In other word, when the threads of the other

choices resumes, they equivalently hold the global lock until the lock exit the “ending phase”.

The choice operator only gives out the global lock between activity “S6” and “S7”. When

the choice operator gets the global lock on “S7”, the global lock is already in the “releasing” state.

Therefore, two kinds of communication happen on the choice operators. The first case, the choice

notifies the other choices that are waiting on the same event when it successfully starts an event

engagement. This communication happens is not global as it only evolves the operators that are

waiting on the same event. The second case, the choice registers itself to the global lock in the

“ending phase”. This register operation blocks any other choice operators that want to access the

global lock.

7.3.2 Improved Synchronization Mechanism

For a multi-threaded program that uses the CSP operators, the communications are represented as

that when a thread of the program tries to engage a CSP operator, it waits on other threads, or it

2i.e. the thread running the choice operator is the nth thread to synchronize on the event object that require n threads
to synchronize.
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actively resumes other threads. The waiting can occur on two levels. The “global” level waiting

occurs between any two threads that want to access the engagements of operators. The “local” level

waiting occurs between any two threads that want to access the same event.

The “global” level waiting occurs between operators’ engagements. For convenience, we de-

fine two routes of steps “<S1, S2, S3, S4>” and “<S1, S2, S3, S6>” as “trying phase”. Not like

the “ending phase” that includes the operations from multiple threads, only one operator can be in

“trying phase” at any time. When one operator tries to enter “trying phase”, it may need to wait till

another thread to exit its “trying phase”, or wait till multiple threads to finish their “ending phases”.

If the “trying phase” and the “ending phase” can run concurrently, the waiting between threads will

be decreased considerably. Here the “ending phase” is to ensure the operators to remove themselves

from the waiting lists and the waiting lists are stored in different event objects. We will investigate

the “local” level waiting and the internal data of event objects to see whether they can make the

“ending phase” more efficient.

Before an event object is engaged, the operators can put itself in the waiting list of the event,

or remove itself from it. These operations are at “local” level and they have already been protected

by the “mutex” lock of the event object. When an operator successfully starts the engagement of

an event that needs to synchronize n operator, the program will be in the “ending phase” on this

event and this block any other operators that want to enter “trying phase”. This event object will

first notify the other n − 1 operators and the “ending phase” does not finished until all these n − 1

operators have done their maintenances. The maintenances include the operations on this engaged

events and the other unengaged events. That is the main reason that the “ending phase” needs the

protection of the global lock.

To minimize the waiting between the “ending phase” and other operators that are not evolved

in this event engagement, all the operators’ maintenances are shifted from the individual operators

to the operator which is the active one to start the engagement. After this change, the maintenances

previously in the “ending phase” have already done, thus the “ending phase” can be removed.

To cooperate with this change, the maintenance of the operator is merged with the step that the
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Figure 7.2: Improved Choice Operator Communication

operator is notified. The global lock does not have the “releasing” state any more. The maintenances

in previous “ending phase” will be protected in the “enabling” state of the global lock.

The improved mechanism of the operator activities is shown in Figure 7.2. Compared to Figure

7.1, step “S9” is no longer necessary and has been removed. Step “S8” is not on the route if the

choice operator is the passive one to be notified by another operator. The step is moved to the route

when this choice operator starts the event engagement and becomes the active operator to notify
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other operators that synchronize the same event. The step “S8” now precedes the step “S5” that

sends the notification. It is under the protection of the global lock. As the step “S5” happens after

“S8”, when the other operators are notified and resumed, the maintenances are already done. They

no longer need to acquire the global lock again.

7.3.3 Adapting the Improved Mechanism to the CSP# Operators

An improved cooperation between event objects, choice operators and global lock has been in-

troduced on CSP operator implementation. CSP# bases on classic CSP and provides the shared

memory communication in the model. In Section 6.3.3, we have described the solution to combine

the shared memory communication can message passing communication in the “general choice”

operator. We apply the improved cooperation mechanism CSP# operators to work with the shared

memory communications.

Compared the choice operator in classic CSP, the “general choice” operator in CSP# has two

extra routes related to the “data-change” event dc. The improved cooperation mechanism of the

“general choice” operator is shown in Figure 7.3. When the operator has notified the other operators

that synchronize to ei, it checks whether ei has event-attached program. If it has, the operator

does the same maintenances and notifications for the “data-change” event dc. The two sets of

maintenances and notifications, for the event ei and dc, are safe under the same protection of the

global lock.

On the passive route, when the operator is notified by other operator, it checks whether it has

engaged a regular event ei or the “data-change” event dc. If it engaged dc, the operator needs to go

back to beginning, acquiring the global lock before it proceeds.

Other changes on the CSP# operators are on the buffer management. The general choice op-

erator needs to have a local buffer if it contains channel operations in its event set. When the OS

schedules the choice operator that has engaged channel operation, the channel reads the value in the

local buffer instead of the channel buffer. As the local buffer interacts with the channel buffer in the

protection of the global lock, the behavior of the channel is still consistent with the CSP# semantics.
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Unit: millisecond

Loop
2-philosopher 3-philosopher 4-philosopher

JCSP CSP# Improved JCSP CSP# Improved JCSP CSP# Improved
1,000 136 188 85 212 256 118 275 650 265
10,000 1207 1041 665 1988 2021 977 2650 6637 2347
100,000 12144 9818 5814 19566 20842 9985 26734 62339 20654

Table 7.1: Performance Comparison between JCSP, CSP# Operator and Improved Operator

7.4 Experiment and Performance

We implemented the improved version of the CSP# operators in “PAT.Runtime” library. Using

the dining philosopher model introduced in Section 2.2, we compare the performance of the CSP

operators from the JCSP, the original “PAT.Runtime” and the improved “PAT.Runtime” libraries
3. The experiments are performed on a PC running Windows 8 Pro 64 bit edition. It has Intel

i7-2670QM CPU and 8 GB RAM. The JCSP library version is “jcsp-1.1-rc4”. The Java programs

are running on JVM of version “1.7.0.21”. The C# programs are running on .NET Framework 3.5.

The JCSP library and the original “PAT.Runtime” library are using the synchronization mechanism

described in Section 7.2. The operators in the improved “PAT.Runtime” library use our improved

mechanism in Section 7.3.2.

For the forks and philosophers in the example, each of them is running as a thread in the

programs. They synchronize on the “get” and “put” event objects. These event objects are initialized

in the “Main()” methods and distributed to the fork and philosopher threads. The “Main()” method

starts all the fork and philosopher threads and waits the ends of all these threads. The running time

is the duration (in milliseconds) from these threads’ starts to the ends of them, as shown in Table

7.1.

The program using JCSP has comparable running time as the one using original “PAT.Runtime”

library. When there are fewer threads, the program using of original “PAT.Runtime” runs faster than

the one using JCSP. But when the number of threads increases, the program using JCSP has better

3All three versions are hand-coded. They only use the CSP or CSP# operators to communicate between threads.
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Unit: millisecond

Loop
Two-Thread Three-Thread Four-Thread

Coded CSP# Improved Coded CSP# Improved Coded CSP# Improved
1,000 29 60 36 18 39 24 30 93 67
10,000 138 251 160 161 355 207 351 929 787
100,000 1299 2475 1586 1522 3520 1972 3417 9480 7993

Table 7.2: Performance Comparison between Hand-Coded, CSP# Operator and Improved Operator

performance. This may related to the differences between thread scheduling mechanism in Java

virtual machine and .NET Framework. The program using improved “PAT.Runtime” library has

the best performance among the three programs. On the 2-philosopher case, it saves about 44%

running time as the one using original “PAT.Runtime” library. When the number of threads goes up,

the saved time on the communication between threads for the improved mechanism also increases.

On the 4-philosopher case, the program using improved library save about 64% running time on

average. Compared to the program using JCSP library, the one using improved “PAT.Runtime”

shows better performance even when the number of threads is increased. On average, it saves about

45%, 48% and 13% of running time to the one using JCSP for the 2, 3 and 4-philosopher cases.

Table 7.2 compares the performances between the hand-coded program, the program using

“PAT.Runtime” and the one using improved “PAT.Runtime”. All three programs implement that

multiple threads trying to synchronize with each other on a single event. Only when all the threads

wait on this event can they finish the synchronization and go to next loop. On each loop these pro-

grams synchronize on the event once. The hand-coded program uses the “monitor” to communicate

between threads. The CSP# and the improved CSP# programs use the CSP# event to synchronize.

From the table we can see that the program using improved “PAT.Runtime” library saves much

compared to the one using original “PAT.Runtime” library. The percentage of the saved time does

not increase but drop in this case. The reason is that the choice operators in this experiment only

contains one event, while the choice operators of the “fork” in previous example have more events

in the event set. The hand-coded program still has the best performance. Compared to the one using

original “PAT.Runtime” library, the running time of the program using improved library is much

closer to the hand-coded one.
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7.5 Discussion and Summary

For the popular programming languages such as Java and C#, the inter-thread communications

are based on shared memory communication. We analyzed the classic solution that implements

CSP message passing communication on the shared memory communication in these languages.

Based on the synchronization mechanism in this solution, we proposed our improved CSP operators’

synchronization mechanism.

In the improved synchronization, the data maintenances on related operators are merged to

one operation and it is carried out by the operator that activates the event engagement. With re-

lated modifications on the operations of the events and global lock, the original “ending phase” of

the engagement is removed to avoid unnecessary mutual exclusions. This improved mechanism is

adapted to support the CSP# operator and is implemented in the “PAT.Runtime” library. The experi-

ment results show that the performance of the improved mechanism is much better than the original

mechanism.

The improved mechanism uses the active operator to access the data of other operators. This

requires the operators’ data be shared by the whole program. As the alphabets of the CSP and CSP#

models are global already, they can also be safely shared in C# programs. The improved mechanism

only needs the operators have one extra variable to caching the data being communicated. Hence,

this can be regarded as space-time tradeoff. Similar technique may be extended to apply on the

multi-process and network situations.
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Chapter 8

Conclusion

In this chapter, we first compare our approaches with other related works, then give a summary of

our contributions, and finally discuss the possible future extensions based on our existing works.

8.1 Comparison with Related Works

Compared to the related works, our approaches are based on a more feature-rich modeling language

CSP#. The translation-based approach tries to make the best of the CSP# features to simplify the

translated model. The event-attached program in CSP# provides a flexible container to represent the

statements in the C# program, as long as they do not perform synchronization or flow control. With

the control of these event-attached programs, our approach allows customized atomicity defined the

translated CSP# models. AS CSP# model supports C# program attached to events in the model,

the class hierarchy in C# program can remain in the model. Benefit from this, our approach makes

minimum changes on the source code.

Our translation-based approach uses the channel communication more often than the Java

PathFinder V1. This avoids adding more local or temporal variables that may increase the state

size. The flexible boundary between programs and processes allows the abstraction be performed

117
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on our translated models, which is not easy to do in JPF. In our approach, the process need to regis-

ter the local variables on the “Memory” object. As Promela can have local variables defined inside

process, JPF can handle the local variables more convenient.

Unlike Bogor that translate the program to the intermediate language BIR [88], our translation

based approach does not use intermediate representation between the program and model. In trans-

lated CSP# models, the users or other tools can easily recognize the boundary between inter-thread

communication and the event-attached program in C#. Our translation tries to extract the concurrent

aspect of the programs explicitly and to make them manageable in CSP#. On the other hand, the

intermediate language BIR in Bogor provides finer atomicity that is comparable to our VM-based

verification approach.

Our VM-based verification approach is tightly integrated in the Mono virtual machine but it

does not change the mechanism to execute the IL code in virtual machine. The program running

on the customized Mono virtual machine execute the IL code as usual, all the operations related to

the VM-based verification is performed after the IL code’s execution. The Java PathFinder version

2 adopts the instrument approach that uses one or more Java statements in source code to represent

one Java bytecode in the compiled Java programs. These Java source code form an extra layer

on the virtual machine. Similar mechanism on IL code level is used in MoonWalker for the C#

programs. Compared to the instrument approaches, our tool runs faster on each IL code, or on

bigger atomicity levels, such as method level. However, the instrument approaches can capture

the changes on the program states more efficiently than our tool. When the program is verified on

bigger atomicity levels, our tool is more efficient. When verified on smaller atomicity levels, the

instrument approaches have advantages. Another difference is that our tool is running at lower level

that can gather the information of the programs and even the native libraries of C# language, which

are not supported in Java Pathfinder or MoonWalker.

Compared to CSP, CSP# supports more language features. The CSP# channel supports asyn-

chronous communication and matching on the sent data. The conditional choice operator has the

atomic and blocking variants for the shared memory communication. These feature- rich behaviors

are encapsulated in the general choice operator for our concurrency class library “PAT.Runtime”.
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The JCSP and CTJ libraries are based on classic CSP and they do not provide these shared mem-

ory communication related features. JCSP has also added the poison concept on the channels to

chain terminate the components in the program. At present “PAT.Runtime” library only provides

the operators that are defined in CSP#.

In addition, our concurrency library provides process level alphabet management. Even with-

out the code generation tool, the developers can use these management facilities to organize threads

in C# program as the processes in CSP# model. When the PAT, the code generation tool and

“PAT.Runtime” library work together, the developers can use CSP# from the design to implement

phase. Our tool shares the similar goal with CSP++ framework that also provides the automatic

code generation. Both approaches use the modeling language to describe the concurrent aspect and

implement the functionalities in the user-defined data. However, the user-defined data are imported

in CSP# model from the design phase in our approach. Therefore, the properties that are verified on

the CSP# model can access both the concurrent and the functionality aspects of the program.

The first implementation of “PAT.Runtime” library uses the same synchronization mechanism

on monitor as the JCSP library, but our operators additionally support the shared memory com-

munication. In the experiments, the performance of our approach is slightly behind JCSP when

the number of thread increases. In the “PAT.Runtime” that adopts the improved synchronization

mechanism, although our operators support more concurrent behavior, it uses less communications

to achieve the synchronization between threads. The performance of the improved “PAT.Runtime”

library is notably ahead of the JCSP.

8.2 Summary of Current Works

Our research focuses on better integrating CSP# with development process, including design, ver-

ification and implementation phases. Based on PAT and CSP#, we applied translation-based and

VM-based verification approaches for verifying the properties on concurrent C# programs. On the

other direction, we provided a C# concurrency library and a tool in PAT to provide automatic gen-

eration of C# programs from CSP# models.
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The translation-based approach takes advantages on the program friendly features of CSP#. It

uses the user-defined data in CSP# model to preserve most the object-orient characteristics. For a

C# program, it generates a class library and a CSP# model. The class library keeps all the fields

of the classes in original C# program and it is imported in the generated CSP# model. In this way,

the CSP# model can create and access the objects in the C# program as the shared variables in the

model. The methods of the classes are translated to the processes in the CSP# model. By adjusting

the data and model boundary and by controlling the atomicity on the translation, the translated CSP#

model can be at different abstraction levels of the original C# program.

The requirements on the C# program are represented as properties on the model. PAT exhaus-

tively traverses the translated CSP# model and verifies the properties on the state space of the model.

With customized translation on specific methods or statement, PAT can verify the properties related

to probability and expected rewards on the translated model.

In our VM-based verification approach, the execution of a multi-threaded C# program is rep-

resented as a LTS system. The state of the LTS contains the program contexts of the threads and

the static, dynamic and stack data of the program. One transition is a certain thread in the program

executing one or more IL codes and all the other threads remaining at their previous contexts.

The modified Mono virtual machine has a “modelchecking” mode. When the C# program runs

in this mode, the virtual machine breaks the program based on configured atomicity, extracts the

program state at the end of each transition. With these information extracted, PAT communicates

with the Mono virtual machine to control the traverse of the program state space at runtime. The

transition can be set to different atomicity levels, such as IL level or Source Code level. Specific

namespaces in the C# program can be filtered out to enhance the efficiency of the verification.

The VM-based verification approach supports deadlock-freeness and safety properties. It uses

DFS to traverse the state space of the C# program. Once the state that satisfies the property is found,

PAT prints out the transition trace from the start of the program to this state as counterexample.

We choose the trace semantics to define the equivalence between CSP# model and the imple-

mented C# program. Based on this equivalence, we developed a concurrency library “PAT.Runtime”
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to provide the CSP# operators on .NET framework. The shared memory communication and the

message passing communication are combined and encapsulated in the “general choice” operator.

After importing the “PAT.Runtime” library, the C# program can use the CSP# operator objects to

synchronize multiple threads in the same way as in CSP# model.

An automatic code generation tool was developed in PAT framework. From a verified CSP#

model, the tool generates a C# program that has the same behavior as the origin CSP# model.

The generated C# program contains the communication code that generated from the CSP# model.

And it allows non-communication code to inserted between the communication code. Developers

can implemented the functionalities in the user-defined data structures as non-communication code,

then design the concurrent aspect in CSP# model, and at last use our tool to generate the executable

C# program from the user-defined data structures and CSP# model. We structurally proved the

equivalence between original CSP# model and its generated C# program, from the operators to the

process and model level. Based on the equivalence on trace semantics, the LTL properties validated

on the original CSP# model preserve on the generated C# program.

To improve the performance of the “PAT.Runtime” library, we analyze the synchronization

mechanism when the CSP operators are implemented on the monitors. Based on the existing solu-

tion, we merge the alphabet maintenance and the notification for the operator that starts the event

engagement. With the related tuning on the communication, the “ending phase” for the event en-

gagement is removed. The improved synchronization is adapted to the CSP# operators that contain

both share memory and message passing communications. The experiment results show good per-

formance gains for the improved synchronization mechanism.

The key contributions of this thesis are recapitulated and listed below.

• Our approaches expand the usage of the feature-rich language CSP# on both the design and

implement phases. With the tools performing transformations between CSP# and C#, the

concurrent properties can be directly verified on the C# programs.

• The first approach defines the translation from the C# program source code to CSP# model.

The concurrent aspect of the C# program is explicitly represented in the CSP# model. De-
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pending on configuration, the other aspects can be put in the user-defined library or in the

model.

• On the Intermediate Language code level, our VM-based verification tool uses the debug

interface and the synchronization event in the virtual machine to traverse the C# program

state space and verify the deadlock-freeness and safety properties.

• The trace semantics of CSP# is defined on C# program. Based on this trace semantics, we

further define the equivalence between CSP# models and C# programs. With this equivalence,

the verified properties on traces are preserved in the C# program with the same traces.

• Based on the trace equivalence, the CSP# operators are implemented in C# library “PAT.Runtime”.

They can be used in C# programs to manage synchronizations between threads. Experiment

shows that our operators have better performance than the related CSP library.

• For the transformation from CSP# to C#, we develop the code generation tool in PAT frame-

work. We structurally prove that the generated program is equivalent to original model on the

trace semantics.

8.3 Future Works

The CSP# language is evolving to better support the event-attached program and to provide easier

manipulation on shared variables. The fields of the objects can be directly accessed in the event-

attached programs. The object reference can be used as parameters in process definitions. Local

variables are also supported inside the event-attached programs. These new features make the object

references are used as the integer and boolean types in CSP#. The translation based approach can

redesign the object lists in the “Memory” class which is used to export the program state. The

polymorphism can be more naturally represented in the model. With the evolution of CSP#, the

program can be further integrated in the model without much predefined or customized statement

translations. Obviously, the side effects of the programs shall be constrained, especially on the

expressions in the CSP# models.
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The modeling languages like CSP# have become friendlier to the useful features in program-

ming languages. On the other hand, the programming languages become extensible to allow the

analysis and verification tools, such as the CodeContract for C# [35, 25] and JML for Java [66, 21].

The VM-based verification approach shall more tightly integrate with the programming languages’

virtual machine. It is convenient to use extension of the language, such as the annotation in C#, to

embed the verification related information in the debug versions of the programs. When the pro-

grams are running in “modelchecking” mode these information can help to decide the atomicity,

extract the program state and apply abstraction of the program.

Currently, both the “PAT.Runtime” library and the C# code generation tool are based on multi-

threaded program running on single machine. One possible extension is to adapt the library to

support multi-process in network environment. The global environment and the monitor-based com-

munication will have to be redesigned. In the network, a special process can be set up to manage

the alphabets for events and channels, as the “Glo” class in multi-threaded programs.

In this thesis, we use C# as the typical Object-Oriented programming language. Other similar

languages, such as Java, can be applied the same approaches, with slight modifications and adap-

tions. PAT and CSP# have already provided the interfaces for the other programming languages,

to implement user-defined data in the models. Our approaches emphasize on the defined semantics

equivalence between the models and the programs. The approaches also maneuver the boundary of

the user-defined data and the CSP# processes to gain flexible and concise transformations. These

methods and techniques are transferrable to other scenarios.
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Appendix A

Translation-based Approach Examples

A.1 The translated CSP# model of Dining Philosophers example

The translated CSP# model in Section 4.5 is as follows:

#import “DiningPhilCls− r”;

var < Memory > memory;
var cpid;
channel create thread 0;

CreateNewThread() = create thread?ti.pid.obj→
if (−1 == ti){Skip} else {NewThread(ti, pid, obj)};

NewThread(ti, pid, obj) =
case{
(ti == 1) : Philosopher run(pid, obj)
default : Skip
} || CreateNewThread();

Fork Lock(pid, obj) =
[−1 == memory.Fork Get LOCK(obj)]tau{memory.Fork Set LOCK(obj, pid); } → Skip;

135
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Fork Unlock(pid, obj) =
assert(memory.Fork Get LOCK(obj) == pid);
((tau{memory.Fork Set LOCK(obj, − 1); } → Skip)
);

Philosopher CreateObj(pid, le, ri, na) =
((tau{memory.reg(pid, 2); } → Skip);
((tau{memory.SetTP(pid, 0, memory.Philosopher CreateObj(le, ri, na)); } → Skip);
((tau{memory.SetTP(pid, 1, memory.GetNextPid()); } → Skip);
((create thread!1.(memory.GetTP(pid, 1)).(memory.GetTP(pid, 0))→ Skip);
((tau{memory.unreg(pid); } → Skip)
)))));

Philosopher run(pid, obj) =
(Fork Lock(pid, memory.Philosopher Get left(obj));
(Fork Lock(pid, memory.Philosopher Get right(obj));
(Fork Unlock(pid, memory.Philosopher Get right(obj));
(Fork Unlock(pid, memory.Philosopher Get left(obj))
))));

DiningPhil Main(pid) =
((tau{memory.DiningPhil Set i(0); } → Skip);
(DiningPhil Main For(pid);
((tau{memory.DiningPhil Set i(0); } → Skip);
(DiningPhil Main For 1(pid);
((create thread!(−1).0.0→ Skip)
)))));

DiningPhil Main For(pid) =
((tau{memory.DiningPhil Set forks(memory.DiningPhil Get i(),

memory.Fork CreateObj()); } → Skip);
((tau{memory.DiningPhil Set i(memory.DiningPhil Get i() + 1); } → Skip);
((if (memory.DiningPhil Get i() < memory.DiningPhil Get N())
{DiningPhil Main For(pid)}else{Skip})

)));
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DiningPhil Main For 1(pid) =
(Philosopher CreateObj(pid, memory.DiningPhil Get forks(memory.DiningPhil Get i()),

memory.DiningPhil Get forks((memory.DiningPhil Get i() + 1)
% memory.DiningPhil Get N()),memory.DiningPhil Get i());

((tau{memory.DiningPhil Set i(memory.DiningPhil Get i() + 1); } → Skip);
((if (memory.DiningPhil Get i() < memory.DiningPhil Get N())
{DiningPhil Main For 1(pid)} else {Skip})

)));
System() = DiningPhil Main(0) || CreateNewThread();
#assert System() deadlockfree;
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A.2 The translated “Philosopher” and “PhilosopherCls”

After the translation, the classes “Philosopher” and “PhilosopherCls” classes in the class library

contain the data of the “Philosopher” class in the original C# program.

public class Philosopher
{

public int LOCK = − 1;
public int WAITING;
public int name;
public int left;
public int right;
public string ID {

get {
StringBuilder sb = new StringBuilder(”[”);
sb.Append(LOCK.ToString() + ′,′ );
sb.Append(WAITING.ToString() + ′,′ );
sb.Append(name.ToString() + ′,′ );
sb.Append(left.ToString() + ′,′ );
sb.Append(right.ToString() + ′,′ );
return sb.ToString().TrimEnd(′,′ ) + ”]”;
}
}
public Philosopher GetClone() {

Philosopher p = new Philosopher();
p.LOCK = this.LOCK;
p.WAITING = this.WAITING;
p.name = this.name;
p.left = this.left;
p.right = this.right;
return p;
}
}
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public class PhilosopherCls
{

List < Philosopher > list = newList < Philosopher > ();
public int CreateObj(int left, int right, int name){
Philosopher obj = new Philosopher();

obj.left = left;
obj.right = right;
obj.name = name;
list.Add(obj);
return PcMacro.create object(PcConst.Philosopher, list.Count − 1);
}
public Philosopher GetObj(int obj){

return list[PcMacro.get index(obj)];
}
public string ID {

get {
StringBuilder sb = new StringBuilder(”[”);
foreach(Philosopher el in list)

sb.Append(′[′ + el.ID + ”], ”);
return sb.ToString().TrimEnd(′,′ ) + ”]”;
}
}
public PhilosopherCls GetClone() {

PhilosopherCls pc = new PhilosopherCls();
foreach(Philosopher s in this.list)

pc.list.Add(s.GetClone());
return pc;
}
}
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A.3 The C# Program of Leader Election Algorithm

public class AsyRingLeaderPri {
public static void Main() {

ProcessorPri.N = 4;
ProcessorPri[] pro = new ProcessorPri[4];
for(int i = 0; i < 4; i + +) {

pro[i] = new ProcessorPri();
}
for(int i = 0; i < 4 − 1; i + +) {

pro[i].next = pro[i + 1];
}
pro[3].next = pro[0];
for(int i = 0; i < 4; i + +) {

new Thread(new ThreadStart(pro[i].run)).Start();
}
}
}
public class ProcessorPri {

public static Random rdm = new Random();
public static object prolock = new object();
public static int N;
public ProcessorPri next;
public int c1; // counter
public int s1; // state
public int p1; // preference
public int receive1; // variable for received
public int sent1; // variable for sent
public ProcessorPri() {

c1 = 0;
s1 = 0;
p1 = 0;
receive1 = 0;
sent1 = 0;
}
public void run() {

while(s1 ! = 4) {
SelfSend();
Thread.Sleep(0);
}
if (s1 == 4) {

Console.WriteLine(”Done”);
} else {

Console.WriteLine(”not reach here ”);
}
}
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public void Repick()
{ p1 = ProcessorPri.rdm.Next(2); }
public void SelfSend() {

lock(prolock) {
switch(s1) {
case 0 :

Repick();
s1 = 1;
break;

case 1 :
if (0 == sent1) {
// [p12]
if (0 == SendPreference())

sent1 = 1;
}
break;

case 2 :
if (0 == sent1) {
// [p12]
if (0 == SendPreference()) {

sent1 = 1;
p1 = 0;
}
} else if (1 == sent1) {

if (1 == receive1) {
// [c12]
if (0 == SendCounter())

sent1 = 2;
} else if (2 == receive1) {
// [c12]
if (0 == SendCounter()) {

s1 = 0;
p1 = 0;
c1 = 0;
sent1 = 0;
receive1 = 0;
}
}
}
break;
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case 3 :
if ( (receive1 > 0) && (sent1 == 0) ) {
// [p12]
if (0 == SendPreference()) {

sent1 = 1;
p1 = 0;
}
} else if ((receive1 == 2) && (sent1 == 1)) {
// [c12]
if (0 == SendCounter()) {

s1 = 3;
p1 = 0;
c1 = 0;
sent1 = 0;
receive1 = 0;
}
}
break;

default :
break;
}//switch
}//lock
}
public int SendPreference()
{

int ret = − 1;
switch(next.s1) {
case 1 :

if (0 == next.receive1) {
if ( !( (next.p1 == 0) && (p1 == 1) ) ) {

next.s1 = 2;
next.receive1 = 1;
ret = 0;
} else if ( (next.p1 == 0) && (p1 == 1) ) {

next.s1 = 3;
next.receive1 = 1;
ret = 0;
}
}
break;
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case 3 :
if (next.receive1 == 0) {

next.p1 = p1;
next.receive1 = 1;
ret = 0;
}
break;

default :
break;
}//switch
return ret;
}
public int SendCounter()
{

int ret = − 1;
switch(next.s1) {
case 2 :

if (1 == next.receive1) {
if (next.sent1 < 2) {

next.receive1 = 2;
ret = 0;
} else if (next.sent1 == 2) {

if (c1 == N − 1) {
next.s1 = 4;
next.p1 = 0;
next.c1 = 0;
next.sent1 = 0;
next.receive1 = 0;
ret = 0;
} else if (c1 < N − 1) {

next.s1 = 0;
next.p1 = 0;
next.c1 = 0;
next.sent1 = 0;
next.receive1 = 0;
ret = 0;
}
}
}
break;
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case 3 :
if ((next.receive1 == 1) && (c1 < N − 1)) {

next.c1 = c1 + 1;
next.receive1 = 2;
ret = 0;
}
break;

default :
break;
}
return ret;
}
}
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Appendix B

The Turn-based Game Example

The turn-based game is designed in CSP#, then it is manually implemented in C# with “PAT.Runtime”

library. The CSP# model is as follows:

#define M 3;
channel stoc[M] 0;
channel ctos[M] 0;
var num = 0;
TbClientSend(i) = ctos[i]!i→ edNextRound → TbClientSend(i);
TbClientReceive(i) = stoc[i]?i→ edNextRound → TbClientReceive(i);
TbClient(i) = TbClientSend(i) || TbClientReceive(i);
TbAllClient() = || x : {0..M − 1}@TbClient(x);
TbServerSendRd(i) =

edHalfRound → stoc[i]!i→ edRoundEnd → TbServerSendRd(i);
TbServerReceiveRd(i) =

ctos[i]?i→ enqueue.i{num = num + 1}
→ edHalfRound → TbServerReceiveRd(i);

TbServerRd(i) = TbServerSendRd(i) || TbServerReceiveRd(i);
TbServerRoundGuard() = [num >= M] (

tau→ dequeue{num = 0} → edHalfRound
→ edRoundEnd → TbServerRoundGuard()

);
TbServer() = TbServerRoundGuard() || (|| x : {0..M − 1}@TbServerRd(x));
System() = TbAllClient() || TbServer();

147



Appendix B. The Turn-based Game Example 148

After the model was verified, we manually implemented the model in MS Visual Studio 2010.

The C# classes are implemented following their model in CSP#.

For the client side, the class “TbClientSend” implements the process TbClientSend. The

“run()” method of class “TbClientSend” is as follows.

chSend.write(client.Action);
edNextRound.sync();

Here the “chSend” is the channel ctos for the client to send its action to the server.

Similarly, the “run()” method of class “TbClientReceive” is as follows.

chReceive.read();
edNextRound.sync();

The “chReceive” repesents the channel stoc for the server to send other players’ actions to each

player.

The server side has the counterparts of the client’s “send” and “receive” threads. For these

server side threads, the communications on the channels are similar to the ones on client side. The

server has the action queue to store the received players’ actions. In the model, only the length of

this queue is in the global shared variables. In the program, the threads need to get exclusive lock

before writing on the queue.

As in Section 6.6.1 we have list the “run()” methods of the “TbServerReceiveRd” and “Tb-

ServerRoundGuard”, only the “run()” of “TbServerSendRd” is listed as follows.

edReveal.sync();
chSend.write(server.RoundResult);
edNextRound.sync();

Here the “edReveal” is the edHalfRound event in the CSP# model, the “edNextRound” is the
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edRoundEnd event. The server’s “RoundResult” will not change until the next round start. So here

the access to “RoundResult”need not to grant extra lock.
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Appendix C

The Concurrent Accumulator Example

The following is the CSP# model used for the Concurrent Accumulator example in the Section

6.6.2.

#define M 2;
var writing = false;
var noOfReading = 0;
var〈Ldata〉 ldata;
var len = 0;
var cur[3] = [0, 0, 0];
var gap[3] = [1, 2, 4];
var accu[3] = [0, 0, 0];
var cnt[3] = [0, 0, 0];
ReaderHead(i) = [noOfReading < M && !writing]startR.i
→ startreadop.i{noOfReading = noOfReading + 1; }
→ startRout.i → Skip;

ReaderTail(i) = [noOfReading > 0]endR.i
→ stopreadop.i{noOfReading = noOfReading− 1; }
→ endRout.i → Skip;

Reader(i) = ReaderHead(i); ReaderTail(i); Reader(i);

Writer(i) = [noOfReading == 0 && !writing]startW.i
→ startwriteop.i{writing = true; } → startWout.i
→ endW.i → stopwriteop.i{writing = false}
→ endWout.i → Writer(i);
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Controller() = (startR.0 → startRout.0 → Controller())
[] (endR.0 → endRout.0 → Controller())
[] (startW.0 → startWout.0 → Controller())
[] (endW.0 → endWout.0 → Controller())

...
RWReaders() = Reader(0) || Reader(1) || Reader(2);
RWWriters() = Writer(0) || Writer(1) || Writer(2);

ReadersWriters() = RWReaders() || RWWriters() || Controller();

GAdder(i) = if (cur[i] < len && cnt[i] < gap[i]) {
startR.i
→ s1{accu[i] = accu[i] + ldata.get(cur[i])}
→ s2{cur[i] = cur[i] + 1; cnt[i] = cnt[i] + 1}
→ endR.i → GAdder(i)

};

GWrite(i) = startW.i
→ s3{accu[i] = accu[i] + ldata.get(len); }
→ s4{ldata.set(len, accu[i]); }
→ s5{accu[i] = 0; cnt[i] = 0; }
→ endW.i → Skip;

LAdder(i) = if (cur[i] < len) GAdder(i); GWrite(i); LAdder(i);
Adder(i) = addstart{cur[i] = 0; cnt[i] = 0; } → LAdder(i);
PalAdd() = Adder(0) || Adder(1) || Adder(2);
OutPrint() = pend{ldata.print()} → Skip;
ThreeAdd() = PalAdd(); OutPrint();
RealProg() = ThreeAdd() || ReadersWriters();
Prog() = pstart{
ldata.init3();
len = ldata.Len() − 1
} → RealProg();
#define exclusive !(writing == true && noOfReading > 0);
#assert ReadersWriters() |= [] exclusive;
#define someonereading noOfReading > 0;
#assert ReadersWriters() |= [] <> someonereading;
#define someonewriting writing == true;
#assert ReadersWriters() |= [] <> someonewriting;

In the above the “M” is the maximum number of reader that can grant the “reader” lock. The



Appendix C. The Concurrent Accumulator Example 153

“ldata” is an instance of the user-defined data structure. Other variable definitions refer to Section

6.6.2. All the properties have been verified by PAT tool.
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Appendix D

Different Atomicity on CSP# Model and

Generated C# Program

In Chapter 6, the generated C# program preserves the properties on the trace semantics of CSP#

model. However, the properties related to propositions, defined on the shared variables, may not

preserve in the program. The reason is that CSP# takes the event-attached programs as atomic

operations. In the C# program, these event-attached programs cannot be considered as atomic. Let

us consider the following CSP# model.

Var a = 0;
P() = e1{a = a + 1; a = a − 1} → e2→ P();
#define err (a == 1);
#assert P() reaches err;

Verifying the model in PAT, the model “P” never reach the state “err”, which means the variable

“a” is equal to “1”. When we generate a C# program from this model, obviously we cannot say the

program never reach “(a == 1)”. After executing the first statement (i.e. “a = a + 1;”) in the attached

program of event “e1”, the program does reach the state that satisfies “(a == 1)”.
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Appendix E

Using PAT.Runtime in C# Program

“PAT.Runtime” provides the communication between C# threads. It has simpler interface and its

semantics is more concise. The developers can use it in place of the C# threading package. In this

section, we will discuss the CSP# operators provided by “PAT.Runtime” and how to use them in C#

program to control concurrency.

“PAT.Runtime” defines an interface “CSProcess” to represent the CSP# process. The operators

in definition of CSP# process will be put in the “run()” method of the CSPProcess. A CSPProcess

object “pP” can be run as a thread or as part of a thread by running “pP.run()”. It can also be in a

composition of other CSPProcess. The “run()” method taks no parameters and does not have return

value.

The two primitive CSP# processes, Stop and Skip, are built into the PAT.Runtime library. They

are used as the normal processes. For example, the statement to perform Skip is

new Skip().run();

A CSP# event is represented as a protected C# class EventBase in the PAT.Runtime library.

When the program is about to engage an event, it does not directly access the EventBase object.

Instead it gets an EventDock object of this event. These docks are created before the thread starts
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and they synchronize each other via an EventBase.

For an event e to be synchronized by n threads, it shall create n EventDock objects, one for

each thread. These n EventDock objects are created by calling

EventDock[] eds = EventDock.create(n);

The program shall manually assign the n EventDock objects to the n threads.

In these n threads’ “run()” methods, the following statement will engage the event, where ed is

one of its EventDock objects.

ed.sync();

If m new threads start later and they are also synchronizing on event e, we use one of the existing

EventDock of e (such as eds[0]) to create m new EventDock objects as follows:

EventDock[] new eds = eds[0].expand(m);

After the expansion, the event e is synchronized by n + m threads. When these m threads are about

to terminate, the event e needs to contract on these m EventDock objects as follows:

eds[0].contract(new eds);

After being contracted for m, the event e is synchronized by n threads as before.

The event expansion and contraction are commonly used before and after the parallel operator.

The CSP# channel is implemented in PAT.Runtime library with One2OneChannel, One2AnyChannel,

Any2OneChannel and Any2AnyChannel. They vary on how many write ends and read ends they

can provide. So the One2AnyChannel means it has one write end and multiple read ends. The most

general Any2AnyChannel can be created as follows.

Any2AnyChannel ch = Channel.any2any();
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The process can get the channel’s write (or read) end to write (or read) objects to (or from) the

channel.

ChannelInput chin1 = ch.chin();
ChannelOutput chout1 = ch.chout();

Reading and writing on the channel ends is as follows.

chin1.read();
chout1.write(obj);

The choice operator [] is implemented as the Choice class. The first events of the possible

branches are used as the parameters to create a Choice object. After that, calling the “select()”

method starts the engagement on the choice operator. When the “select()” returns, the chosen event

has already finished its synchronization. The return value indicates which branch the choice has

chosen. Based on it, the program shall go to run the rest of statements in the chosen branch.

If none of the events in the choice is enabled, the “select()” method blocks the thread. When

one or more events in the choice become enabled, the thread is notified. The “select()” will choose

one of the enabled events and return the index of it.

For a choice between ed0 and ed1, the C# source code structure is given as follows:

Choice choi = new Choice(new Opt[]{ed0, ed1});
switch(choi.select()){
case 0 :

go to ed0′s branch
case 1 :

go to ed1′s branch
}

The “Opt” is an abstract class here. The EventDock, Skip and Stop inherit “Opt” so they all can

be used as an “Opt” object.
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The CSP# operator parallel is implemented as Parallel in the PAT.Runtime library. It is created

by providing the subprocesses array as parameters. The Parallel also implements “CSPProcess”

interface. Suggest the subprocesses are {p1, , . . . , pn}, the following statements create a Parallel

process and run it immediately.

new parallel({p1, .., pn}).run();

The Parallel starts the subprocesses simultaneously, each subprocess at its own thread. The

“run()” method of Parallel returns only after all the subprocesses have terminated.

Noted that the synchronized events are not automatic managed here. Developers shall expand

the EventDock objects based on the alphabets of the subprocesses. After the Parallel finished, the

expanded EventDock shall be contracted, otherwise the program will be blocked on the expanded

EventDock causing deadlocks.

The global shared variables need protection in the C# program. The read and write operations

on these variables are considered as Data Operation in CSP# model. The “GloBase” class pro-

vides “DataOpBegin()” and “DataOpEnd()” to be called before and after the access to global shared

variables. They can be used as follows.

GloBase.DataOpBegin();
// the statements accessing global shared variables
GloBase.DataOpEnd();

It is recommended to creat a class “Glo” to manage all the events, channels and variables. It

will make the CSP# model of the C# program more readable. The “Glo” shall inherit the “GloBase”

class as it provides a lot of handy methods to manage the alphabet. However, the developers can

also choose to manage the alphabets in other ways.

The condition expressions in CSP# are represented as C# delegate in the “PAT.Runtime” as

follows:

public delegate bool EvaGuardExpr();



Appendix E. Using PAT.Runtime in C# Program 161

The delegates of “EvaGuardExpr” can access the global shared variables and the data protec-

tion will be provided when the delegates are used in “GChoice” objects.

For the “EvaGuardExpr” to be used in a “GChoice” object, they shall be put in a “LstExpr”

object. The “LstExpr” class manages a list of the “EvaGuardExpr” for each branch. If a certain

branch does not have condition expression attached, we insert an empty list of “EvaGuardExpr” at

the branch’s index.

A “GChoice” object is created with a “LstExpr” object and an “Opt” array. The “GChoice”

provides the atomic evaluation on the condition expressions and the engagement of the first event in

corresponding branch. If a certain branch does not want to be atomically engaged on its first events,

it needs to insert an EventDock object before its first events. The inserted EventDock object shall

not synchronize to any other thread so it is always enabled.

With the “LstExpr” and “Opt” array be correctly configured, the “GChoice ” object is used

as the “Choice”. Calling its “select()” will start the operator and the return value indicates which

branch is chosen.

The below source code shows the implementation of an “IFA” operator using “GChoice”. The

model is ifa (a > 0){e0 → Q0}else{e1 → Q1} We assume the EventDock objects “ed0, ed1”

represent e0, e1, “q0, q1” represent Q0,Q1
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class Global {
static public int a;
}

bool expr0() {return (Global.a > 0); }
bool expr1() {return !(Global.a > 0); }

LstExpr lst = new LstExpr();
List〈EvaGuardExpr〉 g0 = new List〈EvaGuardExpr〉();
List〈EvaGuardExpr〉 g1 = new List〈EvaGuardExpr〉();
g0.Add(expr0); g1.Add(expr1);
lst.Add(g0); lst.Add(g0);

GChoice gchoi = new GChoice(lst, new Opt[]{ed0, ed1});
switch(choi.select()){
case 0 :

q0.run(); break;
case 1 :

q1.run(); break;
}

For the above example, if we change the last part to the following code, adding the always

enabled before e0, e1, the model becomes if (a > 0){e0 → Q0}else{e1 → Q1}.

EventDock tau0 = EventDock.create();
EventDock tau1 = EventDock.create();
GChoice gchoi = new GChoice(lst, new Opt[]{tau0, tau1});
switch(gchoi.select()){
case 0 :

ed0.syn();
q0.run();

case 1 :
ed1.syn();
q1.run();
}
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