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Summary

This thesis aims to develop an advanced indoor navigation system for unmanned aerial vehicles.

Two different UAV platforms have been developed as test bedsfor the study, namely a coaxial

helicopter with a compact footprint and a quadrotor helicopter with larger payload. Modeling

and design of flight control laws have been done successfullyfor both platforms. With the help

of the onboard camera and laser scanner sensors, both visualand laser-based odometry methods

have been implemented to solve the GPS-denied condition in an indoor environment. To get a

better drift-free position estimation and to reconstruct amap along the UAV path, a simultaneous

localization and mapping technique is explored in breadth and depth. An innovative FastSLAM

algorithm in cooperating both corner and line features havebeen proposed and tested with great

success. It is found that when indoor environment is partially known, a much more robust and

efficient localization method can be implemented onboard ofthe UAV with a few reasonable

assumptions. The developed UAV indoor navigation system has been verified in numerous

flight tests and helped the Unmanned Aircraft Systems Group from the National University

of Singapore win the overall championship in the 2013 Singapore Amazing Flying Machine

Competition.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the research on advanced indoor navigationsystems for miniature unmanned

aerial vehicles (UAVs) has aroused worldwide interests because of its great potential in mili-

tary and civil applications [58, 67]. Indoor navigation technologies enable small-size UAVs to

fly fully autonomously in known or unknown indoor environments with localization and map

generation capabilities. If a pragmatic UAV indoor navigation system is realized, it can be used

for applications like surveillance and patrolling, exploration and mapping, search and rescue

and other indoor missions which were tedious and dangerous to human operators in the past.

However, this UAV indoor navigation system has to be developed intelligent and robust enough

to face challenges caused by the complicated indoor environments, such as denied reception of

GPS signals and scattered obstacles, as well as physical constraints of the UAV platform, such

as payload limitation. Furthermore, existing works on the topic of indoor navigation usually

focus on 2-D environments and the majority of them are implemented on ground robots. The

extension of an autonomous navigation system from the 2-D ground robot case to the 3-D UAV

case is non-trivial and its development is still at a preliminary stage.

While the general aim of this thesis is to develop a comprehensive UAV indoor navigation

system, special attention has been paid to realizing the navigation algorithms onboard of the

UAV platform in real time. It is believed that a UAV system is much more valuable if its

core navigation algorithms can be executed without relyingon external sensory information or

external computational power. In this way, it can be used formore general conditions and is

more robust against environmental disturbances such as wireless communication loss. It should
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also be highlighted that most of the proposed navigation methods in this thesis utilize multiple

onboard sensors, which include the inertial measurement unit (IMU), the scanning laser range

finder and the camera. To realize a robust and efficient navigation system, different sensors need

to used in a coherent and complementary way.

1.2 Challenges of UAV Indoor Navigation

1.2.1 Platform Constraints

Unlike unmanned ground vehicles (UGVs) or large-size outdoor UAVs, indoor UAVs have to be

designed in small footprints so that they are able to maneuver in crowded indoor spaces. How-

ever, small footprints usually mean limited thrust and unconventional aerial dynamic designs. In

consequence, only low quality sensors such as short-range laser scanner, low-resolution micro

cameras and low-accuracy MEMS-based IMUs can be used onboard. In addition, the onboard

processor will also be limited in computational power, which makes the sophisticated naviga-

tion algorithms difficult to be implemented in real time. Naive transfer of navigation algorithms

from ground vehicles or large-size outdoor UAVs to indoor UAV systems will most likely fail.

Furthermore, the unconventional aerial dynamic design of the indoor UAV platforms also

poses challenging problems to the whole system development. While modeling and control of

conventional airplane or helicopter types of UAVs have beendocumented extensively in litera-

ture [13, 15, 66, 74], there is much less information of modeling and control of miniature coaxial

helicopters or quadrotor helicopters, which are two commonly chosen platforms for UAV indoor

applications. In consequence, large amount of time and efforts have been put into them at the

starting phase of this work. The nonlinear coaxial helicopter model and its control method dis-

cussed in this thesis, although being just a byproduct of this research study, is actually a valuable

contribution to the UAV modeling and control community.

1.2.2 GPS-denied Navigation

Unlike the conventional GPS/INS based navigation in which the UAV global position and veloc-

ity can be easily obtained, an indoor UAV system needs to get these information by developing

complicated algorithms based on relative environmental sensing. Even if the GPS signal is avail-

able, its position measurement may not be accurate enough for UAVs to navigate in a confined

indoor space. Hence, environmental sensing technologies and GPS-less UAV state estimation
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technologies play important roles in this research work.

Recent miniature-size UAV platforms developed by various research labs are equipped with

two main sensory sources, namely the scanning laser range sensor and the vision sensor. The

laser sensor can provide 2-D range information about the surrounding objects. Thus, relative

2-D positions of indoor walls and scattered obstacles with respect to the UAV body can be ob-

tained. Another important function of laser sensor is to obtain the UAV rigid body motion, i.e.

2-D translational motion and 2-D rotational motion, by point cloud matching between consecu-

tive scans.

For the visual sensor, a single camera can be used to estimateinter-frame motion of the UAV

by searching for feature correspondences among consecutive image frames. If there are more

than enough feature correspondences, the fundamental matrix describing the motion of the cam-

era can be computed as an optimization problem. Then the rotational and translational motion

matrices can be extracted explicitly. While the rotationalmatrix can be computed uniquely, the

translational matrix is only up to a scale factor. Two solutions to eliminate this scale factor will

be discussed in this thesis.

Laser odometry and visual odometry have their respective advantages and disadvantages.

Laser odometry is in general more accurate and convenient tobe used than that of vision and it

does not have scale ambiguity. However, visual odometry canprovide 3-D information which

can be used to control the UAV vertical axis motion also. Since they have their respective

advantages, it is better to combine them together through data filtering and fusion. By also

bringing in the information from the inertial measurement sensor, Kalman filter or the Extended

Kalman filter (EKF) can be used to estimate the UAV position, velocity, attitude angles and

angular rates by considering the dynamic model of the controlled platform. This concept of

multisensory data fusion has been studied in a long history of robotics [50], but only recently

applied to UAV applications with success [5, 70].

1.2.3 Simultaneous Localization and Mapping

A key topic of this thesis is about the indoor simultaneous localization and mapping (SLAM)

problem. SLAM is the method to build up the map for an unmannedvehicle within an unknown

environment, and at the same time, to determine the vehicle’s location within the map. In fact,

for a long historical time, the localization problem and themapping problem were considered as

two separate issues and solved using different techniques.The objective of map generation is to
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integrate the information from different sensors to build aconsistent model of the environment,

such as the local obstacle map and the depth map [72]. On the other hand, localization is

considered as a problem of estimating the position and attitude of the robot or vehicle in the map.

In localization, data matching and association plays a critical role in obtaining correspondence

between geometric or visual features.

It is only after the 90’s when robots and unmanned vehicles started to have the capability

of building up a map and keeping tack of their own positions simultaneously. It was found that

even when the mapping and localization problems are combined together, the whole estima-

tion problem is proven to be convergent [24]. The principle idea of probabilistic SLAM is to

achieve monotonic decrease of estimation noise for vehiclepose and landmark positions and to

achieve monotonic increase of correlations between landmark estimates when more and more

observations are made [23]. To solve the probabilistic SLAMproblem, it is necessary to find

an appropriate representation of the observation model andmotion model. If the motion model

is represented in a state-space form, then the EKF is widely used. On the contrary, if motion

model is given in a set of samples of the general non-Gaussianprobability distribution, it leads

to the use of the Rao-Blackwellised particle filter, or called the FastSLAM algorithm [48].

Although researchers after the 90’s have successfully implemented SLAM in different robotics

applications [24, 6], topics on robust data association, effective landmark representation, SLAM

for large environments and SLAM for large number of landmarkfeatures still have unsolved

problems. One well-known problem is about the wrong data association caused by non-distinctive

geometric landmarks. In the standard SLAM formulation, theestimated states include the ve-

hicle pose and a list of observed landmark. However, discrete identifiable landmarks are not

easily discerned and direct alignment of sensed data is simpler or more reliable. Alternative for-

mulation of the SLAM problem is consequently proposed, for example the trajectory-oriented

SLAM [54]. In such solutions, 3-D point registration approaches are used to realize a reliable

map reconstruction result. Nevertheless, even if robust and large-scale SLAM problem can be

be solved theoretically, real-time implementation of these computationally intensive algorithms

to the onboard system of a payload-limited UAV is still a question mark. Innovative assump-

tions about the navigation environment need to be made so that the SLAM algorithms can be

simplified to a large extent, while still work reasonably well for practical scenarios.
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1.2.4 Path Planning with Collision Avoidance

Path planning (or called motion planning) is also an essential module in advanced UAV indoor

navigation systems, without which the controlled UAV cannot fly with meaningful purposes and

it may even crash into obstacles. The usual way of path planning in literature is based on the

assumptions of a known map and known UAV poses. That means theaforementioned SLAM

problem needs to be solved first if UAV global position information and the environment is

unknown. If the path planning algorithm is dependent on the result from SLAM, then onboard

implementation is again questionable. As such, path planning strategies which only rely on raw

sensor measurements or local map information will be considered in this thesis.

One approach is to utilize the potential field concept [8, 84]. This method of path planning

can be used for both the globally known map and the locally known map cases. It employs

repulsive fields around obstacles and an attractive field around the goal. The gradient of the

resultant potentials will guide the controlled robot or UAVto move towards the goal while

avoiding obstacles in a smooth way. One major drawback of these potential field methods is that

there usually exists local minimums to the resultant potential fields which may trap the robot

at that point infinitely. However, by manipulating the ‘goal’ or doing special case decisions,

the local minimum problem can be largely avoided. Nevertheless, the potential field methods

normally require less computational power as compared to the other searching-based methods,

thus can be implemented onboard easily.

Another innovative approach for obstacle detection is to use thetime-to-collisionconcept to

realize visual collision detection, where an image sequence from a forward looking camera is

employed to compute the time to collision for surfaces in thescene [87]. Although it cannot find

the absolute depth information, optical flow can tell the time-to-collision, which is also useful

information to avoid obstacles. Other approaches to achieve computationally efficient path plan-

ning are also studied recently in [20, 35, 36, 62]. They are especially popular nowadays because

more and more research projects based on small-size UAVs have been launched worldwide.

1.3 Thesis Outline

The structure of this thesis is organized as follows. Chapter 2 reviews the state-of-the-art indoor

UAV platforms and their capabilities. By comparing the prosand cons of different types of

aerial platforms, two suitable types are chosen for this research work. Chapter 3 thoroughly lists
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onboard avionics that can be used for UAV indoor navigation purposes and chooses the optimum

set for both selected UAV platforms. In Chapters 4 and 5, model formulation and identification

of the chosen platforms are explained in detail. With the obtained model, inner-loop and outer-

loop flight control laws are designed and implemented with actual flight tests. Visual odometry,

laser odometry and sensor fusion methods are proposed and explained in Chapter 6, which tries

to solve the navigation problem in GPS-denied conditions. Chapter 7 discusses about UAV

indoor path planning and proposes a wall-following strategy that only relies on local laser range

information. Next, the SLAM problem is thoroughly discussed in Chapter 8 and a customized

FastSLAM algorithm based on corner and line features extracted from laser scanner data has

been proposed and tested. It is argued in Chapter 9 that quitea few indoor UAV applications

can be done in a partially known map condition. By making reasonable assumptions about a

modern indoor environment, an efficient and robust localization method is developed. Based on

the localization result, 3-D map reconstruction can be doneby installing a second laser scanner

orthogonally to the first. In Chapter 10, concluding remarksare made and future works are

discussed.
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Chapter 2

Platform Review and Selection

Since actual implementation and flight tests are the most solid proof of UAV-related theoretical

studies, the first task of this research work is to develop a physical aerial platform suitable for

navigation in confined indoor environments. Indeed, the choice of the bare aerial platform is

one of the most important hardware factors which will affectthe ultimate successfulness of any

work involving algorithm implementation on real UAV platforms. Moreover, navigation in dif-

ferent environments require different platforms to be chosen so that the overall solution can be

optimized in the hardware level, which effectively relieves burden for the later software algo-

rithm development. This chapter will therefore present a comprehensive review of all types of

UAV platforms and choose the most promising candidates as test beds with justifications. A few

successful examples of indoor UAV platforms and their respective capabilities and applications

will also be listed for reference.

2.1 Platform Choices

There are generally four types of UAV platforms, namely the fixed wing UAV (Fig. 2.1), the

airship UAV (Fig. 2.2), the VTOL UAV (Fig. 2.3), and the unconventional UAV (Fig. 2.4).

Note that these types of platforms can be used for both indoorand outdoor applications. How-

ever, they have different characteristics in shape, size, payload, stability and cruising speed,

thus resulting in different levels of compatibility with indoor flight and different challenges in

designing control and navigation algorithms.

A pros-and-cons comparison between the three conventionaltypes of UAV platforms is

shown in Table 2.1. It can be seen that the fixed wing airplanesare too fast to fly in a confined
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Figure 2.1: Fixed wing UAV: the Predator from General Atomics

Figure 2.2: Airship UAV: Karma at LAAS-CNRS, in COMETS project

Table 2.1: Comparison between different types of UAVs

Types Advantages Disadvantages

Fixed Wing Fast speed, long endurance, Unable to hover,
easy to be controlled unable to fly with low speed

VTOL Great maneuverability, Difficult to be controlled,
capability of hover short endurance

Airship Stable, energy saving, Large size, slow speed, hardto be
best for taking images controlled with position precision
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Figure 2.3: Helicopter UAV: Yamaha Rmax in the WITAS project

(a) Black Widow from DARPA (b) Dragon Warrior from Sikorsky Aircraft

Figure 2.4: Unconventional UAVs
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indoor space and they lack the hovering capability which is essential for most indoor tasks. On

the other hand, the airship type of UAV platforms are too large in size to enter small rooms

or corridors. The remaining two are the VTOL type and the unconventional type. By further

surveying about common indoor UAV platforms and applications, it is found that the coaxial

helicopter, which belongs to the VTOL type, and the quadrotor helicopter, which belongs to the

unconventional type, are the most popular candidates. Notethat the quadrotor helicopter was

still unconventional when this Ph.D. study began, but it became gradually conventional after

being extensively used by research groups and industries over the recent few years. Comparing

with all other VTOL or unconventional aerial platforms, these two types of platforms have

very impressive payload-to-size ratio. In an indoor environment, the UAV maximum horizontal

dimension should not exceed the width of a door or a window which is most likely 1 to 1.5

meters. On the other hand, indoor navigation algorithms andcontrol law implementations, if

executed onboard, require large amount of computational power and measurement accuracy.

These rely on high performance onboard processors and sensors, which burden a lot to the UAV

payload. Hence, the coaxial and quadrotor helicopter platform are the more suitable candidates

for this study. The coaxial configuration provides several advantages over the other types of

platforms, summarized as follows:

1. It is relatively stable due to the damping effect introduced by a stabilizer bar [51];

2. It is proven to be more power efficient as compared to the single-rotor or quad-rotor

configurations [21];

3. It has higher maximum forward speed than a single-rotor helicopter since it always has a

pair of advancing and retreating blades, creating a symmetric lift in forward flight [19];

4. It has higher payload to dimension ratio than all the otherconfigurations.

On the other hand, the quadrotor is mechanically simple and robust, with minimal number of

moving parts, and it has a better shape for onboard avionics mounting. In the later part of this

chapter, several existing coaxial and quadrotor UAV platforms from various universities and

their corresponding applications will be reviewed. They serve as valuable references for the

platform selection and design in this research work.

In order to control and utilize the coaxial and quadrotor platforms well, we need to first

understand their basic working principles and characteristics. Both being lifted by rotors, their

throttle and rudder control principles are quite similar. However, the mechanism of their aileron
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Figure 2.5: Esky Big Lama coaxial helicopter

and elevator control are very different.

1. Coaxial Helicopter:

Unlike the conventional single-rotor helicopter, the coaxial helicopter (see Esky Big Lama

in Fig. 2.5 as an example) has no tail rotor. It has two contra-rotating main rotors which

are revolutions per minute (RPM) controlled. In general, the throttle signal controls the

sum of the rotor speeds so that the platform can fly up and down,while the rudder signal

controls the difference of the rotor speeds so that the heading of the platform can turn.

Usually, a hardware headlock gyro is used as the most inner-loop stabilization to control

the RPM difference of the two rotors. For the aileron and elevator control, the lower rotor

is connected to a swashplate controlled by two servo motors so that its cyclic pitch can

be changed to various directions and magnitude, thus resulting in the forward-backward

or left-right tilting of the helicopter body. The upper rotor is passively balanced by a sta-

bilizer bar which largely damps the rolling and pitching motion and makes the helicopter

dynamics inherently stable. Hence, the coaxial helicopterhas basically four controlling

channels, namely aileron, elevator, throttle, rudder, andits manual flight performance is

relatively stable comparing with other rotor-based aerialplatforms.

2. Quadrotor Helicopter:

For the quadrotor helicopter, the Parrot ARDrone can be usedas an example (see Figure

2.6). From the name quadrotor, one can easily guess that there are four rotors on the

aerial platform. All of the four rotors are RPM controlled and they are all on the same

level plane. In fact, two of them rotate clockwise and the other two rotate anticlockwise.

In this way, the resulting net torque around the platform vertical axis can cancel and the
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Figure 2.6: Parrot ARDrone quadrotor helicopter

vehicle heading can be stabilized. Any imbalance of torque generated in this axis will

result in yaw angle acceleration. To create a rolling motion, the left and right rotors

have to be at difference RPM values so that the difference in the left and right thrust

can tilt the platform sideward. Same principle applies to the control of pitching motion;

the front and back rotors have to be at different RPM values. Last but not least, the

heave motion is controlled by changing the average RPM of thefour rotors. Unlike a

coaxial helicopter with the swash plate, there are no movingservo motors on the quadrotor

helicopter. This makes it mechanically simple and robust. The flight dynamics model of

a quadrotor is standard to be formulated and its motion in four different channels can be

largely decoupled, making it easier to be automatically controlled. In addition, its almost

empty center space favors avionics mounting which is very needed for development of

UAV autonomous navigation. However, quadrotor platform usually ends up with larger

dimensions than the coaxial counterpart if the same amount of payload is required.

2.2 Review of State-of-the-Art Indoor UAV Platforms

In recent years, various indoor UAV platforms have been developed by research groups world-

wide. In what follows will be a list of outstanding coaxial and quadrotor platforms with their

corresponding indoor applications that have appeared in publications.

Quadrotor UAV from TUM and MIT

A quadrotor UAV (see Figure 2.7) was presented by TechnischeUniversitat Munchen, Germany

and MIT, USA. In cooperation with Ascending Technologies, Germany, the researchers in TUM
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Figure 2.7: Quadrotor UAV from TUM and MIT

and MIT had designed this quadrotor helicopter capable of carrying additional 500 grams of

hardware components, excluding the bare vehicle and battery, and continuously flying for about

10 minutes. Comparing with Ascending Technologies’ old Hummingbird platform, this vehicle

uses larger rotors (10 inches in diameter) as well as more powerful brushless motors. There is an

interlocking rack at the top of the quadrotor, which can be used to mount two cameras for stereo

vision. More creatively, the front rotor was placed below the arm to avoid camera obstruction

while keeping the center of gravity low. There is a Hokuyo laser scanner mounted at the middle

of the platform which is in charge of sensing its surroundingobjects and obstacles. It is also the

main sensor source for the UAV’s map building function.

This UAV can perform fully autonomous navigation and exploration in GPS-denied indoor

environments. It can accomplish missions like fully autonomous take-off, flying through win-

dows, exploration and mapping, searching for objects of interest. In March 2008, this platform

participated in the 1st US-Asian Demonstration and Assessment of Micro-Aerial and Unmanned

Ground Vehicle Technology in Agra, India. Competing in a hostage-rescue mission scenario,

it won the “Best Mission Performance Award”, the “Best Rotary Wing Aircraft Award”, and

the “AMRDEC Award”. In 2009, it accomplished all the missions in the AUVSI indoor flight

competition. The whole system has been proven robustly stable and practically capable [1].

Quadrotor UAV from Virginia Tech

The Virginia Tech research team have designed a quadrotor UAV (see Figure 2.8) equipped

with a Microstrain 3DM-GX2 IMU, a Maxbotix LV-Maxsonar-EZ4ultrasonic range sensor and

a Black Widow AV KX-141 micro video camera. In order to protect the platform, the quadrotor

UAV has aluminum bumpers installed when performing flight tests. The flight controller uses
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Figure 2.8: Quadrotor UAV from Virginia Tech

Figure 2.9: Quadrotor UAV from IIT Madras

estimated velocity together with IMU data to maintain flightstability. Simple-scenario obsta-

cle avoidance was realized via analyzing ultrasonic range data. The high order commands are

autonomously sent by the ground control station (GCS) whichis in charge of vision process-

ing [10].

Quadrotor UAV from IIT Madras

Figure 2.9 shows the photo of a quadrotor UAV from the Indian Institute of Technology Madras.

The quadrotor frame is made of a combination of balsa wood andcarbon fiber plates. The central

frame is made of aluminum and it encapsulates the electroniccircuits. A casing for the battery

is made and placed at the bottom. A stand and a shelter is constructed to accommodate the laser

scanner. Its control system has been partitioned into threelayers. The lowest layer is in charge
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Figure 2.10: Quadrotor UAV from University of Pennsylvania

of the platform stability. It takes inputs from the IMU and control the lift provided by the four

propellers so as to maintain a horizontal pose. The middle layer involves the velocity control

system and the obstacle avoidance function. It takes in 2-dimensional obstacle profile from

the laser scanner and by comparing consecutive scans, estimates the 2-dimensional velocity of

the UAV itself. It then computes the control inputs needed tomove the vehicle at the required

velocity and send the signal to the motor driver. If there is obstacles detected nearby, the 3rd

layer, called path planner, will draw a trajectory which canavoid the obstacles completely [64].

Quadrotor UAV from Upenn

Research team lead by Professor Vijay Kumar from the University of Pennsylvania have done

impressive work in UAV indoor navigation. Their quadrotor platform bought from Ascending

Technologies (see Fig. 2.10) is equipped with an IMU sensor,a Hokuyo UTM-30LX scanning

laser range finder, a uEype 1220SE camera and a powerful 1.6 GHz Atom processor. The indoor

navigation algorithm is developed using the Robot Operating System (ROS) which incorporates

useful libraries and tools for robotic applications. With anavigation structure shown in Fig. 2.11,

this UAV system is able to navigate in a multi-floor indoor environment with all necessary

computation done onboard. While the UAV flies through the environment, a fairly detailed 3-D

map can be generated. This is so far one of the most successfulimplementation of UAV indoor

navigation [70].
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Figure 2.11: Navigation structure of the quadrotor UAV system from University of Pennsylvania

Figure 2.12: Coaxial UAV from Georgia Institute of Technology

Coaxial UAV from Georgia Institute of Technology

The Georgia Tech Aerial Robotics (GTAR) team have designed and built a vehicle (see Fig. 2.12)

based on a commercially available stable platform - the EskyBig Lama. To keep the vehicle

small and light, inexpensive infrared and ultrasound sensors were used to detect obstacles and

walls. The UAV is controlled to follow the walls while avoiding frontal obstacles. A simple

microcontroller is used onboard to handle guidance and navigation logics, as well as obstacle

avoidance. An altitude-hold control loop maintains a constant altitude, simplifying the naviga-

tion problem. A video camera onboard captures real-time images and wirelessly transmits the

data to the GCS, which processes the image streams and identifies potential targets. The GCS

also displays vehicle health, status, and location information, and shows notifications when the

target has been successfully identified.
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Figure 2.13: KingLion coaxial UAV from NUS

Coaxial UAV from the National University of Singapore

In indoor UAV systems developed in literature, the image processing and machine vision al-

gorithms were usually executed on the GCS because of limitedcomputational power onboard.

Such transmission-decision-transmission manner will caused many problems in the vision-aided

indoor navigation solution, such as extra image noises and transmission latency. This structure

will also greatly limit the operating range of UAVs, and the responsiveness of UAVs in highly

dynamic environments.

To increase the flexibility of UAV applications, the onboardvision processing mode has

attracted much attention recently. The Unmanned Aircraft System (UAS) Group from the Na-

tional University of Singapore have achieved great progress in onboard vision processing for

its indoor miniature-size UAVs. Its KingLion (see Fig. 2.13), an indoor coaxial helicopter,

has participated in the Category D section of Singapore Amazing Flying Machine Competition

(SAFMC) 2009 and won the “Best Theory of Flight ” award and the“Best Performance” award.

The main sensors on the avionic system are a CMOS camera and anultrasonic sensor, both

pointing downwards. The overall structure of this indoor UAV system is simple and elegant. It

can fly indoor in a fully autonomous manner provided that there is a colored track on the ground

for guiding, which is one of the main requirements in SAFMC 2009. The control algorithm ex-

ecution and image processing are both done onboard, which means the vehicle can fly without

the GCS once it takes off. While flying, the onboard system sends the real-time image streams
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to the GCS only for inspection purpose. Another amazing highlight of this system is that it uses

two Gumstix embedded computers installed with the free Linux system. All codes are modified

from open source code packages. This means that the overall system is not only cheap, but also

expandable and reproducible [60]. In addition, the configuration of using two separated embed-

ded computers in an onboard system, one for low level flight control and the other for high level

navigation and decision making, is recommenced due to the following reasons:

1. The computation consumption of flight control and vision-based navigation algorithms

are both heavy, which can hardly be carried out together in a single embedded computer;

2. The sampling rate of the flight control algorithm is much faster than that of vision pro-

cessing. It is inefficient to implement both algorithms in a single executable program;

3. The two-computer structure reduces the negative effect of data blocking caused by the

navigation program to the flight control system, and thus make the overall system more

reliable.

4. If more suitable embedded computer products are released, the two-computer structure

makes it possible to upgrade individual one easily.

2.3 Platform Decision

Although the platform selection has been boiled down to onlytwo choices, namely the coax-

ial platform and the quadrotor platform, it remains a hard decision. With trade-offs between

the compact physical form from the coaxial platform and the rigidity and reliability from the

quadrotor platform, the ultimate decision goes to both. Therefore, two different platforms have

been built and served as the test beds for this research work.One is a 450 grams (bare frame

and battery) coaxial helicopter with 500 grams of extra payload, and the other is a 1300 grams

quadrotor helicopter with 1600 grams of extra payload. The quadrotor is purposely built larger

because we want to mount more powerful sensors and embedded computers on it, while the

coaxial helicopter is equipped with cheaper and lighter sensors to further highlight its minimum

form factor. The next chapter will list down two different sets of avionics components mounted

on these two platforms. It will be seen that the sensors and onboard computers mounted on

the quadrotor UAV are much more powerful, while the coaxial UAV’s form factor is more at-

tractive. The detailed specifications of the two selected platforms are discussed below, with the
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Figure 2.14: Esky Big Lama upgrades

coaxial platform upgraded from an commercial off-the-shelf (COTS) product and the quadrotor

platform fully custom-made.

2.3.1 Coaxial Platform and Specifications

At the beginning of this indoor navigation study, the Esky Big Lama was one of the most well

made coaxial RC toy helicopters with a miniature size. Unlike other RC toy helicopters, it has

full 4-channel control and is capable of performing stable take-off, hovering, forward-backward

flying, left-right sliding, yawing and landing. However, the original platform’s take-off weight,

as expected from most RC toy helicopters, is already marginal. Hence, a few hardware upgrades

have been done to increase its payload so that additional avionics can be carried onboard to

realized autonomous control. Fig. 2.14 has shown the individual upgraded components around

the original Esky Big Lama platform, while Table 2.2 has highlighted the specifications before

and after the upgrading.

2.3.2 Quadrotor Platform and Specifications

Instead of buying a COTS product, the quadrotor platform is fully custom-made because it

is mechanically more manageable. The constructed quadrotor frame is composed of carbon

fiber plates and rods with a durable Acrylonitrile ButadieneStyrene (ABS) landing gear (see
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Table 2.2: Esky Big Lama before and after hardware upgrading

Before After

Frame and shaft Mostly plastic Metallic
Rotors 215 mm in length and soft 225 mm in length and stiff
Motors 3700 RPM V brushed motors 3800 RPM V brushless motors
Battery 3-cell 800 mAh Li-Po 3-cell 1400 mAh Li-Po
Take-off weight 410 g 950 g
Gyro and mixer 3-in-1 motor controller Stand alone gyro, mixer and ESC

(a) The quadrotor platform (b) The quadrotor protection

Figure 2.15: The custom-made quadrotor platform and its foam protection

Fig. 2.15(a)). Its dimensions are 35 cm in height with a 86 cm tip-to-tip diameter. It is also built

with reinforced aluminum motor mounts and platform mounts to strengthen the overall structure.

This custom-made quadrotor has a total take-off weight of 2.9 kg and can fly up to 8 m/s. It

hovers for about 10 to 15 mins, depending on sensor configuration and environmental factors.

Since the quadrotor’s main body only weighs about 1.3 kg, it can carry extra payload of 1.6 kg

for onboard avionics and battery. Current battery used is a 4-cell 4300 mAh lithium polymer

battery. The platform is also fully customizable in terms ofsensor arrangement and is scalable

such that additional computational boards could be mountedwith a stack-based design. The

motors used for the platform are 740 KV T-Motors with TurnigyPlush - 25A Bulletproof ESCs.

The propellers used are APC 12X3.8 clockwise and anti-clockwise fixed pitched propellers.

Each motor and propeller setup can generate 15 kN static thrust. Styrofoam protection (see

Fig. 2.15(b)) reinforced with carbon fiber strips has been designed and installed to make the

platform immune to collisions. This is particularly usefulfor a research-oriented platform as

testing new algorithms will inadvertently result in the risk of flight crashes.

In conclusion, this chapter has presented a review on existing indoor UAV platforms. Several

guidelines for choosing the most suitable platform have been proposed with justifications. In the

end, the coaxial and quadrotor helicopters are chosen to be the testing platforms for this research
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work. The coaxial platform is upgraded from the COTS Esky BigLama RC toy helicopter which

has an extremely small form factor, while the quadrotor is totally custom-made with much better

payload capacity.
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Chapter 3

Onboard Avionics Systems

The previous chapter has discussed about the selection of aerial platform for this research work.

However, to make an indoor UAV fly fully autonomous, onboard avionics plays an equally

important role. In this chapter, various avionics components will be listed and compared, while

the most suitable ones will be chosen with justifications.

First of all, the onboard avionics system of a typical indoorUAV consists of the following

hardware devices [16] and its overall structure usually follows Fig. 3.1.

1. Inertia Measurement Unit

2. Range sensors

3. Vision sensors

4. Embedded computers

5. Servo driving and fail-safe electronic boards

In what follows will be a detailed functional explanation ofthese components with their corre-

sponding state-of-the-art product examples.

3.1 Inertial Measurement Units

IMU is the core of the sensory system. It measures the UAV body-frame accelerations, angular

rates, and usually estimates the UAV roll, pitch, yaw attitude angles via built-in digital filters.

It contains fundamental measurements required by the inner-loop stability control of the UAV

system. The flight performance of the UAV is highly dependenton the quality of these signals.

Fig. 3.2 to 3.6 show a series of state-of-the-art IMU sensorsfrom different companies or hobby
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Range Sensor IMU Sensor Vision Sensor

Embedded Computer

Servo Controller

RC ReceiverRC Transmitter

Fail-safe Board

Motors

Servos

Figure 3.1: Common structure of an indoor UAV onboard avionics

Figure 3.2: 3DM-GX3 -15-OEM from MicroStrain

developers. They have common characteristics such as smallsize, light weight and good accu-

racy, which suit for indoor UAV applications to a large extent. Table 3.1 shows a comprehensive

comparison of key specifications of these IMU products.

3.2 Range Sensors

Range sensors have many varieties. From the low-end infra-red range sensors to the high-end

scanning laser range finders, they can measure relative distance of the detected objects. Different

types of range sensors utilize different types of waves, namely the infra-red wave, the ultrasonic

wave, and the laser (light) wave. An object is said to be detectable with respect to a particular

kind of wave means the object surface can reflect that kind of wave effectively. The distance

from the sensor to the interested object can be calculated bymultiplying the wave speed and the

return time (from emitting to reflecting to receiving) and divide by two. Fig. 3.7-3.9 show these

three main types of range sensors.
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Figure 3.3: Colibri from Trivisio

Figure 3.4: IG-500N from SBG Systems

Figure 3.5: MTi from Xsens
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Figure 3.6: ArduIMU V2 (Flat) from DIY Drones

Figure 3.7: GP2D12 IR Sensor from Sharp

Figure 3.8: LV-MaxSonar-EZ ultrasonic sensor from MaxBotix
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Figure 3.9: UTM-30LX Laser Scanner from Hokuyo
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Figure 3.10: Measurement from a scanning laser range finder

27



Figure 3.11: 2.4GHz wireless CMOS camera

Among all these range sensors, the scanning laser range finder gains the greatest amount of

interests from researchers. It has three main attractive features, including the superior accuracy

and resolution, the almost omni-directional measurementsand its compact physical form. The

working principle of a scanning laser range finder is simple.It keeps emitting a narrow beam

of laser wave, while a mirror inside continues rotating so that the laser beam can be reflected

and sent to all directions. For one round of rotating (scanning), it records down a set of distance

values in all directions from the source to the nearest object in that direction. Thus, objects in

all directions can be detected (see Fig. 3.10) and more importantly, by analyzing the differences

among consecutive scans, algorithms can be implemented to estimate the rigid body motion

(translational and rotational) of the UAV body while flying.

3.3 Vision Sensors

Small, light and low-power CMOS cameras are usually used forvision sensing on indoor UAVs.

They normally provide images with pixel resolution of640 × 480 or 320 × 240 in a real-time

(30-60 Hz) frame rate. After the images have been captured, two types of vision processing ap-

proaches can be adopted. One is to use wireless communication to send the source images to the

GCS for vision processing, and then send back the computed results to the onboard computer for

control and navigation purposes (see Fig. 3.11). This approach is broadly used because vision

processing algorithms usually needs intensive computation that normal embedded computers

may not be able to handle in real time. Since the GCS does not have such weight limitation,

powerful computers can be used. However, this approach is not that useful from a pragmatistic

point of view. The wireless communication between the UAV and the GCS not only gener-

ates delays, but also makes the UAV too dependent on the GCS. Ideal communication needs

28



Figure 3.12: Gumstix CaspaTM VL camera

Figure 3.13: PointGrey FireFlyR© USB 2.0 Camera

to be maintained so that the whole system does not malfunction. For complicated missions in

unknown environments, maintaining high-quality wirelesscommunication is almost impossible.

To achieve high robustness and high application usefulness, vision processing needs to be

done onboard. If this second approach is adopted, powerful embedded computers as well as

efficient vision processing algorithms are needed. For thisapproach, we can use cameras that

can directly communicate with the embedded computers. For example, the Gumstix CaspaTM

VL camera in Fig. 3.12 and the PointGrey FireFlyR© USB 2.0 Camera in Fig. 3.13.

Some robotics research groups have also managed to use the so-called omni-directional

camera which can capture a360◦ image (see Fig. 3.14). If installed, the indoor UAV can have

full vision information around it which is very beneficial for obstacle detection and map build-

ing. However, the drawback is its unbearable weight for an indoor UAV with limited payload.
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Figure 3.14: Omni-directional camera

Figure 3.15: Gumstix Verdex Pro working with Console-vx expansion board

3.4 Embedded Computers

To implement control and navigation algorithms, indoor UAVs are usually equipped with small-

size embedded computers. Acting as the brain of the whole navigation system, the embedded

computer reads measurements from sensors, applies data fusion, executes control laws, and

outputs control signals. Sometimes, it is in charge of data logging and communication with the

GCS too. The authors in [60] presented a vision system develop based on the Gumstix Overo

Fire and a webcam to realize vision-aided indoor navigation. In addition, there are several

commercialized state-of-the-art embedded computers available as of writing. They are shown

in Figs. 3.15–3.18.

Another alternative is to design a customized embedded computer which optimally suits
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Figure 3.16: Gumstix Overo Fire working with Summit expansion board

Figure 3.17: The Beagleboard
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Figure 3.18: fit-PC2 from CompuLab

for the UAV indoor navigation project. For instance, a FPGA based vision system is proposed

in [27] to realize the drift-free control for a Micro-UAV in an indoor environment. This vision

system was called Helios, composed of SDRAM, SRAM, a Virtex-4 FPGA, and USB con-

nectivity. Harris corner detection and template matching algorithms are implemented in the

custom-made vision system, which are used to detect the drift of the helicopter in thex- and

y-axis. However, the custom-made systems need expertise andextra manpower and time. The

decision depends on how stringent is the weight budget. If the commercial embedded computers

can satisfy all the requirements without major problems, itis more productive to directly build

high level software algorithms on it without worrying aboutthe low level computer hardware

design.

3.5 Servo Driving and Fail-Safe Electronic Boards

Usually, the embedded computer does not directly output PWMsignals to drive the motors or

servos (it can be done, but very inefficient as it consumes a lot of extra computational power),

but sends control law outputs to the servo controller (or servo driving board), which can generate

the corresponding PWM signals to drive the actuators. Servocontroller usually takes in serial or

I2C format inputs and convert them to multiple channels of PWM signals that can be recognized

by motor ESCs and servos. Fig. 3.19 shows a small-size standard servo controller that can be
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Figure 3.19: Micro Serial Servo Controller from Pololu

Figure 3.20: Futaba R617FS 7-Channel 2.4GHz FASST Receiver

chosen.

Although the indoor UAV will be eventually fully autonomous, its manual control capability

still needs to be retained. Manual control is necessary for in-flight data collection for model

identification and fail-safe protection if things go wrong.Hence, an RC receiver and a fail-safe

multiplexer can be usually found on a UAV platform. With their presence, the controlled UAV

can be easily switched between automatic mode and manual mode via an auxiliary channel from

the RC receiver which connects to the ‘select’ ping of the fail-safe board. Fig. 3.20 and Fig. 3.21

show the RC receiver and the fail-safe board respectively.

3.6 Two Avionic Configurations of the Indoor UAV Platforms

As explained in Chapter 2, both the coaxial helicopter and the quadrotor helicopter are chosen

to be used as the testing platforms for this research work. However, they have different onboard

avionics configurations. Table 3.2 has listed the differentavionics components selected for the

coaxial and quadrotor platforms. It can be seen that the coaxial platform, being restricted by
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Figure 3.21: Fail-safe multiplexer

Table 3.2: Dual onboard configurations of the indoor UAV platforms

Coaxial Platform Quadrotor Platform

IMU ArduIMU (DIY Drones) IG-500N (SBG Systems)
Laser scanner URG-04LX (HOKUYO) UTM-30LX (HOKUYO)
Camera CaspaTM VL (Gumstix) FireFlyR© (PointGrey)
Control computer OveroR© Fire COM (Gumstix) OveroR© Fire COM (Gumstix)
Vision computer OveroR© Fire COM (Gumstix) fit-PC2 (CompuLab)
Servo controller Micro Maestro (Pololu) UAV100 (Pontech)

payload capacity, is equipped with lighter and low-performance sensors and embedded comput-

ers. In contrast, the quadrotor has more powerful avionic components due to its larger payload

capacity.

For the IMU sensor, IG-500N GPS/INS (GPS-aided inertial navigation system) unit mounted

on the quadrotor platform is a complete attitude and headingreference system (AHRS) with

high-quality and well-calibrated sensor chips. It can reliably outputs UAV position and velocity

if used outdoor with GPS. However in an indoor setting, only the UAV’s attitude angles can be

obtained. Nevertheless, it can still provide precise and drift-free 3-D orientation even during

aggressive maneuvers, updated at 100 Hz. As compared to the other available miniature IMU

sensors, IG-500N’s dynamic performance is superior. In contrast, ArduIMU used on the coaxial

platform, is only hobby standard. Its DCM-based algorithm is inherently flawed in non-zero

acceleration flight conditions. However, its under 10 g weight and flat shape suits very well to

be mounted on the much smaller coaxial platform.

For the scanning laser range finder, URG-30LX has a maximum range of 30 m and can scan

its frontal 270◦ fan-shaped area with an extraordinary fine resolution of 0.25◦. On the other

hand, URG-04LX’s scanning area is only 4 m and 240◦ with angle resolution about 0.36◦. Both
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of them have range resolution of 1 mm and accuracy about 1% of the measured range. In the

later implementation stage, it will be found that URG-04LX is enough for normal flight tests

with obstacle avoidance functions. However, to do a complete localization and mapping with

such short measurement range is rather difficult because itsscanned result at one instant will

easily form singular cases, such as nothing in 4 m’s range or there is only one straight wall in

range.

The cameras used on both platforms are not much different in terms of performance. Instead,

the choice depends more on the supporting driver of the vision processing computers. CaspaTM

VL is specially designed for Gumstix OveroR© COM series. It connects to Gumstix through a

parallel port which makes the retrieving of image information lightening fast. FireFlyR© Camera

from PointGrey, although having a better resolution and maximum frame rate, can only provide

USB 2.0 signals which makes the image capturing step relatively slow. As the onboard real-

time image processing algorithm is only expected to be run upon a 320× 240 single channel

grey image at about 10 Hz, both camera’s resolution and framerate specifications are more than

enough for this project. The bottleneck is indeed at the vision processing computer.

For the vision processing computer, Gumstix OveroR© Fire COM is used on the coaxial

platform to save weight. Being small though, it still has a 720 MHz main clock and a DSP

co-processor. It is verified that an indoor colored-road-tracking algorithm can be successfully

run onboard in real time [60]. However, quite a few assumptions and algorithm simplifications

need to be done in the expense of tracking robustness and accuracy. In order to implement a

more general and practical vision algorithm for UAV indoor navigation, more powerful onboard

computers are recommended. Hence, we choose the fit-PC2 fromCompuLab for the quadrotor

platform. As of writing, the fit-PC2 is the smallest, most energy-efficient fanless PC on the

market. It has low-end desktop PC performance with CPU clockat 1.6 GHz, 1 GB of ram and

16 GB of SSD storage. Besides, it provides 2 ethernet ports, 2USB ports and 1 RS232 port for

peripheral devices. In this case, one USB will be used to communicate with the camera and the

RS232 port will be used to communicate with the control computer. It has a weight of 270 g,

which is acceptable for the quadrotor platform but too heavyfor the coaxial platform.

For the control computer, Gumstix OveroR© Fire COM is more than enough to carry out

sensor data retrieving and fusion, control law implementation, communication with GCS, as

well as data logging. The IMU reading and control loop runs at50 Hz, while other peripheral

threads runs at lower frequencies. Working with the Pinto-TH expansion board, the whole
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Gumstix computer is only 30 g in weight and it includes an built-in WiFi module, perfect for

remote debugging and communication purposes.

For the servo driving electronics, the Micro Serial Servo Controller, working together with

the 4 Channel fail-safe multiplexer, both from Pololu, are used on the coaxial platform. Again,

this choice favors weight reduction but the drawback lies inits limited functions. Unlike the

UAV100 servo controller used on the quadrotor platform, thePololu sets are not able to feed-

back the channel control values to the control computer. This is a huge problem for the later

model-based parameter identification process. When the pilot performs manual perturbations to

the flying vehicle, we need to record down the four channel control inputs so that model identifi-

cation can be done. To solve this problem, the RC receiver’s PPM signal (contains the combined

information from all channel PWM signals) is hacked and fed to one spare pin of ArduIMU. As

ArduIMU is open source, additional code is added to its bare IMU functionality to decode the

PPM signal and output all channel control values together with the original IMU measurements.

On the other hand, UAV100 communicates with the control computer in a 2-way fashion. It not

only listens to control computer’s commands and output the corresponding PWM signals, but

also feedback the servo control signals (both autonomous and manual) to the control computers

for logging purposes.

After all, the full onboard avionics configurations for the two different platforms are sum-

marized in Fig. 3.22 and 3.23.

3.7 Computer-aided Layout Design

After selecting and configuring the individual avionic components, all of them need to be assem-

bled together on to the bare aerial platform to form a complete UAV. To accomplish this task,

special attention needs to be paid to the layout design of theoverall onboard system. Despite

the connection and signal flow among the hardware devices, their physical position, orienta-

tion and mounting method need to be precisely designed so that the platform CG, rigidity and

aerodynamic characteristics are not adversely affected.

The next thing needs to be ensured is to place the IMU sensor asclose as possible to the

CG of the whole UAV platform to minimize the so-called lever effect, which causes bias to

acceleration measurement when the UAV platform performs rotational motion. Usually there

is no difficulty to align the IMU with the UAV CG in thex- andy-axis. However, thez-axis
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Figure 3.22: Onboard avionics configuration of the coaxial platform
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Figure 3.23: Onboard avionics configuration of the quadrotor platform
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Figure 3.24: SolidWorks design for the coaxial avionics

alignment is difficult to be designed perfectly due to practical issues. If it happens, software

compensation has to be implemented to minimize the measurement error caused by this vertical

offset.

Then is to design the placement of laser scanner and camera. In theory, all sensors are

preferred to be placed near to the CG of the UAV so that rotation of the UAV will not induce large

translation of the sensors. However, it is impossible to position all sensors at the same place,

and laser scanner and vision sensor will have occlusion problems if they are put very inside of

the UAV body. In view of this, the laser scanner for the quadrotor platform is positioned at a

top-center position while the laser scanner for the coaxialplatform is up-side-down mounted at

a bottom-center position. The cameras for both case are installed at the frontal part of the UAV

platforms.

To facilitate the design process, a virtual 3D drawing software, SolidWorks, is used be-

fore carrying out the actual platform assembly. Such a software aided design method avoids

the problem of unnecessary redesigning because of carelessmistakes, thus saves a lot of time.

Figs. 3.24–3.26 illustrate the virtual assembly of the avionic components of the coaxial platform

and the quadrotor platform via SolidWorks respectively.

3.8 Hardware Assembly Results

In this chapter, a comprehensive survey of avionics components for indoor UAVs has been

given. Based on the specifications of two different platforms, two avionics configurations have
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Figure 3.25: Physical view of the fully assembled coaxial platform

Figure 3.26: SolidWorks design for the whole quadrotor platform
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Figure 3.27: Physical view of the fully assembled quadrotorplatform

been determined. The coaxial platform carries lighter and simpler avionics, while the quadrotor

platform carries a much more powerful set. A 3-D drawing software SolidWorks has been

utilized to design the placement and mounting of the avionics system. Till now, two fully

functional indoor UAV platforms with their respective onboard sensors and computers have been

assembled and tested. Figs. 3.25–3.27 show the physical assembly of the hardware platforms.

Both platforms can hover at about ‘half throttle’ with all avionics mounted, and all sensor data

can be decoded and logged by the onboard computers.
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Chapter 4

Modeling and Control of a Coaxial

Helicopter

To enable a UAV to navigate in indoor environments fully autonomous, the first thing needs

to be ensured is the platform’s attitude stability and its capability of way point tracking. This

requires the design of high-performance robust flight control laws so that sufficient position

control precision can be guaranteed in a confined indoor space. Else, the high-level navigation

algorithms will have no foundation to build upon.

As most modern control methods are model based, a precise dynamic model of the con-

trolled object is needed. In this chapter, the model formulation and parameter identification of

a coaxial helicopter will be presented. It not only serves asthe basis for the design of flight

control laws for indoor navigation purposes, but also complements the existing works of non-

linear modeling of UAVs, as the study of coaxial helicopter modeling is much less substantial in

literature as compared with other types of aerial platforms, such as the conventional single-rotor

helicopter. In a few recent works, although fairly completelinear or nonlinear models for coax-

ial helicopters are obtained [19, 21], their publications lack intuitive explanation of the model

formulation and their methods of parameter identification are not detail enough. For example

in [52], the helicopter dynamics were treated as a black box,while the whole system is vaguely

identified using an existing model fitting toolkit. Moreover, a lot of works only concentrate on a

few parts of the coaxial helicopter dynamic model without combining them together for the ulti-

mate control purpose [63, 37]. Very complete modeling work for a miniature coaxial helicopter

can only be found in [69]. To complement the research work in this area, this chapter presents

a detailed derivation of the nonlinear model for a fixed-pitch coaxial helicopter, together with
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Figure 4.1: Overview of the coaxial helicopter model structure

experimental methods proposed to identify the key parameters in the model.

4.1 Basic Working Principle and Model Overview

For a fixed-pitch coaxial helicopter, the collective pitch of the rotor blades cannot be changed.

Heave and yaw motion of the helicopter can only be achieved byvarying the rotational speed of

the rotors, which are controlled by two separate motors. Generally, the summation of the motor

speeds determines the helicopter vertical motion, while the difference of the two determines the

yaw motion. Rolling and pitching are accomplished by introducing a slanted orientation of the

swashplate, which is controlled by the aileron and elevatorservos. In this way, a tilted flapping

of the rotor blades can be induced, and the resulting thrust generated becomes non-vertical.

An overview of the model structure is shown in Fig. 4.1 in which δail, δele, δthr and δrud

are the aileron, elevator, throttle and rudder inputs to thedynamic system respectively. State

variables can be found at the right side of the model structure. From the inputs to the state

variables, there are numerous blocks representing individual sub-systems. In the next section of

this chapter, model formulation in all these blocks will be explained in detail.
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Figure 4.2: The NED and body coordinate frame systems

4.2 Model Formulation and Parameter Identification

Coordinate Systems and Rigid-Body Dynamics

As a common practice of aeronautic analysis, two main coordinate frames will be used here.

One is the North-East-Down (NED) frame and the other is the helicopter body frame. While

the NED frame is stationary with respect to a static observeron the ground, the body frame is

placed at the Center of Gravity (CG) of the coaxial helicopter, where its origin and orientation

move together with the helicopter fuselage (see Fig. 4.2). The following navigation equation

shows the relationship between the NED-frame position and the body-frame velocity:
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ż
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cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
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−sθ cθsφ cθcφ





















u
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w











, (4.1)

wherex, y, z are the NED-frame position components of the helicopter,u, v, w are the body-

frame velocity components,φ, θ, ψ are the roll, pitch, yaw angles of the helicopter fuselage

ands∗, c∗ denotesin(∗), cos(∗) respectively. It is also critical to point out that the Eulerangle

derivatives,φ̇, θ̇, ψ̇, are not orthogonal to each other. They are related to the body frame angular
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rates,p, q, r, by the following kinematic equation:
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Note that the above equation has singularity atθ = 90◦. If full-envelope flight is required, a

quaternion representation is recommended. However, sincethe coaxial helicopter will be flying

at near-hover condition for the task of indoor navigation, it is still adequate to use (4.2) in this

work.

By treating the whole coaxial platform as a rigid mass, the 6 degrees-of-freedom (DOF)

motion can be described by the following Newton-Euler equations:
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, (4.4)

whereFx, Fy, Fz are projections of the net force,F, onto the body-framex-, y-, z-axis, and

Mx,My,Mz are projections of the net torque,M, onto the body-framex-, y-, z-axis. The com-

positions ofF andM come from various parts of the coaxial helicopter and will beexplained in

detail later. The center of gravity (CG) of the helicopter can be determined by hanging the plat-

form in two different directions (see Fig.4.3) and examine the intersection of suspension lines.

The total mass of the platform,m, can be easily measured, whileJ is the moment of inertia of

the platform, which is in the form of

J =













Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz













.

Since the coaxial helicopter is almost symmetric in both longitudinal and lateral directions,

Jxy, Jxz, Jyz are extremely small and can be ignored.Jxx, Jyy, Jzz can be measured by the
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Figure 4.3: Hanging the platform to determine its CG

Figure 4.4: The trifilar pendulum method in helicopterz-axis

trifilar pendulum method proposed in [31]. The experimentalsetup is shown in Fig. 4.4. In

this experiment, the coaxial platform is suspended by threeflexible strings with equal lengthl.

The horizontal distances between the attached points and the CG arel1, l2 andl3 respectively.

The platform can be slightly twisted and released around thevertical axis and then record its

oscillation periodtl. The moment of inertia in this axis can be calculated as:

Jzz =
mgl1l2l3t

2

l

4π2l
· l1 sinα1 + l2 sinα2 + l3 sinα3

l2l3 sinα1 + l1l3 sinα2 + l1l2 sinα3

, (4.5)

whereα1, α2 andα3 are the angles denoted in Fig. 4.4. Similar experiments can be done to

obtain the moment of inertia around the other two axes (see Fig. 4.5).

Force and Torque Composition

As mentioned in the previous sub-section, force and torque acting on the coaxial helicopter

come from various mechanical parts. First of all, the helicopter weight exerts a force ofmg in
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Figure 4.5: The trifilar pendulum method in helicopterx- andy-axis

the NED-framez-axis. After converting it to the body frame, the vector is shown as the second

term on the right hand side of (4.6).

Next, when the rotor blades spin, they generate thrusts,Ti (i = up, dw) in the direction

perpendicular to their respective tip-path-plane (TPP). When the upper and lower TPPs deviate

from their default orientation, the thrust vectors no longer pass through the CG of the helicopter,

thus creating rotational torque. The torque vectors causedby the rotor thrusts can be calculated

by lup × Tup and ldw × Tdw, wherelup and ldw are the displacement vectors from helicopter

CG to the upper rotor hub and the lower rotor hub respectively. The deviation of the TPP can

be described by the longitudinal flapping angleai and the lateral flapping anglebi. The thrust

decomposition to the body-frame axes can be approximated bythe second equation in (4.8).

Non-zeroai andbi also directly result in flapping torque on the rotor hub. Thistorque can be

simplified as the second term on the right hand side of (4.7), whereKβ is the effective spring

constant and it has the same value for both the upper and lowerrotors.

At the same time, the rotation of the rotors also creates the drag torque,Qd,up andQd,dw,

around the body-framez-axis. When the coaxial helicopter hovers without yaw motion, the two

torques have the same magnitude, thus canceling each other.Else, if the net drag torque is non-

zero, yaw acceleration is generated. In addition, the change of rotational speeds of the rotors

also generate the reaction torques on the helicopter body (denoted byQr,up andQr,dw). They

are described in (4.10), whereJup andJdw are the moment of inertia of the upper rotor (with

stabilizer bar) and the lower rotor with respect to the axis of rotor shaft. They can be calculated

by measuring the mass and dimension of the rotor blades and stabilizer bar and assuming a

regular geometric shape.

Last but not least, when the helicopter moves in air, its fuselage experiences drag forces,
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Xfus, Yfus, Zfus, due to air resistance. Equation (4.6) and (4.7) have summarized all the forces

and torques mentioned above, with (4.8)-(4.10) explaininghow to evaluate the individual terms:
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Thrust and Torque from Rotors

In this sub-section, the magnitude of the rotor thrust and drag torque,|Ti| and |Qd,i|, will be

investigated. According to the aerodynamic actuator disk theory [14], the magnitude of thrust

generated by the rotors can be formulated as follows:

|Ti| = ρCT,iA(ΩiR)
2, (4.11)

whereρ is the density of air,CT,i is the lift coefficient,A is the rotor disk area,Ωi is the

rotational speed of the rotor andR is the rotor blade length. Since this is a fixed-pitch coaxial
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Figure 4.6: Setup to investigate relation between thrust and rotor speed

helicopter,CT,i, like the other parameters in (4.11), is constant. The only variable isΩi. Hence,

the equation can be simplified to:

|Ti| = kT,iΩ
2
i , (4.12)

wherekT,i is a lumped thrust coefficient that needs to be identified. Similar assumptions and

formulation can be applied to the relationship between the drag torque and the rotational speed

of the rotors:

|Qd,i| = kQ,iΩ
2
i . (4.13)

To identify kT,i andkQ,i, two test bench experiments were carried out (see Fig. 4.6 and

Fig. 4.7). The main measurement sensors include a force meter (A) and a tachometer (B). For

the thrust experiment, results are summarized in Fig. 4.8. There are four lines in the plot, in

which two of them (solid lines) perfectly match. They represent the cases when only one rotor

(upper rotor or lower rotor) is rotating. The dashed line on the top is a numerical combination

of the two solid lines, while the dash-dot line comes from actual tests with both rotors spinning

at the same speed. The gap between the two lines shows a drop inthrust efficiency caused by
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Figure 4.7: Setup to investigate relation between torque and rotor speed
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Figure 4.8: Data plot of thrust against square of rotor speed
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aerodynamic interactions between the two rotors. According to [22], for a coaxial helicopter

operating in near-hover condition, the induced-velocity effect of the upper rotor to the lower

rotor is significantly larger than that of the lower rotor to the upper rotor. Thus, the loss of

thrust efficiency can be fully accounted on the lower rotor thrust coefficient. Hence,kT,up is the

gradient of the solid line andkT,dw is the gradient difference between the dash-dot line and the

solid line.

For the torque experiment, results are summarized in Fig. 4.9. The solid line represents

the case when only the stabilizer bar is rotating, while the dash-dot line is for a single rotating

rotor. The dashed line is generated with the upper rotor and the stabilizer bar spinning together.

Unsurprisingly, it matches the numerical combination of the lower two lines. Thus, the gradient

of the dashed line iskQ,up, and the gradient of the dash-dot line iskQ,dw.

Rotor Tip-Path-Plane Motion

For this type of coaxial helicopter, the rotor collective pitch is fixed, while its cyclic pitch can

be changed. For the lower rotor, the rotor hub is connected tothe aileron and the elevator
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Figure 4.10: Step response of servo motion (Left:t = 0; Middle: t = 0.0375 s; Right:t = ∞)

servos via a swashplate. When the swashplate tilts, it teeters the rotor hub and creates a cyclic

pitch on the rotor. For every cycle of rotation, the rotor blade will reach the maximum angle

of attack at the same phase angle when the lift on the blade is largest. This results in the

flapping of the rotor disk. The whole mechanism is a combination of gyroscopic precession and

aerodynamic precession. For the case of the Esky Big Lama, ifone observes the rotor blade

in a slow motion, the maximum rotor flapping occurs roughly at45◦ lag with respect to the

occurrence of maximum angle of attack. This explains why theaileron and elevator servos of

the off-the-shelf coaxial platform are connected to the swashplate45◦ off the body-framex-,

y-axis. In this way, the aileron servo mainly controls the lateral flapping of the lower rotor,

and the elevator servo mainly controls the longitudinal flapping. However, the flapping phase

lag is not exactly equal to45◦ (slightly larger than45◦ from test bench observations) due to

mechanical modifications to the original RC platform (original rotor blades have been replaced

by stiffer ones for larger payload). This results in non-negligible coupling between the servo

inputs and the lower rotor longitudinal and lateral flappingangles. As the lower rotor does not

have any additional damping mechanism attached, its flapping process is almost instantaneous.

By assuming a first order dynamics, the time constant can be observed via a high-speed camera.

The result turns out to be 0.0375 second (see Fig. 4.10), which is very small as compared to

dynamics happening in other parts of the coaxial helicopter, thus can be ignored. Hence, the

relationship between servo inputs and lower rotor flapping angles can be formulated in a non-

dynamic way:

adw = Aa,dw δele+Ab,dw δail −Aq q, (4.14)

bdw = Bb,dw δail +Ba,dw δele−Bp p, (4.15)
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whereδail, δele are the servo inputs normalized to [-1, 1],Aa,dw andBb,dw are the on-axis steady-

state ratio from servo inputs to flapping angles, andAb,dw andBa,dw are the off-axis (coupling)

values. The terms involving angular rates,p andq, come from an effect called rotor damping,

which was also considered in [26].

For the upper rotor system, a stabilizer bar is attached to the rotor hub, so that they teeter

together. As the stabilizer bar has large moment of inertia,it tends to remain at its original

rotating plane. Hence, at the moment when the helicopter body tilts, the stabilizer bar TPP will

remain at the level plane, thus creating a cyclic pitch on theupper rotor which leads to blade

flapping. The torque generated by this flapping redresses therotational motion of the helicopter

and significantly stabilizes the whole platform attitude. Similar to the lower rotor system, the

stabilizer bar is installed at45◦ phase lead to the rotor blade. In this way, the maximum flapping

happens at the direction that roughly counters the rotational motion of the helicopter. Again,

there is coupling between the longitudinal and lateral channels because the flapping phase lag is

not exactly45◦. The following equations describe the aforementioned dynamics:

φ̇sb =
1

τsb
(φ− φsb), (4.16)

θ̇sb =
1

τsb
(θ − θsb), (4.17)

aup = Aa,up (θsb− θ) +Ab,up (φsb− φ)−Aq q, (4.18)

bup = Bb,up (φsb− φ) +Ba,up (θsb− θ)−Bp p, (4.19)

whereφsb andθsb are the roll and pitch angles of the stabilizer bar TPP,Aa,up andBb,up are

the on-axis steady-state ratio from the stabilizer bar teetering angles to the upper rotor flapping

angles, andAb,up andBa,up are the off-axis (coupling) values. Again, the same rotor damping

effects (terms depending onp andq) are considered for the upper rotor flapping dynamics.

For the identification ofτsb, one can observe the transient step response of the stabilizer

bar TPP (see Fig. 4.11) by a high-speed camera and record the time when the response reaches

63.1% of the overall amplitude. On-axis parametersAa,up, Bb,up, Aa,dw andBb,dw can be iden-

tified by measuring various angles (see Fig. 4.12 and Fig. 4.13) and assuming a linear relation-

ship between each pair of them. For the other coupling valuesandKβ , they can be identified

by analyzing flight test data with aileron and elevator channel perturbations (see Fig. 4.14 and

Fig. 4.15). The software used for numerical analysis is called the Comprehensive Identifica-

tion from FrEqency Responses (CIFER). It is a MATLAB-based software developed by NASA
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Figure 4.11: Step response of stabilizer bar (Left:t = 0; Middle: t = 0.2 s; Right:t = ∞)

Figure 4.12: Left: Maximum teetering angle of the lower rotor hub; Right: Maximum flapping
angle of the lower rotor

Figure 4.13: Left: Maximum teetering angle of the stabilizer bar; Right: Maximum teetering
angle of the upper rotor hub

53



0 10 20 30 40 50 60 70 80 90
−1

0

1

δ ai
l

0 10 20 30 40 50 60 70 80 90
−5

0

5

p 
(r

ad
/s

)

0 10 20 30 40 50 60 70 80 90
−0.5

0

0.5

φ 
(r

ad
)

time (s)

Figure 4.14: Manual flight data for aileron channel perturbation
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Figure 4.15: Manual flight data for elevator channel perturbation
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Ames Research Center for military based rotorcraft system identifications. By combining and

linearizing all the aforementioned equations related to angular rate dynamics and upper rotor

flapping dynamics, the following linear state-space approximation can be obtained:

˙
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(4.20)

whereXup = Tuplup +Kβ andXdw = Tdwldw +Kβ. By treatingδail, δele as the inputs andp,

q as the outputs (all can be logged during flight tests) and giving known constraints and reason-

able initial values, CIFER helps to search for optimal numerical solution based on frequency

response matching. A stable result with good matching is obtained as follows:
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(4.21)

With this set of numerical result, Fig. 4.16 to 4.19 show the corresponding comparison of

frequency response between the data collected via actual flight tests and the CIFER derived

model fit. For both the on-axis and off-axis responses, the matching is good, indicating a high-

quality identification result. Next, By comparing (4.20) and (4.21), all the remaining parameters

involved in angular rate and rotor flapping dynamics can be identified.

Fuselage Drag

When the helicopter fuselage moves in air, it experiences drag force acting on the opposite di-

rection of the motion. For the body-frame horizontal directions, the rotor downwash is deflected

by u andv. In the situation whenu (or v) is less thanvi (the induced velocity of air at the lower

rotor), the downwash effect needs to be taken into account. Otherwise, the downwash effect is
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Figure 4.16: Response comparison using frequency-sweep input (δail − p)
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Figure 4.17: Response comparison using frequency-sweep input (δail − q)
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Figure 4.18: Response comparison using frequency-sweep input (δele− q)
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Figure 4.19: Response comparison using frequency-sweep input (δele− p)
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relatively weak and can be ignored. The fuselage in all threedirections are considered as a flat

plate perpendicular to the helicopter motion, thus the dragcoefficient is approximately unity.

As such, the horizontal fuselage drag forces are formulatedin a quadratic form:

Xfus = −ρ
2
Sxu · max(vi, |u|), (4.22)

Yfus = −ρ
2
Syv · max(vi, |v|), (4.23)

vi =

√

|Tdw|
2ρπR2

, (4.24)

whereSx andSy are the effective drag area along the body-framex- andy-axis respectively.

For the vertical direction, since the fuselage is constantly exposed to the lower rotor down-

wash, it is commonly formulated in the following form:

Zfus = −ρ
2
Sz(w − vi)|w − vi|. (4.25)

However, as the lift coefficient test for identifyingkT,i in (4.12) was done with the presence of

the fuselage (so the termρ2Szv
2
i has already been taken into account), the above equation canbe

simplified as:

Zfus = −ρ
2
Szw · max(vi, |w|), (4.26)

whereSz is the effective drag area along the body-framez-axis.

In this sub-section, parameters to be identified areρ, R, Sx, Sy andSz. All of them can be

easily obtained by direct measurement.

Motor Speed Dynamics

Two brushless DC motors are used on the coaxial platform. Their rotational speed dynamics

follows the differential equation of electro motors:

Jmotω̇ =
kmU − kmkeω

Rmot
− dω −ML , (4.27)

whereJmot is the motor moment of inertia,km andke are the mechanical and electrical motor

constants,U is the input voltage,Rmot is the resistance of the circuit,d is the friction coefficient,

andML is the external torque acting on the motor shaft. Here,ML is equal to the rotor drag
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Figure 4.20: Estimation of time constant of motor dynamics

torqueQd,i appeared in (4.13). If the helicopter operates at a near-hover condition, everything

can be approximated as a linear process.ML can be assumed to be a combination of a constant

trimming value,M∗
L , and another term proportional to extra rotational speed ascompared to the

trimming speed,Ω∗:

ML =M∗
L + kL(Ω− Ω∗). (4.28)

Further considering that the rotational speed of rotor,Ω, and the rotational speed of the motor,

ω, are perfectly proportional by the gear ratio, the rotor speed dynamics can be simplified to the

following first-order equations:

Ω̇up =
1

τmt
(mupδup +Ω∗

up − Ωup), (4.29)

Ω̇dw =
1

τmt
(mdwδdw +Ω∗

dw − Ωdw), (4.30)

whereΩ∗
up andΩ∗

dw are the trimming values of the rotor rotational speed at hovering, τmt is the

time constant of the motor speed dynamics, andmup,mdw are the steady-state ratio between the

change of rotor speeds and the change of motor inputs.

The identification method ofτmt is indirect here. Instead of examining the transient response

of the rotor speed with motor step input, which is very difficult to be carried out, the transient

response of the input voltage subject to the changes of the motor Back-EMF (voltage generated

by the spinning motor) is recorded using an oscilloscope (see Fig. 4.20). The time constant of

the the two transient response should be the same.mup andmdw can be identified by plotting
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Figure 4.21: Data plot of rotor speed against motor input

the steady-state relationship between the rotor speed and the motor input (see Fig. 4.21).mup

andmdw are the gradients of the two fitted lines in the figure.

Mixer and Headlock Gyro Dynamics

In order to decouple the throttle-heave and the rudder-yaw dynamics, the throttle and rudder

signals are passed into a hardware mixer and transformed to dual motor control signals:

δup = δthr + δ̄rud, (4.31)

δdw = δthr − δ̄rud. (4.32)

It can be clearly seen that when the throttle signalδthr increases, inputs to both motors increase;

when the rudder signal̄δrud increases, the input to the motor connected to the upper rotor in-

creases while the input to the motor connected to the lower rotor decreases.

Note that the rudder signal in the above mixer equation is notthe original signalδrud. From

δrud to δ̄rud, there is a hardware headlock gyro which helps refine the rudder signal and acts as

a most inner-loop yaw motion stabilizer. Usually, there is aP-I controller embedded inside the
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Table 4.1: Yaw rate against rudder input: hovering turn

r (rad/s) -1.50 -2.50 -2.60 -3.50

δrud (-1, 1) 0.25 0.35 0.40 0.55

headlock gyro and it can be formulated as follows:

ṙfb = Kaδrud − r, (4.33)

δ̄rud = KP(Kaδrud − r) +KIrfb, (4.34)

whererfb is the augmented state needed by the integral control.Ka can be identified by perform-

ing manual hovering turn of the helicopter with rudder inputat different values. The recorded

data is shown in Table 4.1 (steady-state values). The lineargradient of yaw rate against rudder

input equals to the value ofKa. Next, by placing the helicopter stationary on a test bench,KP

andKI can be identified by observing the headlock gyro output signal (in Pulse Width Modu-

lation form) caused by a small known step inputs. The initialratio between the output and the

input isKP/Ka, while the climbing rate of the step response isKI/Ka. At this point, the full

dynamics of a coaxial helicopter have been mathematically formulated and all important model

parameters have been identified. Table 4.2 has listed all theidentified parameters for the coaxial

helicopter.

4.3 Model Verification

In this section, a comprehensive evaluation on the fidelity of the obtained nonlinear model is

shown. Four manual flight tests were carried out, which include:

1. Aileron channel perturbation with the coaxial helicopter rolling left and right,

2. Elevator channel perturbation with the coaxial helicopter pitching forward and backward,

3. Throttle channel perturbation with the coaxial helicopter flying up and down,

4. Rudder channel perturbation with the coaxial helicopteryawing clockwise and anticlock-

wise.

In these four flight tests, the human pilot was asked to try hisbest to agitate only one of the

four input channels. However, to make sure the helicopter position does not drift too much
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Table 4.2: Identified model parameters for the coaxial UAV

Parameters Physical meaning

m = 0.977 kg Total mass of platform
g = 9.781ms−2 Earth gravitational constant
Jxx = 0.0059 kgm2 Rolling moment of inertia
Jyy = 0.0187 kgm2 Pitching moment of inertia
Jzz = 0.0030 kgm2 Yawing moment of inertia
Jup = 6.8613 · 10−4 kgm2 Upper rotor moment of inertia
Jdw = 3.2906 · 10−4 kgm2 Lower rotor moment of inertia
|~lup| = 0.195m Length from upper rotor hub to CG
|~ldw| = 0.120m Length from lower rotor hub to CG
ρ = 1.204 kg m−3 Density of air at 1 atmosphere and 20◦ C
R = 0.250m Rotor radius
Sfx = 0.00835m2 Fuselage equivalent area inx-axis
Sfy = 0.01310m2 Fuselage equivalent area iny-axis
Sfz = 0.01700m2 Fuselage equivalent area inz-axis
kT,up = 1.23× 10−4 Ns2 Thrust coefficient of the upper rotor
kT,dw = 8.50 × 10−5 Ns2 Thrust coefficient of the lower rotor
kQ,up = 4.23 × 10−6 Nms2 Torque coefficient of the upper rotor
kQ,dw = 3.68 × 10−6 Nms2 Torque coefficient of the lower rotor
mup = 106.9002 Upper rotor speed to input ratio
mdw = 106.4461 Lower rotor speed to input ratio
Ω∗

up = 203.3769 rad/s Upper rotor trimming rotational speed
Ω∗

dw = 217.8807 rad/s Lower rotor trimming rotational speed
τsb = 0.2 s Time constant of upper rotor flapping
τmt = 0.12 s Time constant of motor dynamics
Aq = 0.0204 Longitudinal rotor damping constant
Bp = 0.0204 Lateral rotor damping constant
Aa,up = 0.49 Upper rotor on-axis longitudinal flapping ratio
Ab,up = −0.2745 Upper rotor off-axis longitudinal flapping ratio
Ba,up = 0.2745 Upper rotor off-axis lateral flapping ratio
Bb,up = 0.49 Upper rotor on-axis lateral flapping ratio
Aa,up = 0.1217 Lower rotor on-axis longitudinal flapping ratio
Ab,up = −0.045 Lower rotor off-axis longitudinal flapping ratio
Ba,up = −0.045 Lower rotor off-axis lateral flapping ratio
Bb,up = −0.1217 Lower rotor on-axis lateral flapping ratio
Kβ = 4.377 Spring constant of the rotor TPP
Ka = 5.3819 Scaling factor of the headlock gyro
KP = 0.1239 Proportional gain of the headlock gyro
KI = 0.1325 Integral gain of the headlock gyro
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Figure 4.22: Responses from aileron input perturbation

(safety needs to be ensured), minor off-axis inputs were also issued to lightly counter the cross-

couplings between the channels. The time-domain results are shown in Figs. 4.22–4.25. Based

on the recorded inputs, the transient response of the UAV attitudes, angular rates and body-frame

velocities are calculated by a MATLAB simulation program with the aforementioned nonlinear

mathematical model (dashed lines in the figures). They are plotted together with the in-flight

true data obtained by the onboard sensors (solid lines in thefigures). The matching between the

two is quite good. Note that for angular rate dynamics, both the on-axis response and off-axis

response matches well. Some minor mismatches are caused by the ignorance of high frequency

dynamics when formulating the model, especially for the motion of rotor flapping, which is

highly complicated. Other discrepancies are believed to befrom wind disturbances, ground

effects and measurement noises present in actual flight tests. In general, this is an accurate

nonlinear cross-coupled model for a fixed-pitch coaxial UAVwith low maneuvering speed.

4.4 Control Structure Formulation

With the dynamic model of the coaxial UAV obtained, advancedcontrol design methods can be

applied to stabilize the motion of this UAV. Methods of controlling coaxial helicopters have been

reviewed thoroughly at the starting phase of this research work [2, 26, 40, 51, 52, 68, 80, 82, 86].

With reference to these methods, the control strategy presented here is based on a dual-loop

structure. The inner-layer dynamics of the UAV can be stabilized by an H-infinity control law
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Figure 4.23: Responses from elevator input perturbation
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Figure 4.24: Responses from throttle input perturbation
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Figure 4.25: Responses from rudder input perturbation

which makes the UAV attitude stable, while a Robust and Perfect Tracking (RPT) controller

is designed for the outer loop for position and velocity reference tracking. In addition, the so-

called asymptotic time-scale and eigenstructure assignment (ATEA) approach has been adopted

to tune the inner- and outer-loop control laws. It makes the whole design process systematic and

effective.

In control engineering, thedivide-and-conquerstrategy is usually used when a relatively

complex system needs to be handled. In flight control engineering, a natural stratification of the

full-order dynamic model of a helicopter is based on motion types, i.e. rotational motion and

translational motion. In general, the dynamics of rotational motion is much faster than that of

the translational motion. Thus, the controlled object can be divided into two parts and the overall

control system can be formulated in a dual-loop structure. In this way, inner-loop and outer-loop

controllers can be designed separately. Moreover, it is found that the linearized model of the

coaxial helicopter system is of non-minimum phase if the twomotion dynamics are combined

together. If not separated, they will highly complicate thecontrol problem and degrade control

performance.

For the inner loop, the controlled object covers the rotational motion of helicopter body,

flapping motion of rotor blades and stabilizer bar, rotational motion of the motor-rotor driving

system, as well as dynamics embedded within the head-lock gyro. The main task of the inner-

loop controller is to stabilize the attitude and heading of the helicopter in all flight conditions.
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Figure 4.26: Dual-loop structure of the flight control system

H∞ technique is preferred for robust stability. For the outer loop, the controlled object covers

only the translational motion. The main task is to steer the helicopter flying with reference to a

series of given locations. A robust and perfect tracking (RPT) approach is implemented for the

outer-loop since time factor is important. It is highlighted that both control laws are designed

using the ATEA method, which is fully developed for MIMO LTI (multi-Input multi-Output

linear time invariant) systems by Chen et al. [17]. It makes the design process very systematic

and effective. To give an overall view, the dual-loop control structure is shown in Fig. 5.10.

4.5 Inner-loop Control Law Design

The inner-layer dynamics of the controlled coaxial helicopter is a 11th-order MIMO system with

four control inputs, namelyδthr, δail, δele, andδrud. To stabilize the attitude and heading angles

φ, θ, ψ, only three of the four control inputsδail, δele, andδrud, are needed. The remaining one,

δthr, is reserved for control of vertical motion and meanwhile needs be set at its trimming value.

The system is then a 11th-order 3-input 3-output controlled object. For the measurement part, the

IMU givesφ, θ,ψ, p, q, andr. The remaining state variables, i.e. the upper rotor flapping angles

bup, aup, the two motor rotational speedsΩup, Ωdw, and the intermediate state variableδ̄rud of

the head-lock gyro, have to be estimated by an observer. Therefore, the linearized inner-layer

controlled object can be formulated as































ẋ = Ax +Bu +Ew

y = C1x +D11u +D1w

z = C2x +D2u +D22w

(4.35)
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with

x = (φ θ ψ p q r bup aup Ωup Ωdw rfb)
T,

y = (φ θ ψ p q r)
T,

z = (φ θ ψ)
T,

u = (δail δele δrud)
T,

and

A =

































































0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 −35.62 0 0 449.95 252.06 0 0 0

0 0 0 0 −11.24 0 −79.53 141.96 0 0 0

0 0 0 0 0 −31.25 0 0 −1.32 0.367 33.39

0 0 0 −1 0 0 −5 0 0 0 0

0 0 0 0 −1 0 0 −5 0 0 0

0 0 0 0 0 −92.47 0 0 −8.33 0 98.79

0 0 0 0 0 92.08 0 0 0 −8.33 −98.37

0 0 0 0 0 −1 0 0 0 0 0
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0 0 0

0 0 0

0 0 0

−100.73 −37.25 0

−11.75 31.78 0

0 0 200.82

0 0 0

0 0 0

0 0 594.27

0 0 −591.74

0 0 6.43

































































.

wherey is the measured output vector,z is the controlled output vector, and all variables are the

deviations from their trimming values. Note that the directfeedthrough matricesD11 andD2

are both zero. No external disturbance is considered for this part of model at the current stage,

so the disturbance input matrixE and the feedthrough matricesD1, D22 are all empty. They are

reserved in the expression for integrity so that external disturbances such as wind gusts can be
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considered in future. The controlled subsystem characterized by the quadruple (A, B, C2, D2)

is both observable and controllable. By transforming the quadruple into the special coordinate

basis (SCB) form [17], we find that the subsystem is invertible and of minimum phase with 5

stable invariant zeros and 3 infinite zeros of order 2. Hence,we can design an H∞ controller via

the ATEA method using state feedback to obtain robust stability. After that, an observer-based

controller can be designed utilizing measurement feedbackalso via the same method. Usually,

the control law designed via the ATEA method is parameterized by a numberγ > γ∗, where

γ∗ is the infimum of the H∞-norm of the closed-loop transfer matrix from disturbancew to the

controlled outputz. It is found that the design result does not depend on the number γ because

the controlled subsystem (A, B, C2, D2) is right invertible and of minimum phase, and the

measurable subsystem (A, E, C1, D1) is left invertible and of minimum phase. This simplifies

the design process significantly.

H∞ State Feedback Control Design

It can be realized step-by-step via the ATEA method as follows. First, transform the matrix

quadruple (A, B, C2, D2) of the controlled subsystem into its SCB form by state, output, input

transformationsTs1, To1, Ti1, and obtain

Ã =







A−
aa L−

adCd

BdE
−
da Add






, B̃ =







0

Bd






, C̃ =

[

0 Cd

]

, (4.36)

where

Add = A∗
dd +BdEdd + LddCd.

Because the subsystem is invertible and of minimum phase, only the infinite eigenstructure

needs to be assigned explicitly. Second, the subsystem related to the infinite zero structure has

3 infinite zeros of order 3, i.e. there are 3 chains of integrators from the 3 control inputs to

the 3 controlled outputs and each chain is composed of 3 integrators in series. The desired

characteristic functions of the 3 subspaces can be set as

p1(s) = s2 + a11s+ a12, (4.37)

p2(s) = s2 + a21s+ a22, (4.38)

p3(s) = s2 + a31s+ a32. (4.39)
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For the case of the controlled coaxial helicopter, their eigenvalues are assigned respectively at

(−49, −3.8), (−11.8, −4.9) and (−37.8, −4.9), which correspond to roll, pitch, yaw control

channels respectively. Thus, the time-scale assignment isas follows:

Fd =













a12
ε2

a11
ε 0 0 0 0

0 0 a22
ε2

a21
ε 0 0

0 0 0 0 a32
ε2

a31
ε













. (4.40)

Finally, the composite state feedback gain by structural assignment is given as

Fs = −Ti1

(

[0 Fd] + [E−
da Edd]

)

T−1
s1 . (4.41)

H∞ Measurement Output Feedback Control Design

The measurement feedback control design can be realized step-by-step via the ATEA method

based on the above designed result of state feedback. First,define the auxiliary full state feed-

back system as follows,






























ẋ = ATx +CT
1 u +CT

2 w

y = x

z = ETx +DT
1 u +DT

22w

(4.42)

Its controlled subsystem (AT, CT
1 , ET, DT

1 ) is just the dual of the measurable subsystem (A,

E, C1, D1) and can be decomposed into the SCB form by state, input, output transformations

Ts2, Ti2, To2, and obtain

Ã =







A−
aa 0

BcE
−
ca Acc






, B̃ =







0

Bc






, C̃ = 0. (4.43)

There is only one stable invariant zero, so this dual measurable subsystem is right invertible and

of minimum phase. We can then design a state feedback controllaw via the ATEA method. Dif-

ferent from the aforementioned state feedback design, the subsystem now is not left invertible

and has no infinite zeros, so more assignment work has to be done. Second, letKc be an arbi-

trary matrix of dimensions compatible with the matrix pair (Acc, Bc) subject to the constraint

that

Ac
cc = Acc −BcKc (4.44)
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is stable. This can be done because (Acc, Bc) is controllable due to the property of SCB de-

composition. The eigenvalues are placed at (−6, −9, −15, −26; −6, −9, −15, −26; −2, −4,

−6, −15), considering the stability and bandwidth of the observer being designed. The eigen-

values form into three groups: the first four and the second four are exactly the same which are

assigned to the roll and pitch control respectively, the last four is assigned to yaw control. Third,

the composite state feedback gain for the dual measurable subsystem is assigned as

Km = −Ti2

([

0 Kc

]

+

[

E−
ca 0

])

T−1
s2 (4.45)

Finally, let

Fm = KT
m (4.46)

We can construct the following full-order observer-based control law for the inner-loop















˙̂x = Acix̂+Bciy

u = Ccix̂

(4.47)

with

Aci = A+BFs + FmC1

Bci = −Fm

Cci = Fs

Therefore, the following closed-loop system is obtained:
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B
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Gir

z =
[

C2 D2Cci

]









x

x̂









+D2Gir

(4.48)

wherer constitutes the reference signals (φr, θr, ψr) for roll, pitch, yaw tracking, andGi is the

feedforward gain matrix to ensure a unitary gain of the closed-loop system. To facilitate the

understanding of the control system architecture, the closed-loop system is shown in Fig. 4.27.
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Figure 4.27: H∞ design for attitude and heading control via ATEA method

In the figure,Ki = BGi. By this design, the closed-loop transfer matrix with statefeedback

has been recovered via output feedback.

4.6 Outer-loop Control Law Design

Hovering in the corner of two walls or flying along a wall are two basic tasks for indoor flight.

This section tries to design the hovering and wall-following outer-loop controller for the indoor

miniature coaxial helicopter. We have partitioned the whole dynamic model of our aircraft

into two parts and have finished the inner-loop design which stabilizes attitude and heading.

The outer-loop control can then be designed separately and based on the dynamic model of

aircraft’s translational motion only. Furthermore, the translational model can be divided into two

parts: trajectory kinematics and trajectory dynamics. Thekinematics part can be described in

different coordinate systems, such as the NED coordinate system or the body-carried coordinate

system. In our implementation, the positioning sensor is only a laser scanner, so global NED

coordinates of aircraft are unknown. We can only obtain the local distance information relative

to the walls (see Fig. 4.28). In the figure, the thick line represents the wall to be followed;

onxnynzn stands for an NED coordinate system which is usually fixed at the starting point

of flight and approximates the inertial frame of reference;obxbybzb stands for the body-axis

coordinate system as the conventional definition in aeronautical engineering;owxwywzw stands

for the so-called local-wall coordinate system which is defined as follows. Its originow is set

at the intersection of the wall with the perpendicular line passing throughob, xw-axis is along

the wall spanning an acute angle withxb-axis,yw-axis is along the perpendicular line pointing

to ob. In flight, the position and velocity ofob in the NED coordinate system are unknown, but
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the UAV information with respect to the local-wall coordinate system is known. In this case, we

have to describe and design the outer navigation loop in the body-axis coordinate system. Let

p = (x, y, z)T, v = (u, v, w)T, a = (ax, ay, az)
T be the position, velocity, acceleration of the

helicopter with respect to the local-wall coordinate system. With reference to the kinematics of

moving reference of frames, the trajectory kinematics of the helicopter can be described in the

body-axis coordinate system as follows,

ṗb = ṗn − ω × p = v − ω × p (4.49)

v̇b = v̇n − ω × v = a − ω × v (4.50)

where the subscriptsb andn means that the differentiation is performed in the body-axis co-

ordinate system and in the NED coordinate system respectively, ω = (p, q, r)T is the angular

velocity of aircraft body described in the body-axis coordinate system. The above equations can

be linearized as

δṗb = δv − [ω0]× δp + [p0]× δω (4.51)

δv̇b = δa − [ω0]× δv + [v0]× δω (4.52)

wherep0, v0, ω0 are respectively the position, velocity, angular velocityat the operating points

for linearization,[·]× is the anti-skew matrix spanned by the vector inside the brackets. Here-

after, for the economy of notations, the the prefixδ representing variable deviation and the
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subscriptb will be omitted if without ambiguity.

Notice thata = ab − aw, whereab andaw are the acceleration of aircraft body and the wall

coordinate system with respect to the NED coordinate system. The accelerationab is one of

the outputs from the inner-layer helicopter model whereasaw is unknown. Besides, we should

know that instead of angular velocityω, accelerationab is the dominant input to the trajectory

kinematics. Thus, letp andv be the states of the trajectory kinematics,ab be the control input,

the following equation can be formed:
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v̇






=







−
[

ω
0
]

×
I

0 −
[

ω
0
]

×













p

v






+







0

I






ab +







[

p0
]

×
0

[

v0
]

×
−I













ω

aw






(4.53)

whereω andaw are the external disturbance. It can be represented compactly as

ẋo = Aoxo +Bouo +Eowo (4.54)

and is called theouter-layer dynamics. For the measurement, only position of the helicopter

with respect to the walls can be acquired. By finite difference, the relative velocity can also be

estimated. Although finite difference usually enlarges noises, it does work properly by simple

filtering. Eventually, the measured and controlled output equations of the outer-layer model can

be obtained as:

yo = C1xo =







I 0

0 I













p

v






, (4.55)

zo = C2xo =
[

I 0

]







p

v






. (4.56)

Equation (4.54), (4.55), (4.56) constitute the controlledobject of the outer-loop design. Specif-

ically,

Ao =







0 I

0 0






, (4.57)

becauseω0 is zero in hovering and forward flight conditions. Due to the decoupled character-

istics of the outer-layer model, i.e. there are three control channels independent of each other.

Outer-loop control laws based on the three decoupled SISO models can be designed next.
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SISO Design of Outer-loop

The generalized linear model of each control channel is characterized by































ẋ = Ax +Bu

y = C1x

z = C2x

(4.58)

with

A =







0 1

0 0






, B =







0

1






, C1 =







1 0

0 1






, C2 =

[

1 0

]

.

To design the tracking system based on the RPT approach, an augmented system need be defined

with reference inputr and its derivativeṡr, r̈, . . ., r(κ−1) as extra state variables, and theκth-

order derivativer(κ) as external disturbance. Here, letκ = 3, so
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(4.59)

where

x0 =

(

r ṙ r̈

)T

and

A0 =













0 1 0

0 0 1

0 0 0













E0 =













0

0

1













C0 =

[

1 0 0

]

In this configuration,r, ṙ, andr̈ are the references of position, velocity and acceleration respec-

tively. Transform the controlled subsystem fromu to e of the augmented system into the SCB

form by the state transformationTs3, then

Ã =







A0 0

BdE
0
da Add






, B̃ =







0

Bd






, C̃ =

[

0 Cd

]

. (4.60)
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It can be deduced that the augmented system has an infinite zero of order 2 and has 3 invariant

zeros at origin. Next, assign the infinite eigenstructure asfollows,

p(s) = s2 + 2ζωns+ ω2
n, (4.61)

whereζ andωn are the expected damping ratio and natural frequency. This leads to the control

law in full state feedback form,

[

G F

]

= −
[

E0
da Edd + Fd

]

T−1
s3 , (4.62)

with

Edd = BT
dAdd, Fd =

[

ω2
n 2ζωn

]

.

In detail, the feedforward gain matrix and the feedback gainmatrix are

G =

[

ω2
n 2ζωn 1

]

, F = −
[

ω2
n 2ζωn

]

. (4.63)

Inner-loop Command Generator

We have designed the inner-loop and the outer-loop controllers separately to avoid the non-

minimum phase problem and to relieve task complexity. To preserve the overall system stability,

the closed outer loop should be slower enough than the closedinner loop. In this case, the

closed inner loop can be seen as a static gain when combining with the outer loop. In physical

meaning, the output of the outer-loop controller is the commanded acceleration described on

the body-axis coordinate system, denoted asac in Fig. 5.10. However, the inner-loop controller

requires the attitude deflection commands (φc, θc, ψc) as control inputs. Obviously, a command

conversion is needed. Furthermore, the body-axis acceleration ab does not interact with heading

directionψ, which is relatively independent of linear motion for helicopters. The throttle control

input δthr is not manipulated by the inner-loop controller since it is not the direct dominator

of attitude. It should also be transferred from the outer-loop controller because it dominates

heave acceleration. Based on this idea, letGa be the steady-state gain matrix from the inner-

loop inputs (δthr, φc, θc) to the acceleration outputab. An approximated inner-loop command
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Figure 4.29: The indoor flight test environment

generator from the outer-loop controller outputac can be obtained as

(

δthr φc θc

)T

= Gcac = G−1
a ac. (4.64)

Notice thatGa must be non-singular. Otherwise,ab cannot be manipulated by the control inputs

δthr, δail or δele. Flight tests show that this inner-loop command generator is feasible.

4.7 Flight Test Results

Several flight tests have been conducted to validate the proposed control scheme. Two repre-

sentative scenarios are tried: hovering in the corner of twowalls and forward flight along a

wall. The testing environment is shown in Fig. 4.29. The reference generation for the whole

control system must be consistent with the proposed RPT controller. That is, the position refer-

encepr, velocity referencevr and acceleration referencear should all be calculated and properly

assigned.

Outer-loop Reference Generation

In Fig. 4.28, the local-wall coordinate system has been defined to facilitate the implementation

of flight test along a wall. Letp = (x y z)
T be the actual position of helicopter with respect

to the local-wall coordinate system. It can be easily deduced to be(0 d 0)
T, whered is the

measured perpendicular distance of the helicopter CG away from the wall. The reference point
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R at next time step can be set atpR = (vR∆t r 0)
T, wherevR is the expected average speed

along the wall during the time interval∆t andr is the distance reference of aircraft CG away

from the wall. Hence, the desired position in the body-axis coordinate system can be derived as

pr = Rb/w(pR − p) (4.65)

whereRb/w is the rotation matrix transforming vectors from the local-wall coordinate system

to the body-axis coordinate system,

Rb/w =













cosψw − sinψw 0

sinψw cosψw 0

0 0 1













(4.66)

whereψw is the angle of wall with respect to helicopter heading. Similarly, the desired velocity

described in the body-axis coordinate system is

vr = Rb/w

(

vR 0 0

)T

(4.67)

and the desired accelerationar should be(0 0 0)
T since we assume the helicopter flying at a

constant speed. The positionp of helicopter is forever(0 0 0)
T in the body-axis coordinate

system.

For the hovering flight test in the corner of two walls, we can set



































pR = (rx ry 0)
T

vR = (0 0 0)
T

aR = (0 0 0)
T

(4.68)

Then, transform them to the body-axis coordinate system



































pr = Rb/w(rx ry 0)
T

vr = Rb/w(0 0 0)
T

ar = Rb/w(0 0 0)
T

(4.69)
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Test Results

The results of the two flight test scenarios are shown in Fig. 4.30 and Fig. 4.31. In Fig. 4.30(a),

thex-y trajectory of the helicopter during flight in the corner of two walls is drawn. The two

thick lines represent the walls from which the helicopter iscommanded to hover 2 meters away.

Thex-y coordinates are drawn in a way that the helicopter hovers at the center of the figure.

One can see that the hovering trajectory is more or less within a 0.5 m circle at the origin. The

furthest trajectory is caused by a reflected wind gust from the wall. Fig. 4.30(b) shows the roll,

pitch and heading angles of the helicopter. As shown, there is a90◦ phase difference between

the roll and pitch angles, which indicates a circle-like motion of the helicopter body, which is

consistent with the circle-like trajectory. The heading angle tries to stick to a constant value

because it was controlled to be parallel with the left wall which is fixed in the NED coordinate

system. Fig. 4.30(c) gives the body-axis angular rates. It suggests that, for better performance,

hardware noise reduction such as vibration isolation from IMU needs to be done.

Fig. 4.31(a) shows the time history of they-axis position of the helicopter during wall-

following flight. It is described in the local-wall coordinate system. The helicopter is com-

manded to fly along its left wall, holding a constant distanceof 1.4 meters away from the wall.

It can be seen that the tracking accuracy is in the range about±0.5 meter. As in this case the

laser range finder cannot capture thex-axis position, thex-y trajectory cannot be shown. Again,

the attitude angles and the body-axis angular rates are shown in Fig. 4.31(b) and Fig. 4.31(c).

They are similar to that of Fig. 4.30(b) and Fig. 4.30(c). Heading angles are different in the two

cases because different walls were being referenced.
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Figure 4.30: Hovering at the corner of two walls
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Figure 4.31: Flying along a wall
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Chapter 5

Modeling and Control of a Quadrotor

Helicopter

Being mechanically simple and robust, quadrotor helicopters, or simply called quadrotors, have

been widely used as UAV platforms for research purposes these days [61, 75, 65]. This kind of

aerial platforms were not popular in the past because they normally need an inner-loop stability

controller with more than 100 Hz of control rate, which cannot be handled by microprocessor

in the past. However, with the current technology in microprocessors and advanced control

theories, the inner-loop stability of a quadrotor helicopter is no longer a problem. There are

COTS multi-rotor control boards which can be installed intoa quadrotor frame with convenient

connections to the motor ESCs, and the resultant quadrotor platforms are usually stabilized well

in the attitude level. By utilizing this existing technology, the second indoor UAV platform

serving for the purpose of this thesis is a customized quadrotor platform with an inner-loop

control board called Naza-M from the company DJI. The following content of this chapter will

explain how to model and control the quadrotor helicopter. However, different from that of the

coaxial helicopter, the inner-layer dynamics of the quadrotor mentioned here has already been

stabilized and does not need to be touched anymore. We only need to know the inner-layer

bandwidth and its steady state gain so that a outer-loop control law resulting in an appropriate

closed-loop bandwidth can be designed and connected with the inner loop in a reasonable way.
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Figure 5.1: Overview of quadrotor model structure

5.1 Basic Working Principle and Model Overview

The model structure of the quadrotor platform constructed for this thesis is illustrated in Fig. 5.1.

The normalized control inputs(δail, δele, δthr, δrud) are fed into the Naza-M controller, which is

an all-in-one stability controller specially designed formulti-rotor multi-axis flying platforms.

With a standard quadrotor frame construction, the default control gains built in Naza-M can

already control the inner-loop stability very well. Naza-Mcontroller outputs PWM signals

(m1, m2, m3, m4) to drive the four rotors to generate the thrust forces, which not only lift

the platform but also maintain its attitude stability. Fromthe perspective of Naza-M, the four

inputs correspond to the control references for the roll angle φ, pitch angleθ, yaw angular rate

r, and the UAV body-frame vertical axis velocityw. In the outer-layer dynamics, the quadrotor

headingψ is simply the integration ofr, and its vertical axis positionz is the integration ofwg

which is almost the same asw for near-hover flight. For the lateral and longitudinal motion, non-

zero (φ, θ) angles will induce acceleration in the UAV body-framex- andy-axis. If transformed

to the NED frame, they integrates to the NED velocity (ug, vg) and integrates again to the

NED position (x, y). All the notations used here are consistent with those usedfor the coaxial

helicopter.

The platform operates in the so-called ‘X’ mode as shown in Fig. 5.2, where there are two

frontal motors and two rear motors. The UAV body frame is defined asx-axis pointing forward,

y-axis pointing rightward, andz-axis pointing downwards, following the right-hand rule. Since

the structure configuration of the platform and the design ofthe onboard system are highly

symmetric, it is reasonable to assume that the longitudinaland lateral dynamics of this platform

are exactly the same, and the model is completely decoupled among all four channels. Hence,

we can identify the dynamic models of the four channels independently. The overall system

dynamics can be obtained by merging the four subsystem dynamics diagonally.
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Figure 5.2: Quadrotor body frame definition

The model identification process is again done with the help from CIFER. It first converts

the collected input-output data to frequency-domain responses. Then the frequency domain data

are fed into NAVFIT, which is a low-order transfer function fitting tool. This is justified since

the quadrotor model is decoupled and the subsystem dynamicsare assumed to be low order

linear invariant systems.

5.2 Roll Pitch Channel Model Identification

Due to the symmetric structure of of the quadrotor platform,the roll and pitch dynamics share

the same model structure as well as parameters. When the platform is perturbed in the aileron

or elevator channels, the onboard avionics system can record down the responses of roll angleφ

(or pitch angleθ), the corresponding body-frame linear velocitiesv (or u), and the synchronized

control inputsδail (or δele). The ultimate goal is to identify the dynamic model from control

inputs to the body-frame velocities. However, we can dividethis task into two sub-tasks, i.e.,

identify the model from control inputs to attitude angles and identify the model from angles

to velocities. The former part contains information of inner-loop bandwidth and steady-state

gain, while the latter part can be used to connect the outer-loop control outputs to the inner-loop

control references. The details will be explained in the Section 5.5.

Model from Control Input to Attitude Angle

Using NAVFIT in CIFER, the transfer function from the aileron (or elevator) control inputδail

(or δele), to the rollφ (or pitch θ) angle can be well fitted by the following 4th order linear
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Figure 5.3: Response comparison using frequency-sweep input {δail δele} − {φ, θ}

process model:

φ(s)

δail(s)
=

θ(s)

δele(s)
=

9688

s4 + 27.68 s3 + 485.9 s2 + 5691 s + 15750
. (5.1)

It is a transfer function with bandwidth of3.89 rad/s and steady-state gain of0.6151. The fre-

quency response comparison between the identified model andthe real data is shown in Fig. 5.3.

The third sub-plot in the figure shows the coherence value of the frequency domain matching.

At frequencies below 20 rad/s, the coherence value remains above 0.8, indicating that the system

can be well characterized by a linear process in this frequency range.

Time domain verification of the model using a different set ofexperimental data is performed

also. The input signal from the verification data set is fed into the model and its predicted output

is compared with the experimental output. Fig. 5.4 shows themodel performance for a series

of chirp signals, and Fig. 5.5 shows the error difference between the model output and the
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Figure 5.6: Time domain error between model prediction and experiment

experimental output. It can be seen that the error is very small, indicating that the obtained

model is very reliable.

Model from Attitude Angle to Linear Velocity

Using the same approach, the transfer function from rollφ (or pitch θ) angle to the lateral (or

longitudinal) velocity can be obtained by fitting a first order transfer function as below:

v(s)

φ(s)
=
u(s)

θ(s)
=

8.661

s+ 0.09508
. (5.2)

This relationship will be used later in Section 5.5 to connect the inner-loop and outer-loop

control layers. The time domain verification results are shown in Fig. 5.6.

5.3 Yaw Channel Model Identification

Since the inner-loop dynamics in the yaw channel is extremely fast, thanks to the superb per-

formance from Naza-M, the relationship between the rudder input δrud and the yaw rater can

be treated as a static gain. If we consider the outer-layer dynamics in this channel also, then the

transfer function from rudder inputδrud to the yaw angleψ is just an integration of a constant:

ψ(s)

δrud(s)
=

3.372

s
. (5.3)
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Figure 5.7: Time domain comparison of yaw angle between model prediction and experiment

Fig. 5.7 and Fig. 5.8 shows the time domain verification results for both the yaw angle and an-

gular rate. In both figure, the experimental data agrees wellwith that predicted by the identified

model.

5.4 Heave Channel Model Identification

The transfer function from the throttle inputδthr to the body-framez-axis velocityw is identified

as:
w(s)

δthr(s)
= − 13.35

s+ 2.32
. (5.4)

The negative sign is due to the opposite definition of positive direction for the input and output.

When the throttle stick is pushed up, all four motors speed up. The generated force will lift the

UAV platform upwards. However, this upward motion is actually seen as a negative velocity as

defined in thez-axis of the UAV body frame. Fig. 5.9 shows the time domain verification results

for the heave velocity.
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Figure 5.8: Time domain comparison of yaw angular rate between model prediction and exper-
iment
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ment

88



Outer-

loop

Controller

Inner-

loop

Command

Generator

Inner-

loop

Controller

Inner-

layer

Dynamics

Outer-

layer

Dynamics

 

 

 

  

 

 

 

 

 

 

 

 

 

 

,  

Figure 5.10: Control structure of the quadrotor UAV

5.5 Control Law Design

As the platform is already stabilized in the attitude dynamics by the Naza-M controller (see

Inner-loop controllerin Fig. 5.10), only an outer-loop controller (seeOuter-loop controllerin

Fig. 5.10) for position tracking needs to be designed. Here,we adopt a RPT control concept

from [18] and apply it to the outer-loop control of the quadrotor UAV. Theoretically, a system

controlled by this method is able to track any given reference with arbitrarily fast settling time

subjected to disturbances and initial conditions. The basic idea is as follows. For a linear time

invariant system

Σ =























ẋ = Ax +Bu + Ew

y = C1x +D1w

h = C2x +D2u +D22w

, (5.5)

with x,u,w, y,h being the state, control input, disturbance, measurement and controlled output

respectively, the task of RPT controller is to formulate a dynamic measurement control law of

the form

v̇ = Ac(ε)v +Bc(ε)y +G0(ε)r + ...+Gκ−1(ε)r
κ−1,

u = Cc(ε)v +Dc(ε)y +H0(ε)r + ...+Hκ−1(ε)r
κ−1,

so that when an properε∗ > 0 is chosen,

1. The resulted closed-loop system is asymptotically stable subjected to zero reference.

2. If e(t, ε) is the tracking error, then for any initial conditionx0, there exists:

‖e‖p = (
∫∞

0 |e(t)p|dt)1/p → 0, as ε→ 0. (5.6)

For non-zero references, their derivatives are used to generate additional control inputs.

Thus, any reference of the formr(t) = p1t
k + p2t

k−1 + ... + pk+1 are covered in the RPT
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formulation. Furthermore, any references that have a Taylor series expansion att = 0 can also

be tracked using the RPT controller.

Similar to the case introduced in [45], the outer dynamics ofthe quadrotor is differentially

flat. That means all its state variables and inputs can be expressed in terms of algebraic functions

of flat outputs and their derivatives. A proper choice of flat outputs could be

σ = [x, y, z, ψ]T. (5.7)

It can be observed that the first three outputs,x, y, z, are totally independent. In other words,

we can consider the UAV as a mass point with constrained velocity, acceleration, jerk, and so

forth, in the individual axis of the 3-D global frame when designing its outer-loop control law.

Hence, a stand-alone RPT controller based on multiple-layer integrator model in each axis can

be designed to track the position reference in that axis. Forthex-axis or they-axis, the nominal

system can be written as
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un

yn = xn

, (5.8)

wherexn contains the position and velocity state variables andun is the desired acceleration.

To achieve better tracking performance, it is common to include an error integral to en-

sure zero steady-state error subjected to step inputs. Thisrequires an augmented system to be

formulated as
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, (5.9)
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wherexxy =

[

∫

(pe) pr vr ar p v

]T

with pr, vr, ar as the position, velocity and accel-

eration references in the controlled axis,p, v as the actual position and velocity andpe = rp− p

as the tracking error of position. In Fig. 5.10,xx andxy are the respective representation ofxxy

in thex- andy-axis. By following the procedures in [17], an linear feed back control law of the

form below can be acquired,

uxy = Fxyxxy, (5.10)

where

Fxy =

[

kiω
2
n

ε3
ω2
n + 2ζωnki

ε2
2ζωn + ki

ε
1 −ω

2
n + 2ζωnki

ε2
−2ζωn + ki

ε

]

.

Here,ε is a design parameter to adjust the settling time of the closed-loop system.ωn, ζ, ki are

the parameters that determines the desired pole locations of the infinite zero structure of (5.9)

through

pi(s) = (s+ ki)(s
2 + 2ζωns+ ω2

n) (5.11)

Thez-axis control is similar but in a lower-order form. As the inner-loop is directly looking

for velocity reference in this axis, it is straight forward to model the outer loop as a single

integrator from velocity to position, and it leads to the augmented system as
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wherexz =
[

∫

(pe) pr vr p

]T

. This leads to a linear feedback control law of

uz = Fzxz, (5.13)

where

Fz =

[

−ω
2
n

ε

2ωnζ

ε2
1 −2ωnζ

ε2

]

.

Theoretically, when the design parameterε is small enough, the RPT controller can give

arbitrarily fast responses. However, in real life, due to the constraints of the UAV physical

dynamics and its inner-loop bandwidth it is safer to limit the bandwidth of the outer loop to

be one fifth to one third of the controlled inner-loop system.For the case of QuadLion, the

following design parameters are used:

x, y axis :



































ε = 1

ωn = 0.99

ζ = 0.707

ki = 0.25

z axis :























ε = 1

ωn = 0.559

ζ = 2

There is still one problem unsolved. From Fig. 5.10, it can beseen that the output from

the outer-loop controller in physical meaning is the desired accelerations inxy-axis and the

desired velocity inz-axis, both in global frame. However, the inner-loop controller is looking

for attitude references (φr, θr, ψr) and the body-framez-axis velocity reference. A conversion is

needed to link the two control layers together. This leads toanother functional block called the

Inner-loop command generator, in which a rotational conversion from the global frame to the

body frameRb/g is needed and another matrixGc is used to convert the desired acceleration

references to the desired attitude angles. For all quadrotor UAVs,

Gc ≈







0 1/g

−1/g 0






. (5.14)

whereg is the gravitational constant.
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5.6 Flight Test Results

The designed outer-loop control law is coded in C++ and executed by the onboard computer of

the actual quadrotor platform. Both indoor and outdoor flight tests were carried out to verify

the control performance of the closed-loop system. For the indoor flight test, a scenario similar

to that of the coaxial indoor test was carried out. The quadrotor was commanded to hover

in the corner of an indoor hall at 2 meters away from two perpendicular walls in front and

on its left. Fig. 5.11 shows thex, y position logged in the flight test. The overall position

error is obviously smaller than that of the coaxial helicopter and there is no circular motion

observed during the flight, which further confirms that the lateral and longitudinal channels of

the quadrotor dynamics are almost decoupled.

Outdoor flight tests were also carried out with full positionand velocity measurement avail-

able. This test isolates the dependencies of control law design and state estimation. With full

state measurable for the outer loop, the control law can be reliably tested without worrying about

state estimation looping back in to the controller and vice versa. Fig. 5.12 and Fig. 5.13 show

the logged position, velocity and heading during a way pointflight test. The position reference

is a rectangular path in thexy plane, while thez reference keeps constant after issuing the way

point flight command (at aboutt = 110). It can be observed that the quadrotor position and

velocity tracks their corresponding references quite well. The maximum error occurred for the

whole flight was within the safety margin.
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Figure 5.11: Indoor hover flight test for the quadrotor
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Figure 5.12: Waypoint flight test for the quadrotor - Result 1
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Figure 5.13: Waypoint flight test for the quadrotor - Result 2
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Chapter 6

Vision and Laser Based Odometry for

Unknown Indoor Environments

While angle and angular rate measurements required by the UAV inner-loop controller can be

directly provided by the onboard IMU, the outer loop’s position and velocity measurements

need to be estimated indirectly. Since dead reckoning usingIMU acceleration will face severe

drifting problems, information from other sensors must be fused in to cure the divergence and

at the same time, reduce noises. After thorough consideration and review, the best solution goes

to the onboard camera and the laser scanner.

6.1 Visual Odometry

Odometry is the technique of estimating change of position over time by analyzing data from

moving actuators or sensors. Traditional odometry uses information from the movement of ac-

tuators to estimate change in position through devices suchas rotary encoders to measure wheel

rotations. While useful for many wheeled or tracked vehicles, traditional odometry techniques

are difficult to be applied to mobile robots with non-standard locomotion and impossible to be

used on aerial robots. To solve this problem, a new type of odometry, which utilizes computer

vision technology, has been proposed and developed [38, 41]. Due to its flexibility, visual odom-

etry has been used in a wide variety of robotic applications,such as on the Mars Exploration

Rovers. Although odometry will drift in the long run due to its integration nature, accurate data

collection and careful equipment calibration can reduce this error to the minimum and it is a

perfect choice if velocity is the ultimate information required for some special robotic applica-
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Figure 6.1: Relating 2-D motion and 3-D motion

tions.

In the robotics community, when a robot moves in an unknown environment, the SLAM

technique aims to build the map of the environment and localize the robot in the map by analyz-

ing information from inputs and sensor measurements. To solve the same problem in a computer

vision sense, it is called the technique of structure from motion (SFM). In technical terms, SFM

is defined as the method to recover the 3-D rigid transformation (rotation and translation) of a

camera sensor and the 3-D structure of the imaged scene by extracting information from mul-

tiple views of the scene projected in the 2-D images. There are two fundamental problems in

SFM:

1. Correspondence – 2-D motion in the image: Which elements in Frame 1 corresponds to

which elements in the Frame 2.

2. Reconstruction – 3-D motion of the camera: Given a number of correspondences, and

possibly the knowledge of camera’s intrinsic parameters, how to recover the 3-D motion

and structure of the observed world.

Fig. 6.1 illustrates the idea that when a 3-D feature point moves relative to a camera, its projec-

tion on the 2-D image will have a corresponding movement. By looking at this relationship in a

reverse way, if the feature point is static in the 3-D environment, by observing its projected 2-D

motion in the image, the 3-D motion of the camera with respectto this static feature point can

be interpreted. It is important to highlight that the 3-D to 2-D mapping is unique while the 2-D

to 3-D mapping is not, because there is loss of dimension in the process of camera projection.

In consequence, the information of 2-D motion from a single feature point is not sufficient to
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recover 3-D motion of the camera. Intuitively, if the 2-D motion of more than one feature point

can be obtained, then it may be possible to recover the camera3-D motion. In the following

content, solutions to the above two problems will be proposed and implemented by considering

the case of UAV indoor navigation. Unlike the pure vision approaches used by researchers from

the computer vision society, the proposed visual odometry methods in this thesis achieve accu-

rate and real-time performance by fully utilizing resources from the UAV avionic system and

reasonable assumptions about a structured indoor environment.

6.1.1 2-D Optical Flow Computation

There are two prevalent approaches in literature to computethe 2-D optical flow between con-

secutive images:

1. The gradient techniques – to calculate optical flow from spatial and temporal image in-

tensity derivatives;

2. The feature matching techniques – to correspond distinctive feature points among consec-

utive frames.

The gradient techniques [43, 71, 78] are stable and fast in computation but they require assump-

tions like constant ambient illumination and small, continuous motion of the camera sensor.

The feature matching techniques [42, 9] can handle uneven illumination and relatively larger

motion but suffer from scattered outliers and are computationally intensive. Since the motion of

the camera mounted on an indoor UAV should be continuous and slow, and the illumination in

an indoor environment is usually homogeneous, the gradienttechniques are very suitable here.

By further considering the limited computational power on aminiature indoor UAV, the feature

matching techniques will not be chosen for this thesis.

The problem of estimating optical flow requires the knowledge of spatial and temporal im-

age intensity derivatives. Let the grey-level intensity ofa pixel on the image beE(x, y, t). It

is a continuous and differentiable function of space and time. Suppose the brightness pattern is

locally displaced by a distancedx, dy over time perioddt, the intensity of the displaced pixel

should be the same as the original pixel, i.e.

E(x, y, t) = E(x+ dx, y + dy, t+ dt). (6.1)
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In other words, the total derivative ofE w.r.t. time is zero:

dE

dt
= 0, (6.2)

or

δE

δx

dx

dt
+
δE

δy

dy

dt
+
δE

δt
= 0. (6.3)

If we denote

Ex =
δE

δx
,Ey =

δE

δy
, Et =

δE

δt
, vx =

dx

dt
, vy =

dy

dt
,

then the equation can be rewritten as:

Exvx +Eyvy + Et = 0. (6.4)

The above is known as the Brightness Constancy Equation (BCE). It is valid if the intensity

changes on the image pixels are caused by camera motion only.

In BCE,Ex, Ey andEt are measurable, whilevx andvy are the unknown 2-D flows. One

individual BCE is not enough to estimate the 2-D flows. Solutions to this normally involve

considering a small window of adjacent pixels. Among all these solutions, the Lucas & Kanade

algorithm [43] is the most classical and elegant one. It assumes that the motion field at a given

time is constant over a block of pixels. For that particular block of n number of pixels, there are

n BCEs. They form a linear over-determined equation set. Least square estimation can be used

to obtain a reliablevx, vy over that region:
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(6.5)

The above optical flow calculation can be carried out at any pixel locations(x, y) on the

image. However, some locations are more stable and reliablefor the calculation, while others

are not. First of all, if an image region is almost homogeneous, then the values ofEx,Ey,Et are
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Figure 6.2: Aperture problem – the barber pole illusion

near zero. This will result in numerical problems or an unsolvable under-determined equation

set. Second, even if the region is not homogeneous, there is the well-known aperture problem

(see Fig. 6.2). Motion flow is ambiguous when only straight edges are being observed. In

general, corner-like feature points are more suitable to beset as the center of optical flow calcu-

lation. Hence, detection of good feature points needs to be done before optical flow calculation

is carried out at these particular locations.

To implement the 2-D optical flow algorithm, the well-known OpenCV library from Intel

can be used. OpenCV library also provides the ‘goodFeaturesToTrack’ function [71] which is

able to find predefined number of feature points on an image andthese feature points are selected

particularly suitable for the later ‘calcOpticalFlowPyrLK’ function, which calculates the optical

flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids [78]. The

implementation result can be found in Fig. 6.3. In this case,the camera sensor looks vertically

downward on the indoor floor. By examining the flow patterns, the 3-D motion of the camera,

thus also the UAV motion, can be vividly observed. However, it is indeed very complicated to

recover the full 3-D motion from 2-D optical flow in a rigorousway. The following content will

propose two efficient methods to compute the UAV 3-D velocitywith fine accuracy. Method 1

is based on a forward-facing camera which looks at objects atdifferent depths and Method 2 is

based on a downward-facing camera which looks at visual features on the same ground plane.

Both of them have used supplementary information from othersensors on the UAV avionic

system, without which the 2-D to 3-D recover problem is extremely difficult to be solved.

6.1.2 3-D Motion Estimation via Optical Flow - Method 1

Refer to Fig. 6.4, let the camera motion expressed as a translation, T = (Tx, Ty, Tz)
T and a

rotation,Ω = (ωx, ωy, ωz)
T, P is the 3-D position of the observed point in the camera frame,

expressed as(X,Y,Z)T. The equation of perspective projection expressed in the camera frame
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(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

Figure 6.3: The 2-D optical flow implementation result

Figure 6.4: 3-D motion of camera
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is very simple:

x = f · X
Z
, (6.6)

y = f · Y
Z
, (6.7)

wheref is the focal length of the camera, which can be pre-calibrated, and(x, y) represent the

pixel position of the projected point on the 2-D image. Taking derivatives with respect to time

on both sides:

x′ = vx = f(
X ′

Z
− XZ ′

Z2
),

y′ = vy = f(
Y ′

Z
− Y Z ′

Z2
). (6.8)

On the LHS,vx, vy are the 2-D optical flow which has already been obtained. On the RHS,

there areX ′, Y ′, Z ′. If combined together, they represent the 3-D linear velocity of the feature

points w.r.t the camera,V, and

V = −T − Ω× P, (6.9)

or

X ′ = −Tx − ωyZ + ωzY,

Y ′ = −Ty − ωzX + ωxZ,

Z ′ = −Tz − ωxY + ωyX. (6.10)

Substituting (6.10) into (6.8), it can be derived that:

vx =
Tzx− Txf

Z
− ωyf + ωzy +

ωxxy

f
− ωyx

2

f
,

vy =
Tzy − Tyf

Z
− ωxf + ωzx+

ωyxy

f
− ωxy

2

f
. (6.11)

The first term involvingTx, Ty,Tz is related to optical flow caused by translational motion, while

the other terms involvingωx, ωy, ωz are related to optical flow caused by rotational motion. It

can be easily seen that if a set of (Tx, Ty, Tz, Z) satisfy the equation, so does another set

(kTx, kTy, kTz, kZ), wherek is a scale ambiguity between the translational motion and the
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Figure 6.5: Scale ambiguity between translation amount anddepth

feature depth. This scale ambiguity problem is well-known in the computer vision society and

Fig. 6.5 gives a graphical illustration. Another challenging problem here is that the equations

are nonlinear. Simple linear least square methods cannot beapplied directly. Instead, high-

dimensional searching algorithms or iterative methods areneeded which hinder the calculation

to be carried out onboard of the UAV in real time. Fortunately, these two problems only exist

when information despite vision is not allowed to be used. Onthe UAV platforms used for this

indoor navigation project, there are also valuable information from two other sensors, namely

rotational motion (ωx, ωy, ωz) from IMU and feature depth information from the laser range

sensor. If we rearrange (6.11), it becomes

vx − (−ωyf + ωzy +
ωxxy

f
− ωyx

2

f
) =

Tzx− Txf

Z
,

vy − (−ωxf + ωzx+
ωyxy

f
− ωxy

2

f
) =

Tzy − Tyf

Z
, (6.12)

where the LHS terms are all measurable. Let

Vx = vx − (−ωyf + ωzy +
ωxxy

f
− ωyx

2

f
),

Vy = vy − (−ωxf + ωzx+
ωyxy

f
− ωxy

2

f
), (6.13)

then

Tzx− Txf − ZVx = 0,

Tzy − Tyf − ZVy = 0. (6.14)
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Figure 6.6: Measurement correspondence between laser scanner and camera

EliminatingZ,

TzxVy − TxfVy − TzyVx + TyfVx = 0. (6.15)

Forn feature points, the following linear equation set can be formed:
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. (6.16)

Methods like Singular Value Decomposition (SVD) can be usedto solve(Tx, Ty, Tz)T up to the

scalek:
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= k
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(6.17)

Till now, (tx, ty, tz)T can be determined butk is still unknown. To determinek, depth informa-

tion from the observed feature points need to be known. This depth information can be acquired

by including measurements from the laser scanner. Fig. 6.6 shows a scenario when the laser

scanner and the camera both pointing forward. It can be seen that the laser scanner measures

object distances in a fan-shaped 2-D plane, while the camerasees objects in a front-expanding
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3-D space. By projecting the laser scanner’s scanning planeonto the camera image, it actually

forms a horizontal strip roughly at the center of the image. Hence, optical flows calculated

within this strip region will have their corresponding feature depths known via the laser scan-

ner measurements. By using this depth information, we can substitute (6.17) and features with

known depth informationZ back to (6.14) and obtaink in a least square manner. In this way,

the translational motionk × (tx, ty, tz)
T in the camera frame can be obtained. By rotating this

vector from the camera frame to the UAV-carried NED frame, the UAV velocity can be obtained.

Furthermore, by integrating this term, the UAV NED positioncan also be estimated.

Experiments have been carried out to verify the aforementioned visual odometry method.

The UAV platform is held in hand and moved around in an indoor room with a speed of roughly

0.5 m/s. The UAV was given a throttle channel input at trimming value through out the test so

that the rotors were spinning, thus generating a realistic amount of vibrations. After logging all

the sensor data, a C++ program is written to test the performance of the proposed algorithm.

Figs. 6.7–6.18 have shown progressively how the position ofthe UAV has been estimated. For

each figure, the top-left image shows the 2-D optical flows, within which the black circles indi-

cate feature points being used to calculatek, the scale of translation, with the radius of the circle

proportional to the feature depth. The bottom-left image displays laser scanner information,

where objects within 4 meters in the UAV horizontal plane canbe detected. The bottom-right

image displays the estimated position of the UAV in a 2D trajectory manner.

The motion estimation is good except att = 30 s, the direction of motion becomes a bit

erroneous. By analyzing the data, it is found that there is artificial magnetic field at that loca-

tion, which badly affects the yaw measurement from the IMU. This reflects the limitation of

estimating rotational motion of the UAV by IMU only. If algorithms based on laser scanner

and vision can also provide this information, then the estimated results can be fused in, thus

suppressing conditional error from individual sensors. Another problem of this kind of dead-

reckoning algorithms is a position drift. For the experiment mentioned just now, although the

UAV has physically come back to its initial position, the estimated path does not precisely close

the loop. In fact, if only motion between consecutive framescan be estimated, pure integration

always results in position drift in practice. However, if the 3-D positions of a few strong fea-

ture points or landmarks can be remembered, thus recognizedwhen they re-enter the camera

view, then this drift can be compensated. It is generally called the loop closuretechnique in

vision-based SLAM.
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Figure 6.7: Localization result att = 5.0 s

Figure 6.8: Localization result att = 8.1 s
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Figure 6.9: Localization result att = 11.7 s

Figure 6.10: Localization result att = 13.8 s
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Figure 6.11: Localization result att = 16.8 s

Figure 6.12: Localization result att = 21.1 s
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Figure 6.13: Localization result att = 25.0 s

Figure 6.14: Localization result att = 31.5 s
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Figure 6.15: Localization result att = 34.8 s

Figure 6.16: Localization result att = 38.1 s
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Figure 6.17: Localization result att = 40.8 s

Figure 6.18: Localization result att = 42.6 s
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6.1.3 3-D Motion Estimation via Optical Flow - Method 2

The aforementioned 3-D motion estimation method via a forward-facing camera has two practi-

cal issues. First, the correspondence between the laser range information and the depth of visual

features may not be exactly matched if the relative pose between the laser scanner and the cam-

era are not carefully calibrated. In fact, it is practicallydifficult to do so unless an innovative

calibration method can be invented. In this work, the relative pose between the two sensors is

roughly obtained by ruler measurement, which may has resulted in additional inaccuracy for the

estimated 3D motion. Second, while a forward-facing cameraworks well to estimate the UAV

velocity in the body-framey andz directions, it may have poorer performance in thex direction

due to numerical issues (x direction is where the camera is facing towards). By considering

the fact that thez direction position and velocity information can be accurately acquired by

other sensors, such as a barometer, a sonar or a laser scanner, it is more preferable to mount the

camera facing vertically downwards so that the UAVx andy direction velocities can be better

estimated. This configuration also takes great advantages from the assumption that the floor of

an indoor environment is usually flat and vision algorithms involving feature points on the same

plane can be largely simplified, thus easier to be implemented onboard.

Having said so, a neater method is proposed to estimate the UAV 3-D motion with the

camera facing downward. As the indoor ground is usually flat,all observed visual features can

be assumed to be co-planar in the 3-D space. Then an importantconcept calledhomography

can be exploited.Homographyis a term in computer vision to describe the linear position

relationship between co-planar feature points projected onto two different 2-D images. Suppose

a downward-facing camera on the UAV takes image of the groundduring flight. Given two

consecutive images taken at timet1 andt2, the corresponding visual features’ pixel positions in

the 1st and 2nd images are theoretically related by a3 by 3 matrixH, provided that the image

scene all belong to the same plane [44].H is called thehomographymatrix.

This homographymatrix carries valuable information about the UAV motion from t1 to t2.

If R andT are the inter-frame rotation and translation of the UAV fromt1 to t2, N is the

unit-length normal vector of the ground plane resolved in the camera frame att1, andd is the

UAV altitude with respect to the ground plane, then the homography matrixH can be expresses

as [32]:

H = R+
1

d
TNT (6.18)
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The decomposition ofH intoR, T andN is doable but quite complicated and it usually results

in large numerical errors in practice. Fortunately,R, N, d are known in our case since the IMU

sensor can provide Euler angle estimation at every moment and the altitude of the camera with

respect to the ground plane can be obtained via barometer or range sensors. If we have UAV

attitude anglesφ1, θ1, ψ1 at t1 andφ2, θ2, ψ2 at t2, then

N =













− sin θ1

sinφ1 cos θ1

cosφ1 cos θ1













(6.19)

and

R = Rb/n(t2)Rn/b(t1) (6.20)

whereRb/n is the rotational matrix to convert 3-D points from the inertia frame to the UAV

body frame andRn/b is vice versa and they are transpose of each other. Hence, with H, R, d

andN known, the translational motion,T can be calculated as:

T = d(H−R)N (6.21)

As mentioned previously, indoor UAV height measurement canbe obtained via various

choices of sensors. Here we briefly discuss one of the methodswhich is based on the barom-

eter. When a reference pressureP0 (the pressure measured right before taking off) is selected,

then thez direction position of the UAV at any moment after can be calculated by the following

formula:

zg = −44307

[

1−
(

P

P0

)0.1902
]

, (6.22)

whereP is the current pressure measured by the barometer in Pascal.Although more accurate

altitude measurement can be obtained by using a second laserscanner, which will be discussed

in Chapter 9, the implementation result presented at the endof this chapter is based on the

barometer-only setup. If substituted by more accurate height measurement, the result is expected

to be even better.

Although visual odometry can be obtained via the above two methods, their raw estima-

tion results have problems including low update rate, relatively large noise, and more severely,

112



outliers. Fusion with IMU acceleration will largely solve the problems and provide a smoother

velocity and position estimation which is needed for appropriate flight control implementation.

To fuse these information, Kalman filter is one of the best choices. The next section will discuss

how to apply Kalman filter to fuse the visual odometry result from Method 2 together with IMU

measurements. The same concept can be applied to visual odometry from Method 1 or other

kind of velocity or position estimations.

6.1.4 Fusion with IMU Data via Kalman Filter

The Kalman filter framework describes a discrete-time linear system as follows,

x(k + 1) = Ax(k) +B(u(k) +w(k)),

y(k) = Cx(k) + v(k), (6.23)

wherex, u andy are the state, input and measurement vectors respectively.A, B, C are system

matrices with appropriate dimensions.w andv are input and measurement noises, which are

assumed to be Gaussian with zero means and covariance matricesQ andR respectively. The

main objective of Kalman filter is to estimatêx(k|k) at the time stepk with the measurement

y(k), inputu(k−1) and the previously estimated statex̂(k|k−1). If system 6.23 is observable,

then the statistically optimal estimator is given as follows,

Time Update:

x̂(k|k − 1) = Ax̂(k − 1) +Bu(k − 1), (6.24)

P(k|k − 1) = AP(k − 1)AT +BQBT, (6.25)

Measurement Update:

H(k) = P(k|k − 1)CT(CP(k|k − 1)CT +R)−1, (6.26)

x̂(k) = x̂(k|k − 1) +H(k)(y(k) −Cx̂(k|k − 1), (6.27)

P(k) = (I−H(k)C)P(k|k − 1), (6.28)

whereH(k|k − 1) is a feedback gain matrix andP(k|k − 1) is the covariance of the state
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estimation error that is defined as

P(k|k − 1) = E[x(k) − x̂(k|k − 1)][x(k) − x̂(k|k − 1)]T, (6.29)

R(k) = E{v(k)vT(k)}, (6.30)

Q(k) = E{w(k)wT(k)}. (6.31)

Here,E{∗} denotes expectation.

To apply Kalman filter in this indoor UAV state estimation problem, the motion model and

the measurement model need to be first defined, namely the state vectorx, input vectoru,

measurement vectory and theA, B, C system matrices. For the motion model, the simple

point mass kinematics model can be used, where in NED or ground frame, position can be

integrated by velocity and velocity can be integrated by acceleration. Hence,

x =

[

xg yg zg ug vg wg

]T

,

u =

[

axg ayg azg

]T

,

y =

[

zg ug vg

]T

,

wherexg, yg, zg are the NED position coordinates,ug, vg, wg are the NED velocity elements,

andaxg, ayg, azg are the NED acceleration elements. Furthermore,

A =

































1 0 0 0.02 0 0

0 1 0 0 0.02 0

0 0 1 0 0 0.02

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

































,
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B =

































0.005 0 0

0 0.005 0

0 0 0.005

0.02 0 0

0 0.02 0

0 0 0.02

































,

C =













0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0













.

While the above have been numerically defined, the input noise matrixQ and the measure-

ment noise matrixR, being both positive definite and diagonal, can be selected by logging real

flight test data; the diagonal elements inQ represent the acceleration measurement noises and

the diagonal elements inR represent the noises of height measurement and velocity estimation

from visual odometry.

In theory, the above method can be applied to any indoor UAV platform equipped with an

IMU sensor and a camera. However, the performance depends onthe quality of sensors and

the computation power of the onboard processors. Unfortunately, the coaxial platform, being

payload restricted, is carrying an ArduIMU with poor measurement accuracy and its vision com-

puter is a 720 MHz Gumstix Overo Fire, which can merely execute a real-time (10 Hz) optical

flow algorithm at about 40× 30 pixel resolution. At such low pixel resolution, the velocity mea-

surements are too noisy to be used. As such, the aforementioned algorithms are implemented

on the quadrotor platform instead. The quadrotor platform is equipped with a high-performance

IG-500N IMU sensor and its vision system constitutes a Firefly FMVU-03MTM/C-CS USB

camera and a relatively powerful fit-PC2 computer. The vision algorithm implemented onboard

runs at 10 Hz based on a 320× 240 resolution image. The control computer keeps sending UAV

roll, pitch, yaw, altitude to the vision computer and the vision computer, through optical flow

computation, sends back the computed linear velocity to thecontrol computer. A Kalman filter

runs in the control computer by taking in all the informationfrom IMU’s acceleration, vision’s

velocity and pressure sensor’s altitude.

Experiments have been carried out to verify the performanceof this state estimation method.

First, the UAV is manually flied with a sequence of actions including taking-off, flying forward,
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Figure 6.19: The estimated NED-framex, y-axis positions

flying backward and landing. The furthest point to the take-off point is 15 meters away in

distance. Fig. 6.19 shows the estimated 2-D position of the UAV, which illustrates the forward

and backward paths almost coincide. For the same experiment, Fig. 6.20 and Fig. 6.21 show the

estimated 2-D velocities against time. Although there is noground truth to be compared with,

the signals are all smooth and reasonable.

116



120 130 140 150 160 170 180 190 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u 
(m

/s
)

time (s)

Figure 6.20: The estimated body-framex-axis velocity
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Figure 6.21: The estimated body-framey-axis velocity
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Figure 6.22: Thex-axis references and actual values in m or m/s

To further confirm the performance of the proposed visual odometry and data fusion method,

an autonomous hover test via the estimated position and velocity feedback is carried out. For the

whole time duration, fromt = 100s to t = 150s, the UAV is commanded to hold its position

based on the estimated position and velocity. A few intentional disturbances are given to the

UAV to see how it recovers (see Figs. 6.22–6.25). The outer-loop position and velocity tracking

performance is illustrated in Figs. 6.26–6.29. According to human observation from various

angles, the position drift is almost zero and the overall flight performance is very stable.
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Figure 6.23: They-axis references and actual values in m or m/s
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Figure 6.24: Thez-axis references and actual values in m or m/s
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Figure 6.26: Quadrotor position hold via optical flow (Moment 1)
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Figure 6.27: Quadrotor position hold via optical flow (Moment 2)

Figure 6.28: Quadrotor position hold via optical flow (Moment 3)
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Figure 6.29: Quadrotor position hold via optical flow (Moment 4)

6.2 Laser Odometry

Similar to the visual odometry case, algorithms based on measurements from laser scanner can

also be developed to provide UAV inter-frame motion estimation by comparing consecutive

laser scans. In this chapter, the iterative closest point algorithm (ICP) will be explored and used

as another odometry information for the indoor UAV.

The ICP algorithm is a method of fitting points in a target frame to points in a control frame

by rigid transformation (rotation and translation) [3]. The ultimate goal of the algorithm is to

minimize the sum of squared errors with respect to the targetpoints and their corresponding

closest control points. An initial coarse estimate of motion is needed to align the target points

and control points roughly. The basic component of the algorithm calculates the smallest dis-

tance between each point in the target image to a point in the control image. These calculated

points are then used to form a translational vector and a rotational matrix that is applied over all

points in the target image to adjust them towards the controlimage. This processes is repeated

numerous times, thus an iterative algorithm, with the end result being a target image with points

that are within a specified squared error distance of their corresponding points in the control

image.

The ICP algorithm is a very appropriate technique that can beused on laser scanner data.

As the laser scanner acquires indoor object points in a 2-D plane, consecutive scans can be

compared to compute an accurate 2-D motion of the UAV. By accumulating this 2-D motion
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Figure 6.30: Using ICP for SLAM

frame by frame, the 2-D position of the UAV with respect to itsinitial position can be obtained

also. On the other hand, if we assume that the estimated position is correct, then all frames of

the laser-scanned points can be transformed back to the initial frame, and the map of the indoor

environment can be generated. The basic idea is illustratedin Fig. 6.30. The four sub-plots in

the upper portion of the figure represent four frames of laserscanner data. By the ICP algorithm,

the position and orientation of the UAV can be estimated for each instance, and the map of the

indoor environment can be gradually generated. Again, the laser scanner based ICP algorithm

is odometry (integration) based. Hence, the estimated position will drift in the long run and the

generated map will be inconsistent thereafter.

6.2.1 Assumptions and Issues

There are several assumptions and issues need to be stated before the algorithm itself is ex-

plained. Some of the issues are unavoidable in general indoor navigation cases and some of

them can be caused by hardware limitations of sensors. However, they usually result in mi-

nor inaccuracies in the final result or are subject to specialconditions which rarely happen in a

normal indoor environment.
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Unique 2-D Plane Assumption

To apply the scan matching algorithm, the measurements fromdifferent frames of laser scan are

assumed to be in the same 2-D plane, which means the UAV is at a constant height with zero

roll and pitch angles. In practice, there is always minor error in the UAV height control and

small deflections in the roll and pitch motion, even when the UAV is at a near-hover condition.

To correct the roll and pitch offsets, each scanned point needs to be compensated individually

according to their different radial directions and the roll-pitch angles at that particular moment.

However, the roll and pitch measurements can be noisy if a low-cost IMU is used and the

compensation may not be very accurate. In addition, it must be further assumed that all scanned

objects are vertically homogeneous, such as walls, poles and other vertically structured objects.

Fortunately, it is usually the case in a man-made indoor environment.

Overlap Assumption

For the ICP algorithm to function properly, there must be enough overlap between the two

consecutive laser scans. When the algorithm tries to match all the target points to the control

points, it is best if all the matching pair physically exists. This assumption can be valid if the

UAV cruising speed does not exceed certain threshold and thescanning frequency of the laser

scanner is fast enough. For the case of UAV indoor navigation, since the UAV cruising speed

can be controlled and update frequency of the Hokuyo laser scanner is fast enough (10 Hz or

above), this overlap assumption can be always met.

Limited Range Issue

Two laser scanners with different range limits can be used for this research work. The 30 m

UTM-30LX should have sufficient measurement range for all kinds of indoor environments,

while the 4 m URG-04LX may not be sufficient for a few cases. In order to have sufficient

number of scanned points, there have to be natural objects like walls, pillars in the range of laser

sensor while the UAV flies. Hence, if the 4 m laser scanner is used, this laser-scanner-based

ICP is only applicable to small classrooms or lab rooms, but not for the large-scale halls or

auditoriums. However, the 30 m laser scanner on the quadrotor UAV literally has no such issue.
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Degenerate Cases

Except for the cases when all object distances exceed the measurement range, the algorithm will

also fail when the UAV surroundings are too simple. For example, only a single straight line is

detected by the laser scanner. This happens when the UAV fliesforward along a wall on its left

side but the front wall has not come into range yet. For such cases, the two consecutive laser

scanner data will be nearly the same and the forward motion ofthe UAV cannot be distinguished.

Initial Estimation

It is important that an initial guess for the transformationthat maps the target points to the control

points is known so that ICP can applied with better performance. There are two approaches if

a high-end laser scanner is used. One is to assume that every pair of consecutive scans are

already close enough. So the initial guess is zero rotation and zero translation. By executing

the algorithm with large number of iterations, the solutionhopefully converges to the global

optimum. The second approach is to obtain a rough estimationof the motion between two

frames by other sensors, such as the rotational motion from the IMU sensor and translational

motion from the visual odometry. The first approach may consume greater computational power

because of more iterations while the second approach is prone to measurement noises from the

other sensor source and sensor synchronization needs to be ensured. As of writing, only the first

approach has been successfully implemented.

6.2.2 The ICP Algorithm

Fig. 6.31 has shown the procedures of a standard ICP algorithm. The algorithm starts by ini-

tializing the coarse transformation (alignment) and an infinitely large error. Then it calculates

the point correspondences between the target frame and the control frame using the nearest

neighbor rule. Based on the obtained correspondence, the optimal transformation can be found

and applied to the target frame. If the alignment error is smaller than a pre-defined threshold,

then the algorithm stops. Else, it iterates back to theCalculate correspondencestep, followed

by re-calculation of the alignment. While other steps are straight forward, theCalculate cor-

respondenceandCalculate alignmentsteps deserve extra explanation as they rely on vigorous

mathematical derivations. The following contents will thus explain these two steps in detail and

the formulations are based on a general 3-D point cloud case.To apply it to the case of 2-D
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Initialize error and alignment

Figure 6.31: Procedures of the ICP algorithm

laser scanner, the third dimension of all input points can beset to zero and only thex-y-plane

translation and rotation is to be extracted from the result.

Correspondence Calculation

This step aims to find the point matching pairs between the target frame and the control frame

based on the nearest neighbor rule. The distance between twopoints in the 3-D space can be

calculated as

di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (6.32)

where(xi, yi, zi) is a point in the target frame and(xj , yj, zj) is a point in the control frame.

This calculation needs to be performed for each valid point in the target frame against all points

in the control frame. Among all points in the control frame, the one produces the smallest

value for this calculation is stored as the closest point forthe current point in the target model,

and then an associationai,j is created. However, a naive implementation of this step will be

computationally intensive despite its logic simplicity. To make it less time consuming, data

structures favoring efficient searching, such as the K-D tree [11], can be used.

Alignment Calculation

Let P = {pi|i = 1, 2, ..., n} andQ = {qi|i = 1, 2, ..., n} be the matched target points and the

corresponding control points respectively. It is desired to find a rigid body transformation that
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optimally aligns the two sets of points in the least squares sense, i.e., to seek a rotational matrix

R and a translational vectort such that

(R, t) = arg min
n
∑

i=1

ωi||(Rpi + t)− qi||2, (6.33)

wherewi > 0 is a weighting factor for each point pair.

Computing Translational Vector

AssumeR is fixed and denoteF (t) =
∑n

i=1 ωi||(Rpi + t)− qi||2. The optimal translation can

be found by taking the derivative ofF w.r.t t and searching for its roots:

0 =
∂F

∂t
=

n
∑

i=1

2wi(Rpi + t− qi)

= 2t(
n
∑

i=1

wi) + 2R(
n
∑

i=1

wipi)− 2
n
∑

i=1

wiqi. (6.34)

If we define

p̄ =

∑n
i=1wipi

∑n
i=1 wi

, q̄ =

∑n
i=1wiqi

∑n
i=1wi

, (6.35)

by rearranging the terms in (6.34), one can get

t = q̄ −Rp̄ (6.36)

In physical meanings, the optimal translationt maps the transformed weighted centroid ofP to

the weighted centroid ofQ. Now substitute the optimalt back into the objective function:

n
∑

i=1

ωi||(Rpi + t)− qi||2 =

n
∑

i=1

wi||Rpi + q̄ −Rp̄− qi||2

=
n
∑

i=1

wi||R(pi − p̄)− (qi − q̄)||2 (6.37)

If we redefine the terms as follows:

xi := pi − p̄ , yi := qi − q̄ (6.38)
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then it is equivalent to seek for the optimal rotational matrix R such that

R = arg min
n
∑

i=1

wi||Rxi − yi||2 (6.39)

Computing Rotational Matrix

Expand the expression of a part of the objective function derived above:

||Rxi − yi||2 = (Rxi − yi)
T(Rxi − yi)

= (xT
i R

T − yT
i )(Rxi − yi)

= xT
iR

TRxi − yT
i Rxi − xT

i R
Tyi + yT

i yi

= xT
i − yT

i Rxi − xT
i R

Tyi + yT
i yi

= xT
i − 2yT

i Rxi + yT
i yi (6.40)

Throwing away the two terms not related toR, minimizing the objective expression is equivalent

to maximizing another simplified expression:

arg min(−2

n
∑

i=1

wiy
T
i Rxi) = arg max

n
∑

i=1

wiy
T
i Rxi (6.41)

Note that

n
∑

i=1

wiy
T
i Rxi = tr(WY TRX) (6.42)

whereW = diag(w1, ..., wn) is ann × n diagonal matrix;Y is a3 × n matrix with yi as its

columns andX is a3 × n matrix withxi as its columns. Therefore, a rotational matrixR that

maximizes tr(WY TRx) needs to be found. By using the property of tr(AB) = tr(BA), we

have

tr(WY TRX) = tr(RXWY T). (6.43)

Let S = XWY T and take singular value decomposition (SVD) ofS:

S = XWY T = UΣV T. (6.44)
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Then,

tr(RXWY T) = tr(RS) = tr(RUΣV T) = tr(ΣV TRU) (6.45)

Note thatV ,R andU are all orthogonal matrices, soM = V TRU is also an orthogonal matrix.

This means all entriesmij of M are smaller or equal to 1 in magnitude. Also note thatΣ is a

diagonal matrix with non-negative valuesσ1, σ2, σ3 > 0 on the diagonal. So:

tr(ΣM) =













σ1 0 0

0 σ2 0

0 0 σ3

























m11 m12 m13

m21 m22 m23

m31 m32 m33













=

3
∑

i=1

σimii 6

3
∑

i=1

σi (6.46)

Therefore, the trace is maximized ifmii = 1, which meansM is the identity matrix:

I =M = V TRU, (6.47)

which leads to:

V = RU and R = V UT. (6.48)

One issue with this method is the ambiguity between rotationand reflection. If the det(V UT) =

−1, the calculatedR matrix is actually a reflection. For the case of pure rotation, det(V UT)

should be 1. So when det(V UT) = −1, the next best alternative, which is a local maxima,

needs to be found. If we look at the trace again, it is a function ofM ’s diagonal values:

tr(ΣM) = f(m11,m22,m33) = σ1m11 + σ2m22 + σ3m33 (6.49)

By consideringmii’s as variables, the domain of(m11,m22,m33) is a subset of[−1, 1]3. The

functionf is linear in themii’s, thus it attains its extrema on the boundary of the domain.Since

the domain here is rectilinear, the extrema will be attainedat the vertices(±1,±1,±1). After

(1, 1, 1) has been ruled out (it is a reflection), the next best alternative is (1, 1,−1):

tr(ΣM) = σ1 + σ2 − σ3 (6.50)
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Figure 6.32: ICP result from simulation

To summarize, we can write a general formula that encompasses both cases, namelydet(V UT) =

1 anddet(V UT) = −1:

R = V













1 0 0

0 1 0

0 0 det(V UT)













UT (6.51)

6.2.3 Simulation and Flight Test Results

This ICP algorithm has been firstly off-line implemented in MATLAB. The estimated UAV

location (the track starting from the origin) and the generated map (the boundary) are shown in

Fig. 6.32. Actual flight tests are also conducted with the same algorithm running onboard. The

mapping and localization result is displayed on the GCS, andFig. 6.33 is a screen capture. It

can be seen that the indoor walls become thicker after the whole flight test, indicating a small

drift of the estimated position.
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Figure 6.33: ICP result for a real flight test
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Chapter 7

Path Planning Based on Local Laser

Information

7.1 Background and Motivation

Path planning has been extensively studied in the robotics community. The general definition of

path planning is to find a collision-free path in a known or unknown environment with static or

dynamic obstacles. The traditional path planning algorithms can be categorized into three types,

namely the road map methods, the cell decomposition methodsand the potential field methods.

The road map approaches, e.g. visibility diagram [79] and Voronoi diagram [4], attempt

to form a network connecting the current robot configurationto the destination configuration

in all possible intermediate configurations. Then the path planning problem can be reduced

to a searching problem in this configuration network for predefined optimum cost functions.

Although optimal, this kind of method usually needs the fullglobal information and its bundled

calculation nature inherently limits its application to only off-line implementations.

The cell decomposition approaches have been widely used andare based on the concept of

decomposing the set of free configurations into non-overlapping regions called ‘cells’, eg. [39]

and [33]. The adjacency relationship of these cells is then represented in a ‘connectivity graph’,

which will be searched for a path. The problem of this method is that all the cells and the

connectivity graph must be constructed before the path searching algorithm takes place, and

the amount of this pre-processing computation grows exponentially with the dimension of the

configuration.

The potential field approaches, eg. [84] and [8], normally employ repulsive fields around
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obstacles and an attractive field around the goal. The gradient of the resultant potentials will

guide the controlled robot to move towards the goal while avoiding obstacles in a natural way.

One major drawback of these potential field methods is that there usually exists local minimums

to the resultant potential fields which may trap the robot at that point infinitely. However, by

manipulating the ‘goal’ or doing special case decisions, the local minimum problem can be

largely avoided in practical situations. One good feature about this method is that it can be

implemented in a way that only local information is needed, i.e. without knowing the global

map.

For the first two approaches, the path planning problems are solved based on the assump-

tions of a known map and known UAV states. That means the SLAM problem, which will

be discussed in Chapter 8, needs to be solved first if there is no global information about the

UAV position and the indoor map. However, the indoor SLAM problem itself is very chal-

lenging, and implementing a high-performance SLAM algorithm onboard of the indoor UAV

is extremely difficult. Hence in this chapter, we seek for a potential field based path planning

algorithm which only relies on local map information, yet still be able to guide the UAV to fly in

an indoor environment without collisions. It is definitely not the ultimate solution, but reason-

able enough for UAVs equipped with a laser scanner to carry out autonomous exploration in a

relatively clean indoor room. In addition, because of its simplicity, the proposed path planning

algorithm can be easily realized onboard of the indoor UAV inreal time.

7.2 Local Wall Following Strategies

In this section, a UAV wall following path planning solutionthat only relies on local laser scan-

ner measurements, i.e. no global map or self-location information is needed, is proposed. It is

a fairly universal strategy for indoor environments enclosed by vertical walls. Like many other

local-map path planning methods, this algorithm utilizes the concept of the artificial potential

field. All measurements from the laser scanner are treated asobstacles and they exert a repulsive

force on the UAV. Besides, to let the UAV keeps moving forward, there is a constant attractive

force coming from a virtual target two meters ahead from the UAV body. If the UAV is com-

manded to follow the wall on its left, then this virtual target is placed at the left-front of the UAV

heading. If the the UAV is commanded to follow the wall on its right, then the target is placed
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at the right-front of the UAV heading. The followings are theformulation:

F = Fatt − Frep (7.1)

where

Fatt = e
−

|T|2

2σ2
1 T (7.2)

and

Frep =

n2
∑

k=n1

e
−

|W(k)|2

2σ2
2

W(k)

σ2K
(7.3)

F is the resultant force of the artificial potential field, withFatt being the attractive force gener-

ated by the virtual target andFrep being the repulsive force generated by the wall obstacles.T

andW(k) are unit vectors pointing towards the virtual target and thescanned points from the

UAV CG respectively.σ1 andσ2 represent the stiffness of the Gaussian-shaped potential fields

which can be tuned for different indoor situations. In (7.3), all laser scanner measurements in-

dexed fromn1 to n2 will be examined one by one. Invalid measurements, such as out-of-range

data, will be dropped, andK is the total number of valid measurements afterwards.

AlthoughF a virtual force, it can be interpreted as other physical entities in practice. In this

implementation, we let the UAV 2-D velocity reference be proportional toF, and by integration,

it also forms the 2-D position reference. For thez direction, the UAV is ordered to maintain

a predefined height with respect to the flat indoor floor. In addition, to determine the UAV

heading reference, another algorithm is running at the sametime to determine the UAV yaw

angle reference at every time step, and it runs as follows:

1. If the UAV is to fly along the left side wall, omit the scannedpoints on the right side. If

the UAV is to fly along the right side wall, omit the scanned points on the left side.

2. For all remaining scanned points, calculate the best straight line fit via least square opti-

mization.

3. The UAV heading reference can be generated by deviating from the currently measured

heading by a fractionα% of the difference between the fitted line gradient and the current

heading (α needs to be tuned for UAVs with different yaw dynamics).
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7.3 Simulation and Flight Test Results

By combining the potential field algorithm with the line fitting algorithm, the UAV outer-loop

references can be comprehensively calculated. Before carrying out the actual flight tests, a

MATLAB program is written to simulate the performance of this algorithm. A virtual map and

a virtual laser scanner sensor, both to real-life scale, arecoded for the purpose of navigation

simulation. The dynamic model of the indoor UAV under closed-loop control is also integrated

to make the simulation result more realistic. In Fig. 7.1, the sub-figure on the left is the global

view of the indoor environment, which includes the walls, pillars and the UAV position and

heading information. The sub-figure on the right shows the laser scanner measurements in the

UAV body frame. The control reference to the UAV are purely calculated from the information

from the right sub-figure, while the contents in the left sub-figure are only for display purposes

and not available to the navigation algorithm.

The simulation results are shown in Figs. 7.1–7.6. This time, the virtual UAV is commanded

to follow the wall on its left. The parameter configuration ofpath planning algorithm is:























σ1 = 2,

σ2 = 1,

α = 5.

(7.4)

The same algorithm has been implemented on the UAV onboard system and actual flight

tests have been carried out. The quadrotor platform, equipped with the 30 m’s Hokuyo laser

scanner, has performed an autonomous wall following flight in an indoor hall successfully. In

this implementation, the position and velocity of the UAV are mainly obtained by visual odom-

etry mentioned in Chapter 6. Figs. 7.7–7.14 sequentially show 8 instances of the flight, with the

left sub-figure showing the physical flying condition and theright sub-figure showing the local

laser scanner data. From the figures, one can observe that theUAV follows the initial wall on

its left and then encounters and avoids a pillar and a protruding corner in the indoor hall. At the

final stage of the flight, the UAV has started to follow the second long wall. If it continues, the

UAV should be able to finish navigating through the whole indoor hall.
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Figure 7.1: Wall-following strategy simulation result 1

Figure 7.2: Wall-following strategy simulation result 2

Figure 7.3: Wall-following strategy simulation result 3
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Figure 7.4: Wall-following strategy simulation result 4

Figure 7.5: Wall-following strategy simulation result 5

Figure 7.6: Wall-following strategy simulation result 6
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Figure 7.7: Wall-following flight test: hover and get prepared
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Figure 7.8: Wall-following flight test: start moving forward
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Figure 7.9: Wall-following flight test: avoid a pillar
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Figure 7.10: Wall-following flight test: fly back to wall
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Figure 7.11: Wall-following flight test: encounter a frontal wall
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Figure 7.12: Wall-following flight test: go around the corners
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Figure 7.13: Wall-following flight test: encounter the 2nd frontal wall
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Figure 7.14: Wall-following flight test: start following a new wall

139



Chapter 8

Laser SLAM for Unknown Indoor

Environments

The previous chapter has proposed methods to estimate UAV velocity by analyzing inter-frame

visual images and inter-frame laser scanner measurements.Although position information can

be estimated thereafter by dead reckoning, it will face the drifting problem eventually. To obtain

better estimation of the UAV position, the SLAM technique has to be considered. Moreover,

SLAM is not only for UAV localizing, it also produces a map of the environment, which is

essential for most indoor UAV applications and it is the foundation for UAV autonomous path

planning.

In literature, there are three prominent approaches in solving the SLAM problem. The first

and also the most classical one is the Kalman filter (KF) basedSLAM, which also includes its

variants such as the Extended Kalman filter (EKF) and the Unscented Kalman filter (UKF). The

next type of SLAM is based on the Particle filter concept. The most representative example

is the FastSLAM. Last but not least, is the Graph-based SLAM in which a graph with nodes

and edges representing the robot poses and the inter-pose constraints need to be constructed and

solved by optimization techniques. In this work, the first two approaches will be explored with

special attention given to a customized FastSLAM algorithm. The Graph-based SLAM has not

been explored in this thesis. However, it is definitely another promising direction to achieve

robust and accurate indoor SLAM which deserves in-depth investigation for future studies.

In addition, this chapter tries to solve the UAV indoor SLAM problem by focusing on the

measurements from a 2-D scanning laser range finder. Due to its measurement nature, the

result after applying the SLAM algorithm is also 2-D, or pseudo-3-D if necessary assumptions
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about the 3-D indoor environment can be made. Nevertheless,the discussed ideas and concepts

are possible to be extended to the 3-D case if 3-D laser scanners or stereo cameras are used.

However, the difficulty level of real-time onboard implementation will increase drastically due

to computational constraints and the releasing of essential assumptions.

8.1 General SLAM Problems

In the robotics community,mappingis the task of modeling the environment surrounding the

robot, which includes position and orientation of landmarkfeatures, whilelocalizationis to esti-

mate the pose of the robot inside the map. It is not difficult tosolve either of them if the informa-

tion from the other is known. However, if the map of the environment and the robot’s pose are

both unknown, these two problems tangle together and will result in an intractablechicken-or-

eggproblem and people usually call it the SLAM problem. The followings will mathematically

define a general SLAM problem. It should be also noted that theSLAM technique is not only

useful for indoor navigation, but also widely used for outdoor, undersea, underground and space

applications.

Let the pose of the robot at timet be denoted byst and the complete trajectory of the robot

denoted asst. Then,

st = {s1, s2, . . . , st}. (8.1)

Assume that the environment consists of a set ofN immobile landmarks. The set ofN landmark

locations will be written as{θ1, θ2, . . . , θN}. For notation simplicity, the whole map will be

written asΘ.

As the robot moves through the environment, it collects relative information about its own

motion. This information can be obtained using odometers attached to the wheels of a ground

robot, dead reckoning by readings from the inertia measurement unit, or simply observing the

control commands executed by the robot. Regardless of theirorigins, all these motion informa-

tion is referred to as a control in general. The control at time t will be written asut. The set of

all control executed by the robot is written asut. So

ut = {u1, u2, . . . , ut}. (8.2)

As the robot moves through the environment, it also observesits nearby landmarks. The
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observation at timet is zt and the set of all observations collected by the robot iszt. So

zt = {z1, z2, . . . , zt}. (8.3)

In the SLAM literature, it is sometimes assumed that the observation of one landmarkθn is

distinctive enough to be differentiated from other landmarks. The variablen represents the

identity of the landmark being observed. In practice, the identity of the landmarks usually

cannot be guaranteed and this poses a big problem to all SLAM implementations. Here, we

first assume that the landmark identities are known. This assumption will be released and the

solutions to it will be discussed in Section 8.3. Let the identity of the landmark corresponding

to the observationzt be denoted asnt, wherent ∈ {1, . . . , N}. The set of all data associations

is writtennt. So

nt = {n1, n2, . . . , nt}. (8.4)

Using the notation defined above, the primary goal of a full SLAM problem is to recover

the whole history of the robot posest and the mapΘ, given the set of noisy controlsut and

observationszt. In formal probabilistic notation, this is expressed as,

p(st,Θ|zt, ut, nt). (8.5)

However, the above posterior is rather complicated. Commonrobotics applications only need

the current robot pose to be estimated, thus making the computation trackable and possibly

real-time. Hence, instead of estimating (8.5), we need to only compute

p(st,Θ|zt, ut, nt). (8.6)

A graphical overview of the SLAM problem is illustrated in Fig. 8.1. To solve the SLAM

problem, themotion model(see Fig. 8.2) of the robot and themeasurement model(see Fig. 8.3)

of the sensor are needed. For the motion model, it is a representation of the robot’s current state

by examining its previous state and the current control input, which is

p(st|st−1, ut). (8.7)

For the measurement model, it is the observation or sensor model relates measurement with the
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Figure 8.1: Graphical model of the SLAM problem

Figure 8.2: Motion model of a robot

robot’s pose and the map. It can be represented as

p(zt|st,Θ). (8.8)

With the problem well defined, different methods to solve theSLAM problem have bee

proposed and they usually make a few assumptions about the statistical distribution of the con-

trols and measurements, and also about the type of motion andmeasurement models. The next

section will introduce the KF, EKF and UKF SLAM techniques inwhich a parametric (Gaus-

sian) distribution of the control inputs and the measurements are assumed, while the motion or

Figure 8.3: Measurement model of a robot sensor
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measurement processes can be linear or nonlinear.

8.2 KF, EKF and UKF SLAM Approaches

Although the main contribution in solving the UAV indoor SLAM problem in this research work

is a customized FastSLAM algorithm, which will be discussedin the Section 8.3, the KF, EKF

and UKF based SLAM methods will be introduced first as they share a few similar concepts and

notations with the Particle filter based SLAM and their inherent problems have motivated the

discovery of FastSLAM.

8.2.1 Kalman Filter SLAM

The original KF algorithm was proposed long time ago in [34].The application of KF filter to

the SLAM problem has been well documented in [76]. The KF SLAMassumes that the motion

model and the measurement model of the robotic system are both linear, and the control inputs

and measurements are all Gaussian variables. Hence, every signal in the analysis can be written

in a Gaussian parametric form as

p(x) = det(2πΣ)−
1
2 exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

(8.9)

or

x ∼ N (µ,Σ) (8.10)

wherex is a random variable with Gaussian distribution, whileµ andΣ are its mean (scalar

or vector) and variance (scalar or matrix) respectively. The SLAM problem can be solved by

constructing a state variablext which includes both the estimation of the robot posest and the

estimation of the mapΘt. KF represents the SLAM posterior as a high-dimensional, multi-

variate Gaussian function parameterized by a meanµt and a covariance matrixΣt. The mean

describes the most likely state of the robot and the landmarks, whereas the covariance matrix

encodes noises and correlations between all pairs of state variables. So the problem becomes

estimating the probability of

p(st,Θ|zt, ut, nt) = N (xt;µt,Σt), (8.11)
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where

xt = {st, θ1, . . . , θN} (8.12)

µt = {µst, µθ1,t , . . . , µθN,t
} (8.13)

Σt =



















σst,st σst,θ1 . . . σst,θN

σθ1,st σθ1st σθ1θ2 . . .

... σθ2,θ1
. . .

...

σθN ,st . . . . . . σθN ,θN



















t

(8.14)

.

It is well known that for a linear time invariant system











xt = Axt−1 +But + ǫt,

zt = Cxt + δt,
, (8.15)

wherext, ut, zt are the state, control and measurement vectors respectively. A,B,C are system

matrices with appropriate dimensions.ǫ and δ are the input and measurement noises, which

are assumed to be Gaussian with zero means and covariance matrices ofQ andR respectively.

The main objective of Kalman filter is to estimate the meanµ and varianceΣ of x at the time

stept with the control inputut, the measurementzt and the previously estimated state,xt−1 ∼

N (µt−1,Σt−1). If system 8.15 is observable, then the statistically optimal estimation process is

given as follows:

1. take inputs (µt−1,Σt−1, ut, zt)

2. µ̄t = Aµt−1 +But

3. Σ̄t = AΣt−1A
T +Q

4. Kt = Σ̄tC
T(CΣ̄tC

T +R)−1

5. µt = µ̄t +Kt(zt − Cµ̄t)

6. Σt = (I −KtC)Σ̄t

7. return (µt,Σt)
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8.2.2 Extended Kalman Filter SLAM

However, KF assumes that the motion model and the measurement model are both linear. In

cases where the processes are nonlinear, EKF can be used to solve the estimation problem by

linearizing the formulation at the most likely state of the system. Note that when the processes

are nonlinear, EKF may not be the optimal estimator. It is just a practical solution to apply the

KF concept to nonlinear systems. Thus, for the following nonlinear system:











xt = g(ut, xt−1) + ǫt

zt = h(xt) + δt

, (8.16)

whereg(∗) andh(∗) are multi-dimensional nonlinear functions describing themotion model

and measurement model respectively, andǫt andδt are still zero mean Gaussian noises with

covariance matricesQ andR respectively. LetGt andHt be the Jacobian matrices ofg andh

with respect tox, or in detail,

Gt =



















dg1
dx1

dg1
dx2

. . . dg1
dxm

dg2
dx1

dg2
dx2

. . . dg2
dxm

...
... . . .

...

dgm
dx1

dgm
dx2

. . . dgm
dxm



















, Ht =



















dh1
dx1

dh1
dh2

. . . dh1
dxm

dh2
dx1

dh2
dh2

. . . dh2
dxm

...
... . . .

...

dhl
dx1

dhl
dx2

. . . dhl
dxm



















(8.17)

wherel andm are the dimension of measured outputs and the dimension of state respectively.

With Gt andHt evaluated at the current operating point, the EKF estimation can be processed

as follows:

1. take inputs (µt−1,Σt−1, ut, zt)

2. µ̄t = g(ut, µt−1)

3. Σ̄t = GtΣt−1G
T
t +Q

4. Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +R)−1

5. µt = µ̄t +Kt(zt − h(µ̄t))

6. Σt = (I −KtHt)Σ̄t

7. return (µt,Σt)
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Figure 8.4: UKF vs. EKF

8.2.3 Unscented Kalman Filter SLAM

While EKF handles the nonlinear processes by linearizing the models at the current operating

point, i.e. considering only 1st order term from Taylor expansion, UKF tries to estimate the

process noise in a more accurate way by bringing the concept of sigma points. The idea to

propagate noise in UKF is as follows:

1. Sample a set of sigma points with different weights aroundthe operating point;

2. Transform the sigma points through the nonlinear function;

3. Compute an approximate Gaussian from the transformed points with resultant weights.

As shown in Fig. 8.4, by choosing appropriate sigma points, the unscented transform sometimes

works better than the linearization result from EKF. However, it is indeed a challenging problem

to decide where to put these sigma pointsχ[i] and their respective weightsw[i] appropriately. If

we only consider selectingχ[i] andw[i] to fulfil the following conditions:

∑

i

w[i] = 1,

µ =
∑

i

w[i]χ[i],

Σ =
∑

i

(χ[i] − µ)(χ[i] − µ)T,
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then there is no unique solution ofχi andwi. A common approach to this problem is to choose

the sigma points in a symmetric way as follows:

χ[0] = µ,

χ[i] = µ+
(

√

(n + λ)Σ
)

i
for i = 1, . . . , n,

χ[i] = µ−
(

√

(n + λ)Σ
)

i−n
for i = n+ 1, . . . , 2n,

(8.18)

where the(∗)i means thei-th column vector of the matrix∗, andn controls the total number of

sigma points. Thereafter, we can compute

w
[0]
m = λ

n+λ ,

w
[0]
c = w

[0]
m + (1− α2 + β),

w
[i]
m = w

[i]
c = 1

2(n+λ) for i = 1, . . . , 2n.

(8.19)

wherew[i]
m andw[i]

c are the weights to calculate the transformed mean and variance respectively.

The calculations are as follows:

µ′ =
2n
∑

i=0

w[i]
mg(χ

[i]), (8.20)

Σ′ =
2n
∑

i=0

w[i]
c

(

g(χ[i])− µ′
)(

g(χ[i])− µ′
)T

. (8.21)

α, β, λ are parameters subject to the following constraints:

α ∈ (0, 1],

β = 2 (optimal choice for Gaussian distribution),

λ = α2(n+ κ)− n, with κ ≥ 0.

Hence, by utilizing the concept of sigma points, UKF SLAM updates the robot pose and map

with the following procedures:

1. take inputs(µt−1,Σt−1, ut, zt)

2. χt−1 = (µt−1, µt−1 ± γ1
√
Σt−1, µt−1 ± γ2

√
Σt−1, . . . )

3. χ̄t = g(ut, χt−1)

4. µ̄t =
2n
∑

i=0
w

[i]
m χ̄

[i]
t
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5. Σ̄t =
2n
∑

i=0
w

[i]
c (χ̄

[i]
t − µ̄t)(χ̄

[i]
t − µ̄t)

T +Q

6. χ̄t = (µ̄t, µ̄t ± γ1
√

Σ̄t, µ̄t ± γ2
√

Σ̄t, . . . )

7. Z̄t = h(χ̄t)

8. ẑt =
2n
∑

i=0
w

[i]
m Z̄

[i]
t

9. St =
2n
∑

i=0
w

[i]
c (Z̄

[i]
t − ẑt)(Z̄

[i]
t − ẑt)

T +R

10. Σ̄x,zt =
2n
∑

i=0
w

[i]
c (χ̄

[i]
t − µ̄t)(Z̄

[i]
t − ẑt)

T

11. Kt = Σ̄x,zt S−1
t

12. µt = µ̄t +Kt(zt − ẑt)

13. Σt = Σ̄t −KtStK
T
t

14. returnµt, Σt

8.2.4 Problems of KF, EKF, UKF SLAMs

The KF, EKF, UKF SLAM methods and their variants have been extensively used in robotics ap-

plications [73, 50]. However, they have common limitationswhich hinder them to be expanded

to applications that need larger maps, longer navigation time and more noisy measurements to

be handled.

The first problem of the KF types of SLAM is thecurse of dimensionality. For example,

when a robot moves in a 2-D plane, the state vector to be estimated is of dimension2N +

3, whereN is the number of landmarks, since three dimensions are needed to represent the

pose of the robot and two dimensions are needed to confirm the position of each landmark.

In consequence, the covariance matrix is of size (2N + 3) by (2N + 3). Thus, the number of

parameters needed to describe the posterior is quadratic with respect to the number of landmarks

in the map. It should be noted that large-dimensional matrixcomputations, such as calculating

the inverse of a matrix, are usually time consuming. When therobot or UAV moves, more and

more new landmarks will be discovered and included into the state. In the long run, it will easily

make the algorithm inefficient and thus impossible to be run in real time. This is seen as one

of the main drawbacks of the KF types of SLAM methods, as theircomputation complexity is

quadratic.

Second, although the EKF and UKF SLAM methods try to solve theproblem caused by
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nonlinear motion model and measurement model, they are still not the optimal estimator for

general nonlinear cases. The approximation made by them is good if the true models are ap-

proximately linear and if the discrete time step of the filteris small. However, in most practical

operations, motion models and measurement models can be highly nonlinear. Applying these

methods blindly may not guarantee a good overall results, orsometimes the filter even diverges.

Except for the above two shortcomings, the KF types of SLAM methods also suffer from

the problem of wrong data associations. These SLAM methods usually maintain a single data

association hypothesis per observation, typically chosenusing a maximum likelihood heuristics,

i.e., if the probability of an observation coming from any ofthe currently observed landmarks

is low, the possibility of a new landmark is considered. If the data association chosen by the

heuristic is incorrect, the effect of incorporating this observation into the filter can never be

removed. If too many observations are incorporated into thefilter with wrong data associations,

the filter will easily diverge. This is a well known failure mode of the KF types of SLAM.

To overcome these problems, a lot of SLAM variants have been proposed by researchers.

Some of them tried to exploit the sparsity of the matrix updating step in EKF [29, 77]. Some

have proposed more robust methods of data association [7, 53]. Among them, the FastSLAM [48]

is one of the most promising methods to improve both the robustness and efficiency of the al-

gorithm. Unlike many other methods which factorize the SLAMproblem spatially, FastSLAM

factorizes the SLAM posterior over time using the path of therobot. The resulting algorithm

scales logarithmically with the number of features in the map. In addition, FastSLAM origi-

nates from the particle filter, retaining different data association hypotheses to different particle

solutions. The particles with wrong data associations can be completely forgotten in the long

run. In the next section, the FastSLAM framework is adopted while the type of map features

has been extended from the classical corner-only features to both corner and line features.

8.3 A Customized FastSLAM Algorithm

This section adopts the FastSLAM framework and applies it ina structured indoor environment,

structured in the sense that the environment is purely constituted by vertical and straight walls.

By realizing that common SLAM or FastSLAM solutions only consider point or corner features,

this work moves one step further by bringing in line segment features into the algorithm as a

supplement. It is believed that by using more types of map features into the FastSLAM particle
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filter, the performance could be more robust. Additionally,since most filter based SLAM algo-

rithms prioritize localization rather than mapping (the point-feature-based sparse map usually

cannot provide sufficient information of the environment for human or computer interpretation),

there still needs an stand-alone mapping algorithm that cangenerate dense and more meaning-

ful maps based on the localization result. That makes the whole solution even more tedious

and computationally requiring. In the case of a clean indoorenvironment where corners and

line segments are enough to describe the room or corridor setups, the proposed solution can do

localization more robustly and at the same time, to generatea ‘meaningful map’ in an efficient

way.

8.3.1 Algorithm Overview

The customized FastSLAM algorithm mentioned here engages aparticle filter to represent the

probability distribution of the UAV’s pose at timet, denoted asst. The covariance of the UAV

pose is represented by a distribution ofM particles, and it is assumed that themth particleP [m]

knows exactly where the vehicle’s position and orientationare, without uncertainty. Hence,

instead of having a huge covariance matrix, such as that of the EKF algorithm, this algorithm

has many small covariance matrices for each combination of the map features and one of the

possible UAV poses. This avoids the inverse calculation of alarge matrix, which is the most

computationally expensive step in those conventional SLAMalgorithms. Each particle carries

its own map. Similar to the EKF SLAM approaches, each featurein the map is assumed to have

a Gaussian distribution, which can be described by its meanµ
[m]
n,t and varianceΣ[m]

n,t , wheren is

the associated index of the map features.

Whenever a new frame of laser scan is available, the algorithm converts the raw range data

into a set of measurement features{z1,t, z2,t, . . . , zi,t ∈ zt} described by their respective mean

µzi,t and varianceΣzi,t. This step is referred to asfeature extraction, and in our case, features

include both corners and line segments. Themotion estimation step is in charge of predicting

the displacement of the vehicle between two adjacent frames, sayut, according to the vehicle’s

motion equation or simply by scan matching. Based on this predicted displacement, the parti-

cles are propagated according to the motion model with pre-defined noisesΣut. This is called a

proposal generation. In the nextmeasurement updatestep, measurements with respect to all

particles are associated with the existing features in the map through per-particledata associa-

tion. A weightw[m]
t is computed for each particle according to how well the measurements fit
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the features in that particular particle’s map. At the same time, the existing map features in the

particle can be updated, too. Finally the weighted particles arere-sampledto generate the new

probability distribution of the vehicle’s pose. In summary, the essential steps in a FastSLAM

algorithm are shown below:

1. Feature Extraction;

2. Motion Estimation and Proposal Generation;

3. Per-particle Data Association;

4. Per-particle Measurement Update;

5. Importance Weighting and Resampling.

The next section will expand all the above steps sequentially, and the solution to include line

segment features for this framework will be explained whenever necessary. However, there is

one important simplification to the algorithm that needs to be stated clearly here. When this

work applies EKF to the per-particle measurement update, the parameters describing the ex-

tracted line segment or corner features are assumed to be directly measured. In other words,

the measurement model is simply a one-to-one copy of the EKF state variables with some pre-

defined noises, and before EKF updating, all state variablesand measurement variables have

already been converted to the global frame according to the estimated UAV pose in that partic-

ular particle at that particular moment.

8.3.2 Feature Extraction

The objective of this feature extraction step is to convert aframe of raw measurement points

into a set of measurement features,{z1,t, z2,t, . . . , zn,t ∈ zt}, and at the same time, to establish

the probability distribution of the extracted features,P (zi,t). In the context of this report, it

is assumed that the environment is structured and can be welldescribed by line segments and

corners with their descriptive parameters in Gaussian distribution. Hence, the features to be

extracted are line segments and corners, and each of them canbe represented by a vector mean

and a square matrix covariance with the following notations(also see Fig. 8.5 for a graphical

illustration):
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Figure 8.5: Parameters to describe line and corner features

• Lines:

zl = N (r, θ;µzl ,Σ
z
l ) (8.22)

µzl = {µr, µθ} (8.23)

Σzl =







σrr σrθ

σθr σθθ






(8.24)

• Corners:

zc = N (x, y, α, β;µzc ,Σ
z
c) (8.25)

µzc = {µx, µy, µα, µβ} (8.26)

Σzc =



















σxx σxy σxα σxβ

σyx σyy σyα σyβ

σαx σαy σαα σαβ

σβx σβy σβα σββ



















(8.27)

The process of converting a frame of raw scan points into a setof corners and line segments

can be divided into four steps, namely clustering, line fitting, line merging and filtering, and
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corner extraction. The clustering task is to group the raw data points in such a way that points

within the same group belong to the same line segment as reasonable as possible. A recent

review of line extraction algorithm [55] concludes that theSplit-and-Mergeand theIncremental

are the two preferred algorithms, withSplit-and-Mergebeing more speedy andIncremental

being more robust. Our approach uses theSplit-and-Mergemethod since it is good enough for

a clean indoor environment. It is a recursive line extraction algorithm with the following steps:

1. Start with all input points.

2. Connect the first point and the last point with a line.

3. Calculate the perpendicular distances of all other intermediate points with respect to the

line segment obtained in the previous step.

4. Search for the point that has the largest distance and compare this distance with a defined

threshold.

5. If the maximum distance is less than the threshold, all points between the first point and

the last point belong to the same line; Else, recursively call Step 1 with (first point, max

point) and (max point, last point).

Split-and-Mergein our case, only clusters points into groups. The next step,line fitting, is

the actual line feature extraction step to get the individual line parameters and covariance. For

this step, since the uncertainties of the points belong to the same line are different, as a result

of projecting elliptical shaped uncertainty (as the radialand angular component are different) of

varied magnitude (measurements are more noisy for points atlonger distance from the sensor).

Such variations in uncertainty make fitting lines to a group of points a more difficult task. As

the uncertainty of each of the point is different, points have to be weighted when fitting the line.

Furthermore, the weight of the point is dependent on the heading of the line. As a result, no close

form formula has been found in solving the line fitting problem. Instead, an iterative method

that maximizes the likelihood of the line has been derived in[59] and it works as follows:

1. Assume an initial heading of the line by connecting the first and the last point.

2. Find the radial position and its variance based on the weight obtained by projecting un-

certainties of the point onto the perpendicular direction of the line.

3. Calculate the iterative incensement for heading.

4. Repeat the Step 1 to Step 3 until heading converges.
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Figure 8.6: Lines (blue) and corners (black) extracted froma frame of raw laser scanner data
(red)

5. Calculated the remaining terms in the covariance matrix for line parameters.

The detailed formulation of the iterative line parameter extraction and covariance estimation

can be found in [59] and it will not be repeated here. However,the results can be appreciated in

Fig. 8.7, where the extracted lines have dotted boundaries at both sides of the line, representing

the 3-sigma uncertainty region.

For line merging and filtering, it tries to minimize the errors in the previous clustering step

by merging lines that are obtained from the same feature but split into different clusters by

mistake. Adjacent lines extracted in the previous step are examined by some merging criteria.

Mahalanobis distance can be used in this case for probabilistically better judgement. Those

lines satisfying the merging criteria are re-joined together to form the same single line feature.

On the other hand, lines which are too short in length are normally unstable to be used as map

features, thus can be discarded.

For corner extraction, adjacent lines are extended and their intersecting point is taken to be

the position of the corners. Direction (β) and angle (α) of all corners are also computed from

the line parameters. Covariance of the corner can be obtained from line covariances. Similar as

line extraction, formulas to calculate the covariance of the corner from the information of the

lines have been well derived in [57] and will not be restated here.
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Figure 8.7: Line feature and corner feature with 3-sigma uncertainty region

The algorithm was implemented in MATLAB and laser scanner data recorded by the on-

board avionics system of a quadrotor UAV was used for off-line verification, and the result is

shown in Figs. 8.6–8.7. One can see that the feature extraction algorithm can successfully cap-

ture all possible lines and corners, even for line features that are only a few centimeters apart.

8.3.3 Motion Estimation and Proposal Generation

This step gives a rough prediction about the UAV motion from the previous frame to the current

frame. Concurrently, the uncertainty caused by this motionis propagated. The predicted body-

frame displacement of the UAV position (∆xt, ∆yt) and heading (∆ct) are assumed to be

random variables on their own and distributed normally around their expected values. So,

∆ct = N (∆c̄t, σ∆c), (8.28)

∆xt = N (∆x̄t, σ∆x), (8.29)

∆yt = N (∆ȳt, σ∆y), (8.30)
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where∆x̄t, ∆ȳt, ∆c̄t are the expected values andσ∆x, σ∆y, σ∆c are their respective standard

deviations which can be defined by the following equations:

σ∆c = α1|∆c̄t|+ α2, (8.31)

σ∆x = α3|∆x̄t|+ α4, (8.32)

σ∆y = α3|∆ȳt|+ α4. (8.33)

α1, α2, α3, α4 denote proportional and additive noise parameters that canbe tuned for practical

implementations.

There are various ways to obtain the average motion estimation, i.e., to calculate∆x̄t, ∆ȳt,

∆c̄t. One solution is to use the UAV control input (value of PWM signals fed to motors or ser-

vos) with a precise UAV dynamic model. However, this method relies too much on the accuracy

of the UAV motion model and different UAVs usually have very different model structures and

parameters. That means the implemented solution will be only suitable for one particular UAV,

while a lot of things need to be re-formulated and re-tuned ifporting to another platform. The

second solution is to use motion estimation from another sensors, such as that provided by IMU

dead reckoning or a stand-alone vision system. However, there will be a lot of miscellaneous

problems like sensor synchronization, inter-system communication delay, etc. that need to be

solved. Meanwhile, we prefer using the scanning laser rangefinder as the single sensor for the

problem of SLAM so that the solution keeps simple and platform independent.

Estimating the displacement of two adjacent scans from laser scanner is also referred to

as the scan matching problem. This problem has been looked into by many researchers. The

available solutions can be categorized into two types, according to whether the displacement

is calculated from features extracted from the scan or solely from the raw data. For the raw

data scan matching, the most widely used solution is the ICP algorithm. ICP tries to minimize

the distance between two sets of points iteratively and for every iteration, it assumes that the

closest point pairs in the two consecutive scans are the samepoint in the real environment. The

ICP method is capable of producing very accurate results. There are published works, in which

the motion estimation produced by the ICP alone can yield quite satisfying results, even in a 3

dimensional space with 6 DOF [46]. However, the drawback of the ICP method is its expensive

computational load. In contrast, the feature based scan matching algorithms usually need much

less computational power. Moreover, making use of the features extracted in the previous feature
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extraction step can even further reduce the computational time. However, this will strengthen

the correlation between displacement estimation and the measurement update, as essentially we

are using the same information to predict and update. Such strong correlation might result in

overconfidence in the estimated pose of the UAV. However, since real-time implementation will

be the ultimate goal, the feature based scan matching approach is chosen despite sacrificing a

bit to the overall performance.

Therefore, the corner features extracted in two consecutive frames will be corresponded

and a closed-form calculation can be used to estimate the UAVmotion, namely a rotationR,

followed by a translationT. The formulation goes as follows:

1. Check corner feature correspondences based on their pair-wise Mahalanobis distances.

2. Organize corner features in such a way thatpi or [pxi pyi]T in the previous frame corre-

sponds toqi or [qxi qyi]T in the current frame.

3. Calculate the centroid of the feature points for both frames, denoted bȳp andq̄.

4. Form matrixP = [p1 − p̄, p2 − p̄, . . . , pmax− p̄].

5. Form matrixQ = [q1 − q̄, q2 − q̄, . . . , qmax− q̄].

6. Let [U,S, V ] = SVD(PQT) andd = sign(det(PQT)),

7. ThenR = V [1 0; 0 d]UT andT = Rp̄ − q̄, that leads to∆c̄t = −atan2(R(1),R(2)),

∆x̄t = T(1), ∆ȳt = T(2).

As mentioned previously, the motion estimation result willbe applied to all particles with ran-

dom additive and multiplicative noises. So for particleP [m],

∆c
[m]
t = ∆c̄t(1 + α1randN(1)) + α2randN(1), (8.34)

∆x
[m]
t = ∆x̄t(1 + α3randN(1)) + α4randN(1), (8.35)

∆y
[m]
t = ∆ȳt(1 + α3randN(1)) + α4randN(1), (8.36)

where randN(1) represents a function that can generate a random value from astandard normal

distribution, and the updating equations are as follows:

P
[m]
t .c = P

[m]
t .c+∆c

[m]
t , (8.37)
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P
[m]
t .x = P

[m]
t .x+ cos(P

[m]
t .c)∆x

[m]
t − sin(P

[m]
t .c)∆y

[m]
t , (8.38)

P
[m]
t .y = P

[m]
t .y + sin(P

[m]
t .c)∆x

[m]
t + cos(P

[m]
t .c)∆y

[m]
t . (8.39)

8.3.4 Per-particle Data Association

The objective of this step is to find data pairs that associatecontemporary measurement fea-

tures with the existing features in the map. As usual, the confidence of all the data association

pairs will be calculated. Unlike other SLAM algorithms suchas EKF-SLAM or GraphSLAM,

FastSLAM performs data association on each of the particlesinstead of on the entire frame.

Particle-wise data association has both advantages and disadvantages. It brings extra robustness

to the algorithm, especially when particles are widely dispersed in space. However, repeating

the data association algorithm many times limits the complexity / dimensions that this algorithm

can handle. There is a wide range of data association algorithms available, among which the

following 3 classes are the most popular.

The first class considers each feature independently. It aims to maximize the probability of

associating map features with measured features without excluding repeated matches. The indi-

vidual compatibility nearest neighbor (ICNN) algorithm isone of the famous examples. On the

other hand, the second class makes sure the associations areconsistent in a sense that no dupli-

cated associations can be possibly made for the same feature. Such algorithms include sequen-

tial compatibility nearest neighbor (SCNN) and joint compatibility branch and bond (JCBB).

The third class of data association algorithms takes one step further. It considers data associa-

tions in the previous iteration. In other words, it tries to maximize the whole probability history.

When making data associations, previous decisions are examined and modified. Examples of

such algorithms include the tree-structured searching algorithm developed in [30].

Not surprisingly, algorithms of lower complexity does not produce as robust results as com-

pared to that by complex algorithms. Hence, choosing an algorithm that balance well between

computational load and robustness is a curtail task in the entire implementation of the SLAM

algorithm. At the moment, the JCBB method is used for data association in this work, as it

provides a robust yet efficient solution.
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8.3.5 Per-particle Measurement Update

Since every particle has its own map and the estimation of landmark features in each map is

conditioned on the corresponding particle’s path, there are (Nc + Nl) low-dimensional EKFs

for each particle, whereNc andNl are the number of corner features and number of line features

in the map respectively. Moreover, we need to do map update for all M particles, that means

there are in total(Nc + Nl) ×M EKFs, and for each of them, the updating rule is as follows

(line features and corner features can be updated with the same formula):

Zn,t = Σ
[m]
n,t−1 +Σzn,t, (8.40)

K
[m]
n,t = Σ

[m]
n,t−1Z

−1
n,t , (8.41)

µ
[m]
n,t = µ

[m]
n,t−1 +K

[m]
n,t (zn,t − ẑn,t), (8.42)

Σ
[m]
n,t = (I −K

[m]
n,t )Σn,t−1. (8.43)

8.3.6 Particle Importance Weighting and Resampling

Samples from the proposal distribution, i.e., particles after motion update, are distributed ac-

cording top(st|zt−1, ut), wherext means all the time history ofx: {x1, x2, . . . , xt}. This dis-

tribution most likely does not match the posterior probability p(st|zt, ut). Importance weighting

is to correct this difference by giving each particle a weight according to their probability of ob-

servingzt at the time stept. So in a Gaussian distribution case,

w
[m]
t =

1
√

2πZn,t
exp

{

−1

2
(zn,t − ẑn,t)

T[Zn,t]
−1(zn,t − ẑn,t)

}

(8.44)

After the particles have been assigned their correspondingweights, a new set of samples can be

drawn from the original set with probabilities in proportion to their weights. There are various

ways to do this resampling process. Among them, the following algorithm does the job and it is

very efficient:

1. CalculateW , the total weight of allM particles.

2. Generate a random numberW ′ between0 andW .

3. DeductW byw[1]
t , w[2]

t , w[3]
t , . . ., w[i]

t one by one until the result hitsW ′.

4. Particlei in the old set will be chosen as one element in the new set.

5. Repeat Step 2 to Step 4M times to generate a whole new set ofM particles.
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8.4 Implementation Results

The proposed FastSLAM algorithm has been coded in MATLAB andoff-line processed based

on a sequence of laser scanner data logged while manual flyingthe quadrotor platform. Fig. 8.10(a)

- 8.10(f) shows six moments of the SLAM results. For each moment, the left sub-figure shows

the UAV body-frame laser scanner raw data and the extracted features (line segments and cor-

ners). Line segments are colored in blue, while the corners are indicated by short green lines

with a number beside to show its pointing direction. The right sub-figure shows the UAV pose

and the map building in progress. The UAV pose is representedby a red cross, which is from

the highest weighted particle. The blue cloud of crosses around it are the possible UAV poses

from the other particles. It can be seen that, the green line segments and blue corners naturally

form a vivid map of the indoor environment with straight walls and sparsely distributed pillars.

The result is much better than the case of dead reckoning frompoint cloud ICP method, which

was introduced in the last chapter (see Fig. 8.8) or dead reckoning from feature based motion

estimation only (see Fig. 8.9).

However, there is an obvious issue from the reconstructed map. There are repeated line fea-

tures and corner features. This problem not only makes the map noisy, but also complicates the

computation by introducing unnecessary number of features. By investigation, it is believed that

overconfidence in the motion estimation and feature extraction may cause unmatched features

despite their same identity in the real environment. In consequence, the algorithm assumes that

these unmatched features are new to the reconstructed map. This can be solved by relaxing the

covariance calculation for both feature extraction and motion estimation or decrease the feature

matching threshold. However, more faulty matches (match two physically different features into

the same one) may occur which will degrade localization and mapping result in another way. A

better solution is to implement a map management function sothat features in the map are peri-

odically checked and combined according to general knowledge about the indoor environment.
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Figure 8.8: SLAM results via point cloud ICP

Figure 8.9: SLAM results via feature-based scan matching
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Figure 8.10: The customized FastSLAM result in an indoor hall with pillars
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Chapter 9

Efficient Laser SLAM for Partially

Known Indoor Environments

9.1 Background and Motivation

The previous chapter has discussed about the regular SLAM techniques which can be used by

robots or autonomous vehicles to build up a map within an unknown indoor environment and at

the same time to keep track of their own positions. In fact, many theoretical works and practical

implementations of SLAM on ground robots [56, 89], and on UAVplatforms [28, 49, 85] have

been published in literature. However, few of these works have been considering the compu-

tation limitation on miniature indoor UAVs and they usuallyexploit the unlimited payload on

ground robots or rely on high-bandwidth communication to the GCS where a powerful com-

puter is running the most computationally intensive algorithm. In consequence, some of them

only work in controlled lab environments with short and line-of-sight communication. But for

real-life applications in which ideal communications cannot be guaranteed, the performance is

expected to be poor. Although being relatively efficient already, the customized FastSLAM

method mentioned in the previous chapter is still off-line so far. By utilizing a more powerful

onboard processor or further optimizing the code, it may be able to run onboard of the UAV in

real time. However, the expected difficulty level is still high, thus it will only be tried for future

studies.

That being said, a more practical and robust navigation strategy should only rely on the

UAV onboard computers for all necessary control and navigation functions. A few research

groups are working towards this direction. In [47], an innovative laser-pointer-aided vision
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system is proposed to release the high computational load from dense image processing. [83]

has demonstrated the possibility of real-time visual-inertial state estimation via a 1.6 GHz Atom

computer onboard of the controlled UAV. In [25], hardware configuration has been optimized

to achieve a highly efficient vision navigation system. The impressive work in [70] has pushed

UAV onboard intelligence to the limit where a rather complicated indoor environment can be

handled. Nevertheless, there must be a compromise between the complexity of the navigation

algorithm and the complexity of the navigated environment under the current microprocessor

technology.

In this chapter, it is intended to solve the indoor navigation problem solely onboard of the

indoor UAV flying in a structured indoor environment. The algorithm can be designed very

efficient because three assumptions about the indoor environment are made:

1. The environment can be described by sparse features, which include corners and straight

lines;

2. The line features are orthogonal to each other or off-set by multiples of a constant angle

displacement, such as30◦ or 45◦.

3. The coordinates of the corner features are known.

These assumptions appear to be strong but they still cover quite a lot of real-life conditions.

First of all, Assumption 1 and 2 are usually met for indoor environments in modern man-made

buildings. Moreover, the proposed algorithm will work as long as the majority of corner and line

features in the target environment fulfills the assumptions. A few map noises will not affect the

performance too much. Although Assumption 3 makes the algorithm not suitable for advanced

tasks such as exploring a completely unknown environment, missions like UAV autonomous

surveillance and patrolling are still doable if minimal information about the indoor environment

is known. Nevertheless, the main advantage of the proposed method lies in its efficiency. With

the three assumptions met, the UAV localization algorithm can be designed in an innovative way

so that an ARM-based embedded computer is more than enough tohandle the computation.

9.2 Efficient Localization for Partially Known Map

As stated previously, the main advantage of the proposed navigation algorithm lies in its effi-

ciency. With Assumption 1,2,3 and the initial state of the UAV given, a feature matching based

localization algorithm can be implemented to track the UAV pose in real time.
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(a) Translation (b) Rotation

Figure 9.1: Feature matching result after a small motion

The UAV pose in the map frame can be represented by its 3-D coordinatesx, y, z and

heading angleψ. Moreover, to differentiate the localization results fromtheir respective sensor

sources, we partition the UAV pose into two parts, namely theplanar pose(x, y, ψ), and the

vertical heightz. The first part can be estimated by the horizontal scanning laser range finder,

similar to a 2-D ground robot case, while the altitude of the UAV can be estimated by the second

laser scanner.

9.2.1 Planar Localization

The planar localization algorithm via the first laser scanner contains the fundamental ideas that

make the whole navigation solution fast and efficient. With Assumption 1, the conventional

point cloud matching algorithm can be avoided, leaving the number of point matching pairs

single digits as compared to the original thousands. With Assumption 2, the estimation of

rotational motion can be done by comparing the difference between line gradients instead of

relying on point feature matching, thus making the estimation of rotational motion decoupled

from translational motion. This decoupling feature is verybeneficial because rotational motion

usually results in inconsistent point matching results, especially when the feature points are far

away from the sensor source. From Fig. 9.1, one can see that the point matching result is correct

in the first case which involves a small translation, but becomes totally wrong in the second case

which involves a small rotation. As the method used in this paper estimates the rotational motion

robustly and independently from the translational motion,the next stage point association and

localization will have very stable performance.
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Detection Angle: 270º 

Angular Resolution: 0.25º 

Measurement Step: 1080 

Max. Distance: 30m Sensor

Figure 9.2: Hokuyo UTM-30LX laser range sensor

The planar localization algorithm will be explained in foursteps, which include feature

extraction, rotation tracking, corner feature association and position tracking.

Feature Extraction

The laser scanner used for this planar localization algorithm is a Hokuyo UTM-30LX sensor. Its

specifications are shown in Fig. 9.2. For each frame of scanned data, the sensor will output 1081

integer numbers to represent the measured distances in millimeter from the rightmost angle to

the leftmost angle sequentially. Each distance data is associated with its own angle direction,

thus the data can be seen as in polar coordinates. A simple transformation can be applied to

the raw measurement data to convert it from polar coordinates (rk, θk) to Cartesian coordinates

(xk, yk):










xk = rk cos θk

yk = rk sin θk

.

Then thesplit-and-mergealgorithm [12] is applied to these array of 2-D points so thatthey

can be grouped into clusters with each cluster belonging to astraight line feature. Here, the

main steps ofsplit-and-mergealgorithm is summarized below with Fig. 9.3 giving a graphical
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Figure 9.3: Thesplit-and-mergeand line extraction algorithm

illustration:

1. Connect the first pointA and the last pointB of the input data by a straight line.

2. Find pointC among all data points that has the longest perpendicular distance to the line

AB.

3. If this longest distance is within a threshold, then a cluster is created with points in be-

tweenA andB.

4. Else, the input points will be split into two subgroups,A-C andC-B. For each group, the

split-and-mergealgorithm will be applied recursively.

After obtaining the clusters of points, two choices of line extraction methods can be used.

The first is to use least square line fitting by considering allpoints in the cluster, while the second

is to simply connect the first point and the the last point. Although the second method looks a bit

harsh, these two methods surprisingly result in more or lessthe same quality of line features in

a clean and structured indoor environment, thanks to the laser scanner’s superior range accuracy

and angular resolution. The second method actually triumphs in computational time and it is

finally chosen as the way to get the line features. By convention, each line can be represented

by two parameters, namely the line’s normal directionαk and its perpendicular distance to the

center of laser scannerdk. In the last sub-figure of Fig. 9.3,xy axes represent the laser scanner

frame. Normal direction of the line is defined as the angle from thex-axis to the line normal,
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counterclockwise as positive.

Rotation Tracking

In this step, Assumption 2 will be utilized in an innovative way to keep track of the robot’s

heading directionψ, which is defined as the angle from the map framex-axis to the heading

direction of the UAV, counterclockwise as positive if viewed from above. Without loss of gen-

erality, let the map framex-axis align with one of the walls in the indoor environment. Then all

the walls will have their directions atnα, whereα is the constant angle displacement andn can

be any integers. Choose one of the walls currently observable and let its direction beβl in the

laser scanner frame. Then we have this wall’s map frame direction βm as:

βm = ψt + βl

= ψt−1 +∆ψt + βl

= niα.

whereψt andψt−1 are the UAV headings in the current frame and previous frame respectively

and∆ψt is the inter-frame heading movement. Obviously,(ψt−1 +∆ψt+βl) is divisible byα,

which leads to

∆ψt = − [ (ψm,t−1 + βl)%α ], (9.1)

where the operator% is defined in this paper as:

a%b =















(a mod b) , if (a mod b) ≤ b/2

(a mod b)− b , otherwise

(9.2)

After obtaining∆ψt, the UAV heading can be updated as

ψm,t = ψm,t−1 +∆ψt. (9.3)

Using the above method, the UAV heading is tractable frame byframe provided that the

initial headingψm,0 is known. However, it should be noted that this heading tracking algorithm

only works when the UAV inter-frame rotational motion is less thanα/2. Fortunately, a 10 Hz
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Figure 9.4: Heading error versus the length of the line

laser scanner is fast enough to handle the non-aggressive flight cases. In actual implementation,

the longest line extracted for the current frame can be used for the heading alignment. This is

because the error of extracted line gradient due to inaccurate end points is smaller if the line

is longer. The theoretical relationship between the angle error and the length of the line being

referenced is shown in Fig. 9.4.

Point Feature Association

The end points of the line clusters can be treated as local point features, in which some of them

should physically associate with the known map corners. Thenext step is to associate these

local point features to the globally known map features. This can be done by transforming the

locally observed point features to the global map frame based on the information of previous-

frame UAV position [xt−1, yt−1] and the current-frame UAV headingψt. As the UAV rotational

motion has been resolved, the difference between the obtained feature points and the known

map feature points should be caused by translational motiononly. By considering the fact that

this translational motion between frames of 10 Hz is very small, the nearest neighbor searching

is more than enough to associate them well. The whole association process is done with the
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following steps:

1. Transform all local feature pointsqj,l in the laser scanner frame into the global map frame

qj,m based on the UAV’s current-frame heading and its previous-frame position.

2. For each transformed featureqj,m, find its nearest map featurepi.

3. Calculate the distance betweenqj,l andqj,m, if the distance is within certain threshold,

then an association (ni,j) between the two feature points is created.

The 2-D transformation from the laser scanner local frame tothe global map frame can be

calculated as,

qj,m = [xm,t−1, ym,t−1]
T +Rt × qj,l, (9.4)

whereRt is the rotation matrix from local frame to global frame calculated based onψm,t,

Rt =







cosψt sinψt

− sinψt cosψt






. (9.5)

Position Tracking

Similar to the method in rotation tracking, the current position can be calculated based on the

previous-frame position[xm,t−1, ym,t−1] and an incremental change[∆xt,∆yt]:

[xm,t, ym,t] = [xm,t−1, ym,t−1] + [∆xt,∆yt], (9.6)

where







∆xt

∆yt






=

∑

ni,j

wj(pi − qj,m)

∑

wj
. (9.7)

This incremental change can be calculated as an average displacement of all the associated fea-

tures. By considering the laser scanner noise model, i.e. points further away are more noisy, the

matched point features are given different weightswj in calculating the average displacement.

The closer the feature points, the larger the weight.
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Figure 9.5: The dual laser scanner setup

9.2.2 Height Estimation

In an indoor environment with completely flat ground, UAV height measurement can be simply

obtained via a sonar or a one-point laser range finder. However, for the cases when the UAV

needs to fly over tables, chairs and window sills, these sensors will fail as the UAV cannot distin-

guish between the actual floor surface and the surfaces of other objects underneath. Barometer

may be a candidate, but its accuracy does not meet the requirement for a UAV to fly in confined

indoor environments. To solve this problem, a second laser scanner is mounted orthogonally to

the first and a height calculation algorithm with robust flooridentification is developed and inte-

grated into the navigation system. Fig. 9.5 shows the dual laser scanner setup on the quadrotor

platform.

This height calculation algorithm basically finds the furthest line parallel to the level plane

and treat it as the ground. As shown in Fig. 9.2.2, the first step of the algorithm is line extraction,

which can be done via the samesplit-and-mergemethod mentioned before. Since the obtained

lines are still expressed in the laser scanner frame, their directionsαk should be compensated

by the UAV pitch angleθ and compared with the normal line of the level plane. So

∆αk = αk + θ − π/2 (9.8)

If |∆αi| is greater than a threshold, then the corresponding line is filtered out. The remaining

lines are sorted by their perpendicular distances to the laser scanner and the furthest ones are

kept. Among them, the longest line is believed to be the true ground. To make the estimation

more accurate, this line will be recalculated using the least mean square fit by taking into account
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Figure 9.6: Flowchart of height estimation algorithm

all cluster points instead of only the two end points. Here, the efficiency retains as the least mean

square optimization will be called only once. Finally, the perpendicular distance of obtained

line to the laser scanner is compensated with the UAV roll angle φ, leaving the UAV height

estimation to be:

h = r cos(φ)− h̃ (9.9)

whereh̃ is the offset between the laser scanner center and the CG of the UAV. By using this

method, as long as the laser scanner projects a portion of itslaser beams on the true ground,

a very accurate height measurement can be obtained. This basically solves the problem of

scattered protruding objects on the ground when the UAV fliesover.

However, using a high-end laser scanner to only estimate theheight of the indoor UAV

is a bit wasteful. To fully utilized its measurements, this second laser scanner is innovatively

mounted on a servo motor mechanism which can be rotated in a ‘yawing’ mode (see ‘rolling’,

‘pitching’ and ‘yawing’ modes in Fig. 9.7). In this way, it can be used similar to a 3-D laser

scanner and it helps to reconstruct a detailed 3-D map of the environment. The 3-D map recon-

struction method will be explained in the next section.

174



(a) ‘Rolling’ mode (b) ‘Pitching’ mode (c) ‘Yawing’ mode (the chosen
mode)

Figure 9.7: Rotating a 2-D laser scanner

9.3 3-D Map Reconstruction

With the 3-D pose of the UAV obtained, every scan from the second rotatable laser scanner can

be projected to the global frame and map reconstruction can be done in an accumulative way.

The 3-D reconstruction method used here assumes that the indoor UAV localization problem

has already been solved. If at one instant the UAV global position and orientation are known

, and the relative position and orientation between the UAV body and the second laser scanner

are also known, the points scanned by the second laser scanner can be transformed to the global

frame in a rigorous way.

Except for the global frame and the UAV body frame, a third coordinate frame has to be

considered here, namely the laser scanner frame. To recap the definitions, the global frame (or

the map frame) is defined with its origin stationary at an arbitrarily defined position, such as

the initial take-off point of the controlled UAV. Itsx-axis points to the geometric north,y-axis

points to the geometric east andz-axis points vertically downwards with respect to the surface

of earth. The UAV body coordinate takes the UAV’s CG as originand moves together with the

UAV fuselage. Itsx-axis points to the UAV heading direction,y-axis points to the right of the

UAV body andz-axis points vertically down with respect to the UAV horizontal surface. For

the laser scanner frame, its origin locates at CG of the laserscanner and moves together with

the laser scanner body (laser scanner will be rotated by servo for a 3-D scan). Itsx, y-axes are

defined as that of Fig. 9.9 and itsz-axis follows the right hand rule accordingly.

9.3.1 Transformation of 3-D Points

After defining the coordinates, converting the scanned points in their raw format to the corre-

sponding global coordinates involve three steps, namely

1. Transforming scanned data points from polar coordinate to cartesian coordinate, both in

175



(a) Laser scanner side view (b) Laser scanner coordinate definition

laser scanner frame;

2. Transforming measurement points from laser scanner frame to the UAV body frame;

3. Transforming measurement points from UAV body frame to the global frame.

Transform from Polar Coordinates to Cartesian Coordinates

Translating points in polar coordinates into points in Cartesian coordinate can be easily done as

follows:

xi = ri × cosαi (9.10)

yi = ri × sinαi (9.11)

zi = −Hscanner (9.12)

with all symbols defined in Fig. 9.8(b).

Transform from Laser Scanner Frame to UAV Body Frame

The point cloud can then be rotated and translated into the UAV body frame. Rotation and

translation can be done by multiplying the position vector(xi, yi, zi)
T by a rotational matrix

(R) and adding a translational vector (T ), expressed as follows:

(xi, yi, zi)
T
b = Rb/s× (xi, yi, zi)

T
s + Tb/s, (9.13)
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Figure 9.8: From laser scanner frame to UAV body frame

with

Rb/s =













cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ













b/s

whereφ, θ, ψ are the roll, pitch, yaw angles defined for the laser scanner with respect to the

UAV body frame, ands∗, c∗ denotesin(∗), cos(∗) respectively. The elements in the translational

vector equals to the displacement between the origin of the UAV body frame and the origin of

the laser scanner frame, expressed in the UAV body frame coordinates, that is:

Tb/s = (∆xs ∆ys∆zs)
T (9.14)

Transform from UAV Body Frame to Global Frame

Transforming 3-D points from UAV body frame to the global frame is similar to the previous

step. The process is also a rigid body rotation followed by a vector translation, stated as follows:

(xi, yi, zi)
T
g = Rg/b × (xi, yi, zi)

T
b + Tg/b, (9.15)

with

Rg/b =













cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ













g/b
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Figure 9.9: From UAV body frame to NED frame

whereφ, θ, ψ are the roll, pitch, yaw angles defined for the UAV body respect to the global

frame. The elements in the translational vector equals to the displacement between the ori-

gin of the global frame and the origin of the UAV body frame, expressed in the global frame

coordinates, that is:

Tg/b = (∆xg ∆yg ∆zg)
T (9.16)

9.3.2 Map Representation and Management

For an indoor environment, the volume of exploration is usually limited and the worst case

scenario in most cases can be foreseen. This makes a grid-based map representation plausible

as the problem of memory explosion can be avoided. The grid map can be implemented by

a 3-D array, with the index of an entry in this array represents a small cubical space in the

environment. The volume of the cubical space is arbitrarilydefined and is referred to as the

resolution of the map. Obstacles in the environment can be represented by non-zero values of

the entry at a particular index.

After projecting the scanned points from the laser scanner to the global coordinate frame,

the points are incorporated into the 3-D map array. Points from a single scanned frame are

processed sequentially. Calculating the index of the entryin the array that corresponds to the

measured location is a critical step. The process can be doneby dividing thex, y, z global

coordinate values by the pre-defined map resolution. However, cautions must be taken for two

aspects. Firstly, the index of an array can only be integers.Hence, floating point numbers
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resulted from the division must be rounded up or down. In addition, if the rounding process

is done in a consistent manner for all directions, the product of index and resolution would

recovers the furthest or nearest point of the cubical space.Secondly, as the index can only be

non-negative, a constant offset need to be given to all positions of the points. This offset need

to be maintained properly if the map is going to be expanded iflarger area will be explored.

Updating the value of the map entry is trivial. Depending on whether the type of array

is Boolean or integer, the entry can be set to 1 (true) or incremented correspondingly. The

entry value can also be set as a probabilistic representation if the noise model of laser scanner

measurement is used. In this way, only grids with a probabilistic value higher than a threshold

are treated as obstacles and to be displayed or used for future 3-D path plan algorithm.

Choosing a proper resolution for the map is not a trivial task. Memory capacity is not

the only constrain. A finer resolution would require denser points, thus more accurate sensor

measurement is required and the UAV motion cannot be too fast. For a laser scanner with

4 meters’ range and0.36◦ angular resolution, adjacent points at a maximum range would be

about 2.5 cm apart. If the scanner is roughly scanning perpendicular to the trajectory of the

UAV at a speed of 0.5 m/s, the minimum distance between 2 points from adjacent frame would

be greater than 5 cm. Based on the above calculation, 5 to 15 cmshould be a reasonable range

for the map resolution, depending on whether the UAV is flyingslowly or fast.

9.3.3 Map Visualization

The aforementioned 3-D reconstruction method is logicallysimple but computationally inten-

sive. As such, to make sure the map updating and visualization run in real time, the whole

algorithm is executed on the GCS. During flight, the status ofthe UAV and the laser scanner

data are remotely transmitted from the UAV onboard computerto the GCS at an updating rate

of 10 Hz. After transforming the laser scanner raw data to theground frame, the 3-D array

representing the map is updated accordingly. At another thread, a visualization program written

upon the OpenGL library is running to display the 3-D map gridby grid. For a better visual-

ization, different colors are assigned to grids with different height values. The floor is colored

in grey and from grey to green to blue, the grids being represented are higher and higher in

the 3-D space. Figure 9.3.3 shows the reconstructed map as the right sub-figure, while the left

sub-figure is a clean and ideal map of the environment pre-drawn as a reference. It can be seen

that they agree with each other, especially when concerningabout the positions of windows,
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(a) The ideal 3-D map (b) The generated 3-D map

Table 9.1: Performance of the planar localization algorithm

Position (m) RMS error (m) Execution time (s)
(−2,−4) (0.03, 0.03) 0.011

(2,−5) (0.03, 0.05) 0.017

(11,−3) (0.06, 0.05) 0.011

(1, 6) (0.02, 0.03) 0.009

door way and walls. The reconstructed map looks more noisy because the localization of the

UAV platform is not perfect and there are still minor errors in the calibration of the laser scanner

orientation and position with respect to the UAV body. Some obstacles in the reconstructed map

are not seen in the ideal clean map, such as two pillars aroundthe flight path. They are actually

present physically.

9.4 Flight Test and Competition Results

The proposed control and navigation algorithms are implemented onboard of the quadrotor UAV.

For the planar localization algorithm, the average computation time is about 12 ms for a single

frame of laser scanner data. Table 9.4 shows the position error and computation time of the

localization algorithm when the UAV is positioned at four stationary locations in the indoor

environment. The Root-Mean-Square (RMS) error of the estimated position is very small.

To show its dynamic performance, the estimated UAV path after one complete flight is

logged and shown in Fig. 9.10. It is actually the full flight path in accomplishing the 2013

Singapore Amazing Flying Machine Competition (SAFMC) Category D2 tasks. The NUS UAS
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Figure 9.10: Localization result after one complete flight

Group has won all three top awards in the competition, namelythe overall champion award,

the best performance award, and the most creative award. Fig. 9.11 shows the overall setup of

the competition. Figs. 9.12(a)–9.12(b) show two photo snaps in the competition, in which the

quadrotor UAV flies through a window and drops a payload to a target location. These two tasks

require very high localization accuracy as well as precise position control performance from the

UAV system.
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Figure 9.11: Competition setup in the SAFMC 2013

(a) Fly through a window (b) Drop a payload precisely

Figure 9.12: Fly-off in the SAFMC competition
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Chapter 10

Conclusions and Future Works

In this thesis, the topic of UAV indoor navigation has been discussed in breadth and depth.

With the general aim of establishing a comprehensive navigation system for indoor UAVs, this

thesis has developed algorithms for various functions of the navigation system with consistent

attention paying to onboard implementation and real-time computation. It is believed that an

indoor UAV system is much more valuable if its core navigation algorithms can be executed

without relying on external sensory information or external computational power.

An interesting exploration in this work is that two different types of indoor UAV platforms,

namely the coaxial helicopter and the quadrotor helicopter, are constructed and their respec-

tive flight control laws and indoor navigation algorithms are implemented. Theoretically, all

proposed ideas and algorithms in this thesis should be applicable to both platforms or even

other types of UAV platforms. However, due to their different hardware limitations such as

payload capacity, onboard sensor quality and processor computational power, implementation

results obtained from the coaxial UAV do not always show robust and real-time performance,

but the quadrotor UAV is stable and powerful enough to implement most of the algorithms with

good performance. Nevertheless, the nonlinear coaxial helicopter model and its control method

discussed in this thesis is actually a valuable contribution to the UAV modeling and control

community.

In order to control the UAV at the navigation level without using GPS or other external mo-

tion capturing system, visual odometry and laser scanner based odometry have been developed.

For visual odometry, two innovative methods are proposed. Both of them use only a single

camera but mounted in two different orientations with respect to the UAV body. In general,

the second method is currently more practical and convenient to be implemented while the first
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method can handle more general indoor setups but need further study if more accurate odometry

is needed. In addition, it is found in both methods that by utilizing supplementary information

from other sensors such as the IMU sensor and the laser scanner sensor, the vision algorithms

can be largely simplified while retaining accurate and stable result. On the other hand, an ICP-

based laser odometry method is also discussed in this thesis. While usable, it can only estimate

2-D motion of the UAV, and same as the visual odometry case, the problem of position drift still

exists.

In order to solve or minimize the position-drift problem andat the same time to reconstruct

a map for the indoor environment, studies about UAV indoor SLAM have been conducted. To

overcome the limitation of the traditional KF, EKF and UKF based SLAM methods, a cus-

tomized FastSLAM algorithm in cooperating both corner features and line features has been

developed. By bringing the line features into the SLAM algorithm, which is not commonly seen

in literature, the localization result becomes more robustand the landmark features naturally

form a visually comprehensible map. However, only off-lineresults have been obtained so far

because the logic complexity of this algorithm is high and MATLAB needs to be used first to

verify its feasibility. If porting the algorithm to C++ language, the performance is expected to

be real-time onboard.

Motivated by SAFMC 2013 and also trying to solve the SLAM problem in a partially known

map with efficiency, an innovative localization method isolating rotational motion estimation

from translational motion estimation has been proposed. Although several assumptions about

the indoor environment need to be made, they are all reasonable assumptions that can be met

by most modern man-made buildings. The assumptions are further verified to be reasonable as

the same localization algorithm has been used in several UAVindoor demonstration events in

which the indoor environments are quite different. Besides, a second laser scanner is installed

onto the UAV platform orthogonally to the first to reliably estimate the UAV altitude. In this way,

cases when the UAV flies over protruding objects on the groundcan be handled. In addition,

by rotating the second laser scanner via a servo motor, it becomes a pseudo 3-D laser scanner.

When the UAV flies with its 3-D position calculated, a 3-D map of the environment can be

reconstructed by accumulating scanned points by this rotating laser scanner.

Beside, to realize a complete an indoor UAV system, topics onsensor data fusion and UAV

path planning are briefly explored also. A simple Kalman filter is used to fuse acceleration infor-

mation from IMU, velocity information from visual or laser odometry, and position information
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from SLAM. A smooth estimation of the UAV position, velocitycan be obtained in 50 Hz which

is adequate enough for outer-loop feedback control. To let the UAV fly along the walls of an

enclosed indoor room and to avoid obstacles automatically,a potential field based path planning

method which only relies on local laser scanner measurements is developed and flight test has

been carried out successfully.

Although all necessary functions of a UAV indoor navigationsystem have been developed

in this thesis, there are still plenty of room for performance improvements, and some of the

developed navigation functions are still not intelligent enough. The followings list a few future

works that can be conducted to push this navigation system toa higher level of robustness and

flexibility.

1. Although the big quadrotor platform is easier for onboardimplementation of indoor nav-

igation algorithms, the coaxial platform is still better inits form factor and energy effi-

ciency. With more advanced sensor and processor technologyin future, it may be possible

to implement onboard autonomous indoor navigation on microaerial vehicles (MAVs),

which is defined as aerial vehicles with the largest dimension less than 15 cm.

2. This thesis accomplishes the so-called 2.5-D indoor navigation as it assumes all obstacles

are vertically homogeneous. If the indoor environments aremore complex and unstruc-

tured, the proposed algorithms will most likely fail. Hence, a true 3-D mapping and

navigation solution is still open for further studies, and SLAM via 3-D laser scanner or

stereo-vision could be the most promising directions.

3. The path plan algorithm used for this project is just a general wall following strategy with

obstacle avoidance function. More meaningful optimization functions, such as energy,

time, acceleration, and etc, can be considered to achieve better planning of 3-D trajecto-

ries. Furthermore, path planning can be formulated in a way that the target function favors

the SLAM computation. If the main objective of the indoor flight is to obtain the origi-

nally unknown map, then this path-plan-SLAM-correlated formulation can make sure the

map is thoroughly explored and the UAV motion planning at every time step should favor

the estimation of unsure map features.

4. Although the proposed ideas and algorithms are for UAV indoor navigation, some of them

can be extended to a more general navigation problem in GPS-denied environments, such

as the urban canyon and the foliage cases. If a UAV navigationsystem can handle all
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types of environments, its value and application range willbe huge.

At the end of this thesis, it should also be highlighted that UAV-related research works

and projects usually involve teamwork of people from different disciplines. This indoor UAV

navigation system cannot be developed successfully without the help from all other members in

the NUS UAS Group. On the other hand, the author of this thesis, has also been involved in UAV-

related works other than indoor navigation during his Ph.D.studies. One major contribution is

his involvement in the 2nd AVIC Cup - International UAV Innovation Grand Prix, which was

held at the Airport of Miyun, Beijing, China, in September 2013. In this event, he lead a joint

team from the NUS UAS Group and the Nanjing University of Science and Technology, and won

the first place in the final round of the rotary-wing category competition. Although it was an

outdoor UAV competition and the used platform was a single-rotor helicopter, similar concepts

and methodologies about UAV modeling, control and navigation mentioned in this thesis can

also be applied [81, 88].
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