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Summary 
 
 The focus of this thesis is on stabilizing parameterization for uncertain 

delay processes. The first part of the thesis presents a method to find PID 

stabilizing region in controller's parameter plane. The concept of stability 

boundaries in D-decomposition technique is extend to the parameterized 

stability boundary , which transform boundary curves into boundary bands 

when one of the controller gains varies in a range. This eliminates the 

difficulty of using 3D graph to solve the problem with 3 parameters while 

maintaining the advantage of 2D method.  

 In the second part, the thesis deals with the problem of determining the 

stabilizing controller gain and process delay ranges for a general delay process 

in feedback configuration. In general, such a problem admits no analytical 

solutions. Instead, the condition of the loop Nyquist plot’s intersection with 

the critical point is graphically employed to determine stability boundaries in 

the gain-delay space. The stability of regions that are divided by these 

boundaries is decided with helps of a new perturbation analysis of delay on 

change of closed-loop unstable poles. As a result, all the stable regions can be 

obtained and each stable region can capture the full information on the 

stabilizing gain intervals versus any delay of the process.  

 In the third part of the thesis, the aforementioned problem for a bi-proper 

process is investigated. A bi-proper process is rare but causes great 
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complication for the method, due to the new phenomena that do not exist for a 

strictly proper process, such as a non-zero gain at infinity frequency, which 

may cause infinite intersections of boundary functions within a finite delay 

range. A detail study into the properties of boundary functions from such 

processes shows that finite boundary functions are sufficient to determine all 

stable regions for finite parameter intervals. The formula is given for 

calculating this number. Moreover, the algorithms are established to find exact 

stabilizing gain and delay ranges, and they are illustrated by many kinds of 

processes including stable/unstable poles and minimum/non-minimum zeros. 

These new results, together with those in the previous part, provide a complete 

solution for numerical parameterization of stabilizer for a general delay SISO 

process in terms of proportional control gain and delay.  

 Finally, the graphical method is also extended to two-input two-output 

processes with time delay. For those processes with fixed coefficients, an 

effective method is suggested to exactly compute the loop gain margins. For a 

class of systems with time-varying delay, the common gain ranges can be 

obtained. The proposed graphical method for parameterized processes can be 

used for any process with a square transfer function. 
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Chapter 1 

Introduction 

1.1. Motivation 

The Proportional-Integral-Derivative (PID) controllers are widely 

implemented in industrial application because of their simple structure and 

reasonable robustness to system uncertainties [1]. Despite its popularity in 

applications as well as in theory studies, the problem of determining the 

stabilizing regions in the PID's parameter space is still a hard topic that gets a 

lot of attention. D-decomposition technique [2], [3] is one of the most popular 

tool that is employed to obtain stability boundary in the controller's parameter 

plane. In [4]–[6], this technique was applied to determine the stability 

boundary in the 3D space ( , , )i dpK K K  and find the stable regions of such 

space. However, the stabilizing graph produced by this approach is difficult to 

visualize. Another approach in employing D-decomposition technique is to fix 

one parameter of the controller and consider the stabilizing problem with the 

other two variable gains [7], [8]. This approach produces a 2D stabilizing 

graph with stability boundary curves which are easy to display. Obviously, the 

limitation of this method is the fixed parameter which reduces the size of 

stabilizing controller gain set. Thus, our motivation in this thesis is to develop 

a method to eliminate this restriction while maintaining the advantage of the 

2D visualization.  

Time delay is present in many practical processes, mainly due to transport 

and propagation phenomena of their inner dynamics [9]–[11]. In most cases, 
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they are small and ignorable. But when they are significant, they could be 

sources of instability and oscillation that would lead to poor system's 

performance. Thus, a time-delay is usually regarded as negative and 

undesirable effect in control applications. Stability analysis and stabilization 

for processes with time delays have attracted a lot of attention in control 

community. Delay-range dependent stability has been addressed extensively in 

the last decade. In [12]–[16], the free-weighting matrices technique was 

employed to study time-delay dependent stability conditions and to provide 

less conservative stability analysis of time delay processes. However, these 

methods do not tell the exact stabilizing parameter regions. To design 

stabilizer and controller for delay processes, time delay compensation is a 

popular choice. A well known control scheme is Smith Predictor (SP) [17]. 

Note that the SP uses the full model of the process. Thus, the SP control 

system is not internally stable if the process is unstable, and the use of SP is 

limited to only stable processes [18]. Many modified SP structures have been 

proposed to overcome this limitation [19]–[23]. Finite spectrum assignment 

has also been employed to stabilize unstable processes with time delay [24], 

[25].  

      

Figure 1.1: Unity output feedback control system. 

Because of the dominance of PID controller in the industrial world, this 

class of controller has been employed widely to stabilize and control time 

delay processes as well. Consider the unity output feedback system in Figure 

( )K s  
Y(s) + 

 )(sG  
E(s) R(s) 

_ 
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1.1, in the context of stabilization, the early studies focused on the simple 

normalized first-order plus delay model: 

1
( )

1
LsG s e

s
−=

−
, 

where 0L >  is the equivalent dead time. Great efforts were made to find 

controller gain ranges in terms of time delay. For P control, ( )K s k= , the 

necessary and sufficient condition is 1L < . For other types of PID controllers, 

two or three parameters are involved. The D-decomposition method was 

introduced to identify the stability domain in space of controller parameters 

[8], [26], [27]. The stability boundary is obtained by solving the transcendental 

characteristic equation with regard to two chosen parameters while the third is 

gridded. The Hermite-Biehler theorem was employed to study 

quasi-polynomials and determine the range of stabilizing gains [28]–[30] .  

 It is noted that many industrial processes cannot be well approximated as 

first-order processes. Thus, stabilizing high-order and more complex processes 

is necessary. Recently, Xiang et al. [31] obtained stabilizability conditions on 

delay ranges for second-order unstable delay processes without any zero by P, 

PI, PD and PID controllers using the Nyquist criterion. This work was 

extended to all-pole unstable delay process in Lee et al. [32], unstable 

first-order plus delay process with a zero in [33] and an unstable delay process 

of higher-order and zero dynamics in [34]. The types of normalized processes 

and respective stabilizability conditions are summarized in Table 1.1. One can 

see that these analytical sufficient and necessary stabilizability conditions are 

available for limited classes of processes. To the best of our knowledge,  

stabilization of a general SISO process with any delay range and right half 

plane poles and/or zeros remains as an open problem. 
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Table 1.1: Stabilizability results for unstable SISO delay processes 

Process P/PI PD/PID 

1
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In the view of the above observations, we are motivated to address in this 

thesis the stabilization of a general delay process by proportional controller 

and to provide a complete solution in first for a strictly proper process and 
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then for a bi-proper process.  

Even though bi-proper processes are less popular in industry, such 

processes may be found in practices such as missiles [35] and robotic 

processes [36]. Thus, they should be addressed for general applicability and 

completion of the method. Such extension of method occurred to 

complementary root locus method [37] which solely studied root locus for a 

bi-proper process. Note that the generalization from a strict proper case to a 

bi-proper case is not trivial for our method that is developed for strictly proper 

processes.  

If 0( )G s  is a strict proper transfer function, its gain eventually reduces to 

zero, i.e. 0lim ( ) 0G j
ω

ω
→∞

= , and its Nyquist plot ends at the 

origin.  0( ) LskG s e−  will always go to the origin at ω = ∞  for any finite value 

of k, regardless of L.  

The point at ω = ∞ , therefore, does not affect closed-loop stability, and 

can be excluded from stability analysis. This will significantly simplify 

technical development of the method developed in Chapter 3.  

On the other hand, bi-proper process has a non-zero finite gain at infinity 

frequency. As a result, this will create more new scenarios to consider, such as 

monotonic gain increase, and infinite encirclements of the critical point by 

Nyquist curve of a delay process. The most challenging issue is that there are 

infinite boundary functions within a limited delay range. It is impossible to 

draw and thus infer stability regions, whereas it is shown that finite boundary 

functions are sufficient to determine stability region for a strictly proper case.  

An industrial control problem could involve a single-input single-output 

(SISO) process or multi-input multi-output (MIMO) process. Thus, we are 
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motivated to extend the stabilizing results to MIMO processes. Determining 

loop stability margins for a two-input two-output (TITO) process is one of the 

challenging problem that we will investigate in this thesis. Stability margin 

problem for SISO and MIMO processes have been studied extensively in 

[38]–[42]. However, these methods are either not applicable for independent 

and simultaneous gain changes of decentralized controller or conservative in 

estimating these ranges. Recently, Wang et al. [43] employed a quasi-LMI 

technique to compute the stabilizing parameter ranges of a decentralized 

proportional controller for a MIMO process. Wang used rectangular subset of 

these controller gain regions to form the suitable gain margins. However, that 

region did not reflect the exact or maximum region available due to the 

conservativeness of LMI framework. Besides, the method could not be applied 

directly without rational approximation to time delay if the process has time 

delay. To relax the conservativeness, Nie et al. [44] presented a frequency 

approach to compute exact stabilizing gain margins of a MIMO process, where 

they converted stability condition in frequency domain to some constrained 

optimization using vector mapping method. An algorithm which implements 

the Lagrange multiplier and Newton-Raphson iteration was then developed to 

solve the optimization problem. This approach proposed the nominal 

stabilization for unity gain so that the algorithm would stop when the gain 

solutions form a closed region including unity gain. This method required many 

iterations for each frequency to find the stability boundaries. For a TITO 

process, Nie et al. [45] showed that each point on stability boundaries was the 

intersection of some constructed curves. Thus, to reduce the computational 

effort, they employed the geometric analysis to find those points. In [46], 
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Gryazina and Polyak extended D-decomposition method [47] to TITO process 

to find the stable region in the controller's parameter space with the state space 

method for delay-free processes. In this thesis, we will develop a graphical 

method to compute the stabilizing gain ranges of a decentralized proportional 

controller for a linear time invariant TITO process. The problem of finding 

stabilizing loop gain and delay is also extended to TITO process with varying 

common delay. 

1.2. Contributions 

 In this thesis, stabilizing parameterizations for uncertain delay processes 

are investigated. A method is developed by using stability boundary bands to 

find PID stabilizing parameterization. For strictly proper processes with 

uncertain time delay in feedback configuration, we present an approach to 

determine the stabilizing controller gain and process delay ranges. The work is 

then extended to bi-proper processes. Finally, we show the application of our 

stabilizing parameterization method to MIMO processes. In particular, the 

thesis has investigated the following areas: 

A. Parametric Approach to Computing Stabilizing PID Regions 

  For a general process with/without time delay, a method is presented to 

obtain stabilizing PID parameter ranges. By extending the stability boundary 

concept to the parameterized stability boundary band, the stabilizing region in 

( , )p iK K  plane while dK  varies in a range is obtained. For a process with 

monotonic ( )λ ω , the entire stabilizing ranges of three parameters of PID 

controller are given. For process with non-monotonic ( )λ ω , root locus for 

dK  is used to find stabilizing range of dK  in all possible conditionally stable 
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regions.  

 

B. Stabilizing Loop Gain and Delay for Strictly Proper Processes  

 A graphical method is developed to compute the exact stabilizing gain and 

delay ranges for a strictly proper process. This is achieved by determining the 

boundary functions which may change system’s stability. To effectively reduce 

the infinite number of boundary curves due to the delay, properties of these 

curves are investigated thoroughly. It will greatly helps to simplify the stability 

determination of the resulting regions. As a result, all stable regions can be 

identified and stabilizing gain ranges can also be obtained in term of delay. 

C.  Stabilizing Loop Gain and Delay for Bi-proper Processes  

 The D-decomposition method for computing stabilizing loop gain and 

delay ranges is extended to the case of bi-proper processes. Properties of 

boundary functions from such processes will be investigated in great details. It 

has been shown that finite boundary functions are sufficient to determine all 

stable regions for finite parameter intervals. The formula is given for 

calculating this number. Moreover, the algorithms are established to find exact 

stabilizing gain and delay ranges, and they are illustrated by many kinds of 

processes including stable/unstable poles and minimum/non-minimum zeros. 

These new results, together with those for strictly proper processes, provide a 

complete solution for numerical parameterization of stabilizing loop gain and 

delay for a general delay SISO process.  

 

D.  Stabilizing Loop Gain and Delay for MIMO Processes 

 For a TITO process with fixed time delay, we propose a method to 
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compute the stabilizing gain ranges of a decentralized proportional controller 

for a linear time invariant (LTI) two-input and two-output (TITO) system. 

Firstly, this method will determine all possible stability boundaries. These 

boundaries divide the gain plane to regions and the stability of each region is 

checked to identify the stable ones. Subsequently, the loop gain margins as 

well as controller integrity are obtained from these stable regions. The 

proposed method is simple and easy to apply and no iteration is required for 

computing stability boundaries. For MIMO processes that are represented by 

square transfer functions that with common varying time delay, and by 

employing the characteristic locos approach, the common gain stabilizer is 

given in term of the delay.  

1.3. Organization of the thesis     

 This thesis is organized as follows. Chapter 2 presents a method to find 

PID stabilizing region in controller parameters plane. Chapter 3 deals with the 

problem of determining the stabilizing controller gain and process delay 

ranges for a general delay process in feedback configuration. In Chapter 4, the 

aforementioned problem for a bi-proper process is investigated. Finally, the 

graphical method is also extended to two-input two-output processes with time 

delay in Chapter 5. In Chapter 6, general conclusions are drawn and 

expectations for further works are suggested.   
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Chapter 2 

Parametric Approach to Computing 

Stabilizing PID Regions 

2.1. Introduction 

The Proportional-Integral-Derivative (PID) controllers are widely 

implemented in industrial application because of their simple structure and 

reasonable robustness to system uncertainty  [1]. Despite its popularity in 

application as well as in theory studies, the problem of determining the 

stabilizing region in PID parameters space is still a difficult topic that still gets 

a lot of attention. D-decomposition technique [2], [3]  is one of the most 

popular tool to obtain stability boundary in controller parameter plane. In 

[4]–[6], this technique was applied to determine the stability boundary in the 

3D space ( , , )i dpK K K  and find the stable regions of such space. However, 

the stabilizing graph produced by this approach is difficult to visualize. 

Another approach in employing D-decomposition technique is to fix one 

parameter of the controller and consider the stabilizing problem with the other 

two variable gains [7], [8]. This approach produces a 2D stabilizing graph with 

stability boundary curves which are easy to display. Obviously, the limitation 

of this method is the fixed parameter which reduces the size of stabilizing 

controller gain set.   

In this chapter, we eliminate this restriction while maintaining the advantage 

of the 2D method. We extend the stability boundary concept to the 
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parameterized stability boundary, which is a band, when one of the controller 

gains varies in a range. The rest of the chapter is organized as follows. Section 

2.2 presents our problem formulation and preliminaries about the 

D-decomposition method for the normal case of 2 controller parameters. The 

general approach for simple processes is studied in Section 2.3. In Section 2.4, 

a solution for a complicated process is given. Finally, Section 2.5 draws the 

conclusions. 

2.2. Problem Formulation and Preliminaries 

Consider the unity output feedback system shown in Figure 1.1, where 

( )G s  is the process with the transfer function, 

 
1

1 1 0
1

1 1 0

( )
( )

( )

...
,

...

Ls

m m
Ls

n
n

m m
n

n

N s
G s e

D s

b b s b
e

a a s

s s b

s s aa

−

−
−−

−
−

=

+ + +
++ + +
+=

 Equation Section (Next)Equat ion Chapter 2 Section 1(2.1) 

where  n m> ; and ( )K s  is the analytical PID controller, 

 ( ) i
p d

K
K s K K s

s
= + +  , (2.2) 

where pK  and iK  and dK  are real numbers and stand for the integral, 

proportional and derivative gains, respectively. Our objective here is to 

determine the gain ranges of all the three controller parameters, pK  and iK  

and dK , such that, when pK  and iK  and dK  varies simultaneously 

within these ranges, the closed-loop system is stable.  

The characteristic quasi-polynomial of the PID feedback control system is  

 1 ( ) ( ) 0K s G s+ = . (2.3) 

or  
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p i d m

n

m

s a a s a

K s K K

s s

s b b s b e

a

s s b

−
−

− −
−

+ + + +

+

+

+ ++ + + + =
 (2.4) 

The roots of the above polynomial, or the poles of the closed-loop, are 

functions of gains, pK , iK  and dK . According to the D-decomposition 

technique [2], the following three conditions characterize the stability 

boundaries in term of pK , iK  and dK . 

1)  The characteristic equation has roots that cross the imaginary axis at 

infinity. This condition determines the infinity roots boundary (IRB). 

It follows from [2] that this boundary exits if and only if 1m n= −  

and /d n mK b a= − . 

2)  The characteristic equation has roots that cross the imaginary axis at 

zero. This condition determines the real root boundary (RRB) which is 

the straight line 0iK =  [2]. From [5], for 0 0/pK a b> − , the regions 

above the line  0iK =  have one more stable pole than their 

neighbors that are below the line 0iK = ; for 0 0/pK a b< − , the 

regions above the line  0iK =  have one less stable pole than their 

neighbors that are below the line 0iK = . 

3)  The characteristic equation has roots that cross the imaginary axis at 

finite frequency s jω=  where 0ω ≠ . This condition determines the 

complex root boundaries (CRB).  

Obviously, the above cases 1) and 2) are trivial, and our focus will be on 3) 

from now on. The complex root boundaries are obtained by solving the 

characteristic equation with s jω= , where 0ω ≠ , that is, 
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 1 ( ) ( ) 0K j G jω ω+ = ,  

which can be rewritten as 

 1( )i
p d

K
K j K G j

j
ω ω

ω
−+ + = − .            (2.5) 

With dK  as a parameter, (2.5) is solved for pK  and iK  as: 

 

1

2 1

Re ( ) ,

Im ( ) ,

p

i dK

K G j

K G j

ω

ω ω ω

−

−

 = −  

 = +  

 (2.6) 

where  1Re ( )G jω−     and 1Im ( )G jω−    are, the real part and imaginary 

part of  1( )G jω− , respectively .  

Suppose that dK  is fixed, and the stability boundaries have only two 

parameters pK  and iK  only,  then this case becomes a problem of 

stabilization using PI controller, a standard 2D case. In such a case, one can 

plot all the stability boundaries in the parameter space and then determine the 

number of unstable poles in each resulting regions to find the stabilizing one 

[2].  

For efficiently determining the number of unstable poles in each region, the 

Jacobian of the characteristic function is employed to establish which side of 

the stability boundaries has more unstable poles. Jacobian,J , is the 

determinant of the matrix of all first-order partial derivatives of  the 

characteristic function and given by 

 

)( ( )

)

Re Im

(
e m

)(
R I

pp

i i

f f

K K
J

f f

K K

ω ω

ω ω

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

, 

where  

 ( )2( ) ( )p i df s s K s K K s G s= + + + , (2.7) 
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It describes the amount of rotating to transform from the complex plane to the 

( ),p iK K  plane. Thus, the sign of its determinant dictates which side of the 

boundary curves corresponds to the left half plane. To determine the stable 

regions, the side corresponding to the left half plane of all boundary curves 

will be shaded. If 0J < , the region on right side of the boundary curve, 

facing direction in which ω  increases, corresponds to the left half plane of 

the complex plane, and thus, has fewer unstable poles.  If 0J > , the region 

on right side of the boundary curve, facing direction in which ω  increases, 

corresponds to the right half plane of the complex plane, and thus, has more 

unstable poles.  It follows from [48] that when 0J = , there may be a line to 

be plotted on the parameter space. Such a line is shaded so that it can be 

consistent with the boundary curve for which J  changes sign. Since the 

coefficients of the characteristic equation are real numbers, if jω  is a root, 

then jω−  is also a root of the characteristic number. Thus, when one moves 

from one side of the CBR to another side, the number of unstable poles 

increases or decreases by 2.  

     In our case (2.5), the determinant of the Jacobian is calculated as 

follows:  

[ ] [ ]
[ ] [ ]

2Im ) Re )
( )

Re ) Im )

( (

( (

G G
G j

G

j j
J

j jG

ω ω ω ω
ω ω

ω ω
= =

−
−  

For 0ω > , 0J <  so in the plane ( , )ipK K , the regions on the right of the 

boundary curve defined by (2.6) in direction of increasing ω  have two fewer 

RHP poles than the region on the left. We shade the right hand side of the 

boundary curve. Since the curve defined by (2.6) decomposes the plane 
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( , )ipK K  into several regions with invariant number of RHP poles [2], [3], 

and with help from the shading rules above, if the number of RHP poles in one 

region is known, the number of RHP poles of other regions can also be found 

by inspection. Let the reference region to be the most left region to the point 

0 0( / ,0)b a−  and the number of RHP poles of the reference region be P+ , we 

are able to display the number of RHP poles of all other regions. The stable 

regions (if any) must be with the fewest number of RHP poles. Therefore, to 

find the stable regions, we only need to verify if the fewest number of RHP 

poles is zero. 

Example 2.1. For illustration, consider the hydro-turbine governing system 

[7] which has the transfer function as follows, 

 
3 2

1.313 0.2935
( )

2 20.7949 6.52 0.5.79

s
G s

s s s+ + +
−= . (2.8) 

For a fixed 0dK = , there is one single CRB curve as seen in Figure 2.1. The 

arrow along the boundary curve indicates the direction in which ω  increases. 

This curve and the line 0iK =  divide the plane into 4 regions. Next, we 

shade these regions using shading rule and show the number of unstable poles 

on them, respectively, as in Figure 2.1.  

 

Figure 2.1: D-graph for Example 2.1 with Kd = 0 
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It is seen that the region with P+  number of unstable poles has the fewest 

number of unstable poles. It follows from the Nyquist criteria for stability test 

that 0P+ = . Thus, this region is stable. 

2.3. The Proposed Method 

Suppose that dK  varies, and now we are facing a 3D problem essentially. 

Note that dK  is always upper-bounded in practice due to engineering and 

implementation constraints. A high value of dK  may damage the actuator 

and shorten its life if there is significant measurement noise [49]. Thus,  dK  

usually ranges in 0, dK   , where dK  should be given based on engineering 

consideration. For the generality of our method, let dK  be in the range of 

,d dK K   . 

Taking a frequency ω  for consideration, this  ω  corresponds to a fixed 

point in the boundary curve when dK  is fixed. When dK  varies in the range 

of ,d dK K   , this point sweeps a vertical straight line between two ending 

points which correspond to dK  and dK  according to (2.6). For the process 

in Example 2.1, when dK  varies in [ ]0,1 , the point corresponding to 

0.4ω =  maps to the straight line with two ending points 

( , ) (2.3,0.6578)p iK K =  and ( , ) (2.3,0.8178)p iK K =  as shown in Figure 2.2. 

When frequency ω  varies, such a vertical straight line moves with two 

ending points corresponding to d dK K=  and d dK K= , respectively. See 

Figure 2.2 for a few discrete frequencies. All other boundary curves with other 

values of dK  are neatly laid one after another inside two extreme curves. 
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Note that the closer 1dK  is to 2dK , the closer the corresponding curves to 

each other; but they are always different at each frequency unless 1 2d dK K= . 

This can be easily verified by (2.6) as dK  appears there linearly. Please note 

that here we compare dK -curves pointwise in terms of the same frequency; 

that means for those ones with the same frequency, the curves with different 

dK  are different and they sit neatly next to each other. It should not be 

confused with our later discussion on intersection of curves at different 

frequencies, where it is shown that one dK -curve may intersect with itself or 

others at two different frequencies. 

 

Figure 2.2: D-graph for Example 2.1c with Kd  in [ ]0,1  

    For the entire (0, )ω ∈ ∞ , the above vertical line sweeps a band. It is 

upper and lower bounded by two extreme boundary curves in the normal 2D 

sense with regard to pK  and iK , where dK  is fixed at  d dK K=  and 

d dK K= , respectively. We call such a band a boundary band. Drawing a 
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boundary band is to draw the following two extreme boundary curves, firstly 

 

1

2 1

Re ( ) ,

Im ( ) ,

p

i dK

K G j

K G j

ω

ω ω ω

−

−

 = −  

 = +  

 (2.9) 

and secondly, 

 

1

2 1

Re ( ) ,

Im ( ) .

p

i dK

K G j

K G j

ω

ω ω ω

−

−

 = −  

 = +  

 (2.10) 

The band characteristics can vary with the process properties and dK  

range, and they cause a great difference in our stability analysis. We first 

consider the simple case of no band intersection in the rest of this section, 

while the intersection case is very complex and will be addressed in the next 

section. The band is said to have no intersection if any two boundary curves in 

the band corresponding to 1 ,d d dK K K ∈    and 2 ,d d dK K K ∈   , respectively, 

do not intersect (neither self-intersection nor cross-intersection). The 

mathematical condition for no band intersection will be given in the next 

section and can be checked before the relevant technique for stability analysis 

in this section is applied.  

For the rest of this section, we only discuss about the case of no band 

intersection, where each boundary curve inside the band moves in the same 

way as any other boundary curve inside it. We can view the band like a normal 

boundary curve when it is from outside of the band. Thus, like a fixed dK  

case, the boundary band cuts the plane ( , )ipK K  into several regions. Note 

that in our definition, these regions are formed from the band excluding the 

boundary band itself. We will discuss stability of regions and bands separately.  

Example 2.2. For illustration of the simple case, we consider a process 
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with the transfer function, 

 
1

( )
( 1)( 2)

G s
s s

=
− +

. 

The D-graph with dK  varies in [ ]0,10  is showed in Figure 2.3. From Figure 

2.3, the boundary band cuts the plane ( , )ipK K  into 1R , 2R  and 3R . 

To investigate stability of the regions, the shading rules for a fixed dK  

with a boundary curve is adapted for the boundary band case as follows: 

instead of shading the right hand side of the boundary curve in direction of ω  

increase, we shade the right of the boundary band. If the line 0iK =  is not 

inside the band, the region on the shaded side of the band has two fewer 

unstable poles than its neighbor on the other side. To search for the stable 

regions, we again count the number of RHP poles of all the regions, to find the 

regions with the fewest number of RHP poles, and verify if this number is zero. 

Since the boundary band does not overlap with any other band, a region is 

either stable or unstable for any value of dK  in ,d dK K   . Thus, if a region 

of ( , )ipK K is stable based on the above procedure, it is stable for any 

( , )ipK K  in this region, when dK  ranges in ,d dK K   . In Example 2.2, 

region 2R  has the fewest number of unstable poles P+ ; moreover, with 

0P+ = , this region is stable for [0,10]dK ∈ . This means that for any 

( , , )p i dK K K  where ( , ) 2p iK K R∈  and [0,10]dK ∈ , the corresponding PID 

controller can stabilize the process. 

We now study stability of the boundary band based on the number of 

unstable poles of its two neighbor regions as following: Suppose the neighbor 

region on the right side of the band is stable. Without loss of generality, we 
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may consider any stable region and let the boundary curve for dK  be a 

boundary for this region (implying that the boundary curve for dK  does not 

touch this region). Note that for each interior point in the band, there are 

explicitly a pair of * *( , )p iK K  from the readings of coordinates and implicitly 

a value * ,d d dK K K ∈   , which is found by inverting (2.6) as 

 
* 1 * *

* 2
*

Im ( )

(
.

)d

iG j
K

Kω ω
ω

− +−  =  (2.11) 

For this value of *
dK , there would be a corresponding boundary curve if we  

draw for this *
dK . Then, the contracted band is bounded by this new boundary 

curve for *
dK  in place of the previous dK  and the one for dK is the same as 

before. The region previously touching dK -curve now extends to those 

touching *
dK -curve. The new band acts in the same way as the previous band 

in terms of stability analysis. It follows from the same argument like before 

that the region touching *
dK -curve is stable with regard to the new range of 

dK , * , ddK K   , implying that any point in this region with their PI values will 

stabilize the process for the sub-range of * , ddK K   .  Therefore, we conclude 

that for each interior point at * *( , )p iK K in the band next to a stable region, the 

underlying closed-loop system is conditionally stable for a sub-range, either 

* , ddK K    when the curve dK  touches the stable region, or *, ddK K    when 

otherwise. We call such a boundary band a conditionally stable region. Now, 

suppose the neighbor  region on the left side of the band has exact two 

unstable poles, then with similar analysis as above, portion of band that is next 
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to it is also conditionally stable. The range of stabilizing dK  is *, ddK K    

when the curve dK  touches the left side region, or * , ddK K    if otherwise. 

In any other case, i.e. the neighbor region on the left has more or less than two 

RHP pole or the neighbor region on the right has more than zero RHP poles, 

the portions of boundary band next to them are unstable. Look at the Example 

2.2, the boundary band  that is next to region 2R  and 1R  is conditionally 

stable. In Figure 2.3, the stable region is marked in green and the conditionally 

stable region grey. 

       Please note our terms of stability and conditional stability. In our context 

of PID stabilization, a dK  range is prescribed based on practical consideration. 

We study stabilization of the process by such a PID with dK  in that range. 

Thus, regions are stable or unstable, or unconditionally stable, for  all values of 

dK  in this range. On the other hand, some band is conditionally stable or 

unstable only for some subsets of dK . 

 
Figure 2.3: D-graph for Example 2.2 with Kd  in [ ]0,10  

The above analysis is summarized as follows. 
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Procedure 2.1 . Determine the stabilizing PID regions in the case of no 

band intersection.  

Step 1. Plot the straight line 0iK =  on the plane ( , )ipK K , then shade the 

region above the line  for 0 0/pK a b> −  and the region below the line for 

0 0/pK a b< − . 

Step 2. Plot the boundary band with (2.9) and (2.10), and shade the region 

on the right of the boundary band.   

Step 3. Count the number of RHP poles of regions. 

Step 4. Look for the regions with the fewest number of RHP poles (they are 

only possibly stable regions). Check their stability (check stability of one point 

for each region). 

Step 5. The portions of boundary band on the left of the stable regions and 

on the right of regions with two RHP poles are conditionally stable regions.  

     Example 2.2c. Consider the PID control of the process with transfer 

function, 

 
1

( )
( 1)( 2)

G s
s s

=
− +

, 

if dK  lies in [ ]0,10 , this process is unstable with 1 RHP pole at 1s = . Step 

1 yields the straight line 0iK =  in the plane ( , )ipK K (Figure 2.3). In Step 2, 

the boundary band is plotted and shaded on the right side. In Step 3, the 

number of unstable poles of all resulting region with regard to the reference 

regions are counted. These number is displayed in Figure 2.3. In Step 4, it 

turns out that region shaded in green has the fewest number of RHP poles 

which is P+ . Subsequently, a point in the green region which has coordinate 
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as ( , , ) (3,0.1,0.5)p i dK K K =  is selected to check the region stability. The 

corresponding Nyquist plot has one counter-clockwise encirclement of the 

critical point, which means the closed-loop system is stable (Figure 2.4). Thus, 

the region marked in green is the stable region for [ ]0,1dK ∈  (Figure 2.3).  

The region marked in grey is the conditionally stable region, that is, for any 

point in such region, the range of  stable dK  must be calculated with (2.11). 

For example, for ( , ) (10,10)p iK K = , *
dK  is calculated to be * 0.255dK = . 

The stable range of dK  for ( , ) (10,10)p iK K =  is [ ]0.255,10dK ∈ . 

 

Figure 2.4: Nyquist plot for Example 2.2c. 

Example 2.3. Consider PID control of the following process [5] 

 
2

( )
( 1)( 2)

s
G s

s s

+= −
− −

 

Suppose dK  in [ ]0,5 , this process has 2 unstable poles at 1s =  and 2s = .  

Note 1m n= − , so there is IRB at 1dK = . Thus, we can divide the range of  

dK  into two intervals. Consider the first interval, [0,1), the D-graph is given 

in Figure 2.5, which has no band intersection. It follows from Procedure 2.1 
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that the stable region is obtained and marked in green and the conditionally 

stable region in grey. For the second interval, [1,5], Procedure 2.1 produces 

Figure 2.6. 

 

Figure 2.5: D-graph for Example 2.3 with dK  in [0,1). 

 

Figure 2.6: D-graph for Example 2.3 with dK  in [1,5]. 

2.4. Band Intersections 

    Complications occur when the boundary band intersects with itself 

causing difficulty in stability analysis. This will be illustrated as following: 
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     Example 2.1c, we continue Example 2.1 with the range of dK  in 

[0,100]. Take a look at three cases of dK  with ranges of [0,1], [0,50]  and 

[0,100], for which the boundary bands are exhibited in Figures 2.2, 2.7 and 2.8, 

respectively. Let the first part of the boundary band to be a part corresponding 

to [0,3.68)ω ∈  and the second part to be the part corresponding to 

[3.68, )ω ∈ ∞ .These cases show band intersections, as soon as dK  increases, 

the second part of the boundary band covers the first part of the band. The 

reason is: for 70.85dK > , the dK -boundary curve no longer moves in 

clockwise direction but in counter clockwise direction. This makes the second 

part of the band totally covering the first part of the band and the regions that 

are neighbor to the first part of the band become a part of the band. Thus, if 

the range of dK  contain the value 70.85dK = , when it moves from one side 

of the first part of the band to another side, the number of unstable poles is not 

simply change to two fewer or two more unstable poles.  

 

Figure 2.7: D-graph of Example 2.1cc with Kd  in [0,50]. 
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Figure 2.8: D-graph of Example 2.1cc with Kd  in [0,100]. 

The boundary band intersects if and only if two boundary curves in the 

band corresponding to two  1dK  and 2dK  which may or may not be equal, 

intersect with each other (which must be at two different 1ω  and 2ω ). That 

means: 

 1 2( )( )p pK Kω ω=  (2.12) 

 21 1 2( , ) ( , )i d i dK K K Kω ω=  (2.13) 

where 1 ,d d dK K K ∈   , 2 ,d d dK K K ∈   , 1ω  not equal 2ω   In view of (2.6), 

we define 

 
[ ]1

2

Re ( )
Re ( : (

)
)

(
)p

G j
K G j

G j

ω
ω λ ω

ω
− −

 = − = =   (2.14) 

Obviously, (2.12) cannot hold and no intersection of the boundary band can 

occur if )(λ ω  is globally monotonic. The following lemma follows. 

Lemma 2.1. A necessary condition for the band intersection is that )(λ ω  

is not monotonic. 

    In view of (2.7), we define 
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 2 1 ,Im ( ) : ( )i d dK G j hK Kω ω ω ω− = + =   (2.15) 

Equations (2.12) and (2.13) are equivalent to 

 1 2( ) ( )λ ω λ ω=  (2.16) 

 21 1 2( ) (, , )d dh K h Kω ω=  (2.17) 

which involve 4 unknowns. Letting 1 2d d dK K K= =  means that a single 

dK -curve intersects with itself but not with other curves, and yields  

 1 2( ) ( )λ ω λ ω=  (2.18) 

 1 2, ,( ) ( )d dh K h Kω ω=  (2.19) 

with 3 unknowns, which have finite and usually few solutions only for each 

dK . Such solutions give self intersection points of a particular curve 

corresponding to this dK .  

   Lemma 2.2. A sufficient condition for band intersection is that (2.19) 

admits a solution for ,d d dK K K ∈   . 

 It is crucial to find when there is band intersection. We want to reduce 

work of solving set of equations (2.16) and (2.17). Observe that by Lemma 

2.1, or equation (2.16), we can plot ( )λ ω , and find possible range ω  for 

which this equation holds, and denote it by 1Q . Moreover, in a real practice, 

physical processes likely restrict the controller parameters, for which the 

consideration range of ω  can be upper-limited. Indeed, it follows from the 

very first equation, characteristic equation, (2.3), that 

  ) ( )( 1K jG jω ω = ,  

which is violated by ) ( )( 1K jG jω ω < , or by  

 
2

2
2

2 2) ( ) ) ( ) )( ( ( 2 1p
i

p d i

K
G j GK j j G j K K KK j Kω ω ω ω ω ω

ω
≤ ≤ + + + < . 

where  
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 2
2

2
2 2 2i
p d p i

K
A K K K Kω

ω
= + + + ;  

and pK , iK  are the maximum absolute values of pK  and iK  , 

respectively.  

Let  

 (( ) )G j Aα ω ω= ,  (2.20) 

observe that  

 lim ( ) 0
ω

α ω
→∞

= ,   

thus, from some frequency ω , for ω ω>  we have )( 1α ω < . Apparently, 

ω ω>  is not in solution set of (2.16). This ω  can be obtained by graphical 

method by from plotting function ( )α ω . This analysis gives the admissible 

set of frequencies denoted by 2Q . Because both conditions which we 

considered so far to get 1Q  and 2Q  are necessary, we can reduce search 

range for frequency to 1 2aQ Q Q= ∩ . We can mark it on the plot of ( )λ ω .  

     Now, take a look at one interval of aQ  at a time. Without loss of 

generality, suppose it is in 1 1[ , ]ω ω  where  ( )λ ω  increases to 1
*
1 1[ , ]ω ω ω∈  

which reaches maximum ( )λ ω  and then decrease. Observe that for a fixed 

pair of *
1 1 1[ ],ω ω ω∈  and  *

1 12 [ ],,ω ω ω∈ , which forms a solution of (2.16), it 

follows from (2.17) that 

 
2 1 1
1 1 1 2

2 12 2
2 2

2I ) )m ( Im (
d d

G j G j
K K

ω ω ω ω ω
ω ω

− −−= + , (2.21) 

which represents a line in plane 1 2( , )d dK K . Thus, solution of (2.17) can be 

found by drawing this line for 1 ,d d dK K K ∈    and find the intersection 

segment of it with square 1 ,d d dK K K ∈    and 2 ,d d dK K K ∈   . Each point 

1 2( , )d dK K  that lies on the intersection segment is a solution of (2.17) for the 

corresponding 1 2( , )ω ω . This holds for any *
1 1 1[ ],ω ω ω∈ , hence, the complete 

solution of (2.16) and (2.17) are obtained by drawing all the lines 

corresponding to the range *
1 1[ , ]ω ω .  

      Note that if there is a sub-range 1 1,c c
d dK K    of ,d dK K    in which 
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there is no band intersection, the corresponding inner square 1 1
1 ,c c

d ddK K K ∈    

and 1 1
2 ,c c

d ddK K K ∈    does not intersect with any of solution lines, and vice 

versa. Let denote the set of all such sub-ranges c
DK  and the complement of 

c
DK  in the dK -range s

DK . Please note that s
DK  and c

DK  may consist of 

disjoint subsets. For c
DK , we can use Procedure 2.1 to find stable regions and 

conditionally stable region. The main issue here is to study stability for s
DK . 

To this, there is further room for reduction. The band for such s
DK  may not 

intersect everywhere but only parts of it. When we solve (2.16) above, we also 

get ω  range, 1Q , which give s
DK . In the band for s

DK  , the only portion of 

intersection corresponds to 1Q . The other portions get no intersection and act 

as band with no intersection.  

   Consider now the real complex case of intersecting portion of the band. 

The band still cuts the plane to regions. We need to check stability of each 

region to find stable ones. As for stability of band, for some intersection 

portions corresponding to the range of frequency in aQ , if the neighbor 

regions 1R , 2R   are both unstable and all the portions has the same shaded 

size toward 1R  or 2R , then these portions are impossible to be conditionally 

stable. This further reduces the intersecting portions of the band to check for 

stability. For other possible stable band portion, for any point in band, which 

means a pair of fixed value pK  and iK , we can draw  root locus for dK  to 

find the stabilizing range of dK . From the characteristic equation (2.3) we 

have: 

 
( )

1 0
1 ( )

d
i

p

sG s
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K
K G s

s

+ =
 + + 
 

. 

Observe that the stabilizing range of dK  can be obtained from drawing the 
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root locus corresponding to the modified process 
( )

1 ( )i
p

sG s
K

K G s
s

 + + 
 

. Notice 

that our application is much simpler as the parameter range is limited to a 

interval in s
DK , not from 0 to infinity.  

The above analysis is summarized as follows. 

Procedure 2.2 . Determine the stabilizing PID regions in the case of band 

intersection. 

Step 1. Plot )(α ω  and ( )λ ω . Compute 1Q  from ( )λ ω  and 2Q  from 

)(α ω . Compute 1 2aQ Q Q= ∩ . 

Step 2. Determine s
DK  and c

DK . 

Step 3. For each interval in c
DK  with no intersection, apply Procedure 2.1 

to find stable regions and conditionally stable band. 

Step 4. For each interval in s
DK , draw D-graph to divide the space to 

regions and find stable regions. For the band, use Procedure 2.1 to find 

conditionally stability for its portion with no intersection, and use root locus to 

determine stable sub-intervals of sDK  for the band with intersection. 

 Example 2.1cc. Consider Example 2.1 whendK  varies in [ ]0,1  with 

100iK =  and 100pK = . Step 1 produces Figure 2.9  and Figure 2.10. From 

Figure 2.9, we compute 1 [0,5977]Q =  while Figure 2.10 gives 

2 [0,2.77]Q = . As 1 2aQ Q Q= ∩ , we obtain [0,2.77]aQ = . In Step 2, in order 

to compute s
DK  and c

DK , we solve (2.16) for [0,2.77]aQ = , which does not 

has any solution. Thus s
DK  is null and c

DK  is [ ]0,1 . In Step 3 we apply 
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Procedure 2.1 for dK  varies in [ ]0,1 , this gives Figure 2.11 with the stable 

region marked in green and the conditionally stable region mark in grey. Since 

s
DK  is null, Step 4 is bypassed. 

 

Figure 2.9. Plot of )(λ ω  of Example 2.1cc 

 

Figure 2.10: Plot of )(α ω  of Example 2.1cc 
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Figure 2.11: D-graph for Example 2.1cc with Kd  in [ ]0,1  

 Example 2.1ccc. Consider Example 2.1 whendK  varies in [ ]0,100 . Step 

1 produces Figure 2.9  and Figure 2.10. From Figure 2.9, we compute 

1 [0,5977]Q =  while Figure 2.12 gives 2 [0,9.44]Q = . As 1 2aQ Q Q= ∩ , we 

obtain [0,5977]aQ = . In Step 2, in order to compute s
DK  and c

DK , we 

compute the slope and Y-intercept of equation (2.21) for [0,3.659]ω ∈  . 

These values are plotted in Figure 2.13. All solution lines of (2.16) and (2.17) 

are plotted in Figure 2.14, which shows that cDK  is null. Thus Step 3 is 

bypassed. Step 4 gives the D-graph in Figure 2.8 with boundary band and the 

line 0iK = . From checking region stability, the region above the RRB has 

two RHP poles while the region below the RRB has three RHP. Thus, there is 

no stable region in this example. In step 5, the portion with possible 

conditionally stable region is the band for [0,5977]ω = . Take one point in 

this portion as ( , ) (200,60)p iK K = , the root locus for dK  can be seen in 
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Figure 2.15. The stabilizing range of dK  for ( , ) (200,60)p iK K =  is 

[57.6,67.8]. Figure 2.14 shows that there is only one solution for the set of 

equations (2.18) and (2.19) which is 70.85dK = . In this example, such 

solution can help to find the conditionally stable region, which is the grey 

region in Figure 2.16. 

 

Figure 2.12: Plot of )(α ω  of Example 2.1cc 

 

Figure 2.13: Plot of Slope and Y-Intercept of Equation (2.21) of Example 

2.1cc 
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Figure 2.14: Plot of  Equation (2.21) of Example 2.1cc 

 

Figure 2.15: Root Locus for dK  of Example 2.1cc with 200iK =  and 

60pK =  

 

Figure 2.16: D-graph of Example 2.1cc with Kd  in [0,70.85]. 
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Example 2.4. Consider PID control of the following process [4] 
 

 
3 2

1
( ) sG s e

s s s
−

+ +
=  

In this example, with [ , ] [0,20]d dK K = ,  100iK =  and 100pK = , we plots 

( )λ ω  and ( )α ω  to give 1 [0, )Q = ∞  and 2 [0,6.05]Q =  (Figure 2.17, 

Figure 2.18). This will result in [0,6.05]aQ =  and aQ  can be further divided 

into 3 ranges [0,1.206], [1.206,3.448] and [4.553,6.05] (Figure 2.19). 

Solution lines for the first range of aQ , which is [0,1.206] are plotted in the 

dK -plane in Figure 2.20. This shows cDK  is null. The D-graph for the range 

of frequency [0,6.05]aQ =  is given in Figure 2.21. In Figure 2.22 a zoom 

into a possible stable region and a possible conditionally stable region of 

D-graph. Verifying the RHP of region with the fewest RHP reveals that it is a 

stable region and it is marked in green in Figure 2.22. The portion of boundary 

band next to it with no intersection of band is the conditionally stable region 

and is marked in grey. For other portion of band in Figure 2.22, the root locus 

of dK  is needed for finding stabilizing range. 

 
Figure 2.17: Plot of )(λ ω  of Example 2.4 
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Figure 2.18: Plot of )(α ω  of Example 2.4. 

 

Figure 2.19: Plot of )(λ ω  for [0,6.05]ω ∈  of Example 2.4 

 

Figure 2.20: Plot of  Equation (2.21) of Example 2.4 
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Figure 2.21: D-graph of Example 2.4 

 
Figure 2.22: Zoom-in D-graph of Example 2.4 

 

2.5. Conclusion 

The chapter represents a method to compute stabilizing region in ( , )p iK K  

plane while dK  varies in a range by extending the stability boundary concept 

to the parameterized stability boundary band. This approach is applicable for a 

general process with/without time delay. For process with monotonic ( )λ ω , 
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the entire stabilizing range with three parameters of PID controller are given. 

For process with non-monotonic ( )λ ω , root locus of dK  is needed to find 

stabilizing range of dK  in the possible conditionally stable region.  
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Chapter 3  

Stabilizing Loop Gain and Delay for 

Strictly Proper Processes 

3.1. Introduction 

The problem under consideration in this chapter is to compute the exact 

stabilizing gain ranges for a general SISO process with uncertain time delay. 

Note that this problem is highly nonlinear and analytical solution seems to be 

difficult to derive. Thus, we present an effective graphical method to exactly 

compute stabilizing gain and delay ranges for any process. First, all the critical 

gains and delays at which the feedback control system may change stability 

are determined. These gains and delays are computed when the process’s 

Nyquist curve intersects with the critical point. Then, the delay-gain plane is 

divided into regions and the stable ones are easily identified with our novel 

perturbation analysis. The stabilizing ranges of the gain controller are given in 

terms of the delay. The method requires no iterations, and can be applied to 

any process with possible unstable poles/zeros and large delay. It is simple in 

computation (no equation to be solved) and extremely powerful when it 

generates the boundary functions in the 2D space of ( , )L k , which encloses 

the complete set of stabilizing parameters.  

It should be pointed out that although Nyquist analysis is employed in this 

chapter as well as in [34], there are great deal of differences exist between 

them. This thesis looks only at local behavior of the Nyquist curve near the 
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critical point to find out how a delay perturbation changes the number of the 

curve’s encirclements with regard to the critical point, without considering the 

entire curve, telling how a delay change affects stability change. On the other 

hand, [34] looked at the entire Nyquist curve and figured out the total number 

of the curve’s encirclements with regard to the critical point for each pair of 

specific process and controller, which can be imagined to be too difficult to 

use when the process is general and can create a highly complex Nyquist 

curve and encirclements. 

Even though our method and the traditional D-decomposition method 

share the same fundamental principles, our method has the following essential 

differences and significant advantages. The traditional D-decomposition 

method starts from the characteristic equation no matter where it comes from. 

The idea behind this method is to solve this equation for all its roots. In 

particular, the characteristic equation is separated into two equations of real 

and imaginary parts, respectively, and then two equations are solved 

simultaneously to find the common roots. On the other hand, our method also 

starts from the characteristic equation, we base our analysis on the Nyquist 

stability criteria. In particular, we transform the characteristic equation into 

magnitude and phase equations. These equations enable us to use Nyquist plot 

argument easily and see the effect of the controller gain k and time delay L on 

the open loop Nyquist curve, where the former affects only the gain and the 

later affect only the phase. This leads to explicit solutions for k and L without 

the need of solving any equations. In this thesis, we are for the first time to 

develop such a new approach, specially designed for delay processes. 

Furthermore, our method provides effective techniques to reduce the number 
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of solution curves needed to be plotted, as much as possible by careful 

studying of the solution curve properties. It also greatly simplifies the stability 

region determination and is able to identify stable regions by inspection 

without any numerical checking in many cases.  

The remainder of the chapter is organized as follows. Section 3.2 presents 

our general approach via the Nyquist analysis. The boundary functions are 

studied in details in Section 3.3. The simple solution for a process with 

monotonic gain reduction is given in Section 3.4. In Section 3.5, a solution for 

a general process is presented. Finally, Section 3.6 draws the conclusions. 

3.2. The Problem Formulation and Proposed Approach 

Consider the unity output feedback system depicted in Figure 1.1, where 

0( ) ( ) LsG s G s e−=  and ( )K s k=  are the process and controller, respectively. 

0( )G s  is a fixed transfer function with no delay. The goal here is to determine 

the gain ranges for k  which stabilize the process in terms of a variable 

delayL . 

Problem 3.1. For a process, 0( ) ( ) ,LsG s G s e−=  under the proportional 

controller, K k= , with 0L >  and 0k > , find the regions in the 2D space, 

( , )L k , such that their interior points give stable closed-loop while their 

boundary points produce unstable closed-loop (with poles in the closed 

right-half plane). 

Theorem 3.1 [50]. Given open-loop transfer function G(s) with oP  

unstable poles, the feedback system with proportional controller ( )K s k=  is 

stable if and only if the Nyquist plot of ( )kG s  encircles the critical point, 

( 1 0)j− + , oP  times anticlockwise. 
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Let the open-loop transfer function be 0( ) ( ) sLQ s kG s e−= . By Theorem 

3.1, the closed-loop system may change its stability with regard to L  and/or 

k  only when the number of encirclements of the Nyquist plot of ( )Q s  with 

respect to the critical point changes. To find a stabilizing region for ( , )L k , we 

locate its boundary where )(Q jω  passes through the critical point at some 

frequency ω . That case satisfies 0( ) ( ) ( 1 0)j LQ j kG j e jωω ω −= = − + , which 

implies, for 0ω > , that 

      

0
0

1
, ( ) 0,

| ( ) |
k G j

G j
ω

ω
= ≠  Equation Chapter 3 Section 1(3.1) 

 0arg[ ( )] (2 1)
, {..., 1,0,1,...}n

G j n
L n

ω π
ω

+ += ∈ −  (3.2) 

while for 0ω = , 0(0) (0) 1Q kG= = −  with 0k >  requires  

 0arg[ (0)]G π= − ,   (3.3)

  

under which, 

 
0

1

| (0) |
k

G
= .   (3.4) 

 By convention, let 

 
0

0
0

    0 if (0) 0 
arg[ (0)]

 if (0) 0

G
G

Gπ
>

=  − <
 

Note that only positive delay is realistic, which requires (2) to meet  

 0arg[ ( )] (2 1)
0n

G j n
L

ω π
ω

+ += > . 

This yields 

 
2

n
π

π
−Φ −> , (3.5) 
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where Φ  is the maximum phase of 0 )(G jω . Denote minn  as the smallest 

integer number that satisfies (3.5). Thus, (3.2) is valid only for 

min min, 1,...n n n= + , which is used in the rest of this chapter. 

Equations (3.1) and (3.2) for each valid n define a boundary function 

which is an implicit mapping from the delay, L , to the gain, k , which is 

parameterized in terms of the frequency, ω . Equation (3.4) defines another 

boundary function, which is an explicit mapping from L  to k  and is 

actually a horizontal line in the plane of ( , )L k . The boundary functions 

defined by (3.1), (3.2) and (3.4) based on the frequency response of the fixed 

part of the process, 0G , can be drawn in the 2D plane, ( , )L k . They divide the 

plane into regions. Each interior point in a so-formed region will have the 

same number of encirclements of the critical point by the Nyquist curve of the 

corresponding open-loop as that of any other points in the region. Thus all the 

points in the same region produce either closed-loop stability or instability. 

There will be no stability difference among the points in one region. Therefore, 

one only needs to check stability of one region by looking at any single point 

inside that region. Single point stability test is simple and can be done in many 

ways. For instance, one may use Theorem 3.1 to test for stability. 

In general, all the boundary functions nL  need to be plotted on the plane of 

( , )L k  in order to determine the stability of regions. However, there are an 

infinite number of boundary functions nL , and, an infinite number of the 

resulting regions. It is impossible to plot and check the stability of all these 

regions. To overcome this problem, we attempt to limit the number of boundary 

functions to a few only in the subsequent sections. First of these is to develop a 
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perturbation analysis, in the next section, which tells how a delay perturbation 

at the critical point changes the number of unstable poles of the resulting 

closed-loop.  

3.3. Properties of Boundary Functions 

This section will study how the boundary functions defined in the 

preceding section are related to stability of their neighbor regions. These 

properties will be used in the next two sections to dramatically reduce the 

number of boundary functions needed, and in particular, only one boundary 

function, 
minnL , is needed to determine the entire stability parameter ranges if 

the process has monotonic gain reduction. 

Lemma 3.1. For m n≠ , a boundary function mL  intersects with 

another nL  only if there are mω  and nω  with m nω ω≠  such that 

0 0( ) ( )m nG j G jω ω= . 

Proof. Suppose that two different boundary functions, mL  and nL , 

m n≠ , intersect with each other at a point in the plane ( , )L k . Then, they 

have equal gains and delays, respectively, 

 
0 0

1 1

( ) ( )m nG j G jω ω
=  (3.6) 

 0 0arg[ ( )] (2 1) arg[ ( )] (2 1)m n

m n

G j m G j nω π ω π
ω ω

+ + + += . (3.7) 

Since m n≠ , (3.7) holds only if m nω ω≠ , in which case (3.6) gives 

0 0( ) ( )m nG j G jω ω=  for m nω ω≠ . The proof is complete.   

 It is implied by Lemma 3.1 that the boundary functions nL  will not 

intersect with each other if the gain of 0( )G s  monotonically reduces to zero 
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over the entire frequency range, a case which is shown in Section 3.4 to have a 

simple solution to Problem 3.1. General case is more complex and will be 

discussed in Section 3.5. 

 It turns out in the next few lemmas that the change of stability of 

closed-loop with regard to delay depends on the local gain change direction of 

the open-loop at the critical point. Note that 

0 0( ) / ( ) /j Ld kG j e d kd G j dωω ω ω ω− = . We use 0( ) /j Ld kG j e dωω ω−  in the 

following lemmas and their proofs for theoretical rigor whereas practically 

only the sign of 0( ) /d G j dω ω  matters when k is a positive constant. 

Lemma 3.2. Let the Nyquist plot of the open-loop 0( ) sLkG s e−  for 0ω >  

has the unique intersection with the critical point of ( 1 0)j− +  at a frequency 

* (0, )ω ω= ∈ ∞ . If the gain of its frequency response decreases at this 

frequency, that is, 
*0( ) / 0j Ld kG j e dω

ω ω
ω ω

=

− < , then the closed-loop system 

with ( )
0( ) s LkG s e ε− + has two more unstable poles than the closed-loop system 

with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

 Proof. We split the problem into three cases of decreasing, increasing and 

no change of phase. Suppose that the phase of the frequency response of 

0( ) sLkG s e− decreases at the frequency * 0ω ω= > , that is, 

*0arg[ ( ) ] / 0j Ld kG j e dω
ω ω

ω ω−

=
< . In such a case, its Nyquist plot is moving 

clockwise when it intersects with the real axis. Note that the phase of all the 

points on the Nyquist plot of the slightly perturbed loop ( )
0( ) s LkG s e ε− + with a 

delay increase will differ by *ω ε−  from that of 0( ) sLkG s e− . In other word, 

the Nyquist plot of the perturbed loop moves up by that phase, the point at 



46 
 

*ω ω=  is now above the critical point. The new intersection point with the 

real axis is on the left hand side of the critical point with its phase cross-over 

frequency less than *ω  and its gain greater than 1 because of the assumed 

gain reduction at *ω ω= . Note similarly that the phase of all the points on the 

Nyquist plot of the slightly perturbed loop ( )
0( ) s LkG s e ε− − with a delay 

decrease differs by *ω ε  from that of 0( ) sLkG s e− . In other word, Nyquist plot 

of the perturbed loop moves down by that phase, the point at *ω ω=  is now 

below the critical point. The new intersection point with the real axis is on the 

right hand side of the critical point with its phase cross-over frequency greater 

than *ω  and its gain less than 1 because of the assumed gain reduction at 

*ω ω= . Combination of these two delay change observations shows the 

intersection point shifts from the left to the right of the critical point when the 

delay changes from L ε+  to L ε−  on the loop ( )
0( ) s LkG s e−  . The above 

analysis is drawn for 0ω > . The same shift occurs for 0ω < , because the 

frequency response with real coefficients is symmetry. Since the Nyquist plot 

of a proper transfer function with real coefficients on the entire Nyquist curve 

including both positive and negative frequencies always forms a closed curves, 

the above two shifts will either add two more clockwise encirclements (Figure 

3.1a), or reduce two more counter-clockwise encirclements (Figure 3.1b), 

when the open loop ( )
0( ) s LkG s e ε− +  is compared with ( )

0( ) s LkG s e ε− − , which 

causes the closed-loop system with ( )
0( ) s LkG s e ε− + to have two more unstable 

poles than the closed-loop system with ( )
0( ) s LkG s e ε− −  for 0ε > .  

Consider next the phase increase:
*0arg[ ( ) ] / 0j Ld kG j e dω

ω ω
ω ω−

=
> . In 
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such a case, its Nyquist plot is moving counter-clockwise when it intersects 

with the real axis. Note that the phase of all the points on the Nyquist plot of 

the slightly perturbed loop ( )
0( ) s LkG s e ε− + with a delay increase differs by 

*ω ε−  from that of 0( ) sLkG s e− . In other word, the Nyquist plot of the 

perturbed loop moves up by that phase, the point at *ω ω=  is now above the 

critical point, and the new intersection point with the real axis is on the right 

hand side of the critical point with its phase cross-over frequency less than *ω  

and its gain less than 1 because of the assumed gain reduction at *ω ω= . Note 

similarly that the phase of all the points on the Nyquist plot of the slightly 

perturbed loop ( )
0( ) s LkG s e ε− − with a delay decrease differs by *ω ε  from that 

of 0( ) sLkG s e− . In other word, the Nyquist plot of the perturbed loop moves 

down by that phase, the point at *ω ω=  is now below the critical point, and 

the new intersection point with the real axis is on the left hand side of the 

critical point with its phase cross-over frequency greater than *ω  and its gain 

less than 1 because of the assumed gain reduction at *ω ω= . Combining these 

two observations on delay changes shows that the intersection point shifts 

from the right to the left of the critical point when the delay changes from 

L ε+  to L ε−  on the loop ( )
0( ) s LkG s e−  . The above analysis is drawn for 

0ω > . The same shift occurs for 0ω < , because the frequency response with 

real coefficients is symmetry. Since the Nyquist plot of a proper transfer 

function with real coefficients on the entire Nyquist curve including both 

positive and negative frequencies always forms a closed curves, the above two 

shifts will either reduce two more counter-clockwise encirclements (Figure 

3.2a), or add two more clockwise encirclements (Figure 3.2b), when the open 
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loop ( )
0( ) s LkG s e ε− +  is compared with ( )

0( ) s LkG s e ε− − , which causes the 

closed-loop system with ( )
0( ) s LkG s e ε− + to have two more unstable poles than 

the closed-loop system with ( )
0( ) s LkG s e ε− −  for 0.ε >   

 

a)  

 

b)  

Figure 3.1: Open loop with local gain reduction and phase decrease.  

 

a)  

 

b)  

Figure 3.2: Open loop with local gain reduction and phase increase.  

Consider finally zero phase rate:
*0arg[ ( ) )] / 0j Ld kG j e dω

ω ω
ω ω−

=
= . There 

are 4 possible cases:  

• 
* * * *( , ) ( , )0arg[ ( ) )] / 0j Ld kG j e d

ω ω δ ω ω ω δ
ωω ω

∈ ∪ +

−

−
< : then the phase 

decreases over *ω δ−  to *ω δ+ . This is the same as the above case 

of phase decrease.  
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• 
* * * *( , ) ( , )0arg[ ( ) )] / 0j Ld kG j e d

ω ω δ ω ω ω δ
ωω ω

∈ ∪ +

−

−
> : then the phase 

increases over  *ω δ−  to *ω δ+ . This is the same as the above case 

of phase increase.  

• 
* *0 ( , )

arg[ ( ) )] / 0j Ld kG j e d
ω ω δ ω

ωω ω
∈ −

− < , 

* *0 ( , )
arg[ ( ) )] / 0j Ld kG j e d

δ
ω

ω ω ω
ω ω

∈ +

− > : then the phase at *ω ω=  has 

a local minimum. In the neighborhood of this point, the open loop 

( )
0( ) s LkG s e ε− +  moves above the critical point with clockwise direction 

whereas  ( )
0( ) s LkG s e ε− −  goes below it. It will either add two more 

clockwise encirclements, or reduce two more counter-clockwise 

encirclements, which causes the closed-loop system with 

( )
0( ) s LkG s e ε− + to have two more unstable poles than the closed-loop 

system with ( )
0( ) s LkG s e ε− −  for 0.ε >  The net effect is the same as 

the above case of phase decrease. 

• 
* *0 ( , )

arg[ ( ) )] / 0j Ld kG j e d
ω ω δ ω

ωω ω
∈ −

− > , 

* *0 ( , )
arg[ ( ) )] / 0j Ld kG j e d

δ
ω

ω ω ω
ω ω

∈ +

− < : then the phase at *ω ω=  has 

a local maximum. In the neighborhood of this point, the open loop 

( )
0( ) s LkG s e ε− +  moves above the critical point with counter-clockwise 

direction whereas  ( )
0( ) s LkG s e ε− −  goes below it. It will either add two 

more clockwise encirclements, or reduce two more counter-clockwise 

encirclements, which causes the closed-loop system with 

( )
0( ) s LkG s e ε− + to have two more unstable poles than the closed-loop 
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system with ( )
0( ) s LkG s e ε− −  for 0.ε >  The net effect is the same as 

the above case of phase increase. 

The proof of Lemma 3.2 is complete.  

 Lemma 3.3. Let the Nyquist plot of the open-loop 0( ) sLkG s e−  for 

0ω > has the unique intersection with the critical point of ( 1 0)j− +  at a 

frequency * (0, )ω ω= ∈ ∞ . If the gain of its frequency response increases at 

this frequency, that is, 
*0( ) / 0j Ld kG j e dω

ω ω
ω ω

=

− > , then the closed-loop 

system with ( )
0( ) s LkG s e ε− + has two fewer unstable poles than the closed-loop 

system with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

 Proof. Follow the proof of Lemma 3.2 with “greater”, “gain reduction”, 

“left” replaced with “less”, “gain increase”, “right”, respectively.  □ 

Lemma 3.4. Let the Nyquist plot of the open-loop 0( ) sLkG s e−  for 0ω >  

have the unique intersection with the critical point of ( 1 0)j− +  at a 

frequency * (0, )ω ω= ∈ ∞  and 
*0( ) / 0j Ld kG j e dω

ω ω
ω ω

=

− = . Then, 

i. if  
* * * *( , ) ( , )

0( ) / 0j Ld kG j e d
ω ω δ ω ω ω δ

ωω ω
∈ − ∪ +

− <  for some 0δ > , the 

closed-loop system with ( )
0( ) s LkG s e ε− + has two more unstable poles 

than the closed-loop system with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

ii.  if 
* * * *( , ) ( , )

0( ) / 0j Ld kG j e d
ω ω δ ω ω ω δ

ωω ω
∈ − ∪ +

− >  for some 0δ > , the 

closed-loop system with ( )
0( ) s LkG s e ε− + has two fewer unstable poles 

than the closed-loop system with ( )
0( ) s LkG s e ε− −  for some 0.ε >  
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iii. if 
* *( , )

0( ) / 0j Ld kG j e d
ω ω ω

ω

δ
ω ω

∈

−

−
<  and 

* *( , )
0( ) / 0j Ld kG j e dω

ω ω ω δ
ω ω

∈ +

− >  for some 0δ > , the closed-loop 

system with ( )
0( ) s LkG s e ε− + has the same number of unstable poles with 

the closed-loop system with ( )
0( ) s LkG s e ε− −  for some 0.ε >   

iv. if 
* *( , )

0( ) / 0j Ld kG j e d
ω ω ω

ω

δ
ω ω

∈

−

−
>  and  

* *( , )
0( ) / 0j Ld kG j e dω

ω ω ω δ
ω ω

∈ +

− <  for some 0δ > , the closed-loop 

system with ( )
0( ) s LkG s e ε− + has the same number of unstable poles with 

the closed-loop system with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

 Proof. i) 
* * * *( , ) ( , )

0( ) / 0j Ld kG j e d
ω ω δ ω ω ω δ

ωω ω
∈ − ∪ +

− < :  The gain rate is 

negative at both *ω ω<  and *ω ω> . The arguments in the proof of Lemma 

3.2 can apply and the same statement as Lemma 3.2 thus carries to this case. 

ii) 
* * * *( , ) ( , )

0( ) / 0j Ld kG j e d
ω ω δ ω ω ω δ

ωω ω
∈ − ∪ +

− > :  Similarly, this case is the 

same as Lemma 3.3.  

iii)
* *( , )

0( ) / 0j Ld kG j e d
ω ω ω

ω

δ
ω ω

∈

−

−
<  and 

* *( , )
0( ) / 0j Ld kG j e dω

ω ω ω δ
ω ω

∈ +

− > : the gain at *ω ω=  has a local minimum. 

In such a case, the phase of all the points on the Nyquist plot of the slightly 

perturbed loop ( )
0( ) s LkG s e ε− + with an delay increase differs by *ω ε−  from 

that of 0( ) sLkG s e− . In other word, the Nyquist plot of the perturbed loop 

moves up by that phase, the point at *ω ω=  is now above the critical point 

and the new intersection point with the real axis is on the left hand side of the 
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critical point because of the assumed minimum gain at *ω ω= . On the other 

hand, the phase of all the points on the Nyquist plot of the slightly perturbed 

loop ( )
0( ) s LkG s e ε− − with an delay decrease differs by *ω ε  from that of 

0( ) sLkG s e− . In other word, the Nyquist plot of the perturbed loop moves down 

by that phase, the point at *ω ω=  is now below the critical point, and the 

new intersection point with the real axis is on the left hand side of the critical 

point because of the assumed minimum gain at *ω ω= . It follows that the 

intersection points of both ( )
0( ) s LkG s e ε− +  and ( )

0( ) s LkG s e ε− −  are on the left 

of the critical point when the delay changes from L ε+  to L ε−  on the loop 

( )
0( ) s LkG s e−  (Figure 3.3). Hence, there is no change of encirclements and 

unstable poles.  

 

Figure 3.3: Open loop with local minimum gain. 
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 iv)
* *( , )

0( ) / 0j Ld kG j e d
ω ω ω

ω

δ
ω ω

∈

−

−
>  and 

* *( , )
0( ) / 0j Ld kG j e dω

ω ω ω δ
ω ω

∈ +

− < : the gain at *ω ω=  has a local maximum. 

In such a case, the phase of all the points on the Nyquist plot of the slightly 

perturbed loop ( )
0( ) s LkG s e ε− + with an delay increase differs by *ω ε−  from 

that of 0( ) sLkG s e− . In other word, the Nyquist plot of the perturbed loop 

moves up by that phase, the point at *ω ω=  is now above the critical point 

and the new intersection point with the real axis is on the right hand side of the 

critical point because of the assumed maximum gain at *ω ω= . On the other 

hand, the phase of all the points on the Nyquist plot of the slightly perturbed 

loop ( )
0( ) s LkG s e ε− − with an delay decrease differs by *ω ε  from that of 

0( ) sLkG s e− . In other word, the Nyquist plot of the perturbed loop moves down 

by that phase, the point at *ω ω=  is now below the critical point, and the 

new intersection point with the real axis is on the right hand side of the critical 

point because of the assumed maximum gain at *ω ω= . It follows that the 

intersection points of both ( )
0( ) s LkG s e ε− +  and ( )

0( ) s LkG s e ε− −  are on the right 

of the critical point when the delay changes from L ε+  to L ε−  on the loop 

( )
0( ) s LkG s e−  (Figure 3.4). Hence, there is no change of encirclements and 

unstable poles. 
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Figure 3.4: Open loop with local maximum gain. 

The proof of Lemma 3.4 is complete.  □ 

 Lemma 3.5. Let the Nyquist plot of the open-loop 0( ) sLkG s e−  for 0ω >  

have intersections with the critical point of ( 1 0)j− +  at * (0, )iω ω= ∈ ∞ , 

1,2,...i = . Let in  and dn  be the number of intersections with 

*0| ( ) ) | / | 0
i

j Ld kG j e d ω ω
ωω ω

=
− <  and *0| ( ) ) | / | 0

i

j Ld kG j e d ω ω
ωω ω

=
− > , 

respectively. Then the closed-loop system with ( )
0( ) s LkG s e ε− − has 2( )i dn n−  

more unstable poles with the closed-loop system with ( )
0( ) s LkG s e ε− +  for some 

0.ε >  

Proof. Lemma 3.5 is proved by applying Lemma 3.2 or 3.3 to each 

intersection and summing up individual numbers. □ 

Obviously, one can include the case of zero gain rates in Lemma 3.4 into 

Lemma 3.5 but it was omitted for brevity. 
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3.4. Processes with Monotonic Gain Reduction 

In what follows, we assume that 0( )G s  is a strictly proper transfer 

function. Thus, its gain eventually reduces to zero, i.e. 0lim ( ) 0G j
ω

ω
→∞

= , and 

its Nyquist plot ends at the origin.  0( ) LskG s e−  will all go to the origin at 

ω = ∞  for any finite value of k, regardless of L. Therefore, the point at 

ω = ∞  will not cause any change of encirclements of the loop in Nyquist plot 

with the critical point and does not affect closed-loop stability. It will be 

excluded from stability analysis in the rest of this paper. However, it should be 

pointed out here that this will not be the case if 0( )G s  is not strictly proper 

but bi-proper.  

A transfer function 0( )G s  is said to have monotonic gain reduction if 

there holds 0 1 0 2( ) ( )G j G jω ω>  for 1 20 ω ω≤ < . For such a case, there are 

no two different frequencies with equal gain and from Lemma 3.1 the 

corresponding boundary functions do not intersect with each other.  In 

addition, such a 0G  meets 0( ) / 0d G j dω ω <  for 0ω > . It follows from 

Lemmas 3.2 that the closed-loop system with 0( ) LskG s e− with nL L>  has 

two more unstable poles than the closed-loop system with  0( ) LskG s e− with 

nL L< . Then, the region right to nL  is impossible to be stable as the 

minimum number of unstable poles of a system is zero. For 0ω > , this 

argument is true for each n. The induction on n tells that the only possibly 

stable region is one left to 
minnL , and its actual stability should be checked 

with one point inside it. Note that 
minnL  is positive only for the frequency 

range with 0 minarg[ ( )] (2 1)G j nω π≥ − + , and thus is computed there only to 
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plot 
minnL  in the 2D plane.  

For 0ω = , it follows from (3.3) that the horizontal line 
0

1

(0)
k

G
=  is 

needed only if 0(0) 0G < .  Since 0( )G s  has monotonic gain reduction, it 

has the maximum gain at 0ω = , and the corresponding 
0

1

(0)
k

G
=  is 

strictly smaller than 
0

1

( )
k

G ω
=  for 0ω >  on 

minnL . Thus, the line 

0

1

(0)
k

G
=  does not intersect with 

minnL . These two boundary functions 

divide the first quadrant of the plane ( , )L k  into three regions, one below the 

line 
0

1

(0)
k

G
= , one above the line and left to 

minnL , one above the line and 

right to 
minnL , with the last being unstable as shown above. The first region 

meets 
0 0

|

1

| )(
k

G j ωω
=

< , or  0 )( 1LsekG jω − < , implying that its Nyquist plot 

is impossible to have any encirclement of the critical point. It follows that a 

stable 0( )G s  will yield stability of this region, while an unstable 0( )G s  will 

yield instability of this region.  

If 0(0) 0G > , there is no horizontal line. A point on the left hand side of 0L  

and near the origin on ( , )L k  is close to the corresponding open-loop system. 

Thus, the region on the left hand side of
minnL is stable (or unstable) if 0G  is 

stable (or unstable). 

The above analysis is summarized in Algorithm 3.1 for finding the 

stabilizing gain ranges for a process with monotonic gain reduction as follows. 
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Algorithm 3.1. Consider a process with monotonic gain reduction. 

Step 1. For 0ω = , if 0arg[ (0)]G π= − , plot the horizontal 

line,
0

1

(0)
k

G
= , on the plane ( , )L k . The region below this line 

is stable (or unstable) if 0G  is stable (or unstable). 

Step 2. For 0ω ≠ , plot 
minnL  with (3.1) and (3.2) on the plane ( , )L k . 

If 0(0) 0G > , the region on the left hand side of 
minnL  is stable 

(or unstable) if 0( )G s  is stable (or unstable). If 0(0) 0G < , 

check stability of the region on the left hand side of 
minnL .   

Remark 3.1. If 0(0) 0G <  and 0G  is stable, the region on the left hand 

side of 0L is unstable. In such a case, there is the horizontal line 
0

1

(0)
k

G
=   

and the region below the line is stable based on Step 1 of Algorithm 3.1. A point 

slightly above the line has the gain greater than 
0

1

(0)G
. And the corresponding 

open-loop Nyquist plot crosses the critical point and causes clockwise 

encirclement due to monotonic gain reduction of the loop, and thus closed-loop 

instability.  

 Example 3.1. Consider the following delay process, 

 0 2

0.1 1
( ) ( )

0.16( 1)( 5 7.8125)
Ls Lss

G s G s e e
s s s

− −− += =
− + +

.  

This process has one unstable pole at 1s = , two complex poles at 

1 0.5s j= − ±  and one non-minimum-phase zero at 10s = . One can see from 

the gain plot of 0( )G s  in Figure 3.5 that the process has monotonic gain 

reduction, so Algorithm 3.1 is applicable. The maximum phase of 0 )(G jω  is 
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3.044Φ = − . It follows from (5) that 0.0155n > −  so min 0n = . For Step 1, 

0(0) 0.8G = −  meets (3.3) and yields the black line 1.25k = . The region 

below this line is unstable since 0G  is unstable. Step 2 gives the curve 0L  

marked in blue. Since the open-loop system is unstable and 0(0) 0G < , we 

need to check stability of the region in the left hand side of 0L . We select one 

point as ( , ) (0.1,1.6)L k =  in this region. The corresponding Nyquist plot of 

0( ) LskG s e−  has one counter-clockwise encirclement, see Figure 3.7. So, this 

region is the stable region and shaded in green. Note that the presence of 

unstable zero limits the stabilizing gain to 2.179, while the presence of 

unstable poles limits the delay to 0.26. For this example, the method in [34] 

cannot be applied because of complex poles. 

 

Figure 3.5: Gain plot of 0( )G s  of Example 3.1 
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Figure 3.6: Stabilizing region of ( , )L k  for Example 3.1 

 

Figure 3.7: Nyquist plot of Example 3.1 with 1.6; 0.1k L= =  

3.5. Processes with Non-monotonic Gain 

In this section, we consider a process that does not have monotonic gain 

reduction. For such a process, there are two frequencies with the same gain, 

and from Lemma 3.1, the corresponding boundary functions nL  may 

intersect with each other. Such frequencies and their ranges are crucial to 

determine how many nL  are needed for the solution of Problem 3.1 and thus 
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discussed first. 

 

Figure 3.8: Gain plot of 0( )G jω  

We draw the Bode gain plot, 0 )(G jω . For illustration, consider 

50 4 3 2

5 0.1
( )

30 10 150 1

s
G s

s s s s s

+=
+ + + + +

, 

with its gain plot shown in Figure 3.8. We proceed as following: 

• Take 1 0ω =  as the first point of local minimum or local maximum of 

0 )(G jω . Draw the horizontal line of the gain equal to 
1

0 1 0
( )G j

ω
ω

=
. 

This line may intersect on its right with the gain plot at some frequency, 

1 1ω ω> . If there does not exist  1ω , then 1ω  is not needed for our 

calculations and is discarded. Form one frequency range as 1 1[ , ]ω ω , 

where 1 1ω ω= . For the above example, 0(0) 0.1G = , and this line 

intersects with the gain plot at 1.97ω = . Then, we have 1 0ω =  with 

1 1[ , ] [0,1.97]ω ω = . See Figure 3.8. 
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• Find all the frequencies at which the gain has local minimum or local 

maximum, i.e. 0 )( / 0d G j dω ω = . Denote these frequencies as2ω ,…, 

mω  with 1 2 ... mω ω ω< < < . The example gives 2 0.1846ω = , 

3 2.53ω = , 4 3.96ω =  and 5 4.72ω = . For each iω , 2,3,...,i m= , 

draw the horizontal line with gain equal to 0 )( iG jω . Find the nearest 

left and right intersections with the gain plot and assign the 

corresponding frequencies as i iω ω<  and i iω ω> , respectively. If 

there does not exist iω  or iω , then i iω ω=  or i iω ω= . Form one 

frequency range [ , ]i iω ω  for each i . If i iω ω= , the range [ , ]i iω ω  

has only one frequency and is not needed for our calculation and iω  

is excluded. The above example has 2 0.1846ω =  with 

2 2[ , ] [0.1846, 5.364]ω ω = , 3 2.53ω = with 3 33[ , ] 2.53ω ωω = = , 

4 3.96ω =  with 4 4[ , ] [1.633, 4.989]ω ω = , and 5 4.72ω =  with 

5 5[ , ] [3.379, 4.72]ω ω = . Since 3 3ω ω= , this range is discarded. See 

Figure 3.8. 

• Take 1mω + = ∞  as the last point of local minimum or local maximum 

of 0 )(G jω . Draw the horizontal line of the gain equal to 

1
0 1)lim (

m
mG j

ω
ω

+ →∞ + . This line may intersect on its left with the gain plot 

at some frequency, 1 1m mω ω+ +< . If there does not exist 1mω + , then 

1mω +  is not needed for our calculations and is discarded. Form one 

frequency range as 1 1[ , ]m mω ω+ + , where 1 1m mω ω+ += . For the above 
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example, 
6

0 6lim ( ) 0G j
ω

ω
→∞

= , and this line does not intersect with the 

gain plot. Thus, 6ω  is discarded.  

It should be pointed out that in a real practice, physical systems restrict 

delay and gain ranges. Thus, we suppose that max0 L L≤ ≤  and max0 K K≤ ≤  

are of interests for our calculations. The key issue is how many nL  are 

necessary to determine the stabilizing ranges. 

Lemma 3.6. Let iφ  be the minimum phase of 0 )(G jω  in [ , ]i iω ω . Then,  

there holds  

x, ] ma[
( )

i i
nL Lω ω ωω

∈
>  for in n> , 

where 

 max

2
i i

i

L
n

ω φ π
π
− −= . (3.8) 

Proof.  It follows from (3.2) that for in n> , 

 

m

0

ax

arg[ ( )] (2 1)

(2 1) (2 1)i i i i

i

n

G j n
L

n n
L

ω π
ω

φ π φ π
ω ω

+ +=

+ + + +> > >
.  

This completes the proof. □ 

Since x, ] ma[
( )

i i
nL Lω ω ωω

∈
>  with in n> , nL  with in n>  is not in the 

interesting domain of max0 L L≤ ≤  and will not be needed. This is the case 

for each i . Thus, the number of boundary functions needed to plot is  

 max max{ }in n=  , (3.9) 

where in  is the smallest integer such as i in n> . We draw nL , 

max0,1,...,n n= , on the plane ( , )L k  and the resulting curves divide the 
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rectangular area bounded by max0 L L≤ ≤  and max0 K K≤ ≤  into finite 

regions. We need an effective way to decide stability of each resulting region. 

In the plane ( , )L k , we can indicate direction of frequency increase with 

an arrow on a boundary function. The upward arrow indicates increasing 

controller gain k , which corresponds to decreasing process gain 0( )G jω , 

whereas the downward arrow indicates decreasing controller gain k , which 

corresponds to increasing process gain 0( )G jω . It follows from Lemma 3.2 

that if the arrow of nL  is upward, the closed-loop system with ( , )L k  in the 

region on the left of nL  has two fewer unstable poles than the closed-loop 

system with ( , )L k  in the region on the right of nL . On the other hand, it 

follows from Lemma 3.3 that if the arrow of nL  is downward, the 

closed-loop system with ( , )L k  in the region on the left of nL  has two more 

unstable poles than the closed-loop system with ( , )L k  in the region on the 

right of nL . This fact is stated in the following Corollary 3.1 for easy 

reference later.  

Corollary 3.1. On the plane of ( , )L k ,  

• if the arrow of nL  is upward, the region on the left hand side of nL  

has two fewer unstable pole the region on the right hand side of nL . 

• if the arrow of nL  is down ward, the region on the left hand side of 

nL  has two more unstable pole the region on the right hand side of 

nL . 

If 0(0) 0G < , there is the horizontal line 
0

1

(0)
k

G
=  in the plane ( , )L k . 
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This line divides the plane ( , )L k  into two portions. Firstly, consider the 

lower portion. Start with the left-most region, that is, the nearest one to the 

origin. We can determine the number of unstable poles for the system 

corresponding to each point in this region by looking at only one point inside 

it. Then, we can infer from Corollary 3.1, the number of unstable poles of each 

region on its right, one region after another, from left to right. A region is 

stable if this number is zero. Note that the region near the origin has the same 

number of unstable poles as that of 0( )G s , because, for ( , )L k  near the 

origin, the closed-loop system with 0( ) LskG s e−  is close to the open loop 

0( )G s . Finally, one can repeat the above procedure for the upper portion.  

Now, we are ready to propose Algorithm 3.2 to obtain stabilizing gain 

ranges with respect to delay of a process with non-monotonic gain.   

Algorithm 3.2. Consider a process with non-monotonic gain. 

Step 1. For 0ω = , if 0arg[ (0)]G π= − , plot the horizontal line, 

0

1

(0)
k

G
= on plane ( , )L k .  

Step 2. Calculate maxn  from (3.9) and plot nL , 

min min max, 1,...,n n n n= + ,  on plane ( , )L k .  

Step 3. Start from the left-most region near to the origin and take the 

number of unstable poles of this region same as that of 0( )G s , 

and then know its stability; count the number of unstable poles 

of the region, one by one, from left to right, with help of 

Corollary 3.1, and then know its stability.  

Step 4. If 0(0) 0G < , there is the horizontal line  
0

1

(0)
k

G
=  dividing 
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the plane ( , )L k  into the lower and upper portions. Apply the 

same procedure as for the lower one in Step 3.  

Example 3.2. Consider a process with time delay, 

5 4 3 2

1
( )

30 10 100 1
Lss

G s e
s s s s s

−+=
+ + + + +

 

This process is stable. The gain plot in Figure 3.9 shows that the gain does not 

monotonically reduce with frequency and requires us to apply Algorithm 3.2. 

For Step 1, 0(0) 1G =  does not meet (3.3), and produces no line. For Step 2, 

we have 1 0.89ω = with 1 1[ , ] [0.89, 2.57]ω ω = , 2 1.95ω =  with 

2 2[ , ] [0.10,1.95]ω ω = , 3 3.94ω =  with 3 3[ , ] [3.94, 5.39]ω ω =  and 4 5ω =  

with 4 4[ , ] [2.9, 5]ω ω = . Let max 25L = , we have, 1 10.26n = , 2 7.6n = , 

3 21.8n =  and 4 20.1n = . By (3.9), we get max 22n = . The maximum phase of 

0 )(G jω  is 0Φ = , and (5) gives 0.5n > − , so min 0n = . The 23 boundary 

functions iL , 0,1,...,22i = , are drawn on plane ( , )L k  in Figure 3.10. These 

boundary functions divide the plane ( , )L k  into regions. Step 3 tells that the 

left-most region near to the origin has the same number of unstable poles with 

0( )G s , which has no unstable poles. Thus this region is stable and shaded in 

green. It is found that all the other regions are unstable. 
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Figure 3.9: Gain plot of 0( )G s  of Example 3.2 

 

Figure 3.10: Stabilizing region of Example 3.2 

To verify our Lemma 3.4, we take 1.95ω = , at which the gain rate of 

0( ) LskG s e− , with ( , ) (6.99,10.3)L k =  marked with a square, is zero. Its 

Nyquist plot has unique intersection with the critical point. Let look at the two 

points ( , ) (6.29,10.3)L k =  and ( , ) (7.69,10.3)L k = , also marked in a square, 

which are respectively on the left hand side and the right hand side of 

( , ) (6.99,10.3)L k = . Observe that both points stay in the same region, and 

thus they give the closed-loop system with 0( ) LskG s e−  the same number of 
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unstable poles, indeed, as predicted by our Lemma 3.4.  

Example 3.3. Consider an unstable delay process, 

 
2

80( 1)
( )

( 10)( 2 30)
Lss

G s e
s s s

−− +=
+ − +

. 

This process has two unstable poles at 1 5.3852s j= ± . Its gain does not 

monotonically reduce, and Algorithm 3.2 should be used. (0) 0.267G = −  

meets (3.3) and produces the horizontal line 3.75k =  as in Figure 3.17. We 

have 1 0ω = with 1 1[ , ] [0,16.93]ω ω = . With max 5L = , maxn  is found to be 14. 

The maximum phase of 0 )(G jω  is 0.41Φ = , and (5) gives 0.5653n > − , so 

min 0n = . We plot iL , 0,1,...,14i = , in the plane ( , )L k  as in Figure 3.11. 

These boundary functions divide the plane ( , )L k  into regions. The left-most 

region near the origin in the lower portion has the same number of unstable 

poles as 0( )G s , which has two unstable poles. With help of Corollary 3.1, the 

number of unstable poles of the region, one by one, from left to right is 

obtained. The stable region is the shaded one in Figure 3.11. In the upper 

portion of the plane ( , )L k , we take ( , ) (0.1, 4)L k =  in the left-most region 

to find the number of unstable poles of closed-loop system with ( )kG s . Its 

Nyquist plot in Figure 3.12 shows that this closed-loop system has one 

unstable pole. All the other regions in the upper portions are unstable  
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Figure 3.11: Stabilizing region of Example 3.3 

 

Figure 3.12: Nyquist plot of Example 3.3 with ( , ) (4, 0.1)L k =  

    In all three examples considered so far, we have min 0n = .  This may not 

always be the case. For instance, consider the process in Example 3.3 but 

change its sign to 

 1 2

80( 1)
( ) ( )

( 10)( 2 30)
Lss

G s G s e
s s s

−+= − =
+ − +

. 

For this process, the maximum phase of 0 )(G jω  is 3.552Φ = , and (3.5) 

gives 1.065n > − , so min 1n = − . The stability result is exhibited in Figure 

3.13, where the stable region is on the left hand side of 1L− . 
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Figure 3.13: Stabilizing region of 1( )G s  of Example 3.3 

3.6. Conclusion  

In this chapter, a graphical method for exactly computing the stabilizing 

gain and delay ranges is presented. This is achieved by determining the 

boundary functions which may change system’s stability. The proposed 

method is very general and applicable to any strictly proper process, and thus 

significantly relaxes the restrictions with the existing works. It is also powerful 

and can produce the exact and complete set of controller gain and delay for a 

stable closed-loop, which is hard to find with analytical methods.  A variety 

of examples are given and some of them show very complex stabilizing ranges 

which are out of imagination.  

Note that the time delay case has not been addressed in D-decomposition 

literature. In D-decomposition literature, coefficients of the characteristic 

equation must appear as a linear combination or as a polynomial of the two 

parameters of interest. In such a case, the number of solutions of the real part 

and imaginary part equations is finite since the equations are polynomial. 

However, when the time delay is considered as a parameter of interest, it 
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introduces the transcendental element in characteristic equation and 

coefficients no longer occur in polynomial form. The real and imaginary 

equations become trigonometric equations which are difficult to solve and 

have infinite number of solutions.  

The present work solely focuses on time delay processes because time 

delay is important in process control. It may cause instability, oscillation and 

poor performance to the control loop. This chapter provides new development 

with advantages that fill the gap in D-decomposition method for time delay 

processes. Due to the nature of exponential function introduced by time delay 

in open loop transfer function, we change D-decomposition technical approach 

with our approach as described in the Introduction paragraph to find the direct 

solution without the need of solving complex equations. It should be 

emphasized that such a change and new development in this chapter are 

necessary for delay processes, since the time delay case gives infinite number 

of solution curves. The existing D-decomposition method fails because it is 

impossible to find and plot all these solutions.  

Our work also provides essential techniques to reduce the number of 

solution curves needed to be plotted as much as possible by careful studies of 

the solution curves properties. This technical development is documented in 

the paper as six Lemmas which are all new and novel. In the end, for the 

monotonic gain case, we need to draw only one solution curve, while for the 

non-monotonic case, we need to draw several solution curves only. This 

produces great simple, efficient and elegant solution. 

Note also that after plotting solution curves in (k, L) plane, one still needs 

to determine the stability of each region. This is not simple task if there are 
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many regions and the number of poles of the system is large or infinite. The 

D-decomposition method shades all solution curves to find the regions with 

maximum number of stable poles; and subsequently, verifies if those regions 

are indeed stable regions. The shading rule uses the sign of the Jacobian to 

decide which sides of the curves are corresponding to the left half plane. This 

means the Jacobian equation needs to be solved to determine its sign in 

different ranges of frequency. This additional equation solving could be 

troublesome, especially for the nonlinear case, and adds computational load 

and complexity to the method. Further, even after all curves are shaded, the 

procedure of finding the regions with most stable poles is not systematic. The 

stability test for those favorable regions is not straightforward, either. They 

need to calculate all roots of the characteristic equation corresponding with an 

arbitrary point in a region and to compare the number of stable roots with the 

total number of roots of that equation. This method works for simple processes 

but it may not work for other complex processes. 

On the other hand, our method is able to significantly simplify the stability 

check and even identify stable regions by inspection without any numerical 

computational check. The proposed six Lemmas show how a delay 

perturbation changes the number of the Nyquist curve’s encirclements with 

respect to the critical point as well as the change to the number of 

unstable/stable poles. This turns out to depend on the rate of gain change, 

which is novel and has never been discovered before. This is obviously 

different from Jacobian based D-decomposition method. 

More specifically, with helps of newly developed Lemmas, we establish 2 

Algorithms corresponding with processes with monotonic gain reduction and 
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processes with non-monotonic gain. In many cases, stability test is not 

necessary for any region. It is because, we already know the number of 

unstable poles in one region connected to open loop, which is the number of 

unstable poles of the process. We can then infer the number of unstable poles 

in other regions with help of our proposed corollaries to the lemmas. Thus, the 

stable regions are found trivially in most of cases. This is an obvious 

advantage of our method over D-decomposition method and is possible since 

we adopt control view with open and closed loops in mind. Moreover, Nyquist 

chart can determine stability while D-decomposition method can never get 

them because it starts from characteristic equation in mind and focuses on 

solving it for the roots. 



73 
 

Chapter 4 

Stabilizing Loop Gain and Delay for 

Bi-proper Processes 

4.1. Introduction 

No manufacturing process can be put into operation until it has been 

proven to be stable, and stability of a system is thus an important and basic 

problem in process control. Even though this problem has been studied for 

decades, it is still an active field of investigation in control society. Moreover, 

obtaining a complete set of stabilizing  parameters set can be extremely 

beneficial for other problems in controller design, such as optimization of 

some performance criteria. Therefore, significant effort has been spent to find 

the complete stabilizing ranges of system or controller parameters. Delay free 

processes are relatively simple as its spectrum is finite. However, this is not 

the case for processes with time delay under feedback control. Time delay, 

which is usually encountered in industrial processes, can make process 

stabilization more difficult because it introduces infinite number of poles into 

the system characteristic equation. The problem has been studied extensively 

in control community [10]–[14], [16], [31], [33], [34], and most of the 

solutions focus on finding analytical solutions for limited classes of delay 

processes. Thus, a graphical method should be a good alternative to solve the 

stabilizing problem for general delay processes.  

One of the popular approaches in graphical methods is 

D-decomposition technique, which maps the stability boundary from the root 
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plane into the parameter space. The D-decomposition method solves the 

characteristic equation of a system with a set of  parameters for all of its 

imaginary roots. Then, the resulting solutions are drawn on parameter space. 

They divide the parameter space into regions, in which the number of positive 

real part roots is invariant. The stable regions are those regions for which this 

number is zero. A great number of works have applied this method for 

processes with fixed time delay [4], [6], [26], [51]–[55]. In these works, the 

characteristic equation appears as a polynomial of parameters while the time 

delay is fixed and not a parameter. Because of such restriction, the number of 

solution in the parameter space is finite and the stable regions can be found by 

checking stability of all regions.  

But there are inevitable uncertainties in the process and its models. 

Delay cannot be known precisely in practice. It is uncertain and usually is 

known to be in a range. Delay should be treated as a parameter in stability 

analysis. When time delay is one of the parameters, the number of boundary 

solutions in the D-decomposition framework is no longer finite but infinite. 

Thus, it is impossible to draw all solutions and look for the stable regions. The 

delay case is simply mentioned in [3], which is in Russia, and in its English 

translation [2], provided no technical details on how to handle the infinite 

number of solutions. Therefore, it is impractical to use the method there. In 

face of such a great difficulty, our graphical method in previous chapter can be 

used to compute the exact stabilizing gain and delay ranges for a strictly 

proper process. To effectively reduce the infinite number of boundary curves 

due to the delay, properties of these curves were investigated thoroughly. This 

greatly helped to simplify the stability determination of the resulting regions. 
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As a result, all stable regions could be identified and the stabilizing gain 

ranges were obtained in term of delay. It however assumed strict properness of 

the process. 

This chapter continues our previous work focusing on the case of 

processes with bi-proper transfer functions. Although they are less popular in 

industry, such processes may be found in practices such missiles [35] and 

robotic processes [36]. Thus, they should be addressed for general 

applicability and completion of the method. Extension the method to 

accommodate the bi-proper processes also occurred to complementary root 

locus method [37]. Note that the generalization from a strict proper case to a 

bi-proper case is not trivial for our previous method. If 0( )G s  is a strict proper 

transfer function, its gain eventually reduces to zero, i.e. 0lim ( ) 0G j
ω

ω
→∞

= , and 

its Nyquist plot ends at the origin.  0( ) LskG s e−  will always go to the origin at 

ω = ∞  for any finite value of k, regardless of L. Therefore, at ω = ∞ , does 

not affect closed-loop stability, and can be excluded from stability analysis. As 

a result, this will significantly simplify technical development in previous 

chapter. On the other hand, a bi-proper process has a non-zero finite gain at 

infinity frequency. As a result, this creates additional scenarios to consider, 

such as monotonic gain increase, and infinite encirclements of the critical 

point by Nyquist curve of a delay process. The most challenging issue is that 

there are infinite boundary functions within a limited delay range, which is 

impossible to draw and thus infer stability regions. Whereas it is shown that 

finite boundary functions are sufficient to determine stability region for a 

strictly proper case.  

For example, consider the following strict process: 
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2 2 2

2 2 2 2

1.63 20.69)( 1.51 1.79)( 0.46 1.44)

0.5

(
( ) .

( 2 65)( 1.4 4.49)( 3))(
Lss

G s e
s s s s s

s s s s

s s s
−+ + + + + +

+ ++
=

+ + + + +  

It follows from Chapter 3 that 20 is the maximum number of boundary 

functions that can intersect with each other within the rectangular bounded by 

0 10L≤ ≤  and 0 200k≤ ≤  of the plane ( , )L k . Indeed, as can be seen in 

Figure 4.1, there are 26 boundary curves inside the rectangular area but only 

nL , 0,1,...,19n = , intersect with each other. Thus, for this process, we only 

need to draw 20 boundary functions in order to find the stable regions. 

 

Figure 4.1: Stabilizing graph of ( )G s  

When two zeros are added, the above process becomes bi-proper:  

2 2 2

1 2 2 2 2

1.63 20.69)( 1.51 1.79)( 0.46 1.44)(5.1 )( 6.9)(
( )

( 2 65)( 1.4 4.49)( 35 ( )0. )
Lss s s s

s

s s s
G s e

ss s s s s s
−− +=

+ +
+ + + + + +

++ ++ + +
, 

For which, an infinite number of boundary functions intersect with each other 

within the rectangular, as can be inferred from Figure 4.2. However, it is 

impossible to plot infinite boundary functions and check the stability of all 
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resulting regions. This exhibits a significant challenge for the bi-proper 

processes. This paper will show that not all of the intersections between 

boundary functions are needed, and only a finite number of boundary 

functions are required to find stabilizing ranges. For 1( )G s
 
above, this 

number is 14, so we can plot all these boundary functions on the plane ( , )L k  

and find the stable region as in Figure 4.3, where the stable region is shaded. 

 

Figure 4.2: Boundary curves graph of 1( )G s  

 

Figure 4.3: Stabilizing Graph of 1( )G s  
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This chapter will address all technical issues pertaining to a bi-proper case. 

In particular, we provide some theoretical results which enable us to determine 

stability regions with finite number of boundary functions. In the end, our 

method becomes complete in the sense that it covers all possible processes and 

thus generally applicable. The remainder of the chapter is organized as follows. 

Section 4.2 presents the problem of computing the stabilizing parameter 

ranges for a bi-proper process and preliminaries for solving such problem. The 

simplified solution for processes with monotonic gain is given in Section 4.3. 

In Section 4.4, the solution for processes with non-monotonic gain is 

developed. Finally, Section 4.5 draws the conclusions. 

4.2. The Problem Formulation and Preliminaries 

A bi-proper process is a process that has finite non-zero gain at infinity 

frequency. In this paper, we consider the control configuration under the 

conventional unity output feedback in Figure 1.1, where 0( ) ( ) LsG s G s e−= is a 

process with 0( )G s  being a fixed bi-proper transfer function with no delay, 

and ( )K s k= is a proportional controller. The stabilizing gain problem is 

formulated as follows.  

Problem 4.1. For a process, 0( ) ( ) ,LsG s G s e−=  under the proportional 

controller, K k= , with the gain 0k > , find the regions in the 2D space, 

( , )L k , such that their interior points give stable closed-loop while their 

boundary points produce unstable closed-loop (with poles in the closed right 

half plane). 

Let the open-loop transfer function be 0( ) ( )sLQ s ke G s−= . Like what was 

seen in previous chapter that the closed-loop system may change its stability 
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only when L  and k  satisfy, for 0ω > , 

      

0
0

1
, ( ) 0,

| ( ) |
k G j

G j
ω

ω
= ≠  Equation Chapter (Next) Section  1(4.1) 

 0arg[ ( )] (2 1)
, 0,1,2,...;n

G j n
L n

ω π
ω

+ += =  (4.2) 

while for 0ω =  and with 0k >  the condition becomes  

 0arg[ (0)] (2 1)G n π= − + ,   (4.3) 

under which, 

 
0

1

| (0) |
k

G
= ,  0L ≥ .   (4.4) 

For each n , equations (4.1) and (4.2) define a boundary function, which 

relates all  L  and k  that makes the Nyquist plot of the 0( ) ( )sLQ s ke G s−=  

intersect with the critical point. Equation (4.4) defines another boundary 

function which is actually a horizontal line in the plane of ( , )L k . The plot of 

all the boundary functions defined by (4.1), (4.2) and (4.4) divide the plane 

( , )L k into regions. Each interior point in a so-formed region gives the 

corresponding closed-loop system with the same number of unstable poles.  

By convention, let 

 0
0

0

    0, if (0) 0;  
arg[ (0)]

,  if (0) 0.

G
G

Gπ
>

=  − <
 

Note that only non-negative delay is realistic, which requires (2) to meet  

 0arg[ ( )] (2 1)
0n

G j n
L

ω π
ω

+ += ≥ . 

This yields 

 
2

n
π

π
−Φ −≥ , (4.5) 
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where Φ  is the maximum phase of 0 )(G jω . Denote minn  as the smallest 

integer number that satisfies (4.5). Thus, (4.2) is valid only for 

min min, 1,...n n n= + , which is used in the rest of this chapter. 

In general, all the boundary functions nL  need to be plotted on the plane of 

( , )L k  in order to determine the stability of regions. However, there are an 

infinite number of boundary functions nL , and, an infinite number of the 

resulting regions. It is impossible to plot and check the stability of all these 

regions. To overcome this problem, we develop new Lemmas beside those that 

are proved in Chapter 3. For convenient reference purpose, we include Lemmas 

from Chapter 3 as well as new Lemmas in the new order as following: 

Lemma 4.1. For m n≠ , a boundary function mL  intersects with 

another nL  only if there are mω  and nω  with m nω ω≠  such that 

0 0( ) ( )m nG j G jω ω= . 

Lemma 4.2. Let the Nyquist plot of the open-loop 0( ) sLkG s e−  for 

0ω > has the unique intersection with the critical point of ( 1 0)j− +  at a 

frequency * (0, )ω ω= ∈ ∞ . If the gain of its frequency response decreases at 

this frequency, that is, 
*0( ) / 0j Ld kG j e dω

ω ω
ω ω

=

− < , then the closed-loop 

system with ( )
0( ) s LkG s e ε− + has two more unstable poles than the closed-loop 

system with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

Lemma 4.3. Let the Nyquist plot of the open-loop 0( ) sLkG s e−  for 0ω >  

has the unique intersection with the critical point of ( 1 0)j− +  at a frequency 

* (0, )ω ω= ∈ ∞ . If the gain of its frequency response increases at this 
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frequency, that is, 
*0( ) / 0j Ld kG j e dω

ω ω
ω ω

=

− > , then the closed-loop system 

with ( )
0( ) s LkG s e ε− + has two fewer unstable poles than the closed-loop system 

with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

 Remark 4.1. Let ω  be the largest frequency which meets 

0( ) ) / 0j Ld kG j e dωω ω− = . Then, the sign of 0( ) ) /j Ld kG j e dω ωω −  does not 

change for ( , )ω ω∈ ∞ . Since the gain rate of a rational transfer function is 

continuous, there are three possible cases for the gain rate in ( , )ω ω∈ ∞ : 

 1) 0( ) ) / 0j Ld kG j e dωω ω− < : the gain monotonically decreases for 

( , )ω ω∈ ∞ . In the case of intersection, Lemma 4.2 is applicable for this case. 

 2) 0( ) ) / 0j Ld kG j e dωω ω− > : the gain monotonically increases for 

( , )ω ω∈ ∞ . In the case of intersection, Lemma 4.3 is applicable for this case. 

 3) 0( ) ) / 0j Ld kG j e dωω ω− = : the gain rate is zero for ( , )ω ω∈ ∞ . Since 

the transfer function is a rational function, this implies the gain rate is always 

zero, i.e. the gain is constant for every frequency. In this case, variation of L  

does not affect the stability of the closed loop system. Only the change in 

controller gain k may affect the stability. For 0L > , if the loop gain 

0 )( 1kG jω > , the Nyquist plot has infinite number of clockwise encirclement 

of the critical point; if 0 )( 1kG jω < , the Nyquist plot has no clockwise 

encirclement of the critical point. Thus, for a process with constant gain 

0 )(G j Cω = , the stabilizing gain range is 1k C<  if 0G  is stable and null if 

0G  is unstable. The stabilization of a bi-proper process with constant gain is, 

therefore, fully determined. 



82 
 

 A bi-proper 0( )G s  has its gain at infinity frequency which is bounded 

but non-zero, and the Nyquist curve may intersect with the critical point at this 

frequency. Let 

 
0

lim
1

( )G j
k

ω ω∞ →∞
= . (4.6) 

For k k∞> , the final gain of 0( ) LskG j eω −  is greater than 1. Moreover, with 

nonzero delayL , the phase of 0( ) sLkG s e−  decreases with frequency, implying 

the infinite number of clockwise encirclements of the Nyquist plot with regard 

to the critical point.  

Lemma 4.4. Let 0 )(G s  be a bi-proper process. Then, for 0L >  and 

k k∞> , the Nyquist plot of 0( ) sLkG s e−  has infinite number of clockwise 

encirclement.       

 Remark 4.2. It can be deduced from Lemma 4.4 that for 0L >  and 

k k∞> , the closed-loop system with 0( ) sLkG s e−  is unstable. Thus, the gain 

range to consider for stabilizing problem is limited to 0 kk ∞≤ ≤ . As a result, 

all frequencies that give the process gain smaller than process gain at infinity, 

i.e. ω  such that 0 0( ) lim ( )G j G j
ω

ω ω
→∞

< , are excluded from calculations. 

This reflexes the special feature of a bi-proper process and greatly simplifies 

the computation of boundary functions. However, Lemma 4.4 holds only for 

0L > . On the other hand, for 0L = , the process has no delay and the 

stabilizing gain ranges can be determined for delay-free 0G , which is 

available and thus excluded. Thus, we suppose 0L >  for the rest of this 

paper. 

 It should be pointed out that in a real practice; physical systems restrict 
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delay and gain. Thus, we suppose that max0 L L≤ ≤  and 0 k k≤ ≤  are the 

physical constraints of delays and gain for our process. Furthermore, it is 

deduced from Remark 4.2 that, for stabilizing a bi-proper process, the 

controller gain is also limited to 0k k∞≤ ≤ . Hence, we define 

max min{ , }k k k∞=  and the stabilizing graph is confined to the rectangular area 

bounded by max0 L L≤ ≤  and max0 k k≤ ≤  of the plane ( , )L k . 

Lemma 4.5. Let minφ  be the minimum phase of 0 )(G jω  in 1 2[ , ]ω ω . 

Then, there holds  

1 2
max[ , ]

( )nL Lω ω ωω
∈

>  for maxn n> , 

where maxn  is the smallest integer such that  

 max
x

in2 m
ma 2

L
n

φ πω
π

− −≥ .  (4.7) 

 Lemma 4.6. Let nL  be the boundary function defined as in (3.2), then 

lim 0)(nL
ω

ω
→∞

= .   

 Proof. It follows that 

 0arg[ ( )] (2 1)
0,n

G j n
L ω

ω

ω π
ω=∞

=∞

+ += =  

for any finite n, since 0( )G s  does not contain time delay and its phase is 

finite, too. 

4.3. Processes with Monotonic Gain  

For processes with strictly proper transfer function, the gain eventually 

reduces to zero, and the class of monotonic gain (either always increasing or 

decreasing) is only applicable for the processes with monotonic gain reduction. 
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However, for bi-proper processes, since the gain is non-zero at infinity 

frequency, the class of monotonic gain includes both increasing and decreasing 

cases.  

A transfer function 0( )G s  is said to have monotonic gain increase if 

there holds 0 1 0 2( ) ( )G j G jω ω<  for 1 20 ω ω≤ < . For such a case, the 

maximum process gain is the gain at infinity frequency. It follows from 

Remark 4.2 that the whole range of frequency should be excluded from 

calculation of boundary functions. Thus, there is no nL  in the rectangular 

area given by max0 k k≤ ≤  and 0L > . Observe that, because the loop gain is  

less than one, the Nyquist plot of 0( ) sLkG s e−  corresponding to any point 

( , )L k  in this rectangular area will not have any encirclement of the critical 

point. Hence, this area is stable if 0G  is stable and vice versa. We then have 

the following proposition. 

Proposition 4.1. Let 0G  be a process with monotonic gain increase, then 

the region bounded by 0L >  and max 0k k> >  of the plane ( , )L k  is stable 

(or unstable) if 0G  is stable (or unstable).  

   Example 4.1. Consider the following process, 

 
( 1)( 2)

( )
( 3)( 4)

Lss s
G s e

s s
−+ +=

+ +
,  

This process is stable. One sees from gain plot of 0

( 1)( 2)
( )

( 3)( 4)

s s
G s

s s

+ +=
+ +

 in 

Figure 4.4 that the process has monotonic gain increase, so Preposition 4.1 is 

applicable. Since 0lim ( ) 1G j
ω

ω
→∞

= , max 1k k∞= = . 0( )G s  is stable, and the 

region below 1k =  is the stable region, that is, the process with any delay is 
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stabilizable providing that 1k < . 

 

 

Figure 4.4: Bode plot of 0( )G s  of Example 4.1 

 Example 4.2. Consider the following process, 

 
0.5

( )
1

Lss
G s e

s
−+=

−
,  

The process has one unstable pole at 1s = . The gain of 0( )G jω  increases 

monotonically with frequency and max 1k k∞= = . Since this process is 

unstable, the region below 1k =  is unstable.  

 

Figure 4.5: Bode plot of 0( )G s  of Example 4.2 

 It follows from Remark 4.2 that, before calculating boundary functions, 

we discard all frequencies with 0 0( ) lim ( )G j G j
ω

ω ω
→∞

< . Note that after such 
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procedure, the process may have monotonic gain decrease for the remaining 

frequencies. For such a process as well as process with monotonic gain 

decrease for the whole range of frequencies, we can apply the counterpart for a 

strictly proper process to determine stable regions. 

Algorithm 4.1. Consider a process with monotonic gain reduction. 

Step 1. For 0ω = , if 0arg[ (0)]G π= − , plot the horizontal 

line,
0

1

(0)
k

G
= , on the plane ( , )L k . The region below this line 

is stable (or unstable) if 0G  is stable (or unstable). 

Step 2. For 0ω ≠ , plot 
minnL  with (3.1) and (3.2) on the plane ( , )L k . 

If 0(0) 0G > , the region on the left hand side of 
minnL  is stable 

(or unstable) if 0( )G s  is stable (or unstable). If 0(0) 0G < , 

check stability of the region on the left hand side of 
minnL .   

Example 4.3. Consider a process, 

 
2 1

( )
( 1)( 0.1)

Lss s
G s e

s s
−+ +=

− +
. 

This process has one unstable pole at 1s = . Its gain does not monotonically 

change with frequency. However, note that 1k∞ =  and k  for the boundary 

function nL  is greater than k∞  for [0.7016, ]ω ∈ ∞ . Thus [0.7016, ]ω ∈ ∞  

is not of interests for our calculations. For [0,0.7016]ω ∈ , the gain decreases 

monotonically so that we can apply Algorithm 4.1. For Step 1, 0(0) 10G = −  

meets (3.3), and produces the horizontal line 0.1k =  in Figure 4.7. For Step 

2, we have maximum phase of 0 )(G jω  is 0Φ = , and (3.5) gives 0.5n > −  

so min 0n =  and 0L  is plotted on the plane ( , )L k . Since 0(0) 0G < , we take 
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( , ) (0.1,0.7)L k =  in the region on the left hand side of 
minnL to check whether 

or not it is stable. Its Nyquist plot in Figure 4.8 shows that the closed-loop 

system has no unstable pole. This is the only stable region and shaded in green 

as in Figure 4.7.

 

Figure 4.6: Bode plot of 0( )G s of Example 4.3 

 

Figure 4.7: Stabilizing graph of Example 4.3 
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Figure 4.8: Nyquist plot of Example 4.3 with 0.97,( , ) ( 0.001)L k =   

4.4. Processes with Non-monotonic Gain  

In this section, we consider a process that does not have monotonic gain 

change. For such a process, its gain may increase first and then decrease. As a 

result, there exist two or more frequencies with the same gain. It follows from 

Lemma 4.1 that the corresponding boundary functions may intersect with each 

other at these frequencies. In such a case, the stabilizing regions cannot be 

simply obtained by plotting only one boundary function as for processes with 

monotonic gain but call for plotting all boundary curves that may intersect 

with each other. In order to obtain the stabilizing ranges, we need to determine 

how many boundary functions are necessary to draw in the rectangular area 

bounded by max0 L L≤ ≤  and max0 k k≤ ≤  of the plane ( , )L k .  

It is worthy of remark that, for a strictly proper process, the number of 

boundary functions in any rectangular area of the plane ( , )L k  is finite for a 

limited controller gain maxk . This is because there holds 0( ) 1kG jω =  on any 

boundary function, which then excludes from consideration those frequencies 

at which m0 ax( ) 1G j kω < , which is true for a frequency large enough but 

finite as the gain of a strictly proper process eventually goes to zero as the 
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frequency goes to infinity. This implies that the range of frequency that defines 

the boundary functions is finite and so is maxn  from (4.7). However, it is not 

the case for a bi-proper process, since its gain is nonzero at infinity frequency, 

and

 

m0 ax( ) 1G j kω <  may never hold for any large frequency. In addition, it 

follows from Lemma 4.6 thatlim 0)(nL
ω

ω
→∞

= . Thus, both coordinates of ( , )L k  

might stay within the rectangular area bounded by max0 L L≤ ≤  and 

max0 k k≤ ≤ , and it could be infinite number of boundary functions there. This 

poses a great challenge. Our main task at hands is to determine all the stable 

regions inside it without need to draw infinite number of boundary functions 

which is impossible to do.   

In the plane of ( , )L k , we indicate direction of frequency increase with an 

arrow on a boundary function. The upward arrow indicates increase of 

controller gain k , which corresponds to decrease of the process gain 

0( )G jω , whereas the downward arrow indicates decrease of controller gain 

k , which corresponds to increase of the process gain 0( )G jω . It follows 

from Lemma 4.2 that if the arrow of nL  is upward, the closed-loop system 

with ( , )L k  in the region on the left of nL  has two fewer unstable poles than 

the closed-loop system with ( , )L k  in the region on the right of nL . On the 

other hand, it follows from Lemma 4.3 that if the arrow of nL  is downward, 

the closed-loop system with ( , )L k  in the region on the left of nL  has two 

more unstable poles than the closed-loop system with ( , )L k  in the region on 

the right of nL . Thus, if we follow the direction of the arrow, the region on the 

left hand side of any boundary curve has fewer numbers of unstable poles than 
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the region on the right hand side. For each boundary curve, we shade this 

region of the left hand side. 

Lemma 4.7. The regions with the minimum number of unstable poles are 

the intersection of all the shaded regions. And the stable regions are 

necessarily in the intersection of all the shaded regions. 

Proof.  Let nL  and mL  be two arbitrary boundary functions.  

• nL  and mL  do not intersect with each other. Without loss of generality, 

we suppose that n m< , and nL  is on the left hand side of mL . These 

two boundary functions divide a rectangular area of plane ( , )L k  into 

three regions. Let the region on the left hand side of nL  be 1S , the 

region in between nL  and mL  be 2S  and the region on the right hand 

side of mL  be 3S . At the same frequency, the arrows along both 

boundary functions have the same direction, thus the shaded regions of 

nL  and mL  are on the same side. If the arrow is upward in general 

(Figure 4.9.a), the shaded region of nL  is 1S , and the shaded region of 

mL  is 1 2S S∪ . The intersection of these two shaded regions is 1S . It 

follows from Lemma 4.2 that 1S  is the region with the minimum number 

of unstable poles. Similarly, if the arrow is downward in general, the 

shaded region of nL  is 2 3S S∪ , and the shaded region of mL  is 3S . 

The intersection of these two shaded regions is 3S (Figure 4.9.b). It 

follows from Lemma 4.3 that 3S  is the region with the minimum number 

of unstable poles. Thus, in both cases, the region with the minimum 

number of unstable poles is the intersection of the two shaded regions. 
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a)  

 

b) 

Figure 4.9: nL  and mL  have no intersection. 

• nL  and mL  intersect with each other. Consider one intersection 

point of two boundary functions. The rectangular area is then divided into 4 

regions: 1S , 2S , 3S  and 4S ; where 1S  is on the right hand side of nL  

and mL ; 2S  is on the right hand side of nL  and on the left hand side of 

mL ; 3S  is on the left hand side of nL  and mL ; 4S  is on the left hand 
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side of nL  and on the right hand side of mL . Let ( )iN S+ , 1, 2, 3, 4i = , 

be number of unstable poles for iS . There are 4 combinations of arrows 

along nL  and mL :  

− Arrows along nL  and mL  are both upward. It follows from Lemma 

4.2 that 2 1( ) ( ) 2N S N S+ += + , 3 1( ) ( ) 4N S N S+ += + , 

4 1( ) ( ) 2N S N S+ += + . Thus, 1S  has the minimum number of 

unstable poles and it is also the intersection of the shaded regions of 

nL  and mL  (see Figure 4.10a).    

− Arrows along nL  and mL  are both downward. . It follows from 

Lemma 4.3 that 2 1( ) ( ) 2N S N S+ += − , 3 1( ) ( ) 4N S N S+ += − , 

4 1( ) ( ) 2N S N S+ += − . Thus, 3S  has the minimum number of 

unstable poles and it is also the intersection of the shaded regions of 

nL  and mL  (see Figure 4.10b). 

− Arrows along nL  is upward and arrows along mL  is downward. It 

follows from Lemma 4.2 for nL  and Lemma 4.3 for mL  that 

2 1( ) ( ) 2N S N S+ += + , 3 1( ) ( )N S N S+ += , 4 1( ) ( ) 2N S N S+ += − . Thus, 

4S  has the minimum number of unstable poles and it is also the 

intersection of the shaded regions of nL  and mL   (see Figure 

4.10c). 

− Arrows along nL  is downward and arrows along mL  is upward. 

Applying Lemma 4.3 for nL  and Lemma 4.2 for mL  yield 

2 1( ) ( ) 2N S N S+ += − , 3 1( ) ( )N S N S+ += , 4 1( ) ( ) 2N S N S+ += + . Thus, 
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2S  has the minimum number of unstable poles and it is also the 

intersection of the shaded regions of nL  and mL  (see Figure 4.10d). 

 

a) 

 

b) 

 

c) 



94 
 

 

d)

Figure 4.10: nL  and mL  have intersection 

In summary, for any two boundary curves, the region with the minimum 

number of unstable poles is the intersection of their two shaded regions. 

If there are three boundary functions, 1L , 2L  and 3L . We take any two 

of them for consideration first, say1L  and 2L . Apply the above analysis on 

two functions and conclude that the region with the minimum number of 

unstable poles is the intersection of their two shaded regions. Keep this 

intersection region with its boundary, arrow and shade, and remove the other 

portions of these two boundary functions. View the so-kept boundary as a 

boundary function and call it 4L . Apply the above analysis on two functions 

to 3L  and 4L , and conclude that the region with the minimum number of 

unstable poles is the intersection of their two shaded regions, which is the 

intersection of three original shaded regions. This induction is valid for any 

countable number of functions.  

If there are three boundary functions, 1L , 2L  and 3L . We take any two 

of them for consideration first, say1L  and 2L . Apply the above analysis on 
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two functions and conclude that the region with the minimum number of 

unstable poles is the intersection of their two shaded regions. Keep this 

intersection region with its boundary, arrow and shade, and remove the other 

portions of these two boundary functions. View the so-kept boundary as a 

boundary function and call it 4L . Apply the above analysis on two functions 

to 3L  and 4L , and conclude that the region with the minimum number of 

unstable poles is the intersection of their two shaded regions, which is the 

intersection of three original shaded regions. This induction is valid for any 

countable number of functions.  

Note that the number of unstable poles in any region of the stabilizing 

graph is non-negative and a stable region has no unstable poles, or this number 

is zero, which reaches the minimum of this number. Thus, the stable regions, if 

any, must be the regions with the minimum number of unstable poles, or the 

intersection of all the shaded regions. 

The proof is complete. □ 

With helps of the above lemma, we are able to state Proposition 4.2 as 

follows, which makes use of finite boundary functions only to determine 

stable regions. Recall that ω  defined before is the largest frequency which 

meets 0( ) ) / 0j Ld kG j e dωω ω− = .  

Proposition 4.2.  Let maxn  be the number obtained from (4.7) for 

[0, ]ω . Then, maxn  is the maximum number of boundary functions for 

determining the stable regions in the rectangular area bounded by 

max0 L L≤ ≤  and max0 k k≤ ≤  of the plane ( , )L k .   

Proof. Let ( ) ( ) ( )[0, ) [0 , )], (n n nL L Lωω ω ω ω∈ ∞ = ∈ ∪ ∈ ∞ and 
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( )[0, ]A
n nL L ω ω∈≜  and ( )( , )B

n nL L ω ω∈ ∞≜ . Consider each portion 

separately as follows. 

A: [0, ]ω ω∈ . It follows from Lemma 4.5 that max
A
nL L>  for maxn n> , 

that is, all these A
nL  stay outside of the rectangular area bounded by 

max0 L L≤ ≤  and max0 k k≤ ≤ .  

B: ( , )ω ω∈ ∞ . There are two possible cases: the gain of 0G  in this range 

monotonically increases or decreases. If 0( )G jω  increases monotonically, 

then )(
m

k kω ωω ∞>
> , and B

nL  are outside of the rectangular area. If 0( )G jω  

decreases monotonically, then BnL  for maxn n>  may be in the rectangular 

area but do not intersect with each other. 
max

B
nL  divides the rectangular area 

into two separate regions: all BnL  with maxn n>  stay totally in the region on 

the right hand side of 
max

B
nL , while all B

nL  with maxn n<  stay totally in the 

region on the left hand side of 
max

B
nL , which is the shaded region of 

max

B
nL , due 

to the nature of gain decrease.  

 With the above analysis, the intersection of all the shaded regions of nL  

for maxn n≥  in the rectangular area bounded by max0 L L≤ ≤  and 0 k k∞≤ ≤  

is the same as the shaded region of 
maxnL  alone as far as the rectangular area is 

concerned. Drawing the additional shaded regions of  nL  for maxn n>  does 

not refine the aforementioned intersection and is thus redundant to determine 

this intersection. It follows from Lemma 4.7 that the stable regions must be 

intersection of all the shaded regions, which is equivalent to the intersection of 

(i) intersection of the shaded regions of nL  for maxn n< and (ii) intersection 
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of the shaded regions of nL  for maxn n≥ , where the latter has been shown to 

be the same as the shaded region of 
maxnL  alone when restricted to the 

rectangular area. Therefore, nL  with maxn n>  are not needed to find stable 

regions in the rectangular area. The proof is complete. □ 

In the view of the above development, to find the stable regions, we draw 

nL , min min max, 1,...,n n n n+= , on the plane ( , )L k . These boundary functions 

divide the rectangular area bounded by max0 L L≤ ≤  and max0 k k≤ ≤  into 

finite regions. Stability of each resulting region is determined with the help of 

the following Corollary 4.1. 

Corollary 4.1. On the plane of ( , )L k ,  

• if the arrow of nL  is upward, the region on the left hand side of nL  

has two fewer unstable pole the region on the right hand side of nL . 

• if the arrow of nL  is down ward, the region on the left hand side of 

nL  has two more unstable pole the region on the right hand side of 

nL . 

If 0(0) 0G < , there is the horizontal line 
0

1

(0)
k

G
=  in the plane ( , )L k . 

This line divides the plane ( , )L k  into two portions. Firstly, consider the 

lower portion. Start with the left-most region, that is, the one nearest to the 

origin. We can determine the number of unstable poles for the system 

corresponding to each point of this region by looking at one point inside it 

only. Then, we can infer from Corollary 4.1, the number of unstable poles of 

each region on its right, one region after another, from left to right. A region is 

stable if this number is zero. Note that the region near the origin has the same 
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number of unstable poles as that of 0( )G s , because, for ( , )L k  near the 

origin, the closed-loop system with 0( ) LskG s e−  is close to the open loop 

0( )G s . Finally, one can repeat the above procedure for the upper portion.  

Now, we present a complete procedure as follows to obtain stabilizing gain 

ranges with respect to delay of a bi-proper process with non-monotonic gain.   

Algorithm 4.2. Consider a bi-proper process with non-monotonic gain. 

Step 1. For 0ω = , if 0arg[ (0)]G π= − , plot the horizontal line, 

0

1

(0)
k

G
= on plane ( , )L k .  

Step 2. Calculate maxn  from (4.7) for [0, ]ω . Plot nL , 

min min max, 1,...,n n n n= + ,  on plane ( , )L k .  

Step 3. If 0(0) 0G > , start from the left-most region nearest the origin, 

take the number of unstable poles of this region same as that of 

0( )G s , and then know its stability; Then, count the number of 

unstable poles of the next region, one by one, from left to right, 

with help of Corollary 4.1, and then know its stability.  

Step 4. If 0(0) 0G < , there is the horizontal line  
0

1

(0)
k

G
=  dividing 

the plane ( , )L k  into the lower and upper portions. The lower 

portion is done as in Step 3. For the upper portion, start from 

the left-most region which is against k-axis, and check its 

stability; then, count the number of unstable poles of the next 

region, one by one, from left to right, with help of Corollary 4.1, 

and then know its stability.  
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 Example 4.4. Consider a process with time delay, 

2 2 2

2 2 2 2

1.63 20.69)( 1.51 1.79)( 0.4(5.1 )( 6.9)(
( )

( 2 65

6 1.44)

)( 1.4 4.49)0.5)( ( 3)
Lss s s

G s e
s

s s s s

s s ss s ss
−− +=

+ +
+ + + + + +

++ ++ + +
 

This process is stable and of non-minimum phase. The gain plot in Figure 4.11 

shows that the gain does not monotonically change with frequency and 

requires us to apply Algorithm 4.2. We have that 0lim ( ) 1G j
ω

ω
→∞

= , so 1k∞ = . 

For [3.56, 5.64]ω ∈ , 0( ) 1G jω < , thus, this range is not of interests for our 

calculations. For 8.18ω = , 0( ) ) / 0j Ld kG j e dωω ω− =  and the gain is 

monotonic decrease for 8.18ω > . Thus, 8.18ω =  and the minimum phase 

of 0( )G jω  in [0, 8.18] is min 2.219φ = − . The maximum phase of 0 )(G jω  

is 0.93Φ = , which gives 0.65n > −  from (3.5), so min 0n = . In this example, 

we let max 1k k∞= =  and max 10L = . Proceeding with Algorithm 4.2, for Step 

1, 0(0) 4.28G =  does not meet (3.3), and produces no line. For Step 2, we 

have max 13n =  from (4.7) so we plot the boundary functions, iL , 

0,1,...,13i = , on plane ( , )L k  as in Figure 4.3. They divide plane ( , )L k  into 

regions. For Step 3, the left-most region near the origin has the same number 

of unstable poles as that of 0( )G s , which is zero, so this region is stable. With 

help of Corollary 4.1, the number of unstable poles for each next region is 

counted and its stability decided accordingly. In the end, all the stable regions 

are found as the given area and marked in green in Figure 4.3. 
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Figure 4.11: Bode plot of 0( )G s  of Example 4.4
 

Example 4.5. Consider a process with time delay, 

3)( 25)(7 )( 0.2)(
( )

( 0.1)( 20 ( 6)5)( )
Lss s

G
s s

s e
s s s s

−− +=
− + + +

+ +

 

This process is unstable and of non-minimum phase. The Bode plot in Figure 

4.12 shows that the gain does not monotonically change with frequency and 

requires us to apply Algorithm 4.2. We have that 0lim ( ) 1G j
ω

ω
→∞

= , so 1k∞ = . 

For [0.3, 2.53]ω ∈ , 0( ) 1G jω < , thus, this range is not of interests for our 

calculations. For 9.57ω = , 0( ) ) / 0j Ld kG j e dωω ω− =  and the gain is 

monotonic decrease for 9.57ω > . Thus, 9.57ω =  and the minimum phase 

of 0( )G jω  in [0, 9.57] is minφ π= − . The maximum phase of 0 )(G jω  is 

0.48Φ = − , which gives 0.42n > −  from (3.5), so min 0n = . In this example, 

we let max 1k k∞= =  and max 15L = . Proceeding with Algorithm 4.2, for Step 

1, 0(0) 1.75G = −  meets (3.3), and produces the horizontal line 0.5714k =  

in Figure 4.13. For Step 2, we have max 23n =  from (4.7) so we plot the 

boundary functions, iL , 0,1,...,23i = , on plane ( , )L k  as in Figure 4.13. 



101 
 

They divide plane ( , )L k  into regions. Since 0(0) 0G < , we skip Step 3 and 

proceed to Step 4. The lower region is unstable it has the same number of 

unstable poles as that of 0( )G s , which is one. For the upper region, we pick a 

point in the left-most region which is against k-axis which is ( , ) (1,0.8)L k =  

to check its stability. The Nyquist plot of 0( ) LskG s e−  with ( , ) (1,0.8)L k =  in 

Figure 4.14 shows that the close-loop system is stable, so this region is stable. 

With help of Corollary 4.1, the number of unstable poles for each next region 

is counted and its stability decided accordingly. In the end, all the stable 

regions are found as the given area and marked in green in Figure 4.13. 

 

Figure 4.12: Bode plot of 0( )G s  of Example 4.5 

 

Figure 4.13: Stabilizing graph of Example 4.5 
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Figure 4.14: Nyquist plot of Example 4.5 with ( , ) (1,0.8)L k =   

4.5. Conclusion  

 The D-decomposition method for computing stabilizing loop gain and 

delay ranges has been extended to the case of bi-proper processes. The 

properties of boundary functions from such processes are investigated in great 

details. It is shown that finite boundary functions are sufficient to determine all 

stable regions for finite parameter intervals. The formula is given for 

calculating this number. Moreover, the algorithms are established to find exact 

stabilizing gain and delay ranges, and they are illustrated by many kinds of 

processes including stable/unstable poles and minimum/non-minimum zeros. 

These new results, together with those in our previous chapter, provide a 

complete solution for numerical parameterization of stabilizing loop gain and 

delay for a general delay SISO process.  
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Chapter 5 

Stabilizing loop gains and delay for 

MIMO processes 

5.1. Introduction 

In this chapter, we first present a graphical method to compute the stabilizing 

gain ranges of a decentralized proportional controller for a linear time invariant 

(LTI) two-input and two-output (TITO) system. This method determines all 

possible stability boundaries. These boundaries divide the gain plane into 

regions and the stability of each region is checked to identify the stable ones. 

Subsequently, the loop gain margins are obtained from these stable regions. The 

proposed method is simple and easy to apply, especially, no iteration is required 

for computing stability boundaries.  

Next, stabilizing parameterization is addressed for the common gain and 

delay case for TITO processes. The characteristic locus method is exploited to 

develop the solution with helps of the SISO results developed in the preceding 

chapters. 

The chapter is organized as follows. Section 5.2 presents the procedure to 

compute exact stabilizing gains for a fixed- coefficient TITO process. An 

extension of D-decomposition approach to find stabilizing P controller for 

MIMO process with varying time delay is discussed in Section 5.3. Section 5.4 

will conclude this chapter.  
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5.2. Stabilizing Gain Ranges for TITO Processes 

Consider a unity output feedback system depicted in Figure 5.1, where the 

process and diagonal controller are described via their transfer function 

matrices ( )G s  and K , respectively, 

11 12 1

21 22 2

0
( ) ,

0

g g k
G s K

g g k

   
= =   
   

. 

The loop gain margins are defined in [43], [44] and are adapted to the two-input 

two-output (TITO) case as follows. 

Problem 5.1. For a 2 2×  process, ( )G s , under the decentralized gain 

controller, 1 2{ , }K diag k k= , find the regions in 2D space, 1 2( , )k k , such that 

their interior points give stable closed-loop while their boundary points produce 

unstable closed-loop. 

 

 

k1 

 

y1 g11 

g12 

g21 

g22 
k2 

 

+  _  

+  _  y2 

+ 

+ 

+ 

+ 

u1 

u2 

r1 

r2 

 

Figure 5.1: Diagram of a TITO control system 

It follows [56] that the characteristic equation of the closed-loop system is 

 ( ) ( ) ( )det[ ( ) ( )] 0,c G KP s P s P s I G s K s= + =  

where ( )GP s and ( )KP s  are the pole polynomials of ( )G s and ( )K s , 
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respectively. In our case, ( )KP s =1 and the characteristic equation becomes 

 [ ]{ }1 11 2 22 1 2 11 22 12 21( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) 0GP s k g s k g s k k g s g s g s g s+ + + − =  Equation Chapter (Next) Section  1(5.1) 

The roots of the above equation, or the poles of the closed-loop, are functions 

of gains, 1k  and 2k . The stability may change only when at least one pole 

moves across the imaginary axis [2], [3]. That means s jω=  satisfies (5.1), 

and by taking real and imaginary parts, it leads to  

       1 1 2 2 12 1 2 0( ( () ) 0)()k k k kα α αω ω ω α ω+ + + = , (5.2) 

 1 1 2 2 12 1 2 0( ( () ) 0)()k k k kβ β βω ω ω β ω+ + + = , (5.3) 

        

where 

 [ ]1 11( () ) )(Ge P j g jωα ω ω= ℜ ,  

 [ ]2 22( () ) )(Ge P j g jωα ω ω= ℜ , 

 [ ]{ }12 11 22 12 21) )( ( ( ( ( () ) ) ) ,Ge P j g j g j g j g jω ω ω ω ω ωα = ℜ −  

 [ ]0( ( )) Ge P jα ω ω= ℜ , 

 [ ]1 11( () ) )(Gm P j g jωβ ω ω= ℑ , 

 [ ]2 22( () ) )(Gm P j g jωβ ω ω= ℑ ,  

 [ ]{ }12 11 22 12 21( ( ) ( ) ( ) ( ) ( )) Gm P j g j g j g j g jω ω ω ω ω ωβ = ℑ − , 

 [ ]0( ( )) GmP jβ ω ω= ℑ . 

The solutions for 1k  and 2k  to (5.2) and (5.3) when ω  varies from zero to 

infinity define the boundary curves in the plane of 1 2( , )k k . To solve (5.2) and 

(5.3) for 1k  and 2k  given a ω , we get a quadratic equation  in 1k  
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2

1 12 1 12 1 1 2 1 2

12 0 12 0 1 2 0 2 0

[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )] 0

k

k

α α α α
α α

β ω ω ω β ω β ω ω ω β ω
ω β ω β ω ω ωα β ω β αω ω

− + − +
+ − + − =

, (5.4) 

and a function of 2k in term of 1k  

       

1 1 0
2

12 1 2

( ) ( )

( ) ( )

k
k

k

ω ωα α
α αω ω

+= −
+

. (5.5) 

In fact, (5.4) and (5.5) define a parametric map in ω  from 1k  to 2k  as 

following:  For 0ω ≠ , the solutions for 1k  are obtained from (5.4) , and the 

solutions for 2k  from (5.5). In case of 0ω = , the characteristic equation is 

real, where  (5.3) disappears, and (5.2) becomes 

       

1 1 0
2

12 1 2

(0) (0)
,

(0) (0)

k
k

k

α α
α α

+= −
+

 (5.6) 

which defines explicit function from 1k   to 2k  .  

The boundary curves divide the plane( )1 2,k k  into several regions. All the 

interior points in one particular region will share the same number of unstable 

poles if any, thus, preserve the stability property, i.e. either stable or unstable. 

To determine whether a region is stable or not, one only needs to check one 

point of any choice. One may use the generalized Nyquist criterion (GNC) to 

test for this, especially when the process has delay, for which there is infinite 

number of poles and pole-based stability test is not applicable.  

We summarize our development so far as follows.  

Algorithm 5.1. Compute the exact stabilizing loop gain ranges. 

Step 1. For 0ω = , plot the function 1 1 0
2

12 1 2

(0) (0)

(0) (0)

k
k

k

α α
α α

+= −
+

 on the plane 

1 2( , )k k .  

Step 2. Calculate 1k   and 2k  from (5.4) and (5.5) for 0ω ≠  and plot 
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all of them on the plane 1 2( , )k k .  

Step 3. Use the GNC to check the stability of each resulting region. 

Note that Step 3 above can be significantly simplified if one finds the gain 

ranges of the common gain controller 2( )K s kI=  for stability with the GNC. 

The controller represents a straight line in the plane and may intersect with the 

above regions. The segment of the common gain controller dictates stability 

property of its intersected region. 

Suppose we take a subset from the solution to Problem 5.1 as  

 ,i i ik k k ∈   ,   1,2i = . 

Then, the closed-loop remains stable even when the gain for the i th loop, ik , 

varies between ik  and ik , provided that other loop gains, jk , 1,2j = , 

j i≠ , are arbitrary but also within their respective ranges. ,i ik k    is called 

by [43] the gain margin for the i th loop. It is also subjected to other loops’ 

gain margins within ,j jk k   , 1,2j = , j i≠ . The loop gain margins defined 

as above can be easily found using Algorithm 5.1, by taking a rectangle in any 

stable region.  

Controller for system integrity is designed to ensure that the closed-loop 

stability is maintained when any combination of the individual controller or 

actuator fails [57]. One sees that failure of controller or actuator in loop 1 (or 

loop 2) is equivalent to setting 1 0k =  (or 2 0k = ) for a TITO system. Thus, a 

controller with gains of 1 2( , )k k  has integrity if its closed-loop system is 

always stable for each of four  sets of gains: 1 2( , )k k , 1( ,0)k , 2(0, )k  and 

(0,0). A sufficient condition for this integrity is that the loop gain margins are 
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1[0, ]k  and 2[0, ]k , or  the rectangular with vertices of  1 2( , )k k  and the 

origin is a stable region. The above exact and sufficient conditions for system 

integrity can be easily checked using Algorithm 5.1. 

Example 5.1. Consider the Wood-Berry binary distillation column process 

[58],

      

 

 

3

7 3

12.8 18.9

16.7 1 21 1( )
6.6 19.4

10.9 1 14.4 1

s s

s s

e e
s sG s

e e
s s

− −

− −

− 
 + +=  

− 
 + + 

. 

This process is a well-studied process in process control. The process does not 

have unstable poles but its unity feedback is unstable. Algorithm 5.1 is 

employed to find the stabilizing ranges of  1k   and 2k . Step 1 gives the red 

curves while Step 2 yields the blue one as in Figure 5.2. These curves divide 

the gain-plane into regions. In Step 3, it follows from the GNC that the 

stabilizing common gain range for this process is 0.12 0.0671k− < < . The 

dashed line in Figure 5.2 is the common gain line, and it intersects with 

several regions. The stable region (shaded) is the one that intersects with the 

dashed line at the segment [ 0.12, 0.0671]− . In this stable region, we can 

determine the loop gain margins. For example, let the range of 1k  to be [0,1] , 

a maximum rectangle with a side of [0,1]  is determined inside the stable 

region with the maximum range of 2k  being [ 0.255,0.0515]− . It results in 

the following gain margins 

 1 [0,1]k ∈  and 2 [ 0.255,0.0515]k ∈ − . 

It means that the system remains stable when 1k  varies in [0,1]  given that 

2k  varies in [ 0.255,0.0515]−  and vice versa.  
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For the system integrity problem, the controller with 1 2( , ) (1,0.05)k k =  has 

integrity because four points,  (1,0), (1,0.05), (0,0.05) and (0,0), are all 

in stable regions. Whereas the controller with 1 2( , ) (1,0.08)k k =  has no 

integrity because only three points (1,0), (1,0.08) and (0,0) are in stable 

regions, while the point (0,0.08)is not in stable regions. 

In this example, the method in [45] cannot be applied because of instability 

of the unity feedback system, that is, the region that contains 1 2( , ) (1,1)k k =  is 

unstable. 

 

Figure 5.2:  Stabilizing region of 1 2( , )k k  for Example 5.1 

Example 5.2. Consider a stable TITO process, 

 

3 2

0.3 0.7
2

1 0.5 1

( 1)( 3) 0.5 2.5 3
( )

0.3 0.5 1

2 2 5
s s

s s

s s s s s
G s

s
e e

s s s
− −

− − + 
 + + + + +
 =

+ 
 + + +  .

 

The process is unity feedback stable. To find the stabilizing region we only 

need to obtain the region that contains 1 2( , ) (1,1)k k = . Algorithm 5.1 produces 

Figure 5.3. The stabilizing region is marked as the shaded one. It is exactly the 

same region as shown in [44]. However, this new method is much simpler 
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technically and effective computationally. 

 

Figure 5.3:  Stabilizing region of 1 2( , )k k  for Example 5.2 

Example 5.3. Consider an unstable process, 

 

0.5 0.25

0.5 0.25

1 2

1 1( )
3 4

2 3

s s

s s

e e
s sG s

e e
s s

− −

− −

 
 − +=  
 
 + +  .

 

The process has one unstable pole at 1s = . It is not stable in the unity 

feedback structure and cannot be stabilized by a common gain controller, 

either. Thus, the method in [45] cannot be applied. The stabilizing region is 

found by checking the stability of each region. For 1 2( , ) (1.8,0.05)k k = , the 

Nyquist plot of KG  has one counter-clockwise encirclement of the critical 

point, thus the corresponding closed loop is stable (Figure 5.4). The stable 

region (shaded) is the region that includes 1 2( , ) (1.8,0.05)k k =  (Figure 5.5).  
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Figure 5.4:  Characteristic loci of ( )KG s  with 1 2( , ) (1.8,0.05)k k =  of 

Example 5.3 

 

Figure 5.5:  Stabilizing region of 1 2( , )k k  of Example 5.3 

5.3. Stabilizing Gain and Delay for TITO Processes 

Consider the following process, 

 

11 12
0

221 2

( ) ( )
( ) ( ) ,

( ) ( )
Ls Lsg s g s

G s G s e e
g s g s

− − 
= =  

 
 

where 0G  is non-singular and i jg , , 1,2i j = , may have fixed time delay. It 

is to be stabilized by the controller 

 
2

0
( ) .

0

k
K s kI

k

 
= =  

   

We define the stabilizing problem as following: 
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Problem 5.2. For a TITO process, 0( ) ( ) ,LsG s G s e−=  under the centralized 

gain controller, 2K kI= , find the regions in 2D space, ( , )L k , such that their 

interior points give stable closed-loop while their boundary points produce 

marginally stable or unstable closed-loop. 

Theorem 5.1 [56]. Suppose that G(s) has oP  unstable poles. Then the 

feedback system with the proportional controller ( )K s kI=  is stable if and 

only if the characteristic loci of ( )kG s , taken together, encircles the critical 

point, ( 1 0)j− + , oP  times anti-clockwise. 

Let ( )0Gλ and ( )KGλ  be characteristic loci of 0G  and KG , 

respectively. We have 

       

( )
( )

0 0

0 0

det 0

det 0LsLs

I G

k

G

k GG e e

λ

λ −−

− =  

 ⇔ − = 

 (5.7) 

so ( ) ( )0
Lske GKGλ λ−= . Since 0G  is a 2 2×  matrix, it has two 

characteristic loci. Thus, we denote [ ]0( ( , 1) ,) 2i j G j iλ ω λ ω= = . By Theorem 

5.1, the closed-loop system may change its stability with regard to L  and/or 

k  only when the number of encirclements of the characteristic loci of ( )kG s  

with respect to the critical point changes. To find a stabilizing region for 

( , )L k , we locate its boundary where )( j
i

Lk j e ωλ ω − , 1,2i = , passes through 

the critical point at some frequency ω . That case satisfies 

( ) ( 1 0)j L
ik j e jωωλ − = − + , which implies, for 0ω > , that 

        ) 1(i jλ ω =  (5.8)

 [ ](arg (2 1))i j nλ ω π= − +  (5.9) 

Thus, one has 
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( )
1

i

k
jωλ

=  (5.10) 

 
( )arg (2 1)

, {..., 1,0,1,...}i
n

j n
L n

πλ ω
ω

+ +  = ∈ −  (5.11) 

while for 0ω = , ( )0 1ikλ = −  with 0k >  requires  

 ( )arg 0i πλ = −   ,   (5.12) 

under which, 

 
( )
1

0i

k
λ

= ,  0L ≥ .   (5.13) 

Note that only positive delay is realistic, which requires (5.11) to meet  

 
( )arg (2 1)

0i
n

j n
L

λ ω π
ω

+ +  = > . 

This yields 

 
2

in
π

π
−Φ −> , (5.14) 

where iΦ  is the maximum phase of )(i jλ ω . Denote minn  as the smallest 

integer number that satisfies (5.14). Thus, (5.11) is valid only for 

min min, 1,...n n n= + , which is used in the rest of this chapter. 

 Notice that the system has a 2x2 transfer matrix, and it has two 

characteristic loci. Thus, for each valid n, equations (5.10) and (5.11) define 

two boundary functions, each from one characteristic locus. This is an implicit 

mapping from the delay, L , to the gain, k , which is parameterized in terms 

of the frequency, ω . Equation (5.13) defines another boundary function, 

which is an explicit mapping from L  to k  and is actually a horizontal line 

in the ( , )L k  plane. The boundary functions defined by (5.10), (5.11) and 
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(5.13) based on the frequency response of the fixed part of the process, 0G , 

can be drawn in the 2D plane, ( , )L k . They divide the plane into regions. 

Each interior point in a so-formed region will have the same number of 

encirclements of the critical point by the characteristic loci of the 

corresponding open-loop as that of any other points in the region. Thus, all the 

points in the same region produce either closed-loop stability or instability. 

There will be no stability difference among the points in one region. Therefore, 

one only needs to check stability of one region by looking at any single point 

inside that region. Single point stability test is simple and can be done in many 

ways. For instance, one may use Theorem 5.1 to test for stability. 

 In general, all the boundary functions nL  are needed to be plotted on the 

plane of ( , )L k  in order to determine the stability of regions. However, there 

are an infinite number of boundary functions nL , and, an infinite number of 

the resulting regions. It is impossible to plot and check the stability of all these 

regions. To overcome this problem, we need to study prosperities of such 

boundary functions carefully. Observe that, in previous chapters, for SISO 

case, we examine the intersection of the Nyquist curve of the open loop 

system with the critical point. In particular, we investigate how a delay 

perturbation changes the number of the curve's encirclements with respect to 

the critical point. In the current TITO case, the local behavior analysis is still 

true for intersection of the Nyquist plot of a characteristic locus with the 

critical point. Thus, we adapt those Lemmas from the early chapters to our 

TITO case as follows. 

Lemma 5.1. For m n≠ , a boundary function mL  intersects with 
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another nL  only if there are mω  and nω  with m nω ω≠  such that 

( ) ( )i m i nj jλ λω ω= . 

Lemma 5.2. Let a characteristic locus of 0( ) sLkG s e−  for 0ω > has the 

unique intersection with the critical point of ( 1 0)j− +  at a frequency 

* (0, )ω ω= ∈ ∞ . If the gain of its frequency response decreases at this 

frequency, that is, ( )
*

/ 0j L
id k j e d

ω

ω

ω
λ ω ω

=

− < , then the closed-loop system 

with ( )
0( ) s LkG s e ε− + has two more unstable poles than the closed-loop system 

with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

Lemma 5.3. Let a characteristic locus of 0( ) sLkG s e−  for 0ω >  has the 

unique intersection with the critical point of ( 1 0)j− +  at a frequency 

* (0, )ω ω= ∈ ∞ . If the gain of its frequency response increases at this 

frequency, that is, ( )
*

/ 0j L
id k j e d

ω

ω

ω
λ ω ω

=

− > , then the closed-loop system 

with ( )
0( ) s LkG s e ε− + has two fewer unstable poles than the closed-loop system 

with ( )
0( ) s LkG s e ε− −  for some 0.ε >  

Lemma 5.4. Let minφ  be the minimum phase of )(i jλ ω  in 1 2[ , ]ω ω . 

Then, there holds  

1 2
max[ , ]

( )nL Lω ω ωω
∈

>  for maxn n> , 

where maxn  is the smallest integer such that  

 max
x

in2 m
ma 2

L
n

φ πω
π

− −≥ .  (5.15)  

In the plane of ( , )L k , we indicate direction of frequency increase with an 

arrow on a boundary function. The upward arrow indicates increase of 
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controller gain k , which corresponds to decrease of the characteristic locus 

gain )(i jλ ω . Whereas, the downward arrow indicates decrease of controller 

gain k , which corresponds to increase of the characteristic locus gain 

)(i jλ ω . It follows from Lemma 5.2 that if the arrow of nL  is upward, the 

closed-loop system with ( , )L k  in the region on the left of nL  has two fewer 

unstable poles than the closed-loop system with ( , )L k  in the region on the 

right of nL . On the other hand, it follows from Lemma 5.3 that if the arrow of 

nL  is downward, the closed-loop system with ( , )L k  in the region on the left 

of nL  has two more unstable poles than the closed-loop system with ( , )L k  

in the region on the right of nL . Thus, if we follow the direction of the arrow, 

the region on the left hand side of any boundary curve has fewer numbers of 

unstable poles than the region on the right hand side. For each boundary curve, 

we shade this region of the left hand side. 

Lemma 5.5. The regions with a minimum number of unstable poles are 

the intersection of all the shaded regions. And the stable regions are 

necessarily in the intersection of all the shaded regions. 

Let ω  be the largest frequency which meets ( ) 0/id k j dλ ω ω = . Since 

the characteristic loci converge to zero at infinity, there holds 

( ) 0/id k j dλ ω ω <  for ( , )ω ω∈ ∞ . 

Lemma 5.6.  Let maxn  be the number obtained from (5.15) for [0, ]ω . 

Then, maxn  is the maximum number of boundary functions for determining 

stable regions in the rectangular area bounded by max0 L L≤ ≤  and 

max0 k k≤ ≤  of the plane ( , )L k .   
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Corollary 5.1. On the plane of ( , )L k ,  

• if the arrow of nL  is upward, the region on the left hand side of nL  

has two fewer unstable pole than the region on the right hand side of 

nL . 

• if the arrow of nL  is down ward, the region on the left hand side of 

nL  has two more unstable pole than the region on the right hand side 

of nL . 

It follows from Lemma 5.5 that the stable regions (if any) are in the 

intersection of all shaded regions which is the left hand side of the boundary 

functions corresponding to both characteristic loci. Moreover, it can be deduced 

from Lemma 5.1 and Lemma 5.2 that if a characteristic locus has monotonic 

gain decrease, the intersection of all its boundary functions is on the left hand 

side of its 
minnL . Thus, if the gain of a characteristic loci is monotonic, we only 

need to plot the corresponding 
minnL  and consider the stability of only the 

region on the left hand side of 
minnL . On the other hand, if a characteristic locus 

has non-monotonic gain, it follows from Lemma 5.6 that we need to plot nL  

with min min max, 1,...,n n n n= +  on ( , )L k  plane to find the stable regions. 

Therefore, the algorithm to find the stabilizing gain ranges is summarized as 

following: 

Procedure 5.2. Consider a TITO process, 0( ) ,LsG s e−  

Step 1. Compute and plot gains of two characteristic loci of 0( )G s , 

), 1 2.( ,i ijλ ω =  
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Step 2. For 0ω = , plot the horizontal line(s),
1

(0)i

k
λ

=  if 

[ ]arg (0) , 1,2,i iπλ = − =  on ( , )L k  plane.   

Step 3. If iλ  is monotonic for 0ω > , plot the 
minnL with (5.10) and 

(5.11) on ( , )L k  plane; Otherwise, if iλ  is not monotonic for 

0ω > , calculate maxn  from (5.15) for [0, ]ω . Plot the 

corresponding nL , min min max, 1,...,n n n n= + ,  on ( , )L k  plane.  

Step 4a. If there is no horizontal line drawn in Step 1, start from the 

left-most region nearest the origin, take the number of unstable 

poles of this region same as that of 0( )G s , and obtain its 

stability; Then, count the number of unstable poles of the next 

region, one by one, from left to right, with help of Corollary 5.1, 

and then obtain its stability.  

Step 4b. Otherwise, the horizontal lines drawn in Step 1 divide ( , )L k  

plane into a maximum of 3 portions. For each portion, start 

from the left-most region which is against the k-axis, and check 

its stability; then, count the number of unstable poles of the 

next region, one by one, from left to right, with help of 

Corollary 5.1, and then obtain its stability.  

 

Example 5.4 Consider a process, 

2.5 1

1 1( )
3 1

1 1

Lss sG s e

s s

−

 
 − +=  
 
 + + 

 

which has an unstable pole at 1s = . Follow Procedure 5.2 step by step. For 
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Step 1, the gain plots of two characteristic loci are shown in Figure 5.6. Both 

loci of this process have monotonic gain reduction. In Step 2,  

1(0) -3.2122λ =  meets the condition (5.12), giving the line 0.3113k =  on 

( , )L k  plane as in Figure 5.7, while 2(0) 1.7122λ =  fails it. For Step 3, both 

characteristic loci are monotonic, with min 0n = , we plot 0L  from both 

characteristic loci on ( , )L k  plane; the red curve is the boundary curve from 

one characteristic locus, while the blue curve is of the other one. Since there is 

a horizontal line in Step 2, this line divides the plane into two portions. 

Following Step 4b, the most left region in the upper portion is checked for 

stability at one selected point ( , ) (0.1,1)L k = . The Nyquist plot shows that 

this region is stable (Figure 5.8). Using a similar check, the left most region in 

the lower portion is unstable. In the end, the stable region is marked in green 

in the stabilizing graph (Figure 5.7). 

   

Figure 5.6: Gain plot of ( )i sλ  of Example 5.4
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Figure 5.7: Stabilizing graph of Example 5.4 

 

Figure 5.8: Nyquist plot of Example 5.4 with ( , ) (0.1,1)L k =  

 

Example 5.5. Consider  

2

4 3 2 2

4

1.75 7.5 4 8 0.187

0.0625 0.251
( )

0.25 45 0.75
Lss s s

s s s
G s e

s s ss
−+ +

+
 +

=  + + + + + +

 
This process is stable. For Step 1, the gain plot in Figure 5.9 shows that both 

characteristic loci are non-monotonic, 1 1.19ω =  and 2 2.38ω = . In Step 2, 

since only 1(0) -0.0534λ =  meets the condition (5.12), there is one horizontal 
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line 18.7103k =  on the plane ( , )L k . In Step 3, since both characteristic loci 

are non-monotonic, we calculate maxn . The phase plot in Figure 5.10 shows 

that min1 1.586φ = −  and min2 3.597φ = − . Let max 10L = , we have min 0n = , 

max1 2n =  and max 2 4n = . We then plot all boundary curves 0L , 1L , 2L  of 

1λ  and 0L , 1L , 2L , 3L , 4L  of 2λ  on ( , )L k  plane (Figure 5.11). Since 

one horizontal line results from Step 2, this line divides the plane into two 

portions. Following Step 4b, the left most region in the lower portion is 

checked for stability at one selected point ( , ) (0.1,1)L k = . The Nyquist plot 

shows that this region is stable (Figure 5.12). With a similar check, the left 

most region in the upper portion is unstable. In the end, the stable region is 

marked in green in the stabilizing graph (Figure 5.11). 

 

Figure 5.9: Gain plot of 0( )sλ  of Example 5.5 



122 
 

 

Figure 5.10: Phase plot of 0( )sλ  of Example 5.5 

 

Figure 5.11: Stabilizing graph of Example 5.5 

 

Figure 5.12: Nyquist plot of Example 5.5 with ( , ) (0.1,1)L k =  
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Example 5.6. Our method can be applied to any square system, say, 

1 2 3

1 1 1
4 5 6

( )
2 2 2

1 3 2

3 3 3

Ls

s s s

G s e
s s s

s s s

−

− 
 + + +
 

− =
 + + +
 − 
 + + + 

 

This process has no unstable pole. Adapting Algorithm 5.2 for three 

characteristic loci produces the stabilizing graph in Figure 5.13.  

 

Figure 5.13: Stabilizing graph for Example 5.6 

Though the stabilizability delay is unbounded for this stable process, the 

stabilizing gain range is quite small. For instance, when the delay is in the 

range [0,1.5]L ∈  the stabilizing gain range is [0 ,0.2458]k ∈ . 

5.4. Conclusions 

 In this chapter, a simpler yet effective method is presented for accurately 

computing stabilizing gain ranges for TITO processes with fixed delay. It 

determines stability boundaries which separate the stable and unstable regions. 

The method can be applied for general TITO processes with delays. The 

method is simple technically and effective computationally. It can be 

employed to determine, as by-products, controller integrity as well as the loop 

gain margins. Since any control system must maintain its stability for loop 
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gain changes, loop gain margin are important specifications for TITO system 

analysis and design. The extension to general MIMO processes is possible but 

visualization will be lost. For TITO processes with uncertain/varying time 

delay, the characteristic loci approach is proposed to obtain the common gain 

stabilizer in term of time delay.
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Chapter 6 

Conclusion 

6.1. Main Findings 

A. Parametric Approach to Computing Stabilizing PID Regions 

  A graphical method is presented to design stabilizing PID controller for a 

general process with/without time delay. By introducing the parameterized 

stability boundary band concept, the stabilizing region in ( , )p iK K  plane 

with dK  varies in a range is established. For a process with monotonic ( )λ ω , 

the entire stabilizing ranges of three parameters of PID controller are given. 

For a process with non-monotonic ( )λ ω , the method produces stable regions 

while suggesting some techniques to find conditionally stable regions.  

 
B. Stabilizing Loop Gain and Delay for Strictly Proper Processes  

  The exact and complete stabilizing gain and delay ranges are computed 

by determining the boundary functions which may change system’s stability 

on the parameters plane. The proposed method is very general and applicable 

to any strictly proper process, and thus significantly relaxes the restrictions 

with the existing works. It is also powerful and can produce the exact and 

complete set of controller gain and delay which results in a stable closed-loop, 

which is difficult to find with analytical methods.  A variety of examples are 

given and some of them show very complex stabilizing ranges which are 

beyond of imagination. 

C.  Stabilizing Loop Gain and Delay for Bi-proper Processes  
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 The D-decomposition method for computing stabilizing loop gain and 

delay ranges is extended to the case of bi-proper processes. The properties of 

boundary functions from such processes are investigated in great details. It has 

been shown that finite boundary functions are sufficient to determine all stable 

regions for finite parameter intervals. The formula is given for calculating this 

number. Moreover, the algorithms are established to find exact stabilizing gain 

and delay ranges, and they are illustrated by many kinds of processes 

including stable/unstable poles and minimum/non-minimum zeros. These new 

results, together with those for strictly proper processes, provide a complete 

solution for numerical parameterization of stabilizing loop gain and delay for a 

general delay SISO process.  

 
D.  Stabilizing Loop Gain and Delay for MIMO Processes 

 For a TITO process with fixed time delay, a method to find the stable 

regions in controller gains plane is proposed. It first determines all possible 

stability boundaries. These boundaries divide the gain plane to regions and the 

stability of each region is checked to identify the stable ones. Subsequently, 

the loop gain margins as well as controller integrity are obtained from these 

stable regions. The proposed method is simple and easy to apply with no 

iteration is required for computing stability boundaries.  

For a TITO process with common varying delay, characteristic loci approach 

is employed to find the stable regions in the delay-gain plane. The common 

stabilizing gain ranges in term of the delay are obtained from such stable 

regions. This method is also applicable for any square MIMO process with a 

common delay as uncertainty parameter.  
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6.2. Suggestions for Future Work 

The limitation of the D-decomposition method is the number of parameters 

due to the difficulty of graphical presentation and visualization. It is 

interesting to extend the afore-mentioned method to more than two parameters. 

In [4]–[6], this technique was applied to determine the stability boundary in 

the 3D space and find the stable regions of such space. However, the 

stabilizing graph produced by this approach is difficult to visualize. Thus, the 

key issue in the extended problem is on how to handle more parameters while 

keeping the feasible visualization. Chapter 2 on PID handles 3D case with a 

different approach which enables visualization. 

On the other hand, if we go with numerical method without graphical 

representation, there are several difficulties as follows. Firstly, as we only have 

two real equations from the complex characteristic equation, the solutions of 

the equations at a given frequency are unique and determined for the case of 

two parameters. Therefore, the parameter space is divided into clearly separate 

regions with defined boundary. In case of more than 3 parameters, solutions of 

the equation are not unique and they will be given in term of other parameters. 

As a result, the region division is no longer clear, as we can observe in section 

2.3 that the boundary bands intersects with each other, which causes much 

more complications than the boundary curves intersection in the 2-parameters 

problem. Secondly, if the characteristic equation is nonlinear in term of 

parameters, there may be infinite number of boundary bands and possible 

infinite number of their overlapping, which would cause great difficulty in 

stability analysis of resulting regions. Based on the framework of this thesis, 

further research may be conducted in the following directions. 
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A. Parametric Approach to Computing Stabilizing PID Regions   

 In chapter 2, we presented the parametric approach to designing 

stabilizing PID controller for a general process with/without time delay. For a 

process with monotonic ( )λ ω , the complete set of all stable regions and 

conditional stable regions can be obtained. For a process with non-monotonic 

( )λ ω , the method produces stable regions while suggesting some techniques 

to find conditionally stable region. Thus, more research works can be done on 

how to simplify solution for the case of non-monotonic ( )λ ω . 

B. Stabilizing Parameterization in Face of General Uncertain Processes 

 It is well known that the mathematical representation of a process is 

susceptible to uncertainties arising from modeling error, nonlinearities or 

operating condition [59]. The extension of D-decomposition method to design 

robust PI/PD controllers for such processes can be explored. Because of the 

uncertainty in process, at a frequency, the frequency response's magnitude and 

phase are no longer a single point but lies in a region in the Nyquist plane. As 

a result, the stability boundary curve of such a process in controller parameter 

plane is no longer a curve but a boundary band. The shape of the boundary 

band is an interesting aspect to investigate. The stable regions will give a 

complete set of robust controllers.  

C. Decentralized Controller for TITO Processes with Varying Common 

Time Delay 

 Consider a decentralized controller for a TITO process with varying 

common time delay. For such a problem, the transfer functions of the process 

and the diagonal controller, ( )G s  and K , are described as follows. 
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11 12

21 22

( ) Lsg g
G s e

g g
− 

=  
 

, 1

2

0

0

k
K

k

 
=  
 

. 

Like the PID case studied in Chapter 2, and using either 1k , or 2k  or L  as a 

parameter, the stability boundary in the other two parameters plane will 

become a boundary band. Finding the stable regions in the parameters plane 

gives solution to the stabilizing problem. 

D. Decentralized Controller for Three-input Three-output Processes 

 A three-inputs three-outputs process can be found in industry such as a 

simplified hybrid solid oxide fuel cell gas turbine process [60]. Designing a 

decentralized controller for such a process can be another focus. The process 

and the controller can be described via transfer function matrices as follows.  

 
11 12 13

21 22 23

31 23 33

( )

g g g

G s g g g

g g g

 
 =  
  

, 
1

2

3

0 0

0 0

0 0

k

K k

k

 
 =  
  

. 

Then, the parametric boundary band is obtained by viewing either 1k , or 2k  

or 3k  as the parameter. The stabilizing problem is solved by finding all stable 

and conditionally stable regions in the parameters plane. 
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