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SUMMARY 

Classical Hodgkin Lymphoma (cHL) is a lymphoid malignancy characterized 

by the presence of a minority of malignant Hodgkin and Reed-Sternberg cells 

(HRS cells) surrounded by massive inflammatory infiltrate. CD4
+
 T helper 2 

cells, regulatory T cells and CD8
+
 cytotoxic T cells form a significant part of 

this cellular infiltrate. However, the mechanisms underlying T cell recruitment 

into the involved lymphoid lesions are still unknown. The aim of this study is 

to understand how HRS cells modulate endothelial cell function to facilitate T 

cell recruitment.  

 

My study demonstrated that culture supernatant (C/S) derived from HRS cells 

(KM-H2, L1236 and L428) can stimulate the endothelial cells (ECs) to 

increase ICAM-1, VCAM-1 and E-selectin expression. Besides that, C/S 

stimulated ECs can also support naïve and memory T cell interactions under 

dynamic flow condition. Blocking assays revealed that ICAM-1 on endothelial 

cells; L-selectin, CD18b and CD44 on naïve T cells are crucial in mediating 

naïve T cell-EC interactions. The following experiment treating ECs with 

hyaluronidase suggested that hyaluronic acid (HA) synthesis was induced on 

C/S stimulated ECs to facilitate naïve T cell interactions through binding with 

CD44. Results from static transwell transmigration assays showed that C/S 

stimulated ECs could enhance naïve and memory T cell transmigration in 

response to SDF-1α.  

 

Data from L929 cytotoxic bioassay managed to show biologically active 

lymphotoxin-α (LTα) in the KM-H2 cells. In combination with LTα 

neutralizing antibody, LTα derived from KM-H2 cells is proven to be the 

dominant mediator in stimulating ECs. ECs stimulated with KM-H2 C/S pre-

treated with LTα neutralizing antibody also show reduced ICAM-1, VCAM-1 

and E-selectin expression as compared to respective untreated control. 

Production of LTα by H-RS cells in-situ is verified by immunohistochemical 

staining of tissue samples from Hodgkin Lymphoma patients. NFκB, JNK and 
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COX enzymatic pathway are involved in LTα production in KM-H2 cells. 

Consistently, NFκB inhibitor (Bay 11-7085), JNK inhibitor (SP600125) and 

Cox enzymatic activity inhibitor (Indomethacin)-treated KM-H2 cells show 

reduced LTα  production. ECs stimulated by C/S harvested from SP600125- 

and Indomethacin-treated KM-H2 cells show reduced ICAM-1, VCAM-1 and 

E-selectin expression as well as reduced naïve T cell interactions with 

stimulated ECs.  

 

Mechanistic studies were carried out to understand the signaling pathways 

involved in regulating production of LTα by HRS cells. Western blot analysis 

showed that treatment of KM-H2 cells with Bay 11-7085 reduced expression 

of nuclear p65 and, unexpectedly, phosphorylated c-Fos and total c-Fos. 

Treatment of KM-H2 cells with SP600125 reduced both phosphorylated JNK 

as well as phosphorylated and total c-Jun protein but level of phosphorylated 

c-Fos and total c-Fos remained unchanged. Interestingly, while the levels of 

phosphorylated c-Fos and total c-Fos were reduced significantly in Cox 

inhibitor treated KM-H2 cells, phosphorylated JNK and c-Jun were up-

regulated in the Indomethacin-treated KM-H2 cell. This piece of data 

suggested that signals from Cox and NFκB pathways might converge at c-Fos 

and co-operate with c-Jun in AP-1 pathway regulated LTα production.    

  

The data suggest that in cHL, malignant H-RS cells secrete soluble LTα which 

can modulate ECs function. NFκB, JNK and COX pathways are involved in 

regulating the production of LTα from KM-H2 cells.  

 

                    (500 words) 
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Chapter 1 : Introduction 

1.1 Tumor microenvironment  

Cancer development has been identified as a multi-step process in which a 

healthy somatic cell will undergo an initiating event upon exposure to external 

stimuli and subsequent tumor transformation steps to become a cancerous cell. 

This event accumulates genetic modifications. The fact that cancer cells have 

mutated genomes is well established (Hanahan and Weinberg, 2000). In 

addition, many cancers will develop as a result of chronic inflammation due to 

infections for example Hepatitis B and C infection in hepatocellular carcinoma 

and Helicobacter pylori in gastric cancer. 

 

Chronic inflammation is strongly associated with cancer risk. A few examples 

of cancers tightly linked to inflammation include inflammatory bowel disease, 

colon cancer and cervical cancer (Mbeunkui and Johann, 2009). Chronic 

inflammation helps to establish a tumor microenvironment that is full of 

deregulated proliferative signaling network that are important for 

tumorigenesis and tumor progression. Inflammation process also supply 

bioactive molecules including growth factor that can sustain the proliferative 

signaling, survival factors that limit cell death, proangiogenic factors and 

extra-cellular modifying enzymes that facilitate angiogenesis, invasion and 

metastasis (Hanahan and Weinberg, 2011). These signals are, in part, 

orchestrated by inflammatory cells which are the indispensable participants in 

neoplastic process (Coussens and Werb, 2002).  

 

Cells that form tumor microenvironment in different cancer types include 

myofibroblast, fibroblast, adipocytes, epithelial cells, glial cells, endothelial 

cells, macrophages and leukocytes. The tumor microenvironment is 

characterized by the crosstalk between tumor cells and different cell types.  In 

the tumor periphery, macrophages (or also known as tumor associated 

macrophages, TAM) foster local invasion by supplying matrix-degrading 

enzymes such as metalloproteinases and cysteine cathepsin proteinases 
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(Kessenbrock et al., 2010). The reciprocal interactions between TAM and 

cancer cells faciltate cancer cells intravasation into circulatory system and 

metastatic dissemination. In a metastatic breast cancer model, TAM provide 

epidermal growth factor (EGF) to breast cancer cells while breast cancer cells 

provide colony stimulating factor-1 (CSF-1) to support the growth of TAM 

(Wyckoff et al., 2007). Besides TAM, cancer associated fibroblast (CAF) also 

plays a significant role in tumor initiation, progression and metastasis. Study 

by Olumi et al showed co-injection of CAF with immortalized prostate 

epithelial cells in the mice resulted in the development of larger tumors 

(Olumi et al., 1999). Allinen et al and Orimo et al showed that secretion of 

SDF-1 (CXCL12) by CAF promotes tumor growth and angiogenesis in 

invasive breast carcinomas (Allinen et al., 2004; Orimo et al., 2005).             

 

Hodgkin lymphoma (HL) is a lymphoid malignancy with a unique tumor 

microenvironment which features a complicated crosstalk between the 

cancerous Hodgkin and Reed-Sternberg (HRS) cells and the inflammatory 

infiltrates. HRS cells are surrounded by an enormous number of reactive 

infiltrates that frequently provide survival signals. In fact, once the HRS cells 

are removed from their microenvironment, they are unable to survive 

(Kuppers et al., 2012). Evidence provided from various studies highlighted the 

importance to cross-talk between HRS cells and surrounding immune 

infiltrates or stromal cells. The interaction of HRS cells with surrounding 

microenvironment had been studied extensively for many years and is 

regarded to be important for the pathogenesis of HL. 

 

Various studies had been carried out to better understand the cell-cell 

signaling pathways between the HRS cells and the nonmalignant reactive and 

stroma cells in lymphatic tissues. Findings so far pointed out immune cells in 

the microenvironment that are associated with favorable or unfavorable 

response to HL treatment. Steidl et al showed that overexpression of 

macrophages signature was associated with the failure of primary treatment  

(Steidl et al., 2010). In contrast, expression of genes belonging to B cell 
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clusters including BCL11A, BANK1, STAP1, BLNK, FCER2, CD24 and 

CCL21 are all associated with favorable outcome in HL (Sanchez-Aguilera et 

al., 2006). The presence of cytotoxic T cells and regulatory T cells in the HL 

microenvironment also serve as the important prognostic factor for HL. 

Paradoxically, high cytotoxic T cells and low regulatory T cells had been 

reported to negatively influence event free survival and disease free survival 

of classical Hodgkin lymphoma (cHL) patients. Alvaro et al reported that in 

four cHL patients that relapse is associated with high TIA-1 positive cytotoxic 

T cells and low number of regulatory T cells (Alvaro et al., 2005). Another 

recent study by Greaves et al suggested that a combination of several immune 

cells markers, CD68 and FOXP3 in particular, can further improve prognostic 

stratification (Greaves et al., 2013).  

 

 

1.2 T cells 

Generally, T cells can be divided into three main classes which are naïve T 

cells, memory T cells and effector T cells. A more detailed classification of T 

cells based on their functions can divide T cells into T helper cells, cytotoxic T 

cells and regulatory T cells. 

 

 

1.2.1 T helper (TH) Cells 

There are four basic types of THelper cells: THelper1, THelper2, THelper17 and Treg 

cells (Figure 1.1) (Zhu and Paul, 2010). Each subset of THelper cells is 

generated by a different route of differentiation regulated by the surrounding 

cytokine milieu during T cell activation (O'Garra and Arai, 2000). For an 

optimal immune response, each subset of TH cells has different distinct 

function and different characteristic cytokine production profiles. 
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IL-12 is the determinant cytokine that drives the differentiation of THelper1 

cells. IL-12 is produced by macrophages and dendritic cells in the presence of 

microbial infection or upon CD40 ligation (Cella et al., 1996). In addition, Th1 

development can be further enhanced by interferon-γ (IFN-γ) which up-

regulates IL-12 receptors and inhibits the growth of THelper2 cells (Figure 1.1) 

(O'Garra, 1998). THelper1 cells are essential for the eradication of intracellular 

pathogens including bacteria, parasites, viruses and yeasts. The cytokine 

hallmark of THelper1 cells is the production of IFN-γ and lymphotoxin which 

can activate anti-microbial activity in macrophages and induce cytokine 

production. A THelper1 immune response is often accompanied by the 

production of complement fixing antibodies of IgG2a subtype as well as the 

activity of natural killer (NK) cells and cytotoxic T cells (Abbas et al., 1996). 

If THelper1 immune response is left uncontrolled, it could cause autoimmune 

disease such as Type I diabetes and multiple sclerosis (O'Garra et al., 1997). 

 

IL-4 determines the development of CD4
+
 precursor T cells into THelper2 cells 

(Figure 1.1). Early production of IL-4 in the immune response directs the 

development of THelper2 cells accompanied by the production of IL-4, IL-5 and 

IL-13. Cytokines produced by THelper2 cells can activate mast cells and 

eosinophils, thereby eradicating helminths and other extracellular parasites 

(O'Garra and Arai, 2000).  In addition, these cells are also implicated in 

allergic and atopic manifestations where THelper2-derived cytokines can induce 

airway hypersensitivity as well as the production of IgE (Sher and Coffman, 

1992). 

 

THelper1 and THelper2-derived cytokines are antagonistic in nature and are able 

to inhibit the growth and development of each other’s cell function. 
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1.2.2 Regulatory T (Treg) cells 

Regulatory T cell (Treg) can be subdivided into natural occurring T regulatory 

cell (nTreg) or induced T regulatory cell (iTreg). Tregs are important for the 

prevention of  autoimmune diseases and in maintaining a balance between 

peripheral immune self-tolerance and the potential to generate life-long 

immunity to a variety of pathogenic microbes (Sakaguchi et al., 2008). nTreg 

cells represent 1-10% of total T cells in thymus, peripheral blood and 

lymphoid tissues.  nTregs which are generated in the thymus (Figure1.1) 

express the IL-2 receptor alpha chain (CD25) constitutively. They also express 

CD127 and Foxp3 (forkhead winged helix family transcriptional regulator). 

 

nTreg do not produce pro-inflammatory cytokine upon antigenic stimulation 

and are not pathogenic towards highly reactive self-antigens carrying cells. 

Instead, they potently suppress activation, proliferation and effector functions 

of CD4
+
, CD8

+
, natural killer cells, natural killer T cells, B cells and dendritic 

cells (Piccirillo, 2008) (Figure 1.1). 

Circulating peripheral naïve T cells can also acquire regulatory functions 

under unique, differentiation signals in vitro and in vivo (Piccirillo, 2008)  In 

general, most iTreg cells arise after continuous exposure to antigen presented 

by antigen presenting cells in the absence of co-stimulatory signal or 

following the activation of CD4+CD25- cells in the presence of TGFβ 

(Vigouroux et al., 2004). iTreg are categorized based on their phenotype and, 

their relative cytokine production capabilities. An example of CD4+
 
iTreg is 

the antigen-specific, IL-10 producing type 1 regulatory T cells (Tr1), which 

requires IL-10 as a priming factor and mediates its biological activity in an IL-

10 dependent fashion. 
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Figure 1.1: T cell differentiation. Conventional CD4
+
 T cells (blue) exit the 

thymus, and upon activation by dendritic cells differentiate into effector Th1, 

Th2 and Th17 cells; and collectively contribute to a vast variety of peripheral 

immune response (Piccirillo, 2008). Thymic derived, naturally occurring (red) 

and peripherally induced (blue) CD4
+
  regulatory T cell subsets can 

downregulate the activation, differentiation, and function of Th1, Th2 and 

Th17 effector cells as well as non T cells (brown). While CD4
+
CD25

+
Foxp3

+
 

nTreg cells differentiate in the thymus and are found in the normal, naïve T 

cells repertoire; multiple iTreg cell subsets, possibly expressing CD25 and 

Foxp3, originate from the activation and differentiation of conventional CD4
+
 

cells in the periphery under unique stimulatory conditions. Both Treg subsets 

conceivably synergize to assure regulation of immune responses.                  

(adapted with permission from Cytokine. 43:395-401 (2008)) 

 

 

1.2.3 Cytotoxic T cells (CTL) 

CD8+CTL forms a major part of body’s defense against viral infection and 

tumor progression by finding and eliminating viral infected and tumorigenic 

cells. CTL kills the target cells either by ligation of the death receptor on the 

target cell (Fas death receptor ligation) or by granule exocytosis, where 

perforin and granule specific serine proteases (granzymes) are delivered to the 

target cells (Waterhouse et al., 2004). The primary role of perforin is to assure 

the correct trafficking of granzymes into the target cells (Browne et al., 1999). 
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In addition, perforin also induces direct lysis of target cells (San Mateo et al., 

2002). 

 

 

1.3 Hodgkin Lymphoma 

Hodgkin lymphoma is a lymphoid malignancy described by Thomas Hodgkin 

more than 150 years ago (Küppers, 2009). The cancerous cell of this disease is 

the mononucleated Hodgkin and multinucleated Reed-Sternberg cells    

(Figure 1.2) which was described by Dorothy Reed and Carl Sternberg in 1900. 

Hodgkin lymphoma (HL) can be divided into classical Hodgkin lymphoma 

(cHL) and nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) 

(Cancer, 2008). NLPHL only accounts for about 5% of all the HL cases. cHL 

can be further subdivided into nodular sclerosis, mixed cellularity, lymphocyte 

rich and lymphocyte depletion Hodgkin lymphoma subtypes (Figure 1.3). 

Nodular sclerosis which accounts for about 60% of cases of Hodgkin 

lymphoma is characterized by extensive fibrotic bands separating nodules 

containing Hodgkin and Reed-Sternberg (HRS) cells. Mixed cellularity 

accounts for about 30% of cases of Hodgkin lymphoma is characterized by a 

prominent mixed cellular infiltration. 
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Figure 1.2: Diagram showed the morphological appearance of mononuclear 

Hodgkin and multinucleated Reed-Sternberg cells in the affected lymph nodes 

(Kuppers et al., 2012). H&E staining of mixed cellularity HL showing 

binucleated HRS cells is visible in the middle of the image, surrounded by 

histiocytes, lymphocytes and eosinophilic granulocytes.                        

(adapted with permission from Journal of Clinical Investigation. 122:3439-

3447 (2012)) 

 

 

 

 

 

 

 

Figure 1.3: cHL can be subdivided into four subtypes, which are nodular 

sclerosis, mixed cellularity, lymphocyte-rich and lymphocyte-depleted HL 

(Kuppers, 2009). Nodular sclerosis and mixed cellularity cHL account for 

more than 95% of the total cHL cases worldwide.         

(adapted with permission from Nature Reviews Cancer. 9:15-27 (2009)) 

 

In the United States, between 2006 to 2010, the median age of patients 

diagnosed with HL was 38 years of age. Approximately 13% was diagnosed 

under age 20, 31.2% was diagnosed between 20 and 34, 14.6% between 35 

and 44; 12.7% between 45 and 54; 10.7% between 55 and 64; 8.8% between 

65 and 74; 6.7% between 75 and 84; and 2.2% at 85+ years of age. The age-

adjusted incidence rate was 2.8 per 100,000 men and women per year. The 

Reed-Sternberg 

cell 

Hodgkin cell 

Nodular sclerosis 

- 60-80% of 

cases 

Classical Hodgkin Lymphoma (cHL) 

Mixed cellularity 

- 15-30% of 

cases 

Lymphocyte-rich 

Hodgkin Disease 

- 5% of cases 

Lymphocyte-

depleted 

Hodgkin Disease 

- 1% of cases 
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age-adjusted mortality rate was 0.4 per 100,000 men and women per year 

(This data is extracted from Surveillance Epidemiology and End Result 

Website). In Singapore, of the 366 cases of HL reported between 1996 to 2004, 

nodular sclerosis constitute 66% (n=241) and mixed cellularity constitute 20% 

(n=73) of the total cases. Besides that, incidence rate of HL is reported to have 

increased significantly in adolescence and young adults to produce a second 

incidence peak peak in addition to the one seen for over 50 years of age 

(Hjalgrim et al., 2008). 

 

Current treatment of HL involved the use of multi-agent chemotherapy and 

radiation agent which could achieve cure rate of about 80-90% (Diehl et al., 

2004). The high cure rate of HL by a combination of chemotherapy and 

radiotherapy has been encouraging. However, it is also associated with high 

side effects, and about 20-30% of patients relapsed within 5 years after 

achievement of complete remission (Gaudio et al., 2011). Hence there is still 

need of alternative therapeutic agents to improve treatment outcome and 

quality of life for these patients (Klimm et al., 2005). 

 

 

1.3.1 HRS cell origin 

The cancerous HRS cells in cHL and the HRS cells variant in the NLPHL 

which is called lymphocytic and histiocytic (L&H) cells, usually account for 

only 1-10% of total cell population in the tumor lesions (Kuppers et al., 2012). 

Both HRS and L&H cells are found to originate from germinal centre B cells. 

However, there are slight differences in the surface marker expression profile 

between HRS cells and L&H cells. HRS cells are reported to co-express 

surface markers from several different lineages, unlike any other cells in the 

hematopoietic system. HRS cells can express markers of T cells (CD3,    

Notch 1, GATA 3), cytotoxic cells (granzyme B, perforin), B cells (Pax 5, 

CD20), dendritic cells (fascin, CCL17), NK cells (ID 2), myeloid cells (CSFR 

1) and granulocytes (CD 15) (Kuppers et al., 2012).  The B cell origin of HRS 

cells was demonstrated by the presence of clonal and somatically mutated 
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heavy and light chain gene rearrangement in these neoplastic cells (Kuppers et 

al., 1994). About 25% of the HRS cells in cHL cases showed loss of function 

immunoglobulin (Ig) gene mutations including nonsense mutation in their V 

region (Brauninger et al., 2003; Kanzler et al., 1996; Kuppers et al., 1994; 

Marafioti et al., 2000). Surprisingly, these crippled HRS cells have acquired 

mechanisms to survive and escape the apoptotic pathway, a fate that normally 

happens to germinal centre B cells that have acquired such mutations. 

Analysis of some cases of cHL carrying T cell markers revealed that some 

fraction of HRS cells express T cell receptor gene rearrangement and lack Ig 

gene rearrangement. Thus, it appears that HRS cells could be derived from T 

cells in rare cases of cHL (Aguilera et al., 2006; Muschen et al., 2000; Seitz et 

al., 2000; Tzankov et al., 2005). 

 

 

1.3.2 Deregulated transcription factors network of HRS cells 

The rarity of HRS cells has hampered the clarification of their cellular origin 

and identification of their genetic lesions for the longest time. Several 

pathogenic mechanisms have been revealed using molecular cytogenetic 

techniques and microdissection analysis of HRS cells. Mechanism to escape 

apoptosis is one of the molecular pathogenesis of cHL and signaling pathways 

involve in regulating apoptosis reaction had been studied thoroughly in HRS 

cells. TP53 mutation is a hallmark of various types of cancer which allows the 

cancerous cells to escape apoptosis or cell growth arrest (Greenblatt et al., 

1994). Earlier analyses for TP53 mutation on primary HRS cells showed 

restricted mutations on selected exons. More recently, deletion of TP53 was 

identified on HRS cell lines (Feuerborn et al., 2006) and therefore, TP53 

alterations on primary HRS cells may be more frequent than was previously 

anticipated (Feuerborn et al., 2006; Maggio et al., 2001; Montesinos-Rongen 

et al., 1999). Besides TP53 mutation, several other anti-apoptotic proteins are 

also up-regulated in HRS. HRS cells had been shown to up-regulate 

expression of CASP 8 and FADD-like apoptosis regulator (CFALR) to inhibit 
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FAS signaling and XIAP which suppresses caspase activation (Dutton et al., 

2004; Kashkar et al., 2003; Mathas et al., 2004). 

 

Besides TP53, activity of Janus Kinase (JAK) -STAT and NFκB pathways are 

commonly dysregulated in the HRS cells (Figure 1.4). Many cytokines signal 

through members of the Jak family which phosphorylate STAT factor on 

activation (Rawlings et al., 2004). The phosphorylated STATs dimerize and 

translocate to the nucleus and function as transcription factors. There are 

frequent genomic gain of JAK2 and suppressor of cytokine signaling 1 

(SOCS1), which is a negative regulator of JAK-STAT signaling in HRS cells. 

Hence, JAK-STAT signaling is often somatically mutated and inactivated in 

cHL (Joos et al., 2000; Mottok et al., 2007; Weniger et al., 2006). Besides 

genetic mutation, constitutive activation of JAK-STAT signaling on HRS cells 

can also be caused by autocrine/paracrine events. Four STATs subunit are 

highly active in HRS cells, STAT3, STAT5A, STAT5B and STAT6 (Baus 

and Pfitzner, 2006; Kube et al., 2001; Scheeren et al., 2008; Skinnider et al., 

2002). Expression of IL-13 and IL-13 receptor on HRS cells activates STAT6 

in an autocrine manner (Kapp et al., 1999). Similarly, STAT5A, STAT5B and 

STAT3 on HRS cells are activated by autocrine signaling of IL-21 and IL-21 

receptor on the HRS cells (Lamprecht et al., 2008; Scheeren et al., 2008). 

 

NFκB activity is constitutively active in HRS cells. NFκB activity is affected 

by several types of genetic alterations. REL, a member of NFκB transcription 

factor family, shows genomic gain and amplification which contributes to 

higher REL protein expression in nearly half of the cHL cases (Barth et al., 

2003; Martin-Subero et al., 2002). In rarer instances, BCL-3 which can 

positively up-regulated NFκB activity is also affected by genomic gain and 

translocation (Martin-Subero et al., 2006; Mathas et al., 2005). Besides that, 

IκBα which inhibits NFκB signaling by binding to NFκB in the cytoplasm and 

preventing their nuclear translocation is discovered to undergo mutation in 

about 20% of cHL cases (Cabannes et al., 1999; Emmerich et al., 1999). 

Signaling events contributing to the activation of NFκB go through two well-
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known pathways, namely the canonical and non-canonical pathways involving 

the TNF receptor family. HRS cells express CD30, CD40, BCMA, TACI and 

RANK which are members of TNF receptor family. Interaction of these 

receptors with their respective ligands, often expressed on the immune 

infiltrate, may activate NFκB activity in HRS cells. For example, T cells 

expressing CD40 ligand are always found to be in close contact with HRS 

cells (Carbone et al., 1995). CD30 ligand is expressed by eosinophils and mast 

cells which are also present in the tumor microenvironment (Molin et al., 2001; 

Pinto et al., 1996).  APRIL (TNSF13), one of the ligand for TACI and BCMA 

is produced by neutrophils in the HL microenvironment and BAFF 

(TNSF13B), the second ligand of these receptor, is expressed by HRS cells 

and other cells in the lesion (Chiu et al., 2007; Schwaller et al., 2007). In 

contrast, RANK activation is slightly different. RANK can be activated in an 

autocrine manner because HRS cell lines are found to express RANK ligand 

(Fiumara et al., 2001). 

 

In addition to NFκB and JAK-STAT signaling, PI3K, ERK (extracellular 

signal-regulated kinase), AP-1 and receptor tyrosine kinase pathway are also 

deregulated and constitutively activated in HRS cells. The PI3K pathway in 

HRS cells is activated by CD30, CD40 RANK and receptor tyrosine kinase. 

Activity of this pathway is implicated by the presence of the phosphorylated 

form of AKT in HRS cells. Inhibition of AKT causes death of HRS cell lines 

further supports its role in regulating the survival and pathogenesis of the 

disease (Dutton et al., 2005; Georgakis et al., 2006).  ERK pathway which 

regulates proliferation, apoptosis and cell differentiation may also be activated 

through CD30, CD40 and RANK interactions in the HRS cells. Active forms 

of ERK kinases, ERK1, ERK2 and ERK5, are expressed by the HRS cells. 

Inhibition of ERK activation in HRS cells in vitro causes anti-proliferative 

effect (Nagel et al., 2007; Zheng et al., 2003).  The AP-1 transcription factor 

comprises of dimerized members of Jun and Fos families. HRS cells 

demonstrate high expression of c-Jun and JunB with especially strong nuclear 

localization, implying that they are highly active (Mathas et al., 2002). AP-1 

induces many target genes in the HRS cells, including CD30 and galectin-1 
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(Juszczynski et al., 2007; Watanabe et al., 2003). These genes are involved in 

promoting proliferation of HRs cells and maintaining an immunosuppressive 

microenvironment. Interestingly, while NFκB activity can contribute to the 

up-regulation of JunB, the mechanisms mediating c-Jun up-regulation in HL is 

not as well defined (Mathas et al., 2002). 

 

Receptor tyrosine kinases are involved in the regulation of cell proliferation, 

survival, growth and differentiation. HRS cells show aberrant expression of 

receptor of tyrosine kinases, including platelet-derived growth factor receptor-

α (PDGFRA), epithelial discoidin domain containing receptor 2 (DDR2), 

macrophage-stimulating protein receptor (MSPR), TRKA and TRKB. 

Mutations of genes corresponding to these receptors have not yet been 

identified. This raised the possibility that they may be activated by autocrine 

or paracrine mechanisms. Expression of receptor tyrosine kinase is found 

predominantly in the nodular sclerosis subtype of HL, but is also detected at 

varying level of expression in other subtypes (Renne et al., 2005). 
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Figure 1.4: This simplified diagram shows the activation of various pathways 

in HRS cells by signals received from the tumor microenvironment (Steidl et 

al., 2011). Soluble and membrane bound signaling molecules produced by 

reactive cells (paracrine activation) activate JAK-STAT, canonical and non-

canonical NFκB pathways and receptor tyrosine kinases. For JAK-STAT 

signaling pathway, the most commonly expressed interleukin and interleukin 

receptors are shown. For the NFκB pathway, only the principal activation 

pathways are shown and the activation of inhibitor of κ kinases (IκK) by other 

kinases is described. Downstream signaling of receptor tyrosine kinases is 

shown using the example of tyrosine kinase receptor A (TRKA) and 

illustrating the Ras and Akt pathway.          

(adapted with permission from Journal of Clinical Oncology. 29:1812-1826 

(2011)) 

 

 

1.3.3 The Hodgkin Lymphoma microenvironment 

cHL is characterized by massive infiltration of immune cells into the 

lymphoma tissues (Kuppers et al., 2012). These immune infiltrates include T 

cells, particularly Thelper 2 (TH2) and regulatory T (Treg) cells, B cells, plasma 

cells, neutrophils, eosinophils, macrophages and mast cells. The malignant 
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HRS cells only represent 1-10% of the total cell population in the lesion 

(Figure 1.5). Evidence so far proved that these immune cells are actively 

recruited by HRS cells through chemokines and cytokines secretion (Skinnider 

and Mak, 2002). HRS cells secrete RANTES (CCL5, Regulated on Activation, 

Normal T cell expressed and secreted chemokine), TARC (CCL17, Thymus 

and activation-regulated chemokine) and MDC (CCL22, Macrophage-derived 

chemokine) to attract Thelper2 (TH2) cells and regulatory T (Treg) cells 

(Aldinucci et al., 2008; Skinnider and Mak, 2002). The secretion of IL-5, 

CCL5, CCL28 and granulocyte-macrophage-colony stimulating factor by HRS 

cells actively recruits eosinophils into the HL microenvironment. HRS cells 

also secrete IL-8 to attract neutrophils (Skinnider and Mak, 2002). 

Chemokines produced by HRS cells not only contribute to immune cell 

recruitment but can also contribute to promoting survival and proliferation of 

HRS cells. For example TARC produced upon CD40 ligation by HRS cell 

lines, including L1236, KM-H2, L428 and L540, proved to be vital in 

promoting clonogenic growth of HRS cells. Recombinant neutralizing 

antibody of CCL5 can inhibit the basal proliferation of these HL-derived cell 

lines (Aldinucci et al., 2008). 

 

B cells of various maturation stages are part of the normal constituent in the 

normal lymph node. B cells are found mainly in the primary and secondary 

follicles, and marginal zones. However, in cHL the lymph node architecture is 

disturbed to varying degree. It remains an open question of how reactive B 

cells are recruited into the cHL lesions or whether they are the remnants that 

are yet to be displaced by the neoplastic lesion. As in other pro-inflammatory 

reactions, HRS cells produce TNF-α, lymphotoxin-α (LTα) which can affect B 

cells proliferation, differentiation and chemotaxis could play a role in intiation 

of germinal centre B cell reactions (Foss et al., 1993; Vu et al., 2008; Xerri et 

al., 1992). 

 

Macrophages are also commonly found in cHL lesions. HRS cells secrete 

granulocyte colony stimulating factor (CSF1) and fractalkine (CXCL13) and 
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other differentiation factors that recruit and drive differentiation of monocytes 

(Ma et al., 2008; Truman et al., 2008). The type of macrophages present 

within a tumor microenvironment may exert a profound effect on tumor 

progression or tumor regression. M2 macrophages had been shown to be very 

important for the promotion of tumor progression, cell migration and 

suppression of anti-tumor response in various cancers including lymphoma 

(Qian and Pollard, 2010). A recent study reported that the number of tumor 

associated macrophages within the HL lesion is strongly correlated to 

shortened survival of cHL patients (Steidl et al., 2010). 

 

Besides actively recruiting different subset of immune cells into the lymphoma 

tissues, HRS cells are also able to modulate the phenotype of specific immune 

cells into subset that could contribute to their survival and growth. The most 

obvious example is the shifting of the anti-tumor THelper1 response to tumor-

promoting THelper2 response (Tan and Coussens, 2007). Recently, a HRS cell 

line, KM-H2, was shown to exhibit the capability of fostering a tumor 

privilege condition by inducing regulatory T cells differentiation of naïve T 

cells that were in close contact with the neoplastic cells in vitro (Tanijiri et al., 

2007). 
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Figure 1.5: Schematic diagram showing the cross-talk between HRS cells and 

the tumor microenvironment in the cHL (Steidl et al., 2010). In the center, the 

HRS cell is shown to express various cell surface molecules as well as 

secreted cytokines and chemokines. Surrounding the HRS cell are cell types 

representative of the nonmaglinant cells attracted by these molecules. The 

cells in the microenvironment can, in turn, express various chemokines and 

cytokines that further shape the reactive infiltrate and provide signals for the 

HRS cell.              

(adapted with permission from Journal of Clinical Oncology. 29:1812-1826 

(2011)) 

 

 

1.3.4 Importance of T cells in cHL 

The most abundant immune infiltrate around HRS cells is CD4
+
 T cells. T 

cells are essential for the pathogenesis of HL disease. CD40 ligand expressed 

on rosetting T cells can trigger CD40 receptor on the HRS cells to provide 

survival signal (Carbone et al., 1995). Besides that, IL-3 receptor expressed on 

HRS cells could induce IL-3 secretion on activated T cells to provide more 

survival and growth signal (Aldinucci et al., 2002). 

 



Chapter 1: Introduction 

 

18 
 

A considerable proportion of infiltrating CD4
+
 T cells are Treg cells which are 

important to provide an immunosuppressive microenvironment for the 

survival and growth of HRS cells. Treg cells produce IL-10 and TGF-β which 

exert inhibitory effects on the functions of effector T cells, especially 

cytotoxic T lymphocytes (CTL). The presence of large population of Treg in 

the HL microenvironment is not due solely to active recruitment induced by 

chemokines produced from HRS cells but also via direct modulation of naïve 

T cells in close contact with HRS cells (Tanijiri et al., 2007). Surprisingly, the 

presence of a high number of Treg is linked to good prognosis in HL disease 

(Alvaro et al., 2005). This suggested that Treg cells may have some suppressive 

effect on the HRS cells or on other inflammatory cells that support HRS cell 

survival and proliferation. 

 

Another subset of T cells presence in the tumor microenvironment is CTL. 

CTL can produce granzyme B (GrB) and TIA-1 to induce apoptosis on HRS 

cells. Oudejans et al has found an increased number of CTL in tissue biopsies 

of patients and that was associated with unfavorable clinical outcome 

(Oudejans et al., 1997). Paradoxically, high percentage of GrB
+ 

cells in the 

tissue biopsies was associated with poor prognosis. They reported that optimal 

discrimination between patients with good or bad prognosis was easily 

differentiated when threshold was set at 15% GrB
+
 cells (Oudejans et al., 

1997).  

 

 

1.4 Leukocyte recruitment 

Leukocyte must adhere to the endothelium before they can migrate from the 

endothelium into tissues. Adhesion and subsequent transendothelial migration 

takes place preferentially at specialized sites in blood vessels called post-

capillary venules in the non-lymphoid tissues and high endothelial venules in 

lymph nodes. The flowing leukocyte that comes into brief contact with the 

vessel wall will slow its movement, and rolls on the endothelium if the 

endothelium is activated. Exposure of the rolling leukocyte to chemokines will 
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trigger integrin activation allowing the cell to come to a halt. The adhered cell 

will flatten its shape and undergo diapedesis and transmigration across 

endothelium in a few minutes. There are four basic steps that regulate the 

extravasation of leukocytes across the blood vessel, which are tethering, 

triggering, firm adhesion and migration (Figure 1.6). 

 

 

1.4.1 Tethering 

Tethering is mediated by a family of lectin-like calcium dependent binding 

molecules which promotes the slow rolling of leukocytes under flow condition 

(Bevilacqua, 1993). The three family members, L-selectin, E-selectin and P-

selectin are named according to the cell types they were first discovered in. L-

selectin is found on lymphocyte, E-selectin is found on endothelial cell, and P-

selectin is found on platelet and endothelial cells. L-selectin is expressed 

constitutively on neutrophils, monocytes and eosinophils. Majority of the B 

cells and naïve T cells express L-selectin while only a subpopulation of 

memory T cells are L-selectin positive. Optimal L-selectin function involves 

change of receptor affinity after cellular activation and requires an intact 

cytoplasmic domain (Kansas et al., 1993). Lymphocytes and neutrophils 

experience a reversible loss of L-selectin after cellular activation. Loss of L-

selectin is always accompanied by up-regulation of other adhesion molecules. 

 

P-selectin is constitutively found in the Weibel-Palade bodies of the 

endothelial cells and alpha-granules of the platelets (Hsu-Lin et al., 1984; 

McEver et al., 1989). P-selectin inducing agent includes thrombin, histamine 

complement fragments, oxygen-derived free radicals and cytokines. 

Expression of P-selectin is very short-lived. Within minutes of activation by 

inducing agents, P-selectin is mobilized to the cell surface. However, in-vivo 

studies also suggested that it might be an important regulator of leukocyte-

endothelial interactions at the later time point. Level of P-selectin mRNA 

expression was increased in mice after treatment with lipopolysaccharide (LPS) 
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or cytokines with the maxima level of expression detected at 4 hours after 

TNF-α stimulation (Tedder et al., 1995).  

 

E-selectin expression on endothelial cells is induced upon activation. E-

selectin production is strongly and rapidly induced by IL-1β, TNF-α, 

interferon-γ (IFN-γ) and LPS (Bevilacqua et al., 1987). E-selectin expression 

on human umbilical cord vein endothelial cells (HUVEC) peaks at 4-6 hours 

after activation but the expression returns to basal level after 24-48 hours. 

However, E-selectin expression on HUVEC in-vitro may not reflect the 

temporal and spatial expression of E-selectin on microvessel endothelial cells 

derived from other tissues since E-selectin expression is always up-regulated 

at the inflammatory sites including arthritic joint, psoriasis and in heart or 

kidney undergoing allograft rejection (Tedder et al., 1995). 

 

Selectins are suitable for mediating tethering of leukocytes on the endothelium 

because they have long molecular structure that extended above the 

surrounding glycocalyx and allows them to capture passing leukocytes that 

express the appropriate receptors (Lasky, 1992). Selectin mediated interactions 

are strong enough to slow down the leukocytes but not strong enough to 

induce firm adhesion and completely stop leukocytes on the endothelium 

(Lawrence and Springer, 1991). The transient nature of this entire process is 

crucial to allow the leukocytes to sample the local endothelium for trigger 

factors that can activate the integrins and allow the nest step in the cascade to 

proceed. Interestingly, L-selectin (Finger et al., 1996), E- and P-selectin 

(Lawrence et al., 1997) actually require shear stress for optimal function. 

 

Studies of the molecular basis of selectin mediated interactions have focused 

on carbohydrate recognition by the lectin domains. The tetrasaccharide sialyl 

Lewis
x
 (sLe

x
) has been identified as the prototype ligand for E- and P-selectin 

although all three selectins can bind to sialyl Lewis
x
 (sLe

x
) or sialyl Lewis

a
 

under appropriate conditions (Carlos and Harlan, 1994). The dependence of 
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the selectin functions on carbohydrate ligands and the importance of fucose 

metabolism to generate sLe
x
 and related structure had been highlighted by 

studied on leukocyte adhesion deficiency syndrome II (Harlan, 1993). 

 

 P-selectin glycoprotein ligand-1 (PSGL-1) has the dominant role as a ligand 

that binds all three selectins although it was originally being described as the 

ligand for P-selectin (Sako et al., 1993). Binding of PSGL-1 with L-selectin 

mediates leukocyte-leukocyte interaction to facilitate secondary leukocyte 

capture and tethering. PSGL-1 is expressed on all leukocytes and on certain 

types of endothelial cells (da Costa Martins et al., 2007; Rivera-Nieves et al., 

2006). PSGL-1 requires specific glycosylation to become functional (Moore et 

al., 1995). Besides PSGL-1, ligands of L-selectin also include GlyCAM-1, 

CD34 and mucosal vascular addressin cell-adhesion molecule-1 (MadCAM-1). 

E-selectin is also found to bind to glycosylated CD44 and E-selectin ligand 1 

(ESL1) (Hidalgo et al., 2007). 

 

 

1.4.2 Triggering 

A triggering step is needed to activate integrins and promote strong adhesion 

because integrins molecules on leukocytes cannot bind well to their respective 

receptors on the endothelial cells without activation. During inflammation, 

endothelial cells will be activated by inflammatory cytokines to express 

adhesion molecules and synthesize chemokines and lipid chemoattractants that 

are presented on the luminal surface. Activated endothelial cells also transport 

chemokines, produced by resident cells such as macrophages and mast cells, 

from their abluminal surface to the luminal surface (Middleton et al., 1997). 

Some chemokines are generated by proteolytic cleavage in activated mast cells 

and platelet, and delivered to endothelial cells by circulating microparticles or 

exocytosis of intracellular granules. RANTES, PF4 (CXCL4, platelet factor 4) 

and ENA-78 (CXCL5, epithelial-derived neutrophil-activating peptide 78) are 

examples of chemokines that are deposited by platelets on activated 
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endothelial cells to trigger the arrest of monocytes (von Hundelshausen et al., 

2001;  2005).  

 

Interestingly, chemokines have the ability to induce leukocyte subset specific 

adhesion and migration. Specificity in leukocyte arrest is conventionally 

attributed, in part, to the differential expression and activation state of integrin 

subtypes, as well as the repertoire of chemokine receptors found on the 

leukocyte surface. Activated lymphocytes or transformed lymphoblasts often 

constitutively express high affinity forms of integrins which makes them bind 

more readily to activated endothelium. Ligation of chemokine to its specific 

G-protein coupled receptor (GPCR) triggers the activation of a complex 

signaling network almost instantaneously or within milliseconds. This GPCR-

triggered signaling network is often known as inside-out signaling (Ley et al., 

2007). Chemokine triggered signaling networks can regulate the activation of 

distinct integrins expressed on different leukocyte subsets. The well-known 

examples are monocyte chemoattractant protein 1 (MCP-1) which acts on 

monocyte, macrophage inflammatory protein 1α (MIP-1α), MIP-1β and 

RANTES which act on monocytes and distinct T cell subsets (Schall, 1991). 

 

 

1.4.3 Firm adhesion 

Strong adhesion of leukocytes to the endothelium is mediated by integrins. 

Integrins are a family of heterodimeric membrane glycoproteins that consists 

of α and β subunits (Ley et al., 2007). They are grouped into different 

subfamily based on their β subunit. The most important β1 integrin for 

leukocyte-endothelial cell interaction is called Very Late Antigen-4 (VLA-4) 

which comprises of a β1 chain paired with a α4 chain (α4β1 or CD49aCD49f). 

The important β2 integrin is called Lymphocyte Function Associated Antigen-

1 (LFA-1) which comprises of a β2 chain pairing with a αL chain (αLβ2 or 

CD11aCD18). Integrins are involved in mediating leukocytes rolling and firm 

adhesion on endothelium (Shimizu et al., 1992).  VLA-4 dependent rolling is 



Chapter 1: Introduction 

 

23 
 

seen on monocytes and  monocyte-like cell lines (Chan et al., 2001; Huo et al., 

2000), T cells (Singbartl et al., 2001) and T cell lines (Berlin et al., 1995). 

 

β2 integrins bind to intercellular adhesion molecule 1 (ICAM-1) and ICAM-2 

which are expressed on endothelium. ICAM-2 is constitutively expressed on 

the endothelium. ICAM-1 expression is induced upon endothelial cell 

activation. ICAM-1 expression is induced by IL-1 and TNF-α (Dustin et al., 

1986; Pober et al., 1986). Kadono et al showed that rolling of human 

lymphocytes was enhanced and slowed when ICAM-1 was co-expressed with 

L-selectin ligands on a human vascular endothelial cell line (Kadono et al., 

2002). They proposed that LFA-1/ICAM-1 interactions can influence L-

selectin-mediated leukocyte rolling; and that functional synergy between L-

selectin and Ig family is essential for optimal conversion of the rolling 

leukocytes to the stably adhered phenotype. 

 

The α4β1 integrin (VLA-4) binds to vascular cell adhesion molecule-1 

(VCAM-1). Expression of VCAM-1, like ICAM-1, is inducible upon 

activation. IL-1 and TNF-α can induce VCAM-1 expression on activated 

endothelial cells with maxima expression level peaking at 6-12 hours 

(Wellicome et al., 1990). Interestingly, IL-4 also acts on endothelial cells to 

induce VCAM-1 but not ICAM-1 and E-selectin expression (Schleimer et al., 

1992; Thornhill and Haskard, 1990). 

 

Several signaling pathways are involved in regulating adhesion molecule 

expression in endothelial cells. The most commonly studied signaling 

pathways are MAP kinases (Keshet and Seger, 2010), including ERK and p38 

as well as JNK, and NFκB pathways. Endothelial cells are sensitive to various 

stimuli such as TNF-α, IL-1 and IL-6 to up-regulate adhesion molecule 

expression. Phosphorylated forms of p38 and JNK are important in the 

regulation of ICAM-1 expression. AP-1, which is downstream of JNK, and 

p38 is also important in regulating ICAM-1 expression on the endothelial cells. 
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Attenuation of p38 phosphorylation by specific tyrosine phosphorylation 

inhibitor resulted in the inhibition of ICAM-1 expression on human pulmonary 

microvascular endothelial cells (Tamura et al., 1998). Similar function of p38 

was also observed on human umbilical cord vein endothelial cell (HUVEC) 

(Yan et al., 2002). AP-1 rather than NFκB was shown to be important in 

oxidative stress induced ICAM-1 expression on HUVEC (Roebuck et al., 

1995). This suggested that different subsets of MAP kinase are responsible for 

ICAM-1 expression in different situation. However, the role of ERK, p38 and 

JNK may be dispensable in the synthesis of ICAM-1 and VCAM-1 on TNF-α 

stimulated endothelial cells. Work done by Zhou et al (Zhou et al., 2007) 

suggested that even though TNF-α stimulated endothelial cells could up-

regulate phosphorylated ERK, p38 and JNK expression, treatment with 

inhibitors to these three MAP kinase signaling molecules did not prevent the 

induction of ICAM-1 and VCAM-1 expression on the TNF-α stimulated 

HUVEC. Their study suggested that TNFR1-induced NFB signaling was the 

main pathway for the induction of ICAM-1 and VCAM-1 in TNF-α stimulated 

HUVEC. 

 

In addition to ICAM-1 and VCAM-1, CD44 also plays a role in regulating 

leukocyte adhesion to activated endothelial cells. CD44 is a ubiquitously 

expressed cell surface adhesion molecule involve in cell-cell interaction and 

cell-matrix interactions. The multiple protein isoforms are coded by the same 

gene but are generated by alternative splicing and are further modified by a 

range of post-translational modifications (Hofmann et al., 1991). The principal 

ligand of CD44 is hyaluronic acid (HA) (Aruffo et al., 1990), which is an 

integral component of extracellular matrix. Other CD44 ligands include 

fibronectin and collagen. CD44 is found on many cell types including, 

fibroblasts, epithelial cells, keratinocytes, neurons, erythrocytes and 

leukocytes. CD44 plays an important role in regulating neutrophil migration 

across endothelium and adhesion of activated T cells to HA on endothelial 

cells (Bonder et al., 2006; Khan et al., 2004).  In addition, antibodies to CD44 

have been reported to block lymphocyte adhesion to the high endothelial 
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venules of muscosal lymphoid tissues and to other activated endothelium 

(Jalkanen et al., 1987; Picker et al., 1989).  

 

 

1.4.4 Migration 

After firm adhesion, leukocytes migrate through the endothelial barrier under 

the influence of promigratory factor. Chemokines also act as the chemotatic 

factors that attract the bound leukocytes to transmigrate across the 

endothelium into the interstitium. For example, immobilized MIP-1α has been 

demonstrated to direct the migration of specific T cell subsets across the 

endothelium (Tanaka et al., 1993; Taub et al., 1993). In addition, junctional 

proteins such as endothelial junctional proteins such as platelet/endothelial-

cell adhesion molecule 1 (PECAM-1) and junctional adhesion molecule 

(JAM), are also important for regulating leukocyte migration across the 

endothelial monolayer. PECAM-1, JAM-A and ICAM-2 mediate leukocyte 

migration in response to IL-1β but not TNF-α (Nourshargh et al., 2006). Thus, 

the interactions of different adhesion molecules with their cognate receptors 

regulate leukocyte transmigration in a cell-specific and stimulus specific 

manner.  
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Figure 1.6: Diagram shows 4 important steps of leukocyte adhesion cascade 

(Ley et al., 2007). The three steps shown in bold are critical steps before 

leukocyte transmigration can occur. Rolling is mediated by selectins, 

activation is mediated by chemokines and arrest is mediated by integrins. 

(adapted with permission from Nature Reviews Immunology. 7:678-689 

(2007)) 

 

 

1.4.5 Preferential migratory patterns of leukocytes 

Leukocyte binding to endothelium is dependent on the site of the endothelial 

cells and the nature of the cytokines or stimulatory factor. For example TNF-α 

induced ICAM-1 and VCAM-1 expression on the activated endothelial cells 

therefore, allowing leukocyte-endothelial cell binding via β1 and β2 integrins 

whereas IL-4 only induces VCAM-1 expression hence only allows leukocyte-

endothelial cell binding via β1 integrin (Schleimer et al., 1992). Leukocyte 

migration is important to provide immune surveillance and mount 

inflammatory responses against antigens. Different subset of leukocytes have 

different patterns of recruitment and different functional capacity. Neutrophils 

as early response effector cells recruited in huge numbers to the inflammatory 

sites to mount the first wave of immune response. T cells are recruited later 

and more selectively than neutrophils where they perform antigen restricted 

functions.  
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Differential expression of adhesion molecules or integrin subtypes on naïve 

and memory T cells gives rise to different recruitment patterns between naïve 

and memory T cells to inflammatory site specific and peripheral lymph nodes 

under physiological condition. Naïve T cells express high level of L-selectin, 

moderate level of CD44 and low level of α4 integrin (Picker et al., 1990). In 

contrast, memory T cells have bimodal expression of L-selectin but definitely 

higher expression of CD44 and α4 integrin (Lim et al., 2000; Picker et al., 

1990). Initially, it was believed that memory T cells do not express L-selectin 

on the surface. However, various reports suggested otherwise. As mentioned 

by Picker et al, bimodal expression of L-selectin occurs on memory T cells 

and Li et al reported that L-selectin is expressed on naïve T cells and a small 

population of memory T cells (Li et al., 1993; Picker et al., 1990). 

 

Naïve T cells migrate exclusively through lymph node and secondary 

lymphoid organ  (Figure 1.7) (Marelli-Berg et al., 2008). Memory T cell 

acquires a distinct ensemble of adhesion molecules on the surface which 

allows it to migrate through the tissues more readily. In addition, lymphocyte 

recirculation is also regulated by the presence of other adhesion molecules 

preferentially expressed on specific sites of the tissues. One such molecule is 

PNAd (peripheral node addressins) which is expressed primarily in the 

peripheral lymph nodes and interact with L-selectin expressing T cells.   

 

 

1.4.6 Naïve T cell recirculation 

Naïve T cell recirculation through peripheral lymph node (PLN) and lymphoid 

tissues is largely mediated by two homing receptors or addressin pairs: first is 

L-selectin with PNAd; second is integrin activation induced by CCR7 

engagement with chemokines, ELC (CCL19 or EBl 1 ligand chemokine) and 

SLC (CCL21 or secondary lymphoid-tissue chemokine), expressed on the 

surface of high endothelial venule (HEV) (Figure 1.7) (Miyasaka and Tanaka, 

2004; von Andrian and Mempel, 2003). Studies utilizing specific gene knock-

out mice had facilitated our understanding of the roles of these molecules in 
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mediating naïve T cell migration. L-selectin knock out mice showed less 

binding of lymphocytes to the PLN and markedly fewer number of 

lymphocytes localized in PLN (Arbones et al., 1994). Similarly, CCR7 knock 

out mice have fewer naïve T lymphocytes in the PLN as well as extensively 

disrupted PLN architecture (Baekkevold et al., 2001). Another set of adhesion 

molecule interaction that plays a role in naïve T cell homing to secondary 

lymphoid tissues is the binding of LFA-1 to ICAM-1. Lymphocytes from 

LFA-1 deficient mice failed to home to lymph node (Berlin-Rufenach et al., 

1999). Besides that, Reichardt et al showed that LFA expression on T cells is 

important for prolonged PLN residence. LFA
-/- 

CD4 T cells have lower PLN 

residence dwell time compared to LFA
+/+

 CD4 T cells (Reichardt et al., 2013).      

 

Naïve T cell migration into gut associated lymphoid tissues such as Payer’s 

patches and mesenteric lymph nodes (MLNs) is mainly dependent on α4β7- 

MAdCAM-1 pairing (Wagner et al., 1996). Besides CCR7, naïve T cells also 

expressed CXCR4 which is the receptor for SDF-1α (CXCL12, stromal-cell 

derived factor 1 alpha). The CXCR4-SDF-1α axis has been shown to promote 

migration of naïve T cells across HEV in-vitro (Campbell et al., 1998).  

 

 

1.4.7 Memory T cell recirculation 

Antigen-experienced T cells are more diverse than naïve T cells with respect 

to their migratory property and they can be subdivided into memory T cells 

(TCM), effector T cells (TEF), and effector memory T cells (TEM) subsets based 

on their expression of specific homing receptors and functional differences 

(Marelli-Berg et al., 2008). TCM express peripheral lymph node (PLN) homing 

molecules like L-selectin and CCR7 receptors. These molecules are critical for 

TCM retention in the secondary lymphoid organ. Besides that, TCM can also 

localize at peripheral tissues and sites of inflammation (Figure 1.7) (Sallusto et 

al., 1999).  
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In contrast, TEF and TEM subsets do not express CCR7 and negligible or low 

expression of L-selectin. TEF and TEM subsets do not migrate into PLN 

(Sallusto et al., 1999). Both TEF and TEM preferentially home to non-lymphoid 

tissues. The differential expression of different homing molecules on the 

different subsets of memory T cells confers different tissue specific homing 

properties. Memory T cells that preferentially circulate to skin express 

cutaneous lymphocyte antigen (CLA) (Picker et al., 1991) and the chemokine 

receptors, CCR4 (Campbell et al., 1999) and CCR10 (Reiss et al., 2001). CLA 

binds to E-selectin which is constitutively expressed on the skin post-capillary 

venule. CCR4 and CCR10 bind respectively to TARC and CCL27 (CTACK), 

leading to integrin activation. CCL17 was shown to induce integrin-dependent 

adhesion to ICAM-1 of skin-derived memory T cells under static and 

physiological flow condition in-vitro (Campbell et al., 1999).  

 

Constitutive migration of effector/memory T cells into lamina propria of the 

small intestine requires the interaction of α4β7 and chemokine receptor CCR9 

(Berlin et al., 1993) expressed on lymphocyte surface with MadCAM-1 and 

CCL25 (TECK, Thymus-Expressed Chemokine) (Wagner et al., 1996) found 

on the endothelial cells of gut lamina propria venules. T cells deficient in β7-

integrin chain are severely impaired in their ability to home to intestinal 

mucosal (Lefrancois et al., 1999). Similarly, CCL25 blockade or CCR9 knock 

down clearly reduced CD8
+
 T cells migration to the small intestine (Svensson 

et al., 2002).  
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Figure 1.7: This diagram summarized the recirculation patterns and molecular 

interactions involved in the trafficking of naïve and memory T cells (Marelli-

Berg et al., 2008).             

(adapted with permission from Journal of Pathology. 214:179-189 (2008)) 

                                                                                    

 

 

1.5 Lymphotoxin (LT) 

LT was first described by G.Granger and co-workers in 1968 as a protein that 

is produced by lymphocytes that kill tumor cells. LT was the first cytotoxic 

chemokine to be purified from a B-lymphoblastoid cell line (Aggarwal et al., 

1984) and its amino acid sequence was determined by traditional sequencing 

method. LT has 30% sequence homology with TNF and there are functional 

similarity between LT and TNF (Calmon-Hamaty et al., 2011). Human LT 

gene maps to chromosome 6 (Nedwin et al., 1985), within the MHC (major 

histocompatibility complex) gene locus (Spies et al., 1986) and is tightly 

linked to TNF. The human LT gene consists of 4 exons and 3 introns. The 

position of LT and TNF within the MHC gene locus is very unique. It has 

been shown that LT can exist in at least 2 different variants. It can either form 

the membrane bound LTαβ heterotrimers (LTα1β2 or LTα2β1) or soluble LTα3 

homotrimer (Browning et al., 1993; 1995). LTα is expressed on T cells, B 
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cells, NK cells and lymphoid tissue inducer cells under normal physiological 

condition, LTβ is mainly expressed on parenchyma cells and stroma cells in 

secondary lymphoid organ and the thymus as well as in myeloid cells 

(Aggarwal, 2003; Norris and Ware, 2007). Recently, it had been shown that 

LTαβ heterotrimer can be shed from the cell surface by proteolytic cleavage 

and execute its functions on more distant cells (Young et al., 2010). LT 

expression can be induced by T cell mitogen, phorbol ester, other cytokines 

and viruses (Worm et al., 1998). 

 

 

1.5.1 Function of LTα 

Primary function of LTα is to exert killing effect on target cells. Cytotoxic 

activity of LTα was first described by Ruddle et al in 1968 as inhibitory 

growth of syngeneic primary rat embryo fibroblast (Ruddle and Waksman, 

1968). Subsequently, malignantly transformed cells were reported to be more 

susceptible to LTα than the normal cells by two separate groups of researchers. 

Studies by Evans and Heinbaugh as well as Meltzer and Bartlett reported that 

rapidly proliferating chemical carcinogen transformed cells were vulnerable to 

LTα killing (Evans and Heinbaugh, 1981; Meltzer and Bartlett, 1972). While 

not all malignant cells are susceptible to LTα, LTα can work synergistically 

with minute amounts of IFN-γ to exert killing effect on cell lines that were 

originally not sensitive to LTα. This observation was reported by Williams 

and Bellanti who showed increased killing of Hela and WI38 cells by human 

LTα in the presence of human IFN-α and IFN-γ (Williams and Bellanti, 1984). 

Similar observation was reported by Lee et al using B16 melanoma cell line 

(Lee et al., 1984). 

 

In addition to cytotoxic effect, lymphotoxin (LT) also induces expression of 

antigen on several different target cells that were resistant to the cytokine. In 

many ways, this could be due to the induction of a more highly differentiated 

state. Human endothelial cells (HEC) in particular are not killed by LT, but its 

morphology changed drastically from epithelial to fibroblastoid form. There is 
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also an increase in class I MHC antigen and other molecules associated with a 

more differentiated/activated state. These include expression of E-selectin 

(H4/18) and ICAM-1, which are associated with leukocyte recruitment (Pober 

et al., 1987). 

 

LT also involved in the activation and differentiation of polymorphonuclear 

leukocytes (PMN). Shalaby et al  showed that LT, TNF and IFN-γ all 

increased PMN’s ability to ingest latex beads and enhanced PMN mediated 

antibody dependent cell cytotoxic (ADCC)-reactions (Shalaby et al., 1985). 

Synergistic effect was also seen between LT with IFN-γ or TNF.  These 

results were confirmed by Perussia et al  who showed that LT at 40 units/ml 

caused PMN cytotoxicity but could enhance PMN phagocytic and ADCC 

activity at 20 units/ml (Perussia et al., 1987). In addition, LT activity is also 

detected in osteolysis reaction. Osteolysis or osteoclast activation is initiated 

by LT stimulation. LT stimulated osteoblastic cells to release an autocrine 

factor that stimulates osteoclasts to reabsorb bone (Thomson et al., 1987). 

 

 

1.5.2 Receptors for LT 

Similar to TNF homotrimers, LTα3 and LTα2β1 bind to TNFRI and TNFRII 

whereas LTα1β2 signaled exclusively via LTβ receptor (Ware, 2005). 

Stimulation of TNFRI and LTβR causes activation of canonical and non-

canonical NFκB pathway and hence play a role in cell survival, proliferation, 

differentiation and apoptosis. Signals transmitted through TNFRI and TNFRII, 

which are also activated by pro-inflammatory cytokines TNF, IL-6 and IFN-γ, 

will activate the canonical NFκB pathway. Engagement of LTα3 with TNFRI 

causes recruitment of a complex (which includes TRADD, TRAF2, TRAF5, 

receptor-interaction protein (RIP)-1 and cellular inhibitor of apoptosis (cIAP)) 

(Vandenabeele et al., 2010). This triggers the activation of IKKβ that leads to 

phosphorylation and degradation of IκBα, therefore allowing nuclear 

translocation of p50/RelA (NFκB1) heterodimer complex and the induction of 

proinflammatory and prosurvival factors (Remouchamps et al., 2011). Non-
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canonical NFκB pathway is triggered when the canonical pathway is inhibited. 

Initiation of TNFRI non-canonical pathway usual results in cell death. This 

involves formation of a complex (which includes TRADD, FADD, caspase 8, 

RIPI and RIP3), leading to caspase-8 mediated apoptosis or RIP1/3 mediated 

necroptosis (Micheau and Tschopp, 2003; Vandenabeele et al., 2010).  

 

In contrast, engagement of LTβR with LTα1β2 can independently activate the 

non-conical pathway independent of IKKβ and NEMO (Senftleben et al., 

2001). In this case, ligand engagement leads to activation of NFκB-inducing-

kinase (NIK) and its downstream target IKKα2 (Ling et al., 1998). This 

eventually leads to p100 degradation and formation of the p52/RelB 

heterodimer which translocates into the nucleus to initiate gene transcription. 

This pathway is critical for mediating inflammation, development of thymus, 

secondary lymphoid organ as well as B cell survival and maturation of 

follicular dendritic cells (Weih and Caamano, 2003; Zhu and Fu, 2011). 

 

 

1.5.3 Role of LT in lymphoid tissue development 

LT plays a crucial role in lymphoid neogenesis. The studies of LT in lymphoid 

neogenesis and maintenance of lymphoid microarchitecture started two 

decades ago. Several knockout mouse model, LTα
-/-

, LTβ
-/- 

and LTβR
-/-

 as 

well as overexpressing LT transgenic mouse were developed to study LT 

function extensively. In 1994, results from two different groups showed that 

LTα
-/-

 mice which cannot generate all three forms of LT (LTα3, LTα2β1, 

LTα1β2) lack Peyer’s patches, matured follicular dendritic cells, peripheral and 

mesenteric lymph nodes and have a highly disrupted splenic microarchitecture 

(Banks et al., 1995; De Togni et al., 1994). LTβ
-/-  

mice which still retains the 

ability to produce LTα3 showed very similar but less severe effects on splenic 

microarchitecture with developing cervical lymph nodes and mesenteric 

lymph nodes (Alimzhanov et al., 1997; Koni et al., 1997). LTβR
-/-

 mice 

showed a much adverse effect in lymphoid organ development. Mice without 

LTβR showed complete absence of lymph node and Peyer’s patches 
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development suggesting that NFκB non-canonical pathway plays an important 

role in this biological process (Futterer et al., 1998; Rennert et al., 1996). 

 

 

1.5.4 Pathological role of LT in cancer 

LT signaling is strongly linked to cancer development. Genetic studies showed 

that LTA genetic polymorphism contributes differently to cancer risk. LTA 

gene with the allelic composition of LTα1/1 or LTα1/2 in the patients with 

bladder cancer showed higher risk of high-grade tumor than those patients 

carrying LTα2/2 allele (Nonomura et al., 2006). Single nucleotide 

polymorphism of LTA gene with C804A resulting in higher level of LTα 

expression was associated with poor prognosis in diffuse large B cell 

lymphoma (Chae et al., 2010) but the same LTA C804A polymorphism was 

associated with lower risk of lung cancer in Japanese male population (Takei 

et al., 2008). These differences could be explained by the multi-functionality 

of LTA whereby LTA can promote cell growth and adhesion and potentially 

favor the growth of certain tumors.       

 

Deregulated NFκB signaling due to mutations in its regulator can be found in 

various forms of B-cell lymphoma. Gain of function mutation in LTβR which 

constitutively activates NFκB signaling can be found in multiple myeloma 

(Compagno et al., 2009). Keats et al showed in cell lines and patient samples 

that ligand-independent activation of non-canonical pathway is the rate 

limiting step in malignant plasma cell transformation (Keats et al., 2007). 

Direct evidence of transforming activity involving LTβR was provided by 

Fujiwara et al. Using a retroviral cDNA librabry from pancreatic ductal 

carcinoma cell line, Mia-PaCa-2, they showed that both NH2-terminally 

trucated and full-length LTβR variants could induce growth of 3T3 cells in 

soft agar and promote tumor formation in nude mice (Fujiwara et al., 2005). 

More recently, Ammirante et al showed that LT produced by tumor-

infiltrating B cells could induce IKKα activation and STAT3 phosphorylation, 
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leading to androgen independent survival of castration-resistant prostate 

cancer cells (Ammirante et al., 2010).  

 

It was previously reported that activation of IKKα could down-regulate 

Maspin expression which is a fate decisive factor in primary tumor growth and 

metastasis of prostate and breast cancer model (Luo et al., 2007). Results from 

the study showed that LT induced IKKα activation was associated with 

RANK-mediated NFκB activation via RANKL expression on tumuor-

infiltrating T cells (Luo et al., 2007). Taken together, these studies suggests 

that LT derived from RANKL expressing tumor infiltrating B cells (or T cells) 

could promote prostate and breast cancer initiation. 

 

Lymphotoxin also plays a role in organizing tumor tissue structure during 

tumor development. LTβR abrogation in fibrosarcoma cells leads to tumor 

growth and angiogenesis inhibition (Hehlgans et al., 2002). A subsequent 

study showed that LTβR ligands, LT and Tumor necrosis factor ligand 

superfamily member 14 (LIGHT), expressed by tumor infiltrating 

lymphocytes induce expression of pro-angiogenic MIP-2α in fibrosarcoma 

cells (Daller et al., 2011). 

 

 

1.5.5 Anti-tumor role of lymphotoxin (LT) in cancer 

LT is important for maintaining homogeneity of the immune system. Ito et al 

demonstrated that NK cells with defective LT production are immature and 

exhibit defective homing properties leading to improper anti-tumor response 

and more rapid tumor growth as well as metastasis (Ito et al., 1999). However, 

a contradicting finding by Zhou et al showed that in prostate cancer, ablation 

of LT in T cells rescued the anti-tumor response by inhibiting clonal-deletion 

of tumor specific T cells, thus decreasing tumor incidence and inhibiting 

metastasis (Zhou et al., 2009).  
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Tumor surveillance is of great importance. LT and its related downstream 

signaling of NFκB pathway has been shown to influence tumor growth and 

metastasis in a variety of tumor models via various mechanistic pathways. 

However, the exact mechanism is not fully elucidated and there is still no clear 

picture of the role of LT plays in tumor progression and development. To 

address this issue, Kuprash et al  completely deleted LT and TNF signaling in 

their p53
-/-

 mouse model (Kuprash et al., 2008). Their study showed no 

significant difference in spontaneous tumor formation besides a slight delay in 

tumor-associated mortality between their LT and TNF signaling and non-

signaling p53
-/- 

mouse model tumor group. The author concluded that 

inflammatory signaling has no protective role in tumor development and has 

only a minor role in tumor promotion. One of the major caveats in this study 

was that the deletion was not performed specifically on hematopoietic cell; 

leaving various questions such as the intrinsic effects of TNF-α on tumor cells 

or LT-mediated signaling in inflammatory cells unanswered. 

 

 

1.5.6 LTα and Lymphoma 

Various studies had proven that LT plays a role in the development of cancers. 

However, there are very few studies on the role of LT in lymphoma, 

particularly HL. Up to date, the exact role of lymphotoxin in the pathogenesis 

of lymphoma still remains unclear although various studies have established 

the notion that LTα polymorphism serves as an important prognostic factor in 

various types of lymphomas disease across different populations in the world. 

LTA single nucleotide polymorphism serves as a poor prognostic factor in 

diffuse large B cell lymphoma in the Chinese and Korean population (Chae et 

al., 2010; Zhang et al., 2013). Besides that, polymorphism of LTA gene is also 

a poor prognostic factor in Burkitt lymphoma and B cell acute lymphoblastic 

leukemia in European population (Seidemann et al., 2005). These observations 

could be due to increased production of LTα which eventually leads to 

deregulation of NFκB pathway and uncontrolled aberrant B cells expansion. 
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 Recently, Rehm et al demonstrated LT acts as a niche-forming cytokine in T 

cell lymphoma in the Eµ-Myc transgenic mice (Rehm et al., 2011). These 

lymphoma cells home to bone marrow by CCR7 where they disrupt stromal 

cellularity by activating LTβR signaling on resident stromal reticular cells. 

Inhibiting this interaction prevented lymphoma growth suggesting the 

potential of neutralizing or inhibiting LT function as a possible therapy for 

lymphoma.  

 

Study of LT in HL is very limited. Although LTα can be found in the HL 

lesions, the exact role of LTα in HL remained unknown. Tissues from the cHL 

patients expressed moderate to abundant levels of LTα mRNA (Sappino et al., 

1990). In contrast, TNF-α mRNA level in the tissue samples was relatively 

low. However, Sappino et al could not find any correlation between LTα 

mRNA expression and histologic pattern, histologically defined criteria for 

necrosis, neoangiogenesis, hyalinosis or stromal reaction. Neither could they 

correlate LT mRNA expression in cHL lymph nodes with B symptoms 

(Sappino et al., 1990).  This observation was later supported by Warzocha et al 

who correlated plasma levels of TNF- and LT with several prognostic 

factors of HL including B symptoms (Warzocha et al., 1998). Results from 

this study showed that unlike TNF-, plasma level of LTα in cHL patients was 

not statistically different from that of healthy controls.  

 

 

1.6 NFκB  

NFκB is a family of inducible transcription factors found commonly across all 

cell types. It was discovered by Baltimore and Sen in 1986 (Sen and Baltimore, 

1986). Since its discovery, much had been discovered about its mechanism of 

activation, its target genes, its’ functions in a variety of human diseases 

including cancers, asthma, arthritis and inflammation. NFκB family has many 

members. They include Rel A(p65), NFκB1 (p50; p105), NFκB2 (p52; p100), 

c-Rel and Rel B (Ghosh et al., 1998; Verma et al., 1995). The Rel proteins 

contain c-terminal transactivation domains which are often not conserved at 
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the sequence level across all species. However, NFκB1 and NFκB2 subfamily 

are differentiated from Rel proteins by their long C-terminal that contains 

multiple copies of ankryin repeats, which acts to inhibit these proteins   

(Figure 1.8).  

 

The NFκB subfamily has to undergo ubiquitination and proteolysis involving 

proteasome to become active DNA binding subunits (p105 to p50 and p100 to 

p52). These subunits then associate with members of the Rel family to become 

fully activated heterodimeric transcription activators (Gilmore, 2006). In 

addition, each member of the NFκB family except Rel B can also form 

homodimers. The main activator of NFκB protein is the heterodimer of p65 

subunit associated with p50 or p52 subunit. p50 homodimers which lack the 

transactivation domain, functions as a transcription repressor with the 

capability of binding to NFκB consensus sites on DNA (May and Ghosh, 

1997). p65 and p50 is ubiquitously expressed on all cell types whereas Rel B 

expression is restricted to specific regions of the thymus, lymph nodes and 

Peyer’s patches. The expression of c-Rel is limited to hematopoietic cells and 

lymphocytes. Transcription of Rel B, c-Rel and p105 is regulated by NFκB 

(Ghosh et al., 1998; Verma et al., 1995). 

 

Figure 1.8: Structures of the NFκB proteins (Gilmore, 2006). The generalized 

structure of Rel and NFκB subfamily proteins are shown here. All the subunits 

contain a DNA binding domain called Rel homology domain (RHD) which 

also has a sequence for nuclear translocation or localization and IκB binding 

sites. The c-terminal of Rel proteins contain transcriptional activation domain 

(TAD) whereas the c-terminal of NFκB subfamily protein contain ankryin 

repeat-containing inhibitory domains which can be removed by proteasome-

mediated proteolysis.              

(adapted with permission from Oncogene. 25:6680-6684 (2006)) 
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Collectively, NFκB transcription factor dimers bind to 9-10 base pair of NFκB 

consensus site on the DNA which is commonly identified as 5’-

GGGACTTTCC-3’. However, it is recognized that NFκB consensus is greatly 

variable than originally thought and the base pairs of the DNA sites are 

revised as  5’-GGGRNWYYCC-3’ (R represents A or G; N represents any 

nucleotide; W represents A or T; Y represents C or T) (Gilmore, 2006). This 

combinatorial diversity is important to accommodate the different NFκB 

homodimers and heterodimers for optimal transcriptional responses since each 

dimer has its own preferred DNA binding sites, specific protein interactions 

when bound and unique transcription signatures under specific physiological 

conditions (Gilmore, 2006). 

 

 

1.6.1 Inhibitor κB (IκB) proteins 

NFκB proteins in the cytoplasm are in the inactive form, a consequence of 

their association with IκB proteins. IκB proteins are expressed in three 

isoforms: IκBα, IκBβ and IκBε (Ghosh et al., 1998). These inhibitory proteins 

are identified by the presence of many ankyrin repeats. The general belief is 

that IκB proteins retain NFκB proteins in the cytoplasm by masking nuclear 

localization sequences (NLS) on NFκB subunits. However, recent studies 

revealed that cytoplasmic localization of inactive NFκB is achieved by 

constant movement of the complexes between cytoplasmic and nuclear 

compartments (Birbach et al., 2002; Huang et al., 2000; Huang and Miyamoto, 

2001; Huxford et al., 1998; Johnson et al., 1999; Malek et al., 2001). 

Structural and biochemical findings demonstrated that there are two NLS sites 

on the NFκB dimers. However, only one of the two NLS sites is masked by 

the IκBα in the NFκB- IκBα complex, which allow the complex to shuttle into 

the nucleus. At the same time, the nucleus-exporter sequence (NES) located at 

the amino terminal of the IκBα protein functions to expel the NFκB- IκBα 

complex from the nucleus. It was shown that the export process is more 

efficient than the import process. Similar phenomenon is observed on NFκB- 

IκBε complex (Lee and Hannink, 2002). However, for the NFκB- IκBβ 
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complex, the NFκB subunits are retained in the cytoplasm because IκBβ mask 

both NLS sites (Tam and Sen, 2001). This has been well documented that IκBα 

regulates transient NFκB activation but IκBβ maintain persistent NFκB 

activation (May and Ghosh, 1997). Interestingly, IκBα is degraded rapidly in 

response to stimuli and quickly resynthesized, due to the presence of the 

NFκB response element in its promoter region. The newly synthesized IκBα 

contains NLS, therefore, it can translocate into the nucleus, binds to the active 

NFκB complex, displaces it from the DNA binding site and transport the 

NFκB-IκBα complex to the cytoplasm. This is critical for post-induction 

repression of NFκB activation (Fenwick et al., 2000). In contrast, IκBβ is less 

sensitive to stimulus-induced degradation than IκBα. It is believed that 

selective interaction between Ras- IκBβ  is crucial for inhibiting IκBβ 

activation during NFκB activation (Fenwick et al., 2000).  IκBβ does not have 

any NES, therefore newly synthesized IκBβ protein can only bind to NFκB 

complex at the promoter region without displacing them and the outcome is 

sustained NFκB activation. 

 

 

1.6.2 Mechanism of NFκB activation 

NFκB activation is regulated by two main pathways: canonical and non-

canonical NFκB activation pathways. The canonical NFκB pathway applies to 

dimer that are comprised of Rel A, c-Rel and p50 which are prevented from 

translocating into nucleus by specific inhibitor which is known as inhibitor of 

κB (IκB) proteins. The non-canonical NFκB pathway affects primarily NFκB2 

which form a heterodimer with Rel B (Solan et al., 2002). In the canonical 

NFκB pathway, IκB proteins are phosphorylated by activated IκB kinase (IKK) 

complex at specific site equivalent to Ser 32 and Ser36 of IκBα. 

Phosphorylation of the NFκB-IκB complex triggers polyubiquitination at sites 

equivalent to Lys21 and Lys22 of IκBα. Degradation is carried out by 26S 

proteasome and hence released NFκB dimer to translocate into the nucleus for 

gene transcription (Karin and Ben-Neriah, 2000). IKK complex consists of 

IKKα, IKKβ, and the regulatory subunit NFκB essential modulator (NEMO) 
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which has no known intrinsic kinase activity but is crucial for protein-protein 

interactions (Karin and Ben-Neriah, 2000). The IKK complex is the 

converging point for NFκB activation by various stimuli. IKKα and IKKβ can 

phosphorylate all three isoforms of IκB - IκBα, IκBβ, and IκBε. Although IKK 

isoforms shared similar biological activity, they differ in the signals that they 

mediate (Figure 1.9). 

 

In the alternative non-canonical pathway which preferentially affects NFκB2 

(p100)-Rel B dimer, the mechanism of action is slightly different. This 

pathway selectively activates IKKα and another protein kinase called NIK. 

Together, IKKα and NIK induce phosphorylation-dependent proteolytic 

removal of the IκB like c-terminal domain on p100. This causes the 

degradation of p100 to p52 and thus forms an active complex with Rel B. 

Active p52-Rel B complex can translocate into the nucleus to elicit its function 

(Senftleben et al., 2001). 

 

The classical pathway is typically triggered by ligand binding to TNFRI or 

TNFRII, T-cell receptors (TCR), B-cell receptors (BCR) and Toll-like 

receptors (TLR) which includes IL-1 receptor superfamily members. Classical 

NFκB pathway primarily regulates the transcription of target genes encoding 

chemokines, cytokines, adhesion molecules, persistent inflammatory response 

and promoting cell survival. In contrast, non-canonical NFκB pathway is 

triggered by activation of specific subset of TNF receptor family members 

including LTβR and B-cell activating factor belonging to the TNF receptor 

family (BAFF-R). Non-canonical pathway primarily functions to regulate 

development of lymphoid organ and adaptive immune system. 
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Figure 1.9: The IKK kinases comprises of IKKα, IKKβ and IKKγ (NEMO) 

(Karin et al., 2002). IKK complex is the converging point of various stimuli to 

activate two different pathways of NFκB. In response to stimuli such as TNF, 

CD40L, IL-1 and LPS, IKKβ subunit is activated and phosphorylates IκB at 

two serine residues. This phosphorylation event triggers proteasomal 

degradation mediated by 26S which eventually leads to nuclear translocation 

of p50-Rel A complex. Selective activation of IKKα by LTβ and BAFF 

phosphorylates NFκB2-Rel B complex leads to ubiquitination of NFκB2. The 

ubiquitinated product, p52, forms an active complex with Rel B to undergo 

nuclear translocation and function as active transcription factor.      

(adapted with permission from Nature Reviews Cancer. 2:301-310 (2002)) 

 

 

1.6.3 NFκB and inflammation 

NFκB is one of the important regulators of pro-inflammatory gene expression 

and it induces transcription of cytokines, chemokines, adhesion molecules, 

matrix metalloproteinase (MMP), cyclooxygenase 2 (Cox-2) and inducible 

nitric oxide synthase (iNOS) (Tak and Firestein, 2001). NFκB activity is high 

at sites of inflammation in various diseases, such as rheumatoid arthritis, 

asthma, inflammatory bowel disease and psoriasis. Expression of NFκB 

proteins as well as higher nuclear localization of NFκB was found to be higher 

in patient samples from these diseases than normal tissues. These changes are 

often related to enhanced recruitment of immune infiltrate and increased 

production of IL-6, IL-1, TNF-α and IL-8 at the inflammatory sites. However, 

it remained unclear whether increased cytokine expression is the cause or 

consequence of NFκB activation. 
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The pathogenic effects of overactivation of NFκB in inflammatory diseases 

are indicated by studies of p50 and c-Rel knock-out mice which do not 

develop airway inflammation when sensitized and challenged with allergenic 

ovalbumin (Yang et al., 1998). Inhibition of NFκB activity has been shown to 

be essential for controlling inflammatory responses in some of these models. 

Overexpression of IκBα has also been shown to reduce NFκB activity and 

inhibit both the inflammatory response and tissue destruction in rheumatoid 

arthritis (Bondeson et al., 1999). 

 

Tumor microenvironment closely resembles an inflamed tissue. NFκB has 

been shown to play a key role in establishing a strong link between tumor 

development and inflammation. The one well-known example would be colitis 

associated colon cancer (CAC). In CAC, NFκB activity on the lamina phobia 

macrophages is important to produce several cytokines, including IL-6, IL-11, 

IL-22 which drive the proliferation of premalignant intestinal epithelial cells 

(IECs). IL-6 and IL-11 produced by the macrophages exert their proliferative 

effect through the STAT 3 signaling pathway which further synergizes with 

NFκB to enhance the expression of survival genes (DiDonato et al., 2012). 

 

 

1.6.4 NFκB and a role in tumorigenesis 

According to Hanahan and Weinberg, cancer cells acquire eight criteria during 

their development: self-sufficiency in growth signals; insensitive to growth 

inhibition; resistant to apoptosis; immortalization; tissues invasion and 

metastasis; angiogenesis; reprogramming of energy metabolism and  evading 

immune destruction (Hanahan and Weinberg, 2011). NFκB activation had 

been shown to have the capability to induce several of these properties 

including self-sufficiency in providing growth signal, resistant to apoptosis 

and also stimulating angiogenesis. This had been further supported by the 

many different cancer types that exhibit high NFκB activity. This aberrant 

constitutive activation of NFκB could be the consequence of cancer-associated 

chromosomal translocations, deletions and mutations which disrupted genes 
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that encode NFκB and IκB proteins or disturbed the regulatory network of 

NFκB pathway. Finally, autocrine or paracrine production of pro-

inflammatory cytokines, activated upstream signaling molecules and chronic 

infections have also been shown to constitutively activate IKK activity which 

leads to persistent NFκB activation (Karin et al., 2002). 

 

NFκB regulates cellular proliferation by activating target genes IL-2, 

granulocyte macrophage colony stimulating factor (GMCSF), and CD40 

ligand (CD40L) which encodes protein that stimulate the proliferation of 

lymphoid and myeloid cells (Karin et al., 2002). Constitutive expression of 

these factors could stimulate cellular proliferation via autocrine and paracrine 

manners. NFκB also functions as an apoptosis inhibitor. NFκB is known to 

regulate expression of several target genes which could block the apoptosis 

process induced by TNF-α or other pro-apoptotic factors (Van Antwerp et al., 

1996). The genes involved in inhibiting apoptosis process are cIAP, c-FLIP 

and Bcl-XL (Karin and Lin, 2002). Anti-apoptotic effect of NFκB is critical in 

the prevention of cell death in neoplastic cells that have undergone aberrant 

chromosomal rearrangement or other types of DNA damage.  

 

Another important aspect of tumorigenesis is angiogenesis. Angiogenesis is 

strongly influenced by chemokines and MMP expression, two important 

classes of genes that are promoted by NFκB activation (Bond et al., 1998; 

Koch et al., 1992). Cells with elevated expression of NFκB were showed to 

have deregulated production of chemokines and increased migratory behavior. 

IL-8 which is one of the target genes of NFκB has been shown to promote 

angiogenesis (Koch et al., 1992). Interestingly, production of vascular 

endothelial growth factor (VEGF), which promotes angiogenesis is also 

regulated by NFκB (Huang et al., 2000). Cancer cells with high level of 

activated NFκB expression often exhibit enhanced MMP production and 

characteristic of extracellular matrix destruction had been detected 

surrounding the cancer cells (Takeshita et al., 1999; Wang et al., 1999). 

 



Chapter 1: Introduction 

 

45 
 

1.6.5 NFκB and HL 

Leukemia and lymphoma are cancers of the bone marrow and lymph nodes, 

characterized by the uncontrolled clonal expansion of blood cells. Knowing 

that NFκB is essential in regulating various cellular processes ranging from 

cellular proliferation to immune response, it is not surprising that NFκB is 

involved in the development of such cancers. Hodgkin and Reed-Sternberg 

(HRS) cells in classical Hodgkin Lymphoma (cHL) expressed activated NFκB 

dimers, p65-p50 and p50-p50. They also express various NFκB target genes 

including TRAF1, BIRC3, BCL21A, BCL2L1 (encoding TRAF1, c-IAP2, 

Bfl-1 and Bcl-XL respectively) which confer resistance to Fas-FasL-induced 

apoptosis (Hinz et al., 2002). Mechanisms that contribute to the 

overexpression or activation of NFκB proteins in the HRS cells have been 

studied widely. Genetic, viral and autocrine activation may play a role or work 

together in activating NFκB pathway (Küppers, 2009). Activation of cell 

surface molecules including, CD30, CD40 and RANK via both canonical and 

non-canonical pathways have been observed in various studies (Thomas et al., 

2004). High level of expression of CD30 on HRS cells could trigger ligand-

independent activation of NFκB through recruitment and aggregation of 

TRAF2 and TRAF5 (Horie et al., 2002). CD40 mediated activation of 

canonical NFκB pathway can be induced by CD40L expressing T cells in the 

HL microenvironment. Co-expression of RANK and RANKL on the HRS 

cells is believed to regulate constitutive RANK signaling and activation of 

NFκB via TRAF2, 5, and 6 (Fiumara et al., 2001). Different genetic mutations 

that contribute to activation of NFκB in HRS cells have been identified. 

Mutation of IκB by deletions, insertions or nonsense mutations that caused 

inactivation of IκB protein have been identified in several studies and 

contribute up to 10% of the HL cases (Cabannes et al., 1999). Mutation of 

IκBε has also been described in several cases of HL (Emmerich et al., 1999). 

Besides that, amplification of Rel gene occurs in about 50% of cases and is 

associated with high level of nuclear c-Rel expression (Barth et al., 2003). 

EBV (Epstein-Barr) virus is associated with HL (Kuppers et al., 2012). 

Approximately, 50% of the HL cases in the developed countries are EBV
+
 and 

these cases often express latent membrane protein 1 (LMP1), latent membrane 

protein 2A (LMP-2A), Epstein-Barr virus nuclear antigen-1 (EBVNA-1). 
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Expression of LMP-1 is crucial in mimicking of CD40-induced activation of 

NFκB pathway (Küppers and Rajewsky, 1998). 

 

 

1.7 Activator protein 1 (AP-1) 

Activator protein 1 (AP-1) is a sequence-specific transcriptional activator 

composed of members from the Jun, Fos, activating transcription factor (ATF) 

and musculoaponeurotic fibrosarcoma (MAF) families (Eferl and Wagner, 

2003). Members of the Jun family include c-Jun, JunB and JunD. Members of 

the Fos family include c-Fos, FosB, Fra1 and Fra2. These proteins, which 

belong to the basic zipper leucine (bZIP) group of DNA binding proteins 

associate to form a variety of homodimers or heterodimers. They dimerize via 

leucine zipper motif and contain a α-helical structure in the basic domain for 

DNA interaction that allows the binding to a common DNA binding site (Eferl 

and Wagner, 2003). Combinatorial difference between AP-1 subunits 

contributes to a wide range of genes regulated by the AP-1 transcription factor. 

It was found to mediate transcription of genes at the phorbol ester tumor 

promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and therefore the site 

is also known as the “TPA response element (TRE)”. Binding of AP-1 

complex to the TRE can be induced by growth factors, cytokines, T cells 

activators, neurotransmitter and UV radiation (Angel et al., 1987).   

 

 

1.7.1 Transcriptional regulation of AP-1 components 

Components of AP-1 are immediate early response genes. Among these, 

regulation of c-Jun and c-Fos are most well studied (Karin, 1995). In c-Fos, 

there are two response elements situated on the promoter region which is Cis 

response element (CRE) and Serum response element (SRE). CRE mediates 

transcription of c-Fos in response to a wide array of stimuli. Neurotransmitters 

and polypeptides hormone can induce c-Fos expression using cAMP or Ca
2+

 

as secondary messengers leading to activation of PKA or calmodulin-
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dependent kinase and subsequently activation of the CRE (Sheng et al., 1991). 

SRE mediates c-Fos induction by growth factors, cytokines and other stimuli 

that could activate MAP kinase (Treisman, 1992). Besides that, a Sis-inducible 

enhancer mediates c-Fos induction by activation of JAK kinases has also been 

reported (Darnell et al., 1994). Given the different routes and wide range of 

stimuli that could induce c-Fos expression, it is no wonder that c-Fos 

transcription could be rapidly induced in response to almost any stimuli 

(Figure 1.10). 

 

In contrast to c-Fos, c-Jun promoter is much simpler and most of its inducers 

function through one major cis element, TRE (Figure 1.10). This TRE differs 

from other consensus TRE by 1 base pair insertion (Angel et al., 1988) which 

makes it more readily recognized by c-Jun-ATF2 heterodimers than other AP-

1 complexes (van Dam et al., 1993). Following exposure to external stimuli 

that activates JNK, member of MAPK, both c-Jun (Devary et al., 1992) and 

ATF2 (Gupta et al., 1995) are rapidly phosphorylated. The constitutive 

occupancy of c-Jun TRE suggested that phosphorylation process occurred 

while the proteins are bound to the promoter. Phosphorylation of c-Jun and 

ATF2 enhanced their ability to form a dimer and induce transcriptional 

activation thereby leads to c-Jun expression. Hence, c-Jun is positively 

autoregulated at the transcriptional level. The activity of c-Jun is regulated 

post-translationally especially via the phosphorylation and dephosphorylation 

of the protein. Collectively, increase in AP-1 activity is due to both the 

increased production of c-Jun and possibly c-Fos synthesis as enhanced 

phosphorylation of c-Jun. 
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Figure 1.10: Regulation of c-Fos and c-Jun transcription in response to 

external stimuli (Karin, 1995). This diagram illustrates various external stimuli 

that could activate c-Fos and c-Jun transcription through transcriptional 

activation at different response element.         

(adapted wih permission from Journal of Biological Chemistry. 270:16483-

16486 (1995)) 

 

 

1.7.2 Post-translational regulation of AP-1 activity 

Phosphorylation of AP-1 complexes is important to regulate their 

transcriptional activity. In the case of c-Jun, phosphorylation at different sites 

will yield totally different effects. The most commonly studied 

phosphorylation site is at Ser-63 and Ser-73 situated at the N-terminal region 

(the transactivation domain). These residues are phosphorylated by c-Jun 

terminal kinase (JNK). Phosphorylation of the transactivation domain of both 

c-Jun homodimers (Pulverer et al., 1991) and c-Fos (Deng and Karin, 1994) 

heterodimers will potentiate transcriptional activities. So far only JNK has the 

ability to phosphorylate the N-terminal site of c-Jun (Minden et al., 1994). 

ERK1 and ERK2 cannot phosphorylate the N-terminal of c-Jun but they 

phosphorylate one of the inhibitory sites located next to the c-terminal DNA 

binding domain (Chou et al., 1992; Minden et al., 1994). Intriguingly, c-Jun 
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phosphorylation at these inhibitory sites  will inhibit the DNA binding activity 

of c-Jun homodimers but not c-Jun-c-Fos heterodimers (Boyle et al., 1991).  

 

The sequence surrounding the N-terminal phosphoacceptors of c-Jun is 

conserved in the c-terminal of c-Fos (Sutherland et al., 1992). Phosphorylation 

of c-Fos at Thr-232, potentiates c-Fos transcriptional activity. Experimental 

findings showed that c-Fos phosphorylation is not carried out by JNK1 or 

JNK2 but by a novel 88kDa MAP kinase called FRK (Deng and Karin, 1994). 

Although the mechanism that regulates phosphorylation of c-Fos at Thr-232 is 

unclear in the context of c-Jun-c-Fos heterodimer, phosphorylation of either 

protein makes a similar contribution to stimulation of transcriptional activity, 

suggesting that both activation domains interact with the transcriptional 

machinery (Karin, 1995). 

 

 

1.7.3 Interaction between AP-1 and MAP kinases 

As described previously, three types of MAP kinases contributes to the 

activation of AP-1, namely ERK, JNK and FRK. It is important to note that 

each of these MAP kinases activates AP-1 through phosphorylation of 

different substrates (Figure 1.11) (Karin, 1995). In addition, MAP kinases also 

contribute to regulation of c-Jun and c-Fos induction  

 

In the context of ERK, it regulates c-Fos production by phosphorylating Elk-1 

and induces transcriptional activation of ternary complex factor (TCF) (Babu 

et al., 2000). ERK, however, could not phosphorylate c-Jun or c-Fos on sites 

that potentiate their transcriptional activity (Chou et al., 1992; Deng and Karin, 

1994; Minden et al., 1994). Neither could ERK phosphorylate ATF2 

(activating transcription factor 2) (Gupta et al., 1995). Conversely, JNK 

phosphorylates the stimulatory sites on c-Jun and ATF2 but does not 

phosphorylate c-Fos (Deng and Karin, 1994; Gupta et al., 1995; Hibi et al., 

1993). JNK are also capable of phosphorylating and activating Elk-1/TCF, 
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suggesting that they could be involved in inducible c-Fos synthesis under 

certain circumstances (Bogoyevitch and Kobe, 2006). FRK, is known only for 

its ability to phosphorylate and regulate c-Fos activity (Deng and Karin, 1994). 

 

Figure 1.11: Diagram represents transcriptional and post-translational 

modification of AP-1. AP-1 activity is stimulated by a complex network of 

signaling pathway including external stimuli factor and MAPK signal (ERK, 

p38 and JNK) (Eferl and Wagner, 2003). The dashed arrow indicates 

phosphorylation of p38 by MKK4 is controversial. MAPK activates various 

transcription factor which leads to induced expression of c-Fos and c-Jun that 

can dimerize and form higher number of AP-1 complexes as well as more 

transcription of AP-1 target genes. Post translational phosphorylation by 

various other proteins enhanced AP-1 activity.        

(adapted with permission from Nature Reviews Cancer. 3:859-868 (2003)) 
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1.7.4 Interaction of AP-1 with other transcription factors 

The interaction of AP-1 with other transcription factors is critically important 

for the complex regulatory network of gene transcription to occur at several 

different levels in response to different stimuli.  

 

AP-1 complex has been shown to interact with NFAT (nuclear factor of 

activated T cell). AP-1-NFAT complex is important in regulating IL-2 

synthesis after binding of antigen to the antigen receptor on the T cells (Jain et 

al., 1993). AP-1 and NFAT interact with each other to form a quaternary 

complex at the ARRE-2, response element on the promoter region of IL-2. 

The complex consists of one molecule of NFAT, and a heterodimer of c-Jun 

and c-Fos binding to a sequence of 15 base pairs of DNA. Results showed that 

the AP-1 site in ARRE-2 is a non-consensus site and binding to this site (in the 

absence of NFAT) is 10 fold less efficient than binding to known AP-1 

consensus sites. In the presence of NFAT, AP-1 binding to this region is 3 fold 

greater than AP-1 binding to a consensus site (Peterson et al., 1996). 

 

Regulation of IL-4 is thought to primarily involve NFAT, and AP-1 has been 

shown to interact with NFAT at a composite site within the IL-4 promoter 

region (Chuvpilo et al., 1993; Li-Weber et al., 1997; Rooney et al., 1995).  

AP-1 proteins involved include c-Fos, Far-2, Fra-1, c-Jun, JunB and JunD 

depending on the T cell lines investigated. For example, c-Jun dimerizes with 

ATF-2 in association with NFAT and bind to CRE site in the TNF-α gene in 

calcium stimulated T cells (Tsai et al., 1996). Besides that, c-Jun containing 

complex can also interact with NFκB proteins, p50/p65, to synergistically 

enhance the induction of TNF-α gene in lipopolysaccharide (LPS)-stimulated 

THP-1, a monocytic cell line (Yao et al., 1997).  

 

Ras-raf ERK signaling pathways activate gene transcription by utilizing 

transcriptional control elements containing AP-1 and ets tandem DNA binding 

sites. Example of these genes include heparin-binding epidermal growth factor, 
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the urokinase-type plasminogen growth factor and type I collagenase. 

Function studies showed that both AP-1 and ets sites are required for gene 

transcription therefore, AP-1/ets element act as integrators of different 

signaling output (Gutman and Wasylyk, 1990; McCarthy et al., 1997). 

 

 

1.7.5 AP-1 and cancer 

Evidence of AP-1 transcription factor involvement in human cancers are 

derived from the multiple biological functions of AP-1 acting at several 

physiological levels. At the first level, AP-1 protein can regulate cancer cell 

survival and proliferation (Shaulian and Karin, 2002). AP-1 also has the 

ability to modulate the extracellular matrix and hence, can contribute to 

invasiveness and metastasis of the tumor (Eferl and Wagner, 2003b). Recently, 

AP-1 has also been found to support angiogenesis, thereby increasing the 

ability of tumor cells to cope with the resource scarce microenvironment 

(Folkman, 2004).     

 

c-Fos, Fos B and c-Jun can transform cells in culture efficiently (Suzuki et al., 

1994). When overexpressed in a mouse model, c-Fos caused osteosarcoma 

formation by transformation of osteoblasts and chondroblasts. In contrast,      

c-Jun is more important in the development of skin and liver tumors as 

reducing c-Jun/AP-1 activity using a dominant negative c-Jun in basal 

keratinocytes or conditional inactivation of c-Jun in the liver interfered with 

the development of papilloma and liver tumor (Eferl et al., 2003; Young et al., 

1999). AP-1 proteins without the transactivating domain have either limited 

transforming activity (Fra1 and Fra2) or no transforming activity (JunB and 

JunD) (Eferl and Wagner, 2003a). 

 

AP-1 components such as JunB and JunD could also function as tumor 

suppressor proteins (Shaulian, 2010). The c-Jun/JunB antagonistic effect in 

tumor formation was first described in rodent fibroblast. The anti-oncogenic 
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effect of JunB was confirmed in-vivo using JunB deficient mice carrying a 

JunB transgene. The transgene avoid embryonic lethality of JunB deficient 

fetus, but its expression was silenced in cells of the myeloid lineage. The 

absence of JunB resulted in progressive myeloid leukemia with increased 

proliferation of granulocytic progenitor cells (Passegue et al., 2001). However, 

role of JunD as anti-oncogenic protein is not as well described yet. 

 

Uncontrolled tumor cell proliferation is one of the hallmarks of tumor 

development. AP-1 activity has been closely linked to tumor progression.      

c-Jun is primarily a positive regulator of cell proliferation and has been 

implicated to promote tumor cell proliferation. To fully promote cell 

proliferation, c-Jun protein needs to be activated by JNK leading to activation 

of AP-1 complex containing activated c-Jun and subsequently induce 

expression of cell cycle promoter such as cyclin D and suppress expression of 

cell cycle suppressor (Wisdom et al., 1999).  

 

Interestingly, JunB and JunD are always considered as negative regulators of 

cell proliferation as JunB and JunD can counteract against c-Jun mediated 

activation or acts as repressors for regulators involved in cell cycle 

progression (Pfarr et al., 1994). JunB could directly regulate expression of cell 

cycle modulators such as INK4A (p16), independent of c-Jun. Overexpression 

of JunB also seems to antagonize c-Jun mediated cyclin D1 expression in 

fibroblast (Passegue and Wagner, 2000). 

 

Studies have shown that AP-1 exhibit pro-apoptotic and anti-apoptotic 

behavior. Early studies showed that induction of AP-1 can cause apoptosis in 

specific cell types including human tumor cells (Eferl et al., 2003). However, 

AP-1 has also been implicated in promoting tumor cell survival (Park et al., 

1999; Shaulian et al., 2000; Zenz et al., 2003) especially in the context of 

lymphoma. C-Jun and JunB are hallmarks of Hodgkin and Reed-Sternberg 

cells which work synergistically with NFκB to promote cell proliferation 
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(Mathas et al., 2002). AP-1 DNA binding activity is found to be elevated in 

HRS cells and in co-operation with NFκB promotes proliferation by activating 

cyclinD2. Similarly, a previous study also showed that oncogenic AP-1 can 

antagonize apoptosis in liver tumor (Shaulian and Karin, 2002). 

  

Depending on the components and phosphorylation sites, AP-1 can act as a 

regulator for cell death or survival in different cell context. The dual role of 

AP-1 in apoptosis process is best demonstrated in neuronal cells and 

hepatocytes. Increased c-Jun activity promotes neuronal apoptosis in neuronal 

cells. When c-Jun activation is impaired, neuronal cells become less sensitive 

to Kainate induced cytotoxicity (Behrens et al., 1999). On the other hand, c-

Jun is required for the survival of fetal hepatocytes which undergo apoptosis in 

c-Jun deficient mouse embryo (Eferl et al., 1999).  The cell type specific pro-

apoptotic or anti-apoptotic regulatory response by AP-1 is probably due to 

differential regulation of pro-apoptotic and anti-apoptotic genes. In neuronal 

cells, c-Jun regulates expression of Bim which is a pro-apoptotic protein that 

is crucial for neuronal apoptosis (Whitfield et al., 2001). In T cells, c-Jun and 

c-Fos regulate the expression of Fas ligand which could induce apoptosis in 

Fas dependent signaling pathway (Kasibhatla et al., 1998). Similarly, c-Jun in 

T cells could also provide protection from apoptosis by induction of Bcl3 

(Rebollo et al., 2000). The differential regulation of pro-apoptotic and anti-

apoptotic genes indicates that AP-1 can promote apoptosis in some tumor 

types, whereas it induces survival in others. 

 

Some target genes regulated by AP-1 are involved in angiogenesis and 

metastasis of tumor cells. c-Fos and Fra1 have been identified as the main 

regulator of matrix metalloproteinases (MMPs) expression and the proteases 

of the urokinase plasminogen activator system, which promote angiogenesis 

and invasive growth of cancer cells (Kustikova et al., 1998). In addition to that, 

it has been identified that vascular endothelial growth factor D (VEGF D) is 

another target gene of c-Fos (Marconcini et al., 1999). Furthermore, c-Jun and 

JunB are also involved in the regulation of angiogenic gene products including 



Chapter 1: Introduction 

 

55 
 

proliferin which promotes angiogenesis in a mouse fibrosarcoma model 

system (Toft et al., 2001). Moreover, JunB deficient fetus showed down-

regulation of proliferin and impaired vascularization which resulted in 

embryonic lethality (Schorpp-Kistner et al., 1999).  

 

Both c-Jun and c-Fos can induce epithelial-mesechymal transition (EMT) and 

promote tumor metastasis (Eger et al., 2000; Reichmann et al., 1992). Studies 

by Reichmann et al showed that overexpression of c-Fos and not c-Jun 

promoted invasive tumor growth in collagen gels in-vitro (Reichmann et al., 

1992). This was further supported by in-vivo study where the progression of 

chemical induced papillomas to invasive squamous cell-carcinomas is 

impaired in c-Fos deficient mice (Saez et al., 1995). Besides that, c-Jun 

overexpression in a breast cancer cell line promotes development of an 

invasive phenotype (Smith et al., 1999). Together, these studies suggest that 

both c-Fos and c-Jun play important role in facilitating tumor cell metastasis 

and invasion.  

 

A link between inflammation and cancer has been suspected for decades. 

Activation of regulatory kinases by pro-inflammatory signals leads to 

activation of AP-1. Activated AP-1, in turn, will induce expression of Cox-2, 

iNOS and many other pro-inflammatory genes to further enhance the 

inflammatory cycle. Ness at el suggested that consumption of non-steroidal 

anti-inflammatory drugs (NSAIDs) reduced risk of breast cancer (Ness and 

Modugno, 2006). Consistent with this, overexpression of Cox-2 has been 

reported for Her2/Neu positive breast cancer (Howe et al., 2005). Results from 

the study suggested that Cox-2 overexpression in these tumor cells is regulated 

by c-Jun, c-Fos and ATF2 binding to the CRE site of the promoter region of 

Cox-2 (Subbaramaiah et al., 2002). 

 

Expression of AP-1 target genes such as Cox-2 and iNOS is induced in 

ulcerative colitis which could eventually progress to malignant colon cancers. 
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Multiple epidemiological studies correlate usage of NSAIDs with reduced risk 

of colon cancer (Collet et al., 1999). NSAIDs usage also associated with 

reduced prostate cancer risk (Nelson and Harris, 2000). Aberrant expression of 

IL-6 is implicated in the progression and chemoresistance characteristic of 

prostate cancer. IL-6 functions as a growth and differentiation factor for 

prostate cancer cells (Okamoto et al., 1997). The increased IL-6 expression is 

mediated by AP-1 activity which includes Fra1 and JunD as well as NFκB 

proteins (Zerbini et al., 2003). By using in-vitro model, the study showed that 

reduced AP-1 activity resulted in a reduction in IL-6 production and the 

prostate cancer cells become androgen sensitive again (Zerbini et al., 2003). 

 

 

1.7.6 AP-1 and HL 

AP-1 plays an important role in the pathogenesis of HL. AP-1 protein 

regulates gene expression of immunoregulatory molecules and survival 

proteins that contribute to the survival and growth of HRS cells.  

 

Hodgkin and Reed-Sternberg (HRS) cells express constitutive AP-1 activity 

(Green et al., 2012; Juszczynski et al., 2007; Mathas et al., 2002; Rodig et al., 

2008). Mathas et al showed that HRS cell lines and primary HRS cells 

constitutively express c-Jun and JunB. AP-1 activity on HRS cells was 

required to induce expression of cyclin D2, c-Met and CCR7 to promote 

survival of HRS cells (Mathas et al., 2002). In addition, AP-1 could also work 

synergistically with NFκB to regulate the expression of these genes. 

 

In addition, AP-1 activity is also important in regulating CD30 expression on 

HRS cells. CD30L expressing stromal cells bind to CD30 on HRS cells to 

provide survival signal by activating NFκB pathway. Study by Watanabe et al 

showed that JunB expressed on HRS cells can relief the repressive activity of 

CD30 promoter microsatellite resulting in overexpression of CD30 in HRS 

cells (Watanabe et al., 2003).  
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Galectin-1 is an immunoregulatory molecule strongly expressed by HRS cell 

lines and primary HRS cells. Juszynski et al showed that galectin-1 expression 

on the HRS cells is regulated by AP-1 activity (Juszczynski et al., 2007). 

Subsequent study by Rodig et al showed that expression of galectin-1 is also 

found on anaplastic large cell lymphoma (ALCL) but not on diffuse large B-

cell lymphoma, primary mediastinal large B-cell lymphoma and nodular 

lymphocyte-predominant cHL (Rodig et al., 2008). They further showed that 

expression of galectin-1 is concomitant with c-Jun expression. Galectin-1 

expression in the cHL is required to induce a skewed immunosuppressive 

THelper2 microenvironment.  

 

Besides galectin-1, AP-1 also regulates PD-L1 (programed cell death ligand 1) 

expression on the HRS cells. In HRS cell with constitutive AP-1 activity, PD-

L1 expression is induced by AP-1 binding to a AP-1 responsive enhancer 

region in the PD-L1 gene (Green et al., 2012). PD-L1 functions to inhibit T-

cell receptor signaling, which in turn, inhibits T-cell proliferation and IFN-γ 

production ability by activated T cells.   

 

 

1.8 Cyclooxygenase (Cox) 

Cyclooxygenase (Cox; prostaglandin G/H synthase) was purified in 1976 and 

cloned in 1988, is the key enzyme that catalyzes the first two steps in the 

biosynthesis of prostaglandins from the substrate arachidonic acid (AA) 

(Figure 1.12). There are two isoforms of Cox enzymes: the constitutively 

expressed Cox-1 and inducible Cox-2. Cox-2 was identified in 1991. These 

two isoforms of Cox enzymes are almost identical in structure but have 

important differences in substrate and inhibitor selectivity and in their 

intracellular locations (Otto and Smith, 1995). 
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Figure 1.12: Diagram represents simplified process of prostaglandin synthesis 

from arachidonic acid involving Cox enzyme activity and various other 

prostaglandin specific enzymes (Vane et al., 1998).        

(adapted with permission from Annual Review of Pharmacology and 

Toxicology. 38: 97-120 (1998)) 

 

 

1.8.1 Biochemical structure of Cox-1 And Cox-2 

The inducible form of Cox-2 is very similar in structure and catalytic activity 

to the constitutive Cox-1. The enzymatic activity of both isoforms can be 

inhibited by aspirin and other NSAIDs (Vane, 1971). The inhibition of 

enzymatic activity by aspirin is due to the irreversible acetylation of the Cox 
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site of the prostaglandin H synthase, leaving the peroxidase activity of the Cox 

unaffected. In contrast to the irreversible action of aspirin, action of other 

NSAIDs such as Indomethacin or ibuprofen produces reversible or irreversible 

inhibition by competing with substrate AA for the active site of the enzyme.  

 

Both isoforms have a similar molecular weight of 71kDa and are almost 

identical in length. Cox-1 and Cox-2 exist as homodimers of 576 and 581 

amino acids, respectively but only one partner is used at a time for substrate 

binding (Yuan et al., 2009). Cox-1 is widely distributed and constitutively 

expressed in most tissues, mostly in the blood vessels, smooth muscle cells, 

interstitial cells, platelets and mesothelial cells (Zidar et al., 2009). The Cox-1 

gene, Ptgs1, encodes a 2.8kb mRNA which is relatively stable. Ptgs2, the Cox-

2 gene is an immediate early response gene that is activated by various pro-

inflammatory stimuli (Chen et al., 2000; Tsuzaki et al., 2003). It codes for a 

4kb mRNA with high turnover rate because it contains an unstable sequences 

in the 3’-untranslated region (Rouzer and Marnett, 2003; Smith et al., 2000). 

While Cox-2 expression is generally accepted to be highly inducible, several 

studies also identified constitutive Cox-2 expression in developing brain and 

gastric mucosa (Maslinska et al., 1999; Zimmermann et al., 1998). Differential 

expression of Cox-1 and Cox-2 suggesting that Cox-1 mediates prostaglandins 

(PGs) synthesis are required for homeostatic functions whereas, Cox-2 

mediated PGs synthesis play a predominant role in inflammatory responses as 

well as tumorigenesis. 

 

In the presence of oxygen molecule, the Cox pathway produces the unstable 

intermediate, PGG2, which is rapidly converted to PGH2 by the peroxidase 

activity of PGH2 synthase. Specific isomerases convert PGH2 to thromboxane 

A2 (TXA2) and various other forms of PGs including PGI2, PGE2 and PGD2. 

The physiological effects of PGs or TXA2 are regulated in part by G-protein 

coupled prostanoid receptors. Activation of a given receptor may elicit varying 

responses and some of them maybe important to inflammatory process and 

cancer cell biology. 
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1.8.2 Cox and inflammation 

Cox activity or Cox products have been implicated in the inflammatory 

response. Cox activity within the endothelial cell the influence the 

endothelial/vascular function during acute and chronic inflammation. In acute 

or chronic inflammation, higher amount of arachidonic acid is generated by 

calcium-mediated activation of phospholipase A2 (cPLA2). Free arachidonic 

acid is metabolized by Cox enzyme within the endothelial cells to synthesize 

PGH2, which in turn is converted by prostacyclin synthase to PGI2, a potent 

vasodilator (Egan and FitzGerald, 2006). Dilation of endothelial venules leads 

to increased blood flow is a primary response to inflammation. Besides that, 

products of Cox enzyme also act on endothelial cells to induce vascular 

endothelial growth factor (VEGF) and adhesion molecule expression. PGE2 

can stimulate endothelial cells to up-regulate VEGF expression by 

ERK2/JNK1 signaling pathway (Pai et al., 2001). In addition, studies by 

Ishizuka et al showed that TXA2 released by TNF-α stimulated endothelial 

cell binding to surface TXA2 receptor. Activation of TXA2 receptor activates 

PKC pathway and induces expression of ICAM-1, VCAM-1 and E-selectin 

(Ishizuka et al., 1996; 1998).   

 

Besides acting on endothelial cells, Cox enzymatic reaction also plays an 

important role in modulating functions of immune cells. Cox-2 dependent 

production of PGE2 has been shown to induce IL-6 secretion on macrophages 

(Williams and Shacter, 1997). In addition, PGE2 also regulates TNF-α 

secretion on macrophages in a dose dependent manner (Renz et al., 1988).         

 

Both Cox-1 and Cox-2 are co-expressed in circulating inflammatory cells in 

inflamed rheumatoid arthritis (RA) synovium and artherosclerotic plagues 

obtained from patients (Crofford et al., 1994; Schonbeck et al., 1999). A study 

using wildtype, Cox-1 knock-out showed that it was Cox-1 and not Cox-2 that 

was required for the induction of arachidonic acid-induced ear edema 

(Langenbach et al., 1995). In contrast, ear edema induced by tetradecanoyl 

phorbol acetate was not significantly different among wild-type, Cox-1 knock-
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out and Cox-2 knock-out mice (Dinchuk et al., 1995; Langenbach et al., 1995; 

Morham et al., 1995). These studies had revealed the equal importance of 

Cox-1 and Cox-2 activity in mediating the inflammatory response rather than 

the general accepted “Cox-2 dependent inflammatory reaction”. However, the 

involvement of either Cox-1, Cox-2 or both is dependent on the type of 

stimulus and the relative level of expression of each isoform in the target 

tissue. 

 

 

1.8.3 Cox and cancer 

Cox has been shown to involve in the tumorigenesis process but the 

relationship between Cox and cancer is focused on Cox-2. The link between 

Cox and cancer development was first established on colorectal cancer. The 

initial evidence for the involvement of Cox in colorectal cancer is based on 

epidemiological study. Since 1988 until now, there are more than 10 studies 

conducted and data to date strongly support the negative correlation between 

NSAIDs consumption and incidence of colorectal cancer (Giovannucci et al., 

1994; 1995). In young patients with familial adenomatous polyposis (FAP), a 

clinical trial using sulindac (a non-selective NSAID) showed that patients 

treated with the drug exhibited significant improvement with drastic decrease 

in the number and size of polyps detected (Giardiello et al., 1993). These data 

strongly suggest that Cox enzymes are involved in the pathogenesis of 

colorectal cancer. Furthermore, increase in Cox-2 but not Cox-1 expression 

was reported in malignant tissues samples from patients with colorectal cancer 

or from polyp tissue from patients with FAP (Eberhart et al., 1994).  

 

Human gastric and breast tumors also express higher levels of Cox-2 protein 

than normal tissues (Parrett et al., 1997; Ristimaki et al., 1997). Piroxicam 

treatment can suppress growth of human cultured breast cancer cells whereas 

sulindac sulfide reduces cancer incidence and the number of cancers per rat in 

experimental mammary carcinoma induced by 1-methyl-1-nitrosourea 
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(Thompson et al., 1997). Thus, these studies further support the role Cox-2 in 

the pathogenesis of both gastric and breast cancers. 

 

 

1.8.4  Cox and HL 

Cox-2 is a key enzyme in prostaglandin synthesis which has been shown to 

have an important role in various malignancies. While Cox-2 has been studied 

extensively in solid tumors, studies on the role of Cox-2 in lymphoid 

malignancies are limited.     

 

Cox expression in Hodgkin Lymphoma was first discussed by Hsu et al in 

1988. Hsu et al showed that Cox enzyme was present in the HRS cell lines, 

HDLM-1 and KM-H2 (Hsu et al., 1988). Besides that, expression of Cox 

enzyme was also found in the primary HRS cells from cHL of mixed 

cellularity and nodular sclerosis subtypes (Hsu et al., 1988). The Cox enzymes 

in the HRS cell lines were active since phorbol ester stimulated KM-H2 

increased secretion of PGE2 while phorbol ester stimulated HDLM-1 cells 

increased secretion of 15-HETE (Hsu et al., 1990).  

 

More recently, Cox enzyme expression in HL was revisited with emphasis on 

Cox-2 expression. Ohsawa et al showed that HRS cells in cHL expressed Cox-

2. Expression of Cox-2 in the HRS cells was associated with cellular 

proliferation and angiogenesis in HL (Ohsawa et al., 2006). The authors 

reasoned that higher Cox-2 expression would contribute to more PGE2 

production; which in turn, is a potent inducer of VEGF that acted on the 

endothelial cells. Besides that, PGE2 also contributes to the maintenance of an 

immunosuppressive microenvironment for the survival of HRS cells. PGE2 

secreted by HRS cells could severely impair CD4+ T cells activation by 

inactivation of the src-kinase lck resulting in reduced phosphorylation of 

ZAP40 (Chemnitz et al., 2006). This entire process is dependent of T-cell 

receptor signaling pathway. More recently, Cox-2 expression in HRS cells was 
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reported to be an independent unfavorable prognostic factor in HL treated with 

ABVD (Mestre et al., 2012). This suggests that Cox-2 pathway is important in 

the pathogenesis of this disease. 

 

 

1.9 Objectives of study 

Numerous studies had been done to examine T cell recruitment so as to 

provide better understanding of the observed T cell subset profiles in cHL 

lymph nodes. Most of these studies were focused on the correlation of 

chemokine expression on HRS cells with specific T cell recruitment into the 

cHL lesions. In this study, I hypothesized that HRS cells secrete soluble 

factors to stimulate endothelial cells to facilitate T cells recruitment into the 

cHL lesions. Therefore, the aims of this study are to investigate how HRS cell-

derived factors can modulate endothelial cell function to facilitate T cell 

recruitment and to identify the dominant stimulatory factor(s) involved. To 

this end, I will examine the effects of HRS cell-derived cytokines on 

endothelial cell activation in-vitro. I will also determine the ability of these 

activated endothelial cells to interact with memory and naïve T cells in-vitro 

under dynamic flow conditions. Lastly I will elucidate the signaling pathways 

in HRS cells that are involved in the production of the stimulatory factor(s) 

that can influence endothelial cell functions in cHL. 

 

The aims and rationales for this study are as follow: 

Aim 1: To determine whether HRS cell-derived soluble factors can modulate 

endothelial cell activation. 

The vasculature in the Hodgkin Lymphoma has been shown to express various 

adhesion molecules. Ruco et al showed that ICAM-1, VCAM-1 and E-selectin 

are found in the paraffinized tissues section of HL patients. ICAM-1 

expression is found on all the HL whereas VCAM-1 and E-selectin expression 

on HL tissues is correlated with IL-1/TNF-α production in Hodgkin disease 

(Ruco et al., 1992). Reports by Machado et al also showed expression of 
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ICAM-1, VCAM-1 and PNAd in the vasculature of HL (Machado et al., 2009). 

Besides that, Estrada et al showed that soluble mediator(s) derived from the 

HRS cell line can stimulate endothelial cells to increase E-selectin expression 

and support monocytic cell line, U937, adherence. This suggests that HRS 

cells might secrete soluble mediator(s) to modulate endothelial cells to 

facilitate T cells recruitment. Thus, the first objective of this study is to 

identify the adhesion molecule expression profile, particularly ICAM-1, 

VCAM-1 and E-selectin, on endothelial cells stimulated with culture 

supernatant (C/S) derived from HRS cell line. To achieve this, I will compare 

the adhesion molecule expression profile between unstimulated and C/S 

stimulated endothelial cells. 

 

Aim 2: To identify the adhesive pathways that mediate T cell recruitment in 

cHL 

To date, the roles of various addressins and adhesion molecules in T cell 

homing to normal lymphoid organs and sites of chronic inflammation have 

been well characterized. However, their role in T cell recruitment into cHL 

lesions is not as well characterized. The second objective of this study is to 

identify the adhesive pathways that mediate the T cell recruitment into cHL 

lesions.  T.Tanijiri et al showed that naïve T cells can be differentiated by 

HRS cell line, KM-H2, into regulatory T cells in-vitro (Tanijiri et al., 2007). 

This suggests that naïve T cells recruitment might also contribute significantly 

to the pathogenesis of the disease. Thus, this part of the project will be 

focusing more on the interactions of naïve T cells with HRS cell-derived C/S 

stimulated endothelial cells in-vitro. 

 

Aim 3: To identify the dominant stimulatory factor(s) secreted by HRS cells to 

modulate endothelial cell functions. 

It is well known that HRS cells secrete many different cytokines and 

chemokines to modulate the composition of the cellular infiltrate and the 

milieu of the cHL lesions (Ohshima et al., 2003; Skinnider and Mak, 2002). In 
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this aim, I will determine the cytokine profiles of my cultured HRS cells and 

examine whether the cytokines present in the C/S, including IL-6, TNF- and 

LT, are involved in the activation of endothelial cells in the in-vitro system. 

 

Aim 4: To elucidate the signaling pathways in HRS cells that regulate LT 

production. 

LTα is produced by activated B cells, THelper1 cells and macrophages. Hinz et 

al also presented evidence of LTα production by HRS cells (Hinz et al., 2002). 

However, the signaling pathway that regulates LTα synthesis is not fully 

elucidated yet. Hinz et al suggests that NFκB could be one of the transcription 

factors that regulate LTα production. As reviewed by Shebzukhov Iu and 

Kuprash et al, AP-1 is another transcription factor involved in the regulation 

of LTα production (Shebzukhov Iu and Kuprash, 2011). Thus, the fourth 

objective of this study is to understand the signaling pathway(s) involved in 

regulating LTα production by HRS cells.  

       

Data from this study will provide more information on how HRS cells can 

modulate the inflammatory infiltrate and the microenvironment in the cHL 

lesions for survival and growth signals. This study also provides novel insights 

on the modulation of endothelial cell functions by HRS cells and how this can 

influence T cell recruitment. The knowledge gain will help us better 

understand the pathogenesis of cHL and help in the design of strategies to treat 

cHL by preventing T cell recruitment into the cHL lesions. 
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Chapter 2 : Materials And Methods 

2.1 Common reagents and materials 

Complete RPMI 1640 culture medium for culture and maintainance of Reed-

Sternberg cell lines consists of 10% or 20% FCS (Gibco), 2mM of L-

glutamine (Gibco), 100U/ml of Penicilin and 100μg/ml of Streptomycin 

(Gibco). Henceforth, RPMI 1640 with 10% FCS is referred to as R10 whereas 

RPMI 1640 with 20% FCS is called R20. Complete EGM-2 medium 

(Clonetics) was used for human umbilical cord vein endothelial cells (HUVEC) 

culture. Hank’s Balanced Salt solution (HBSS) without Ca
2+ 

and Mg
2+

 (Sigma 

Aldrich, USA) was used for washing of HUVEC prior to medium change and 

cell detachment. The concentration of trypsin used is 0.02%. To neutralize 

trypsin after HUVEC cell detachment, 8ml of M199 media (Gibco) 

supplemented with 10% FCS (Gibco) 25mM Hepes (Sigma Aldrich, USA), 

2mM of L-glutamine (Gibco), 100U/ml of Penicillin and 100μg/ml of 

Streptomycin (Gibco) was added.     

 

 

2.2 Reed-Sternberg cell culture 

Human Reed-Sternberg cell lines, KM-H2, L1236, L428 and L540, were 

purchased from DSMZ cell line bank 

(http://old.dsmz.de/human_and_animal_cell_lines/). KM-H2 was derived from 

plural effusion of a patient with stage IV of Hodgkin Lymphoma, mixed 

cellularity subtype; L1236 was established from the peripheral blood of a 

patient with stage IV refractory cHL. L428 was established from the pleural 

effusion of a Hodgkin Lymphoma patient with stage IVB refractory nodular 

sclerosis subtypes whereas L540 was established from the bone marrow of a 

stage IVB, pre-terminal stage of nodular sclerosis cHL patient. KM-H2, 

L1236 and L428 were cultured in R10 while L540 was maintained in R20. 

The cells were passaged every 2 days and maintained at optimal cell density 

recommended by the DSMZ cell line bank.  

 



Chapter 2: Materials And Methods 
 

67 
 

2.3 HUVEC Culture 

2.3.1 Preparation of gelatin coated dishes  

0.1% of gelatin solution was prepared from pre-warmed 0.5% geleatin 

solution (Sigma Aldrich, USA) with miliQ water (1 in 5 dilution). The coating 

of dishes was carried out weekly in a sterile tissue culture hood. 2ml of 0.1% 

gelatin solution was used to cover the entire growth area of the 100mm dish 

(Corning Costar) and left for about 2 minutes before being aspirated. 

Subsequently, a second coating was carried in the same manner. The dishes 

were then left to dry for 3-4 hours, the lids of the culture dishes were taped 

and the dishes stored for future use.  

 

Similar coating steps were done on the transwell chamber and 96-well culture 

plate. In both cases, 50μl of 0.1% gelatin solution was added to the insert or 

wells and left for 10 minutes before being aspirated out. The gelatin-coated 

insert and 96-well culture plate were air-dried in the tissues culture hood for 3-

4 hours. After drying, the lids of the culture plates were taped and the plates 

were stored for future use.   

 

 

2.3.2 Isolation of HUVEC 

Human umbilical cord vein endothelial cells (HUVEC) were isolated from 

human umbilical cords from consented donors (National University Hospital, 

Singapore). The isolation protocol was adapted and modified from original 

work of Lim et al (1998). The umbilical cord vein was first cannulated at both 

ends with two-way stopcocks. The vein was flushed with HBSS to remove 

blood clots using a syringe attached to one end of the stopcocks. Next, the vein 

was filled with 1mg/ml of collagenase, the stopcocks closed at both ends and 

then placed in an enclosed sterile jar. The jar was then placed in a 37°C water 

bath for 8 minutes. Next the umbilical cord vein was flushed with HBSS for 

10-15 times using a 20ml syringe. The content of the collagenase-digested 

vein containing detached endothelial cells was collected and centrifuged at 
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350 x g for 8 minutes at 4°C. After centrifuging, the supernatant was removed. 

The cell pellet was resuspended in the EGM-2 (Clonetics) culture media and 

seeded in a 100mm gelatin-coated culture dish. On reaching 100% confluency, 

HUVEC monolayer was washed twice with HBSS before being detached with 

0.02% trypsin. The trypsin was neutralized with M199 wash buffer and 

centrifuged at 350 x g for 8 minutes at 4°C. After centrifugation, the 

supernatant was discarded and the pellet was resuspended in EGM-2 media 

and re-plated in new 100mm gelatin-coated culture dishes at a split ratio of 1:3. 

For experiments, HUVEC up to passage 6 were used.  

 

 

2.3.3 Plating of HUVEC on glass coverslips 

Glass coverslips were placed in six-well plates (Corning Costar) and wells 

were filled with 1.5ml of 70% ethanol. The glass coverslips were soaked for at 

least 1 minute to disinfect after which the ethanol was aspirated. The 

coverslips were washed with 2ml of HBSS to remove excess ethanol. After 

final wash, 1.5ml of HBSS containing 0.05mg/ml of Matrigel was placed in 

each well. The setup was incubated at 37°C for at least 3 hours. After 

incubation, trypsin-detached HUVEC were plated at a cell density of 0.25x10
6
 

cells/ml/well and cultured for 3 days under standard condition before use.  

 

 

2.4 Reagents, recombinant proteins and antibodies 

2.4.1 Inhibitors used 

Inhibitors were purchased from commercial sources. Each inhibitor was 

tittered to determine its optimal working concentration which was 

subsequently used throughout the project. The source and final working 

concentration for each inhibitor is as listed below. 
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Inhibitor Source Final Concentration 

Used 

Maximum 

solubility as 

stated in data 

sheet 

NFκB inhibitor, 

Bay11-7085 

Merck 5, 10 and 20μM 100mM in 

DMSO 

JNK Inhibitor, 

SP600125 

Cayman 

Chemical  

40,60,80,100μM 90.83mM in 

DMSO 

Cox inhibitor, 

Indomethacin 

Sigma 

Aldrich 

0.1 and 0.3mM 48.91mM in 

DMSO 

Specific Cox-2 

inhibitor, Celecoxib 

Cayman 

Chemical 

25, 50 and 75μM 262.21mM in 

ethanol 

Table 2.1: List of inhibitors and their sources. The working concentrations 

used for each inhibitor are as stated. 

 

 

2.4.2 Antibodies and recombinant proteins used  

Antibodies and recombinant proteins were purchased from commercial 

sources. Each antibody or recombinant protein was tittered to determine its 

optimal working concentration which was subsequently used throughout the 

project. The source and final working concentration for each reagent is as 

listed below. 

Recombinant Protein Source Final Concentration 

Used 

Neutralizing TNF-α 

Antibody 

R&D 0.24μg/ml 

Neutralizing LTα 

Antibody  

R&D 1.0μg/ml 

Neutralizing IL-6 

Antibody 

R&D 10μg/ml 

Recombinant human 

TNF-α 

Ebioscience 10ng/ml 

Recombinant human   

SDF-1α 

PeproTech 200ng/ml 

Table 2.2: List of recombinant proteins and antibodies used in this project. 
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2.4.3 Recombinant proteins or antibodies used for parallel plate flow 

chamber assay 

Antibodies were purchased from commercial sources. Each antibody was 

tittered to determine its optimal working concentration which was 

subsequently used throughout the project. The source and final working 

concentration for each antibody is as listed below. 

 

Recombinant Protein 

/ Antibody 

Source Final 

Concentration 

Used 

Origin 

Anti CD11a (LFA-1, 

clone HI 111) 

Biolegend 20ng/ml Mouse 

Anti CD18 (TS 1/18) Biolegend 20ng/ml Mouse 

Anti L-selectin 

(clone Dreg 56)   

Ebioscience 20ng/ml Mouse 

Mouse IgG Invitrogen 20ng/ml Mouse 

Anti CD44 (clone 

IM7) 

BD 

Pharmingen 

20ng/ml Rat 

Rat IgG Caltag 1:5000 Rat 

Hyaluronidase Sigma Aldrich 50μg/ml 

(37.5U/ml) 

Bovine  

Table 2.3: Reagents used for parallel plate flow chamber assay. This table 

shows the source, the clone and the final working concentration used.  

 

 

2.4.4 Antibodies used for Western blot 

Antibodies were purchased from commercial sources. Each new antibody was 

tittered to determine its optimal working concentration which was 

subsequently used throughout the project. The source and final working 

concentration for each antibody is as listed below. 

 

Antibody Source Final 

Concentration 

Used 

Origin 

ERK Cell Signaling 1:1000 Rabbit 

Phospho ERK Cell Signaling 1:1000 Mouse 

p38 Cell Signaling 1:1000 Rabbit 

Phospho p38 Cell Signaling 1:1000 Rabbit 
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JNK Cell Signaling 1:1000 Rabbit 

Phospho JNK Cell Signaling 1:1000 Rabbit 

c-Jun Cell Signaling 1:1000 Rabbit 

Phospho c-Jun Cell Signaling 1:1000 Rabbit 

c-Fos Cell Signaling 1:1000 Rabbit 

Phospho c-Fos Santa Cruz 1:450 Mouse 

P65 Santa Cruz 1:450 Mouse 

Beta lamin Abcam 1:3000 Mouse 

TATA Box Abcam 1:3000 Mouse 

Beta actin HRP 

Conjugated 

Santa Cruz 1:30000 Mouse 

Table 2.4: List of antibodies used for Western blot assay. The source and the 

dilution factor used are as shown. 

 

 

2.4.5 Antibodies used for immunohistochemical ( IHC) Staining 

Antibodies were purchased from commercial sources. Each new antibody was 

tittered to determine its optimal working concentration which was 

subsequently used throughout the project. The source and final working 

concentration for each antibody is as listed below. 

 

Antibody Source Final 

Concentration 

Used 

Origin 

c-Jun Cell Signaling 1:100 Rabbit 

LTα Ebioscience 1:200 Mouse 

Rb sera Dako 

Cytomation 

1:10000 Rabbit 

Biotinylated 

hyaluronic acid 

binding protein 

Merck Millipore 1:500 Bovine 

MouseIgG Invitrogen 1:100 Mouse 

Table 2.5: List of antibodies used for IHC staining. The source and the 

dilution factor used are as indicated.  

 

 

2.4.6 Antibodies used for flow cytometry  

Antibody was purchased from commercial source. The antibody was tittered 

to determine its optimal working concentration which was subsequently used 
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throughout the project. The source and final working concentration for the 

antibody is as listed below. 

Antibody Source Dilution factor Origin 

LTα (clone LTX-21) Ebioscience 1:50 Mouse 

Table 2.6: List of antibody used for intracytopalsmic flow cytometry staining. 

The source and the dilution factor used are as shown. 

Anti-E-selectin (H18/7), anti-ICAM-1 (Hu5/3), anti-VCAM-1 (E1/6) and anti-

MHC-I (W6/32) hybridoma clones were gifts from the Vascular Research 

Division, Department of Pathology, Brigham and Women’s Hospital and 

Harvard Medical School, Boston, USA. The culture supernatants were diluted 

1:3 before use. 

 

2.4.7 Secondary antibodies used  

Secondary antibodies were purchased from commercial sources. Each new 

antibody was tittered to determine its optimal working concentration which 

was subsequently used throughout the project. The source and final working 

concentration for each antibody is as listed below. 

Secondary 

Antibody 

Source Dilution factor Purposes 

Goat anti Mouse 

IgG HRP 

(Horseradish 

peroxidase) 

Sigma Aldrich 1:1000 ELISA 

Goat anti Mouse 

IgG HRP 

Santa Cruz 1:5000 Western blot 

Goat anti Rabbit 

IgG HRP 

Santa Cruz 1:5000 Western blot 

Goat anti Moue 

IgG PE 

(Phycoerythrin) 

Caltag 1:100 Flow cytometry 

Strepavidin 

HRP 

Sigma Aldrich 1:1000 IHC 

Table 2.7: List of secondary antibodies used throughout the study. The 

purpose, the source and the dilution factor used are as stated in the table.  
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2.5 Preparation of cell culture supernatant (C/S) and cell pellet 

All Reed-Sternberg cell lines (L1236, L428, KM-H2, L540) were plated in 

R10 or R20 at a cell density of 2x10
6
 cells/ml. After 12 hours’ or 24 hours’ 

incubation, the culture supernatant containing soluble products derived from 

these lymphoma cells were collected after centrifugation and used 

immediately. All the C/S were diluted 1 in 2 or 1 in 8 with R10 for subsequent 

experiments. 

 

To study the signaling pathways on the HRS cells, KM-H2, L1236 and L428 

cells were treated with various doses of inhibitors for 12 hours. The doses and 

inhibitors used were summarized in Table 2.1. For Bay11-7085 treatment, the 

highest amount of DMSO used was 1µl/ 1ml of media (volume/ volume). For 

Indomethacin treatment, the highest amount of DMSO used was 0.6µl/ 1ml of 

media (volume/ volume). For SP600125 treatment, the highest amount of 

DMSO used was 1.1µl/ 1ml of media (volume/ volume) For Indomethacin 

treatment, the drug was resupplied after every 6 hours of incubation. C/S from 

the treated cells and respective controls were collected as described above. 

The cell pellets were snap frozen in liquid nitrogen and used for Western blot 

assay.  

 

 

2.6 Preparation of T cell subsets from buffy coat 

T cells were isolated from buffy coats of healthy donors (National University 

Hospital of Singapore). The buffy coat was first diluted with HBSS in a ratio 

of 1:7 and thoroughly mixed by inversion. The mixture was carefully layered 

over Ficoll-Pague (Ge Heatlhcare) and centrifuged at 450 x g for 30 minutes at 

room temperature. The PBMC (peripheral blood mononuclear cell) layer at the 

Ficoll-Paque/plasma interface was removed with a 1ml pipette (Gilson P1000). 

The cell suspension was centrifuged at 350 x g for 8 minutes. The supernatant 

was discarded and cell pellet was resuspended in 15ml of R10. Total number 

of PBMC was enumerated with trypan blue exclusion method. CD4+ T cells 
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were subsequently isolated from PBMC by positive selection using Whole 

Blood CD4+ beads (Miltenyi Biotec, Germany) kit according to manufacturer 

protocol. The ratio of the CD4+ beads used to cell number is 1:20 (5μl of 

beads to 95μl of MACS buffer for 1x10
7
 PBMC). Briefly, the PBMC were 

resuspended in MACS buffer (PBS + 5% BSA + 2mM EDTA) and incubated 

with CD4+ beads in the dark for 15 minutes at 4°C. Next, the mixture was 

washed once with 10-20X volume of MACS buffer by centrifuging at 350 x g 

for 8 minutes. Then the cell pellet was resuspended in the MACS buffer and 

applied to LS column (Miltenyi Biotec, Germany) attached to a magnetic 

stand. The LS column was washed three times with MACS buffer. Beads-

bound CD4
+
 T cells were dissociated from the LS column by removing the 

column from the magnetic stand and flushing the CD4
+ 

T cells out of the 

column with MACS buffer using a plunger. The number of CD4
+
 T cells 

obtained is usually 20% of the initial number of PBMC used for the isolation 

process.        

 

Isolated CD4+ T cells were further purified into naïve T cells 

(CD4
+
CD45RA

+
CD45RO

-
) and memory T cells (CD4

+
CD45RA

-
CD45RO

+
) 

by negative selection using CD45 RA
+
 antibody-

 
or CDRO

+
 antibody-coated 

Dynal Magnetic Beads (Invitrogen, USA) as described previously (Lim et al., 

2000). Briefly to isolate CD4
+
 naïve T cells, CD4

+
 T cells were incubated with 

CD45RO
+
 antibody-coated magnetic beads; and CD4

+
 T cells incubated with 

CD45RA
+
 antibody-coated magnetic beads for isolating CD4

+
 memory T cells. 

The CD4
+
 T cells with antibody-coated magnetic beads mixture was incubated 

for 30 minutes at 4°C with constant rotation. After that, the beads-bound T 

cells were separated from the free CD4
+ 

T cells by placing the tubes on a 

magnetic separator for at least a minute. The unbound cells in suspension were 

collected into a 15ml tube and the beads washed once with 2ml of R10. The 

pooled cell suspension was placed on the magnetic separator again to remove 

any bead-bound cells that may have been dislodged when the 

supernatant/wash was collected. This process was repeated twice. The purity 
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of naïve and memory T cells were >90% as determined by flow cytometry 

immunofluorescence staining. 

 

2.7 Naïve and memory T cell transmigration assay 

The number of naïve and memory T cells transmigrated across a HUVEC 

monolayer was determined as described below. A HUVEC monolayer was 

grown on the inner side of the membrane of the 5μm transwell insert until it 

reached 100% confluency. The HUVEC were either left unstimulated, 

stimulated with TNF-α (10ng/ml) or KM-H2 C/S (diluted 1 in 2) for 4 hours 

under standard culture condition. The endothelial monolayer was washed once 

with HBSS before naïve or memory T cells (0.5 x 10
6
cells in 200μl of R10) 

were placed in the upper chamber of the inserts.  Either R10 only or R10 with 

200ng/ml of SDF-1α (PeproTech, USA) was added to the lower chambers of 

the transwells. The transwell setup was then incubated at 37°C in 5% CO2 for 

4 hours (Figure 2.1). At the end of the incubation, transmigrated T cells were 

recovered from the lower chambers. The total number of transmigrated T cells 

was determined using Tryphan Blue exclusion assay. The percentage of T 

cells that had transmigrated was calculated by dividing the number of 

transmigrated T cells by total number of T cells added to the upper chamber. 

 

To block the G-protein coupled receptor on the T cells, naïve or memory T 

cells were pre-treated with pertussis toxin (100μg/ml) for an hour in the 

incubator before using them for the transmigration experiment.  

                                                 

Figure 2.1: Diagram represents static transwell system used in the 

transmigration study.  

 

SDF-1α 
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2.8 In-vitro parallel plate flow chamber assay 

Naïve and memory T cell interactions with endothelial cells under defined 

laminar flow condition were studied in the parallel plate flow chamber system 

as described below. A 10-cm rectangular parallel plate flow chamber 

containing a 5-mm wide and 0.01-inch high channel was used for the in vitro 

flow experiment. Using a syringe pump (Harvard Apparatus), the cell 

suspension was drawn thorough the flow chamber at three different flow rate 

(shear stress), 0.52ml/min (1.0 dynes/cm
2
), 0.36ml/min (0.76 dynes/cm

2
) and 

0.26ml/min (0.5 dynes/cm
2
).  The wall shear stress (dynes/cm

2
) which is 

dependent on the flow rate and viscosity of the cell suspension can be defined 

by the equation:  

   dynes/cm
2 

= 6 µQ/bh
2
, 

 where µ is the viscosity of the fluid expressed in poise; Q is the flow rate of 

the fluid expressed in centimeters cube per second, b is the width of the 

chamber whereas h is the height of the chamber. Both are expressed in 

centimeters (Bacabac et al., 2005).   

 

HUVEC monolayers were grown on the matrigel coated coverslip until about 

100% confluency. HUVEC monolayers were either treated with TNF-α 

(10ng/ml), KM-H2 C/S (diluted 1:2 or 1:8) or left untreated for four hours and 

mounted onto a lower plate and the flow chamber assembled. The set-up was 

next mounted on an inverted microscope (Nikon; Eclipse TE-2000U) 

equipped with 20X objective lens (Nikon). Isolated naïve or memory T cells 

were resuspended in pre-warmed flow buffer (HBSS containing 0.1% FBS, 

1mM CaCl2, 20mM of HEPES, pH7.4) at 37°C at a cell density of 0.7 x 

10
6
cell/ml. Then, the T cells were perfused across HUVEC monolayer at 

decreasing flow rates. At each flow rate, T cells were allowed to interact with 

the HUVEC monolayer for a minute before the live time cell-cell interactions 

in 5 different fields were video recorded using a CCD camera and VCR (Sony; 

SVT-N24P). Analysis was carried out offline.  
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To block integrins on the T cells, naïve T cells were pre-incubated with 

monoclonal antibodies (20ng/ml) against various integrin subunits for 10 

minutes at 37°C prior to perfusion across HUVEC monolayer. A matching 

mouse or rabbit IgG was used as an isotype control.  

 

To block the adhesion molecules on HUVEC, HUVEC monolayers were pre-

incubated with antibodies against ICAM-1, E-selectin and VCAM-1 (clone as 

listed in section 2.4.6) for 30 minutes before mounting onto the flow chamber 

for the experiment. Treatment with antibodies against MHC class I molecules 

is used as the binding non-blocking control.   

 

To investigate effect of HA mediated naïve T cell interactions with stimulated 

HUVEC, HUVEC monolayer was treated with either 50μg/ml of 

hyaluronidase or boiled hyaluronidase for one hour in the incubator before 

mounting onto the flow chamber for the experiment. 

 

 

2.9 Enzyme-linked immunosorbent assay (ELISA)   

Cell surface expression of ICAM-1, VCAM-1, and E-selectin on HUVEC 

were measured by ELISA. Briefly, HUVEC were grown until about 100% 

confluent in gelatin-coated 96-well flat-bottom tissue culture plate. 

Endothelial cells were treated with TNF-α (Ebioscience, USA) at 10ng/ml or 

diluted KM-H2 C/S (1:2 or 1:8 dilution) for four hours. Negative control was 

cells left untreated.  HUVEC was washed twice with PBS+0.1% BSA before 

blocking with PBS+1%BSA for 20 minutes at room temperature. After the 

blocking step, HUVEC were incubated with optimally diluted antibodies 

against ICAM-1, VCAM-1, E-selectin and MHC class I molecules for one 

hour at 4°C. The hybridoma clones are respectively, Hu 5/3, E1/6 and H18/7 

(diluted 1:3) and W6/32 (diluted 1:5 with PBS + 0.1% BSA). After 4 repeats 

of washing with wash buffer (PBS + 0.1%BSA); 100 µl of optimally diluted 
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horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (diluted 1 in 

100 with PBS + 0.1% BSA) was added to each well and incubated for an hour 

at 4°C. After that, unbound HRP-conjugated antibody was washed off and the 

washes repeated 4 times. Then, 100μl of substrate buffer (0.1M citrate buffer 

+ 0.2M phosphate buffer + Triton-X 100 + O-phenyelendiane dihydrochloride 

tablet + 10μl of 3% hydrogen peroxide) was added to each well and incubated 

for 10 minutes, after which 25μl of 3M sulphuric acid was added to stop the 

colorimetric reaction. Absorbance reading at 492nm of each well was 

determined using a Tecan plate reader.  

 

For NFκB blocking experiment, HUVEC monolayer were pre-incubated with 

20μM of Bay 11-7085 for 30 minutes in the incubator prior to stimulation with 

KM-H2 C/S. Fresh 20μM Bay 11-7085 inhibitor was added into the C/S 

during the 4 hours stimulation. 

 

For cytokine neutralizing experiment, KM-H2 C/S was pre-incubated with 

neutralizing antibody for 30 minutes in the incubator prior to being used to 

stimulate the HUVEC monolayer. 

 

 

2.10 Flow cytometry 

Surface expression of ICAM-1, VCAM-1, and E-selectin on HUVEC were 

measured by flow cytometry. Confluent HUVEC monolayer was either treated 

with TNF-α (10ng/ml), KM-H2 C/S or left untreated for four hours at 37°C. 

After stimulation, HUVEC were detached from the culture dishes as described 

in section 2.3.1. After centrifugation, cells were resuspended with flow 

cytometry buffer (PBS + 0.1% BSA) to a cell density of 2-5x10
6
 cell/ml. 

Subsequently, 100µl of the cell suspension was aliquoted into 5ml polystyrene 

round bottom tubes (BD Biosciences) and incubated with optimally diluted 

antibodies against ICAM-1, VCAM-1, E-selectin and MHC class I molecules. 
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The hybridoma clones are respectively, Hu 5/3, E1/6 and H18/7 (diluted 1:3) 

and W6/32 (diluted 1:5 with PBS + 0.1% BSA) for 30 minutes at 4°C. Mouse 

IgG was used as the isotype control. The cells were washed once with 1ml of 

flow cytometry buffer and pelleted by centrifuging at 350 x g for 8 minutes at 

4°C. Then, the supernatant was discarded and the cells were incubated with 

optimally diluted PE-conjugated goat anti-mouse secondary antibody in the 

dark for 30 minutes at 4°C. Next, cells were washed thrice as described above; 

twice with flow cytometry buffer and once with PBS. Lastly, the cells were 

fixed with 350μl of 1% Formalin in PBS and kept in the dark at 4°C until the 

day of data acquisition. Cell acquisition (at least 10,000 cell per sample) was 

carried out on the FACS Calibur cytometer (Becton Dickinson, USA) and 

analysed using the CellQuest Software.  

 

 For intracytoplasmic staining, KM-H2 cells were pretreated with Golgi plug 

(BD Biosciences) for six hours before undergoing the intracytoplasmic 

staining procedure according to the manufacturer’s protocol. Briefly, the 

Golgi-plug-treated KM-H2 cells were harvested by centrifugation. The cell 

pellet was resuspended with PBS to a cell density of 2-5x10
6
 cell/ml. 

Subsequently, 100μl of cell suspension was aliquoted into 5ml polystyrene 

round bottom tubes. Then, the cells were pelleted down and resuspended 

thoroughly with 250μl of Fixation/Permeabilization solution (BD Biosciences) 

for 20 minutes at 4°C. Then, the cells were washed twice with BD Perm/Wash 

buffer (BD Biosciences) as described above. Next, supernatant was discarded 

and the cells were incubated with 50μl of BD Perm/Wash buffer containing 

optimally diluted cytokine antibody at 4°C for 30 minutes in the dark. After 

that, the cells were washed twice as described above followed by incubation 

with 50μl of BD Perm/Wash buffer containing optimally diluted PE-

conjugated goat anti-mouse secondary antibody at 4°C for 30 minutes in the 

dark. Next, cells were washed thrice as described above; twice with BD 

Perm/Wash buffer and once with PBS. Lastly, the cells were fixed with 350μl 

of 1% Formalin in PBS and kept in the dark at 4°C until the day of data 

acquisition. Data acquisition and analysis was carried out as described 

previously.    
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2.11 Western blotting 

Mechanistic study was carried out using Western blotting. Cell lysate was 

fractionated into cytoplasmic protein and nuclear protein. Cytoplasmic protein 

was extracted first followed by nuclear protein. HUVEC or KM-H2 cells were 

harvested as described in section 2.3.1 and section 2.5. Cytoplasmic protein 

was extracted by incubating cells with 100μl of 1x isotonic lysis buffer 

supplemented with 1% PMSF, 1% protease inhibitor, and 0.1mM DTT for 13 

minutes on ice and followed by 6μl of 10% IGEPAL (Sigma Aldrich) for 20 

seconds with vigorous vortexing. Then, the mixture was centrifuged at 10.6 x 

g for 30 seconds at 4°C. The supernatant was collected as cytoplasmic protein 

and keep for future use. The cell pellet was washed with 500μl of 1X lysis 

buffer by centrifuging at 10.6 x g for 30 seconds at 4°C. The supernatant was 

discarded and the cell pellet was incubated with 70μl of extraction buffer 

supplemented with 1% PMSF, 1% protease inhibitor, and 0.1mM DTT protein 

for 30 minutes at 4°C with gentle shaking. Next, the mixture was centrifuged 

at 18.8 x g for 5 minutes. The supernatant was collected as nuclear protein 

fraction. The cytoplasmic protein or nuclear protein was quantified using 

Bradford Reagent (Bio-rad, USA) according to manufacturer’s protocol. A 

total of 25μg of proteins was loaded and separated on 10% or 12% SDS-Page 

gel. Then, the separated protein was transferred to a polyvinylidene fluoride 

(PVDF) microporous membrane (Millipore) and blocked with 5% non-fat 

milk (w/v) in 0.1% TBST for one hour at room temperature. The membranes 

were incubated with diluted primary antibodies overnight at 4°C followed by 

secondary antibodies for one hour at room temperature before 

chemiluminescent substrate detection. The working concentrations of the 

primary and secondary antibodies used are as listed in Table 2.4.    

 

 

2.12 Immunohistochemistry (IHC) staining 

 4µm thick tissue sections from thirty-two cases of cHL were used for IHC 

staining for 2 different targets. Fourteen of the 32 cases were from the 

Department of Pathology, National University Hospital of Singapore whereas 
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18 of 32 cases were from University of Al Ain, United Arab of Emirates 

(UAE). LTα, and c-Jun were detected using indirect immunoperoxidase 

technique. Briefly, the tissue sections were deparaffinized in xylene and 

rehydrated in a graded series of ethanol. Next, antigen retrieval process was 

performed on the rehydrated tissue sections. The antigen retrieval conditions 

used for the different antigens are stated in the Table 2.8 below. After that, the 

tissue sections were treated with 3% hydrogen peroxide for 10 minutes at 

room temperature. Then, the sections were washed twice with distilled water 

and equilibrated with TBS buffer for 5 minutes at room temperature. Next, the 

tissues sections were incubated with optimally diluted primary antibody 

(diluted with TBS diluent) overnight at room temperature. Tissue sections 

were washed 3 times with TBS buffer to remove excess primary antibody and 

incubated with HRP-conjugated secondary antibody (Envision Plus kit, Dako 

Cytomation) at room temperature for an hour. Excess secondary antibody was 

removed by 3 washings with TBS buffer. The sections were then treated with 

substrate reagent containing diaminobenzidine (DAB) for 5 minutes (Dako 

Real Envision Detection Kit). The sections were counterstained with Gill’s 

Hematoxylin, dehydrated, cleared and mounted with Canada Balsam (Sigma 

Aldrich, USA). The stained tissue sections were scored for intensity of the 

staining and the percentage of positively stained HRS cells. The scoring was 

graded as 0 (undetectable), 1 (weak staining), 2 for moderate staining and 3 

for intense staining. Similarly for the percentage of positively stained HRS 

cells, a score of 0 indicates no positively stained HRS cells, 1 for less than 30% 

HRS cells stained, 2 for >30%-60% HRS cells positively stained and to 3 for 

more than 70% of HRS cells positively stained.  

 

Target Antigen Retrieval 

Buffer 

Antigen Retrieval 

Condition 

LTα Citrate buffer, pH 6 Boiling for 15 minutes 

c-Jun Citrate buffer, pH6 Pressure cook for 10 

minutes 

Table 2.8: List of antigen retrieval buffer and treatment conditions used for 

each molecular target.  
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2.13 L929 TNF cytotoxic assay 

L929 cells were purchased from ATCC and cultured in Eagle’s Minimum 

Essential Medium (EMEM) supplemented with 10% horse serum. L929 cells 

were dislodged from the culture flask with 0.02% trypsin. Cultured L929 cell 

number was estimated using trypan blue exclusion assay. Next, cell 

suspension in EMEM complete medium was plated into a 96-well plate at a 

cell density of 5000 cells/100μl/well. After 24 hours, EMEM complete 

medium was replaced with HRS cell C/S (diluted with EMEM + 2% horse 

serum + 0.2μg/ml of Actinomycin D) and incubated for 12 hours in the 

incubator. Negative controls in this study are L929 cells treated with EMEM 

media containing 2% horse serum and 0.2μg/ml of Actinomycin D. Positive 

controls are cells treated with serially diluted TNF-α (diluted with EMEM + 2% 

horse serum + 0.2μg/ml of Actinomycin D). At the end of the incubation, 20μl 

of MTS buffer (Promega) was added directly into each well and incubated in 

the incubator for 4 hours. The viability of L929 cells was determined by 

acquiring the absorbance value at 492nm using a Tecan plate reader. A 

standard curve of L929 cell viability against decreasing concentration of 

recombinant human TNF-α was included in each assay. Results are expressed 

as the percentage of viability relative to the untreated control. 

 

To study the cytotoxic effect of C/S after neutralization of  TNF-α or LTα, C/S 

of KM-H2, L1236 and L428 cells were incubated with optimally diluted 

antibodies against TNF-α or LTα for 30 minutes in the incubator before using 

them for L929 cytotoxic assay. Mouse IgG was used as the isotype control.  

 

 

2.14 Cytokine antibody array 

The cytokine profile of the C/S from different HRS cells (KM-H2, L1236 and 

L540) was determined using Quantibody Human Cytokine Array 1 from 

RayBiotech (Norcross, GA). In brief, antibodies against 20 different cytokines 

were spotted onto the cytokine array according to manufacturer’s instruction. 
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First, the wells of the array were blocked with 100μl of sample diluent for 30 

minutes. Next, the sample diluent was removed and replaced with 100μl of 

cytokine standards  (serially diluted with sample diluent) or C/S of HRS cells 

(diluted 1 in 2 or 1 in 8 with sample diluent)  and incubated for 2 hours at 

room temperature. After that, samples were decanted from each well followed 

by 5 minutes of washing step by using 1 x washing buffer I with gentle 

shaking. This washing step was repeated 4 times. Then, the array was washed 

with 1 x washing buffer II for twice; 5 minutes with gentle shaking each time. 

Wash buffer was discarded completely before incubating with 80μl of 

detection antibody cocktail for 1 hour at room temperature. After that, the 

washing steps using washing buffer I and II were carried out as described 

previously. Then, the well was incubated with 80μl of Cyc3 equivalent dye-

conjugated streptavidin for 1 hour at room temperature in the dark. To prevent 

exposure to light, the array was covered by aluminium foil. At the end of 

incubation, the washing steps were carried out as stated above. The chip was 

scanned using GenePix
®
 Professional 4200A (Synnyvale, CA) at excitation 

555 nm and emission 565 nm. The image was analyzed by GenePix Pro 5.0 

software program, and the amount of cytokine present in the C/S was 

estimated using the standard curves generated in the same array using the 

cytokine standards. 

 

 

2.15 Lymphotoxin-α (LTα) ELISA 

The secreted LTα from HRS cells (KM-H2, L1236, L428, L540) was 

measured using the Human TNF beta ELISA Ready-Set-Go kit (Ebioscience, 

USA). Briefly, 100μl of captured antibody against TNF-β (diluted with 1x 

coating buffer) was used to coat in the 96-well plate at 4°C for overnight. Then, 

the coating antibody was removed and the plate was washed three times with 

wash buffer (250μl/well). Next, the wells were blocked with 200μl/well with 

the assay diluent for an hour at room temperature. Then, the plate was washed 

once before incubating with 100μl of diluted C/S (diluted 1 in 2, 1 in 4 or 1 in 

8) or serially diluted standard (diluted with assay diluent) at room temperature 
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for 2 hours. At the end of the incubation, the washing steps were carried out as 

described above. Next, the wells were incubated with 100μl/well of detection 

antibody (diluted in assay diluent) for an hour at room temperature. The 

detection antibody was discarded and the plate washed as stated above before 

incubating with 100μl/well of avidin-HRP conjugated antibody (diluted with 

assay diluent) for 30 minutes. At the end of incubation, avidin-HRP 

conjugated antibody was aspirated out and the plate was washed three times 

with the wash buffer. After washing, the substrate solution was added 

(100μl/well) and the plate was incubated for 10 minutes followed by addition 

of stop solution (2N sulphuric acid), at 50μl/well. The absorbance was 

detected at 450nm using the Tecan plate reader. 

 

 

2.16 Statistical analysis 

Data is expressed as mean+ standard error of mean. Statistical comparison of 

mean was performed by Student’s T-test.  
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Chapter 3 : Results 

3.1 HRS cell culture supernatant (C/S) can stimulate endothelial cells and 

induce up-regulation of adhesion molecule expression 

Soluble mediators derived from human lymphomas has been shown to activate 

endothelial cells and this activation is analogous to that associated with 

leukocytes adhesion and extravasation during inflammatory response (Estrada-

Bernal et al., 2003b). Knowing that HRS cells actively secrete various 

cytokines and chemokines to facilitate immune cells infiltration (Skinnider 

and Mak, 2002), I first determined the effect of HRS cell culture supernatant 

(C/S) on endothelial cells by cell-based ELISA. According to the ELISA 

results, endothelial cells stimulated with C/S harvested from three HRS cell 

lines, KM-H2, L1236 and L428 for 4 hours can up-regulate ICAM-1,   

VCAM-1 and E-selectin expression (Figure 3.1A). Endothelial cells 

stimulated with C/S from L540, another HRS cell line, did not show any 

increment in the adhesion molecule expression. The expression level of the 

various adhesion molecules on endothelial cells activated by C/S from KM-H2, 

L1236 and L428 are comparable to that induced by 10ng/ml of TNF-α. The 

response of endothelial cells to TNF-α was used as the positive control 

throughout the study. Unstimulated endothelial cells served as the negative 

control. Furthermore, MHC class I expression (Figure 3.1A, black bar) was 

used as an internal positive control for the ELISA assay.  This finding was 

further verified by flow cytometry (Figure 3.1B). Similarly, KM-H2 C/S can 

stimulate endothelial cells to up-regulate ICAM-1, VCAM-1 and E-selectin 

expression to levels comparable to TNF-α. Thus the data confirmed that C/S 

from HRS cells contain soluble mediator(s) that can stimulate endothelial cells 

to up-regulate adhesion molecule expression.      
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Figure 3.1: HRS cell C/S stimulates endothelial cells to up-regulate 

adhesion molecule expression. (A) Up-regulation of adhesion molecule 

expression was detected on endothelial cells stimulated with C/S from KM-H2, 

L1236, L428 but not L540 for four hours. Unstimulated and TNF-α stimulated 

endothelial cells served as the negative and positive controls, respectively. (B) 

KM-H2 C/S stimulated endothelial cells induced ICAM-1, VCAM-1 and E-

selectin expression is comparable to that detected on TNF-α stimulated 

endothelial cells as assessed by flow cytometry. Values shown are the mean + 

SEM (standard error of mean) from 3 independent experiments for A; and a 

representative experiment from 3 independent experiments for B. 

 

B 

A 
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3.2 HRS cell C/S stimulatory effect is not because of endotoxin 

contamination 

To eliminate the possibility that stimulatory effect on the C/S is due to serum 

content or low level of endotoxin contamination, I did the following 

experiments. First, serum free KM-H2 C/S was used to stimulate the 

endothelial cells. As shown in Figure 3.2A, serum free KM-H2 C/S retained 

the stimulatory effect as compared to serum containing C/S. The adhesion 

molecule expression on the stimulated endothelial cells is similar between the 

two conditions. This shows that serum in the media does not contribute to the 

activity of soluble mediators in the C/S that activates the endothelial cells. 

Boiling of the C/S for 5 minutes eliminates the C/S stimulatory effect (Figure 

3.2A). Treatment of C/S with polymyxin B will eliminate the possibility of 

endotoxin induced activation of endothelial cells. Polymyxin B will bind to the 

lipid A region of the lipopolysaccharide (Morrison and Jacobs, 1976) and 

inhibit its stimulatory effect on endothelial cells. This is important because any 

traces of endotoxin or lipopolysaccharide contamination in the C/S could 

activate endothelial cells and induce adhesion molecule expression (Lorenzon 

et al., 1998). According to the ELISA data shown in Figure 3.2B, C/S remains 

active after treatment with polymyxin B. The level of induced adhesion 

molecule expression on endothelial cells stimulated with polymyxin B treated 

C/S is comparable to the control, endothelial cells stimulated with C/S without 

polymyxin B treatment. Thus my data suggests that the stimulatory effect of  

HRS cell C/S is not due to the presence of serum or endotoxin. 
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Figure 3.2: The stimulatory effect of H-RS cell C/S is not due to the 

presence of serum or endotoxin. (A) The expression of ICAM-1, VCAM-1 

and E-selectin induced on endothelial cells activated with serum free C/S, and 

normal KM-H2 C/S were comparable as detected by ELISA. Boiled C/S failed 

to stimulate the endothelial cells. (B) 2 x 10
6
 KM-H2 cells were treated with 

polymyxin B (10µg/ml) and cultured overnight in 1ml of culture media. C/S 

was harvested after 24 hours and used to stimulate endothelial cells. 

Stimulatory effect of polymyxin B treated KM-H2 C/S on endothelial cells 

was similar to that of untreated C/S as assessed by ELISA. Values shown are 

the mean + standard deviation from two different experiments. 
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3.3 HRS cells produce highly potent soluble mediator(s) that stimulates 

endothelial cells 

Soluble mediator(s) derived from HRS cells exhibits a very high potency for 

stimulating endothelial cells. The time course experiments showed that the 

mediators are spontaneously secreted by KM-H2 cells. C/S from KM-H2 cells 

conditioned for an hour already exhibits some degree of stimulatory effect on 

the endothelial cells. As shown in Figure 3.3A, 1 hour conditioned KM-H2 

C/S can induce ICAM-1, VCAM-1 and E-selectin expression on the 

endothelial cells and the stimulatory efficacy increases when the conditioning 

time was increased from 1 hour to 24 hours. In addition, using 2-fold serially 

diluted KM-H2 C/S to stimulate the endothelial cells, the data revealed that 

soluble mediator(s) in the KM-H2 C/S is highly potent. As shown in Figure 

3.3B, the stimulatory effect of C/S diluted 1 in 8 is equally potent as that of 

C/S diluted 1 in 2. Even at a high titre of 1 in 32, the diluted C/S could still 

induce ICAM-1, VCAM-1 and E-selectin expression on the endothelial cells 

albeit lower than the unstimulated negative control (Figure 3.3B, black bar). 

This result shows that the KM-H2 cells constitutively produce large amounts 

of highly active soluble mediator(s) in the C/S that can stimulate endothelial 

cells. 
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Figure 3.3: KM-H2 C/S contained very potent factor(s) that can activate 

endothelial cells. (A) C/S from KM-H2 cells harvested at different time points, 

1hour, 6 hours and 24 hours contained soluble mediators that can up-regulate 

the expression of ICAM-1, VCAM-1 and E-selectin on endothelial cells as 

detected by ELISA. (B) 2-fold serially diluted C/S of KM-H2 cells could 

effectively stimulate endothelial cells at a titre of 1:32.Values shown are the 

mean + standard deviation from two independent experiments. 
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3.4 C/S activated endothelial cells exhibit enhanced interactions with T 

cells under dynamic flow condition 

C/S stimulated endothelial cells supports higher number of naïve and memory 

T cell interactions (binding and rolling) under defined shear stresses as 

compared to unstimulated endothelial cells. As shown in Figure 3.4A and B, 

respectively, interactions of naïve and memory T cells with C/S stimulated 

endothelial cells are comparable to that of TNF-α stimulated endothelial cells. 

Interactions between naïve and memory T cells with C/S stimulated 

endothelial cells increased gradually as the shear stress was reduced from 

1dynes/cm
2
 to 0.5 dynes/cm

2
. The interactions of memory T cell with TNF-α 

or C/S stimulated endothelial cells are always higher than the naïve T cells at 

all three shear stresses. This is not surprising since memory T cells but not 

naïve T cells have enhanced LFA-1, VLA-4 and associated with enhanced 

capacity to bind ICAM-1 and VCAM-1 on stimulated endothelial cells 

(Shimizu et al., 1990). 

 

I decided to focus on examining the interactions between naïve T cells and 

C/S stimulated ECs in my subsequent experiments. This is because naïve T 

cells have a high plasticity and have been shown to be differentiated into 

regulatory T cells by HRS cells in-vitro (Tanijiri et al., 2007). 
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Figure 3.4: KM-H2 C/S stimulated endothelial cells mediate more 

interactions with naïve and memory T cells than unstimulated endothelial 

cells under defined shear stresses. KM-H2 C/S stimulated endothelial cells 

showed higher number of interactions with (A) naïve and (B) memory T cells 

under decreasing shear stresses as compared to unstimulated endothelial cells. 

Unstimulated and TNF-α stimulated endothelial cells served as negative and 

positive controls, respectively. Values shown are the mean + SEM from five 

different experiments. * indicates statistical difference compared to 

unstimulated endothelial cells at p<0.05. 
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3.5 ICAM-1 and HA expressed on the C/S stimulated endothelial cells 

mediate naïve T cell-endothelial cells interactions  

Next I carried out a series of function blocking experiments to identify the  

adhesion molecules that are involved in mediating the interactions between 

naïve T cells and C/S stimulated endothelial cells. The naïve T cells were 

treated with monoclonal antibody against L-selectin, CD 11a, CD18 and CD44. 

Antibodies against ICAM-1, VCAM-1 and E-selectin were used to block these 

adhesion molecules expressed on the endothelial cells. Figure 3.5A shows that 

blocking of ICAM-1 on the C/S stimulated endothelial cells, but not E-selectin 

and VCAM-1, significantly reduced naïve T cell interactions by 49±22%. 

Treating of endothelial cells with an antibody against MHCI, a binding non-

blocking control, did not inhibit the naïve T cell interactions. Since ICAM-1 is 

important in regulating naïve T cell-C/S stimulated endothelial cells 

interactions, I first block LFA-1, the receptor of ICAM-1 on naïve T cells. 

LFA-1 is made up of 2 integrin subunits, CD18 (β2 integrin) and CD11a 

(alpha-L integrin). Interestingly, blocking data shows that blocking CD18 but 

not CD11a is effective in reducing the observed naïve T cell interactions 

(Figure 3.4B). This is probably due to the fact that integrins on naïve T cells 

are of low affinity and therefore the ligand binding site of LFA-1 is only 

partially exposed (Pribila et al., 2004).  

 

L-selectin is the main surface molecule that mediates tethering and rolling of 

naïve T cells during their recirculation through lymphoid tissues (von Andrian 

and Mempel, 2003). Surprisingly, blocking of L-selectin on naïve T cells 

could only reduce naïve T cell interactions with C/S stimulated endothelial 

cells by 58±12%. This suggests that another molecule expressed on the naïve 

T cells may also be contributing to the tethering and rolling of naïve T cells to 

C/S stimulated endothelial cells.  

 

Interestingly, blocking of CD44 adhesion molecules on the naïve T cells 

successfully inhibited the number of interacting naïve T cell by 78±14%. 

CD44 is a T cell activation marker and naïve T cell expresses low level of 
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CD44 (Mackay et al., 1990). CD44 had been reported to be involved in 

activated T cell migration (Baaten et al., 2010). Yet, blocking study showed 

that CD44 plays a major role in naïve T cell-C/S stimulated endothelial cells 

interactions (Figure 3.5C, black bar). This observed interaction is specific for 

C/S stimulated endothelial cells as blocking CD44 on naïve T cells did not 

affect the naïve T cell interactions with TNF-α stimulated endothelial cells 

(Figure 3.5C, white bars).   

 

The binding partner of CD44 is HA (Peach et al., 1993). The data suggests 

that C/S stimulated endothelial cells could express HA on the surface which 

interacts with CD44 on the naïve T cells. To verify the presence of HA on C/S 

stimulated endothelial cells, the endothelial cells were treated with 

hyaluronidase to digest off any HA present on the surface of endothelial cells. 

Hyaluronidase treatment significantly reduced the number of interacting naïve 

T cells by 58±4% as compared to untreated negative control (Figure 3.5D). 

Treating the C/S stimulated endothelial cells with deactivated (boiled) 

hyaluronidase did not inhibit the observed naïve T cell-C/S stimulated 

endothelial cell interactions (Figure 3.5D, white bar). The data strongly 

suggests that HRS cell derived factors in the C/S could stimulate endothelial 

cells to upregulate HA production. 
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Figure 3.5: Naïve T cell interactions with KM-H2 C/S stimulated 

endothelial cells are mainly mediated by ICAM-1 and HA on the 

endothelial cells; and L-selectin, CD44 and β2-integrin on the naïve T 

cells. (A) Blocking of ICAM-1, but not VCAM-1 and E-selectin expressed on 

C/S stimulated endothelial cells inhibited naïve T cell interactions. (B) 

Blocking of CD18 and L-selectin on the naïve T cells significantly reduced the 

interaction between the T cells and C/S stimulated endothelial cells. (C) 

Blocking of CD44 function on the naïve T cells inhibited naïve T cell 

interactions with C/S stimulated endothelial cells but not TNF-α stimulated 

endothelial cells. (D) Treatment of C/S stimulated endothelial cells with 

50μg/ml of hyaluronidase showed a drastic reduction in the number of 

interacting naïve T cells. Treatment with deactivated (boiled) hyaluronidase 

was used as the negative control. Values shown are the mean + SEM from 

three different experiments. * indicates statistical difference compared to 

untreated endothelial cells (or untreated naïve T cells) at p<0.05.  

 

 

 



Chapter 3: Result 

 

96 
 

3.6 C/S stimulated endothelial cells exhibit enhanced naïve and memory T 

cell transmigration in response to SDF-1α (CXCL12) 

Transmigration of naïve and memory T cell across C/S stimulated endothelial 

cells in response to SDF-1α is enhanced significantly as compared to 

unstimulated endothelial cells (Figure 3.6A and B). Treatment of naïve T cells 

with G-protein coupled receptor inhibitor, pertussis toxin, partially reduced the 

number of transmigrated naïve T cell across C/S stimulated endothelial cells 

(Figure 3.6A). However, the number of transmigrated naïve T cell across 

TNF-α and unstimulated endothelial cells showed only a slight reduction after 

pertussis toxin treatment. The data suggests that transmigration of naïve T 

cells across C/S stimulated endothelial cells in response to SDF-1α is mediated 

primarily by G-protein coupled receptor. In contrast, transmigration of 

memory T cell in response to SDF-1α is sensitive to PTX treatment. In fact, 

treatment of memory T cells with pertussis toxin successfully reduced the 

number of transmigrated memory T cell to basal level in all the endothelial 

cell conditions tested (Figure 3.6B).  
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Figure 3.6: KM-H2 C/S stimulated endothelial cells show enhanced T cell 

transmigration in response to SDF-1 α (CXCL12). (A) Naïve T cells 

efficiently transmigrate across KM-H2 C/S and TNF-α stimulated endothelial 

cell monolayers in response to SDF-1α. Responsiveness of naïve T cells to 

SDF-1α is only partially pertussis toxin sensitive. (B) Memory T cells 

efficiently transmigrate across KM-H2 C/S stimulated and TNF-α stimulated 

endothelial cell monolayers in response to SDF-1α. Responsiveness of 

memory T cells to SDF-1 is pertusis toxin sensitive. Values shown are the 

mean + SEM from four different independent experiments. * indicates 

statistical difference compared to untreated endothelial cells in response to 

SDF-1α at p<0.05. # indicates statistical difference compared unstimulated 

endothelial cells in the presence of SDF-1α at p<0.05. ** indicates statistical 

difference compared pertussin toxin treated naïve (or memory T) cells 

transmigrated across endothelial cells in response to SDF-1α at p<0.05.     

 

 



Chapter 3: Result 

 

98 
 

3.7 C/S activation of endothelial cells is NFκB dependent 

I carried out a series of protein analysis experiments to better understand the 

mechanisms through which KM-H2 C/S stimulated endothelial cells utilize to 

up-regulate adhesion molecule expression. Western blot analysis showed that 

stimulation of endothelial cells with C/S as early as 15 minutes can induce 

higher phosphorylated ERK and p38 expression. JNK activity assay was used 

to measure the JNK activity on the endothelial cells by detecting 

phosphorylated c-Jun expression. Data from JNK activity assay (Figure 3.7A, 

bottom panel), showed that C/S stimulated endothelial cells exhibit higher 

expression of phosphorylated c-Jun compared to unstimulated endothelial cells 

(Figure 3.7A). This implies that the KM-H2 C/S up-regulates JNK activity in 

the C/S stimulated endothelial cells. Besides that, KM-H2 C/S stimulated 

endothelial cells also expressed more nuclear p65 than unstimulated 

endothelial cells. The level of expression of nuclear p65 in the C/S stimulated 

endothelial cells was comparable to TNF-α stimulated endothelial cells 

(Figure 3.7B).  

 

To verify the importance of nuclear p65 expression in regulating adhesion 

molecule expression on the stimulated endothelial cells, the endothelial cells 

were pretreated with the NFκB inhibitor, Bay 11-7085, prior to stimulating 

with KM-H2 C/S. Bay 11-7085 inhibits NFκB activity by inhibiting IkBa 

phosphorylation thus preventing the translocation of NFκB into the nucleus 

(Hu et al., 2001).  The amount of Bay11-7085 used is twice the dose 

recomended in the product data sheet to inhibit 50% of TNF-α induced 

phosphorylation of IκBα (IC50).  Pretreatment of endothelial cells with the 

NFκB inhibitor, Bay 11-7085, prior to C/S stimulation could prevent nuclear 

p65 translocation. A Western blot analysis showed that nuclear p65 expression 

was abolished almost completely in Bay 11-7085 treated endothelial cells as 

compared to untreated and vehicle-treated control, DMSO (dimethyl 

sulfoxide), amount of DMSO used was 0.2μl / 1ml media (volume/ volume) 

(Figure 3.7C, upper panel). To confirm that nuclear p65 protein expression in 

C/S stimulated endothelial is important for the up-regulation of adhesion 

molecule expression, I assayed the endothelial cells for cell surface expression 
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of various inducible adhesion molecules. An ELISA analysis showed that 

pretreatment of endothelial cells with Bay11-7085 did not up-regulate ICAM-

1, VCAM-1 and E-selectin expression. The expression level of ICAM-1, 

VCAM-1 and E-selectin on Bay 11-7085-treated C/S stimulated endothelial 

cells was similar to unstimulated endothelial cells (Figure 3.7C; lower panel).  

 

   

 

 

 

Figure 3.7: Up-regulation of adhesion molecule expression on KM-H2 C/S 

stimulated endothelial cells. (A) Western blot analysis showed that KM-H2 

C/S stimulated endothelial cells expressed higher level of phosphorylated 

ERK and p38 as well as phosphorylated c-Jun as compared to unstimulated 

endothelial cells. Beta actin was used as loading control for cytoplasmic 

proteins. (B) C/S stimulated endothelial cells showed higher nuclear p65 

expression as compared to unstimulated endothelial cells. TNF-α and 

unstimulated EC served as the positive and negative controls, respectively. B-

B 

A 

C 
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lamin was used as a loading control for nuclear protein. (C) Western blot 

analysis showed reduced nuclear p65 expression after Bay 11-7085 treatment. 

Inhibition of nuclear p65 translocation with 20µM of Bay 11-7085 inhibitor 

prevented the up-regulation of inducible ICAM-1, VCAM-1 and E-selectin 

expression on C/S stimulated endothelial cells. Endothelial cells were pre-

treated with 20µM of Bay 117085 before stimulation with KM-H2 C/S. The 

Western blot analysis shown is one representative of two (for A) or three 

independent experiments (for B and C). Values shown are the mean + SEM 

from three different experiments for C. * indicates statistical significant 

compared to C/S treated endothelial cells at p<0.05.  

 

 

 

3.8 HRS cells actively secrete various cytokines into the C/S 

To determine the soluble mediator(s) secreted by the HRS cell lines, KM-H2, 

L1236 and L540, I did a cytokine multiplex assay. Data showed differences in 

the cytokine secretion profile between KM-H2, L1236 and L540 (Table 3.1). 

C/S derived from KM-H2 and L1236 cells contained significantly high 

concentration of IL-6 compared to L540 cell C/S which contained negligible 

level of IL-6. The concentration of TNF-α present in all three types of HRS 

cell-derived C/S was low and ranged between 145-230pg/ml. The 

concentration of other pro-inflammatory cytokines, including IL-1α, IL-1β, 

IFNγ and chemokine, IL-8 were either very low or not detected in the C/S 

from these three HRS cell lines (Table 3.1). 
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Cytokines  KM-H2 

(pg/ml) 

L1236 

(pg/ml) 

L540 

(pg/ml) 

TNF-α 145.7 228.4 156.1 

IL-6 1777.2 >2000 60.0 

IL-1α <0 <0 <0 

IL-1β <0 <0 <0 

IFNγ 8.2 62.3 62.3 

IL-2 <0 <0 <0 

IL-4 <0 <0 <0 

IL-8 <0 <0 <0 

IL-10 <0 <0 <0 

IL-13 111.2 104.7 107.1 

 

Table 3.1: HRS cells secrete various cytokines into the C/S. KM-H2, 

L1236 but not L540 secrete high levels of IL-6. The C/S from all three HRS 

cell lines contain very little TNF-.  

 

 

3.9 C/S derived IL-6 does not play any role in stimulating endothelial cells 

Knowing that L540 cells C/S contains negligible amount of IL-6 and that C/S 

derived from L540 cell line could not stimulate endothelial cells, I suspected 

that IL-6 is the stimulatory factor in the KM-H2 and L1236 derived C/S. To 

determine the role of KM-H2 derived IL-6 in stimulating endothelial cells, IL-

6 neutralizing antibody (10µg/ml) was used to neutralize IL-6 in the KM-H2 

C/S prior to endothelial cell stimulation. The amount of IL-6 neutralizing 

antibody used was able to reduce IL-6 activity derived from breast cancer cell 

line, MDA-MB-231, in my laboratory mate's breast cancer metastatic project 

(data not shown). The up-regulation of ICAM-1, VCAM-1 and E-selectin on 

unstimulated endothelial cells; and endothelial cells activated with C/S alone, 

C/S treated with IL-6 neutralizing mAb and C/S treated with mouse IgG 

(control) was detected by ELISA. The data show that neutralization of IL-6 in 

the C/S prior to endothelial cell stimulation could not inhibit the up-regulation 
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of ICAM-1, VCAM-1 and E-selectin expression (Figure 3.8). The expression 

of all three inducible adhesion molecules was comparable across all conditions.  

Thus, IL-6 is not the dominant stimulatory factor present in the KM-H2-

derived C/S. 

 

Figure 3.8: KM-H2 derived IL-6 is not involved in stimulating endothelial 

cells. Neutralizing IL-6 in the C/S did not have any inhibitory effect on the 

induction of adhesion molecule expression on the C/S stimulated endothelial 

cells. Values shown are the mean + standard deviation from two different 

experiments.  

 

 

3.10 TNF-α is not the dominant stimulating factor in the KM-H2 C/S 

So far my data suggest that the C/S stimulatory effect on the endothelial cells 

is very much similar to the stimulatory effect of TNF-α. Hence, the next step 

was to determine whether the C/S contains KM-H2-derived TNF-α. To 

measure the bioactivity of TNF-α in the C/S, the L929 cell cytotoxic assay 

was used. As shown in Figure 3.9A, incubation of L929 cells with L1236, 

KM-H2 and L428 C/S for 12 hours induced extensive cell death of L929 cells 

(Figure 3.9A). However, pre-treatment of KM-H2 C/S with TNF-α 

neutralizing antibody did not improve the survival of L929 cells. As shown in 

Figure 3.8B (upper panel), incubation of L929 cells with 2-fold serially diluted 

C/S that were pre-treated with TNF-α neutralizing antibody did not rescue the 

viability of L929 cells compared to their respective untreated control condition. 

The concentration of the TNF- neutralizing antibody used was sufficient to 
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neutralize 10ng/ml of recombinant TNF- in control wells (Figure 3.9B, lower 

panel).   

 

To further verify that TNF-α is not the stimulatory factor in KM-H2 C/S, I 

treated the C/S with neutralizing TNF-α antibody prior to endothelial cell 

stimulation. According to the ELISA result, the stimulatory effect of KM-H2 

C/S on endothelial cells to induce the upregulation of ICAM-1, VCAM-1 and 

E-selectin was only slightly attenuated when the KM-H2 C/S was first pre-

treated with TNF-α neutralizing antibody prior to use for endothelial cell 

stimulation. In contrast, the TNF-α-treated control wells showed significant 

reduction in inducing endothelial cell activation after being treated with the 

TNF-α neutralizing antibody (Figure 3.9C). Taken together, these data suggest 

that KM-H2-derived C/S contains an insignificant amount of TNF-α and TNF-

α is not the dominant stimulatory factor in the C/S.  
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Figure 3.9: HRS cell C/S contains minimum amount of TNF-α. (A) While 

C/S derived from KM-H2, L1236 and L428 caused significant cytotoxicity of 

L929 cells, L540-derived C/S did not induce any L929 cell death. (B) 

Pretreatment of C/S from KM-H2 cells with the TNF-α neutralizing antibody 

prior to L929 cell incubation did not improved L929 cell viability. The dosage 

of TNF-α antibody used can effectively neutralize 10ng/ml of recombinant 

TNF-α in-vitro. (C) Neutralizing of TNF-α in the C/S did not have any 

profound inhibitory effect on the induction of adhesion molecule expression 

on C/S stimulated endothelial cells. Recombinant human TNF-α alone and 

recombinant human TNF-α pre-treated with TNF-α neutralizing antibody 

served as positive controls in this series of experiments. Values shown are the 

mean + SEM from three different experiments. # indicates statistical 

difference compared to untreated L929 cells at p<0.05. * indicates significant 

difference compared to TNF-α stimulated endothelial cells.  

 

 

 

3.11 HRS cells actively secrete LTα into the C/S 

Data show that neutralizing TNF-α in the KM-H2 C/S did not improve L929 

cell viability, thus suggesting a different mediator is killing the L929 cells. It 

has been previously reported that L929 cells are sensitive to both TNF-α and 
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lymphotoxin-α (LTα) (Cuturi et al., 1987). Furthermore, work published by 

Hsu et al  suggested that KM-H2 and HDLM-2 cells can produce both TNF-α 

and LTα (Hsu and Hsu, 1989). Hence, LTα neutralizing antibody was used to 

determine whether biologically active LTα was present in the C/S. Pre-

treatment of the KM-H2 C/S with 1µg/ml of LTα neutralizing antibody prior 

to incubation with L929 cells resulted in reduced cytotoxic effect of the C/S 

and an increase in survival of the L929 cells (Figure 3.10A, black bar). A 

similar finding was seen when L1236 and L428 C/S were treated with LTα 

neutralizing antibody prior to incubating with L929 cells (Figure 3.10A, 

stripped and blank bars). Treatment of the C/S with mouse IgG (non-

neutralizing control) did not result in similar rescue of L929 cell survival. This 

suggests that HRS cells are producing LTα, a homologue of TNF-α, which is 

also cytotoxic to L929 cells.  

 

Next I carried out intracytoplasmic flow cytometry taining to check for 

cytoplasmic LTα expression and determine the concentration of soluble LTα 

in the C/S by ELISA. Intracytoplasmic flow cytometry results show that LTα 

is present in L1236 and KM-H2 cells but not in L428 and L540 cells (Figure 

3.10B). L1236 cells have the highest amount of intracytoplasmic LTα 

followed by KM-H2 cells. LTα ELISA result reveals a similar profile as the 

intracytoplasmic flow cytoplasmic staining. L1236 cells secrete the highest 

amount of LTα into the C/S, followed by KM-H2 cells and L428 cells (Figure 

3.10C). Negligible amount of LTα was detected in the L540-derived C/S 

(18±20pg/ml). While intracytoplasmic expression of LT was low (Figure 

3.10B), LT concentration in the L428-derived C/S was higher than expected 

(527±157pg/ml, Figure 3.10C). This suggests that LTα produced by L428 

cells is rapidly secreted. 
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Figure 3.10: HRS cells actively produce LTα. (A) Neutralization of LTα in 

KM-H2, L1236 and L428 C/S improved viability of L929 cells compared to 

untreated and mouseIgG treated controls. (B) Intracytoplasmic flow cytometry 

staining showed that L1236 produced highest amount of LTα followed by 

KM-H2, L428 and L540. (C) LTα ELISA analysis showed that C/S derived 

from L1236 contained highest concentration of LTα followed by KM-H2 and 

L428. C/S derived from L540 cells contained negligible amount of LTα. 

Values shown are the mean + SEM from three different experiments. * 

indicates significant difference compared to untreated control at p<0.05. 
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3.12 C/S derived LTα plays a significant role in stimulating endothelial 

cells 

Next I proceed to confirm that LTα in KM-H2 C/S is the active soluble factor 

responsible for the stimulation of endothelial cells.  As shown in Figure 3.11A, 

pre-treatment of KM-H2 C/S with LTα neutralizing antibody (1µg/ml) before 

use to stimulating endothelial cells successfully reduced the induction of 

ICAM-1, VCAM-1 and E-selectin expression by approximately 35±15% 

compared to their untreated and isotype control. Furthermore, endothelial cells 

stimulated with C/S pre-treated with LTα neutralizing antibody also show 

reduced naïve T cell interactions compared to untreated and mouse IgG treated 

control (Figure 3.11B). Taken together, my data suggest that HRS cell-derived 

LT is the active factor that activates endothelial cells to facilitate T cell 

recruitment.  

 

To determine whether my finding has clinical relevance, I carried out IHC 

staining for LTα expression on the paraffin tissue sections from two cohorts of 

cHL patients; from United Arab Emirates and from Singapore. Variable 

intensity of LTα staining was seen among the cases stained. Positive LTα 

expression could be detected in either in the HRS cells and /or in the stroma 

areas (Figure 3.11C). Collectively, strong LTα expression was detected in 

about 38.9% (7 out of 18 cases) and 28.5% (4 out of 14 cases), respectively, of 

the tissues samples from Singapore and United Arab Emirates (UAE) (Table 

3.2) 
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Figure 3.11: HRS cells produce biologically active LTα that stimulates 

endothelial cells to upregulate inducible adhesion molecules to facilitate 

naïve T cell interactions. (A) Neutralization of LTα in the KM-H2 C/S 

decreased the stimulatory effect of the C/S resulting in reduced induction of 

ICAM-1, VCAM-1 and E-selectin expression on endothelial cells as compared 

to untreated and mouse IgG isotype controls. (B) Neutralization of LTα in the 

C/S derived from KM-H2 cells prior to endothelial cell stimulation led to 

reduced naïve T cell interactions. The in-vitro flow chamber experiments were 

carried out at the defined shear stress of 0.36 dynes/cm
2
. (C) 

Immunohistochemical staining of paraffinized tissue sections demonstrated 

LTα expression in HRS cells or in the stroma. The image shows a 

representative tissue sample with a LTα staining score of 3 compared to 

mouse IgG control. Values shown are the mean + SEM from three different 

experiments for A and B. * indicates significant difference compared to 

untreated control at p<0.05. # indicates significant difference compared to 

untreated KM-H2 C/S stimulated endothelial cell at p<0.05. 

 
 

cHL cases 

Total 

cases 

stained 

Strong Medium Weak 

UAE 14 4 (28.5%) 4 (28.5%) 6 (43.0%) 

Singapore 18 7 (38.9%) 7 (38.9%) 4 (22.2%) 

Table 3.2: Summary of LT scores for 32 cases of cHL screened. Overall, 

approximately 4 out of 14 cHL cases from UAE and 7 out of 18 cHL cases 

from Singapore show strong LT expression. 
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3.13 NFκB activity in the HRS cells played a role in regulating LTα 

expression 

There have been reports that suggested the presence of putative NFκB binding 

sites on the LTα promoter and enhancer region as reviewed by Shebzukhov 

and Kuprash (Shebzukhov Iu and Kuprash, 2011).  Hinz et al showed that  

NFκB activity in HRS cells contributes to LTα production (Hinz et al., 2002). 

Hence, to confirm that the NFκB pathway also regulates LTα expression in my 

cells, I used the NFκB activity inhibitor, Bay 11-7085 to inhibit NFκB activity 

in the KM-H2 cells. As shown in Figure 3.12A, after 12 hours of inhibitor 

treatment, nuclear p65 expression in the Bay 11-7085-treated KM-H2 cells 

was inhibited in a dose dependent manner. Consistent with this, the 

concentration of LTα in the C/S from the inhibitor treated KM-H2 cells was 

also reduced in a dose-dependent manner compared to C/S from vehicle-

treated (DMSO) KM-H2 cells (Figure 3.12B). Maximum reduction 

(approximately 39±14%) was seen when 20µM of Bay 11-7085 was used. 

Treatment with Bay 11-7085 and inhibition of NFB activity could only 

partially reduce LT production; thus suggesting that other signaling 

pathways might be involved. 

 

To better understand the regulation of LT production in the KM-H2 cells, I 

also analyzed the expression of various AP-1 complex components in the Bay 

11-7085-treated cells. Western blot analysis showed that treatment of KM-H2 

cells with Bay 11-7085 does not affect cytoplasmic phosphorylated JNK and 

total JNK expression (Figure 3.12C, upper panel). Interestingly, Bay 11-7085-

treated KM-H2 cells show increased nuclear phosphorylated c-Jun expression 

in a dose dependent manner. Total c-Jun expression, however, remained 

unchanged. Furthermore, Bay 11-7085 treatment at the highest dose of 20μM, 

also resulted in reduced nuclear phosphorylated c-Fos and total c-Fos 

expression in the treated KM-H2 cells (Figure 3.12C). My findings suggest 

that inhibiting nuclear p65 expression on KM-H2 cells might have also affect 

AP-1 activity. Work done by Fujioka et al suggested that there is a correlation 

between NFκB activity and AP-1 activity. Abolishing NFκB activity will also 
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reduce AP-1 activity by reducing c-Fos protein expression (Fujioka et al., 

2004).  

 

 

 

Figure 3.12: NFκB activity in HRS cells regulates LTα production. (A) 

Western blot analysis showed reduced nuclear p65 expression in the Bay 11-

7085-treated KM-H2 cells in a dose dependent manner. TATA box served as 

nuclear protein loading control. (B) Treatment of KM-H2 cells with three 

different doses of Bay 11-7085, 5μM, 10μM and 20μM, reduced LTα 

production. (C) Western blot analysis showed that phosphorylated c-Jun 

expression increased at the 20μM inhibitor treatment. While phosphorylated 

and total c-Fos expression was reduced drastically at the highest concentration 

used, phosphorylated and total JNK expression remained unchanged. TATA 

box served as nuclear protein loading control. Beta actin served as cytoplasmic 

protein loading control. The Western blot shown is a representative picture for 

three independent experiments for A and C; and a representative experiment 

from two independent experiments for B. 
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3.14 The AP-1 transcription factor activity regulates LTα production in 

HRS cells 

Subsequent literature search in combination with transcription factor database 

search (TFSEARCH) suggested that AP-1 could be one of the transcription 

factors involved in regulating LTα production. AP-1 is a transcription factor 

complex comprises of c-Jun and c-Fos. SP600125 is a reversible ATP-

competitive JNK inhibitor which prevents phosphorylation of JNK thus 

concomitantly inhibiting phosphorylation of c-Jun and subsequently AP-1 

transcription factor activity (Hibi et al., 1993). Treatment of KM-H2 cells with 

40µM, 60µM, 80µM and 100µM of SP600125 reduced cytoplasmic 

phosphorylated JNK, nuclear phosphorylated c-Jun and total c-Jun expression 

(Figure 3.13A). C/S was harvested from KM-H2 cells treated with SP600125 

for 12 hours to measure the concentration of secreted LTα. As shown in 

Figure 3.12B, SP600125 reduced LTα production in a dose dependent manner. 

The highest dose of SP600125 at100µM could reduce LTα production by 

30±10% as compared to untreated KM-H2 cells.  

 

Functional studies of C/S harvested from SP600125 treated KM-H2 cells were 

carried out using cell based ELISA and parallel flow chamber assay. C/S from 

KM-H2 cells treated with SP600125 (60µM and 100µM) exhibit reduced 

stimulatory effects compared to C/S from untreated KM-H2 cells. Induction of 

adhesion molecule expression on the endothelial cells stimulated by C/S 

harvested from SP600125 treated KM-H2 cells was about 30±10% lower that 

that induced by C/S from untreated KM-H2 cells (Figure 3.13C). The 

reduction is most evident with E-selectin expression followed by ICAM-1 and 

VCAM-1. Consistent with lower induction of inducible adhesion molecules on 

the endothelial cells stimulated with C/S from SP600125 treated KM-H2 cells, 

these endothelial cells also show reduced naïve T cell interactions at 

0.76dynes/cm
2
. The reduction of naïve T cells interactions is approximately 

40±12% when compared to the untreated C/S stimulated endothelial cells 

(Figure 3.13D).  
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Work done by Mathas et al suggested that c-Jun expression is found in the 

HRS cells (Mathas et al., 2002). IHC staining data for c-Jun on the paraffin 

tissue sections also showed strong c-Jun expression in the HRS cells in the 

tissues samples from Singapore and United Arab Emirates (Figure 3.13E). 

Taken together, although JNK and c-Jun activity was completely abrogated, 

LTα production was only reduced by 30%. This suggests c-Jun and JNK 

activity may not be the dominant regulator of LTα production in KM-H2 cells.  
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Figure 3.13: AP-1 transcription factor activity might not be the main 

regulator of LTα production in HRS cells. (A) A Western blot analysis 

showed that phosphorylated JNK and c-Jun were reduced significantly after 

drug treatment. In addition, total c-Jun was also reduced. However, both 

phosphorylated c-Fos and total c-Fos were not affected. The TATA box served 

as a nuclear protein loading control. Beta actin served as cytoplasmic protein 

loading control. (B) SP600125 treatment at 80µM and 100µM reduced LTα 

production by KM-H2 cells. (C) Endothelial cells stimulated with C/S from 

KM-H2 cells treated with 60µM or 100µM SP600125 showed lower adhesion 

molecule expression compared to respective control. (D) Fewer naïve T cell 

interactions were detected with endothelial cells activated with C/S derived 

from 60µM SP600125 treated KM-H2 cells at a defined shear stress of 0.76 

dynes/cm
2
. Endothelial cells stimulated with C/S from untreated KM-H2 cells 

or DMSO treated KM-H2 cells served as controls. (E) IHC staining 

demonstrated nuclear localization of c-Jun in the HRS cells. Rb Sera stained 

section served as negative control. Western blot analysis is a representative of 
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three independent experiments for A; values shown are the mean + SEM from 

three different experiments for B, C and D; a representative case of c-Jun 

staining for E.  * indicates significant difference compared to untreated KM-

H2 cells (or untreated C/S stimulated endothelial cells) at p<0.05.   
 

 

 

3.15 Cox-1 but not Cox-2 enzymatic activity regulates LTα production in 

HRS cells 

Ferreri et al showed that PGE2 reduced LTα production by regulating its 

transcription on activated T cells (Ferreri et al., 1992). Besides that, PGE2 also 

plays a significant role in mediating homeostasis of the cHL tumor 

microenvironment (Kuppers et al., 1994). Cox-2 expression is found to be 

elevated in the HRS cells of cHL (Mestre et al., 2012). Since PGE2 is 

synthesized by Cox activity, I also investigated whether the Cox pathway has 

any role in the LTα production on HRS cells. To do this, KM-H2 cells were 

treated with 0.1mM, 0.3mM and 0.5mM of non-selective Cox inhibitor, 

Indomethacin. The LTα concentration in the C/S was measured after 12 hours 

of drug treatment. My data demonstrated that Indomethacin significantly 

reduced LTα production on the treated KM-H2 cells at the dose of 0.3mM 

(Figure 3.14A). However, Celecoxib, which is a Cox-2 selective inhibitor, did 

not have significant effect on LTα production on the treated KM-H2 cells at 

the ranged of dosage tested (Figure 3.14B). This data suggests that Cox-1 but 

not Cox-2 is the critical mediator regulating LTα production in KM-H2 cells.  

 

Consistent with reduced LTα production, endothelial cells stimulated by C/S 

from the Indomethacin treated KM-H2 cells show reduced ICAM-1, VCAM-1 

and E-selectin expression (Figure 3.14C). The most effective dose of 

Indomethacin used to reduce adhesion molecules expression is 0.3mM. 

Expression of adhesion molecules on the C/S stimulated endothelial cells was 

reduced by 67±14% on ICAM-1, 78±13% on VCAM-1 and 81±10% on E-

selectin as compared to untreated control. Endothelial cells stimulated with 

C/S from Indomethacin treated KM-H2 cells also showed reduced naïve T cell 

interactions (Figure 3.14D). The number of interacting naïve T cells was 
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reduced by 58±16% when compared it to the untreated C/S stimulated 

endothelial cells.  

 

A Western blot analysis showed that Indomethacin treatment increased 

cytoplasmic phosphorylated JNK and c-Jun expression at 0.3mM. 

Interestingly, Indomethacin treated KM-H2 cells reduced nuclear 

phosphorylated and total c-Fos expression. c-Fos expression diminished 

completely after 12 hours of Indomethacin treatment (Figure 3.14E, lower 

panel). However, nuclear p65 expression in Indomethacin treated KM-H2 

cells remained unchanged. As shown in Figure 3.14F, combination treatment 

of Indomethacin (0.3mM) and SP600125 (60µM) did not improve the viability 

of L929 cells as compared to Indomethacin treatment alone.  

 

Taken together, my data suggests that production of LTα in KM-H2 cells is 

predominantly mediated by Cox1 enzyme via the Cox pathway. Furthermore, 

data from my Western analysis suggests that that Cox-1 mediated LTα 

production might be signaling through AP-1 pathway.   
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Figure 3.14: Cox-1 but not Cox-2 regulates LTα production in HRS cells. 

(A) Indomethacin treatment at 0.1mM and 0.3mM effectively reduced LTα 

production by KM-H2 cells as measure by LTα ELISA. (B) Celecoxib 

treatment at 25μM, 50μM and 75μM did not have any effect on LTα 
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production by KM-H2 cells. (C) Endothelial cells stimulated with C/S derived 

from KM-H2 cells treated with 0.3mM Indomethacin showed attenuated up-

regulation of adhesion molecule expression. Untreated KM-H2 cells or DMSO 

treated KM-H2 cells served as untreated and vehicle-treated controls 

respectively. (D) Endothelial cells stimulated with C/S harvested from 0.3mM 

Indomethacin treated KM-H2 cells exhibit reduced naïve T cell interactions at 

a shear stress of 0.76dynes/cm
2
 under defined flow condition. (E) Western blot 

analysis showed that increased phosphorylated JNK and c-Jun expression in 

0.3mM Indomethacin treated KM-H2 cells. However, phosphorylated and 

total c-Fos expression in KM-H2 cells was completely abolished by the drug 

treatment. Nuclear p65 expression remained unchanged after drug treatment. 

TATA box protein served as nuclear protein loading control. Beta actin served 

as cytoplasmic protein loading control. (F) Combination treatment of 

SP600125 (60µM) and Indomethacin (0.3mM) is not more effective in 

reducing cytotoxicity of L929 cells  compared to single treatment of 

Indomethacin. Values shown are the mean + SEM from three different 

experiments for A, B, C, D and F; The Western blot analysis is a 

representative from three independent experiments for E. * indicates 

significant difference compared to untreated KM-H2 cells (or untreated KM-

H2 C/S stimulated endothelial cells) at p<0.05. 
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Chapter 4: Discussion 

 cHL has a very unique tumor microenvironment (Liu et al., 2013). The cHL 

microenvironment resembles a typical inflammatory background. In the cHL 

tumor microenvironment, the minority tumor cells are surrounded by various 

immune infiltrates. HRS cells require a highly inflamed background to survive 

and grow well. To maintain a highly inflamed tumor microenvironment, HRS 

cells produce various cytokines and chemokines to actively recruit immune 

cells. Extensive studies had been done on studying cytokine production by the 

HRS cells and the role of HRS cell-derived chemokines on immune cell 

recruitment. T cell recruitment plays a significant role in the pathogenesis of 

the disease since HRS cells require survival signals from T cells. However, 

little is known about how HRS cells modulate the endothelial cells to facilitate 

T cell recruitment. This study describes the process by which I identify HRS 

cell-derived Lymphotoxin- (LTα) as an active mediator that modulates 

endothelial cell function and T cell recruitment. 

 

 

4.1 HRS cell-derived LTα stimulation of endothelial cells 

The notion that endothelial cell function is modulated by soluble mediators 

derived from tumor cells is not new. Several studies have shown that soluble 

mediators by tumor cells can modulate endothelial cell function. Vidal-

Vanalocha et al showed that B16M tumor cells can secrete products to induce 

hepatic sinusoidal endothelial (HSE) cells to produce IL-1, TNF-α and IL-18 

that act as autocrine factors to promote VCAM-1 expression (Vidal-

Vanaclocha et al., 2000). The study showed that addition of B16M 

conditioned medium to HSE cells resulted in increased number of B16M 

adherence. This was completely abrogated by neutralization of IL-18 which 

was responsible for the induction of VCAM-1 expression on HSE and tumour 

cell adhesion. Furthermore, the study also showed that IL-1β alone or together 

with TNF- induced the production of IL-18 by HSE. More recently, Estrada-

Bernal et al revealed that soluble products derived from Hodgkin lymphoma 
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cell lines have the ability to enhance E-selectin expression on stimulated 

endothelial cells and facilitate histiocyte cell line, U937, adherence (Estrada-

Bernal et al., 2003). Finding in this study is consistent with their observation. 

Besides E-selectin, I also detected the up-regulation of ICAM-1 and VCAM-1, 

two other adhesion molecules that are critical in regulating endothelial cell-T 

cell interactions (Carlos and Harlan, 1994; Tedder et al., 1995). C/S derived 

from three out of four HRS cell lines (KM-H2, L1236 and L428 but not L540) 

exhibit stimulatory activity with compatible potency in activating endothelial 

cells. This suggests that different HRS cell lines have different cytokine 

expression profiles that contribute to the above observation.  

 

The first two HRS cell lines, L428 and L540, were established in 1979 from 

patients with advanced stage Hodgkin lymphoma (clinical stage IVB) (Diehl 

et al., 1982). These cells originated from pleural effusion and bone marrow, 

respectively. With few exceptions, most of the established cell lines were 

established from bone marrow, pleural effusion and peripheral blood of 

advanced stage patients. So far, about thirteen cell lines had been established 

and described in the literature (Hoppe et al., 2007). Analysis of 

immunophenotype, karyotype, Immunoglobulin (Ig) or T cell receptor of these 

cell lines revealed heterogeneous results but evidence of their derivation from 

HRS cells was still lacking then (Diehl et al., 1990). In 1996, another new cell 

line, L1236 was established from primary peripheral blood mononuclear cells 

of a patient with advanced HL disease of mixed cellularity subtype. Single cell 

polymerase chain reaction (PCR) showed that the genomic sequence of Ig 

gene arrangement of the HRS cells in the bone marrow of patients was 

identical to that of L1236 cells (Wolf et al., 1996); thus confirming that L1236 

was indeed derived from HRS cells. In this study I have carried out the 

experiments using four different HRS cell lines that are available 

commercially. As shown in my results, culture supernatants from three out of 

the four lines, including L1236, showed similar stimulatory effects on 

endothelial cells, thus suggesting that the active stimulatory factor which I 

have identified as LTα is made in three HRS cell lines of different origins.  



 

120 
 

LTα production by HRS cell lines remained controversial with different 

groups of researchers reporting differences in LTα production by the cultured 

HRS cells. Foss et al showed that L540 cells have comparable ability to 

secrete LTα compared to L428 and KM-H2 cells as determined by L929 

cytotoxic assay (Foss et al., 1993). However, another report by Kretschemer et 

al showed that L428 cells can secrete LTα to induce high cytotoxic effect on 

L929 cells but L540 cells did not produce soluble LTα and cytotoxic effect 

was not observed. In addition, their report showed that L540 cells express LTα 

mRNA and immunostaining of L540 cells with LTα antibody showed fine 

granular cytoplasmic and pronounced Golgi reactivity. The author concluded 

that L540 could produce LTα which could not be secreted (Kretschmer et al., 

1990). The finding is consistent with their observation. Intracytoplasmic flow 

cytometry staining revealed that L540 produced intracytoplasmic LTα to a 

level comparable to L428 cells. But the LTα ELISA revealed a very low 

concentration of LTα in the L540-derived culture supernatant (C/S) compared 

to L428-derived C/S. Similarly, Hsu and Hsu  also proved that the HRS cell 

lines, KM-H2 and HDLM-2, can produce soluble LTα but they failed to 

localize LTα expression on the HRS cells in the HL tissue samples (Hsu and 

Hsu, 1989). Further evidence provided by Sappino et al proved the presence of 

LTα in the cHL lesion. Total cellular RNA was extracted from the cHL lymph 

node. LTα mRNA expression in the 21 out of 23 cases of cHL was found to 

have significantly high expression of LTα mRNA especially in the four cases 

of lymphocytic predominant subtype (Sappino et al., 1990). I have further 

confirmed my in-vitro findings with staining for LTα in paraffinized tissue 

sections from patients diagnosed with cHL. Albeit variable and weak in some 

cases, positive staining for LTα was detected in the HRS cells, further 

supporting the hypothesis that HRS cells in-situ can produce LTα to modulate 

behavior of cells in the microenvironment. 

 

IHC staining of the tissue sections from cHL patients revealed differential 

expression of LTα in 32 cases investigated. In general, preliminary evidence 

suggests that LTα expression from Singapore cohort stained stronger than 

United Arab Emirates (UAE) cohort. The observed differences could be due to 
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technical issues such as preservation of antigen since the tissues from the two 

cohorts were processed differently. Alternatively, this could be due to different 

genetic background of the Singaporean population and UAE population. LTα 

polymorphism is studied extensively in the past few years and is linked 

strongly with various cancerous diseases. LTα polymorphisms cause different 

levels of LTα expression or bioactivity. The high bioactive genotype is 

associated with the risk of developing cancers of the lung (Shimura et al., 

1994), colon or rectum (de Jong et al., 2002) and non-Hodgkin lymphoma 

(Wang et al., 2006). The low bioactive genotype is associated with the risk of 

developing cervical cancer (Niwa et al., 2005) and endometrial cancer (Niwa 

et al., 2007). To date, LTα polymorphism on the risk of Hodgkin lymphoma 

has not been reported.  

 

However, it was previously shown that there was no correlation observed 

between the LTα gene expression and systemic symptoms (Sappino et al., 

1990). Furthermore, Warzocha et al showed that plasma levels of LT in HL 

patients with B symptoms was not different from  normal healthy population 

(Warzocha et al., 1998). This suggests that the effect of LT is more likely to 

be acting locally than systematically. Consistent with this, my data suggests 

that HRS cell-derived LT can activate endothelial cells to facilitate the 

recruitment of T cells into the lesion.  

 

 

4.2 Pathways involved in upregulation of adhesion molecules expression 

induced by LTα  

In this study, I provided evidence that LTα derived from HRS cells can 

stimulate endothelial cells to up-regulate the expression of ICAM-1, VCAM-1 

and E-selectin. Function of LTα in up-regulating inducible adhesion molecule 

expression was first described by Pober et al in 1987. LTα acts similarly as 

TNF-α causing a rapid and transient induction of E-selectin expression (peak 4 

to 6 hours), gradual but sustained expression of ICAM-1 (plateau 24 hours) 
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(Pober et al., 1987). Besides that, LTα stimulatory effect on endothelial cells 

(human umbilical cord endothelial cells) in up-regulating adhesion molecule 

expression is also mentioned by Suna et al (Suna et al., 2008). LTα activates 

gene expression of VCAM-1 and E-selectin on the stimulated endothelial cells 

after two hours of stimulation as determined by DNA microarray analysis. 

Since LTα homotrimer only binds to TNFRI to elicit its function by the 

canonical NFκB pathway, this suggests that the observed activation on the 

endothelial cells is NFκB dependent (Aggarwal, 2003; Suna et al., 2009).  

 

My data also strongly suggest that activation of endothelial cells by LTα is 

dependent on the NFκB pathway. Abrogating NFκB activity in the LTα 

containing C/S stimulated endothelial cells successfully prevented inducible 

ICAM-1, VCAM-1 and E-selectin expression. NFκB is an essential 

transcription factor that binds to the promoter region of ICAM-1 (Hou et al., 

1994), VCAM-1 (Neish et al., 1995) and E-selectin (Schindler and Baichwal, 

1994). Upon cytokine activation, p65 and p50 complexes will translocate into 

the nucleus and bind to the NFκB sites.  

 

I also showed that KM-H2 derived LTα stimulated endothelial cells expressed 

higher level of phosphorylated ERK and p38 as well as JNK activity compared 

to unstimulated negative control. Work done by Suna et al suggested that 

expression of VCAM-1 induced by LTα is regulated primarily by NFκB and 

PI3K pathway. Besides that, inhibition of p38 and JNK activity by specific 

inhibitors could reduce LTα induced VCAM-1 expression as determined by 

Western blot analysis. Surprisingly, inhibition of ERK activity did not affect 

the expression of VCAM-1 (Suna et al., 2009). This implies that MAP kinase 

might play a role in regulating adhesion molecule expression on the 

endothelial cells induced by C/S derived LTα. The role of MAP kinase in 

regulating adhesion molecule expression is still controversial. Study by Zhou 

et al showed that ERK, p38 and JNK activity has no effect on inducible 

ICAM-1, VCAM-1 and E-selectin expression on the endothelial cells (Zhou et 

al., 2007) but other reports showed otherwise (Pietersma et al., 1997; Read et 
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al., 1997; Westra et al., 2005). Although, I also detected increases in the 

phoshorylation of ERK and p38 as well as enhanced JNK activity, the results 

show that NFκB is the dominant regulator of inducible adhesion molecule 

expression on endothelial cells.  

 

 

4.3 Induction of adhesion molecules and naïve T cell recruitment 

Ruco et al in 1992 showed that paraffinised lymph node sections of Hodgkin 

lymphoma patients expressed ICAM-1, VCAM-1 and E-selectin (Ruco et al., 

1992). ICAM-1 expression was found to be present on all Hodgkin lymphoma 

tissues but VCAM-1 and E-selectin expression was correlated with IL-1/TNFα 

production in Hodgkin disease. Furthermore, they found that VCAM-1 and E-

selectin expression were more pronounced in nodular sclerosis patients tissues 

(Ruco et al., 1992). This suggested that cytokines such as IL-1, TNF and 

LT, secreted by HRS cells can influence endothelial cell function and 

massive T cell infiltration observed in the Hodgkin lymphoma lymph node. 

Report by Machado et al further supports the above findings. They reported 

expression of ICAM-1, VCAM-1 and PNAd in the vasculature of HL tissues 

and concluded that the mechanism for T cell recruitment into HL lesion 

resembles that of naïve or central memory T cell migration into normal lymph 

node (Machado et al., 2009).  

 

My study showed that ICAM-1, but not VCAM-1 and E-selectin, expressed on 

C/S stimulated endothelial cells play a role in mediating the observed naïve T 

cell interactions in-vitro. Function blocking of CD18 and LFA-1 on the naïve 

T cells using monoclonal antibodies further confirmed the importance of 

ICAM-1 in mediating naïve T cell binding to C/S stimulated endothelial cells. 

The data is expected since naïve T cells express low level of α4 integrin or 

VLA4 and are therefore inefficient in binding to VCAM-1 on the stimulated 

endothelial cells. Even though E-selectin had been shown to interact with      

L-selectin, this interaction has only been reported for neutrophils (Kishimoto 
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et al., 1991). Kishimoto et al showed that neutrophil binding to endothelial 

cells was dependent on ICAM-1 and E-selectin. Blocking of L-selectin on the 

neutrophils or E-selectin on the endothelial cells reduced neutrophil adhesion 

to endothelial cells (Kishimoto et al., 1991). E-selectin-L-selectin interaction 

on naïve T cell has not been reported so far. This is not unexpected since E-

selectin expression is usually inducible by pro-inflammatory cytokines at 

peripheral inflammatory sites; and naïve T cells are programmed to recirculate 

lymphoid tissues and not peripheral inflammatory sites. Interestingly, data 

from my study further suggest that up-regulation of HA expression on these 

HRS cell-activated endothelial cells also contributes toward naive T cell 

recruitment. 

  

Numerous studies had been done to examine T cell recruitment so as to 

provide a better understanding of the observed T cell profiles in cHL lymph 

nodes. Chemokine expression profile on HRS cells had been studied 

extensively. Various chemokines are believed to contribute to the pathogenesis 

of cHL. Most of these studies were carried out using immunohistochemistry 

staining of cHL tissue sections or HRS cell lines. By IHC staining, HRS cells 

were found to secrete monokine induced by interferon gamma (MIG), 

interferon gamma inducible protein-10 (IP-10) and thymus and activation 

regulated chemokine (TARC) (Ohshima et al., 2002). It was reported that 

mixed cellularity cHL secretes more IP-10, MIG and TARC then the nodular 

sclerosis cHL. This difference in chemokine expression profile contributes to a 

more pronounced THelper2 cell infiltration observed in mixed cellularity cHL 

than nodular sclerosis cHL (Ohshima et al., 2002). Using in-vitro models, Van 

den Berg et al showed that HRS cell lines, L428, L1236 and L540, have high 

expression of TARC compared to non-Hodgkin cell lines and EBV-

transformed B cell lines (van den Berg et al., 1999).  

 

All the studies to date correlate chemokine expression in HRS cells with 

specific T cell subset recruitment into the cHL lesions. This is the first that 

examines how HRS cells could directly modulate the surrounding 
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microenvironment, particularly the endothelial cells, to influence T cell 

recruitment into the lesions. Using a combination of expression profiles and 

cell function assays, data show that HRS cells can, indeed, modulate 

endothelial cell activity to facilitate the recruitment of naïve T cells. 

 

Until recently, all the studies had only provided evidence of activated T cell 

recruitment into the cHL lesions, and mostly on the memory T cell phenotype 

(Poppema, 1989). Recruitment of naïve T cells might also contribute to the 

pathogenesis of cHL. Tanijiri et al suggested that KM-H2 cell line could 

induce immunosuppressive regulatory T cells from naïve T cells (Tanijiri et al., 

2007). Their work has offered an alternative hypothesis that regulatory T cell 

population observed in the cHL lesions could arise from naïve T cells 

recruited into the cHL lymph node. The notion that naïve T cells could be 

recruited into the lesions to be modulated into regulatory T cells to create the 

immunosuppressive environment seen in cHL is novel and fascinating.        

 

 

4.4 Interaction of HA expressed on C/S stimulated endothelial cells with 

CD44 on naïve T cells 

L-selectin is reported to be a homing receptor of lymphocytes to peripheral 

lymph nodes and to have an important role in initiating the adhesion of 

leukocytes to high endothelial venules, the first important step of the multistep 

leukocyte adhesion cascade. L-selectin is also important for the recruitment of 

leukocytes into peripheral inflammatory sites. Ligands of L-selectin include 

PNAd (peripheral lymph node addressin), PSGL-1 (P-selectin glycoprotein 

ligand-1), CD34 (Rosen, 2004) and GlyCAM-1 (Glycosylation dependent cell 

adhesion molecule-1) (Hwang et al., 1996). L-selectin on lymphocytes has 

also been reported to associate with VLA-4 and CD11/CD18 complex on 

TNF-α stimulated endothelial cell (Spertini et al., 1991). L-selectin ligands can 

be induced optimally by lipopolysaccharide and IL-1β whereas, IL-4 and  
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IFN-γ have been reported to down-regulate the expression of L-selectin 

ligands (Spertini et al., 1991).  

 

L-selectin is critically important in regulating naïve T cell initial interactions 

with endothelial cells. Indeed, the data show that blocking of L-selectin 

function on the naïve T cells could partially reduce their interactions with both 

TNF-α-activated and culture supernatant (C/S)-activated endothelial cells. 

However my data also suggest that naïve T cells do not depend solely on L-

selectin to interact with C/S stimulated endothelial cells. In fact, blocking of 

CD44 function on naïve T cells was more effective than blocking L-selectin in 

inhibiting naïve T cell interactions with C/S stimulated endothelial cells 

(Figure 3.4C). In contrast, blocking of CD44 did not have any inhibitory effect 

on naïve T cell-TNF-α stimulated endothelial cell interactions.  

 

The function of CD44 as an adhesion molecule had been reported on activated 

T cells but not naïve T cells. Nacher et al showed that CD44 can associate 

with PSGL-1 to bind to E-selectin to induce firm arrest of  

activated/inflammatory T cells  (Nácher et al., 2011). Using a mouse model, 

Nacher et al showed that activated CD4+ T cells used CD44 to interact with 

E-selectin expressed on the inflamed endothelial cells causes slower rolling on 

the T cells. Besides that, comparing the binding of the THelper1 cells generated 

in-vitro from CD44 deficient mice with wild-type mouse they concluded that 

CD44 could bind to soluble E-selectin suggesting that CD44 can serve as a 

ligand of E-slectin. In addition, this study also showed that both CD44 and 

PSGL-1 expressed on T cells can work together to support recruitment of 

activated T cells to the inflamed tissues in-vivo. Naïve T cells express low to 

moderate level of CD44 (Mackay et al., 1990). Upon activation, CD44 

expression is rapidly increased and L-selectin is shed from activated T cells 

(Mackay et al., 1994). This property causes reduced homing of activated T 

cells to lymph node and increased probability of recirculating to inflamed sites.  
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The principal ligand of CD44 is HA which is a complex glycosaminoglycan 

that is also involved in wound healing (King et al., 1991), tumor growth 

(Oksala et al., 1995), adhesion and extravasation of lymphocytes (Jiang et al., 

2011; Mohamadzadeh et al., 1998). Expression of HA on cultured endothelial 

cell lines and primary endothelial cultures is inducible by the pro-

inflammatory cytokines such as TNF-α and IL-1β as well as 

lipopolysaccharide. However, this inducible HA expression is strictly 

restricted on the endothelial cells derived from microvascular but not large 

vessels (Mohamadzadeh et al., 1998).  

 

Interaction of CD44 and HA is very well studied on memory T cells, activated 

T cell subsets and neutrophils (Butler et al., 2009). Bonder et al showed that T 

helper 1 and T helper 2 cells use CD44 to roll on and adhere to TNF-α 

stimulated microvasculature in-vivo (Bonder et al., 2006). Naïve T cells 

showed minimal interactions with HA coated coverslip in-vitro (Bonder et al., 

2006). Siegelman et al also indicated that peripheral blood mononuclear cells 

increased CD44 expression upon activation and acquired enhanced capacity to 

bind to HA (Siegelman et al., 2000). The activated form of CD44 is associated 

with elevated expression of VLA-4, which is required for firm adherence of T 

cells following CD44-HA primary interactions on the endothelial monolayer 

(Siegelman et al., 2000).  

 

However, my work showed that VCAM-1 on endothelial cells does not take 

part in naïve T cell-endothelial cell interactions. Degradation of HA on the 

endothelial cells by treatment with hyaluronidase successfully reduced the 

number of interacting naïve T cells with C/S stimulated endothelial cells. The 

data imply that soluble factor(s) in the C/S derived from HRS cells but not 

pro-inflammatory cytokine, TNF-α, could induce HA expression on the 

HUVEC, which are endothelial cells isolated from large vessels, the umbilical 

cord vein. Furthermore, naïve T cells can use CD44 to interact with the 

induced HA on the endothelial cells as an alternative to L-selectin-L-selectin 
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ligand interaction for tethering and rolling of naïve T cells prior to firm 

adhesion.  

 

Increase in HA expression in lymphoma is not new. Hasselbalch et al  

observed increased serum level of HA in HL and non-Hodgkin disease 

(Hasselbalch et al., 1995). The level of HA was found to correlate with the 

tumor burden in the lymphoma patients compared to age-matched control 

group. They showed that serum HA levels in untreated patients with HL and 

non-Hodgkin disease were higher than in a healthy control group; and that the 

serum HA levels of relapse patients were higher than of untreated patients 

(Hasselbalch et al., 1995). Serum HA has also been reported to be elevated in 

several cancer types including lung, pancreas, breast, colorectal, ovary, 

sarcoma, stomach, prostate cancer and melanoma (Cooper and Forbes, 1988; 

Delpech et al., 1990; Manley and Warren, 1987; Yabushita et al., 2011). 

 

The exact mechanism of how HA is synthesized in the tumor cells and the 

reason behind elevated serum HA in cancer patients remains unknown. One of 

the explanations offered was that in cancer patients the catabolism pathway of 

HA is disrupted and there is increased synthesis of HA in tumor tissues 

(Allerton et al., 1970). Another possibility is that cytokines or factors secreted 

by the tumour cells or by the body in response to the tumour could induce HA 

production. A previous study showed that LTα has the ability to induce HA 

synthesis on stimulated synovial fibroblasts (Butler et al., 1988). More 

interestingly, the synthesis of HA on the stimulated synovial fibroblasts was 

regulated by the endogenous cyclooxygenase product which could be inhibited 

by Indomethacin treatment (Butler et al., 1988). Similarly, a study published 

by Elias et al showed that recombinant LTα is able to induce human lung 

fibroblasts to up-regulate expression of HA (Elias et al., 1988). Besides that, 

LTα treatment could synergize with IFN-γ to further enhance the HA 

expression. 
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Here, I present new in-vitro evidence that LTα secreted into the C/S by HRS 

cells, can induce HA synthesis in the C/S stimulated endothelial cells. 

Furthermore, treatment of the HRS cells, KM-H2 with Indomethacin could 

effectively abrogate the observed LT production and secretion. This, in turn, 

led to a reduction in the number of naïve T cells binding to the C/S-stimulated 

endothelial cells, presumably due to a decrease in HA production.      

 

It is still unclear whether the increase in HA synthesis in many cancers is pro- 

or anti-tumour survival and progression. Data from this study offer a possible 

function for HA synthesis in HL. I postulate that HRS cells in-situ could 

induce HA expression on endothelial cells to facilitate naïve T cell recruitment 

into the lymphomatous lesions. 

 

 

4.5 T cells transmigration across endothelial cells     

Last step of lymphocytes emigration into the inflammatory sites involves 

transmigration across the inflamed endothelial monolayer. The data show that 

C/S stimulated endothelial cells have a higher capability than unstimulated 

endothelial cells to support naïve and memory T cell transmigrations in 

response to SDF-1α. SDF-1α was used in this project because SDF-1α is 

expressed by HRS cells (Ohshima et al., 2003) and both naïve and memory T 

cell were shown to respond to SDF-1α (Ding et al., 2000). This implies that 

C/S derived from HRS cells can stimulate endothelial cells to facilitate T cell 

transmigration into the cHL lesions which express a vast variety of 

chemokines. 

 

In the cHL microenvironment, HRS cells are surrounded by an enormous 

number of T cells. The recruited T cells within the cHL lymph node lesions 

are predominantly THelper2 and regulatory T cells subtype (Kuppers et al., 2012; 

Ohshima et al., 2003). Chemokines are actively secreted by HRS cells to 
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attract the different subsets of T cells (Ma et al., 2008; Peh et al., 2001; van 

den Berg et al., 1999). Van den Berg et al  showed that HRS cell lines, L428, 

L1236, L540 and L591, express different level of TARC and CCR4 receptor 

(receptor of TARC) in culture (van den Berg et al., 1999). However, non-

Hodgkin large B cell lymphoma cell lines, ROSE and VER; anaplastic large 

cell lymphoma cell line, KARPAS 299, and EBV transformed cell lines, RAY 

and POP, did not express TARC and CCR4 expression on these cell lines were 

highly variable. Subsequent experiments proved that TARC expression was 

found in the cytoplasm of the primary HRS cells in the tissues sections of cHL 

of mixed cellularity and nodular sclerosis subtypes. Expression of CCR4 was 

not only found on the HRS cells but also on the T cells surrounding the HRS 

cells implied that TARC may be responsible for the attraction of CCR4 

expressing THelper2 cells into cHL lesions (van den Berg et al., 1999).  

 

Similarly, Ohshima et al showed that differential expression of chemokines in 

the cHL contributes to the recruitment of different T cell subsets into the cHL 

lesions. Their study demonstrated that cHL of mixed cellularity subtype 

expressed more chemokines than cHL of nodular sclerosis subtype (Ohshima 

et al., 2002). In the study, mixed cellularity subtype expressed TARC, IP-10 

and MIG however, expression of these three chemokines was not consistently 

found in all the nodular sclerosis subtype. In addition, THelper2 lymphocytes 

were found significantly higher in cases expressing TARC, IP-10 and MIG 

(Ohshima et al., 2002). A subsequent study by Niens et al showed that serum 

level of TARC and MDC were elevated in HL patients (Niens et al., 2008). 

Comparison of pre- and post-treatment serum samples from nine HL patients 

showed that serum levels of TARC and MDC reduced drastically after 

treatment (Niens et al., 2008). High serum levels of TARC and MDC could be 

associated with infiltration of reactive lymphocytes into cHL. 

 

Ma et al and Ishida et al showed that cultured HRS cells actively secrete 

chemokines into the C/S (Ishida et al., 2006; Ma et al., 2008). Ma et al showed 

that HRS cells lines, L1236, KM-H2, L428 and DEV, secrete RANTES, 
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TARC, IP-10 and MIF into the culture supernatant (Ma et al., 2008). In-vitro 

study by Ishida et al showed that HRS cells, L1236, L428, L540, KM-H2 and 

HDLM-2, secrete higher level of TARC as compared to Anaplastic large cell 

lymphoma (ALCL) cells, SUDHL-1, KARPAS (Ishida et al., 2006). However, 

only two HRS cell lines, HDLM-2 and L1236, produced MDC at 

concentrations greater than 1ng/ml. Chemotactic assay showed that C/S 

derived from HRS cells but not ALCL cells exhibited chemotactic effect on 

the CD4
+
 T cells. The transmigrated CD4

+
 T cells expressed 

CD4
+
CD25

+
CCR4

+
. The transmigrated cells also exhibited regulatory T cell 

functions by inhibiting proliferation and IFN-γ production of normal CD4
+
 T 

cells upon stimulation with TCR ligand in a co-culture system. The study 

concluded that transmigration of regulatory T cells in the cHL lesions is 

mediated by HRS cell-derived TARC or MDC. 

 

 

4.6 Cytokines Profile of HRS Cell Lines 

HRS cells require a highly inflamed tumor microenvironment to survive. To 

create and sustain this tumor microenvironment, HRS cells actively produce 

various cytokines and chemokines to modulate the surrounding cells to shape 

a highly inflamed background. Most published studies on cytokine production 

by HRS cells are based on products of commercially available HRS cell lines 

or gene array of microdissected primary HRS cells from cHL tissues section 

(Skinnider and Mak, 2002).  

 

Consistent with these reports, data from my cytokine multiplex assay showed 

that cultured HRS cell lines produce IL-6, TNF-α, IFN-γ and IL-13 but do not 

express IL-1α, IL-1β, IL-2, IL-4 and IL-10. According to the study by Klein et 

al  most of the HRS cell lines, KM-H2, L428 and L540, do not express IL-1α, 

IL-1β and IL-8 (Klein et al., 1992). However, Hsu et al shown IL-1 activity in 

the C/S derived from KM-H2 cells by using IL-1 sensitive T cell proliferation 

assay (Hsu et al., 1989). IL-1 was shown to be expressed by primary HRS 
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cells by in-situ hybridization (Xerri et al., 1992). My finding that IL-1α, IL-1β 

and IL-8 are produced by the cultured HRS cell lines is consistent with Klein 

et al. This difference in IL-1 secretion by KM-H2 cells from different groups, 

including me, once again reinforces the fact that culture conditions can 

influence cell behaviour. In this project, I focused on identifying the soluble 

mediator(s) in the C/S that contribute to the activation of the endothelial cells. 

The absence of IL-1β in the HRS cell-derived C/S has ruled out the possibility 

of IL-1β in contributing to the observed activation of endothelial cells.   

 

Kapp et al and Skinnider et al showed that the four HRS cell lines, L1236, 

KM-H2, L428 and HDLM-2, could produce large amount IL-13 (Kapp et al., 

1999; Skinnider et al., 2002). Besides that, Kapp et al also identified by in-situ 

hybridisation that 86% of primary HRS cells in the nodular sclerosis cHL were 

IL-13 positive. At the IL-13 protein level, Ohshima et al demonstrated that IL-

13 was found exclusively in HRS cells and rarely in other cells within the 

reactive infiltrates (Ohshima et al., 2001).  

 

C/S derived from KM-H2, L1236 and L540 cells contained low concentrations 

of IL-13 (about 100pg/ml) in my system. It was previously shown that IL-13, 

which shares a common receptor with IL-4, can induce VCAM-1 but not 

ICAM-1 and E-selectin expression on the endothelial cells (Bochner et al., 

1995). Since all three adhesion molecules were up-regulated in the C/S-

stimulated endothelial cells, this implies that IL-13 is not the active factor that 

activates endothelial cells in the in-vitro model. However, IL-13 is important 

for HRS cell survival. Kapp et al and Skinnider et al showed that proliferation 

of HDLM-2 and L1236 can be inhibited by neutralizing IL-13 in the culture 

(Kapp et al., 1999; Skinnider et al., 2002). This suggests IL-13 served as an 

autocrine growth factor for HRS cells.    

 

I found limited quantity of TNF-α in the C/S of the four HRS cell lines used in 

this study. Detection of TNF-α expression in HRS cells in clinical samples by 
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either IHC or in-situ hybridisation have been reported by many different 

groups (Benharroch et al., 1996; Foss et al., 1993; Hsu and Hsu, 1989; 

Kretschmer et al., 1990; Ruco et al., 1992; Sappino et al., 1990; Xerri et al., 

1992). Furthermore, high plasma levels of TNF-α, soluble TNF receptor 1 

(p55) and TNF receptor 2 (p75) in the HL patients could be correlated to 

clinical features and clinical outcomes (Warzocha et al., 1998). They showed 

that high plasma level of TNF-α, p55 and p75 were associated with a lower 

incidence of complete responsiveness to therapy, a shorter progression free 

survival and overall survival of these patients (Warzocha et al., 1998).    

 

I detected high concentrations of IL-6 in the C/S of, L1236 and KM-H2 but 

not L540 cells. Interestingly, the production of IL-6 in KM-H2 cells remained 

an unexplained puzzle. Jucker et al and Foss et al showed that IL-6 mRNA 

was not detectable in KM-H2 cells but high level of IL-6 was detectable in the 

C/S (Foss et al., 1993; Jucker et al., 1991). IL-6 gene expression was also 

demonstrated in microdissected primary HRS cells of both the nodular 

sclerosis and mixed cellularity subtypes (Karube et al., 2006). In fact, IL-6 

expression in HRS cells was found to be higher than that in germinal centre 

cells. In addition, IL-6 expression was significantly higher in EBV positive 

cases of cHL compared to EBV negative cases (Herbst et al., 1997).   

    

IL-6 was shown to exhibit stimulatory effect on endothelial cells both in-vitro 

and in-vivo (Romano et al., 1997; Watson et al., 1996). Activation of 

endothelial cells with recombinant IL-6 for 4 or 24 hours could up-regulate 

ICAM-1, VCAM-1 and E-selectin expression to enhance endothelial 

monolayer adhesiveness for binding of lymphocytes (under static condition) in 

a dose dependent manner (Watson et al., 1996). Using an in-vivo mouse model, 

Romano et al show that IL-6 required help from soluble IL-6 receptor to 

transduce activation signal into the endothelial cells (Romano et al., 1997; 

Watson et al., 1996). According to Romano et al, IL-6 with its soluble receptor 

could bind to gp130 to form a complex and activate endothelial cells to up-
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regulate ICAM-1, MCP-1 (CCL2, monocyte chemoattractant protein-1) and 

IL-8 possibly through STAT3 mediated pathway (Romano et al., 1997).  

 

IL-6 has been shown to be important clinically. Kurzrock et al reported that 

increased IL-6 level in the serum of Hodgkin lymphoma patients correlated 

with the presence of B-symptoms and significantly shortened overall survival 

of patients with advanced or relapsed Hodgkin disease (Kurzrock et al., 1993). 

Similarly, Reynolds et al also confirmed that HRS cell-derived IL-6 in cHL 

patients is associated with poor response to therapy and increase prevalence of 

‘B’ symptoms (Reynolds et al., 2002). In 2004 Cozen et al showed that 

polymorphism of the IL-6 promoter is related to the risk of young adult HL 

(Cozen et al., 2004). They show that the risk decreases with increasing number 

of C alleles. The CC (low secreting) allele is associated with a decreased risk 

of young adult HL relative to GG (high secreting) allele. However, IL-6 is not 

the dominant factor that activates endothelial cells in my experimental set-up. 

 

 

4.7 NFκB Pathway Regulated LTα Production 

NFκB activity has been shown to be an important component in the immune 

response. NFκB activity is required to regulate cytokine production by 

immune cells, particularly T cells (Li and Verma, 2002). Examples of 

cytokines that are regulated by NFκB include IL-2, TNF-α and IFNγ 

(Blackwell and Christman, 1997).  In addition, NFκB activity had also been 

proven to be highly activated at the site of inflammation in many diseases, 

such as inflammatory bowel disease, rheumatoid arthritis, psoriasis and 

asthma as reviewed by Li and Verma et al (Li and Verma, 2002).  

 

Hodgkin disease is a lymphoid malignancy with aberrant constitutive NFκB 

activity. The predominant role of NFκB activity in the HL is to regulate 

transcription of various survival promoting proteins to enhance survival of 
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HRS cells. NFκB activity is required to transcribe various genes including the 

cell cycle regulatory protein cyclin D2, anti-apoptotic proteins Bfl-1/A1, c-

IAP-2, TNFR-associated factor I,  BcL-XL, and the cell surface receptors 

CD40 and CD86 which promote survival and growth of HRS cells (Hinz et al., 

2001). In a following report, Hinz et al showed that NFκB activity can also 

induce STAT5A, IL-13 and CCR7 expression on the HRS cell lines, L1428 

and HDLM-2. Together, these factors could synergize with NFκB to inhibit 

apoptosis and regulate cell cycle progression (Hinz et al., 2002). Besides that, 

NFκB expression in HRS cells can also regulate chemokine production. Liu et 

al showed that HRS cell line, L428, produces huge amount of CCL5 

(RANTES) in the culture supernatant as compared to diffuse large B cell 

lymphoma cell line, Ly1 and Ly8. CCL5 derived from the L4228 cells has 

chemotactic effect on the CD4+ T cells. Expression of CCL5 by L428 cells 

was suggested to correlate with higher p65 expression in the L428 cells (Liu et 

al., 2011).  

 

Interestingly, Hinz et al also suggested that NFκB could regulate LTα 

production in the HRS cells (Hinz et al., 2002). The study showed down-

regulation of NFκB activity by adenovirus-mediated expression of IκB 

suppressor in L428 and HDLM-2 cells produce less LTα mRNA level as 

compared to untreated L428 and HDLM-2 cells. Thus, this implied NFκB is 

also involved in regulating LTα production. However, details of NFκB activity 

and LTα production at the protein level were not provided. 

 

Further evidence on regulation of LTα production by NFκB was provided by 

B cells and T cells. In a study by Worm et al, CD40 ligation on B cells 

induced higher levels of LTα expression via NFκB activation. It was shown 

that CD40 responsive element on the LTα gene contains a NFκB binding 

sequence and mutation of the NFκB site within the region abolished CD40 

induced LTα expression (Worm et al., 1998).  
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In 1990,  Messer et al showed that NFκB can bind within the sequence at 

position -98 to -88 (5’-GGGGCTTCCCC-3’) of the LTα promoter region 

(Messer et al., 1990). Upon phytohemagglutinin (PHA) or phorbol 12-

myristate 13-acetate (PMA) treatment on Jurkat T cells, enhanced LTα 

production could be correlated with higher binding affinity of NFκB to the 

promoter region of LTα. Interestingly, stimulation of Jurkat cells with LTα 

promoted more LTα production with stronger DNA binding affinity of NFκB 

and transient increase in LTα mRNA suggesting that NFκB also plays a role in 

positive auto-regulation of LTα biosynthesis (Messer et al., 1990). Similarly, 

Paul et al showed that human T cell leukemia virus type I (HTLV-1) infected 

T cell lines have high amounts of LTα protein and mRNA expression (Paul et 

al., 1990). Detailed study revealed that HTLV-1 infected cells with active 

NFκB proteins can bind to the LTα κB binding site as shown by EMSA 

(electrophoretic mobility shift assay) analysis. Cells with mutant κB binding 

site did not bind NFκB proteins and showed reduced LT production.  

 

My data also show that LTα produced by HRS cell line, KM-H2, is regulated 

by the NFκB pathway. Blocking of NFκB activity with NFκB activity 

inhibitor, Bay11-7085, reduced p65 nuclear translocation in the HRS cells 

which correlated with reduction in soluble LTα production.  This reduction of 

LTα production is probably due to reduced binding of NFκB to the promoter 

region of LTα. NFκB, however, is not the dominant signaling pathway that 

regulates LT production in my model. 

 

 

4.8 AP-1 regulated LTα production 

The AP-1 complex is comprised of heterodimers of c-Fos and c-Jun or 

homodimers of Jun proteins or closely related proteins. AP-1 plays an 

important role in regulating cytokine production including IL-3 and IL-9, and 

mediating inflammatory response (Foletta et al., 1998). Besides that, AP-1 

protein can also associate with other transcription factors to regulate TNF-α 
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and IFN-γ synthesis on activated T cells or monocytic cell lines (Foletta et al., 

1998). A c-Jun/ATF2 protein combination in association with NFAT protein 

bind to the cAMP response element (CRE) site leading to TNF-α in the 

calcium and CD3 activated T cells (Tsai et al., 1996). In addition, c-Jun can 

co-operate with NFκB protein binding to the CRE site of TNF-α enhancer 

region in the LPS stimulated monocytic THP-1 cells (Yao et al., 1997). But 

AP-1 is not important to regulate cytokine production, IL-8, TNF-α, MIP-1α 

and MIP-1β, in LPS or TNF-α stimulated neutrophils (Cloutier et al., 2003). A 

study showed that treatment LPS- or TNF-α stimulated neutrophils with 

SP600125 did not inhibit inflammatory cytokine gene expression. This 

suggests that AP-1 regulated cytokine expression is cell line dependent. 

  

HRS cells have constitutive AP-1 activity (Green et al., 2012; Juszczynski et 

al., 2007; Mathas et al., 2002). The AP-1 activity in HRS cells contributes to 

the modulation of an immunosuppressive environment and the regulation of 

cell cycle protein expression to promote the growth of HRS cells.  

 

A report by Mathas et al showed that c-Jun and JunB were strongly expressed 

in the HRS cell lines and primary HRS cells from the tissues sections (Mathas 

et al., 2002). Constitutive AP-1 activity in the HRS cells regulated expression 

of cyclin D2, c-Met and CCR7. Transiently transfected HRS cells, L428, with 

a dominant negative AP-1 plasmid showed noticeable reduction of the 

production of these genes. In addition, using NFκB repressor plasmid 

transfected L428 cells, the authors revealed that AP-1 can work synergistically 

with NFκB to regulate cyclin D2 expression to enhance survival of HRS cells. 

Similarly, CCR7 and c-Met expression were also regulated by synergistic 

effect of AP-1 with NFκB (Mathas et al., 2002).  

 

The AP-1 activity is also required to regulate galectin-1 production by HRS 

cells. Secretion of galectin-1 by HRS cells fostered a skewed T helper2  

immunosuppressive microenvironment for the growth of HRS cells 
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(Juszczynski et al., 2007). The presence of galectin-1 in the co-culture system 

with T cells promoted the production of Th2 cytokines, IL-4, IL-5, IL-10 and 

IL-13. Besides that, galectin-1 also induced differentiation of PMA activated T 

cells into regulatory T cells. Recently, the AP-1 activity was also shown to 

regulate PD-L1 (programed cell death ligand 1) expression on the HRS cells 

(Green et al., 2012). Green et al showed that PD-L1 expression in HRS cells 

was augmented by the binding of AP-1 to the AP-1 responsive enhancer 

element in the PD-L1. In the study, transfection of L428 and L540 cells with 

PD-L1 luciferase plasmid containing AP-1 enhancer sites showed higher 

luciferase activity as compared to untreated and plasmid without the AP-1 

enhancer site control cells. Furthermore, transfected L428 and L540 cells 

expressing a dominant negative c-Jun mutant significantly reduced PD-L1 

expression. Thus, these studies show that AP-1/c-Jun activity contributes to 

many of the molecular features that we see in cHL.  

 

As reviewed by Shebzukhov et al there have been reports that an AP-1 binding 

site is present on the promoter region and enhancer region of LTα gene 

(Shebzukhov Iu and Kuprash, 2011). This suggests that constitutive AP-1 

activity in HRS cells might also be involved in regulating transcription of LTα. 

The data showed that cultured HRS cell line, KM-H2 exhibit high constitutive 

AP-1 activity and treatment of the KM-H2 cells with specific JNK inhibitor, 

SP600125 rapidly down-regulated phosphorylated JNK, c-Jun and total c-Jun 

expression to minimal levels. There was also a concomitant 30% reduction of 

LTα production. SP600125 is specifically designed to inhibit JNK activity and 

is very effective in reducing phosphorylation of c-Jun. The fact that an 

absolute loss of phosphorylated and total c-Jun only resulted in a 30% 

reduction of LTα production strongly suggest that AP-1 may be exerting its 

effects synergistically with another signaling pathway. This is not unexpected 

since the AP-1 protein can also associate with other transcription factors to 

regulate the production of various cytokines as reviewed earlier in my 

Introduction.  
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4.9 Cox Pathway Mediated LTα Production 

The Cox enzymatic pathway plays a role in inflammatory responses and in the 

development of colorectal cancer, gastric cancer and breast cancer (Vane et al., 

1998). Even though Cox activity on cancer development has been well 

established, the study of Cox activity in Hodgkin lymphoma is very limited. In 

2006, Ohsawa et al showed that Cox-2 was detected in the HRS cells in HL 

tissues samples (Ohsawa et al., 2006). This expression of Cox-2 was not 

associated with p53 or bcl-2 expression. It was, however, associated with a 

higher cell proliferation rate and angiogenesis in HL. Recently, Mestre et al 

showed that Cox-2 was overexpressed on the HRS cells in about 30% of the 

HL patients (Mestre et al., 2012). The study proposed Cox-2 as an 

independent unfavourable prognostic factor in HL patients treated with ABVD. 

This suggested that increased Cox activity might contribute to the 

pathogenesis of HL. 

 

Even though Cox-1 and Cox-2 enzymes produce the same products, their roles 

in inflammation appear to be segregated. Williams and Shacter et al showed 

that IL-6 synthesis on macrophages is linked to activation of Cox-2 but not 

Cox-1 (Williams and Shacter, 1997). Macrophages stimulated with serum 

albumin produced IL-6 upon up-regulation of Cox-2. Inhibiting Cox-2 activity 

with selective Cox-2 inhibitor, NS-398, reduced production of IL-6 but IL-6 

production was unaffected by inhibiting Cox-1 activity. Results from a 

different study suggested that suppression of LPS-induced TNF-α secretion by 

murine peritoneal macrophages was mediated mainly by Cox-1-dependent 

prostaglandins and not by Cox-2-derived products (Rouzer et al., 2004). This 

suggests that Cox-1 and Cox-2 plays differential role in regulating or 

modulating cytokine production.  

 

An involvement of Cox product in regulating LTα production has been 

previously reported. Ferreri et al showed that PGE2 negatively regulate LTα 

production by activated murine T cells (Ferreri et al., 1992). Furthermore, they 

showed that this decrease in LTα production was PGE2 specific as other Cox 



 

140 
 

products and intermediates including PGD2, PGF2 alpha, 5-

hydroxyeicosatetraenoic acid and leukotriene C4 did not exert the same 

inhibitory effect on the activated T cells. 

 

Interestingly, my data suggest that Cox-1 is more important than Cox-2 in 

mediating LTα production by HRS cells. KM-H2 cells treated with 

Indomethacin, a non-selective Cox inhibitor, and not those treated with 

Celecoxib, a specific Cox-2 inhibitor, showed a significant decrease in LTα 

production. My finding is consistent with a previous study by Butler et al who 

reported that LT-induced HA synthesis by synovial fibroblast was regulated 

by the endogenous cyclooxygenase product which could be inhibited by 

Indomethacin treatment (Butler et al., 1988). The HRS cell-derived LT could 

also induce HA expression on endothelial cells. 

 

 

4.10 c-Fos, the possible dominant regulatory factor in LTα production 

After knowing that inhibition of Cox-1 activity reduced LTα production, I 

investigated the various signaling pathway that could be activated in the  KM-

H2 cells following drug treatment. The first pathway that I investigated was 

the activation of NFκB in KM-H2 cells after Indomethacin treatment. 

However, I did not observe any changes in nuclear p65 expression in the 

Indomethacin treated KM-H2 cells. Next I examined the AP-1 pathway and 

found that phosphorylated and total c-Fos expression were down-regulated in 

Indomethacin treated KM-H2 cells. However, levels of phosphorylated c-Jun 

but not total c-Jun in KM-H2 cells were increased minimally. This suggests 

that Cox-1-mediated LTα production might involve c-Fos protein.  

 

Cox products, particularly PGE2, had previously been shown to modulate  

AP-1 protein expression. DNA binding and transcriptional activity of AP-1 

complex was significantly enhanced in PGE2 stimulated murine macrophages 
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as detected by luciferase assay (Iwahashi et al., 2000). Fitzgerald et al showed 

that PGE2 could induce c-Fos mRNA expression on osteoblasts via cAMP 

pathway (Fitzgerald et al., 2000). Besides osteoblast, PGE2 also induced c-Fos 

expression on the fibroblast cell line, Swiss 3T3, via the PKC pathway 

(Danesch et al., 1994). Consistent with these studies, the data in this study 

suggest that product(s) generated by constitutive Cox-1 activity is involved in 

some way in the regulation of c-Fos production, which in turn is essential for 

LT production in KM-H2 cells. However, I have yet to identify the precise 

prostaglandin or intermediate that is responsible for regulating LTα production 

in HRS cells. 

 

Interestingly, c-Fos protein expression on KM-H2 cells was also reduced after 

the NFκB activity was inhibited by Bay11-7085 treatment. This suggests that 

NFκB activity on KM-H2 cells might play a role in regulating c-Fos protein 

expression. 

 

It was previously shown that AP-1 can work synergistically with NFκB to 

enhance the transcriptional activity. AP-1 and NFκB were shown to interact 

physically to enhance the binding capability of the complex to the NFκB or 

AP-1 response element within the 5' long terminal repeat of the human 

inmunodeficiency virus type 1 (Stein et al., 1993). Their data showed that the 

bZIP region of c-Fos and c-Jun could interact with NFκB/p65 through the Rel 

homology domain. Furthermore, their data showed that c-Fos and c-Jun only 

interact with the nuclear form of NFκB or more specifically p65 in the NFκB 

complex. The c-Fos and c-Jun interaction with p65 synergized with 

transcription of an AP-1 dependent promoter with a specific AP-1 tandem 

repeats binding site. The synergistic effect was not observed between JunB, 

JunD and p50 (Stein et al., 1993).  
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My data strongly suggest that LT production in KM-H2 cells is regulated by 

c-Fos, Cox-1 enzyme and the NFB pathway. However, it is currently unclear 

how the three signaling pathway come together to regulate LT gene 

transcription. 

 

 

4.11 HRS cells can modulate endothelial cell function to shape the 

microenvironment 

This study showed that HRS cells could secrete soluble mediator(s) to 

modulate endothelial cell functions, focusing primarily on activation of 

endothelial cells and their interactions with T cells. However, the activity of 

endothelial cells and immune cell recruitment are probably only the many 

endothelial functions that are being modulated by HRS cells. For example, to 

sustain the growth and demands of the multiple cell types within the cHL 

lesions, it is also very likely that HRS cells can secrete factors to induce 

endothelial cell proliferation and promote angiogenesis.  

 

There is little information to date regarding angiogenesis in HL. HL tissues 

were shown to express high level of EMMPRIN (extracellular matrix 

metalloproteinase inducer or CD174) (Thorns et al., 2002). In their study, 

EMMPRIN was expressed in about two-thirds of the 60 cases of Hodgkin 

lymphoma investigated. EMMPRIN is required to induce expression of VEGF 

and therefore plays an important role in angiogenesis (Tang et al., 2005). 

Hence, the presence of EMMPRIN in HL supports the notion that 

angiogenesis occurs in cHL lesions. 

 

The presence of VEGF expression in the cHL microenvironment has also been 

reported. A study by Mainou-Fowler et al also showed that angiogenesis or 

micro-vessel density was associated with progression in HL disease (Mainou-

Fowler et al., 2006). The study showed that VEGF expression was found on 
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endothelial cells of some micro-vessels and in follicular dendritic cells. VEGF 

expression, however, was not found on the HRS cells but they observed 

expression of platelet-derived endothelial growth factor (PdEGF, also known 

as thymidine phosphorylase), another angiogenic factor, in the cytoplasmic or 

nuclear of HRS cells. Conversely, Doussis-Anagnostopoulou et al reported 

cytoplasmic or perinuclear expression of VEGF protein in the malignant HRS 

cells in 25/32 cases of nodular sclerosis cHL investigated (Doussis-

Anagnostopoulou et al., 2002).  

 

VEGF enhances vascularization, is mitogenic for endothelial cells and 

increases micro-vessel permeability and plasma protein leakage (Senger et al., 

1983). PdEGF promotes endothelial cell proliferation and chemotaxis in vitro 

and has angiogenic activity in vivo (Moghaddam et al., 1995). Angiogenic 

activity of PdEGF was demonstrated by Moghaddam et al using rat sponge 

model. In addition, endothelial cells stimulated with PdEGF showed higher 

migration ability in response to serum as compared to unstimulated endothelial 

cells. Expression of VEGF and PdEGF by HRS cells implies that HRS cells 

can produce this pro-angiogenic factor to modulate endothelial cell function to 

promote angiogenesis.  

 

 

4. 12 Conclusion 

It is well known that the malignant HRS cells in cHL directly or indirectly 

induce the production of a multitude of pro-inflammatory factors that act both 

locally and systematically. Yet, the cells could simultaneously create an 

abnormal immunosuppressive and tumour permissive environment within the 

affected lymph node. The mechanisms by which the HRS cells induce these 

changes are not well understood. 
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The cHL microenvironment consists of various inflammatory cells consisting 

of neutrophils, eosinophils, B cells, T cells and macrophages (Kuppers et al., 

2012). How HRS cells regulate the trafficking of these cells into the lesion has 

been largely unexplored. In this project, I focused on how the HRS cells can 

modulate endothelial cell functions to facilitate T cell recruitment in-vitro. 

 

I showed that HRS cell-derived LTα can induce ICAM-1, VCAM-1, E-

selectin and HA expression on the endothelial cells and facilitate T cell 

binding and transmigration. I have also shown that while the activation of 

endothelial cells is dependent on the NFκB pathway, three pathways: NFκB, 

Cox-1 and AP-1 are involved in regulating LTα production in KM-H2 cells, 

the HRS cell line used in this study. My data further suggest that c-Fos protein 

regulated by NFκB and Cox pathway could work together with c-Jun to form 

an AP-1 complex to regulate LTα production. The proposed mechanism is 

shown Figure 4.1:  

 

 

Figure 4.1: Diagram represents the proposed mechanisms of HRS cell-derived 

LTα in modulating  endothelial  cell function. 
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I believe that the data generated have provided insight as to how HRS cells in-

situ may be modulating the microenvironment and the dynamic cell-cell 

interactions in the cHL lesion. An understanding of the mediators produced by 

the HRS cells and the mechanisms involved will allow us to design new 

therapeutics that will be helpful to alleviate inflammation, both locally and 

systemically. Similarly, knowing the signaling pathways involved and how 

HRS cells work will also allow us to design novel inhibitors that are more 

specific and with less long-term toxicity than current chemotherapeutic agents. 

 

        

4. 13 Caveats of this study 

In my system, I used endothelial cells isolated from human umbilical cord 

vein (HUVEC) to simulate endothelial venules in the cHL lymph node. The 

post capillary endothelial cells in the lymph node are termed High Endothelial 

Venule (HEV) which have slightly different adhesion molecule expression 

profile compared to normal microvasculature endothelial cells. HEV play an 

important role in regulating leukocyte transmigration into the lymph node by 

expressing organ-specific adhesion molecules, such as Peripheral node 

addressin (PNAd) which is not found on large vessels or microvasculature 

endothelial cells. PNAd is essential for the emigration of naïve T cells into the 

lymph node (Streeter et al., 1988). However, work done by Drayton et al 

suggested that PNAd could be induced on the endothelial cells by LTαβ 

complex signaling pathway (Drayton et al., 2003).  

 

I had used HUVEC instead of HEV for this study because there was no 

reliable tissues source or protocol to generate primary HEV cultures for this 

study. Protocols for mouse HEV are available but these cells appear more 

fibroblastic endothelial cell like. Secondly, due to the plasticity of the 

endothelial cells, isolated HEV would have the tendency to dedifferentiate 

outside the lymphoid tissue microenvironment. Lacorre et al showed that 

freshly isolated HEV from the tonsils rapidly lost their specialized 
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characteristics after 2 days of culture (Lacorre et al., 2004). Striking changes 

occurred as early as 48 hours in culture with complete loss of the postcapillary 

venule-specific Duffy antigen receptor for chemokines (DARCs) and the 

HEV-specific fucosyltransferase Fuc-TVII. It is unclear at this juncture what 

soluble factors could induce the HEV characteristics in-vitro.       

 

Using an in-vitro model, I investigated the mechanism(s) of C/S derived from 

HRS cells in modulating the endothelial cell function on T cell recruitment. I 

carried out immunohistochemical staining to demonstrate the presence of LTα 

in cHL lymph nodes, thus verifying the clinical relevance of my findings. 

Most studies on cHL to date had been carried out using HRS cell lines in in-

vitro models and immunohistochemistry or in-situ hybridization of tissues 

samples. To date, there is still no satisfactory xenograft mouse model for the 

study of HRS cells and Hodgkin lymphoma in-vivo. Neither unmanipulated 

HRS cell lines nor cells isolated from biopsy tissues could be grown in nude 

mice or other immunodeficient mice (Kapp et al., 1992; von Kalle et al., 1992). 

One possible reason for this is that HRS cells require T cell signals for 

survival and both nude and SCID mice could not provide the correct 

environment because they do not have endogenous T cells.  

 

 

4.14 Future Work 

Experimental results suggest that LTα derived from the HRS cells contributes 

to the activation of endothelial cells and facilitates T cell recruitment to the 

lymphatic lesions. Data show that the regulatory pathways of LTα expression 

include the NFκB, AP-1 and Cox-1 dependent pathways. To have a better 

understanding of the functions of LTα stimulated endothelial cells and 

regulation of LTα production in the HRS cells, I have identified some 

interesting areas where more knowledge and information would help to give 

better insights into cell-cell interactions in cHL.  
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My data show that CD44 on naïve T cells mediates interaction with C/S 

stimulated endothelial cells. Studies to date suggest that CD44 only functions 

as an adhesion molecule when it reaches a certain threshold level and after 

conversion to the active form in response to appropriate stimuli such as TNF-α 

(Maiti et al., 1998). In line with this, most studies showed that only activated T 

cells exhibit CD44-HA binding to facilitate lymphocyte recruitment. 

Surprisingly, the CD44 expressed on naïve T cell was able to bind effectively 

to HA induced on the C/S stimulated endothelial cells. It would be interesting 

to identify the CD44 variant expressed on naïve T cells or the modification of 

HA on the endothelial cells induced by C/S derived from HRS cells that 

mediated the observed CD44-HA interactions. 

 

My results suggest that the possible mediator that can induce HA synthesis on 

stimulated endothelial cells is LTα. It had been shown previously that HA 

synthesis could not be induced on human umbilical cord vein endothelial cells 

(HUVEC) via stimulation with TNF-α and IL-1β (Mohamadzadeh et al., 1998). 

However, Butler et al showed that LTα can also induce HA production on the 

synovial fibroblast like-cells (Butler et al., 1988). To clarify that, endothelial 

cells can be stimulated with recombinant human LTα instead of KM-H2 C/S 

to induce HUVEC activation and examine their interactions with naïve T cells 

in absence and presence of hyaluronidase treatment. Employing silencing 

RNA (siRNA) techniques to knock-down LTα production in the HRS cell 

lines would provide more solid confirmation. By using a commercially 

available LTα siRNA plasmid, LTα deficient HRS cells can be generated. C/S 

derived from this cell line will be harvested and used to stimulate endothelial 

cells.  

 

According to the results, Cox-1 is more important than Cox-2 in regulating 

LTα production by HRS cells. Comparing the activity of Cox-1 and Cox-2 in 

the HRS cells might help us determine whether constitutive Cox-1 activity is 

higher than Cox-2 activity in HRS cells. Employing silencing RNA techniques 

to knock-down Cox-1 or Cox-2 would allow me to measure the activity of 
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each Cox enzyme. Cox enzyme activity can be correlated with LTα 

concentration secreted into the C/S. In addition, my data suggest that the Cox-

1 pathway probably acts on the AP-1 pathway to mediate LTα production. An 

assay to measure AP-1 activity after Indomethacin treatment on KM-H2 cells 

would provide more confirmative data. Comparing the AP-1 activity between 

the SP600125 treated, Indomethacin treated, Cox-1 silenced cells and 

untreated KM-H2 cells would help to determine whether the AP-1 activity is 

indeed attenuated in Indomethacin treated KM-H2 cells; and whether AP-1 is 

acting synergistically with or downstream from the Cox-1 pathway.  

 

The data suggest that c-Fos might play a role in mediating LTα production. To 

validate c-Fos involvement in regulating LTα production, c-Fos expression 

can be knocked down in the HRS cells. Generation of c-Fos deficient HRS 

cells and measuring LTα content in the C/S derived from these cells would 

provide direct evidence on the role of c-Fos in LTα production. Besides that, 

to find out whether other transcription factors is also regulated by Cox 

pathway to mediate LTα production, Chip Sequencing technique could be 

performed to analyze the transcription factors that interact with the LTα gene. 

Transcription factors identified on the LTα gene in the Indomethacin treated 

KM-H2 cells compared with untreated HRS cells would provide us a better 

insight of the transcription regulatory network of LTα production. 
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APPENDIX I 

Preparation of solution: 

Western blot 

Isotonic lysis buffer (5X concentrated, pH 7.5) 

0.05M Tris HCl, 10mM MgCl2, 15mM CaCl2, 1.5M Sucrose 

 

Extraction buffer (pH 7.9) 

20mM HEPES, 1.5mM MgCl2, 0.42M NaCl, 0.2mM EDTA, 25% Glycerol 

 

TBS buffer (10X,pH 7.6) 

24.23g Tris, 80.06g NaCl, 1000ml of MiliQ water 

 

TBST buffer (1000ml) 

100ml of 10X TBS, 900ml MiliQ water, 1ml Tween-20 

 

Running buffer (1000ml) 

6.06g of Tris, 28.8g of glycine, 1000ml of MiliQ water  

 

Transfer buffer (1000ml) 

6.06g of Tris, 28.8g of glycine, 200ml of methanol, 800ml of MiliQ water  

 

 

Resolving gel for SDS-PAGE 

40% bis-acrylamide, 1.5M Tris HCl (pH 8.8), 10% SDS, MiliQ water, 10% 

APS (add fresh), TEMED (add fresh) 
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4% Stacking gel for SDS-PAGE 

40% bis-acrylamide, 1M Tris HCl (pH 6.8), 10% SDS, MiliQ water, 10% APS 

(add fresh), TEMED (add fresh) 

 

IHC Staining 

Citrate buffer (10mM, pH6) 

2.94g of C6H5Na3O7, 1000ml of MiliQ water 

 

TBS buffer (10 litre, pH7.4) 

500ml of 1M Tris, 90g of NaCl, 10 litre of deionized water 

 

TBS diluent 

0.1% of BSA, 0.01% of Sodium azide, TBS buffer 



 

189 
 

APPENDIX II 

Poster Presentation 

1. FHU, C W, S M CHONG, S M T Yap, AM Graham and Y C Lim, 

"Hodgkin and Reed-Sternberg cells secrete soluble factors to modulate 

endothelial cell-T cell interactions in classical Hodgkin lymphoma." 

Cancer Research, 71, no. 18, part. Supplement (2011): A4. United States. 

(Second AACR International Conference on Frontiers in Basic Cancer 

Research, 14 - 18 Sep 2011, InterContinental San Francisco, San 

Francisco, United States).  

 

 

2. FHU, C W, S M CHONG, S M T Yap, AM Graham and Y C Lim, 

"Soluble factors by Hodgkin and Reed-Sternberg cells that modulate 

endothelial cell - T cell interactions in classical Hodgkin Lymphoma". 

(AACR Annual Meeting 2013, 6 – 10 April 2013, Washington  DC 

Convention Centre, Washington DC, United States). 

 

 

 

 

Oral Presentation 

 

1. Lim, Y C, C W FHU, S M T Yap, AM Graham and S M CHONG, 

"Hodgkin and Reed-Sternberg cells modulate endothelial cell function in 

classical Hodgkin lymphoma." Journal of Immunology, 188 (Meeting 

Abstract Supplement) (2012): 61.9. United States. (Immunology 2012, 4 - 

8 May 2012, Hynes Convention Centre, Boston, United States). 

 

 

 

 

 

    

 


