
Exploring Alternative Restoration

Techniques in Constraint
Programming

Yong LIN

(Bachelor of Engineering, Sichuan University)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48682641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

I hereby declare that this thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information that have

been involved in the thesis.

This thesis has not been submitted for any degree in any university previously.

Yong LIN

31 March 2014

ii



Acknowledgements

Foremost, I express my sincerest gratitude to my supervisor, Prof. Martin Henz,

who has supported me throughout my study and research at National University

of Singapore, for his advice, patience, enthusiasm and knowledge. I attribute the

level of this thesis to his encouragement and guidance and it would not have been

completed or written without him. One simply could not wish for a better or

friendlier supervisor.

I would like to thank the members of my thesis committee, Prof. Roland Yap and

Prof. Joxan Jaffar, for their insightful comments and enlightening questions. My

thanks also goes to Prof. Christian Schulte and Dr. Guido Tack for their advice on

developing our techniques. I thank Srikumar Karaikudi Subramanian for initial

discussions, and I thank my fellow friends for their encouragements. Meanwhile,

I acknowledge the support of the School of Computing and the university for my

study and research.

Last but not the least, I offer my deepest appreciation to my family and relatives:

LIN Xuefu, Zou Fangzhen, LIN Shiguo, LI Guangju, LIN Shiqiong, DING Dap-

ing, LIN Shibin and SHAO Fanfan, for supporting me throughout my life.

iii



Table of Contents

1 Introduction 2

1.1 Constraint Satisfaction Problem . . . . . . . . . . . . . . . . . . 3

1.2 Constraint Programming in a Nutshell . . . . . . . . . . . . . . . 4

1.3 The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Constraint Programming 9

2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Constraint-based Search . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Existing Restoration Techniques 15

3.1 Trailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



3.2 Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Recomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Recollection 22

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 The Record Method . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 The Restore Method . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Programming Restoration Granularity 29

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Restoration Granularities . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Programmable Restoration . . . . . . . . . . . . . . . . . . . . . 32

6 Implementation 34

6.1 The Gecode System . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Computation Space . . . . . . . . . . . . . . . . . . . . . 35

v



6.1.2 Search Engine . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.3 Class Edge . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Implementing Recollection . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Variable Access . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.2 Variable Change Detection . . . . . . . . . . . . . . . . . 41

6.2.3 Memory Management . . . . . . . . . . . . . . . . . . . 42

6.2.4 Indexed Collection . . . . . . . . . . . . . . . . . . . . . 43

6.2.5 Variable Reconstruction . . . . . . . . . . . . . . . . . . 44

6.3 Programming Restoration Granularity . . . . . . . . . . . . . . . 46

6.3.1 A Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.2 Program as an Aspect . . . . . . . . . . . . . . . . . . . . 48

7 Evaluation 50

7.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Recomputation and Recollection . . . . . . . . . . . . . . . . . . 52

7.3 Copying and Recollection . . . . . . . . . . . . . . . . . . . . . . 54

7.4 Programming Restoration Granularity . . . . . . . . . . . . . . . 55

vi



8 Conclusion 57

vii



Summary

Constraint programming is a powerful tool for solving combinatorial optimiza-

tion problems in many practical applications, and constraint programming sys-

tems provide the facilities to support this tool. In such a constraint programming

system, search defines the strategies to explore solutions and restoration recovers

a previously visited state to continue when search encounters an inconsistency.

Hence, a state-of-the-art state restoration technique is essential for an efficient

constraint programming system.

In this thesis, we first investigate recollection as an alternative restoration tech-

nique; its main idea is to maintain the variables that were affected by constraint

propagation to reason fix points for conducting restoration. Compared with the

existing technique of copying, recollection exhibits a finer granularity; compared

with recomputation, it avoids re-running the propagator filtering algorithms; and

compared with the bottom-up restoration technique of trailing, recollection pro-

ceeds in a top-down manner and thus is suitable for systems that restore state in

this manner.

We implemented recollection within the Gecode system in several alternatives,

which are configurable through compile time flags. Our experimental evaluation

reveals that recollection is able to improve runtime against recomputation on in-

teger problems with deep search trees and intensive propagation, at the expense

of moderate memory investment. An extended comparison with copying reveals

that it saves both runtime and memory for some large problems with deep search

trees, and previous cross-system comparison allows us to extrapolate these results

to trailing-based systems.

viii



Subsequently, we explore programming restoration granularity, which aims at pro-

viding strategies and facilities to enhance the customization of restoration in a con-

straint programming system. We initially implemented a prototype by integrating

coarse-grained copying, finer-grained recollection and constraint-based recompu-

tation, and this prototype uses the first search failure as a trigger to adjust the

restoration technique.

To assist the switch between restoration code segments, we explicitly employ a

signal in the prototype. This approach however couples tightly with a specific

program and is not quite extensible when users intend to customize. To facilitate

systematic programming, we propose to program the stored restoration informa-

tion as an aspect, an abstraction developed in the aspect-oriented programming

paradigm. Its significance is modularizing the implementation of restoration tech-

niques and potentially providing more options to build search engines that run a

wide spectrum of search algorithms while enhancing the extensibility of the con-

straint programming system.

ix



List of Tables

5.1 Search Tree Statistics of Problem Search Trees . . . . . . . . . . 30

7.1 Benchmark Problem Search Trees Characteristics . . . . . . . . . 51

7.2 Comparison of Recomputation and Recollection . . . . . . . . . . 52

7.3 Sport and Knight run over a range of copying distances . . . . . . 53

7.4 Comparison with other restoration techniques . . . . . . . . . . . 55

7.5 Programming Restoration Granularity Evaluation . . . . . . . . . 55

x



List of Figures

1.1 A Sudoku Puzzle and its Solution . . . . . . . . . . . . . . . . . 4

1.2 Gecode Script for Modeling Sudoku Puzzle . . . . . . . . . . . . 6

2.1 A Computation State Search Tree . . . . . . . . . . . . . . . . . 11

4.1 Visualization of Trailing and Recollection . . . . . . . . . . . . . 24

6.1 Introduced Virtual Methods for Class Brancher . . . . . . . . . . 39

6.2 Variable Accessing via Extra Branchers . . . . . . . . . . . . . . 40

6.3 Memory Management for Recollection . . . . . . . . . . . . . . . 42

6.4 Index-based Domain Query . . . . . . . . . . . . . . . . . . . . . 43

6.5 Integer Variable Implementation . . . . . . . . . . . . . . . . . . 44

6.6 Programming Restoration Granularity Prototype . . . . . . . . . . 47

1



Chapter 1

Introduction

Combinatorial optimization problems are ubiquitous in many application domains,

including scheduling, timetabling, computational biology and software verifica-

tion, to name a few. These problems are generally computationally NP-hard

and their solving requires considerable expertise in optimization and software

engineering. The constraint satisfaction approach to combinatorial optimization

emerged from artificial intelligence (such as [22] and [20]) and programming lan-

guage research (such as [35] and [7]). In such an approach, solving a combina-

torial problem is to specify a set of constraints to represent the solutions, and a

search procedure indicates the means to explore them. Constraint programming

(CP) aims at simplifying this approach by providing rich alternatives to specify

constraint and search strategies, while being efficient in performance.

In this chapter, we first define the constraint satisfaction problem in Section 1.1;

in subsequent Section 1.2, constraint programming is briefly introduced with a

2



specific example, Sudoku and Section 1.3 specifies the main contents and organi-

zation of this thesis.

1.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by a set of variables and con-

straints. The variables describe the objects that the problem deals with, and each

variable has a non-empty domain to specify the set of value candidates it can take.

Each constraint imposes on a subset of variables to specify the allowable com-

binations of values for the variables. In common applications, the variables of a

problem are restricted to a finite set of integers1, and a variable is fixed when it

contains a singleton domain. For a CSP, an assignment is fixing a subset of its

variables and the assignment is consistent if it violates none of constraints. The

process of solving a CSP is fixing its variables to consistent values, and a solution

to a CSP is a consistent assignment to all variables. For an optimization CSP, it

also requires the solution to maximize or minimize a cost function.

Search is a complete method for solving a CSP, which guarantees that solutions

can be found provided they exist. The brute-force search is such a complete ap-

proach: each possible value combination of all variables is enumerated to verify

whether it is a solution to the problem. However, for such an approach, the number

of possible value combinations is generally too large to enumerate all in a reason-

able runtime consumption. Fortunately, the constraint programming community

has developed techniques to reduce the search space: constraints are activated to
1We restrict our discussion to such finite domain integer CSPs.

3



eliminate inconsistent values from variable domains to reach consistency, which

propagates the implications to other constraints to trigger the domain shrinking

of more variables. This technique can significantly reduce the amount of search

efforts, making it is possible to solve some hard problems.

1.2 Constraint Programming in a Nutshell

Constraint programming includes two phases: modeling and solving. The model-

ing step is to abstract a problem as a CSP and present it as a script, using the lan-

guage/predicates provided by a constraint programming system (CPS); the solving

phrase is to search for the solution(s) in the system. In this section, we employ the

Sudoku problem as an example to briefly go though these two steps.

9 
2 

2 5 

9 
7 3 
6 

2 

6 9 
7 

4 9 

1 

8 
6 3 

4 

6 8 

1 
8 

1 

2 

3 

4 

5 

6 

7 

8 

9 

a b c d e f g h i 

3 7 8 
5 9 6 
1 4 2 

2 6 5 
8 1 4 
7 3 9 

9 1 4 
7 3 2 
5 6 8 

2 1 7 
8 5 4 
6 3 9 

3 8 6 
9 7 1 
5 4 2 

4 5 9 
6 2 3 
8 7 1 

7 8 5 
4 6 3 
9 2 1 

4 2 3 
1 9 7 
6 5 8 

1 9 6 
2 8 5 
3 4 7 

1 

2 

3 

4 

5 

6 

7 

8 

9 

a b c d e f g h i 

Figure 1.1: A Sudoku Puzzle and its Solution

The Sudoku problem is a puzzle to fill a 9 by 9 matrix with values from one to

nine, with the objective that values appear in each row, column and major 3 by 3

4



block are pair-wise distinct. Usually, the matrix is partially pre-filled with values

to ensure a unique solution. Figure 1.1 depicts a Sudoku puzzle setting (left) and

its solution (right).

Modeling To model a Sudoku puzzle, we can declare each matrix entry as an

integer variable, taking initial values from the integer set {1. . .9}. To enforce

the rule that variables in each row, column and major block must take pair-wise

distinct values, a common all-different constraint [25] can be utilized. As

for problem decomposition (will explain in solving phrase), a typical strategy is

first fail [13], a heuristic to take the variable with the smallest domain and

then try to assign/remove one of its left values. To search for the first solution, it

usually employs depth first exploration.

Describing the main idea to model the Sodoku problem, it is then straightforward

to write up a model script in a constraint programming system. Figure 1.2 illus-

trates the script for modeling Sudoku in the Gecode system [33], an open source

constraint programming library developed in C++. In Gecode, a model always

inherits from the class space and implements the model in its constructor. Ad-

ditionally, the model must implement a copy constructor and a copy function to

clone fix point computation spaces. This is because Gecode is a system that bases

on copying with recomputation for state restoration.

Solving The constraint programming systems solve a CSP through inference

and search. The inference removes the values that cannot appear in solution from

variable domains through reasoning. Let take the entry in row 1, column i ( E1i)

5



class Sudoku : public Space { 
     public:  
         IntVarArray   entries;        /* variables for matri*/ 
        Sudoku(const int instance[9][9])  : entries(this,  9*9,  1, 9)     { 
             Matrix <IntVarArray> m(entries, 9, 9); 
           for (int i = 0; i < 9; i++)  { 
                   distinct( this, m.row(i) );       /* constraints for rows */ 
                   distinct( this, m.col(i) );         /* constraints for columns*/ 
            } 
         for( int I = 0; i < 9; i +=3 ) 
             for( int j = 0; j < 9; j += 3 ) 
                  distinct( this, m.slice( i, i+3, j, j + 3 ) );  /*constraints for major blocks*/ 
         for( int i = 0; i < 9; i++ ) 
               for( int j = 0; j < 9; j++ ) 
                     if( int v = instance[i][j] ) 
                         rel( this, m(i, j), IRT_EQ, v );              /* prefilled entries*/ 
         /* Decomposition Heuristic : first fail */ 
        Branch( this, entries, INT_VAR_SIZE_MIN, INT_VAR_SPLIT_MIN ) 
      }        
      Sudoku(bool share, Sudoku & s): Space(share, s) { 
                 Entries.update(this, share, s.entries);      /* Constructor for cloning*/ 
        } 
      Virtual Space * copy(bool share)    { 
               return new Sudoku(share, *this) ;               /* copying during cloning */ 
        } 
 }; 
 
int main(int argc, char * argv[])  { 
       int instance[9][9] =  {   
                                                  /* prefilled values */ 
           } 
       Sudoku * root = new Sudoku(instance);  
       Sudoku * solution =  DFS( root );  /* pass problem space to search engine*/ 
       std:cout << solution->entries  << std::endl; 
       delete root;  delete solution; 
       return 0;    
  } 

Figure 1.2: Gecode Script for Modeling Sudoku Puzzle

of Figure 1.1 for an example. For E1i, its original domain is {1. . .9}; however, the

reasoning entails that values {3, 6, 7} cannot appear in any solution since the top-

right block has already assigned three entries respectively to 3, 6 and 7. In similar,

the values {2, 5} and {1, 9} can also be removed from its domain by examining

6



the row 1 and column i respectively. Finally, E1i has an updated domain {4,

8}. However, these value removals at E1i can cause other entries similarly shrink

their domains. This process may finally solve the problem. But most likely, it will

reach a status that none of variable domains can be further shrunken while the

problem is not solved, and we call such a status a fix point. The fix point signals

the insufficiency of inference alone for solving problems, which means that search

is necessary.

The search process decomposes the fix point problem into multiple disjoint sub-

problems so that inference can continue at each subproblem. Let continue the

Sudoku problem: if E1i of a fix point has a domain {4, 8}, the problem can be di-

vided into two subproblems: one has E1i assigned to {8} and the other has value 8

removed from the domain of E1i. In both cases, the subproblems are further con-

strained and thus inference can resume. The inference and decomposition steps

alternate until solutions are discovered or the problem is proven non-solvable, and

the search process defines an order to visit the subproblems (typically, Depth-

First-Exploration is employed to limit memory consumption).

However, inference at a subproblem may turn out to be an inconsistency. For the

Sodoku problem, if the variable attempts to assign the E1i with 8, it eventually will

reason an inconsistency. An inconsistency signals a false search direction, and the

system should restore the previous state that E1i has a domain {4, 8} and then try

the other alternative (remove 8 from E1i domain). This task is fulfilled by state

restoration (restoration for short) in a constraint programming system. Intuitively,

the restoration can be accomplished by memorizing the whole puzzle setting or

undoing the performed reasoning effects etc. Actually, various state restoration

7



techniques have been developed for building constraint programming systems.

Restoration is one of the key components in constraint programming systems; it

can significantly affect the system performance and architecture design.

1.3 The Thesis

This thesis is organized as follows: Chapter 1 overviews constraint programming

in a nutshell and Chapter 2 recapitulates the main fundamental concepts that are

referred throughout this thesis; three mainstream state restoration techniques are

reviewed in Chapter 3; Chapter 4 and Chapter 5 respectively presents the idea

of recollection and programming restoration granularity; Chapter 6 intensively

explains the implementation issues of our developed techniques and empirical

evaluation is placed in Chapter 7; lastly, Chapter 8 concludes this thesis.

8



Chapter 2

Constraint Programming

Constraint programming systems provide the facilities to model and solve CSPs.

In this chapter, we briefly explain the techniques and terms that are referred to in

constraint programming and its systems.

2.1 Basics

A constraint programming system implements variables and constraints for mod-

eling CSPs, and it provides facilities to solve the modeled problem. For a CSP

in a constraint programming system, the conjunction of its variables form a store

to map their domains; each constraint is implemented as one or multiple prop-

agators. A propagator can amplify the store by executing its built-in filtering

algorithm to rule out the inconsistent variable values.

9



A store and its connected propagators form a state. Within a state, the store plays

as a communication channel for its connected propagators. Specifically, a propa-

gator computes the variable values that are consistent with its constraint, and the

store reflects the computation results of the propagator. That is, a propagator en-

tails partial information about values of variables. Furthermore, this entailed par-

tial information may trigger the computation of other propagators that share the

same variables with the immediately executed propagator, enforcing more vari-

able values are eliminated from the store to maintain consistency. This process of

scheduling propagators for execution is called constraint propagation (or propaga-

tion for short), which implements the constraint inference as described in Sudoku

example.

During the propagation process, if the domain of any variable becomes empty,

an inconsistency occurs, and an inconsistent state indicates a search failure; if

propagation has all variables fixed, the state represents a solution; if propagation

reaches a fix point other than a failure or solution, constraint propagation alone is

not able to solve the problem. In the latter case, none of the propagators are able

to further reduce the domains of the variables, and search is required to proceed.

2.2 Constraint-based Search

Constraint programming systems conduct search by splitting current fix point

problem into multiple more constrained subproblems, the disjunction of which

is equivalent to the original problem. This splitting task is called branching, a

service provided by brancher. A brancher branches on a fix point state and then

10



Figure 2.1: A Computation State Search Tree

generates a choice of the fix point. The choice contains multiple mutually exclu-

sive constraints1, which are respectively denoted by alternatives. Subsequently,

one of constraints in the choice can be committed to the current fix point to lead

to a further constrained state where propagation can resume. A choice is open if it

has an uncommitted alternative; otherwise is closed. A state is open if its choice

is open, and a state is closed if its choice is closed.

The search process can direct the constraint commitment in a certain order, such

as depth-first, to visit subproblems. The constraint propagation, branching, choice

commitment steps alternate and create a tree of states, the search tree. Search is

a complete method, thus these steps continue until a solution is discovered or the

problem is proved non-solvable.

In such a search tree, the root node is the initial problem; the current node is

the state that search is exploring; branches are constraints (represented by choice
1We confine our discussion to binary choice.

11



alternatives); internal nodes are fix points and a leaf node is either a solved state

or a search failure. Figure 2.1 illustrates a search tree, where solid circles are

fix points, squares are failed states and diamonds are searched solution states. In

a search tree, the branches and fix point states between the root and current node

form a search path

2. The path presents the set of previously committed constraints

and reasoned fix point between the root and current state.

Since constraint propagation may reveal an inconsistency to signal a false search

direction, search thus requires to restore a previously visited state to switch ex-

ploration direction. This service is provided by state restoration (restoration for

short) in a constraint programming system. For restoration, one key step is to de-

cide the state to restore since an intelligent decision is able to skip the subtrees

where solutions cannot exist, and this is essential for a constraint programming

system to solve problems efficiently.

Intelligent backtracking has been intensively investigated, and prominent algo-

rithms such as dependency-directed backtracking [32], backjumping [10] and

conflict-directed backjumping [24] have been proposed in the community. (For

a comprehensive survey on backtracking search algorithms, please refer to [34]).

Nevertheless, chronological backtracking [11] is the common strategy employed

to construct constraint programming systems, and we stick our discussion to the

chronological backtracking throughout the thesis.
2We focus on sequential search in this paper and therefore there is a single path.

12



2.3 Restoration

To achieve the restoration of a previously visited state, sufficient information

should be stored as search proceeds. The information can be stored in various

formats, and these formats determine the way to conduct state restoration.

Algorithm 1 Depth First Search
Input: State S, Stack ST

Output: Solution State
1: while true do
2: Log log

3: switch (Propagate(S, log))
4: case solved:
5: return S

6: case inconsistency:
7: S Restore(S, ST)
8: if S = NULL then
9: return non-solvable

10: end if
11: Chunk chunk’ getTop(ST)
12: Choice choice’ getChoice(chunk’)
13: Commit(S, choice’, second)
14: break
15: case fix_point:
16: Choice choice Branch(S)
17: Commit(S, choice, first)
18: Chunk chunk Record(S, log, choice)
19: Push(ST, chunk)
20: log ;
21: end switch
22: end while

Algorithm 1 summarizes previously described constraint-based search and de-

scribes a Depth-First-Search without customizing a specific state restoration tech-

nique. In this pseudo-code, the path related information is maintained explicitly

using a stack ST. Constraint propagation of a state can be performed by calling

the operation Propagate() (Line 3), which releases a propagation result value.

The switch statement responds according to the propagation result in relevant

code segments. Specifically, the search engine returns the solved state as a solu-

tion and it calls the method Restore to restore a previously visited open state

13



to switch search direction when propagation exhibits a failed state. If propagation

reaches a fix point, the search engine branches on this state to generate a choice

and then commits to the first alternative (Line 8); in the meantime, a chunk will

be constructed by the method Record (Line 18) and then pushed onto the stack

ST.

In this pseudocode, Record and Restore form a pair of abstract methods,

whose implementation determines the specific restoration technique in use. In the

subsequent chapter, we would review restoration techniques through describing

the implementations of this abstract method pair.

14



Chapter 3

Existing Restoration Techniques

In CPSs, a state can be achieved by either memorization or reconstruction. States

are memorized by copying, which clones each reasoned fix point state. State re-

construction can be achieved by trailing and recomputation. Trailing rolls back

previous performed operations, while recomputation redoes the computation work.

In this chapter, we present these three mainstream restoration techniques by defin-

ing the pair of abstract method Record and Restore respectively.

3.1 Trailing

A trailing-based constraint programming system maintains a global data structure,

trail, to accumulate the information to undo the operation performed to change

states. Conceptually, the undo information should describe how changes hap-

15



pened to states (e.g. the eliminated values). In practical implementations, the

state changing operations are considered as updates of memory locations. If a

memory location is updated, its address and old content image is stored onto the

trail. This kind of trail is referred as Single-Value trail, which is essentially the

technique used in Warren’s Abstract Machine [3]. Other trail variants are Time-

Stamping and Multiple-Value trail(see [2]). For a comprehensive description on

implementing trail in CP systems, one can refer to [16].

In a trailing-based system, it implements the Record method to collect opera-

tion undo information into the trail (it is the stack ST in this context). To trail

state changes, it is required to track constraint propagation. In Algorithm 1, a data

structure log fulfills this task. Specifically, if propagation reasons a fix point, the

content of log will be wrapped into a chunk and pushed onto the stack ST. As for

restoration, the fundamental restoration idea is undoing the logged information to

restore to previously accessed states and the Algorithm 2 abstracts the main pro-

cess: first rolls back the operations stored in the current log (Line 1); subsequently,

access the chunks in stack ST in a top-down manner and roll back the information

stored in those chunks (accomplished in the while loop). This process iterates

until it backtracks to the first state which has an open choice (the condition of the

while loop).

The concept of trailing first appeared in the Warren’s abstract instruction set [37]

and was implemented in Logic Programming (LP) Prolog. Subsequently, Jaffar

introduced constraint into logic programming and laid the foundation for a suc-

cessor of Prolog, Constraint Logic Programming (CLP) [15]. In fact, most of

today’s constraint programming systems are constraint logic programming sys-

16



Algorithm 2 Trailing-based State Restoration
Input: State S, Stack ST, Log log

Output: State S

1: undo(S, log)
2: Chunk chunk getTop(ST)
3: Choice choice getChoice(chunk)
4: while choice has no uncommitted alternative do
5: log getLog(chunk)
6: undo(S, log)
7: Pop(ST)
8: if Size(ST) = =0 then
9: return NULL

10: end if
11: chunk getTop(ST)
12: choice getChoice(chunk)
13: end while
14: return S

tems that evolved from Prolog and inherit its search facilities such as Eclipse [1],

cc(FD) [36], CHIP [9] and clp(FD) [6] etc; meanwhile, there are also systems that

are not built on top of Prolog, like Screamer [30] (Lisp) and ILOG Solver [14], use

trailing. Trailing is the dominantly used restoration technique in the community

of constraint programming systems.

Trailing has demonstrated its efficiency for solving large problems with weak

propagation [27]. However, trailing is concerned with operations to change state

and requires to monitor the constraint propagation. This implies that the search

facilities is not an orthogonal issue with the other underlying components in a

trailing-based system; instead, they are tightly coupled. In such an architecture, it

is is of great complexity to implement users customized search algorithms. More-

over, trailing for elaborated data structures can also become quite complex; for the

exploration of multiple nodes, it should be accomplished in an interleaved man-

ner to switch between nodes in expensive operations. This however can limit the

parallel search, which is essential for solving large problems in modern computer

architecture.

17



3.2 Copying

Copying-based strategy clones an identical state before change and maintains it

in memory for direction retrieval. This method offers advantages with respect

to expressiveness: multiple states of a search tree are simultaneously available

in memory for further exploration, which is essential for programming parallel

and users-customized search algorithms. Unlike trailing, copying is concerned

with data structures rather than operations. This feature alleviates the coupling

between search facilities and the rest part of a system, which potentially simplifies

the design and implementation of a CP system.

Copying-based restoration defines the Record

copy

method to store a copy of

each reasoned fix point state in created chunks; the corresponding Restore
copy

method is straightforward: retrieve the chunk that contains the expected open state

and then return; Algorithm 3 illustrate the pseudocode of Restore
copy

method.

Algorithm 3 Copying-based State Restoration
Input: State S, Stack ST, Log log (ignored)
Output: State S

1: delete S

2: Chunk chunk getTop(ST)
3: Choice choice getChoice(chunk)
4: while choice has no uncommitted alternative do
5: if isEmpty(ST) then
6: return NULL
7: end if
8: chunk Pop(ST)
9: choice getChoice(chunk)

10: end while
11: chunk getTop(ST)
12: return S getState(chunk)

A system that features garbage collection already provides the essential function-

ality to support copying (garbage collection was first presented as a technique

18



in [4], see [17] and [8] for further explanation), on account of the intensive mem-

ory allocation and deallocation. The Mozart system [23] is designed for the pro-

gramming language Oz [31]; it was the first constraint programming system that

employed the copying-based state restoration scheme. In Mozart, a state is imple-

mented as first-class computation space (space for short) [28], which encapsulates

variables, propagators as well as branchers at that state. The system provides an

operation clone() to duplicate a fix point space. These efforts together facili-

tate the programming of a search engine, and [26] presents computation space as

abstractions with which users can program search engine at a high level.

Copying is more memory intensive than trailing, while its intensive memory man-

agement can introduce a factor of hurting the runtime performance. Meanwhile,

main memory page fault is possible to occur as problem sizes increase, which

may significantly prolong the runtime. Nevertheless, the experimental compar-

isons between trailing and copying have demonstrated that copying causes neither

memory nor runtime issues for small and medium size problems; copying alone

for large problems with deep search tree is unsuitable: a majority of runtime will

be spent on garbage collection while memory requirement is prohibitive [27].

3.3 Recomputation

The idea of recomputation is straightforward: any state in the path can be com-

puted from the root state, using the information that is stored in the path. Recomputation-

based restoration implements Record
recomp

to store the generated choices and

committed alternatives; the corresponding Restore

recomp

exploits the path to

19



conduct recomputation.

The Mozart/Oz system conducted pioneer work on recomputation; it memorizes

the committed choice alternative at each fix point. Restoration then requires step-

wise recomputation: first branch on root state to re-generate the choice and com-

mit to the old alternative to propagate to next fix point; then repeat branching to

generate choice and committing to old alternative to reason fix point. This process

is repeated until the expected open state is restored. This naive method can be

computation intensive; the subsequent batch recomputation [5] explicitly main-

tains the committed constraints in a global data structure. Restoration then can

be implemented by consecutively committing all necessary constraints in single

round then propagate to compute the open state, as illustrated in Algorithm 4.

Algorithm 4 Recomputation-based State Restoration
Input: State S, Stack ST, Log log (ignored)
Output: State S

1: delete S

2: Chunk chunk getTop(ST)
3: Choice ch getChoice(chunk)
4: while ch is not an open choice do
5: Pop(ST)
6: chunk getTop(ST)
7: ch getChoice(chunk)
8: end while
9: S getRootState(ST)

10: for each chunk 2 ST do
11: choice getChoice(chunk)
12: Commit(S, choice, oldAlternative)
13: end for
14: return Propagate(S)

Gecode generalizes batch recomputation by combining copying, which leads to

fixed recomputation and adaptive recomputation [28]. Fix recomputation places

a state copy every d exploration steps, where d is a constant value called copying

distance; recomputation then can start from the last state copy in the path. This

effort aims at weakening computation intensity. Adaptive recomputation further

20



extends fixed recomputation: if recomputation from S1 to S2 occurs, an additional

state copy will be put in the middle place between S1 and S2 to tentatively shorten

future recomputation distance. Adaptive recomputation has been demonstrated as

one of the most competitive restoration technique in the community [27], and it

is supported by the Mozart/Oz and Gecode systems. In addition, other techniques

such as Last Alternative Optimization [12] have been introduced to optimize the

performance of recomputation variants.

Since only choices/alternatives are required to store, the memory for supporting

recomputation can stay almost constant, even for large problems. It however may

introduce runtime cost as a result of redundant computation for state restoration.

If the computation of a problem is expensive, then recomputation alone is usually

not suitable for solving the problem, especially for the one with deep search tree

and extensive search failures. The combination of recomputation and copying

strives to balance the memory and runtime cost following a certain strategy, which

is usually effective enough to configure an acceptable performance.

21



Chapter 4

Recollection

In this chapter, we propose an alternative restoration technique that we call rec-

ollection for building constraint programming systems. This technique memoizes

the variables that were modified during constraint propagation; restoration then

can be accomplished by updating a state at high level of the search tree down-

wards, using the memoized variables. Section 4.1 explains the motivation for

proposing recollection and its main idea; Section 4.2 visualizes the difference be-

tween trailing and recollection; Section 4.3 and Section 4.4 respectively define the

Record and Restore methods of recollection.

22



4.1 Motivation

In the previous chapter, we have thoroughly examined the mainstream restoration

techniques: trailing, copying and recomputation. As explained, recomputation

maintains branchers generated constraints/alternatives to compute from the root or

other higher search level states. However, recomputation conducts redundant con-

straint propagation, which may generate runtime penalty as a result of intensive

propagator scheduling and expensive propagators’ built-in filtering algorithms.

To avoid the repetitive computation, copying clones each visited fix point state

in a coarse-grained manner, while trailing records the changes between states.

Recall the statement in Chapter 2 that the aim of constraint propagation is elimi-

nating inconsistent variable values; therefore, it should be feasible to memoize the

modified variable domains and use them to conduct state restoration.

4.2 Characteristics

Intuitively, both recollection and trailing intend to store the part of states for

restoration, they however approach restoration in opposite directions, as illustrated

in Figure 4.1. S0 is the root state and the solid triangle is a failed subtree; a search

failure is encountered at state S

f

. In a depth first search strategy, state S

r

should

be restored to switch search to state S

n

(bold line and circle). In a trailing-based

system, the restoration first rolls back the changes between S

t

and S

f

(represented

by directed line R1) to restore S
t

; subsequently, the performed operations between

23



Sf 

St 

Sr 

So 

Sn 

Si 

failed substree 

Roll back 

R1 

R2 

Recollect 

Figure 4.1: Visualization of Trailing and Recollection

S

t

and S

r

is further undone to finally restore S

r

. This process demonstrates: (1).

trailing launches restoration on the failed state and consecutively rolls back state

changes until it restores the target state, which may internally go through many

tentative states; (2). the step-wise restoration can be costly if the search strategy

intends to jump between states within the search tree; (3). trailing proceeds in a

bottom-up direction.

By contrast, recollection updates a state at higher level (the root state in this illus-

tration) downwards to restore the state S

t

, as shown in the dashed directed line.

The recollection process reveals: (1). recollection conducts restoration in a single

step to avoid the reconstruction of internal states; (2). recollection can achieve the

jumping between states easily; (3). recollection proceeds in a top-down fashion.

4.3 The Record Method

24



Algorithm 5 Definition of Restore

recollect

Method
Input: State S, Choice choice, Log log

Output: Chunk chunk

1: Domain doms ;
2: for each var 2 Variables(S) do
3: if isChanged(var) then
4: doms doms [ recordDomain(var)
5: end if
6: end for
7: return Chunk(choice, doms)

The Record
recollect

of recollection implements to memorize the changed vari-

ables, and Algorithm 5 describes the process. Specifically, each chunk includes

an object of dom class Domain. Variables are sequentially scanned; if a variable

was updated during constraint propagation, its domain will be copied into the ob-

ject dom (Line 4). Lastly, the dom will be wrapped with the generated choice to

create a chunk.

4.4 The Restore Method

The Record
recollect

method is defined to store the changed variable only, which

implies that a variable domain shall not be copied if it stays unchanged. This

definition scatters the empty entries across chunks, i.e. a chunk usually does not

include the domain of all variables. However, recollection aims at conducting

state restoration in a single step.

To guarantee the single-step restoration, recollection should collect the correct

variable domains across the stack of chunks, and we name this process as do-

main collection. Domain collection is searching the chunk stack ST in a top-down

direction to identify the first variable domain entry in the chunks and use it to re-

25



store. In principle, the domain collection can be implemented in variable-centered

and chunk-centered two flavors.

Algorithm 6 Definition of Restore

variable�centered Method
Input: State S, Stack ST, Log log

Output: State S

1: delete S

2: S root_state
3: Chunk chunk getTop(ST)
4: Choice ch getChoice(chunk)
5: while ch is not an open choice do
6: Pop(ST)
7: chunk getTop(ST)
8: ch getChoice(chunk)
9: end while

10: for each var 2 Variables(S) do
11: Integer index Size(ST) - 1
12: chunk getChunk(ST, index) /*scan from stack top*/
13: while Domain(var) /2 chunk do
14: index index - 1 /*move to next chunk location*/
15: chunk getChunk(ST, index)
16: end while
17: Reconstruct(var, chunk)
18: end for
19: return S

Variable-Centered Collection The variable-centred approach, shown in Algo-

rithm 6, picks one variable var at a time and searches the stack ST in a top-down

direction (moving in the search tree in a bottom up direction!) for the first chunk

that contains its domain (Line 7 to 10), and then reconstructs it (Line 11). In the

worst case, this approach scans the entire stack for each of the M variables and

thus conducts N ⇥ M chunk access operations for a restoration, where N is the

current stack size; a fairly weak propagation problem can exhibit such worst-case

behavior. On the other hand, in the presence of a strong propagation problem,

only the top-most chunk (bottom-most node) may contain all variables and thus

there is no need to even access any further chunks on the stack.

26



Algorithm 7 Definition of Restore

chunk�centered
Input: State S, Stack ST, Log log

Output: State S’
1: delete S

2: S root_state
3: Chunk chunk getTop(ST)
4: Choice ch getChoice(chunk)
5: while ch is not an open choice do
6: Pop(ST)
7: chunk getTop(ST)
8: ch getChoice(chunk)
9: end while

10: Integer index Size(ST) - 1
11: while index � 0 do
12: Chunk chunk getChunk(ST, index)
13: for each var 2 Variables(chunk) do
14: if var has not been reconstructed then
15: Reconstruct(var, chunk)
16: end if
17: end for
18: index index - 1
19: end while
20: return S

Chunk-Centered Collect By contrast, the chunk-centered approach, depicted

in Algorithm 7, scans ST in a top-down manner (moving bottom-up in the search

tree), and keeps track of reconstructed domains. For each chunk, all memoized

variables are scanned and a variable domain is reconstructed, whenever the do-

main of the variable has not been reconstructed yet (Lines 6–14). This query

scheme accesses the stack once in a restoration, regardless whether the problem

exhibits weak or strong propagation. To accelerate the variable domain checking

in chunk-centered scanning, we introduced an index, which will be thoroughly

explained in the chapter of discussing implementation issues. Our experimental

results demonstrate that the indexed chunk-centered query generally has a slight

runtime advantage over variable-centered restoration. The experiments of the next

section have been conducted using the indexed chunk-centered query.

27



4.5 Variations

Our discussion on recollection so far assumes that a single state is maintained at

the root of the search tree and that restoration will begin from scratch at the root

state. Similar to recomputation, we observe that this approach incurs a significant

runtime penalty. Analogous to recomputation, we extend recollection to the vari-

ants of fixed recollection and adaptive recollection, which place state copies in the

search tree in the way that has been explained in chapter 3.

28



Chapter 5

Programming Restoration

Granularity

In this chapter, we propose to program state restoration granularity to achieve

customized state restoration scheme, striving for even better state restoration per-

formance (consume even less runtime or memory). Section 5.1 gives the statis-

tics that motivate our investigation into programming restoration granularity; Sec-

tion 5.2 presents the granularity of various restoration strategy and Section 5.3

proposes to program restoration granularity as an alternative approach for devel-

oping state restoration.

29



5.1 Motivation

For solving a problem, the constraint propagation characteristics can evolve as

search proceeds. For example, a problem can impose a strong propagation at its

first search steps, but it may become rather weak propagation when search ap-

proaches the bottom part of the search tree. Similarly, search failures can happen

intensively at the bottom part of the search tree in one problem, but for another

problem the search failures may distribute evenly. Table 5.1 illustrates the search

tree statistics of four problems that explore for the first solution. The Queens

problem is modeled by either a set of disequality constraints or three global con-

straints of the “all-different constraints" family (denoted as Queens-S). The size

of Queens problem is 200; the sizes of both Knights and Sport-League are 22.

In this table, the column failures counts the total number of failures during search;

first signals the tree level where the first search failure emerges, while peak is the

peak depth of the search tree. [1, first) accumulates the number of failures occurs

between the root and the first search tree level, while [first, peak] records the

number of failures between first and peak.

Problem failures first peak [1, first) [first, peak]

Queens 146,838 164 200 0 146,838
Queens-S 146,838 164 200 0 146,838
Knights 19,877 386 451 0 19,877
Sport-League 1,035 62 249 5 1,030

Table 5.1: Search Tree Statistics of Problem Search Trees

From these search tree statistics, we perceive that the emergence of the first fail-

30



ure can be an important signal for intensive search failures. In such circumstance,

if copying is employed as the restoration scheme, the space copies maintained

between the root and the first (exclusive) level cannot contribute while may oc-

cupy a substantial amount of memory. This observation exemplifies that an ideal

restoration should be application-specific.

5.2 Restoration Granularities

To support a restoration technique, a particular format of information should be

stored. This information has a certain granularity, which we call restoration gran-

ularity. In the following paragraphs, we respectively discuss the restoration gran-

ularities of developed state restoration techniques.

• Copying. Copying is coarse-grained since it stores all information of visited

states; it come at an expense of substantial memory occupation. Although

copying causes neither runtime nor memory issues for small and medium

size problem, its potential intensive memory management may introduce

runtime penalty. Nevertheless, copying can be combined with other tech-

niques such as recomputation and recollection, which can significantly im-

prove the their runtime performance with a reasonable memory investment.

• Trailing. Trailing is finer-grained than copying since it records the changes

to states. Trailing has been proved efficient for the problems imposing weak

propagation. However, trailing can be quite complex for complicated data

structures. Moreover, its implementation requires to couple search facili-

31



ties with constraint propagation, which potentially increases the design and

implementation complexity of a constraint programming system as well.

• Recomputation. Recomputation does not store any specific information

with respect to visited states. Instead, it keeps the constraint commitment

instructions (meta-information) that were commanded to search. This ap-

proach consumes almost constant memory, but its runtime may be dragged

rather significantly if a problem is computationally expensive.

• Recollection. Recollection is also finer-grained than copying that it logs

the changed variable domains, consuming less memory than copying; it has

demonstrated to improve the runtime performance than recomputation for

the problems that impose expensive computation with deep search trees.

5.3 Programmable Restoration

Most constraint programming systems employ a specific restoration technique

such as trailing in constraint logic programming systems. The aim of a pro-

grammable state restoration was facilitated by the development of computation

space. The computation space allows users to program the places where a space

clone should be put, and it was intensively used to combine with recomputa-

tion. However, the space is a rather coarse data structure, while the recomputation

stores only instructions (constraints).

As we have explicitly examined in previous section, each restoration technique

has its own advantages and limitations. Trade-offs usually exist if a constraint

32



programming system employs a specific restoration strategy for solving all kinds

of CSPs. To alleviate this trade-off, we should facilitate the customization of the

restoration by users, which requires to store information of various granularities

as search proceedsl; this is programming restoration granularity. As an initial

step, we implement a prototype to address the limitation exposed in Table 5.1

(deep search with intensive failures at bottom part). The detail specification with

respect to the prototype is given in chapter 6.3.1.

33



Chapter 6

Implementation

In this chapter, we respectively explain the key implementation issues of recollec-

tion and programming restoration granularity. In Section 6.1, we briefly overview

the structures that are highly relevant to our proposed techniques in the target

Gecode system; Section 6.2 presents how we address the issues to realize recol-

lection, and Section 6.3 discusses the implementation of programming restoration

granularity.

6.1 The Gecode System

The Gecode system is an open source C++ constraint solver. This section intro-

duces the computation space and its provided key operation interfaces as well as

its internal structures in Section 6.1.1; Section 6.1.2 depicts the pseudo-code of a

34



DFS search engine and Section 6.1.3 outlines the profile of the class Edge in the

Gecode system.

6.1.1 Computation Space

A computation space encapsulates the store, propagators and branchers. It pro-

vides a status() method to conduct constraint propagation and returns a value

of SpaceStatus type. Inside a space, the constraint propagation is imple-

mented by scheduling propagators for execution. A fix point space can be cloned

by clone(). choice() generates the choice of a fix point space, and its con-

tained constraints can be committed to its spaces (or the equivalent clones) by the

commit() method.

The propagators of a computation space inter-connect as a chain, and propaga-

tors are picked for execution to implement constraint propagation. Meanwhile,

branchers are also chained, and the head brancher is always called for branching

until its subscribed variables are all fixed.

Propagator. In the Gecode, a class Propagator has been defined to declare

a set of virtual methods including propagate(). Every propagator is defined

as a subclass of Propagator and should implement its filtering algorithm in

propagate() method body. A propagator subscribes a set of variables and it

can be scheduled if one of its subscribed variables has a domain change; the prop-

agator scheduling policy can be specified by modification event and propagation

condition. For a comprehensive description of the constraint propagation design

35



in the Gecode, please refer to [29].

Brancher. In the Gecode, a class Brancher has been defined as the superclass,

and every brancher should inherit from it and define its reserved virtual methods.

Of these methods, the choice() specifies the way to create a choice and the

commit() injects the constraints to spaces. A brancher generally subscribes an

array of variables and it will be disposed if it cannot branch any more.

6.1.2 Search Engine

Program 8 Search Engine
while true do

switch (Status(space)) /* query space status */
case fixpoint :

Choice ch Choice(space) /* return solution space */
Push(Edge(ch . . . ))
Commit(space, ch) /* commit a constraint to space */

case solution:
return space /* return solution space */

case failure:
if not adjust(. . . ) then

break /* The problem is not solvable */
end if
Restore(. . . ) {

Recomputation code /* programmed recomputation */
}

end switch
end while

The Gecode is designed that the search engine interacts with computation space,

while computation space encapsulates the implementation detail with respect to

constraint propagation, branching etc. The search engine responds according to

the enquired computation status: if the space turns out to be stable (a fix point),

the search engine will back up relevant information and then continue searching;

if the space is recognized as a solution, the search engine will directly return the

36



space; if the space is evaluated as a failure, the search engine will first request to

adjust search direction by calling adjust() 1 and then enter the code segment

where recomputation is defined. Program 6.1.2 illustrates a Depth-First search

engine.

6.1.3 Class Edge

Program 9 Class Edge
class Edge {

Space * _space; /* Space copy */
Choice * _choice; /* fix point generated Choice */
unsigned int _alt; /* committed choice alternative */
vector _doms; /* variable domains */

public:
Edge(Space * s, Choice * c, vector<int> _doms): {
_alternative = 0; /* commit to the first alternative */
. . . /* other initialization statements */

}
. . .

}

In the Gecode system, a class Edge is defined to track the constraints that were

committed to visit fix points spaces during search. Each Edge object was cre-

ated to memorize a generated choice and the committed alternatives, and all such

objects are pushed onto a stack structure Path.

Program 9 outlines the profile of the class Edge. In this class, the Choice en-

capsulates the two constraints that are generated by branching on the current fix

point, and they are respectively represented by 0 and 1. The committed constraint

alternative is denoted by the integer variable _alt. In an Edge object, the Choice

is a compulsory information whereas the space copy _space is optional. This

flexibility enables the change of state restoration paradigm: if a space copy is
1It will return a Boolean false if another search direction is impossible.

37



placed in each Edge object, the system will work in a copying-based scheme; if

none of Edge objects stores a space copy (except root), the system will conduct a

recomputation-based restoration; hybrid scheme can be obtained by placing space

copies occasionally.

6.2 Implementing Recollection

This chapter is concerned with key implementation issues with respect to recol-

lection in the Gecode system. Section 6.2.1 describes the schemes for accessing

variables within computation spaces; Section 6.2.2 explains the way to detect the

changed variables during constraint propagation; Section 6.2.3 sketches the mem-

ory management policy to support recollection; an indexed domain collect scheme

is illustrated in Section 6.2.4, and Section 6.2.5 describes the detail to reconstruct

a variable.

6.2.1 Variable Access

The Gecode system is a layered architecture, and variables are not exposed to

other components except propagation and branching. Recollection requires to ac-

cess variables and thus we should first address the issue of variable access. We

cope with this issue by utilizing branchers: introduce a set of virtual methods to

class Brancher as interfaces and define these methods to implement recollec-

tion. Figure 6.1 illustrates the introduced main methods.

38



For the names of introduced methods, those with a prefix logRanges imple-

ment the variable memorization function and four approaches as have been de-

veloped. Specifically, the unary means the memory is linearized compares with

binary implementation (further explained in Section 6.2.3); sparse means

that the problem entails weak propagation and we tackle this situation to retain

performance. The method restore() gives the interface to variable construc-

tions. For the definitions of these virtual methods, we realize them in the template

class ViewBrancher, a subclass of class Brancher. 
 
virtual void logRanges_binary(  ***  );       
  
virtual void logRanges_binary_sparse( *** );   
 
virtual void logRanges_unary( *** ); 
    
virtual void logRanges_unary_sparse( *** );    
 
virtual void restore( *** ); 
   

Figure 6.1: Introduced Virtual Methods for Class Brancher

We extend the class Space to define two methods copyVariable_unary and

copyVariable_binary, which aim at coordinating the chains of branchers

in spaces to copy all variables. Restoration through multiple branchers is accom-

plished by the method restoreVars() in the class Space. Note that all these

methods are declared as virtual methods. This is because a problem is modeled in

a subclass of Space, making use of dynamic polymorphism.

One additional issue is ensuring the completeness of memorized variables since a

brancher typically subscribes a subset of the variables in a computation space. To

address this issue, one can simply introduce an extra brancher or multiple branch-

39



ers at the tail of the original brancher chain to guarantee a complete monitor of

the variables to track. Figure 6.2 partially depicts the script for modeling Sport-

League problem. The Sport-League problem is modeled by three integer arrays

home, away and the game, and the original script branches on the game. We ex-

tend to introduce two additional branchers to track the other variable arrays, as

denoted in the figure. Note that, the additionally introduced branchers appear at

the tail of the branchers chain and they affect neither the search tree shape nor fix

point computation; meanwhile, they cause a negligible memory consumption.

class SportsLeague : public Script { 
    protected: 
          const int teams;      ///< number of teams 
          IntVarArray home;    ///< home teams 
          IntVarArray away;     ///< away teams 
          IntVarArray game;    ///< game numbers  
              
   public: 
          SportsLeague(const SizeOptions & opt)  { 
   
              
 
          branch(* this, game, *** );     
          /* Extra branchers created, never branch */ 
          branch(* this, home, *** );     
          branch(* this, away, *** );     
   } 
 

Figure 6.2: Variable Accessing via Extra Branchers

Overall, we implement branchers to fulfill the services of accessing variables. This

scheme follows the target system layer architecture and eases the coding efforts.

40



6.2.2 Variable Change Detection

A key implementation issue in method Record
recollect

is to identif the changed

variables in the process of reasoning fix points. Fortunately, our chosen imple-

mentation platform, Gecode, provides an abstraction called advisor [19], which

facilitates our implementation of recollection significantly.

Advisors are introduced in the Gecode to inform variable changes and advise con-

straint propagation. An advisor belongs to a propagator and subscribes to a vari-

able of its propagator; it can be defined to store domain change information that is

need by propagation engine. Whenever a variable changes, the advise() method

of the advisor’s propagator is executed with the advisor as argument.

We introduce a Boolean variable changed into the template class VarImp,

which defines the method advise(). This class VarImp is the superclass of

IntVarImp, and each variable implementation is an object of IntVarImp.

This inheritance ensures that every instantiated IntVarImp object will contain a

Boolean member variable changed which is initialized to a Boolean false value;

on the other hand, the code of advise() method will set the Boolean variable

to a true value. These features assist to recognize the changed variables during

constraint propagation, and all technique detail is specified in the core.hpp file

of the source package.

41



6.2.3 Memory Management

The Gecode’s memory manager is centered on spaces, but the created chunks live

outside spaces. To store the copied variable domains, a proper memory manage-

ment is necessary. Our prototype explored two options. The first option allocates

memory incrementally; it performs a memory new/delete operation for each

variable. By contrast, the second approach calculates the exact memory to occupy

and then allocates memory once for a chunk. Conceptually, we take the second ap-

proach as a linearized version of the first memory management policy, as marked

by dashed line in Figure 6.3 where the table of offset records the starting position

of the relevant variable domain.

NULL NULL 

D
om

1 

D
om

k 

D
om

2 

V1 V2 V3 Vk-1 Vk 

NULL 

V1 V2 V3 Vk-1 Vk 

… 

… Offset 

Variables 

Domain values 

Linearization 

Figure 6.3: Memory Management for Recollection

Our experiments reveal that the first approach is marginally more runtime efficient

for problem with weak propagation, while the second approach is more suitable

42



for problems of intensive variables with strong propagation. In our experimental

prototype [21], we can switch between the two alternatives by setting a compile-

time flag; we use the first memory policy in all experiments reported in the next

section.

6.2.4 Indexed Collection

We explained both variable-centered and chunk-centered collection in Chapter 4.

To facilitate the chunk-centered collection scheme, we introduce an index in this

section.

NULL 

V1 V2 V3 Vk-1 Vk 

P12 NULL NULL P1k 

P21 NULL P23 NULL p2K 

NULL P32 NULL NULL P3k 

p41 NULL P43 NULL NULL 

2 … 

1 3 … 

2 … 

1 3 

… 

… 

… 

… 

K 

K 

K 

… 

index … 

… … 

… 

Et 

Et+1 

Et+2 

Et+3 

Figure 6.4: Index-based Domain Query

As shown in Figure 6.4, the directed lines visualize first appearance of variable

domains across chunks. In the case that a large proportion of NULL domain entries

exist in chunks, it is less efficient to scan chunks to collect. To accelerate the

access, an index structure can be created to map the variables whose domains are

stored in current chunk. Thus, the collection can be accomplished by scanning the

43



index instead as demonstrated by the dashed directed line.

6.2.5 Variable Reconstruction

An interval has a upper boundary and lower boundary values, and it represents

that all values between the two boundaries are consistent with the constraints of

the problem, and the domain of a variable usually consists of multiple intervals

rather than a single interval. In the Gecode system, an interval is implemented

as a range structure and multiple ranges are inter-linked as a chain, as illustrated

in Figure 6.5. In addition to the chain structure, a variable implementation also

maintains an extral range at the head of the chain (marked as dom-info in the

illustration). This head range stores the maximum and minimum values of the

integer domain, aiming at fast access during constraint propagation.

dom-info (L1, U1) (L2, U2) (Ls, Us)) … 

Figure 6.5: Integer Variable Implementation

The recollection requires to update variable domains by defining Reconstruct

(invoked in Algorithms 6 and 7). Suppose a variable domain originally contains a

chain of length L, whereas restoration would adjust this chain to a new length of

R. To achieve such an adjustment, we have two alternatives. The first is to destroy

the old chain and then rebuild. This is a straightforward solution, but it may cause

intensive garbage collection, especially when dealing with long chains; therefore,

44



this method generally fits short and medium length chains better. The second

approach is to tailor the original chains by either trimming or extending to fit in a

new requirement. In our prototype, both approaches have been implemented and

they are configurable through a compile-time flag. In our latter evaluations, we

employ the second approach.

Apart from the way to reconstruct variable chains, a few other implementation

issues should be highlighted:

• Domain Bounds. The range dom-info stores the maximum and mini-

mum values of a variable domain; it should be updated correctly in variable

reconstruction to ensure the correctness of the state restoration.

• Single Range. The range dom-info is to designed to track the global

lower and upper boundary values of a variable domain; however, this range

will be used to represent an entire domain instead if the variable domain

contains a single range. This is an optimization that the Gecode adopts and

implements, and attentions should be paid to this observation when rec-

ollection reconstructs a single range variable; otherwise, restoration space

would encounter segmentation fault during the following search steps.

• Variable Assignment. The Gecode system employs an event-based mech-

anism to schedule propagators, and a propagator becomes subsumed when

all its monitoring variables become assigned. The subsumed propagator

will automatically be disposed from its computation space, and the system

internally provides the service to cancel the subscriptions between propa-

gators and variables. To guarantee such correct cancellations, recollection

45



should generate an event to schedule the subscribed propagators when a re-

constructed variable turns out to be assigned. This objective is achievable

by calling the method eq() of the variable implementation.

6.3 Programming Restoration Granularity

This section is concerned with the implementation issues of programming restora-

tion granularity. We first implement a prototype in Section 6.3.1; Section 6.3.2

proposes to use aspect-oriented programming to build a more flexible restoration

component for programming restoration granularity.

6.3.1 A Prototype

For restoration techniques, recomputation has an optimistic assumption [27] that

few search failure will occur; by contrast, copying is pessimistic in a sense that

every node need restoration. It is cheap to store constraints in terms of both run-

time and memory, but the restoration requires to recompute; copying is memory

expensive, but it avoid computation.

Table 5.1 lists the problems that have failures intensively occurred within a certain

area of the search trees. To deal with the skewed failure distribution, a straightfor-

ward method is to store restoration information of difference granularity as search

proceeds and then restoration adapts the stored information. The statistics clearly

shows that search can keep optimistic until the occurrence of the first failure, and

46



C1 

C2 

C3 

Ck 

Search Tree Nodes 

Upper Part 

Bottom Part 

Border State 

First Inconsistency 

Figure 6.6: Programming Restoration Granularity Prototype

we can build a prototype of programming restoration granularity by taking serious

of the emergence of the first search failure.

In the prototype, we integrate copying, recomputation and recollection, and we

take the search tree level where the first failure emerges as a border level. This

border level horizontally divides the search tree into upper and bottom two parts.

For search in the upper part of the search tree, nothing but constraints are stored.

When search proceeds beyond the border level, both copying and recollection will

be activated to collaborate: the placing of a coarse-grained state copy alternates n

finer-grained recollection explorations (n is configurable and takes a default value

eight).

As a result, the system needs to switch between restoration code segments. Specif-

47



ically, when a state in upper part of the search tree should be restored, the system

switches to recomputation. When a state in the bottom part is to restore, the sys-

tem first attempts to recollect from the nearest state copy; if this effort fails, it

then recomputes to restore the border state and then recollect. Intuitively, we can

take an optimization measure by maintaining a border state or consolidating the

recomputation and recollection.

To meet the demands of switching among restoration techniques, we naively used

a signal variable ffDepth to track the first failure depth in the search tree. How-

ever, this signal couples tightly with a specific program. Suppose one redefines the

scheme to switch restoration techniques, the code is quite likely to change, prob-

ably drastically. Therefore, it is of great significance to propose a more flexible

and modular design to program restoration granularity.

6.3.2 Program as an Aspect

As clarified, restoration is actually determined by the granularity of the stored

information; the information is stored at exploration steps while exploited in state

restoration. This observation claims that the stored restoration information cuts

across the two abstractions: search exploration and state restoration.

In developing applications, the occurrence of crosscutting abstraction is not rare;

transactions, security-related operation, logging etc all exemplify crosscutting

abstractions. To facilitate the programming of crosscutting abstraction, aspect-

oriented programming [18](AOP) provides solutions to encapsulate a crosscutting

abstraction as an aspect. The implementation of an aspect mainly consists of two

48



tasks: advice and pointcut. An advice is a means of specifying the code to run at

a place, while a pointcut determines the matches of executing specified advice at

the place. We propose to engineering the restoration information as an aspect in

a constraint programming system, striving for a more flexible implementation of

programming restoration granularity.

49



Chapter 7

Evaluation

This chapter conducts empirical evaluation of our proposed and implemented

techniques and prototype. Section 7.1 specifies the hardware and software as well

as benchmark problem details for the evaluations; Section 7.2 mainly intensively

compares the performance between recomputation and recollection; Section 7.3

extends copying into comparison and Section 7.4 studies the performance of the

programming restoration granularity prototype.

7.1 Configuration

We used an Intel Core 2 Quad processor PC system, running the Ubuntu operating

system 11.10 with four Gigabyte main memory. We built our prototype [21] on

top of the Gecode system of version 3.7.3 [33], which also served as the reference

50



instance for comparison. Each collected runtime1 value is an arithmetic mean of

20 runs with a variation coefficient less than 2%; memory numbers are the peak

memory occupation.

As benchmarks, we used Finite Domain Integer and Boolean problems. They

were selected to cover a wide spectrum of constraints, spawn a varying number of

propagators and impose different propagation intensity. They cover first, all and

best (branch-and-bound) solution search. We limit to the problems included in

the Gecode repository, and stick to the configuration of propagation consistency

level, branching strategy etc configured in the respective problems scripts.

Problem Sols Propagators Propagations Nodes Failures Depth

Queens(100) one 14,850 16,821 138 22 96
Queens-S(100) one 3 428 138 22 96
Magic-Square(5) one 15 2,292,251 144,471 72,227 33
Sport-League(22) one 1,199 207,066 2,273 1,035 249
Black-Hole one 742 986,542 5,284 2,631 47
BIBD one 9,693 912,464 2,625 1,306 968
Knight(22) one 1 74,610 40,184 19,877 451
Pentominoes one 81 6998 143 64 27
Alpha all 21 136,179 14,871 7,435 49
Langford-Num all 37 22243 303 149 17
Golomb-Ruler(10) optimal 39 2,760,799 39,875 19,928 33
Ind-Set optimal 21 101,317 29,849 14,895 40

Table 7.1: Benchmark Problem Search Trees Characteristics

The set of selected benchmark problems are: the Queens problem modelled by

either a quadratic number of disequality constraints or three global constraints

that generalize all-different; the magic-square puzzle of size 5; a round tournament

problem with 22 teams; the black hole patience game; Balanced Incomplete Block

Design (BIBD), the knights tour problem of size 22; the Pentominoes problem;

the Alpha crypto-arithmetic puzzle; the Langford’s number problem with 3 by 9
1We take wall clock time in this work.

51



values and; Golomb-Ruler problem of size 10 and the problem of independent

sets in graph (Ind-Set). Table 7.1 lists the characteristics of these problems, where

the propagations are the numbers collected when using adaptive recomputation

for restoration with default argument settings. For more detail information, please

refer the source modeling scripts in [21], and for the original scripts, refer to the

Gecode distribution [33].

7.2 Recomputation and Recollection

Adaptive recomputation generally exhibits superior performance compared with

other recomputation schemes [27]. Similarly, adaptive recollection is generally

the most competitive recollection variant. We therefore first focus on a direct

comparison between adaptive recomputation and adaptive recollection, fixing the

copying distance to eight in both cases.

Recomputation Recollection
Problems Time(ms) Mem(KB) Time (ms) Mem(KB)

Queens(100) 16 4,301 15 4,663
Queens-S(100) 1 240 2 602
Magic-Square(5) 579 63 653 73
Sport-League(22) 352 7,710 331 7,937
Black-Hole 535 1,927 508 1998
BIBD 573 4,678 575 4784
Knights(22) 1,858 4,460 1,704 4,592
Pentominoes 20 1,158 19 1,173
Alpha 55 45 66 50
Langford-Number 13 132 13 135
Golomb-Ruler(10) 556 69 547 70
Ind-Set 58 41 68 43

Table 7.2: Comparison of Recomputation and Recollection

Table 7.2 depicts the experimental results. Neither recomputation nor recollection

52



can demonstrate a consistent performance advantage over all problems. Specif-

ically, recollection hardly improves the runtime of the problems with shallow

search trees and limited number of failures such as Pentomonies and Langford-

Number; or even leads to an inferior runtime, as in Alpha and Magic Squares.

Recollection is competitive for finite domain integer problems with deep search

trees and intensive failures such as Sport-League, Golomb-Ruler and Knights.

Meanwhile, it is important to note that the runtime improvement is afforded using

a small amount of additional memory in these cases.

Boolean problems generally do not benefit from recollection, even though a Boolean

problem would instantiate a rather deep search (BIBD) or encounter intensive fail-

ures (Ind-Set). The information contained in previously memoized singleton do-

mains is not dense enough to compete with their recomputation via re-running the

respective propagation algorithms.

We conducted the comparison with a specific copying distance eight, and were

concerned that this choice may have skewed the results. To dispel this concern,

we ran Sport-League and Knights problem in adaptive recomputation and adaptive

recollection over a range of copying distances. Table 7.3 displays the runtime

measurement.

Copying Distance (d)
d = 1 d = 5 d = 10 d = 20 d = 40 d = 80 d = 160 d = 320

Sport(recomp) 337 341 350 351 355 359 360 359
Sport(recoll) 336 326 330 329 333 334 336 335
Time�(ms) 1 15 20 22 22 25 24 24
Knights(recomp) 1598 1830 1856 1855 1868 1872 1855 1864
Knights(recoll) 1589 1695 1712 1711 1703 1697 1700 1714
Time �(ms) 9 135 144 144 165 175 155 150

Table 7.3: Sport and Knight run over a range of copying distances

53



Table 7.3 shows that adaptive recollection can adjust quickly to converge to a

small runtime interval, even if the copying distance is set to a large value. This

observation indicates that the configuration of copying distance is not significant,

confirming and generalizing the corresponding original observation reported on

adaptive recomputation. The runtime difference between recomputation and rec-

ollection initially increases as copying distance increase, and then shrinks some-

what after reaching a peak performance gap(at d=80 in both cases); afterwards, it

stays almost stable with the further increase of the copying distance.

7.3 Copying and Recollection

We extend the comparison to copying-based restoration. In Gecode, copying-

based restoration can be easily obtained by setting the copying distance to one.

By contrast, a more direct comparison of trailing and recollection would require

an implementation of state-of-the-art trailing within the Gecode system, which

is beyond the scope of this thesis. Schulte has provided such a system-crossing

comparison in [27]. By following this choice of benchmark problems, Table 7.4

attempts to give a broader view on the performance of recollection.

The table reveals that recollection consumes less memory than copying, espe-

cially for the large problems Queens-100 and Knights-18. For runtime, recollec-

tion does not outperform copying on small or medium size problems; however,

it cuts the runtime almost in half on large problems (Queens-100 and Knights-

18). Schulte [27] observes that copying together with adaptive recomputation

can outperform trailing-based system for large problems with deep search trees

54



Copying Recomputation Recollection
Problems Time(ms) Mem(K) Time(ms) Mem(K) Time(ms) Mem(K)

Alpha 51 54 55 45 66 50
Queens(10) 26 77 34 53 37 55
Queens-S(10) 17 41 21 29 25 31
Queens(100) 39 26076 16 4301 15 4663
Queens-S(100) 3 1662 1 240 2 602
Magic-Seq 51 4358 51 4358 51 4361
Knights(18) 31 11271 20 1596 19 1681

Table 7.4: Comparison with other restoration techniques

(Queens-100 and Knights-18). Recollection further improves the runtime on the

two benchmark problems Queens-100 and Knights-18 problems.

7.4 Programming Restoration Granularity

We evaluate our programmed prototype over the four problems, where we sought

the motivation to program restoration granularity. Both recomputation and recol-

lection have adaptive service enabled and set copying distance to eight.

Recomputation Recollection Prototype
Problems Time(ms) Mem(K) Time(ms) Mem(K) Time(ms) Mem(K)

Queens 4,330 25,748 4,578 28,238 4,601 6,244
Queens-S 2,156 1,485 2,473 3,974 2,469 542
Knights 1,858 4,460 1,704 4,592 1,744 2,333
Sport-League 352 7,710 331 7,937 339 6,109

Table 7.5: Programming Restoration Granularity Evaluation

We compare the prototype with both adaptive recomputation and adaptive recol-

lection, and Table 7.5 depicts the evaluations results. These numbers reveal that

our prototype can significantly save memory than the other two restoration alter-

55



natives; but for Sport-League problem, the memory saving is not as significant,

which can be on account of it first failure comes earlier (at level 62 of a tree

with peak depth 249). Meanwhile, Queens problems expose better runtime per-

formances by adaptive recomputation. Nevertheless, it deserves to highlight that

Knights problem almost halves memory consumption than the other two tech-

niques, while marginally improves its runtime than recomputation. This promis-

ing result confirms the opportunities of programming restoration granularity to

seek better performance.

56



Chapter 8

Conclusion

In a constraint programming system, state restoration implements the strategy to

recover previously accessed state, and a state-of-the-art state restoration is essen-

tial for the performance of a constraint programming system.

In this thesis, we first proposed a restoration technique called recollection, which

maintains the variables that were affected by propagation to reach fix point states

for restoration. It neither rolls back performed operations as trailing does nor re-

peats previous computation work as recomputation does, while consuming much

less memory than copying. Empirical evaluation demonstrated that recollection

can be competitive for solving problems for solving problems with deep search

tree and expensive constraint propagation.

Subsequently, we explored building a state restoration service through program-

ming restoration granularity. This scheme aims at providing strategies for users

57



to customize the restoration facilities in a constraint programming system, and a

naive prototype has been constructed. The empirical study of the prototype gave

promising evidence for further exploration, and we proposed to engineering the

restoration granularity using the aspect-oriented programming paradigm, striving

for a more extensible and modular system.

Possible further research in this area could investigate the systematic deployment

of intelligent backtracking in constraint-based search. Another avenue would be

search engines that are aware of computation resource constraints (e.g. memory

and power) to further extend the utility of programming restoration granularity.

58



Bibliography

[1] Abderrahamane Aggoun, David Chan, Abderrahamane Aggoun, David

Chan, Pierre Dufresne, Eamon Falvey, Alexander Herold, Geoffrey Macart-

ney, Micha Meier, David Miller, Shyam Mudambi, Bruno Perez, Em-

manuel Van Rossum, Joachim Schimpf, and Periklis Andreas Tsahageas.

Eclipse 3.5 user manual, 1995.

[2] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the chip com-

piler system. In Frédéric Benhamou and Alain Colmerauer, editors, Con-

straint logic programming, pages 421–435. MIT Press, Cambridge, MA,

USA, 1993.

[3] Hassan Aït-Kaci. Warren’s abstract machine: A tutorial reconstruction. In

Logic Programming Series, Cambridge, MA, USA, 1991. The MIT Press.

[4] C. J. Cheney. A nonrecursive list compacting algorithm. Communicatio of

ACM, 13(11):677–678, November 1970.

[5] Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state restora-

tion in tree search. In Proceedings of the 7th International Conference on

59



Principles and Practice of Constraint Programming, CP ’01, pages 240–

255, London, UK, 2001. Springer-Verlag.

[6] Philippe Codognet and Daniel Diaz. Compiling constraints in CLP(FD). The

Journal of Logic Programming, 27(3):185–226, 1996.

[7] Alain COLMERAUER. An introduction to Prolog III. Communications of

the ACM, 33(7):69–90, 1990.

[8] Martin Davis, George Logemann, and Donald Loveland. A machine pro-

gram for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[9] Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrahmane

Aggoun, Thomas Graf, and Françoise Berthier. The constraint logic pro-

gramming language CHIP. In Proceeding of the International Conference

on Fifth Generation Computer Science FGCS-88, pages 693–702, 1988.

[10] John Gaschnig. Experimental case studies of backtrack vs. waltz-type vs.

new algorithms for satisficing assignment problems. In Proceedings of

the Second Canadian Conference on Artificial Intelligence, pages 268–277,

Tronoto, 1978.

[11] Solomon W. Golomb and Leonard D. Baumert. Backtrack programming.

Journal of the ACM (JACM), 12(4):516–524, 1965.

[12] Gopal Gupta and Enrico Pontelli. Last alternative optimization. In Eighth

IEEE Symposium on Parallel and Distributed Processing, pages 538–541,

1996.

60



[13] Robert M Haralick and Gordon L Elliott. Increasing tree search efficiency

for constraint satisfaction problems. Artificial intelligence, 14(3):263–313,

1980.

[14] ILOG. ILOG Solver: User manual. version 3.2, 1996.

[15] Joxan Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings

of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages, POPL ’87, pages 111–119, New York, NY, USA, 1987.

ACM.

[16] Joxan Jaffar and Michael J. Maher. Constraint logic programming: a survey.

The Journal of Logic Programming, pages 503–581, 1994. Special Issue:

Ten Years of Logic Programming.

[17] Richard Jones and Rafael D Lins. Garbage collection: algorithms for auto-

matic dynamic memory management. Wiley, 1996.

[18] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.

Springer, 1997.

[19] Mikael Z. Lagerkvist and Christian Schulte. Advisors for incremental prop-

agation. In Christian Bessiere, editor, Thirteenth International Conference

on Principles and Practice of Constraint Programming, volume 4741 of

Lecture Notes in Computer Science, pages 409–422, Providence, RI, USA,

September 2007. Springer-Verlag.

[20] Jena-Lonis Lauriere. A language and a program for stating and solving com-

binatorial problems. Artificial intelligence, 10(1):29–127, 1978.

61



[21] Yong Lin. Prototypical implementation of recollection based on Gecode.

www.comp.nus.edu.sg/~henz/recollection, May 2013.

[22] Alan K Mackworth. Consistency in networks of relations. Artificial intelli-

gence, 8(1):99–118, 1977.

[23] Mozart Consortium. The Mozart Programming System. Documentation

and system available from http://www.mozart-oz.org, Program-

ming Systems Lab, Saarbrücken, Swedish Institute of Computer Science,

Stockholm, and Université catholique de Louvain, 2008.

[24] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem.

Computational intelligence, 9(3):268–299, 1993.

[25] Jean-Charles Régin. A filtering algorithm for constraints of difference in

CSPs. In AAAI, volume 94, pages 362–367, 1994.

[26] Christian Schulte. Programming constraint inference engines. In Gert

Smolka, editor, Proceedings of the Third International Conference on Prin-

ciples and Practice of Constraint Programming, volume 1330 of Lecture

Notes in Computer Science, pages 519–533. Springer-Verlag, October 1997.

[27] Christian Schulte. Comparing trailing and copying for constraint program-

ming. In Proceedings of the 1999 International Conference on Logic Pro-

gramming, pages 275–289, Cambridge, MA, USA, 1999. Massachusetts In-

stitute of Technology.

[28] Christian Schulte. Programming Constraint Services, volume 2302 of Lec-

ture Notes in Artificial Intelligence. Springer-Verlag, 2002.

62

www.comp.nus.edu.sg/~henz/recollection


[29] Christian Schulte and Guido Tack. Implementing efficient propagation con-

trol. In TRICS 2010, Third Workshop on Techniques for Implementing Con-

straint Programming Systems, 2010.

[30] Jeffrey Mark Siskind and David Allen McAllester. Screamer: A portable

efficient implementation of nondeterministic Common Lisp. IRCS Technical

Reports Series, page 14, 1993.

[31] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,

Lecture Notes in Computer Science, volume 1000, pages 324–343, Berlin,

1995. Springer-Verlag.

[32] Richard M Stallman and Gerald J Sussman. Forward reasoning and

dependency-directed backtracking in a system for computer-aided circuit

analysis. Artificial intelligence, 9(2):135–196, 1977.

[33] Gecode Project Team. Generic COnstraint Development Environment.

www.gecode.org, June 2012.

[34] Peter Van Beek. Backtracking search algorithms. Foundations of Artificial

Intelligence, 2:85–134, 2006.

[35] Pascal Van Hentenryck. Constraint satisfaction in logic programming. Logic

Programming Series, 1989.

[36] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, imple-

mentation, and evaluation of the constraint language cc(FD). The Journal of

Logic Programming, 37(1-3):139–164, 1998.

63

www.gecode.org


[37] David HD Warren and Artificial Intelligence Center. An abstract Prolog

instruction set, volume 309. SRI International Menlo Park, California, 1983.

64


	Introduction
	Constraint Satisfaction Problem
	Constraint Programming in a Nutshell
	The Thesis

	Constraint Programming
	Basics
	Constraint-based Search
	Restoration

	Existing Restoration Techniques
	Trailing
	Copying
	Recomputation

	Recollection
	Motivation
	Characteristics
	The Record Method
	The Restore Method
	Variations

	Programming Restoration Granularity
	Motivation
	Restoration Granularities
	Programmable Restoration

	Implementation
	The Gecode System
	Computation Space
	Search Engine
	Class Edge

	Implementing Recollection
	Variable Access
	Variable Change Detection
	Memory Management
	Indexed Collection
	Variable Reconstruction

	Programming Restoration Granularity
	A Prototype
	Program as an Aspect


	Evaluation
	Configuration
	Recomputation and Recollection
	Copying and Recollection
	Programming Restoration Granularity

	Conclusion

