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Summary 

Drug discovery and development aims to provide therapeutic compounds 

that are safe and effective in improving the quality of life and relieving pain of 

patients. However, the process is usually complex, time consuming and resource 

intensive. Toxicity is one of the primary reasons for the failure of drug candidates 

in later stages of drug development. Moreover, adverse drug reaction (ADR) 

during post-approval stage is among the leading causes of morbidity and mortality. 

Computational methods such as quantitative structure-activity relationship 

(QSAR) methods have been explored as complementary methods for predicting 

and profiling toxicities and have shown promising result for performing these 

tasks. Nevertheless, there are still limitations for current QSAR modeling process 

which affect the quality and prevent the application of QSAR models. These 

include lack of negative data and descriptors, difficulties in determination of 

applicability domain (AD), lack of effective model selection method for ensemble 

modeling, lack of proper model evaluation method and tool for model application. 

This thesis attempts to address these issues with various strategies 

including: using OCC methods to address the lack of negative data issue, adding 

biological information as extra descriptors, developing methods for AD 

determination, model selection and model evaluation, and developing a software 

program to facilitate the application of QSAR models. Some of these strategies 

were applied in real data sets to develop QSAR models to facilitate the detection 

of drug candidates with propensity of toxicity and ADRs. Three types of rare 

and/or serious ADRs including Stevens Johnson’s syndrome/toxic epidermal 

necrolysis (SJS/TEN), Torsade de pointes (TdP) and serious psychiatric ADRs 

were investigated. Another predictive study regarding nephrotoxicity was also 

carried out to explore the possibility of integrating toxicogenomics (TGX) method 

with QSAR method to enhance the model’s prediction ability as well as biological 

understanding. The results showed that the development and application of QSAR 

models could be improved by using the methods discussed in this work. The 

QSAR models for the ADRs are the first to address these endpoints with 

comprehensive and reliable methods and the performances are also encouraging. 
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The integrated model developed using both QSAR and TGX methods for 

nephrotoxicity prediction demonstrated the potential of addition of biological 

information. Lastly, a software program which provides well validated models for 

prediction of ADMET properties was developed to facilitate the application of 

QSAR models. The software possessed many advantages over other similar 

software programs and it is completely free to the public. 

The main purpose of this thesis is to develop and apply computational 

methods and tools for ADR and toxicity prediction. The methods developed in 

this work are potentially useful for development and application of QSAR models 

as well as general predictive models other than pharmaceutical area. The models 

developed for ADRs and toxicity could be applied in drug discovery and clinical 

practice. The independent tool developed by integration of peer reviewed models 

also provides an option for users to obtain reliable ADMET predictions. 
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Chapter 1 Introduction 

Reliable absorption, distribution, metabolism, excretion, and toxicity (ADMET) 

screening filters could eliminate the poor drug candidates so they are important 

for reducing drug attrition rate. Efficient and effective methods for predicting 

ADMET properties, particularly in the early stages, are highly desirable for 

facilitating drug development and safety assessment. Computational methods 

such as QSAR methods are increasingly employed to reduce the time and cost 

needed for evaluating the ADMET properties of drug candidates. The first two 

sections of this chapter give an overview of the application of QSAR methods for 

ADMET prediction. The motivation and significance for this work as well as the 

outline of the structure of this thesis are presented in the remaining three sections. 

1.1. ADMET studies in drug discovery and development 

The purpose of drug discovery and development is to provide therapeutic 

compounds that are safe and efficacious in improving the quality of life and 

reducing pain of patients. It is a multi-step process which starts with the 

identification and validation of the target associated with disease, followed by 

identification and optimization of the lead compounds, and then subsequent 

rounds of preclinical and clinical testing for therapeutic efficacy and safety before 

it becomes approved for general use. Besides advances in knowledge and 

technology in biomedical research area, drug discovery and development is still a 

time consuming and resource intensive process with low rate of novel discovery 

of therapeutic compounds. Recent studies estimated that it takes around 13 years 

from a new drug to be discovered and  finally be available in the market for 

treatment, and the average cost of research and development for each successful 

drug is approximately $1.8 billion [1]. Moreover,  for the drug discovery process, 

among every 5,000 newly identified compounds, approximately five of them 

could pass the preclinical evaluations and enter into clinical testing which 

involves human subjects, and after rounds of clinical trials in patients, on average 

only one of them could finally get approved [2]. To reduce time and cost, it is 

essential to minimize the number of failures in the different stages of drug 



2 

 

discovery and development. It is reported that about 40-60% of new chemical 

entities (NCE) failed in the clinical stages because of poor ADMET  properties 

[3]. Therefore, reliable ADMET screening filters which could remove the poor 

candidates are important for reducing the attrition rate. While traditionally 

ADMET tools were usually applied at the end of the drug development pipeline, 

nowadays they are more applied at the early stage by prioritizing the most 

promising compounds to reduce attrition rate and optimize the testing for later 

stages [4]. Hence efficient and effective methods for predicting these ADMET 

properties, particularly in the early design stages, are highly desirable to facilitate 

drug development and safety assessment.  

1.2. QSAR studies for ADR and toxicity prediction 

To deliver promising drug candidates to reach the late stage of drug development 

with a higher chance of success, large numbers of high-throughput screenings for 

ADMET properties have been implemented in recent years and these generated 

large amount of experimental data [5]. The generation of these large and diverse 

datasets has presented opportunities to develop various computational models for 

ADMET properties, using different statistical modeling techniques to find the 

inherent relationship of chemical structures with specific properties and make 

predictions. These models can then be employed to prioritize the compound 

selection for drug discovery and safety assessment [5].  Computational method 

such as QSAR method has been used extensively in ADMET prediction studies [6, 

7]. QSAR relates known physiochemical and biological activities with chemical 

structures of compounds to form models that can predict the activities on new 

compounds. It belongs to the large collection of general structure-property 

correlations (SARs) in medicinal chemistry, which refer to “all statistical 

mathematical methods used to correlate any molecular property (intrinsic, 

chemical or biological) to any other property, using statistical regression or 

pattern recognition techniques” [6].  Compared with in vitro and in vivo testing, 

QSAR methods are extremely appealing because they could deal with large 
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dataset containing either real or hypothetical chemical compounds, and can 

reduce the cost and time of animal testing and clinical trials [8].  

 Among QSAR studies for ADMET prediction, toxicity prediction is 

receiving increasing attention because potential drug candidates often fail due to 

unacceptable level of toxicity in preclinical or clinical studies. It is reported that 

among the attritions in the clinic stage in 2000, around 30% of them were caused 

by toxicity or clinical safety problems associated with the compounds [9]. 

Nowadays, non-clinical and clinical safety still remain as a major issue during the 

clinical phase of drug development as well as the post-approval stage [10]. 

Besides the toxicological effects observed during preclinical studies, the adverse 

drugs reactions (ADR) occur in late-stage clinical trials or post-approval stage can 

impose high risks to patients and cause withdrawals of marketed drugs, thus have 

become a global health concern. According to the definition of World Health 

Organization (WHO), ADRs are “any noxious, unintended, and undesired effect 

of a drug, which occurs at doses used in humans for prophylaxis, diagnosis, or 

therapy” [11]. Although rigorous animal testing and human screening are carried 

out in clinical trials , drugs do not always reveal all undesired effects during this 

period so some ADRs might only become apparent when the drug has been 

extensively prescribed and a large population has been exposed to it. It is reported 

that only the some common adverse events (i.e., those with frequency higher than 

1/1000) could be observed and listed in the label at the time of approval so some 

rare ADRs are still observed either in late-stage clinical trials or post approval 

period of the drug [7, 9, 12]. This could be because the toxicological effects of in 

vitro and animal model could not be exactly translated to clinical practice and 

clinical trials are limited with respect to the number and diversity of patients 

exposed, as well as the short duration and controlled nature of the experiment. As 

a result, it is difficult to establish the complete safety profile associated with a 

new drug through animal testing and clinical trials [13]. 

ADRs have been one of the leading causes of morbidity and mortality 

during medical care [14]. It is reported that ADRs contribute for more than 2 

million incidences requiring hospitalizations and more than 100,000 deaths 
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annually in the United States [15]. This ranks them as one of the top six leading 

causes of death and the associated costs for ADRs are estimated as $75 billion 

annually [13]. ADRs have also caused withdrawal of marketed drugs. It is 

reported that during the period of 1990-2006, there are 38 drugs withdrawn from 

various major markets of the world due to various safety issues, including the two 

famous cases of Merck’s rofecoxib and Bayer’s cerivastatin [9, 16]. Hence, to 

prevent potential risks on the patients and save time and expense invested in an 

ultimate failure, determination of the propensity of a drug candidate to cause 

ADRs as early as possible during drug development is of great importance. QSAR 

modeling which has been successfully applied in predicting a wide range of 

toxicological properties is a suitable method [17, 18]. Quantitative Structure-

Toxicity Relationship (QSTR) is the type of QSAR developed for a toxic endpoint. 

The methodology used for QSTR modeling is same as QSAR so in this study the 

general term QSAR is used.  

There are a number of QSAR studies regarding ADRs and toxicities in the 

past few years. Some of the representative studies are summarized in Table 1.1. 

The computational methods and the data sources used for the studies are quite 

different. The performances of most of the models are promising and some of the 

models achieve sensitivity and specificity values higher than 90%. This 

demonstrates the huge potential of the application of the QSAR methods.  Due to 

their high-throughput property and reliable performance, QSAR studies for ADRs 

and toxicity prediction are of keen interest in both industry and academia 

worldwide. They are also being increasingly evaluated and applied by regulatory 

authorities, such as the Critical Path Initiative toolkits by Food and Drug 

Administration (FDA) and ToxCast™ by the Environmental Protection Agency 

(EPA) of United States [19, 20]. For risk assessment of chemicals in commerce in 

the European Union,  the European Chemicals Bureau and the Organisation for 

Economic Cooperation and Development (OECD) are also generating a list of 

QSAR datasets and models to predict the various properties of new and existing 

chemicals [21]. 
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Table 1.1 Recent QSAR studies of ADR and Toxicity Prediction 

Endpoints Methods Data source Prediction Performance 
Referenc

e 

Hepatotoxicity 

K-Nearest 

Neighbor 

algorithm 

FDA SRS SP >73%, SE >94% [7] 

Drug-induced 

liver injury 

Naive 

Bayesian 

classifiers 

SIDER[22] PPV>91% [23] 

Cardiac toxicities 

QSAR 

software 

programs 

FDA SRS, 

FAERS, 

MedWatch etc. 

SE:21%~94.3%, 

SP: 70.7%~98.0% 
[24] 

Torsade de 

Pointes 

Support 

vector 

machine 

ArizonaCERT[25

], 

Micromedex[26], 

Drug 

Information 

Handbook etc. 

SE=97.4%, SP=84.6% [17] 

Torsade de 

Pointes 

Substructure-

based support 

vector 

machine 

ArizonaCERT[25

], Micromedex, 

Drug 

Information 

Handbook etc. 

SE=97%, SP=90% [27] 

Multiple 

endpoints: 

carcinogenicity, 

genetic, liver, 

cardiac, renal and 

reproductive 

toxicity 

QSAR expert 

system CASE 

Ultra 

SIDER 

Carcinogenicity: 

SE=100.00 %, SP=88.89 % ; 

Liver toxicity: 

SE=100.00 %, SP=51.33 %; 

Cardiotoxicity: 

SE=100.00 %, SP=20.45 %; 

Renal toxicity: 

SE=100.00 %, SP=45.54 %; 

[28] 
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Reproductive toxicity: 

SE=100.00 %, SP=48.57 %. 

Multiple 

endpoints: CNS, 

liver, kidney and 

allergic reactions 

Decision tree DrugBank[29] ACC=78.9~90.2% [30] 

 

 In summary, the application of QSAR method for predicting preclinical 

toxicological endpoints and clinical adverse effects has been a favorable method 

to facilitate the development of safe and efficacious medicines. It has been 

demonstrated to be a cheaper and faster alternative method of in vivo and in vitro 

studies and have been gradually accepted by regulatory agencies [31]. 

Nevertheless, the role of all computational methods including QSAR is not to 

eliminate attrition but to shift it earlier in the development process to fail early, 

fail fast and fail cheap [32]. 

1.3. Limitations of current QSAR studies 

A summary of general QSAR workflow is shown in Figure 1.1. It could be 

divided into five steps including data collection, data preprocessing, model 

development, model validation/evaluation and model deployment. Each step 

contains several sub steps. For data preprocessing, it normally involves 

normalization, transformation and feature selection. For model development, 

besides various modeling algorithms, applicability domain (AD) which is 

considered as “the response and chemical structure space in which the model 

makes predictions with a given reliability” [33], need to be determined for QSAR 

models. Moreover, ensemble method is also increasingly used to improve the 

individual model’s performance. Despite the advances in studies of QSAR 

methodologies in the past few years, there are still limitations of current QSAR 

modeling process, especially for classification models. A brief discussion for 

these limitations is as below. More details about these limitations will be 

elaborated in the Chapter 3 to Chapter 7. 
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i. Lack of negative data 

Most of QSAR models are developed using machine learning algorithms whose 

performance is highly dependent on the information contained in the data. For 

some QSAR studies such as modeling of mutagenicity, the determination of 

mutagens and nonmutagens of the training data is relatively straightforward and 

binary classification method could be applied directly for prediction purpose [34]. 

For some other QSAR studies such as ligand-based virtual screening studies, lack 

of negative data has become a common problem [35]. Moreover, for QSAR 

studies regarding ADR prediction, it is easy to determine that a compound causes 

a specific ADR from experiment or clinical case report, but difficult to confirm 

that a compound definitely does not cause the specific ADR, since some ADRs 

Figure 1.1 General QSAR workflow, limitations and proposed methods. 
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may take a long time to occur or they occurred but have not been reported yet. 

This is especially true in the modeling of QSAR for ADRs with complex 

mechanisms. For these cases, only the positive data (compounds which cause the 

ADR) are available and the negative data (compounds which do not cause the 

given ADR) are either hard to obtain or not available at all.  

ii. Limitation of molecular descriptors 

Although molecular descriptors of chemical compounds have demonstrated to be 

successful in QSAR studies, it is found that the information of molecular 

descriptors calculated based on chemical structures and experiment measurements 

could not fully capture the real relationship of the compounds with the target 

endpoints, especially for those with complex mechanisms. This could be because 

that the structure activity relationship for these endpoints is less straightforward 

since multiple mechanisms of action are involved [36]. 

iii. Lack of applicability domain 

Many QSAR prediction models are developed every year but not all of them are 

suitable to perform predictions on new compounds. One reason is that some of the 

models do not always fully conform to the validation principles for QSAR models 

laid out by the OECD. They are “1. a defined endpoint; 2. an unambiguous 

algorithm; 3. a defined domain of applicability; 4. appropriate measures of 

goodness-of-fit, robustness and predictivity; 5. a mechanistic interpretation, if 

possible” [37]. One of the non-conformity is the lack of determination of AD. 

Without defining AD for a QSAR model, the model theoretically could make 

prediction on any compounds which will lead to unjustified extrapolation and thus 

inaccurate prediction [38]. Therefore, lack of proper AD is a critical problem for 

QSAR model development.  

iv. Difficulty of  model selection for ensemble modeling 



9 

 

Ensemble modeling is a technique used in modeling studies to improve the 

performances of individual models (classifiers) by combining multiple models 

together [39]. Ensemble methods have been popular in QSAR studies recently and 

many studies have demonstrated that ensemble models could achieve better 

performance than a single model [40-42]. However, when a large set of models 

were produced, how to effectively select an optimal or good set of models has 

become a problem [43].  

v. Limitation of current model evaluation method 

Model evaluation is an important process in QSAR modeling workflow, as well 

as the general predictive modeling process. It is used to help ranking different 

models according to their performance. The rankings are then used during feature 

selection and modeling parameter optimization to select the optimum features and 

modeling parameters. Current evaluation methods do not consider the 

representativity of the dataset and thus have limited generalizability (i.e. poor 

prediction of data that is not used during the training process). It is commonly 

expected that a model will have relatively good performance for compounds that 

are similar to those used in the modeling process and have poorer performance for 

compounds that are dissimilar. However, the current evaluation methods only 

give a single prediction performance for all types of compounds and thus do not 

adequately show the difference in prediction performance for different types of 

compounds.  

vi. Difficulty of QSAR model application 

Generally, the purpose of developing QSAR models is to utilize them for 

prediction on new compounds, so the application of QSAR models is an 

important concern for modelers. However, for most QSAR models, after 

publication, very few of them could actually be reused due to lack of development 

of user-friendly tools. After putting substantial efforts in data collection, model 

development and preparation for publication, it is difficult to apply these models 
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in practical problems to benefit larger population [44]. Therefore, there is a need 

to develop a tool which provides well validated models with good quality and 

ease of use. 

1.4. Objectives and significance 

The ultimate objective of this thesis is to improve the development and 

application of QSAR models by creating or improving methods and tools for 

QSAR model development, evaluation and application. In this work, six strategies 

to address the current limitations in QSAR will be used to achieve this objective.  

The first strategy is to apply newer machine learning methods, such as one-class 

classification methods including one-class support vector machine (SVM) for the 

development of QSTR models. The application of these methods is to address the 

issue of lack of negative data. These methods have shown promising results in 

other area such as disease diagnosis [45], document classification [46] and 

network intrusion detection [47]. It is of interest to apply these newer methods in 

QSAR studies.  

 The second strategy is to construct QSAR models using both QSAR and 

toxicogenomics methods to improve the QSAR model’s prediction performance. 

Besides the molecular descriptors derived from the structures of the compounds, 

other toxicity related information, such as the toxicogenomics data collected on 

chemical compounds, could provide another source of molecular information. 

Therefore, the addition of biological information could address the second issue 

of lack of descriptors and is useful for predictive toxicity studies. 

The third strategy is to develop a method to determine the AD of the 

QSAR models to improve the reliability and generalizability of the models. AD 

has been regarded as an important requirement in OECD guidelines for QSAR 

model validation so a reliable and efficient method to determine AD is important. 

The method developed in this work could define a proper AD for classification 

models to address the third issue.  
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The fourth strategy is to employ model selection methods for ensemble 

modeling to combine different QSAR models. There are many QSAR models for 

a single ADR or toxicity that are developed using different sets of descriptors and 

modeling algorithms, and it has been demonstrated by several studies that the 

ensemble model could improve the overall prediction accuracies for the respective 

property. The two model selection methods introduced in this work provide 

options for more effective ensemble modeling. 

The fifth strategy is to develop a novel method to improve the evaluation 

of the QSAR models. Unlike conventional evaluation methods, the proposed 

method takes the representativity of the data into consideration to provide a 

performance profile of the testing set instead of a single value, so the performance 

of the model could be more comprehensive and reliable.  

The last strategy is to develop a software program for ADMET prediction. 

This is to address the last issue, i.e., to facilitate the application of these QSAR 

models. A software program which provides well-validated QSAR models to 

cover a broad spectrum of endpoints and is easy to use for both professionals and 

non-specialists will be developed in this study.  

In summary, this thesis endeavors to develop and improve various 

methods in the QSAR workflow to improve the prediction ability, reliability and 

application of QSAR models. The methods proposed in the studies provide 

alternative solutions or inspiring ideas for fellow predictive modelers, not only in 

the pharmaceutical industry but also the general data mining field. The QSAR 

models developed for ADRs and toxicities are useful in both drug discovery and 

clinical practice. The independent tool developed by integration of peer reviewed 

models provides an option for users to obtain reliable ADMET property 

prediction. 

1.5. Thesis structure 

The whole thesis is divided into five parts with ten chapters.  
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 Part I is the introduction and over of the materials and methodology of 

the study which consists of two chapters. Chapter 1 introduces the rationale, 

objectives and significance of this thesis. Chapter 2 gives an overview of the 

datasets and methodologies used in this study. The general workflow of 

developing a QSAR model, including data preprocessing, molecular descriptor 

calculation, model development using different machine learning algorithms, AD 

determination, ensemble modeling, followed by model validation and 

performance measures for model characterization. Different methods and tools are 

introduced sequentially according to the different stages of the workflow. 

Additional features of the methods will be explained in details in the respective 

application in following chapters. 

 Part II is dedicated to the development and application of different 

methods to improve QSAR model’s quality. According to the order of the general 

QSAR working flow, five main methods were presented including the one-class 

classification method in Chapter 3, the combinatorial study of prediction of 

nephrotoxicity using QSAR and toxicogenomics approaches in Chapter 4, AD 

determination method in Chapter 5, model selection method for ensemble 

modeling in  Chapter 6 and model evaluation method in Chapter 7. Comparison 

of the methods with existing methods will also be discussed if necessary. 

Part III presents the four models developed using the methods from Part 

II and discussed the important information related to the final models developed 

from the entire dataset in details. Part III consists of one long chapter-Chapter 8. 

It presents important information for all models developed in this study since the 

general workflows for the model development of them are similar.  

Part IV describes the tool developed for QSAR model application. The 

only chapter in this part, Chapter 9, presents a software program to facilitate the 

application of QSAR models. This chapter describes the availability of the 

respective ADR and toxicity models for public use. The development procedure 

of the software is presented and comparison with other similar software is 
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established. A simple experiment of the computation time for prediction is 

presented as well.  

The last part, Part V consists of a short Chapter 10 which summarizes 

the major findings and contributions of this work. Limitations of the present work 

and possible areas for future studies are also discussed. 
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Chapter 2 Materials and methods for model development 

This chapter focuses on the three main components of QSAR: the ADMET data, 

structural and physiochemical descriptions of compounds and the statistical 

learning methods to correlate the first two components. Firstly the datasets used 

in this work for QSAR model development are introduced.  Then the general 

methods used in this work for developing QSAR or general predictive models are 

described. The organization of the sections follows the common workflow of 

QSAR, including data collection and processing, descriptor calculation and 

selection, model development and validation. Software programs used for QSAR 

model development were also mentioned. 

2.1. Endpoints and datasets 

Although some organ specific toxicities such as drug induced 

hepatotoxicity and cardiotoxicity have been studied frequently using QSAR 

methods recently, attention has not been sufficiently paid for rare and/or serious 

ADRs while some of them are highly attributed by drugs and could be life-

threatening. Hence three types of rare and/or ADRs were investigated in this 

study including Stevens Johnson’s syndrome/toxic epidermal necrolysis 

(SJS/TEN), Torsade de pointes (TdP), serious psychiatric ADRs. SJS/TEN and 

TdP are selected instead of other  rare and serious ADRs because they are typical 

examples of designated medical event, which is a rare and serious ADR with a 

significant proportion of the occurrences caused by drugs [48, 49]. Moreover, 

they are often caused by drugs used to treat common diseases such as antibiotics, 

antimalarial and anticonvulsants, yet attention has not been sufficiently paid to 

these ADRs so far [50]. TdP has been studied by some researchers but the 

development procedures do not fully comply with the recent OECD guidelines 

and our study will address the limitations of existing models. The SJS/TEN study 

is the first QSAR study for the rare and serious ADR hence it is of great 

significance for the prediction of SJS/TEN causing potential of drugs.  Serious 

psychiatric ADRs are rarely studied by computational scientists probably due to 

the difficulties in evaluation and classification of the psychiatric ADRs and the 
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collection of the related data. However, a rapid and reliable alert of potential 

serious psychiatric ADRs will have great potential in clinical practice and 

regulatory work. In addition to these ADRs, a predictive study of nephrotoxicity 

was also carried out to explore the combinatorial study of predictive modeling 

using both QSAR and toxicogenomics (TGX) methods. This endpoint was 

selected because it has not been explored using integrative QSAR and TGX 

method yet. The data collection processes for three types of ADRs are similar 

while slight differences also exist such as different data sources for different 

ADRs and different classification criteria for the negative data which were 

adjusted based on the characteristics of given endpoints. Thus, the details of the 

data collection process were collectively presented in following sections. The data 

for nephrotoxicity study was collected from literature and public databases. 

QSAR models were developed for all of the endpoints and toxicity. Additional 

TGX models and integrative QSAR&TGX models were developed for 

nephrotoxicity. The data preparation process for nephrotoxicity study was 

described in details in Chapter 4. 

2.1.1. SJS/TEN 

2.1.1.1. Introduction 

Stevens Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe 

cutaneous adverse reactions characterized by extensive detachment of epidermis 

and erosions of mucous membranes [51]. Although they are distinguished by the 

percentage of affected body surface area, more and more studies showed that they 

are the same disease with common causes and mechanisms, so they are mentioned 

together as a collective term SJS/TEN in this study [52]. SJS/TEN has a great 

impact on public health because of significant mobility and mortality associated 

with it [53, 54]. Although the etiological factors of SJS/TEN are diverse, 

including infections and genetic factors, the major cause is still medications [55].  

A difficulty with the determination of the causality of rare and severe 

ADRs is that they are seldom detected during clinical trials due to the rarity of 

such events and the small number of patients enrolled in such trials. Hence, these 
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ADRs are usually identified only through post-marketing surveillance (e.g. case 

report literature) [56, 57]. This is not ideal as a large number of patients may be 

exposed to a potentially harmful drug and a lot of time and money had already 

been invested on the drug. This prompts the investigation of methods which can 

determine the propensity of a drug candidate to cause such ADRs as early as 

possible during drug development. QSAR method which has been applied to 

predict a wide range of chemical and biological properties is a suitable method 

[17, 18]. 

2.1.1.2. Data preparation 

A total of 1127 marketed drugs listed in the FDA Orange Book were screened for 

their potential in causing SJS/TEN using online database Micromedex Healthcare 

Series [58]. Drugs with clinical studies and/or case reports of causing SJS/TEN 

were identified as ST
+
. It is difficult to reliably identify drugs that do not cause 

SJS/TEN (ST
-
). Thus only ST

+
 drugs will be used to develop the prediction 

models to prevent misclassification of drugs from affecting model quality. 

However, it is still essential to identify tentative ST
-
 drugs so that the performance 

of the prediction models could be measured. Hence, drugs which had no clinical 

studies and case reports of SJS/TEN or similar symptom erythema multiforme 

(EM), and had been used by a large number of patients were tentatively identified 

as ST
-
. Determination of whether the drugs had been used by a large number of 

patients was performed by checking the drug indications (the drugs should be 

used to treat common diseases such as flu, diabetes, hypertension, bacterial 

infection etc.) and the time in market (at least 30 years). The chemical structures 

of these drugs were obtained from drug databases such as PubChem and verified 

with the standard drug structures provided by the WHO International Non-

proprietary Names drug list to ensure the structures were correct [59, 60].  

2.1.2. TdP 

2.1.2.1. Introduction 

Torsade de pointes (TdP) is an atypical rapid form of polymorphic ventricular 

tachycardia characterized by a gradual change in the amplitude and twisting of the 
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QRS complexes around the isoelectric line [61]. TdP is potentially fatal due to the 

propensity for it to degenerate into ventricular fibrillation [62]. Although the exact 

incidence is not known, the awareness of drug-induced TdP in last few years has 

resulted increased number of spontaneous reports [63]. Some structurally 

unrelated drugs have been withdrawn from the market because of their TdP-

causing potential such as terfenadine, astemizole, grepafloxicin and cisapride [64]. 

Therefore, to minimize the risk of patients exposed to a harmful drug and the time 

and money spent on the development of such drugs, a fast and accurate 

assessment of the risk of a drug during preclinical studies to cause TdP is 

necessary. However, it is rather difficult to screen for drug-induced TdP during 

clinical trial due to its rarity [64]. Some biomarkers which are more easily 

observed have been associated with TdP risk [65]. Although the detailed 

mechanisms of drug-induced TdP are not completely known yet, most drugs that 

cause TdP prolong the QT interval on electrocardiogram, which is the time 

between the start of ventricular depolarization and the end of ventricular 

repolarization. This prolongation is believed to be caused by blocking cardiac 

potassium ion channels, specifically the rapid human Ether-à-go-go-Related Gene 

(hERG) K
+
 channel [66]. Therefore, the level of inhibition of the hERG K

+
 

channel and the symptom of QT prolongation were commonly used during drug 

development and by clinicians as surrogate markers to predict the risk of drug-

induced TdP [67, 68]. However, sufficient evidence has been provided that there 

is no clear and linear incremental relationship between hERG K
+
 channel 

inhibition or QT prolongation and the risk of TdP [69]. For example, 

procainamide and disopyramide cause TdP but are not potent inhibitors of the 

hERG K
+
 channel, whereas verapamil and ziprasidone causes QT prolongation 

but not necessarily TdP [70, 71]. It was proposed that these discrepancies could 

be due to the blocking of multiple ion channels so a simple correlation with single 

channel might not provide a good prediction [65]. Thus, it is necessary to develop 

a specific method capable of predicting the TdP-causing potentials of drugs 

without complete knowledge of the mechanisms.  



18 

 

2.1.2.2. Data preparation 

 The data collection and curation process is similar to SJS/TEN study. A 

total of 1127 marketed drugs listed in the FDA Orange Book were screened for 

their TdP-causing potential using the drug information resource Micromedex 

Healthcare Series and the specific QT drug database ArizonaCERT [25, 26, 72]. 

Drugs with clinical studies and/or case reports of causing TdP were identified as 

TdP
+
. Similar as the criteria used for classifying ST

-
 drugs, drugs which had no 

clinical studies and case reports of TdP or similar symptom (QT prolongation, 

ventricular tachycardia or ventricular fibrillation etc.) and had been used by a 

large number of patients were tentatively identified as TdP
-
.   

2.1.3. Serious psychiatric ADRs 

2.1.3.1. Introduction 

Psychiatric ADR is reported as the second most common ADR type 

following gastrointestinal tract ADR in a general practitioners survey in Italy [73] 

and is the third most common ADR type in New Zealand [74]. Psychiatric ADRs 

include depression, hallucination, psychosis, delirium, suicidal thoughts etc. They 

may be induced by drugs used to treat neurological and mental disorders as well 

as by drugs prescribed for the treatment of diseases affecting other organ-systems 

[75], such as antibiotics [76], anti-inflammatory drugs [74], antiobesity drugs [77] 

and antiviral drugs [78]. Serious psychiatric ADRs can be life-threatening and 

have caused withdrawal of drugs, such as triazolam [79] and rimonabant [80], 

from the market in some countries. In March 2007, the Japanese government 

restricted the use of anti-influenza drug oseltamivir in patients aged 10-19 years 

due to serious psychiatric ADRs [81]. Conventionally, the potential of drugs to 

cause serious psychiatric ADRs were determined from clinical trials which are 

costly and time consuming. This study aims to determine the prevalence of 

serious psychiatric ADRs amongst marketed drugs, and to develop a QSAR 

model to predict the potential of a drug to cause serious psychiatric ADRs.   
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2.1.3.2. Data preparation 

Similar as SJS/TEN and TdP studies, a total of 1127 marketed drugs were 

screened for their potential to cause serious psychiatric ADRs. Serious psychiatric 

ADRs were defined as those critical terms that are listed in WHO adverse reaction 

terminology (WHO-ART) for psychiatric disorders (code 0500 for the system-

organ class). A requirement for computational modeling is that there should have 

sufficient number of drugs causing a particular serious psychiatric ADR. 

Otherwise, it will be difficult for the computational model to identify those 

aspects of a drug’s structure that may predispose it to cause a particular serious 

psychiatric ADR. Hence, in this study, each serious psychiatric ADR was required 

to have a minimum of 50 drugs that are known to cause it before it was included 

into the model. In the end, seven serious psychiatric ADRs were considered 

including depression, hallucination, psychosis, aggressive reaction, suicide 

attempt, delirium and manic reaction. The drugs that were associated with these 

ADRs were classified as PADR+. 

Similar as SJS/TEN and TdP study, to reduce the possibility of identifying 

a wrong drug with no serious psychiatric ADRs (PADR-), drugs which had no 

case reports of any psychiatric ADRs and had been used by a large number of 

patients were tentatively identified as PADR-. 

2.2. QSAR process 

2.2.1. Introduction 

QSAR is the process of applying mathematical and statistical methods to establish 

and explore the relationship (QSAR models) between chemical structures and 

biological activities of a group of compounds. It provides an efficient and 

effective solution for the prediction of biological activities of compounds based 

on their chemical structures. Formally, a QSAR model can be expressed in a 

generic format as below: 

Yi = f (X1, X2, ... Xn) ( 2.1) 
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Where X1, X2,…,Xn are molecular descriptors of compounds, Yi are the 

targeted physiochemical or biological properties and f is the established 

mathematical function between the two. The relationship between values of 

descriptors X and target properties Y can be constructed using simple linear 

method such as multiple linear regression (MLR) method. However, the 

relationship between chemical structure and biological activity is often complex 

and nonlinear, so nonlinear machine learning methods such as k-nearest neighbor 

(KNN), support vector machines (SVM) and artificial neural networks (ANN) are 

usually used to establish the relationship (QSAR models). Taking KNN method as 

an example, the descriptor values are used to characterize the similarities between 

compounds, which are then used to compute the chemical properties of interest 

without linear assumption of the data. The underlying foundation of all QSAR 

studies is from medicinal chemistry which is that structurally similar compounds 

are supposed to have similar biological activities [82]. Therefore the main purpose 

of QSAR modeling is to establish a relationship between descriptor values and the 

biological activity of interest and use this relationship to predict the biological 

activity of unseen compounds without the carrying out the actual experiments. 

2.2.2. Data curation  

Similar to other statistical learning process, the quality of QSAR model is highly 

dependent on the quality of the data which is used to derive the model so data 

curation is critically important for QSAR modeling [83]. Since the molecular 

descriptors were calculated from the chemical structures of the compounds, 

incorrect compound structures will affect the model’s performance and cause 

wrong predictions in the end. It was reported that the error rates in some large 

chemical databases could be up to 3.4% [83] and around 10% of the compounds 

for some public datasets should either be removed or examined carefully before 

usage [84]. The chemical structures of all the compounds used in this study were 

downloaded from PubChem [85] and the data curation steps carried out in this 

study are presented as below. 
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1. Remove compounds which contain inorganic atoms as an essential part of the 

drug (e.g. cisplatin) or are macromolecules such as peptides and 

polysaccharides, as most molecular descriptor calculation programs are unable 

to handle them. This step was carried out by running script programs to 

identify the compounds with inorganic atoms. 

 

2. Standardize the structures of compounds by removing salt, adding hydrogen 

atoms and normalizing the nitro groups in the compound structures. Without 

normalization, different types of nitro group representation will cause 

different descriptor values to be calculated. Several software programs are 

available for this step and some of them are free (or free to academic) such as 

OpenBabel [86] and PaDEL-Descriptor [87] etc. Different versions of 

PaDEL-Descriptor were used throughout the study. 

 

3. Remove duplicates. Duplicates will cause bias for the modeling process 

especially when the same compound is included in different classes. In this 

study the duplicates were identified as the compounds with exactly the same 

set of descriptor values and then removed.  

 

4. Besides the above steps, manual inspection is always carried out during the 

processes to check for any problems. 

 For all ADRs, the drugs collected were curated using above procedures. In 

the end, 255 ST
+
 drugs and 239 ST

-
 drugs, 103 TdP

+
 drugs and 157 TdP

-
 drugs 

were retained. For study of serious psychiatric ADRs, 321 and 169 drugs were 

identified PADR
-
 and PADR

- 
respectively. All the information of the datasets 

could be found in the supporting information of the publications [88, 89] or from 

the PaDEL-DDPredictor website [90]. 

2.2.3. Molecular descriptors 

Molecular descriptors are numerical values obtained by well specified 

mathematical algorithms that characterize the structural and physicochemical 
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properties of a compound [91]. They are formally defined as “the final result of a 

logical and mathematical procedures which can transform chemical information 

encoded within symbolic representation of molecules into useful number or the 

result of some standardized experiment” [92]. There are various types of 

molecular descriptors available and they are essential for the measurement of 

molecular diversity [93]. Molecular descriptors are useful for QSAR and QSTR 

studies to look for the inherent relationships,  as well as other studies such as 

structure similarity analysis and substructures searching [92, 94].  

According to the description in the Handbook of Molecular Descriptors 

[92], molecular descriptors can be grouped into three broad categories according 

to the dimension of the molecules that the molecular descriptors are calculated. 

They are 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) 

molecular descriptors. 1D molecular descriptors consist of counts of different 

molecular groups, physicochemical properties of compounds etc. 2D molecular 

descriptors consist of information such as connectivity indices and counts of paths 

derived from the molecular graphs. 3D molecular descriptors were calculated 

based on geometric shape and functionality of molecules [95].  

 There are many software programs available for molecular descriptor 

calculation such as Dragon [96] and MODEL [97]. All the molecular descriptors 

for this study were calculated using our in house software PaDEL-Descriptor 

since it is free, fast and easy to use [87]. Since the studies were carried out at 

different time period, different versions of PaDEL-Descriptor were used with 

different number of descriptors. For SJS/TEN study, PaDEL-Descriptor version 

2.7 was used to calculate the molecular descriptors and fingerprints in this study. 

A total of 672 1D&2D molecular descriptors were calculated. For TdP study, 

PaDEL-Descriptor 2.11 was used and 722 1D&2D descriptors were calculated. 

For study of serious psychiatric ADRs, PaDEL-Descriptor 2.14 was used and 722 

1D&2D descriptors were calculated The current version PaDEL-Descriptor 2.18 

could calculate 905 descriptors (770 1D, 2D descriptors and 135 3D descriptors) 

and 10 types of fingerprints. The descriptors and fingerprints are calculated using 
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The Chemistry Development Kit with some additional descriptors and 

fingerprints. The detailed list of molecular descriptors is available in the PaDEL-

Descriptor website (http://padel.nus.edu.sg/software/padeldescriptor/). 

2.2.4. Data preprocessing 

Since most QSAR models are built using machine learning algorithms, whose 

performance are highly dependent on the input data, the quality and representation 

of the samples of the data is critically important [98]. The data preprocessing step 

is to remove the irrelevant and redundant features or noisy and unreliable samples 

in the data to facilitate the statistical learning or pattern recognition process in 

QSAR model development. The two basic and important data preprocessing 

methods, scaling and feature selection, were used in this study.  

2.2.4.1. Scaling 

Molecular descriptors are normally scaled before they can be employed for 

machine learning studies to ensure that each descriptor has an unbiased 

contribution in building the models. There are several scaling methods available 

such as auto-scaling, range scaling etc. In this study, range scaling is used to scale 

the molecular descriptor data with a minimum and maximum value of 0 and 1 

respectively. Range scaling (normalization) is carried out by dividing the 

difference between the descriptor value and the minimum value of that descriptor 

with the range of that descriptor. For some descriptors there might be a huge 

difference between the minimum and maximum values, e.g. 0.01 and 100. 

Normalization could scale down the descriptor value magnitudes to appropriate 

low values. This is important for many machine learning algorithms such as SVM 

and KNN algorithms [98].  

2.2.4.2. Feature selection 

In QSAR studies, the features are the molecular descriptors. Generally 

feature selection works by removing irrelevant or redundant features, so as to 

reduce the dimension of the data, improve computation speed, performance and 

interpretability of computational models. The main purpose for feature selection 
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method is to select a small set of features in order to reduce the time and memory 

cost of the modeling process, as well as to achieve an acceptably good model 

performance. Many different feature selection algorithms have been developed to 

select an optimal subset of features from a large set of available features [99]. 

Depending on whether the feature selection methods require the use of the 

modeling algorithm to evaluate the selected subset of features, they could be 

grouped into two broad categories: filter and wrapper methods [100].  

The filter method is independent of the modeling algorithm and is 

frequently used to remove redundant features or features with low information 

content, e.g., feature columns with constant values. For wrapper method, the 

modeling algorithm was used with the evaluation function for the feature 

selection process [98]. This can be achieved through exploration of the different 

combinations of descriptors and the corresponding evaluation performance of the 

model. Heuristic exploration methods include forward selection and backward 

elimination, as well as genetic algorithm and simulated annealing. In forward 

selection, one descriptor is added iteratively at each round of evaluation until a 

certain stopping criterion has been achieved. In contrast, backward elimination 

operates by removing descriptors one by one. The difference is that, because 

backward elimination initiates with the full set of descriptors, it usually takes a 

longer computation time and is more likely to deliver a bigger set of selected 

descriptors.  

Both filter and wrapper methods were employed in this work including 

removing descriptor columns with constant values and forward selection in the 

modeling process.  

2.2.5. Model development 

In this study, all computational models were developed using RapidMiner [101], 

an open-source software with a large collection of computational methods for data 

analysis and model development. Since only classification models were 

developed in this study, we focus on machine learning algorithms for 

classification problems. Machine learning methods apply mathematical and 
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statistical algorithms to develop models to find inherent relationships or patterns 

from training data and then make prediction on independent test data. Depending 

on the desired outcome of the algorithm, most machine learning methods could be 

divided into two broad categories: supervised and unsupervised learning. 

Supervised machine learning generally requires labeled training data to produce 

an inferred function that relates inputs to desired outputs. Common supervised 

machine learning algorithms includes naïve Bayes, support vector machine, 

artificial neural network etc. Unsupervised machine learning does not require 

labeled data and it works by finding the inherent pattern of data. Examples of 

unsupervised machine learning algorithms include clustering, self-organizing map 

etc. Only supervised methods were employed in this study for model development 

since all the data are labeled already. The binary classification algorithms 

involved in this study were described in details as below. 

2.2.5.1. Support vector machine 

SVM is defined as “a supervised learning method used for classification and 

regression tasks based on the structural risk minimization principle of statistical 

learning theory” [102]. For binary classification cases of linearly separable data, 

SVM generates a hyperplane to separate positive and negative classes of 

compounds with a maximum margin. Suppose a compound is represented by a 

vector xi composed of its molecular descriptors. The hyperplane is optimized by 

finding a normal vector w and a parameter b that minimizes ||w||
2
 (i.e. maximizing 

the margin 
 

     
) with some linear constraints. For classification of nonlinearly 

separable data, which is common for some QSAR studies that classify compounds 

with diverse structures, SVM uses kernel transformations to project the input 

vectors into a higher dimensional space where the compounds could be linearly 

separated.  

SVM is reported to have lower risk of over-fitting and less affected by 

sample redundancy [103], so it has been applied in various machine learning 

studies. SVM is of particular interest for QSAR studies because it classifies 

compounds based on the separation of positive and negative compounds in a 
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hyperspace represented by their physicochemical profiles instead of structural 

similarity to positive compounds [104]. Moreover, it has the advantage for 

classification of compounds with limited information on the mechanism or 

specific relationship between the molecular structures and activities [35, 105]. 

SVM shows consistently outstanding classification ability in toxicity and ADR 

prediction, such as TDP causing potential [17], hepatotoxicity [40] and many 

other toxicological endpoints for compounds with diverse structures.  

2.2.5.2. K-nearest neighbor  

K-nearest neighbor (KNN) is amongst the most fundamental and simple 

classification method [106]. KNN works by measuring the distance (Euclidean 

distance, Manhattan distance etc) between a given sample and each sample in the 

training set. The class of the unseen sample will be determined by the majority of 

the class of the k training samples nearest to the given sample. It is important to 

optimize the number k during model development and an odd number k (k = 1, 3, 

5, 7, etc) is usually chosen to prevent ambiguity in the prediction. KNN has been 

applied in various QSAR studies [107, 108]. In this work, KNN was used in the 

experiment for model evaluation method in Chapter 7 to obtain diverse types of 

classification models. 

2.2.5.3. Artificial neural network 

Artificial neural network (ANN) is a supervised machine learning method 

inspired by biological neural networks. ANN works by training a hidden-layer 

containing network and using the interconnected structure to establish the 

complex relationship between inputs and outputs. A common ANN consists of 

three layers as illustrated in Figure 2.1, in which the circular unit represents an 

artificial neuron and the arrow represents a connection between the neurons. The 

“input” layer is connected to “hidden” layer, which is then connected to “output” 

layer. Because of its strong ability to learn relationship from complex or noisy 

data, ANN is usually used for modeling complex relationships or exploring 

patterns in data that could not be accomplished by other computational algorithms. 

ANN has been applied in many QSAR studies [109, 110]. In this work, ANN was 
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used in the experiment for model evaluation method in Chapter 7 to obtain 

diverse types of classification models. The ANN method in RapidMiner builds a 

model using a feed-forward neural network with backpropagation learning.  

 

Figure 2.1 An example of a simple feed forward network. 

2.2.5.4. Naïve Bayes 

Naïve Bayes (NB) is a type of supervised learning algorithms derived from the 

well-known Bayes’ theorem with the assumption that the features (i.e., molecular 

descriptors in QSAR) are independent with one another. In the training stage, NB 

classifiers build a simple probabilistic model between the molecular descriptors 

and the class label, after which the most likely class of an unknown compound 

could be inferred using Bayes’ theorem. Despite the fact that NB method is based 

on over-simplified conditional independence assumptions, NB classifiers 

outperform more sophisticated classification algorithms in many studies [111]. 

Besides, since the model parameters of NB classifiers could be estimated from a 

small set of data and the independence assumption alleviates the problem of high 

dimensionality, NB classifiers are simpler and faster than many other machine 



28 

 

learning methods.  In this work, NB was used in the experiment for the AD 

method in Chapter 5 for its simplicity and efficiency. 

2.2.5.5. Random forest 

Random forest (RF) is an ensemble learning method for classification and 

regression that works by building a number of decision trees on various subsets of 

samples of the dataset [112]. For classification problems, the final output class is 

determined by majority voting of the outputs from individual trees which is to 

reduce over-fitting and improve the prediction performance. RF could be applied 

on dataset with large number of samples and features and it is less affected by the 

noise of data [112]. RF has been applied in many QSAR studies and was 

recommended for QSAR modeling because of its relatively high prediction 

performance and other advantageous properties [113, 114]. In this work, RF was 

used the experiment for the AD method in Chapter 5 for its robust prediction 

performance and efficiency. 

2.2.6. Model validation/evaluation 

The ultimate purpose for developing a QSAR model is that it could be applied on 

unseen compounds to predict the targeted properties. It is therefore important that 

QSAR models are rigorously validated for the accuracy and reliability of its 

prediction. This is usually achieved by using either internal validation (e.g. cross 

validation) or external validation (use of an external dataset). Although external 

validation is preferred since it could capture the real performance of the model on 

unseen data, it is not always possible because of the small size of the dataset [115], 

which is common for a lot of QSAR studies. Hence internal validation such as 

cross validation plays an important role in QSAR studies. 

2.2.6.1. Validation set and cross validation 

During the model development process, the model need to be evaluated on an 

testing set to facilitate the tuning of the parameters of the algorithms used for 

modeling or selection of models. Therefore, the data used for modeling need be 

further split into another training set and testing set (internal validation). To make 
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use of all data and avoid bias of single round of testing, many internal validation 

methods were developed such as random split validation, cross-validation and 

bootstrapping etc. Cross validation is a statistical method used to evaluate and 

compare models’ performance and it was used throughout this study. For 5-fold 

cross validation, the training set is divided into five subsets with approximately 

equal size. A model will then be trained with four subsets of data, after which the 

performance of the model is tested with the 5th subset. This process repeats five 

times so five models are developed and every subset is used as the testing set once. 

The average of the performance of the five models is the performance of the 

model for the 5-fold cross validation. This result could be used to tune the 

parameters to optimize the preprocessing or modeling algorithms or to compare 

models’ performance. 

The optimal model parameters obtained from internal validation can then 

be used to build a final model using the entire data set. A model usually will 

perform well on the dataset used to train it since it will remember the relationship 

of the features and labels and this may cause over-fitting. Hence, to test the 

model’s real performance, an external set which has not been used in the training 

process is needed. This dataset, which could be a new dataset or a subset of data 

held out before model development, is called validation set (external validation).  

The prediction performance on this set further indicates the real performance of 

the model. However, the external validation result is expected to be different from 

the cross validation result. Studies have shown that the cross validation result may 

not correlate well the external validation result [116]. The external validation 

result may not be as good as that for cross validation [35]. Nevertheless, for a 

good model with low risk of over-fitting and good generalization power, the 

external validation result should not deviate too much from the cross validation 

result. 

2.2.6.2. External cross validation 

In QSAR studies, usually an independent validation set is used to evaluate the 

performance of the model. However, in this study, to fully utilize the available 
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data, the entire dataset was used to develop the model. Thus, in order to more 

rigorously validate the final model, the external cross validation approach 

proposed by a group of QSAR experts was used [117]. This validation approach 

involves repeating the whole model development process stated above n times 

using different and complementary pairs of training and validation sets. Suppose n 

is set as 5. Firstly, the whole dataset was randomly divided into five subsets of 

approximately equal size. Then, one subset was selected as the validation set and 

the remaining four sets as training set. For example, in run 1, subset 1 was taken 

as validation set while the remaining four subsets are taken as the training set. The 

training set was subsequently used to develop models using exactly the same 

approach used to develop the model using entire dataset. The validation set, which 

was not used in the model development process, was used to estimate the 

prediction ability of the best model. This process was repeated for five times until 

all subsets had been used as validation sets and five sets of model performances 

were obtained. Finally, the average of the five set of model performances was 

used to estimate the performance of the final model.  

2.2.7. Applicability domain 

Ideally, QSAR models should only be used to make predictions within its AD, 

which could be regarded as a defined boundary for the model. The prediction 

abilities for compounds that are within the boundary (within AD) are estimated by 

the training set, cross-validation and validation set. The prediction abilities for 

compounds that are outside the boundary (outside AD) are the same as that of a 

random model.  

Currently, there are no optimal methods to determine the AD for a model. 

For qualitative method, usually a common threshold is used to define the AD for 

the model. For quantitative methods, there are range method, distance-based 

method, Hotelling T
2

, leverage, geometric method and probability density 

distribution method [118]. All these methods define the AD based on the training 

set and are independent of the modeling methods. An AD method was developed 

in this study and will be introduced in details in Chapter 5. 
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2.2.8. Ensemble modeling 

Usually, after model development, the best performing model on the training data 

was selected for making prediction in the future. However, it has been suggested 

that individual models may overemphasize, underestimate or even ignore some 

features [119]. An ensemble model combined by multiple models may reduce the 

risk of using an inappropriate model and hence provide more reliable predictions 

[42, 120-124]. Ensemble method or consensus modeling is a technique introduced 

to modeling studies to improve the performances of individual (constituent) 

models (sometimes referred as base models or classifiers) [39]. The multiple 

models could be generated by sampling different training sets using methods like 

bagging and boosting, or from the same training set but with different subset of 

features, or from the same training set and same feature groups but using different 

modeling algorithms.  

Intuitively, ensemble model is supposed to work better than individual 

models since it has been a protective mechanism in human decision-making to 

combine diverse and independent opinions (e.g. stock portfolio) [125]. 

Theoretically, it was discussed that ensemble model may outperform single 

models for three reasons: statistical, computational and representational reason 

[126].  For statistical reason, the training dataset might be too small compared to 

the size of the information space required for the problem, hence combination of 

the base models by aggregating their results could reduce the risk of selecting a 

wrong model [126]. For computational reason, the statistical learning algorithm 

might stuck in local optima so base models could not produce the best solution of 

the problem. It is especially common for algorithms such as ANN and decision 

tree where it is computationally infeasible to obtain the best model. Hence an 

ensemble model constructed by combing models from different starting points 

might have a closer approximation of the true relationship than base models [126]. 

For representational problem, when the true relationship cannot be captured by 

any of the base model, ensemble model is likely to increase the representation 

space by taking aggregated results from individual model’s space [126]. 
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Due to above reasons, ensemble methods have been regarded as a 

powerful tool for improving the robustness as well as the accuracy of machine 

learning problems. In the past several years, ensemble method have applied and 

demonstrated its advantage in considerable number of studies in various areas, 

including recommendation systems, anomaly detection, text mining and web 

applications [125]. For a number of QSAR studies, ensemble model has been 

demonstrated to outperform the best performing model as well [40, 122-124, 127]. 

In this study, two model selection methods were introduced to develop ensemble 

models and will be introduced in details in Chapter 6. 

2.2.9. Performance evaluation 

The following statistics are usually calculated to determine the predictive 

capability of a QSTR model: sensitivity (SE), specificity (SP), accuracy (ACC), 

Area under curve (AUC) values and Matthew's correlation coefficient (MCC). 
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TP is the number of true positives and FN is the number of false negatives. 

Similarly, TN is the number of true negatives and FP is the number of false 

positives. Sensitivity and specificity are the classification accuracies of a model 

for the positive and negative data classes respectively. Overall accuracy (ACC) is 

the classification accuracy of the model for the entire data. The limitation of the 

overall accuracy is that for imbalanced data, the overall accuracy might be high 

even if either sensitivity or specificity is low. Hence sometimes AUC and MCC 

are preferred as a single value to evaluate the model’s performance. AUC value is 
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a single scalar value representing the classifier’s performance instead of two-

dimensional ROC curve [128]. The AUC value is equivalent to the probability 

that the classifier will rank a randomly chosen positive instance higher than a 

randomly chosen negative instance. Thus a good classifier usually has AUC value 

larger than 0.5.  MCC value is from −1 to 1, with C = 1 indicates the best possible 

prediction in that every sample was correctly predicted and C = -1 where every 

sample was wrongly predicted. A value of C = 0 indicates random prediction.  
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Chapter 3 One-Class Classification 

This chapter is to address the first issue of the QSAR workflow in Chapter 1: lack 

of negative data, by introducing and applying one-class classification (OCC) 

methods. Three OCC methods were introduced including one-class SVM, one-

class local outlier factor (LOF) and one-class probability density (PD). SVM, 

LOF and PD methods have been used intensively in machine learning studies for 

various purposes whereas this is the first time that they were used to build one 

class QSAR models. Three QSAR studies using OCC methods to develop models 

to predict the potential of drug candidates to cause SJS/TEN, TdP and serous 

psychiatric ADRs were investigated to demonstrate the potential of OCC methods. 

3.1. Introduction 

Binary and multiple classifications have been popular methods in predictive 

modeling to build classification models for categorical endpoints. For most of the 

classification tasks such as recognition of digits, prediction of consumers’ 

behavior or classification of inhibitors and non-inhibitors in QSAR study, data 

with well-defined classes are usually available to train the model. However, 

sometimes only one class of the data is readily available and other classes are 

difficult, expensive or even impossible to characterize or obtain. For example in 

clinical area, suppose patients with healthy kidneys are regarded as positive 

samples. Then positive samples are easy to identify (e.g., patients with no kidney 

disease) whereas the negative samples are expensive, time-consuming and might 

pose risks to the health of patients as most of such tests are invasive [129]. 

Another case is the examination of mammograms in radiology, most of the 

mammograms are normal and only 0.58% of the cases are cancerous [130]. 

Normal mammograms share similar pattern while abnormal ones usually have 

random patterns so they are more difficult to characterize than normal ones. In 

QSAR related research area such as ligand-based virtual screening studies, lack of 

negative data has also become a common problem  [35]. The reason might be that 

inactive compounds should be collected in the same conditions as for the active 

ones, but usually information on inactive compounds is not available or is too 
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limited compared with the active class [131]. Although some novel methods have 

been proposed to create putative negative data using different rules, there are still 

limitations since the putative negative samples may be real positive [131]. 

Similarly, in classification studies for drugs with potential for causing certain 

ADRs, positive drugs that cause the ADR could be identified from the case report 

or literature while drugs with no potential of causing the ADR is hard to confirm, 

since some ADRs may take a long time to occur or they have not been reported 

yet. As a result, limited availability or clarity of the negative data becomes a 

problem in classification studies. For such cases, application of standard binary is 

inappropriate when the negative data is not rigorously defined.  

 To address this issue, one-class classification (OCC) method which could 

train a classifier to distinguish one class from the other classes given only one 

class of data could be used. Compared with binary classification methods, OCC 

methods could reduce the computation time and memory space, because only 

positive data are used to train the model [132]. OCC methods could also produce 

comparable or better results than binary classification methods for the same 

problem [133, 134]. OCC methods have been applied in various studies such as 

document classification [46] and network intrusion detection [47] with different 

purposes including outlier analysis and anomaly detection. Nevertheless it has not 

been explored much in QSAR studies yet, especially for the prediction of ADRs 

and toxicity assessment. In one recent study, OCC method was used to create a 

virtual screening system based on auto-encoder neural networks and was 

suggested as a powerful post-processing technique of ligand based virtual 

screening [131]. In our study, the OCC method was applied to develop QSAR 

models to distinguish the positive data with the “negative” data. The general 

principle is, given a set of data to train a model, OCC algorithms will determine 

whether the new sample is in the same class as the training data (positive class) or 

not (negative class). To obtain a diverse set of prediction models, three OCC 

algorithms, one-class support vector machine (OCSVM), one-class local outlier 

factor (OCLOF) and one-class probability density (OCPD) algorithms were 

applied in this work. 
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3.2. Materials and methods 

3.2.1. OCC methods 

3.2.1.1. One-Class Support Vector Machine 

As introduced in Chapter 2, conventional two-class SVM or binary SVM 

methods have been applied intensively in QSAR studies [17, 135, 136]. OCSVM 

is an extension of the original two-class SVM learning algorithm and was first 

proposed by Schölkopf et al  [137]. OCSVM method is able to train the classifier 

based on the information of only one class of data so it is quite suitable for 

classification problems with only one well-defined class. OCSVM was originally 

applied for outlier detection by finding data that are different from most of the 

data in a given dataset [129].  To separate the outliers from the remaining data 

points, the data was mapped into a high dimension feature space, then a 

hyperplane is iteratively found that best separates the data points from the origin 

with maximum margin [138]. The principle is the same for classification 

problems with the training data as the “normal samples”. The basic principle of 

OCSVM is illustrated in Figure 3.1. The circle labeled with ‘+’ and ‘-’ indicate 

positive and negative data respectively. The origin is regarded as belong to 

negative class.  
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Figure 3.1 Graphical illustration of one-class SVM 

Briefly for the training stage, OCSVM model was developed by finding the 

optimal margin support or the ‘boundary’ that incorporate most of the training 

data based on the positive data only [139]. Then for the prediction stage, if the 

sample in the testing set fell within the boundary then it was classified as positive 

class, otherwise it is classified as negative class. As in the case for binary SVM, 

for non-linear cases the kernel function was applied to transform the data to a 

higher dimensional space, allowing more complicated cases to be handled by 

OCSVM [132]. OCSVM has been widely used in various real world applications, 

such as the aforementioned mammogram detection, protein fold recognition, 

diagnosis of attention-deficit hyperactivity disorder (ADHD) [45], faulty 

detection and text categorization [140] etc. There are different versions of 

OCSVM implementations and the OCSVM function in LibSVM was used in this 

study [141].  The most popular kernel function radial basis function (RBF) and 

default parameters were applied for computation efficiency. 

3.2.1.2. One-Class Local Outlier Factor  

Local outlier factor (LOF) is an outlier detection algorithm proposed by Breunig 

et al [142]. The key idea of LOF is to compare the local density of a sample's 

neighbourhood with the local density of its k-nearest neighbours, i.e., the local 
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reachability density. Based on the average ratio of the local reachability density of 

a sample and its k-nearest neighbours (e.g. the samples in its k-distance 

neighbourhood), the LOF value is then computed as the indicator of the degree of 

the object being outliers. The samples with a LOF value beyond a certain 

threshold are considered as outliers.  A simple illustration of the basic idea of 

LOF is shown in Figure 3.2. For better visualization, object p and its three nearest 

neighbours are marked in black and the remaining objects are marked in grey. The 

object p has a much lower density than its neighbours because it lies some 

distance away from a cluster of objects C. The number of neighbours k was set as 

3 for ease of understanding.  

 

Figure 3.2 Graphic illustration of basic idea of LOF. 

 A brief description of the workflow LOF algorithm is presented as below. 

A more detailed version could be referred to the original paper [142].  Basically 

there are four steps: 

i. For each sample p, the k-distance distk (p) and k-distance neighborhood 

Nk(p) are computed. distk (p) is the distance of the sample p to its k-th 
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nearest neighbor. Nk(p) is the set of k nearest neighbors of p, which could 

be bigger than k since multiple objects may have identical distance to p.  

Nk(p) = {q| q in C, dist(p, q) ≤ distk(p)} ( 3.1) 

ii. Then the reachability distance of p from q could be defined as: 

reachdistk (p,q)=max{distk(p), dist(p,q)}  ( 3.2) 

where dist(p,q) is real distance from p to q. 

iii. The local reachability density of p is defined as:  

    ( )= 
   ( ) 

∑           (   )    ( )
 ( 3.3) 

which is the inverse of the average reachability distance of the object p 

from its neighbors. 

iv. The local reachability density of p is then compared with those of the k 

nearest neighbors using 

LOFk(p) = 
∑

    ( )

    ( )
    ( ) 

   ( ) 
  ( 3.4) 

 

which is the average local reachability density of the k nearest neighbors 

divided by the local reachability density of sample p. The lower the local 

reachability density of p, and the higher the local reachability density of the k 

nearest neighbors of p, the higher LOF is. A LOF value of 1 indicates that the 

object is comparable to its neighbors and thus not an outlier. A value less than 1 

indicates a higher density so the object is normal whereas LOF value significantly 

larger than 1 indicates the object is likely to be an outlier. 
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LOF algorithm or its modified version has been used as a common tool in 

outlier detection and fault detection studies [143]. Moreover, it has been 

demonstrated by established comparison studies that it could outperform other 

similar outlier detection algorithms such as distance based outlier detection 

method and unsupervised SVM algorithm in network intrusion detection study 

[144]. However, it has not been explored much as a classification method for 

prediction of unseen data. In this study, it was used to classify the normal class 

(positive data) from outliers (negative data).  During the application, only the 

positive class was used to compute the LOF and the samples with a LOF value 

larger than a certain threshold are considered as outlier (negative data). 

3.2.1.3. One-Class Probability Density 

Probability density (PD) estimation is a statistical technique used to construct an 

estimation of the distribution of the underlying population based on available data. 

Similar as LOF method, PD method is commonly used for outlier detection based 

on the density distributions of the data [145]. Recently, PD method has been 

increasingly explored to solve machine learning problems [146]. The PD based 

approaches are of particular interest for their low time complexity of either  O(n) 

or O(nlogn) (n is the sample size) when constructing an estimator [147]. When 

PD was used for classification purposes, the class of the testing sample is usually 

based on estimating the density for each of the classes. A recent study which 

compared PD method with SVM has shown that PD based classifier was capable 

of delivering the same level of prediction accuracy in addition to several 

distinctive advantages [148]. PD based binary classification method  has been 

applied in prediction of biological activities of compounds recently [149]. It is 

suggested that it can deal with both noisy data and sparse data and it is possible to 

apply the method to datasets with large number of compounds. Therefore, PD 

based methods could be favorable choice for applications that involve large and 

complex datasets or databases [147]. 

 In our study, PD method was used for OCC. The OCPD method 

developed the classification model by calculating the density value for each 
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sample which correlates with the probability that the sample belongs to the dataset. 

The lower the probability is, the more likely that the sample is an outlier 

(negative).  Only the positive class was used to generate the density distribution. 

A proportion or threshold value was set and the samples beyond the proportion or 

the threshold value were considered as outliers.   

3.2.2. Application of OCC methods in real studies 

3.2.2.1. General modeling workflow 

All models were developed and optimized using the open source software, 

RapidMiner [150]. The general workflow of model development and validation 

process is shown in Figure 3.3. The “model development using entire dataset” 

process produced the final model and the “external 5-fold cross validation (CV)” 

process estimated the performance of the model. Despite the difference of the 

datasets used to train the model, the same model development procedure was used 

in both processes. The process in the dash line rounded rectangle shows the 

detailed steps for model development, which is the same for both final model 

development using entire dataset and external 5-fold CV process. In this chapter, 

only the model development process in the dash line rounded rectangle was 

covered. The remaining part including the AD determination and ensemble model 

development will be described in details in Chapter 5 and Chapter 6 

respectively. 
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Figure 3.3 General workflow of model development and validation. 



44 

 

3.2.2.2. Model development 

To generate diversity among the base models, different descriptor subsets and 

different modelling methods were used. The different descriptor subsets were 

obtained using a modified forward selection process. The modification involved 

an initial random selection of a descriptor pool from the entire descriptor set. A 

predictive subset of descriptors was then selected from this descriptor pool using 

the forward selection method. During the forward selection process, models were 

developed using different algorithms and evaluated by calculating their MCC 

value using a 5-fold internal CV process in order to identify relevant descriptors. 

The modified forward selection process was repeated 100 times to produce 100 

models with different descriptor subsets for each modelling method. These 

models are regarded as base models. The three OCC methods, OCSVM, OCLOF 

and OCPD were employed to develop base models. The AD of each base model 

was defined using the double thresholds method described in Chapter 5. To 

characterize the models, several statistical measures were used to evaluate 

prediction performance of the models including accuracy, sensitivity, specificity, 

AUC and MCC values.  

 After model development, to prepare a candidate model pool for ensemble 

model development, the based models were screened using two criteria to remove 

the weak models. These include cut-off values for sensitivity and specificity for 

both training performance and internal CV result to remove base models with 

poor performance and cut-off value for the difference between MCC values of 

training performance and internal CV result to reduce the chance of base models 

to be over fitted. After that, the best performing model with the highest MCC 

value for internal CV performance was selected as the best base model (BM). 

Then a subset of the remaining models was selected using certain model selection 

algorithms to obtain the best ensemble model (EM). Although the EMs were the 

final models to be delivered at the end of all studies, the performances of the BMs 

directly reflected the classification ability of OCC methods. Therefore, this 

chapter will only focus on the best performing BMs in the model pool to 

investigate the prediction ability of OCC methods. The detailed model screening 
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criteria, ensemble model development process and the final performances of the 

best EMs will be covered in Chapter 6.  

3.2.2.3. Model validation 

The rigorous external 5-fold CV process introduced in Chapter 2 was used to 

evaluate the final ensemble model EMall. In the first step, EMall was developed 

according to the base and ensemble model development process aforementioned 

using entire dataset. Then an external 5-fold CV was carried out on the same 

dataset, resulted in five pairs of training sets (Trainn, n=1, …, 5) and validation 

sets (Validationn, n=1,…,5). For each CV run, an ensemble model (EMn, n=1,…,5) 

was developed for each training set using the same model development process as 

EMall and then validated by the corresponding validation set. The performance of 

EMall was then estimated using the external 5-fold CV result which is the average 

of the five set of performances (Performancen, n=1, …, 5) of five ensemble models 

from the five CV runs. In addition, if there are independent external dataset 

available, the final model EMall was further evaluated using the external 

validation set. It is important to note that the external 5-fold CV was used solely 

to measure the performance of the final ensemble model and was not used for 

descriptor selection or model selection. A separate internal 5-fold CV was used 

for those purposes.  

 The validation process for the best BMs was the same as EMs, except that 

for each run of the external 5-fold CV, the best BM was selected instead of the 

best EM. Therefore, there were five BMs and five sets of performance results for 

each study. 

3.3. Results  

3.3.1. SJS/TEN study 

During the rigorous validation process, the number of base models selected as 

qualified candidate models is from 16 to 64 for the five runs after applying two 

preprocessing criteria. The detailed performances on the training and validation 

set of the best BMs from the five runs are shown in Table 3.1. 
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Table 3.1 Performances of best base models from external 5-fold cross validation 

for SJS/TEN study. 

  Model * ACC(%) SE(%) SP(%) MCC AUC 

Training 

Performance 

BM
1
  71.1 75.5 66.5 0.422 0.708 

BM
2
  69.8 74.0 65.3 0.395 0.711 

BM
3
  68.3 56.1 81.5 0.387 0.7 

BM
4
  69.3 81.9 55.8 0.391 0.741 

BM
5
  66.9 71.4 62.1 0.337 0.708 

Average 69.1±1.6  71.8±9.6  66.2±9.5  0.386±0.031 0.714±0.016 

Validation 

Performance 

BM
1
  53.5 51 56.3 0.072 0.555 

BM
2
  67.8 68.6 66.7 0.353 0.668 

BM
3
  61.9 46.0 78.7 0.261 0.648 

BM
4
  55.6 62.8 48.0 0.108 0.556 

BM
5
  59.2 70.6 46.8 0.179 0.594 

Average 59.6±5.6  59.8±10.9  59.3±13.5 0.195±0.114 0.604±0.052 

 

*
 The best base models are noted as BMn. n is the index of CV runs. 

3.3.2. TdP study 

The model development process was the same as the workflow presented in 

Figure 3.3. The validation method was also similar except that there was no 

external validation set available for this study. 

 During the rigorous validation process, the number of base models 

selected as qualified candidate models is from 38 to 76 for the five runs after 

applying the two preprocessing criteria. The MCC threshold is the same as 

SJS/TEN study while the criteria for sensitivity and specificity are sensitivity ≥ 

0.7 and specificity ≥ 0.7.  For sensitivity and specificity values, lower cut-off 

values such as 0.5, 0.6 were also tried but the performances of the ensemble 

models were poorer, probably due to the inclusion of low quality base models in 

the ensemble. Higher cut-off values will result in less candidate models so were 

not considered. For MCC value, 0.1 was used instead of 0.05 or 0.2 so as to 

achieve a balance between the number and quality of suitable candidate models. 
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The detailed performances on the training and validation set of the best base 

models from the five runs are shown in Table 3.2.  

Table 3.2 Performances of best base models from external 5-fold cross validation 

for TdP study. 

  Model  ACC(%) SE(%) SP(%) MCC AUC 

Training 

Performance 

BM1  85.4  88.0  83.6  0.706  0.899  

BM2  88.3  88.0  88.5  0.760  0.894  

BM3  74.9  39.5  97.6  0.483  0.801  

BM4  88.0  86.6  88.8  0.749  0.924  

BM5  89.4  82.9  93.7  0.777  0.924  

Average 85.2±5.9 77±21.1 90.4±5.4 0.695±0.121 0.888±0.051 

Validation 

Performance 

BM1  84.3  79.0  87.5  0.664  0.837  

BM2  78.0  60.0  90.0  0.535  0.697  

BM3  71.2  28.6  100.0  0.439  0.767  

BM4  72.0  70.0  73.3  0.428  0.771  

BM5  78.4  65.0  87.1  0.540  0.846  

Average 76.8±5.4 60.5±19.2 87.6±9.5 0.521±0.095 0.784±0.061 

3.3.3.  Serious psychiatric ADR study 

All models were developed and validated using RapidMiner 5.2 [150]. 

The model development process was the same as the workflow presented in 

Figure 3.3 for SJS/TEN study. For model validation process, besides the rigorous 

external 5-fold cross-validation, the final ensemble model was also validated 

prospectively. This is done by developing the final ensemble model using a 

dataset consisting of drugs that were marketed before 1999. Drugs that were 

marketed after 1999 and which causes serious psychiatric ADRs were then used 

as a prospective validation set to test the final ensemble model’s ability to predict 

“future” drugs.  

 After the rigorous validation process, the same criteria for sensitivity and 

specificity values in SJS/TEN study with sensitivity ≥ 0.5 and specificity ≥ 0.5 

was used to remove models with weak performance. The criterion for MCC 

difference was not applied in this study to retain enough models for ensemble 
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process. The number of base models selected as qualified candidate models is 

from 8 to 38 for the five runs after applying the screening criteria. The detailed 

performances on the training and validation set of the best base models from the 

five runs are shown in Table 3.3.  

Table 3.3 Performances of best base models from external 5-fold cross validation 

of the serious psychiatric ADR study.  

3.4. Discussion 

3.4.1. OCC methods 

OCC methods were used in this study instead of binary classification 

methods because it is difficult to confirm that a drug does not cause the given 

ADRs. Although strict selection criteria that the drug should have been applied on 

a large number of people (surrogated by requiring no case report of respective 

ADRs for drugs with long market period and indicated for common diseases) 

were used to identify negative drugs, these could not be considered as 

confirmatory. This is because a drug with no known case report of causing the 

ADR does not mean that it definitely has no potential of causing the ADR. It is 

possible that some drugs which are currently identified to be negative class could 

actually have the potential to cause the ADR since some rare ADRs such as 

SJS/TEN and TdP occur relatively rarely and such cases may not be reported or 

occurred yet. There have been instances of drugs which were only detected to 

cause TdP after they had been in the market for some time [151]. Therefore, in 

  Training set performance Validation set performance 

Model ACC(%) SE(%) SP(%) ACC(%) SE(%) SP(%) 

BM1 68.8 66.7 71.4 42.9 33.3 50.0 

BM2 78.4 73.7 83.3 37.5 40.0 33.3 

BM3 80 78.9 81.3 40.0 100.0 0.0 

BM4 100 100 100 44.4 16.7 100.0 

BM5 81.6 88.5 66.7 56.3 54.5 60.0 

Average 81.7±11.4 81.6±13 80.5±12.9 44.2±7.2 48.9±31.6 48.7±36.6 
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order to prevent such errors from affecting the quality of the QSAR models, only 

the positive drugs were used to train the models. If the two classes could be 

clearly defined for the data, binary classification method is a good choice. When 

only one class of the data could be confirmed, OCC methods are more reliable 

since no additional potentially wrong negative data is included. Therefore, one-

class models were more practical for clinical and regulatory purposes which 

reliability is a critical factor. Although there could be potential errors in the 

negative dataset, it is necessary to use it to evaluate the model’s performance. 

Otherwise, a useless model which predicts every drug as positive class will have 

100% accuracy.  

3.4.2. Performances of OCC models 

To the best of our knowledge, currently there are no available QSAR 

models for predicting the SJS/TEN-causing potential of drugs. Hence it is not 

possible to compare the performance of the model developed in this study with a 

similar study. Nonetheless, a tentative comparison could be made with QSAR 

models developed for other toxicological properties such as genotoxicity and 

hepatotoxicity [40, 121]. As shown in Table 3.1, the average accuracy values are 

approximately 69.1% and 59.6% on training and validation set respectively. 

Although they were lower than models for these well studied properties, the 

model could still be considered as useful since SJS/TEN is a very complex 

disease with multiple mechanisms affecting its occurrence.  

For TdP study, the result in Table 3.2 shows that the average sensitivity 

and specificity values for training and validation set are 77%, 60.5% and 90.4%, 

87.6% respectively. Compared with two similar studies of TdP using binary 

classification method which have sensitivity value 97.4% and 97%, specificity 

value 84.6% and 90% on validation set respectively [17, 27], the performances of 

the OCC models are relatively lower.  

For serious psychiatric ADR study, the result in Table 3.3 shows that 

there is big variance of the models’ performances across five runs on training and 

validation set for the five CV runs. Moreover, the accuracy values on validation 
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set are even lower than 50% which means the models have poor performances on 

unseen data. The large discrepancy of the performances on training and validation 

set could be because that the criterion for MCC value was not applied before 

ensemble modeling. However, less stringent filtering criteria of performances of 

the models were used for this study compared with SJS/TEN and TdP study was 

to achieve a balance between the number and quality of the models. The lower 

performances of the models could be because that multiple endpoints are covered 

for serious psychiatric ADRs, which makes the relationship of the chemical 

structures and the endpoints more complex to capture by the models.  

Based on above observations, the models developed from OCC methods 

show weaker performance than other toxicity studies using QSAR methods. 

However, the results are still promising. Firstly, the ADRs we investigated are 

either rare or complex ones so the mechanism is not as straightforward as the 

other toxicity studies. Moreover, OCC method was used in this study whereas 

binary classification methods were usually used for previous predictive toxicity 

studies. Studies have shown that OCC could have poorer prediction performance 

compared to binary classification when the two classes are properly defined [152, 

153]. This could be because less information is available to the OCC for model 

development. Considering that relatively less information was available (only 

positive drugs) to develop the model, our result is still encouraging. In addition, 

for the three studies, the performances for TdP models are higher than those for 

SJS/TEN and psychiatric ADRs.  It could be because the mechanism for TdP is 

not as complex as SJS/TEN and psychiatric ADRs. Therefore, the performances 

of the models were highly dependent on the quality of the training data, the 

learning ability of the modelling algorithm and the inherent aetiology of the 

disease. None of them could be improved with trivial effort.  As the pioneering 

studies of using OCC methods in QSAR model development, our study not only 

provides QSAR models for prediction of the potential of drugs to cause the three 

types of ADRs, but also offers a possible solution that can be used for other 

QSAR studies while negative information is not readily available. 
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Nevertheless, despite the promising results, the variance of the sensitivity 

values across five runs of the cross validation for all three studies are quite high, 

i.e., with most standard deviation values for average sensitivity and specificity 

higher than 10%. This result suggests that the performances of the best base 

models for different runs are not stable. This could be due to the different 

characteristics of the best performing models since they were developed using 

different algorithms with different training sets. To address this problem, 

ensemble method will be used to combine the individual models’ strength to 

improve the final model’s performance. The details of the ensemble model 

development process will be described in Chapter 6.  

In summary, for binary classification problem, when the two classes are 

clearly defined and data for each class is readily available, binary classification 

method is recommended since it could fully utilize the information. Otherwise, if 

the data of one class is not available or difficult to obtain, application of OCC 

methods could be a good solution to provide reliable results. All three OCC 

algorithms used in this study have been proved theoretically or empirically in 

several previous studies and have been applied in many real world applications. 

The present work is nevertheless a first step towards the application of these OCC 

methods together in QSAR studies.  

3.5. Conclusion 

In this chapter, OCC methods were introduced and three OCC algorithms 

were applied in three QSAR studies for ADR prediction. The results suggest that 

OCC methods are useful in QSAR studies to distinguish outliers (negative class) 

from the training data (positive class). Currently there are limited algorithms 

available for OCC classification, which restricts the improvement of OCC models’ 

performance and application of OCC models. With more OCC methods 

developed in the future, OCC models will provide more solutions for QSAR 

studies. A possible future direction could be application of OCC methods to larger 

samples and multiple classes. 
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Chapter 4 Addition of biological information 

This chapter is to address the second issue of the QSAR workflow presented in 

Chapter 1, the lack of descriptors. Besides the chemical descriptors (molecular 

descriptors) used conventional QSAR method, biological information (gene 

expression data) was used to develop an integrative predictive model.  68 

compounds were analyzed to explore the relationship of their chemical structures 

and gene expression changes associated with renal tubular toxicity. Predictive 

models were developed including QSAR model based on chemical descriptors, 

TGX model based on genomic data, and hybrid model based on combination of 

them using SVM and NB methods. Four types of ensemble models were then 

developed using the QSAR models, TGX models, hybrid models and the 

combination of both QSAR and TGX models and their performances were 

compared. The results showed that ensemble models with both chemical and 

biological information offered higher performances than ensemble model based 

on any of them. Therefore, the addition of biological information can improve the 

performance of QSAR models.   

4.1. Introduction 

Multiple organ and system toxicities, including hepatotoxicity, cardiotoxicity, 

immunotoxicity and nephrotoxicity, are the leading cause of attrition during 

preclinical and clinical stages of drug development. Based on the principle of “fail 

earlier and fail cheap”, identification of the most promising compounds with 

better safety profile in the early stage of the drug development is very important. 

Therefore the determination of candidate compounds’ potential to cause such 

organ injuries at the early stage of drug development is important for reducing the 

attrition rate of drug candidates and finally the investment of time and money 

during drug development.  

 Nephrotoxicity is defined as “a renal disease or dysfunction, is often 

caused by drugs, chemicals, industrial or environmental toxic agents” [154]. The 

human kidneys are highly vascularized and primarily involved in the metabolism 

and elimination of drugs or drug metabolites, while these substances may reach 
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high concentrations and become toxic for the kidney [154, 155]. Therefore, 

kidneys are particularly vulnerable to the toxicities of these substances. 

Nephrotoxicity has been an important concern for drug development and/or in 

clinical care due to the damage of kidney. Many drugs can cause renal 

dysfunction through various mechanisms, which can cause significant morbidity 

[156].  It has been reported that drug-induced nephrotoxicity has been estimated 

to contribute to 19% to 25% of the cases of kidney failures in patients [157, 158]. 

The tubular cells of the kidney are one of the most sensitive components of the 

kidney so they are more likely to get damaged. Drug-induced tubular injury has 

been well documented and extensively studied recently [159].  

 Currently, the evaluation of toxicity of drug candidates is mainly achieved 

by sophisticated histopathological or clinical pathological techniques [160]. The 

standard approach for toxicity investigation of drug candidates recommended by 

major regulatory authorities such as FDA is still histopathological observation on 

an animal system [161]. In the kidney, the area and intensity of renal insult can be 

directly observed and characterized. However, to obtain detailed information, a 

large number of animals for histopathological observation at different time points 

are required [162]. This would cause increase of cost, time and animal usage of 

the drug development process so it is not practical to use these methods for 

screening and evaluation of nephrotoxicity of compounds especially for large 

scale studies. In addition, although these standard techniques have been successful 

in many toxicity studies, they may not be able to detect prodromal and early 

stages of toxicity [160]. Therefore, alternative or complementary methods which 

are more sensitive and efficient are desirable. Current computational methods 

based on chemical or biological information such as QSAR and TGX have been 

applied intensively to predictive toxicity studies and demonstrated good 

performance for several major organ toxicities such as hepatotoxicity, 

cardiotoxicity and nephrotoxicity etc [17, 40, 163]. The QSAR models have been 

well reviewed in many publications so here only the models based on biological 

information were summarized in Table 4.1. 
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Table 4.1 Some predictive studies of toxicities based on biological information. 

 

4.1.1. QSAR modeling 

As introduced in Chapter 2, QSAR models are predictive models that 

correlate the biological activities of chemical compounds with descriptors 

representative of the structure and properties of the compounds. The underlying 

principle of QSAR is that compounds with similar structures will have similar 

biological activities [172]. QSAR has been applied in many areas such as drug 

discovery, toxicity prediction, risk assessment and regulatory decisions [122]. 

QSAR models have demonstrated good prediction ability especially for specific 

end points such as solubility or binding affinity to a certain target [122]. However, 

for complex end points such as hepatotoxicity and nephrotoxicity, the 

performances of QSAR models are not that satisfactory, which could be because 

Endpoints 
Dataset  

(No. of compounds) 
Performance Reference 

Drug-induced liver 

injury 
292 

Hybrid model: 

SE=67%,SP=87%, 

ACC=77% 

[164] 

Renal tubular toxicity 41 SE=93%, SP=90% [165] 

Nongenotoxic 

hepatocarcinogenicity 
62 ACC=77~82% [166] 

Hepatotoxicity 

mechanisms 
150 ACC=95% [167] 

Carcinogenicity 152 63~69%, 55~64% [168] 

Renal tubular toxicity 10  SE=88%, SP=91% [160] 

Nongenotoxic 

carcinogenicity 
52 ACC=84% [169] 

Renal tubular toxicity 85 ACC=76% [170] 

Nephrotoxicity 6 SE=82%, SP=100% [171] 
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the structure activity relationship for these endpoints is less straightforward since 

multiple mechanisms of action are involved [36]. 

4.1.2. Toxicogenomics   

Toxicogenomics (TGX) is the method to “combine transcript, protein and 

metabolite profiling with conventional toxicology to investigate the interaction 

between genes and environmental stress in disease causation” [173]. Different 

from QSAR, the fundamental principle of TGX is that “compounds with similar 

mechanisms of toxicity and efficacy will have similar gene expression profiles” 

[174]. One of main purposes of TGX study is to identify a set of important genes 

or RNAs as biomarkers based on the gene expression profile for a group of 

compounds and then apply these biomarkers on new compounds to predict 

corresponding mechanisms or toxicities [174]. It is found that genomic data can 

be more sensitive and objective than traditional methods for the early prediction 

of drug induced toxicity [170]. Moreover, gene expression changes associated 

toxicity may also assist our understanding of the mechanisms of drug action and 

their toxicities [160]. Lastly, TGX method based on gene expression profiling is 

faster, cheaper and with less usage of animals when it was used for toxicity 

detection [175]. Hence, along with the development of large scale gene 

expression profiling technologies, TGX method could be used as a 

complementary or possibly alternative approach to identify potential safety 

liabilities and to understand the mechanism of toxicity of drug candidate [156, 

176].  

TGX methods have been applied in several studies for preclinical 

diagnosis and prediction of renal tubular toxicity of compounds based on gene 

expression profile. Fielden and colleagues generated and assessed a set of 

genomic biomarkers for prediction of future onset of renal tubular toxicity before 

observations of the pathology signs and achieved a prediction accuracy of 76% 

[170]. Moreover, in a similar study using the expression profiling endpoints of ten 

nephrotoxic compounds together with histopathological analysis techniques, the  

SE and SP are 88% and 91% respectively on an external testing set [160].  In a 
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recent predictive study of renal tubular toxicity, the model achieved SE of 93% 

and SP of 90% when it was evaluated using 5-fold cross validation [165]. Besides, 

the author also demonstrated that the prediction performance of the model was 

significantly better than that developed by using either genomic biomarkers or 

histopathology approach [165]. On top of these promising results in research, 

information obtained from TGX studies is increasingly becoming accepted as part 

of submissions by various regulatory agencies [177]. Therefore, TGX method 

based on gene expression profiling is potentially useful for prediction the drug 

induced renal toxicity.  

4.1.3. Integrative study using both QSAR and TGX methods 

 Although QSAR methods have been used in toxicity prediction for a long 

time and TGX modeling methods is playing a more important role in toxicity 

assessment, most recent predictive modeling studies of toxicity employed either 

QSAR or TGX methods alone for model development. It has been demonstrated 

by several recent studies that integrative models employing both chemical 

descriptors from the compound structures and biological descriptors from the 

gene expression change information are advantageous [36, 166]. Specifically, it 

has been shown in predictive studies for hepatotoxicity that models built by using 

combination of chemical and biological descriptors delivered statistically 

significant predictive performance and are potentially useful for prediction of 

hepatotoxicity and prioritization of chemicals [36, 166]. In addition, integrative 

models are likely to provide useful information for mechanistic interpretation of 

the toxicity by investigation of the important chemical features and gene 

signatures.  

 There are two approaches for integrative study of chemical descriptors and 

genomic information as recommended by Rusyn et al [178]. The first approach is 

referred as hybrid method, which is to combine the structural chemical descriptors 

and biological descriptors into a joint descriptor matrix by mapping the two types 

of data. This hybrid data is then used for the modeling process, with similar 

modeling procedure as with QSAR or TGX data alone. This type of data mapping 
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will cause some information loss since there is only QSAR or TGX data available 

for some compounds. And the joint matrix many also cause the increment of the 

data dimension which subsequently will increase the computation time. 

Nevertheless, several recent studies have explored this hybrid study and suggest 

that hybrid descriptors do afford improvement to the accuracy of prediction of 

toxicity [164, 178]. 

 The second approach is consensus (ensemble) method, which is to develop 

independent QSAR and TGX models to predict the same end point and then 

combine the two types of models to build a consensus model. Ensemble modeling 

has been used extensively recently in QSAR studies as well but have not been 

used in TGX modeling much. Although ensemble model will also be built on the 

QSAR, TGX and the hybrid models, the ensemble model of QSAR and TGX 

models is still useful because of its diversity, i.e., including models from different 

feature groups, and flexibility, i.e., no data mapping procedure is needed so it can 

reduce the information loss. The main advantage of ensemble model is that the 

combination of multiple models complementary to each other would result in a 

more robust prediction. The problem is that if the constituent models are not too 

different from each other, the marginal improvement of the prediction 

performance does not worth the added complexity of ensemble modeling [178]. 

Success of consensus prediction depends on the number, performance and 

diversity of the base models as well as the definition of the consensus AD. 

 The main purpose of this study is to investigate whether the addition of 

biological descriptors, such as gene expression levels, could improve the 

prediction performance of classification models than using chemical descriptors 

alone. To achieve this purpose, a comparative study of QSAR, TGX and QSAR 

combined with TGX methods for prediction of drug-induced nephrotoxicity was 

carried out. This chapter only focuses on the model development and performance 

comparison to address the second the issue of the QSAR workflow. Other 

important information for all models will be described in Chapter 8. 
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4.2. Materials and methods 

4.2.1. Data 

The nephrotoxic and non-nephrotoxic compounds as well as the gene expression 

profiles used in this study were collected from the TGX study by Fielden et al. 

[170], in which a set of gene expression signatures was generated to predict the 

drug-induced renal tubular toxicity. The detailed procedures for gene expression 

profiling experiment and the microarray data processing were described in the 

publication.  In general, the kidney samples from three male Sprague-Dawley rats 

were collected on day 5 after exposure of nephrotoxic and non-nephrotoxic 

compounds for subsequent gene expression profile analysis. The signal data for 

all probes were log transformed and normalized, then the Log10 ratios for every 

experimental group was calculated as the difference of the average of the logs of 

the normalized experimental signals and the normalized control signals for each 

gene. The raw and processed microarray data as well as the information of gene 

annotation for all experiments could be downloaded from the corresponding 

NCBI GEO website with Accession ID GSE3210 [170]. This dataset was selected 

for this study instead of others because it is large and diverse compared with other 

renal tubular toxicity studies. This is important for classification studies to obtain 

reliable prediction. Moreover, the original TGX study has developed a predictive 

signature set and shown promising results so a comparison could be made with 

our study. 

 The chemical compounds were curated according to the procedures 

described in Chapter 2. After removing duplicates, inorganic molecules and 

peptides, 13 positive (nephrotoxic) and 55 negative (non-nephrotoxic) compounds 

were used for model development. Specific chemotypes such as aromatic and 

nitro groups were normalized and chemical descriptors were calculated with 

PaDEL-Descriptor 2.17. Constant descriptors were removed and range scaling 

from 0 to 1 was applied.  

 For the genomic data, important genomic features were selected for 

modeling using various filtering feature selection methods. Of all the transcripts 
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measured, the set of transcripts with sufficient variation across all the compounds 

were extracted according to the procedure in a similar study [36]. Firstly, the 

transcripts with missing values or constant values were excluded. Then for 

transcripts with high correlation, i.e., pairwise r
2
 > 0.95, one of the correlated pair 

was removed randomly. Finally a Welch t-test was carried out on the gene profile 

and only transcripts with p-value less than 0.05 were retained. The remaining 

transcript variables were range scaled to 0 to 1. Only basic preprocessing 

techniques were used for the selection of transcripts because the purpose is not to 

select an important feature set before modeling but to remove redundant 

information to reduce the data’s dimension. A more systematic feature selection 

step was integrated in the modeling step so we want to retain the useful 

information as much as possible before model development. 

4.2.2. Methods 

To obtain a comprehensive study of QSAR and TGX methods, four types of 

models were developed, including: QSAR models, TGX models, hybrid models 

and consensus models. The overview of the model development process is 

illustrated in Figure 4.1.  
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Figure 4.1 Overview of model development for nephrotoxicity study. 

 Firstly, multiple QSAR and TGX models were developed using same 

modeling process based on the chemical and genomic data independently. Then 

the chemical and genomic data were joined together to form a large dataset 

according to the name of the drugs. This joint data was used to develop 

classification models (referred as hybrid model in this thesis) using the same 

modeling process. After that, for all three types of models, ensemble model was 

constructed based on the corresponding set of individual QSAR models, TGX 

models and hybrid models. The ensemble models are named as ensemble QSAR 

model, ensemble TGX model and ensemble hybrid model respectively. Lastly, the 

individual QSAR and TGX models were combined together to obtain a large 

model pool and ensemble models were developed based on this new model pool. 

This ensemble model was referred as ensemble consensus model. It should be 

noted that the process for developing “ensemble consensus model” did not 

involve any new individual models.  
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4.2.3. Model development and validation 

The general workflow for the model development and validation process 

assembles the modeling process introduced in Chapter 3 except that the 

modeling algorithms are different. The 5-fold external cross validation method 

described in Chapter 2 was used in this study. For 5-fold external cross 

validation, firstly all 68 compounds are used to build an ensemble model for four 

modeling processes in the first place. Then these 68 compounds were randomly 

partitioned into 5 subsets of nearly equal size. Each subset was paired with the 

remaining four subsets to form a pair of external and modeling sets. The data 

within each modeling set were further divided into multiple pairs of training and 

test sets for internal validation. Although models were built using the training set, 

model selection depended on their performance on both the training and test sets 

(i.e., internal validation) since training set accuracy alone is insufficient to 

establish robust and externally predictive models.  

Support vector machine and naïve Bayes techniques introduced in 

Chapter 2 were used for model development. They were selected because they 

are able to handle high dimension-low sample size data well and the 

computational speed is relatively fast for this problem. The AD was determined 

used the double threshold method described in Chapter 5. For each round of the 

external cross validation process, 100 models were generated for each modeling 

method by varying the number of descriptors using a random selection integrated 

with the forward feature selection process in the internal cross validation. In total 

200 models were generated for each run. 

All individual and ensemble models’ prediction ability were measured by 

the overall accuracy, sensitivity, specificity, AUC and MCC value. The 

performances of the ensemble models generated using all 68 compounds in the 

first step were estimated as the average performances of the 5-fold external cross 

validation.  
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4.2.4. Ensemble modeling 

All ensemble models were generated using genetic algorithm which will be 

introduced in details in Chapter 6. For each type of models, a filtering process 

was applied on the 200 based models according to two criteria. Firstly, the 

sensitivity, specificity and AUC value of the model on the training set and from 

internal cross validation must be no less than 0.7. This is to avoid selection of a 

weak model which might deteriorate the performance of the ensemble model. 

Secondly, the rate of compounds out of AD should be no bigger than 0.1 for both 

positive and negative class. This is because that the dataset we used is relatively 

small, too many compounds out of the domain will limit the model’s coverage. 

Then genetic algorithm was applied to select a subset of models with high 

majority voting accuracy. The selected models were then pooled together to 

obtain an ensemble model.  

4.3.Results and discussion 

4.3.1. Discussion of models 

Table 4.2 Performance of four types of ensemble models from 5-fold external 

cross validation. 

  
Ensemble 

model type 
ACC(%) SE(%) SP(%) MCC AUC 

Training  

performance 

QSAR 
100±0 100±0 100±0 1±0 1±0 

TGX 
100±0 100±0 100±0 1±0 1±0 

Hybrid 
100±0 100±0 100±0 1±0 1±0 

Consensus 
100±0 100±0 100±0 1±0 1±0 

Validation 

performance 

QSAR 
85.5±7.8 63.3±30.6 90.9±10 0.565±0.243 0.852±0.121 

TGX 
91.3±8.3 63.3±30.6 98.2±3.6 0.698±0.276 0.918±0.109 

Hybrid 
94.2±5.4 70±26.7 100±0 0.798±0.183 0.948±0.082 

Consensus 
92.7±6.4 63.3±30.6 100±0 0.748±0.213 0.924±0.073 

 

From Table 4.2, we could see that all models have perfect prediction 

performance on training set, i.e., 100% sensitivity and specificity. For 
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performance on validation set, all models achieved high overall accuracy from 

85.5% to 94.2% and specificity from 90.9%~100% as well. The corresponding 

MCC and AUC value are all in the higher level in their own range which suggests 

the good prediction ability of the models on validation set. The sensitivity on the 

validation set is consistently low and variation is high is because there are only 

three positives available in the validation set so the overall accuracy is more 

reliable to represent the model’s performance. These results are higher than the 

original study of the data used in which the overall accuracy is 76%.  

 When comparing the performance measurements of all four models, 

QSAR model shows consistently weaker performances than the other three 

models, which all incorporated TGX information.  This suggests that the genomic 

data could produce better prediction performance than chemical structure data for 

the compounds used in this study, and this result was consistent with a similar 

study in which TGX method was compared with QSAR to predict the 

hepatocarcinogenicity of a group of compounds [36]. Among all three models 

with TGX information, the hybrid model achieved slightly better performance, i.e., 

higher ACC, SE, SP, AUC, MCC and lower variances, than consensus model, and 

the consensus model is slightly better than the model with TGX data alone. 

Although the difference for the overall accuracy values is not that significant (less 

than 5%) which seems like the chemical information added limited useful 

information to the prediction ability of the hybrid and consensus model, it is still 

important for using combined chemical and biological descriptors given the data 

is available. This is because firstly, the limited performance improvement in this 

study might not applicable for other studies. It is highly possible that for some 

other studies, the integrative approach could provide significant performance 

improvement. Secondly, the use of both chemical and biological descriptors could 

enrich the interpretation of the models. The selected chemical descriptors in the 

final model are important for understanding the drug action and the selected 

biological descriptors could be used as predictive biomarker set for toxicity 

assessment. Therefore, the addition of biological descriptors offered improved 
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performance than normal QSAR models and is potentially useful for better 

interpretation of the models, the drug action and toxicity mechanism. 

4.3.2. Discussion of methods 

Compared with QSAR method, the popular computational method for toxicity 

assessment in the last several years, TGX has several advantages. Firstly, it could 

handle a wider spectrum of compounds including metals such as cisplatin or 

macromolecules such as peptides since the measurement of gene expression 

change is not restricted by the structure of the molecules. In addition, changes in 

genomics profiles are thought as sensitive indicators of a potential toxicity and 

could deliver better prediction performance than chemical descriptors. 

Nevertheless, although TGX models achieved better results than QSAR models, 

QSAR method is still very important for predictive toxicology. This is because 

the collection of TGX information requires large-scale gene profiling experiment 

which is still time consuming and labor intensive. QSAR method is still pure in 

silico and does not require extra efforts for experiment so it is cheaper and faster, 

sometimes more accurate. Moreover, QSAR calculates the molecular descriptors 

from chemical structures alone so it offers stronger flexibility and higher 

efficiency in data collection and preprocessing etc.  

For the two types of integration methods of QSAR and TGX, although 

there is no significant difference of their results in this study, careful 

consideration is still needed. The advantages of consensus model is that it does 

not require combination of the two groups of descriptors so avoid high-

dimensional data processing which make it faster in computation. Moreover, since 

the two types of models are developed independently, the distribution of the 

samples, the choice of the modeling methods etc. are not necessary to be the same. 

Theoretically, different sample sets and methods could be used to develop 

different QSAR or TGX models, which is more flexible than the hybrid methods. 

This is quite useful when there are compounds which are metal, macromolecules 

which could not be used in QSAR model. This is because their information could 

still be used to build the TGX model, whereas it will be lost when developing the 



65 

 

hybrid model since the samples need to be consistent for QSAR and TGX dataset. 

The advantage of hybrid method is that the combination of the two groups of 

descriptors could explore the inherent relationship of the chemical descriptors and 

the biomarkers, and then provide more information about the mechanism of the 

given toxicity. In summary, the proper choice of using QSAR and TGX methods 

together would be trying both hybrid and consensus model to select the best 

models. 

Nevertheless, despite their potential of the integrative study, there are a 

number of general challenges for application of TGX method in predictive 

toxicology. The major limitation is that the lack of data, which is currently the 

major difficulty for promoting these integrative approaches. In particular, the 

database of toxicity studies is always limited to a small number of chemicals. 

These data sets are both too small in sample size and too limited in structural 

diversity for reliable QSAR analysis [178]. For this study, a lot of the positive 

compounds contain metal atoms so they could not be used for QSAR modeling 

process. Simple removal of these compounds also leads to the imbalance of the 

data set, and affects the performances of the models subsequently. 

4.4. Conclusion 

A comparison study of using computational method to predict nephrotoxicity 

based on chemical and/or genomic information was carried out in this project to 

address the second issue in the QSAR workflow. The results showed that addition 

of TGX information offered better prediction performance than QSAR modeling 

using chemical information alone. Thus, if the TGX data is readily available, they 

could be used together with chemical information to build predictive models by 

expanding the prediction ability of QSAR models. The integrative model could be 

used to evaluate the safety of chemical compounds in early stage of drug 

development. With the development on genomics or other biological technologies, 

more promising results could be obtained for the pharmacological and 

toxicological screening of new potential drugs. 
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Chapter 5 Applicability domain 

This chapter is to address the third issue of the QSAR workflow in Chapter 1: 

lack of AD, by developing a method to determine the AD of QSAR models to 

improve the reliability and generalizability of the models. A simple experiment 

was carried out using a toy data set to investigate the reliability of the method. 

The result demonstrates that the method could identify the reliable prediction 

space for the model and improve the model’s performance on external validation 

set.  

5.1. Introduction 

The increasing use of QSAR models for chemical risk assessment, toxicity 

prediction and regulatory decisions has raised the concern of the reliability of 

model predictions. One of the conditions required for a QSAR model to make 

reliable predictions is the use within its AD. According to the Setubal workshop 

report [179], the AD of a QSAR is defined as “the physicochemical, structural or 

biological space, knowledge or information on which the training set of the model 

has been developed, and for which it is applicable to make predictions for new 

compounds”. For local QSAR models, they are usually built on small dataset with 

low diversity among the training compounds and the AD is usually implicitly 

defined. Over the past several years, a growing number of global QSAR models 

have been developed based on large and diverse datasets. These models are 

usually developed on diverse and sparsely distributed molecular descriptors with 

complex computational algorithms and are expected to be more reliable for 

prediction of unseen compounds with diverse structures than local QSAR models 

[180, 181]. Although these models are advantageous for their ability to provide 

better representation of chemical structures and approximation of SARs, the 

chemical space defined by these models will become more complex and 

fragmented. As a result, the model may not be applicable to certain regions of the 

domain as defined by the information in the training set. For such models, the 

absence of the model AD may cause the unreliable extrapolation of the model in 
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the chemical space and is more likely to produce inaccurate predictions [82]. For 

this reason, a clearly defined AD has been listed as one of the OECD principles 

for the validation of QSAR models for regulatory purposes. Therefore it is 

important to define the AD of a QSAR model before applying it on unseen 

compounds.  

 For the last decade, many studies have been published to address this issue 

in the field of QSAR [182, 183].  Some of them have been carried out to develop 

methods to define AD and a summarized list of AD methods used in recent 

studies is shown in Table 5.1. Only the methods developed using quantitative 

methods based on the molecular descriptors information are included, methods 

based on SAR or mechanistic knowledge such as the expert systems, DEREK for 

Windows [184], is not included.  

Table 5.1 Current AD determination methods 

Type Method Description Detailed methods References 

Training set 

based 

method 

Range method 
Calculate the range covered by 

training set 
 

[118, 122, 

185] 

Distance based 

method 

Calculate the distance of examples 

from testing set to examples in the 

training set 

Euclidean distance 

[118, 185] 

Mahalanobis distance 

City block distance 

Hotteling T
2
/ leverage 

KNN 

Geometric 

based method 

Calculate the coverage of the convex 

hull covered by training set 
 [118, 185] 

Density based 

method 

Probability density estimation of the 

training set 

High density region with 

Monte Carlo simulation 
[118] 

Subspace mapping with 

probability density 
[186] 

One-class classification 

approach 
[187] 
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Model 

dependent 

method 

Ensemble 

model based 

method 

Analyze the variability of ensemble 

methods in the predictions 

ANN [188] 

Gaussian process, decision 

tree, random forest 
[122, 189] 

Diverse modeling 

algorithms 
[190] 

Distance to 

model  (DM) 

based method 

Combine variability in 

the predictions with distances to the 

training set 

 

 [190, 191] 

Kernel-based 

machine 

learning 

models 

Applicability domain estimations for 

kernel based model 

Support vector regression 

and the ranking of a disjoint 

screening data set according 

to the predicted activity 

[192] 

 

Generally, AD determination methods are usually based on some 

manually defined distance of the compound to the training set or model [191]. 

The commonly used AD determination methods are the classical methods used 

for interpolation in the model descriptor space, including range based method, 

distance method, leverage method and probability density based method [193]. 

These methods are easy to implement and the result is also easy to interpret so 

they are very popular in QSAR studies. However, for the approaches based on the 

descriptor space only, the AD is estimated based on the structural information of 

the compounds used to train the model and could only be applied for evaluation of 

the compounds within the compounds’ descriptor space. It does not include the 

information of the performance of the model and the AD would be partially 

defined [194]. To overcome this limitation and to define a more informative AD, 

the response space should be incorporated into the AD.  

Some other methods for determining AD involve computing the similarity 

of the testing compounds to the training set using different types of descriptors 

and distances, and relating the similarity to the prediction error [182, 183]. One of 

the important techniques used for AD evaluation was the degree of fit method and 

modified version of this method was also available [195, 196]. Another popular 
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method is based on the distance to model (DM) value, which is defined as 

“numeric measure calculated solely on the basis of chemical structures or 

prediction values and which increases with a decrease in the reliability of 

classification”. Based on the model performance, a threshold for the DM that 

provides a predefined accuracy of classification could be identified. All 

compounds with DM values below the threshold form a model’s AD. Along with 

the development of ensemble methods in QSAR studies, AD method by analyzing 

the variability of ensemble methods in the predictions was also developed. A 

recent popular method is the combination of DM with ensemble method 

developed by Sushko et al. [190], which demonstrated that DMs computed based 

on ensemble model offered systematically better performance than other DMs. 

These methods are useful and have demonstrated good distinguishing ability for 

prediction ability of samples within and out of AD. Nevertheless, the above 

methods are either tailored for specific type of models (e.g. regression models 

only) or are computationally intensive.  

Moreover, although it is sometimes advantageous that a single AD is 

defined for a training set, there are situations that different ADs are needed for 

different models based on the same training set. For the same training set, 

different models developed using different subset of samples, features or different 

algorithms should have different ADs since the information incorporated and the 

relationship explored from the training set are different. This is especially 

important when ensemble modeling method is used in QSAR studies, in which 

there are large pool of models developed using different descriptor sets and 

diverse modeling algorithms. In this study, an individual model based AD 

determination method using prediction confidence was developed to achieve a 

balance between the prediction accuracy and coverage of the AD for each model. 
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5.2. Methods 

5.2.1. AD for base model  

The AD of each base model was defined using a double threshold (DT) method 

inspired by the multiple thresholds method proposed by Fumera et al [197]. This 

multiple thresholds method was originally used in pattern recognition to obtain 

the optimal decision and reject regions of classifiers. It has been proved 

mathematically and empirically to have better accuracy and rejection trade-off 

compared with single threshold method [198]. When it was applied in QSAR 

studies to define the AD, it could help to optimize the classification accuracy in 

the decision region (inside AD) and rejection region (out of AD). The multiple 

thresholds are determined by using the confidence value for each prediction 

computed by mathematical algorithms of the modeling methods. Different 

modeling methods have different algorithms to compute this confidence value. 

For example, for the development of a KNN model, the confidence value for 

predicting a sample as positive is computed as the proportion of k nearest 

neighbors of the sample that are positive. Usually in a binary classification 

modeling method, a threshold of 0.5 for the confidence value is used such that if 

the confidence value is bigger than 0.5, the sample will be predicted as positive. 

Otherwise, it will be predicted as negative. When applying the multiple thresholds 

methods on binary classification problem, two thresholds T1 and T2 (T1, T2 ϵ [0, 1] 

and T1<T2) are used such that if the confidence value is greater than the higher 

threshold value T2, the sample is predicted as positive. Conversely, if the 

confidence value is smaller than the lower threshold value T1, the sample will be 

predicted as negative. When the confidence value falls into the range of T1 and T2, 

the sample is considered as out of the AD of the model and its activity is not 

predicted. In this study, the two thresholds T1 and T2 were determined using the 

confidence values of the samples in the testing sets of a 5-fold cross validation. 

The workflow for determining the optimal threshold pair was illustrated in Figure 

5.1. 
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Figure 5.1 Workflow of determination of optimal thresholds. 

 Firstly, the confidence values were sorted and those that were found in 

both positive and negative samples or those that indicate a transition between 

positive and negative samples were identified as potential thresholds. All 

combinations of threshold pairs from the pool of potential thresholds were then 

tested. The optimum threshold pair was then identified using three criteria.  

i. The accuracy of the model for those samples identified as out of the AD 

should be minimized.  

 

ii. The precision of the model for those samples identified as within the AD 

should be maximized.  

 

iii. The number of samples identified as out of the AD should be maximized.  
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 The three criteria were applied consecutively. If only one threshold pair 

satisfied the first criterion, the process was stopped and that pair was identified as 

the optimum pair. If more than one threshold pairs satisfied the first criterion, the 

second criterion was applied. The third criterion was used only when more than 

one threshold pairs satisfied the second criterion. Random selection was used if 

there are still more than one threshold pairs available after the third criterion.  

5.2.2. AD for ensemble model 

When ensemble model was developed from the base models, the AD of the 

ensemble model was defined based on the prediction of the base models. 

Compounds were defined to be out of the AD of the ensemble model when all the 

base models identified the compound to be out of their AD, or if there was a tie in 

the predictions (i.e. an equal number of base models predicted the drugs to be 

positive and negative). Otherwise, the compounds were defined to be within the 

AD of the ensemble model and were predicted based on majority voting of the 

base models. The confidence values for the predictions were also computed as the 

ratio of the number of model with the majority vote over the total number of base 

models for the ensemble model. 

5.3. Testing of DT AD method 

The DT AD method has been integrated in the model development process for the 

ADRs and toxicity studies in Chapter 3 and Chapter 4 and it has identified the 

compounds out of the AD successfully in these studies. Nevertheless, due to the 

small number of compounds out of AD, it is not possible to establish a 

comparison of the model’s performance on compounds in and out of AD for these 

studies. Here a simulated dataset was used to show that the DT AD method could 

distinguish the samples in and out of AD successfully. 

5.3.1. Dataset 

To test the DT AD method’s performance in binary classification problem, a 

polynomial classification data (PC) with 5000 samples and 10 attributes was 

generated in using the data generation function of RapidMiner. This data set was 
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chosen because it has small number of attributes and balanced classes of samples 

and also could be well classified by most classification methods. 

5.3.2. Methods 

All the modeling procedure was carried out using RapidMiner. The general 

workflow for model development is shown in Figure 5.2. 

 

Figure 5.2 Workflow for model development. 

 The dataset was firstly split into a training set and validation set with ratio 

8:2. The training set was used to develop binary classification models using 5-fold 

cross validation with three machine learning algorithms including support vector 

machine (SVM), naïve Bayes (NB) and random forest (RF). The reason for 

selecting these algorithms is to avoid the bias of different algorithms. The DT AD 

determination method was used with an internal 5-fold cross validation according 

to the three criteria stated in Figure 5.1. The optimum threshold pair was 

identified for each model. To reduce bias of the modeling method, 30 models 

were generated for each algorithm with a random feature selection followed by 
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forward selection before modeling. Based on the cross validation result, the 

models with any one of the sensitivity, specificity and AUC values less than 0.5 

were removed to ensure the models’ quality and avoid potential errors. Then the 

remaining models were applied on the training and validation set respectively. 

The performances of models on the samples within and out of AD for both 

training and validation set were evaluated. For samples in the AD, the double 

thresholds determined using DT methods were applied while for samples out of 

AD, the regular threshold 0.5 was applied. 

5.3.3. Results and discussion 

The corresponding performance result for the models on the samples within and 

out of AD is shown in Figure 5.3.  

 

(a). Prediction accuracy of SVM models. 
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(b). Prediction accuracy of NB models 

 

(c). Prediction accuracy of RF models 

Figure 5.3 Prediction accuracy of SVM, NB and RF models on samples within 

and out of AD for training and testing set. T_IN_ACC and T_OUT_ACC are the 

accuracy of the model on samples within and out of AD for training set 

respectively. Similarly, V_IN_ACC and V_OUT_ACC are the accuracy of the 

model on samples within and out of AD for validation set respectively. 

 From Figure 5.3, we could see that for all three modeling algorithms, the 

performances of most of the models on the samples within AD are much higher 

than those out of AD for both training and validation set. For SVM model, the 

mean±standard deviation of the accuracy of models on samples inside AD are 

93.6%±1.8% and 93.8%±1.5% for training and validation set, whereas it is 50.3%
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±0.4% and 59.8%±1.9% for samples out of AD.  Similar pattern was observed 

for NB and RF models. This shows that the models have good prediction accuracy 

for samples inside AD and have nearly random prediction accuracy for samples 

out of AD, i.e., no prediction ability, regardless of the selection of modeling 

algorithm. This situation is consistent with the result of another AD method on the 

benchmarking Ames dataset [190]. There are two RF models (RF1 and RF3) 

which achieved accuracy higher than 70%. However it is found that the 

corresponding sensitivity and specificity values are 1 and 0 respectively which 

means the two models predict all samples out of AD as positive so the accuracy 

merely depends on the portion of the positive samples out of AD and is not 

reliable.  

5.4. Conclusion 

In summary, an AD determination method DT method was developed based on 

the multiple threshold method in this chapter. When applied in a predictive 

modeling study using a toy dataset, DT method managed to identify the reliable 

prediction space for the model and subsequently improved the model’s 

performance on external validation set. Therefore, the DT method is potentially 

useful for determination of AD for predictive modeling including QSAR studies. 
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Chapter 6 Ensemble modeling  

This chapter is to address the fourth issue of the QSAR workflow in Chapter 1: 

difficulty of model selection for ensemble model development. There are many 

QSAR models for ADR or toxicities developed using different sets of descriptors 

and various modeling algorithms, and it has been demonstrated by several studies 

that the application of ensemble modeling method could improve the overall 

prediction accuracies of the final model for the target endpoints. In this chapter, 

two different model selection methods were introduced and then applied in three 

real studies to combine individual QSAR models to form ensemble model to 

obtain better performance.  

6.1. Introduction 

Ensemble modeling has been frequently employed to reduce the risk of selecting 

an inappropriate model and provide more accurate and reliable predictions. 

Ensemble model has been demonstrated to outperform the single model in a 

number of modeling studies [199, 200].  Recently, ensemble method has also 

been applied in several QSAR studies and ensemble models have shown better 

performances compared to single base model [40-42]. However, a full ensemble 

model including all the base models does not always give better performance than 

individual models, so the best way is to select a subset of models which could 

give the optimal performance. It is always a question of how to select the optimal 

subset of models from a large pool of different models. Suppose m classifiers are 

supposed to be selected from a pool of size n (    ), then there are 

( 
 
)=

  

  (   ) 
 combinations [201]. Usually the ensemble size m is not known or 

hard to determine so the total number combinations of the classifiers is 2
n
-1, 

which is not realistic for large n. A popular method was to select a certain number 

of top performing classifiers, which could give moderate performance 

improvement. Nevertheless it has been demonstrated that a simple collection of 

top performing classifiers does not necessarily produce the optimal performance, 

and it even could not ensure the good performance [201, 202]. The reason is that 

ensemble classifier could only produce improved performance when the 
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constituent classifiers have good performances and are sufficiently different from 

each other [203, 204]. Therefore to achieve the good or optimal performance, a 

good selection method should be able to produce an ensemble which gives better 

performance than the best individual classifier. It is suggested that equivalent or 

similar classifiers do not contribute any information but increase the complexity 

of the ensemble classifier [205]. Besides, models with weak performances are not 

beneficial for the ensemble classifier performance even they are different and 

complementary with each other. Therefore, both individual performance and 

diversity among classifiers should be considered during classifier selection 

process [203]. Furthermore, there are both theoretical and empirical studies which 

showed that a good ensemble classifier should be combined by individual 

classifiers which are both accurate and making different errors [206], especially 

classifiers which are negatively correlated could provide significant improvement 

of performance of the ensemble classifier [204]. These facts promote the need for 

selecting a combination of diverse and reliable classifiers, commonly referred as 

multiple classifier selection (MCS).  

Given a large pool of candidate classifiers, MCS works by searching the 

different combinations of classifiers to find a subset of classifiers that could give 

optimal performance on the validation set. The testing set, selection criterion and 

the search algorithm are all important for the performance of the combination of 

classifiers produced by MCS. When the candidate classifier pool is large, efficient 

search algorithms are required to avoid the combinatorial explosion of classifier 

space [207]. Similar as the feature selection process, different methods have been 

studied for effective multiple classifier selection, including  the clustering and 

selection method which works by clustering the candidate classifiers based on 

their internal relationship and then selecting one classifier from each cluster [208]. 

Besides, heuristic search methods such as evolutionary algorithms are also used 

for classifier selection [209]. For the selection criterion, different measures of 

diversity have been used to select a diverse subset of classifiers [203]. For the 

evaluation of classifier performance, the combination accuracy or classification 

error on validation data was usually used to rank the ensemble classifiers [209]. 
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The common search algorithms used for classifier selection are similar to the 

methods which have been used frequently in feature selection: sequential search 

methods and genetic algorithm. The difference is that the subjects are features in 

feature selection and classifiers in classifiers selection.  

Depending on the requirement of different problems, sequential search 

methods of classifiers could either begin from an empty set or a full set of all 

candidate classifiers. The iterative process operates in the way that for each step, 

only one or a small number of classifiers are added to or removed from the 

selected subset so as to improve the evaluation criterion. The process stops when 

the evaluation criterion is fulfilled or no classifiers could be added or removed. 

The advantage of sequential search methods is that the complexity of search is 

relatively low, so they are computationally efficient even for large-scale problems. 

Sequential search methods are widely used for its simplicity and efficiency. The 

limitation of  sequential search method is that the selected subset of classifiers is 

not guaranteed as the global optimal solution [207]. 

Genetic algorithm is an evolutionary algorithm that aims to find a global 

solution to a given problem by simulating the process of natural evolution, such as 

mutation, crossover, reproduction and natural selection [210]. It is reported that 

genetic algorithm is one of the most suitable approaches which could give 

reasonable balance between computational complexity and the performance [211]. 

When genetic algorithm is applied in classifier selection, a set of classifiers are 

represented by a binary string (referred as the chromosome) with bits 1 and 0 to 

indicate the presence and absence of classifiers. A set of chromosomes (referred 

as the population) evolve from generation to generation using selection, crossover, 

and mutation procedures towards higher fitness. The crossover and mutation 

procedures increase the variation of population in order to reduce the risk of stuck 

at local optima. After a certain number of generations, the chromosome with 

highest fitness among the population was regarded as the solution of classifier 

selection [207]. Genetic algorithm has strong ability to search large space for an 

optimal solution [212] and has been applied in both feature selection and classifier 

selection [209].  
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In this study, a modified sequential selection method and standard genetic 

algorithm were used. The two methods DisEnsemble method and genetic 

algorithm were introduced and applied in QSAR studies and the performances of 

the ensemble models generated were compared with the best performing models. 

6.2. Methods 

In the design of  ensemble models, it is essential to generate  a number of base 

models with a large diversity [213].  This has been achieved by develop a 

considerate number of base models using different feature groups and modeling 

algorithms as described in Chapter 3. The AD of all models was determined 

using the double threshold method introduced in Chapter 5. The modified 

sequential search method DisEnsemble method was applied in SJS/TEN and TdP 

study and genetic algorithm was applied in serious psychiatric ADR study 

respectively. 

6.2.1. DisEnsemble method 

For sequential search methods, different criteria have been used to optimize the 

selection process. Besides the ensemble accuracy or classification error, a 

diversity measure is also important for selecting the subset of models. In this 

study, a novel sequential selection method DisEnsemble method was developed 

for model selection. The principle of this method is to select a diverse set of 

models from the pool with consideration of both individual performance and 

diversity among the models.  

 The first step is to remove models with weak performance from the model 

pool. Among all 300 base models developed using OCSVM, OCLOF and OCPD 

algorithms, two criteria were used to select suitable base models for subsequent 

ensemble modeling. These include cut-off values for sensitivity and specificity 

values such as sensitivity ≥ 0.5 and specificity ≥ 0.5 for both training performance 

and internal CV results and cut-off value for the between training set and internal 

CV, such less than 0.1 to reduce the chance of the base models to be over-fitted. 

Similar selection methods have been used in previous studies and have shown to 
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be useful for filtering models with weak performances [50, 51]. It is important to 

note that these cut-off values might be adjusted for different studies to obtain a 

balance between the number of available candidate models and their 

performances. 

Then the second step was to select a subset of diverse base models from 

the model pool to form ensemble models. A binary output was used to represent 

the prediction results of models, with correct prediction noted as “1” and wrong 

prediction noted as “0”. For computation efficiency and ease of understanding,  a 

common diversity measurement, the disagreement value, which is the ratio 

between the number of samples on which one model is correct and the other is 

incorrect to the total number of samples, was used to measure the diversity 

between two base models [214]. For instance, for a pair of base model i and j, 

suppose N10 is the number of drugs predicted correctly by base model i but 

wrongly by base model j, and vice versa for N01, then the diversity between base 

models i and j could be written as   

Di, j= 
       

               
 ( 6.1) 

The detailed steps for the ensemble process are as follows: 

i. From the model pool, the pair of models with the largest disagreement 

value was selected. 

ii. For each of the remaining base models, the total disagreement value to the 

selected base models was calculated. Then the base model with maximum 

total disagreement value was selected. If there is a tie, the one with largest 

internal CV prediction accuracy was selected.  

iii. Ensemble model (EM) was formed by combining selected models through 

majority voting.  

iv. Repeat step ii and iii until all base models were selected.  
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In the end, suppose there are n base models in the model pool, then ensemble 

models with ensemble size from 3 to n were generated. The best ensemble model 

was determined as the one with the highest majority voting accuracy on the 

testing sets results of internal 5-fold CV. That model was then chosen as the final 

ensemble model. Sometimes a fixed value of number of base models included in 

the ensemble model could also be used and the selection process stops when a 

desired number of models are selected. 

 As described in Chapter 5, the AD of the ensemble model was defined 

based on the prediction of the base models. Drugs were defined to be out of the 

AD of the ensemble model when all the base models identified the drug to be out 

of their AD, or if there was a tie in the predictions. Otherwise, the drugs were 

defined to be within the AD of the ensemble model and were predicted based on 

majority voting of the constituent models.  

6.2.2. Genetic algorithm 

In this study, genetic algorithm was applied to select a subset of the base 

models with high fitness, which is the majority voting accuracy of the prediction 

results of the selected models on the training set. 

Before applying genetic algorithm ensemble method, the base models 

were screened to remove weak models. For all the 300 base models developed 

using OCSVM, OCLOF and OCPD, the same criteria were used to select suitable 

base models for subsequent ensemble modeling.  Out of this pool of models, 

genetic algorithm was then used to select models that had different 

misclassifications so as to construct an ensemble model with a maximum majority 

voting performance.  Selection of parameter is important for the performance of 

the genetic algorithm. For the study of serious psychiatric ADRs, different 

population sizes from 5 to 50 were used but no significant improvement of the 

performances with increased population size was observed, so population size 

was set as 5 for computation efficiency. Similar method was applied to number of 

generation which was set as 100 to make sure the fitness reached plateau. Default 

values were used for the other parameters. 
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6.2.3. Model fusion 

For aggregation of the prediction results of ensemble models, there are a variety 

of fusion methods available such as majority voting, weighted majority voting and 

naïve Bayes combination etc [215]. Majority voting was chosen throughout of the 

studies covered in this thesis because it is popular, easy to implement and could 

obtain comparable performance as other advanced methods [216]. A common 

majority voting method chooses the prediction that is mostly predicted by 

different models [205]. Besides, the majority voting approach used in our study 

took the AD of each model into consideration, so only samples falling into the 

ensemble AD and with major class returned will be predicted.  

6.3. Results 

6.3.1. Base and ensemble model performances for SJS/TEN study 

For the rigorous external CV process, after the ensemble model development, 

number of constituent models for best ensemble models is from 4 to 18. The 

detailed performances of the best base models and corresponding ensemble 

models from the five external CV runs are presented in Table 6.1. Throughout 

this thesis, BMn and EMn are used to indicate the best performing base model and 

ensemble model for run n of external 5-fold cross validation (n=1,…,5).  
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Table 6.1 Performances of best base models and best ensemble models for 

SJS/TEN study. 

    Model  ACC(%) SE(%) SP(%) MCC AUC 

Training 

Performance 

Best Base 

Model 

BM
1
  71.1 75.5 66.5 0.422 0.708 

BM
2
  69.8 74 65.3 0.395 0.711 

BM
3
  68.3 56.1 81.5 0.387 0.7 

BM
4
  69.3 81.9 55.8 0.391 0.741 

BM
5
  66.9 71.4 62.1 0.337 0.708 

Average 69.1±1.58 71.8±9.58 66.2±9.49 0.386±0.031 0.714±0.016 

Best 

Ensemble 

Model 

EM
1
  74.8 80.1 69.1 0.496 0.652 

EM
2
  77.6 88.6 64.5 0.553 0.714 

EM
3
  74.6 74 75.3 0.492 0.778 

EM
4
  74.1 83.3 64.1 0.485 0.777 

EM
5
  76.4 86.7 64.9 0.532 0.786 

Average 75.5±1.46 82.5±5.78 67.6±4.76 0.512±0.029 0.741±0.058 

Validation 

Performance 

Best Base 

Model 

BM
1
  53.5 51 56.3 0.072 0.555 

BM
2
  67.8 68.6 66.7 0.353 0.668 

BM
3
  61.9 46 78.7 0.261 0.648 

BM
4
  55.6 62.8 48 0.108 0.556 

BM
5
  59.2 70.6 46.8 0.179 0.594 

Average 59.6±5.6 59.8±10.9 59.3±13.5 0.195±0.114 0.604±0.052 

Best 

Ensemble 

Model 

EM
1
  69.3 71.8 66.7 0.385 0.596 

EM
2
  75 81.8 67.5 0.5 0.667 

EM
3
  80.4 80.4 80.4 0.608 0.852 

EM
4
  80.9 89.8 71.1 0.623 0.836 

EM
5
  67 81.3 51.2 0.341 0.612 

Average 74.5±6.3 81.0±6.4 67.4±10.6 0.491±0.127 0.713±0.123 

6.3.2. Base and ensemble model performances for TdP study 

For the rigorous external CV process, after the ensemble model development, the 

number of constituent models for ensemble models is from 4 to 12 for the five 
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runs. The detailed performances of the best base models and ensemble models 

from the five runs are shown in Table 6.2.  

Table 6.2 Performances of best base models and best ensemble models for TdP 

study. 

    Model  ACC(%) SE(%) SP(%) MCC AUC 

Training 

Performance 

Best Base 

Model 

BM1  85.4  88.0  83.6  0.706  0.899  

BM2  88.3  88.0  88.5  0.760  0.894  

BM3  74.9  39.5  97.6  0.483  0.801  

BM4  88.0  86.6  88.8  0.749  0.924  

BM5  89.4  82.9  93.7  0.777  0.924  

Average 85.2±5.9 77±21.1 90.4±5.4 0.695±0.121 0.888±0.051 

Best 

Ensemble 

Model 

EM1  91.8  86.2  94.9  0.819  0.909  

EM2  89.3  84.5  92.2  0.772  0.879  

EM3  94.3  91.0  96.3  0.879  0.902  

EM4  90.2  94.7  87.4  0.804  0.927  

EM5  91.0  89.6  91.8  0.810  0.952  

Average 91.3±1.9 89.2±4.0 92.5±3.4 0.817±0.039 0.914±0.027 

Validation 

Performance 

Best Base 

Model 

BM1  84.3  79.0  87.5  0.664  0.837  

BM2  78.0  60.0  90.0  0.535  0.697  

BM3  71.2  28.6  100.0  0.439  0.767  

BM4  72.0  70.0  73.3  0.428  0.771  

BM5  78.4  65.0  87.1  0.540  0.846  

Average 76.8±5.4 60.5±19.2 87.6±9.5 0.521±0.095 0.784±0.061 

Best 

Ensemble 

Model 

EM1  87.2  76.5  93.3  0.720  0.839  

EM2  91.1  85.7  93.5  0.793  0.869  

EM3  81.4  72.2  88.0  0.615  0.700  

EM4  85.7  81.3  88.5  0.697  0.849  

EM5  82.4  76.2  86.7  0.634  0.869  

Average 85.6±3.9 78.4±5.2 90±3.2 0.692±0.071 0.825±0.071 
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6.3.3. Base and ensemble model performances for serious psychiatric ADR 

study 

For the rigorous external CV process, after the ensemble model development, the 

number of constituent models for ensemble models is from 4 to 10 for the five 

runs. The detailed performances of the corresponding ensemble models from the 

five CV runs are shown in Table 6.3.  

Table 6.3 Performances of best base models and best ensemble models for serious 

psychiatric ADR study.  

6.4. Discussion 

6.4.1. Model pool size and ensemble size 

The number of candidate models available in the model pool is generally less than 

100 after applying the screening criteria. Although it is possible to search for an 

optimal combination of the candidate base models exhaustively for such a small 

pool, the computational complexity will increase exponentially for large scale 

problems when there are a larger number of candidate models available. Since our 

  Training performance Validation  performance 

Model ACC(%) SE(%) SP(%) ACC(%) SE(%) SP(%) 

BM1 68.8 66.7 71.4 42.9 33.3 50.0 

BM2 78.4 73.7 83.3 37.5 40.0 33.3 

BM3 80.0 78.9 81.3 40.0 100.0 0.0 

BM4 100.0 100.0 100.0 44.4 16.7 100.0 

BM5 81.6 88.5 66.7 56.3 54.5 60.0 

Average 81.7±11.4 81.6±13.0 80.5±12.9 44.2±7.2 48.9±31.6 48.7±36.6 

EM1 74.7 67.7 83.6 60.5 50.0 70.0 

EM2 73.7 77.5 66.7 60.3 68.3 48.1 

EM3 70.4 68.1 75.0 80.0 85.7 66.7 

EM4 74.5 87.2 52.7 66.2 75.0 50.0 

EM5 72.1 84.2 53.6 78.2 87.8 62.1 

Average 73.1±1.8  0.76.9±9.0 66.3±13.4 69±9.5 73.4±15.3 59.4±9.8 
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purpose is to develop and explore methods that can be applied in more versatile 

applications, simple and fast search algorithms are more practical, so the 

DisEnsemble and genetic algorithm methods are investigated in this study.  

 The ensemble sizes of the best ensemble models are generally small 

numbers in the range of 4 to 20. Previous studies have shown that the optimal 

ensemble size is different for different ensemble methods. For example, based on 

some empirical and theoretical studies on ensemble models by Opitz et al.[206], 

the optimal ensemble size is around 20. In another study, the ensemble size for the 

best ensemble model is about several hundred [40, 206]. However, to avoid high 

computational complexity, a smaller ensemble size is preferred for ensemble 

models with comparable performances.  

6.4.2. Performance of best base models and best ensemble models 

For SJS/TEN study, Table 6.1 shows that for five CV runs, all sensitivity values 

are above 0.7 and specificity values are above 0.5 for five ensemble models. In 

contrast, one sensitivity value and two specificity values are less than 0.5 for five 

best base models. Almost all the performance values of ensemble models are 

higher than the values of corresponding best base models, especially for MCC 

values. This suggests that the ensemble models outperform the base models in 

prediction ability. The differences of the MCC values for training and validation 

performance of the base models are much bigger than the ones for the 

corresponding ensemble models, so the generalizability of the base models is not 

as good as ensemble models. That is, the base model is more likely to produce 

weaker performance on external data set compared with the performance on the 

training set. Moreover, the performances of best base models varied widely for 

the different runs. For example, the lowest and highest specificity of the best base 

models on validation set are 46.8% and 78.7% respectively. This is contrary to the 

performances of the ensemble models that are more stable across the runs. The 

high variance could be because that, different training sets, feature groups and 

modeling algorithms were involved in the model development process, so the best 
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performing model for the different runs might have very different characteristics 

which cause the inconsistency of the performance profile. 

 The similar pattern was observed in the result of the studies for TdP and 

serious psychiatric ADR. For TdP study, the result in Table 6.2 shows that the 

performances of the best ensemble model in each of the five runs are generally 

higher than the corresponding performance of the best base model. Moreover, the 

performances of best base models vary widely in the different runs. For instance, 

the lowest and highest sensitivity of the best base models on validation set are 

28.6% and 79.0% respectively. However, the performances of the best ensemble 

models are more stable across the runs. For serious psychiatric ADR study, the 

result in Table 6.3 shows that for best base models for the five CV runs, most of 

the sensitivity and specificity values are lower than 50% which suggests these 

models have weak prediction ability. In contrast, all ensemble models achieved 

ACC, sensitivity and specificity values larger than 50%. Besides, the average 

performances of the ensemble model are also higher than corresponding best base 

models. Once again, the variance of the performances of the best ensemble 

models is lower than the one for best base models.  

 In summary, all results suggest that the application of ensemble method 

improved the model’s prediction ability, generalizability and stability compared 

with the case when only the best performing model was chosen. This is because 

different base models make different errors and ensemble method reduces the 

consensus errors. For both ensemble methods, development of multiple base 

models with different set of features and different modeling algorithms offered 

sufficient diversity and the model selection criteria ensured the good performance 

of the models in the model pool. Then the application of ensemble methods 

managed to select a set of complementary base models which make different 

misclassifications individually but correct classifications when combined together. 

Since the chance of selecting a bad model from the base models is much higher 

than the ensemble models, which will probably lead to poor performance on 

unseen dataset of “optimized” single model obtained from CV, the model 
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selection methods provide a solution to develop ensemble model and ultimately to 

improve the prediction performance, generalization ability and stability for QSAR 

models. This performance improvement may not be significant for well classified 

data and but it is important for studies dealing with small and diverse dataset and 

endpoints with complex mechanisms, in which the base models have limited 

prediction abilities, such as the studies for the three types ADRs in this work. 

6.4.3. Selection of two ensemble methods 

 As exploratory studies of applying ensemble method in QSAR studies for 

ADRs, only DisEnsemble method was developed and applied in SJS/TEN and 

TdP studies. For serious psychiatric ADR study which was carried out in later 

stage, both DisEnsemble method and genetic algorithm were employed and 

ensemble models developed from genetic algorithms showed better performances 

than DisEnsemble method, so genetic algorithm was used for this study. 

Nevertheless, this result could only be regarded as applicable for this particular 

study and does not necessarily mean that genetic algorithm outperformed 

DisEnsemble method. DisEnsemble method is more suitable for large scale 

problems because of its simplicity and efficiency. For the comparison and 

selection of the two methods, an established study which compared the search 

efficiency of sequential search methods and genetic algorithm for classifier 

selection showed that no method could win the other in all cases in terms of 

optimality [207]. Hence, it is recommended that both methods could be tried and 

compared, and should be used with consideration of both efficiency and 

optimality. 

6.5. Conclusion  

This chapter introduced two different model selection methods and investigated 

their applications in three QSAR studies. The result demonstrated the advantage 

of ensemble model over best base model in terms of prediction ability, stability 

and generalizability. Nevertheless, as an exploratory study of using these methods 

in QSAR studies, their performances were not compared systematically. Hence, it 



90 

 

is recommended that in future studies, both methods could be tried and the more 

suitable one should be used. 
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Chapter 7 Development of model evaluation method 

This chapter is to address the fifth issue of the QSAR workflow in Chapter 1: 

limitation of current model evaluation method. In this chapter, a novel model 

evaluation method ADVal for predictive models with consideration of the 

representativity of the dataset was developed, with the aim to estimate the model’s 

actual performance more accurately and comprehensively. 

7.1. Introduction 

 Currently the common methods available to evaluate the performance of 

predictive models are random split (RS) validation and cross validation (CV). CV 

has been served as a standard technique for performance estimation and model 

selection in modeling studies. A common problem with these validation methods 

is that there is only a weak correlation between the performances estimated by 

these methods with the model’s actual performance [116]. This means that a well-

fitting model does not necessarily ensure comparable prediction on unseen data. 

This results in inaccurate ranking of predictive models, especially models with 

similar performances. This problem arises because the testing sets that are used by 

these methods to assess the model’s performance are usually small and thus may 

not be fully representative of the intended population. This results in extrapolation 

of the model on the novel datasets which may be unreliable. Moreover, the 

performance of a predictive model is usually evaluated by a single measurement, 

such as accuracy, sensitivity and specificity for classification models, cross-

validation R
2
 or root mean squared error for regression models. This is 

insufficient as the model is likely to have different performances for samples that 

are very similar to those in the training set and for samples that are very different 

[217]. As a result, there is a need to develop an evaluation method that can 

estimate the model’s actual performance more accurately and comprehensively. 

 As a subset of the general predictive models, QSAR models are inevitably 

affected by these limitations. It has been confirmed by different groups of 

scientists who have shown that a QSAR model with reasonably high internal 
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fitness (LOO q2 or classification accuracy) does not automatically imply a high 

prediction power of the biological activities of independent validation set [116]. 

Instead, they may have very poor external predictive ability, i.e., low performance 

when making prediction of the target properties of unseen compounds. The most 

common reason for this inconsistency is that compounds in the training sets cover 

only a limited area in the entire chemical space. Hence it is likely that most of the 

future compounds lie outside this limited area, resulting in extrapolation of the 

model, which is inherently unreliable [218]. Therefore before applying a QSAR 

model on unseen compounds, it is important to consider the representativity of the 

samples to the training set, i.e., the AD. For these reasons, a novel validation 

method with consideration of the AD was developed in this study to address the 

limitation of traditional model evaluation methods. 

 The novel evaluation method is supposed to address the limitation of 

conventional evaluation methods used in QSAR models that there is discrepancy 

between the internal and external prediction performance. Based on this approach, 

for any dataset, a universal prediction performance standard could be established, 

and any unseen sample falling into the corresponding AD can be evaluated in a 

much more accurate and reliable manner, both statistically and mechanistically. In 

addition, instead of using the traditional evaluation methods which usually 

compute a single value of the prediction performance of the model on all unseen 

data, model evaluation method will produce a vector of prediction performances 

by considering the association of the unseen data to the data used to build the 

model. This forms a performance profile for a predictive model, which can be 

used to aid in model comparison and selection. 

7.2. Materials and methods 

7.2.1. Data sets and tools 

Three binary classification data sets were used in this study for their large 

data size and different characteristics. The first data set is Ames mutagenicity 

(AM) data, a benchmark data set designed for the evaluation of in silico 
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prediction methods. It includes 6512 chemical compounds together with their 

Ames mutagenicity test results publicly available [34]. The Ames test was a 

biological assay to assess the mutagenic potential of chemical compounds [34]. A 

positive test indicates that the chemical might act as a carcinogen. The curation 

and preprocessing procedure described in Chapter 2 were applied on the dataset 

and PaDEL-Descriptor was used to calculate molecule descriptors. The second is 

the MAGIC gamma telescope data (MAGIC) from the UCI machine learning 

repository which includes 19020 instances and 10 attributes. This binary 

classification data was simulated using a complex Monte Carlo program –

CORSIKA by Heck et al [219]. Briefly, the program approximates the 

development of extensive air showers generated by a high energy cosmic ray 

particle. The two classes are “gamma” and “hadron”, which indicate the signal 

and background respectively. The 10 attributes are numerical parameters for the 

obtained shower image. The detailed description of the dataset is available in the 

original publication. The last data set is a polynomial classification (PC) data 

generated using RapidMiner data generation function. The binary classification 

data with 5000 instances and 5 attributes was generated for verification of the 

validation methods on simple toy data. The experiment was carried out using 

RapidMiner for the whole workflow from data preparation to model evaluation.  

7.2.2. RS and CV method experiment 

Two common model validation methods RS and CV were applied on the same set 

of training, testing and validation set and the corresponding estimated 

performance and true performance results were compared. Linear correlation 

coefficients (commonly denoted as r) were obtained using the following formula 

with two variables X, Y to represent the corresponding vectors of sensitivity, 

specificity values respectively and n as the number of pairs of data:  

  
∑ (    ̅)(    ̅)
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 √∑ (    ) 
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The detailed workflow of the experiment for CV and RS was illustrated in Figure 

7.1. Briefly, the preprocessed real or simulated data was split into a validation set 

and modeling set with ratio 9:1 using stratified sampling. The large proportion for 

the validation set is to ensure that the validation sets to represent the majority of 

the population for the MAGIC and PC datasets. A model was developed using the 

modeling set and then applied on the validation set to obtain the true performance 

result. For the RS method, the modeling set was split into a training set and 

testing set with ratio 6:4. A model was constructed on the training set and then 

applied on the testing set to obtain the estimated performance result for the RS 

method. For the CV method, 5-fold cross validation was carried on the modeling 

set. The prediction results of the five runs were averaged to obtain the estimated 

performance results for the CV method. The entire process of splitting into 

modeling set and validation set, and evaluation using RS and CV method was run 

for 30 times to obtain a comprehensive performance profile (RS performance and 

CV performance).  
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Figure 7.1 Workflow of CV and RS method.  

7.2.3. ADVal method experiment 

In order to see whether our proposed validation method would achieve better 

correlation than RS and CV methods, an experiment was carried out on the same 

set of training, testing and validation set with application of our novel method. 

Then the correlation coefficients obtained were compared with the ones obtained 

from RS and CV. Using the same set of training, testing and validation sets as the 

RS method, the novel validation method (ADVal) was carried out with 

consideration of AD of the model by dividing the testing and validation set into 

several subsets according to the level of the association of the testing/validation 

data to the coverage region of the training/modeling data used to develop the 

model. The general workflow is presented in Figure 7.2.  
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Figure 7.2 Workflow of ADVal. 

 Generally, starting from the same training, testing and validation sets as 

the RS method, the representativity of each sample in the testing set to the 

training set and that for each sample in the validation set to the modeling set was 

determined by statistical method and the samples in the testing set and validation 

set were discretized into 10 different bins according to the level of their 

representativity. A predictive model was then developed using the training set and 

assessed using the discretized testing set to determine the performance of the 

model at each bin. This forms the estimated performance profile of the model. 
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Similarly, a predictive model was developed using the modeling set and assessed 

using the discretized validation set to obtain the external validation profile. The 

correlation coefficient of the estimated performance profile and the external 

validation profile was calculated. Similar as the experiment for CV and RS 

method, the whole process was run for 30 times.  

7.2.4. Determination of representativity 

The representativity of a sample to a dataset was determined using the 

same methods to determine the AD for a model based on the multivariate space 

formed by the training data. As introduced in Chapter 2, there are four main 

approaches available for this purpose: range, distance, geometrical, and 

probability density distribution [118]. The commonly used methods were range 

method, distance method and leverage method for low computational cost and 

easy implementation. Among these methods, range method is the most intuitive 

one but also the most unreliable one since it is based on the assumption that the 

dataset is uniformly distributed, which is not true for most real data. Probability 

density distribution is regarded as the most reliable method since it is the only 

method capable of identifying internal empty regions within the convex hull of a 

dataset. Besides, it also produces a density value which can be considered as an 

intuitive measure of the representativity of a sample to the training set. Therefore, 

the density distribution method was adopted for determination of the 

representativity of the samples to the datasets.  

 The probability density function of a data set can be estimated by 

parametric or non-parametric methods. Parametric methods assume the density 

function with a standard normal distribution while non-parametric methods do not 

make any assumptions of the data. Biomedical and chemical data are rarely 

normally distributed so non-parametric approaches are usually applied in these 

applications. In this study, the non-parametric kernel density estimation method 

was used [220]. Suppose (x1, x2… xn) is an independent and identically distributed 

(i.i.d.) sample drawn from some distribution with an unknown density ƒ. Kernel 

density estimator of the sample is 
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Where K(·) is the kernel function and h is a smoothing parameter referred the 

bandwidth [221]. It's important to choose the most appropriate bandwidth for the 

estimation. In our study, heuristic bandwidth selection algorithm was 

implemented to optimize the bandwidth selection. 

 After generation of the density map of the training/modeling set using 

probability density method, each sample in the testing/validation set was placed 

onto the density map to determine its density value. Basically, the attributes 

information of each sample in the testing/validation set was substituted into the 

same formula used to calculate the corresponding density value in the 

training/modeling set. Once the density values for all the samples in the 

testing/validation set were computed, the testing/validation set was discretized 

into ten bins with equal density intervals (i.e., [0, 0.1), [0.1, 0.2) ,…, [0.9,1] ). 

Then the prediction performance of the model for each density interval could be 

determined. 

7.2.5. Model development 

Three well known and inherently different machine learning methods SVM, KNN 

and ANN were used to develop classification models in order to check whether 

the correlation results obtained from different modeling method are consistent for 

different modeling methods. Since the main purpose of this study is not to 

produce models with optimum prediction performance, default parameters were 

applied otherwise specified for computation efficiency.  

7.2.6. Performance profile comparison 

After all the procedures above, the performance profiles of the models on the 

testing and validation were obtained. For performance profile from RS and CV 

experiment, it was a two dimensional data matrix with AUC, SE and SP values 

for testing and validation set as row and iteration number as column. Hence the 
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correlation coefficients of AUC, SE and SP values were calculated directly. 

Whereas for performance profile for ADVal experiment, since the bin index was 

included, the calculation and comparison method was less straightforward. The 

performance profile was sorted according to the bin index first. For each bin index, 

there was a 30 rows table with AUC, SE and SP values with iteration number 

from 0 to 29 for the 30 runs. Then for each bin, except the ones with more than 

half rows containing undefined values which would be removed for statistical 

insignificance, the correlation coefficients of AUC, SE and SP values for testing 

and validation set were obtained. Finally, a group of correlation coefficients were 

retrieved and were compared. This comparison was to examine the correlation 

inside each bin and also to compare all the correlation coefficients with the RS 

and CV results 

7.3. Results and discussion 

7.3.1. Results of CV and RS validation experiment 

Since there were three datasets and three types of modeling algorithms applied, 

there were nine copies of performance profiles for CV and RS. Here only a 

representative performance profile for AM data with SVM modeling and CV, RS 

validation method is shown Table 7.1. It could be observed that most of the AUC 

values are bigger than 0.6, SE and SP values are from 60% to 80% which could 

be regarded as well predicted. The AUC, SE and SP values for PC and MAGIC 

(not shown) are even higher with most of them falling in range of 70% to 90% 

since they are tailored for predictive modeling experiments. All these result 

suggest that the models developed and the evaluation profiles are qualified for 

subsequent correlation analysis. 
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Table 7.1 Performance profile of SVM models on testing and validation set for 

AM data from CV and RS experiment. 

  Testing performance Validation performance Testing performance Validation performance 

Iteration AUC SE(%) SP(%) AUC SE(%) SP(%) AUC SE(%) SP(%) AUC SE(%) SP(%) 

0 0.747 73.3 67.1 0.734 64.9 70.8 0.790 72.5 69.3 0.734 64.9 70.8 

1 0.760 58.3 74.3 0.730 67.5 66.8 0.784 70.8 71.4 0.730 67.5 66.8 

2 0.688 53.3 70 0.736 65 70.3 0.689 67.5 62.1 0.736 65 70.3 

3 0.693 53.3 67.1 0.751 58.2 79 0.727 67.5 67.9 0.751 58.2 79 

4 0.693 75 64.3 0.748 68 70.3 0.760 67.5 74.3 0.748 68 70.3 

5 0.739 65 74.3 0.756 69.7 69.6 0.734 69.2 65.7 0.756 69.7 69.6 

6 0.722 73.3 67.1 0.747 58.6 78.4 0.789 64.2 79.3 0.747 58.6 78.4 

7 0.672 63.3 58.6 0.736 71 64.5 0.754 70.8 62.9 0.736 71 64.5 

8 0.738 73.3 64.3 0.754 72.1 66.5 0.731 75.8 59.3 0.754 72.1 66.5 

9 0.697 56.7 64.3 0.731 65.2 69.1 0.737 60.8 71.4 0.731 65.2 69.1 

10 0.839 78.3 70 0.736 65.5 70.5 0.822 78.3 69.3 0.736 65.5 70.5 

11 0.743 66.7 64.3 0.738 64.6 71 0.749 70.8 65 0.738 64.6 71 

12 0.694 70 65.7 0.746 52.7 80.6 0.737 65.8 74.3 0.746 52.7 80.6 

13 0.759 53.3 80 0.755 61.5 76.6 0.744 55.8 78.6 0.755 61.5 76.6 

14 0.749 68.3 68.6 0.737 70.2 65.8 0.726 78.3 61.4 0.737 70.2 65.8 

15 0.678 63.3 57.1 0.753 65.3 73.2 0.686 65.8 55.7 0.753 65.3 73.2 

16 0.722 68.3 68.6 0.750 69.5 69.4 0.753 68.3 78.6 0.750 69.5 69.4 

17 0.683 25 82.9 0.755 61.7 76.4 0.667 64.2 64.3 0.755 61.7 76.4 

18 0.642 65 54.3 0.723 71.6 61.8 0.705 57.5 66.4 0.723 71.6 61.8 

19 0.749 65 75.7 0.751 67.4 70.4 0.790 76.7 65 0.751 67.4 70.4 

20 0.771 58.3 81.4 0.740 58.1 75.7 0.734 52.5 78.6 0.740 58.1 75.7 

21 0.772 81.7 52.9 0.752 63.8 73.8 0.793 67.5 79.3 0.752 63.8 73.8 

22 0.845 76.7 82.9 0.743 61.6 73.7 0.794 72.5 71.4 0.743 61.6 73.7 

23 0.781 60 82.9 0.748 60.4 74.9 0.704 65.8 67.9 0.748 60.4 74.9 

24 0.687 53.3 70 0.739 59.1 74.6 0.756 65.8 72.9 0.739 59.1 74.6 

25 0.743 65 67.1 0.739 62.2 72.7 0.692 44.2 70 0.739 62.2 72.7 

26 0.788 63.3 80 0.763 55.7 79.8 0.800 43.3 91.4 0.763 55.7 79.8 

27 0.721 60 75.7 0.747 62 74.5 0.711 61.7 72.9 0.747 62 74.5 

28 0.744 46.7 87.1 0.757 53.5 80.2 0.735 49.2 81.4 0.757 53.5 80.2 

29 0.738 60 72.9 0.750 68.1 71.2 0.715 68.3 66.4 0.750 68.1 71.2 

 

 Based on the above results, the correlation coefficients of the 30 sets of 

AUC/SE/SP values were determined accordingly for CV and RS experiments for 

all three datasets and shown in Table 7.2. It is to be noted that with a given 

sample size 30, the correlation coefficient that was significantly different from 

zero was around 0.3 for a moderate positive correlation. From Table 7.2 we could 
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see that for KNN and ANN models, almost all of the correlation coefficient values 

of three data sets were below this level. For SVM models, the correlation values 

were still low for PC data but much better for AM and MAGIC data with values 

from 0.271 to 0.547. Thus they were not strong enough to predict the external 

data based on internal performance of the model. All of these results were 

consistent with the conclusion that model with reasonably high internal fitness 

does not automatically imply a high prediction power of the independent 

validation set [116].  

Table 7.2 Correlation coefficients of performance profiles of different models on 

testing and validation sets using CV and RS method. CC_AUC, CC_SE and 

CC_SP indicate the correlation coefficient of AUC, SE and SP values of testing 

and validation performance respectively. 

    AM PC MAGIC 

Model 

type 

Evaluation 

method 
CC_AUC CC_SE CC_SP CC_AUC CC_SE CC_SP CC_AUC CC_SE CC_SP 

SVM 
CV 0.167 0.280 0.484 -0.010 -0.231 0.086 0.271 0.541 0.271 

RS -0.031 0.547 0.564 -0.465 0.047 0.146 0.490 0.537 0.509 

KNN 
CV 0.143 0.071 0.229 -0.072 -0.475 0.009 0.077 -0.174 0.030 

RS 0.066 -0.195 0.313 -0.076 0.120 -0.041 0.184 0.214 -0.117 

ANN 
CV 0.257 0.158 0.273 0.100 -0.242 -0.075 0.053 -0.095 0.127 

RS 0.241 0.526 0.586 0.285 0.067 0.028 0.003 0.189 0.021 

 

7.3.2. Results of ADVal experiment 

 For the results of ADVal experiment, the prediction performance for both 

internal and external validation were in good level for all three datasets, i.e., most 

of the AUC values are bigger than 0.6, SE and SP values are from 60% to 100%. 

Although the performance is not the best compared with other studies using the 

same dataset, it is still acceptable since the purpose is not to optimize the model’s 

performance per se so the modeling parameters were not optimized for 

computation efficiency. These results suggest that the subsequent correlation 

analysis were reliable. Some of the AUC/SE/SP values were undefined due to 

zero or low sample size and this was especially common in lower level bins (bin 1 
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to 5) which has sample size less than 5 generally. Correlation coefficients of AUC, 

SE and SP values with small sample size could be biased and unreliable so some 

bin groups with more than half members with undefined prediction values were 

removed, for example, bin 2 to 5 were removed for AM and only bin 1, bin 6 to 

10 were retained for later analysis. The evaluation profile of three datasets with 

ADVal and SVM modeling method is shown in Table 1 in Appendix. The 

correlation coefficients of the evaluation profiles for ADVal methods were 

determined and the detailed information is presented in Table 7.3. 

Table 7.3 Correlation coefficients of performance profiles using ADVal method 

for three datasets. CC_AUC, CC_SE and CC_SP indicate the correlation 

coefficient of the AUC, SE and SP values of testing and validation performance 

respectively. 
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    AM PC MAGIC 

  AD_bin CC_AUC CC_SE CC_SP CC_AUC CC_SE CC_SP CC_AUC CC_SE CC_SP 

SVM 

1 -0.168 0.131 -0.161 - - - - - - 

2 -* - - - - - - - - 

3 - - - 0.161 0.195 0.545 - - - 

4 - - - 0.117 -0.182 0.074 - - - 

5 -0.175 0.304 -0.181 0.096 0.192 0.235 -0.159 0.710 0.449 

6 -0.255 0.242 -0.059 -0.118 -0.050 0.196 0.013 0.507 -0.090 

7 -0.427 0.561 0.042 -0.296 -0.278 0.118 0.139 0.497 -0.196 

8 0.099 0.167 0.389 0.058 0.118 0.003 -0.029 0.621 0.175 

9 0.747 0.543 0.776 0.310 0.221 0.440 0.399 0.805 0.666 

10 -0.191 0.551 0.594 0.824 0.931 0.461 0.273 0.825 0.720 

KNN 

1 -0.161 0.050 -0.049 - - - - - - 

2 - - - - - - - - - 

3 - - - -0.165 0.017 0.256 - - - 

4 - - - 0.062 -0.097 -0.015 - - - 

5 - - - -0.006 0.045 0.249 -0.092 0.137 0.032 

6 - - - 0.092 -0.148 0.109 -0.160 0.375 -0.185 

7 0.195 0.183 0.020 -0.167 -0.125 0.024 0.170 0.101 0.204 

8 0.150 0.153 0.244 0.077 0.042 0.176 0.020 0.469 0.350 

9 0.183 -0.083 0.123 0.214 0.367 0.320 -0.112 0.320 0.312 

10 0.022 0.060 0.174 -0.258 0.667 0.494 0.565 0.304 -0.031 

ANN 

1 -0.411 0.425 -0.144 - - - - - - 

2 - - - - - - - - - 

3 - - - 0.859 0.324 0.027 - - - 

4 - - - -0.251 -0.167 0.003 - - - 

5 - - - -0.133 0.265 0.059 -0.134 0.109 -0.286 

6 - - - -0.022 -0.128 0.103 -0.193 0.044 -0.132 

7 0.052 0.284 0.409 0.278 -0.149 0.205 -0.290 -0.291 -0.133 

8 0.157 0.350 0.382 -0.085 0.166 -0.074 -0.034 0.275 -0.065 

9 0.058 0.619 0.403 0.156 0.249 0.405 -0.069 0.156 0.071 

10 0.019 0.424 0.588 0.281 0.522 -0.378 0.048 0.411 0.469 

*- indicates the value is not available. 

7.3.3. Comparison of the correlation results of three validation methods 

The correlation coefficients for the ten bins, bin 1 to bin 10, from ADVal 

experiment in Table 7.3 were then summarized and presented in Figure 7.3.  
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 (a) Complete correlation profile for three datasets using SVM.  

 (b) Complete correlation profile for three datasets using KNN.
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(c) Complete correlation profile for three datasets using ANN. 

Figure 7.3 Correlation coefficients of AUC, SE and SP values for ADVal 

experiments for all datasets. The number 1 to 10 is the bin index. AM_CC_AUC, 

AM_CC_SE and AM_CC_SP indicate the correlation coefficient of AUC, SE and 

SP values of testing and validation performance for AM data set respectively. The 

same notation rule applies for MAGIC and PC dataset. 

  

 For the results in Figure 7.3, we could see that most of the correlation 

values for lower bins of ADVal experiment are not available. As stated in 

previous sections, it is because that the equal density interval discretization 

produced inconsistent sample sizes for the different bins so some of the bins had 

zero or small sample size for the testing sets. This caused the correlation 

coefficients for these bins either not available or not statistically meaningful. 

Other discretization methods such as equal sample size can produce bins with 

equal sample sizes, but it will also cause the inconsistency of the density intervals 

for the bins, which makes it difficult to compare the correlation coefficients for 

the bins fairly. Therefore, equal density interval method was still employed and 

the unreliable results for the low sample size bins were not used for analysis. 

There are also some higher bins with zero to low correlation coefficients values 

from -0.3 to 0.3, which means the model has no or low generalizability for the 

samples falling into these bins. This could be because that the model itself does 

not perform well for samples falling in these bins and the correlation coefficients 

for such bins are not reliable. For the remaining correlation coefficients for higher 

bins of ADVal results, they ranged from the moderate to high level from 0.3 to 

0.8, which suggests the model has good generalizability on these bins. Moreover, 

the correlation coefficients are quite different from bin to bin. This difference 

demonstrates that for the same model, it has different generalizability for samples 

in different bins, i.e., with different levels of representativity. 

 For the comparison of the results of three validation methods, it should be 

noted first that for CV and RS methods, more information was used to train the 

model for CV (80% of the modeling set) than RS (60% of the modeling set). For 

RS and ADVal experiment, the models are the same and the only difference is 
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that the testing/validation sets for the ten bins for ADVal experiment were subsets 

of the testing/validation set used for RS experiment. Hence the correlations for the 

bins are supposed to be similar to RS and slightly lower than CV. Nevertheless, 

for all three datasets, the correlation coefficients of SE/SP for RS were either 

slightly higher or around the same level as CV, which were all in low to moderate 

correlation with value from -0.3 to 0.5. This means the additional information 

included in the training set for the model produced from CV did not add value to 

the model’s generalizability. For ADVal, although the correlation coefficients of 

SE/SP were either not available or around low level for the lower bins (bin 1 to 5) 

it became large for high level bins (bin 8 to 10) and even higher than both CV and 

RS values. Actually, since the models and the data sets which the 

testing/validation sets were selected from were the same for RS and ADVal 

experiment, the total number of correct and wrong predictions are the same. If the 

testing/validation set was discretized into ten equal bins randomly for ADVal, the 

correlation result should not be too different from those generated from RS 

experiment. However this is not the case. The correlation result from ADVal had 

both higher and lower values than the one from RS. This is important since it 

demonstrated that ADVal methods could not only differentiate the 

testing/validation test with different association levels with the training set of the 

model, but also exhibit better correlation for the estimated performance and true 

performance for the samples with better association. These results suggest the 

potential of ADVal method for model evaluation. That is, given a large and 

diverse enough benchmark dataset, instead of using a fixed borderline of the AD 

for a specific model and using a single measurement (SE, SP etc) for all the 

samples in the AD, our approach could provide a comprehensive profile of the 

model’s performance on any unseen dataset.  

 However, most of the correlation coefficient values are in low to moderate 

level which means the correlation is not very strong between the testing and 

validation sets. There are several possible reasons for this situation. Firstly, the 

sample size for different bins varied widely which is especially common for real 

datasets. This inconsistency made it difficult to ensure all the testing sets were 
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balanced and comparable with each other, which caused bias in the performance 

measurements and subsequently affect the final correlation results. Moreover, 

probability density method was used to generate the distribution of the datasets 

and then divide the datasets into different bins. However, it might not be able to 

discretize the data well according to the representativity of the data. Some other 

methods used for data categorization such as clustering could also be considered 

in the future.  

7.4. Conclusion 

In this chapter a novel model evaluation method ADVal was developed by using 

probability density estimation and discretization methods to address the 

applicability issue of predictive models. The consideration of association level of 

testing samples with the training data and the AD concept provide the method 

with additional value for model evaluation. Through comparative experiments of 

three evaluation methods RS, CVand ADVal with both real and simulated 

datasets, the results demonstrated that ADVal method is capable of producing a 

more reliable and comprehensive performance profile than RS and CV methods. 

It is possible to use the method in predictive modeling studies given a large 

validation set is available. Nevertheless, the result is still quite preliminary and 

further studies are needed to investigate the methods systematically.  

 

 

 

 

 

 

 

 



108 

 

 

 

 

Part III Summary of Models 

 

 

 

 

 

 

 

 

 

 



109 

 

Chapter 8 Summary of Models 

This chapter focuses on the important information related to the four final models 

developed for three types of ADRs and nephrotoxicity in previous chapters. It 

discusses the samples and features of the data, the AD of the model and the actual 

performance of model. In the end, the final models for all three types of ADRs and 

chemical structure files for all drugs are made available for download at 

http://padel.nus.edu.sg/software/padelddpredictor.  

8.1. Introduction 

Predictive models for three types of ADRs (SJS/TEN, TdP and serious psychiatric 

ADR) and nephrotoxicity were developed by using the methods discussed in 

previous chapters. To our best knowledge, they are the first models developed on 

these endpoints with determination of AD. Besides the four final models, there are 

some important information related to these models, including the samples (e.g. 

classification of drugs) and features (e.g. important descriptors, fingerprints or 

genomic transcripts) of the data, the AD of the model and the actual performance 

of model on external validation set (if applicable). These information could help 

us to better understand and utilize these models. Since the methodologies used for 

development of these final models are similar, they are discussed together in this 

chapter. 

8.2. SJS/TEN model 

For the model development process using entire dataset, 33 out of 300 base 

models were selected as suitable candidate models for ensemble modeling. A total 

of 31 ensemble models with ensemble size from 3 to 33 were developed and the 

final ensemble model EMall was determined by the overall majority voting 

accuracy from internal CV result. EMall comprised of 4 base models.  
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8.2.1. Results 

8.2.1.1. Performance of final model 

The performances of the final model EMall were summarized in Table 8.1. The 

three performance groups in the first column are the performances of model 

EMall on the entire dataset, using external 5-fold CV and on the external positive 

set. The external data set will be introduced in section 8.1.3.4. 

Table 8.1 Performances of the final ensemble model EMall. 

Performance ACC(%) SE(%) SP(%) MCC AUC 

On entire data set 75.0 83.4 65.9 0.503 0.749 

External 5-fold CV 74.5±6.3 81.0±6.4 67.4±10.6 0.491±0.127 0.713±0.123 

On external 

Positive set 
66.7 66.7 -

 *
 - - 

 “*” indicates the value is not available 

8.2.1.2. Visualization of drugs out of AD of EMall 

In total 28 descriptors were collected from the union of the sets of descriptors for 

all four constituent models of final model EMall. Then principal component 

analysis (PCA) was carried out on all drugs with the selected 28 descriptors using 

statistical software JMP 8 to investigate the characteristics of the drugs out of AD 

of EMall [222]. The first two principal components (PC) were used to plot the 

distribution of the drugs in Figure 8.1.  



111 

 

 

8.2.1.3. Potential important substructures 

To identify the important substructures related to SJS/TEN, fingerprints for the 

4840 chemical substructures identified by Klekota and Roth were calculated to 

identify potential structural alerts for SJS/TEN [223]. The detailed information of 

molecular descriptors and fingerprints substructures is available on the PaDEL-

Descriptor website. The substructures which were significantly different for ST
+
 

Figure 8.1 Score plots of PCA for model EMall on internal CV result. The ST
+
 and ST

-
 drugs are 

shown with black and grey dots respectively. Drugs outside the AD of EMall are marked with “x”. 

For better visualization, only eight representative drugs are marked with their names. 
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and ST
-
 class were obtained by t-test with p-value less than 0.05. Then to further 

explore the substructures potentially important for SJS/TEN inducing mechanism, 

a score was used to represent their preference for ST
+
 to ST

-
 class. The score was 

calculated as follows: if the occurrence of the substructure in ST
-
 class is 0 then 

the score is equal to the number of the occurrence in ST
+
 class; if it is not 0, then 

the ratio of the occurrence of the substructure in ST
+
 class to ST

-
 class was used. 

All substructures were ranked descendent according their scores. After that, it was 

observed that for the top 13 substructures, some of them had similar fragments so 

they were selected to represent the important substructures related to SJS/TEN 

and are shown in Table 8.2. These structures might be potentially useful for 

predicting drugs with SJS/TEN-causing potentials as well as for understanding the 

drug action and mechanisms. 

Table 8.2 Top 13 potential important SMARTS substructures related to SJS/TEN. 

ID Structure
 *
 Score P-value 

KR2886 

 

19 <0.001 

KR1724 

 

17 <0.001 

KR3200 

 

15 0.002 

KR3625 

 

13 0.003 

KR4834 
 

 

12 <0.001 
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KR2034 

 

12 <0.001 

KR3452 
 

12 <0.001 

KR4275 

 

12 <0.001 

KR2988 
 

10 0.002 

KR2035 

 

10 0.014 

KR3548 

 

9 <0.001 

KR4067 

 

9 0.003 

KR3586 

 

9 0.024 

*
 [!#1] is any atom not with atomic number of 1. 

8.2.2. Discussion 

8.2.2.1. Drugs out of AD 

Drugs are defined to be out of the AD of the ensemble model when all the 

base models identify the drug to be out of their AD, or if there is a tie in the 

predictions. For model EMall, 94 drugs were defined as out of AD based on 

internal CV prediction result. PCA score plot in Figure 8.1. illustrates the 

distributions of all 494 drugs in two-dimensional space. It was observed that some 

drugs such as nitrofurantoin and rifampicin were near the boundary or in the 

sparse region of the feature space formed by the two principle components. Thus 

they might be outside the information space of the current descriptors, leading to 
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potential extrapolation of the model. Some drugs such as vinblastine had nearby 

neighbours with the opposite class, so the model might not be confident with its 

prediction. Although not all of the drugs out of AD could be clearly explained due 

to the complexity of the chemical space, the above observations suggest that the 

AD method used in this study could not only identify drugs falling outside the AD 

defined by the descriptors but also drugs that the model is not confident of 

providing a prediction.  

8.2.2.2. Final Model 

For final model EMall, the combination of base models with different set 

of attributes and from different modeling algorithms ensures the diversity of the 

base models. From Table 8.1, the similar performance of EMall on the entire 

dataset and rigorous validation suggests that the model has low risk of overfitting. 

The estimated performance from the rigorous validation process gave a false 

positive rate of 33.6%. There are two possible reasons for the relatively high false 

positive rate.  Firstly, QSAR models usually predict drugs with similar chemical 

structures as belonging to the same class, even though they may belong to 

opposite classes. For example, penicillin drugs are regarded as one of the main 

types of drugs causing SJS/TEN. There are 12 penicillin drugs in the entire 

dataset, of which eight were ST
+
 and four were ST

-
. This may cause a tendency of 

the model to predict ST
-
 penicillin drugs as ST

+
 as some studies had shown that 

QSAR models could not differentiate drugs with similar structures but different 

classes very well [40]. This inability to differentiate drugs with similar structures 

is related to the fundamental principle of QSAR which assumes that similar 

molecules have similar activities. The second reason might be that some of the 

“false positives” are actually “real positives” but their toxic potential has not been 

found yet, so the actual false positive rate may be lower than the above value. 

Although we have used several criteria to identify the ST
-
 drugs, it still could not 

eliminate the possibility that they will cause SJS/TEN in the future. This also 

demonstrates the necessity and importance of using OCC method to develop the 

model when the information for the negatives may not be reliable.  
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To the best of our knowledge, currently there are no available QSAR 

models for predicting the SJS/TEN-causing potential of drugs, so it is not possible 

to compare the performance of the ensemble model developed in this study with a 

similar study. Nonetheless, a tentative comparison could be made with 

computational models developed for other toxicological properties such as 

genotoxicity and hepatotoxicity [40, 121]. Although the final model’s 

performance with an overall accuracy of approximately 74.5% was lower than 

models for these well studied properties, it could still be considered as useful 

model. It is because SJS/TEN is a very complex disease with multiple 

mechanisms affecting its occurrence [224] and currently there are no 

computational models available for prediction of SJS/TEN to our best knowledge. 

Therefore, the various approaches introduced in this study have been successful in 

the development of the QSAR model for SJS/TEN causing potential. The final 

model achieved promising performance and is potentially useful for prediction of 

SJS/TEN causing potential of new drug candidates. 

8.2.2.3. Potential important substructures 

For the 13 structures listed in Table 8.2, some of them share similar 

fragments. Five of them (KR2034, KR2035, KR3200, KR3625, KR4275) share 

thiazole fragment, three of them (KR3548, KR3586, KR4067) share 

fluorobenzene fragment, two of them (KR1724, KR2886) share 

bezenesulphonamide fragment, and another two of them (KR3452, KR4834) 

share oxime group. KR2988 is part of the penicillin core structure. Some drugs 

contain these fragments such as sulphonamides, fluoroquinolones and penicillins 

have been observed as causing SJS/TEN [225, 226]. It is useful for decision 

making since it is likely that drugs sharing similar fragments but without any case 

report yet have SJS/TEN causing potential. Moreover, these important structures 

could help to better interpret the complex QSAR model [227]. 

8.2.2.4. External validation 

After the data collection of this study, some more drugs have been found 

as associated with SJS/TEN in recent case reports such as rufinamide and 
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vandetanib [228, 229]. And there are also some drugs have been reported but not 

updated in Micromedex database yet such as nimesulide [230]. Hence to 

investigate the final model’s actual performance on external data, a set of 14 

drugs were collected from literatures with recent SJS/TEN case reports. The drug 

information is shown in Table 8.3 and the performance of the final model on this 

dataset is shown in Table 8.1.  Since only ST
+
 drugs were evaluated, only 

accuracy and sensitivity values were provided. The sensitivity value of 66.7% 

suggests the model could identify two out of three of the real positive drugs, 

which is a promising result. Fingerprints analysis also shows that most of these 

drugs contain one or more of the fragments in Table 8.2. For example, 

ceftriaxone and mastinib contain the thiazole fragment; rufinamide, vandetanib 

and linezolid contain the fluorobenzene fragments and etoricoxib contains the 

sulphonamide fragment. This supports the statement that the identified 

substructures could help to identify drugs with SJS/TEN-causing potential in the 

future. Nevertheless, more studies should be carried out to explore the 

relationship of the fragments and the SJS/TEN-causing potential of compounds as 

the mechanism of SJS/TEN is quite complicated and multiple factors like genetics 

and infections are involved [231, 232]. 
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Table 8.3 Compounds collected from literatures with recent SJS/TEN case reports. 

Name Class Prediction Fragments contained 

Adefovir dipivoxil[233] Positive Positive  

Aripiprazole[234] Positive Negative  

Ceftriaxone[235] Positive Positive Thiazole 

Duloxetine[236] Positive Negative  

Etoricoxib[235] Positive Positive Sulphonamide 

Linezolid[237] Positive Positive Fluorobenzene 

Lisinopril[22] Positive Positive  

Masitinib[238] Positive Negative Thiazole 

Nimesulide[230] Positive Positive  

Roxithromycin[239] Positive Out of AD  

Rufinamide[228] Positive Positive Fluorobenzene 

Stavudine[240] Positive Positive  

Tigecycline[241] Positive Out of AD  

Vandetanib[229] Positive Negative Fluorobenzene 

 

8.3. TdP model 

Out of 300 base models developed using three one-class machine learning 

algorithms on the entire dataset, 61 models were selected as suitable candidate 

models for ensemble modeling. A total of 59 ensemble models with ensemble size 

from 3 to 61 were developed and the final ensemble model (EMall) was 

determined by the overall MV accuracy from cross validation results. EMall 

comprised of 8 base models. 
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8.3.1. Results 

8.3.1.1. Performance of final model 

The training and validation performances of EMall determined using the entire 

dataset and rigorous validation process are given in Table 8.4. 

Table 8.4 Performance of the final ensemble model EMall. 

 ACC(%) SE(%) SP(%) MCC AUC 

Entire data set 91.2 88.9 92.8 0.817 0.932 

Rigorous 

validation 
85.6 78.4 90 0.692 0.825 

  

8.3.1.2. Selected descriptors in final model  

The eight base models contained in EMall have different number of descriptors, 

ranging from 11 to 28. Together, a total of 75 unique descriptors were found to be 

important. None of these descriptors appeared in all eight base models but some 

of them had higher frequencies than others. The detailed categories and 

frequencies of these descriptors are provided in the supporting information of the 

publication [89]. 

8.3.1.3. Potential important substructures 

The same substructure identification method in SJS/TEN study was used to obtain 

the representative set of substructures related to TdP. A total of 238 substructures 

had p-value less than 0.05 for t-test. The score for all these substructures was from 

0 to 11. For simplicity, the top 10 significant substructures that occurred more 

frequently in TdP
+
 drugs than TdP

-
 drugs are shown in Table 8.5. These 

structures might be potentially useful for predicting drugs with TdP-causing 

potentials as well as for studying TdP inducing mechanisms. 
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Table 8.5 Top 10 potential important SMARTS substructures related to TdP. 

No. ID SMARTS Category Structure Score 

1 KR1536 [!#1]C(F)(F)F 

Trifluoride fragment 

 

 

11 

2 KR4053 FC(F)F 

Trifluoride fragment 

 

 

11 

3 KR4121 
N1c2ccccc2S(c3ccccc13

) 

Phenothiazine fragment 

 

 

 

11 

4 KR4067 Fc1ccccc1 

Fluorophenyl fragment 

 

 

 

10.5 

5 KR3163 C1CN(CCN1)c2ccccc2 Phenylpiperazine fragment 

 

10 

6 KR2517 

[!#1]N1c2[cH][cH][cH][

cH]c2S(c3[cH][cH]c([!#

1])[cH]c13) 

Phenothiazine fragment 

 

 

9 

7 KR3548 Cc1ccc(F)cc1 Fluorophenyl fragment 

 

9 



120 

 

8 KR232 
[!#1][CH]1[CH2][CH2]

N([!#1])[CH2][CH2]1 

Piperidine fragment 

 

 

 

8 

9 KR3586 Cc1cccc(F)c1 

Fluorophenyl fragment 

 

 

8 

10 KR4046 FC(F)(F)c1ccccc1 
Trifluoromethylbenzene 

fragment 

 

8 

 

8.3.2. Discussion 

8.3.2.1. Final model 

In Table 8.4, similar performance results of EMall determined using the entire 

data set and rigorous validation suggests that the final ensemble model is less 

likely to be over-fitted. There are several computational models that have been 

developed for the prediction of hERG K
+
 channel blockers or drugs with long QT 

prolongation causing potentials [242]. However, very few models were developed 

specifically for determination of TdP causing potentials. Moreover, these models 

were developed long time ago thus did not consider the AD which was a 

requirement for QSAR models nowadays. Our final ensemble model with an 

overall accuracy of approximately 85.6% is comparable with the results of 

previous studies. In addition, the model was rigorously validated and the AD was 

well determined and so the model’s performance is expected to be more reliable 

than previous models. 
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8.3.2.2. The descriptors 

 For the 75 unique descriptors for model EMall, the descriptors with higher 

frequency were mainly atom type E-state descriptors and counts of rings. E-State 

descriptors encode both electronic and topological information of the compounds. 

It had been used extensively in QSAR studies because of its straightforward 

calculation, ability to unify both electronic and topological description and 

potential to examine the contribution of sub-molecular features towards 

intermolecular effects for investigation of molecular mechanism of action [243]. 

The large proportion of the E-state descriptors in the final ensemble model is 

consistent with the previous study using recursive feature elimination feature 

selection algorithm, where it was believed that the E-state descriptors encode the 

electron accessibility for each atom, that is, the potential for non-covalent 

intermolecular interaction and possibly describe binding to certain types of 

proteins [244]. The second type of high frequency descriptors was ring counts, 

which includes 4, 6, 8, 9, and 12-membered rings. These rings are common in 

drugs with penicillin core structure or aromatic structure such as piperidine, which 

might be responsible for the binding activity as well. 

8.3.2.3. Potential important substructures  

 The 10 substructures listed in Table 8.5 can be categorized into 

fluorophenyl/trifluoromethylbenzene fragment (4, 7, 9, 10; 1 and 2 could be 

considered as a substructure of 10), phenothiazine fragment (3 and 6), 

phenylpiperazine fragment (5) and piperidine fragment (8). Most of these 

fragments contained aromatic rings which was consistent with the study that the 

presence of aromatic ring is important for hERG K
+ 

 channel blocking activity 

[245]. The identification of fluorophenyl fragments is consistent with the previous 

study where it was selected as the top discriminating fragment for TdP
+
 drugs 

[246]. Both fluorophenyl and trifluoromethylbenzene fragments have 

electronegative fluorine attached to carbon, which may interact with the polar 

amino acid residues of the binding site [247]. It has also been shown recently that 

there is an association between α1-adrenoceptor affinities, hERG K
+
-antagonistic 

properties and antiarrhythmic activities for a series of phenylpiperazine 
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derivatives [248]. Therefore, it is very likely that compounds containing one or 

more of these substructures but without any case report yet have TdP-causing 

potential. Hence careful attention should be paid when these compounds are used 

during drug development or clinical trials.  

8.4. Serious psychiatric ADR model 

8.4.1. Data summary 

There are 25 critical terms listed in WHO-ART under code 0500 

(psychiatric disorders) for the system-organ class. Out of the 1127 marketed drugs 

used for screening, 330 drugs were found to cause one or more of these 25 serious 

psychiatric ADRs. The number of drugs causing each serious psychiatric ADR 

and the percentage based on all 1127 drugs were listed in Table 8.6. Depression is 

the most common serious psychiatric ADR and is caused by nearly 16% of 

marketed drugs. This is followed by hallucination and psychosis, with each 

caused by approximately 11% of marketed drugs.  
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Table 8.6 List of 25 critical terms listed in WHO-ART under code 0500 

(psychiatric disorders) for the system-organ class.  

Critical term Number of drugs Percentage (%) 

Depression 182 16.1 

Hallucination 120 10.6 

Psychosis 119 10.6 

Aggressive reaction 85 7.5 

Suicide attempt 70 6.2 

Delirium 64 5.7 

Manic reaction 60 5.3 

Amnesia 47 4.2 

Delusion 29 2.6 

Catatonic reaction 13 1.2 

Paranoid reaction 13 1.2 

Schizophrenic reaction 9 0.8 

Neurosis 2 0.2 

Psychosis manic-depressive 2 0.2 

Anorexia nervosa 1 0.1 

Drug abuse 1 0.1 

Drug dependence 1 0.1 

Illusion 1 0.1 

Alzheimer's disease 0 0.0 

Asperger's disorder 0 0.0 

Autism 0 0.0 

Autistic disorder 0 0.0 

Childhood disintegrative disorder 0 0.0 

Narcolepsy 0 0.0 

Psychosis alcoholic 0 0.0 

 

 From Table 8.6, only seven serious psychiatric ADRs had more than 50 

drugs that are known to cause them. The total number of drugs associated with 

these seven serious psychiatric ADRs is 321. Of these, 51 drugs were marketed 

after 1999. These will be kept aside to validate the final QSAR model. The 

remaining 270 drugs marketed before 1999 will be used to develop the models. A 

total of 173 drugs with no serious psychiatric ADRs were identified based on our 
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criteria. None of these were marketed after 1999 so all these will be used to assess 

the performance of the models during the model development and rigorous 

external 5-fold CV stages. After curation process, the final number of PADR
+
 and 

PADR
-
 drugs is 262 and 169 respectively. The number of drugs in the prospective 

validation set remains at 51.   

8.4.2. Results 

The 300 models developed on the entire modeling set were screened and 

four of them were finally selected by the genetic algorithm to form the final 

ensemble model EMall. The performances of this final ensemble model, 

determined using the dataset and the two validation methods were given in Table 

8.7. 

Table 8.7 Performance of final EMall model for serious psychiatric ADR study. 

Validation 

method 

ACC (%) SE (%) SP (%) 

Entire dataset 77.3 77.9 76.3 

External 5-fold 

CV 

69.0±9.5 73.4±15.3 59.4±9.8 

Prospective 

validation set 

65.2 65.2 - 

The results show that the model has sensitivity of 77.9% and 73.4%, and 

specificity of 76.3% and 59.4% for training set (entire data set) and rigorous 

validation. For the prospective validation set, 28 drugs were determined by the 

model to be outside its AD and thus only 23 drugs were predicted. The detailed 

results for the prospective validation set are given in Table 8.8. 
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Table 8.8 Prediction results for the perspective validation set. 

Name Prediction
 

Cinacalcet Positive 

Codeine Positive 

Desvenlafaxine Positive 

Duloxetine Positive 

Entacapone Positive 

Febuxostat Positive 

Galantamine Positive 

Lacosamide Positive 

Oseltamivir Positive 

Paliperidone Positive 

Ramelteon Positive 

Rivastigmine Positive 

Tetrabenazine Positive 

Trospium chloride Positive 

Ziprasidone Positive 

Clofarabine Negative 

Erlotinib Negative 

Ertapenem Negative 

Exemestane Negative 

Rasagiline Negative 

Rifaximin Negative 

Vigabatrin Negative 

Zoledronic acid Negative 

 

8.4.3. Discussion 

8.4.3.1. The data 

Our study found that approximately 29.3% of marketed drugs were 

associated with at least one serious psychiatric ADR. Since it is commonly 

accepted that drugs used to treat neurological and mental disorders have a higher 

chance of causing psychiatric ADRs, it is interesting to determine the proportion 

of marketed drugs that cause serious psychiatric ADRs but are not used to treat 

neurological and mental disorders. To obtain a better understanding of the 
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therapeutic usage of these drugs, the anatomical therapeutic chemical (ATC) 

classification system [249] was used to divide drugs into different anatomical 

groups according to the organ or system on which they act (1st level).  Since a 

drug can belong to more than one therapeutic group, the number of drugs under 

each therapeutic group was counted and the percentage of the number of drugs for 

each group over the total number of 321 drugs known to cause the top seven 

serious psychiatric ADRs was calculated and summarized in Table 8.9.  

Table 8.9 Distribution of therapeutic groups of the 321 drugs that cause top seven 

serious psychiatric ADRs. 

ATC 

code 

Percentage of 

drugs (%) 

Count of 

drugs 
Organ/System 

N 40.5 130 Nervous system 

C 14.3 46 Cardiovascular system 

J 10.6 34 Antiinfectives for systemic use 

A 10.0 32 Alimentary tract and metabolism 

L 7.8 25 Antineoplastic and immunomodulating agents 

R 7.5 24 Respiratory system 

S 6.9 22 Sensory organs 

G 6.5 21 Genito-urinary system and sex hormones 

D 6.2 20 Dermatologicals 

M 5.3 17 Musculo-skeletal system 

H 4.0 13 
Systemic hormonal preparations, excluding sex 

hormones and insulins 

P 2.8 9 Antiparasitic products, insecticides and repellents 

V 1.2 4 Various 

B 0.9 3 Blood and blood forming organs 

 

From Table 8.9, we could observe that only 130 out of all 321 drugs are 

used to treat neurological and mental disorders. The remaining 191 (59.5%) drugs 

were used to treat other disorders. Hence, there is a relatively large proportion of 

drugs used for treatment of non-neurological and mental disorders which may 

potentially cause serious psychiatric ADRs. This suggests the need to encourage 

patients and clinicians to look out for such ADRs, especially for newly marketed 
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drugs, regardless of whether they are used to treat neurological and mental 

disorders or not. 

8.4.3.2. Final model 

The overall accuracy of our model ranges from 65.2% to 77.3%. The 

relatively broad range for the accuracy is due to an inherent nature of QSAR 

models. QSAR models tend to have better accuracies for drugs with structures 

which were very similar to those used to develop the model and have poorer 

accuracies for drugs with very different structures from those used to develop the 

model. Thus, our final QSAR model have poorer performance on the prospective 

validation set compared to that of the dataset because the prospective validation 

set comprises of drugs which were marketed later and thus some of these are 

expected to have very different structures from those that had been marketed 

much earlier. 

Since there are no similar QSAR models for serious psychiatric ADRs, a 

tentative comparison of the model were made with QSAR models for SJS/TEN 

and TdP. TdP model achieved an overall accuracy of 85.6% through rigorous 5-

fold cross-validation and the corresponding value for SJS/TEN model is 74.5%. 

The SJS/TEN model also has an overall accuracy of 66.7% on a validation set. 

These show that the performance of our current psychiatric model is slightly 

poorer than the other two models. A possible reason could be the larger number of 

ADRs that were modeled in this study. In the torsade and SJS/TEN studies, the 

numbers of ADRs were one and two respectively. In this study, we modeled 

seven ADRs. Thus, the number of mechanisms causing these ADRs will be 

greater and hence it is more complex to develop a single model for so many 

ADRs. Future studies could consider developing QSAR models only for single 

serious psychiatric ADR.   

8.5. Model for nephrotoxicity 

This section presented the information obtained from the predictive model 

developed for nephrotoxicity in Chapter 4. In addition to look at the 

performances of models, we also tried to better interpret of the models by 
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generating a set of important descriptors. These descriptors will be useful for the 

understanding the chemical structural features and biological mechanisms related 

to nephrotoxicity.  

8.5.1. Important features 

Since the hybrid model achieved highest performance among all four models, the 

set of features (both chemical descriptors and genomic features) of the hybrid 

model were collected and analyzed. The final ensemble model contained 33 base 

models and 820 attributes in total. However, only few of the features appeared 

more frequently than the remaining descriptors/transcripts. These top ranking 

features (with frequency greater than 5) were collected and summarized in Table 

8.10. 

Table 8.10 Top ranking genomic feature and chemical descriptors. 

Genomic 

transcripts 
Frequency 

Genomic 

transcripts 
Frequency 

Molecular 

descriptor 
Frequency 

AI407482 10 AA799358 6 nHAvin 10 

X60822 9 AA799691 6 ATSc4 8 

AA799550 8 AA799789 6 nsSH 8 

AA818947 8 AA800258 6 nF6Ring 7 

AA851302 8 AA800665 6 nHsSH 7 

AA998971 8 AA818197 6 SsSH 7 

AA799614 7 AA850505 6 ATSc2 6 

AA799700 7 AA850740 6 nwHBd 6 

AA800763 7 AA851370 6 SCH-3 6 

AA800782 7 AA859508 6 SHsSH 6 

AA818203 7 AA892339 6 VCH-3 6 

AA848821 7 AA894080 6 

  AA849731 7 AA899704 6 

  AA849752 7 AA945099 6 

  AA849975 7 AB000216 6 

  AA892300 7 AF010131 6 

  AA925922 7 AF134054 6 

  AA943126 7 AF214733 6 

  AW915692 7 AF237778 6     
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 Compared with previous study by Freidman et al., the descriptor set of our 

model has 10 overlapping genes with their biomarker set containing 35 genes. 

This suggests some new and important genes are discovered in our study. 

Nevertheless, since the ensemble model provided a big number of predictive 

transcripts, further examination is still needed to identify an effective biomarker 

set. Although the genomic signatures were not deemed suitable for use in 

regulatory settings, they are still potentially useful for toxicity assessment of drug 

candidates to assist decision making in the early stages of drug development. In 

addition to find the important gene set that were predictive and highly relevant to 

the mechanisms of drug-induced renal toxicity, chemical structural descriptors 

were also identified. These results suggest that in spite of providing models 

capable of accurate prediction of nephrotoxicity from chemical structures and 

short-term assay results, the concurrent exploration of the chemical features and 

drug-induced gene expressions variations could enrich the mechanistic 

understanding of drug-induced renal toxicity. 

8.6. Conclusion 

The relevant information of the QSAR models for predicting drugs’ 

potential to cause SJS/TEN, TdP and serious psychiatric ADRs and the integrative 

model for nephrotoxicity were presented in this chapter. To our best knowledge, 

they are amongst the first of models developed for the ADRs with AD 

determination and rigorous validation. Besides, the substructures identified 

through a simple analysis of the chemical fingerprints of the drugs also provide us 

with information to better understand the mechanisms of ADRs or toxicity 

inducing process. For the study of serious psychiatric ADR, a list of marketed 

drugs causing serious psychiatric ADRs was compiled, from which it was 

observed that the majority of such drugs are used to treat non-neurological and 

mental disorders. This information will be of interest for other clinical 

professional doing research about psychiatric disorders. Most importantly, all 

these models are not only important for the risk assessment and safety 

investigation of chemical compounds as general QSAR models, they are also 
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potentially useful for both clinical and regulatory setting to provide additional 

information regarding possible risks of drugs. This will enable clinicians and 

regulators to more closely monitor drugs with possible ADRs and thus potentially 

reducing the potential harm of the drugs to patients. In the clinical setting, these 

models can help to identify newly marketed drugs with the potential to cause the 

related ADRs. This will enable clinicians to better evaluate whether such drugs 

should be used in patients with the ADRs. Clinicians and patients will also be 

forewarned to actively look out for such ADRs and thus potentially reduce the 

potential harm to the patient. For regulatory work, the model could help 

regulatory professions better understand the potential risks of a new drug. This 

additional information can then be viewed in the context of other risks and 

benefits of the drug to aid in the drug approval process or risk management of a 

drug.  For the integrative model for nephrotoxicity, with the development of the 

gene profiling technologies, there is a great opportunity to employ TGX method 

for assessment of preclinical safety and understanding of underlying mechanisms 

by establishing the relationship of gene expression profile information with the 

biological properties for a group of compounds, as well as to identify the effective 

biomarkers important for target properties. 

  

 

 

 

 

 

 

 

 

 

 

 



131 

 

 

 

 

Part IV Development of Tools 

 

 

 

 

 

 

 

 

 

 



132 

 

Chapter 9 Tool for model deployment 

This chapter is to address the last issue of the QSAR workflow, the lack of 

independent tool for model deployment. A software program, PaDEL-

DDPredictor was developed for rapid prediction of calculate pharmacodynamics, 

pharmacokinetics and toxicological properties (PD-PK-T) of compounds from 

their structures. It is completely free and open-source, has both graphical user 

interface and command line interface, can work on all major platforms (Windows, 

Linux, MacOS) and supports more than 90 different molecular file formats. The 

molecular descriptors are calculated by the PaDEL-Descriptor plug-in and the 

corresponding endpoints of the compounds are predicted and output in a result 

file.The software can be downloaded from 

http://padel.nus.edu.sg/software/padelddpredictor.   

9.1. Introduction 

The term PD-PK-T is used to express the overall profiling of 

pharmacodynamics, pharmacokinetic properties and toxic effects of a substance. 

The determination of the PD-PK-T, especially PK-T properties (commonly 

abbreviated as ADMET) plays an important role in the drug design process. It is 

reported that poor ADMET properties contribute for the failure of about 60% of 

NCE in the clinical stages [3]. Currently, many QSAR models for prediction of 

ADMET properties are published in the scientific literature every year [250]. The 

original purpose for the development of all these models is to perform predictions 

for new data. However, not all of them are suitable for such applications. This is 

because the models may not always fully conform to the validation principles for 

QSAR models laid out by OECD [37]. In addition, for most models, a publication 

usually means the end of their life cycle and very few of them could actually be 

reused due to lack of development of user-friendly tools. Thus, after putting 

substantial efforts in data collection, model development and preparation for 

publication, it is hard to put these models into practical use to benefit larger 

population [44]. Therefore, to address the above problems, development of tools 

which provide well validated models with ease of use is necessary.  

http://padel.nus.edu.sg/software/padelddpredictor
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 Nowadays there are many commercial or free in silico tools for predicting 

various physicochemical properties, toxicological endpoints and other biological 

effects of chemical compounds. Comprehensive lists of in silico tools are 

available in review articles [4, 251, 252]. Different tools have different driving 

sources, development structures and functional specialties. They originate from 

different sources, including commercial companies and academic institutions. 

They are developed as standalone software for use on personal computers or as 

server-client applications for online modeling. They are based on either expert 

systems or statistical modeling for prediction approaches. Some of them predict 

only one specific endpoint, while others predict multiple properties. Some are 

even extendable, allowing the user to develop new models or include new 

information. Some of them are developed mainly or solely for the PD-PK-T 

predictions while others are integrated software which had the function as one of 

their features. Nevertheless, among all these software, very few of them are freely 

available with all datasets, models and source code, which restricts the 

independent validation of the models. Free and open source tools allows users to 

download a program directly and are easily customizable without any license fees, 

so they are more preferred by some users [253].  

Table 9.1 lists some common free and/or open-source software or 

platforms for PD-PK-T predictions and their corresponding characteristics. Some 

of them have been used by a large number of users and even for regulatory 

purposes. However, there are still several limitations for these tools. We proposed 

that a good PD-PK-T property prediction tool should possess most of the 

following features: 

 

1. Availability: free and open-source so that it is available for all interested 

users. 

2. User-friendliness: provide both graphical user interface (GUI) for easy 

usage and a command line interface to allow the software to run in 

computer clusters through a software job scheduler.  
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3. Compatibility: able to work on multiple platforms (e.g. Windows, Mac OS, 

Linux, etc.) and accepts multiple molecular file formats (e.g. MDL MOL, 

SMILES, PDB, etc). 

4. Flexibility:  users should be able to develop their own models using their 

own modeling procedures. 

5. Stability: models should be stable across multiple versions of the software 

and older models should coexist with newer models of the same endpoint 

to facilitate independent comparison. 

6. Reliability: well developed and validated models with diverse endpoints 

and reliable performance  

  

It can be concluded that none of the currently available in silico tools in Table 9.1 

possesses all these features. Therefore, a completely free and open-source 

software package which is dedicated for PD-PK-T predictions is developed in this 

study. All the datasets, and models are made available online and all the models 

fulfill the OECD requirements.  
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Table 9.1 Free and/or open-source in silico tools for prediction of ADMET properties.  

Name 

Type Interface 

Multiplatform 

Multiple 

compounds 

format 

Number of 

properties 

predicted 

URL 
Online Offline GUI 

Command 

line 

PaDEL-DDPredictor 
 

√ √ √ √ √ 10 
http://padel.nus.edu.sg/software/padeldd

predictor/ 

CEASAR [254] √  √  √ √ 5 http://www.caesar-project.eu/software/ 

CHEMBENCH [255] √  √  √  14
*
 http://chembench.mml.unc.edu/ 

CORrelation And Logic 

(CORAL) [256]  
√ √    7 http://www.insilico.eu/coral/ 

DemQSAR [257] √ √ √  √  2 
http://agknapp.chemie.fu-

berlin.de/dempred/ 

EPI Suite [258] 
 

√ √   √ 17 
http://www.epa.gov/opptintr/exposure/p

ubs/episuite.htm 

Lazar √  √  √ √ 4 http://lazar.in-silico.de/predict 

OCHEM [44] √  √  √ √ 6
*
 http://ochem.eu/home/show.do 

OncoLogic™ [259] 
 

√ √   √ 1 
http://www.epa.gov/oppt/sf/pubs/oncolo

gic.htm 

PASSonline [260] √  √  √ √ 8 
http://www.pharmaexpert.ru/PASSOnlin

e/index.php 

T.E.S.T. [261] 
 

√ √  √ √ 14 
http://www.epa.gov/nrmrl/std/qsar/qsar.

html#TEST 

The OECD QSAR 

Toolbox 
√ √ √  √ √ 7 www.qsartoolbox.org 

Toxtree [262] √ √ √  √ √ 7 http://toxtree.sourceforge.net/ 

VirtualToxLab [263] √  √  √ √ 3 www.biograf.ch  

* 
The online platforms provide sharing of models among users so the exact number of properties is user-specific. (Accessed at 17 Aug 2012)

http://www.biograf.ch/
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9.2. Materials and methods 

9.2.1. Design choices 

 In order to produce a tool for PD-PK-T predictions that is free and open 

source, we had decided to use only freely available software or libraries. 

Commercial software or libraries were avoided unless they allow free 

redistribution, like the JIDE packages which support open source software [264]. 

Although it is attractive to produce an online application as it has the advantage of 

no maintenance for the users, some users may not be comfortable or willing to 

submit their compounds to online servers for processing. In addition, online 

software may have down times due to maintenance or server overload issues, 

which will lead to frustrations for the users. Hence, we decided to develop a 

standalone application instead. We chose Java as the development language for 

the software because it is widely available for multiple platforms (e.g. Windows, 

Mac OS, Linux, etc). Since the software is intended for use by users who may or 

may not be familiar with computers and/or modeling, a user friendly GUI was 

created using JIDE components to allow most users to interact easily with the 

software. For advanced users who wish to run the software using computer 

clusters, we also created a command line interface to facilitate this. 

 Software for PD-PK-T predictions will require two major components. 

The first is a descriptor calculation component to calculate chemical descriptors 

for the components. This component is necessary to facilitate ease of use by the 

users. Otherwise, the users will have to calculate their own descriptors, which 

may be inconvenient or impossible due to the lack of the appropriate descriptor 

calculation software. One reason why many published models were not usable is 

because the descriptor software may not be available for the users. The second 

component is a modeling platform, which will facilitate the use of the models on 

the compounds provided by the users. 

 In our PD-PK-T software, PaDEL-Descriptor, which was developed in our 

laboratory, was chosen as the descriptor calculation component. PaDEL-
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Descriptor is freely available open source software to calculate chemical 

descriptors and fingerprints. Currently, it can calculate 905 descriptors and 10 

types of fingerprints. This choice of the descriptor software is a debatable issue. 

Although a popular choice for descriptor software among PD-PK-T modelers is 

DRAGON, it is commercial software and thus is not freely available [265]. This 

prevents the use of DRAGON in our software as we do not have the license to 

redistribute it with the PD-PK-T software. Among the free descriptor calculation 

software, PaDEL-Descriptor is the best choice because it has a user-friendly 

interface and can run on all major platforms, which makes it easy for modelers to 

calculate descriptors during their model development. It can also calculate a large 

set of descriptors and fingerprints, and is designed to be easily integrated into 

other software.  

 For the modeling platform, open source software RapidMiner was used to 

provide flexibility for the users to develop their own models using their own 

modeling procedures [150]. RapidMiner is a Java-based, freely available open 

source data mining and analysis system. It contains many algorithms for data 

preparation, modeling and validation and is integrated with the machine learning 

library WEKA [266]. It also has a simple extension mechanism which allows 

users to add in their own algorithms. Hence, we believe most users would be able 

to replicate their modeling procedure inside RapidMiner.  

  A potential problem with PD-PK-T models is that with updates in the 

descriptor calculation software or modeling platform, the predictions for some 

compounds may change due to changes in either descriptor values or modeling 

algorithm. Although some of these software updates may be to fix bugs in earlier 

versions, such changes will result in inconsistency in the predictions provided by 

the models. Hence, to address this issue of model stability, multiple versions of 

PaDEL-Descriptor and RapidMiner in our PD-PK-T software are necessary. Both 

PaDEL-Descriptor and RapidMiner will be modified into single jar files so that 

they can act as plugins with different versions made available. This will allow 

models to be able to consistently use the same versions which they were 
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developed with, regardless of software updates to PaDEL-Descriptor, RapidMiner 

and/or our PD-PK-T software. 

9.2.2. Implementation details 

 Since it is possible for the user to select several PD-PK-T properties to be 

predicted for the compounds, prediction of the properties will be performed in 

parallel by using a Master/Worker pattern, which consists of a Master thread and 

one or more worker threads. The advantage of the Master/Worker pattern is that it 

makes efficient use of the multiple CPU cores that are present in most modern 

computers to speed up the calculation of chemical descriptors and the prediction 

process. The Master thread starts the calculation process by determining the PD-

PK-T properties to be predicted and creates a job description for each property. A 

job description consists of the property to be predicted, the correct versions of 

PaDEL-Descriptor and RapidMiner to use for the prediction, the structures of the 

compounds and the types of descriptors and fingerprints to calculate. The jobs are 

added to a shared job queue and each worker thread will retrieve a job from the 

shared queue. The worker thread will check the job description and use the correct 

version of PaDEL-Descriptor to calculate the necessary chemical descriptors. The 

calculated descriptors will then be sent to the correct version of RapidMiner to 

apply the model on the compounds to get the predicted property values. All the 

predicted property values from the various worker threads are then placed in a 

shared results queue where it will be retrieved by the Master thread to be stored in 

a results file in comma-separated value (CSV) format. The first row of the results 

file is the header row, which provides a description of the various columns. 

Subsequent rows will contain the predicted PD-PK-T properties for one 

compound per row. The first column is the compound's name, which is either 

obtained either from the structural file or autogenerated (will be prefixed with 

AUTOGEN_ followed by the file name). Subsequent columns are the PD-PK-T 

properties for the compounds. 

The GUI, which is shown in and Figure 9.1 and Figure 9.2, was 

implemented using property sheets style. There is a “Settings” page (Figure 9.1) 
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which allows the user to easily provide the location where the structures of the 

compounds are stored and the location where the results file should be stored. 

There is also a “Models” page (Figure 9.2), which allows the user to easily 

manage the various PD-PK-T models, such as checking for new models, installing 

new models or uninstalling existing models, viewing their properties, providing 

links to online resources which provide more detailed description of the models, 

and selecting them for properties prediction. The models are grouped according to 

their type of property (i.e. pharmacodynamic, pharmacokinetic and toxicity). The 

list of models is also sortable, which will help to users to find the desired 

properties. All the file locations and selection of models can be saved to a 

configuration file, which can be used to configure the software automatically or 

manually when the software is run the next time. This configuration file will also 

be used by the command line interface to automate the software in a computer 

cluster environment. 
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Figure 9.1 Screenshot of PaDEL-DDPredictor interface: Setting page 



141 

 

Figure 9.2 Screenshot of PaDEL-DDPredictor interface: Models page 

Only a single argument is required for the command line interface, which 

is the location of the configuration file. This feature allows our PD-PK-T software 

to be used in computer clusters where users have to submit jobs through a 

software job scheduler.  
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9.2.3. Experiment 

To have a general overview of the computation time of the software, experiments 

for determining the computation time of predictions on available models were 

performed on a Dell Acer Veriton M670G system with two Intel Core 2 Quad 

Q9550 2.83 GHz processors and 8GB RAM. A total of 1000 compounds with 

median molecular weight of 199 (range 83–253) were used for the descriptor 

calculations. Four available models were applied individually and then together 

and the corresponding computation time for five experiments is shown in Figure 

9.3.  

 

Figure 9.3 Computation time of prediction on 1000 compounds. 

9.3. Results and discussion 

9.3.1. Currently available models 

 In this work, a software program PaDEL-DDPredictor,  was designed and 

developed for the prediction of PD-PK-T properties of compounds. The software, 

currently contains 10 models for different PD-PK-T properties: (1) influenza virus 

neuraminidase N1 inhibitors [267]; (2) human pancreatic cancer cell (PaCa2) 

cellular uptake [268]; (3) human hepatotoxicity [40];  (4) reactive metabolite 

formation [269], (5) Severe skin disorder (SJS/TEN) [88], (6) Torsade de Pointes 
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[89],  (7) Serious eye irritation, (8) Serious eye damage, (9) Skin irritation and (10) 

Eye/Skin corrosion [270]. Among all the models, two PKPD properties were 

covered in PaDEL-DDPredictor, including the human pancreatic cancer cell 

(PaCa2) cellular uptake of nanoparticles and influenza virus neuraminidase N1 

inhibition [267]. The remaining eight models are for different toxic endpoints. 

The general information of the performance of the models is shown in Table 9.2. 

The one-page online summary is organized under five sections: Endpoint, 

Algorithm, Applicability domain, Model performance, and Model outputs. The 

first four sections are to provide information about the model based on OECD 

guidelines and the last section is to help the user to understand the values given in 

the results file. The detailed methods of the model development and validation 

could be obtained from corresponding publication. 

Table 9.2 Information of methods used for the development of available models 

in PaDEL-DDPredictor. 

Model 

Training set 

(No. of 

compounds) 

Training Performance Validation Performance 

SE (%) SP (%) SE (%) SP (%) 

Paca2uptake 105 98.2 76.6 86.7 67.3 

Neuroinimidase 1190 97.7 99.5 88.2 99.2 

Reactive 

Metabolites 
1479 67.4 93.4 70.1 ± 5.5 91.4 ± 2.2 

Hepatotoxicity 1087 91.9 81.1 

84.5 65.1 

95.0 66.7 

75.0 33.3 

Severe skin 

disorder 

(SJS/TEN) 

396 83.4 65.9 80.9 63.8 

Cardiotoxicity 

(TdP) 
260 88.9 92.8 78.4 90 

Serious eye 

irritation 
1707 100 90.6 56.4 82.4 

Serious eye 

damage 
1707 96.9 83.9 60.9 79.2 

Skin irritation 1707 94.3 84.7 55.2 82.9 

Eye/Skin 

corrosion 
1707 100 90.4 81 88.3 
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Another three models will be released after they have completed the peer-review 

process. These include properties such as c-jun N-terminal kinases (JNK) 

inhibitors, serious psychiatric ADR and nephrotoxicity. 

9.3.2. Comparison with other in silico PD-PK-T tools 

PaDEL-DDPredictor is a free and open-source software program 

dedicated for PD-PK-T predictions. Therefore, we only compare it with other 

similar open-access and dedicated software instead of commercial or general drug 

discovery software with physiochemical activity or toxicity prediction as an 

integrated feature. Compared to other in silico tools, PaDEL-DDPredictor are 

more advantageous in the following aspects.  

Firstly, it is completely free and open-source for all users, irrespectively of 

whether they are academic, government, commercial or personal users. For the 

tools listed in Table 9.1, not all the datasets, models or source codes are free to all 

users. Some of them could only be accessed through online platform so the 

models could be used online but not offline. Some only provide limited access of 

the models, datasets and source codes for the public version. And some are only 

free to registered or specific group of users. For PaDEL-DDPredictor, all the 

models and source code could be downloaded without any restrictions, which 

could increase the availability of the software to users. This also allows users to 

freely inspect the code and modify it to suit their needs. Moreover, this could 

potentially improve the detection of bugs and increase the number of features in 

the software.  

Secondly, PaDEL-DDPredictor provides both user-friendly GUI and 

command line interfaces. Although almost all the free and/or open-source 

software packages have a GUI, none of them have a command line interface. The 

command line interface is important as some users may wish to speed up the 

predictions, especially for large datasets, by running the software in computer 

clusters through a software job scheduler. In the GUI of the software, the settings 

of configurations could be saved in an XML file. This XML file can then be used 

in the command line version and to run the prediction on any computers clusters 
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where users have to submit jobs through a software job scheduler. This function 

allows users to use the software on computer systems without GUI option and 

also fully utilize available computer resources by submitting commands. 

Thirdly, PaDEL-DDPredictor is multithreaded so the speed for prediction 

of properties is fast. The Master/Worker pattern separates the prediction of 

different properties into different threads, thus speed up the calculations. This is in 

addition to the multithreaded PaDEL-Descriptor which is used for the descriptor 

calculations. Generally, the amount of speedup increases with the number of 

worker threads used.  

The fourth advantage of PaDEL-DDPredictor is that it supports multiple 

platforms and multiple molecular file formats. It can work on any platform that 

supports Java, which includes the three major platforms, Windows, MacOS, and 

Linux, unlike some standalone software, which supports either one or two 

platforms only. It also supports more than 90 different molecular file formats 

while some other software restricted to only MDL SDF and SMILES format. The 

ability to support more file formats will remove the extra conversion step that 

users need to do when their molecular files are not in the desired format.  

The fifth advantage is model stability. Different versions of PaDEL-

Descriptor and RapidMiner were created as plugins to PaDEL-DDPredictor. This 

allows PaDEL-DDPredictor to use the correct version of corresponding software 

for each model. This prevents possible changes in the predictions provided by the 

models due to updates in PaDEL-Descriptor or RapidMiner. Usually, for some 

PD-PK-T prediction tools, the models will be constructed using external 

commercial or open-source packages. When these packages are updated, the 

software or platforms need to synchronize the updates, so the models developed 

based on older versions either could not be used anymore or the performances 

might be altered.  

Lastly, models in PaDEL-DDPredictor could be created and customized 

by users. Besides the existing models provided by PaDEL-DDPredictor, users 

could choose to use integrate their own models into the application. Some 

software packages or online platforms provide a standard protocol to allow users 
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to develop models using their own datasets, which is fast and convenient for 

general needs. However, some users may wish to use their own protocols for 

model development or to add in some specific component for their models. 

PaDEL-DDPredictor does not restrict the modeling protocol so users could 

develop their own models using any protocols. The only restriction is that the 

protocol must be developed using RapidMiner and the chemical descriptors must 

be calculated using PaDEL-Descriptor. However, both software packages are free 

and open-source so they are readily available. Once users have developed their 

own models, they can easily add them to PaDEL-DDPredictor. Since PaDEL-

DDPredictor is a standalone computer program, the models created by the users 

can remain private for their own use, or they could share them with other people 

by publishing their models for others to download.  

9.3.3. Experiments for computation time 

The results in Figure 9.3 show that the computation time is less than 100 

seconds for all models except the hepatotoxicity model which took more than 4 

minutes. Considering the complexity of the models, the speed is acceptable. The 

computation time for four models together is approximately the sum of the time 

for four models. Hepatotoxicity model took longer time than the other three 

models might be because there are 617 models in the final ensemble model while 

there are only 5, 10 and 13 models in the final models for the other three 

endpoints respectively, so more time is needed to read the models and to do 

prediction. The computation time of the models depends on the number of 

compounds, the number of base models in the final model and the processing 

speed of computer. Prediction of a small number of compounds using a simpler 

model will significantly reduce the computation time. 

9.4. Conclusion 

 A software program, PaDEL-DDPredictor, was developed for rapid 

prediction of PD-PK-T properties. It is more advantageous than other similar 

software programs. It is completely free and open-source, with the combination of 

free descriptor calculation software PaDEL-Descriptor and the data mining 
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software RapidMiner. It provides both GUI and command line options for the 

ease of use of both computational experts and new users. In addition of its 

potential in application of the QSAR models available, it is also hoped that, there 

will be users who are willing to contribute to this effort of making their models 

available in PaDEL-DDPredictor to benefit more people.  
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Chapter 10 Conclusions 

In this thesis, various strategies have been investigated to improve the 

development and application of QSAR models. Their applications on QSAR 

related studies for the prediction of three types of ADRs and one toxicity endpoint 

have demonstrated the advantages and potential of these methods. Besides, the 

QSAR models developed throughout the studies are useful for the determination 

of the drug candidates’ potential to cause specific ADR or toxicity. Lastly, a 

software program was developed for the future application of the models. This 

last chapter summarizes the major findings and contributions of this study. 

Limitations of the study and potential future studies are also discussed.  

10.1.  Major findings and contributions 

10.1.1. Findings of methods 

Several computational methods have been developed or improved to facilitate the 

development of QSAR models. The exploration of OCC methods described in 

Chapter 3 addressed the problem when negative data is not available. The 

application of the methods in real studies for three types of ADRs produced 

promising results. Therefore, it is of significant potential for modeling studies 

when the negative data is not available or difficult to obtain. The addition of the 

biological information in the nephrotoxicity in Chapter 4 demonstrated the 

potential of adding TGX information to improve the performance of QSAR 

models of using chemical information only. The exploratory study demonstrated 

the advantage of using additional genomic or general biological descriptors to 

QSAR studies given the information is available. The double threshold method 

applied in Chapter 5 offered an efficient and reliable solution for AD estimation 

for classification models. It could be applied on classification problems not only 

in QSAR studies but the general predictive modeling other than pharmaceutical 

area. The DisEnsemble and genetic algorithm methods introduced in Chapter 6 

provided solutions for efficient multiple model selection for ensemble QSAR 

model. The DisEnsemble method is more suitable for large scale problems when 
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there are a large number of the candidate models because of its efficiency. Lastly, 

the model evaluation method developed in Chapter 7 gave an option to generate 

reliable and comprehensive performance profile for QSAR models.  

10.1.2. Findings of models 

Four models for three types of ADR and one toxicity were developed using 

methods from Chapter 3 to Chapter 6 and the information of the final models 

were presented together in Chapter 8. All of them were well validated and are 

applicable for prediction of the given endpoints for new compounds given the 

required information. The models developed for TdP, SJS/TEN and serious 

psychiatric ADR are amongst the first to address the rare and/or serious ADRs 

that have not been paid sufficient attention before. They could be used to 

determine the potential of drug candidates for causing these ADRs and help the 

decision making process for clinicians and regulatory professionals. The 

categorization of the ATC classes for serious psychiatric ADR-inducing drugs 

presented another angle to investigate the distribution of the drugs other than from 

chemical structures. The information will be of interest for clinical experts. The 

nephrotoxicity model could be used for nephrotoxicity assessment and screening 

much earlier before the observation of the onset via conventional clinical 

histopathology methods. The identified important gene signatures and chemical 

descriptors are potentially useful for predictive biomarkers for the drug-induced 

renal tubular toxicity as well as the understanding of the drug action and 

mechanisms. 

10.1.3. Findings of tools 

The open source tool PaDEL-DDPredictor was developed for QSAR model 

application. Based on our information this is the first completely free and open 

source tool for PD-PK-T properties prediction. It successfully integrated the free 

molecular descriptor software PaDEL-Descriptor and the data mining software 

RapidMiner and has many advantages over other similar tools. There are ten peer 

reviewed models available for prediction now and more will be provided to cover 

a wide range of ADMET properties. With this tool, users could prepare their 
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compounds and then use the available models to obtain the prediction results for 

the endpoints of interest for analysis in a convenient and efficient manner. 

10.2.  Limitations and suggestions for future studies 

10.2.1. Limitations and suggestions of data  

The first limitation in this study is the selection criteria for negative drugs. The 

two criteria that the drug must be in market for at least 30 years and used for the 

treatment of common diseases, were used to select the drugs that has been used in 

a large number of population, so as to minimize the possibility that the drug could 

be potential positives. Since actual drug usage data is not readily available, the 

use of these two criteria is a reasonable substitute. However, it is possible for a 

drug to fulfil these two criteria and yet is not used in a large number of patients. 

This problem could arise for drugs which are not the drug of choice but are used 

as second or third-line treatment. Hence more information should be included for 

the selection criteria of “negative” data.  

 For computational toxicities studies, including integrative QSAR&TGX 

study, the major bottle neck is the limited availability of data. Although a public 

genomic data was used for the nephrotoxicity study in this work, there are very 

limited toxicity data, especially human toxicogenomics data. With the 

development of “omics” technology in life sciences area and the generation of 

high-throughput omics data, integrative study with other biological data is highly 

desirable. Fortunately, there are more and more toxicity related datasets and 

databases released to public recently, so future toxicities studies could consider to 

use integrative approaches instead of QSAR alone. Besides the omics information, 

other biological information and even clinical data could also be considered to 

increase the information used to train and to interpret the model. 

10.2.2. Limitations and suggestions of methods 

Different strategies were proposed in this thesis while not of all them were 

explored in depth due to lack of relevant resource and limited time. Although they 

have demonstrated to be able to produce promising result either via the QSAR 
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studies or through some designed experiments using benchmark or simulated 

datasets, they still could not be claimed as superior than all of the other methods 

without rigorous comparative studies. 

 For the DT method used for determination of AD, the major limitation is it 

is only applicable for classification problems, not for regressions problems which 

are popular for QSAR studies. Moreover, although the theory for the DT method 

has been proved empirically and theoretically by the original developer, it has not 

been compared with other AD methods used for QSAR studies. The comparison 

of different AD methods is difficult because the concepts and methods are 

different. It is hopeful that a more intensive and systematic study could be carried 

out to compare these methods in a fair and efficient manner in the future. Lastly, 

the simple majority voting method was used to determine the AD of ensemble 

models, a more systematic method should be developed for ensemble AD 

determination.  

 For the model selection methods for ensemble modeling, they are fast and 

could produce a good subset of models to produce ensemble model with better 

performance than the best performing model. Nevertheless, the resulted subset of 

models is not guaranteed to be the optimal solution for the model pool. 

Generation of an optimal solution will become computationally intensive when 

there are a large number of base models while the margin for performance 

improvement might not be significant. Future study could be applying these 

methods on studies with large model pool and comparing with other available 

model selection methods. For the DisEnsemble method, the disagreement value 

was selected as the diversity measurement. However, there are other more 

sophisticated measurements available, which could be explored in future studies.  

 For the model evaluation method, some interesting result was obtained 

whereas it is not enough to make a confirmatory conclusion that the advantage of 

ADVal method is more significant than RS and CV. Moreover, the method is 

more suitable for large dataset that can produce a proper discretization of bins, so 

it was not applicable for the ADR and toxicity studies in this work. Future studies 
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could be exploration of new AD determination method other than probability 

density method as well as applying the ADVal method on different types of 

predictive modeling studies such as regression problems. 

10.2.3. Limitations and suggestions of models  

Models for three types of ADRs and one toxicity endpoint were developed in this 

work, however it is important to understand that they have inherent limitations so 

that the information that they provide should be evaluated in the right context.  

For all models, they are more suitable for general assessment as complementary 

methods, not for mechanisms interpretation solely. The other limitations and 

suggestions for future studies are presented in details as below. 

 Firstly, the performances of the QSAR models in this study are limited. 

The performance such as accuracy, sensitivity and specificity of all the QSAR 

models are around 60% to 80% which is relatively lower than some well-studied 

toxicities. Machine learning methods depend highly on the diversity of samples 

and the appropriateness of features. However the sizes of the dataset used in this 

work are generally small and mechanisms of the endpoints are complex so the 

datasets used in this work could not fully represent the SARs. All these factors 

affect the prediction performance of the models.  

Secondly, the applicability of the QSAR models is limited. For all the 

QSAR models in this study, due to the limitation of the software used to calculate 

the molecular descriptors of the compounds, compounds with contain inorganic 

atoms, are peptides or with molecular weight greater than 5,000 cannot be 

predicted using these models. Moreover, the models are not able to identify which 

patients will experience the serious ADRs. The models are also not able to 

provide the incidence rates of causing the serious ADRs for a drug candidate. In 

order to achieve these, information about a patient and the incidence rates for 

existing drugs will need to be available during the model development. 

Unfortunately, such information is not easily obtainable and thus not available in 

this study. In addition, for models for serious psychiatric ADRs, it identified 
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drugs with potential to cause any of the seven serious psychiatric ADRs modelled 

in this study. Other serious psychiatric ADRs were not modelled and thus will not 

be predictable by the model. The model is also unable to identify which of the 

seven serious psychiatric ADRs may be caused by a drug. For the production of 

nephrotoxicity model, it is more used as an exploratory study of the integrative 

QSAR and TGX method. The QSAR model developed in the study could be used 

as other QSAR models for toxicities while the TGX related models should be 

used with care since extra experiment is needed to obtain the genomic information. 

 For future work, many more endpoints can be explored to produce a 

comprehensive ADR/toxicity profile such as drug-induced blood disorders, drug-

induced musculoskeletal disorders etc. For the model for serious psychiatric 

ADRs, in order to overcome the aforementioned limitations, future studies will 

need to develop models for a single serious psychiatric ADR only such as 

depression, suicide thoughts etc. For all of the models for ADRs in this work, they 

could be updated with new training data or validated with additional data when 

new information becomes available. For nephrotoxicity model, the selected 

transcripts could be further examined to identify a predictive set of biomarkers. 

Moreover, methods such as gene set enrichment analysis could facilitate the 

understanding of the underlying mechanism associated with the toxicity.  

10.2.4. Limitations and suggestions about tools 

Currently there are ten models available for ten types of PD-PK-T properties in 

PaDEL-DDPredictor. Scientists have proposed a set of ADMET endpoints 

required in drug discovery including the primary models and the secondary 

models depending on the mechanism of the endpoints [271]. However, not all of 

them are available in PaDEL-DDPredictor yet due to either lack of good 

experimental data or limitation of time. These will be made available in the future. 

 For the software, future upgrades might provide options for users to easily 

contribute and share their datasets and models with one another. Such sharing 

system has become a trend in the construction of various bioinformatics and 
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cheminformatics tools. This would fully utilize the resources and maximize the 

benefits of all users. 
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Appendix 
Table 1 Detailed performance profile of AM, PC, MGIC data with SVM 

modeling method.  

 

(a) Performance profile of AM dataset. 

 

    Testing performance Validation performance 

Iteration Bin AUC SE(%) SP(%) AUC SE(%) SP(%) 

0 1 0.583 83.3 50.0 0.796 73.0 71.9 

1 1 0.000 100.0 0.0 0.673 92.3 32.7 

2 1 0.400 100.0 25.0 0.711 69.3 56.9 

3 1 0.725 80.0 25.0 0.725 71.4 65.7 

4 1 0.500 25.0 50.0 0.699 84.3 42.4 

5 1 0.900 100.0 50.0 0.597 83.8 31.7 

6 1 0.476 100.0 16.7 0.817 77.8 68.9 

7 1 0.786 71.4 50.0 0.648 93.2 21.7 

8 1 0.278 50.0 33.3 0.697 75.3 51.6 

9 1 0.600 60.0 16.7 0.660 69.9 41.3 

10 1 1.000 100.0 0.0 0.698 74.8 54.5 

11 1 0.917 75.0 66.7 0.737 80.4 51.2 

12 1 0.455 81.8 0.0 0.729 87.7 40.2 

13 1 0.375 75.0 28.6 0.747 91.0 39.6 

14 1 1.000 90.9 100.0 0.725 89.5 41.2 

15 1 0.556 66.7 66.7 0.797 78.3 61.3 

16 1 0.781 100.0 50.0 0.666 90.7 29.7 

17 1 0.688 100.0 50.0 0.740 90.0 43.4 

18 1 0.607 87.5 28.6 0.655 61.6 58.4 

19 1 0.800 100.0 20.0 0.694 85.6 38.5 

20 1 0.571 71.4 50.0 0.709 81.3 49.3 

21 1 0.875 87.5 66.7 0.756 79.1 51.0 

22 1 0.650 90.0 0.0 0.678 73.1 56.7 

23 1 0.679 85.7 25.0 0.716 70.8 57.1 

24 1 0.778 83.3 0.0 0.648 68.5 51.2 

25 1 0.438 37.5 50.0 0.733 74.2 57.1 

26 1 0.667 75.0 66.7 0.758 79.7 44.4 

27 1 0.486 57.1 20.0 0.723 80.0 58.1 

28 1 0.650 75.0 60.0 0.684 81.0 30.0 

29 1 0.556 66.7 33.3 0.759 67.1 67.1 

0 6 1.000 100.0 100.0 0.667 60.0 65.5 

1 6 1.000 100.0 0.0 0.694 90.6 46.7 

3 6 - 100.0 - 0.806 52.4 85.7 

4 6 1.000 100.0 100.0 0.709 59.2 66.7 
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5 6 0.750 75.0 100.0 0.643 74.3 50.0 

6 6 1.000 100.0 100.0 0.514 52.6 60.0 

7 6 - 100.0 - 0.723 77.4 73.3 

8 6 - - 100.0 0.785 62.2 78.6 

9 6 0.125 0.0 50.0 0.591 44.1 52.2 

10 6 0.000 0.0 0.0 0.765 49.1 81.8 

11 6 0.556 33.3 66.7 0.720 67.5 74.1 

12 6 0.667 77.8 50.0 0.601 50.0 62.7 

13 6 1.000 100.0 100.0 0.710 85.0 37.0 

14 6 - 100.0 - 0.618 65.4 60.5 

15 6 0.700 40.0 50.0 0.646 55.9 65.1 

16 6 - 75.0 - 0.544 56.8 48.3 

17 6 0.500 25.0 50.0 0.579 81.6 25.0 

19 6 0.500 50.0 33.3 0.766 60.7 76.5 

20 6 0.500 0.0 100.0 0.588 48.9 55.4 

21 6 0.000 0.0 66.7 0.692 72.1 63.0 

22 6 0.444 33.3 66.7 0.697 52.9 68.6 

23 6 0.500 50.0 66.7 0.709 57.1 76.1 

24 6 0.500 100.0 50.0 0.706 76.7 59.3 

25 6 0.667 0.0 66.7 0.656 70.6 62.5 

26 6 0.333 100.0 0.0 0.781 81.4 66.7 

27 6 0.500 - 100.0 0.606 65.0 50.0 

28 6 1.000 66.7 100.0 0.667 73.6 50.6 

29 6 0.000 100.0 0.0 0.647 55.6 63.4 

3 7 0.656 50.0 75.0 0.663 50.5 67.4 

4 7 0.762 71.4 66.7 0.669 57.7 68.3 

8 7 0.409 63.6 50.0 0.634 59.6 61.9 

9 7 0.667 40.0 66.7 0.694 55.6 67.4 

10 7 0.833 83.3 50.0 0.617 51.8 66.3 

11 7 0.750 40.0 75.0 0.654 59.1 68.2 

12 7 0.361 33.3 33.3 0.728 66.9 66.2 

13 7 0.775 75.0 60.0 0.805 82.7 69.8 

14 7 0.700 100.0 33.3 0.594 63.2 54.8 

15 7 0.833 66.7 50.0 0.685 62.4 65.2 

16 7 0.583 33.3 62.5 0.760 62.7 75.6 

17 7 0.917 83.3 100.0 0.679 81.6 33.3 

19 7 0.691 70.0 63.6 0.662 57.0 56.0 

20 7 0.667 50.0 66.7 0.728 60.2 68.1 

22 7 1.000 75.0 100.0 0.663 58.6 69.3 

23 7 0.429 42.9 28.6 0.753 67.2 72.5 

24 7 0.778 66.7 100.0 0.733 77.3 66.7 

25 7 0.571 0.0 100.0 0.708 56.1 76.7 
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26 7 1.000 66.7 100.0 0.620 63.9 50.6 

28 7 0.691 55.6 66.7 0.710 68.5 62.7 

29 7 0.429 57.1 0.0 0.655 74.8 55.1 

0 8 0.722 55.6 66.7 0.700 58.7 73.6 

1 8 0.625 70.0 50.0 0.662 72.0 51.2 

2 8 0.914 40.0 100.0 0.679 61.9 66.0 

3 8 0.345 42.9 41.7 0.737 53.8 80.0 

4 8 0.704 33.3 83.3 0.724 57.4 75.8 

5 8 0.875 62.5 85.7 0.690 74.2 52.0 

6 8 0.661 71.4 62.5 0.699 61.1 68.7 

7 8 0.688 81.8 56.3 0.731 72.2 64.4 

8 8 0.711 68.8 52.4 0.728 66.8 68.7 

9 8 0.681 55.6 60.0 0.709 59.4 72.1 

10 8 0.673 40.0 81.8 0.721 59.3 75.8 

11 8 0.838 85.7 60.0 0.703 62.7 69.5 

12 8 0.921 76.9 86.1 0.701 54.3 76.0 

13 8 0.882 44.4 93.8 0.654 71.9 54.7 

14 8 0.795 62.5 72.7 0.666 67.8 60.9 

15 8 0.742 54.5 52.6 0.696 61.5 68.4 

16 8 0.540 55.6 64.3 0.706 64.9 65.5 

17 8 0.692 83.3 70.0 0.696 70.6 60.7 

18 8 0.548 16.7 78.6 0.731 58.1 71.4 

19 8 0.708 77.8 62.5 0.719 66.4 69.9 

20 8 0.663 43.8 60.0 0.699 53.1 74.8 

21 8 0.881 71.4 83.3 0.665 62.3 64.1 

22 8 0.776 57.1 78.6 0.713 57.9 75.2 

23 8 0.693 66.7 63.6 0.730 58.0 77.7 

24 8 0.567 90.0 33.3 0.683 67.6 57.7 

25 8 0.649 18.8 83.3 0.680 54.4 69.1 

26 8 0.750 66.7 100.0 0.735 66.9 69.6 

27 8 0.667 33.3 60.0 0.705 55.9 70.3 

28 8 0.698 31.3 94.4 0.735 55.6 76.8 

29 8 0.679 66.7 61.1 0.733 68.2 69.2 

0 9 0.671 60.0 63.9 0.691 59.5 68.2 

1 9 0.707 64.5 60.7 0.678 61.1 61.0 

2 9 0.746 46.2 74.1 0.730 56.7 74.7 

3 9 0.733 65.5 65.9 0.749 42.6 85.0 

4 9 0.852 75.0 83.7 0.758 49.4 83.8 

5 9 0.795 80.6 65.8 0.745 60.3 73.9 

6 9 0.778 65.0 82.5 0.728 52.5 78.4 

7 9 0.795 61.9 75.9 0.708 58.6 69.4 

8 9 0.791 67.9 76.5 0.756 60.4 77.4 

9 9 0.770 51.7 83.7 0.719 60.0 72.6 
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10 9 0.825 61.5 89.5 0.739 52.8 80.2 

11 9 0.781 73.3 69.8 0.727 53.4 76.2 

12 9 0.709 51.6 80.8 0.754 41.5 87.3 

13 9 0.797 33.3 90.2 0.713 64.1 70.2 

14 9 0.691 70.8 65.9 0.738 61.0 72.7 

15 9 0.677 59.4 65.0 0.754 52.2 78.8 

16 9 0.665 42.3 82.5 0.707 62.5 69.0 

17 9 0.606 31.3 71.7 0.735 55.7 76.9 

18 9 0.725 42.9 74.1 0.705 60.1 70.7 

19 9 0.885 71.0 85.1 0.749 58.5 76.8 

20 9 0.769 44.0 89.1 0.732 43.6 83.2 

21 9 0.841 44.0 91.5 0.730 53.4 78.6 

22 9 0.809 64.0 78.0 0.746 48.6 80.0 

23 9 0.669 48.7 73.4 0.764 47.0 82.8 

24 9 0.685 31.8 86.2 0.735 51.0 78.1 

25 9 0.787 47.6 81.1 0.718 44.8 81.5 

26 9 0.817 30.8 91.7 0.767 49.8 82.9 

27 9 0.702 50.0 74.2 0.715 54.0 76.0 

28 9 0.676 33.3 86.3 0.776 43.7 86.9 

29 9 0.656 60.0 70.0 0.757 58.5 79.4 

0 10 0.834 75.7 71.3 0.758 67.3 71.6 

1 10 0.817 72.9 76.9 0.761 65.7 72.8 

2 10 0.683 75.0 57.0 0.748 67.7 69.7 

3 10 0.782 69.8 76.4 0.772 65.8 76.6 

4 10 0.777 74.3 68.6 0.764 77.8 63.7 

5 10 0.678 60.3 67.1 0.771 71.3 70.6 

6 10 0.819 58.2 84.3 0.769 59.9 79.7 

7 10 0.770 69.3 62.4 0.754 74.8 63.8 

8 10 0.710 87.7 47.4 0.786 80.7 60.4 

9 10 0.814 68.8 74.6 0.750 68.3 68.8 

10 10 0.842 89.9 61.9 0.750 74.0 64.0 

11 10 0.746 73.7 61.2 0.758 69.4 69.1 

12 10 0.787 72.1 76.5 0.755 51.2 82.0 

13 10 0.732 63.8 74.6 0.775 56.7 81.4 

14 10 0.716 77.6 57.9 0.762 73.6 64.5 

15 10 0.705 74.1 52.1 0.782 72.6 71.5 

16 10 0.849 80.3 82.5 0.773 71.5 70.7 

17 10 0.665 75.0 55.2 0.770 58.2 80.5 

18 10 0.728 63.0 64.8 0.759 81.2 57.0 

19 10 0.782 79.1 56.4 0.761 71.1 68.4 

20 10 0.752 61.4 73.9 0.766 65.3 72.9 

21 10 0.770 74.0 73.4 0.773 66.5 73.9 

22 10 0.789 80.0 63.5 0.763 68.5 70.7 
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23 10 0.778 77.1 74.3 0.739 67.0 68.2 

24 10 0.797 69.7 74.2 0.748 58.5 76.0 

25 10 0.619 55.6 51.8 0.757 67.8 70.7 

26 10 0.794 36.6 93.4 0.775 52.1 82.8 

27 10 0.741 70.0 76.3 0.763 64.7 74.9 

28 10 0.822 51.0 86.7 0.765 48.7 84.9 

29 10 0.776 71.9 68.4 0.757 72.4 67.0 

 

(b) Performance profile of PC dataset. 

 

  
Testing performance Validation performance 

Iteration Bin AUC SE(%) SP(%) AUC SE(%) SP(%) 

1 3 1.000 100.0 100.0 0.977 95.3 84.3 

6 3 1.000 83.3 100.0 0.992 90.4 94.5 

8 3 1.000 100.0 100.0 0.991 87.6 97.5 

11 3 0.958 75.0 83.3 0.979 93.9 75.0 

13 3 1.000 100.0 100.0 0.991 88.8 96.8 

14 3 1.000 83.3 100.0 0.996 98.8 91.4 

15 3 0.969 100.0 87.5 0.987 90.8 92.4 

17 3 1.000 100.0 100.0 0.983 92.2 93.8 

19 3 1.000 66.7 100.0 0.980 89.7 93.0 

21 3 1.000 83.3 100.0 0.970 82.8 93.7 

23 3 1.000 100.0 71.4 0.989 100.0 85.7 

24 3 1.000 100.0 100.0 0.986 94.7 87.2 

25 3 1.000 100.0 100.0 0.990 100.0 88.9 

26 3 1.000 100.0 100.0 0.984 92.3 92.9 

27 3 1.000 100.0 100.0 0.980 88.9 92.8 

28 3 1.000 85.7 100.0 0.986 94.0 90.7 

29 3 1.000 100.0 100.0 0.991 96.6 90.6 

0 4 1.000 100.0 100.0 0.988 93.0 93.3 

1 4 0.975 80.0 87.5 0.985 97.5 88.5 

2 4 0.971 60.0 100.0 0.990 93.0 93.4 

3 4 0.929 85.7 100.0 0.971 87.4 91.3 

4 4 1.000 100.0 77.8 0.987 93.5 93.6 

5 4 1.000 100.0 66.7 0.982 94.1 89.2 

6 4 1.000 90.9 100.0 0.983 92.5 89.4 

7 4 0.958 100.0 66.7 0.979 91.4 90.4 

8 4 0.975 90.0 91.7 0.989 86.4 96.6 

9 4 0.967 93.3 70.0 0.986 93.9 93.4 

11 4 1.000 100.0 77.8 0.978 94.7 85.7 

12 4 0.990 100.0 90.0 0.971 88.3 89.3 

13 4 1.000 100.0 100.0 0.990 87.6 97.4 
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14 4 1.000 71.4 100.0 0.990 93.9 90.1 

15 4 0.909 72.7 85.7 0.990 93.6 95.1 

16 4 0.972 83.3 100.0 0.982 90.0 86.9 

17 4 1.000 75.0 100.0 0.980 92.3 88.5 

18 4 1.000 100.0 100.0 0.984 83.9 94.5 

19 4 1.000 91.7 100.0 0.982 90.0 92.0 

21 4 1.000 83.3 100.0 0.973 87.2 94.1 

22 4 0.988 88.9 100.0 0.991 90.2 95.5 

23 4 1.000 84.6 100.0 0.991 96.4 91.7 

24 4 1.000 100.0 100.0 0.981 95.2 81.3 

25 4 0.933 77.8 80.0 0.978 90.4 90.6 

26 4 0.978 88.9 100.0 0.981 85.9 96.3 

27 4 0.986 91.7 83.3 0.990 90.0 96.7 

28 4 0.996 94.1 100.0 0.982 91.1 92.7 

29 4 0.972 77.8 87.5 0.988 92.1 93.7 

0 5 0.960 72.2 88.9 0.985 91.3 93.4 

1 5 0.984 100.0 83.3 0.975 95.0 84.8 

2 5 1.000 90.9 100.0 0.983 89.2 94.7 

3 5 0.969 88.9 77.8 0.978 89.8 93.1 

4 5 0.950 83.3 80.0 0.987 89.8 94.6 

5 5 0.964 100.0 81.8 0.981 91.5 89.9 

6 5 0.993 92.9 100.0 0.977 87.6 91.7 

7 5 1.000 100.0 75.0 0.981 90.9 92.3 

8 5 0.927 76.2 86.7 0.985 85.0 95.3 

9 5 0.965 87.5 94.4 0.977 88.4 91.4 

10 5 0.991 90.0 90.9 0.983 92.2 92.4 

11 5 0.944 91.7 66.7 0.973 89.7 87.6 

12 5 1.000 100.0 92.3 0.972 87.2 90.9 

13 5 0.993 100.0 90.9 0.996 94.7 97.8 

14 5 0.969 84.6 86.7 0.984 90.8 92.3 

15 5 0.971 78.9 94.4 0.989 93.2 94.8 

16 5 0.958 100.0 66.7 0.983 90.3 91.1 

17 5 0.986 87.5 88.9 0.980 89.3 92.6 

18 5 0.976 76.9 92.3 0.980 87.6 94.7 

19 5 0.997 100.0 89.5 0.982 89.7 92.8 

20 5 0.977 81.8 100.0 0.992 91.5 97.4 

21 5 0.983 85.0 94.4 0.974 89.5 90.1 

22 5 0.989 90.9 100.0 0.984 87.6 95.0 

23 5 0.991 83.3 94.4 0.985 94.8 87.4 

24 5 0.994 94.7 94.1 0.982 96.9 81.7 

25 5 0.975 89.5 88.2 0.978 93.1 86.4 

26 5 0.921 90.0 85.7 0.972 86.3 90.8 
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27 5 1.000 100.0 100.0 0.986 92.5 94.0 

28 5 0.969 87.5 85.7 0.984 92.8 93.1 

29 5 0.960 86.7 86.7 0.990 94.2 91.2 

0 6 0.985 90.5 94.7 0.982 89.4 92.2 

1 6 0.991 90.5 96.3 0.980 94.7 86.3 

2 6 1.000 83.3 100.0 0.984 90.2 93.9 

3 6 0.978 94.7 94.1 0.978 91.8 89.2 

4 6 0.944 76.9 94.4 0.983 88.4 93.9 

5 6 0.969 86.4 86.4 0.976 91.5 87.0 

6 6 0.988 94.4 92.6 0.973 88.5 88.9 

7 6 0.991 92.3 94.1 0.984 90.4 94.3 

8 6 0.987 96.2 83.3 0.979 86.2 93.0 

9 6 0.983 95.8 86.4 0.977 87.7 91.4 

10 6 0.925 76.5 86.7 0.988 93.1 92.4 

11 6 0.978 85.2 90.0 0.968 90.7 87.1 

12 6 0.969 95.8 89.5 0.965 87.9 87.9 

13 6 0.997 93.8 100.0 0.977 88.1 91.6 

14 6 0.977 92.3 88.2 0.984 92.8 90.7 

15 6 0.955 86.4 89.5 0.983 93.0 89.7 

16 6 0.988 100.0 75.0 0.984 93.4 87.4 

17 6 0.979 94.7 89.3 0.969 88.2 87.1 

18 6 0.934 78.9 75.0 0.980 88.0 92.9 

19 6 0.979 85.7 96.6 0.983 93.2 91.7 

20 6 0.975 89.5 89.7 0.992 94.5 95.4 

21 6 0.974 82.4 94.4 0.975 87.9 90.5 

22 6 1.000 100.0 100.0 0.985 91.7 91.6 

23 6 0.989 100.0 84.2 0.989 96.3 87.2 

24 6 0.947 100.0 75.0 0.977 94.2 85.7 

25 6 0.988 87.5 96.4 0.974 93.9 83.8 

26 6 1.000 100.0 100.0 0.972 83.5 94.0 

27 6 0.934 86.2 75.0 0.983 92.5 91.8 

28 6 0.997 100.0 95.8 0.977 88.8 91.6 

29 6 0.984 92.0 86.4 0.985 91.5 92.2 

0 7 0.984 96.2 92.3 0.973 89.0 91.0 

1 7 0.973 87.5 90.9 0.976 94.4 87.7 

2 7 0.995 95.8 95.8 0.986 93.8 91.0 

3 7 0.980 96.4 85.0 0.970 92.3 84.4 

4 7 0.981 93.1 91.7 0.973 85.0 91.6 

5 7 0.956 100.0 78.9 0.977 92.3 88.6 

6 7 0.942 83.3 89.5 0.976 91.1 87.3 

7 7 1.000 100.0 84.6 0.974 86.7 93.1 

8 7 0.949 92.9 85.7 0.968 88.7 86.8 
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9 7 0.982 95.7 90.9 0.974 89.0 90.1 

10 7 0.930 84.0 81.5 0.973 92.3 85.7 

11 7 0.954 100.0 67.7 0.976 90.5 88.4 

12 7 0.979 88.0 96.0 0.974 91.1 87.3 

13 7 0.974 87.1 89.3 0.970 86.6 89.0 

14 7 0.986 100.0 82.6 0.978 89.1 91.6 

15 7 0.903 76.2 87.5 0.975 90.0 90.9 

16 7 0.950 90.0 80.0 0.984 94.2 88.8 

17 7 0.981 95.0 87.5 0.974 90.5 87.2 

18 7 0.946 100.0 85.0 0.975 87.4 92.0 

19 7 0.977 88.0 95.7 0.976 92.3 87.4 

20 7 0.924 81.5 90.6 0.988 90.2 94.3 

21 7 0.973 92.3 82.6 0.977 92.8 87.2 

22 7 0.977 86.7 93.3 0.974 88.1 90.1 

23 7 0.973 81.8 88.9 0.976 91.0 87.3 

24 7 0.984 88.5 91.7 0.976 93.1 84.9 

25 7 0.972 88.2 89.5 0.976 90.5 87.7 

26 7 0.996 100.0 95.0 0.969 86.6 91.5 

27 7 0.987 100.0 92.9 0.970 88.0 89.8 

28 7 0.988 94.4 91.3 0.966 89.6 87.3 

29 7 0.936 90.0 83.3 0.978 90.5 89.3 

0 8 0.965 81.3 93.8 0.975 91.4 88.5 

1 8 0.937 87.0 77.8 0.978 91.3 90.8 

2 8 0.985 100.0 86.7 0.980 93.0 89.4 

3 8 0.964 84.6 80.8 0.979 94.1 86.9 

4 8 0.993 100.0 81.8 0.964 88.7 86.7 

5 8 0.990 100.0 96.2 0.976 92.7 88.2 

6 8 0.994 100.0 82.4 0.969 90.2 86.2 

7 8 0.969 90.3 87.1 0.977 91.0 90.9 

8 8 0.994 92.9 90.9 0.961 91.3 83.6 

9 8 0.984 93.3 76.5 0.970 93.0 85.5 

10 8 0.984 100.0 90.9 0.979 94.1 87.0 

11 8 0.977 94.1 87.0 0.977 90.9 88.3 

12 8 0.984 86.4 88.2 0.985 93.5 88.5 

13 8 0.993 92.9 90.0 0.962 91.2 85.2 

14 8 0.912 84.2 83.3 0.972 83.9 93.1 

15 8 1.000 100.0 63.6 0.957 89.8 86.8 

16 8 0.955 88.5 84.0 0.977 91.1 89.2 

17 8 0.990 100.0 84.2 0.983 93.0 89.6 

18 8 0.974 100.0 80.0 0.978 91.8 89.6 

19 8 1.000 88.9 100.0 0.969 88.2 87.1 

20 8 0.971 91.4 100.0 0.969 89.5 89.7 
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21 8 0.994 94.4 100.0 0.974 89.7 88.6 

22 8 0.946 81.0 86.7 0.967 89.8 86.3 

23 8 0.969 92.9 81.3 0.969 88.2 88.6 

24 8 0.980 80.0 90.0 0.977 87.6 92.7 

25 8 0.980 90.9 88.9 0.984 88.8 94.6 

26 8 0.953 93.8 75.0 0.978 92.3 86.8 

27 8 0.943 100.0 85.7 0.929 82.3 82.2 

28 8 1.000 88.2 100.0 0.960 90.4 83.9 

29 8 0.937 76.5 84.6 0.967 90.1 86.0 

0 9 1.000 100.0 100.0 0.954 87.6 78.7 

1 9 1.000 75.0 100.0 0.974 84.6 92.1 

2 9 0.973 87.5 78.6 0.962 89.7 85.4 

3 9 0.985 90.0 92.3 0.984 93.9 88.1 

4 9 0.973 90.0 90.9 0.959 95.3 73.1 

5 9 0.987 83.3 92.3 0.972 91.2 85.1 

6 9 0.500 83.3 0.0 0.954 91.5 81.0 

7 9 0.969 87.5 91.7 0.969 88.8 91.9 

9 9 1.000 90.9 100.0 0.973 94.2 82.1 

10 9 0.952 100.0 76.9 0.975 97.6 78.0 

11 9 1.000 83.3 100.0 0.978 90.1 90.0 

12 9 1.000 100.0 100.0 0.989 93.3 91.3 

13 9 0.867 83.3 60.0 0.962 93.4 72.2 

14 9 0.938 85.7 75.0 0.968 84.0 92.0 

15 9 0.971 85.7 100.0 0.924 78.4 85.5 

16 9 0.984 100.0 85.7 0.959 89.0 84.8 

17 9 1.000 75.0 100.0 0.995 97.7 91.3 

18 9 0.978 92.9 93.8 0.975 91.7 86.5 

20 9 0.933 80.0 66.7 0.907 79.6 76.8 

21 9 1.000 100.0 100.0 0.992 91.7 94.0 

22 9 0.964 93.3 73.3 0.952 88.7 81.7 

23 9 1.000 100.0 100.0 0.972 82.4 91.6 

25 9 1.000 100.0 100.0 0.993 93.1 97.3 

26 9 1.000 100.0 100.0 0.983 97.6 78.3 

27 9 1.000 83.3 100.0 0.960 90.0 93.4 

28 9 0.833 83.3 66.7 0.941 89.1 76.6 

29 9 1.000 100.0 87.5 0.973 90.0 87.9 

2 10 0.875 0.8 1.0 0.913 0.8 0.9 

3 10 1.000 1.0 1.0 0.996 1.0 1.0 

10 10 0.889 1.0 0.7 0.983 1.0 0.6 

14 10 1.000 1.0 1.0 0.993 0.9 1.0 

16 10 0.875 0.8 0.5 0.937 0.8 0.9 

18 10 1.000 1.0 1.0 0.989 1.0 0.9 
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29 10 1.000 1.0 0.3 0.997 1.0 0.8 

 

(c) Performance profile of MAGIC dataset 

 

    Testing performance Validation performance 

Iteration Bin AUC SE(%) SP(%) AUC SE(%) SP(%) 

0 5 0.938 81.3 75 0.960 87.3 94.4 

1 5 0.955 63.6 100 0.975 84.2 91.3 

2 5 1.000 78.6 100 0.977 86.5 96.9 

4 5 1.000 92.3 100 0.972 88.7 97.1 

6 5 1.000 84.6 100 0.986 85.5 100 

7 5 1.000 93.8 100 0.959 90.1 85.7 

8 5 1.000 72.2 100 0.982 83 100 

9 5 0.889 77.8 100 0.966 82.8 97 

10 5 1.000 95 100 0.953 88.2 94.4 

11 5 1.000 63.6 100 0.957 75.6 98.2 

16 5 1.000 88.9 100 0.968 84 94.9 

18 5 0.952 76.2 100 0.958 90.3 90.5 

20 5 0.979 93.8 66.7 0.967 82.2 96.7 

21 5 1.000 84.2 100 0.984 88.1 94.3 

22 5 0.905 100 0 0.976 90.8 84.6 

23 5 1.000 83.3 100 0.929 88 87 

24 5 1.000 88.9 100 0.968 84.9 97.7 

26 5 1.000 93.8 100 0.950 92.3 92.9 

27 5 0.952 90.5 100 0.973 87.3 100 

28 5 1.000 100 100 0.959 89 95.5 

29 5 0.923 61.5 100 0.976 75.6 98.4 

0 6 0.983 70 100 0.962 70.4 99 

1 6 0.992 43.8 100 0.953 65.1 96.9 

2 6 0.827 66.7 60 0.948 69.1 95.3 

3 6 0.941 94.1 83.3 0.959 67.9 98.8 

4 6 0.933 60 100 0.935 71.7 95.2 

5 6 1.000 71.4 100 0.953 74.8 96.3 

6 6 0.909 36.4 100 0.939 68.7 94 

7 6 0.917 62.5 100 0.957 73.4 97.3 

8 6 0.988 52.4 100 0.943 64.4 96.3 

9 6 0.867 33.3 100 0.955 59.9 97.2 

10 6 1.000 66.7 100 0.931 66.7 94.9 

11 6 0.933 50 88.9 0.929 43.3 97.6 

12 6 0.986 58.3 100 0.915 65 93.3 

13 6 1.000 66.7 100 0.940 71 95.7 

14 6 1.000 100 100 0.958 80.5 95.7 



196 

 

15 6 1.000 59.1 100 0.940 63.1 94.6 

16 6 1.000 30.8 100 0.954 54.6 98.1 

17 6 1.000 73.3 100 0.953 64.8 97.6 

18 6 1.000 38.5 100 0.953 67.7 96.9 

19 6 1.000 53.8 100 0.946 67.9 95.9 

20 6 0.824 82.4 83.3 0.947 65.4 96.9 

21 6 0.949 76.9 100 0.934 66 95.1 

22 6 1.000 69.2 100 0.953 75.8 96.4 

23 6 1.000 64.7 100 0.953 63.3 97.2 

24 6 0.907 61.1 100 0.930 63.4 95.3 

25 6 1.000 63.6 100 0.934 62.3 94.1 

26 6 0.908 64.7 100 0.966 76.6 96.6 

27 6 0.947 57.9 100 0.936 74.3 95.7 

28 6 1.000 87.5 100 0.960 70 97.7 

29 6 0.958 43.8 100 0.925 45.9 95.5 

0 7 0.979 40.9 100 0.920 32.8 97.3 

1 7 0.936 27.3 100 0.912 35.4 96 

2 7 0.823 23.8 92.9 0.908 37.8 97.4 

3 7 0.852 44.4 100 0.896 32.3 96.3 

4 7 0.904 44 100 0.905 38.6 95.9 

5 7 0.942 45.8 100 0.929 42.9 96.6 

6 7 0.873 35.3 89.5 0.904 34.3 96.8 

7 7 0.900 61.5 100 0.927 40.3 97.4 

8 7 0.854 27.3 95.7 0.878 33.6 96.5 

9 7 0.889 10 100 0.911 26.7 97.5 

10 7 0.871 32.3 95.8 0.869 30.6 97.5 

11 7 0.923 5.9 100 0.864 22 96.6 

12 7 0.931 24 95.5 0.878 32.5 96.2 

13 7 0.875 44 100 0.905 34.8 96.8 

14 7 0.849 47.4 100 0.907 54.8 95.2 

15 7 0.977 52.2 100 0.877 30.9 96.6 

16 7 0.901 47.6 100 0.910 30.7 97.2 

17 7 0.985 37 100 0.900 32.2 96.7 

18 7 0.983 13 100 0.923 35.9 97.2 

19 7 0.909 42.1 100 0.903 33.7 97.3 

20 7 0.914 27.8 100 0.894 32 98 

21 7 0.850 20 100 0.915 35.7 96.9 

22 7 0.970 36.4 100 0.915 40.7 96.1 

23 7 0.880 21.1 100 0.920 33.3 98.1 

24 7 0.868 16.7 100 0.891 35.7 96.8 

25 7 0.812 22.2 100 0.881 31.5 95.8 

26 7 0.828 41.2 92.6 0.933 39.6 97 
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27 7 0.883 20 100 0.888 39.6 95.9 

28 7 0.972 50 100 0.913 43.4 95.5 

29 7 0.867 17.4 94.1 0.884 21.9 97.6 

0 8 0.775 24.1 97.6 0.843 14.7 98.4 

1 8 0.862 26.9 95.3 0.821 24.5 96 

2 8 0.749 17.6 98.2 0.824 13.1 98.7 

3 8 0.755 12.5 100 0.839 10.9 98.6 

4 8 0.862 5 98.3 0.819 14.4 98.3 

5 8 0.754 21.4 94.1 0.808 23.1 97.2 

6 8 0.784 8.8 98.7 0.817 13.7 98.6 

7 8 0.846 28.2 95.8 0.815 20.9 98.4 

8 8 0.777 3.2 98.1 0.798 13.6 98.8 

9 8 0.836 5.3 97.6 0.828 11.9 98.4 

10 8 0.860 3.6 98.5 0.762 14.5 98.7 

11 8 0.694 9.3 97.4 0.763 10.8 99.3 

12 8 0.782 10.7 96.2 0.798 11.2 99.1 

13 8 0.766 13.3 97.5 0.836 13.5 98.5 

14 8 0.949 26.7 100 0.823 24.4 96.9 

15 8 0.764 6.1 100 0.782 14 98.8 

16 8 0.835 29.4 92.5 0.804 15.1 98.5 

17 8 0.766 8.1 97.5 0.833 12.4 98.9 

18 8 0.745 19.4 98.4 0.848 16.9 98.1 

19 8 0.798 5.7 100 0.831 13.4 98.3 

20 8 0.798 15.2 97.4 0.813 14.1 98.5 

21 8 0.856 19.4 100 0.820 18.8 98.3 

22 8 0.781 24.3 95.2 0.849 19.3 98.1 

23 8 0.792 12.1 100 0.830 16.8 98.1 

24 8 0.847 13.3 98.6 0.783 13.7 98.7 

25 8 0.809 11.4 100 0.788 11 98.9 

26 8 0.770 13.3 100 0.838 20.7 97.8 

27 8 0.818 24.3 96.7 0.806 13.9 98.4 

28 8 0.764 14.3 100 0.818 20.2 97.7 

29 8 0.722 9.8 100 0.800 10.2 99.2 

0 9 0.767 2.7 100 0.749 2 99.9 

1 9 0.766 15.5 97.6 0.756 14.5 96.9 

2 9 0.698 0 100 0.739 1.3 99.9 

3 9 0.636 1.1 100 0.735 0.5 100 

4 9 0.713 0 100 0.747 1.6 100 

5 9 0.781 10.8 98.8 0.747 10 98.1 

6 9 0.711 2.2 100 0.739 2.5 99.9 

7 9 0.752 10.1 98.7 0.755 7.5 99.4 

8 9 0.781 0 100 0.748 3.3 99.9 

9 9 0.736 1.3 100 0.740 1.7 99.9 
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10 9 0.746 0 100 0.748 2.6 99.9 

11 9 0.723 3.9 100 0.743 1.6 99.9 

12 9 0.728 1.1 100 0.747 1 100 

13 9 0.738 1.3 100 0.737 1.1 100 

14 9 0.816 10.1 100 0.744 6.9 99 

15 9 0.750 3 100 0.749 3.3 99.8 

16 9 0.758 16.7 97.5 0.761 5.4 99.6 

17 9 0.739 3.2 99.4 0.738 1.7 100 

18 9 0.750 5.3 100 0.746 4.6 99.8 

19 9 0.735 3.5 100 0.741 1.5 99.9 

20 9 0.772 3.7 100 0.744 2.5 99.9 

21 9 0.748 7.6 100 0.749 6.5 99.2 

22 9 0.719 4.3 100 0.741 2.7 99.8 

23 9 0.723 3.4 99.4 0.749 5.6 99.6 

24 9 0.793 0 100 0.750 2.4 99.9 

25 9 0.768 0 100 0.746 1.7 99.9 

26 9 0.774 2.2 100 0.751 5.1 99.6 

27 9 0.776 2.7 100 0.739 2.5 99.8 

28 9 0.738 4.8 100 0.754 7 99.6 

29 9 0.686 1.1 100 0.748 0.4 100 

0 10 0.720 0 100 0.745 0 100 

1 10 0.771 8.1 99.2 0.744 7.4 98.9 

2 10 0.742 0 100 0.723 0 100 

3 10 0.752 0 100 0.731 0 100 

4 10 0.727 0 100 0.743 0 100 

5 10 0.762 3.3 99.6 0.746 2.3 99.7 

6 10 0.793 0 100 0.736 0.1 100 

7 10 0.768 7 99.3 0.752 1.8 99.8 

8 10 0.804 0 100 0.755 0.2 100 

9 10 0.787 0 100 0.731 0 100 

10 10 0.771 0 100 0.719 0.1 100 

11 10 0.768 0 100 0.706 0 100 

12 10 0.732 0 100 0.728 0 100 

13 10 0.725 0 100 0.729 0 100 

14 10 0.730 0 99.7 0.748 1.6 99.8 

15 10 0.681 0 100 0.725 0.2 100 

16 10 0.793 2.6 100 0.757 0.7 99.9 

17 10 0.722 0 100 0.731 0 100 

18 10 0.762 2.9 100 0.750 0.6 99.9 

19 10 0.772 0 100 0.716 0 100 

20 10 0.744 0 100 0.741 0.1 100 

21 10 0.764 1.6 100 0.741 1.3 99.8 

22 10 0.688 0 99.6 0.728 0.1 100 
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23 10 0.773 0 99.6 0.757 0.9 99.9 

24 10 0.677 0 100 0.740 0.2 100 

25 10 0.696 0 100 0.732 0 100 

26 10 0.747 1.4 100 0.745 0.4 100 

27 10 0.702 0 100 0.722 0 100 

28 10 0.813 0 100 0.739 1.1 99.9 

29 10 0.747 0 100 0.721 0 100 

 

*- indicates the value is not available. 

 


