
OPTIMIZATION TECHNIQUES

FOR COMPLEX
MULTI-QUERY APPLICATIONS

Wang Guoping

NATIONAL UNIVERSITY OF

SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48682605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NATIONAL UNIVERSITY OF SINGAPORE

DOCTORAL THESIS

OPTIMIZATION TECHNIQUES FOR

COMPLEX MULTI-QUERY APPLICATIONS

Author:

Wang Guoping

Supervisor:

Prof. Chan Chee Yong

A thesis submitted

for the degree of Doctor of Philosophy

in the

Department of Computer Science

School of Computing

2014

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its

entirety.

I have duly acknowledged all the sources of information which have been used in the

thesis.

This thesis has also not been submitted for any degree in any university previously.

Wang Guoping

January, 2014

i

ACKNOWLEDGEMENT

I would like to express the deepest appreciation to my supervisor, Prof. Chan Chee Yong.

Without his guidance and persist help, my thesis would not have been finished. During

the last few years, he has spent countless time to patiently guide me to build interesting

ideas, strengthen the algorithms and improve the writings.As a supervisor, he shows his

wisdom, insights, wide knowledge and conscientious attitude. All of these set me a good

example to be a good researcher. In addition to my research, He also helps me a lot on

my personal life. After my scholarship terminated, He hiredme as a research assistant

and gave me the GSR support under his research grant so that I can concentrate on my

research without worrying about the financial problems. During my job hunting, he gave

me many valuable suggestions and comments. I am really grateful to have him as my

supervisor in my Ph.D. life.

I would like to thank my thesis committee, Prof. Tan Kian Lee and Prof. Stephane

Bressan for their valuable comments on my thesis as well as recommendation letters for

my research assistant position as well as job hunting.

I would like to thank all my friends in the database group who have made my Ph.D. life

more colorful. They are Bao Zhifeng, Li Lu, Li Hao, Zeng Zhong, Kang Wei, Zhou

Jingbo, Tang Ruiming, Song Yi, Zeng Yong, Xiao Qian and many others. Special thanks

to the church events organized by Prof. Tan Kian Lee and Dr. Wang Zhengkui every year

which bring us together as a family.

Finally, I would like to thank my parents for their silent support and trust for every decision

I made during my Ph.D. life.

ii

CONTENTS

Declaration i

Acknowledgement ii

Summary vii

1 Introduction 1

1.1 Multiple Query Optimization .. 1

1.2 Research Problems .3

1.2.1 Efficient Processing of Enumerative Set-based Queries 3

1.2.2 Multi-Query Optimization in MapReduce Framework 5

1.2.3 Optimal Join Enumeration in MapReduce Framework 6

1.3 Thesis Contributions .7

1.4 Thesis Organization .9

iii

CONTENTS

2 Related Work 10

2.1 Preliminaries on MapReduce .10

2.2 Efficient Processing of Enumerative Set-based Queries 12

2.3 Multi-Query Optimization in MapReduce Framework 13

2.4 Optimal Join Enumeration in MapReduce Framework 15

3 Efficient Processing of Enumerative Set-based Queries 18

3.1 Overview .18

3.2 Set-based Queries .19

3.3 Preliminaries .22

3.4 Baseline Solution using SQL .22

3.4.1 Baseline Solution .22

3.4.2 Detail Illustration of Baseline Solution 24

3.5 Basic Approach .26

3.6 Handling Large Data .32

3.6.1 Phase 1: Partitioning Phase .33

3.6.2 Phase 2: Enumeration Phase .34

3.6.3 Progressive Approaches .38

3.7 Extensions and Optimizations .. 39

3.7.1 Evaluation of SQs .40

3.7.2 Optimizations of SQ Evaluation41

iv

CONTENTS

3.8 Performance Study .42

3.8.1 Results for BSQs on Synthetic Datasets 45

3.8.2 Results for BSQs on Real Dataset49

3.8.3 Results for SQs on Synthetic Datasets 51

3.8.4 Results for SQs on Real Dataset52

3.9 Summary .53

4 Multi-Query Optimization in MapReduce Framework 54

4.1 Overview .54

4.2 Assumptions & Notations .55

4.3 Multi-job Optimization Techniques 57

4.3.1 Grouping Technique .57

4.3.2 Generalized Grouping Technique59

4.3.3 Materialization Techniques .64

4.3.4 Discussions .67

4.4 Cost Model .68

4.4.1 A Cost Model for MapReduce69

4.4.2 Costs for the Proposed Techniques70

4.5 Optimization Algorithms .71

4.5.1 Map Output Key Ordering Algorithm72

4.5.2 Partitioning Algorithm .78

v

CONTENTS

4.6 Experimental Results .79

4.6.1 Performance Comparison .81

4.6.2 Effectiveness of Key Ordering Algorithm 84

4.6.3 Optimization vs Evaluation time86

4.7 Summary .86

5 Optimal Join Enumeration in MapReduce Framework 87

5.1 Overview .87

5.2 Preliminaries .89

5.2.1 Notations .90

5.2.2 Assumptions .92

5.3 Complexity of SOJE Problem .92

5.4 Single-Query Join Enumeration Algorithm 95

5.4.1 Baseline Join Enumeration Algorithms 95

5.4.2 Plan Enumeration Algorithm .99

5.4.3 Bottom-up and Top-down Enumerations102

5.5 Multi-Query Join Enumeration Algorithm 103

5.5.1 First Phase .104

5.5.2 Second Phase .107

5.6 Experimental Results .109

5.6.1 Efficiency of Single-Query Join Enumeration Algorithm 110

5.6.2 Efficiency of Multi-Query Join Enumeration Algorithm. 113

5.7 Summary .115

vi

CONTENTS

6 Conclusion 116

6.1 Contributions .116

6.2 Future Work .117

Bibliography 118

vii

SUMMARY

Many applications often involve complex multiple queries which share a lot of common

subexpressions (CSEs). Identifying and exploiting the CSEs to improve query perfor-

mance is essential in these applications. Multiple query optimization (MQO), which aims

to identify and exploit the CSEs among queries in order to reduce the overall query eval-

uation cost, has been extensively studied for over two decades and demonstrated to be an

effective technique in both RDBMS and MapReduce contexts byexisting works. In this

thesis, we study the following three novel MQO problems.

First, we study the problem of efficient processing of enumerative set-based queries (SQs)

in RDBMS. Enumerative SQs aim to find all the sets of entities of interest to meet certain

constraints. In this work, we present a novel approach to evaluate enumerative SQs as

a collection of cross-product queries (CPQs) and propose efficient and scalable MQO

heuristics to optimize the evaluation of a collection of CPQs. Our experimental results

demonstrate that our proposed approach is significantly more efficient than conventional

RDBMS methods. To the best of our knowledge, that is the first work that addresses the

efficient evaluation of a collection of CPQs.

Second, we study multi-query/job optimization techniquesand algorithms in the MapRe-

duce framework. In this work, we first propose two new multi-job optimization techniques

to share map input scan and map output in the MapReduce paradigm. We then propose

a new optimization algorithm that, given an input batch of jobs, produces an optimal

plan by a judicious partitioning of the jobs into groups and an optimal assignment of the

processing technique to each group. Our experimental results on Hadoop demonstrate

viii

CONTENTS

the efficiency and effectiveness of our proposed techniquesand algorithms by comparing

with the state-of-the-art techniques and algorithms.

Finally, we examine the optimal join enumeration (OJE) problem, which is a fundamental

query optimization task for SQL-like queries, in the MapReduce framework. In this work,

we study both the single-query and multi-query OJE problemsand propose efficient join

enumeration algorithms for these problems. The study of thesingle-query OJE problem

serves as a foundation for the study on the multi-query OJE problem. Our experimental

results demonstrate the efficiency of our proposed join enumeration algorithms. To the

best of our knowledge, this work presents the first systematic study of the OJE problem

in the MapReduce paradigm.

ix

LIST OF FIGURES

3.1 Illustration of the first two iterations of the baseline SQL-based solution . 23

3.2 SQL queries to evaluate our example SQQext 25

3.3 SQL queries to evaluate the BSQQder that generate results in multiple

output tables .26

3.4 SQL queries to evaluate the BSQQder that generate results in a single

output table .27

3.5 An example of CPQ partitions organized as a trie 33

3.6 Comparison with the baseline solution 46

3.7 Effectiveness of CPQ optimizations 47

3.8 Effect of varying parameters on synthetic datasets 49

3.9 Effect of varying parameters on real dataset 50

3.10 Effect of||R|| . 51

3.11 Effect ofk . 52

x

LIST OF FIGURES

4.1 Multi-job optimization techniques 57

4.2 A comparison of applying reduce functions for GGT and GT 61

4.3 Example illustrating GGT .63

4.4 An example to illustrate key ordering algorithm. 73

4.5 Effectiveness of optimization algorithms 83

4.6 Experimental results .86

5.1 Examples of query types .91

5.2 Efficiency of single query join enumeration algorithms 112

5.3 Effect of number of edges .113

5.4 Efficiency of multi-query join enumeration algorithm 114

xi

LIST OF TABLES

1.1 An example relationR . 4

3.1 Output of the example SQ .20

3.2 Compared algorithms .43

3.3 Key experimental parameters .. 44

4.1 Running examples of MapReduce jobs. 56

4.2 System parameters .69

4.3 Compared algorithms .79

4.4 Comparison of key ordering algorithms 85

5.1 Notations used in this chapter .. . 90

5.2 Comparison of complexity results for SOJE problem 93

5.3 An example illustrating the plan enumeration algorithm. 101

xii

LIST OF TABLES

5.4 Running examples of queries and plans 104

5.5 Query generation parameters .. 110

5.6 Improvement factor of DPopt over DPset 111

xiii

CHAPTER 1

INTRODUCTION

In this chapter, we first present some background on multiplequery optimization. We

then state the research problems and contributions of this thesis. Finally, we discuss the

organization of this thesis.

1.1 Multiple Query Optimization

Many applications often involve complex multiple queries which share many common

subexpressions (CSEs) [54, 51, 14, 74, 44]. In the presence of multiple queries, either

produced by complex applications or batched by some systemslike database and MapRe-

duce systems, a simplistic solution to answer these queriesis to evaluate them one by

one, ignoring the CSEs among them. However, this solution issuboptimal since the CSEs

are redundantly evaluated. An optimal solution should be able to evaluate the CSEs once

and reuse the results of the CSEs for subsequent queries to improve the overall query

performance. Since complex multiple queries usually take along time to evaluate due

to the inherent complexity of the queries, there could be considerable performance sav-

ing by sharing the computation of the CSEs among the queries.As a result, identifying

1

CHAPTER 1. INTRODUCTION

and exploiting the CSEs to improve the query performance is essential in these complex

multi-query applications.

To share the computation of the CSEs among multiple queries,a well known technique

is multiple query optimization (MQO). MQO, which aims to identify the CSEs among

queries and exploit them to reduce the query evaluation cost, has been extensively studied

for over two decades. MQO is originally proposed in the RDBMScontext and existing

works [12, 27, 54, 49, 51, 73, 14, 74] in the RDBMS context have already shown that

substantial performance saving can be obtained by applyingMQO techniques. For exam-

ple, the experimental results from [74] indicate that their proposed MQO techniques can

outperform the simplistic solution by up to 3 times.

In addition to the MQO techniques in the RDBMS context, thereare also some prelimi-

nary studies [46, 44, 40] on the MQO techniques in the MapReduce context. The MapRe-

duce framework, proposed by Google [15], has recently emerged as a new paradigm for

large-scale data analysis and been widely embraced by Amazon, Google, Facebook, Ya-

hoo!, and many other companies. There are two key reasons forits popular adoption.

First, the framework can scale to thousands of commodity machines in a fault-tolerant

manner and thus is able to use more machines to support parallel computing. Second,

the framework has a simple yet expressive programming modelthrough which users can

parallelize their programs without being concerned about issues like fault-tolerance and

execution strategy.

To simplify the expression of MapReduce programs, some high-level languages, such

as Hive [58, 59], Pig [47, 26] and MRQL [20], have recently been proposed for the

MapReduce framework. The declarative property of these languages also opens up new

opportunities for automatic optimization in the framework[44, 18, 40]. Since different

queries/jobs often perform similar work, there are many opportunities to exploit the shared

processing among the queries/jobs to optimize performance. As noted and demonstrated

by several works [46, 44], it is useful to apply the MQO techniques to optimize the pro-

cessing of multiple queries/jobs by avoiding redundant computation in the MapReduce

framework.

In summary, existing works have already shown that MQO techniques can significantly

improve query/job performance in the contexts of both RDBMSand MapReduce frame-

work. In this thesis, we study three novel MQO problems (one in RDBMS context

and two in MapReduce context), namely, efficient processingof enumerative set-based

queries, multi-query optimization in MapReduce frameworkand optimal join enumera-

tion in MapReduce framework, and present novel MQO techniques for these problems.

2

CHAPTER 1. INTRODUCTION

While MQO techniques [12, 27, 54, 49, 51, 73, 14, 74] have been extensively studied in

the RDBMS context, they mainly focus on optimizing a handfulof SQL (join) queries.

Our MQO problem in the RDBMS context is different from these works since we focus on

optimizing a large collection (hundreds or thousands) of cross product queries produced

by the applications of enumerative set-based queries. Furthermore, existing MQO tech-

niques [44, 40] in the MapReduce framework are very limited and do not fullyexploit the

sharing opportunities among multiple queries/jobs. Thus,our two MQO problems in the

MapReduce context present a more comprehensive study of MQOtechniques to further

exploit the sharing opportunities among multiple queries/jobs. In the following section,

we describe the three MQO problems.

1.2 Research Problems

In this thesis, we study three novel MQO problems, namely, efficient processing of enu-

merative set-based queries, multi-query optimization in MapReduce framework and opti-

mal join enumeration in MapReduce framework.

1.2.1 Efficient Processing of Enumerative Set-based Queries

Many applications, such as online shopping and recommendersystems, often require find-

ing sets of entities of interest that meet certain constraints [69, 39, 60, 29, 7, 70]. Such

set-based queries (SQs) can be broadly classified into two types: optimization SQsthat

involve some optimization constraint andenumerative SQsthat do not have any opti-

mization constraint. For example, consider a relationR(id,type,city,price,duration,rating)

shown in Table1.1 that stores information about various places of interest (POI), where

typerefers to the category of the POI (e.g., museum, park),durationrefers to the recom-

mended duration to spend at the POI andrating refers to the average visitors’ rating of the

POI. Suppose that a tourist is interested to find all tour trips near Shanghai consisting of

POIs that meet the following constraints: the trip must include both Shanghai (S.H.) and

Suzhou (S.Z.) cities, the trip must include POIs of type museum and park, and the total

duration of the trip should be between 6 and 10 hours. There are two packages that satisfy

the above query:{t1, t2} and{t1, t2, t3}. The above is an example of an enumerative SQ

to find all sets of POIs that satisfy the given constraints. Ifthe query had an additional

constraint to minimize the total cost of the tour package, itwould become an optimization

SQ.

3

CHAPTER 1. INTRODUCTION

Table 1.1: An example relationR
id type city price duration rating

t1 museum S.H. 50 4 7
t2 park S.Z. 70 3 5
t3 museum H.Z. 60 3 8
t4 shopping S.H. 80 5 7

As another example, suppose that an employer is looking to hire a team of language trans-

lators for a project that meet the following constraints: each team member must know En-

glish; the team collectively must be knowledgeable in French, Russian, and Spanish; the

team consists of at least two translators; and the total monthly salary of the team is no more

than$50K. Consider a relationTranslator(id,location,salary,english,french,russian,span-

ish) that stores information about language translators available for hire, where the four

binary valued attributesenglish, french, russian, andspannishindicate whether a transla-

tor is knowledgeable in the specific languages,location represents the translator’s living

place, andsalary represents the translator’s expected monthly salary. To browse through

all the possible teams for hiring, the employer executes an enumerative SQ on theTrans-

lator relation.

Another application of enumerative SQs is in the area of set preference queries [17, 9, 71],

which computes all sets of entities of interest that satisfysome preference function. Con-

sider again our example on hiring translators. In addition to the previously discussed

constraints, the employer could prefer to hire a team where (a) the team members are

located close to one another and (b) their total salary is low. Thus, this set preference

query is essentially a skyline set-query to retrieve non-dominated teams where the mem-

bers have close proximity and low total salary. The most general approach to evaluate

skyline set-queries is to first enumerate all the candidate sets followed by pruning away

the dominated sets. Although there has been recent work to integrate these two steps [71],

such optimization is applicable only for restricted cases (e.g., when the sets are of fixed

cardinality and the preference function satisfies certain properties); and is not applicable

for queries such as our example query. Therefore, efficient algorithms to evaluate enu-

merative SQs are essential for the efficient processing of set preference queries.

There has been much research on evaluating optimization SQswhere the focus is on

heuristic techniques to compute approximately optimal or incomplete query results (e.g.,

[29, 7, 60, 70, 69, 71, 39]). However, to the best of our knowledge, there has not been

any prior work on the evaluation of enumerative SQs. Enumerative SQs are essentially a

generalization of conventional selection queries to retrieve a collection of sets of tuples

4

CHAPTER 1. INTRODUCTION

(instead of a collection of tuples), and they represent the most fundamental fragment of

set-based queries.

In this thesis, we address the problem of evaluating enumerative SQs using RDBMS.

We present a novel approach to evaluate an enumerative SQ as acollection of cross-

product queries (CPQs). However, applying existing multiple query optimization (MQO)

techniques for this evaluation problem is not effective fortwo reasons. First, the scale

of the problem could be very large involving hundreds of CPQ evaluations. Existing

MQO heuristics, which are mainly designed for optimizing a handful of queries, are not

scalable for our problem. Second, as the queries here are CPQs (and not join queries),

existing MQO techniques, which are based on materializing and reusing the results of

common subexpressions, is not effective as the cost of materialization exceeds the cost of

recomputation. Thus, in this work, we study specialized MQOheuristics to optimize the

evaluation of a collection of CPQs.

1.2.2 Multi-Query Optimization in MapReduce Framework

The MapReduce framework has recently emerged as a powerful parallel computation

paradigm for large scale data analysis. The declarative property of the recently proposed

high-level languages for the framework, such as Hive [58, 59] and Pig [47, 26], opens

up new opportunities for automatic optimization in the framework [44, 18, 40]. Since

different jobs (specified or translated from some high-level query languages) often per-

form similar work (e.g., jobs scanning the same input file or producing some shared map

output), there are many opportunities to exploit the sharedprocessing among the jobs to

optimize performance.

The state-of-the-art work in this direction is MRShare [44], which proposed two sharing

techniques for a batch of jobs. Theshare map input scantechnique aims to share the scan

of the input file among jobs, while theshare map outputtechnique aims to reduce the com-

munication cost for map output tuples by generating only onecopy of each shared map

output tuple. The key idea behind MRShare is agrouping techniqueto merge multiple

jobs that can benefit from the sharing opportunities into a single job.

While MRShare’s grouping technique is able to share map input scan and map output

for certain jobs, it has not fully exploited the sharing opportunities (i.e., share map input

scan and map output techniques) among multiple jobs. For example, consider the two

MapReduce jobs that are expressed in SQL queries over the relationT (a, b, c) as follows:

5

CHAPTER 1. INTRODUCTION

J1: selecta, sum(c)from T wherea≤ 10group by a

J2: selecta, b, sum(c)from T where a≥ 5 group by a, b

MRShare’s grouping technique can only share map input scan for the two jobs since it

considers that the two jobs produce totally different map output that cannot be shared.

However, the map output ofJ2 for 5 ≤ a ≤ 10 indeed can be reused to derive the partial

map output ofJ1. Thus, MRShare’s grouping technique is very limited in exploiting the

sharing opportunities among multiple jobs.

In this thesis, we present a more comprehensive study of multi-query/job optimization

techniques to share map input scan and map output and algorithms to choose an evaluation

plan for a batch of jobs in the MapReduce context.

1.2.3 Optimal Join Enumeration in MapReduce Framework

The MapReduce framework has been widely adopted by modern enterprises, such as

Facebook [59], Greenplum [3] and Aster [2], to process complex analytical queries on

large data warehouse systems due to its high scalability, fine-grained fault tolerance and

easy programming model for large-scale data analysis. Given the long execution times

for such complex queries, it makes sense to spend more time tooptimize such queries to

reduce the overall query processing time.

In this thesis, we examine the optimal join enumeration (OJE) problem, which is a fun-

damental query optimization task for SQL-like queries, in the MapReduce framework.

Specifically, we study both the single-query and multi-query OJE (denoted as SOJE and

MOJE respectively) problems where the study of the SOJE problem serves as a foundation

for our study on the MOJE problem.

While the OJE problem has attracted much recent attention inthe conventional RDBMS

context [48, 41, 42, 16, 21, 24, 22, 23, 51, 14, 74], the solutions developed there are

not applicable to the MapReduce context due to the differences in the query evaluation

framework and algorithms.

There are two major differences between the OJE problem in MapReduce and that in

RDBMS. First, both binary and multi-way joins are implemented in MapReduce while on-

ly binary joins are implemented in RDBMS. Specifically, given a join query, RDBMS will

evaluate it as a sequence of binary joins while MapReduce will evaluate it as a sequence of

6

CHAPTER 1. INTRODUCTION

binary or multi-way joins. As a result, the SOJE problem in MapReduce has a larger join

enumeration space than that in RDBMS due to presence of multi-way joins. While there

has been much recent works in the RDBMS context on the study ofthe complexity [48] of

the SOJE problem and its join enumeration algorithms [41, 42, 16, 21, 24, 22, 23], to the

best of our knowledge, there has not been any prior work on thestudy of these problems

in the presence of multi-way joins in the MapReduce context.

Second, intermediate results in MapReduce are always materialized instead of being

pipelined/materialized as in RDBMS which simplifies the MOJE problem in MapRe-

duce in two ways. First, the MOJE problem in RDBMS may incur deadlock due to the

pipelining framework [14] while that in MapReduce does not have the deadlock problem

due to the materialization framework. Second, materializing and reusing the results of

the CSEs in RDBMS may incur additional materialization and reading cost due to the

pipelining framework. However, since intermediate results are always materialized in the

MapReduce framework, there is no additional overhead incurred with the materialization

technique in MapReduce. Although the MOJE problem in RDBMS has been shown to

be a very hard problem with a search space that is doubly exponential in the size of the

queries [51, 14, 74], due to the simplification in MapReduce, we are able to propose ef-

ficient join enumeration algorithms for the MOJE problem in MapReduce based on our

comprehensive study of the SOJE problem.

To the best of our knowledge, our work presents the first systematic study of the OJE

problem in the MapReduce paradigm and proposes efficient join enumeration algorithms

for the problem.

1.3 Thesis Contributions

In this thesis, we make the following contributions.

Efficient processing of enumerative set-based queries.In this work, we first present

a baseline-SQL solution to evaluate enumerative SQs. Whileenumerative SQs can be

expressed using SQL, our experimental results on PostgreSQL demonstrate that existing

relational engines, unfortunately, are not able to efficiently optimize and evaluate such

queries due to their complexity.

We then propose a novel two-phase evaluation approach for enumerative SQs. In the

first phase, we partition the input table based on the different combinations of constraints

7

CHAPTER 1. INTRODUCTION

satisfied by the tuples. In the second phase, we compute the answer sets by appropriate

combinations of the partitions which essentially are a collection of cross-product queries

(CPQs). To efficiently evaluate a collection of CPQs, we propose novel MQO techniques

which works for both in-memory and large disk-based data.

Finally, we implemented our approach on PostgreSQL 8.4.4 and conducted a comprehen-

sive experimental study to show the efficiency of our approach. Our experimental results

demonstrate that our proposed approach is significantly more efficient than conventional

RDBMS methods by up to three orders of magnitude.

Multi-query optimization in MapReduce framework. In this work, we first present

two new multi-job optimization techniques. The first technique is ageneralized grouping

technique (GGT)that relaxes MRShare’s requirement for sharing map output.The second

technique is amaterialization technique (MT)that partially materializes the map output of

jobs (in the map and/or reduce phase) which provides anotheralternative means for jobs

to share both map input scan and map output.

We then propose a novel two-phase optimization algorithm tochoose an evaluation plan

for a batch of jobs. In the first phase, we choose the map outputkey for each job to

maximize the sharing. In the second phase, we partition the batch of jobs into multiple

groups and choose the processing technique for each group tominimize the evaluation

cost.

Finally, we conducted a comprehensive performance evaluation of the multi-job optimiza-

tion techniques using Hadoop. Our experimental results show that our proposed tech-

niques are scalable for a large number of queries and significantly outperform MRShare’s

techniques by up to 107%.

This work has been published in VLDB 2014 [65].

Optimal join enumeration in MapReduce framework. In this work, we first present a

comprehensive study of the SOJE problem which serves as a foundation for our study on

the MOJE problem. Specifically, we first study the complexityof the SOJE problem in the

MapReduce framework in the presence of multi-way joins for chain, cycle, star and clique

queries. We then propose both bottom-up and top-down join enumeration algorithms for

the SOJE problem with an optimal complexity w.r.t. the querygraph based on a proposal

of an efficient and easy-to-implement plan enumeration algorithm.

8

CHAPTER 1. INTRODUCTION

We then propose an efficient multi-query join enumeration algorithm for the MOJE prob-

lem. The main idea is to first apply the single-query join enumeration algorithm for each

query to generate all the interesting plans and then stitch the interesting plans for the

queries into a global optimal plan. A query plan is interesting if it is either the optimal

plan or produces some output that can be reused for other queries.

Finally, we conducted a comprehensive experimental study to demonstrate the efficiency

of our proposed algorithms. Our experimental results show that our proposed single query

join enumeration algorithm significantly outperforms the baseline algorithms by up to

473%, and our proposed multi-query join enumeration algorithm is able to scale up to 25

queries where the number of relations in the queries ranges from 1 to 10.

1.4 Thesis Organization

The rest of the thesis is structured as follows.

• Chapter2 presents a comprehensive literature review of the three problems that we

have studied.

• Chapter3 studies the evaluation problem for enumerative SQs and proposes effi-

cient evaluation techniques for enumerative SQs.

• Chapter4 studies the multi-query/job optimization problem and proposes efficient

and effective multi-job optimization techniques and algorithms in the MapReduce

framework.

• Chapter5 studies the OJE problem and proposes efficient join enumeration algo-

rithms for the problem in the MapReduce context.

• Chapter6 concludes our thesis and points out some directions for future work.

9

CHAPTER 2

RELATED WORK

In this chapter, we present a comprehensive literature review of studies related to the

three works we have done. Accordingly, this review is classified in terms of the three

works we have done. Specifically, Section2.1 presents the background of MapReduce

framework. Section2.2 presents the related work of our work on efficient processing

of enumerative set-based queries. Section2.3 presents the related work of our work on

multi-query optimization in MapReduce framework. Section2.4presents the related work

of our work on optimal join enumeration in MapReduce framework.

2.1 Preliminaries on MapReduce

MapReduce, proposed by Google [15], has emerged as a new paradigm for parallel com-

putation due to its high scalability, fine-grained fault tolerance and easy programming

model. Since its emergence, it has been widely embraced by enterprises to process com-

plex large-scale data analysis such as online analytical processing, data mining and ma-

chine learning.

10

CHAPTER 2. RELATED WORK

MapReduce adopts a master/slave architecture where a master node manages and moni-

tors map/reduce tasks and slave nodes1 process map/reduce tasks assigned by the master

node, and uses a distributed file system (DFS) to manage the input and output files. The

input files are partitioned into fix-sized splits when they are first loaded into the DFS. Each

split is processed by a map task and thus the number of map tasks for a job is equal to

the number of its input splits. Therefore, the number of map tasks for a job is determined

by the input file size and split size. However, the number of reduce tasks for a job is a

configurable parameter.

A job is specified by a pair of map and reduce functions, and itsexecution consists of a

map phase and a reduce phase. In the map phase, each map task first parses its corre-

sponding input split into a set of input key-value pairs. Then it applies the map function

on each input key-value pair and produces a set of intermediate key-value pairs which

are sorted and partitioned intor partitions, wherer is the number of configured reduce

tasks. Note that both the sorting and partitioning functions are customizable. An optional

combine function can be applied on the intermediate map output to reduce its size and

hence the communication cost to transfer the map output to the reducers. In the reduce

phase, each reduce task first gets its corresponding map output partitions from the map

tasks and merges them. Then for each key, the reducer appliesthe reduce function on the

values associated with that key and outputs a set of final key-value pairs.

MapReduce uses job schedulers to manage all submitted jobs.The default job scheduler

in Hadoop2 is FIFO which maintains a job queue for all submitted jobs according to their

submission times and priorities. FIFO allows a job to take all the slots within the cluster

and picks the first pending job for execution when there are available slots or a job releases

its slots. Other alternative schedulers include Yahoo!’s capacity scheduler and Facebook’s

fair scheduler [36]. The main idea of these schedulers is to maintain multiple job queues

for submitted jobs (one for each user or each organization) and allocate certain resources

for each queue. The main advantage of these schedulers is to allow jobs belonging to

different users or organizations to be concurrently executed. Among all the schedulers,

FIFO has been shown to have the minimum batch response time [36], and thus is used as

the job scheduler for our experiments in Chapter4.

1Each slave node has fixed number of map/reduce slots which areconfigurable parameters
2We use Hadoop’s scheduler as a representative of MapReduce scheduling mechanisms

11

CHAPTER 2. RELATED WORK

2.2 Efficient Processing of Enumerative Set-based Queries

To the best of our knowledge, this is the first work that addresses the problem of efficient

evaluation of enumerative set-based queries. We present a novel approach to evaluate

enumerative set-based queries as a collection of cross product queries (CPQs) and propose

novel MQO techniques to optimize the evaluation of a collection of CPQs. As a result,

there are two main areas related to this work: set-based queries (SQs) and multi-query

optimization (MQO). In the following, we separately discuss them and position our work.

Set-based queries.Set-based queries aim to find sets of entities of interest to meet certain

constraints. There are several works on evaluation of set-based queries: OPAC queries for

business optimization problems [29], composite items construction in online shopping

applications [7], composite recommendation in recommender systems [70, 69], team for-

mation in social networks [39], set-based preference queries [71] and set-based queries

with aggregation constraints [60]. However, the focus of all these works is on optimiza-

tion SQs whereas our focus is on enumerative SQs. Moreover, as most of these works deal

with NP-hard optimization problems, their algorithms are mostly approximate or produce

incomplete solutions; in contrast, our algorithm is exact and complete. Finally, our work

is focused on optimizing query evaluation at the database engine level, whereas these

works is focused on middleware-level solution with mostly main-memory resident data.

Multi-query optimization (MQO). MQO aims to find evaluation plans that share com-

putation of common subexpressions (CSEs) for a batch of queries. Most of existing work-

s [31, 27, 13, 12, 53, 49, 51, 54, 57, 74] focus on materializing and reusing the results of

CSEs. The works in [49, 54] describe exhaustive search algorithms and heuristic search

pruning techniques to find a global optimal query plan by searching all the plan space.

However, the exhaustive search of the plan space incurs highoptimization overhead which

make these works impractical. To reduce the high optimization cost, the works in [51, 74]

propose several cost-based greedy heuristics to find a global query plan. However, all

these works are not useful for our context since materializing and reusing the results of

CPQs is extremely costly. Thus, our approach for evaluatingCPQs does not employ the

materialization technique; instead, we evaluate them by pipelining the results of CSEs to

CPQs.

There are several works [14, 73] that exploit pipelining for MQO. The work in [73] consid-

ers specialized MQO techniques to pipeline the results of CSEs for OLAP queries. Their

work addresses star join queries where all the dimension tables are assumed to be main-

memory resident (i.e., only the fact table is disk-based). In contrast, our MQO techniques

12

CHAPTER 2. RELATED WORK

are proposed for general CPQs without any strong assumptionabout the main-memory

residency of the relations.

The work in [14] addresses the MQO problem with pipelining and follows a two-phase

optimization strategy which is different from our proposedtwo-phase approach. The first

phase uses existing techniques (such as [51, 74]) to generate a global plan for a set of

queries which is represented as a plan-DAG. All the CSEs thatcan benefit from materi-

alization are captured by the plan-DAG. The second phase optimizes the plan-DAG by

pipelining the results of some CSEs in the plan-DAG. Thus, only the results of CSEs

that can benefit from materialization are considered for pipelining. This simplification

is restrictive since the results of a CSE could be pipelined to improve performance even

if materializing and reusing the results of that CSE does notimprove performance. S-

ince our work does not materialize the results of any CSEs, their work is not applicable

for our context. Furthermore, their work assumes that the pipelined relations/results are

not buffered whereas our work focus on efficiently optimizing the buffer allocation for

pipelining.

2.3 Multi-Query Optimization in MapReduce Framework

This work presents a more comprehensive study of multi-query/job optimization tech-

niques and algorithms in MapReduce framework. We broadly classify its related work

into three categories: job optimization, query optimization and multi-query optimization.

In the following, we separately discussed them and positionour work.

Job optimization. There are several works [37, 32, 33] on optimizing general MapReduce

jobs that are expressed as programs. The work in [37] proposes a system to automatically

analyse, optimize and execute MapReduce programs. It worksby first analysing the pro-

grams to detect optimization opportunities, then applyingthe detected optimizations such

as index selection and data compression to the programs and finally executing the opti-

mized programs. The work in [32, 33] discusses the optimization opportunities presented

by the large space of MapReduce configuration parameters such as number of map and

reduce tasks, and proposes a cost-based optimizer to choosethe best configuration param-

eters for MapReduce programs. It works by first collecting the profiles through dynamic

instrumentation and then estimating the cost through a detailed set of analytical models

using the collected profiles. Different from these works where the emphasis is on optimiz-

ing single MapReduce program, our work focuses on optimizing multiple jobs specified

13

CHAPTER 2. RELATED WORK

in or translated from some high-level query language such that the sharing among the jobs

can easily be detected.

Query optimization. The proposal of high-level declarative query languages forMapRe-

duce such as Hive [58, 59], Pig [47, 26] and MRQL [20], opens up new opportunities for

query optimization in the framework. As a result, there has been some recent works on

query optimization in MapReduce framework similar to queryoptimization in RDBMS.

These works include optimization strategies for Pig [46], multi-way join optimization in

MapReduce [5, 72, 30], optimization techniques for Hive [68, 28], algebraic optimization

for MRQL [20], theta join processing in MapReduce [45], set similarity join processing

in MapReduce [63], and query optimization using materialized results [18]. All these

works focus on query optimization techniques for a single query; in contrast, our work

focuses on optimizing multiple jobs specified in or translated from some high-level query

language.

The work in [18] presents a system ReStore to optimize query evaluation using material-

ized results. Given a space budget for storing materializedresults, ReStore uses heuristics

to both decide whether to materialize the complete map and/or reduce output of each job

being processed as well as choose which previously materialized results to be evicted if

the space budget is exceeded. Our work differs from ReStore in both the problem focus

and the developed techniques. The results materialized by our MT technique for a given

job could be the partial map output of another job; in contrast, ReStore materializes the

complete output of the job being processed. Moreover, whereas the materialized output

produced by ReStore might not be reused at all due to the unknown query workload, this

is not the case for our context as the query workload is known and our techniques only

materialize output that will be reused.

Multi-Query optimization. There are several works on multi-query optimization [44,

40]. The work that is the most closely related to ours is MRShare[44]. Compared with

MRShare, our work is more comprehensive with additional optimization techniques (i.e.,

GGT and MT) which leads to a more complex optimization problem (e.g., the ordering of

the map output key of each job becomes important) and a novel cost-based, two-phase ap-

proach to find optimal evaluation plans. In MRShare, an inputbatch of jobs is partitioned

based on the following heuristic: the jobs are first sorted innon-descending order of their

map output size, and a dynamic-programming based algorithmis used to find an optimal

partitioning of the ordered jobs into disjoint consecutivegroups. Thus, an optimal job par-

titioning where the jobs in a group are not consecutively ordered would not be produced

by MRShare’s heuristic. Note that our partitioning heuristic (with a time-complexity of

14

CHAPTER 2. RELATED WORK

O(n2)) does not have this drawback and is more efficient than MRShare’s partitioning

heuristic (O(n3) time-complexity).

The work in [40] proposes a transformation-based optimizer for MapReduceworkflows

(translated from queries). The work considers two key optimization techniques: vertical

(horizontal, resp.) packing techniques aim to optimize jobs with (without resp.) producer-

consumer relationships; the horizontal packing techniques are based on MRShare’s group-

ing technique. In contrast, our work does not specifically consider MapReduce workflow

jobs that have explicit producer-consumer relationships;therefore, their proposed vertical

packing techniques are not applicable for our work.

2.4 Optimal Join Enumeration in MapReduce Framework

This work studies the optimal join enumeration (OJE) problem in MapReduce framework.

While the OJE problem has attracted much recent attention inthe conventional RDBMS

context [48, 41, 42, 16, 21, 24, 22, 23, 51, 14, 74], the solutions developed there are

not applicable to the MapReduce context due to the differences in the query evaluation

framework and algorithms as discussed in Section1.2.3. In this work, we study both the

single-query and multi-query OJE (denoted as SOJE and MOJE respectively) problems

as well as their join enumeration algorithms in the MapReduce context. As a result, we

broadly classify and discuss its related work in terms of SOJE and MOJE.

SOJE. The SOJE problem is a fundamental query optimization task inRBDMS. A well

known join enumeration algorithm for the SOJE problem is dynamic programming which

is divided into two categories, i.e., bottom-up enumeration [52, 41] and top-down enu-

meration [16, 21, 24, 22]. Both approaches have to consider the same enumeration s-

pace and neither of them is strictly better than the other. The work in [48] shows that

the (optimal) complexity of the SOJE problem depends on the query graph and analy-

ses the (optimal) complexity for chain, cycle, star and clique queries in RDBMS. The

work in [41] first shows that the complexity of existing two state-of-the-art dynamic pro-

gramming algorithms [52, 62] in RDBMS are far from optimal w.r.t. the query graph,

and proposes bottom-up dynamic programming algorithms with an optimal complexity.

Note that our proposed baseline join enumeration algorithms in MapReduce are adapted

from the two state-of-the-art algorithms [52, 62] in RDBMS and thus have a non-optimal

time complexity. In addition to the bottom-up dynamic programming algorithms, these

works in [16, 21, 24, 22] propose top-down dynamic programming algorithms with an

15

CHAPTER 2. RELATED WORK

optimal complexity. However, all these dynamic programming algorithms with an opti-

mal complexity are restricted to binary joins and thus are not applicable in the presence

of multi-way joins in the MapReduce context. In addition to the above works, there are

also several works [42, 23] on join enumeration algorithms for queries with more complex

join predicates such asR1.a = R2.b+ R3.c (i.e., their query graphs are hypergraphs). In

our work, we do not consider these complex join predicates and leave them as part of our

future work.

The MapReduce framework [15] has recently been widely used to process complex an-

alytical queries on large data warehouse systems. As a result, various MapReduce ver-

sions of algorithms have been proposed for database operators (e.g., join and aggrega-

tion) [10, 5, 45, 72, 30]. In particular, these works in [5, 72, 30] study efficient multi-way

join algorithms in MapReduce. Their experimental results show that the performance of

multi-way joins and that of a sequence of binary joins can outperform each other in dif-

ferent settings which thus increases the join enumeration space for the SOJE problem in

MapReduce. To the best of our knowledge, our work is the first to study the SOJE prob-

lem in the MapReduce context. The most related work is a proposal of a greedy heuristic

to find a good join order in MapReduce [68].

MOJE. The MOJE problem aims to find global optimal evaluation plansthat share C-

SEs and has been shown to be a very hard problem with a search space that is doubly

exponential in the size of the queries [54, 49, 51, 14, 74] in RDBMS. This is due to the

pipelining/materialization framework in RDBMS which complicates its MOJE problem

as discussed in Section1.2.3. As MapReduce always materializes intermediate results,

the MOJE problem in MapReduce becomes simpler which presents us an opportunity to

design an efficient and optimal multi-query join enumeration algorithm. Note that there

are also some early works in RDBMS [54, 49] that propose optimal join enumeration

algorithms for the MOJE problem using only materialization. However, they simply con-

sider all the plans for each query and stitch them into a global optimal plan which has

been demonstrated to be an impractical approach [51, 74]. Our work proposes effective

pruning techniques to prune away non-promising plans earlyand thus reduce the plan

combination space for the MOJE problem.

In addition to the above works, there are also several works [18, 44, 40] including our

work on multi-query optimization in MapReduce framework onoptimizing multiple job-

s specified in or translated from some high-level SQL-query language. Our work are

orthogonal with these works since our work focuses on optimizing the translation from

16

CHAPTER 2. RELATED WORK

queries into jobs (i.e., finding an optimal join plan) while these works focus on optimizing

the translated jobs.

17

CHAPTER 3

EFFICIENT PROCESSING OF

ENUMERATIVE SET-BASED QUERIES

3.1 Overview

In this chapter, we study efficient evaluation techniques using RDBMS for enumerative

SQs which aim to find a collection of tuples sets that satisfy certain constraints. To the best

of our knowledge, there has not been any prior work on the evaluation of enumerative SQs.

For convenience, we refer to enumerative SQs as simply SQs inthe rest of this chapter.

While SQs can be expressed using SQL, existing relational engines, unfortunately, are not

able to efficiently optimize and evaluate such queries due totheir complexity involving

multiple self joins and/or view expressions. In this chapter, we propose a novel evaluation

approach for SQs which works for both in-memory and large, disk-based data. The key

idea is to first partition the input relation based on the different combinations of constraints

satisfied by the tuples and then compute the answer sets by appropriate combinations of

the partitions. In this way, a SQ is evaluated as a collectionof cross-product queries

(CPQs). However, applying existing MQO techniques for thisevaluation problem is not

effective for two reasons. First, the scale of the problem could be very large involving

18

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

hundreds of CPQ evaluations. Existing MQO heuristics, which are mainly designed for

optimizing a handful of queries, are not scalable for our problem. Second, as the queries

here are CPQs (and not join queries), existing MQO techniques, which are based on mate-

rializing and reusing the results of the CSEs, are not effective as the cost of materialization

exceeds the cost of recomputation.

Thus, in this chapter, we propose specialized MQO techniques to optimize the evaluation

of a large collection of CPQs. To copy with the high optimization cost, we adapt a well-

known two phase approach [73, 57]. The first phase generates local optimal plans for

each CPQ by specifying an ordering of the partitions in the CPQ. The second phase uses

a trie structure to capture all the CSEs of the CPQs. In this way, our MQO heuristics are

able to scale to a large number of CPQs. We further optimize our evaluation approach by

exploiting the properties of set predicates in the SQs. We demonstrate the effectiveness of

our approach with a comprehensive experimental evaluationon PostgreSQL which shows

that our approach outperforms the conventional SQL-based solution by up to three orders

of magnitude.

The rest of this chapter is organized as follows. In Section3.2, we formally introduce set-

based queries (SQs) and a fragment of SQs referred to as basicSQs (BSQs). Section3.3

presents some preliminaries. Section3.4presents a baseline SQL-based solution to eval-

uate SQs. Section3.5presents our main-memory based approach to evaluate BSQs, and

Section3.6 extends the approach to evaluate BSQs on disk-based data. InSection3.7,

we extend our approach to evaluate general SQs beyond BSQs. Section3.8 presents an

experimental performance evaluation of the proposed techniques, and we conclude this

chapter in Section3.9.

3.2 Set-based Queries

In the simplest form, aset-based query (SQ)Q is defined by an input relationR, which

represents a collection of entities of interest, and an input set of predicatesP onR. The

query’s result is a collection of all the subsets ofR such that each subset satisfies the

predicates inP .

For convenience, we introduce an extended SQL syntax to express SQs more explicitly.

The example SQ in Section1.2.1can be expressed by the following extended SQL query.

19

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

Qext: SELECT *

FROM SET(R) S

WHERE v1 in S AND v2 in S

AND v3 in S AND v4 in S

AND v1.city = S.H. AND v2.city = S.Z.

AND v3.type = museum ANDv4.type = park

AND 6 ≤ SUM(S.duration)≤ 10

The “SET(R) S” in the from-clause specifiesS as aset variablewhose value is a subset of

tuples in relationR. Each of the predicates of the form “vi in S” specifiesvi as amember

variable representing a member of the set variableS. Note that the values of member

variables are not necessarily distinct. Each of the next four predicates specifies a constraint

on an individual member; and the last predicate specifies an aggregation constraint on the

set. The output schema of this query consists of all the attributes in relationR and an

additional, implicit integer attribute namedsid that represents the identifier for an answer

set. The values ofsid are generated automatically by the database system. The attributes

(sid, id) form the key of the output schema whereid is the key of input relationR. Thus,

each answer set to the query is represented by a collection ofoutput tuples having the

samesid value. Table3.1shows the output of the example SQQext on the input relation

R in Table1.1in Section1.2.1.

Table 3.1: Output of the example SQ
sid id type city price duration rating

1 t1 museum S.H. 50 4 7
1 t2 park S.Z. 70 3 5
2 t1 museum S.H. 50 4 7
2 t2 park S.Z. 70 3 5
2 t3 museum H.Z. 60 3 8

As the values of member variables are not necessarily distinct, the maximum cardinality

of an answer set is bounded either implicitly by the number ofmember variables in the

query (as shown by the example query) or explicitly by a constraint on the set’s cardinality

(e.g., “COUNT(S)≤ 3”).

There are two types of selection predicates in a SQ. Amember predicatespecifies a con-

straint on exactly one member variable (e.g., “v1.city = S.H.”). A set predicatespeci-

fies a constraint on a set variable or more than one member variable; examples include

“SUM(S.duration)≤ 10” and “v1.price +v3.price≤ 100”.

20

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

Given a set predicatep, it is classified asanti-monotoneif whenever a setS does not satisfy

p, then any superset ofS also does not satisfyp; it is classified asmonotoneif whenever

a setS satisfiesp, then any superset ofS also satisfiesp. In our example SQQext, the

predicate “SUM(S.duration)≤ 10” is an anti-monotone set predicate, while the predicate

“SUM(S.duration)≥ 6” is a monotone set predicate. An example of a set predicate that

is neither monotone nor anti-monotone is “AVG(S.price)≤ 20”. Note that set predicates

can also involve other SQL constructs such asgroupby-clauseandhaving-clausewhich

we omit in this chapter.

Since the number of qualifying answer sets could be very large for some SQs, there are

two natural ways to limit the size of the query result. The first approach is to retrieve

only some fixed number of say k result sets either using a limitclause to retrieve anyk

sets or via a ranking function to retrieve the top-k sets. Thesecond approach is to retrieve

only minimal setsthat satisfy the query’s predicates. A setS is defined to be minimal

if no proper non-empty subset ofS also satisfies the predicates inP . For example, the

answer set{t1, t2, t3} for the example SQQext is not minimal since its subset{t1, t2}

also satisfies the query’s predicates. Minimal answer sets are interesting as they could

save the budgets (e.g., money and time) for users while stillguarantee the satisfaction of

the query’s predicates. They are also of interest on their own as they serve as a concise

representation of all the answer sets (i.e., any superset ofa minimal answer set is also an

answer set) if all the set predicates in the query are monotone. The minimal set constraint

can be expressed in our extended SQL syntax by replacing “SET(R) S” by “MINSET(R)

S” to indicate thatS is aminimal set variable.

To simplify the presentation of evaluation algorithms for SQs, we introduce a special

fragment of SQs calledbasic SQs. A SQ Q is defined to be a basic SQ (BSQ) ifQ

retrieves only minimal sets and all the set predicates inQ are anti-monotone. Note that

for a BSQ, if a tuple inR does not satisfy any member predicate, then it will not contribute

to any answer set and can simply be removed fromR.

We should emphasize that the focus of this chapter is not on the design of SQL extensions

but on efficient query evaluation. The above example is meantto illustrate how the se-

mantics of SQs can be expressed more explicitly and easily using some SQL extensions

instead of using conventional SQL, which we will discuss in Section3.4.

21

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

3.3 Preliminaries

In this chapter, we consider a SQQ defined over a relationR, where there aren member

variables inQ. Thus, the maximum cardinality of the answer sets forQ is n.

Let V = {v1, · · · , vn} denote the set of member variables inQ. The predicatesP in Q

can be partitioned inton+1 subsets,P0, P1, · · · , Pn, where eachPi, i ∈ [1, n], denote the

set of member predicates inQ that involves the member variablevi; andP0 denote the set

of set predicates inQ.

In this chapter, we refer to a setS as ak-setto mean that the cardinality ofS is k. Thus,

each answer set forQ is ani-set, wherei ∈ [1, n].

Example 3.1: In our example SQQext, there are four member variables (i.e.,v1, v2,

v3 andv4). Therefore, the predicates can be partitioned into five subsets:P0 = {6 ≤

SUM(S.duration) ≤ 10}, P1 = {v1.city = S.H.}, P2 = {v2.city = S.Z.}, P3 =

{v3.type = museum} andP4 = {v4.type = park}. 2

3.4 Baseline Solution using SQL

In this section, we first outline a baseline approach to evaluate SQs using conventional

SQL in Section3.4.1. We then illustrate the baseline solution using our exampleSQQext

in Section3.4.2by showing the detail SQL queries.

3.4.1 Baseline Solution

In this approach, answer sets are generated iteratively, i.e., answeri-sets are computed

before answer(i+ 1)-sets, which is similar to the Apriori-style of using SQL to compute

frequent itemsets [34]. Let Ci denote the collection of candidate answeri-sets that satisfy

all the anti-monotone set predicates inP0, andAi ⊆ Ci denote the collection of answer

i-sets. EachCi/Ai is represented by a relation/view where each tuple inCi/Ai represents

a subset ofi tuples fromR. EachCi, i ≥ 2, is computed using a self-join ofCi and each

Ai is derived fromCi. In this approach, the answer sets for a SQ are given by multiple

output tablesA1, · · · , An, where each tuple in eachAi presents an answeri-set forQ.

22

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

A1 A2

Q2: Select * from C1

where duration >= 6

id type city duration id1 type1 city1 duration1 id2 type2 city2 druation2

t1 museum S.H. 4 t2 park S.Z. 3

Q4: Select * from C2

where duration1 + duration 2 >= 6

1 2

id type city duration
id1 type1 city1 duration1 id2 type2 city2 druation2

where duration > 6

and city = S.H. and city = S.Z.

and type = museum and type = park

where duration1 + duration 2 > 6

and (city1 = S.H. or city2 = S.H) and (city1 = S.Z. or city 2 = S.Z.)

and (type1 = museum or type2 = museum)

and (type1 = park or type2 = park)C1 C2

t1 museum S.H. 4

t2 park S.Z. 3

t3 museum H.Z. 3

id1 type1 city1 duration1 id2 type2 city2 druation2

t1 museum S.H. 4 t2 park S.Z. 3

t1 museum S.H. 4 t3 museum H.Z. 3

t1 museum S.H. 4 t4 shopping S.Z. 5

t4 shopping S.H. 5
1 4 pp g

... …… … ……. ……

t3 museum H.Z. 3 t4 shopping S.H. 5Q1: Select * from R

where duration <= 10
Q3: Select * from C1 C11, C1 C12

where C11.id < C12.id and C11.duration + C12.duration <= 10

Figure 3.1: Illustration of the first two iterations of the baseline SQL-based solution

In the first iteration,C1 is the subset of tuples inR that satisfy all the anti-monotone set

predicates inP0. A1 is the subset of tuples inC1 that satisfy all the predicates inQ. In

theith iteration,i > 1, Ci is computed by a self join ofCi−1 to ensure two requirements.

First, Ci does not contain duplicate candidate answeri-sets1. Second, each tuple inCi

satisfies all the anti-monotone set predicates inP0. Ai is derived fromCi by appropriate

selection predicates to ensure that each tuple inAi must satisfy all the predicates inQ.

Thus, this approach is implemented as a sequence of SQL queries where the number of

queries is a linear function ofn.

Example 3.2: Figure3.1 illustrates the first two iterations of the baseline approach for

evaluating our example SQQext on the input relationR in Table1.1 (more details are

shown in Section3.4.2). To avoid clutter, the non-relevant attributes (i.e.,price and

rating) are omitted from the figure. In the first iteration,C1 is computed byQ1 on R

to ensure that each tuple inC1 (representing a candidate answer 1-set) satisfies all the

anti-monotone set predicates. The answer 1-sets are given by A1 which is computed by

Q2 onC1; A1 is empty since there is no answer 1-set for this SQ. In the second iteration,

C2 is computed byQ3 with a self-join onC1 andA2 is computed fromC2 usingQ4. Ob-

serve thatA2 contains one answer 2-set{t1, t2}. Since the answer sets for this query has

a maximum cardinality of four, this process continues for two additional iterations to find

answer 3- and 4-sets (details not shown). 2

1Following the same principle to avoid duplicates in [34], the self-join ofCi−1 to computeCi has(i−2)
equi-join predicates requiring that two matching tuples inCi−1 (representing two(i− 1)-sets) have(i− 2)
identical tuples.

23

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

Minimal set constraint. If the query requires only minimal answer sets, then the above

approach still works with the following two extensions. First, to generateCi (representing

candidate answeri-sets), the self join is performed onCi−1 \ Ai−1 instead ofCi−1 as all

the supersets of answer(i−1)-sets inAi−1 are not minimal. Second, for each tuple inAi,

in addition to satisfying all the predicates inQ, it must also represent a minimal set. To

verify the minimality of a candidate answeri-setS ∈ Ci, all the subsets ofS have to be

examined to ensure that they do not satisfy all the predicates inQ. However, ifP0 contains

only anti-monotone and monotone set predicates, then only subsets with a cardinality of

(i− 1) need to be examined.

Alternative SQL-based approach for BSQs. For BSQs, there is an alternative SQL-

based approach that generates all the answer sets in a singleoutput table with arity equal

to the maximum cardinality of the answer sets given byn. This approach consists of two

main steps. The first step generates all the candidate answersets in a relation/viewM by

computing the cartesian product ofn viewsM1, · · · , Mn, where eachMi is the set of tu-

ples inR that satisfiesPi. Note thatM may contain multiple tuples that represent the same

candidate answer set since each tuple inR may appear in multipleMi’s. Therefore, we

need to remove the duplicate candidate answer sets fromM . The second step computes

the answer sets by eliminating those candidate answer sets in M that are duplicates, do

not satisfyP0, or are not minimal. The details of this approach are given inSection3.4.2.

It is important to note that this alternative approach is notapplicable for evaluating SQs

since a tuple fromR can contribute to an answer set even if it does not appear in any Mi

(1 ≤ i ≤ n). For evaluating BSQs, our experimental results show that the alternative

approach is significantly outperformed by the first discussed approach. The main reason

is due to the complex SQL queries used to remove duplicate andnon-minimal candidate

answer sets in the second step. Given its limited applicability and poor performance, we

will not consider the alternative approach any further in this chapter.

3.4.2 Detail Illustration of Baseline Solution

In this section, we illustrate the baseline solution for evaluating SQs using our example

SQQext and BSQs using the BSQQder that is derived from the SQQext by removing its

non-anti-monotone set predicate (i.e.,SUM(S.duration) ≥ 6).

Baseline solution to evaluate the SQQext. Figure3.2shows the SQL queries to evaluate

our example SQQext. To simplify the predicates as well as the minimality checking, we

24

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

create view C1(id,duration,p1,p2,p3,p4) as select id, duration,

case city = S.H. then 1 else 0 as p1, case city = S.Z. then 1 else 0 as p2,

case type = museum then 1 else 0 as p3, case type = park then 1 else 0 as p4 from R where duration <= 10

create view A1 as select * from C1 where p1 = 1 and p2 = 1 and p3 = 1 and p4 = 1 and duration >= 6

create view C2(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24)

as select * from C1 C11, C1 C12 where C11.id < C12.id and C11.duration + C12.duration <= 10

create view A2 as select * from C2

where p11 + p21 > 0 and p12 + p22 > 0 and p13 + p23 > 0 and p14 + p24 > 0 and duration1 + duration 2 >= 6

create view C3(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24, id3,duration3,p31,p32,p33,p34) as

select C21.*, C22.id2* from C2 C21, C2 C22

where C21.id1 = C22.id1 and C21.id2 < C22.id2 and C21.duration1 + C21.duration2 + C22.duration2 <= 10

create view A3 as select * from C3 where p11 + p21 + p31 > 0 and p12 + p22 + p32 > 0 and

p13 + p23 + p33 > 0 and p14 + p24 + p34 > 0 and duration1 + duration 2 + duration3 >= 6

create viewC4(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24,id3,duration3,p31,p32,p33,p34,

id4,duration4,p41,p42,p43,p44) as select C31.*, C32.id3* from C3 C31, C3 C32 where C31.id1 = C32.id1 and

C31.id2 = C32.id2 and C31.id3 < C32.id3 and C31.duration1 + C31.duration2 + C31.duration3 + C32.duration3 <= 10

create view A4 as select * from C4 where p11 + p21 + p31 + p41 > 0 and p12 + p22 + p32 + p42 > 0 and

p13 + p23 + p33 + p43 > 0 and p14 + p24 + p34 + p44 > 0 and duration1 + duration 2 + duration3 + duration4 >= 6

Figure 3.2: SQL queries to evaluate our example SQQext

createC1 to represent the information of POIs that satisfy the anti-monotone set predicate

(i.e.,SUM(S.duration) ≤ 10). Each tuple inC1 represents the information for a POI.

Each of the four binary valued attributespi (1 ≤ i ≤ 4) indicates whether a POI satisfies

Pi, where a value of 1 indicates that the POI satisfiesPi. Note that in Figure3.2, to sim-

plify the expression of SQL queries, in the select-clause,Ci.∗ represents that we retrieve

all the attributes inCi andCi.j∗ represents that we retrieve all the attributes from thejth

tuple inCi.

Baseline solution to evaluate the BSQQder. Recall that there are two SQL-based ap-

proaches to evaluate BSQs. Figure3.3shows the SQL queries to evaluate the BSQQder

that generate answer sets in multiple output tables. In Figure 3.3, we useBi to denote

Ci \ Ai. Note that for BSQ,Ci+1 is derived fromBi instead ofCi. In the viewA3, the

first four conditions ensure that each answer set inA3 satisfies all the predicates inQder

and the remaining conditions ensure that each answer set inA3 is minimal, i.e., for each

member in the answer set, there must exist somePi (1 ≤ i ≤ 4) that is satisfied by only

this member in the answer set.

Figure3.4 shows the SQL queries to evaluate the BSQQder that generate all the answer

sets in a single output table whose arity is equal to the maximum cardinality of the answer

sets given byn. To avoid clutter, we only keep the key attributeid. In this approach,

since a tuple may satisfy multiple member predicates, the same tuple may appear multiple

25

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

create view C1(id,duration,p1,p2,p3,p4) as select id, duration, case city = S.H. then 1 else 0 as p1,

case city = S.Z. then 1 else 0 as p2, case type = museum then 1 else 0 as p3,

case type = park then 1 else 0 as p4 from R where duration <= 10 and p1 + p2 + p3 + p4 > 0

create view A1 as select * from C1 where p1 = 1 and p2 = 1 and p3 = 1 and p4 = 1

create view B1 as select * from C1 except select * from A1

create view C2(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24) as

select * from B1 B11, B1 B12 where B11.id < B12.id and (B11.duration + B12.duration) <= 10

create view A2 as select * from C2 where p11 + p21 > 0 and p12 + p22 > 0 and p13 + p23 > 0 and p14 + p24 > 0

create view B2 as select * from C2 except select * from A2

create view C3(id1,duration1,p11,p12,p13,p14,,id2,duration2,p21,p22,p23,p24, id3,duration3,p31,p32,p33,p34) as

select B21.*, B22.id2* from B2 B21, B2 B22

where B21.id1 = B22.id1 and B21.id2 < B22.id2 and (B21.duration1 + B21.duration2 + B22.duration2) <= 10

create view A3 as select * from C3 where p11 + p21 + p31 > 0 and p12 + p22 + p32 > 0 and p13 + p23 + p33 > 0

and p14 + p24 + p34 > 0 and ((p11 = 1 and p21 + p31 = 0) or (p12 = 1 and p22 + p32 = 0) or (p13 = 1 and

p23 + p33 = 0) or (p14 = 1 and p24 + p34 = 0)) and ((p21 = 1 and p11 + p31 = 0) or (p22 = 1 and p12 + p32 = 0)

or (p23 = 1 and p13 + p33 = 0) or (p24 = 1 and p14 + p34 = 0)) and ((p31 = 1 and p11 + p21 = 0) or

(p32 = 1 and p12 + p22 = 0) or (p33 = 1 and p13 + p23 = 0) or (p34 = 1 and p14 + p24 = 0))

create view B3 as select * from C3 except select * from A3

create view C4(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24,d3,duration3,p31,p32,p33,p34,

id4,duration4,p41,p42,p43,p44) as select B31.*, B32.id3* from B3 B31, B3 B32 where B31.id1 = B32.id1 and

B31.id2 = B32.id2 and B31.id3 < B32.id3 and (B31.duration1 + B31.duration2 + B31.duration3 +B32.duration3) <= 10

create view A4 as select * from C4 where p11 + p21 + p31 + p41 = 1 and

p12 + p22 + p32 + p42 = 1 and p13 + p23 + p33 + p43 = 1 and p14 + p24 + p34 + p44 = 1

Figure 3.3: SQL queries to evaluate the BSQQder that generate results in multiple output
tables

times (under different columns) within a row in the result table representing an answer

set. Therefore, this approach uses SQL’s case statements tocheck whether a candidate

answer set satisfies a set predicate. All the tuples in the view M satisfy allPi (0 ≤ i ≤ 4).

The viewM ′ removes the answer sets inM that are not minimal. In the viewM ′, the first

four conditions ensure that all the members in the m2 tuple are contained in the m1 tuple,

and the remaining four conditions ensure that at least one member from the m1 tuple is

different from the m2 tuple which guarantees that the m2 tuple is a proper subset of the

m1 tuple. The viewM ′′ removes duplicates inM ′ and stores the answer sets.

3.5 Basic Approach

To simplify the presentation of evaluation algorithms for SQs, we first present the evalua-

tion of BSQs in this section assuming that all the data and structures can be stored in main

26

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

create view M as (id1, id2, id3, id4)

select R1.id, R2.id, R3.id, R4.id from R R1, R R2, R R3, R R4

where R1.city = S.H. and R2.city = S.Z. and R3.type = museum and R4.type = park

and (R1.duration + case (R2.id = R1.id) then 0 else R2.duration + case (R3.id = R1.id

 or R3.id = R2.id) then 0 else R3.duration + case (R4.id = R1.id or R4.id = R2.id

 or R4.id = R3.id) then 0 else R4.duration) <= 10

create view M’ as select * from M m1 where Not Exists

select * from M m2 where

(m2.id1 = m1.id1 or m2.id1 = m1.id2 or m2.id1 = m1.id3 or m2.id1 = m1.id4) and

(m2.id2 = m1.id1 or m2.id2 = m1.id2 or m2.id2 = m1.id3 or m2.id2 = m1.id4) and

(m2.id3 = m1.id1 or m2.id3 = m1.id2 or m2.id3 = m1.id3 or m2.id3 = m1.id4) and

(m2.id4 = m1.id1 or m2.id4 = m1.id2 or m2.id4 = m1.id3 or m2.id4 = m1.id4) and (

(m1.id1 m2.id1 and m1.id1 m2.id2 and m1.id1 m2.id3 and m1.id1 m2.id4) or

(m1.id2 m2.id1 and m1.id2 m2.id2 and m1.id2 m2.id3 and m1.id2 m2.id4) or

(m1.id3 m2.id1 and m1.id3 m2.id2 and m1.id3 m2.id3 and m1.id3 m2.id4) or

(m1.id4 m2.id1 and m1.id4 m2.id2 and m1.id4 m2.id3 and m1.id4 m2.id4))

create view M’’ as select * from M’ m1 where Not Exist

select * from M’ m2 where

(m2.id1 = m1.id1 or m2.id1 = m1.id2 or m2.id1 = m1.id3 or m2.id1 = m1.id4) and

(m2.id2 = m1.id1 or m2.id2 = m1.id2 or m2.id2 = m1.id3 or m2.id2 = m1.id4) and

(m2.id3 = m1.id1 or m2.id3 = m1.id2 or m2.id3 = m1.id3 or m2.id3 = m1.id4) and

(m2.id4 = m1.id1 or m2.id4 = m1.id2 or m2.id4 = m1.id3 or m2.id4 = m1.id4) and

(m2.id1 m1.id1 or m2.id2 m1.id2 or m2.id3 m1.id3 or m2.id4 m1.id4) and (

(m2.id1 < m1.id1) or (m2.id1 = m1.id1 and m2.id2 < m1.id2) or

(m2.id1 = m1.id1 and m2.id2 = m1.id2 and m2.id3 < m1.id3) or

(m2.id1 = m1.id1 and m2.id2 = m1.id2 and m2.id3 = m1.id3 and m2.id4 < m1.id4))

Figure 3.4: SQL queries to evaluate the BSQQder that generate results in a single output
table

memory, and then describe the extensions to handle large, external data in Section3.6.

We extend our techniques for (general) SQs in Section3.7.

Recall that a BSQQ retrieves only minimal sets and all the set predicates inQ are anti-

monotone. Our proposed approach evaluates a BSQQ in two phases. In the first phase,

a sequential scan ofR is performed to partitionR into s disjoint subsets,RV1
, · · · , RVs

,

s ∈ [1, 2n], where eachVi ⊆ V is a subset of member variables inQ, andRVi
⊆ R

represents the tuples that satisfy all the member predicates (i.e.,
⋃

vj∈Vi
Pj) associated

with the member variables inVi.

There are two partitions ofR, namely,R∅ andRV , that are not materialized during the

partitioning phase2. The partitionR∅ contains tuples inR that do not satisfy anyPi

(1 ≤ i ≤ n) in Q. For a BSQQ, none of the tuples inR∅ will contribute to an answer

set. Therefore, the partitionR∅ is not materialized during the partitioning. At the other

2For SQs, bothR∅ andRV have to be materialized as discussed in Section3.7.1.

27

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

extreme, each tuple inRV satisfies allPi (1 ≤ i ≤ n) in Q; therefore, each tuple inRV

forms an answer 1-set if it also satisfiesP0. If a tuple inRV does not satisfyP0, it will

not contribute to any answer set for a BSQ and can be ignored. Since each tuple inRV

can be either directly output as an answer set or ignored, these tuples will not contribute

to additional answer sets; thus, this partition is also not materialized during partitioning.

The partitions materialized in the first phase will be used inthe second phase to generate

further answer sets.

In the second phase, the remaining answer sets are generatedby combining tuples from

appropriate partitions such that the combined set of tuplesqualifies as an answer set; i.e.,

the set of tuples is a minimal set of tuples that satisfies all the query’s predicates. Each

such combination of partitions is then evaluated as a cross-product query (CPQ); thus, the

remaining answer sets are computed as a union of CPQs. To enumerate these answer sets,

we first need to characterize the appropriate combinations of partition sets.

Consider a set of partitionsU = {RV1
, · · · , RVk

}. We defineU to be avalid partition set

(or vpset)if U satisfies the following two properties: (P1)
⋃

RVi
∈U Vi = V ; and (P2) no

proper subset ofU satisfies P1. Property 1 ensures that a candidate answer setS formed

by selecting one member from each partition inU will satisfy all the member predicates

in Q, while property 2 ensures thatS is minimal.

For convenience, we refer to a vpset that is ak-set as ak-vpset. We useV PSet to denote

the collection of all vpsets.

Thus, ifU = {RV1
, · · · , RVk

} is ak-vpset, then ak-setS = {t1, · · · , tk}, whereti ∈ RVi
,

i ∈ [1, k], is an answer set forQ if S satisfiesP0. Therefore, the remaining answer sets

for Q is computed by evaluating a collection of CPQs, where each CPQ is associated with

a vpset.

Our overall approach evaluatesQ based on the following expression:

σP0
(RV ∪

⋃

Ui∈V PSet

(×
Rj∈Ui

Rj))

σP0
(RV) is evaluated in the first phase whileσP0

(
⋃

Ui∈V PSet(×Rj∈Ui
Rj) is evaluated in

the second phase. The cross-product expression representsa CPQ corresponding to the

vpsetUi, the union expression enumerates all the vpsets3, and the final selection operator

3The union operator is used only to combine the results and notto eliminate duplicates as the generated
results are all unique.

28

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

selects the minimal sets that satisfy all the set predicatesP0.

Example 3.3:Consider the evaluation of the BSQQder that is derived from our example

SQQext by removing its non-anti-monotone set predicate (i.e.,SUM(S.duration) ≥ 6).

In the first phase,R is partitioned into four partitions:R{v1,v3} = {t1}, R{v2,v4} = {t2},

R{v3} = {t3}, andR{v1} = {t4}. In the second phase, two vpsets,{R{v1,v3}, R{v2,v4}} and

{R{v1}, R{v3}, R{v2,v4}}, are enumerated which generate two candidate answer sets{t1, t2}

and{t2, t3, t4}. Among them, only{t1, t2} satisfies the anti-monotone set predicate (i.e.,

SUM(S.duration) ≤ 10) and forms an answer set. 2

In the following, we elaborate on the details of the second phase, namely, how to efficient-

ly enumerate vpsets and evaluate the corresponding CPQs.

Enumeration of vpsets.Given the partitions ofR created in the first phase, the collection

of all vpsetsV PSet is efficiently enumerated based on the following theorem.

Theorem 3.1. If U is a k-vpset, then it satisfies the following three properties: (1) For

eachRVi
∈ U , the cardinality ofVi is at mostn− k + 1; (2) There must exist a partition

RVi
∈ U such that the cardinality ofVi is at least⌈n

k
⌉; (3) For any pair of distinct

partitionsRVi
andRVj

in U , Vi 6⊆ Vj andVj 6⊆ Vi.

Proof. We prove each of the three properties by contradiction.

Suppose the first property is false; i.e., there exists a partition RVi
∈ U such that the

cardinality ofVi is greater thann − k + 1. It follows thatU is not a vpset since it does

not satisfy the second property of a vpset (i.e.,U is not minimal). The reason for this is

as follows. To ensure thatU is minimal, for anyRVj
∈ U , Vj should contain at least one

member variable that other partitions do not contain. Sincethe cardinality ofVi is greater

thann− k+1, the remaining number of member variables is fewer thank− 1 which can

not ensure that the remainingk−1 partitions inU \RVi
have at least one member variable

that other partitions do not contain. Thus, we have a contradiction.

Suppose the second property is false; i.e., for anyRVi
∈ U , the cardinality ofVi is less than

⌈n
k
⌉. It follows thatU is not a vpset since the number of member variables in

⋃

RVi
∈U Vi

is less thann which contradicts the first property.

Suppose the third property is false; i.e., there exists a pair of distinct partitionsRVi
and

RVj
in U such thatVi ⊆ Vj . It follows thatU is not ak-vpset since the subsetU \RVi

can

also satisfy all the member predicates which contradicts the second property.

29

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

Based on the theorem, we enumerate all the vpsets by computing the cartesian product

of n sets (with the above three properties enabled to prune the cartesian product space)

where each set is{RV1
, · · · , RVs

} representing the set of all generated partitions in the

partitioning phase. Thus, the time complexity to enumerateall the vpsets isO(2n
2

n2)

whereO(2n
2

) is the time complexity to compute the cartesian product to generate all

the candidate vpsets andO(n2) is the time complexity to determine a candidate vpset is

indeed a vpset. As the valuen is not expected to be large for BSQs, it is very fast to

enumerate all the vpsets by exploiting the above three properties.

Example 3.4:Continue with Example3.3. Here we haven = 4. From the first property,

partitionR{v1,v3} will not form a 4-vpset since the cardinality of the partition is 2. From

the second property, for a 2-vpset, at least one partition should satisfy twoPi (1 ≤ i ≤ 4),

otherwise the 2-vpset can not satisfy allPi (1 ≤ i ≤ 4). From the third property, partitions

R{v1,v3} andR{v1} will not appear in the same vpset since one is a subset of the other. 2

Evaluation of CPQs.Each CPQ is evaluated using amulti-way nested-loop cross-product

(MNLCP) approach, which is a generalization of the well-known binary nested-loop join

algorithm. For convenience, we use the notation(RV1
, · · · , RVk

) to refer to a CPQQ′ that

is overk partitions{RV1
, · · · , RVk

} as well as the ordering of the partitions in a MNL-

CP evaluation ofQ′ whereRV1
andRVk

are, respectively, the outermost and innermost

relations of the MNLCP evaluation.

With the MNLCP evaluation, for a CPQQ′ = (RV1
, · · · , RVk

), each result tuple(t1, t2, · · ·

, tk) of Q′ (where each tupleti ∈ RVi
) is constructed progressively as a sequence of par-

tial result tuples:(t1), (t1, t2), · · · , and finally(t1, t2, · · · , tk). To optimize the MNLCP

evaluation, for each partial result tuplet = (t1, t2, · · · , tj) (1 ≤ j < k), we check whether

t satisfies each anti-monotone set predicatep in P0. If t does not satisfyp, then this im-

plies that none of the partial result tuples extended fromt will satisfy p; therefore, the

MNLCP evaluation involvingt can be immediately “short-circuited” by droppingt from

further processing. Note that similar optimization is alsoapplicable for the monotone

set predicates in SQs. Specifically, if each partial resultstuple t satisfiesp, then we can

conclude that each of the partial result tuple extended fromt will also satisfyp. Fur-

ther optimizations for anti-monotone/monotone set predicates evaluation are discussed in

Section3.7.2.

The number of CPQs evaluated for a BSQ can be very large: the maximum number of

CPQs whenn ranges from3 to 7 are 7, 48, 461, 6432, and 129424, respectively. There-

30

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

fore, there could be considerable efficiency gains by applying MQO techniques to opti-

mize the evaluation of a BSQ. However, MQO is a very hard optimization problem with

a search space that is doubly exponential in the size of the queries [49, 51, 54, 74]. As

early exhaustive strategies [49, 54] are not practical, many heuristic solutions have been

proposed (e.g. [13, 51, 74, 14, 73, 57]). To cope with the high optimization complexity,

a well-known strategy for MQO is to adopt a two-phase optimization approach [57, 73].

The first phase generates local optimal query plans for the individual queries, and the sec-

ond phase generates a global query plan that exploits the common subexpressions (CSEs)

in the local query plans.

However, the existing MQO heuristics are not appropriate for our problem context for two

main reasons. First, as explained above, the number of CPQs in our problem is very large,

which means that it is important to use an efficient heuristicthat can scale to thousands

of queries. Existing MQO heuristics are, however, not designed for such scale. As an

example, the state-of-the-art MQO heuristic [51] took 30 seconds to optimize 22 (which

is the maximum number of queries considered) queries without considering cross product

joins where each query only references five relations, and was unable to scale when the

number of relations in the queries increases or cross product joins are considered. Second,

most of the existing MQO works [49, 51, 54, 74, 57] are based on the materialization and

reusing the results of CSEs which is not beneficial for our context. This is because for

CPQs, the cost of computing, writing and reading a CSE resultto/from disk is higher than

the cost of recomputing the CSE as shown by our experimental results in Section3.8.1.

Thus, our approach for evaluating CPQs does not employ the materialization technique;

instead, we evaluate them by pipelining the results of CSEs to CPQs.

Due to both the scale of the problem as well as the nature of thequeries (i.e., CPQs and

not join queries), existing MQO heuristics designed for optimizing a moderate number

of general join queries are too complex and not sufficiently scalable for our problem.

We therefore propose a novel and efficient heuristic, which is also based on the two-

phase approach, to optimize the evaluation of a large collection of CPQs. The first phase

generates a local optimal evaluation plan for each CPQ and the second phase optimize the

collection of local plans by exploiting CSEs.

In the first phase, since each CPQ is evaluated using the MNLCPmethod, the local evalu-

ation plan for a CPQ is simply a specification of the ordering of the partitions in the CPQ

(i.e., from outermost to innermost relation). To optimize the evaluation of CPQs, it is de-

sirable to minimize the cost to check anti-monotone set predicates (to find short-circuited

partial result tuples). Therefore, our approach to order the partitions for a CPQ is to order

31

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

them in non-decreasing order of their cardinalities. The intuition behind the approach is

to minimize the cost to check the short-circuited partial result tuples assuming that any

pair of partial result tuples of the same length are equally likely to be short-circuited. As

shown by our cost model in Section3.6.2, our approach to order the partitions for a CPQ

in a MNLCP evaluation is indeed optimal.

In the second phase, to efficiently identify the CSEs among the local query plans, our

heuristic uses a trie to represent all the local query plans.Each node in the trie, except for

the root node which is a virtual node, represents a partition, and each path from a child

node of the root node to a leaf node corresponds to the sequence of partitions (in non-

decreasing order of their cardinalities) in a local query plan. With this simple technique,

our heuristic is able to capture the common “prefixes” among the local query plans. The

time complexity of constructing the trie is proportional tothe total number of partitions

in all the CPQs. The simplicity of this structure enables ourheuristic to scale to a large

number of queries.

Once the trie has been constructed with the local query plans, the global query plan is

formed and evaluated by a top-down traversal of the trie structure. Consider a trie node

Ri that has multiple child nodes, and let(R1, · · · , Ri−1) be the path of ancestor nodes of

Ri in the trie (i.e.,R1 is the child of the root node and eachRj is a child node ofRj−1,

j ∈ [2, i]). By pipelining the output of(R1 × · · · × Ri) to each of the child nodes ofRi,

the computation of the cross-product expression associated with the common prefix path

is shared among the child nodes.

Example 3.5: Consider a BSQ that is evaluated as five CPQs{Q1, · · · , Q5} with their

local query plans shown by the trie in Figure3.5(a), where the node labeled∅ represents

the virtual root node of the trie. Each path from a child node of the root node to a leaf

node corresponds to a local query plan for a CPQ. For example,the fourth leftmost path

corresponds to the local plan(R6, R7, R4) for Q4. Observe that the two local plans for

Q2 andQ3 share the partitionR3. Thus, for every tuplet read fromR3, the global plan

evaluation will pipelinet to its child nodesR4 andR5. 2

3.6 Handling Large Data

In this section, we extend our in-memory approach discussedin the previous section to

evaluate BSQs on large, disk-based data.

32

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

ø

R1 R3 R6

R4 R7

R4 R5

ø

R1 R3

R4

ø

R6

R7

R4 R5

R5

R5

(a) Trie of query plans (b) Two query batches constructed from (a)

R2

R2

(c) Size of partition in terms of number of pages

|R1| |R2| |R3| |R4| |R5| |R6| |R7|
1 2 2 3 4 2 2

Q1 Q2 Q3

Q4 Q5 Q1 Q2 Q3 Q4 Q5

Figure 3.5: An example of CPQ partitions organized as a trie

In the following discussion, we useB to denote the number of main memory buffer pages

available for evaluating a BSQQ on a relationR. For a partitionRVi
, we use|RVi

| and

‖RVi
‖ to respectively denote its size in terms of number of pages and its cardinality in

terms of number of tuples. We assume that the answer sets computed for a BSQ are

directly output without being buffered.

3.6.1 Phase 1: Partitioning Phase

In the first phase, we need to allocate the available buffer space for readingR as well as

creating the partitions ofR. This partitioning problem using limited buffer space can be

solved with two standard database techniques (i.e., sorting and hashing), which we briefly

described in this section.

In the hash-based approach, we allocate one buffer page for readingR and divide the

remaining buffer pages uniformly among the maximum number of 2n − 2 partitions to be

materialized4. Each tuple read fromR is copied to the appropriate partition buffer, and

a partition buffer is flushed to disk when it becomes full. Forthe case where there is not

enough buffer space to even allocate one page for each partition, thenR will have to be

partitioned in multiple passes instead of a single pass.

In the sort-based approach, each tuple read fromR is assigned an appropriate partition

identifier (i.e.,1, · · · , 2n − 2) based on the subset of member predicates that it satisfies.

4Recall from Section3.5thatR∅ andRT are not materialized.

33

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

The tuples are then sorted on this identifier using external merge-sort algorithm to create

the partitions.

If the buffer space is sufficiently large such thatR can be hash partitioned in one scan,

then the hash-based approach is generally more efficient as the sort-based approach might

require multiple merge passes to sortR. However, if a BSQ contains certain type of set

predicates, then the sort-based approach could be optimized to become more efficient; we

defer the discussion of the optimization to Section3.7.2.

3.6.2 Phase 2: Enumeration Phase

The main challenge in the second phase is how to efficiently evaluate a large collection of

CPQs given a buffer space constraint ofB pages.

Consider a CPQQ′ = (R1, · · · , Rk). What is an optimal approach to evaluateQ′ such

that (1) the buffer space used is minimized and (2) each partition in Q′ is read only once?

A well-known strategy to achieve this is to load all the partitions ofQ′, except for the

outermost partition (i.e.,R1), into the buffer and to allocate only one buffer page forR1.

As each pageRp of R1 is loaded into the buffer, the MNLCP method is used to compute

Rp×R2×· · ·×Rk. Thus, the minimum buffer space required for this optimal evaluation

is 1 +
∑k

i=2 |Ri| pages. Letminbuf(Q′) denote the minimum buffer space requirement

(in terms of number of pages) for evaluating a CPQQ′ in this manner.

Given a buffer space ofB pages, we classify a CPQQ′ as alean queryif minbuf(Q′) ≤

B; otherwise,Q′ is classified as afat query. Let Qlean andQfat denote the set of all the

lean and fat CPQs, respectively, from the collection of CPQsto be evaluated. From the

optimization viewpoint,Qlean are easier to optimize thanQfat. Therefore, our proposed

approach optimizes the evaluation ofQlean andQfat separately.

Evaluation of Lean Queries.To exploit the CSEs among a collection of lean CPQs, we

present an efficient strategy to evaluate them inbatchessuch that each batch of queries can

be evaluated efficiently similar to the in-memory approach described in Section3.5using

only B buffer pages. We first formally define a query batch and then present efficient

heuristics to optimize both the partitioning ofQlean into query batches as well as the

evaluation order of the batches.

Consider a set of lean CPQsQbatch = {Q1, · · · , Qm}, whereQbatch ⊆ Qlean and each

Qi = (Ri,1, · · · , Ri,ki). Let D(Qbatch) =
⋃

Qi∈Qbatch
{Ri,2, · · · , Ri,ki} denote the set of

34

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

distinct partitions in all them CPQs fromQbatch after excluding the outermost partition

from each CPQ (i.e.,Ri,1, i ∈ [1, m]). We say thatQbatch forms aquery batchif 1 +
∑

Ri∈D(Qbatch)
|Ri| ≤ B. Note that a query batchQbatch can be evaluated optimally using

onlyB buffer pages as each partition (involved inQbatch) is read only once from disk.

Example 3.6: Assume thatB = 10. ConsiderQ5 in Figure3.5. Sinceminbuf(Q5) =

1 + |R7|+ |R5| = 7 < B, Q5 is classified as a lean query. Similarly, all the other queries

(Q1 to Q4) in Figure3.5are also classified as lean queries. Consider a set of lean queries

Q′
batch = {Q4, Q5}. We haveD(Q′

batch) = {R7, R4}
⋃

{R7, R5} = {R7, R4, R5}. Since

the total size of the partitions inD(Q′
batch) (i.e., |R7|+ |R4|+ |R5| = 9) is no larger than

B− 1, Q′
batch forms a query batch. On the other hand, for the set of lean queriesQ′′

batch =

{Q1, Q4, Q5}, since the total size of the partitions inD(Q′′
batch) = {R2, R7, R4, R5} is 11

which is larger thanB − 1, Q′′
batch is not a query batch. 2

Partitioning of query batches. Since a partition may appear in multiple CPQs which

are in different query batches, a partition may still be readinto the buffer multiple times.

Thus, it is desirable to group CPQs that share some common partition (or more generally,

share some CSEs in the form of a subset of partitions) in the same query batch to minimize

both the number of times a common partition is read into the buffer as well as the number

of redundant computations of the CSEs.

Our heuristic to partitionQlean into query batches applies the same idea from Section3.5

to organize the CPQs inQlean using a trie to capture the common “prefixes” among the

CPQs. The query batches are then created by a pre-order traversal of the trie as follows.

We first initialize the current query batchQbatch to be empty. Whenever the pre-order

traversal visits a leaf node in the trie, we have found a CPQQ′ which corresponds to the

root-to-leaf path in the trie. IfQbatch remains a query batch afterQ′ is added to it, we

addQ′ to be part ofQbatch; otherwise, we initialize a new query batch with onlyQ′ in it

and call this the current query batch. At the end of the traversal,Qlean is partitioned into

query batches. By partitioningQlean in this way, our heuristic is able to capture the CSEs

among the CPQs in each batch. Thus, each query batch is a trie which is a subtree of the

input trie. The time complexity for the query batch partitioning is linear to the number of

nodes in the trie.

Evaluation order of query batches. We now explain how a query batchQbatch =

{Q1, · · · , Qm} formed using the above approach is evaluated similar to the in-memory

approach. Here eachQi represents a CPQ. For eachQi = (Ri,1, · · · , Ri,ki) ∈ Qbatch, we

35

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

load into the buffer all the partitions ofQi, except the outermost partitionRi,1. Note that

within each query batch, each partition is loaded exactly once in the buffer even if the

partition appears in different queries. By the definition ofa query batch, the remaining

number of pages left in the buffer (denoted byB′) after loading all the partitions except

for Ri,1 must be at least one. Therefore, we can incrementally load the outermost partition

Ri,1 for eachQi into the buffer (B′ pages at a time), and pipeline the loaded tuples ofRi,1

to each child partition to compute the CPQs in the query batch.

The final optimization issue to consider is how to order the query batches formed for

evaluation. If two query batches have many partitions in common, then it is desirable to

evaluate these two batches consecutively so as to minimize the number of times the same

partition is loaded into the buffer (across query batches).This scheduling optimization

problem can be formulated as finding the longest Hamiltonianpath in a fully-connected,

weighted, undirected graphG = (V ′, E ′) as follows. Each vertex inV ′ represents a

query batch, and each edge inE ′ has a weight that is equal to the sum of the sizes of the

common partitions (excluding the outermost partition in each CPQ) between the CPQs

corresponding to the connected vertices. This optimization problem is in general NP-

complete; and we solve this using a simple3/4 approximation algorithm [6], which has a

time complexityO(|V ′|3) where|V ′| is the number of query batches.

Example 3.7: Assume thatB = 10. Figure3.5(b) shows two query batches,Q′
batch =

{Q1, Q2, Q3} andQ′′
batch = {Q4, Q5}, constructed from the trie in Figure3.5(a) by a pre-

order traversal of the trie. Let us assume thatQ′
batch is evaluated beforeQ′′

batch. When

evaluating the batchQ′
batch, the partitionsR2, R4 andR5 are completely loaded into the

buffer and the remaining1 buffer page is used to load in the tuples inR1 andR3 se-

quentially with the tuples being pipelined to the corresponding children partitions. When

evaluating the batchQ′′
batch, asR4 andR5 have already been loaded in the buffer, we only

need to load inR7 (i.e.,R2 is evicted from the buffer) and the remaining 1 buffer page is

used to load inR6. 2

Evaluation of Fat Queries. Since each fat CPQ can not be evaluated optimally with the

availableB buffer space, our evaluation approach for lean CPQs is not applicable for fat

CPQs. To exploit the CSEs among a collection of fat CPQs, another alternative strategy

is to materialize and reuse (instead of pipelining) the results of CSEs. However, since

a cross-product result is always larger than the combined size of its input operands, a

materialization strategy incurs a high I/O cost to write andread the materialized results.

Indeed, as shown by our experimental results, it is overall more efficient to recompute the

36

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

results of a CSE (incurring a higher CPU cost) than to materialize and reuse the results of

a CSE. Thus, we propose to use the MNLCP method to evaluate each fat CPQ separately

without relying on any result materialization. The main challenge here is how to effec-

tively allocate the buffer space among the partitions in theCPQ to optimize both CPU and

I/O costs.

In the following, we first analyze the I/O and CPU costs of the MNLCP evaluation method,

and then present our heuristic to optimize the buffer allocation based on these cost models.

Cost models. Consider the evaluation of a fat CPQQ′ = (RV1
, · · · , RVk

) using the

MNLCP approach. Let(b1, · · · , bk) denote the buffer space allocation for the partitions,

where eachRVi
is allocatedbi number of buffer pages, such that

∑k
i=1 bi ≤ B. The

MNLCP evaluation method will first load the firstbi pages of eachRVi
into the buffer

and compute the cross-product among the tuples in the buffer, and then load in the next

b1 pages forRV1
, and so on. Whenever all the pages of someRVi

have been read and

loaded into the buffer, the method will load in the nextbi+1 pages forRVi+1
and “rewind”

eachRVj
, j ∈ [1, i], by loading in the firstbj pages for eachRVj

, j ∈ [1, i]. The method

terminates when all the pages ofRVk
have been read. The I/O cost to evaluateQ′ in such

a manner is given by

Ci/o =
k

∑

i=1

ci/o|RVi
|

k
∏

j=i+1

⌈
|RVj

|

bj
⌉ (3.1)

whereci/o is the cost ratio to read one page. Eachci/o|RVi
|
∏k

j=i+1⌈
|RVj

|

bj
⌉ represents the

I/O cost to load inRVi
with

∏k
j=i+1⌈

|RVj
|

bj
⌉ representing the times to load inRVi

. The CPU

cost to evaluateQ′ is given by

Ccpu =

k
∑

i=1

ccpuSi

i
∏

j=1

‖RVj
‖

k
∏

j=i+1

⌈
|RVj

|

bj
⌉ (3.2)

whereccpu is the cost ratio to process a tuple andSi is the selective factor of anti-monotone

set predicates for(i−1)-sets. EachccpuSi

∏i
j=1 ‖RVj

‖
∏k

j=i+1⌈
|RVj

|

bj
⌉ represents the CPU

cost to compute the cross product of(RV1
, · · · , RVi

) with Si

∏i
j=1 ‖RVj

‖ representing

the number of cross product results that need to be computed,and
∏k

j=i+1⌈
|RVj

|

bj
⌉ repre-

senting the times to compute the cross-product results. Note that bothci/o andccpu are

tunable constants commonly used in query optimizers andSi can be estimated based on

conventional RDBMS estimation techniques (e.g. with histograms).

We remark that if eachbi (1 ≤ i ≤ k) is allocated|RVi
| pages (i.e., in-memory case), then

37

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

our approach to evaluate each CPQ with the partitions ordered in non-descending order

of cardinality indeed minimizes the CPU cost.

Optimizing buffer allocation. As bothCi/o andCcpu are not related tob1, we will allocate

the minimum of one page tob1. The overall optimization problem is to minimizeCtotal =

Ci/o + Ccpu with the following constraints: (1)b1 = 1, (2)
∑k

i=2 bi ≤ B − 1, and (3)

bi ≤ |RVi
| for 2 ≤ i ≤ k.

A naive solution to optimize the above is to try all possible assignments for(b2, · · · , bk).

However, the time complexity will beO(Bk) which is not feasible whenB andk are large.

Therefore, we use a simple greedy approach to solve the problem by iteratively selecting

the “best” partition to increase its buffer allocation until the buffer space is fully utilized.

Initially, each partition is allocated one page (i.e.,bi = 1 for 2 ≤ i ≤ k). At each iteration,

we first compute thebenefit ratiofor each partitionRVi
, given by(C−C ′

i)/(b
′
i−bi), where

bi is the current buffer allocation forRVi
, C is Ctotal for the current buffer allocation,b′i

is the smallest possible integer such thatb′i > bi and⌈
|RVi

|

b′i
⌉ < ⌈

|RVi
|

bi
⌉, andC ′

i is Ctotal

after increasingbi to b′i. Thus, the benefit ratio measures the reduction in evaluation cost

per additional buffer page allocated for a partition. Then we increasebi for the partition

RVi
with the maximum benefit ratio tob′i. The time complexity of this heuristic isO(Bk)

whereB is the maximum number of iterations andO(k) is the time complexity of an

iteration.

Unlike lean CPQs, where the order of evaluation is optimized, we do not optimize the

order of evaluating fat CPQs as the potential benefit is questionable. Since the allocat-

ed buffer for a partition is generally less than the partition size, and the allocation could

vary among CPQs having that partition, we can only partiallyshare the scan of the parti-

tion across CPQs which entails non-trivial bookkeeping to keep track of partially loaded

partitions. We therefore do not consider this optimizationin this work.

3.6.3 Progressive Approaches

Our proposed two-phase approach is a blocking algorithm in that the enumeration phase

can only start after the partitioning phase has completed. For a BSQ that does not require

retrieving all the answer sets (e.g., the query has a limit-clause), this approach is not ideal.

In this section, we describe how to extend the two approaches(sort-based and hash-based

approaches) for the first phase to make them non-blocking (i.e., progressive) so that more

38

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

answer sets can be generated earlier during the first phase (beyond those produced byRT).

The challenge is to avoid generating duplicate answer sets that are produced in both the

partitioning and enumeration phases.

Sort-based approach.To make the sort-based partitioning phase progressive, we gener-

ate answers while creating initial sorted runs as follows. For each set of tuples that form

an initial sorted run, we first sort them based on their partition identifiers, and then gen-

erate minimal answer sets using these in-memory partitionsfollowing the basic approach

described in Section3.5. In this way, we are able to compute some answer sets as initial

sorted runs are being created in the partitioning phase. A simple way to avoid generating

duplicate answer sets is to simply assign a run number to eachtuple in the partitioning

phase and detect for duplicate answer sets during the enumeration phase as follows: if all

the tuples in a potential answer set have the same run number,then the set is a duplicate

and is ignored.

Hash-based approach.To make the hash-based partitioning phase progressive, we sim-

ply generate answer sets for each new tuplet read with all the in-memory tuples (i.e.,

we construct the trie for the partition containingt with all the in-memory partitions). In

the event that the buffer space is full, we make room fort by selecting some other in-

memory partition and flush it to disk. To detect for duplicateanswer sets, we adapted the

techniques from [61, 64] as follows. Each tuplet is assigned a timestamp [begin, end],

wherebeginandendrepresent, respectively, the timet is read into memory and the time

t is flushed to disk. Thus, for each potential answer setS considered in the enumeration

phase,S is a duplicate answer if the intersection of the timestamps of all the tuples is not

empty.

Comparing the two approaches, the hash-based approach may produce results earlier than

the sort-based approach since the former can produce results immediately for each newly

read tuple while the latter can only produce results after ithas filled and sorted the buffer

with tuples. However, the hash-based approach is likely to run slower than the sort-based

approach due to the per-tuple overhead (i.e., trie construction for each tuple).

3.7 Extensions and Optimizations

In this section, we first extend our proposed approaches to evaluate SQs in Section3.7.1.

We then discuss the further optimization of SQ evaluation for sort-based approaches based

on the properties of set predicates in Section3.7.2.

39

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

3.7.1 Evaluation of SQs

To evaluate SQs, our proposed approaches for BSQs can be extended as follows.

In the partitioning phase, the input tableR is partitioned as before based on the combi-

nation of predicates satisfied by the tuples; however, we nowneed to materialize both

partitionsR∅ andRT . This is because for a SQQ, it is now possible forS ∪ {t} to

be an answer set forQ, wheret ∈ R∅ ∪ RV andS is a set of tuples from the partitions

excludingR∅ andRV . Hence, bothR∅ andRV need to be materialized for generating

potential answer sets in the second phase.

Since the answer sets for SQs are not necessarily minimal andthe set predicates in SQs are

not necessarily anti-monotone, the enumeration phase now requires a weaker definition

of vpset (Section3.5) that satisfies only property P1. This weaker definition has two

implications. First, the partitions in a vpset are now not necessarily distinct as it is possible

for an answer set to contain multiple tuples from the same partition. However, as the

cardinality of answer sets is bounded byn, the maximum number of partitions in a vpset is

also bounded byn. Second, it is now possible for one vpset to be a subset of another vpset.

For instance, in the example SQ in Section3.1, if the query is not constrained to retrieve

only minimal answer sets, then both{R{v1,v3}, R{v2,v4}} and{R{v1,v3}, R{v1,v3}, R{v2,v4}}

are vpsets with one being a subset of the other.

Consequently, after constructing the trie to capture the CSEs for the local query plans,

each path from a child node of the root node to any node in the trie now may correspond

to a vpset. Note that this is different from the trie constructed for BSQs where only a

path from a child node of the root node to a leaf node corresponds to a vpset. Further-

more, since a vpsetU could contain multiple instances of the same partition, theCPQ

corresponding toU needs to be evaluated such that answer sets with duplicates are not

generated by judicious manipulation of tuple pointers using the MNLCP approach5.

Minimal set constraint. For SQs that are constrained to retrieve only minimal sets, the

following additional extensions are required. In the partitioning phase, forRV , if a tuplet

in RV satisfiesP0, then we simply outputt as a singleton answer set; otherwise, we mate-

rialize t. Thus, the materializedRV contains tuples that satisfy all the member predicates

5Consider the evaluation of a CPQ(R1, R2, · · ·) whereR1 andR2 are two instances of the same par-
tition R. To avoid generating duplicate answer sets, whenever the tuple pointer for the outer partitionR1

is moved to theith tuple ofR, the tuple pointer for the inner partitionR2 is rewind to the(i + 1)th (rather
than the first) tuple ofR.

40

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

but do not satisfyP0. In the enumeration phase, since the weaker vpset definitiondoes

not guarantee that a candidate answer set is minimal, we needto verify its minimality

requirement during the enumeration phase as discussed in Section3.4.

Example 3.8: Consider the example SQQext. In the partitioning phase,R is partitioned

into four partitions:R{v1,v3} = {t1}, R{v2,v4} = {t2}, R{v3} = {t3}, andR{v1} = {t4}. In

the enumeration phase, all the vpsets are enumerated using the weaker definition of vpset

for SQs. Some example vpsets include{R{v1,v3}, R{v2,v4}}, {R{v1,v3}, R{v2,v4}, R{v3}} and

{R{v1}, R{v3}, R{v2,v4}}. Note that the number of vpsets for the SQ is larger than that

for the corresponding BSQ (Example3.3) due to the weaker definition of vpset for SQs.

After evaluating the corresponding CPQs and checking the set predicates, two answer sets

{t1, t2} and{t1, t2, t3} are formed. 2

3.7.2 Optimizations of SQ Evaluation

In this section, we describe how the evaluation of a SQ using MNLCP can be further

“short-circuited” for sort-based approach by exploiting the presence of certain set predi-

cates in the SQ. Before we describe the optimizations, we first present some preliminaries.

Given ak-setS = (t1, · · · , tk) and a functionF , F is classified asdistributiveif there

is a functionF ′ such thatF (S) = F ′(F (t1), · · · , F (tk)). A distributive functionF is

classified asmonotoneif for any two k-setsS1 = (t11, · · · , t1k) andS2 = (t21, · · · , t2k)

such thatF (t1i) ≤ F (t2i) for eachi ∈ [1, k], one hasF (S1) ≤ F (S2). The function

“SUM(S.duration)” in Section3.2is an example of a distributive monotone function.

Anti-monotone set predicates. If a SQ contains an anti-monotone set predicatep of

the formF (S) ≤ c whereF is a distributive monotone function, then we can optimize

the sort-based approach of partitioning as follows. Instead of sorting the tuples using

only the partition identifierpid, we sort on the composite key(pid, F (t)) which generates

partitions that are sorted onF (t). When evaluating a CPQ(RV1
, · · · , RVk

) using MNLCP

to generatek-sets, iftj is the first tuple fromRVj
(1 ≤ j ≤ k) that does not satisfyp

when combined with a specific combined tuple(t1, · · · , tj−1) from (RV1
× · · · × RVj−1

),

then we can short-circuit the MNLCP evaluation by dropping(t1, · · · , tj−1) from further

processing. Note that if we do not sort on the composite key(pid, F (t)), we can only

drop(t1, · · · , tj) from processing.

41

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

Monotone set predicates.Consider a SQ that contains a monotone set predicatep of

the formF (S) ≥ c whereF is a distributive monotone function, then we can optimize

the sort-based approach of partitioning as follows. Here again, we sort on the composite

key (pid, F (t)) which generates partitions that are sorted onF (t). When evaluating a

CPQ (RV1
, · · · , RVk

) using MNLCP to generatek-sets, iftj is the first tuple fromRVj

(1 ≤ j ≤ k) that satisfiesp when combined with a specific combined tuple(t1, · · · , tj−1)

from (RV1
× · · · × RVj−1

), then we do not need to check the satisfiability for the partial

result tuples extended from(t1, · · · , tj−1). Note that if we do not sort on the composite

key (pid, F (t)), we can only avoid the satisfiability checking for the partial result tuples

extend from(t1, · · · , tj).

Due to the fixed cardinality of the answer sets for a vpset, theabove optimization can also

be applied for some functions that are not distributive monotone. One such example is

AVG(S.price)≤ (or≥) c.

3.8 Performance Study

In this section, we present an experimental study to comparethe performance of our

proposed approach against the baseline SQL solution. Our approach was implemented on

PostgreSQL 8.4.4, and the experiments were performed on an Intel Dual Core 2.33GHz

machine with 3.2GB of RAM and two SATA2 disks running Linux. Both OS and DBMS

were installed on a 250GB disk, while the database was storedon a 1TB disk.

Implementation. We implemented our evaluation approach as a new operator inside the

PostgreSQL execution engine. An engine-based implementation offers the best perfor-

mance as it enables the implementation to leverage the existing evaluation code (e.g.,

external sorting and hashing). Furthermore, it makes the interaction with other database

operators much easier. For example, the results of SQs can bepipelined to other database

operators like join and set-skyline to perform additional computation.

Algorithms. Table3.2 shows the notations for the five algorithms (four variants ofpro-

posed approach and one baseline SQL solution) compared in the experiments. For each

non-progressive algorithmA (A ∈ {ns, nh}), we useA-p andA-e to represent, respec-

tively, its partitioning and enumeration phases. For the SQL solution, we actually experi-

mented with two variants: the first variant used virtual views while the second variant used

42

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

Table 3.2: Compared algorithms
Notation Algorithm

ps progressive, sort-based algorithm
ns non-progressive, sort-based algorithm
ph progressive, hash-based algorithm
nh non-progressive, hash-based algorithm
bs baseline SQL solution

materialized views. In the experimental results, each running time shown for the SQL so-

lution refers to the timing of the more efficient variant; furthermore, we omit reporting its

running time if it exceeds 12 hours.

Datasets.We used both synthetic and real datasets for the experiments. Our real dataset

is from the MusicBrainz database [1] which stores music metadata. We created a materi-

alized view by joining several tables from the database as the input relation for our experi-

ments. The schema of the view ismusic(mid,mname,duration,language,bname,battribute,

btype,bscript,aname,abegindate,aenddate,atype), and the detailed information about the

attributes can be found in [1]. After removing tuples with non-positive duration attribute

value, the size of the materialized view is 1.35GB with 8,507,949 tuples.

Our synthetic dataset was generated based on the schema of the MusicBrainz database [1].

The size of the relation (in the default setting) is 408MB with 1 million tuples. For at-

tributes used for member predicates, their values were generated with a uniform distri-

bution to simplify our control on the selectively factors, while for the attribute (i.e., du-

ration) used for the set predicate, its values were generated with a Gaussian distribution

(µ = 300, σ = 55) to ensure that each query returns a reasonable number of answer sets.

Queries. Our experimental queries aim to find different subsets of music files to meet

certain constraints. We tested on both BSQs and SQs for the experiments. Each query

has between 2 to 6 member variables with exactly one member predicate for each mem-

ber variable. All the member predicates are on different attributes. Each BSQ also has

an anti-monotone set predicate of the formsum(S.duration) ≤ c, while each SQ has

the same anti-monotone set predicate as well as a monotone set predicate of the form

sum(S.duration) ≥ c/2, wherec is some constant value. Each query was run three

times and we report their average running time.

Parameter settings. Table3.3 shows the key parameters and their default values used

in the experiments; the default parameter values were used unless specified otherwise.

43

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

Table 3.3: Key experimental parameters
Parameter Notation Default

Cardinality of synthetic input tableR ||R|| 1,000,000
Work memory B 40MB/200MB
Maximum number of returned answer sets k ALL
Number of member predicates n 4
Selectivity factor of each member predicate f 0.05
Aggregate value in set predicate c Avg

Thek parameter represents the maximum number of required answersets in the query’s

limit clause and has a default value of “ALL” to retrieve all answer sets. Thec parameter

is used to control the selectivity of the set predicates and its default value (denoted by

“Avg”) refers to the average value of thedurationattribute, which is 230 seconds for the

real dataset and 300 seconds for the synthetic datasets.

The work memory parameterB controls the main memory allocated in PostgreSQL for

our algorithms as well as for sorting and storing hash tables. Since we are interested

in comparing the disk-based variants of our algorithms, we set B = 40MB for BSQs

andB = 200MB for SQs in the default setting. Note that a largerB value was used

for SQs since the evaluation of SQs require bothR∅ andRV to be materialized in the

partitioning phase which significantly increases the totalsize of the partitions. However,

for the baseline SQL solution, we actually used a larger, fixed value of 256MB of work

memory (to improve its performance via speeding up the sort-merge and hash joins in the

SQL solution), which is much larger than the typical work memory size recommended for

PostgreSQL [4]. Thus, our work memory allocation favors the baseline solution.

Summary of results.For queries where all the query results are returned, our algorithm-

s significantly outperform the SQL solution by up to three orders of magnitude and the

non-progressive algorithms are at least as fast as the corresponding progressive algorithm-

s. Furthermore, the sort-based algorithms are significantly faster by up to two orders of

magnitude than the corresponding hash-based algorithms due to the optimization tech-

nique discussed in Section3.7.2 for sort-based algorithms. However, the partitioning

phase ofnh is slightly faster than the partitioning phase ofns as discussed in Section3.6.

For queries where the maximum number of returned answer setsare limited (i.e., with

limit-k clause), our experimental results (withk ranging from 10 to 50) show that both

the progressive and non-progressive algorithms outperform the baseline solution by up to

one order of magnitude and the progressive algorithms are faster than the corresponding

non-progressive algorithms. Furthermore,ph is able to produce results earlier thanps as

44

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

ph can start to produce results immediately for each newly readtuple whileps needs to

fill and sort the buffer with tuples before producing any results.

3.8.1 Results for BSQs on Synthetic Datasets

In this section, we first compare our proposed algorithms against the baseline solution,

and then study the effectiveness of our optimizations for evaluating lean and fat CPQs,

and finally compare the relative performance of our algorithms for different settings.

Comparison with SQL baseline solution.Figure3.6(a) compares the performance as a

function of the input relation cardinality||R||. The running times for the baseline solution

are not shown on the graph as they are extremely long: for relation cardinality sizes of

1m, 1.5m and 2m, it took 1.2hr, 3.3hr and 6.9hr, respectively; and it exceeded 12hr for

cardinality sizes beyond that. Thus, comparing to the caseswhere the baseline solution

run to completion (i.e., under 12hr), our algorithms outperform the baseline solution by

up to three orders of magnitude.

As expected, the running times of our algorithms increase with the value of||R||. Since

a larger input table results in larger partitions, this increases the CPQ processing time

for three reasons. First, larger partitions increase the number of results; second, larger

partitions cause lean CPQs to be partitioned into more querybatches which requires more

processing time; and third, larger partitions also increase the number of fat CPQs (which

are more costly to evaluate than lean CPQs). For example, when the input cardinality is

1m, 1.5m, 2m, 2.5m, and 3m, the number of answer sets are, respectively, 7942, 15721,

31584, 51247, and 75273; the number of query batches are, respectively, 6, 8, 14, 14, and

15; and the number of fat CPQs are, respectively, 0, 1, 7, 7, and 7.

To enable the baseline solution to complete running within reasonable time, we also com-

pared the algorithms by limiting the maximum number of returned results by varying the

k parameter. The comparison is shown in Figure3.6(b).

For the baseline solution, we manually control its running to obtaink results as follows.

Recall that the baseline solution works by generating answer sets iteratively (i.e., 1-sets,

2-sets, etc.) using a sequence of queries. We first try to obtain k answer sets from the

query that generates answer 1-sets. Ifk results are obtained, then we are done; otherwise,

we try to obtain the remaining answer sets from the query thatgenerates answer 2-sets,

and so on until we getk results.

45

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

 1

 10

 100

 1000

1m 1.5m 2m 2.5m 3m

E
xe

cu
tio

n
tim

e
(s

ec
)

Input relation cardinality (million)

ns-e
ns-p

ps
nh-e
nh-p

ph

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 20 30 40 50

E
xe

cu
tio

n
tim

e
(m

s)

Maximum number of returned answer sets

ns-e
ns-p

ps
ph

nh-e
nh-p

(a) Effect of||R|| (b) Effect ofk

Figure 3.6: Comparison with the baseline solution

The performance of the baseline solution (results omitted in Figure3.6(b)) is almost one

order of magnitude slower than our approach: specifically, the running time ofbs are

3.6s, 14.9s, 15.0s, 18.1s and 26.9s, respectively, for ak value of 10, 20, 30, 40 and 50. As

expected, the execution time of our approach increases ask increases.

Effectiveness of Optimizations.We now study the effectiveness of our optimizations for

evaluating lean and fat CPQs.

To evaluate the effectiveness of our MQO heuristic (denotedby nh6) to process lean

CPQs, we created two alternative heuristics to compare against nh. The first heuristic

(denoted bynd) is equivalent tonh except fornd uses a different strategy to generate

the local plans: for each CPQ, its partitions are ordered in non-increasing order of their

cardinalities (i.e., opposite tonh’s strategy) for the MNLCP evaluation.nd is used to

demonstrate the effectiveness of our heuristic to generatelocal plans. The second heuristic

(denoted bynv) uses the same way asnh to generate local plans. However, unlikenh, nv

evaluates the CPQs one at a time without sharing the computations of any CSEs; i.e.,nv

enumerates the vpsets one by one and process the corresponding CPQs one by one. To

enable partition scans to be shared,nv employs the following simple buffer replacement

strategy: if the buffer is full when a partitionP is to be loaded into the buffer,nv randomly

evicts some partition(s) that are not needed by the CPQ beingevaluated from the buffer

to make room forP . nv is used to demonstrate the effectiveness of our heuristic toshare

computation of CSEs.

Figure3.7(a) compares the running time ofnh, nd andnv as a function of selectivity fac-

6We usenh to represent our algorithm sincenh is more general thanns (i.e., the optimization technique
discussed in3.7.2for ns is only applicable for certain set predicates).

46

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

tor of member predicates,f 7. Note that whenf increases from 0.1 to 0.5, the cardinalities

of the partitions become more balanced. In particular, whenf = 0.5, the cardinality of all

the partitions are almost the same and thus the running timesof nh andnd do not show

much differences. The experimental results show thatnh outperformsnd by 1.1 times on

average and up to3.2 times whenf = 0.1, which demonstrates the effectiveness of our

MQO heuristic to generate local plans, andnh outperformsnv by 1.7 times on average

and up to 2.6 times whenf = 0.5, which demonstrates the effectiveness of our MQO

heuristic to share the computation of CSEs.

 0

 10

 20

 30

 40

 50

 60

0.1 0.2 0.3 0.4 0.5

E
xe

cu
tio

n
tim

e
(s

ec
)

Selectivity factor F

nh
nd
nv

 0

 100

 200

 300

 400

 500

2 4 6 8 10

E
xe

cu
tio

n
tim

e(
se

c)

Work memory B (MB)

Opt
Unf

(a) Lean CPQs (b) Fat CPQs

Figure 3.7: Effectiveness of CPQ optimizations

To evaluate the effectiveness of our heuristic technique (denoted byOpt) for processing

fat CPQs, we compare against two other competing techniques(denoted byMat and

Unf). The first,Mat, is the materialization strategy discussed in Section3.6.2where a

fat CPQ is evaluated as a sequence of binary cross-products with each intermediate result

being materialized. The second,Unf , adopts the same MNLCP technique as ourOpt but

uses a simple buffer allocation strategy that allocates thebuffer space uniformly among

the query partitions.

To compare the performance of these methods, we created a single fat CPQ with one anti-

monotone set predicate that consists of four partitions whose sizes (cardinalities) are,

respectively, 3.7MB (7480 tuples), 5.0MB (10084 tuples), 5.1MB (10174 tuples) and

6.3MB (12594 tuples).

Our experimental results show that bothOpt andUnf significantly outperformMat by up

to one order of magnitude. As an example, when the work memoryis 10MB, the running

times forOpt, Unf andMat are 95s, 151s and 3163s, respectively. Given the poor

7To ensure that all the CPQs in the experiment are lean querieswhen we varyf , we set||R|| = 10k and
n = 6.

47

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

performance ofMat, we next focus on comparingOpt andUnf as a function of the work

memory (i.e.,B) in Figure3.7(b). As expected, whenB increases, the running times for

bothOpt andUnf decrease. The experimental results show thatOpt outperformsUnf

by 83% on average and up to 108% whenB = 10MB.

Effect of Other Parameters.We compare the effect of other parameters in Figure3.8; as

before, the results for the baseline solution are omitted here as our algorithms outperform

the baseline solution by up to three orders of magnitude.

Figure 3.8(a) compares the effect of the work memory size,B. As B increases, the

running times for the non-progressive algorithms decrease. This is expected since for

non-progressive algorithms, the running times for both thepartitioning and enumeration

phases decrease whenB increases. However, the running times for the progressive algo-

rithms increase with more work memory. The reason is that although a largerB speeds up

the enumeration phase of the progressive algorithms, it also increases the running time for

the partitioning phase of the progressive algorithms sincethe larger work memory means

that more results are produced during the partitioning phase due to the larger buffer of

tuples. For the progressive algorithms, our experimental results show that asB increas-

es, the improvement in the enumeration phase is offset by theslower partitioning phase

resulting in an overall slower running time.

Figure3.8(b) compares the effect of selectivity factor of member predicates,f . We ob-

serve an interesting trend where the running time initiallyincreases with increasingf until

a certain threshold (f = 0.3) after which the running time decreases with increasingf .

This is because for BSQs, the value off affects the type of resultant CPQs and hence

the evaluation cost. At one extreme with very small values off , a tuple is more likely

to belong to a partition that satisfies a small number of member predicates. Thus, many

tuples will belong to the partitionR∅ which means that the resultant CPQs can be evalu-

ated efficiently. At the other extreme with very large valuesof f , a tuple is more likely to

belong to a partition that satisfies a large number of member predicates. Thus, the resul-

tant CPQs correspond to vpsets with small cardinality (i.e., CPQs with small number of

operand partitions) which can also be evaluated efficiently.

Figure 3.8(c) compares the effect of the number of member predicates,n. Note that

the number of partitions increases exponentially withn. Although a larger number of

partitions reduces the number of tuples in each partition, it also increases the number of

CPQs which increases the running time as shown by our experimental results.

48

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

 1

 10

 100

20 25 30 35 40

E
xe

cu
tio

n
tim

e
(s

ec
)

Work memory (MB)

ns-e
ns-p

ps
ph

nh-e
nh-p

 1

 10

 100

 1000

 10000

0.1 0.3 0.5 0.7 0.9

E
xe

cu
tio

n
tim

e
(s

ec
)

Selectivity factor

ns-e
ns-p

ps
ph

nh-e
nh-p

(a) Effect ofB (b) Effect off

 1

 10

 100

2 3 4 5 6

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of member predicates

ns-e
ns-p

ps
nh-e
nh-p

ph

 1

 10

 100

 1000

300 310 320 330 340

E
xe

cu
tio

n
tim

e
(s

ec
)

Aggregate value in anti-monotone set predicate

ns-e
ns-p

ps
ph

nh-e
nh-p

(c) Effect ofn (d) Effect ofc

Figure 3.8: Effect of varying parameters on synthetic datasets

Figure3.8(d) compares the effect of selectivity of the set predicate as we increase the

aggregate valuec in the set predicate. As the value ofc increases, the running times for

all the algorithms increase. This is expected since the number of results increases (e.g.,

the number of answer sets are, respectively, 7942, 14905, 27692, 51243, and 94326 for an

aggregate value of 300, 310, 320, 330, and 340) with increasing c value which therefore

increases the running time.

3.8.2 Results for BSQs on Real Dataset

In this section, we evaluate the performance of BSQs using the real dataset. Since the

cardinality of the real dataset is larger than that of the synthetic datasets, we used smaller

selectivity factors for the member predicates for the experiments on the real dataset. In

the default setting, each query has four member predicates with the following selectivity

factors: 6.1 × 10−4, 1.1 × 10−3, 9.4 × 10−4 and5.8 × 10−4 8. Accordingly, we used a

8In Figure3.9(a), the selectivity factors of the additional two member predicates are3.6 × 10−4 and
2.3× 10−4.

49

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

 1

 10

 100

 1000

2 3 4 5 6

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of member predicates (C = 150)

ns-e
ns-p

ps
nh-e
nh-p

ph

 1

 10

 100

210 220 230 240 250

E
xe

cu
tio

n
tim

e
(s

ec
)

Aggregate value in anti-monotone predicate

ns-e
ns-p

ps
ph

nh-e
nh-p

(a) Effect ofn (b) Effect ofc

 10

 100

 1000

1 1.5 2 2.5 3

E
xe

cu
tio

n
tim

e
(s

ec
)

Work Memory (MB)(C = 300)

ns-e
ns-p

ps
ph

nh-e
nh-p

 3000

 4000

 5000

 6000

 7000

 8000

 9000

10 20 30 40 50

E
xe

cu
tio

n
tim

e
(m

s)

Maximum number of returned results

ns-e
ns-p

ps
ph

nh-e
nh-p

(c) Effect ofB (d) Effect ofk

Figure 3.9: Effect of varying parameters on real dataset

smaller default work memory size of 1MB to ensure that we are comparing the disk-based

variants of the algorithms.

In the default setting, the baseline solution did not complete running in 12 hours. In con-

trast, the running times ofns, ps, nh andph are13.8s, 15.0s, 86.4s and104s respectively.

The results shows that our algorithms are at least three orders of magnitude faster than the

SQL solution.

Figure3.9 compares the effect of varying various parameters using thereal dataset. Our

experimental results for the real dataset exhibit similar trends observed for the synthetic

datasets, and we therefore do not repeat the analysis of the results. In Figure3.9(d), the

running times of the baseline solution are not shown as they are one order of magnitude

slower than our algorithms. For example, whenk = 10, the running times ofph, ps, ns,

nh andbs are respectively 3.5s, 5.0s, 8.4s, 8.4s and 84s.

50

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

3.8.3 Results for SQs on Synthetic Datasets

In this section, we evaluate the performance of SQs on synthetic datasets. Our experimen-

tal results for SQs show that both SQs and minimal SQs (i.e., SQs that are constrained to

retrieve only minimal answer sets) are more time consuming to evaluate than BSQs. For

example, in the default setting, the running times ofph for BSQs, minimal SQs and SQs

are, respectively, 61s, 575s and 779s. The reason for this isthreefold. First, SQs produce

more partitions as bothR∅ andRV have to be materialized in the partitioning phase. Sec-

ond, SQs require more vpsets to be enumerated (due to the weaker definition of vpsets).

For example, whenn = 4, the number of vpsets for BSQs and SQs are, respectively, 48

and 3229. Third, the number of returned answer sets for SQs are larger. For example, the

number of answer sets for BSQs, minimal SQs and SQs are, respectively, 7942, 9214 and

15563 (in the default setting). We also observe that minimalSQs can be evaluated more

efficiently than SQs as minimal SQs can prune the cross product space for SQs (i.e., ifS

is a minimal answer set, then all the supersets ofS can be pruned).

 1

 10

 100

 1000

 10000

1m 1.2m 1.4m 1.6m 1.8m

E
xe

cu
tio

n
tim

e
(s

ec
)

Input relation cardinality (million)

ns-e
ns-p

ps
ph

nh-e
nh-p

 1

 10

 100

 1000

 10000

1m 1.2m 1.4m 1.6m 1.8m

E
xe

cu
tio

n
tim

e
(s

ec
)

Input relation cardinality (million)

ns-e
ns-p

ps
ph

nh-e
nh-p

(a) SQs (b) minimal SQs

Figure 3.10: Effect of||R||

Figure3.10compares the effect of||R|| for both SQs and minimal SQs. The baseline SQL

solution did not complete execution within 12 hours and we therefore omit its results in the

graphs. As expected, the running times of our algorithms increase with||R|| as explained

in Section3.8.1.

Figure3.11 compares the effect ofk for both SQs and minimal SQs. As the baseline

solution is two orders of magnitude slower than our algorithms, its running times are not

shown in the figure. For example, whenk = 50, the running times ofbs are respectively

651.0s and 649.5s for SQs and minimal SQs. As expected, the running times of our

algorithms increase slowly with the increasing ofk.

51

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

10 20 30 40 50

E
xe

cu
tio

n
tim

e
(m

s)

Maximum number of returned answer sets

ns-e
ns-p

ps
ph

nh-e
nh-p

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

10 20 30 40 50

E
xe

cu
tio

n
tim

e
(m

s)

Maximum number of returned answer sets

ns-e
ns-p

ps
ph

nh-e
nh-p

(a) SQs (b) minimal SQs

Figure 3.11: Effect ofk

We observe that the performance trends for SQs are similar tothose for BSQs. Therefore,

we do not repeatedly report and discuss them further.

3.8.4 Results for SQs on Real Dataset

In this section, we evaluate the performance of SQs on the real dataset9. Here again,

the experimental results show that our algorithms significantly outperform the baseline

solution. For example, for SQs in the default setting, the running times ofns, ps, nh

andph are respectively, 0.8hr, 1.33hr, 2.25hr and 5.77hr while the baseline solution did

not finish running in 12 hours. Furthermore, even for the setting where onlyk results are

returned, both SQs and minimal SQs for the baseline solutiondid not finish running in 12

hours. This is because the answer sets for queries on the realdataset have large cardinality

due to the low selectivity factors of member predicates as discussed in Section3.8.2, the

baseline solution has to spend more time to generate large size candidate answer sets

before producing any answer sets. Therefore, the baseline solution runs slowly even for

limit-k queries.

We do not repeatedly discuss the results for SQs on the real dataset as the trends are

similar to the results for SQs on the synthetic datasets.

9To compare the disk-based algorithms and reduce the number of answer sets, we setc = 100.

52

CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

3.9 Summary

In this chapter, we have proposed a novel and efficient approach to evaluate enumera-

tive set-based queries by transforming enumeration set-based queries as a collection of

cross product queries. Our extensive experimental resultsdemonstrate that our proposed

approach significantly outperforms the conventional RDBMSapproach by up to three

orders of magnitude.

53

CHAPTER 4

MULTI-QUERY OPTIMIZATION IN

MAPREDUCE FRAMEWORK

4.1 Overview

In this chapter, we study multi-query/job optimization techniques and algorithms for a

batch of jobs in the MapReduce framework. The state-of-the-art work in this direction

is MRShare [44], which proposed two sharing techniques for a batch of jobs.Theshare

map input scantechnique aims to share the scan of the input file among jobs, while the

share map outputtechnique aims to reduce the communication cost for map output tu-

ples by generating only one copy of each shared map output tuple. The key idea behind

MRShare is agrouping techniqueto merge multiple jobs that can benefit from the sharing

opportunities into a single job. Compared to MRShare, the naive technique of processing

each job independently would need to scan the same input file multiple times and gen-

erate multiple copies of the same map output tuple. However,MRShare incurs a higher

sorting cost compared to the naive technique as sorting a larger map output produced by

the merged job is more costly than multiple independent sortings of smaller map outputs

produced by the unmerged jobs.

54

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

In this chapter, we present a more comprehensive study of multi-job optimization tech-

niques and algorithms. We first propose two new job sharing techniques that expand the

opportunities for multi-job optimizations. The first technique is ageneralized grouping

technique (GGT)that relaxes MRShare’s requirement for sharing map output.The second

technique is amaterialization technique (MT)that partially materializes the map output of

jobs (in the map and/or reduce phase) which provides anotheralternative means for jobs

to share both map input scan and map output. Comparing with the naive technique, GGT

incurs a higher sorting cost (similar to MRShare’s groupingtechnique) while MT incurs

an additional materialization cost. Thus, neither GGT nor MT is strictly more superior, as

demonstrated also by our experimental results.

Given the expanded repertoire of three sharing techniques (i.e., the naive independen-

t evaluation technique, GGT which subsumes MRShare’s grouping technique, and MT),

finding an optimal evaluation plan for an input batch of jobs becomes an even more chal-

lenging problem. Indeed, the optimization problem is already NP-hard when only the

naive and grouping techniques are considered in MRShare [44]. We then propose a novel

two-phase approach to solve this non-trivial optimizationproblem.

We conducted a comprehensive performance evaluation of themulti-job optimization

techniques using Hadoop. Our experimental results show that our proposed techniques

are scalable for a large number of queries and significantly outperform MRShare’s tech-

niques by up to 107%.

The rest of the chapter is organized as follows. Section4.2 introduces the assumptions

and notations used in this chapter. Section4.3 presents several multi-job optimization

techniques to share map input scan and map output; their costmodels are presented in

Section4.4. Section4.5presents a novel two-phase algorithm to optimize the evaluation

of a batch of jobs given the expanded repertoire of optimization techniques. Section4.6

presents a performance evaluation of the presented techniques, and we conclude in Sec-

tion 4.7.

4.2 Assumptions & Notations

We assume that the input queries are specified in some high-level language (e.g., [58, 59,

47, 26, 20]) which are then translated to MapReduce jobs. By specifying the input jobs via

a high-level query language, it facilitates the identification of sharing opportunities among

55

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Table 4.1: Running examples of MapReduce jobs.
Id Job <Key,Value>
J1 select a, sum(d)from T where a≥ 10 group by a <a,d>
J2 select a, b, sum(d)from T where b≤ 20 group by a, b <(a,b),d>
J3 select a, b, c, sum(d)from T where c≤ 20 group by a, b, c <(a,b,c),d>
J4 select a, sum(d)from T where b≤ 20 group by a <a,d>
J5 select b, sum(d)from T where a≥ 20 group by b <b,d>

J6 select ∗ from T, Rwhere T.a = R.e
T:<a, T.∗>
R:<e, R.∗>

J7 select ∗ from T, Rwhere T.a = R.e and T.b = R.f
T:<(a,b), T.∗>
R:<(e,f), R.∗>

jobs (via their query schemas); and standard statistics-based techniques [38, 55, 68] could

be used to estimate the sizes of their shared map outputs. This assumption is also adopted

in several related work [44, 18, 40, 68].

In the rest of this chapter, we will use the terms queries and jobs interchangeably. Table4.1

shows seven jobs (J1 to J7) that we will be using as running examples throughout this

chapter.

For a jobJi, we useKi to represent its map output key,Ai to represent the set of attributes

in Ki, |Ai| to represent the number of attributes inAi, fi to represent its reduce function,

Mi to represent its map output1., andRi to represent its reduce output. For example, for

J2 in Table4.1, K2 = (a, b), A2 = {a, b} and|A2| = 2.

We useKi � Kj to denote thatKi is a prefix ofKj , andKi ≺ Kj to denote thatKi is a

proper prefix ofKj (i.e.,Ki 6= Kj). For example,K4 ≺ K2 andK5 6≺ K2.

Consider a map outputMi with schema(Ai, Vi) whereAi andVi refers to the map output

key and value attributes, respectively. Given a set of attributesA ⊆ Ai, we useMA
i to

denote the map output derived fromMi where its map output key attributes are projected

ontoA; i.e.,MA
i = πA,Vi

(Mi). For example,M{a}
2 = M4.

Consider two jobsJi andJj whereAj ⊆ Ai. We useMi,j ⊆ Mi to denote the subset

of Mi such thatMAj

i,j = M
Aj

i

⋂

Mj represents the subset ofMj that can be derived from

Mi. Furthermore, we useMi

p
Mj to represent the (key, value-list) representation of

the map outputMi

⋂

Mj . For example, ifMi

⋂

Mj = {(k1, v1), (k1, v2), (k2, v3)}, then

Mi

p
Mj = {(k1, <v1, v2>), (k2, <v3>)}.

1For presentation simplicity, we do not consider combine functions to reduce the size of map output in
this chapter; however, our proposed techniques can be easily extended to operate in the presence of combine
functions.

56

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

ReducerF Mi RiMapper

ReducerF Mj RjMapper

ReducerF

Ri

Mapper

Ji

Jj

Rj

Naive technique

Mi (Mj\ Mi
Kj)

Generalized grouping technique

ReducerF Mapper RiMi

Mj\ Mi
Kj

ReducerMapper RjMj\ Mi
Kj

Mj Mi
Kj

Ji

Jj

materialization materialization

Materialization technique

F

Figure 4.1: Multi-job optimization techniques

4.3 Multi-job Optimization Techniques

In this section, we discuss several multi-job optimizationtechniques. We first review

the grouping technique (GT) in MRShare [44], which is the most relevant work to ours,

and then present our proposed generalized grouping technique (GGT) and materialization

technique (MT). For simplicity, we first focus our presentation on two single-input jobs

Ji andJj on an input fileF and then discuss the generalization for more than two jobs;

the handling of multi-input jobs is discussed in Section4.3.4. Figure4.1gives a pictorial

comparison of the techniques to process two jobsJi andJj , whereKj � Ki.

4.3.1 Grouping Technique

In this section, we review MRShare’s grouping technique.

Sharing map input scan.For two jobsJi andJj to share their map input scan, the input

files ofJi andJj, the input key and value types ofJi andJj , and the map output key and

value types ofJi andJj must be all the same. We can then combineJi andJj into a new

57

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

job to share the scan of the map input for the two jobs. We now describe the map and

reduce phases of the new job.

In the map phase, the common input file is scanned to generate the map outputsMi for

Ji andMj for Jj. To distinguish the map outputs of the two jobs in the reduce phase,

we usetag(i) to tag the map outputMi andtag(j) to tag the map outputMj. The tags

are stored as part of the map output values; thus, each map output tuple is of the form

(key,(tag,value)).

In the reduce phase, for each key and for each value associated with the key, if the tag

of the value istag(i), we distribute the value to the reduce function ofJi; otherwise, we

distribute the value to the reduce function ofJj . When all the values associated with a key

have been examined, we generate the results for that key for the two jobs.

Sharing map output. ForJi andJj to also share map output besides sharing map input

scan, the two jobs must additionally satisfy the requirement thatKi = Kj . We can then

combineJi andJj into a new job to share both their map input scan as well as any common

map output (i.e.,Mi

⋂

Mj). Sharing map output reduces the map output size and hence

the sorting and communication cost. We now describe the map and reduce phases of the

new job.

In the map phase, the values of the map output are taggedtag(i), tag(j), andtag(ij),

respectively, for tuples that belong toMi \Mj, Mj \Mi, andMi

⋂

Mj . In this way, tuples

that belong toMi

⋂

Mj are produced only once with the tagtag(ij).

In the reduce phase, for each key and for each value associated with the key, if the tag

of the value istag(i), we distribute the value to the reduce function ofJi; if the tag

of the value istag(j), we distribute the value to the reduce function ofJj; otherwise,

we distribute the value to the reduce functions of bothJi andJj . When all the values

associated with a key have been examined, the reducer generates the results for that key

for both jobs.

Example 4.1: Consider the two jobsJ1 andJ4. We can combine them into a new job to

share both the input fileT scan as well as the common map output fora ≥ 10∧b ≤ 20. In

the map phase, for each tuplet from T , if t.a ≥ 10 ∧ t.b > 20, we produce the key-value

pair (t.a, (tag(1), t.d)) indicating that it is produced by onlyJ1; if t.a < 10 ∧ t.b ≤ 20,

we produce the key-value pair(t.a, (tag(4), t.d)) indicating that it is produced by only

J4; if t.a ≥ 10 ∧ t.b ≤ 20, we produce the key-value pair(t.a, (tag(14),t.d)) indicating

58

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

that it is produced by bothJ1 andJ4; otherwise, we do not produce any map output for

the tuple. In the reduce phase, for each key and for each valueassociated with the key,

if the tag of the value istag(1), we aggregate the value forJ1; if the tag of the value is

tag(4), we aggregate the value forJ4; otherwise, we aggregate the value for bothJ1 and

J4. When all the values associated with a key have been aggregated, we output the results

for that key forJ1 andJ4. 2

4.3.2 Generalized Grouping Technique

In this section, we present a generalized grouping technique (GGT) that relaxes the re-

quirement of MRShare’s grouping technique (i.e.,Ki = Kj) to enable the sharing of map

output. To motivate our technique, consider the two jobsJ1 andJ2 in Table4.1. Although

K1 6= K2, it is clear that the map output ofJ2 for a ≥ 10 could be used to derive the

partial map output ofJ1. We first present the basic ideas for processing two jobs and then

discuss the generalization to handle more than two jobs.

Basic Ideas.To share the map output of two jobsJi andJj, GGT requires thatKj � Ki

which is a weaker condition than MRShare’s grouping technique (i.e.,Ki = Kj). The

jobsJi andJj are combined into a new job to enable the map output ofJi to be reused for

Jj.

In the map phase of the new job, we generate the map outputMi for Ji and the partial

map outputMj \M
Aj

i for Jj. The remaining map output ofJj (i.e.,MAj

i,j) is not generated

explicitly since they can be derived fromMi (i.e.,Mi,j). By sharing the map output ofJi

andJj viaMi,j , we reduce the overall size of the map output. The values of the map output

are taggedtag(i), tag(j), andtag(ij), respectively, for tuples that belong toMi \ Mi,j,

Mj \M
Aj

i , andMi,j.

Note that in the MapReduce framework, the map output tuples for a job must all share the

same output schema (i.e., same key and value types). While this requirement is satisfied by

MRShare’s grouping technique (i.e.,Ki = Kj), the relaxed requirement (i.e.,Kj � Ki)

of GGT may require us to additionally convert the map output of Ji andJj (produced

by our new job) to be of the same type. To achieve this, we use the simple approach of

converting both the key and value components of the map output to string values if their

types are different. Let us take the conversion of the key component for example. For

the key component of a map output tuple, we represent it as a string value that is formed

59

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

by concatenating the string representation of each of its key attributes separated by some

special delimiter (e.g., “:”). For example, the string representations of the key components

of J2 andJ3 are of the form “a:b” and “a:b:c”, respectively. This representation enables

each key attribute value to be easily extracted from the string representation of the key

component.

SinceKj � Ki, the map output of the new job is partitioned onKj and sorted onKi.

By partitioning onKj , the map output tuples that have the sameKj values are distributed

to and processed by the same reducer thereby enabling the reuse of the map output ofJi

for Jj. The sorting onKi is to facilitate the processing at the reducers (to be explained

later); note that this sorting is well defined: for the map output tuples ofJj (whose key

values do not contain all the values ofKi), the missing attribute values are treated as being

converted to empty string values.

In the reduce phase of the new job, to compute the results ofJi, for each key ofJi, we

apply the reduce function on the values associated with thatkey from tuples taggedtag(i)

or tag(ij). To compute the results ofJj , for each key ofJj , besides the values associated

with that key (from tuples taggedtag(j)), we also need to find the values ofJi that can

be reused forJj ; i.e., tuples taggedtag(ij) where the projection of its key onAj is equal

to the key ofJj. The reduce function ofJj is applied on all these values to produce the

result for that key. Note that all the relevant tuples neededfor the reduce function can be

found very efficiently with a partial sequential scan of the map output (which is sorted on

Ki).

Unlike the grouping technique where each reduce function isapplied on the values associ-

ated with one key, GGT may need to apply each reduce function on the values associated

with multiple consecutive keys due to the different number of map output key attributes

for the jobs. Therefore, in GGT, we have to determine when to apply the reduce functions

and output the results for the jobs (the details will be explained later). Figure4.2gives a

pictorial comparison of applying reduce functions for GGT and GT for two jobsJi and

Jj.

Example 4.2:Consider the two jobsJ1 andJ2. AsK1 ≺ K2, GGT is applicable to enable

both jobs to share map input scan and map output. In the map phase, for each tuplet from

T , if t.a < 10 ∧ t.b ≤ 20, we produce the key-value pair (t.a:t.b, (tag(2), t.d)) indicating

that it is produced and consumed by onlyJ2; if t.a ≥ 10 ∧ t.b ≤ 20, we produce the

key-value pair (t.a:t.b, (tag(12), t.d)) indicating that it is produced byJ2 and consumed by

bothJ1 andJ2; if t.a ≥ 10 ∧ t.b > 20, we produce the key-value pair (t.a, (tag(1), t.d))

60

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

kj1

Key Values

tag(i) tag(ij) tag(j)

kj1

kj1:ks1

kj1:ks2

 kj1:ks3

kj2

tag(j)

tag(ij) tag(i)

tag(ij)

tag(ij)

tag(i)

tag(i)

tag(j)

case1: Ki = Kj

case2: Kj Ki

fi

fj

fi

fi

fj

fi

Legend

kj1, kj2 - keys of Jj kj1:ks1, kj1:ks2, kj1:ks3 - keys of Ji

Figure 4.2: A comparison of applying reduce functions for GGT and GT

indicating that it is produced and consumed by onlyJ1; otherwise, we do not produce any

map output for that tuple. We then partition the map output ona and sort the map output

on a:b. In the reduce phase, we apply the reduce functions ofJ1 andJ2 on the appropriate

values to produce the results forJ1 andJ2. 2

Generalization. We now discuss how GGT can be generalized to handle more than two

jobs.

Consider a batch of jobsJ = {J1, J2, · · · , Jn} that are sorted in non-ascending order

of |Ai|. For each jobJi ∈ J , let PJi denote all the jobs precedingJi in J whose map

output can be reused forJi; i.e., PJi = {Jj ∈ J | j < i,Ki � Kj}. Furthermore, let

NMi = Mi \ (
⋃

Jj∈PJi
MAi

j) denote the map output ofJi that cannot be derived from the

map output of any job inPJi. We refer toNMi as thenon-derivable map outputof Ji in

J . We useNM =
⋃n

i=1NMi to denote thenon-derivable map outputfor all the jobs in

J .

GGT combines the batch of jobsJ into a single new job to share map input scan and

map output. In the map phase of the new job, for eachJi ∈ J , we produce and tag the

61

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

map outputNMi; each tag here is of the formtag(S), whereS ⊆ {i, i + 1, · · · , n}. In

the reduce phase of the new job, we apply the reduce functionson the appropriate values

based on their tags to produce the results for the batch of jobs which are discussed below.

Applying reduce functions for GGT. We now discuss how to apply the reduce functions

and output the results for the batch of jobs for GGT. For ease of our presentation, we

assume sum reduce functions (or other distributive reduce functions as defined in Sec-

tion 3.7.2).

Algorithm 4.1: Reducer class for GGT
Input : a batch ofn jobs(J1, J2, · · · , Jn)
Output : reduce output for each job(R1, R2, · · · , Rn)

1 Method INITIALIZE begin
2 A = new Int[n]; Default value is 0 ;
3 B = new boolean[n]; Default value is false ;
4 C = new String();

5 Method REDUCE (String key, List[(tag, value)])begin
6 D = decompose key into attributes ;
7 foreach i in [1, Min(|D|,|C|)] do
8 if C[i] 6= D[i] then
9 foreach j in [1, n] do

10 if i ≤ |Aj | ≤ |C| and B[j] then
11 outkey = concatenate the first|Aj | attributes from C ;
12 emit(outkey, A[j]) ;
13 A[j] = 0; B[j] = false ;
14 break ;
15 C = D ;
16 foreach (tag, value) in Listsdo
17 foreach i in [1, n] do
18 if tag contains ithen
19 A[i] += value ;
20 if B[i] == false then
21 B[i] = true;

22 Method Closebegin
23 foreach i in [1, n] do
24 if |Ai| ≤ |C| and B[i] then
25 outkey = concatenate the first|Ai| attributes from C ;
26 emit(outkey, A[i]) ;

Algorithm 4.1 shows the pseudocode for the reducer class for GGT. A reduce class in

Hadoop contains three methods: initialize(), reduce() andclose(). Prior to processing

any (key, List[(tag,value)]) pair, the initialize method is called. In our reduce class, the

initialize method initializes three global variables; onefor holding the aggregation values

62

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Figure 4.3: Example illustrating GGT
id a b c d
t1 15 30 25 5
t2 20 30 30 10
t3 15 15 25 5
t4 15 20 25 10
t5 15 15 15 10
t6 15 15 20 10

Key (a:b:c) Value-list (tag, d)
15 t1 → (tag(1), 5)

15:15 t3 → (tag(12), 5)

15:15:15 t5 → (tag(123), 10)

15:15:20 t6 → (tag(123), 10)

15:20 t4 → (tag(12), 10)

20 t2 → (tag(1), 10)

(a) An instance ofT (b) (Key,Value-list) layout

for each job (denoted asA[n]), one for holding the boolean values for each job which

is used to indicate whether some aggregations are performedfor each job since its last

output (denoted asB[n]) and the remaining one for holding the attributes for the previous

examined key (denoted asC and the number of attributes inC is denoted as|C|). Then

the reduce method is applied for each (key, List[(tag, value)]) pair. In our reduce class, for

each (key, List[(tag, value)]) pair (the local arrayD is used to hold the attributes for the

examined key and|D| is the number of attributes), the reduce method first checks whether

we can output the results for some jobs. This checking is doneby finding the first changed

attributes (denoted asi wherei ∈ [1, min(|C|, |D|)]) between arraysC andD and then

for eachj ∈ [1, n], if i ≤ |Aj| ≤ |C| andB[j] == true, we output the results forJj

where its key is formed by extracting the first|Aj| attributes from the arrayC and its value

is simplyA[j] (we also have to resetA[j] = 0 andB[j] = false). The intuition is that

if the ith attribute changes, for a jobJj whose|Aj | is at leasti, since the map output are

sorted onK1, all the values for the following keys can not be reused for the job for its key.

Therefore, the results forJj for its key can be outputted. Then it updates the previous key

to be the current key (i.e., copyD toC). Finally, it applies the aggregations for the current

key and accordingly updatesA andB. After applying the reduce method for each (key,

List[(tag,value)]) pair, the close method is called. In ourreduce class, the close method is

used to output the remaining results for the jobs (i.e., for eachj ∈ [1, n], B == true).

Note that the above algorithm assumes sum reduce functions (or other distributive reduce

functions). For non-distributive reduce functions, we need to defer the applying of reduce

function until all the required values which may be distributed in multiple consecutive

keys are buffered. Therefore, we may need to buffer the values associated with multiple

consecutive keys for non-distributive reduce functions.

Example 4.3: Consider using GGT to process three jobsJ1, J2 andJ3 over the input

table in Figure4.3(a). SinceK1 ≺ K2 ≺ K3, the map output ofJ3 can be reused for

J1 andJ2 and the map output ofJ2 can be reused forJ1. In the map phase, for each

63

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

tuple in Figure4.3(a), we properly tag and produce the map output for the three jobs. For

example, for the tuplet3, since it satisfies the selection conditions forJ1 andJ2 but not the

selection conditions forJ3, we produce the map output key-value pair (15:15,(tag(12),5))

indicating that it is produced byJ2 and can be reused forJ1. Figure4.3(b) shows the (key,

value-list) layout in the reduce task2 for all the map output.

In the reduce phase, when applying the reduce functions for each (key,value-list) pair,

for the first three keys (i.e., 15, 15:15, 15:15:15), since the attribute values for each of

the three keys does not change by comparing with the previouskey, we just apply the

reduce functions for them based on the tags. For example, forthe second key 15:15,

we aggregate the value 5 for bothJ1 andJ2 since it is tagged tag(12). For the fourth

key 15:15:20, compared to the previous key 15:15:15, the value of the third attributec

changes. Thus, before applying the reduce functions for thekey 15:15:20, we need to

output the results for a job if its number of map output key attributes is between the

number of the changed attribute (i.e., 3) and the number of attributes in the previous key

15:15:15 (i.e., 3). Therefore, we output the results forJ3 for the key 15:15:15 (i.e., extract

the first 3 attributes from the previous key 15:15:15). The same procedure is applied for

the fifth key 15:20 (i.e., output the results forJ2 for the key 15:15 andJ3 for the key

15:15:20) and the sixth key 20 (i.e., output the results forJ1 for the key 15 andJ2 for the

key 15:20). After examining all the (key,value-list) pair,we output the remaining results.

In our example, we output the results forJ1 for the key 20. 2

4.3.3 Materialization Techniques

In this section, we present an alternative approach, termedmaterialization techniques

(MT), for enabling multiple jobs to share map input scan and map output. Given a batch

of jobs, the main idea of MT is to process the jobs in a specific sequence such that the

map outputs of some of the preceding jobs can be materializedand used by the succeeding

jobs in the sequence. There are two basic materialization techniques, namely,map output

materializationandreduce input materialization, to enable sharing of map input scan and

map output, respectively. Here again, we first present the techniques for processing two

jobs and then discuss the generalization to handle more thantwo jobs.

Map Output Materialization (MOM). Our first materialization technique, which en-

ables jobsJi andJj to share the scan of the map input file, requires that the inputfiles and

2We assume there is only one reduce task for the jobs.

64

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

input key and value types ofJi andJj to be the same. Assume thatJi is to be processed

beforeJj .

In the map phase ofJi, we read the map input fileF to compute both the map output

Mi for Ji as well as the map outputMj for Jj. Mj is materialized to the distributed file

system (DFS) to be used later for processingJj. The reduce phase ofJi is processed as

usual.

In the map phase ofJj, instead of reading the map input fileF a second time, we read the

materialized map outputMj from the DFS. The reduce phase ofJj is processed as usual.

This simple materialization technique is beneficial if the total cost of materializing and

readingMj is lower than the cost of reading the input fileF .

Reduce Input Materialization (RIM). Our second materialization technique aims to

enable jobsJi andJj to share map output. This technique requires thatKj � Ki, Ji to

be processed beforeJj , and the map output ofJi andJj to be partitioned onKj . The key

idea of this technique is to materialize the map outputM
Aj

i

p
Mj in the reduce phase of

Ji, to be used later by the reduce phase ofJj. In this way, the sorting and communication

cost of the map outputMAj

i

⋂

Mj is eliminated when processingJj.

The map phase ofJi is processed as usual: we scan the input fileF to produce the map

outputMi for Ji. To enable the reduce phase ofJi to materializeMAj

i

p
Mj later, the

map outputMi is tagged as follows: tuples inMi,j are tagged usingtag(ij) while the

remaining tuples (i.e., tuples inMi \Mi,j) are tagged usingtag(i).

In the reduce phase ofJi, for each key, we apply the reduce function ofJi on the values

associated with the key to produce the results ofJi. At the same time, for values that are

taggedtag(ij), we derive and materialize the sorted map outputM
Aj

i

p
Mj into the DFS

so that the materialized output will be later used by the reduce phase ofJj. Note that

an optional combine function can be applied to reduce the size of the materialized map

outputMAj

i

p
Mj and hence the materializing and reading costs.

In the map phase ofJj, we scan the input fileF to generate the partial map outputMj \

M
Aj

i for Jj. The remaining map output ofJj (i.e.,MAj

i,j) is not generated explicitly since

they have already been sorted and materialized byJi’s reduce phase.

In the reduce phase ofJj , we first read the materialized map outputMj

p
M

Aj

i from DFS

and merge them with the map output that are shuffled from the map phase. Then for each

65

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

key, we apply the reduce function ofJj on the values associated with that key to produce

the results ofJj .

Thus, RIM reduces the sorting and communication costs forJj by reducing the size of

Jj ’s map output, but incurs an additional cost to materialize and readMAj

i

p
Mj .

Combining MOM & RIM. Both MOM and RIM can be applied together as follows. In

the map phase ofJi, besides producing the map outputMi for Ji, we also generate the

map outputMj \ M
Aj

i for Jj . Mj \M
Aj

i is materialized into the DFS to be reused later

for Jj. Then we processJi as before.

In the map phase ofJj, instead of reading from the input fileF , we read the material-

ized map outputMj \ M
Aj

i from DFS and simply redirect the read tuples as the map

output. Then we processJj as before. The question of whether MOM and RIM should

used together is decided in a cost-based manner depending onwhether the total cost of

materializing and readingMj \M
Aj

i is lower than the cost of reading the input fileF .

Example 4.4: Consider the two jobsJ1 andJ2 again. AsK1 ≺ K2, MT is applicable to

enable both jobs to share map input scan and map output. As themap output ofJ2 can be

reused forJ1, we processJ2 beforeJ1. In the map phase ofJ2, for each tuplet from T , if

t.b ≤ 20∧ t.a < 10, we produce the key-value pair (t.a:t.b,(tag(2),t.d)); ift.b ≤ 20∧ t.a ≥

10, we produce the key-value pair (t.a:t.b,(tag(12),t.d)); if t.b > 20∧t.a ≥ 10, we produce

the key-value pair(t.a, t.d) and materialize it into DFS to be reused later forJ1 to share

map input scan; otherwise, we do not produce any map output for that tuple. In the reduce

phase ofJ2, for each key, we sum the values associated with the key to produce the results

of J2. At the same time, for each specific keyt.ai:t.bi, for all the values<v1, · · · , vn>

associated with the key and tagged bytag(12), we materialize(t.ai,
∑n

i=1 vi) into DFS

to be reused later forJ1 to share map output. When processingJ1, in the map phase, we

read the materialized map output and sort and partition them. In the reduce phase, we first

read the materialized map output and merge them with the map output shuffled from the

map phase. Then for each key, we sum the values associated with the key to produce the

results ofJ1. 2

Generalization. Given a batch of jobsJ = {J1, J2, · · · , Jn} sorted in non-ascending

order of |Ai|, MT processes the jobs sequentially based on this ordering since the map

output of a preceding job can possibly be reused for a succeeding job.

66

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

When processingJ1, in the map phase, we first produceNM1 for J1 (which is simply

M1), and tag each tuplet accordingly depending on the subset of remaining jobs inJ

that t can be used to derive their map outputs. Then for eachJi (1 < i ≤ n), if the cost

of materializing and readingNMi is lower than the cost of reading the input fileF , we

produce, tag, and materializeNMi for Ji. In the reduce phase, when applying the reduce

function forJ1, for eachJi (1 < i ≤ n), based on the tags in the values, we materialize

the map outputNMAi

1

p
Mi to be reused later forJi.

When processingJi (1 < i ≤ n), in the map phase, ifNMi has been materialized, we read

NMi and simply redirect the read tuples as the map output; otherwise, we read the input

file F to produce and tag the map outputNMi for Ji. In the reduce phase, we first merge

NMi with the map output that are materialized by the previous jobs (i.e.,NMAi

j

p
Mi

for eachj ∈ [1, i − 1]) and then process the reduce function ofJi. When processing

the reduce function ofJi, for eachJj (i < j ≤ n), based on the tags in the values, we

materialize the map outputNM
Aj

i

p
Mj to be reused later forJj .

4.3.4 Discussions

In this section, we compare the proposed techniques, discuss the choices for map output

keys and show how our proposed techniques apply to multi-input jobs.

Comparison of techniques.Our GGT generalizes and subsumes MRShare’s grouping

technique. However, there is no clear-cut winner between GGT and MT. Since GGT

merges a group of jobs into a single new job, it requires the map output key and value

types of the group of jobs to be the same, which may require a type conversion overhead.

Moreover, GGT also incurs a higher sorting cost due to the larger map output of the

merged job. On the other hand, MT has the limitation that the jobs within a group must

be executed sequentially, and MT also incurs the overhead ofresult materialization and

subsequent reading of the materialized results.

Choices for map output keys.For both GGT and MT, the choice of the map output key

(i.e., ordering ofAi that specifies the map output keyKi for a jobJi) is important as it

affects the sharing opportunities among jobs. For example,consider the jobsJ1, J2 andJ5

in Table4.1. Observe that there are two alternative map output keys forJ2: if we choose

K2 to be (a,b), we can share map output forJ1 andJ2; otherwise, withK2 = (b, a), we can

share map output forJ5 andJ2. Thus, to optimize the sharing benefits for a given batch

67

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

of jobs, we need to determine the map output key for each job; we defer a discussion of

this optimization to Section4.5.

Handing multi-input jobs. Our proposed techniques can be easily extended to handle

multi-input jobs as well. Consider the two jobsJ6 andJ7 in Table4.1 which have the

common input filesT andR. For bothT andR, the map output key ofJ6 is a proper

prefix of the map output key ofJ7. Therefore, we can apply MT to share both the map

input scan as well as map output for the two jobs. Furthermore, by converting the map

output keys of the two jobs into the same type, MRShare’s grouping technique can share

the map input scan for the two jobs while our GGT can share boththe map input scan and

map output for the two jobs.

4.4 Cost Model

In this section, we present a cost model to estimate the evaluation cost of a batch of job-

s J = {J1, J2, · · · , Jn} in the MapReduce framework using the proposed techniques.

Similar to MRShare, we model only the disk and network I/O costs as these are the domi-

nant cost components. However, our cost model can be extended to include the CPU cost

as well. Table4.2 shows the system parameters used in our model, where the diskand

network I/O costs are in units of seconds to process a page.

We assume the jobs inJ are sorted in non-ascending order of|Ai| and eachJi ∈ J is

processed asm map tasks andr reduce tasks on the input fileF . We use|R| to denote

the size ofR in terms of number of pages, whereR can be an input file or map/reduce

output of some job. For a map outputMi, we usepmMi
= ⌈logD⌈

|Mi|
mBm

⌉⌉ to denote the

number of sorting passes of its map tasks where|Mi|
m

denotes the average size of a map

task,prMi
= ⌈logD⌈

|Mi|
rBr

⌉⌉ − 1 to denote the number of sorting passes of its reduce tasks

where |Mi|
r

denotes the average size of a reduce task3, andpMi
to denote the sum ofpmMi

andprMi
.

3The final merge pass optimization is enabled for sorting in Hadoop’s reduce phase.

68

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Table 4.2: System parameters
Parameter Meaning

Clr cost of reading a page from local disk
Clw cost of writing a page to local disk
Cl sum ofClr andClw

Cdr cost of reading a page from DFS
Cdw cost of writing a page to DFS
Cd sum ofCdr andCdw

Ct network I/O cost of a page transfer

D merge order for external sorting
Bm buffer size for external sorting at mapper nodes
Br buffer size for external sorting at reducer nodes

4.4.1 A Cost Model for MapReduce

Given a jobJi, its total cost (denoted asCji) consists of its map and reduce costs (denoted

asCMi
andCRi

respectively). The map cost is given by:

CMi
= Cdr|F |+ Clw|Mi|+ Clp

m
Mi
|Mi| (4.1)

whereCdr|F | denotes the cost of reading the input file,Clw|Mi| denotes the cost of writing

the initial runs of the map output, andCl|Mi|p
m
Mi

denotes the cost of sorting the initial

runs.

The reduce cost is given by:

CRi
= Ct|Mi|+ Clp

r
Mi
|Mi|+ Clr|Mi| (4.2)

whereCt|Mi| denotes the transfer cost of the map output,Cl|Mi|p
r
Mi

denotes the sorting

cost of the map output, andClr|Mi| denotes the reading cost for the final merge pass.

We do not include the cost of writing the job results since this cost is common to all the

proposed techniques.

Therefore, the total cost can be expressed as follows:

CRi
= Cdr|F |+ (Ct + Cl + ClpMi

)|Mi| (4.3)

Our cost model for Hadoop has one major difference from MRShare’s cost model. In

MRShare’s model, the number of initial runs for sorting in the reduce phase is assumed to

69

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

be equal to the number of map tasks (i.e.,m). Based on this assumption, using the group-

ing technique does not increase the sorting cost in the reduce phase. However, in practice,

Hadoop’s reduce phase actually merges the transferred map output in main memory based

onBr to build initial runs which implies that using the grouping technique could increase

the sorting cost in the reduce phase. Our cost model does not have this simplifying as-

sumption and it is therefore more accurate than MRShare’s model. In our performance

evaluation, we apply our more accurate cost model to MRShare’s GT technique as well

so that all the techniques are compared based on the same costmodel.

4.4.2 Costs for the Proposed Techniques

In this section, we use the above cost model to estimate the costs for the naive technique

and our proposed GGT (which subsumes MRShare’s GT technique) as well as MT tech-

niques.

Naive technique: The naive technique processes each job independently. Thus, the cost

of the naive technique is simply the sum of the cost of each jobwhich is given by:

CA = nCdr|F |+ (Ct + Cl)

n
∑

i=1

|Mi|+ Cl

n
∑

i=1

pMi
|Mi| (4.4)

Generalized grouping technique:GGT combines the batch of jobsJ into a single new

job whose map output is denoted asNM =
⋃n

i=1NMi. Thus, the cost of GGT is given

by:

CG = Cdr|F |+ (Ct + Cl + ClpNM)|NM | (4.5)

Materialization technique: MT processes the jobs inJ sequentially in non-ascending

order of |Ai| and materialize and reuse the map output as we have describedin Section

3.3. Thus the cost of MT is given by:

CM = Cdr|F |+
n

∑

i=2

min{Cdr|F |, Cd|NMj |}+ (Ct + Cl)|NM |

+Cl

n
∑

i=1

pNMi
|NMi|+ Cd

n−1
∑

i=1

n
∑

j=i+1

|NM
Aj

i

x
Mj |

(4.6)

70

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Note that
∑n

i=2min{Cdr|F |, Cd|NMj |} denote the materialization and reading cost in the

map phase, andCd

∑n−1
i=1

∑n
j=i+1 |NM

Aj

i

p
Mj | denote the materialization and reading

cost in the reduce phase.

4.5 Optimization Algorithms

In this section, we discuss how to find an optimal evaluation plan for a batch of jobs

J = (J1, J2, · · · , Jn).

An evaluation plan forJ specifies the following: (1) the map output keyKi for each

job Ji ∈ J ; (2) a partitioning of the jobs inJ into some number of disjoint groups,

G1, · · · , Gk, wherek ≥ 1 andJ = G1 ∪ · · · ∪Gk; and (3) a processing techniqueTi for

evaluating the jobs in each groupGi. Since MRShare’s grouping technique is subsumed

by GGT, and the naive evaluation technique is equivalent to partitioningJ into n groups

each of which consists of a single job that is processed by GGT, we can simply consider

only GGT or MT for eachTi.

Let Cost(Gi, Ti) denote the cost of evaluating the group of jobsGi ⊆ J with technique

Ti ∈ {GGT,MT}. The estimation of Cost(Gi, Ti) has already been discussed in Sec-

tion 4.4.

The optimization problem is to find an evaluation plan forJ such that the total evaluation

cost
∑k

i=1 Cost(Gi, Ti) is minimized. A simpler version of this optimization problem

was studied in MRShare and shown to be NP-hard. The problem issimpler in MRShare

for two reasons: first, MRShare considers only the naive and grouping techniques; and

second, MRShare does not have to consider the selection of the map output keys as this

does not affect the sharing opportunities for the grouping technique. As a result, the

heuristic approach in MRShare can not be extended for our more complex optimization

problem.

To cope with the complexity of the problem, we present a two-phase approach to optimize

the evaluation plan. In the first phase, we choose the map output key for each job to

maximize the sharing opportunities among the batch of jobs.In the second phase, we

partition the batch of jobs into groups and choose the processing technique for each group

to minimize the total evaluation cost.

71

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

4.5.1 Map Output Key Ordering Algorithm

In this section, we discuss how to choose the map output key for each job (i.e., determine

the ordering of the key attributes) to maximize the sharing opportunities for a batch of

jobs. To quantify the sharing opportunities for a batch of jobsJ , we use the notion of

thenon-derivable map outputfor J , denoted byNM , that was defined in Section4.3.2.

Since a smaller size ofNM represents a larger amount of sharing among the jobs inJ ,

to maximize the sharing among the jobs inJ , the map output key for each job is chosen

to minimize the size ofNM .

A naive solution to optimize this problem is to enumerate allthe combinations of map

output keys for the jobs and choose the combination that minimizes the size ofNM .

However, the time complexity of this brute-force solution isO(|A1|!|A2|! · · · |An|!) which

is infeasible for large number of jobs4. In this work, we propose a greedy heuristic to

optimize the map output key for each job.

Our greedy algorithm determines the ordering of the map output key attributes for each job

Ji progressively by maintaining a list of sets of attributes, referred to as the ordering list

(denoted byOLi), to represent the ordering relationship for the map outputkey attributes

of Ji. The attributes within a set are unordered, and the attributes in a setS are ordered

before the attributes in another setS ′ if S appears beforeS ′ in the list. We use|OLi|

to denote the number of sets inOLi. For example, in the ordering list<{a, b, c}, {d}>,

the attributes in{a, b, c} are unordered and they precede the attributed. Furthermore,

given two jobsJi andJj, we useOLi � OLj to represent thatOLi is a prefix ofOLj,

i.e., for eachi ∈ [1, |OLi|], the ith sets inOLi andOLj are the same. For example,

<{a, b}, {c}> � <{a, b}, {c}, {d}>.

Besides maintainingOLi for each jobJi, our approach also maintains areuse set, denoted

by RSi, for each jobJi. The purpose ofRSi is to keep track of all the jobs that can be

reused for computing the map output ofJi.

Initially, as we have not chosen any jobs to share map output,the size ofNM is simply

the sum of each job’s map output size. Furthermore, for eachJi ∈ J , we initializeOLi to

be a list with a single set containing all the attributes inAi and initializeRSi to be empty.

We then construct a weighted, undirected graphG = (V,E) to represent all the potential

sharing opportunities inJ as follows. EachJi ∈ J is represented by a vertex inV . An

4For example, we experimented with a batch of 25 randomly generated jobs each with a maximum of
four attributes in its map output key, and the brute-force approach did not complete running in 12 hours.

72

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Figure 4.4: An example to illustrate key ordering algorithm.

edgee = (Ji, Jj) is in E if there exists two map output keysKi andKj, respectively,

for Ji andJj such that the map output of one job can be reused for the other job (i.e.,

Ki � Kj or Kj � Ki). The weight of(Ji, Jj) is initialized to be the reused map output

size for the two jobs (i.e.,|MAj

i

⋂

Mj | if Kj � Ki or |MAi

j

⋂

Mi| if Ki � Kj). All the

edges inE are initialized to be unmarked.

Figure 4.4 shows an example of the initial graph constructed for a batchof five jobs

{J8, · · · , J12}. For ease of presentation, we use an interval of integers to represent the

map output of a job where the size of an integer is 1. For example, the map output size of

J8 is 20 since it contains 20 integers in its map output[1, 20]. The initial graph contains

the edgee1 = (J8, J10) since there existsK10 = (a, b, c) andK8 = (a, b, c, d) such that

K10 � K8; moreover, the weight ofe1 is 16 since there are 16 values (i.e., [5,20]) in the

map output ofJ8 that can be reused forJ10.

For convenience, we useEJi to denote the set of all the unmarked edges incident on a

nodeJi ∈ V , and useNJi to denote the set of all the vertices that have a marked edge

with a nodeJi ∈ V .

Overall algorithm. Given an initial graphG = (V,E), to reduce the size ofNM , our

greedy approach iteratively selects and marks one edge fromthe graphG until all the

edges inG have been marked. Algorithm4.2 shows the pseudocode of our greedy ap-

proach. At each iteration, it first chooses an unmarked edge with the maximum weight

73

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Algorithm 4.2: Key Ordering Algorithm
Input : An initial graphG = (V,E)
Output : Map output key for each job

1 while E has unmarked edgedo
2 choose an unmarked edgeemax ∈ E with the maximum weight to share and mark it ;
3 V1 = nodes whose ordering lists change foremax ;
4 V2 = nodes whose reusing sets change foremax ;
5 foreachJi in V1 do
6 foreach e in EJi do
7 if e is not validthen
8 removee from E ;
9 foreachJi in V2 do

10 foreach e in EJi do
11 update the weight fore ;
12 foreachJi in V do
13 derive the map output key forJi ;

(i.e., the chosen edge represents the largest sharing opportunity and maximizes the reduc-

tion of the size ofNM) to share and marks the edge. Then based on the chosen edge,

it updates the ordering lists and reusing sets for some jobs.We refer toV1 andV2 as the

set of jobs whose ordering lists and reuse sets, respectively, have been changed in the

updating. Finally, for eachJi ∈ V1, we check the edge validity for all the edges inEJi

and remove the invalid edges (to be explained). For eachJi ∈ V2, we update the weights

for all the edges inEJi (to be explained). After the iterative process terminates,we derive

the map output key for each job based on its ordering list.

In the following, we explain how the graph is updated in each iteration and how the map

output key is derived at the end of the iterative process.

Updating ordering lists. Suppose that the edgee = (Ji, Jj) is selected in an iteration.

We first update the ordering lists forJi andJj. Then for each jobJk ∈ {Ji, Jj}, if the

ordering list ofJk has changed, we also update the ordering lists for the jobs inNJk and

recursively propagate the updating for the jobs inNJk whose ordering lists have changed

until all the jobs have been examined or there is no more job whose ordering list has

changed.

Given an edgee = (Ji, Jj), the main idea to updateOLi andOLj is to ensure that after

the updating, one ordering list is a prefix of the other ordering list (i.e.,OLi � OLj or

OLj � OLi). For example, the first iteration choosese1 = (J8, J10) to share since the

weight of e1 is the highest, and sinceOL8 = <{a, b, c, d}> andOL10 = <{a, b, c}>,

OL8 is updated to<{a, b, c}, {d}> to ensure thatOL10 � OL8. Therefore, to update

74

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Algorithm 4.3: Update Ordering Lists
Input : An edgee = (Ji, Jj)
Output : Updated ordering lists forJj andJj

1 i = 1 ;
2 while i ≤ Min(|OLi|, |OLj |) do
3 set1 =OLi.get(i) ;
4 set2 =OLj.get(i) ;
5 if set1.equals(set2)then
6 continue ;
7 else ifset1.containAll(set2)then
8 set1.removeAll(set2);
9 OLi.insert(i, set2) ;

10 else ifset2.containAll(set1)then
11 set2.removeAll(set1) ;
12 OLj .insert(i, set1) ;
13 i++;

OLi andOLj, we iterate through the sets inOLi andOLj and accordingly decompose the

corresponding sets to maintain the prefix relationship between the two lists. Algorithm4.3

shows the pseudocode of this updating. The time complexity for this updating isO(m),

wherem is the maximum number of map output key attributes in a job. Sincem is usually

very small, we assume this checking can be done inO(1) time.

For example, in Figure4.4, the first iteration chooses the edgee1 = (J8, J10) to share.

ThenOL10 andOL8 are updated as follows:OL10 does not change andOL8 becomes

<{a, b, c}, {d}>. The second iteration chooses the edgee6 = (J10, J12), andOL12 and

OL10 are updated as follows:OL12 does not change andOL10 becomes<{a, b}, {c}>

which triggers the updating forOL8 sinceJ8 has a marked edge withJ10. Then we update

OL8 to be<{a, b}, {c}, {d}>.

Updating reuse sets.The updating of reuse sets is also done recursively similar to the

updating of ordering lists. Therefore, we focus on explaining the updating of reuse sets

for two jobs.

Given an edgee = (Ji, Jj), the main idea to updateRSi andRSj is as follows. If

Ai ⊂ Aj, we updateRSi by adding the jobs inRSj ∪ {Jj} into the setRSi since all the

jobs inRSj ∪ {Jj} can be reused forJi. Similarly, if Aj ⊂ Ai, we updateRSj by adding

the jobs inRSi ∪ {Ji} into the setRSj since all the jobs inRSi ∪ {Ji} can be reused for

Jj. Otherwise, we haveAi = Aj , and we update bothRSi andRSj by assuming that the

map output ofJj will be reused forJi as follows. LetS denote a copy ofRSi. We update

75

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

RSi by adding the jobs inRSj ∪ {Jj} into RSi, and updateRSj by adding the jobs inS

intoRSj. The time complexity of the updating isO(1).

After updating the ordering lists and reuse sets as described above, we then use the up-

dated information to update the graphG; this includes identifying invalid edges (to be

defined) inG, and updating some edge weights.

Identifying invalid edges. For a jobJi ∈ V1, sinceOLi has changed, for eache ∈ EJi,

we need to check whethere is still a valid edge. An unmarked edgee = (Ji, Jj) in G is

defined to be avalid edgeif we can derive two map output keysKi andKj, respectively,

for Ji andJj from OLi andOLj such thatKi � Kj or Kj � Ki (i.e., we can share map

output for the two jobs); otherwise,e is considered aninvalid edgeand is removed from

G.

Algorithm 4.4: Identifying Invalid Edges
Input : An edgee = (Ji, Jj)
Output : Whethere is a valid edge

1 i = 1 ;
2 OL′

i = newList(OLi); OL′
j = newList(OLj) ;

3 while i ≤ Min(|OL′
i|, |OL′

j |) do
4 set1 =OL′

i.get(i) ;
5 set2 =OL′

j.get(i) ;
6 i++ ;
7 if set1.equals(set2)then
8 continue ;
9 else ifset1.containAll(set2)then

10 OL′
i.insert(i, set1.removeAll(set2)) ;

11 else ifset2.containAll(set1)then
12 OL′

j .insert(i, set2.removeAll(set1)) ;
13 else
14 return false ;
15 return true ;

We can check whether an unmarked edgee = (Ji, Jj) is a valid edge or not as follows. If

we can derive two ordering listsOL′
i andOL′

j respectively fromOLi andOLj such that

they satisfy the prefix relationship (i.e.,OL′
i � OL′

j or OL′
j � OL′

i), then the edge is a

valid edge; otherwise, the edge is an invalid edge and can be removed fromG. This detail

process (given in Algorithm4.4) is similar to the process of updating the ordering lists for

two jobs, and the time complexity is alsoO(1). For example, in Figure4.4, after choosing

e1 to share in the first iteration,OL8 becomes<{a, b, c}{d}> which makese3 an invalid

edge sinceOL11 is<{a, d}>.

76

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Updating edge weights.For a jobJi ∈ V2, sinceRSi has changed, for eache ∈ EJi,

we need to update the weight fore. If the updated weight is 0, we can simply remove the

edge since sharing the edge will not reduce the size ofNM .

Given an edgee = (Ji, Jj), its weight is updated as follows. IfAi ⊂ Aj (i.e., the

map output of the jobs inRSj can be reused forJi), then the weight ofe is updated to

|Si1| − |Si2|, where|Si1| and|Si2| denote, respectively, the size of the map output thatJi

needs to produce (i.e., the size of the map output ofJi that can not be reused fromRSi)

before and after we sharee. Note that both|Si1| and |Si2| are computed based onRSi

which has to be updated if we sharee. Similarly, if Aj ⊂ Ai (i.e., the map output of the

jobs inRSi can be reused forJj), then the weight of the edge is updated to|Sj1| − |Sj2|,

where|Sj1| and |Sj2| denote, respectively, the size of the map output thatJj needs to

produce before and after we sharee. Otherwise, we haveAi = Aj (i.e., the map output of

the jobs inRSi andRSj can be respectively reused forJi andJj), and the weight of the

edge is updated to be|Si1| − |Si2|+ |Sj1| − |Sj2|. The time complexity of this updating is

O(1).

For example, in Figure4.4, after choosinge1 to share in the first iteration,RS10 becomes

{J8} which triggers the weight updating for the edges inEJ10 = {e4, e6}. Let us first

considere4. After choosinge1 to share,J10 only needs to produce the map output [21,25]

(i.e., the remaining map output [5,20] can be reused fromJ8) and the map output ofJ9

can not be reused to reduce the map output [21,25] further. Therefore, the weight ofe4
decreases to 0 ande4 is removed from the graph. Next, considere6. After choosinge1 to

share, both the map output ofJ8 andJ10 can be reused forJ12. However, the weight ofe6
remains the same sinceJ8 does not enable additional reusing forJ12.

Deriving map output key. Note that at the end of the iterative process, it is possible for

some set in an ordering listOLi to contain more than one attribute (i.e., the ordering of the

key attributes forJi is not yet a total ordering). To derive the map output key forJi, we

have to determine an ordering for the remaining partially ordered attributes. To correctly

derive the ordering of key attributes for such scenarios, wemake use of a default ordering

for all the attributes. For example, in Figure4.4, at the end of the iterative process (i.e.,

after we have chosen the edgee6 to share), the ordering lists for the five jobsJ8, · · · , J12

all contain at least one set that have more than one attribute. Assuming that the default

ordering for all the attributes is(a, b, c, d), then the map output keys forJ12, J10 and

J8 are, respectively,(a, b), (a, b, c), and(a, b, c, d), which captures all the sharing that

our algorithm has chosen. Note that without using a default ordering, we could wrongly

77

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

choose the map output key(b, a) for J12 and the map output key(a, b, c) for J10 which

does not allow these two jobs to share their map output.

Time Complexity. The time complexity of the algorithm depends on the number of

iterations. The time complexity for theith iteration isO(|Ei|), where|Ei| is the number

of edges in the graph in this iteration. Therefore, the time complexity of the algorithm is

O(In2) whereI is the number of iterations andO(n2) is the maximum number of edges

in the graph.

4.5.2 Partitioning Algorithm

In this section, we discuss the second phase of our approach;i.e., how to partition a

batch of jobs into multiple groups and choose the processingtechnique for each group to

minimize the overall evaluation cost. We use the notation(Gi, Ti) to denote that a group of

jobsGi is being processed by a techniqueTi. Recall that sinceGGT subsumes MRShare’s

grouping technique, and the naive evaluation technique is equivalent to partitioning the

batch of jobs into single-job groups each of which is processed by GGT, it is sufficient to

consider only the GGT and MT processing techniques.

Our partitioning algorithm is based on the concept ofmerging benefitwhich is defined

as follows. Consider two groups of jobs,(G1, T1) and (G2, T2), whereG1 ∩ G2 = ∅.

We define themerging benefitfrom (G1, T1) and(G2, T2) to (G1 ∪ G2, T3), whereT3 ∈

{GGT,MT}, as Cost(G1, T1) + Cost(G2, T2) - Cost(G1 ∪G2, T3).

Our partitioning algorithm is a greedy approach that iteratively selects a pair of groups

of jobs to be merged based on their merging benefit. Initially, each job is treated as a

single-job group processed by GGT (which is equivalent to the naive technique since

the group has only one job). At each iteration, it merges the two groups that have the

maximum positive merging benefit into a new group. Note that when computing the

cost for a merged group, as there are two techniques that we can process the group, i.e,

the generalized grouping technique and materialization technique, we will compute the

cost for both techniques and choose the better one for the group. The iterative process

terminates when the maximum merging benefit is non-positive.

Note that the time complexity of the grouping algorithm isO(n2), wheren is the number

of jobs in the batch. In the first iteration, we compute the merging benefit for each pair of

groups, and in each subsequent iteration, since there is only one new group produced in

78

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Table 4.3: Compared algorithms
Notation Algorithm

NA Naive algorithm that evaluates each job independently

MRGT
MRShare’s grouping technique combined with
its own partitioning algorithm

GT
MRShare’s grouping technique combined with
our partitioning algorithm

GGT
Our generalized grouping technique combined with
our optimization algorithm

MT
Our materialization technique combined with
our optimization algorithm

GGTMT
Our generalized grouping and materialization techniques
combined with our optimization algorithm

the previous iteration, we only need to compute the merging benefit for each group with

the new group.

4.6 Experimental Results

In this section, we present an experimental study to evaluate our proposed approach. Sec-

tion 4.6.1examines the performance of our approach, Section4.6.2evaluates the effec-

tiveness of our map output key ordering algorithm and Section 4.6.3evaluates the effi-

ciencies of our optimization algorithms.

Algorithms. We compared six algorithms (denoted byNA, MRGT , GT , GGT , MT ,

andGGTMT) in our experiments as shown in Table4.3. The two competing algorithms

wereNA, which denote the naive approach of evaluating each job independently, and

MRGT , which denote MRShare’s grouping technique combined with its own partitioning

algorithm. ForMRGT , we experimented with two different implementation variants:

the original variant [44], which uses only a single global tuning parameterγ ∈ [0, 1]

to quantify the sharing among all the jobs in a batch, and an enhanced variant which

provides a more fine-grained and accurate approach to estimate job sharing using a tuning

parameterγi,j for each pair of jobsJi andJj. As our experimental results show that the

enhanced variant strictly outperforms the original variant5, we do not report results for the

original variant and useMRGT to denote the enhanced variant.

5For example, in the default setting, the running time for theenhanced variant was 3555s while that for
the original variant was, 3820s, 3942s, 3931s, 3802s, 3885s, 3860s, 4385s, 4872s, and 4881s, respectively,
for aγ value of 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 and{0.2, 0.1, 0}.

79

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Our three main proposed algorithms include:GGT , which denotes the generalized group-

ing technique (combined with our optimization algorithm);MT , which denotes the mate-

rialization technique (combined with our optimization algorithm); andGGTMT , which

denotes the approach combining bothGGT andMT . In addition, to demonstrate the

effectiveness of our partitioning heuristic (Section4.5.2), we also introduce a variant of

MRGT , denoted byGT , which combines MRShare’s grouping technique with our parti-

tioning heuristic.

Datasets and Queries. We used synthetic datasets and queries for our experiments.

The schema of the datasets wasData (key char(8), dim1 char(20), dim2 char(20), dim3

char(20), dim4 char(20), range int, value int)which consisted of one unique key attribute,

four dimensional attributes used as group-by attributes, one range attribute used as the se-

lection attribute, and one value attribute used as the aggregation attribute. Each of the four

dimensional attributes had 500 distinct values and all the attribute values were uniformly

distributed. The datasets were stored as text format and thesize of each tuple was about

100 bytes. The default dataset had 1.7 billion tuples with a size of 160GB.

The synthetic queries were generated from the following template: select T, sum(value)

from Data where a ≤ range≤ b group by T, whereT was a randomly selected list of

dimensional attributes, anda andb were randomly selected values such thata ≤ b. The

default number of queries in a query batch was 20. Each batch of queries was run three

times and we report their average running times.

Experimental environment. Our experiments were performed using Hadoop 1.0.1 on a

cluster of nodes that were interconnected with a 1Gbps switch. Each node was equipped

with an Intel X3430 2.4GHz processor, 8GB memory, 2x500G SATA disks and running

CentOS Linux 5.5. The default cluster size was 41 (with 1 master node and 40 slave

nodes).

Hadoop configuration. The following Hadoop configuration was used for our experi-

ments: (1) the heap size of JVM running was 1024MB; (2) the default split size of HDFS

was 512MB; (3) the data replication factor of HDFS was 3; (4) the I/O buffer size was

128KB; (5) the memory for the map-side sort was 200MB; (6) thespace ratio for the

intermediate metadata was 0.4; (7) the maximum number of concurrent mappers and the

maximum number of concurrent reducers for each node was both2; (8) the number of

reduce tasks was 240; (9) speculative execution was disabled6; (10) JVM reuse was en-

abled; and (11) the default FIFO scheduler was used which supports concurrent execution

6Speculative execution is typically disabled in a busy cluster due to its negative impact on perfor-

80

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

of jobs; note that forMT , while the jobs within a group were executed sequentially, jobs

from different groups were executed concurrently.

Cost model parameters.We ran some I/O benchmarks in the cluster to calibrate our cost

model parameters as follows: the cost ratio of local read/write is 1, the cost ratio for DFS

read and write are, respectively, 1 and 2 (due to replicationfactor), and the cost ratio of

network I/O is 1.4. Note that the setting of the same cost ratio for both local and DFS

reads is reasonable due to the data locality property of the MapReduce framework.

Summary of results. First, our algorithms (GT , GGT , MT , GGTMT) significantly

outperformNA by up to 167% andMRGT by up to 107%. In particular,GT outper-

formsMRGT by up to31% demonstrating the effectiveness of our partitioning algorithm

against MRShare’s partitioning algorithm. Second, among our algorithms,GT performs

the worst, and there is no clear winner betweenGGT andMT (as explained in Sec-

tion 4.3): GGT outperformsMT by up to24% for some cases andMT outperforms

GGT by up to12% for other cases. The overall winning approach isGGTMT which

outperforms the best ofGGT andMT very slightly. Given this, to avoid cluttering the

graphs, we do not explicitly showGGMT in the graphs as its performance is approximat-

ed by the best ofGGT andMT . Finally, our results show that the optimization overhead

incurred by our approach is only a negligible fraction of thetotal processing time. Thus,

the optimization overhead of our approach is negligible even if the queries do not have

any sharing opportunities.

4.6.1 Performance Comparison

In this section, we evaluate the effectiveness of our optimization algorithms by varying

four parameters, i.e., data size, split size, number of queries and cluster size. Figure4.5

shows the experimental results with the the improvement factors (in %) ofGGT , MT ,

GT andMRGT overNA indicated.

Effect of number of queries. Figure4.5(a) compares the performance as the size of a

query batch is increased. Observe that our algorithms significantly outperformNA and

MRGT . For example,GGT outperformsNA by 105% on average and up to 167% when

mance [66]. Indeed, in our preliminary experiments with speculativeexecution enabled, we observed that
the performance of all the algorithms degraded. For example, in the default setting, the running times for
bothNA andMRGT increased by 10% while that forGGT andMT increased by 6%. Thus, the winning
margin of our algorithms increased slightly overNA andMRGT with speculative execution enabled.

81

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

the number of queries is 30, andGGT outperformsMRGT by 85% on average and up to

107% when the number of queries is 30. Furthermore, as the number of queries increases,

the winning margin of our algorithms overNA also increases. This is expected as the

sharing opportunities among queries also increase with thequery batch size.

Effect of data size. Figure4.5(b) examines the performance as a function of data size.

Note that as we increase the data size, we also increase the number of reduce tasks. This is

reasonable as the number of reduce tasks is usually proportional to the data size, as noted

also in [5, 68]. Therefore, we set the number of reduce tasks to be 120, 240,360, and 480,

respectively, for data size of 80GB, 160GB, 240GB, and 320GB.

Here again, our algorithms significantly outperformNA andMRGT . For example,GGT

outperformsNA by 103% on average and up to 128% when the data size is 320GB, and

GGT outperformsMRGT by 82% on average and up to 93% when the data size is

320GB. Furthermore, as the data size increases, the runningtime for the algorithms also

increases. In particular, the running time forNA increases much faster than for the other

algorithms which therefore increases the winning margin ofthe other algorithms over

NA. The reason behind this is that by partitioning the queries into groups, the non-NA

algorithms are more scalable. For example, in the default setting (with a batch of 20

queries),NA needs to scan the input table 20 times whileGGT , which has partitioned

the batch of queries into two groups, only needs to scan the input table twice.

Effect of cluster size. Figure4.5(c) compares the effect of number of slave nodes in

the cluster. Here again, our algorithms significantly outperform NA andMRGT . For

example,GGT outperformsNA by 118% on average and up to 136% when the num-

ber of nodes is 10, andGGT outperformsMRGT by 89% on average and up to 92%

when the number of nodes is 10 (the improvement factor ofGGT overMRGT does not

show significant differences for all the node sizes). Furthermore, as the cluster size in-

creases, the running time for all the algorithms decreases.In particular, the running time

for NA decreases much faster than for the other algorithms which therefore reduces the

winning margin of the other algorithms overNA as cluster size increases. Thus, the per-

formance improvement from the increased parallelism usinga larger cluster benefits the

non-optimizedNA more than the already optimized non-NA algorithms.

Effect of both data size and cluster size.Besides studying the effect of the data size and

cluster size parameters separately, we also conducted an additional experiment to examine

the joint effect of both these parameters. In Figure4.5(d), a cluster size of 10, 20, 30,

and 40 slave nodes was used, respectively, for a data size of 40GB, 80GB, 120GB, and

82

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

60%51%

4%
72% 62%

9%
1%

102%
81%

26%

8%

123%
106%

50%

14%

167%
141%

64%

29%

GGT
MT
GT

MRGT
NA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

80GB 160GB 240GB 320GB

E
xe

cu
tio

n
 t
im

e
 (

se
c)

66%57%
22%

4% 102%
81%

26%
8%

114%
97%

34%

14%

128%
107%

40%

18%

GGT
MT
GT

MRGT
NA

(a) Effect of number of queries (b) Effect of data size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

10 20 30 40

E
xe

cu
tio

n
 t
im

e
 (

se
c)

136%
120%

45%

24%

125%
106%

38%
17%

108%93%
31%

12%

102%81%
26%

8%

GGT
MT
GT

MRGT
NA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

(10,40GB) (20,80GB) (30,120GB) (40,160GB)

E
xe

cu
tio

n
 t
im

e
 (

se
c)

99%
82%

27%

10%

102%
81%

25%

11%

103%
84%

28%

10%

102%
81%

26%

8%

GGT MT GT MRGT NA

(c) Effect of cluster size (d) Effect of data size and clustersize

 0

 1000

 2000

 3000

 4000

 5000

128MB 256MB 512MB 1GB 2GB

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

162%

109%

52%
41%

93%
100%

55%

26%

102%
81%

26%

8%

116%
89%

27%

9%

74%95%

17%
10%

GGT MT GT MRGT NA

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of queries

NA
RIM

RIM+MOM

(e) Effect of split size (f) Analysis of MT

Figure 4.5: Effectiveness of optimization algorithms

83

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

160GB. As the results show, the performance of each algorithm does not vary very much

as both the cluster size and data size jointly increase; thisdemonstrates the scalability of

our algorithms wrt these two parameters.

Effect of split size. Figure4.5(e) compares the effect of the split size. Here again, our

algorithms significantly outperformNA andMRGT . For example, our best algorithm

(i.e.,GGT orMT) outperformsNA by 115% on average and up to 162% when the split

size is 128MB, and our best algorithm (i.e.,GGT or MT) outperformsMRGT by 81%

on average and up to 94% when the split size is 1GB. Observe that there is no clear winner

betweenGGT andMT as explained in Section4.3. ForNA, we observe that its running

time decreases with increasing split size until a certain threshold (e.g., 512MB forNA)

after which its running times increases. This is because when the split size is too small,

more map tasks will be launched for processing the job which incurs a higher startup cost;

on the other hand, when the split size is too large, each map task will process more data

which increases its sorting cost.

Analysis of MT. In this experiment, we analysis the relative effectivenessof the two

techniques, MOM and RIM, that formMT . Figure4.5(e) comparesNA against two

variants ofMT : MT itself (denoted explicitly as RIM+MOM) andMT with only RIM

technique (denoted asRIM). As the results show, RIM is more effective than MOM in

reducing the running time. However, by further combining with MOM, we can improve

the performance of RIM by 17% on average and up to 23% when the number of queries

is 30.

4.6.2 Effectiveness of Key Ordering Algorithm

In this section, we evaluate the effectiveness of our key ordering algorithm (denoted by

Pka) by comparing against two extreme solutions: a brute-forcealgorithm that generates

the optimal key ordering (denoted byOka) and a naive heuristic that uses a random key

ordering (denoted byRka).

Recall from Section4.5.1that our map output key ordering algorithm is designed to max-

imize job sharing by minimizing the size of the non-derivable map output (denoted by

NM) for the input batch of jobs. To assess its effectiveness, wecompare two ratios,
|NMRka|−|NMPka|

|NMPka|
and |NMPka|−|NMOka|

|NMOka|
, where|NMx| denote the size of the non-derivable

map output for an input batch of queries using algorithmx, x ∈ {Pka,Oka,Rka}. The

84

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

Table 4.4: Comparison of key ordering algorithms

Number of
|NMRka|−|NMPka|

|NMPka|
× 100% |NMPka|−|NMOka|

|NMOka|
× 100%

Queries Min Max Avg Min Max Avg
10 10% 26% 16% 0 8% 3%
15 11% 20% 18% 0 7% 2%
20 16% 25% 19% 1% 2% 1%
25 16% 20% 19% − − −
30 14% 22% 19% − − −

first ratio measures the improvement factor ofPka overRka, while the second ratio mea-

sures the improvement factor ofOka overPka.

Table4.4compares these two ratios for various query sizes. For each query size, we ran-

domly generate five batches of queries and report the average, minimum, and maximum

values of the ratios. From Table4.4, the |NMRka|−|NMPka|
|NMPka|

values show that our key or-

dering heuristic is indeed effective in minimizing|NM | compared to the naive random

ordering heuristic, while the|NMPka|−|NMOka|
|NMOka|

values show that our heuristic is almost as

effective as the brute-force approach. Note that for query sizes 25 and 30, we were not

able to compute values for|NMPka|−|NMOka|
|NMOka|

asOka did not finish running in 12 hours.

Indeed, as expected,Oka is not a scalable solution: for a query size of 20,Oka took

about 3 hours to run compared to only 50ms taken by our heuristic Pka.

To evaluate the effectiveness of the key ordering heuristics in terms of their impact on

query evaluation time (excluding optimization time), we also compared their running

times to evaluate query batches of difference size. In the following, we use the nota-

tion X-Y to denote the evaluation algorithmY when used in combination with the key

ordering heuristicX, whereY ∈ {GGT,MT} andX ∈ {Pka,Rka,Oka}. Note that

the evaluation algorithmsNA, MRGT , andGT were excluded from the comparison as

these algorithms do not require the key ordering step.

Figure4.6(a) shows the running times for a representative query batchwhere its value of
|NMRka|−|NMPka|

|NMPka|
ratio is ranked in the middle among the five batches. As the performance

of Oka-Y is very close to that ofPka-Y (e.g., the former outperforms the latter by only

0.7% in the best case), we omit the results forOka-Y in the graph. For each query

size, Figure4.6(a) also indicates two improvement factors (in %) which represent the

performance improvement ofPka-Y overRka-Y , Y ∈ {GGT,MT}. The results show

that for bothGGT andMT , Pka outperformsRka by 17% on average.

85

CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

 0

 500

 1000

 1500

 2000

 2500

 3000

10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of queries

13% 15%

21% 22% 19%
19%

24%
13%

10%

20%Pka-GGT
Rka-GGT

Pka-MT
Rka-MT

 0

 100

 200

 300

 400

 500

 600

20 40 60 80 100

E
xe

cu
tio

n
 t

im
e

 (
m

ill
is

e
c)

Number of queries

phase1
phase2

(a) Comparison of key ordering algorithms (b) OptimizationTime

Figure 4.6: Experimental results

4.6.3 Optimization vs Evaluation time

In this section, we quantify the optimization overhead of our approach and show that the

overhead incurs only a very small fraction of the total queryprocessing time. Since the

optimization times for our algorithms do not show much differences, we here only report

the optimization time forGGTMT .

Figure4.6(b) shows the optimization time forGGTMT as a function of query size. Note

that we separately report the optimization times for the twophases of our algorithms. As

shown from the figure, the optimization algorithms are very fast. Indeed, by comparing

with the evaluation time for the queries, the optimization time can even be ignored. For

example, in the default setting, the evaluation time for 20 queries for our best algorithm

(i.e.,GGT) takes 1895 seconds while the optimization time only takes 50 milliseconds

for 20 queries and 1 second for 100 queries. Therefore, our algorithms are very efficient

and can scale to a large number of queries.

4.7 Summary

In this chapter, we have presented a comprehensive study of multi-job optimization tech-

niques for the MapReduce framework. We have proposed two newjob sharing techniques

and a novel two-phase optimization algorithm to optimize the evaluation of a batch of jobs

given the expanded repertoire of optimization techniques.Our experimental results show

that our proposed techniques outperform the state-of-the-art approach significantly by up

to 107%.

86

CHAPTER 5

OPTIMAL JOIN ENUMERATION IN

MAPREDUCE FRAMEWORK

5.1 Overview

In this chapter, we examine the optimal join enumeration (OJE) problem, which is a

fundamental query optimization task for SQL-like queries,in the MapReduce paradig-

m. Specifically, we study both the single-query and multi-query OJE (referred to as SOJE

and MOJE respectively) problems and propose efficient join enumeration algorithms for

these problems. Our study of the SOJE problem serves as a foundation for our study on the

MOJE problem. To reduce the complexity of the OJE problem, wefollow a well-accepted

heuristic in RDBMS [48, 41, 42, 16, 21, 24, 22, 23] to consider all bushy plans but exclude

cross product from the enumeration space. This heuristic isparticularly suitable for the

MapReduce framework since bushy plans are more suitable forparallel execution via the

MapReduce framework than left-deep or right-deep plans. Indeed, the work in [25] shows

that bushy plans are usually the optimal plans in distributed environment. Furthermore,

since the MapReduce framework always materializes intermediate results for fault toler-

ance and materializing cross product results is very costly, it is rare that an optimal join

87

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

plan in the MapReduce framework will involve cross product.Thus, cross product should

be excluded from the enumeration space to reduce the complexity of the OJE problem.

While the OJE problem has attracted much recent attention inthe conventional RDBMS

context [48, 41, 42, 16, 21, 24, 22, 23], the solutions developed there are not applicable

to the MapReduce context due to the differences in the query evaluation framework and

algorithms.

There are two major differences between the OJE problem in the MapReduce context and

that in the RDBMS context. First, both binary and multi-way joins are implemented in

MapReduce while only binary joins are implemented in RDBMS.Specifically, given a

join query, RDBMS will evaluate it as a sequence of binary joins while MapReduce will

evaluate it as a sequence of binary or multi-way joins. As a result, the SOJE problem

in the MapReduce context has a larger join enumeration spacethan that in the RDBMS

context due to presence of multi-way joins. While there has been much recent works in

the RDBMS context on the study of the complexity [48] of the SOJE problem and its join

enumeration algorithms [41, 42, 16, 21, 24, 22, 23], to the best of our knowledge, there

has not been any prior work on the study of these problems in the presence of multi-way

joins in the MapReduce context.

Second, intermediate results in MapReduce are always materialized instead of being

pipelined/materialized as in RDBMS which simplifies the MOJE problem in the MapRe-

duce context in two ways. First, the MOJE problem in RDBMS mayincur deadlock due

to the pipelining framework [14] while that in MapReduce does not have the deadlock

problem due to the materialization framework. Second, materializing and reusing the re-

sults of CSEs in RDBMS may incur additional materializationand reading cost due to

the pipelining framework. However, since intermediate results are always materialized in

the MapReduce framework, there is no additional overhead incurred with the materializa-

tion technique in MapReduce. Although the MOJE problem in RDBMS has been shown

to be a very hard problem with a search space that is doubly exponential in the size of

the queries [51, 14, 74], due to the simplification in MapReduce, we are able to propose

efficient join enumeration algorithms for the MOJE problem in MapReduce.

In this chapter, we first study the SOJE problem in the MapReduce context. Specifically,

we first study the complexity of the SOJE problem in the MapReduce context. Since the

complexity of the SOJE problem depends on the query graph, westudy the complexity

for various query graph types (chain, cycle, star and clique) in the presence of multi-way

joins. We then propose both bottom-up and top-down join enumeration algorithms for

88

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

the SOJE problem with an optimal complexity w.r.t. the querygraph based on a proposal

of an efficient and easy-to-implement plan enumeration algorithm. Our experimental re-

sults demonstrate that our proposed single query join enumeration algorithm significantly

outperforms the baseline algorithms by up to 473%.

We then study the MOJE problem in the MapReduce framework. Wepropose an effi-

cient multi-query join enumeration algorithm for the MOJE problem in the MapReduce

framework. The main idea is to first apply the single-query join enumeration algorithm

for each query to generate all the interesting plans and thenstitch the interesting plans for

the queries into a global optimal plan. A query plan is interesting if it is either the opti-

mal plan or produces some output that can be reused for other queries. Our experimental

results show that our proposed multi-query join enumeration algorithm is able to scale up

to 25 queries where the number of relations in the queries ranges from 1 to 10.

We should emphasize that similar to existing works [48, 41, 42, 16, 42, 21, 24, 22, 23], the

focus of this work is on the proposal of efficient join enumeration algorithms for the OJE

problem in the MapReduce framework, but not on the effectiveness study of these join

enumeration algorithms as it is well known that the runtime of different join orders can

vary by orders of magnitude. Note that the proposed join enumeration algorithms could

also be served as a foundation for other heuristics to restrict the enumeration space for

queries with a large number of relations. To the best of our knowledge, our work presents

the first systematic study of the OJE problem in the MapReduceparadigm and proposes

efficient join enumeration algorithms for the problem.

The rest of this chapter is organized as follows. Section5.2 presents some preliminar-

ies. In Section5.3, we analyse the complexity of the SOJE problem in the MapReduce

framework for chain, cycle, star and clique queries. Sections 5.4 and5.5, respectively,

present the join enumeration algorithms for the SOJE and MOJE problems in the MapRe-

duce paradigm. Section5.6presents experimental results and we conclude this chapterin

Section5.7.

5.2 Preliminaries

In this section, we introduce the notations and assumptionsused in this chapter. Table5.1

summarizes the notations used through this chapter.

89

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Table 5.1: Notations used in this chapter
Notation Definition

Q input query for the study of the SOJE problem
R = {R0, · · · , Rn−1} set of relations inQ
G = (V,E) query graph forQ
N(Ri) set of neighbors for a relationRi ∈ R w.r.t. G
N(S) set of neighbors for a set of relationsS ⊆ R w.r.t. G
Min(S) relation with the smallest subscript index in a set of relationsS
Ci set of connected subsets ofR with a cardinality ofi
C =

⋃n
i=2 Ci set of connected subsets ofR with a cardinality of at least 2

P k
S set ofk-way partitions of a connected subsetS

PS set of partitions of a connected subsetS

P set of partitions of all the connected subsets inC

TS multiset of connected subsets in all partitions inPS

T multiset of connected subsets in all partitions inP

Q = {Q1, · · · , Qn} input batch of queries for the study of the MOJE problem
Ui = {Ui1, · · · , Ui|Ui|} set of all the possible plans forQi

Wi = {Wi1, · · · ,Wi|Wi|} set of relations inQi

IS set of interesting plans for a connected subsetS

CSE(U ′) set of CSEs of a planU ′ w.r.t. Q
Cost(U ′) cost of a planU ′

SubP lan(U ′) set of subplans for a planU ′

JoinExp(U ′) join expression associated with a planU ′

5.2.1 Notations

Given an input queryQ with a set ofn relationsR = {R0, · · · , Rn−1}, its query graph is

defined as an undirected graphG = (V,E) such that (1) eachRi (0 ≤ i < n) is a vertex

in V and (2) an edgee = (Ri, Rj) is in E if Ri andRj are related by join predicates.

In this chapter, we assume the input query graph is connectedand use|S| to denote the

cardinality of a setS.

Given a query graphG = (V,E), we useN(Ri) = {R′|(R′, Ri) ∈ E} to denote the

set of neighbors for a vertexRi ∈ V , andN(S) =
⋃

Ri∈S
N(Ri) \ S to denote the set of

neighbors for a set of verticesS ⊆ V . Furthermore, we useMin(S) to denote the relation

with the smallest subscript index in a set of verticesS ⊆ V .

A subsetS ⊆ R is referred to as a connected subset if it induces a connectedsubgraph

of the query graph. We useCi (2 ≤ i ≤ n) to denote the set of all connected subsets of

R with a cardinality ofi, andC =
⋃n

i=2Ci to denote the set of all connected subsets of

R with a cardinality of at least 2. All the above definitions follow existing works [41, 42,

16, 42, 21, 24, 22, 23].

90

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

R0 R1 R2 R3 R0 R1 R2 R3

R0

R1 R2

R3 R0

R1 R2

R3

chain
cycle

star clique

Figure 5.1: Examples of query types

Given a connected subsetS ⊆ R (|S| ≥ 2), ak-way (2 ≤ k ≤ |S|) partition ofS parti-

tionsS into k disjoint, non-empty sets{S1, · · · , Sk} such that (1) eachSi ⊆ S is a con-

nected subset and (2)S = S1

⋃

· · ·
⋃

Sk. Note that eachk-way 1 partition{S1, · · · , Sk}

of a connected subsetS is associated with ak-way join plan forS constructed by joining

the optimal plans for eachSi (1 ≤ i ≤ k).

For a connected subsetS, we useP k
S to denote the set of allk-way partitions ofS,

PS =
⋃|S|

i=2 P
i
S to denote the set of all partitions ofS, TS =

⊎

P ′∈Ps

⊎

S′∈P ′ S ′ 2 to

denote the multiset of all connected subsets in all partitions in PS. Furthermore, we

useP =
⋃

S∈C PS to denote the set of all partitions of all connected subsets of R and

T =
⊎

P ′∈P

⊎

S′∈P ′ S ′ to denote the multiset of all connected subsets in all partitions in

P . Since each partition of a connected subsetS is associated with a join plan forS, |PS|

represent the number of join plans forS and|P | represent the number of join plans for all

the connected subsets ofR.

Example 5.1: Consider the query graph for a chain query with fours relations R =

{R0, R1, R2, R3} in Figure 5.1. First, we haveMin(R) = R0, N(R1) = {R0, R2}

andN({R1, R2}) = {R0, R3}. Second, the subset{R0, R1, R2} ⊆ R is a connected

subset since it induces a connected subgraph while the subset {R0, R2, R3} ⊆ R is not a

connected subset. Furthermore, we haveC2 = {{R0, R1}, {R1, R2}, {R2, R3}} consist-

ing of all the connected subsets with a cardinality of 2. Third, for the connected subset

S = {R0, R1, R2}, it has one 3-way partition (i.e.,{{R0}, {R1}, {R2}} and two 2-way

partitions (i.e.,{{R0, R1}, {R2}} and{{R0}, {R1, R2}}). Note that{{R0, R2}, {R1}} is

1In RDBMS, algorithms for the OJE problem consider 2-way partitions while that in MapReduce con-
sider all thek-way partitions wherek ranges from2 to |S|.

2⊎ denote a duplicate preserving union operator.

91

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

not a 2-way partition ofS since{R0, R2} is not a connected subset. Thus, we havePS =

{{{R0}, {R1}, {R2}}, {{R0, R1}, {R2}}, {{R0}, {R1, R2}}}, andTS = {{R0}, {R1},

{R2}, {R0, R1}, {R2}, {R0}, {R1, R2}}. 2

5.2.2 Assumptions

Similar to existing works [41, 42, 16, 21, 24, 22, 23], we assume that the number of

relations in a query is not large (no more than 64 relations) so that they can be mapped

to a machine word size (typically 32 or 64 bits). In this way, any subset ofR can be

encoded by an integer value where theith bit in the integer value representsRi with a

value of 1 indicating thatRi is in the subset. Thus, the set operators (i.e.,containment,

union, intersection, difference) can be performed via bitwise operators in constant time.

Furthermore, the connectedness checking for a subset of relationsS ⊆ R can be done in

O(|S|) time as discussed in [16].

Under this assumption, recent works [41, 42, 16, 21, 24, 22, 23] in the RDBMS context

propose both bottom-up and top-down join enumeration algorithms for the SOJE problem

with an optimal complexity ofO(|P |). In the relational DBMS context, the time com-

plexity of a join enumeration algorithm is optimal if it generates each partitionP ′ ∈ P in

O(1) time. This is realizable in the RDBMS context since each partition consists of two

connected subsets which can be generated and output inO(1) time as shown by existing

works. However, in the MapReduce context, the number of connected subsets in a parti-

tionP ′ ∈ P ranges from 2 to|P ′| which cannot be generated and output in constant time.

Therefore, in the MapReduce context, the time complexity ofa join enumeration algorith-

m is optimal if it generates each partitionP ′ ∈ P in O(|P ′|) time. Thus, the optimal time

complexity of a join enumeration algorithm in MapReduce isO(|T |).

For simplicity, we focus our presentation on bottom-up dynamic programming follow-

ing the System R approach [52]; the extensions for top-down dynamic programming are

straightforward and thus are only discussed if necessary.

5.3 Complexity of SOJE Problem

In this section, we study the complexity of the SOJE problem in terms of both|P | and

|T | in the MapReduce context. Since the complexity of the SOJE problem depends on

92

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Table 5.2: Comparison of complexity results for SOJE problem
Type RDBMS-|P | RDBMS-|T | MapReduce-|P | MapReduce-T

Chain n3−n
3

2n3−2n
3 2n+1 − n2+3n

2 − 2 (n− 1)2n − n2+n
2 + 1

Cycle n3 − 2n2 + n 2n3 − 4n2 + 2n n2n−1 + 2n − n2 − n− 1 (n2 + n)2n−2 − n2

Star (n− 1)2n−1 (n− 1)2n 3n−1 − 2n−1 (n− 1)3n−2 + 3n−1 − 2n−1

Clique 3n − 2n+1 + 1 2× 3n − 2n+2 + 2 Bn+1 − 2n Bn+2 − 2Bn+1 − 2n + 1

the query graph [48], we examine the problem repeatedly for chain, cycle, star and clique

queries; an example of these query graphs on four relationsR = {R0, R1, R2, R3} are

shown in Figure5.1. Note that in the RBDMS context, since only binary-way joinsare

considered, we have|T | = 2|P |. Table5.2compares the complexity of the SOJE problem

in the RDBMS context [48] and our cost analysis for the MapReduce framework based on

the following theorems whereBn is thenth Bell number [50] andBn < (0.792n
ln(n+1)

)n [8]. In

Table5.2, each columnX-Y , X ∈ {RDBMS, MapReduce} andY ∈ {|P |, |T |}, denotes

the complexity of the SOJE problem in theX context in terms ofY .

Theorem 5.1. For a chain query withn relations, we have|P | = 2n+1 − n2+3n
2

− 2 and

|T | = (n− 1)2n − n2+n
2

+ 1.

Proof. Assume that each(Ri, Ri+1) (0 ≤ i ≤ n− 2) is an edge. To generate a connected

subsetS of R, the relations inS must be consecutive, i.e.,(Ri, Ri+1, · · · , Rj) where

1 ≤ i < j ≤ n − 1. For eachCi (2 ≤ i ≤ n), the number of all connected subsets inCi

is (n − i + 1), i.e.,(Rj , Rj+1, · · · , Rj+i−1) for 0 ≤ j ≤ n − i. For each such connected

subsetS ∈ Ci, the number of allk-way (2 ≤ k ≤ i) partitions is|P k
S | =

(

i−1
k−1

)

as we

have to delete(k − 1) edges from the(i − 1) edges inS to partitionS into k disjoint,

connected subsets, the number of all partitions is|PS| =
∑i

k=2

(

i−1
k−1

)

= 2i−1 − 1 and

the number of all connected subsets inPS is |TS| =
∑i

k=2 k
(

i−1
k−1

)

= (i + 1)2i−2 − 1.

Therefore, we have|P | =
∑n

i=2(n − i + 1)(2i−1 − 1) = 2n+1 − n2+3n
2

− 2 and|T | =
∑n

i=2(n− i+ 1)((i+ 1)2i−2 − 1) = (n− 1)2n − n2+n
2

+ 1.

Theorem 5.2.For a cycle query withn relations, we have|P | = n2n−1+2n−n2−n−1

and|T | = (n2 + n)2n−2 − n2.

Proof. Assume that each(Ri mod n, R(i+1) mod n) (0 ≤ i < n) is an edge. For eachCi (2 ≤

i < n), the number of all connected subsets inCi is n, i.e.,(Rj mod n, R(j+1) mod n, · · · ,

R(j+i−1) mod n) for 0 ≤ j < n. For each such connected subsetS in Ci, sinceS is of

type chain, the number of allk-way (2 ≤ k ≤ i) partitions ofS is |P k
S | =

(

i−1
k−1

)

, the

number of all partitions ofS is |PS| =
∑i

k=2

(

i−1
k−1

)

= 2i−1 − 1 and the number of all

connected subsets inPS is TS =
∑i

k=2 k
(

i−1
k−1

)

= (i + 1)2i−2 − 1. ForCn, the number

93

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

of all connected subsets is1 (i.e., R) andR is of type cycle. The number of allk-way

(2 ≤ k ≤ n) partitions ofR is |P k
R| =

(

n
k

)

as we have to deletek edges from then

edges inR to partitionR into k disjoint, connected subsets, the number of all partitions

of R is |PR| =
∑n

k=2

(

n
k

)

= 2n − n − 1 and the number of all connected subsets inPR

is TR =
∑n

k=2 k
(

n
k

)

= n2n−1 − n. Therefore, we have|P | =
∑n−1

i=2 n(2i−1 − 1) + 2n −

n − 1 = n2n−1 + 2n − n2 − n − 1 and|T | =
∑n−1

i=2 n((i + 1)2i−2 − 1) + n2n−1 − n =

(n2 + n)2n−2 − n2.

Theorem 5.3. For a star query withn relations, we have|P | = 3n−1 − 2n−1 and |T | =

(n− 1)3n−2 + 3n−1 − 2n−1.

Proof. Assume that each(R0, Ri) (1 ≤ i < n) is an edge. To generate a connected subset

S of R, S must containR0. For eachCi (2 ≤ i ≤ n), the number of all connected subsets

in Ci is
(

n−1
i−1

)

asR0 must be in a connected subset and the remaining(i−1) relations have

to be chosen from{R1, · · · , Rn−1}. For each such connected subsetS in Ci, the number

of all k-way (2 ≤ k ≤ i) partitions is|P S
k | =

(

i−1
k−1

)

as we have to delete(k − 1) edges

from the(i − 1) edges inS to partitionS into k disjoint, connected subsets, the number

of all partition is|PS| =
∑i

k=2

(

i−1
k−1

)

= 2i−1 − 1 and the number of all connected subsets

is |TS| =
∑i

k=2 k
(

i−1
k−1

)

= (i+ 1)2i−2 − 1. Thus, we have|P | =
∑n

i=2

(

n−1
i−1

)

(2i−1 − 1) =

3n−1 − 2n−1 and|T | =
∑n

i=2

(

n−1
i−1

)

((i+ 1)2i−2 − 1) = (n− 1)3n−2 + 3n−1 − 2n−1.

Theorem 5.4. For a clique query withn relations, we have|P | = Bn+1 − 2n and |T | =

Bn+2 − 2Bn+1 − 2n + 1, whereBn is thenth Bell number.

Proof. Assume that each(Ri, Rj) (0 ≤ i < j < n) is an edge. For eachCi (2 ≤ i ≤ n),

the number of all connected subsets inCi is
(

n
i

)

as we have to choosei relations from

R. For each such connected subsetS in Ci, the number of allk-way (2 ≤ k ≤ i)

partitions is|P S
k | =

{

i
k

}

= 1
k!

∑k
j=0(−1)k−j

(

k
j

)

ji where
{

i
k

}

is the Stirling number of

the second kind [50], the number of all partition is|PS| =
∑i

k=2

{

i
k

}

= Bi − 1 where

Bi is the ith Bell number [50], and the number of all connected subsets inPS is TS =
∑i

k=2 k
{

i
k

}

= Bi+1 −Bi − 1. Thus, we have|P | =
∑n

i=2

(

n
i

)

(Bi − 1) = Bn+1 − 2n and

|T | =
∑n

i=2

(

n
i

)

(Bi+1 − Bi − 1) = Bn+2 − 2Bn+1 − 2n + 1. Note thatBn < (0.792n
ln(n+1)

)n

as shown in [8].

94

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

5.4 Single-Query Join Enumeration Algorithm

In this section, we first present two baseline join enumeration algorithms (denoted as

DPsize and DPset) for the SOJE problem in the MapReduce framework which are re-

spectively adapted from the two state-of-the-art join enumeration algorithms for RDBM-

S [52, 62, 41]. Both DPsize and DPset follow a naive generate-and-test approach and thus

have a time complexity that is not optimal in the MapReduce context. Then we present an

efficient and easy-to-implement plan enumeration algorithm (denoted as PEA) to enumer-

ate all the partitions (i.e., plans) of a connected subset. Finally, we propose both top-down

and bottom-up join enumeration algorithms with an optimal time complexity based on

Algorithm PEA.

5.4.1 Baseline Join Enumeration Algorithms

Algorithm 5.1: Bottom-up Enumeration:DPsize
Input : A connected query graph with a set ofn relationsR = {R0, · · · , Rn−1}
Output : The optimal join plan forR, BestPlan(R)

1 innercounter = 0 ;
2 outercounter = 0 ;
3 BestPlan = new HashTable() ;
4 for i = 0 → (n− 1) do
5 create BestPlan({Ri}) ;
6 for i = 2 → n do /* Enumerate i-plans */
7 foreach integer partition(i1, · · · , ik) of i such that2 ≤ k ≤ i do
8 foreach {S1, · · · , Sk} ∈ Ci1 × · · · × Cik do
9 ++outercounter ;

10 if ∃Sg, Sh, 1 ≤ g < h ≤ k, Sg
⋂

Sh 6= ∅ then
11 continue ;

12 S′ =
⋃k

j=1 Sj ;

13 if S′ is not a connected subsetthen
14 continue ;
15 ++innercounter ;
16 newPlan = createPlan(BestPlan(S1),· · · ,BestPlan(Sk)) ;
17 if Cost(BestPlan(S’))> Cost(newPlan)then
18 BestPlan(S’) = newPlan ;

Size-driven Enumeration. For simplicity, we refer to a plan as ai-plan to mean that the

number of relations in (i.e., the size of) the plan isi. Our first baseline join enumeration

algorithm (referred to as DPsize) enumerates plans iteratively, i.e.,i-plans are enumerated

before(i + 1)-plans, which is adapted from [52, 41] designed for the SOJE problem in

95

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

the RDBMS context. Algorithm5.1shows the pseudocode for DPsize. In the algorithm,

BestPlanis a hash table that stores the best plan found so far for each connected subset of

R. Two countersinnercounterandoutercounterare maintained for complexity analysis

for the algorithm (to be explained). The algorithm starts byinitializing the best plan for

each single relation inR and then enumerates plans in increasing size.

In theith iteration to enumeratei-plans, DPsize appropriately combines disjoint, smaller-

size plans that have already been enumerated. To generate all the possible plan combina-

tions, DPsize first generates all the integer partitions fori 3 using an efficient algorithm

from [75]. Each integer partition(i1, · · · , ik) of i (2 ≤ k ≤ i) essentially represents a

way to combine plans of sizei1, · · · , ik to generatei-plans. Thus, each(i1, · · · , ik) is

associated with some candidate partitions denoted asCi1 × · · · × Cik . To make sure that

the plan4 associated with a candidate partition{S1, · · · , Sk} ∈ Ci1 × · · · × Cik qualifies

as ani-plan (i.e., the candidate partition is indeed a partition), we need to ensure two

requirements. First, all the connected subsets in{S1, · · · , Sk} are disjoint which can be

checked in O(k) time. Note that the disjointedness checking is achieved bythe bitwise

AND operator on the corresponding integer representationsfor eachSj (1 ≤ j ≤ k) 5.

Second,S ′ =
⋃k

j=1 Sj is a connected subset which can be checked inO(|S ′|) time (i.e.,

O|i| as|S ′| = i) as discussed in Section5.2.

The time complexity of DPsize is not optimal for two reasons.First, it generates more

candidate partitions. Specifically, the value of the variable outercounter in Algorithm5.1

represents the number of generated candidate partitions which is larger than the number

of the partitions for all the connected subsets ofR (i.e., |P |) represented by the value

of the variableinnercounter. Second, the time complexity to verify a candidatek-way

partition{S1, · · · , Sk} is indeed a partition isO(|
⋃k

j=1 Sj|) time due to the connected-

ness checking which is no smaller than the optimal time complexity to generate ak-way

partition which isO(k).

Subset-driven Enumeration.Our second baseline join enumeration algorithm (referred

to as DPset) enumerates all the subsets ofR in increasing order of their integer represen-

tations, which is adapted from [62, 41] designed for the SOJE problem in the RDBMS

context. For each enumerated subsetS of R, if S is not a connected subset, it is im-

mediately dropped; otherwise, we compute the optimal plan for S by generating all the
3An integer partition of a numberi refers to a way of writingi as a sum of positive integers. Two sums

that differ only in the order of their summands are considered to be the same.
4The plan associated with a candidate partition{S1, · · · , Sk} is constructed by joining the optimal plans

for eachSi (1 ≤ i ≤ k).
5Two subsetsSi andSj are disjoint if the result of the bitwise AND operator on their integer represen-

tations is 0.

96

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Algorithm 5.2: Bottom-up Enumeration:DPset
Input : A connected query graph with a set ofn relationsR = {R0, · · · , Rn−1}
Output : The optimal join plan forR, BestPlan(R)

1 innercounter = 0 ;
2 outercounter = 0 ;
3 BestPlan = new HashTable() ;
4 for i = 1 → (2n − 1) do /* Enumerate subsets */
5 Let S ⊆ R be the subset corresponding toi ;
6 if S is not a connected subsetthen
7 continue ;
8 if |S| = 1 then
9 create BestPlan(S) ;

10 continue ;
11 foreach {S1 ⊆ S, S2 ⊆ (S \ S1), · · · , Sk = (S \ S1 \ · · · \ Sk−1)} such that

2 ≤ k ≤ |S| and
⋃k

j=1 Sj = S do
12 ++outercounter ;
13 if ∃i ∈ [1, k] such thatSi is not a connected subsetthen
14 continue;
15 ++innercounter ;
16 newPlan = createPlan(BestPlan(S1),· · · ,BestPlan(Sj)) ;
17 if Cost(BestPlan(S))> Cost(newPlan)then
18 BestPlan(S) = newPlan ;

partitions ofS and enumerating the corresponding join plans forS. Note that to compute

the optimal plan forS, all its subsets must be enumerated before itself. This is guaranteed

by DPset’s enumeration order of the subsets ofR. Algorithm 5.2 shows the pseudocode

for DPset. Here again,BestPlanis a hash table that stores the best plan found so far for

each connected subset ofR. Two countersinnercounterandoutercounterare maintained

for complexity analysis for the algorithm (to be explained).

For each enumerated and connected subsetS of R, for each candidate partition{S1 ⊆

S, S2 ⊆ (S \S1), · · · , Sk ⊆ (S \S1\· · ·\Sk−1)} such that2 ≤ k ≤ |S| and
⋃k

j=1 Sj = S,

we need to test for the connectedness for eachSi (1 ≤ i ≤ k) to ensure that it is indeed

a partition ofS. As eachSi ∈ S (1 ≤ i ≤ k) has already been enumerated beforeS, the

connectedness checking forSi can be achieved by looking up the hash tableBestPlanas

follows. If Si is present inBestPlan, then it is connected; otherwise it is not connected.

Therefore, the connectedness checking for{S1, · · · , Sk} is done in O(k) time.

To generate all the candidate partitions of a connected subsetS, we have to generate all

the non-empty subsetsS1 ⊆ S, · · · , Sk ⊆ (S \ S1 \ · · · \ Sk−1) such that2 ≤ k ≤ |S|

and
⋃k

j=1 Sj = S. The generation of eachSi can be done very efficiently in O(1) time

97

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

by applying the idea from [62] 6. Furthermore, to avoid generating duplicate candidate

partitions, we restrict eachSi ⊆ (S \ S1 \ · · · \ Si−1) (1 ≤ i ≤ k) to contain the re-

lation Min(S \ S1 \ · · · \ Si−1). The purpose is to give an unique ordering of all the

subsetsS1, · · · , Sk so that duplicate candidate partitions are not generated. For exam-

ple, consider the chain query in Figure5.1, for the connected subsetR = {R0, · · · , Rs},

if we do not restrict eachSi, we will generateS1 = {R0} andS2 = {R1, R2, R3},

and S1 = {R1, R2, R3} and S2 = {R0} which essentially represent the same parti-

tion {{R0}, {R1, R2, R3}} of S. However, if we restrict eachSi, we will only generate

S1 = {R0} andS2 = {R1, R2, R3}.

Here again, the time complexity of DPset is not optimal. Thisis because DPset gen-

erates more candidate partitions to verify as represented by the value of the variable

outercounter in Algorithm 5.1. Indeed, the number of partitions of all the connected

subsets ofR is equal to the value of the variableinnercounter which is smaller than the

value of the variableoutercounter. Note that the time complexity to verify the connect-

edness for a candidate partition{S1, · · · , Sk} is equal to the optimal time complexity to

generate ak-way partition which are bothO(k).

Comparison of DPsize and DPset.Both DPsize and DPset follow a naive generate-

and-test approach and thus have a suboptimal time complexity, i.e., DPsize has to test

for disjointedness (Line 11 in Algorithm5.1) while DPset has to test for connectedness

(Line 13 in Algorithm5.2). When only 2-way joins (i.e., in RDBMS) are considered, the

experimental results in [41] demonstrate that neither DPsize nor DPset is strictly more

superior. This is because in RDBMS, the number of disjointedness checking in DPsize

and the number of connectedness checking in DPset can exceedeach other for differen-

t query types. However, when multi-way joins are considered, our experimental results

demonstrate that DPset is significantly faster than DPsize by up to two orders of magni-

tude. This is due to the large number of integer partitions generated for DPsize which

results in a large number of disjointedness checking. For example, when the number of

relations in a chain query is 15, DPsize generates 668 integer partitions which results in

17.120.334 disjointedness checking while DPset only needsto check the connectedness

458.073 times.
6Given a setS and its integer representation V(S), each integer representation (denoted asV) of the sub-

sets ofS is generated using the following recursive formulaV = V (S)&(V −V (S)) with the initialization
conditionV = 0 (i.e., empty subset) and the termination conditionV = V (S) (i.e.,S).

98

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

5.4.2 Plan Enumeration Algorithm

Existing works [52, 62, 41] have proposed both bottom-up and top-down dynamic pro-

gramming algorithms to generate each partition inP in Q(1) time in the RDBMS context.

However, their algorithms are limited to 2-way joins and thus are not applicable for multi-

way joins in the MapReduce context. Indeed, as discussed in Section5.2, it is impossible

to generate each partition inO(1) time in the context of MapReduce framework. In this

section, we present a plan (i.e., partition) enumeration algorithm (denoted as PEA) to ef-

ficiently generate all the partitions of a connected subsetS (i.e.,PS) with each partition

P ′ ∈ PS being generated inO(|P ′|) time.

Algorithm 5.3: Connected subset enumeration algorithm (CSEA)
Input : A query graph with a set of relationsR = {R0, · · · , Rn−1}
Output : All the connected subsets ofR containingR0

1 output({R0}) ;
2 Enumerate({R0}, {R0}, N({R0}) ;

3 Function Enumerate(S,D,H) begin
4 if H is emptythen
5 return ;
6 foreach non-emptyS′ ⊆ H do
7 output(S

⋃

S′) ;
8 foreach non-emptyS′ ⊆ H do
9 Enumerate(S

⋃

S′, D
⋃

H, N(S
⋃

S′) \ (D
⋃

H))

Before we present our algorithm, we first review a connected subset enumeration algo-

rithm [41] (denoted as CSEA shown in Algorithm5.3) which enumerates all the con-

nected subsets containing a relationR0 for an input query graph with a set of relations

R = {R0, · · · , Rn−1}. The main idea of the approach is as follows. Given an already

enumerated and connected subsetS, the approach extendsS by adding the relationsS ′

from its neighbors (i.e.,N(S)) into it to generate larger connected subsets. To avoid pro-

ducing duplicates, it maintains a set of relationsD that have already been visited. When

adding the relations intoS, it only adds the relations fromN(S) \ D (i.e.,H). The ap-

proach first outputs{R0} as a connected subset and then invokes the function Enumerate

with S = {R0}, D = {R0} andH = N({R0}) to generate connected subsets which

recursively invokes itself with different parameter values until it has generated all the

connected subsets.

As a representation of the input query graph for Algorithm CSEA, for eachRi, instead

of storing all its neighbors in an adjacency list (a typical way to represent a graph), it

is sufficient to maintain an integer to representN(Ri) to simplify the computation of

99

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

neighbors for connected subsets. Furthermore, we haveN(S
⋃

S ′) = N(S)
⋃

N(S ′) \

(S
⋃

S ′) for incremental neighbourhood computation. To generate all the subsets ofU

(Line 5 in Algorithm 5.3), we apply the idea from [62] with a complexity ofO(1) for

each subset as discussed in Section5.4.1. By combining all these techniques, the time

complexity to generate each connected subset isO(1) as shown in [41].

Algorithm 5.4: Plan enumeration algorithm (PEA)
Input : A connected subsetS = {R0, · · · , R|S|−1}
Output : All the partitions ofS (i.e.,PS)

1 for i = 1 → |S| do
2 Fi = {Ri−1, · · · , R|S|−1} ;
3 Si = getnext(Fi) ;
4 output{S1, · · · , S|S|} ;
5 i = |S| − 1 ;
6 while i ≥ 1 do /* Start an iteration to generate a partition */

/* Scan backward to find the first Fi to retrieve Si */
7 while (Si = getnext(Fi)) is null do
8 −− i;

/* Scan forward to rewind each Fi and Si */
9 Fi+1 = Fi \ Si ;

10 while Fi+1 6= ∅ do
11 Si+1 = getnext(Fi+1) ;
12 ++ i ;
13 Fi+1 = Fi \ Si ;
14 output(S1, · · · , Si) ;

We now discuss our plan (i.e., partition) enumeration algorithm PEA. Given a connect-

ed subsetS = {R0, · · · , R|S|−1}, Algorithm 5.4 shows our approach to generate all the

partitions ofS (i.e.,PS) where each partitionP ′ ∈ PS is generated inO(|P ′|) time. In

the algorithm, eachFi = S \
⋃i−1

j=1 Sj denotes the set of relations inS after excluding
⋃i−1

j=1 Sj and can be incrementally computed by the formulaFi+1 = Fi \ Si, and each

Si ⊆ Fi represents a connected subset ofFi containing the relationMin(Fi). Similar to

our proposed technique for DPset, we restrict eachSi to containMin(Fi) to avoid gener-

ating duplicate partitions. Furthermore, the functiongetnext(Fi) is used to get the next

connected subset ofFi containingMin(Fi) and will eventually generate all the connected

subsets ofFi containingMin(Fi). Thus, for eachFi, Algorithm CSEA is first called to

retrieve a sequence of all the connected subsets ofFi containingMin(Fi) and then the

functiongetnext(Fi) is used to retrieve the next connected subset in the sequence.

To generate a partition ofS, our algorithm generates a sequence of connected subsets

S1 ∈ F1, · · · , Sk ∈ Fk until Fk+1 is empty (i.e.,
⋃k

j=1 Sj = S). Each time when it

generates a connected subsetSi of Fi (1 ≤ i ≤ k), it updatesFi+1 to beFi \ Si to ensure

100

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Table 5.3: An example illustrating the plan enumeration algorithm
S1 S2 S3 S4 F1 F2 F3 F4

1 {R0} {R1} {R2} {R3} {R0, R1, R2, R3} {R1, R2, R3} {R2, R3} {R3}
2 {R0} {R1} {R2, R3} ∅ {R0, R1, R2, R3} {R1, R2, R3} {R2, R3} ∅

3 {R0} {R1, R2} {R3} ∅ {R0, R1, R2, R3} {R1, R2, R3} {R3} ∅
4 {R0} {R1, R2, R3} ∅ ∅ {R0, R1, R2, R3} {R1, R2, R3} ∅ ∅
5 {R0, R1} {R2} {R3} ∅ {R0, R1, R2, R3} {R2, R3} {R3} ∅
6 {R0, R1} {R2, R3} ∅ ∅ {R0, R1, R2, R3} {R2, R3} ∅ ∅

7 {R0, R1, R2} {R3} ∅ ∅ {R0, R1, R2, R3} {R3} ∅ ∅

that all the generated subsetsS1, · · · , Sk are disjoint. In this way,{S1, · · · , Sk} qualifies

as ak-way partition ofS. Furthermore, since both the retrieval ofSi and the updating of

Fi is done in O(1) time, the time complexity to generate ak-way partition isO(k) in our

algorithm.

To generate all the partitions ofS, our algorithm works as follows. Initially, it hasSi =

{Ri−1} for eachi ∈ [1, |S|] and simply outputs{S1, · · · , S|S|} as a|S|-way partition of

S. Then it goes into an iterative process to generate a partition of S. At each iteration,

it first scans backwards (fromF|S| to F1) to find the firstFi, where not all the connected

subsets have been enumerated, to retrieve the next connected subset ofFi. It then updates

eachFj (j > i) and generates the first connected subsetSj of Fj until it has generated a

connected subsetSk such thatFk+1 is empty. Finally, it outputs{S1, · · · , Sk} as ak-way

partition ofS. The iterative process terminates whenF2 is empty (i.e., all the partitions

of S have been generated). Note that the last generated partition is a 1-way partition ofS

and should be ignored.

Example 5.2: Consider the chain query in Figure5.1. Table 5.3 illustrates our plan

enumeration algorithm to generate all the partitions of{R0, R1, R2, R3}. In the first iter-

ation, we simply output{{R0}, {R1}, {R2}, {R3}} as a 4-way partition. In the second

iteration, we scan backwards (fromF4 to F1) and getF3 to retrieve the next connected

subsetS3 = {R2, R3}. Then we haveF4 = ∅ and output{{R0}, {R1}, {R2, R3}} as

a 3-way partition. In the third iteration, we getF2 to retrieve the next connected subset

S2 = {R1, R2}. Then we haveF3 = {R3}, S3 = {R3}, F4 = ∅ and output a 3-way

partition{{R0}, {R1, R2}, {R3}}. We repeat the above process until we generate all the

partitions. 2

101

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

5.4.3 Bottom-up and Top-down Enumerations

In this section, we propose both bottom-up and top-down dynamic programming algo-

rithms with an optimal time complexity ofO(|T |) based on Algorithm PEA.

Algorithm 5.5: Bottom-up Enumeration:DPopt
Input : A connected query graph with a set ofn relationsR = {R0, · · · , Rn−1}
Output : The optimal join plan forR, BestPlan(R)

1 BestPlan = new HashTable() ;
2 for i = (n− 1) → 0 do
3 foreachS ∈ CSEA({Ri, · · · , Rn−1})) (i.e., Algorithm5.3) do
4 if |S| = 1 then
5 create BestPlan(S) ;
6 continue ;
7 PS = PEA(S) (i.e., Algorithm5.4) ;
8 foreach partition {S1, · · · , Sk} ∈ PS do
9 newPlan = createPlan(BestPlan(S1),· · · ,BestPlan(Sj)) ;

10 if Cost(BestPlan(S))> Cost(newPlan)then
11 BestPlan(S) = newPlan ;

Bottom-up enumeration. Algorithm 5.5 shows the pseudocode of our bottom-up enu-

meration (denoted as DPopt) which makes two changes to DPsetto ensure that it has an

optimal time complexity. First, DPset follows the approachin [41] to generate all the con-

nected subsets ofR with each connected subset being generated inO(1) time 7. Second,

for each enumerated and connected subsetS of R, DPopt generates all the partitions ofS

(i.e.,PS) using Algorithm PEA.

Top-down enumeration.Algorithm 5.6shows the pseudocode of our top-down enumer-

ation. The algorithm starts by finding the optimal plan for each single relation inR and

then invoke the function GenOptimal(R) to construct the optimal plan forR.

Given a connected subsetS of R, the function GenOptimal(S) generates the optimal

plan forS by enumerating all the partitions ofS using Algorithm PEA and recursively

construct the optimal plan for each connected subset ofS in the enumerated partitions. To

avoid redundant construction of optimal plans, a hash tableBestPlanis used to cache the

optimal plan for each connected subset ofR.

7The approach in [41] generates all the connected subsets ofR by applying Algorithm5.3 on the se-
quence of inputs{Rn−1}, {Rn−2, Rn−1},. . . , {R0, · · · , Rn−1}. In this way, for a connected subsetS of
R, all its subsets are enumerated before itself.

102

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Algorithm 5.6: Top-down enumeration
Input : A connected query graph with a set of relationsR = {R0, · · · , Rn−1}
Output : The optimal join plan forR, BestPlan(R)

1 BestPlan = new HashTable() ;
2 for i = 0 → (n− 1) do
3 create BestPlan({Ri}) ;
4 return GenOptimal(R) ;

5 Function GenOptimal(S) begin
6 if BestPlan(S) is null then
7 PS = PEA(S) (i.e., Algorithm5.4) ;
8 foreach partition {S1, · · · , Sk} ∈ PS do
9 newPlan = createPlan(GenOptimal(S1),· · · ,GenOptimal(Sk)) ;

10 if Cost(BestPlan(S))> Cost(newPlan)then
11 BestPlan(S) = newPlan ;
12 return BestPlan(S) ;

5.5 Multi-Query Join Enumeration Algorithm

In this section, we present a novel multi-query join enumeration algorithm for the MOJE

problem for a batch of queriesQ = {Q1, · · · , Qn}. The MOJE problem aims to find a

global optimal plan for a batch of queries to share computation of their CSEs. As the

global optimal plan in general is not simply constructed from the local optimal plan for

each query, we have to consider all the possible plans for each query. Due to the large

number of possible plans for a query, enumerating all the plan combination space for a

batch of queries is usually very costly. In this section, we propose effective techniques to

prune away non-promising plans and thus reduce the plan combination space.

Our proposed multi-query join enumeration algorithm consists of two-phases. In the first

phase, for eachQi (1 ≤ i ≤ n), we apply the single-query join enumeration algorithm

(discussed in the previous section) to generate all the interesting plans forQi. A plan

of Qi is interesting if it is either the optimal plan or produces some output that could be

reused for other queries. In the second phase, we stitch the interesting plans for the queries

maintained in the first phase into a global optimal plan.

While there has been some works on the study of the MOJE problem in the RDBMS

context [51, 14, 74], they mainly focus on greedy heuristics to find a good globalplan for

a batch of queries. We present a novel two-phase algorithm tofind a global optimal plan

for a batch of queries. Specifically, we present novel pruning techniques to prune away

non-promising plans as well as a systematic approach to merge the interesting plans for

103

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Table 5.4: Running examples of queries and plans
Query Plan CSE set

Q1: R0 ⊲⊳ R1 ⊲⊳ R2 ⊲⊳ R3

U11: ((R0 ⊲⊳ R1) ⊲⊳ (R2 ⊲⊳ R3)) CSE(U11): {R0 ⊲⊳ R1, R2 ⊲⊳ R3}
U12: (R0 ⊲⊳ R1 ⊲⊳ (R2 ⊲⊳ R3)) CSE(U12): {R2 ⊲⊳ R3}
U13: (R0 ⊲⊳ (R1 ⊲⊳ (R2 ⊲⊳ R3))) CSE(U13): {R2 ⊲⊳ R3}
U14: (((R0 ⊲⊳ R1) ⊲⊳ R2) ⊲⊳ R3) CSE(U14): {R0 ⊲⊳ R1, R0 ⊲⊳ R1 ⊲⊳ R2}
U15: ((R0 ⊲⊳ R1) ⊲⊳ R2 ⊲⊳ R3) CSE(U15): {R0 ⊲⊳ R1}
U16: ((R0 ⊲⊳ R1 ⊲⊳ R2) ⊲⊳ R3) CSE(U16): {R0 ⊲⊳ R1 ⊲⊳ R2}

Q2: R0 ⊲⊳ R1 ⊲⊳ R2 ⊲⊳ R4
U21: ((R0 ⊲⊳ R1) ⊲⊳ (R2 ⊲⊳ R4)) CSE(U21): {R0 ⊲⊳ R1, R2 ⊲⊳ R4}
U22: (((R0 ⊲⊳ R1) ⊲⊳ R2) ⊲⊳ R4) CSE(U22): {R0 ⊲⊳ R1, R0 ⊲⊳ R1 ⊲⊳ R2}

Q3: R2 ⊲⊳ R3 ⊲⊳ R4 U31: ((R2 ⊲⊳ R3) ⊲⊳ R4) CSE(U31): {R2 ⊲⊳ R3}

each query into a global optimal plan. In the following, we elaborate on the details of the

two phases.

Notations. For a queryQi, we useWi = {Wi1, · · · ,Wi|Wi|} to denote the set of relations

in Qi, Ui = (Ui1, · · · , Ui|Ui|) to denote the set of all possible plans forQi. Table5.4

shows three example queries and some plans for each query that will be used to illustrate

our algorithm.

For a planU ′ and its associated partition{S1, · · · , Sk}
8, we useJoinExp(U ′) to denote

its join expression without any execution order,SubP lan(U ′) to denote the set of subplans

of eachSi, andCost(U ′) to denote its evaluation cost based on some cost model. For

example, for the planU14 in Table5.4and its associated partition{{R0, R1, R2}, {R3}},

we haveJoinExp(U14) = R0 ⊲⊳ R1 ⊲⊳ R2 ⊲⊳ R3 andSubP lan(U14) = {(R0 ⊲⊳ R1) ⊲⊳

R2, R3}.

5.5.1 First Phase

In the first phase, for each planUij of Qi, we maintain a set of CSEs ofUij whose results

could be reused for other queries inQ. We refer to this set as CSE set and useCSE(Uij)

to denote the CSE set ofUij . For example, consider the planU14 in Table5.4, we have

CSE(U14) = {R0 ⊲⊳ R1, R0 ⊲⊳ R1 ⊲⊳ R2} since the results of the subexpressionsR0 ⊲⊳

R1 andR0 ⊲⊳ R1 ⊲⊳ R2 could be reused forQ2. Note that there may be several plans

corresponding to the same CSE set. For example, the two plansU12 andU13 in Table5.4

have the same CSE set (i.e.,{R2 ⊲⊳ R3}). We say a planUij is interesting if it is either

the optimal plan or its CSE set is not empty. Note that even if aplanUij is not the optimal

plan, the global optimal plan may chooseUij for Qi if Uij produces some output that

8Recall that each partition is associated with a plan as discussed in Section5.2.

104

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

could be reused for other queries inQ. Thus, in this phase, we need to maintain all the

interesting plans for eachQi to be further processed in the second phase.

Algorithm 5.7: Interesting plan generation algorithm
Input : An queryQi in Q
Output : Interesting plans forQi (i.e.,IWi

)
1 for j = |Wi| → 1 do
2 foreachS ∈ CSEA({Wij , · · · ,Wi|Wi

|}) (i.e., Algorithm5.3) do
3 if |S| = 1 then
4 IS = createPlan(S) ;
5 continue ;
6 PS = PEA(S) (i.e., Algorithm5.4) ;
7 foreach partition {S1, · · · , Sk} ∈ PS do
8 foreach {U ′

1, · · · , U
′
k} ∈ IS1

× · · · × ISk
do

9 U ′ = createPlan(U ′
1,· · · ,U ′

k) ;

10 CSE(U ′) =
⋃k

j=1CSE(Uj) ;

11 if JoinExp(U ′) is a CSE w.r.tQ then
12 CSE(U ′) = CSE(U ′)

⋃

JoinExp(U ′);
13 IS = IS

⋃

U ′ ;
14 Apply the two pruning techniques forIS ;

We now discuss how the interesting plans and the corresponding CSE sets for a query

Qi are computed when applying the single query join enumeration algorithm forQi. Al-

gorithm5.7shows the pseudocode of this process. To support incremental computation,

for each connected subsetS of Wi, we compute and maintain all the interesting plans

for it (denoted asIS). Note that this is different from the SOJE problem where only one

optimal plan is maintained forS. Consider the enumeration of interesting plans and the

corresponding CSE sets forS, for eachk-way partition{S1, · · · , Sk} of S and for each

{U ′
1, · · · , U

′
k} ∈ IS1

× · · ·× ISk
, the plan (denoted asU ′) joiningU ′

1,· · · ,U
′
k is an interest-

ing plan forS, and the CSE set ofU ′ is simply the union of eachCSE(U ′
i) (1 ≤ i ≤ k)

plusJoinExp(U ′) if the results ofJoinExp(U ′) could be reused for other queries. Thus,

all the interesting plans and the corresponding CSE sets forS can be computed by enu-

merating all the partitions ofS and examining the expressionIS1
× · · · × ISk

associated

with each partition{S1, · · · , Sk} in PS. After evaluatingIS, we apply two pruning tech-

niques (to be explained) on the plans inIS to prune away the non-promising plans and

thus reduce the optimization cost. We now discuss our pruning techniques.

Pruning techniques. To prune away the non-promising interesting plans forQi, we in-

troduces two pruning techniques based on the plan cost and the relationship between CSE

sets. The first pruning technique prunes plans with the same CSE set. Specifically, given

a set of plans with the same CSE set, it keeps the plan with the minimal cost and prunes

105

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

the remaining plans. For example, for plansU12 andU13 in Table5.4, we only need to

keep the one with the smaller cost and prune the other one.

The second pruning technique prunes plans with different CSE sets. Specifically, con-

sider two plansUij andUik with CSE(Uij) 6= CSE(Uik) andCost(Uij) ≤ Cost(Uik).

AlthoughUij andUik have different CSE sets, ifUij can compute the results of the C-

SEs that are present inUik but not in itself (i.e.,CSE(Uik) \ CSE(Uij)) in some cost

that is no greater than the valueCost(Uik) − Cost(Uij), then we can still pruneUik. Let

Cost(CSE(Uik) \ CSE(Uij) | CSE(Uij)) denote the cost to compute the results of the

CSEs inCSE(Uik) \ CSE(Uij) based on the results of the CSEs inCSE(Uij). If we

haveCost(Uij) + Cost(CSE(Uik) \ CSE(Uij) | CSE(Uij)) ≤ C(Uik), then we can

simply removeUik. For example, consider the two plansU14 andU15 in Table5.4, if

Cost(U15) + Cost({R0 ⊲⊳ R1 ⊲⊳ R2} | {R0, R1}) ≤ Cost(U14), then we can simply

pruneU14.

To computeCost(CSE(Uik) \ CSE(Uij) | CSE(Uij)), we have to compute the cost for

evaluating the results of each CSE inCSE(Pik) \ CSE(Uij) based on the results of the

CSEs inCSE(Uij). Furthermore, if a CSEE ′ is a subexpression of another CSEE ′′, we

should compute the results ofE ′ first so that they could be reused to compute the results

of E ′′. We assumeCSE(Uik) \ CSE(Uij) = {E1, · · · , Es} and if a CSEEi is a subex-

pression of another CSEEj , theni < j. Then we haveCost(CSE(Uik) \ CSE(Uij) |

CSE(Uij)) =
∑s

g=1Cost(Eg | CSE(Uij)
⋃

{E1, · · · , Eg−1}). Note that for each CSE

Eg, it is associated with multiple interesting plans (maintained when applying the single

query join enumeration algorithm) and the costs of these plans are updated based on the

CSEs inCSE(Pij)
⋃

{E1, · · · , Eg−1} and the minimal cost is chosen as the cost ofEg.

We now discuss how to update the cost of a plan based on a CSE setwhere the results of

each CSE in the set have been materialized.

Algorithm 5.8 shows the pseudocode to update the cost of a planU ′ based on a CSE set

O′ where the results of the CSEs inO′ have been materialized. The main idea of the

algorithm (denoted as CTUA) is to recursively traverse through the subplans ofU ′ and

check whether the results of the CSEs inO′ can be reused for some subplans. Initially,

it addsU ′ into a queue. Then it goes into an iterative process to retrieve the subplans of

U ′. In each iteration, it pulls a planU ′′ from the queue. IfJoinExp(U ′′) ∈ O′, then the

results ofU ′′ have already been materialized and the cost ofU ′ is updated. Otherwise, if

O′ has overlap with the CSE set ofU ′′, then the subplans ofU ′′ (i.e.,SubP lan(U ′′)) are

added into the queue since their results may have already been materialized. The iterative

process terminates when the queue is empty.

106

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Algorithm 5.8: Cost updating algorithm (CTUA)
Input : A planU ′, a CSE setO′

Output : Updated cost ofU ′ based on the results of the CSEs inO′

1 cost = Cost(U ′) ;
2 queue = newQueue() ;
3 queue.add(U ′) ;
4 while queue 6= ∅ do
5 U ′′ = queue.poll() ;
6 if JoinExp(U ′′) ∈ O′ then
7 cost = cost - Cost(U ′′) ;
8 else ifCSE(U ′′)

⋂

O′ 6= ∅ then
9 queue.addAll(SubP lan(U ′′)) ;

10 return cost

Optimization. As the queries in the batchQ may have many CSEs, it is unnecessary

to redundantly optimize these CSEs in the first phase. For example, consider the CSE

R0 ⊲⊳ R1 ⊲⊳ R2 for Q1 andQ2, after optimizingQ1, the interesting plans for the CSE are

maintained inQ1’s hash table. When optimizing the CSE forQ2, instead of redundantly

optimizing it, we can reuse the results fromQ1’s hash table forQ2. In this way, we share

the optimization of CSEs among the batch of queries.

5.5.2 Second Phase

In the second phase, we stitch the interesting plans for the queries maintained in the first

phase into a global optimal plan. Our approach constructs the global optimal plan pro-

gressively, i.e., the global plans for a set ofi queries are constructed before that for a set

of i+ 1 queries. Similarly, we maintain a CSE set for each global plan where the results

of the CSEs in the set could be reused in future computation. Overall, we construct the

global optimal plan by evaluating the expression(((IW1
× IW2

)× IW3
)× · · · × IWn

) with

intermediate global plans being materialized and pruned (via the two pruning techniques).

In this way, we are able to prune the combination space of the interesting plans for the

batch of queries. LetMi ⊆ ((IW1
× IW2

)× · · · × IWi
) (2 ≤ i ≤ n) denote the interesting

global plans maintained for the set of queries{Q1, · · · , Qi}.

Algorithm 5.9 shows the pseudocode to generate the global optimal plan fora batch of

queriesQ = {Q1, · · · , Qn}. In theith iteration to examine the expressionMi−1 × IWi
to

construct the global plans for the set of queries{Q1, · · · , Qi} (2 ≤ i < n), we need to

compute both the costs and CSE sets for the global plans. Specifically, consider a combi-

nation of plans(U ′, U ′′) ∈ (Mi−1 × IWi
), its global plan (denoted asGP) is constructed

107

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Algorithm 5.9: Global optimal plan generation algorithm
Input : Interesting plans for eachQi in Q = {Q1, · · · , Qn} (i.e.,IWi

, · · · , IWn)
Output : The global optimal plan forQ (i.e.,Mn)

1 M1 = IW1
;

2 for i = 2 → n do
3 foreach (U ′, U ′′) ∈ (Mi−1 × IWi

) do
4 LetGP denote the global plan for(U ′, U ′′) ;
5 Cost(GP) = Cost(U ′) + CTUP (U ′′, CSE(U ′)) (i.e., Algorithm5.8) ;
6 CSE(GP) = CSE(U ′) + CSUA(U ′′, CES(U ′)) (i.e., Algorithm5.10);
7 Mi = Mi

⋃

GP ;
8 Remove the CSEs inMi that can not be reused in future computation ;
9 Apply the two pruning techniques forMi ;

by checking the reusable results of the CSEs inCSE(U ′) for U ′′ and updating both the

cost and CSE set forGP . The cost ofGP is simply the cost ofU ′ plus the updated cost

of U ′′ based on the results of the CSEs inCSE(U ′) which has already been discussed

in Algorithm 5.8. Similarly, the CSE set ofGP is simply the CSE set ofU ′ union the

updated CSE set ofU ′′ based on the results of the CSEs inCSE(U ′). Algorithm 5.10

shows the pseudocode to update the CSE set of a planU ′ based on a CSE setO′ where

the results of the CSEs inO′ are materialized. Similar to Algorithm5.8, the main idea

of the algorithm (denoted asCSUA) is to traverse through the subplans ofU ′, check the

reusable results of the CSEs inO′ for some subplans and update the CSE set ofU ′. Since

the algorithm is very similar to Algorithm5.8, we do not repeatedly discuss it.

Algorithm 5.10: CSE set updating algorithm (CSUA)
Input : A planU ′, a CSE setO′

Output : Updated CSE set ofU ′ based on the results of the CSEs inO′

1 cse = CSE(U ′) ;
2 queue = newQueue() ;
3 queue.add(U ′) ;
4 while queue 6= ∅ do
5 U ′′ = queue.poll() ;
6 if JoinExp(U ′′) ∈ O′ then
7 cse.removeAll(CSE(U ′′)) ;
8 else ifcse

⋂

CSE(U ′′) 6= ∅ then
9 queue.addAll(SubP lan(U ′′)) ;

10 return cse

After computingMi in the ith iteration, we apply the optimization technique (to be dis-

cussed) to remove the CSEs inMi that can not be reused in future computation and apply

the two pruning techniques forMi to prune away the non-promising plans. Note that after

the termination of the algorithm,Mn contains only one plan which is the global optimal

plan forQ = {Q1, · · · , Qn}.

108

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

For example, consider the construction of the global plan for the plans(U16, U22) in Ta-

ble 5.4, the global plan will reuse the results of the CSER0 ⊲⊳ R1 ⊲⊳ R2 from U16 for

U22. Therefore, the cost and the CSE set of the global plan are simply Cost(U16) and

CSE(U16) respectively.

Optimization. When constructing the global optimal plan for a batch of queries, to further

reduce the plan combination space, we remove the CSEs which can not be reused in

future computation as early as possible to enhance the effectiveness of the two pruning

techniques. For example, after the evaluation ofIW1
⊲⊳ IW2

in Table5.4, the CSER0 ⊲⊳

R1 ⊲⊳ R2 can not be reused in the evaluation ofM2 ⊲⊳ IW3
and thus can be removed in

all the plans inM2. This early CSE removal optimization will help to prune moreplans

when applying the proposed two pruning techniques. For example, before applying the

optimization, neither the global plan for(U15, U21) nor the global plan for(U15, U22) can

be pruned if their costs do not meet certain criterion (as discussed in Section5.5.1) since

their CSE sets (i.e.,CSE(U21) andCSE(U22) respectively) are different. However, since

all the CSEs in{R0 ⊲⊳ R1, R2 ⊲⊳ R4, R0 ⊲⊳ R1 ⊲⊳ R2} can not be reused when computing

M2 × I3, we can remove these CSEs and the two global plans become comparable and

only the one with a smaller cost need to be maintained. To achieve this, after the first

phase, for each CSE, we maintain an inverted list of queries where each query has at lease

one interesting plan with its CSE set containing the CSE. In the second phase, each time

when we finish evaluating the expressionMi−1 ⊲⊳ IWi
, we removeQi from all the inverted

lists it appears. A CSE can be removed from the global plans ifits inverted list is empty.

5.6 Experimental Results

In this section, we present an experimental study to evaluate the efficiency of our join

enumeration algorithms in terms of query optimization time. Sections5.6.1 and5.6.2

respectively study the efficiency of our single-query and multi-query join enumeration

algorithms. All the algorithms were implemented in Java andthe experiments were per-

formed on an Intel Dual Core 2.33GHz machine with 3.2GB of RAMrunning Linux.

Generator. We generated different types of queries for our experimentsincluding chain,

cycle, star, clique as well as random acyclic and cyclic queries. The random acyclic

queries were generated using the approach in [67]. To generate random cyclic queries, we

first generated random acyclic queries and then added additional edges into the queries

109

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Table 5.5: Query generation parameters
Relation cardinality (∗106) Prob.

10-100 15%
100-1,000 30%

1,000-10,000 25%
10,000-100,000 20%

Domain size Prob.
2-10 5%

10-100 50%
100-500 35%
500-1000 15%

to form cycle. Note that all the edges were uniformly chosen to be added. The default

number of edges in a random cyclic query was(N −1)+⌈N(N−1)
2

×0.05⌉ whereN is the

number of relations in the query (i.e., the(N − 1) edges were used to generate a random

acyclic query and an additional 5 percentage of edges were added in the query to form

cycle).

Following the discussion from [56, 43, 24], for each query, we generated random relations

and added random attributes with random domain sizes using the parameters in Table5.5.

Furthermore, we generated both foreign-key join predicates as well as non-foreign-key

join predicates. For each foreign-key join predicate, its selectivity factor is estimated

such that the cardinality of the join result is equal to the cardinality of the relation with

the foreign key. For each non-foreign-key join predicate onattributesA1 andA2, its

selectivity factor is estimated using 1
max(dom(A1),dom(A2))

wheredom(Ai) (i ∈ {1, 2}) is

the domain size ofAi. The details of the query generation approach can be found in[56,

43, 24]. Each query was run five times and its average running times was reported. For

random acyclic and cyclic queries, since the running times of generated queries vary due

to the different query graphs, we report the average runningtime for 10 random generated

queries.

Cost model. To estimate the cost of multi-way joins in the MapReduce framework, we

used the cost model in [5] to estimate the communication cost of multi-way joins (i.e.,

the cost to transfer the map output from map tasks to reduce tasks) and the cost model

in Chapter4.4 to estimate the remaining cost of multi-way joins includingmap output

sorting cost, map input reading cost and so on.

5.6.1 Efficiency of Single-Query Join Enumeration Algorithm

In this section, we study the efficiency of our single query join enumeration algorithm.

Figure5.2compares our algorithm DPopt against the two baseline algorithms DPset and

DPsize for different query types as a function of number of relations in the queries. Note

110

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

Table 5.6: Improvement factor of DPopt over DPset
Query type Minimum Average Maximum

Chain 56% 110% 168%
Cycle 74% 122% 206%
Star 84% 223% 473%

Clique 6% 10% 14%
Random acyclic 67% 190% 354%
Random cyclic 28% 49% 76%

that since DPsize ran very slowly, we do not show its running times in Figure5.2 if it did

not finish running within 1 hour. We summarize the results as follows.

First, comparing the two baseline algorithms, DPset significantly outperforms DPsize by

up to two orders of magnitude. For example, when the number ofrelations in a chain query

is 22, the running times of DPset and DPsize are respectively4.3s and 1136.7s. This is

due to the large number of integer partitions generated for DPsize which results in a large

number of disjointedness checking as explained in Section5.4.1. For example, when

the number of relations in a chain query is 15, DPsize generates 668 integer partitions

which results in 17.120.334 disjointedness checking whileDPset only needs to check the

connectedness 458.073 times. Since DPsize always runs significantly slower than DPset,

we focus on our comparison for DPopt and DPset in the following.

Second, as the number of relations in the queries increases,the running times of both

DPopt and DPset increase. However, the running time of DPsetincreases much faster

than the running time of DPopt which therefore increases thewinning margin of DPopt

over DPset. For example, for star queries, the wining percentages of DPopt over DPset are

respectively 84%, 107%, 135%, 168%, 197%, 284%, 341% and 473% when the number

of relations in the query are 13, 14, 15, 16, 17, 18, 19 and 20. Table 5.6 shows the

average, minimum and maximum wining percentages of DPopt over DPset for different

query types for the experiments in Figure5.2. Note that even in the worst case for clique

queries, DPopt still outperforms DPset by 10% on average.

Third, the running time of random acyclic queries falls between the running time of chain

queries and that of star queries. This is expected since chain queries are the simplest

acyclic queries while star queries are the most complex acyclic queries in terms of time

complexity. Similarly, the running time of random cyclic queries falls between the running

time of cycle queries and that of clique queries. Again here,the reason is that cycle queries

are the simplest cyclic queries while clique queries are themost complex cyclic queries

in terms of time complexity.

111

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

 0.01

 0.1

 1

 10

 100

 1000

16 18 20 22 24 26 28 30

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of relations

DPopt
DPset

DPsize

 0.1

 1

 10

 100

 1000

16 18 20 22 24 26 28
E

xe
cu

tio
n

tim
e

(s
ec

)

Number of relations

DPopt
DPset

DPsize

(a) chain query (b) cycle query

 0.1

 1

 10

 100

 1000

13 14 15 16 17 18 19 20

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of relations

DPopt
DPset

DPsize

 0.1

 1

 10

 100

 1000

10 11 12 13 14 15

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of relations

DPopt
DPset

DPsize

(c) star query (d) clique query

 0.1

 1

 10

 100

 1000

16 17 18 19 20 21 22 23

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of relations

DPopt
DPset

DPsize

 0.01

 0.1

 1

 10

 100

 1000

13 14 15 16 17 18 19 20

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of relations

DPopt
DPset

DPsize

(e) random acyclic queries (f) random cyclic queries

Figure 5.2: Efficiency of single query join enumeration algorithms

112

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

 1

 10

 100

 1000

18 23 28 33 38

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of edges

DPopt
DPset

DPsize

Figure 5.3: Effect of number of edges

In additional to the above experiments, for random cyclic queries, we also conducted an

experiment to show the effect of number of edges in the queries. Figure5.3 shows the

running times as a function of number of edges for cyclic queries with 18 relations. As

the number of edges in the queries increases, the running times of both DPopt and DPset

increase. This is expected since for DPopt, as the number of edges in the queries increases,

it generates more partitions which requires more time to enumerate. For DPset, as the

number of edges in the queries increases, although the number of candidate partitions

remains the same, the connectedness checking for a candidate partition requires more

time since more connected subsets and query plans are storedin the hash table. However,

the running time of DPopt increases faster than the running time of DPset which therefore

decreases the winning margin of DPopt over DPset. For example, the winning percentages

of DPopt over DPset are respectively 96%, 60%, 45%, 24% and 14% when the number of

edges are 18, 23, 28, 33 and 38.

5.6.2 Efficiency of Multi-Query Join Enumeration Algorithm

In this section, we study the efficiency of our proposed multi-query join enumeration

algorithm. To generate a batch of queries, we first generatedN (the default value is 10)

relations. As discussed previously, we then generated the cardinalities for each relation

as well as the selectivity factors for each pair of relationsrepresenting a join predicate

between them. Finally, each query in a batch was generated asfollows: we first randomly

chose a subset of theN relations for the query and then generated a random acyclic query

for the chosen relations. We chose random acyclic queries since they are more common

in real life applications. For example, 20 out of the 22 TPCH queries are acyclic queries.

113

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

 0.01

 0.1

 1

 10

 100

5 10 15 20 25

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of queries

First Phase
Second Phase

 0.01

 0.1

 1

 10

 100

5 10 15 20

E
xe

cu
tio

n
tim

e
(s

ec
)

Maximum number of relations

First Phase
Second Phase

(a) Effect of number of queries (b) Effect of number of relationsN

Figure 5.4: Efficiency of multi-query join enumeration algorithm

The default number of queries in a batch is 15. For each size ofquery batch, we randomly

generated 20 batches and their average running time is reported.

Figures5.4(a) and5.4(b) respectively show the efficiency of our multi-query joinenumer-

ation algorithm as a function of number of queries and numberof relations (i.e.,N) in a

query batch. For example, whenN = 10 and the number of queries in a batch is 20, it

took only 32 seconds to optimize the queries. Note that we separately report the running

times for the two phases of our algorithm. Furthermore, the running times of the first

and second phases can dominate each other in different settings depending on amount of

sharing among the queries. Specifically, if a batch of queries have a lot of CSEs, then the

second phase will run slower than the first phase since the first phase will generate more

interesting plans which requires more time to merge in the second phase. For example,

in Figure5.4(a), the first phase took longer time to run than the second phase when the

number of queries in a batch are 5, 10 and 15. However, when thenumber of queries are

20 and 25, the second phase ran longer than the first phase. This is because the number of

CSEs becomes larger when the number of queries increases which results in more inter-

esting plans. For example, the number of interesting plans generated in the first phase are

respectively 12, 80, 149, 435 and 620 when the number of queries are 5, 10, 15, 20 and

25.

To demonstrate the effectiveness of our proposed two pruning techniques (to prune away

non-promising interesting plans), we compare against a naive solution that generates and

stitches the interesting plans without any pruning. Our experimental results show that the

naive solution consumes a lot of memory space and runs very slowly (due to the large

number of interesting plans generated in the first phase and materialized in the second

phase). For example, in the default setting, our approach consumed about 30MB Java

114

CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

heap space and took 3 seconds to run while the naive solution ran out of Java heap space9

after running 6 minutes. Thus, to enable the naive solution to finish running within the

capacity of Java heap size, we setN = 5. Note that even for this setting, the naive solution

ran out of Java heap size after running about 6 minutes when the number of queries in a

batch is no smaller than 15. Thus, we only report the running times when the number

of queries in a batch are 5 and 10. The running times of our approach are respectively

8 and 30 milliseconds when the number of queries in a batch are5 and 10 while that

for the naive solution are respectively 140 and 990 milliseconds which demonstrates that

our approach is at least one order of magnitude faster than the naive solution due to the

proposed pruning techniques. Furthermore, the number of generated interesting plans in

the first phase for our approach are respectively 12 and 36 when the number of queries in

a batch are 5 and 10 while that for the naive solution are respectively 50 and 111.

5.7 Summary

In this chapter, we have presented a comprehensive study of the OJE problem in the

MapReduce framework. We have studied both the SOJE and MOJE problems and pro-

posed efficient join enumeration algorithms for these problems. Our experimental results

demonstrate that our proposed single query join enumeration algorithm significantly out-

performs the baseline algorithms by up to 473%, and our proposed multi-query join enu-

meration algorithm is able to scale up to 25 queries where thenumber of relations in the

queries ranges from 1 to 10.

9Given the capacity of 3.2GB RAM, we set Java heap size to be 2.5GB which is also the maximum
allowed heap size for our system.

115

CHAPTER 6

CONCLUSION

In this thesis, we studied three problems using novel MQQ techniques, namely, efficien-

t processing of enumerative set-based queries, multi-query optimization in MapReduce

framework and optimal join enumeration in MapReduce framework. In this chapter, we

summarize our works and highlight some interesting works that are worthy of further

exploration.

6.1 Contributions

Our first contribution is the study of efficient evaluation techniques for enumerative set-

based queries (SQs). While enumerative SQs can be expressedusing SQL, existing re-

lational engines, unfortunately, were not able to efficiently optimize and evaluate such

queries due to their complexity as demonstrated by our experimental results. Then we

proposed a novel evaluation approach for enumerative SQs. The key idea is to first par-

tition the input table based on the different combinations of constraints satisfied by the

tuples and then compute the answer sets by appropriate combinations of the partition-

s. In this way, an enumerative SQ is evaluated as a collectionof cross-product queries

(CPQs). We presented efficient and scalable MQO heuristics to optimize the evaluation

116

CHAPTER 6. CONCLUSION

of a collection of CPQs. Our experimental results on Postgresql demonstrated that our

proposed approach significantly outperform the baseline solutions by up to three orders

of magnitude.

Our second contribution is the study of multi-query/job optimization techniques and algo-

rithms for a batch of MapReduce jobs. We first proposed two newtechniques for multi-job

optimization in the MapReduce framework. The first technique is a generalized grouping

technique (which generalizes the recently proposed MRShare technique) that merges mul-

tiple jobs into a single job thereby enabling the merged jobsto share both the scan of the

input file as well as the communication of the common map output. The second technique

is a materialization technique that enables multiple jobs to share both the scan of the input

file as well as the communication of the common map output via partial materialization

of the map output of some jobs (in the map and/or reduce phase). Then we proposed a

new optimization algorithm that given an input batch of jobs, produces an optimal plan

by a judicious partitioning of the jobs into groups and an optimal assignment of the pro-

cessing technique to each group. Our experimental results on Hadoop demonstrated that

our new approach significantly outperforms the state-of-the-art technique, MRShare, by

up to 107%.

Our third contribution is the study of the optimal join enumeration (OJE) problem and pro-

posed efficient join enumeration algorithms for the problemin the MapReduce paradigm.

We first studied the SOJE problem which serves as a foundationfor our study on the

MOJE problem. Specifically, we first studied the complexity of the SOJE problem in

the presence of multi-way joins for different query graph types (chain, cycle, type and

clique). We then proposed both bottom-up and top-down join enumeration algorithms for

the SOJE problem with an optimal complexity w.r.t. the querygraph based on a proposal

of an efficient and easy-to-implement plan enumeration algorithm. Based on the proposed

single-query join enumeration algorithm, we then presented an efficient multi-query join

enumeration algorithm. Our experimental results demonstrated the efficiency of our pro-

posed algorithms.

6.2 Future Work

In this section, we discuss some interesting future directions related to the problems ex-

amined in this thesis.

117

CHAPTER 6. CONCLUSION

Finding interesting answer sets for enumerative SQs.Since the number of answer

sets for some enumerative SQs could be very large, it is essential to help users to browse

through all the ”interesting” answer sets. Two standard criteria for ”interestingness” in

the database context are top-k [19] and skyline [11] . Thus, one interesting direction is

to examine the evaluation of top-k enumerative SQs. In particular, if the ranking function

F is a distributive monotone function as defined in Section3.7.2, then the sort-based

evaluation can be optimized as follows. In the partitioningphase, we generate partitions

that are sorted onF (t) by sorting the input relation on the composite key(pid, F (t))

wherepid is the assigned partition identifier. In the enumeration phase, we apply existing

rank join algorithms [35] to incrementally produce the ranked answer sets for each vpset

and apply the well-knownTA algorithm [19] to retrieve the top-k answer sets for all the

vpsets.

Another interesting direction is to investigate the set skyline operator in conjunction with

our work to retrieve non-dominated sets which is essentially a generalization of the tu-

ple skyline operator [11] to retrieve non-dominated tuples. To evaluate the set skyline

operator in conjunction with enumerative SQs, the most general approach is to first enu-

merate all the answer sets for enumerative SQs using our proposed approach followed

by pruning way the dominated sets. While there has been one preliminary work [71] to

integrate these two works to improve the query performance,their work is very limited by

assuming either fixed set cardinality or in-memory data which thus can not be applied for

our problem. As a result, we plan to investigate techniques to integrate these two works

to reduce the evaluation cost for both the set skyline operator as well as the enumerative

SQs.

Comprehensive optimization framework in the MapReduce paradigm. Our work on

the MOJE problem focuses on CSEs that produce the same results. However, in real life

applications, it is common to have some subexpressions whose results have overlap or

containment relationships. We denote these subexpressions as sharable subexpressions

(SSEs). To explore the sharing for both CSEs and SSEs, a simplistic solution is to apply

a two-phase approach. The first phase translates the queriesinto jobs to share the compu-

tation of the CSEs using our multi-query join enumeration algorithm. The second phase

applies our multi-job optimization techniques on the translated jobs to share the computa-

tion of the SSEs. However, this two-phase solution is suboptimal since we do not consider

the SSEs when we choose the global plan in the first phase. Thus, an interesting direction

for future work is to investigate a single phase approach to choose the global optimal plan

for a batch of queries to share the computation of both CSEs and SSEs.

118

BIBLIOGRAPHY

[1] http://musicbrainz.org/doc/musicbrainzdatabase.43

[2] http://www.aster.com/.6

[3] http://www.greenplum.com/.6

[4] http://www.linux.com/learn/tutorials/394523-configuring-postgresql-for-pretty-

good-performance.44

[5] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins ina map-reduce environ-

ment. InEDBT, pages 99–110, 2010.14, 16, 82, 110

[6] A.I.Serdyukov. An algorithm with an estimate for the traveling salesman problem

of maximum (in russian). InUpravlyaemye Sistemy, pages 80–86, 1984.36

[7] Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, and Cong Yu.

Constructing and exploring composite items. InSIGMOD, pages 843–854, 2010.3,

4, 12

[8] Daniel Berend and Tamir Tassa. Improved bounds on bell numbers and on moments

of sums of random variables.Probability and Mathematical Statistics, 30(2):185–

205, 2010.93, 94

[9] Maxim Binshtok, Ronen I. Brafman, Solomon E. Shimony, Ajay Martin, and Craig

Boutilier. Computing optimal subsets. InAAAI, pages 1231–1236, 2007.4

119

BIBLIOGRAPHY

[10] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and

Yuanyuan Tian. A comparison of join algorithms for log processing in mapreduce.

In SIGMOD, pages 975–986, 2010.16

[11] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator.

In ICDE, pages 421–430, 2001.118

[12] Upen S. Chakravarthy and Jack Minker. Multiple query processing in deductive

databases using query graphs. InVLDB, pages 384–391, 1986.2, 3, 12

[13] Fa-Chung Fred Chen and Margaret H. Dunham. Common subexpression processing

in multiple-query processing.TKDE, 10(3):493–499, 1998.12, 31

[14] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelining in

multi-query optimization.J. Comput. Syst. Sci., 66(4):728–762, 2003.1, 2, 3, 6, 7,

12, 13, 15, 16, 31, 88, 103

[15] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. InOSDI, pages 137–150, 2004.2, 10, 16

[16] David DeHaan and Frank Wm. Tompa. Optimal top-down joinenumeration. In

SIGMOD, pages 785–796, 2007.6, 7, 15, 87, 88, 89, 90, 92

[17] Marie Desjardins and Kiri L. Wagstaff. Dd-pref: A language for expressing prefer-

ences over sets. InAAAI, pages 620–626, 2005.4

[18] Iman Elghandour and Ashraf Aboulnaga. Restore: Reusing results of mapreduce

jobs. PVLDB, 5(6):586–597, 2012.2, 5, 14, 16, 56

[19] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for

middleware. InPODS, pages 102–113, 2001.118

[20] Leonidas Fegaras, Chengkai Li, and Upa Gupta. An optimization framework for

map-reduce queries. InEDBT, pages 26–37, 2012.2, 14, 55

[21] Pit Fender and Guido Moerkotte. A new, highly efficient,and easy to implement

top-down join enumeration algorithm. InICDE, pages 864–875, 2011.6, 7, 15, 87,

88, 89, 90, 92

[22] Pit Fender and Guido Moerkotte. Reassessing top-down join enumeration.TKDE,

24(10):1803–1818, 2012.6, 7, 15, 87, 88, 89, 90, 92

[23] Pit Fender and Guido Moerkotte. Top down plan generation: From theory to prac-

tice. In ICDE, pages 1105–1116, 2013.6, 7, 15, 16, 87, 88, 89, 90, 92

120

BIBLIOGRAPHY

[24] Pit Fender, Guido Moerkotte, Thomas Neumann, and Viktor Leis. Effective and

robust pruning for top-down join enumeration algorithms. In ICDE, pages 414–425,

2012.6, 7, 15, 87, 88, 89, 90, 92, 110

[25] Michael J. Franklin, Björn Thór Jónsson, and DonaldKossmann. Performance trade-

offs for client-server query processing.SIGMOD Rec., 25(2):149–160, 1996.87

[26] Alan F. Gates, Olga Natkovich, Shubham Chopra, PradeepKamath, Shravan M.

Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and

Utkarsh Srivastava. Building a high-level dataflow system on top of map-reduce:

The pig experience.PVLDB, 2(2):1414–1425, 2009.2, 5, 14, 55

[27] John Grant and Jack Minker. On optimizing the evaluation of a set of expressions.

International Journal of Parallel Programming, 11(3):179–191, 1982.2, 3, 12

[28] Anja Gruenheid, Edward Omiecinski, and Leo Mark. Queryoptimization using

column statistics in hive. InIDEAS, pages 97–105, 2011.14

[29] Sudipto Guha and Divesh Srivastava. Efficient approximation of optimization

queries under parametric aggregation constraints. InVLDB, pages 778–789, 2003.

3, 4, 12

[30] Himanshu Gupta, Bhupesh Chawda, Sumit Negi, Tanveer A.Faruquie, L. V. Subra-

maniam, and Mukesh Mohania. Processing multi-way spatial joins on map-reduce.

In EDBT, pages 113–124, 2013.14, 16

[31] P. A. V. Hall. Optimization of single expressions in a relational data base system.

IBM Journal of Research and Development, 20(3):244–257, 1976.12

[32] Herodotos Herodotou and Shivnath Babu. Profiling, what-if analysis, and cost-based

optimization of mapreduce programs.PVLDB, 4(11):1111–1122, 2011.13

[33] Herodotos Herodotou, Fei Dong, and Shivnath Babu. Mapreduce programming and

cost-based optimization? crossing this chasm with starfish. PVLDB, 4(12):1446–

1449, 2011.13

[34] Maurice A. W. Houtsma and Arun N. Swami. Set-oriented mining for association

rules in relational databases. InICDE, pages 25–33, 1995.22, 23

[35] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman.A survey of top-k

query processing techniques in relational database systems. ACM Comput. Surv.,

40(4):11:1–11:58, 2008.118

121

BIBLIOGRAPHY

[36] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and

Andrew Goldberg. Quincy: Fair scheduling for distributed computing clusters. In

Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Princi-

ples, pages 261–276, 2009.11

[37] Eaman Jahani, Michael J. Cafarella, and Christopher R´e. Automatic optimization

for mapreduce programs.PVLDB, 4(6):385–396, 2011.13

[38] Jeffrey Jestes, Ke Yi, and Feifei Li. Building wavelet histograms on large data in

mapreduce.PVLDB, 5(2):109–120, 2011.56

[39] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Findinga team of experts in social

networks. InKDD, pages 467–476, 2009.3, 4, 12

[40] Harold Lim, Herodotos Herodotou, and Shivnath Babu. Stubby: A transformation-

based optimizer for mapreduce workflows.PVLDB, 5(11):1196–1207, 2012.2, 3,

5, 14, 15, 16, 56

[41] Guido Moerkotte. Analysis of two existing and one new dynamic programming

algorithm for the generation of optimal bushy join trees without cross products. In

VLDB, pages 930–941, 2006.6, 7, 15, 87, 88, 89, 90, 92, 95, 96, 98, 99, 100, 102

[42] Guido Moerkotte and Thomas Neumann. Dynamic programming strikes back. In

SIGMOD, pages 539–552, 2008.6, 7, 15, 16, 87, 88, 89, 90, 92

[43] Thomas Neumann. Query simplification: Graceful degradation for join-order opti-

mization. InSIGMOD, pages 403–414, 2009.110

[44] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick

Koudas. Mrshare: Sharing across multiple queries in mapreduce. PVLDB, 3(1-

2):494–505, 2010.1, 2, 3, 5, 14, 16, 54, 55, 56, 57, 79

[45] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce. In

SIGMOD, pages 949–960, 2011.14, 16

[46] Christopher Olston, Benjamin Reed, Adam Silberstein,and Utkarsh Srivastava. Au-

tomatic optimization of parallel dataflow programs. InATC, pages 267–273, 2008.

2, 14

[47] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. Pig latin: A not-so-foreign language for data processing. InSIGMOD,

pages 1099–1110, 2008.2, 5, 14, 55

122

BIBLIOGRAPHY

[48] Kiyoshi Ono and Guy M. Lohman. Measuring the complexityof join enumeration

in query optimization. InVLDB, pages 314–325, 1990.6, 7, 15, 87, 88, 89, 93

[49] Jooseok Park and Arie Segev. Using common subexpressions to optimize multiple

queries. InICDE, pages 311–319, 1988.2, 3, 12, 16, 31

[50] Sriram Pemmaraju and Steven Skiena.Computational Discrete Mathematics: Com-

binatorics and Graph Theory with Mathematica. Cambridge University Press, 2003.

93, 94

[51] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible

algorithms for multi query optimization.SIGMOD Rec., 29(2):249–260, 2000.1, 2,

3, 6, 7, 12, 13, 15, 16, 31, 88, 103

[52] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin,R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. InSIGMOD,

pages 23–34, 1979.15, 92, 95, 99

[53] Timos K. Sellis. Global query optimization. InSIGMOD, pages 191–205, 1986.12

[54] Timos K. Sellis. Multiple-query optimization.TODS, 13(1):23–52, 1988.1, 2, 3,

12, 16, 31

[55] Yingjie Shi, Xiaofeng Meng, Fusheng Wang, and Yantao Gan. Hedc: a histogram

estimator for data in the cloud. InCloudDb, pages 51–58, 2012.56

[56] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and random-

ized optimization for the join ordering problem.The VLDB Journal, 6(3):191–208,

1997.110

[57] Kian-Lee Tan and Hongjun Lu. Workload scheduling for multiple query processing.

Inf. Process. Lett., 55(5):251–257, 1995.12, 19, 31

[58] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive - a ware-

housing solution over a map-reduce framework.PVLDB, 2(2):1626–1629, 2009.2,

5, 14, 55

[59] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning

Zhang, Suresh Antony, and Hao Liu. Hive-a petabyte scale data warehouse using

hadoop. InICDE, pages 996–1005, 2010.2, 5, 6, 14, 55

123

BIBLIOGRAPHY

[60] Quoc Trung Tran, Chee-Yong Chan, and Guoping Wang. Evaluation of set-based

queries with aggregation constraints. InCIKM, pages 1495–1504, 2011.3, 4, 12

[61] Tolga Urhan and Michael J. Franklin. Xjoin: A reactively-scheduled pipelined join

operator.IEEE Data Eng. Bull, 23(2):27–33, 2000.39

[62] Bennet Vance and David Maier. Rapid bushy join-order optimization with cartesian

products. InSIGMOD, pages 35–46, 1996.15, 95, 96, 98, 99, 100

[63] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins

using mapreduce. InSIGMOD, pages 495–506, 2010.14

[64] Stratis D. Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output

rate of multi-way join queries over streaming information sources. InVLDB, pages

285–296, 2003.39

[65] Guoping Wang and Chee Yong Chan. Multi-query optimization in mapreduce frame-

work. PVLDB, 7(3):145–156, 2013.8

[66] Tom White.Hadoop: The Definitive Guide. O’Reilly Media, 2009.81

[67] David Bruce Wilson. Generating random spanning trees more quickly than the cover

time. InSTOC, pages 296–303, 1996.109

[68] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query optimization for

massively parallel data processing. InSOCC, pages 12:1–12:13, 2011.14, 16, 56,

82

[69] Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Composite recommendations:

from items to packages.Frontiers of computer science, 6(3):264–277, 2012.3, 4,

12

[70] Min Xie, Laks V.S. Lakshmanan, and Peter T. Wood. Breaking out of the box of

recommendations: from items to packages. InRecSys, pages 151–158, 2010.3, 4,

12

[71] Xi Zhang and J. Chomicki. Preference queries over sets.In ICDE, pages 1019–1030,

2011.4, 12, 118

[72] Xiaofei Zhang, Lei Chen, and Min Wang. Efficient multi-way theta-join processing

using mapreduce.PVLDB, 5(11):1184–1195, 2012.14, 16

124

BIBLIOGRAPHY

[73] Yihong Zhao, Prasad M. Deshpande, Jeffrey F. Naughton,and Amit Shukla. Simul-

taneous optimization and evaluation of multiple dimensional queries. InSIGMOD,

pages 271–282, 1998.2, 3, 12, 19, 31

[74] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, and Wolfgang Lehner.

Efficient exploitation of similar subexpressions for queryprocessing. InSIGMOD,

pages 533–544, 2007.1, 2, 3, 6, 7, 12, 13, 15, 16, 31, 88, 103

[75] Antoine Zoghbi and Ivan Stojmenovic. Fast algorithms for generating integer parti-

tions. International Journal of Computer Mathematics, 70(2):319–332, 1998.96

125

	Declaration
	Acknowledgement
	Summary
	Introduction
	Multiple Query Optimization
	Research Problems
	Efficient Processing of Enumerative Set-based Queries
	Multi-Query Optimization in MapReduce Framework
	Optimal Join Enumeration in MapReduce Framework

	Thesis Contributions
	Thesis Organization

	Related Work
	Preliminaries on MapReduce
	Efficient Processing of Enumerative Set-based Queries
	Multi-Query Optimization in MapReduce Framework
	Optimal Join Enumeration in MapReduce Framework

	Efficient Processing of Enumerative Set-based Queries
	Overview
	Set-based Queries
	Preliminaries
	Baseline Solution using SQL
	Baseline Solution
	Detail Illustration of Baseline Solution

	Basic Approach
	Handling Large Data
	Phase 1: Partitioning Phase
	Phase 2: Enumeration Phase
	Progressive Approaches

	Extensions and Optimizations
	Evaluation of SQs
	Optimizations of SQ Evaluation

	Performance Study
	Results for BSQs on Synthetic Datasets
	Results for BSQs on Real Dataset
	Results for SQs on Synthetic Datasets
	Results for SQs on Real Dataset

	Summary

	Multi-Query Optimization in MapReduce Framework
	Overview
	Assumptions & Notations
	Multi-job Optimization Techniques
	Grouping Technique
	Generalized Grouping Technique
	Materialization Techniques
	Discussions

	Cost Model
	A Cost Model for MapReduce
	Costs for the Proposed Techniques

	Optimization Algorithms
	Map Output Key Ordering Algorithm
	Partitioning Algorithm

	Experimental Results
	Performance Comparison
	Effectiveness of Key Ordering Algorithm
	Optimization vs Evaluation time

	Summary

	Optimal Join Enumeration in MapReduce Framework
	Overview
	Preliminaries
	Notations
	Assumptions

	Complexity of SOJE Problem
	Single-Query Join Enumeration Algorithm
	Baseline Join Enumeration Algorithms
	Plan Enumeration Algorithm
	Bottom-up and Top-down Enumerations

	Multi-Query Join Enumeration Algorithm
	First Phase
	Second Phase

	Experimental Results
	Efficiency of Single-Query Join Enumeration Algorithm
	Efficiency of Multi-Query Join Enumeration Algorithm

	Summary

	Conclusion
	Contributions
	Future Work

	Bibliography

