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SUMMARY

Many applications often involve complex multiple querielsieh share a lot of common
subexpressions (CSEs). Identifying and exploiting the £&Eimprove query perfor-
mance is essential in these applications. Multiple quetyropation (MQO), which aims
to identify and exploit the CSEs among queries in order toicedhe overall query eval-
uation cost, has been extensively studied for over two decadd demonstrated to be an
effective technique in both RDBMS and MapReduce contextexisting works. In this
thesis, we study the following three novel MQO problems.

First, we study the problem of efficient processing of enwaties set-based queries (SQs)
in RDBMS. Enumerative SQs aim to find all the sets of entiti@at@rest to meet certain
constraints. In this work, we present a novel approach ttuat@ enumerative SQs as
a collection of cross-product queries (CPQs) and propdsgesit and scalable MQO
heuristics to optimize the evaluation of a collection of GP@ur experimental results
demonstrate that our proposed approach is significantle refficient than conventional
RDBMS methods. To the best of our knowledge, that is the fimkwhat addresses the
efficient evaluation of a collection of CPQs.

Second, we study multi-query/job optimization technigaed algorithms in the MapRe-
duce framework. In this work, we first propose two new mudti-pptimization techniques
to share map input scan and map output in the MapReduce garadiVe then propose
a new optimization algorithm that, given an input batch digoproduces an optimal
plan by a judicious partitioning of the jobs into groups ando@atimal assignment of the
processing technique to each group. Our experimentaltsesnlHadoop demonstrate

viii



CONTENTS

the efficiency and effectiveness of our proposed technigondsalgorithms by comparing
with the state-of-the-art techniques and algorithms.

Finally, we examine the optimal join enumeration (OJE) ol which is a fundamental
query optimization task for SQL-like queries, in the MapRegl framework. In this work,
we study both the single-query and multi-query OJE problantspropose efficient join
enumeration algorithms for these problems. The study oihgle-query OJE problem
serves as a foundation for the study on the multi-query OdBlpm. Our experimental
results demonstrate the efficiency of our proposed join emation algorithms. To the
best of our knowledge, this work presents the first systensatidy of the OJE problem
in the MapReduce paradigm.
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CHAPTER 1

INTRODUCTION

In this chapter, we first present some background on multjpkry optimization. We
then state the research problems and contributions oftteEd. Finally, we discuss the
organization of this thesis.

1.1 Multiple Query Optimization

Many applications often involve complex multiple querieBigh share many common
subexpressions (CSE)4, 51, 14, 74, 44]. In the presence of multiple queries, either
produced by complex applications or batched by some sydikedatabase and MapRe-
duce systems, a simplistic solution to answer these querigsevaluate them one by
one, ignoring the CSEs among them. However, this solutisal®ptimal since the CSEs
are redundantly evaluated. An optimal solution should be tbevaluate the CSEs once
and reuse the results of the CSEs for subsequent querieptovienthe overall query
performance. Since complex multiple queries usually takeng time to evaluate due
to the inherent complexity of the queries, there could besiiarable performance sav-
ing by sharing the computation of the CSEs among the quefiss result, identifying
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and exploiting the CSEs to improve the query performancessmtial in these complex
multi-query applications.

To share the computation of the CSEs among multiple quaxiggll known technique

is multiple query optimization (MQO). MQO, which aims to mdy the CSEs among
queries and exploit them to reduce the query evaluation bastbeen extensively studied
for over two decades. MQO is originally proposed in the RDBbifaitext and existing
works [12, 27, 54, 49, 51, 73, 14, 74] in the RDBMS context have already shown that
substantial performance saving can be obtained by appM@Q@ techniques. For exam-
ple, the experimental results frorm4] indicate that their proposed MQO techniques can
outperform the simplistic solution by up to 3 times.

In addition to the MQO techniques in the RDBMS context, theme also some prelimi-
nary studies46, 44, 40] on the MQO techniques in the MapReduce context. The MapRe-
duce framework, proposed by Googled], has recently emerged as a new paradigm for
large-scale data analysis and been widely embraced by Am&umogle, Facebook, Ya-
hoo!, and many other companies. There are two key reasorits fpopular adoption.
First, the framework can scale to thousands of commodityhmas in a fault-tolerant
manner and thus is able to use more machines to supportglarathputing. Second,
the framework has a simple yet expressive programming ntbdaligh which users can
parallelize their programs without being concerned abssues like fault-tolerance and
execution strategy.

To simplify the expression of MapReduce programs, some-laghl languages, such
as Hive b8, 59|, Pig [47, 26] and MRQL [20], have recently been proposed for the
MapReduce framework. The declarative property of thesguages also opens up new
opportunities for automatic optimization in the framew®4id, 18, 40]. Since different
queries/jobs often perform similar work, there are manyoopmities to exploit the shared
processing among the queries/jobs to optimize performafiseoted and demonstrated
by several works46, 44], it is useful to apply the MQO techniques to optimize the-pro
cessing of multiple queries/jobs by avoiding redundant matation in the MapReduce
framework.

In summary, existing works have already shown that MQO tegles can significantly
improve query/job performance in the contexts of both RDBAMhWE MapReduce frame-
work. In this thesis, we study three novel MQO problems (am&RDBMS context
and two in MapReduce context), namely, efficient processingnumerative set-based
gueries, multi-query optimization in MapReduce framewarkl optimal join enumera-
tion in MapReduce framework, and present novel MQO tectesdar these problems.

2



CHAPTER 1. INTRODUCTION

While MQO techniquesl2, 27, 54, 49, 51, 73, 14, 74] have been extensively studied in
the RDBMS context, they mainly focus on optimizing a handfuBQL (join) queries.
Our MQO problem in the RDBMS context is different from thesarks since we focus on
optimizing a large collection (hundreds or thousands) ogsiproduct queries produced
by the applications of enumerative set-based querieshé&umiore, existing MQO tech-
niques f4, 40] in the MapReduce framework are very limited and do not fekyloit the
sharing opportunities among multiple queries/jobs. Tlous,two MQO problems in the
MapReduce context present a more comprehensive study of M@miques to further
exploit the sharing opportunities among multiple quejadss. In the following section,
we describe the three MQO problems.

1.2 Research Problems

In this thesis, we study three novel MQO problems, namefigieft processing of enu-
merative set-based queries, multi-query optimization apMeduce framework and opti-
mal join enumeration in MapReduce framework.

1.2.1 Efficient Processing of Enumerative Set-based Quese

Many applications, such as online shopping and recommeyydegms, often require find-
ing sets of entities of interest that meet certain conssdtD, 39, 60, 29, 7, 70]. Such
set-based queries (SQs) can be broadly classified into tpastyptimization SQshat
involve some optimization constraint amthumerative SQthat do not have any opti-
mization constraint. For example, consider a relaRgi,type,city,price,duration,rating)
shown in Tablel.1 that stores information about various places of intere®iYPvhere
typerefers to the category of the POI (e.g., museum, pailgationrefers to the recom-
mended duration to spend at the POI aatthg refers to the average visitors’ rating of the
POI. Suppose that a tourist is interested to find all toustnpar Shanghai consisting of
POls that meet the following constraints: the trip mustude both Shanghai (S.H.) and
Suzhou (S.Z.) cities, the trip must include POls of type mmas@and park, and the total
duration of the trip should be between 6 and 10 hours. Theranar packages that satisfy
the above query{t, t,} and{t,,ts,t3}. The above is an example of an enumerative SQ
to find all sets of POls that satisfy the given constraintshéf query had an additional
constraint to minimize the total cost of the tour packageoitild become an optimization

SQ.
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Table 1.1: An example relatioR
| id | type | city [ price | duration]| rating |

t1 | museum| S.H.| 50 4 7
to park S.Z.| 70 3 5
ts3 | museum| H.Z. | 60 3 8
ty | shopping| S.H.| 80 5 7

As another example, suppose that an employer is lookingéatieam of language trans-
lators for a project that meet the following constraintreeam member must know En-
glish; the team collectively must be knowledgeable in FreiiRussian, and Spanish; the
team consists of at least two translators; and the total npsalary of the team is no more
than$50K . Consider a relatiofiranslator(id,location,salary,english,french,russjspan-
ish) that stores information about language translators adaifr hire, where the four
binary valued attributesnglish french russian andspannishndicate whether a transla-
tor is knowledgeable in the specific languadesationrepresents the translator’s living
place, andsalary represents the translator’s expected monthly salary. dwde through
all the possible teams for hiring, the employer executesniamerative SQ on thérans-
lator relation.

Another application of enumerative SQs is in the area ofsfepence queried[, 9, 71],
which computes all sets of entities of interest that sassiyie preference function. Con-
sider again our example on hiring translators. In additmnhe previously discussed
constraints, the employer could prefer to hire a team whayehe team members are
located close to one another and (b) their total salary is [dhws, this set preference
query is essentially a skyline set-query to retrieve nomidated teams where the mem-
bers have close proximity and low total salary. The most gdrepproach to evaluate
skyline set-queries is to first enumerate all the candideit® fellowed by pruning away
the dominated sets. Although there has been recent workegrate these two steps]],
such optimization is applicable only for restricted caseg.( when the sets are of fixed
cardinality and the preference function satisfies certeap@rties); and is not applicable
for queries such as our example query. Therefore, efficiguatrithms to evaluate enu-
merative SQs are essential for the efficient processingtqfreerence queries.

There has been much research on evaluating optimizationv@@ee the focus is on
heuristic techniques to compute approximately optimahoomplete query results (e.qg.,
[29, 7, 60, 70, 69, 71, 39]). However, to the best of our knowledge, there has not been
any prior work on the evaluation of enumerative SQs. Enutiver&Qs are essentially a
generalization of conventional selection queries to eéeé&ria collection of sets of tuples
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(instead of a collection of tuples), and they represent thetrfundamental fragment of
set-based queries.

In this thesis, we address the problem of evaluating enuiver8Qs using RDBMS.
We present a novel approach to evaluate an enumerative SQalteetion of cross-
product queries (CPQs). However, applying existing mldtquery optimization (MQO)
techniques for this evaluation problem is not effectivetiwo reasons. First, the scale
of the problem could be very large involving hundreds of CR@lwations. Existing
MQO heuristics, which are mainly designed for optimizingaadiful of queries, are not
scalable for our problem. Second, as the queries here ares Gi1@ not join queries),
existing MQO techniques, which are based on materializimg) r@using the results of
common subexpressions, is not effective as the cost of rmbation exceeds the cost of
recomputation. Thus, in this work, we study specialized Mi@Qristics to optimize the
evaluation of a collection of CPQs.

1.2.2 Multi-Query Optimization in MapReduce Framework

The MapReduce framework has recently emerged as a poweafallgd computation
paradigm for large scale data analysis. The declarativegpty of the recently proposed
high-level languages for the framework, such as H&®& b9 and Pig 7, 26€], opens
up new opportunities for automatic optimization in the feamork [44, 18, 40]. Since
different jobs (specified or translated from some highdlexesry languages) often per-
form similar work (e.g., jobs scanning the same input file mdpicing some shared map
output), there are many opportunities to exploit the sharedessing among the jobs to
optimize performance.

The state-of-the-art work in this direction is MRShadd][ which proposed two sharing
techniques for a batch of jobs. Theare map input scatechnique aims to share the scan
of the input file among jobs, while tlehare map outpuechnique aims to reduce the com-
munication cost for map output tuples by generating only oy of each shared map
output tuple. The key idea behind MRShare igrauping techniquéo merge multiple
jobs that can benefit from the sharing opportunities intanglsijob.

While MRShare’s grouping technique is able to share maptispan and map output
for certain jobs, it has not fully exploited the sharing oppaities (i.e., share map input
scan and map output techniques) among multiple jobs. Fangbea consider the two
MapReduce jobs that are expressed in SQL queries over #teorel’(a, b, ¢) as follows:

5
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J1: selecta, sum(c)rom T wherea < 10group by a
Jo: selecta, b, sum(cfrom T wherea>5group by a, b

MRShare’s grouping technique can only share map input smathé two jobs since it
considers that the two jobs produce totally different mafpouthat cannot be shared.
However, the map output of;, for 5 < ¢ < 10 indeed can be reused to derive the partial
map output of/;. Thus, MRShare’s grouping technique is very limited in exjohg the
sharing opportunities among multiple jobs.

In this thesis, we present a more comprehensive study ofi-oudiry/job optimization
technigues to share map input scan and map output and algsrio choose an evaluation
plan for a batch of jobs in the MapReduce context.

1.2.3 Optimal Join Enumeration in MapReduce Framework

The MapReduce framework has been widely adopted by modeanpeises, such as
Facebook $9], Greenplum 8] and Aster P], to process complex analytical queries on
large data warehouse systems due to its high scalabiligrgiained fault tolerance and
easy programming model for large-scale data analysis. ive long execution times
for such complex queries, it makes sense to spend more timgtitnize such queries to
reduce the overall query processing time.

In this thesis, we examine the optimal join enumeration (Qatgblem, which is a fun-
damental query optimization task for SQL-like queries,he MapReduce framework.
Specifically, we study both the single-query and multi-gu@dE (denoted as SOJE and
MOJE respectively) problems where the study of the SOJH@noberves as a foundation
for our study on the MOJE problem.

While the OJE problem has attracted much recent attentitimeiconventional RDBMS
context @48, 41, 42, 16, 21, 24, 22, 23, 51, 14, 74], the solutions developed there are
not applicable to the MapReduce context due to the differgme the query evaluation
framework and algorithms.

There are two major differences between the OJE problem ipRéduce and that in
RDBMS. First, both binary and multi-way joins are impleneshin MapReduce while on-
ly binary joins are implemented in RDBMS. Specifically, giejoin query, RDBMS will
evaluate it as a sequence of binary joins while MapRedudewvdluate it as a sequence of

6
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binary or multi-way joins. As a result, the SOJE problem ingRaduce has a larger join
enumeration space than that in RDBMS due to presence of-maitijoins. While there
has been much recent works in the RDBMS context on the stuttheafomplexity {8] of
the SOJE problem and its join enumeration algorithiis 42, 16, 21, 24, 22, 23], to the
best of our knowledge, there has not been any prior work osttiay of these problems
in the presence of multi-way joins in the MapReduce context.

Second, intermediate results in MapReduce are always ialéted instead of being
pipelined/materialized as in RDBMS which simplifies the MEOdroblem in MapRe-
duce in two ways. First, the MOJE problem in RDBMS may incuadieck due to the
pipelining framework 14] while that in MapReduce does not have the deadlock problem
due to the materialization framework. Second, materiajzand reusing the results of
the CSEs in RDBMS may incur additional materialization aedding cost due to the
pipelining framework. However, since intermediate resale always materialized in the
MapReduce framework, there is no additional overhead reduwith the materialization
technigue in MapReduce. Although the MOJE problem in RDBMS heen shown to
be a very hard problem with a search space that is doubly expiahin the size of the
queries b1, 14, 74], due to the simplification in MapReduce, we are able to psepef-
ficient join enumeration algorithms for the MOJE problem impReduce based on our
comprehensive study of the SOJE problem.

To the best of our knowledge, our work presents the first syatie study of the OJE
problem in the MapReduce paradigm and proposes efficiamgjoimeration algorithms
for the problem.

1.3 Thesis Contributions

In this thesis, we make the following contributions.

Efficient processing of enumerative set-based queriedn this work, we first present
a baseline-SQL solution to evaluate enumerative SQs. \dmilenerative SQs can be
expressed using SQL, our experimental results on Postdrei8@onstrate that existing
relational engines, unfortunately, are not able to effityeaptimize and evaluate such
queries due to their complexity.

We then propose a novel two-phase evaluation approach fonertive SQs. In the
first phase, we partition the input table based on the difftezembinations of constraints

7
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satisfied by the tuples. In the second phase, we compute fheeassets by appropriate
combinations of the partitions which essentially are aemibn of cross-product queries
(CPQs). To efficiently evaluate a collection of CPQs, we pegpnovel MQO techniques
which works for both in-memory and large disk-based data.

Finally, we implemented our approach on PostgreSQL 8.4d4anducted a comprehen-
sive experimental study to show the efficiency of our appno&uwur experimental results
demonstrate that our proposed approach is significantle refficient than conventional
RDBMS methods by up to three orders of magnitude.

Multi-query optimization in MapReduce framework. In this work, we first present
two new multi-job optimization techniques. The first teadue is ageneralized grouping
technique (GGTdhat relaxes MRShare’s requirement for sharing map oufhé.second
technique is anaterialization technique (MThat partially materializes the map output of
jobs (in the map and/or reduce phase) which provides anattegnative means for jobs
to share both map input scan and map output.

We then propose a novel two-phase optimization algorithichtwzose an evaluation plan
for a batch of jobs. In the first phase, we choose the map olgufor each job to
maximize the sharing. In the second phase, we partition élbehbof jobs into multiple
groups and choose the processing technique for each gromiimize the evaluation
cost.

Finally, we conducted a comprehensive performance evaluat the multi-job optimiza-
tion techniques using Hadoop. Our experimental resultsvghat our proposed tech-
niques are scalable for a large number of queries and significoutperform MRShare’s
techniques by up to 107%.

This work has been published in VLDB 20124.

Optimal join enumeration in MapReduce framework. In this work, we first present a
comprehensive study of the SOJE problem which serves aswddtion for our study on
the MOJE problem. Specifically, we first study the complegitthe SOJE problem in the
MapReduce framework in the presence of multi-way joins f@ig, cycle, star and clique
queries. We then propose both bottom-up and top-down jaimenation algorithms for
the SOJE problem with an optimal complexity w.r.t. the qugnrgph based on a proposal
of an efficient and easy-to-implement plan enumerationrélgo.
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We then propose an efficient multi-query join enumeratigoathm for the MOJE prob-

lem. The main idea is to first apply the single-query join ertation algorithm for each
query to generate all the interesting plans and then stitehrtteresting plans for the
gueries into a global optimal plan. A query plan is interggtif it is either the optimal

plan or produces some output that can be reused for otheleguer

Finally, we conducted a comprehensive experimental stodigtmonstrate the efficiency
of our proposed algorithms. Our experimental results siatvdur proposed single query
join enumeration algorithm significantly outperforms theseéline algorithms by up to
473%, and our proposed multi-query join enumeration algoriis able to scale up to 25
queries where the number of relations in the queries ramgas I to 10.

1.4 Thesis Organization

The rest of the thesis is structured as follows.

e Chapter2 presents a comprehensive literature review of the thredgmes that we
have studied.

e Chapter3 studies the evaluation problem for enumerative SQs andogespeffi-
cient evaluation techniques for enumerative SQs.

e Chapterd studies the multi-query/job optimization problem and egs efficient
and effective multi-job optimization techniques and aitjons in the MapReduce
framework.

e Chapter5 studies the OJE problem and proposes efficient join enurogratgo-
rithms for the problem in the MapReduce context.

e Chapter6 concludes our thesis and points out some directions fordutiork.




CHAPTER 2

RELATED WORK

In this chapter, we present a comprehensive literatureewewf studies related to the
three works we have done. Accordingly, this review is clegiin terms of the three
works we have done. Specifically, Sectidrl presents the background of MapReduce
framework. Sectior.2 presents the related work of our work on efficient processing
of enumerative set-based queries. Secl@presents the related work of our work on
multi-query optimization in MapReduce framework. Secttofhpresents the related work
of our work on optimal join enumeration in MapReduce framekwo

2.1 Preliminaries on MapReduce

MapReduce, proposed by Google], has emerged as a new paradigm for parallel com-
putation due to its high scalability, fine-grained faultei@ince and easy programming
model. Since its emergence, it has been widely embracedtbypeises to process com-
plex large-scale data analysis such as online analyticalgsising, data mining and ma-
chine learning.

10
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MapReduce adopts a master/slave architecture where armastie manages and moni-
tors map/reduce tasks and slave nodesocess map/reduce tasks assigned by the master
node, and uses a distributed file system (DFS) to manage phéamd output files. The
input files are partitioned into fix-sized splits when they first loaded into the DFS. Each
split is processed by a map task and thus the number of map fiask job is equal to

the number of its input splits. Therefore, the number of naegls for a job is determined

by the input file size and split size. However, the number diice tasks for a job is a
configurable parameter.

A job is specified by a pair of map and reduce functions, andxésution consists of a

map phase and a reduce phase. In the map phase, each mapstgs&rées its corre-

sponding input split into a set of input key-value pairs. i iteapplies the map function

on each input key-value pair and produces a set of interrteedley-value pairs which

are sorted and partitioned intopartitions, where- is the number of configured reduce
tasks. Note that both the sorting and partitioning funciare customizable. An optional
combine function can be applied on the intermediate mapubutpreduce its size and
hence the communication cost to transfer the map outputetoettiucers. In the reduce
phase, each reduce task first gets its corresponding maptqagitions from the map

tasks and merges them. Then for each key, the reducer agigiesduce function on the
values associated with that key and outputs a set of final/k&ye pairs.

MapReduce uses job schedulers to manage all submittedTblesdefault job scheduler
in Hadoop? is FIFO which maintains a job queue for all submitted jobsading to their
submission times and priorities. FIFO allows a job to takehad slots within the cluster
and picks the first pending job for execution when there aadable slots or a job releases
its slots. Other alternative schedulers include Yaho@[sacity scheduler and Facebook’s
fair scheduler36]. The main idea of these schedulers is to maintain multigbequeues
for submitted jobs (one for each user or each organizatiod)edlocate certain resources
for each queue. The main advantage of these schedulers lipwojabs belonging to
different users or organizations to be concurrently exattuAmong all the schedulers,
FIFO has been shown to have the minimum batch response 3itheahd thus is used as
the job scheduler for our experiments in Chagter

1Each slave node has fixed number of map/reduce slots whidoafigurable parameters
2We use Hadoop’s scheduler as a representative of MapReduediding mechanisms

11
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2.2 Efficient Processing of Enumerative Set-based Queries

To the best of our knowledge, this is the first work that ads#eshe problem of efficient
evaluation of enumerative set-based queries. We preseovel approach to evaluate
enumerative set-based queries as a collection of crossgirqderies (CPQs) and propose
novel MQO techniques to optimize the evaluation of a coitecof CPQs. As a result,
there are two main areas related to this work: set-basedegu@Qs) and multi-query
optimization (MQO). In the following, we separately dissisem and position our work.

Set-based queriesSet-based queries aim to find sets of entities of interesett oertain
constraints. There are several works on evaluation ofastdbqueries: OPAC queries for
business optimization problem&9], composite items construction in online shopping
applications 7], composite recommendation in recommender systé&®sp], team for-
mation in social networks3p)], set-based preference queri@d][and set-based queries
with aggregation constraint§(]. However, the focus of all these works is on optimiza-
tion SQs whereas our focus is on enumerative SQs. Morea/arpat of these works deal
with NP-hard optimization problems, their algorithms aresthy approximate or produce
incomplete solutions; in contrast, our algorithm is examt aomplete. Finally, our work
is focused on optimizing query evaluation at the databaggerevel, whereas these
works is focused on middleware-level solution with mostlgimmemory resident data.

Multi-query optimization (MQO). MQO aims to find evaluation plans that share com-
putation of common subexpressions (CSESs) for a batch ofepidviost of existing work-

s [31, 27, 13,12, 53, 49, 51, 54, 57, 74] focus on materializing and reusing the results of
CSEs. The works in49, 54] describe exhaustive search algorithms and heuristickear
pruning techniques to find a global optimal query plan by dgag all the plan space.
However, the exhaustive search of the plan space incurspitymization overhead which
make these works impractical. To reduce the high optimopatost, the works inq1, 74]
propose several cost-based greedy heuristics to find algioleay plan. However, all
these works are not useful for our context since materraizind reusing the results of
CPQs is extremely costly. Thus, our approach for evalud@iBQs does not employ the
materialization technique; instead, we evaluate them pglpiing the results of CSEs to
CPQs.

There are several work$4, 73] that exploit pipelining for MQO. The work in/3] consid-
ers specialized MQO techniques to pipeline the results @&<Isr OLAP queries. Their
work addresses star join queries where all the dimensidagare assumed to be main-
memory resident (i.e., only the fact table is disk-basedantrast, our MQO techniques

12
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are proposed for general CPQs without any strong assumaktiont the main-memaory
residency of the relations.

The work in [L4] addresses the MQO problem with pipelining and follows a-phase
optimization strategy which is different from our proposew-phase approach. The first
phase uses existing techniques (such5ds T4]) to generate a global plan for a set of
gueries which is represented as a plan-DAG. All the CSEsddmatbenefit from materi-
alization are captured by the plan-DAG. The second phasenizgts the plan-DAG by
pipelining the results of some CSEs in the plan-DAG. Thudy ¢ime results of CSEs
that can benefit from materialization are considered foelping. This simplification
is restrictive since the results of a CSE could be pipelimeidnprove performance even
if materializing and reusing the results of that CSE doesim@trove performance. S-
ince our work does not materialize the results of any CSEsr thork is not applicable
for our context. Furthermore, their work assumes that tpeljied relations/results are
not buffered whereas our work focus on efficiently optimigthe buffer allocation for

pipelining.

2.3 Multi-Query Optimization in MapReduce Framework

This work presents a more comprehensive study of multiygjodr optimization tech-
niques and algorithms in MapReduce framework. We broadlgsily its related work
into three categories: job optimization, query optimiaatand multi-query optimization.
In the following, we separately discussed them and posdiorwork.

Job optimization. There are several work87, 32, 33] on optimizing general MapReduce
jobs that are expressed as programs. The worRihgroposes a system to automatically
analyse, optimize and execute MapReduce programs. It vimyrkisst analysing the pro-
grams to detect optimization opportunities, then applyiredetected optimizations such
as index selection and data compression to the programsraaily #xecuting the opti-
mized programs. The work ir8, 33] discusses the optimization opportunities presented
by the large space of MapReduce configuration parametehsagioumber of map and
reduce tasks, and proposes a cost-based optimizer to ct@dsest configuration param-
eters for MapReduce programs. It works by first collectirg phofiles through dynamic
instrumentation and then estimating the cost through dldétset of analytical models
using the collected profiles. Different from these works rettbe emphasis is on optimiz-
ing single MapReduce program, our work focuses on optirginmultiple jobs specified

13
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in or translated from some high-level query language suatikie sharing among the jobs
can easily be detected.

Query optimization. The proposal of high-level declarative query languageM@apRe-
duce such as HivésB, 59|, Pig [47, 26] and MRQL [20], opens up new opportunities for
guery optimization in the framework. As a result, there hasrbsome recent works on
query optimization in MapReduce framework similar to quepgimization in RDBMS.
These works include optimization strategies for Rig][ multi-way join optimization in
MapReduce}, 72, 30], optimization techniques for HivesB, 28], algebraic optimization
for MRQL [20], theta join processing in MapReducé&r], set similarity join processing
in MapReduce §3], and query optimization using materialized result§]] All these
works focus on query optimization techniques for a singlerguin contrast, our work
focuses on optimizing multiple jobs specified in or trarsteirom some high-level query
language.

The work in [L8] presents a system ReStore to optimize query evaluatiowgusaterial-
ized results. Given a space budget for storing materiatieedlts, ReStore uses heuristics
to both decide whether to materialize the complete map ameldice output of each job
being processed as well as choose which previously maredatesults to be evicted if
the space budget is exceeded. Our work differs from ReStobeth the problem focus
and the developed techniques. The results materializediby/@’ technique for a given
job could be the partial map output of another job; in cortirBReStore materializes the
complete output of the job being processed. Moreover, vasetiee materialized output
produced by ReStore might not be reused at all due to the wrkgaery workload, this
is not the case for our context as the query workload is knawchaur techniques only
materialize output that will be reused.

Multi-Query optimization. There are several works on multi-query optimizatidd, [
40]. The work that is the most closely related to ours is MRSHa# Compared with
MRShare, our work is more comprehensive with additionailnojzation techniques (i.e.,
GGT and MT) which leads to a more complex optimization prob(e.g., the ordering of
the map output key of each job becomes important) and a nosebased, two-phase ap-
proach to find optimal evaluation plans. In MRShare, an ifyaiich of jobs is partitioned
based on the following heuristic: the jobs are first sorteldn-descending order of their
map output size, and a dynamic-programming based algorghused to find an optimal
partitioning of the ordered jobs into disjoint consecutiveups. Thus, an optimal job par-
titioning where the jobs in a group are not consecutivelyeoed would not be produced
by MRShare’s heuristic. Note that our partitioning heucigtvith a time-complexity of
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O(n?)) does not have this drawback and is more efficient than MRShaartitioning
heuristic O(n?) time-complexity).

The work in 0] proposes a transformation-based optimizer for MapReaarkflows
(translated from queries). The work considers two key opttion techniques: vertical
(horizontal, resp.) packing techniques aim to optimizesjaith (without resp.) producer-
consumer relationships; the horizontal packing techrégue based on MRShare’s group-
ing technique. In contrast, our work does not specificallysider MapReduce workflow
jobs that have explicit producer-consumer relationsthperefore, their proposed vertical
packing techniques are not applicable for our work.

2.4 Optimal Join Enumeration in MapReduce Framework

This work studies the optimal join enumeration (OJE) probie MapReduce framework.
While the OJE problem has attracted much recent attentitimeiconventional RDBMS
context (48, 41, 42, 16, 21, 24, 22, 23, 51, 14, 74], the solutions developed there are
not applicable to the MapReduce context due to the differgme the query evaluation
framework and algorithms as discussed in Sectigh3 In this work, we study both the
single-query and multi-query OJE (denoted as SOJE and M@skiectively) problems
as well as their join enumeration algorithms in the MapRedumntext. As a result, we
broadly classify and discuss its related work in terms of S@Jd MOJE.

SOJE. The SOJE problem is a fundamental query optimization taskBOMS. A well
known join enumeration algorithm for the SOJE problem isaigit programming which

is divided into two categories, i.e., bottom-up enumerafe?, 41] and top-down enu-
meration [L6, 21, 24, 22]. Both approaches have to consider the same enumeration s-
pace and neither of them is strictly better than the othere Whrk in [48] shows that
the (optimal) complexity of the SOJE problem depends on theryggraph and analy-
ses the (optimal) complexity for chain, cycle, star andwiqqueries in RDBMS. The
work in [4]] first shows that the complexity of existing two state-oé-tart dynamic pro-
gramming algorithms2, 62] in RDBMS are far from optimal w.r.t. the query graph,
and proposes bottom-up dynamic programming algorithmis ait optimal complexity.
Note that our proposed baseline join enumeration algostimMapReduce are adapted
from the two state-of-the-art algorithnsZ, 62] in RDBMS and thus have a non-optimal
time complexity. In addition to the bottom-up dynamic pragming algorithms, these
works in [16, 21, 24, 22] propose top-down dynamic programming algorithms with an
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optimal complexity. However, all these dynamic programgrahgorithms with an opti-
mal complexity are restricted to binary joins and thus areapplicable in the presence
of multi-way joins in the MapReduce context. In addition e tabove works, there are
also several worksi, 23] on join enumeration algorithms for queries with more coexpl
join predicates such a8,.a = R,.b + Rj3.c (i.e., their query graphs are hypergraphs). In
our work, we do not consider these complex join predicatedeawve them as part of our
future work.

The MapReduce frameworK | has recently been widely used to process complex an-
alytical queries on large data warehouse systems. As a,rgatbus MapReduce ver-
sions of algorithms have been proposed for database opelatg., join and aggrega-
tion) [10, 5, 45, 72, 30]. In particular, these works irb[ 72, 30] study efficient multi-way
join algorithms in MapReduce. Their experimental resutiisvg that the performance of
multi-way joins and that of a sequence of binary joins camperform each other in dif-
ferent settings which thus increases the join enumerapanesfor the SOJE problem in
MapReduce. To the best of our knowledge, our work is the firstady the SOJE prob-
lem in the MapReduce context. The most related work is a malpaf a greedy heuristic

to find a good join order in MapReduceq].

MOJE. The MOJE problem aims to find global optimal evaluation pldreg share C-
SEs and has been shown to be a very hard problem with a seach 8t is doubly
exponential in the size of the queriési] 49, 51, 14, 74] in RDBMS. This is due to the
pipelining/materialization framework in RDBMS which cofigates its MOJE problem
as discussed in Sectidn2.3 As MapReduce always materializes intermediate results,
the MOJE problem in MapReduce becomes simpler which presenan opportunity to
design an efficient and optimal multi-query join enumenaggdgorithm. Note that there
are also some early works in RDBMS4, 49 that propose optimal join enumeration
algorithms for the MOJE problem using only materializatiblowever, they simply con-
sider all the plans for each query and stitch them into a ¢glopaamal plan which has
been demonstrated to be an impractical appro&&h74]. Our work proposes effective
pruning techniques to prune away non-promising plans earty thus reduce the plan
combination space for the MOJE problem.

In addition to the above works, there are also several wdrRs44, 40] including our
work on multi-query optimization in MapReduce frameworkagtimizing multiple job-
s specified in or translated from some high-level SQL-quanglage. Our work are
orthogonal with these works since our work focuses on ogtimgithe translation from
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gueries into jobs (i.e., finding an optimal join plan) whitese works focus on optimizing
the translated jobs.

17



CHAPTER 3

EFFICIENT PROCESSING OF
ENUMERATIVE SET-BASED QUERIES

3.1 Overview

In this chapter, we study efficient evaluation techniquesguRDBMS for enumerative
SQs which aim to find a collection of tuples sets that satisfyain constraints. To the best
of our knowledge, there has not been any prior work on theuati@n of enumerative SQs.
For convenience, we refer to enumerative SQs as simply S@e irest of this chapter.

While SQs can be expressed using SQL, existing relatiormahen, unfortunately, are not
able to efficiently optimize and evaluate such queries dubes complexity involving
multiple self joins and/or view expressions. In this chapte propose a novel evaluation
approach for SQs which works for both in-memory and largsk-thased data. The key
idea is to first partition the input relation based on thesdldht combinations of constraints
satisfied by the tuples and then compute the answer sets bypajgte combinations of
the partitions. In this way, a SQ is evaluated as a colleatiboross-product queries
(CPQs). However, applying existing MQO techniques for #hialuation problem is not
effective for two reasons. First, the scale of the problemdde very large involving
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hundreds of CPQ evaluations. Existing MQO heuristics, Whaie mainly designed for
optimizing a handful of queries, are not scalable for oubjgm. Second, as the queries
here are CPQs (and not join queries), existing MQO techsiquiich are based on mate-
rializing and reusing the results of the CSEs, are not e¥feets the cost of materialization
exceeds the cost of recomputation.

Thus, in this chapter, we propose specialized MQO techsitueptimize the evaluation
of a large collection of CPQs. To copy with the high optimiaatcost, we adapt a well-
known two phase approacfid, 57]. The first phase generates local optimal plans for
each CPQ by specifying an ordering of the partitions in th@CPhe second phase uses
a trie structure to capture all the CSEs of the CPQs. In this mar MQO heuristics are
able to scale to a large number of CPQs. We further optimizewaiuation approach by
exploiting the properties of set predicates in the SQs. Weahstrate the effectiveness of
our approach with a comprehensive experimental evaluatidhostgreSQL which shows
that our approach outperforms the conventional SQL-basiedien by up to three orders
of magnitude.

The rest of this chapter is organized as follows. In Seci@we formally introduce set-
based queries (SQs) and a fragment of SQs referred to as3@si(BSQs). Sectiod.3
presents some preliminaries. Sect®d presents a baseline SQL-based solution to eval-
uate SQs. SectioB.5 presents our main-memory based approach to evaluate B8@s, a
Section3.6 extends the approach to evaluate BSQs on disk-based da&ection3.7,

we extend our approach to evaluate general SQs beyond BSf80r83.8 presents an
experimental performance evaluation of the proposed tqabs, and we conclude this
chapter in Sectio.9.

3.2 Set-based Queries

In the simplest form, aet-based query (S@) is defined by an input relatioR, which
represents a collection of entities of interest, and antisptiof predicate$ on R. The
query’s result is a collection of all the subsets®fsuch that each subset satisfies the
predicates inP.

For convenience, we introduce an extended SQL syntax tesg@BQs more explicitly.
The example SQ in Sectidn2.1can be expressed by the following extended SQL query.
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Qert: SELECT *
FROM SET(R) S
WHERE v; inS AND v, in S
AND v3iNS AND v4in S
AND vp.city = S.H. AND wy.City = S.Z.
AND vs.type = museum ANDuv,.type = park
AND 6 < SUM(S.durationx 10

The “SET(R) S” in the from-clause specifiésas aset variablevhose value is a subset of
tuples in relation?. Each of the predicates of the form;‘in S” specifies); as amember
variable representing a member of the set variableNote that the values of member
variables are not necessarily distinct. Each of the nextgoedicates specifies a constraint
on an individual member; and the last predicate specifieggregation constraint on the
set. The output schema of this query consists of all thebates in relation? and an
additional, implicit integer attribute namedd that represents the identifier for an answer
set. The values ofid are generated automatically by the database system. Thites
(sid,id) form the key of the output schema whetks the key of input relatiork. Thus,
each answer set to the query is represented by a collectiontpfit tuples having the
samesid value. Table3.1shows the output of the example $Q,; on the input relation
Rin Tablel.lin Sectionl.2.1

Table 3.1: Output of the example SQ
| sid | id | type | city | price | duration]| rating |
1 |t | museum| S.H.| 50 4 7
1 |t park S.Z.| 70
2 | t; | museum| S.H.| 50
2 |ty park S.Z.| 70
2 | t3 | museum| H.Z. | 60

3 5
4 7
3 5
3 8

As the values of member variables are not necessarily distime maximum cardinality
of an answer set is bounded either implicitly by the numbemember variables in the
query (as shown by the example query) or explicitly by a aamston the set’s cardinality
(e.g., “COUNT(S)< 3.

There are two types of selection predicates in a S@heinber predicatepecifies a con-
straint on exactly one member variable (e.gy.City = S.H.”). A set predicatespeci-
fies a constraint on a set variable or more than one membel@riexamples include
“SUM(S.duration)< 10” and “v; .price +vs.price< 100"
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Given a set predicage it is classified aanti-monoton& whenever a se$ does not satisfy

p, then any superset of also does not satisfy; it is classified asnonotonef whenever

a setS satisfiesp, then any superset ¢f also satisfiep. In our example SQ)..:, the
predicate “SUM(S.duratiorx 10” is an anti-monotone set predicate, while the predicate
“SUM(S.duration)> 6” is a monotone set predicate. An example of a set predibate t
is neither monotone nor anti-monotone is “AVG(S.prieep0”. Note that set predicates
can also involve other SQL constructs suclgasupby-clauseand having-clausevhich

we omit in this chapter.

Since the number of qualifying answer sets could be venelfmg some SQs, there are
two natural ways to limit the size of the query result. Thetfagproach is to retrieve
only some fixed number of say k result sets either using a Lfaiise to retrieve ank
sets or via a ranking function to retrieve the top-k sets. S¢mnd approach is to retrieve
only minimal setghat satisfy the query’s predicates. A seis defined to be minimal
if no proper non-empty subset 6falso satisfies the predicates ih For example, the
answer sef{ty,l,t3} for the example S@)..; is not minimal since its subsdt;, ¢, }
also satisfies the query’s predicates. Minimal answer setsnéeresting as they could
save the budgets (e.g., money and time) for users whilggsidliantee the satisfaction of
the query’s predicates. They are also of interest on their asvthey serve as a concise
representation of all the answer sets (i.e., any supersetrohimal answer set is also an
answer set) if all the set predicates in the query are moeotbine minimal set constraint
can be expressed in our extended SQL syntax by replacing(FES” by “MINSET(R)

S” to indicate thatS is aminimal set variable

To simplify the presentation of evaluation algorithms fdsS we introduce a special
fragment of SQs callethasic SQs A SQ ( is defined to be a basic SQ (BSQ)
retrieves only minimal sets and all the set predicate® iare anti-monotone. Note that
fora BSQ, if a tuple ink does not satisfy any member predicate, then it will not cbate
to any answer set and can simply be removed flém

We should emphasize that the focus of this chapter is notedekign of SQL extensions
but on efficient query evaluation. The above example is meaillustrate how the se-

mantics of SQs can be expressed more explicitly and easitg s®@me SQL extensions
instead of using conventional SQL, which we will discuss étt®n3.4.
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3.3 Preliminaries

In this chapter, we consider a SQdefined over a relatio®, where there are member
variables inQ). Thus, the maximum cardinality of the answer sets(jas n.

LetV = {vy,---,v,} denote the set of member variablesi)n The predicate$’ in @
can be partitioned inta + 1 subsetsp,, Py, - - -, P,, where eacltP;, i € [1,n], denote the
set of member predicates dnthat involves the member variablg and i, denote the set
of set predicates ify.

In this chapter, we refer to a stas ak-setto mean that the cardinality ¢f is k. Thus,
each answer set f@p is ani-set, where € [1, n].

Example 3.1: In our example SQ)..:, there are four member variables (i.e;, v,,
vs andwv,). Therefore, the predicates can be partitioned into fivesstsh Py = {6 <
SUM (S.duration) < 10}, P, = {vy.city = S.H.}, P, = {vqe.city = S.Z.}, P; =
{vs.type = museum} and Py = {vy.type = park}. O

3.4 Baseline Solution using SQL

In this section, we first outline a baseline approach to etal$Qs using conventional
SQL in Sectior3.4.1 We then illustrate the baseline solution using our exarBR})....;
in Section3.4.2by showing the detail SQL queries.

3.4.1 Baseline Solution

In this approach, answer sets are generated iteratively,answeri-sets are computed
before answefi + 1)-sets, which is similar to the Apriori-style of using SQL tonspute
frequent itemsets3d]. Let C; denote the collection of candidate ansvirsets that satisfy
all the anti-monotone set predicatesiy andA; C C; denote the collection of answer
i-sets. Eaclt; /A, is represented by a relation/view where each tupl&;jfi; represents

a subset of tuples fromR. EachC;, i > 2, is computed using a self-join @f; and each
A; is derived fromC;. In this approach, the answer sets for a SQ are given by rtaultip
output tables4,, - - - , A,,, where each tuple in each; presents an answesset for().
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Al AZ
F ] ome ] iy | durnin

t;,  museum S.H. 4 t, park SZ. 3
Q,: Select * from C, Q,: Select * from C,
where duration >= 6 where durationl + duration 2 >= 6
andl city = S.H. and city = S.Z. and (cityl = S.H. or[city2 = S.H) and (cityl = S.Z. or city 2 =S.Z.)
angl type = museum and type = park and (typel = museun or type2 = museum)

and (typel = park o1l type2 = park) C,

1
m
t;  museum S.H. 4 t, e | SJEL 4 iy park S.Z. 3
b park S.Z. 3 t,  museum S.H. 4 t;  museum H.Z 3
t;  museum H.Z. 3 t, museum S.H. 4 t, shopping S.Z. 5
t, shopping SH. 5 S [ Y KN A (N IR S
Qy: Select * from R t;  museum H.Z. 3 t,  shopping S.H. 5

where duration <= 10
Q;: Select * from C, Cy; C; C),

where C,,.id <C,,.id and C,,.duration + C,,.duration <= 10

Figure 3.1: lllustration of the first two iterations of thesedine SQL-based solution

In the first iteration(; is the subset of tuples iR that satisfy all the anti-monotone set
predicates inf,. A, is the subset of tuples i@, that satisfy all the predicates . In
thes!” iteration,i > 1, C; is computed by a self join af;_, to ensure two requirements.
First, C; does not contain duplicate candidate answsets. Second, each tuple if;
satisfies all the anti-monotone set predicatesjn A; is derived fromC; by appropriate
selection predicates to ensure that each tuplé;imust satisfy all the predicates @.
Thus, this approach is implemented as a sequence of SQLequehiere the number of
gueries is a linear function of.

Example 3.2: Figure3.1 illustrates the first two iterations of the baseline apphofar
evaluating our example SQ.,; on the input relation? in Table 1.1 (more details are
shown in Sectior8.4.2. To avoid clutter, the non-relevant attributes (i.erjce and
rating) are omitted from the figure. In the first iteratiof; is computed byQ; on R

to ensure that each tuple @ (representing a candidate answer 1-set) satisfies all the
anti-monotone set predicates. The answer 1-sets are givén fvhich is computed by
Q2 onC1; A; is empty since there is no answer 1-set for this SQ. In thenskiteration,

(5 is computed byYs with a self-join onC; and A, is computed fromC; using@,. Ob-
serve thatd, contains one answer 2-sgf;, ¢, }. Since the answer sets for this query has
a maximum cardinality of four, this process continues far additional iterations to find
answer 3- and 4-sets (details not shown). O

Following the same principle to avoid duplicates®4]] the self-join ofC;_; to compute’; has(i — 2)
equi-join predicates requiring that two matching tuple€’jn; (representing twd: — 1)-sets) havei — 2)
identical tuples.
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Minimal set constraint. If the query requires only minimal answer sets, then the abov
approach still works with the following two extensions.g§jito generaté’; (representing
candidate answersets), the self join is performed ary_; \ A; ; instead ofC;_; as all
the supersets of answgr— 1)-sets in4;_; are not minimal. Second, for each tupledn

in addition to satisfying all the predicatesdy it must also represent a minimal set. To
verify the minimality of a candidate answesetS € C;, all the subsets of have to be
examined to ensure that they do not satisfy all the prediéatge. However, if P, contains
only anti-monotone and monotone set predicates, then omlyeds with a cardinality of

(1 — 1) need to be examined.

Alternative SQL-based approach for BSQs. For BSQs, there is an alternative SQL-
based approach that generates all the answer sets in asuiglé table with arity equal

to the maximum cardinality of the answer sets givembyrhis approach consists of two
main steps. The first step generates all the candidate asstgen a relation/view/ by
computing the cartesian productotiews My, - - -, M,,, where each\/; is the set of tu-
ples inR that satisfie$’;. Note that)/ may contain multiple tuples that represent the same
candidate answer set since each tupl&imay appear in multiplé/;’s. Therefore, we
need to remove the duplicate candidate answer sets ftorithe second step computes
the answer sets by eliminating those candidate answerrséfsthat are duplicates, do
not satisfyP,, or are not minimal. The details of this approach are give®dntion3.4.2

It is important to note that this alternative approach isagmtlicable for evaluating SQs
since a tuple fromR can contribute to an answer set even if it does not appearyidan
(1 <4 < n). For evaluating BSQs, our experimental results show thaatternative
approach is significantly outperformed by the first discdssgproach. The main reason
is due to the complex SQL queries used to remove duplicateandninimal candidate
answer sets in the second step. Given its limited applityalaihd poor performance, we
will not consider the alternative approach any further is tthapter.

3.4.2 Detall lllustration of Baseline Solution

In this section, we illustrate the baseline solution forlesting SQs using our example
SQQ..: and BSQs using the BSQ,., that is derived from the SQ..; by removing its
non-anti-monotone set predicate (.80 M (S.duration) > 6).

Baseline solution to evaluate the S@..;. Figure3.2shows the SQL queries to evaluate
our example S@Q)..;. To simplify the predicates as well as the minimality chegkiwe
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create view C;(id,duration,pl,p2,p3,p4) as select id, duration,
case city = S.H. then 1 else 0 as p1, case city = S.Z. then | else 0 as p2,
case type = museum then 1 else 0 as p3, case type = park then 1 else 0 as p4 from R where duration <= 10

create view A, as select * from C,; where pl =1 and p2 =1 and p3 =1 and p4 = 1 and duration >= 6

create view C,(id1,durationl,pl1,p12,p13,p14,id2,duration2,p21,p22,p23,p24)
as select * from C, C,,, C; C, where C,,.id < Cj,.id and C,,.duration + C12.duration <= 10

create view A, as select * from C,
where pl1 +p21>0andpl2+p22>0andpl3+p23>0andpl4+p24 >0 and durationl + duration 2 >= 6

create view C;(id1,durationl,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24, id3,duration3,p31,p32,p33,p34) as
select C21.*, C221d2* from Cz C21, Cz sz
where C,;.id]l = C»,.id1 and C,;.id2 < C»,.id2 and C,;.duration] + C,;.duration2 + Cy,.duration2 <= 10

create view Aj; as select * from C; where pl1 +p21 +p31 >0 and pl2 +p22 +p32>0 and
p13 +p23 +p33>0 and pl4 + p24 + p34 >0 and durationl + duration 2 + duration3 >= 6

create viewCy(id1,durationl,pl1,p12,p13,p14,id2,duration2,p21,p22,p23,p24,id3,duration3,p31,p32,p33,p34,
id4,duration4,p41,p42,p43,p44) as select C;1.*, Cs,.id3* from C; Cj, C; C5; where C;,.id1 = C;;.id1 and
C31.i1d2 = C3,.id2 and Cj3;.id3 < Cs,.id3 and Cs;.durationl + Cs;.duration2 + Cs;.duration3 + Cs,.duration3 <= 10

create view A, as select * from C4 where pl1 + p21 +p31 +p41 >0 and pl2 +p22 +p32 + p42 >0 and
pl3 +p23 +p33 +p43>0and pl4 +p24 +p34 +p44 >0 and durationl + duration 2 + duration3 + duration4 >= 6

Figure 3.2: SQL queries to evaluate our example(®Q

create(; to represent the information of POIs that satisfy the ardirotone set predicate
(i.e., SUM(S.duration) < 10). Each tuple inC; represents the information for a POI.
Each of the four binary valued attributes(1 < i < 4) indicates whether a POI satisfies
P;, where a value of 1 indicates that the POI satisfledNote that in Figure3.2, to sim-
plify the expression of SQL queries, in the select-cladses represents that we retrieve
all the attributes irC; andC;.jx represents that we retrieve all the attributes fromjthe
tuple inC;.

Baseline solution to evaluate the BS@),.,.. Recall that there are two SQL-based ap-
proaches to evaluate BSQs. Figd.8 shows the SQL queries to evaluate the BSQ,
that generate answer sets in multiple output tables. InrEigL8, we useB; to denote
C; \ A;. Note that for BSQ(;.; is derived fromB; instead ofC;. In the view A3, the
first four conditions ensure that each answer setjrsatisfies all the predicates (.,
and the remaining conditions ensure that each answer gkti;mmminimal, i.e., for each
member in the answer set, there must exist séing < i < 4) that is satisfied by only
this member in the answer set.

Figure3.4 shows the SQL queries to evaluate the BGQ, that generate all the answer
sets in a single output table whose arity is equal to the mamirardinality of the answer
sets given byn. To avoid clutter, we only keep the key attribute In this approach,
since a tuple may satisfy multiple member predicates, thesaple may appear multiple
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create view C,(id,duration,p1,p2,p3,p4) as select id, duration, case city = S.H. then | else O as p1,
case city = S.Z. then 1 else 0 as p2, case type = museum then 1 else 0 as p3,
case type = park then 1 else 0 as p4 from R where duration <= 10 and pl +p2+p3 +p4>0

create view A, as select * from C, wherepl =1l andp2=1andp3=1andp4 =1
create view B, as select * from C, except select * from A,

create view C,(id1,durationl,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24) as
select * from B B}, B; Bj; where B,;.id < Bj,.id and (B,;.duration + B,,.duration) <= 10

create view A, as select * from C, where pl11 +p21 >0 and p12 +p22>0and p13 +p23>0 and pl4+p24>0
create view B, as select * from C, except select * from A,

create view Cs(id1,durationl,pl1,p12,p13,p14,,id2,duration2,p21,p22,p23,p24, id3,duration3,p31,p32,p33,p34) as
select Bz].*, B221d2* from B2 B21, B2 BZZ
where B;;.idl = B,,.id1 and B,;.id2 < B,,.1d2 and (B,;.durationl + B,;.duration2 + B,,.duration2 ) <= 10

create view A; as select * from C; where pl1 +p21 +p31>0and pl2 +p22+p32>0and pl3+p23 +p33>0
and pl4 +p24 +p34>0and ((pl1=1and p2l +p31=0)or (pl2=1andp22+p32=0)or (pl3=1and

p23 +p33=0)or (pl4=1and p24 +p34=0))and ((p21 =1and pl1+p31=0)or (p22=1and p12+p32=0)
or (p23=1and p13 +p33=0)or (p24=1and pl4 +p34=0))and ((p31=1andpll +p21=0)or
(p32=1andpl2+p22=0)or (p33=1and pl3 +p23=0)or (p34=1and pl4 +p24 =0))

create view B; as select * from C; except select * from A;

create view Cy(id1,durationl,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24,d3,duration3,p31,p32,p33,p34,
id4,duration4,p41,p42,p43,p44) as select B;,.*, B3, id3* from B; B3, B; B3, where B;,.idl = Bs,.id1 and
Bj;.1d2 = Bj3,.1d2 and Bj;.id3 < B5;.1d3 and (B;;.duration] + Bjj.duration2 + Bj;.duration3 +Bj;.duration3 ) <= 10

create view A, as select * from C,where pl1 +p21 +p31 +p41 =1 and
pl2+p22+p32+pd42=1and pl3 +p23+p33+pd3=1and pld+p24 +p34+pdd=1

Figure 3.3: SQL queries to evaluate the B&Q, that generate results in multiple output
tables

times (under different columns) within a row in the resultléarepresenting an answer
set. Therefore, this approach uses SQL's case statemecit®t whether a candidate
answer set satisfies a set predicate. All the tuples in tlve ¥esatisfy allP; (0 < i < 4).
The viewM’ removes the answer setsif that are not minimal. In the view!’, the first
four conditions ensure that all the members in the m2 tugeantained in the m1 tuple,
and the remaining four conditions ensure that at least omabaefrom the m1 tuple is
different from the m2 tuple which guarantees that the m2etigola proper subset of the
m1 tuple. The view)/” removes duplicates ifd” and stores the answer sets.

3.5 Basic Approach

To simplify the presentation of evaluation algorithms f@¥sS we first present the evalua-
tion of BSQs in this section assuming that all the data anat&tres can be stored in main
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create view M as (id1, id2, id3, id4)

select R1.id, R2.id, R3.id, R4.id from R R1, R R2, R R3, R R4

where R1.city = S.H. and R2.city =S.Z. and R3.type = museum and R4.type = park

and (R1.duration + case (R2.id = R1.id) then O else R2.duration + case (R3.id =R1.id
or R3.id =R2.id) then O else R3.duration + case (R4.id =R1.id or R4.id = R2.id
or R4.id = R3.id) then 0 else R4.duration) <= 10

create view M’ as select * from M m1 where Not Exists

select * from M m2 where

(m2.id1 =ml.id1 or m2.id1 = m1.id2 or m2.id1 = m1.id3 or m2.id1 = m1.id4) and
(m2.id2 =m1l.id1 or m2.id2 = m1.id2 or m2.id2 = m1.id3 or m2.id2 = m1.id4) and
(m2.id3 = ml.id1 or m2.id3 = m1.id2 or m2.id3 = m1.id3 or m2.id3 = m1.id4) and
(m2.id4 = ml.id1 or m2.id4 = m1.id2 or m2.id4 = m1.id3 or m2.id4 = m1.id4) and (
(ml.id1 # m2.id1 and m1.id1 # m2.id2 and m1.id1 # m2.id3 and m1.id1 # m2.id4) or
(m1.id2 # m2.id1 and m1.id2 # m2.id2 and m1.id2 # m2.id3 and m1.id2 # m2.id4) or
(m1.id3 # m2.id1 and m1.id3 # m2.id2 and m1.id3 # m2.id3 and m1.id3 # m2.id4) or
(m1.id4 # m2.id1 and m1.id4 # m2.id2 and m1.id4 # m2.id3 and m1.id4 # m2.id4) )

create view M’ as select * from M’ m1 where Not Exist

select * from M’ m2 where

(m2.id1 =ml.id1 or m2.id1 = m1.id2 or m2.id1 = m1.id3 or m2.idl1 = m1.id4) and
(m2.id2 =ml.idl or m2.id2 = m1.id2 or m2.id2 = m1.id3 or m2.id2 = m1.id4) and
(m2.id3 = m1.id1 or m2.id3 = m1.id2 or m2.id3 = m1.id3 or m2.id3 = m1.id4) and
(m2.id4 = ml.id1 or m2.id4 = m1.id2 or m2.id4 = m1.id3 or m2.id4 = m1.id4) and
(m2.id1 # m1.id1 or m2.id2 # m1.id2 or m2.id3 # m1.id3 or m2.id4 # m1.id4) and (
(m2.id1 <m1.id1) or (m2.id1 = m1.id1 and m2.id2 <m1.id2) or

(m2.id1 =m1l.id1 and m2.id2 = m1.id2 and m2.id3 <m1.id3) or

(m2.id1 =ml.id1 and m2.id2 = m1.id2 and m2.id3 = m1.id3 and m2.id4 < ml.id4))

Figure 3.4: SQL queries to evaluate the B&Q, that generate results in a single output
table

memory, and then describe the extensions to handle largernek data in Sectio3.6.
We extend our techniques for (general) SQs in Se@ia@n

Recall that a BSQ@) retrieves only minimal sets and all the set predicate9 imre anti-
monotone. Our proposed approach evaluates a B3Qtwo phases. In the first phase,
a sequential scan dt is performed to partitior? into s disjoint subsetsRy,, - - -, Ry,

s € [1,2"], where eacli/; C V is a subset of member variables@h and Ry, C R
represents the tuples that satisfy all the member predidate, | J
with the member variables ivi.

o ev; Tj) associated

There are two partitions ak, namely, Ry and Ry, that are not materialized during the
partitioning phase&. The partitionR?; contains tuples ink that do not satisfy any’,

(1 <i<n)in@. ForaBSQQ, none of the tuples ik, will contribute to an answer
set. Therefore, the partitioR is not materialized during the partitioning. At the other

2For SQs, bothR, and Ry have to be materialized as discussed in Se@idri
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extreme, each tuple iR, satisfies allP; (1 < i < n) in Q; therefore, each tuple iRy
forms an answer 1-set if it also satisfies If a tuple in Ry does not satisfy?, it will

not contribute to any answer set for a BSQ and can be ignorede 8ach tuple iy
can be either directly output as an answer set or ignoredettugles will not contribute
to additional answer sets; thus, this partition is also natemalized during partitioning.
The partitions materialized in the first phase will be usethamsecond phase to generate
further answer sets.

In the second phase, the remaining answer sets are genbyatednbining tuples from
appropriate partitions such that the combined set of tupledifies as an answer set; i.e.,
the set of tuples is a minimal set of tuples that satisfieshallquery’s predicates. Each
such combination of partitions is then evaluated as a goosgtict query (CPQ); thus, the
remaining answer sets are computed as a union of CPQs. Tcegatenthese answer sets,
we first need to characterize the appropriate combinatibpartition sets.

Consider a set of partitiods = { Ry, - - - , Ry, }. We definelU to be avalid partition set
(or vpset)if U satisfies the following two properties: (PLl)RVi v Vi = Vi and (P2) no
proper subset of/ satisfies P1. Property 1 ensures that a candidate answgifeehed
by selecting one member from each partitiorUirwill satisfy all the member predicates
in @, while property 2 ensures thatis minimal.

For convenience, we refer to a vpset that isset as &-vpset. We us&” PSet to denote
the collection of all vpsets.

Thus, ifU = {Ry,, -, Ry, } is ak-vpset, then &-setS = {t,,-- -, tx}, wheret; € Ry,

i € [1, k], is an answer set fap if S satisfiesF,. Therefore, the remaining answer sets
for ) is computed by evaluating a collection of CPQs, where eadd iSRssociated with

a vpset.

Our overall approach evaluatésbased on the following expression:

on(RvU | (X Ry)
U;eVPSet R;i€U;

op,(Ry) is evaluated in the first phase whitg, (U, ¢ pge.( X n.cp. [ty) is evaluated in

the second phase. The cross-product expression repres@m® corresponding to the
vpsetl;, the union expression enumerates all the vgsatsd the final selection operator

3The union operator is used only to combine the results antbrediminate duplicates as the generated
results are all unique.

28



CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

selects the minimal sets that satisfy all the set predidajes

Example 3.3: Consider the evaluation of the BS(),., that is derived from our example
SQ Q..+ by removing its non-anti-monotone set predicate (b€ M (S.duration) > 6).

In the first phaseR is partitioned into four partitionsRy,, .1 = {t1}, Riey = {t2}
R,y = {ts}, andRy,,y = {t4}. In the second phase, two vpset& ., v}, Riv,v,} } @nd
{R{}, Rpvsys Rive00) | @re enumerated which generate two candidate answetsets;
and{t., t3,t,}. Among them, only{t,, ¢} satisfies the anti-monotone set predicate (i.e.,
SUM (S.duration) < 10) and forms an answer set. O

In the following, we elaborate on the details of the secorasphnamely, how to efficient-
ly enumerate vpsets and evaluate the corresponding CPQs.

Enumeration of vpsets.Given the partitions of: created in the first phase, the collection
of all vpsetsl/ PSet is efficiently enumerated based on the following theorem.

Theorem 3.1.1f U is a k-vpset, then it satisfies the following three properties: Kar
eachRy, € U, the cardinality ofl; is at most» — k + 1; (2) There must exist a partition
Ry, € U such that the cardinality of/; is at least[7]; (3) For any pair of distinct
partitions Ry, and Ry, in U, V; £ V; andV; V.

Proof. We prove each of the three properties by contradiction.

Suppose the first property is false; i.e., there exists atjpartk,, € U such that the
cardinality ofV; is greater tham — k£ + 1. It follows thatU is not a vpset since it does
not satisfy the second property of a vpset (il€is not minimal). The reason for this is
as follows. To ensure thaf is minimal, for anyRy, € U, V; should contain at least one
member variable that other partitions do not contain. Stheecardinality ofV is greater
thann — k + 1, the remaining number of member variables is fewer thanl which can
not ensure that the remainig- 1 partitions inU \ Ry, have at least one member variable
that other partitions do not contain. Thus, we have a coittiad.

Suppose the second property is false; i.e., for@nye U, the cardinality of/; is less than
[#1. It follows thatU is not a vpset since the number of member variablégin ., V;
is less tham which contradicts the first property.

Suppose the third property is false; i.e., there exists mgdaistinct partitionsR,, and
Ry, in U such thal; C V. It follows thatU is not ak-vpset since the subsgt\ Ry, can

also satisfy all the member predicates which contradies#tond property. O
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Based on the theorem, we enumerate all the vpsets by corgpghgncartesian product
of n sets (with the above three properties enabled to prune ties@n product space)
where each set i§Ry,, - - -, Ry, } representing the set of all generated partitions in the
partitioning phase. Thus, the time complexity to enumesgdit¢the vpsets i89(2"2n2)
where0(2”2) is the time complexity to compute the cartesian product toegate all
the candidate vpsets ari?{n?) is the time complexity to determine a candidate vpset is
indeed a vpset. As the valueis not expected to be large for BSQs, it is very fast to
enumerate all the vpsets by exploiting the above three piepe

Example 3.4: Continue with Exampl8.3. Here we haven = 4. From the first property,
partition Ry, .3 will not form a 4-vpset since the cardinality of the partitis 2. From
the second property, for a 2-vpset, at least one partitionlstsatisfy twoP; (1 < i < 4),
otherwise the 2-vpset can not satisfy&ll(1 < i < 4). From the third property, partitions
Ryv, 05y @nd Ry, Will not appear in the same vpset since one is a subset of kise. o

Evaluation of CPQs.Each CPQ is evaluated usingraulti-way nested-loop cross-product
(MNLCP) approach, which is a generalization of the well\kmndoinary nested-loop join
algorithm. For convenience, we use the notafig,, - - - , Ry, ) to refer to a CPQ)’ that

is overk partitions{ Ry, - - - , Ry, } as well as the ordering of the partitions in a MNL-
CP evaluation of)’ where Ry, and Ry, are, respectively, the outermost and innermost
relations of the MNLCP evaluation.

With the MNLCP evaluation, foraCPQ’ = (Ry,, - - - , Ry, ), eachresulttuplg; . . - - -
,tr) of ' (where each tuple, € Ry;) is constructed progressively as a sequence of par-
tial result tuples:(¢,), (¢1,t2), - -+, and finally (¢, to, - - - , ). To optimize the MNLCP
evaluation, for each partial result tugle= (¢1,t,--- ,¢;) (1 < j < k), we check whether

t satisfies each anti-monotone set predigaie F,. If ¢ does not satisfy, then this im-
plies that none of the partial result tuples extended frowill satisfy p; therefore, the
MNLCP evaluation involving can be immediately “short-circuited” by droppindrom
further processing. Note that similar optimization is asgaplicable for the monotone
set predicates in SQs. Specifically, if each partial redufite ¢ satisfies, then we can
conclude that each of the partial result tuple extended fromill also satisfyp. Fur-
ther optimizations for anti-monotone/monotone set praeis evaluation are discussed in
Section3.7.2

The number of CPQs evaluated for a BSQ can be very large: tik@mam number of
CPQs whem ranges fronB to 7 are 7, 48, 461, 6432, and 129424, respectively. There-
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fore, there could be considerable efficiency gains by apgl1QO techniques to opti-
mize the evaluation of a BSQ. However, MQO is a very hard ogttion problem with

a search space that is doubly exponential in the size of teaegufd9, 51, 54, 74]. As
early exhaustive strategie4d, 54] are not practical, many heuristic solutions have been
proposed (e.g.1[3, 51, 74, 14, 73, 57]). To cope with the high optimization complexity,
a well-known strategy for MQO is to adopt a two-phase optatian approachd7, 73).

The first phase generates local optimal query plans for tigidual queries, and the sec-
ond phase generates a global query plan that exploits themoarsubexpressions (CSES)
in the local query plans.

However, the existing MQO heuristics are not appropriat®to problem context for two
main reasons. First, as explained above, the number of GPQs problem is very large,
which means that it is important to use an efficient heurigiat can scale to thousands
of queries. Existing MQO heuristics are, however, not desigfor such scale. As an
example, the state-of-the-art MQO heuristid][took 30 seconds to optimize 22 (which
is the maximum number of queries considered) queries wittmnsidering cross product
joins where each query only references five relations, arslumable to scale when the
number of relations in the queries increases or cross ptgains are considered. Second,
most of the existing MQO works!ip, 51, 54, 74, 57] are based on the materialization and
reusing the results of CSEs which is not beneficial for outean This is because for
CPQs, the cost of computing, writing and reading a CSE réstitor disk is higher than
the cost of recomputing the CSE as shown by our experimessalts in Sectior3.8.1
Thus, our approach for evaluating CPQs does not employ therialization technique;
instead, we evaluate them by pipelining the results of CSEHQs.

Due to both the scale of the problem as well as the nature ajubees (i.e., CPQs and
not join queries), existing MQO heuristics designed forimojting a moderate number
of general join queries are too complex and not sufficientigiable for our problem.
We therefore propose a novel and efficient heuristic, whichlso based on the two-
phase approach, to optimize the evaluation of a large dmleof CPQs. The first phase
generates a local optimal evaluation plan for each CPQ ansdbond phase optimize the
collection of local plans by exploiting CSEs.

In the first phase, since each CPQ is evaluated using the MNh€&Rod, the local evalu-
ation plan for a CPQ is simply a specification of the orderihthe partitions in the CPQ
(i.e., from outermost to innermost relation). To optimike evaluation of CPQs, it is de-
sirable to minimize the cost to check anti-monotone setipatels (to find short-circuited
partial result tuples). Therefore, our approach to ordeptrtitions for a CPQ is to order
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them in non-decreasing order of their cardinalities. Thaiiion behind the approach is
to minimize the cost to check the short-circuited partiagutetuples assuming that any
pair of partial result tuples of the same length are equidghy to be short-circuited. As
shown by our cost model in Secti@6.2 our approach to order the partitions for a CPQ
in a MNLCP evaluation is indeed optimal.

In the second phase, to efficiently identify the CSEs amoegldbal query plans, our
heuristic uses a trie to represent all the local query plaash node in the trie, except for
the root node which is a virtual node, represents a partibo each path from a child
node of the root node to a leaf node corresponds to the segudrgartitions (in non-
decreasing order of their cardinalities) in a local queanplWith this simple technique,
our heuristic is able to capture the common “prefixes” amdmgdcal query plans. The
time complexity of constructing the trie is proportionaltte total number of partitions
in all the CPQs. The simplicity of this structure enables loewristic to scale to a large
number of queries.

Once the trie has been constructed with the local query ptaesglobal query plan is
formed and evaluated by a top-down traversal of the triecatre. Consider a trie node
R; that has multiple child nodes, and |gk,, - - - , R;_1) be the path of ancestor nodes of
R; in the trie (i.e.,R; is the child of the root node and eaé}) is a child node ofR,_;,

J € [2,1i]). By pipelining the output of R, x --- x R;) to each of the child nodes at;,
the computation of the cross-product expression assdaorath the common prefix path
is shared among the child nodes.

Example 3.5: Consider a BSQ that is evaluated as five CRQs, - - - , Q5 } with their
local query plans shown by the trie in Figudex(a), where the node labelédrepresents
the virtual root node of the trie. Each path from a child nofléhe root node to a leaf
node corresponds to a local query plan for a CPQ. For exari@dourth leftmost path
corresponds to the local pldtks, R;, R,) for Q4. Observe that the two local plans for
(2> and (@3 share the partitioi?;. Thus, for every tuple read fromR3, the global plan
evaluation will pipeline to its child nodes?, and Rs. O

3.6 Handling Large Data

In this section, we extend our in-memory approach discussétke previous section to
evaluate BSQs on large, disk-based data.
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Q4 Q5 Q1 Qz Qa Q4 Q5
(a) Trie of query plans (b) Two query batches constructed from (a)
|R4] IRz R3] |Ra] |Rs| |Rel IRy
1 2 2 3 4 2 2

(c) Size of partition in terms of number of pages

Figure 3.5: An example of CPQ partitions organized as a trie

In the following discussion, we uge to denote the number of main memory buffer pages
available for evaluating a BSQ on a relationR. For a partitionRy,, we use|Ry;| and

|| Rv; || to respectively denote its size in terms of number of pagesitarcardinality in
terms of number of tuples. We assume that the answer setsutedhfor a BSQ are
directly output without being buffered.

3.6.1 Phase 1: Partitioning Phase

In the first phase, we need to allocate the available buffacesfor reading? as well as
creating the partitions aR. This partitioning problem using limited buffer space can b
solved with two standard database techniques (i.e., gaatid hashing), which we briefly
described in this section.

In the hash-based approach, we allocate one buffer pagedding R and divide the
remaining buffer pages uniformly among the maximum numlb@r e- 2 partitions to be
materialized. Each tuple read fronk is copied to the appropriate partition buffer, and
a partition buffer is flushed to disk when it becomes full. B case where there is not
enough buffer space to even allocate one page for eachigrartihen R will have to be
partitioned in multiple passes instead of a single pass.

In the sort-based approach, each tuple read ffom assigned an appropriate partition
identifier (i.e.,1,--- ,2" — 2) based on the subset of member predicates that it satisfies.

“Recall from Sectior8.5that Ry and R are not materialized.
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The tuples are then sorted on this identifier using exterragsisort algorithm to create
the partitions.

If the buffer space is sufficiently large such thiatcan be hash partitioned in one scan,
then the hash-based approach is generally more efficieheaott-based approach might
require multiple merge passes to s@irt However, if a BSQ contains certain type of set
predicates, then the sort-based approach could be optintizeecome more efficient; we
defer the discussion of the optimization to Sectdon.2

3.6.2 Phase 2: Enumeration Phase

The main challenge in the second phase is how to efficientljuate a large collection of
CPQs given a buffer space constraintbpages.

Consider a CPQ)' = (Ry,---, R). What is an optimal approach to evalugesuch
that (1) the buffer space used is minimized and (2) eachtjoarin ()’ is read only once?

A well-known strategy to achieve this is to load all the gaotis of ', except for the
outermost partition (i.e.2;), into the buffer and to allocate only one buffer page far

As each pagéez, of R, is loaded into the buffer, the MNLCP method is used to compute
R, x Ry x - - - x Ry,. Thus, the minimum buffer space required for this optimaleation
is1+ Zf:g |R;| pages. Leininbuf(Q') denote the minimum buffer space requirement
(in terms of number of pages) for evaluating a C®Qn this manner.

Given a buffer space dB pages, we classify a CPQ as alean quenyif minbu f(Q’') <
B; otherwise )’ is classified as &t query Let Q)..,, and(Q ., denote the set of all the
lean and fat CPQs, respectively, from the collection of CRQse evaluated. From the
optimization viewpoint();.., are easier to optimize thap,,. Therefore, our proposed
approach optimizes the evaluation@t,,, andq) ., separately.

Evaluation of Lean Queries. To exploit the CSEs among a collection of lean CPQs, we
present an efficient strategy to evaluate thetmatchesuch that each batch of queries can
be evaluated efficiently similar to the in-memory approaebatibed in SectioB.5 using
only B buffer pages. We first formally define a query batch and thesent efficient
heuristics to optimize both the partitioning 6f.., into query batches as well as the
evaluation order of the batches.

Consider a set of lean CPQ&utcr, = {Q1, -+, Qm}, WhereQpuern € Qiearn, @nd each
Qi = (Rix, , Rig,). Let D(Quarer) = Up,eq,,,., 12, Rix, } denote the set of
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distinct partitions in all then CPQs fromQ;.:., after excluding the outermost partition
from each CPQ (i.e.R; 1,7 € [1,m]). We say that),.., forms aquery batchif 1 +
ZRiGD(Qbatch) |R;| < B. Note that a query bata,..., can be evaluated optimally using
only B buffer pages as each partition (involvedis,.;.,) is read only once from disk.

Example 3.6: Assume that3 = 10. ConsiderQs in Figure3.5. Sinceminbuf(Qs) =
1+ |R7| + |Rs| = 7 < B, Q; is classified as a lean query. Similarly, all the other querie
(Q1 1o Q) in Figure3.5are also classified as lean queries. Consider a set of leaiesjue
baten = (@4, @5} We haveD(Qyye,) = {17, Ra} U{Rr, Rs} = {Rr, Ry, R5}. Since
the total size of the partitions iP(Q;,,.,) (i-€.,|Rz| + |R4| + | Rs| = 9) is no larger than
B —1, Q},., forms a query batch. On the other hand, for the set of leanep@f,, ., =
{Q1,Q4,Q5}, since the total size of the partitionsin Q7 ,.,.) = { Rz, Rz, Ry, R5} is 11
which is larger tharB — 1, @},,.,, IS not a query batch. O

Partitioning of query batches. Since a partition may appear in multiple CPQs which
are in different query batches, a partition may still be rigaiol the buffer multiple times.
Thus, it is desirable to group CPQs that share some commdtigrator more generally,
share some CSEs in the form of a subset of partitions) in time spuery batch to minimize
both the number of times a common partition is read into thigebas well as the number
of redundant computations of the CSEs.

Our heuristic to partitiond),..,, into query batches applies the same idea from Se&tidbn
to organize the CPQs i€,..,, using a trie to capture the common “prefixes” among the
CPQs. The query batches are then created by a pre-orderstibwéthe trie as follows.
We first initialize the current query bateh,..., to be empty. Whenever the pre-order
traversal visits a leaf node in the trie, we have found a CP@hich corresponds to the
root-to-leaf path in the trie. 1€),.:.» remains a query batch afté) is added to it, we
add (@’ to be part ofQ,..,; Otherwise, we initialize a new query batch with o)y in it
and call this the current query batch. At the end of the tisale®),..,, is partitioned into
guery batches. By partitioning,..., in this way, our heuristic is able to capture the CSEs
among the CPQs in each batch. Thus, each query batch is aich 18 a subtree of the
input trie. The time complexity for the query batch partitiiog is linear to the number of
nodes in the trie.

Evaluation order of query batches. We now explain how a query batdD,...., =
{Q1,- -+, Qn} formed using the above approach is evaluated similar tortireémory
approach. Here eaah; represents a CPQ. Forea@h = (R, 1, -, Rix;) € Qbatch, We
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load into the buffer all the partitions @J;, except the outermost partitid®;, ;. Note that
within each query batch, each partition is loaded exactlyean the buffer even if the
partition appears in different queries. By the definitioraajuery batch, the remaining
number of pages left in the buffer (denoted BY) after loading all the partitions except
for R, ; must be at least one. Therefore, we can incrementally laadutermost partition
R, ; for each@); into the buffer 8’ pages at a time), and pipeline the loaded tuple’,af
to each child partition to compute the CPQs in the query batch

The final optimization issue to consider is how to order thergwbatches formed for
evaluation. If two query batches have many partitions in w@m, then it is desirable to
evaluate these two batches consecutively so as to minitmézeumber of times the same
partition is loaded into the buffer (across query batch@sj)is scheduling optimization
problem can be formulated as finding the longest Hamiltopgth in a fully-connected,
weighted, undirected grapfi = (V’, £’) as follows. Each vertex ifv’ represents a
query batch, and each edgefih has a weight that is equal to the sum of the sizes of the
common partitions (excluding the outermost partition icle€PQ) between the CPQs
corresponding to the connected vertices. This optimingpimblem is in general NP-
complete; and we solve this using a simpfe approximation algorithmd], which has a
time complexityO(|V’|?) where|V’| is the number of query batches.

Example 3.7: Assume thatB = 10. Figure3.5b) shows two query batche§) .., =
{Q1,Q2,Qs} andQy.,,., = {Q4, Qs}, constructed from the trie in FiguB5(a) by a pre-
order traversal of the trie. Let us assume g}, , is evaluated befor); ,.,. When
evaluating the batcty; ., the partitionsR,, R, and i; are completely loaded into the
buffer and the remaining buffer page is used to load in the tuplesi and R3 se-
quentially with the tuples being pipelined to the corresing children partitions. When
evaluating the batc®y ., asR, and R; have already been loaded in the buffer, we only
need to load ink; (i.e., Ry is evicted from the buffer) and the remaining 1 buffer page is
used to load inRg. O

Evaluation of Fat Queries. Since each fat CPQ can not be evaluated optimally with the
availableB buffer space, our evaluation approach for lean CPQs is rgicaple for fat
CPQs. To exploit the CSEs among a collection of fat CPQs hematlternative strategy

is to materialize and reuse (instead of pipelining) the ltesaf CSEs. However, since

a cross-product result is always larger than the combiresl &i its input operands, a
materialization strategy incurs a high 1/0O cost to write aead the materialized results.
Indeed, as shown by our experimental results, it is overafinefficient to recompute the
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results of a CSE (incurring a higher CPU cost) than to mdieeiand reuse the results of
a CSE. Thus, we propose to use the MNLCP method to evaludtfaaCPQ separately
without relying on any result materialization. The main ltdgvage here is how to effec-
tively allocate the buffer space among the partitions inGR€) to optimize both CPU and
I/O costs.

In the following, we first analyze the 1/0O and CPU costs of theIMCP evaluation method,
and then present our heuristic to optimize the buffer atioodbased on these cost models.

Cost models. Consider the evaluation of a fat CRQ = (Ry,,---, Ry,) using the
MNLCP approach. Letb,, - - - , b;) denote the buffer space allocation for the partitions,
where eachRy, is allocatedh, number of buffer pages, such th@f:1 b; < B. The
MNLCP evaluation method will first load the firét pages of eaclRy, into the buffer
and compute the cross-product among the tuples in the bafierthen load in the next
b, pages forRy,, and so on. Whenever all the pages of soRje have been read and
loaded into the buffer, the method will load in the néxt; pages forizy,, | and “rewind”
eachRy,, j € [1,4], by loading in the first; pages for eaclky,, j < [1,4]. The method
terminates when all the pages B, have been read. The 1/O cost to evalugten such

a manner is given by
k

| Ry,|
b—W (3.1)

j=it1  J

z/o - Z Cz/o‘RV

wherec; ), is the cost ratio to read one page. Eagh| Ry,

I/O cost to load inRy, with HJ i1 (' j |1 representing the times to load&y,. The CPU
cost to evaluat€)’ is given by

|Ry; |

<] represents the
]

j= z+1’7

i \Rv\

k
cpu Z cCpuSi ||RV || H

i=1 j=1 j=i+1

(3.2)

wherec,,, is the cost ratio to process a tuple afdis the selective factor of anti-monotone
set predicates fari — 1)-sets. Eacla,,,S; HJ IRyl HJ Hl(l % l} represents the CPU
J

cost to compute the cross product @y, - - -, Ry;) with S; [T,_, [| Ry, || representing

|Ry; |

the number of cross product results that need to be compametﬂj i1l 7 b, -] repre-
senting the times to compute the cross-product resultse Matt bothe;/, andc,,, are
tunable constants commonly used in query optimizers@rahn be estimated based on
conventional RDBMS estimation techniques (e.g. with lysams).

We remark that if each; (1 < i < k) is allocated Ry | pages (i.e., in-memory case), then
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our approach to evaluate each CPQ with the partitions odderaon-descending order
of cardinality indeed minimizes the CPU cost.

Optimizing buffer allocation. As bothC;,, andC,,, are not related to,, we will allocate
the minimum of one page tg. The overall optimization problem is to minimizg,;,, =
Ci/o + Cepu With the following constraints: (1), = 1, (2) Zf:2 b; < B —1, and (3)
b; < |Ry,|for2 <i<k.

A naive solution to optimize the above is to try all possildsignments fofb,, - - - , b;).
However, the time complexity will b& ( B*) which is not feasible whe andk are large.
Therefore, we use a simple greedy approach to solve theguroly iteratively selecting
the “best” partition to increase its buffer allocation uititie buffer space is fully utilized.
Initially, each patrtition is allocated one page (ite. = 1 for 2 < i < k). At each iteration,
we first compute thbenefit ratidfor each partition?y,, given by(C' —C!) /(b;—b;), where
b; is the current buffer allocation faky,, C' is Cy..,; for the current buffer allocatiord;
is the smallest possible integer such thiat- b; and (‘B;Yi‘} < (‘ijﬁ, andC! is Cia
after increasing; to b;. Thus, the benefit ratio measurzes the reduction in evaluatst
per additional buffer page allocated for a partition. Thenincrease, for the partition
Ry, with the maximum benefit ratio t§. The time complexity of this heuristic 3(Bk)
where B is the maximum number of iterations axit(k) is the time complexity of an
iteration.

Unlike lean CPQs, where the order of evaluation is optimizeel do not optimize the

order of evaluating fat CPQs as the potential benefit is quesble. Since the allocat-
ed buffer for a partition is generally less than the pamitsize, and the allocation could
vary among CPQs having that partition, we can only partigtigre the scan of the parti-
tion across CPQs which entails non-trivial bookkeepingdegktrack of partially loaded

partitions. We therefore do not consider this optimizatiothis work.

3.6.3 Progressive Approaches

Our proposed two-phase approach is a blocking algorithrhahthe enumeration phase
can only start after the partitioning phase has completedaBSQ that does not require
retrieving all the answer sets (e.g., the query has a litaitse), this approach is not ideal.
In this section, we describe how to extend the two approadumesbased and hash-based
approaches) for the first phase to make them non-blockiag firogressive) so that more
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answer sets can be generated earlier during the first phaygen@those produced &y).
The challenge is to avoid generating duplicate answer batsate produced in both the
partitioning and enumeration phases.

Sort-based approach.To make the sort-based partitioning phase progressive gwerg

ate answers while creating initial sorted runs as follona. dach set of tuples that form
an initial sorted run, we first sort them based on their partitdentifiers, and then gen-
erate minimal answer sets using these in-memory partifaimving the basic approach
described in Sectio.5. In this way, we are able to compute some answer sets ad initia
sorted runs are being created in the partitioning phasemflsiway to avoid generating
duplicate answer sets is to simply assign a run number to tegdh in the partitioning
phase and detect for duplicate answer sets during the eatiorephase as follows: if all
the tuples in a potential answer set have the same run nuthbarthe set is a duplicate
and is ignored.

Hash-based approach.To make the hash-based partitioning phase progressivanwe s
ply generate answer sets for each new tuptead with all the in-memory tuples (i.e.,
we construct the trie for the partition containingvith all the in-memory partitions). In
the event that the buffer space is full, we make roomtfby selecting some other in-
memory partition and flush it to disk. To detect for duplicatswer sets, we adapted the
techniques from@1l, 64] as follows. Each tuplé is assigned a timestampdgin end,
wherebeginandendrepresent, respectively, the timés read into memory and the time
t is flushed to disk. Thus, for each potential answerssebnsidered in the enumeration
phase,S is a duplicate answer if the intersection of the timestanifadl the tuples is not
empty.

Comparing the two approaches, the hash-based approachratcp results earlier than
the sort-based approach since the former can produces@sattediately for each newly

read tuple while the latter can only produce results aftead filled and sorted the buffer
with tuples. However, the hash-based approach is likelymostower than the sort-based
approach due to the per-tuple overhead (i.e., trie cont&rufor each tuple).

3.7 Extensions and Optimizations

In this section, we first extend our proposed approachesaio@e SQs in SectioB.7.1
We then discuss the further optimization of SQ evaluatioséot-based approaches based
on the properties of set predicates in Sec8on2

39



CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

3.7.1 Evaluation of SQs

To evaluate SQs, our proposed approaches for BSQs can beledtas follows.

In the partitioning phase, the input tablieis partitioned as before based on the combi-
nation of predicates satisfied by the tuples; however, we need to materialize both
partitions Ry and Ry. This is because for a SQ, it is now possible forS U {t} to

be an answer set fa@p, wheret € Ry U Ry andS is a set of tuples from the partitions
excluding Ry and Ry,. Hence, bothR; and Ry need to be materialized for generating
potential answer sets in the second phase.

Since the answer sets for SQs are not necessarily minimaharset predicates in SQs are
not necessarily anti-monotone, the enumeration phase egures a weaker definition
of vpset (SectiorB.5) that satisfies only property P1. This weaker definition ves t
implications. First, the partitions in a vpset are now natessarily distinct as it is possible
for an answer set to contain multiple tuples from the samétjpar. However, as the
cardinality of answer sets is bounded/bythe maximum number of partitions in a vpsetis
also bounded by. Second, itis now possible for one vpset to be a subset ofiangpset.
For instance, in the example SQ in Secti, if the query is not constrained to retrieve
only minimal answer sets, then bofif,, ..}, Rivs,ui} } @NA{ Riv, v}, Rivrva}s Rfvo,va} }
are vpsets with one being a subset of the other.

Consequently, after constructing the trie to capture the<CBr the local query plans,
each path from a child node of the root node to any node in thetw may correspond
to a vpset. Note that this is different from the trie constedcfor BSQs where only a
path from a child node of the root node to a leaf node corredpom a vpset. Further-
more, since a vpsét could contain multiple instances of the same partition, G
corresponding td/ needs to be evaluated such that answer sets with duplicaest
generated by judicious manipulation of tuple pointers gishe MNLCP approach

Minimal set constraint. For SQs that are constrained to retrieve only minimal shts, t
following additional extensions are required. In the gEming phase, foRRy, if a tuplet

in Ry satisfiesF,, then we simply outputas a singleton answer set; otherwise, we mate-
rialize t. Thus, the materialize®,, contains tuples that satisfy all the member predicates

SConsider the evaluation of a CR@;, Rz, - - - ) whereR; and R, are two instances of the same par-
tition R. To avoid generating duplicate answer sets, whenever file pointer for the outer partitio®;
is moved to theé'” tuple of R, the tuple pointer for the inner partitiaR, is rewind to the(i 4 1)!" (rather
than the first) tuple oRz.
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but do not satisfy/,. In the enumeration phase, since the weaker vpset defirdbes
not guarantee that a candidate answer set is minimal, we toeegfify its minimality
requirement during the enumeration phase as discussed!ioise.4.

Example 3.8: Consider the example SQ..;. In the partitioning phase; is partitioned
into four partitions:Ry,, v,y = {t1}, Riv vy = {t2}s Rpusy = {ts}, andRy,,y = {t4}. In

the enumeration phase, all the vpsets are enumerated hsimgebker definition of vpset
for SQs. Some example vpsets include,, v,}; Riv 00} b 1R {01 vs} Bivs,oa)> Riwsy  @Nd
{R{}, Rivsys Riwewgy }- Note that the number of vpsets for the SQ is larger than that
for the corresponding BSQ (Exam@®Be3) due to the weaker definition of vpset for SQs.
After evaluating the corresponding CPQs and checking tharedicates, two answer sets
{t1,t2} and{ty,ts,t3} are formed. 0

3.7.2 Optimizations of SQ Evaluation

In this section, we describe how the evaluation of a SQ usimL®P can be further
“short-circuited” for sort-based approach by exploitihg presence of certain set predi-
cates in the SQ. Before we describe the optimizations, wepfiesent some preliminaries.

Given ak-setS = (t1,--- ,t;) and a functionF', F' is classified aglistributiveif there
is a functionF” such thatF'(S) = F'(F(t1),---, F(tx)). A distributive functionf" is
classified asnonotonef for any two k-setsS; = (11, - ,t1,) andSy = (ta1,- -, tar)

such thatF'(t;;) < F(ty;) for eachi € [1,k], one hasF'(S;) < F(S,). The function
“SUM(S.duration)” in Sectior8.2is an example of a distributive monotone function.

Anti-monotone set predicates. If a SQ contains an anti-monotone set predigataf
the form F'(S) < ¢ whereF is a distributive monotone function, then we can optimize
the sort-based approach of partitioning as follows. Instefasorting the tuples using
only the partition identifiepid, we sort on the composite kéy:d, F'(¢)) which generates
partitions that are sorted dri(¢). When evaluating a CP@Ry,, - - - , Ry, ) using MNLCP

to generaté:-sets, if¢; is the first tuple fromRy, (1 < j < k) that does not satisfy
when combined with a specific combined tuplg - - - ,£;_;) from (Ry, x --- x Ry,_),
then we can short-circuit the MNLCP evaluation by dropping- - - ,¢;_1) from further
processing. Note that if we do not sort on the composite (key, F'(¢)), we can only
drop(ty,- - - ,t;) from processing.
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Monotone set predicates.Consider a SQ that contains a monotone set predjcatie
the form F'(S) > ¢ whereF is a distributive monotone function, then we can optimize
the sort-based approach of partitioning as follows. Heggrggve sort on the composite
key (pid, F'(t)) which generates partitions that are sorted/). When evaluating a
CPQ(Ry,,- -, Ry,) using MNLCP to generaté-sets, ift; is the first tuple fromRy,

(1 < j < k) that satisfiep when combined with a specific combined tuplg - - - ,¢;_)
from (Ry, x --- x Ry,_,), then we do not need to check the satisfiability for the plartia
result tuples extended frof,, - - - ,¢;,_,). Note that if we do not sort on the composite
key (pid, F'(t)), we can only avoid the satisfiability checking for the pantésult tuples
extend from(¢y, - - -, t;).

Due to the fixed cardinality of the answer sets for a vpsetabitee optimization can also
be applied for some functions that are not distributive ntone. One such example is
AVG(S.price)< (or >) c.

3.8 Performance Study

In this section, we present an experimental study to comfeeperformance of our
proposed approach against the baseline SQL solution. Quoagh was implemented on
PostgreSQL 8.4.4, and the experiments were performed ontalnDual Core 2.33GHz
machine with 3.2GB of RAM and two SATA2 disks running LinuxotB OS and DBMS
were installed on a 250GB disk, while the database was storedl TB disk.

Implementation. We implemented our evaluation approach as a new operaideitise
PostgreSQL execution engine. An engine-based implementaffers the best perfor-
mance as it enables the implementation to leverage therexisvaluation code (e.qg.,
external sorting and hashing). Furthermore, it makes ttezantion with other database
operators much easier. For example, the results of SQs gaipd&ened to other database
operators like join and set-skyline to perform additiorahputation.

Algorithms. Table3.2 shows the notations for the five algorithms (four variantpraf-
posed approach and one baseline SQL solution) comparee exgieriments. For each
non-progressive algorithm (A € {ns,nh}), we useA-p and A-e to represent, respec-
tively, its partitioning and enumeration phases. For thé SQution, we actually experi-
mented with two variants: the first variant used virtual \samhile the second variant used
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Table 3.2: Compared algorithms

| Notation | Algorithm \
ps progressive, sort-based algorithm
ns non-progressive, sort-based algorithm
ph progressive, hash-based algorithm
nh non-progressive, hash-based algorithm
bs baseline SQL solution

materialized views. In the experimental results, eachingitime shown for the SQL so-
lution refers to the timing of the more efficient variant;thermore, we omit reporting its
running time if it exceeds 12 hours.

Datasets.We used both synthetic and real datasets for the experim@ntsreal dataset

is from the MusicBrainz databasg] jwhich stores music metadata. We created a materi-
alized view by joining several tables from the database@sbut relation for our experi-
ments. The schema of the viewmausic(mid,mname,duration,language,bname,battribute,
btype,bscript,aname,abegindate,aenddate,at\gre) the detailed information about the
attributes can be found ii]. After removing tuples with non-positive duration attrie
value, the size of the materialized view is 1.35GB with 8,9@9 tuples.

Our synthetic dataset was generated based on the schenesMifisicBrainz databasé][
The size of the relation (in the default setting) is 408MBht million tuples. For at-
tributes used for member predicates, their values werergtatewith a uniform distri-
bution to simplify our control on the selectively factorshive for the attribute (i.e., du-
ration) used for the set predicate, its values were gerteraith a Gaussian distribution
(1 =300, 0 = 55) to ensure that each query returns a reasonable number oéasests.

Queries. Our experimental queries aim to find different subsets ofimiiles to meet
certain constraints. We tested on both BSQs and SQs for theriexents. Each query
has between 2 to 6 member variables with exactly one membedrigate for each mem-
ber variable. All the member predicates are on differemibattes. Each BSQ also has
an anti-monotone set predicate of the fosmm(S.duration) < ¢, while each SQ has
the same anti-monotone set predicate as well as a monotopeeskcate of the form
sum(S.duration) > ¢/2, wherec is some constant value. Each query was run three
times and we report their average running time.

Parameter settings. Table 3.3 shows the key parameters and their default values used
in the experiments; the default parameter values were uskeEsgaispecified otherwise.
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Table 3.3: Key experimental parameters
\ Parameter | Notation|  Default |
Cardinality of synthetic input tabl& || R|] 1,000,000
Work memory B 40MB/200MB
Maximum number of returned answer sets  k ALL
Number of member predicates n 4
Selectivity factor of each member predicate f 0.05
Aggregate value in set predicate c Avg

The k. parameter represents the maximum number of required ars®isem the query’s
limit clause and has a default value of “ALL” to retrieve atisaver sets. The parameter
is used to control the selectivity of the set predicates #mdefault value (denoted by
“Avg”) refers to the average value of tliirationattribute, which is 230 seconds for the
real dataset and 300 seconds for the synthetic datasets.

The work memory parametds controls the main memory allocated in PostgreSQL for
our algorithms as well as for sorting and storing hash tabisce we are interested
in comparing the disk-based variants of our algorithms, etells = 40MB for BSQs
and B = 200MB for SQs in the default setting. Note that a largervalue was used
for SQs since the evaluation of SQs require b@ithand Ry, to be materialized in the
partitioning phase which significantly increases the teiz¢ of the partitions. However,
for the baseline SQL solution, we actually used a largerdfix@ue of 256MB of work
memory (to improve its performance via speeding up themange and hash joins in the
SQL solution), which is much larger than the typical work noeysize recommended for
PostgreSQL4]. Thus, our work memory allocation favors the baseline soiu

Summary of results. For queries where all the query results are returned, oorighgn-

s significantly outperform the SQL solution by up to threeessdof magnitude and the
non-progressive algorithms are at least as fast as thespaméing progressive algorithm-
s. Furthermore, the sort-based algorithms are significdaster by up to two orders of
magnitude than the corresponding hash-based algorithesodthe optimization tech-
nique discussed in Sectidgh7.2for sort-based algorithms. However, the partitioning
phase ofih is slightly faster than the partitioning phasenafas discussed in Secti@6.

For queries where the maximum number of returned answerasetsmited (i.e., with
limit-k clause), our experimental results (withranging from 10 to 50) show that both
the progressive and non-progressive algorithms outpartbe baseline solution by up to
one order of magnitude and the progressive algorithms aterféghan the corresponding
non-progressive algorithms. Furthermagpg,is able to produce results earlier thanas
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ph can start to produce results immediately for each newly teptk whileps needs to
fill and sort the buffer with tuples before producing any tesu

3.8.1 Results for BSQs on Synthetic Datasets

In this section, we first compare our proposed algorithmsnatjghe baseline solution,
and then study the effectiveness of our optimizations falweating lean and fat CPQs,
and finally compare the relative performance of our algargHor different settings.

Comparison with SQL baseline solution.Figure3.6(a) compares the performance as a
function of the input relation cardinalityR||. The running times for the baseline solution
are not shown on the graph as they are extremely long: fotioalaardinality sizes of
1m, 1.5m and 2m, it took 1.2hr, 3.3hr and 6.9hr, respectjvatyl it exceeded 12hr for
cardinality sizes beyond that. Thus, comparing to the cadese the baseline solution
run to completion (i.e., under 12hr), our algorithms oufipen the baseline solution by
up to three orders of magnitude.

As expected, the running times of our algorithms increadk thie value of | R||. Since

a larger input table results in larger partitions, this @ases the CPQ processing time
for three reasons. First, larger partitions increase thbau of results; second, larger
partitions cause lean CPQs to be partitioned into more dagiches which requires more
processing time; and third, larger partitions also incedage number of fat CPQs (which
are more costly to evaluate than lean CPQs). For example; Wigeinput cardinality is
1m, 1.5m, 2m, 2.5m, and 3m, the number of answer sets aresatesgly, 7942, 15721,
31584, 51247, and 75273; the number of query batches apsatasely, 6, 8, 14, 14, and
15; and the number of fat CPQs are, respectively, 0, 1, 7,d/7an

To enable the baseline solution to complete running witbasonable time, we also com-
pared the algorithms by limiting the maximum number of re&a results by varying the
k parameter. The comparison is shown in FigBu&b).

For the baseline solution, we manually control its runnimglbtaink results as follows.
Recall that the baseline solution works by generating anse#s iteratively (i.e., 1-sets,
2-sets, etc.) using a sequence of queries. We first try tdrobtanswer sets from the
query that generates answer 1-setg. iésults are obtained, then we are done; otherwise,
we try to obtain the remaining answer sets from the querydbaerates answer 2-sets,
and so on until we get results.
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Figure 3.6: Comparison with the baseline solution

The performance of the baseline solution (results omitteeigure3.6(b)) is almost one
order of magnitude slower than our approach: specificdllg, running time ofhs are
3.6s, 14.9s, 15.0s, 18.1s and 26.9s, respectively, foradue of 10, 20, 30, 40 and 50. As
expected, the execution time of our approach increasksraseases.

Effectiveness of Optimizations We now study the effectiveness of our optimizations for
evaluating lean and fat CPQs.

To evaluate the effectiveness of our MQO heuristic (dendigd./°) to process lean
CPQs, we created two alternative heuristics to comparensgak. The first heuristic
(denoted bynd) is equivalent tonh except fornd uses a different strategy to generate
the local plans: for each CPQ, its partitions are orderedimincreasing order of their
cardinalities (i.e., opposite toh’s strategy) for the MNLCP evaluationud is used to
demonstrate the effectiveness of our heuristic to genedéplans. The second heuristic
(denoted byiv) uses the same way aé to generate local plans. However, unliki, nv
evaluates the CPQs one at a time without sharing the conpnaif any CSESs; i.env
enumerates the vpsets one by one and process the corresp@RIQs one by one. To
enable partition scans to be shared,employs the following simple buffer replacement
strategy: if the buffer is full when a partitiaf is to be loaded into the buffetp randomly
evicts some partition(s) that are not needed by the CPQ le»algated from the buffer
to make room forP. nv is used to demonstrate the effectiveness of our heurissbaoe
computation of CSEs.

Figure3.7(a) compares the running time ok, nd andnv as a function of selectivity fac-

6\We usenh to represent our algorithm sineg. is more general thans (i.e., the optimization technique
discussed in3.7.2for ns is only applicable for certain set predicates).
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tor of member predicateg,’. Note that whery increases from 0.1 to 0.5, the cardinalities
of the partitions become more balanced. In particular, when0.5, the cardinality of all
the partitions are almost the same and thus the running tiines andnd do not show
much differences. The experimental results showthabutperforms:d by 1.1 times on
average and up 8.2 times whenf = 0.1, which demonstrates the effectiveness of our
MQO heuristic to generate local plans, amd outperformsnv by 1.7 times on average
and up to 2.6 times whefi = 0.5, which demonstrates the effectiveness of our MQO
heuristic to share the computation of CSEs.
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Figure 3.7: Effectiveness of CPQ optimizations

To evaluate the effectiveness of our heuristic technigeadted byOpt) for processing
fat CPQs, we compare against two other competing techni@essoted byMat and
Unf). The first,Mat, is the materialization strategy discussed in SecBd@h2where a
fat CPQ is evaluated as a sequence of binary cross-proditbteach intermediate result
being materialized. The secordy f, adopts the same MNLCP technique as Owt but
uses a simple buffer allocation strategy that allocatestlifer space uniformly among
the query partitions.

To compare the performance of these methods, we createdla ®hCPQ with one anti-

monotone set predicate that consists of four partitionssehgizes (cardinalities) are,
respectively, 3.7MB (7480 tuples), 5.0MB (10084 tuplesiMB (10174 tuples) and

6.3MB (12594 tuples).

Our experimental results show that batpt andUn f significantly outperform\/at by up
to one order of magnitude. As an example, when the work meisdMB, the running
times for Opt, Unf and Mat are 95s, 151s and 3163s, respectively. Given the poor

"To ensure that all the CPQs in the experiment are lean quehies we varyf, we set|R|| = 10k and
n = 6.

47



CHAPTER 3. EFFICIENT PROCESSING OF ENUMERATIVE SET-BASED
QUERIES

performance of\/at, we next focus on comparirn@pt andUn f as a function of the work
memory (i.e.,B) in Figure3.7(b). As expected, wheR increases, the running times for
bothOpt andUn f decrease. The experimental results show @hatoutperformsUn f
by 83% on average and up to 108% whenr= 10M B.

Effect of Other Parameters. We compare the effect of other parameters in Figu8sas
before, the results for the baseline solution are omitted as our algorithms outperform
the baseline solution by up to three orders of magnitude.

Figure 3.8@) compares the effect of the work memory size, As B increases, the
running times for the non-progressive algorithms decreddds is expected since for
non-progressive algorithms, the running times for bothpgheitioning and enumeration
phases decrease whénincreases. However, the running times for the progressje a
rithms increase with more work memory. The reason is thabaljh a large3 speeds up
the enumeration phase of the progressive algorithmsgtiatseases the running time for
the partitioning phase of the progressive algorithms sihedarger work memory means
that more results are produced during the partitioning @ltage to the larger buffer of
tuples. For the progressive algorithms, our experimeellts show that aB increas-
es, the improvement in the enumeration phase is offset bgltveer partitioning phase
resulting in an overall slower running time.

Figure3.8(b) compares the effect of selectivity factor of member prads, /. We ob-
serve an interesting trend where the running time initiaéyeases with increasinguntil

a certain thresholdf( = 0.3) after which the running time decreases with increasing
This is because for BSQs, the value offfects the type of resultant CPQs and hence
the evaluation cost. At one extreme with very small valueg,od tuple is more likely

to belong to a partition that satisfies a small number of membedicates. Thus, many
tuples will belong to the partitiof?y which means that the resultant CPQs can be evalu-
ated efficiently. At the other extreme with very large valoég, a tuple is more likely to
belong to a partition that satisfies a large number of memtesfigates. Thus, the resul-
tant CPQs correspond to vpsets with small cardinality, (C&Qs with small number of
operand partitions) which can also be evaluated efficiently

Figure 3.8(c) compares the effect of the number of member predicatesiNote that
the number of partitions increases exponentially withAlthough a larger number of
partitions reduces the number of tuples in each partitioaso increases the number of
CPQs which increases the running time as shown by our expatahresults.
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Figure 3.8: Effect of varying parameters on synthetic detas

Figure 3.8(d) compares the effect of selectivity of the set predicateva increase the
aggregate value in the set predicate. As the value ®increases, the running times for
all the algorithms increase. This is expected since the rurabresults increases (e.g.,
the number of answer sets are, respectively, 7942, 149692251243, and 94326 for an
aggregate value of 300, 310, 320, 330, and 340) with inangasvalue which therefore
increases the running time.

3.8.2 Results for BSQs on Real Dataset

In this section, we evaluate the performance of BSQs usiagdhl dataset. Since the
cardinality of the real dataset is larger than that of thdlsstic datasets, we used smaller
selectivity factors for the member predicates for the expents on the real dataset. In
the default setting, each query has four member predicatbghve following selectivity
factors:6.1 x 1074, 1.1 x 1072, 9.4 x 10~* and5.8 x 10~* &, Accordingly, we used a

8In Figure3.9a), the selectivity factors of the additional two membegdicates aré.6 x 10~* and
2.3 x 1074
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Figure 3.9: Effect of varying parameters on real dataset

smaller default work memory size of 1MB to ensure that we arearing the disk-based
variants of the algorithms.

In the default setting, the baseline solution did not cotgptanning in 12 hours. In con-
trast, the running times ofs, ps, nh andph are13.8s, 15.0s, 86.4s and104s respectively.
The results shows that our algorithms are at least threeodenagnitude faster than the
SQL solution.

Figure3.9 compares the effect of varying various parameters usingefledataset. Our
experimental results for the real dataset exhibit simiands observed for the synthetic
datasets, and we therefore do not repeat the analysis oéshég. In Figure8.9(d), the
running times of the baseline solution are not shown as thepe order of magnitude
slower than our algorithms. For example, whiega- 10, the running times oph, ps, ns,
nh andbs are respectively 3.5s, 5.0s, 8.4s, 8.4s and 84s.
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3.8.3 Results for SQs on Synthetic Datasets

In this section, we evaluate the performance of SQs on siottegasets. Our experimen-
tal results for SQs show that both SQs and minimal SQs (i@s, tBat are constrained to
retrieve only minimal answer sets) are more time consunorgyaluate than BSQs. For
example, in the default setting, the running timegkfor BSQs, minimal SQs and SQs
are, respectively, 61s, 575s and 779s. The reason for tthisgsfold. First, SQs produce
more partitions as botRy; and Ry, have to be materialized in the partitioning phase. Sec-
ond, SQs require more vpsets to be enumerated (due to themneefinition of vpsets).
For example, when = 4, the number of vpsets for BSQs and SQs are, respectively, 48
and 3229. Third, the number of returned answer sets for SQiauayer. For example, the
number of answer sets for BSQs, minimal SQs and SQs are cteghg 7942, 9214 and
15563 (in the default setting). We also observe that mini&@s can be evaluated more
efficiently than SQs as minimal SQs can prune the cross ptagace for SQs (i.e., i

is a minimal answer set, then all the supersetS o&n be pruned).
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Figure 3.10: Effect of| R||

Figure3.10compares the effect ofR|| for both SQs and minimal SQs. The baseline SQL
solution did not complete execution within 12 hours and veedfore omit its results in the
graphs. As expected, the running times of our algorithmseemse with| R|| as explained

in Section3.8.1

Figure 3.11 compares the effect of for both SQs and minimal SQs. As the baseline
solution is two orders of magnitude slower than our algonghits running times are not
shown in the figure. For example, whén= 50, the running times obs are respectively
651.0s and 649.5s for SQs and minimal SQs. As expected, tivengitimes of our
algorithms increase slowly with the increasingiof
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Figure 3.11: Effect of

We observe that the performance trends for SQs are simithose for BSQs. Therefore,
we do not repeatedly report and discuss them further.

3.8.4 Results for SQs on Real Dataset

In this section, we evaluate the performance of SQs on tHedetaset’. Here again,
the experimental results show that our algorithms sigmflgaoutperform the baseline
solution. For example, for SQs in the default setting, thenmg times ofns, ps, nh
andph are respectively, 0.8hr, 1.33hr, 2.25hr and 5.77hr whiéelthseline solution did
not finish running in 12 hours. Furthermore, even for tharsgtvhere onlyk results are
returned, both SQs and minimal SQs for the baseline solditbnot finish running in 12
hours. This is because the answer sets for queries on thedataaket have large cardinality
due to the low selectivity factors of member predicates asutised in Sectiod.8.2 the
baseline solution has to spend more time to generate largecandidate answer sets
before producing any answer sets. Therefore, the basallngan runs slowly even for
limit-k queries.

We do not repeatedly discuss the results for SQs on the r¢asetaas the trends are
similar to the results for SQs on the synthetic datasets.

9To compare the disk-based algorithms and reduce the nurhaaswer sets, we set= 100.
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3.9 Summary

In this chapter, we have proposed a novel and efficient apprtaevaluate enumera-
tive set-based queries by transforming enumeration saebgqueries as a collection of
cross product queries. Our extensive experimental redatteonstrate that our proposed
approach significantly outperforms the conventional RDB&fproach by up to three
orders of magnitude.
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CHAPTER 4

MULTI-QUERY OPTIMIZATION IN
MAPREDUCE FRAMEWORK

4.1 Overview

In this chapter, we study multi-query/job optimizationhamues and algorithms for a
batch of jobs in the MapReduce framework. The state-ofatthi@vork in this direction
is MRShare 44], which proposed two sharing techniques for a batch of jdlte share
map input scartechnique aims to share the scan of the input file among jobie the
share map outputechnique aims to reduce the communication cost for mapubtip
ples by generating only one copy of each shared map outplgt tlipe key idea behind
MRShare is @grouping techniquéo merge multiple jobs that can benefit from the sharing
opportunities into a single job. Compared to MRShare, theetachnique of processing
each job independently would need to scan the same input filephe times and gen-
erate multiple copies of the same map output tuple. Howd&IBShare incurs a higher
sorting cost compared to the naive technique as sortinggarlanap output produced by
the merged job is more costly than multiple independentregstof smaller map outputs
produced by the unmerged jobs.
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In this chapter, we present a more comprehensive study di-jobloptimization tech-
niques and algorithms. We first propose two new job shariolgrigues that expand the
opportunities for multi-job optimizations. The first teéhue is ageneralized grouping
technique (GGTdhat relaxes MRShare’s requirement for sharing map ouffhé.second
technique is anaterialization technique (MTthat partially materializes the map output of
jobs (in the map and/or reduce phase) which provides anattegnative means for jobs
to share both map input scan and map output. Comparing wathdlve technique, GGT
incurs a higher sorting cost (similar to MRShare’s grougiechnique) while MT incurs
an additional materialization cost. Thus, neither GGT ndrisistrictly more superior, as
demonstrated also by our experimental results.

Given the expanded repertoire of three sharing technigues the naive independen-
t evaluation technique, GGT which subsumes MRShare’s gngupechnique, and MT),
finding an optimal evaluation plan for an input batch of joksdmes an even more chal-
lenging problem. Indeed, the optimization problem is alge&lP-hard when only the
naive and grouping techniques are considered in MRSHdie\|Ve then propose a novel
two-phase approach to solve this non-trivial optimizapooblem.

We conducted a comprehensive performance evaluation ofmtilig-job optimization
techniques using Hadoop. Our experimental results shototitaproposed techniques
are scalable for a large number of queries and significaniigesform MRShare’s tech-
niques by up to 107%.

The rest of the chapter is organized as follows. Sedfi@introduces the assumptions
and notations used in this chapter. Sec#b8 presents several multi-job optimization
techniques to share map input scan and map output; theimuadels are presented in
Sectiond.4. Sectiond.5presents a novel two-phase algorithm to optimize the etialua
of a batch of jobs given the expanded repertoire of optinonaiechniques. Sectioh.6
presents a performance evaluation of the presented ta@s)ignd we conclude in Sec-
tion 4.7.

4.2 Assumptions & Notations

We assume that the input queries are specified in some highkésguage (e.g.5B, 59,
47, 26, 20]) which are then translated to MapReduce jobs. By spedifthie input jobs via
a high-level query language, it facilitates the identifimabf sharing opportunities among
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Table 4.1: Running examples of MapReduce jobs.

Id Job <Key,Value>
J1 select a, sum(d¥rom T wherea > 10group by a <a,t>
Jo select a, b, sum(dfrom Twhereb < 20group by a, b <(a,b),d>
Js | select a, b, ¢, sum(djrom T wherec < 20groupbya, b,c| <(a,b,c),d>
Jy select a, sum(d¥rom T whereb < 20group by a <a,d>
J5 select b, sum(d¥rom T wherea > 20group by b <b,d>
Jg select « from T, Rwhere T.a=R.e T:.<a, >
R:<e, R«x>
J7 sdect « from T, RwhereT.a=R.eand T.b = R.f T..<(a,b), T
R:<(e,f), R¥>

jobs (via their query schemas); and standard statistisseb@chniques3p, 55, 68] could
be used to estimate the sizes of their shared map outputsa$siimption is also adopted
in several related worldf4, 18, 40, 68].

In the rest of this chapter, we will use the terms queries abslinterchangeably. Tablel
shows seven jobs/( to J;) that we will be using as running examples throughout this
chapter.

For a jobJ;, we usek; to represent its map output key; to represent the set of attributes
in K;, |A;| to represent the number of attributesdp f; to represent its reduce function,
M, to represent its map outptit andR; to represent its reduce output. For example, for
Join Table4.1, Ky = (a,b), Ay = {a,b} and|Ay| = 2.

We usek; < K; to denote thafs; is a prefix of K;, andK; < K; to denote thaf(; is a
proper prefix ofK; (i.e., K; # K;). For exampleK, < K, andK;5 A K.

Consider a map output/; with schemg A;, V;) whereA; andV; refers to the map output
key and value attributes, respectively. Given a set oftatteisA C A;, we useM;* to
denote the map output derived fralh, where its map output key attributes are projected
onto A; i.e., M = w4y, (M;). For example)M{™ = M.

Consider two jobs/; and J; whereA; C A;. We use)M,; C M, to denote the subset
of M; such thathj = MiA" () M; represents the subset bf; that can be derived from
M;. Furthermore, we usé/; (+ M, to represent the (key, value-list) representation of
the map outpufl/; () M;. For example, itM; \ M; = {(k1,v1), (k1,v2), (ka2,v3)}, then

M; M M; = {(k1, <v1,v2>), (k2, <v3>)}.

For presentation simplicity, we do not consider combinecfiams to reduce the size of map output in
this chapter; however, our proposed techniques can bg easinded to operate in the presence of combine
functions.
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Figure 4.1: Multi-job optimization techniques

4.3 Multi-job Optimization Techniques

In this section, we discuss several multi-job optimizatienohniques. We first review
the grouping technique (GT) in MRShar], which is the most relevant work to ours,
and then present our proposed generalized grouping tash(&GT) and materialization
technique (MT). For simplicity, we first focus our preseraton two single-input jobs

J; andJ; on an input fileF" and then discuss the generalization for more than two jobs;
the handling of multi-input jobs is discussed in Secto®.4 Figure4.1gives a pictorial
comparison of the techniques to process two j¢leand J;, wherek; < K;.

4.3.1 Grouping Technique

In this section, we review MRShare’s grouping technique.

Sharing map input scan. For two jobsJ; and.J; to share their map input scan, the input
files of J; and.J;, the input key and value types df and.J;, and the map output key and
value types of/; and.J; must be all the same. We can then combipand.J; into a new

57



CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

job to share the scan of the map input for the two jobs. We naserilge the map and
reduce phases of the new job.

In the map phase, the common input file is scanned to genémt@ap outputd/; for

J; and M; for J;. To distinguish the map outputs of the two jobs in the redutasp,
we usetag(i) to tag the map output/; andtag(j) to tag the map output/;. The tags
are stored as part of the map output values; thus, each mpptduple is of the form
(key,(tag,value)).

In the reduce phase, for each key and for each value assbeidéte the key, if the tag
of the value igag(¢), we distribute the value to the reduce function/gfotherwise, we
distribute the value to the reduce functionsof When all the values associated with a key
have been examined, we generate the results for that kelgdawb jobs.

Sharing map output. For J; and.J; to also share map output besides sharing map input
scan, the two jobs must additionally satisfy the requirentieat /; = K;. We can then
combineJ; andJ; into a new job to share both their map input scan as well as@myon

map output (i.e.)M; () M;). Sharing map output reduces the map output size and hence
the sorting and communication cost. We now describe the mdpeduce phases of the
new job.

In the map phase, the values of the map output are tagggd), tag(j), andtag(ij),
respectively, for tuples that belongid; \ M;, M; \ M;, andM; () M;. In this way, tuples
that belong tal/; (" A/; are produced only once with the tagy(ij).

In the reduce phase, for each key and for each value assbevite the key, if the tag
of the value istag(i), we distribute the value to the reduce function Bf if the tag
of the value istag(j), we distribute the value to the reduce functionJof otherwise,
we distribute the value to the reduce functions of béttand J;. When all the values
associated with a key have been examined, the reducer ¢geséna results for that key
for both jobs.

Example 4.1: Consider the two jobd; and.J,. We can combine them into a new job to
share both the input fil&' scan as well as the common map outputdor 10 AD < 20. In
the map phase, for each tugledeom 7', if t.a > 10 A t.b > 20, we produce the key-value
pair (t.a, (tag(1),t.d)) indicating that it is produced by only;; if t.a < 10 A t.b < 20,
we produce the key-value pdit.a, (tag(4),t.d)) indicating that it is produced by only
Jy; if t.a > 10 A t.b < 20, we produce the key-value pdir.a, (tag(14),t.d)) indicating
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that it is produced by both; and.J,; otherwise, we do not produce any map output for
the tuple. In the reduce phase, for each key and for each wskmiated with the key,
if the tag of the value igag(1), we aggregate the value fdk; if the tag of the value is
tag(4), we aggregate the value fdi; otherwise, we aggregate the value for bdthand

J4. When all the values associated with a key have been aggrege¢ output the results
for that key for.J; andJ,. O

4.3.2 Generalized Grouping Technique

In this section, we present a generalized grouping teclen{@®GT) that relaxes the re-
quirement of MRShare’s grouping technique (i/€;,= K;) to enable the sharing of map
output. To motivate our technique, consider the two jépband./, in Table4.1 Although
K; # K, itis clear that the map output of, for ¢ > 10 could be used to derive the
partial map output of/;. We first present the basic ideas for processing two jobstaerd t
discuss the generalization to handle more than two jobs.

Basic Ideas.To share the map output of two jobsand.J;, GGT requires thai(; < K;
which is a weaker condition than MRShare’s grouping teai@.e.,; = K;). The
jobs.J; and.J; are combined into a new job to enable the map output td be reused for
J;.

In the map phase of the new job, we generate the map olpdior .J; and the partial
map outputh\ij for J;. The remaining map output of (i.e.,ij) is not generated
explicitly since they can be derived froid, (i.e., M, ;). By sharing the map output of
andJ; via M, ;, we reduce the overall size of the map output. The valueseafidp output
are taggedag(i), tag(j), andtag(ij), respectively, for tuples that belong id; \ 1, ;,
M; \ M, andM,; ;.

Note that in the MapReduce framework, the map output tuplea fob must all share the
same output schema (i.e., same key and value types). Wisiletfuirement is satisfied by
MRShare’s grouping technique (i.€5; = K), the relaxed requirement (i.€5; < K;)
of GGT may require us to additionally convert the map outguy,oand.J; (produced
by our new job) to be of the same type. To achieve this, we ussithple approach of
converting both the key and value components of the map otagiring values if their
types are different. Let us take the conversion of the keypmmnt for example. For
the key component of a map output tuple, we represent it asng salue that is formed
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by concatenating the string representation of each of itsakieibutes separated by some
special delimiter (e.qg., “:"). For example, the string reggntations of the key components
of J, andJ; are of the form “a:b” and “a:b:c”, respectively. This repratation enables
each key attribute value to be easily extracted from thagtrepresentation of the key
component.

SinceK; < K;, the map output of the new job is partitioned i) and sorted or¥.

By partitioning onk;, the map output tuples that have the saffjevalues are distributed

to and processed by the same reducer thereby enabling the oéthe map output of;

for J;. The sorting onk; is to facilitate the processing at the reducers (to be expthi
later); note that this sorting is well defined: for the mappaittuples of/; (whose key
values do not contain all the valuesi®f), the missing attribute values are treated as being
converted to empty string values.

In the reduce phase of the new job, to compute the resulil, dbr each key ofJ;, we
apply the reduce function on the values associated wittkthatrom tuples taggettg(7)

or tag(ij). To compute the results of;, for each key of/;, besides the values associated
with that key (from tuples taggefdg(j)), we also need to find the values §fthat can

be reused fou;; i.e., tuples taggethg(ij) where the projection of its key ad; is equal

to the key ofJ;. The reduce function of; is applied on all these values to produce the
result for that key. Note that all the relevant tuples neddethe reduce function can be
found very efficiently with a partial sequential scan of thegmoutput (which is sorted on
K;).

Unlike the grouping technique where each reduce functiapdied on the values associ-
ated with one key, GGT may need to apply each reduce functidghevalues associated
with multiple consecutive keys due to the different numbiemap output key attributes
for the jobs. Therefore, in GGT, we have to determine whemfyathe reduce functions
and output the results for the jobs (the details will be exygd later). Figurel.2 gives a
pictorial comparison of applying reduce functions for GGW&T for two jobsJ; and
Jj.

Example 4.2: Consider the two jobg; and.J,. As K; < K5, GGT is applicable to enable
both jobs to share map input scan and map output. In the mage pfoat each tuplefrom
T,if t.a < 10 At.b < 20, we produce the key-value pair (t.a:t.b, (tag(2), t.d)jcatng
that it is produced and consumed by only if t.a > 10 A t.b < 20, we produce the
key-value pair (t.a:t.b, (tag(12), t.d)) indicating thiasiproduced by/; and consumed by
both J; and Jy; if t.a > 10 A t.b > 20, we produce the key-value pair (t.a, (tag(1), t.d))
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Figure 4.2: A comparison of applying reduce functions foriGaad GT

indicating that it is produced and consumed by ahlyotherwise, we do not produce any
map output for that tuple. We then partition the map output @md sort the map output
on a:b. In the reduce phase, we apply the reduce functioisanrid./; on the appropriate
values to produce the results féy and.Js. O

Generalization. We now discuss how GGT can be generalized to handle morewman t
jobs.

Consider a batch of jobg = {J, Js,-- -, J,} that are sorted in non-ascending order
of |A4;|. For each jobJ; € 7, let P;, denote all the jobs preceding in 7 whose map
output can be reused fof; i.e., P;, = {J; € J | j < i,K; < K,}. Furthermore, let
NM; = M; \ (Ujjepji Mf‘i) denote the map output of that cannot be derived from the
map output of any job irP;,. We refer toNV M; as thenon-derivable map outpwtf J; in

J. We useNM = |J;_, NM, to denote theon-derivable map outpdior all the jobs in

J.

GGT combines the batch of joly® into a single new job to share map input scan and
map output. In the map phase of the new job, for each 7, we produce and tag the

61



CHAPTER 4. MULTI-QUERY OPTIMIZATION IN MAPREDUCE
FRAMEWORK

map outputVM;; each tag here is of the formag(S), whereS C {i,i +1,--- ,n}. In
the reduce phase of the new job, we apply the reduce funabiotise appropriate values
based on their tags to produce the results for the batch efyjblich are discussed below.

Applying reduce functions for GGT. We now discuss how to apply the reduce functions
and output the results for the batch of jobs for GGT. For edsgup presentation, we
assume sum reduce functions (or other distributive redunetions as defined in Sec-
tion 3.7.2.

Algorithm 4.1: Reducer class for GGT
Input: a batch ofn jobs (J1, J2, -+, Jy)
Output: reduce output for each jolR, Ra, - - , Ry)

Method INITIALIZE begin

A = new Int[n]; Default value is O ;

B = new boolean[n]; Default value is false ;
C = new String();

Method REDUCE (String key, List[(tag, value)hegin

D = decompose key into attributes ;

foreachiin [1, Min(|D|,|C])] do

if C[i] # D[i] then

foreachjin[1, n] do

10 if i <|A;| <|C|and B[j] then

11 outkey = concatenate the first ;| attributes from C ;
12 emit(outkey, A[j]) ;

13 A[j] = 0; BJ[j] = false ;

A W N

© 00 N o O

14 break ;

15 C=D;

16 foreach (tag, value) in Listglo
17 foreachiin[1, n] do

18 if tag contains then

19 Ali] += value ;

20 if B[i] == false then
21 | BIi] = true;

22 Method Closebegin

23 foreachiin [1, n] do

24 if |A;] < |C|and B[i] then

25 outkey = concatenate the firist; | attributes from C ;
26 ‘ emit(outkey, A[i]) ;

Algorithm 4.1 shows the pseudocode for the reducer class for GGT. A redass n

Hadoop contains three methods: initialize(), reduce() elnde(). Prior to processing
any (key, List[(tag,value)]) pair, the initialize methaslgalled. In our reduce class, the
initialize method initializes three global variables; doeholding the aggregation values
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Figure 4.3: Example illustrating GGT

d|a|b|c|d Key (a:b:c)| Value-list (tag, d)
t1 115130 25| 5 15 t1 — (tag(1),5)
ta |20 30| 30| 10 15:15 ts — (tag(12),5)
t3 | 15115 25| 5 15:15:15 | t5 — (tag(123),10)
ty | 151 20| 25| 10 15:15:20 | tg — (tag(123),10)
ts | 15| 15| 15| 10 15:20 ty — (tag(12),10)
t¢ | 15| 15| 20| 10 20 to — (tag(1),10)
(a) An instance of” (b) (Key,Value-list) layout

for each job (denoted ad|n]), one for holding the boolean values for each job which
is used to indicate whether some aggregations are perfofonexhch job since its last
output (denoted aB|n|) and the remaining one for holding the attributes for theviones
examined key (denoted &5 and the number of attributes @i is denoted a$C'|). Then
the reduce method is applied for each (key, List[(tag, d@Jymir. In our reduce class, for
each (key, List[(tag, value)]) pair (the local arrdyis used to hold the attributes for the
examined key anD| is the number of attributes), the reduce method first chetiettver
we can output the results for some jobs. This checking is 8grimding the first changed
attributes (denoted aswherei € [1, min(|C|, |D|)]) between array§’ and D and then
for eachj € [1,n], if i < |A4;| < |C|] andB[j] == true, we output the results fas;
where its key is formed by extracting the fifst; | attributes from the arrag' and its value

is simply A[j] (we also have to reset[j] = 0 and B[j] = false). The intuition is that

if the i attribute changes, for a joly whose|4;,| is at least, since the map output are
sorted oni(;, all the values for the following keys can not be reused ferjti for its key.
Therefore, the results fof; for its key can be outputted. Then it updates the previous key
to be the current key (i.e., cogy to C). Finally, it applies the aggregations for the current
key and accordingly updates and B. After applying the reduce method for each (key,
List[(tag,value)]) pair, the close method is called. In cestuce class, the close method is
used to output the remaining results for the jobs (i.e., &mhg < [1,n|, B == true).

Note that the above algorithm assumes sum reduce functosher distributive reduce
functions). For non-distributive reduce functions, wededefer the applying of reduce
function until all the required values which may be disttémiin multiple consecutive
keys are buffered. Therefore, we may need to buffer the gadssociated with multiple
consecutive keys for non-distributive reduce functions.

Example 4.3: Consider using GGT to process three johs J, and.J; over the input
table in Figure4.3a). SincekK; < K, < Kz, the map output of/; can be reused for
J1 and J; and the map output of, can be reused fa#;. In the map phase, for each
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tuple in Figured4.3(a), we properly tag and produce the map output for the tluie jFor
example, for the tuplé;, since it satisfies the selection conditions fpand./; but not the
selection conditions fov;, we produce the map output key-value pair (15:15,(tagglR),
indicating that it is produced by, and can be reused foi. Figure4.3(b) shows the (key,
value-list) layout in the reduce tasKor all the map output.

In the reduce phase, when applying the reduce functionsdadn €key,value-list) pair,
for the first three keys (i.e., 15, 15:15, 15:15:15), sinez dttribute values for each of
the three keys does not change by comparing with the prekeyswe just apply the
reduce functions for them based on the tags. For exampleh&second key 15:15,
we aggregate the value 5 for bath and J, since it is tagged tag(12). For the fourth
key 15:15:20, compared to the previous key 15:15:15, theevaf the third attribute
changes. Thus, before applying the reduce functions fokélyel5:15:20, we need to
output the results for a job if its number of map output keyilaites is between the
number of the changed attribute (i.e., 3) and the numbertebates in the previous key
15:15:15 (i.e., 3). Therefore, we output the resultsfpior the key 15:15:15 (i.e., extract
the first 3 attributes from the previous key 15:15:15). Thaeg@rocedure is applied for
the fifth key 15:20 (i.e., output the results fds for the key 15:15 and/; for the key
15:15:20) and the sixth key 20 (i.e., output the resultsfidior the key 15 and/; for the
key 15:20). After examining all the (key,value-list) pawre output the remaining results.
In our example, we output the results fgrfor the key 20. O

4.3.3 Materialization Techniques

In this section, we present an alternative approach, tenmaierialization techniques
(MT), for enabling multiple jobs to share map input scan and mapubuGiven a batch
of jobs, the main idea of MT is to process the jobs in a spec#guence such that the
map outputs of some of the preceding jobs can be materiadizédised by the succeeding
jobs in the sequence. There are two basic materializatahmtques, namelynap output
materializationandreduce input materializatigrio enable sharing of map input scan and
map output, respectively. Here again, we first present ttleniques for processing two
jobs and then discuss the generalization to handle moretwjobs.

Map Output Materialization (MOM). Our first materialization technique, which en-
ables jobs/; andJ; to share the scan of the map input file, requires that the filpatand

2We assume there is only one reduce task for the jobs.
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input key and value types of and.J; to be the same. Assume thatis to be processed
beforeJ;.

In the map phase of;, we read the map input filé’ to compute both the map output
M, for J; as well as the map output; for J;. M, is materialized to the distributed file
system (DFS) to be used later for processing The reduce phase of is processed as
usual.

In the map phase of;, instead of reading the map input fitta second time, we read the
materialized map output/; from the DFS. The reduce phase.bfis processed as usual.

This simple materialization technique is beneficial if tbeat cost of materializing and
reading)\/; is lower than the cost of reading the input fife

Reduce Input Materialization (RIM). Our second materialization technique aims to
enable jobs/; andJ; to share map output. This technique requires fiat< K, J; to

be processed beforg, and the map output of; andJ; to be partitioned otk;. The key
idea of this technique is to materialize the map ouﬂwﬁj [ M, in the reduce phase of
J;, to be used later by the reduce phasé ofin this way, the sorting and communication
cost of the map outpLMZ.Aj () M; is eliminated when processing.

The map phase of; is processed as usual: we scan the inputHile produce the map
output M; for J;. To enable the reduce phase.bfto materializeMiAj A M, later, the
map output)/; is tagged as follows: tuples if/; ; are tagged usingug(ij) while the
remaining tuples (i.e., tuples i?t; \ M, ;) are tagged usingug(i).

In the reduce phase of, for each key, we apply the reduce functionpfon the values
associated with the key to produce the resultd;ofAt the same time, for values that are
taggediag(ij), we derive and materialize the sorted map oqu‘t" [+ M, into the DFS
so that the materialized output will be later used by the cedphase of/;. Note that
an optional combine function can be applied to reduce the @izhe materialized map
outputMZ.Aj (A M; and hence the materializing and reading costs.

In the map phase of;, we scan the input filé’ to generate the partial map output \
MiAj for J;. The remaining map output of (i.e., ij?) is not generated explicitly since
they have already been sorted and materialized;syreduce phase.

In the reduce phase of, we first read the materialized map outpuf (+ MZ.AJ' from DFS
and merge them with the map output that are shuffled from thephase. Then for each
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key, we apply the reduce function df on the values associated with that key to produce
the results ofJ;.

Thus, RIM reduces the sorting and communication costs/fdsy reducing the size of
J;'s map output, but incurs an additional cost to materialize l@adMiAj [ M;.

Combining MOM & RIM. Both MOM and RIM can be applied together as follows. In
the map phase of;, besides producing the map output for J;, we also generate the
map outputM; \ MiA" for J;. M; \ MZ.AJ' is materialized into the DFS to be reused later
for J;. Then we process; as before.

In the map phase of;, instead of reading from the input file, we read the material-
ized map outputl/; \ ij from DFS and simply redirect the read tuples as the map
output. Then we procesg as before. The question of whether MOM and RIM should
used together is decided in a cost-based manner dependwgaiher the total cost of
materializing and reading/; \ MZAJ' is lower than the cost of reading the input file

Example 4.4: Consider the two jobd; and.J, again. Ask; < K,, MT is applicable to
enable both jobs to share map input scan and map output. Asapeutput of/; can be
reused forJ;, we process; beforeJ;. In the map phase of;, for each tuplée from 7', if
t.b < 20At.a < 10, we produce the key-value pair (t.a:t.b,(tag(2),t.d));4f< 20 A t.a >
10, we produce the key-value pair (t.a:t.b,(tag(12),t.d));bi > 20At.a > 10, we produce
the key-value paitt.a, t.d) and materialize it into DFS to be reused later fiorto share
map input scan; otherwise, we do not produce any map outpthdbtuple. In the reduce
phase of/,, for each key, we sum the values associated with the key ttugeothe results
of J;. At the same time, for each specific key,:t.b;, for all the values<vy,--- ,v,>
associated with the key and taggedthy(12), we materializet.a;,> ;| v;) into DFS
to be reused later for; to share map output. When processihgin the map phase, we
read the materialized map output and sort and partition themhe reduce phase, we first
read the materialized map output and merge them with the mggubshuffled from the
map phase. Then for each key, we sum the values associatetheikey to produce the
results ofJ;. O

Generalization. Given a batch of jobs7 = {.J;, Jo,-- -, J,} sorted in non-ascending
order of|A4;|, MT processes the jobs sequentially based on this ordeiiog she map
output of a preceding job can possibly be reused for a suctg@b.
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When processing, in the map phase, we first produg&\/; for J; (which is simply
M), and tag each tupleaccordingly depending on the subset of remaining jobhg in
that¢ can be used to derive their map outputs. Then for eadh < i < n), if the cost

of materializing and reading/ M; is lower than the cost of reading the input fite we
produce, tag, and materializé)M; for J;. In the reduce phase, when applying the reduce
function for Jy, for eachJ; (1 < i < n), based on the tags in the values, we materialize
the map outpuNMf‘i [+ M; to be reused later fof;.

When processing; (1 < i < n), inthe map phase, iV M; has been materialized, we read
N M; and simply redirect the read tuples as the map output; otkeywe read the input
file F' to produce and tag the map outpui\/; for J;. In the reduce phase, we first merge
N M; with the map output that are materialized by the previous j((i)Je.,NMin [+ M;

for eachj € [1,7 — 1]) and then process the reduce function/af When processing
the reduce function of;, for each.J; (i < j < n), based on the tags in the values, we
materialize the map outleMZAj A M, to be reused later fof;.

4.3.4 Discussions

In this section, we compare the proposed techniques, disheschoices for map output
keys and show how our proposed techniques apply to multitijgbs.

Comparison of techniques. Our GGT generalizes and subsumes MRShare’s grouping
technique. However, there is no clear-cut winner betwee @&d MT. Since GGT
merges a group of jobs into a single new job, it requires thp méput key and value
types of the group of jobs to be the same, which may require@dpnversion overhead.
Moreover, GGT also incurs a higher sorting cost due to thgelamap output of the
merged job. On the other hand, MT has the limitation that ¢hs jwithin a group must

be executed sequentially, and MT also incurs the overheaésoft materialization and
subsequent reading of the materialized results.

Choices for map output keys.For both GGT and MT, the choice of the map output key
(i.e., ordering ofA; that specifies the map output kéy; for a job J;) is important as it
affects the sharing opportunities among jobs. For exanaplesider the jobd;, J, and.J;

in Table4.1 Observe that there are two alternative map output keys.foif we choose

K, to be (a,b), we can share map outputfoand./,; otherwise, withiK, = (b, a), we can
share map output faf; and.J,. Thus, to optimize the sharing benefits for a given batch
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of jobs, we need to determine the map output key for each jebdefer a discussion of
this optimization to Sectiod.5.

Handing multi-input jobs. Our proposed techniques can be easily extended to handle
multi-input jobs as well. Consider the two jobfs and J; in Table4.1 which have the
common input filesI" and k. For both7T and R, the map output key ofs is a proper
prefix of the map output key of;. Therefore, we can apply MT to share both the map
input scan as well as map output for the two jobs. Furthermoyeconverting the map
output keys of the two jobs into the same type, MRShare’smjrautechnique can share
the map input scan for the two jobs while our GGT can share thetimap input scan and
map output for the two jobs.

4.4 Cost Model

In this section, we present a cost model to estimate the &afucost of a batch of job-
sJ = {Ji,J2,---,J,} in the MapReduce framework using the proposed techniques.
Similar to MRShare, we model only the disk and network I/Ots@s these are the domi-
nant cost components. However, our cost model can be exteadeclude the CPU cost

as well. Tabled4.2 shows the system parameters used in our model, where thamiiksk
network 1/0 costs are in units of seconds to process a page.

We assume the jobs i are sorted in non-ascending order|df| and each/; € J is
processed as: map tasks and reduce tasks on the input file. We use|R| to denote
the size ofR in terms of number of pages, whefecan be an input file or map/reduce
output of some job. For a map outplf;, we usepy; = [logD[Mﬂ to denote the

mBm

number of sorting passes of its map tasks wHéﬁéédenotes the average size of a map
task,ph, = HogD(%ﬂ — 1 to denote the number of sorting passes of its reduce tasks
where”f—i‘ denotes the average size of a reduce taskdyp,,, to denote the sum ofy.

andpy,..

3The final merge pass optimization is enabled for sorting iddt®’s reduce phase.
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Table 4.2: System parameters
| Parameter Meaning \

Cyyr cost of reading a page from local disk

Cro cost of writing a page to local disk

C sum ofCy,. andCy,,

Car cost of reading a page from DFS
Caw cost of writing a page to DFS

Cy sum ofCy, andCy,,

Cy network I/O cost of a page transfer

D merge order for external sorting

B, buffer size for external sorting at mapper nodes
B, buffer size for external sorting at reducer nodes

4.4.1 A Cost Model for MapReduce

Given a jobJ;, its total cost (denoted &s;,) consists of its map and reduce costs (denoted
asC);, andCp, respectively). The map cost is given by:

Cit, = Cag| F| + Chas| Mi| + Cipiy. | M| (4.1)

whereC,, |F’| denotes the cost of reading the input filg, | ;| denotes the cost of writing
the initial runs of the map output, ar@|M/;|p}; denotes the cost of sorting the initial
runs.

The reduce cost is given by:
Cr, = G| M;| + Ciply, | Ms| + C| M;)| (4.2)

whereC;|M;| denotes the transfer cost of the map outgyt);|p}, denotes the sorting
cost of the map output, and,,.|V/;| denotes the reading cost for the final merge pass.
We do not include the cost of writing the job results sincs ttost is common to all the
proposed techniques.

Therefore, the total cost can be expressed as follows:

Cr, = Ca|F| + (Cy + C) + Cipag,)

M;| (4.3)

Our cost model for Hadoop has one major difference from MR&&aost model. In
MRShare’s model, the number of initial runs for sorting ie teduce phase is assumed to
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be equal to the number of map tasks (ke), Based on this assumption, using the group-
ing technique does not increase the sorting cost in the egpluase. However, in practice,
Hadoop’s reduce phase actually merges the transferred atpptan main memory based
on B, to build initial runs which implies that using the groupireghnique could increase
the sorting cost in the reduce phase. Our cost model doesametthis simplifying as-
sumption and it is therefore more accurate than MRShareteindn our performance
evaluation, we apply our more accurate cost model to MRSh&IE technique as well
so that all the techniques are compared based on the sanTaaadesk

4.4.2 Costs for the Proposed Techniques

In this section, we use the above cost model to estimate #ts fmr the naive technique
and our proposed GGT (which subsumes MRShare’s GT technégueell as MT tech-
niques.

Naive technique: The naive technique processes each job independently, Teusost
of the naive technique is simply the sum of the cost of eaclwjoich is given by:

Ca = nCy| F| + (Co+ C) S IMi| + Y par,

i=1 =1

M;| (4.4)

Generalized grouping technique:GGT combines the batch of jolgs into a single new
job whose map output is denoted &s\/ = | J_, NM;. Thus, the cost of GGT is given
by:

Ca = Cq|F| + (Cy+ Cr 4 Cipya) [N M| (4.5)

Materialization technique: MT processes the jobs il sequentially in non-ascending
order of | A;| and materialize and reuse the map output as we have desarilsettion
3.3. Thus the cost of MT is given by:

C = Car FI + Y min{Ca | F|, Cal NM; |} + (C; + C) [N M|

=2

. (4.6)
+C ZPNMi
i=1

n—1 n
NM|+Cy > > INMY (7 M|

i=1 j=i+1
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Note thaty " , min{Cy,|F|, Cy4| N M;|} denote the materialization and reading cost in the
map phase, andy > >0 |NM;" @ M;| denote the materialization and reading
cost in the reduce phase.

4.5 Optimization Algorithms

In this section, we discuss how to find an optimal evaluatitam gor a batch of jobs
j = (Jla‘]27'” 7‘]71)

An evaluation plan for7 specifies the following: (1) the map output kéy; for each
job J; € J; (2) a partitioning of the jobs i/ into some number of disjoint groups,
Gy, ,Gp, Wherek > 1andJ = G, U---U Gy; and (3) a processing techniqiligfor
evaluating the jobs in each grodf. Since MRShare’s grouping technique is subsumed
by GGT, and the naive evaluation technique is equivalenattitppning 7 into n groups
each of which consists of a single job that is processed by,@@Tan simply consider
only GGT or MT for eacH;.

Let Cost(7;, T;) denote the cost of evaluating the group of jabsC 7 with technique
T, € {GGT,MT}. The estimation of Cost{;, 7;) has already been discussed in Sec-
tion 4.4,

The optimization problem is to find an evaluation planosuch that the total evaluation
costh:1 Cost(G;, T;) is minimized. A simpler version of this optimization prebh
was studied in MRShare and shown to be NP-hard. The probleimjgler in MRShare
for two reasons: first, MRShare considers only the naive andpng techniques; and
second, MRShare does not have to consider the selectior ohdp output keys as this
does not affect the sharing opportunities for the groupeahnique. As a result, the
heuristic approach in MRShare can not be extended for oue m@mplex optimization
problem.

To cope with the complexity of the problem, we present a tliage approach to optimize
the evaluation plan. In the first phase, we choose the mapblgy for each job to
maximize the sharing opportunities among the batch of jdbhsthe second phase, we
partition the batch of jobs into groups and choose the peicgsechnique for each group
to minimize the total evaluation cost.
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4.5.1 Map Output Key Ordering Algorithm

In this section, we discuss how to choose the map output kesafch job (i.e., determine
the ordering of the key attributes) to maximize the sharipgastunities for a batch of
jobs. To quantify the sharing opportunities for a batch disjo7, we use the notion of
thenon-derivable map outpdor 7, denoted byV M, that was defined in Sectigh3.2
Since a smaller size d¥ M represents a larger amount of sharing among the jobs, in
to maximize the sharing among the jobs’in the map output key for each job is chosen
to minimize the size ofV M.

A naive solution to optimize this problem is to enumeratetladl combinations of map
output keys for the jobs and choose the combination thatmibais the size ofV/.
However, the time complexity of this brute-force solutisi(| A, |!| Az|! - - - | A,|!) which

is infeasible for large number of johsIn this work, we propose a greedy heuristic to
optimize the map output key for each job.

Our greedy algorithm determines the ordering of the mapudkigy attributes for each job
J; progressively by maintaining a list of sets of attributegerred to as the ordering list
(denoted byO L;), to represent the ordering relationship for the map outputattributes
of J;. The attributes within a set are unordered, and the atesbhut a setS are ordered
before the attributes in another s&tif S appears beforé” in the list. We usdOL;]|

to denote the number of setsdn’,. For example, in the ordering list{a, b, c}, {d}>,
the attributes infa, b, c} are unordered and they precede the attriblutd-urthermore,
given two jobsJ; and.J;, we useOL, = OL; to represent thaD L, is a prefix ofOL,,
i.e., for eachi € [1,|OL;|], thei" sets inOL; and OL; are the same. For example,

<{a,b}, {c}> = <{a,b},{c},{d}>.

Besides maintaining L; for each jobJ;, our approach also maintainseuse setdenoted
by RS;, for each jobJ;. The purpose of?S; is to keep track of all the jobs that can be
reused for computing the map output.bf

Initially, as we have not chosen any jobs to share map outipeitsize of NV M is simply
the sum of each job’s map output size. Furthermore, for daeh.7, we initializeO L; to
be a list with a single set containing all the attributestirand initialize R.S; to be empty.
We then construct a weighted, undirected gréph: (V, E) to represent all the potential
sharing opportunities ity as follows. Each/; € J is represented by a vertex in. An

“For example, we experimented with a batch of 25 randomly igeee jobs each with a maximum of
four attributes in its map output key, and the brute-forgerapch did not complete running in 12 hours.
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Mg= [1,20] My =[10,20] Mg=[1,20] M, =[10,20]

OLg = <{a,b,c,d}> OL, = <{ab,c,e}> OLg=<{a,b,c}{d}> OLo=<{a,b,c.e}>

RSs= RS = {} RS« {} RS, = {}
M= [5,25] M= [5,10] M,o=[5,25] g/ILn—:[iJS]d y
OL, = <{a,b,c}> OL;=<{a,d}> OLj=<{ab,c}> Rs” B {a,d}
RSy = {} RS, ={} RS0 = {Js} n=1{

M= [15,25] M,,= [15,25]
OL;p=<{ab}> OL;=<{a,b}>
RS]Z: {} Rslz: {}
Initial Graph 1* Iteration
Mg= [1,20] My =1[10,20]
OLg =<{a,)b} {c} {d}> OL, = <{a,b,c,e}>
RSs= {} RSy = {}
Mjo=1[5,25] M, =[5,15]
OLi = <{ab} {c}> OLy = <{ad}>
RS0 ={Js} RS; = {}
1

M, =[15,25]
OLj;=<{a,b}>
RS ={Js,J10}

2" Iteration

Figure 4.4: An example to illustrate key ordering algorithm

edgee = (J;,J;) is in E if there exists two map output keys,; and ;, respectively,
for J; and J; such that the map output of one job can be reused for the atbe(i.g.,
K; =< K; or K; < K;). The weight of(.J;, J;) is initialized to be the reused map output
size for the two jobs (i.e}M;"” M| if K; < K, or M (M| if K; < K;). All the
edges inE are initialized to be unmarked.

Figure 4.4 shows an example of the initial graph constructed for a bafcfive jobs
{Js, -+, J12}. For ease of presentation, we use an interval of integerspiesent the
map output of a job where the size of an integer is 1. For exantipé map output size of
Js is 20 since it contains 20 integers in its map outduR0]. The initial graph contains
the edges; = (Js, Jio) since there exist&y = (a,b,¢) and Ky = (a, b, ¢,d) such that
Ky = Kg; moreover, the weight of; is 16 since there are 16 values (i.e., [5,20]) in the
map output of/s that can be reused fof,.

For convenience, we usg;, to denote the set of all the unmarked edges incident on a
nodeJ; € V, and useN,, to denote the set of all the vertices that have a marked edge
with a nodeJ; € V.

Overall algorithm. Given an initial graphG = (V, E), to reduce the size oV M, our
greedy approach iteratively selects and marks one edge tliengraphGG until all the
edges inG have been marked. Algorithdh2 shows the pseudocode of our greedy ap-
proach. At each iteration, it first chooses an unmarked edtfetive maximum weight
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Algorithm 4.2: Key Ordering Algorithm
Input: An initial graphG = (V, E)
Output: Map output key for each job
1 while E has unmarked edg#o
choose an unmarked edgg.. € F with the maximum weight to share and mark it ;
V1 = nodes whose ordering lists change gy, ;
V5 = nodes whose reusing sets changecfoy, ;
foreach J; in V; do
foreachein E;, do
if e is not validthen
| removee from E ;
foreach J; in V5 do
foreachein E;, do
| update the weight for ;
foreach J; in V do
\ derive the map output key faf; ;

© 00 N o g b~ W N
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(i.e., the chosen edge represents the largest sharingtapgiand maximizes the reduc-

tion of the size ofN M) to share and marks the edge. Then based on the chosen edge,
it updates the ordering lists and reusing sets for some jdlasrefer tol; andV; as the

set of jobs whose ordering lists and reuse sets, respggtivale been changed in the
updating. Finally, for eacll; € V;, we check the edge validity for all the edgeshn,

and remove the invalid edges (to be explained). For gaehV;, we update the weights

for all the edges i, (to be explained). After the iterative process terminatesgerive

the map output key for each job based on its ordering list.

In the following, we explain how the graph is updated in edehation and how the map
output key is derived at the end of the iterative process.

Updating ordering lists. Suppose that the edge= (.J;, J;) is selected in an iteration.
We first update the ordering lists fof and J;. Then for each job,, € {.J;, J;}, if the
ordering list of J;, has changed, we also update the ordering lists for the jobg,irand
recursively propagate the updating for the job$\in whose ordering lists have changed
until all the jobs have been examined or there is no more jobsetordering list has
changed.

Given an edge = (J;, J;), the main idea to updateL; andOL; is to ensure that after
the updating, one ordering list is a prefix of the other omgtist (i.e.,OL; < OL; or
OL; = OL;). For example, the first iteration choosas= (Js, .J1o) to share since the
weight of e; is the highest, and sina@Ls = <{a,b,c,d}> andOL,y = <{a,b,c}>,
OLs is updated to<{a,b, c},{d}> to ensure thaOL,, < OLs. Therefore, to update
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Algorithm 4.3: Update Ordering Lists
Input: An edgee = (J;, J;)
Output: Updated ordering lists fay; andJ;
1i=1;
2 while i < Min(|OL;|,|OL;|) do
3 setl =0 L;.get(i) ;
set2 =OL;.get(i) ;
if setl.equals(setzhen
continue ;
else ifsetl.containAll(set2ihen
‘ setl.removeAll(set2);

© 00 N o o b

OL;.insert(i, set2) ;

10 else ifset2.containAll(setlthen
11 set2.removeAll(setl) ;

12 OL;.insert(i, setl) ;

13 i++;

OL; andOL;, we iterate through the setsdh; andO L; and accordingly decompose the
corresponding sets to maintain the prefix relationship betwthe two lists. Algorithm.3
shows the pseudocode of this updating. The time compleaityhis updating i) (m),
wherem is the maximum number of map output key attributes in a jobc&in is usually
very small, we assume this checking can be dor@(ih) time.

For example, in Figurd.4, the first iteration chooses the edge= (Js, J10) to share.
ThenOL,, andOLg are updated as followsD L, does not change andLgs becomes
<{a,b,c},{d}>. The second iteration chooses the edge= (.Jy, J12), andOL;, and
OL,, are updated as follows) L,, does not change andL,, becomes<{a, b}, {c}>
which triggers the updating fa@y Lg sinceJs has a marked edge with,. Then we update
OLg to be<{a, b}, {c},{d}>.

Updating reuse sets.The updating of reuse sets is also done recursively sinoléine
updating of ordering lists. Therefore, we focus on explajihe updating of reuse sets
for two jobs.

Given an edgee = (J;, J;), the main idea to updat&S; and RS, is as follows. If
A; C A;, we updateRS; by adding the jobs iRS; U {.J;} into the setRS; since all the
jobsinRS; U {J,} can be reused fof;. Similarly, if A; C A;, we updateRS; by adding
the jobs inRS; U {J;} into the setRS; since all the jobs ilkS; U {J;} can be reused for
J;. Otherwise, we havel; = A;, and we update botRS; and RS; by assuming that the
map output of/; will be reused forJ; as follows. LetS denote a copy of2.S;. We update
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RS, by adding the jobs iRS; U {J;} into RS;, and update?S; by adding the jobs ity
into RS;. The time complexity of the updating 3(1).

After updating the ordering lists and reuse sets as descabeve, we then use the up-
dated information to update the graph this includes identifying invalid edges (to be
defined) inGG, and updating some edge weights.

Identifying invalid edges. For a job.J; € Vj, sinceOL; has changed, for eache £,
we need to check whetheris still a valid edge. An unmarked edge= (J;, J;) in G is
defined to be @alid edgef we can derive two map output keys; and K ;, respectively,
for J; andJ; from OL; andOL; such thati; = K; or K; < K; (i.e., we can share map
output for the two jobs); otherwise,is considered amvalid edgeand is removed from
G.

Algorithm 4.4: Identifying Invalid Edges
Input: An edgee = (J;, J;)
Output: Whethere is a valid edge
i=1;
OL; = newListOL;); OL!; = newListOL;) ;
while i < Min(|OL;|,|OL’]) do
setl =OL..get(i) ;
set2 =0 L’.get(i) ;
i++
if setl.equals(setZhen
| continue ;
else ifsetl.containAll(set2lhen
\ OL!.insert(i, setl.removeAll(set2)) ;
else ifset2.containAll(setlihen
\ OL;..insert(i, set2.removeAll(setl)) ;
else
| return false ;
return true ;
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We can check whether an unmarked edge (.J;, J;) is a valid edge or not as follows. If
we can derive two ordering list8L; andO L’ respectively fromDL; andOL; such that
they satisfy the prefix relationship (i.€)L; < OL}; or OL., < OL}), then the edge is a
valid edge; otherwise, the edge is an invalid edge and caerbeved from. This detalil
process (given in Algorithm.4) is similar to the process of updating the ordering lists for
two jobs, and the time complexity is aléf(1). For example, in Figurd.4, after choosing

ey to share in the first iteratiori) Ls becomes<{a, b, c}{d}> which makes:; an invalid
edge sinc® Ly, is <{a,d}>.
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Updating edge weights.For a jobJ; € V43, sinceRS; has changed, for eache E;,,
we need to update the weight ferlf the updated weight is 0, we can simply remove the
edge since sharing the edge will not reduce the sizg€ f.

Given an edge: = (J;, J;), its weight is updated as follows. W; C A, (i.e., the
map output of the jobs iRkS; can be reused far;), then the weight ot is updated to
|Si1] — |Si2|, where|S;;| and|S;2| denote, respectively, the size of the map output that
needs to produce (i.e., the size of the map outpuf; dfiat can not be reused froms;)
before and after we share Note that bothS;;| and|S;;| are computed based adis;
which has to be updated if we shareSimilarly, if A; C A, (i.e., the map output of the
jobs in RS; can be reused for;), then the weight of the edge is updated$e,| — |.S;2/,
where|S;;| and|S;,| denote, respectively, the size of the map output thateeds to
produce before and after we sharéDtherwise, we have; = A; (i.e., the map output of
the jobs inRS; and RS; can be respectively reused férand.J;), and the weight of the
edge is updated to B€;;| — |Si2| +|5;1| — |.Sj2|. The time complexity of this updating is
O(1).

For example, in Figurd.4, after choosing; to share in the first iteratior?.5;, becomes
{Js} which triggers the weight updating for the edgestin, = {es,es}. Let us first
consider,. After choosinge; to share,/;, only needs to produce the map output [21,25]
(i.e., the remaining map output [5,20] can be reused frRjrand the map output of,
can not be reused to reduce the map output [21,25] furthezretbre, the weight of,
decreases to 0 ang is removed from the graph. Next, considgr After choosinge; to
share, both the map output &f and.J;, can be reused fof;,. However, the weight ofg
remains the same sinclg does not enable additional reusing fGs.

Deriving map output key. Note that at the end of the iterative process, it is possinle f
some set in an ordering li6tL; to contain more than one attribute (i.e., the ordering of the
key attributes forJ; is not yet a total ordering). To derive the map output key.fomwe
have to determine an ordering for the remaining partialjeoed attributes. To correctly
derive the ordering of key attributes for such scenariosnake use of a default ordering
for all the attributes. For example, in Figued, at the end of the iterative process (i.e.,
after we have chosen the edgeto share), the ordering lists for the five jolss - - - , J1o

all contain at least one set that have more than one attriigsuming that the default
ordering for all the attributes i, b, ¢, d), then the map output keys fok,, J;o and

Jg are, respectively(a, b), (a,b,c), and(a,b,c,d), which captures all the sharing that
our algorithm has chosen. Note that without using a defadiring, we could wrongly
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choose the map output kéy, a) for J;», and the map output key, b, ¢) for J1o which
does not allow these two jobs to share their map output.

Time Complexity. The time complexity of the algorithm depends on the number of
iterations. The time complexity for th&" iteration isO(| E;|), where| E;| is the number

of edges in the graph in this iteration. Therefore, the timmpglexity of the algorithm is
O(In?*) wherel is the number of iterations an@(n?) is the maximum number of edges
in the graph.

4.5.2 Partitioning Algorithm

In this section, we discuss the second phase of our appro&chhow to partition a

batch of jobs into multiple groups and choose the procedsittinique for each group to
minimize the overall evaluation cost. We use the nota{®n 7;) to denote that a group of
jobsG; is being processed by a technidlieRecall that sincé&'GT subsumes MRShare’s
grouping technique, and the naive evaluation techniqueusvalent to partitioning the

batch of jobs into single-job groups each of which is proeddsy GGT, it is sufficient to

consider only the GGT and MT processing techniques.

Our partitioning algorithm is based on the conceptwrging benefitvhich is defined
as follows. Consider two groups of job&7;,71) and (Gs, Ts), whereG; N Gy = 0.
We define themerging benefifrom (G, 7)) and (G, 1) to (G1 U Gy, T3), whereTs €
{GGT, MT}, as Cost(z1, T1) + Cost(Gs, T») - Cost(Gy U G, T3).

Our partitioning algorithm is a greedy approach that ifeedy selects a pair of groups
of jobs to be merged based on their merging benefit. Initi@ach job is treated as a
single-job group processed by GGT (which is equivalent ® rihive technique since
the group has only one job). At each iteration, it merges W droups that have the
maximum positive merging benefit into a new group. Note thhemvcomputing the

cost for a merged group, as there are two techniques that mvproaess the group, i.e,
the generalized grouping technique and materializatiohrtigjue, we will compute the

cost for both techniques and choose the better one for thggrohe iterative process
terminates when the maximum merging benefit is non-positive

Note that the time complexity of the grouping algorithnti§:?), wheren is the number
of jobs in the batch. In the first iteration, we compute thegimar benefit for each pair of
groups, and in each subsequent iteration, since thereysooe new group produced in
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Table 4.3: Compared algorithms
| Notation | Algorithm \
NA Naive algorithm that evaluates each job independently
MRGT MRShare’s grouping technique combined with

its own partitioning algorithm
MRShare’s grouping technique combined with

GT i .
our partitioning algorithm
Our generalized grouping technique combined with

GGT L )
our optimization algorithm
Our materialization technique combined with

MT o .
our optimization algorithm

GGTMT Our generalized grouping and materialization techniques

combined with our optimization algorithm

the previous iteration, we only need to compute the mergergeht for each group with
the new group.

4.6 Experimental Results

In this section, we present an experimental study to evalmatt proposed approach. Sec-
tion 4.6.1examines the performance of our approach, SedatiérR evaluates the effec-
tiveness of our map output key ordering algorithm and Sectié.3evaluates the effi-
ciencies of our optimization algorithms.

Algorithms. We compared six algorithms (denoted MA, M RGT, GT, GGT, MT,
andGGT MT) in our experiments as shown in Talfle3. The two competing algorithms
were N A, which denote the naive approach of evaluating each jobpewgently, and
M RGT, which denote MRShare’s grouping technique combined wstbwn partitioning
algorithm. ForM RGT, we experimented with two different implementation vatg&an
the original variant 44], which uses only a single global tuning parametee [0, 1]
to quantify the sharing among all the jobs in a batch, and damced variant which
provides a more fine-grained and accurate approach to éstjolesharing using a tuning
parametety; ; for each pair of jobs/; and.J;. As our experimental results show that the
enhanced variant strictly outperforms the original vafiane do not report results for the
original variant and us&/ RGT to denote the enhanced variant.

SFor example, in the default setting, the running time forehbanced variant was 3555s while that for
the original variant was, 3820s, 3942s, 3931s, 3802s, 38869s, 4385s, 4872s, and 4881s, respectively,
for a value of 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 diic2, 0.1, 0}.
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Our three main proposed algorithms includ&=T', which denotes the generalized group-
ing technique (combined with our optimization algorithm}", which denotes the mate-
rialization technique (combined with our optimization@iighm); andGGT M T, which
denotes the approach combining béi:7" and MT. In addition, to demonstrate the
effectiveness of our partitioning heuristic (Sectib®.2, we also introduce a variant of
M RGT, denoted byT', which combines MRShare’s grouping technique with ouripart
tioning heuristic.

Datasets and Queries. We used synthetic datasets and queries for our experiments.
The schema of the datasets waata (key char(8), dim1 char(20), dim2 char(20), dim3
char(20), dim4 char(20), range int, value inthich consisted of one unique key attribute,
four dimensional attributes used as group-by attributes,range attribute used as the se-
lection attribute, and one value attribute used as the ggtjom attribute. Each of the four
dimensional attributes had 500 distinct values and all tiréoate values were uniformly
distributed. The datasets were stored as text format ansizbeof each tuple was about
100 bytes. The default dataset had 1.7 billion tuples witiza af 160GB.

The synthetic queries were generated from the followingplate: select T, sum(value)
from Data where a < range < b group by T, whereT was a randomly selected list of
dimensional attributes, andandb were randomly selected values such that b. The
default number of queries in a query batch was 20. Each bditghevies was run three
times and we report their average running times.

Experimental environment. Our experiments were performed using Hadoop 1.0.1 on a
cluster of nodes that were interconnected with a 1Gbps bwiach node was equipped
with an Intel X3430 2.4GHz processor, 8GB memory, 2x500G A ABks and running
CentOS Linux 5.5. The default cluster size was 41 (with 1 srasbde and 40 slave
nodes).

Hadoop configuration. The following Hadoop configuration was used for our experi-
ments: (1) the heap size of IVM running was 1024MB; (2) thadésplit size of HDFS
was 512MB; (3) the data replication factor of HDFS was 3; (8 VO buffer size was
128KB; (5) the memory for the map-side sort was 200MB; (6) gpace ratio for the
intermediate metadata was 0.4; (7) the maximum number afuroent mappers and the
maximum number of concurrent reducers for each node wasa@) the number of
reduce tasks was 240; (9) speculative execution was difal§li0) JVM reuse was en-
abled; and (11) the default FIFO scheduler was used whighatgconcurrent execution

6Speculative execution is typically disabled in a busy @ustue to its negative impact on perfor-
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of jobs; note that fon\/T', while the jobs within a group were executed sequentiallysj
from different groups were executed concurrently.

Cost model parameters.We ran some I/O benchmarks in the cluster to calibrate our cos
model parameters as follows: the cost ratio of local reatiéws 1, the cost ratio for DFS
read and write are, respectively, 1 and 2 (due to replicdtiotor), and the cost ratio of
network 1/0 is 1.4. Note that the setting of the same cosb ffati both local and DFS
reads is reasonable due to the data locality property of thpR¢duce framework.

Summary of results. First, our algorithms &7, GGT, MT, GGTMT) significantly
outperformN A by up to 167% andV/ RGT by up to 107%. In particulaiizT" outper-
forms M RGT by up to31% demonstrating the effectiveness of our partitioning atpaor
against MRShare’s partitioning algorithm. Second, amamgatgorithms,GT' performs
the worst, and there is no clear winner betwé&e@T and MT (as explained in Sec-
tion 4.3 GGT outperformsMT by up to24% for some cases andl/T' outperforms
GGT by up to12% for other cases. The overall winning approact&zi§T MT which
outperforms the best aiFGT and MT very slightly. Given this, to avoid cluttering the
graphs, we do not explicitly showG MT in the graphs as its performance is approximat-
ed by the best offG'T" and M T'. Finally, our results show that the optimization overhead
incurred by our approach is only a negligible fraction of tb&l processing time. Thus,
the optimization overhead of our approach is negligiblena¥¢he queries do not have
any sharing opportunities.

4.6.1 Performance Comparison

In this section, we evaluate the effectiveness of our og@tnon algorithms by varying
four parameters, i.e., data size, split size, number ofigsi@nd cluster size. Figurke5
shows the experimental results with the the improvemenbfagin %) of GGT', M T,
GT andM RGT over N A indicated.

Effect of number of queries. Figure4.5a) compares the performance as the size of a
query batch is increased. Observe that our algorithmsfgigntly outperform/N A and
M RGT. For example(GT outperformsV A by 105% on average and up to 167% when

mance p6]. Indeed, in our preliminary experiments with speculaxecution enabled, we observed that
the performance of all the algorithms degraded. For exanmpkhe default setting, the running times for

both N A andM RGT increased by 10% while that fa*rG'T" and M T" increased by 6%. Thus, the winning

margin of our algorithms increased slightly o€ and M RGT with speculative execution enabled.
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the number of queries is 30, and> 1" outperforms)V RGT by 85% on average and up to
107% when the number of queries is 30. Furthermore, as théeuoh queries increases,
the winning margin of our algorithms ové¥ A also increases. This is expected as the
sharing opportunities among queries also increase withjuleey batch size.

Effect of data size. Figure4.5b) examines the performance as a function of data size.
Note that as we increase the data size, we also increasenti®enof reduce tasks. This is
reasonable as the number of reduce tasks is usually propakto the data size, as noted
also in p, 68]. Therefore, we set the number of reduce tasks to be 1203500 and 480,
respectively, for data size of 80GB, 160GB, 240GB, and 320GB

Here again, our algorithms significantly outperfoNl andM RGT'. For exampleGGT
outperformsV A by 103% on average and up to 128% when the data size is 320@B, an
GGT outperformsM RGT by 82% on average and up to 93% when the data size is
320GB. Furthermore, as the data size increases, the rutimiedgor the algorithms also
increases. In particular, the running time 914 increases much faster than for the other
algorithms which therefore increases the winning margithef other algorithms over
NA. The reason behind this is that by partitioning the quernés groups, the non-NA
algorithms are more scalable. For example, in the defattinge(with a batch of 20
gueries),N A needs to scan the input table 20 times wii#€7’, which has partitioned
the batch of queries into two groups, only needs to scan the able twice.

Effect of cluster size. Figure 4.5c) compares the effect of number of slave nodes in
the cluster. Here again, our algorithms significantly ocfgwen NA and M RGT. For
example,GGT outperformsN A by 118% on average and up to 136% when the num-
ber of nodes is 10, an@GT outperformsM RGT by 89% on average and up to 92%
when the number of nodes is 10 (the improvement fact@rGf" over M RG'T does not
show significant differences for all the node sizes). Furttuee, as the cluster size in-
creases, the running time for all the algorithms decredsgzarticular, the running time
for N A decreases much faster than for the other algorithms whitefibre reduces the
winning margin of the other algorithms ovarA as cluster size increases. Thus, the per-
formance improvement from the increased parallelism uaifagger cluster benefits the
non-optimizedV A more than the already optimized ndnA algorithms.

Effect of both data size and cluster sizeBesides studying the effect of the data size and
cluster size parameters separately, we also conductedidaimadl experiment to examine
the joint effect of both these parameters. In Figdr&d), a cluster size of 10, 20, 30,
and 40 slave nodes was used, respectively, for a data siZeGB480GB, 120GB, and
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160GB. As the results show, the performance of each algoritbes not vary very much
as both the cluster size and data size jointly increasep#msonstrates the scalability of
our algorithms wrt these two parameters.

Effect of split size. Figure4.5e) compares the effect of the split size. Here again, our
algorithms significantly outperforrVA and M RG'T. For example, our best algorithm
(i.e., GGT or MT) outperformsN A by 115% on average and up to 162% when the split
size is 128MB, and our best algorithm (i.&GT or MT) outperformsV RGT by 81%

on average and up to 94% when the split size is 1GB. Obsertthtra is no clear winner
betweenGGT and M T as explained in Sectioh 3. For N A, we observe that its running
time decreases with increasing split size until a certaiesiold (e.g., 512MB foV A)
after which its running times increases. This is becausenwihe split size is too small,
more map tasks will be launched for processing the job wiichris a higher startup cost;
on the other hand, when the split size is too large, each nskpndl process more data
which increases its sorting cost.

Analysis of MT. In this experiment, we analysis the relative effectivenaflsthe two
techniques, MOM and RIM, that form/7T. Figure4.5e) comparesVA against two
variants ofM'T: MT itself (denoted explicitly as RIM+MOM) and/T" with only RIM
technique (denoted a3/ M). As the results show, RIM is more effective than MOM in
reducing the running time. However, by further combininghaWMIOM, we can improve
the performance of RIM by 17% on average and up to 23% whenuhar of queries
is 30.

4.6.2 Effectiveness of Key Ordering Algorithm

In this section, we evaluate the effectiveness of our kegmmng algorithm (denoted by
Pka) by comparing against two extreme solutions: a brute-faigerithm that generates
the optimal key ordering (denoted I3ka) and a naive heuristic that uses a random key
ordering (denoted biRk3).

Recall from Sectiod.5.1that our map output key ordering algorithm is designed to-max

imize job sharing by minimizing the size of the non-deriwabiap output (denoted by

N M) for the input batch of jobs. To assess its effectivenesscavapare two ratios,

‘NM’T;;]‘\;'NMP’W‘ and !X IV Mowal \where| N M, | denote the size of the non-derivable
Pkal INMogal

map output for an input batch of queries using algorithm € {Pka, Oka, Rka}. The
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Table 4.4: Comparison of key ordering algorithms

Number of |z el x 100% || B pIotl « 100%
Queries || Min | Max Avg Min | Max Avg
10 10% | 26% 16% 0 | 8% 3%
15 11% | 20% 18% 0 | 7% 2%
20 16% | 25% 19% 1% | 2% 1%
25 16% | 20% 19% - - -
30 14% | 22% 19% - - -

first ratio measures the improvement factoféfa over Rka, while the second ratio mea-
sures the improvement factor 6fa over Pka.

Table4.4 compares these two ratios for various query sizes. For eaety gize, we ran-
domly generate five batches of queries and report the aversgenum, and maximum

values of the ratios. From Tabe4, the "2 mel[¥0rial values show that our key or-

dering heuristic is indeed effective in minimizing/ M/| compared to the naive random

ordering heuristic, while thJéVMﬁ]’CV“]‘\;O'iV?@““‘ values show that our heuristic is almost as

effective as the brute-force approach. Note that for queagss25 and 30, we were not
able to compute values fof* k1Mol as Oq did not finish running in 12 hours.
Indeed, as expected)ka is not a scalable solution: for a query size of Zla took

about 3 hours to run compared to only 50ms taken by our heuftéta.

To evaluate the effectiveness of the key ordering heusistiderms of their impact on
guery evaluation time (excluding optimization time), wasalcompared their running
times to evaluate query batches of difference size. In tHewiong, we use the nota-
tion X-Y to denote the evaluation algorithih when used in combination with the key
ordering heuristicX, whereY € {GGT, MT} and X € {Pka, Rka,Oka}. Note that
the evaluation algorithma&’ A, M RGT, andGT were excluded from the comparison as
these algorithms do not require the key ordering step.

Figure4.6(a) shows the running times for a representative query bakbare its value of
‘NM'W]‘\;;Z]“@’W‘ ratio is ranked in the middle among the five batches. As thispeance
of Oka-Y is very close to that oPka-Y (e.g., the former outperforms the latter by only
0.7% in the best case), we omit the results @ka-Y in the graph. For each query
size, Figure4.6(a) also indicates two improvement factors (in %) which esent the
performance improvement @fka-Y over Rka-Y,Y € {GGT, MT}. The results show

that for bothGGT and MT, Pka outperformsRka by 17% on average.
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Figure 4.6: Experimental results

4.6.3 Optimization vs Evaluation time

In this section, we quantify the optimization overhead of approach and show that the
overhead incurs only a very small fraction of the total quamycessing time. Since the
optimization times for our algorithms do not show much d#éfeces, we here only report
the optimization time folGGT MT.

Figure4.6(b) shows the optimization time fa¥GT' M'T as a function of query size. Note
that we separately report the optimization times for the plvases of our algorithms. As
shown from the figure, the optimization algorithms are vexstf Indeed, by comparing
with the evaluation time for the queries, the optimizatione can even be ignored. For
example, in the default setting, the evaluation time for @6rges for our best algorithm
(i.e., GGT) takes 1895 seconds while the optimization time only takesn8liseconds
for 20 queries and 1 second for 100 queries. Therefore, gorithms are very efficient
and can scale to a large number of queries.

4.7 Summary

In this chapter, we have presented a comprehensive studultifjob optimization tech-
niques for the MapReduce framework. We have proposed twgatesharing techniques
and a novel two-phase optimization algorithm to optimizediialuation of a batch of jobs
given the expanded repertoire of optimization techniq@as. experimental results show
that our proposed techniques outperform the state-o&thapproach significantly by up
to 107%.
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CHAPTER 5

OPTIMAL JOIN ENUMERATION IN
MAPREDUCE FRAMEWORK

5.1 Overview

In this chapter, we examine the optimal join enumerationE)Qdroblem, which is a
fundamental query optimization task for SQL-like queriesthe MapReduce paradig-
m. Specifically, we study both the single-query and muleémgyuOJE (referred to as SOJE
and MOJE respectively) problems and propose efficient joumeeration algorithms for
these problems. Our study of the SOJE problem serves asd&ton for our study on the
MOJE problem. To reduce the complexity of the OJE problemfoNew a well-accepted
heuristicin RDBMS §8, 41, 42, 16, 21, 24, 22, 23] to consider all bushy plans but exclude
cross product from the enumeration space. This heurisparscularly suitable for the
MapReduce framework since bushy plans are more suitabjeafailel execution via the
MapReduce framework than left-deep or right-deep plardeed, the work inZ5] shows
that bushy plans are usually the optimal plans in distridb@evironment. Furthermore,
since the MapReduce framework always materializes inteéiae results for fault toler-
ance and materializing cross product results is very cosily rare that an optimal join
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plan in the MapReduce framework will involve cross prodddtus, cross product should
be excluded from the enumeration space to reduce the coitypdéxhe OJE problem.

While the OJE problem has attracted much recent attentitmeiconventional RDBMS
context §18, 41, 42, 16, 21, 24, 22, 23], the solutions developed there are not applicable
to the MapReduce context due to the differences in the queryation framework and
algorithms.

There are two major differences between the OJE probleneiividppReduce context and
that in the RDBMS context. First, both binary and multi-wayng are implemented in
MapReduce while only binary joins are implemented in RDBNsgecifically, given a
join query, RDBMS will evaluate it as a sequence of binarpgoivhile MapReduce will
evaluate it as a sequence of binary or multi-way joins. Assaltethe SOJE problem
in the MapReduce context has a larger join enumeration gbacethat in the RDBMS
context due to presence of multi-way joins. While there heesnbmuch recent works in
the RDBMS context on the study of the complexi@yg] of the SOJE problem and its join
enumeration algorithmsi[, 42, 16, 21, 24, 22, 23], to the best of our knowledge, there
has not been any prior work on the study of these problemseipithsence of multi-way
joins in the MapReduce context.

Second, intermediate results in MapReduce are always ial&ted instead of being
pipelined/materialized as in RDBMS which simplifies the MEaroblem in the MapRe-
duce context in two ways. First, the MOJE problem in RDBMS rimeyr deadlock due
to the pipelining framework14] while that in MapReduce does not have the deadlock
problem due to the materialization framework. Second, madiging and reusing the re-
sults of CSEs in RDBMS may incur additional materializateond reading cost due to
the pipelining framework. However, since intermediatailssare always materialized in
the MapReduce framework, there is no additional overheadtriad with the materializa-
tion technique in MapReduce. Although the MOJE problem irBRL3 has been shown
to be a very hard problem with a search space that is doublgrexyial in the size of
the queries$1, 14, 74], due to the simplification in MapReduce, we are able to psepo
efficient join enumeration algorithms for the MOJE problenMapReduce.

In this chapter, we first study the SOJE problem in the MapRedwntext. Specifically,
we first study the complexity of the SOJE problem in the MapRedcontext. Since the
complexity of the SOJE problem depends on the query graphstudy the complexity
for various query graph types (chain, cycle, star and cliquée presence of multi-way
joins. We then propose both bottom-up and top-down join esmation algorithms for
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the SOJE problem with an optimal complexity w.r.t. the qugrgph based on a proposal
of an efficient and easy-to-implement plan enumerationralgn. Our experimental re-
sults demonstrate that our proposed single query join eratiog algorithm significantly
outperforms the baseline algorithms by up to 473%.

We then study the MOJE problem in the MapReduce framework.pkllpose an effi-
cient multi-query join enumeration algorithm for the MOJ®lplem in the MapReduce
framework. The main idea is to first apply the single-queig gnumeration algorithm
for each query to generate all the interesting plans anddtiteh the interesting plans for
the queries into a global optimal plan. A query plan is insérg if it is either the opti-
mal plan or produces some output that can be reused for atieeieg. Our experimental
results show that our proposed multi-query join enumenadigorithm is able to scale up
to 25 queries where the number of relations in the queriggasfrom 1 to 10.

We should emphasize that similar to existing work8 (41, 42, 16, 42, 21, 24, 22, 23], the
focus of this work is on the proposal of efficient join enuntieraalgorithms for the OJE
problem in the MapReduce framework, but not on the effentdgs study of these join
enumeration algorithms as it is well known that the runtimheéifferent join orders can
vary by orders of magnitude. Note that the proposed join earation algorithms could
also be served as a foundation for other heuristics to ceshé enumeration space for
queries with a large number of relations. To the best of oomtedge, our work presents
the first systematic study of the OJE problem in the MapRegacadigm and proposes
efficient join enumeration algorithms for the problem.

The rest of this chapter is organized as follows. Sec&dhpresents some preliminar-
ies. In Sectiorb.3, we analyse the complexity of the SOJE problem in the MapBRedu
framework for chain, cycle, star and clique queries. Sest®4 and5.5, respectively,
present the join enumeration algorithms for the SOJE andBA®dblems in the MapRe-
duce paradigm. Sectidn6 presents experimental results and we conclude this chiapter
Section5.7.

5.2 Preliminaries

In this section, we introduce the notations and assumptieed in this chapter. Tabfel
summarizes the notations used through this chapter.
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Table 5.1: Notations used in this chapter

| Notation | Definition
Q input query for the study of the SOJE problem
R={Ry, - ,Rn_1} set of relations irQ
G=(V,E) query graph foQ
N(R;) set of neighbors for a relatioR; € R w.r.t. ¢
N(S5) set of neighbors for a set of relatio§sC R w.r.t. G
Min(S) relation with the smallest subscript index in a set of relagiS
C; set of connected subsets Bfwith a cardinality ofi
C=U;,C; set of connected subsets Bfwith a cardinality of at least 2
Pk set ofk-way partitions of a connected subget
Pg set of partitions of a connected subset
P set of partitions of all the connected subset§'in
Ts multiset of connected subsets in all partitiongHs
T multiset of connected subsets in all partitionsgHin
Q={Q1, - ,Qn} input batch of queries for the study of the MOJE problem
Ui ={Uz,- - 7U¢\Ui\} set of all the possible plans fy;
Wi = {Wi, -, Wyw, } | setof relations irQ;
Ig set of interesting plans for a connected sulsset
CSE(U) set of CSEs of a platy’ w.r.t. Q
Cost(U") cost of a plari/’
SubPlan(U") set of subplans for a plali’
JoinExp(U") join expression associated with a plh

5.2.1 Notations

Given an input query) with a set ofn relationsR = {Ry, - - - , R,_1}, its query graph is
defined as an undirected gragh= (V, £') such that (1) eacl®; (0 < i < n) is a vertex
in V and (2) an edge = (R;, R;) isin £ if R; and R, are related by join predicates.
In this chapter, we assume the input query graph is connectedisg S| to denote the
cardinality of a sef5.

Given a query graplir = (V, E), we useN(R;) = {R/|(R',R;) € E} to denote the
set of neighbors for a vertek; € V, andN(S) = Jp g V(1) \ S to denote the set of
neighbors for a set of verticés C V. Furthermore, we usé&/in(.S) to denote the relation
with the smallest subscript index in a set of vertices V.

A subsetS C R is referred to as a connected subset if it induces a connsatagraph

of the query graph. We usg; (2 < i < n) to denote the set of all connected subsets of
R with a cardinality ofi, andC' = |J;_, C; to denote the set of all connected subsets of
R with a cardinality of at least 2. All the above definitionsléoV existing works §1, 42,

16, 42, 21, 24, 22, 23].
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star clique

Figure 5.1: Examples of query types

Given a connected subsg&tC R (|S| > 2), ak-way (2 < k < |S|) partition of S parti-
tions S into £ disjoint, non-empty set§Sy, - - -, S;} such that (1) eacl; C S is a con-
nected subset and (8)= S, - - -|J Sk. Note that eacti-way ! partition{S;, - -- , S.}
of a connected subsgtis associated with &-way join plan forS constructed by joining
the optimal plans for each; (1 <i < k).

For a connected subsét we useP% to denote the set of alt-way partitions ofS,
Ps = U2, Pi to denote the set of all partitions &, Ts = Wpp Weep S’ 2 10
denote the multiset of all connected subsets in all panstim Ps. Furthermore, we
useP = [Jq. Ps to denote the set of all partitions of all connected subskt® and

T = WYpepHeep S to denote the multiset of all connected subsets in all pamstin
P. Since each partition of a connected sulisét associated with a join plan fdf, | Ps|
represent the number of join plans f8and|P| represent the number of join plans for all

the connected subsets Bf

Example 5.1: Consider the query graph for a chain query with fours retetif =
{Ry, Ry, R2, R3} in Figure5.1 First, we haveMin(R) = Ry, N(R;) = {Ro, Ry}
and N({Ry, Ry}) = {Ro, Rs}. Second, the subsé¢i?y, R;, R,} C R is a connected
subset since it induces a connected subgraph while thetsiBgeR,, R} C R is nota
connected subset. Furthermore, we hadve= {{ Ry, R}, {R1, R2}, { R2, R3}} consist-
ing of all the connected subsets with a cardinality of 2. @hfor the connected subset
S = {Ry, Ry, Ry}, it has one 3-way partition (i.e{{ R0}, {R:},{R2}} and two 2-way
partitions (i.e.{{ Ry, R1}, {R2}} and{{Ro}, {R1, R2}}). Note that{{ Ry, R2},{R1}} is

1In RDBMS, algorithms for the OJE problem consider 2-way itiarts while that in MapReduce con-
sider all thek-way partitions wheré ranges fron? to |S|.
2|4 denote a duplicate preserving union operator.
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not a 2-way partition of since{ Ry, R, } is not a connected subset. Thus, we h&ye=

{H{Ro} { R} {Ra}}, {({ Ro, B}, {Rat}, {{ Ro}, { B, R}, andTs = {{Ro}, { R},
{Ra},{Ro, Ra}, {Ra}, {Ro}, { R1, Ra}}. O

5.2.2 Assumptions

Similar to existing works 41, 42, 16, 21, 24, 22, 23], we assume that the number of
relations in a query is not large (no more than 64 relationghat they can be mapped
to a machine word size (typically 32 or 64 bits). In this wagy aubset ofR can be
encoded by an integer value where tHebit in the integer value represents with a
value of 1 indicating thaR; is in the subset. Thus, the set operators (centainment
union intersection differencg can be performed via bitwise operators in constant time.
Furthermore, the connectedness checking for a subsetatioretS C R can be done in
O(|S|) time as discussed i f].

Under this assumption, recent worl&l][ 42, 16, 21, 24, 22, 23] in the RDBMS context
propose both bottom-up and top-down join enumeration dlyos for the SOJE problem
with an optimal complexity of)(|P|). In the relational DBMS context, the time com-
plexity of a join enumeration algorithm is optimal if it gelages each partitio®” € P in
O(1) time. This is realizable in the RDBMS context since eachitiantconsists of two
connected subsets which can be generated and outputlintime as shown by existing
works. However, in the MapReduce context, the number of ected subsets in a parti-
tion P’ € P ranges from 2 toP’| which cannot be generated and output in constant time.
Therefore, in the MapReduce context, the time complexityjoin enumeration algorith-
m is optimal if it generates each partitid € P in O(| P’|) time. Thus, the optimal time
complexity of a join enumeration algorithm in MapReduc@is7|).

For simplicity, we focus our presentation on bottom-up dgitaprogramming follow-
ing the System R approach?]; the extensions for top-down dynamic programming are
straightforward and thus are only discussed if necessary.

5.3 Complexity of SOJE Problem

In this section, we study the complexity of the SOJE problarterms of both P| and
|T| in the MapReduce context. Since the complexity of the SOdblpm depends on
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Table 5.2: Comparison of complexity results for SOJE pnoble

| Type | RDBMS{P| | RDBMS-T| | MapReduce?| | MapReducer
Chain ‘ ndgn ‘ 2n5§2n gn+l _ nquLSn _9 (n _ 1)2n _ n12+n 41
Cycle | n3—2n2+n | 202 —4n?+2n [n2" 1 4+27" —n?—n-1 (n? 4+ n)2"=% —n?
Star | (n—1)2""" (n—1)2" 3n-t—on-t (n—1)3" 24312t
Clique [ 3" —2"FT 41 [ 2 x 3" —2"F2 12 By —2" Bhio—2B, — 2"+ 1

the query graph48], we examine the problem repeatedly for chain, cycle, stdradique
queries; an example of these query graphs on four relatibres { Ry, Ri, R2, R3} are
shown in Figures.1 Note that in the RBDMS context, since only binary-way joare
considered, we haj&'| = 2| P|. Table5.2compares the complexity of the SOJE problem
in the RDBMS context48] and our cost analysis for the MapReduce framework based on
the following theorems wherB,, is then! Bell number p0] and B,, < (lg'(ffff))” [8]. In
Table5.2, each columnX-Y, X € {RDBMS, MapReducgandY < {|P|,|T|}, denotes

the complexity of the SOJE problem in thécontext in terms of".

Theorem 5.1. For a chain query with: relations, we haveP| = 271 — @ —2and
T = (n—1)2" — 2 41,

Proof. Assume that eact?;, R; ;1) (0 < < n — 2)is an edge. To generate a connected
subsetS of R, the relations inS must be consecutive, i.e(R;, Ri+1,- -, R;) where

1 <i<j<n-—1. Foreach’; (2 <i < n),the number of all connected subsetg’in
is(n—i+1),i.e.,(R;,Rj41, -, Rjyi—1) for0 < j <n —i. For each such connected
subsetS € C;, the number of alk-way (2 < k < ) partitions is|P¥| = (;_}) as we
have to deleték — 1) edges from th€i — 1) edges inS to partition.S into £ disjoint,
connected subsets, the number of all partitiong?g = 22:2 (;:11) =271 — 1 and
the number of all connected subsetsAgis |Ts| = >, _, k(/_}) = (i +1)2°2 — 1.
Therefore, we haveP| = 37 (n — i + 1)(2071 — 1) = 271 — 28430 9 gnd|T| =
S — i+ 1)+ 1272 1) = (n—1)2" — i g, O

Theorem 5.2. For a cycle query wit: relations, we haveP| = n2" 1 +2" —n? —n—1
and|T| = (n* +n)2" 2 — n?,

Proof. Assume that eactR; mod n, R(i+1) mod ») (0 < ¢ < n) is an edge. For eadh; (2 <

i < n), the number of all connected subset€ins n, i.e., (R; mod n, R(j+1) mod s * "
Rjti—1) modn) for 0 < j < n. For each such connected subSein C;, sincesS is of
type chain, the number of al-way (2 < k < i) partitions of S is |P4| = (;_}), the
number of all partitions of is |Ps| = >;_, (\-}) = 2"! — 1 and the number of all

connected subsets B is Ts = >, _, k(/_}) = (i + 1)2i~2 — 1. For C,,, the number
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of all connected subsets is(i.e., R) and R is of type cycle. The number of all-way
(2 < k < n) partitions of R is | Pf| = (}) as we have to delete edges from the:
edges inR to partition R into k disjoint, connected subsets, the number of all partitions
of Ris |Pg| = >, (}) = 2" — n — 1 and the number of all connected subset®jn
isTr = > 1, k(}) = n2"~' — n. Therefore, we havaD| =3 (2 = 1) 427 —
n—1=n2""142"—n?—n—1land|T| =37 n((i +1)22 = 1) +n2"!' —n =
(n? +n)2" 2 — n?. O

Theorem 5.3. For a star query withn relations, we haveP| = 3! — 2"~ and|T| =
(n—1)3"2 431 —2n 1,

Proof. Assume that eachizy, R;) (1 < i < n)is an edge. To generate a connected subset
S of R, S must containR,. For eachC; (2 < i < n), the number of all connected subsets
in C; is ("~]) asR, must be in a connected subset and the remaifiing ) relations have

to be chosen fro Ry, --- , R,,_1 }. For each such connected subSet C;, the number

of all k-way 2 < k < i) partltlons is|P?| = (’ l) as we have to deletg — 1) edges
from the (i — 1) edges inS to partitionS into & disjoint, connected subsets, the number
of all partition is| Ps| = 3", _, (:_}) = 2/-! — 1 and the number of all connected subsets
is|Ts| =Y o k(}_)) = (i +1)2772 — 1. Thus, we haveP| = 37, (21 (271 - 1) =
grt—2n~land|T| =370, (") ((i+1)272 = 1) = (n — 1)3" 2431 —2n1 [

Theorem 5.4. For a clique query with relations, we havéP| = B,,,; — 2" and|T| =
Byis — 2B, — 2" + 1, whereB,, is then'* Bell number.

Proof. Assume that eacfi?;, R;) (0 < ¢ < j < n)is an edge. For eadtj; (2 < i < n),
the number of all connected subsetsinis (7) as we have to chooserelations from
R. For each such connected subsein C;, the number of alk-way 2 < k < 1)
partitions is|PF| = {;} = 4 >0 (1) (%)j* where{, } is the Stirling number of
the second kindg(], the number of all partition i$Ps| = >, _, {;} = B; — 1 where
B; is thei'" Bell number p0], and the number of all connected subsetsinis Ty =
S0 k{l} = Biy1 — B; — 1. Thus, we haveP| = 3", (*)(B; — 1) = B, — 2" and
IT| =30, (") (Bis1 — B — 1) = Byys — 2B,41 — 2" + 1. Note thatB,, < (222"

In(n+1)
as shown in§]. O
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5.4 Single-Query Join Enumeration Algorithm

In this section, we first present two baseline join enumenatilgorithms (denoted as
DPsize and DPset) for the SOJE problem in the MapReduce Warkewhich are re-
spectively adapted from the two state-of-the-art join earation algorithms for RDBM-
S [62, 62, 41]. Both DPsize and DPset follow a naive generate-and-tgsbagh and thus
have a time complexity that is not optimal in the MapReduagext. Then we present an
efficient and easy-to-implement plan enumeration algorittienoted as PEA) to enumer-
ate all the partitions (i.e., plans) of a connected subsealll, we propose both top-down
and bottom-up join enumeration algorithms with an optinialet complexity based on
Algorithm PEA.

5.4.1 Baseline Join Enumeration Algorithms

Algorithm 5.1: Bottom-up Enumeration:DPsize

Input: A connected query graph with a setrofelationsR = { Ry, -+ , R,—1}
Output: The optimal join plan forR, BestPlan(R)

1 innercounter =0 ;

2 outercounter =0 ;

3 BestPlan = new HashTable() ;

4 fori=0—(n—1)do

5 | create BestPlag®;}) ;

6 fori=2—ndo [+ Enumerate i-plans */
7 foreachinteger partition(iy, - - - ,4x) of i such that < k£ <ido
8 foreach {Sy,---,S,} € C;, x --- x C;, do

9 ++outercounter ;

10 if 354, 5h,1 < g <h<k,SgSn# 0then

11 | continue ;

12 S = U?:l Sjs

13 if S”is not a connected subststen

14 | continue ;

15 ++innercounter ;

16 newPlan = createPlan(BestPI&hn),- - - ,BestPlan{y)) ;
17 if Cost(BestPlan(S’))» Cost(newPlanjhen

18 | BestPlan(S’) = newPlan ;

Size-driven Enumeration. For simplicity, we refer to a plan asigplan to mean that the
number of relations in (i.e., the size of) the plan.i©ur first baseline join enumeration
algorithm (referred to as DPsize) enumerates plans wefgti.e.,i-plans are enumerated
before(i + 1)-plans, which is adapted frond2, 41] designed for the SOJE problem in
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the RDBMS context. Algorithn®.1shows the pseudocode for DPsize. In the algorithm,
BestPlans a hash table that stores the best plan found so far for eawtected subset of
R. Two countergnnercounterand outercounterare maintained for complexity analysis
for the algorithm (to be explained). The algorithm startarbtializing the best plan for
each single relation ik and then enumerates plans in increasing size.

In thei'” iteration to enumerateplans, DPsize appropriately combines disjoint, smaller-
size plans that have already been enumerated. To gendrtite pbssible plan combina-
tions, DPsize first generates all the integer partitions fousing an efficient algorithm
from [75]. Each integer partitiorti;, - - - ,ix) of i (2 < k < i) essentially represents a
way to combine plans of sizg, - - -, i, to generate-plans. Thus, eackti,--- ;) is
associated with some candidate partitions denoted as - -- x C;,. To make sure that
the plan® associated with a candidate partitipfi;, - - - , Sy} € C;, x --- x C;,_ qualifies
as ani-plan (i.e., the candidate partition is indeed a partitiom@ need to ensure two
requirements. First, all the connected subsetsSin - - - | .S} are disjoint which can be
checked in Of) time. Note that the disjointedness checking is achievethbybitwise
AND operator on the corresponding integer representafimneachsS; (1 < j < k) °.
Second,s" = U§:1 S; is a connected subset which can be checked(ify’|) time (i.e.,
Oli| as|S’| = i) as discussed in Secti@n2

The time complexity of DPsize is not optimal for two reasoR#&st, it generates more
candidate partitions. Specifically, the value of the vdgabtercounter in Algorithm5.1
represents the number of generated candidate partitioichwehlarger than the number
of the partitions for all the connected subsetsibfi.e., | P|) represented by the value
of the variableinnercounter. Second, the time complexity to verify a candidatevay
partition { Sy, - - - , Sk} is indeed a partition i£)(| U§=1 S;|) time due to the connected-
ness checking which is no smaller than the optimal time cerifyl to generate &-way
partition which isO (k).

Subset-driven Enumeration. Our second baseline join enumeration algorithm (referred
to as DPset) enumerates all the subsetB of increasing order of their integer represen-
tations, which is adapted fron62, 41] designed for the SOJE problem in the RDBMS
context. For each enumerated subSetf R, if S is not a connected subset, it is im-
mediately dropped; otherwise, we compute the optimal ptarbfby generating all the

3An integer partition of a numberrefers to a way of writing as a sum of positive integers. Two sums
that differ only in the order of their summands are considéoebe the same.

4The plan associated with a candidate partiié, - - - , S} is constructed by joining the optimal plans
for eachS; (1 <i <k).

>Two subsetsS; and.S; are disjoint if the result of the bitwise AND operator on thieteger represen-
tations is O.
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Algorithm 5.2: Bottom-up Enumeration:DPset

Input: A connected query graph with a setrofelationsR = {Ry, -+ , R,—1}
Output: The optimal join plan forR, BestPlan(R)
1 innercounter =0,
2 outercounter =0 ;
3 BestPlan = new HashTable() ;
4 fori=1— (2" —1)do /* Enunerate subsets x/

5 LetS C R be the subset correspondingitp
6 if S'is not a connected subsiten

7 | continue ;

8 if |S| = 1then

9 create BestPlan(S) ;

10 continue ;

11 foreach{S; € 5,5, C (S\ S1), -+ ,Sg =(S\ S1\ -\ Sk_1)} such that
2<k<|Sland{Ji_, S; = Sdo

12 ++outercounter ;

13 if 3i € [1, k] such thatS; is not a connected substtten
14 | continue;

15 ++innercounter ;

16 newPlan = createPlan(BestPI&n),- - - ,BestPlan§;)) ;
17 if Cost(BestPlan(S))} Cost(newPlanjhen

18 | BestPlan(S) = newPlan ;

partitions ofS and enumerating the corresponding join plansS§oNote that to compute
the optimal plan foiS, all its subsets must be enumerated before itself. Thisasagiieed

by DPset’s enumeration order of the subset&ofAlgorithm 5.2 shows the pseudocode
for DPset. Here agairBestPlanis a hash table that stores the best plan found so far for
each connected subset®f Two countersnnercounterandoutercounterare maintained

for complexity analysis for the algorithm (to be explained)

For each enumerated and connected subseft R, for each candidate partitiofiS; C
8,8 C (S\S1),-++ . Sk € (S\S1\-+-\Sk_1)} suchthal < k < |S|and{J;_, S; = S,

we need to test for the connectedness for eéadl < ¢ < k) to ensure that it is indeed
a partition ofS. As eachS; € S (1 < i < k) has already been enumerated befy¢he
connectedness checking 16y can be achieved by looking up the hash tebstPlanas
follows. If S; is present iBestPlan then it is connected; otherwise it is not connected.
Therefore, the connectedness checking{fer, - - - , Si.} is done in Of) time.

To generate all the candidate partitions of a connectedes$hsve have to generate all
the non-empty subsets C S, -+, S € (S\S1\ -\ Sk—1) such thak < k& < |S|
and Ule S; = S. The generation of eacH; can be done very efficiently in O(1) time
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by applying the idea fromg_Z] 6. Furthermore, to avoid generating duplicate candidate
partitions, we restrict each; C (S'\ 51\ ---\ Si-1) (1 < i < k) to contain the re-
lation Min(S \ Si \ ---\ Si—1). The purpose is to give an unique ordering of all the
subsetsSy, - - -, Sk SO that duplicate candidate partitions are not generated.exam-
ple, consider the chain query in Figusel, for the connected subs&t= {Ry,--- , Rs},

if we do not restrict eaclb;, we will generateS; = {R,} and Sy = {Ri, Ry, Rs},

and S; = {Ry, Re, Rz} and Sy = {Ry} which essentially represent the same parti-
tion {{Ry},{Ri1, R2, R3}} of S. However, if we restrict each;, we will only generate

S1 ={Ro} andS; = { Ry, Rs, R3}.

Here again, the time complexity of DPset is not optimal. Tikibecause DPset gen-
erates more candidate partitions to verify as represenyethéd value of the variable
outercounter in Algorithm 5.1 Indeed, the number of partitions of all the connected
subsets of? is equal to the value of the variablenercounter which is smaller than the
value of the variableutercounter. Note that the time complexity to verify the connect-
edness for a candidate partiti¢d;, - - - , Si.} is equal to the optimal time complexity to
generate &-way partition which are bott (k).

Comparison of DPsize and DPset.Both DPsize and DPset follow a naive generate-
and-test approach and thus have a suboptimal time compléxit, DPsize has to test
for disjointedness (Line 11 in Algorithrs.1) while DPset has to test for connectedness
(Line 13 in Algorithm5.2). When only 2-way joins (i.e., in RDBMS) are considered, the
experimental results iMfl] demonstrate that neither DPsize nor DPset is strictly more
superior. This is because in RDBMS, the number of disjoimésd checking in DPsize
and the number of connectedness checking in DPset can egaebdther for differen-

t query types. However, when multi-way joins are consideoent experimental results
demonstrate that DPset is significantly faster than DPsyagphto two orders of magni-
tude. This is due to the large number of integer partitionsegated for DPsize which
results in a large number of disjointedness checking. Famgte, when the number of
relations in a chain query is 15, DPsize generates 668 infgétions which results in
17.120.334 disjointedness checking while DPset only némdbeck the connectedness
458.073 times.

6Given a sefS and its integer representation V(S), each integer reptatien (denoted a¥) of the sub-
sets ofS is generated using the following recursive formula= V' (S)&(V — V (S)) with the initialization
conditionV = 0 (i.e., empty subset) and the termination condiioe= V' (5) (i.e., S).

98



CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

5.4.2 Plan Enumeration Algorithm

Existing works b2, 62, 41] have proposed both bottom-up and top-down dynamic pro-
gramming algorithms to generate each partitio®im (1) time in the RDBMS context.
However, their algorithms are limited to 2-way joins andglawe not applicable for multi-
way joins in the MapReduce context. Indeed, as discussedatidd5.2, it is impossible

to generate each partition M(1) time in the context of MapReduce framework. In this
section, we present a plan (i.e., partition) enumeratigorghm (denoted as PEA) to ef-
ficiently generate all the partitions of a connected subsgte., Ps) with each partition

P’ € Ps being generated i@ (| P'|) time.

Algorithm 5.3: Connected subset enumeration algorithm (CSEA)
Input: A query graph with a set of relatio® = {Ry,--- , R,—1}
Output: All the connected subsets &f containingR

output({Ro}) ;

Enumerate{Ro}, {Ro}, N({Ro}) ;

3 Function Enumerat€ .S, D, H) begin

N -

foreach non-emptys’ C H do
| Enumerate§ S, DUH, N(SUS")\ (DUH))

4 if H is emptythen

5 | retun;

6 foreach non-emptys’ C H do
7 | output(SUS’);

8

9

Before we present our algorithm, we first review a connectdmsat enumeration algo-
rithm [41] (denoted as CSEA shown in Algorithn3) which enumerates all the con-
nected subsets containing a relatiBp for an input query graph with a set of relations
R = {Ro,---,R,1}. The main idea of the approach is as follows. Given an already
enumerated and connected subSgthe approach extends by adding the relations’
from its neighbors (i.e.N(.5)) into it to generate larger connected subsets. To avoid pro-
ducing duplicates, it maintains a set of relatidnghat have already been visited. When
adding the relations int@, it only adds the relations fronV(S) \ D (i.e., H). The ap-
proach first output$ Ry} as a connected subset and then invokes the function Enwemerat
with S = {Ry}, D = {Ro} andH = N({R,}) to generate connected subsets which
recursively invokes itself with different parameter vauantil it has generated all the
connected subsets.

As a representation of the input query graph for AlgorithmE@Sfor eachR;, instead
of storing all its neighbors in an adjacency list (a typicayto represent a graph), it
is sufficient to maintain an integer to represéntR;) to simplify the computation of
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neighbors for connected subsets. Furthermore, we ha\& JS") = N(S) U N(S') \
(S S for incremental neighbourhood computation. To generdtthalsubsets of/
(Line 5 in Algorithm 5.3), we apply the idea fromg2] with a complexity ofO(1) for
each subset as discussed in Secbohl By combining all these techniques, the time
complexity to generate each connected subsefis as shown in41].

Algorithm 5.4: Plan enumeration algorithm (PEA)
Input: A connected subset = {Ro, -+, Rjg|—1}
Output: All the partitions ofS (i.e., Ps)

1 fori=1—15|do

2 Fi={Ri—1," - ,Rig-1};

3 S; = getnext(F;) ;

4 output{Sy,---,Sig};

5

6

i=|S|—1;
whilei>1do /* Start an iteration to generate a partition =/
/* Scan backward to find the first F;, to retrieve S; * [
while (S; = getnext(F;)) is null do

——Z;
/L Scan forward to rewi nd each F;, and S; * [
9 Fipn=F\Si;
10 while F; 1 # () do

o

11 Sit1 = getnext(Fiiq) ;
12 + 4+
13 Fiy1=F\Si;

14 output(Sy,---,S;);

We now discuss our plan (i.e., partition) enumeration algor PEA. Given a connect-
ed subsett = {Ry,--- , Rs|-1}, Algorithm 5.4 shows our approach to generate all the
partitions ofS (i.e., Ps) where each partitio®” € Ps is generated irO(|P’|) time. In
the algorithm, eacl#; = S\ U;;ll S; denotes the set of relations Fafter excluding
U;';ll S; and can be incrementally computed by the formbja, = F; \ S;, and each
S; C F; represents a connected subsefp€ontaining the relatiod/in(F;). Similar to
our proposed technique for DPset, we restrict egdio containMin(F;) to avoid gener-
ating duplicate partitions. Furthermore, the functigmnext(F;) is used to get the next
connected subset & containing)Min(F;) and will eventually generate all the connected
subsets of; containingMin(F;). Thus, for eachF;, Algorithm CSEA is first called to
retrieve a sequence of all the connected subsets obntainingMin(F;) and then the
functiongetnext(F;) is used to retrieve the next connected subset in the sequence

To generate a partition o, our algorithm generates a sequence of connected subsets
Si € Fy, -+, S, € Fy until Fyy is empty (e, S; = S). Each time when it
generates a connected subSedf F; (1 < i < k), it updatesF;; to beF; \ S; to ensure
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Table 5.3: An example illustrating the plan enumeratioratgm

| | S1 | S | S | S | P | B | B | Fi ]
1 {Ro} {1} {Ro} | {Rs} | {Ro, R, R, R3} | {Ra, Ro, R} | {Ro, Rs} | {13}
2 {Ro} {R1} {Ry, R3} 0 {Ro, R1,R2, R3} | {R1,R2,Rs} | {Rs, Rs} 0
3 {Ro} {R1, R2} {R3} 0 {Ro, R1,R2, R3} | {R1, Ra, R3} {R3} 0
4 {RO} {Rl,Rg,Rg} 0 1] {R07R1,R2,R3} {Rl,Rg,Rg,} 0 0
5 {Ro, R1} {R2} {R3} 0 {Ro, R1, R2, R3} {R2, R3} {R3} 0
6 {Ro, R1} {R2, R3} 0 0 {Ro, R1, R2, R3} {Ry, R3} 0 0
7 | {Ro, R1, Ra} {Rs3} 0 0 {Ro, R1, R2, R3} {Rs3} 0 0

that all the generated subséts - - -, S are disjoint. In this way{S;, - - - , S} qualifies
as ak-way partition ofS. Furthermore, since both the retrieval$fand the updating of
F; is done in O(1) time, the time complexity to generate-way partition isO(k) in our
algorithm,

To generate all the partitions 6f, our algorithm works as follows. Initially, it haS; =
{R;_1} for eachi € [1,|S|] and simply output$.S;,-- -, S|s/} as a|S|-way partition of
S. Then it goes into an iterative process to generate a ertitf S. At each iteration,
it first scans backwards (frotfjg to F7) to find the firstF;, where not all the connected
subsets have been enumerated, to retrieve the next codrsetteet of-;. It then updates
eachF} (j > i) and generates the first connected sulSsedf F; until it has generated a
connected subséY, such thatFy.,; is empty. Finally, it output$S;, - - - , Si} as ak-way
partition of S. The iterative process terminates whinis empty (i.e., all the partitions
of S have been generated). Note that the last generated parsiteol-way partition o
and should be ignored.

Example 5.2: Consider the chain query in Figutel Table5.3 illustrates our plan
enumeration algorithm to generate all the partition§ 8§, R, R2, Rs}. In the first iter-
ation, we simply outpu{{Ro}, {R:}, {R2},{Rs}} as a 4-way partition. In the second
iteration, we scan backwards (frof) to F}) and getF; to retrieve the next connected
subsetS; = {R,, R3}. Then we haveFy = () and output{{ Ry}, {R1}, {Rs, R3}} as

a 3-way partition. In the third iteration, we gét to retrieve the next connected subset
Sy = {R1, Ry}. Then we havels = {R3}, S3 = {Rs}, F, = () and output a 3-way
partition{{ Ry}, { k1, R>}, { R3}}. We repeat the above process until we generate all the
partitions. O
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5.4.3 Bottom-up and Top-down Enumerations

In this section, we propose both bottom-up and top-down ayaigrogramming algo-
rithms with an optimal time complexity @P(|7'|) based on Algorithm PEA.

Algorithm 5.5: Bottom-up Enumeration:DPopt

Input: A connected query graph with a setrofelationsR = {Ry, -+ , R,—1}
Output: The optimal join plan forR, BestPlan(R)

Ps = PEA(S) (i.e., Algorithm5.4) ;
foreach partition {S;,--- , Sk} € Ps do
newPlan = createPlan(BestPlan), - - ,BestPlang;)) ;
if Cost(BestPlan(S)) Cost(newPlanjhen
| BestPlan(S) = newPlan ;

1 BestPlan = new HashTable() ;

2 fori=(n-1)—0do

3 foreachS € CSEA({R;, -+ ,R,—-1})) (i.e., Algorithm5.3) do
4 if |S| = 1then

5 create BestPlan(S) ;

6 ‘ continue ;

7

8

9

=
[

Bottom-up enumeration. Algorithm 5.5 shows the pseudocode of our bottom-up enu-
meration (denoted as DPopt) which makes two changes to Désesure that it has an
optimal time complexity. First, DPset follows the approatf41] to generate all the con-
nected subsets gt with each connected subset being generated(in time 7. Second,
for each enumerated and connected subs#tR, DPopt generates all the partitions®f
(i.e., Ps) using Algorithm PEA.

Top-down enumeration. Algorithm 5.6 shows the pseudocode of our top-down enumer-
ation. The algorithm starts by finding the optimal plan focteaingle relation ink and
then invoke the function GenOptimal) to construct the optimal plan fak.

Given a connected subsgtof R, the function GenOptimaf{) generates the optimal
plan for S by enumerating all the partitions &f using Algorithm PEA and recursively
construct the optimal plan for each connected subsgtiothe enumerated partitions. To
avoid redundant construction of optimal plans, a hash t@b&Planis used to cache the
optimal plan for each connected subsefof

"The approach in41] generates all the connected subsetg:dfy applying Algorithm5.3 on the se-
quence of input§R,,—1}, {Rn—2, Rn—1},---, {Ro, -+, Rn—1}. In this way, for a connected subsgof
R, all its subsets are enumerated before itself.
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Algorithm 5.6: Top-down enumeration
Input: A connected query graph with a set of relatidds= { Ry, - , Rp—1}
Output: The optimal join plan forR, BestPlan(R)

1 BestPlan = new HashTable() ;

2 fori=0—(n—1)do

3 | create BestPladR;});

return GenOptimalR) ;

N

5 Function GenOptimalf) begin

6 if BestPlanf) is null then

7 Ps = PEA(S) (i.e., Algorithm5.4) ;

8 foreach partition {S1,--- , S} € Ps do

9 newPlan = createPlan(GenOptintalf,- - - ,GenOptimalfy)) ;
10 if Cost(BestPlan(S))} Cost(newPlanjhen

11 | BestPlan(S) = newPlan ;

12 return BestPlan(S) ;

5.5 Multi-Query Join Enumeration Algorithm

In this section, we present a novel multi-query join enuriienaalgorithm for the MOJE

problem for a batch of querie@ = {Qy, - ,@,}. The MOJE problem aims to find a
global optimal plan for a batch of queries to share companatif their CSEs. As the

global optimal plan in general is not simply constructedrfrthe local optimal plan for

each query, we have to consider all the possible plans fdr gaery. Due to the large
number of possible plans for a query, enumerating all the ptanbination space for a
batch of queries is usually very costly. In this section, wappse effective techniques to
prune away non-promising plans and thus reduce the planicatidn space.

Our proposed multi-query join enumeration algorithm cetssof two-phases. In the first
phase, for eacly); (1 < ¢ < n), we apply the single-query join enumeration algorithm
(discussed in the previous section) to generate all theastiag plans foi);. A plan

of Q; is interesting if it is either the optimal plan or producesnsooutput that could be
reused for other queries. In the second phase, we stitchtdresting plans for the queries
maintained in the first phase into a global optimal plan.

While there has been some works on the study of the MOJE proliiehe RDBMS
context b1, 14, 74], they mainly focus on greedy heuristics to find a good glquibeh for

a batch of queries. We present a novel two-phase algoritifimda global optimal plan
for a batch of queries. Specifically, we present novel prgin@chniques to prune away
non-promising plans as well as a systematic approach toentbeginteresting plans for
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Table 5.4: Running examples of queries and plans
| Query | Plan | CSE set |

Uiq: ((RO > Rl) > (RQ > Rg)) CSE(UH) {RO > Rl,RQ > Rg}
Ulg: (RO > R1 > (R2 > RS)) CSE(Ulz) {RQ > Rg}
i Uss: (Ro > (R1 > (Rz > Rg))) CSE(U13) {RQ > Rg}
PRy Ry > Ry < R,
Ql 0 ! 2 3 Uiy (((RoNRl) l><1R2) l><1R3) CSE(U14): {RoNRhRoNRl NRQ}
Uis: ((Rol><1R1)l><1R2D<]R3) CSE(U15): {RoNRl}
Usis: ((Ro > Ry Rz) > Rg) CSE(Uw)Z {Ro > Ry > RQ}
i Ust: ((RO > Rl) > (R2 > R4)) CSE(UQl)Z {R() > Rl,Rz > R4}
PRy Ry > Ry R
Q2 0 ! 2 4 Uss: (((Ro > Rl) > RQ) > R4) CSE(UQQ)Z {R() > Ry, Ry <t Ry < RQ}
Qgi R2 > R5 > R4 U31: ((RQ Y Rd) > R4) CSE(UM) {RQ > Rs}

each query into a global optimal plan. In the following, walarate on the details of the
two phases.

Notations. For a queryQ);, we useW; = {W;,--- , Wy, } to denote the set of relations
in Q;, Ui = (Un,---,Uyu,) to denote the set of all possible plans fgy. Table5.4
shows three example queries and some plans for each quéwyiliize used to illustrate
our algorithm.

For a planl/’ and its associated partitigiby, - - - , Si } 8, we useJoinExp(U’) to denote

its join expression without any execution ordgub Plan(U’) to denote the set of subplans

of eachsS;, andCost(U’) to denote its evaluation cost based on some cost model. For
example, for the plaf/,, in Table5.4 and its associated partitiq{ Ry, Ri, R2}, { R3}},

we haveJoinExp(Uyy) = Ry < Ry <t Ry < Ry and SubPlan(Uyy) = {(Ro <1 Ry) <

Ry, R3}.

55.1 First Phase

In the first phase, for each pl@n; of @);, we maintain a set of CSEs 0f; whose results
could be reused for other queriesdn We refer to this set as CSE set and G5eE£/(U;;)

to denote the CSE set 6f;. For example, consider the pléf, in Table5.4 we have
CSE(Uyy) = {Ro < Ry, Ry < Ry 1 Ry} since the results of the subexpressidhs<

R; and Ry <1 R; <1 Ry could be reused fof),. Note that there may be several plans
corresponding to the same CSE set. For example, the two plarendU;3 in Table5.4
have the same CSE set (i.€R> < R3}). We say a pla;; is interesting if it is either
the optimal plan or its CSE set is not empty. Note that evempléaU;; is not the optimal
plan, the global optimal plan may choo8g for @, if U;; produces some output that

8Recall that each partition is associated with a plan as dgsulin Sectios.2
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could be reused for other queriesdh Thus, in this phase, we need to maintain all the
interesting plans for eaal; to be further processed in the second phase.

Algorithm 5.7: Interesting plan generation algorithm
Input: An query@; in Q
Output: Interesting plans fo@); (i.e., Iyy,)

1 for j = |W;| — 1do

foreach partition {S;,--- , Sk} € Ps do
foreach{U7,--- ,U;} € I, x --- x Ig, do

U’ = createPlar(,- - - ,U}) ;

CSE(U') =Ul_, CSE(U;);

if JoinExp(U')is a CSE w.r.Q then

| CSE(U')=CSEU’")JJoinEap(U");

Is =1IsJU';

Apply the two pruning techniques fdg ;

2 foreach S € CSEA({Wij,- -+, Wyw,[}) (i.e., Algorithm5.3) do
3 if |S| = 1then

4 Ig = createPlan(S) ;

5 continue ;

6 Ps = PEA(S) (i.e., Algorithm5.4) ;

7

8

9

=
o

B
N P

I
N

We now discuss how the interesting plans and the correspgrdsE sets for a query
Q; are computed when applying the single query join enumeraigorithm forQ);. Al-
gorithm 5.7 shows the pseudocode of this process. To support increhuemigoutation,
for each connected subsgtof 1/;, we compute and maintain all the interesting plans
for it (denoted ads). Note that this is different from the SOJE problem whereyamie
optimal plan is maintained fos. Consider the enumeration of interesting plans and the
corresponding CSE sets fof, for eachk-way partition{Sy, - - , S} of S and for each
{U],---,U.} € Is, x --- x Ig,, the plan (denoted d$') joining U7,- - - ,U}. is an interest-
ing plan forS, and the CSE set @f’ is simply the union of eact’'SE(U}) (1 <1i < k)
plusJoinExp(U’) if the results of/oin Exp(U’) could be reused for other queries. Thus,
all the interesting plans and the corresponding CSE setS tmn be computed by enu-
merating all the partitions of and examining the expressidg, x --- x Is, associated
with each partition{ .Sy, - - - , Sk} in Ps. After evaluatingls, we apply two pruning tech-
niques (to be explained) on the plansiinto prune away the non-promising plans and
thus reduce the optimization cost. We now discuss our pgut@ohniques.

Pruning techniques. To prune away the non-promising interesting plans@@rwe in-

troduces two pruning technigues based on the plan cost andldtionship between CSE
sets. The first pruning technique prunes plans with the sagteset. Specifically, given
a set of plans with the same CSE set, it keeps the plan with thienal cost and prunes
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the remaining plans. For example, for pldits and U3 in Table5.4, we only need to
keep the one with the smaller cost and prune the other one.

The second pruning technique prunes plans with differerit €8s. Specifically, con-
sider two pland/;; andU;;, with CSE(U;;) # CSE(Uy,) andCost(U;;) < Cost(Uy).
Although U;; andU;;, have different CSE sets, if;; can compute the results of the C-
SEs that are present ¥, but not in itself (i.e.,CSE(U;) \ CSE(U;;)) in some cost
that is no greater than the val&st(U;;) — Cost(U;;), then we can still prun&;. Let
Cost(CSE(Uy,) \ CSE(U;j) | CSE(U;;)) denote the cost to compute the results of the
CSEs inCSE(Uy,) \ CSE(U,;) based on the results of the CSESGY E(U;;). If we
haveCost(U;;) + Cost(CSE(Uy) \ CSE(U;j) | CSE(U;;)) < C(Uy), then we can
simply removel,,. For example, consider the two plafg, and U5 in Table 5.4, if
Cost(Uys) + Cost({Rg > Ry < Ro} | {Ro, R1}) < Cost(Uyy), then we can simply
prunel,.

To computeCost(CSE(Uy,) \ CSE(Uy;) | CSE(U;;)), we have to compute the cost for
evaluating the results of each CSEGIS E(P;,) \ CSE(U;;) based on the results of the
CSEs inCSE(U;;). Furthermore, if a CSEE is a subexpression of another CEE, we
should compute the results éf first so that they could be reused to compute the results
of E”. We assum& SE(Uy,) \ CSE(U;j) = {En,--- , Es} and if a CSEE; is a subex-
pression of another CSE;, theni < j. Then we have&'ost(CSE(U,) \ CSE(U;;) |
CSE(Usy)) = 35—, Cost(E, | CSE(Ui;) U{EL, -+, E,-1}). Note that for each CSE
E,, itis associated with multiple interesting plans (mainéai when applying the single
query join enumeration algorithm) and the costs of thesesptaie updated based on the
CSEs inCSE(P;) | U{E, - -, E,—1} and the minimal cost is chosen as the costpf
We now discuss how to update the cost of a plan based on a C3lBeet the results of
each CSE in the set have been materialized.

Algorithm 5.8 shows the pseudocode to update the cost of a [glarased on a CSE set
O’ where the results of the CSEs @ have been materialized. The main idea of the
algorithm (denoted as CTUA) is to recursively traverse digtothe subplans df’ and
check whether the results of the CSE<lhcan be reused for some subplans. Initially,
it addsU’ into a queue. Then it goes into an iterative process to wettiee subplans of
U’. In each iteration, it pulls a plati” from the queue. If/oinExp(U") € O', then the
results ofU” have already been materialized and the cogf’df updated. Otherwise, if
O’ has overlap with the CSE set &f', then the subplans &f” (i.e., SubPlan(U")) are
added into the queue since their results may have alreadyrbaterialized. The iterative
process terminates when the queue is empty.
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Algorithm 5.8: Cost updating algorithm (CTUA)
Input: AplanU’, a CSE se®’
Output: Updated cost of/’ based on the results of the CSE<h
cost = Cost(U');
queue = newQueue() ;
queue.add(U") ;
while queue # () do

U" = queue.poll() ;

if JoinExp(U") € O then

cost = cost - Cost(U") ;
else ifCSE(U") (O’ # 0 then
| queue.addAll(SubPlan(U")) ;

return cost

© 00 N o o b~ W N
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Optimization. As the queries in the batc® may have many CSEs, it is unnecessary
to redundantly optimize these CSEs in the first phase. Fanpba consider the CSE
Ry > Ry <1 Ry for Q1 and @, after optimizing),, the interesting plans for the CSE are
maintained inQ;’s hash table. When optimizing the CSE 1Qs, instead of redundantly
optimizing it, we can reuse the results frapa’s hash table for),. In this way, we share
the optimization of CSEs among the batch of queries.

5.5.2 Second Phase

In the second phase, we stitch the interesting plans fordikees maintained in the first
phase into a global optimal plan. Our approach construetgkbbal optimal plan pro-
gressively, i.e., the global plans for a seti@fueries are constructed before that for a set
of i + 1 queries. Similarly, we maintain a CSE set for each global ptaere the results
of the CSEs in the set could be reused in future computatiorerdll, we construct the
global optimal plan by evaluating the express{ofYy, x Iy,) X Iy;) X - -+ x Iy, ) with
intermediate global plans being materialized and prunedte two pruning techniques).
In this way, we are able to prune the combination space ofrtezasting plans for the
batch of queries. Let/; C ((Iw, x Iw,) % --- x Iy,) (2 < i < n) denote the interesting
global plans maintained for the set of quer{€s,, - - - , Q;}.

Algorithm 5.9 shows the pseudocode to generate the global optimal plaa h@atch of
queriesQ = {Q1,- -, Q,}. In thei™" iteration to examine the expressidfy ; x Iy, to

construct the global plans for the set of quedés,--- ,Q;} (2 < ¢ < n), we need to
compute both the costs and CSE sets for the global plansifisplg, consider a combi-
nation of plangU’,U") € (M;_, x Iy,), its global plan (denoted &sP) is constructed
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Algorithm 5.9: Global optimal plan generation algorithm
Input: Interesting plans for eadR; in Q = {Q1,--- ,Qn} (.e., w,, -~ , Iw,)
Output: The global optimal plan fo@ (i.e., M,,)
My = Iw, ;
fori=2—ndo
foreach (U',U") € (M;—1 x Iw,) do
Let GP denote the global plan fq/’, U") ;
Cost(GP) =Cost(U")+ CTUP(U",CSE(U")) (i.e., Algorithm5.8) ;
CSE(GP)=CSE{U")+ CSUA(U",CES(U")) (i.e., Algorithm5.10);
Remove the CSEs in/; that can not be reused in future computation ;
Apply the two pruning techniques fav/; ;

© 0o N o g b~ W N P

by checking the reusable results of the CSE€'#F (U’) for U” and updating both the
cost and CSE set farF P. The cost ofGP is simply the cost of/’ plus the updated cost
of U” based on the results of the CSEsGi$ E(U’) which has already been discussed
in Algorithm 5.8, Similarly, the CSE set off P is simply the CSE set of/’ union the
updated CSE set df” based on the results of the CSEsSG® E(U’). Algorithm 5.10
shows the pseudocode to update the CSE set of alpléwased on a CSE sél’ where
the results of the CSEs i’ are materialized. Similar to Algorithrs.8, the main idea
of the algorithm (denoted asSU A) is to traverse through the subplansidf check the
reusable results of the CSEs@H for some subplans and update the CSE sét'oSince
the algorithm is very similar to Algorithr.8 we do not repeatedly discuss it.

Algorithm 5.10: CSE set updating algorithm (CSUA)

Input: AplanU’, a CSE se®’
Output: Updated CSE set df’ based on the results of the CSE<Ih
cse =CSEU');
queue = newQueue() ;
queue.add(U'") ;
while queue # 0 do
U" = queue.poll() ;
if JoinExp(U") € O then
cse.remove All(CSEU")) ;
else ifcse CSE(U") # 0 then
| queue.addAll(SubPlan(U")) ;
return cse

© 00 N o g b~ W N P
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After computing)/; in thei'" iteration, we apply the optimization technique (to be dis-
cussed) to remove the CSEsH#} that can not be reused in future computation and apply
the two pruning techniques fdr; to prune away the non-promising plans. Note that after
the termination of the algorithm\l/,, contains only one plan which is the global optimal

plan forQ = {Q, -+, Q. }.
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For example, consider the construction of the global plaritfe plans(Usg, Uss) in Ta-
ble 5.4, the global plan will reuse the results of the C&E <t R; <1 Ry from Uy for
Ux. Therefore, the cost and the CSE set of the global plan arplgi@fost(U;) and
CSE(Uy) respectively.

Optimization. When constructing the global optimal plan for a batch of gggeito further
reduce the plan combination space, we remove the CSEs whithhat be reused in
future computation as early as possible to enhance thetigéiaess of the two pruning
techniques. For example, after the evaluatiodpf > Iy, in Table5.4, the CSER, <

R, > R, can not be reused in the evaluationdf > Iy, and thus can be removed in
all the plans inM,. This early CSE removal optimization will help to prune mpians
when applying the proposed two pruning techniques. For pl@nbefore applying the
optimization, neither the global plan f¢t/;5, U, ) nor the global plan fo(U;s, Us2) can
be pruned if their costs do not meet certain criterion (asutised in Sectioh.5.]) since
their CSE sets (i.e(;SE(Ua:) andCSE(Uy) respectively) are different. However, since
allthe CSEs i Ry < Ry, Ry 1 Ry, Ry 1 Ry 1 Ry} can not be reused when computing
M, x I3, we can remove these CSEs and the two global plans becomeacaiohg and
only the one with a smaller cost need to be maintained. Toemehtihis, after the first
phase, for each CSE, we maintain an inverted list of querfegeveach query has at lease
one interesting plan with its CSE set containing the CSEhénsiecond phase, each time
when we finish evaluating the expressigh ; > Iy, we remove)); from all the inverted
lists it appears. A CSE can be removed from the global plaits iiverted list is empty.

5.6 Experimental Results

In this section, we present an experimental study to evaltre efficiency of our join
enumeration algorithms in terms of query optimization ting&ections5.6.1and5.6.2
respectively study the efficiency of our single-query andtiagquery join enumeration
algorithms. All the algorithms were implemented in Java tHredexperiments were per-
formed on an Intel Dual Core 2.33GHz machine with 3.2GB of RAMning Linux.

Generator. We generated different types of queries for our experimeetsding chain,
cycle, star, cliqgue as well as random acyclic and cyclic gser The random acyclic
queries were generated using the approachih [To generate random cyclic queries, we
first generated random acyclic queries and then added aalitedges into the queries
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Table 5.5: Query generation parameters

Relation cardinality £10°) | Prob. Domain size| Prob.
10-100 15% 2-10 5%
100-1,000 30% 10-100 50%
1,000-10,000 25% 100-500 | 35%
10,000-100,000 20% 500-1000 | 15%

to form cycle. Note that all the edges were uniformly chosebd added. The default
number of edges in a random cyclic query was— 1) + (W x 0.05] whereN is the
number of relations in the query (i.e., th& — 1) edges were used to generate a random
acyclic query and an additional 5 percentage of edges wetedaith the query to form

cycle).

Following the discussion fronbp, 43, 24], for each query, we generated random relations
and added random attributes with random domain sizes uséngarameters in Tabfe5s.
Furthermore, we generated both foreign-key join predgatewell as non-foreign-key
join predicates. For each foreign-key join predicate, @keectivity factor is estimated
such that the cardinality of the join result is equal to thedeality of the relation with
the foreign key. For each non-foreign-key join predicateatmibutesA; and A,, its
selectivity factor is estimated US"’;an(dom(All),dom(Ag)) wheredom(A4;) (i € {1,2}) is
the domain size ofi;. The details of the query generation approach can be fouftbjn
43, 24]. Each query was run five times and its average running timeessreported. For
random acyclic and cyclic queries, since the running tinfegeaerated queries vary due
to the different query graphs, we report the average runimmgfor 10 random generated
queries.

Cost model. To estimate the cost of multi-way joins in the MapReduce &rawrk, we
used the cost model ir5] to estimate the communication cost of multi-way joins.(i.e
the cost to transfer the map output from map tasks to redsts)tand the cost model
in Chapter4.4 to estimate the remaining cost of multi-way joins includimgp output
sorting cost, map input reading cost and so on.

5.6.1 Efficiency of Single-Query Join Enumeration Algorithm

In this section, we study the efficiency of our single queliy jenumeration algorithm.
Figure5.2 compares our algorithm DPopt against the two baseline idthgas DPset and
DPsize for different query types as a function of number taH#tiens in the queries. Note
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Table 5.6: Improvement factor of DPopt over DPset
| Querytype [ Minimum | Average| Maximum |

Chain 56% 110% 168%
Cycle 74% 122% 206%
Star 84% 223% 473%
Clique 6% 10% 14%
Random acyclicc, 67% 190% 354%
Random cyclic 28% 49% 76%

that since DPsize ran very slowly, we do not show its runnimgs in Figures.2if it did
not finish running within 1 hour. We summarize the resultsoiisws.

First, comparing the two baseline algorithms, DPset sigguifily outperforms DPsize by
up to two orders of magnitude. For example, when the numhetations in a chain query
is 22, the running times of DPset and DPsize are respectik8yand 1136.7s. This is
due to the large number of integer partitions generated RsiEZe which results in a large
number of disjointedness checking as explained in Sedidrl. For example, when
the number of relations in a chain query is 15, DPsize geeg®68 integer partitions
which results in 17.120.334 disjointedness checking wbRset only needs to check the
connectedness 458.073 times. Since DPsize always runicsgtly slower than DPset,
we focus on our comparison for DPopt and DPset in the follgwin

Second, as the number of relations in the queries incregsesunning times of both
DPopt and DPset increase. However, the running time of DiRsetases much faster
than the running time of DPopt which therefore increasesin@ing margin of DPopt
over DPset. For example, for star queries, the wining peacgs of DPopt over DPset are
respectively 84%, 107%, 135%, 168%, 197%, 284%, 341% an&4¥Ben the number
of relations in the query are 13, 14, 15, 16, 17, 18, 19 and 24bleb.6 shows the
average, minimum and maximum wining percentages of DPogt D¥set for different
query types for the experiments in Figlr2 Note that even in the worst case for clique
gueries, DPopt still outperforms DPset by 10% on average.

Third, the running time of random acyclic queries falls betw the running time of chain
queries and that of star queries. This is expected sincen apheries are the simplest
acyclic queries while star queries are the most complexl@ogueries in terms of time
complexity. Similarly, the running time of random cycliceyies falls between the running
time of cycle queries and that of clique queries. Again hilxereason is that cycle queries
are the simplest cyclic queries while clique queries arentbst complex cyclic queries
in terms of time complexity.
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In additional to the above experiments, for random cycliereggs, we also conducted an
experiment to show the effect of number of edges in the gsiefiéggure5.3 shows the
running times as a function of number of edges for cyclic spsewith 18 relations. As
the number of edges in the queries increases, the runnimg tfiboth DPopt and DPset
increase. This is expected since for DPopt, as the numbelgakean the queries increases,
it generates more partitions which requires more time taresrate. For DPset, as the
number of edges in the queries increases, although the nmumhlmandidate partitions
remains the same, the connectedness checking for a camgideition requires more
time since more connected subsets and query plans are stdhechash table. However,
the running time of DPopt increases faster than the runivimg of DPset which therefore
decreases the winning margin of DPopt over DPset. For exgrii@ winning percentages
of DPopt over DPset are respectively 96%, 60%, 45%, 24% afigviden the number of
edges are 18, 23, 28, 33 and 38.

5.6.2 Efficiency of Multi-Query Join Enumeration Algorithm

In this section, we study the efficiency of our proposed ruery join enumeration
algorithm. To generate a batch of queries, we first gener&téthe default value is 10)
relations. As discussed previously, we then generatedatinalities for each relation
as well as the selectivity factors for each pair of relatiogaresenting a join predicate
between them. Finally, each query in a batch was generatietl@ss: we first randomly
chose a subset of th€ relations for the query and then generated a random acywio/q
for the chosen relations. We chose random acyclic quenes $hey are more common
in real life applications. For example, 20 out of the 22 TPQleries are acyclic queries.
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Figure 5.4: Efficiency of multi-query join enumeration algiom

The default number of queries in a batch is 15. For each sigaerfy batch, we randomly
generated 20 batches and their average running time isteepor

Figuresb.4(a) ands.4(b) respectively show the efficiency of our multi-query jeimumer-
ation algorithm as a function of number of queries and nurobeelations (i.e.N) in a
guery batch. For example, whén = 10 and the number of queries in a batch is 20, it
took only 32 seconds to optimize the queries. Note that warségly report the running
times for the two phases of our algorithm. Furthermore, thning times of the first
and second phases can dominate each other in differemgsettepending on amount of
sharing among the queries. Specifically, if a batch of qedrave a lot of CSEs, then the
second phase will run slower than the first phase since thefiesse will generate more
interesting plans which requires more time to merge in tlvese phase. For example,
in Figure5.4(a), the first phase took longer time to run than the secondephéen the
number of queries in a batch are 5, 10 and 15. However, whemuitmder of queries are
20 and 25, the second phase ran longer than the first phaseis@cause the number of
CSEs becomes larger when the number of queries increaseb vésults in more inter-
esting plans. For example, the number of interesting plansiated in the first phase are
respectively 12, 80, 149, 435 and 620 when the number of egiare 5, 10, 15, 20 and
25.

To demonstrate the effectiveness of our proposed two pgueichniques (to prune away
non-promising interesting plans), we compare against\gersalution that generates and
stitches the interesting plans without any pruning. Oureexpental results show that the
naive solution consumes a lot of memory space and runs vewlys(due to the large

number of interesting plans generated in the first phase atdrralized in the second
phase). For example, in the default setting, our approaolswoed about 30MB Java

114



CHAPTER 5. OPTIMAL JOIN ENUMERATION IN MAPREDUCE
FRAMEWORK

heap space and took 3 seconds to run while the naive solationut of Java heap spate
after running 6 minutes. Thus, to enable the naive soluticimish running within the
capacity of Java heap size, we 8ét= 5. Note that even for this setting, the naive solution
ran out of Java heap size after running about 6 minutes whenumber of queries in a
batch is no smaller than 15. Thus, we only report the runnimgs when the number
of queries in a batch are 5 and 10. The running times of ourceabr are respectively
8 and 30 milliseconds when the number of queries in a batcth aned 10 while that
for the naive solution are respectively 140 and 990 millsets which demonstrates that
our approach is at least one order of magnitude faster trendlve solution due to the
proposed pruning techniques. Furthermore, the numberradrgéed interesting plans in
the first phase for our approach are respectively 12 and 36 wigenumber of queries in
a batch are 5 and 10 while that for the naive solution are césedy 50 and 111.

5.7 Summary

In this chapter, we have presented a comprehensive studyeo®JE problem in the
MapReduce framework. We have studied both the SOJE and M@ltems and pro-
posed efficient join enumeration algorithms for these potd. Our experimental results
demonstrate that our proposed single query join enumeratgorithm significantly out-
performs the baseline algorithms by up to 473%, and our megpoulti-query join enu-
meration algorithm is able to scale up to 25 queries wheratineber of relations in the
queries ranges from 1 to 10.

9Given the capacity of 3.2GB RAM, we set Java heap size to b8R which is also the maximum
allowed heap size for our system.
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CONCLUSION

In this thesis, we studied three problems using novel MQQ@rtegies, namely, efficien-
t processing of enumerative set-based queries, multiygyatimization in MapReduce
framework and optimal join enumeration in MapReduce fraoréw In this chapter, we
summarize our works and highlight some interesting worlet #re worthy of further
exploration.

6.1 Contributions

Our first contribution is the study of efficient evaluatiochaiques for enumerative set-
based queries (SQs). While enumerative SQs can be expresisedSQL, existing re-
lational engines, unfortunately, were not able to effidiepptimize and evaluate such
queries due to their complexity as demonstrated by our @xeetal results. Then we
proposed a novel evaluation approach for enumerative SQs.kéy idea is to first par-
tition the input table based on the different combinatiohsanstraints satisfied by the
tuples and then compute the answer sets by appropriate natitis of the partition-
s. In this way, an enumerative SQ is evaluated as a collecofi@noss-product queries
(CPQs). We presented efficient and scalable MQO heurigtioptimize the evaluation
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of a collection of CPQs. Our experimental results on Postgrdemonstrated that our
proposed approach significantly outperform the baselih&isas by up to three orders
of magnitude.

Our second contribution is the study of multi-query/jobioptation techniques and algo-
rithms for a batch of MapReduce jobs. We first proposed twoteetniques for multi-job
optimization in the MapReduce framework. The first techrigpua generalized grouping
technique (which generalizes the recently proposed MRSeahnique) that merges mul-
tiple jobs into a single job thereby enabling the merged jolshare both the scan of the
input file as well as the communication of the common map duffiue second technique
is a materialization technique that enables multiple jolshare both the scan of the input
file as well as the communication of the common map output a&réigd materialization
of the map output of some jobs (in the map and/or reduce phd$en we proposed a
new optimization algorithm that given an input batch of jopgoduces an optimal plan
by a judicious partitioning of the jobs into groups and aniropt assignment of the pro-
cessing technique to each group. Our experimental resultsadloop demonstrated that
our new approach significantly outperforms the state-efdh technique, MRShare, by
up to 107%.

Our third contribution is the study of the optimal join enuatéon (OJE) problem and pro-
posed efficient join enumeration algorithms for the probiertine MapReduce paradigm.
We first studied the SOJE problem which serves as a foundé&iioaur study on the
MOJE problem. Specifically, we first studied the complexifytlee SOJE problem in
the presence of multi-way joins for different query grappey (chain, cycle, type and
clique). We then proposed both bottom-up and top-down joumgeration algorithms for
the SOJE problem with an optimal complexity w.r.t. the qugrgph based on a proposal
of an efficient and easy-to-implement plan enumerationrélgo. Based on the proposed
single-query join enumeration algorithm, we then presate efficient multi-query join
enumeration algorithm. Our experimental results dematesdrthe efficiency of our pro-
posed algorithms.

6.2 Future Work

In this section, we discuss some interesting future divestrelated to the problems ex-
amined in this thesis.
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Finding interesting answer sets for enumerative SQs.Since the number of answer
sets for some enumerative SQs could be very large, it is eabgnhelp users to browse
through all the "interesting” answer sets. Two standartedd for "interestingness” in
the database context are topdQ] and skyline [L1] . Thus, one interesting direction is
to examine the evaluation of top-k enumerative SQs. In@ar, if the ranking function
F is a distributive monotone function as defined in Sect8on.2 then the sort-based
evaluation can be optimized as follows. In the partitionggise, we generate partitions
that are sorted ot'(¢) by sorting the input relation on the composite kKeyd, F'(t))
wherepid is the assigned partition identifier. In the enumeratiorsphae apply existing
rank join algorithms35] to incrementally produce the ranked answer sets for eashtvp
and apply the well-knowfi" A algorithm [L9] to retrieve the top-k answer sets for all the
vpsets.

Another interesting direction is to investigate the seliskeyoperator in conjunction with
our work to retrieve non-dominated sets which is esseptaljeneralization of the tu-
ple skyline operator][1] to retrieve non-dominated tuples. To evaluate the setirskyl
operator in conjunction with enumerative SQs, the most geg@proach is to first enu-
merate all the answer sets for enumerative SQs using oungedpapproach followed
by pruning way the dominated sets. While there has been atiengmary work [71] to
integrate these two works to improve the query performathed;, work is very limited by
assuming either fixed set cardinality or in-memory data Wwiieis can not be applied for
our problem. As a result, we plan to investigate technigaastegrate these two works
to reduce the evaluation cost for both the set skyline opeest well as the enumerative
SQs.

Comprehensive optimization framework in the MapReduce paadigm. Our work on
the MOJE problem focuses on CSEs that produce the samestedolvever, in real life
applications, it is common to have some subexpressionseviesilts have overlap or
containment relationships. We denote these subexpresagosharable subexpressions
(SSEs). To explore the sharing for both CSEs and SSEs, aistimgblution is to apply
a two-phase approach. The first phase translates the qireagsbs to share the compu-
tation of the CSEs using our multi-query join enumeratiagoathm. The second phase
applies our multi-job optimization techniques on the ttatesl jobs to share the computa-
tion of the SSEs. However, this two-phase solution is subwtsince we do not consider
the SSEs when we choose the global plan in the first phase, dhisteresting direction
for future work is to investigate a single phase approacitmse the global optimal plan
for a batch of queries to share the computation of both CSESSHS.
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