

EXTRACTION OF TEXT

FROM IMAGES AND VIDEOS

PHAN QUY TRUNG

(B. Comp. (Hons.), National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

i

Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

__

Phan Quy Trung

10 April 2014

ii

To my parents and my sister

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Tan

Chew Lim for his guidance and support throughout my candidature. With his

vast knowledge and experience in research, he has given me advice on a wide

range of issues, including the directions of my thesis and the best practices for

conference and journal submissions. Most importantly, Prof. Tan believed in

me, even when I was unsure of myself. His constant motivation and

encouragement have helped me to overcome the difficulties during my

candidature.

I would also like to thank my colleague and co-author Dr. Palaiahnakote

Shivakumara for the many discussions and constructive comments on the

works in this thesis.

I thank my labmates in CHIME lab for their friendship and help in both

academic and non-academic aspects: Su Bolan, Tian Shangxuan, Sun Jun,

Mitra Mohtarami, Chen Qi, Zhang Xi and Tran Thanh Phu. I am particularly

thankful to Bolan and Shangxuan for their collaboration on some of the works

in this thesis.

My thanks also go to my friends for their academic and moral support:

Le Quang Loc, Hoang Huu Hung, Le Thuy Ngoc, Nguyen Bao Minh, Hoang

Trong Nghia, Le Duy Khanh, Le Ton Chanh and Huynh Chau Trung. Loc and

Hung have, in particular, helped me to proofread several of the works in this

thesis.

Lastly, I thank my parents and my sister for their love and constant

support in all my pursuits.

iv

Table of Contents

Table of Contents iv

Summary viii

List of Tables x

List of Figures xi

List of Abbreviations xvii

1 Introduction 1

1.1 Problem Description and Scope of Study ... 2

1.2 Contributions .. 3

2 Background & Related Work 4

2.1 Challenges of Different Types of Text ... 4

2.2 Text Extraction Pipeline ... 9

2.3 Text Localization .. 10

2.3.1 Gradient-based Localization ... 12

2.3.2 Texture-based Localization .. 17

2.3.3 Intensity-based and Color-based Localization 21

2.3.4 Summary ... 24

2.4 Text Tracking ... 25

2.4.1 Localization-based Tracking .. 26

2.4.2 Intensity-based Tracking .. 27

2.4.3 Signature-based Tracking ... 27

2.4.4 Probabilistic Tracking ... 29

2.4.5 Tracking in Compressed Domain 30

v

2.4.6 Summary ... 32

2.5 Text Enhancement .. 33

2.5.1 Single-frame Enhancement ... 34

2.5.2 Multiple-frame Integration ... 34

2.5.3 Multiple-frame Super Resolution 37

2.5.4 Summary ... 40

2.6 Text Binarization .. 41

2.6.1 Intensity-based Binarization ... 43

2.6.2 Color-based Binarization .. 45

2.6.3 Stroke-based Binarization ... 47

2.6.4 Summary ... 48

2.7 Text Recognition .. 49

2.7.1 Recognition using OCR .. 50

2.7.2 Recognition without OCR .. 53

2.7.3 Summary ... 59

3 Text Localization in Natural Scene Images and Video Key Frames 62

3.1 Text Localization in Natural Scene Images.................................... 62

3.1.1 Motivation .. 62

3.1.2 Proposed Method .. 63

3.1.3 Experimental Results .. 71

3.2 Text Localization in Video Key Frames .. 78

3.2.1 Motivation .. 78

3.2.2 Proposed Method .. 80

3.2.3 Experimental Results .. 87

3.3 Summary .. 95

vi

4 Single-frame and Multiple-frame Text Enhancement 97

4.1 Single-frame Enhancement .. 97

4.1.1 Motivation .. 98

4.1.2 Proposed Method .. 98

4.1.3 Experimental Results .. 105

4.2 Multiple-frame Integration ... 112

4.2.1 Motivation .. 112

4.2.2 Proposed Method .. 113

4.2.3 Experimental Results .. 123

4.3 Summary .. 128

5 Recognition of Scene Text with Perspective Distortion 130

5.1 Motivation .. 130

5.2 Proposed Method .. 133

5.2.1 Character Detection and Recognition 133

5.2.2 Recognition at the Word Level ... 138

5.2.3 Recognition at the Text Line Level 144

5.3 StreetViewText-Perspective Dataset .. 148

5.4 Experimental Results .. 150

5.4.1 Recognition at the Word Level ... 152

5.4.2 Recognition at the Text Line Level 158

5.4.3 Experiment on Processing Time 161

5.5 Summary .. 162

6 Conclusions and Future Work 164

6.1 Summary of Contributions ... 164

vii

6.2 Future Research Directions .. 166

Publications during Candidature 168

Bibliography 171

viii

Summary

With the rapid growth of the Internet, the amount of image and video

data is increasing exponentially. In some image categories (e.g., natural

scenes) and video categories (e.g., news, documentaries, commercials and

movies), there is often text information. This information can be used as a

semantic feature, in addition to visual features such as colors and shapes, to

improve the retrieval of the relevant images and videos.

This thesis addresses the problem of text extraction in natural scene

images and in videos, which typically consists of text localization, tracking,

enhancement, binarization and recognition.

Text localization, i.e., identifying the positions of the text lines in an

image or video, is the first and one of the most important components in a text

extraction system. We have developed two works, one for text in natural scene

images and the other for text in videos. The first work introduces novel gap

features to localize difficult cases of scene text. The use of gap features is new

because most existing methods extract features from only the characters, and

not from the gaps between them. The second work employs skeletonization to

localize multi-oriented video text. This is an improvement over previous

methods which typically localize only horizontal text.

After the text lines have been localized, they need to be enhanced in

terms of contrast so that they can be recognized by an Optical Character

Recognition (OCR) engine. We have proposed two works, one for single-

frame enhancement and the other for multiple-frame enhancement. The main

idea of the first work is to segment a text line into individual characters and

ix

binarize each of them individually to better adapt to the local background. Our

character segmentation technique based on Gradient Vector Flow is capable of

producing curved segmentation paths. In contrast, many previous techniques

allow only vertical cuts. In the second work, we exploit the temporal

redundancy of video text to improve the recognition accuracy. We develop a

tracking technique to identify the framespan of a text object, and for all the

text instances within the framespan, we devise a scheme to integrate them into

a text probability map.

The two text enhancement works above use an OCR engine for

recognition. To obtain better recognition accuracy, we have also explored

another approach in which we build our own algorithms for character

recognition and word recognition, recognition i.e., without OCR. In addition,

we focus on perspective scene text recognition, which is an issue of practical

importance but has been neglected by most previous methods. By using

features which are robust to rotation and viewpoint change, our work requires

only frontal character samples for training, thereby avoiding the labor-

intensive process of collecting perspective character samples.

Overall, this thesis describes novel methods for text localization, text

enhancement and text recognition in natural scene images and videos.

Experimental results show that the proposed methods compare favourably to

the state-of-the-art on several public datasets.

x

List of Tables

Table 2.1. Challenges of text in natural scenes and text in videos. 5

Table 3.1. Results on the ICDAR 2003 dataset. .. 75

Table 3.2. Results on the Microsoft dataset. .. 76

Table 3.3. Experimental results on horizontal text. ... 91

Table 3.4. Experimental results on non-horizontal text. 94

Table 3.5. Average processing time (in seconds). ... 95

Table 4.1. Segmentation results on English text. ... 109

Table 4.2. Segmentation results on Chinese text. .. 109

Table 4.3. Recognition rates on English text. .. 111

Table 4.4. Statistics of the moving text dataset and the static text dataset. ... 123

Table 4.5. Recognition rates on the moving text dataset and the static text

dataset (in %). .. 128

Table 5.1. Recognition accuracy on perspective words (in %). 153

Table 5.2. Accuracy on multi-oriented words (in %). 155

Table 5.3. Cropped character recognition accuracy (in %). 156

Table 5.4. Recognition accuracy on frontal words (in %). 157

Table 5.5. Degradation in performance between frontal and perspective texts

(in %). .. 158

Table 5.6. Accuracies of our method when performing recognition at the word

level and at the text line level (in %). 161

xi

List of Figures

Figure 1.1. A scene image and a video frame. ... 2

Figure 2.1. A document image. .. 4

Figure 2.2. A document character, a scene character and a video character. 5

Figure 2.3. Video graphics text (left) and video scene text (right). 9

Figure 2.4. The typical steps of a text extraction system. (Figure adapted from

(Jung et al. 2004).) ... 10

Figure 2.5. The (white) bounding boxes of the localized text lines. 11

Figure 2.6. Stroke Width Transform. (Figure adapted from (Epshtein et al.

2010).) .. 15

Figure 2.7. In each window, only the pixels at the positions marked by gray

are fed into SVM. (Figure adapted from (Kim et al. 2003).) . 17

Figure 2.8. The various features tested in (Chen et al. 2004b). From top to

bottom: candidate text region, x-derivative, y-derivative,

distance map and normalized gradient values. (Figure adapted

from (Chen et al. 2004b).) .. 18

Figure 2.9. Block patterns. (Figure taken from (Chen & Yuille 2004).) 19

Figure 2.10. The left most column shows the input image while the remaining

columns show the color clusters identified by K-means.

(Figure taken from (Yi & Tian 2011).) 23

Figure 2.11. SSD-based text tracking. Top row: different instances of the same

text object. Bottom row: plot of SSD values. The SSD values

increase significantly when the text object moves over a

complex background (frame 100). (Figure taken from (Li et

al. 2000).) ... 28

Figure 2.12. Projection profiles of gradient magnitudes. (Figure adapted from

(Lienhart & Wernicke 2002).) ... 28

Figure 2.13. By using a probabilistic framework, (Merino & Mirmehdi 2007)

is able handle partial occlusion. However, the tracking result

is at a very coarse level (the whole sign instead of individual

text lines). (Figure taken from (Merino & Mirmehdi 2007).) 30

Figure 2.14. Motion vectors in a P-frame. (Figure taken from (Gllavata et al.

2004).) .. 32

xii

Figure 2.15. Result of the max/min operator (b) on text instances (a). In this

case, the min operator is used because text is brighter than the

background. (Figure adapted from (Lienhart 2003).) 35

Figure 2.16. Taking the average of text instances (a)-(d) helps to simplify the

background (e). (Figure adapted from (Li & Doermann

1999).) .. 36

Figure 2.17. The results of averaging all text frames (a) and averaging only the

selected frames (b). The contrast between text and background

in the latter is improved. (Figure taken from (Hua et al.

2002).) .. 36

Figure 2.18. Averaging at the frame level (left) and at the block level (right).

The latter gives better contrast around the individual words.

(Figure adapted from (Hua et al. 2002).) 36

Figure 2.19. The bimodality model used in (Donaldson & Myers 2005). 0 and

1 are the two intensity peaks. (Figure taken from (Donaldson

& Myers 2005).)... 40

Figure 2.20. Super resolution of text on license plates using 16 images. From

left to right, top to bottom: one of the low resolution images,

bicubic interpolation, ML estimation, MAP estimation with

bimodality prior, MAP estimation with smoothness prior and

MAP estimation with combined bimodality-smoothness prior.

The text strings are the recognition results. (Figure taken from

(Donaldson & Myers 2005).) ... 40

Figure 2.21. From top to bottom: a text region, the binarization results by (Lyu

et al. 2005), by (Otsu 1979) and by (Sato et al. 1998), and the

ground truth. (Figure adapted from (Lyu et al. 2005).) 44

Figure 2.22. Binarization results of Sauvola‘s method (a) and the MAP-MRF

method in (Wolf & Doermann 2002) (b). By capturing the

spatial relationships, the latter is able to recover some of the

missing pixels. (Figure taken from (Wolf & Doermann 2002).)

.. 45

Figure 2.23. Different measures work well for different inputs: the input text

regions (left) and the two foreground hypotheses, one based

on Euclidean distance (middle) and the other one based on

cosine similarity (right). (Figure taken from (Mancas-Thillou

& Gosselin 2007).) ... 47

Figure 2.24. (a) The stroke filter used in (Liu et al. 2006). (b) This method

does not handle text with two different polarities well.

(Figures adapted from (Liu et al. 2006).) 48

Figure 2.25. The voting process used in (Chen & Odobez 2005) to combine

the OCR outputs of different binarization hypotheses (all rows

xiii

except the last one) into a single text string (the last row).

(Figure adapted from (Chen & Odobez 2005).)..................... 51

Figure 2.26. The four main steps of text recognition. (Figure adapted from

(Casey & Lecolinet 1996).).. 53

Figure 2.27. The results of projection profile analysis are sensitive to threshold

values. With a high threshold, true cuts are missed (left),

while with a low threshold, many false cuts are detected

(right). .. 55

Figure 2.28. Gabor jets (left) and the corresponding accumulated values in

four directions (right). (Figures taken from (Yoshimura et al.

2000).) .. 57

Figure 3.1. GVF helps to detect local text symmetries. In (d), the 2 gap SCs

and the 6 text SCs are shown in gray. The two gap SCs are

between ‗o‘ and ‗n‘, and between ‗n‘ and ‗e‘. The remaining

SCs are all text SCs. ... 65

Figure 3.2. Text candidate identification. .. 67

Figure 3.3. Text grouping. In (a), the SCs are shown in white. For the second

group, the characters are shown in gray to illustrate why the

gap SCs are detected in the first place. 69

Figure 3.4. Block pattern (a) and sample false positives that are successfully

removed by using HOG-SVM (b).. 71

Figure 3.5. Sample text localization results on the ICDAR 2003 dataset........ 74

Figure 3.6. Sample localized text lines on the ICDAR 2003 dataset. 74

Figure 3.7. Sample text localization results on the Microsoft dataset. 76

Figure 3.8. Sample localized text lines on the Microsoft dataset. 76

Figure 3.9. F-measures for different values of T1. ... 77

Figure 3.10. Flowchart of the proposed method. ... 80

Figure 3.11. The 3 × 3 Laplacian mask. .. 80

Figure 3.12. Profiles of text and non-text regions. In (c), the x-axis shows the

column numbers while the y-axis shows the pixel values. 81

Figure 3.13. The intermediate results of text localization. 82

Figure 3.14. Skeleton of a connected component from Figure 3.13d. 84

Figure 3.15. End points and intersection points of Figure 3.14b. 84

xiv

Figure 3.16. Skeleton segments of Figure 3.14b and their corresponding sub-

components. (Only 5 sample sub-components are shown

here.) .. 85

Figure 3.17. False positive elimination based on skeleton straightness. 86

Figure 3.18. False positive elimination based on edge density........................ 87

Figure 3.19. Sample ATBs, TLBs, FLBs and PLBs. 89

Figure 3.20. The localized blocks of the four existing methods and the

proposed method for a horizontal text image. 91

Figure 3.21. The localized blocks of the four existing methods and the

proposed method for a non-horizontal text image. 93

Figure 3.22. Results of the proposed method for non-horizontal text. 93

Figure 3.23. The CC segmentation step may split a text line into multiple

parts. For clarity, (b) and (c) only show the corresponding

results of the largest Chinese text line, although the English

text line is also localized. ... 94

Figure 4.1. The flowchart of the proposed method. ... 99

Figure 4.2. Candidate cut pixels of a sample image. In (b), the image is blurred

to make the (white) cut pixels more visible. 100

Figure 4.3. Two-pass path finding algorithm. In (a), different starting points

converge to the same end points. In (b), the false cuts going

‗F‘ have been removed while the true cuts are retained. 105

Figure 4.4. Results of the existing methods and the proposed method.......... 107

Figure 4.5. Results of the proposed method for non-horizontal text (b) and

logo text with touching characters (c). In (c), the gap between

‗R‘ and ‗I‘ is missed because the touching part is quite thick.

.. 107

Figure 4.6. Binarization results using Su‘s method without segmentation (b)

and with segmentation (c), together with the recognition

results. In (c), both the binarization and recognition results are

improved. ... 111

Figure 4.7. Text tracking using SIFT. In (c), all keypoints are shown. In (d),

for clarity, only matched keypoints are shown. 116

Figure 4.8. Sample extracted text instances. .. 119

Figure 4.9. Text probability estimation.. 120

Figure 4.10. Character shape refinement. .. 123

xv

Figure 4.11. Sample results of the existing methods and our method. For

Min/max and Average-Min/max, only the final binarized

images are shown. .. 125

Figure 4.12. Sample results of our method. The left image in each pair is the

reference instance. The strings below the images are the OCR

results. .. 125

Figure 4.13. Word recognition rates of our method for different values of .

.. 128

Figure 5.1. The problem of cropped word recognition. A ―cropped word‖

refers to the region cropped from the original image based on

the word bounding box returned by a text localization method.

Given a cropped word image, the task is to recognize the word

using the provided lexicon. .. 132

Figure 5.2. The flowchart of the proposed method. 133

Figure 5.3. Character detection based on MSERs. For better illustration, only

the non-overlapping MSERs are shown in (b). The handling of

overlapping MSERs will be discussed later......................... 134

Figure 5.4. Using normal SIFT leads to few descriptor matches. In contrast,

dense SIFT provides more information for character

recognition. The left image in each pair is from the training set

while the right one is from the test set. Note the fact that the

right one is a rotated character. For better illustration, in (b),

we only show one scale at each point. 136

Figure 5.5. A sample alignment between a set of 6 character candidates

(shown in yellow) and the word ―PIONEER‖. The top row

shows the value of the alignment vector (of length 6). 139

Figure 5.6. Example LineNumber and WordNumber annotations. 146

Figure 5.7. An image from SVT and the corresponding image from SVT-

Perspective. Both images are taken at the same address, and

thus have the same lexicon. In (b), the bounding quadrilaterals

are shown in black for ―PICKLES‖ and ―PUB‖. 149

Figure 5.8. All the experiments in this section used rectangular cropped words

(b). .. 151

Figure 5.9. Sample recognition results for multi-oriented texts and perspective

texts. ... 153

Figure 5.10. Sample recognition results of our method for multi-oriented

words. ... 155

Figure 5.11. Sample character recognition results of our method. In (a), the

characters were correctly recognized despite the strong

xvi

highlight, small occlusion, similar text and background colors,

and rotation. In (b), the characters were wrongly recognized

due to low resolution, strong shadow and rotation invariance.

The last character was recognized as ‗6‘. 156

Figure 5.12. Sample results of our method for frontal words. It was able to

recognize the words under challenging scenarios: transparent

text, occlusion, fancy font, similar text and background colors

and strong highlight. .. 157

Figure 5.13. Recognition accuracies of our method for different vocabulary

sizes. ... 159

Figure 5.14. Sample results of recognition at the text line level. In (a), the

image on the left contains a single text line (―CONVENTION

CENTER‖) and the image on the right also contains a single

text line (―HOLIDAY INN‖). In (c), the words that are

changed due to the use of the language context information at

the text line level are bolded and underlined. 160

xvii

List of Abbreviations

CC Connected component ... 15

CRF Conditional Random Field ... 59

GVF Gradient Vector Flow .. 63

HOG Histogram of Oriented Gradients... 70

MRF Markov Random Field ... 44

MSER Maximally Stable Extremal Regions ... 21

SIFT Scale-invariant Feature Transform .. 29

SWT Stroke Width Transform .. 114

1

Chapter 1

Introduction

With the rapid growth of the Internet, more image and video databases

are available online. In such databases, there is a need for search and retrieval

of images and videos. As most search engines are still text-based, manual

keyword annotations have traditionally been used. However, this process is

laborious and inconsistent, i.e., two users may choose different keywords for

the same image or video. An alternative approach is to generate the keywords

from the text that appears in an image (e.g., road signs and bill boards) or a

video (e.g., captions). These keywords can then be used as semantic features

(in addition to visual features such as colors and shapes) to improve the

retrieval of the relevant images and videos. Other general applications include

sign translation, intelligent driving assistance, navigation aid for the visually-

impaired and robots, video summarization, and video skimming. Domain-

specific applications are also possible, e.g., aligning segments of lecture

videos with the corresponding external slides. Therefore, there is an increasing

demand for text extraction in images and videos.

Although many methods have been proposed over the past years, text

extraction is still a challenging problem because of the almost unconstrained

text appearances, i.e., texts can vary drastically in fonts, colors, sizes and

alignments. Moreover, videos are typically of low resolutions, while natural

scene images are often affected by deformations such as perspective

distortion, blurring and uneven illumination.

2

In this thesis, we address the problem of text extraction in images and

videos. We formally define the problem and the scope of study in the next

section.

1.1 Problem Description and Scope of Study

Given an image or a video, the goal of text extraction is to locate the text

regions in the image or video and recognize them into text strings (so that they

can be used for e.g., indexing). Furthermore, if the input is a video, each text

string is annotated with the time stamps (or frame numbers) that mark its

appearance/disappearance in the video. Its position in each frame is also

recorded because a text line may move between the frames.

The scope of this thesis is text extraction in natural scene images (Figure

1.1a) and in videos (e.g., news, documentaries, commercials and movies)

(Figure 1.1b).

 (a) Natural scene image (b) Video frame

Figure 1.1. A scene image and a video frame.

3

1.2 Contributions

This thesis makes the following contributions:

 We present two text localization works, one for scene text and the

other for video text (Chapter 3). The former proposes using gap

features for text localization, which is a novel approach because

most existing methods utilize only character features. The latter

addresses the problem of multi-oriented text localization, which

has been neglected by most previous methods.

 After the text lines are localized, they need to be enhanced prior to

recognition. Thus, we propose two text enhancement works, one

for single-frame enhancement and the other for multiple-frame

enhancement (Chapter 4). The first work illustrates the

importance of binarizing each character in a text line individually

instead of binarizing the whole line. The second work shows that

integrating the multiple instances of the same video text leads to

significantly better recognition accuracy.

 In addition to using OCR engines for text recognition (in the above

two works), we also explore a different approach: recognition

without OCR. In particular, we propose a technique for

recognizing perspective scene text (Chapter 5). This problem is of

great practical importance, but has been neglected by most

previous methods (which only handle frontal texts). Thus, with

this work, we address an important research gap.

4

Chapter 2

Background & Related Work

This chapter provides a brief overview of the challenges of the different

types of texts considered in this thesis. We also review existing text extraction

methods and identify some of the research gaps that need to be addressed.

2.1 Challenges of Different Types of Text

The extraction of text in images has been well-studied by document

analysis techniques such as Optical Character Recognition (OCR). However,

these techniques are limited to scanned documents. It is evident from Figure

2.1, Figure 1.1 and Figure 2.2 that natural scene images and videos are much

more complex and challenging than document images. Hence, traditional

document analysis techniques generally do not work well for text in natural

scene images and videos. As an illustrative example, if OCR engines are used

to recognize text in videos directly, the recognition rate would typically be in

the range 0% to 45% (Chen & Odobez 2005). For comparison, the typical

OCR accuracy for document images is over 90%.

Figure 2.1. A document image.

5

 (a) Document character (b) Natural scene character (c) Video character

Figure 2.2. A document character, a scene character and a video character.

The major challenges of scene text and video text are listed in Table 2.1.

While the majority of the challenges are common to both scene text and video

text, some of them are applicable to only one type of text. For example, low

resolution is specific to video text, while perspective distortion mainly affects

scene text.

Note that Table 2.1 shows the typical challenges for each type of text. In

practice, there are exceptions. For example, a video text line with special 3D

effects may also be considered as having perspective ―distortion‖.

Table 2.1. Challenges of text in natural scenes and text in videos.

 Text in Natural

Scene Images

Text in

Videos

Low resolution

Compression artifacts

Unconstrained appearances

Complex backgrounds

Varying contrast

Perspective distortion

Lighting

Domain-independence and multilingualism

We will now describe each of the challenges in detail:

 Low resolution: For fast streaming on the Internet, videos are

often compressed and resized to low resolutions. For comparison,

the resolutions of video frames can be as small as 50 dpi (dots per

inch) while that of scanned documents is typically much larger,

6

e.g., from 150 to 400 dpi (Liang et al. 2005). This translates to a

typical character height of 10 pixels for the former and 50 pixels

for the latter (Li & Doermann 1999). Therefore, traditional OCR

engines, which are tuned for scanned documents, do not work well

for videos.

 Compression artifacts: Since most compression algorithms are

designed for general images, i.e., not optimized for text images,

they may introduce noise and compression artifacts, and cause

blurring and color bleeding in text areas (Liang et al. 2005).

 Unconstrained appearances: Texts in different images and

videos have drastically different appearances, in terms of fonts,

font sizes, colors, positions within the frames, alignments of the

characters and so on. The variation comes from not only the text

styles but also the contents, i.e., the specific combination of

characters that appear in a text line. According to (Chen & Yuille

2004), text has much more variation than other objects, e.g., face.

By performing Principle Component Analysis, the authors noticed

that text required more than 100 eigenvalues to capture 90% of the

variance while face only required around 15 eigenvalues.

 Complex backgrounds: While scanned documents contain simple

black texts on white backgrounds, natural scenes and videos have

much more complex backgrounds, e.g., a street scene or a stadium

in a sports news video. Hence, without pre-processing steps such

as contrast enhancement and binarization, OCR engines are not

able to recognize the characters directly.

7

 Varying contrast: Some text lines may have very low contrast

against their local backgrounds (partly due to the compression

artifacts and the complex backgrounds mentioned above). It is

difficult to detect both high contrast text and low contrast text

(sometimes in the same image or video frame), and at the same

time, keep the false positive rate low.

 Perspective distortion: Because a natural scene image often

contains a wide variety of objects, e.g., buildings, cars, trees and

people, text may not be the main object in the image. Hence, the

text in a natural scene image may not always be frontal and

parallel to the image plane. In other words, scene text may be

affected by perspective distortion (Jung et al. 2004; Liang et al.

2005; Zhang & Kasturi 2008). Since OCR engines are designed

for frontal scanned documents, they cannot handle perspective

characters.

 Lighting: Natural scene images are captured under varying

lighting conditions. Some characters may not receive enough

lighting. They appear dark and do not have sufficient contrast to

the local background. On the other hand, some characters may be

affected by the camera flash. They appear too bright and some of

the edges are not visible. These problems make it much more

difficult to correctly recognize the characters.

 Domain-independence and multilingualism: Although there are

some domain-specific text extraction systems (e.g., for sports

videos), the majority of the methods in the literature are designed

8

for general videos, which means that there is no prior information

about the text position and appearance. Moreover, the characters

of different languages such as English, Chinese and Arabic have

different properties. Certain textual features, e.g., contrast with the

local background, are observed across different languages while

other features, e.g., text stroke statistics, are highly language-

dependent (Lyu et al. 2005).

It is worth noting that video text can be further classified into two types:

video graphics text and video scene text. The former is artificially added to the

video during the editing process, e.g., captions, while the latter appears in the

scene captured by the camera (similar to text in natural scene images) (Figure

2.3). In the literature, the term ―scene text‖ is used for both scene text in

videos and scene text in still images. To avoid confusion, in this thesis, we

will use the various terms with the following meanings:

 Scene text refers to text that appears in a still image of a natural

scene.

 Video text refers to text that appears in a video in general.

 Video graphics text refers to text that is artificially added to a

video.

 Video scene text refers to text that appears as part of a scene in a

video.

In general, video scene text is much more challenging (e.g., having

lower contrast, more blurring and more complex background) than video

graphics text because the former is captured in an uncontrolled environment

while the latter is intentionally added for the viewers and thus have better

9

readability. Moreover, similar to scene text in natural images, video scene text

might be affected by perspective distortion and lighting.

Figure 2.3. Video graphics text (left) and video scene text (right).

This section has summarized the challenges of the different types of

texts. In the following sections, we review existing text extraction methods for

both natural scene images and videos. For the sake of completeness, we will

also mention relevant methods for document images.

2.2 Text Extraction Pipeline

A text extraction system typically consists of five steps: (1) Localization,

(2) Tracking, (3) Enhancement, (4) Binarization and (5) Recognition (Figure

2.4). The first step (Localization) aims to detect and accurately locate all the

text lines in an image or a video frame. The second step (Tracking) helps to

track the movement of the text lines over multiple frames, e.g., a text line

moving from bottom to top in a movie credits scene. In the third step

(Enhancement), the localized and tracked text lines are enhanced in terms of

contrast and resolution to improve their readability. The fourth step

(Binarization) converts the text lines into black and white images so that they

can be used in the last step (Recognition), which recognizes the characters by

10

using either an existing OCR engine or a custom-built OCR engine with its

own feature extraction scheme.

Figure 2.4. The typical steps of a text extraction system. (Figure adapted from (Jung et

al. 2004).)

Some text extraction systems may slightly change the order of the steps

or omit certain steps. For example, Binarization is not needed if the

Recognition step can work on grayscale or color images directly. As another

example, because temporal information is not available in natural scene

images, the Tracking step is omitted for these images.

The next section discusses Localization, the first step in the pipeline.

2.3 Text Localization

The goal of text localization is to locate all the text lines in an input

image or a video frame. A text line‘s position is usually represented by a

rectangular bounding box (Figure 2.5). Some methods may provide additional

information about a localized text line, e.g., a ―text mask‖, which indicates

whether a particular pixel in the bounding box is a text pixel or a background

pixel. Depending on the application, localization can also be performed at the

word level, instead of at the text line level.

Localization

Tracking

Enhancement Binarization Recognition

Text strings

Image

or

video

11

Figure 2.5. The (white) bounding boxes of the localized text lines.

Text in images often has the following characteristics, which makes it

distinguishable from the background:

 Text has sufficient contrast to the local background (to be

readable).

 The strokes of a character are in four main directions: horizontal,

vertical, left diagonal and right diagonal.

 The pixels of a single character have almost uniform intensity

values or colors.

 Characters of the same text line are aligned on a straight line.

 Characters of the same text line have similar widths and heights.

 Characters of the same text line are spaced regularly.

Different methods make use of different properties to localize the text

lines. They can be classified into three main approaches: gradient-based,

intensity/color-based and texture-based. As its name suggests, the first

approach relies on the first two properties of text and often performs edge

detection to identify regions in the input image with those properties.

Similarly, the second approach analyzes regions in which the pixels have

similar intensity values or colors (the third text property). Different from the

12

previous two approaches, the last approach considers text as a special texture

and applies techniques such as Discrete Cosine Transform and wavelet

decomposition for feature extraction. For text/non-text classification, this

approach typically employs machine learning techniques such as neural

networks and Support Vector Machines (SVM).

It is worth mentioning that unlike the first three properties, the last three

properties of text are usually used at a later stage in a localization method

(rather than as the main feature). For example, these properties can be used to

remove false positives.

2.3.1 Gradient-based Localization

Gradient-based methods assume that in order for text to be readable, it

needs to have enough contrast with the local background. Therefore, these

methods look for regions with high intensity variation and/or dense edges. In

addition, while most methods make use of ―unstructured‖ edges (e.g., in the

form of edge energy or edge density), a few recent works focus on

―structured‖ edges such as strokes (parallel edges) and corners (intersected

edges).

(Cai et al. 2002; Lyu et al. 2005) used both global thresholding and

adaptive local thresholding of the edge map to suppress edges in complex

backgrounds. In addition, two operators were proposed to enhance the

remaining edges. The disadvantage of this method is that if the global and

local thresholding processes fail to suppress all the non-text edges, the two

proposed operators will enhance edges in not only the text regions but also in

13

the background regions. This will increase the number of false positives in the

localization result.

Different from the previous methods which do not use the edge

orientation information, (Liu et al. 2005) computed 4 Sobel edge maps for the

4 main directions of text strokes: horizontal, vertical, left diagonal and right

diagonal. For each edge map, a sliding window was used to extract 6 statistical

features: mean, standard deviation, energy, entropy, inertia, local homogeneity

and correlation. K-means was employed to classify pixels into two clusters:

text and non-text. This method is good at localizing reasonably high contrast

text but may miss low contrast text because the Sobel edge operator mainly

detects the strong edges.

Other than edge-related features, the property of high intensity variation

in text regions has also been explored for text localization. (Kim & Kim 2009)

made an interesting observation that due to color bleeding, there were often

―transient‖ pixels between text and background. These pixels were identified

as groups of 3 consecutive pixels that followed an exponential

increase/decrease in intensity values (depending on whether text was

brighter/darker than the background). Region growing were performed to

extend the transient pixels into candidate text regions. This method offers a

new perspective into the problem of text localization and handles video

graphics text well. However, it can only localize horizontal text and fails to

pick up scene text, as shown in the sample results in the paper.

(Wong & Chen 2003) exploited the intensity variation in a different

way. The method first computed the horizontal gradients by using the

mask. For each 1 × 21 region, the maximum gradient difference value was

14

computed as the difference between the largest and the smallest gradient

values. Candidate line segments were found by thresholding the difference

map, and were then filtered by using heuristic rules based on the number of

transitions between text and background, and the mean and variance of the

distances between these transitions. Because this method makes extensive use

of heuristic rules and threshold values for analyzing the candidate line

segments, it may not generalize well to other datasets. In addition, the simple

 mask may miss non-horizontal text because it only detects vertical

edges.

As mentioned at the beginning of this section, a few recent methods

extract features from structured edges, e.g., strokes and corners, instead of

from unstructured edges. The former is more robust than the latter due to the

additional constraints on the edges. For example, to form a stroke, two edges

have to be almost parallel to each other.

(Epshtein et al. 2010) observed that characters in the same word or text

line had almost constant stroke widths. The proposed Stroke Width Transform

assigned a stroke width value to each pixel in the input image, based on the

width of the stroke that it most likely belonged to. For each Canny edge pixel

 , the method searched for another edge pixel along the gradient direction at

 . Ideally, if and belonged to the same stroke, the gradient directions at

and should be exactly opposite of each other. However, to allow for some

tolerance, as long as ‘s gradient direction was roughly opposite that of

(within), all the pixels along the traversed ray were declared to have a

stroke width of (Figure 2.6). Pixels with similar strokes widths were

merged into candidate text regions.

15

(Yao et al. 2012) also used Stroke Width Transform to identify the

character candidates. However, instead of using heuristic rules for false

positive elimination and character linking, the authors designed several

character-level and chain-level features and used Random Forest (Breiman

2001) as classifiers.

Stroke Width Transform-based methods are fast and are able to handle

multi-oriented text (as long as the characters are aligned on a straight line).

However, the accuracy of the Stroke Width Transform is highly dependent on

whether the inner and outer contours of a character are almost parallel to each

other. For stroke intersections, this condition does not hold, which leads to

connected components (CCs) that contain holes or do not preserve the

complete shape of a character (Chen et al. 2011). These CCs may be wrongly

classified as non-text.

Figure 2.6. Stroke Width Transform. (Figure adapted from (Epshtein et al. 2010).)

Another feature that can be derived from text strokes is corner point, i.e.,

the intersection of two stokes in different directions. This feature can be

extracted using operators such as Harris corner detector (Harris & Stephens

1988), Susan corner detector (Smith & Brady 1997) and Shi-Tomasi corner

detector (Shi & Tomasi 1994).

16

(Liu et al. 2010; Liu & Wang 2010) used the Shi-Tomasi detector to

look for regions with dense corner points. The input video frame was divided

into 64 non-overlapping blocks. Each block was considered as a candidate text

block if it contained more than a certain number of corner points. In a similar

approach, (Zhao et al. 2011) dilated Harris corner points to form candidate text

regions. For text/non-text classification, this method used heuristic rules based

on a region‘s corner point density and shape.

The above three methods were designed for video captions (i.e., graphics

text), which have reasonably high contrast with the local background, and thus

the corner point feature works well. However, for texts with lower contrast

like scene texts, a detector may fail to detect sufficient corner points to classify

a region as text region. In addition, the method by (Zhao et al. 2011) does not

work for multi-oriented text due to the constraints used for false positive

elimination. For example, it was assumed that for a true text region, its width

was always greater than its height. Although this assumption is true for

horizontal text, it does not hold for multi-oriented text.

In summary, gradient-based methods make the assumption that text has

sufficient contrast with the local background and thus find potential text lines

in regions with high contrast, high intensity variation and dense edges (either

structured or unstructured). These methods are generally fast but can be

sensitive to the threshold values used for edge detection. High values may

cause low contrast text to be missed, while low values may increase the

number of false positives, especially in complex backgrounds.

17

2.3.2 Texture-based Localization

To overcome the problem of complex background of gradient-based

methods, the texture-based approach considers text as a special texture. These

methods apply techniques such as Discrete Cosine Transform and wavelet

decomposition for feature extraction. For text/non-text classification, they

often employ machine learning techniques such as neural networks and SVM.

(Kim et al. 2001; Kim et al. 2003; Jung & Han 2004) extracted raw

intensity values and used SVM to classify every pixel as text/non-text. For

each M × M window, the feature vector of the center pixel was defined as the

intensity values of the neighboring pixels according a mask which captured

the four main directions of text strokes (Figure 2.7).

Figure 2.7. In each window, only the pixels at the positions marked by gray are fed into

SVM. (Figure adapted from (Kim et al. 2003).)

In general, intensity values are not robust against the different text

appearances in different input images. Therefore, a number of methods have

used gradient information instead. (Lienhart & Wernicke 2002) extracted

features from the edge orientation image, which was computed based on the

gradient information in all the RGB channels. A neural network classified

each 20 × 10 window as text/non-text. The authors noticed that the

localization rate decreased significantly for texts of small font sizes, e.g., less

than 10 pixels in height.

18

The gradient information was also employed by (Chen et al. 2001a;

Chen et al. 2004a; Chen et al. 2004b). A 16 × 16 sliding window was used to

extract the following features from each text candidate region: the x and y

derivatives of the intensity values, the distance map (to strong edge points)

and the normalized gradient values (such that the local mean became zero and

the local variance matched the global variance) (Figure 2.8). In the

experiments, the normalized gradient value was found to be better than the

other features, because it achieved a degree of invariance to texts of different

intensity values and backgrounds.

Figure 2.8. The various features tested in (Chen et al. 2004b). From top to bottom:

candidate text region, x-derivative, y-derivative, distance map and normalized gradient

values. (Figure adapted from (Chen et al. 2004b).)

(Chen & Yuille 2004) also employed many intensity and gradient

features. The main difference between this method and the previous methods

lies in the use of AdaBoost (Freund & Schapire 1996), which is capable of

building a strong classifier out of a set of weak classifiers. To extract the

intensity and gradient features, the authors designed several block patterns

(Figure 2.9). The aim of these patterns was to average out the variances for

regions with large variances, and thus achieve a low entropy, i.e., similar

responses for different text appearances in different images. Based on these

19

block patterns, the means and standard deviations of the intensity values and

the x and y intensity derivatives were extracted. One of the contributions of

this work is the convincing explanation of the motivation for designing the

block patterns. However, these patterns are mainly for horizontal text and thus

this method will have difficulties localizing multi-oriented text.

Figure 2.9. Block patterns. (Figure taken from (Chen & Yuille 2004).)

Similar to the previous method, (Pan et al. 2008; Pan et al. 2009; Pan et

al. 2011) and (Wang et al. 2011) employed a sliding window scheme.

However, these methods put more emphasis on the gradient orientations and

used Histogram of Oriented Gradients (Dalal & Triggs 2005) as the main

feature. The classifiers used were WaldBoost (Sochman & Matas 2005) and

Random Ferns (Ozuysal et al. 2007), respectively. Due to the use of sliding

window at multiple scales, these methods are computationally expensive.

In addition to gradient features, another way to analyze high contrast

pixels and edges is through wavelet decomposition. (Li et al. 2000) extracted

Haar wavelet features using an image pyramid. Text regions were expected to

have high responses in the high frequency subbands (HL, LH and HH).

Therefore, the following features were extracted from each 16 × 16 window in

each of the subbands: mean, second-order and third-order central moments.

20

(Ye et al. 2005) also employed wavelet features. Other than wavelet

moments (inspired by the previous method), this work also extracted wavelet

energy histogram, wavelet direction histogram, wavelet co-occurrences and

crossing count histogram (which captured the periodicity of the peaks in the

vertical projection profile).

Compared to other texture analysis approaches, the unique advantage of

Discrete Cosine Transform (DCT) is that it is available in the compressed

domain, e.g., in JPEG and MPEG formats. Hence, little or no decoding is

required. (Zhong et al. 2000) observed that text regions usually had high

intensity variation in both the horizontal direction (due to the characters and

the spaces between them) and the vertical direction (due to the spaces between

the text lines). For each DCT block in an MPEG I-frame, the horizontal

energy was calculated by summing the absolute values of the DCT

coefficients with zero horizontal frequency (i.e., summing across different

vertical frequencies). Candidate text blocks were found by adaptively

thresholding the energy map. The main advantage of this method is the

computational time. However, the authors mentioned that it has difficulties

with texts of large font sizes because the 8 × 8 DCT blocks fail to capture the

local variations of such large text strokes.

In summary, texture-based methods aim to extract the distinctive

features of text from various sources of information: intensity values, gradient

magnitudes and orientations, wavelet responses, DCT coefficients and so on.

Machine learning techniques are used for text/non-text classification. Texture-

based methods are more robust than gradient-based methods against complex

backgrounds. They can also be re-trained for different datasets. However, they

21

have two drawbacks. First, classifiers such as neural networks and SVM

require a large training set, sometimes in thousands, of text and non-text

samples. Moreover, it is especially hard to ensure that the non-text samples are

representative (Kim et al. 2003). Second, most texture-based methods are

computationally expensive.

2.3.3 Intensity-based and Color-based Localization

The main assumption of intensity-based and color-based methods is that

characters in the same ―group‖ have similar intensity values or colors.

Different methods make this assumption at different levels: the text line level,

the word level or the character level.

(Neumann & Matas 2010; Neumann & Matas 2011; Neumann & Matas

2012) used Maximally Stable Extremal Regions (MSER) (Matas et al. 2002)

to extract character candidates. The main idea of MSER is to identify regions

which remain stable over a range of thresholds on the intensity values. Many

natural scene characters have almost uniform intensity values and thus, they

can be extracted as MSERs. MSER-based methods are fast because there are

efficient algorithms for MSER extraction. However, the main drawback of

these methods is that for images with blurring and uneven illumination, the

assumption that the pixels of a scene character have almost uniform intensity

values no longer holds. Thus, a single character may be split into several

MSERs. In addition, touching characters may also be detected as a single

MSER. Both of these problems affect the text localization result.

In general, colors provide more information than intensity values.

Designed for high resolution images such as book and journal covers, early

22

color-based methods, e.g., (Zhong et al. 1995; Jain & Yu 1998; Sobottka et al.

1999), relied purely on color features to localize the text lines. These methods

employed color quantization and region growing (or splitting) to group

neighboring pixels of similar colors into CCs.

(Mariano & Kasturi 2000) proposed a technique to capture the

periodicity of patterns in text regions. Hierarchical color clustering was

performed in the L*a*b* color space for every third row in the input image.

Each cluster was checked using empirical rules to determine whether they

formed the color streaks of a text line. The method then found the text box

boundaries for each set of streaks. This method is good at localizing low

contrast text. However, the false positive rate reported in the paper was very

high (39%).

The drawback of methods that use only color features (such as the above

methods) is that the CCs obtained by color similarity may not preserve the

complete shapes of the characters due to noise and color bleeding. Therefore,

more recent methods often combine colors with other features.

Gradient features and color features were combined in (Chen et al.

2004c). The edges in the input image were obtained by using the Laplacian of

Gaussian. CCs were generated by grouping edges based on the similarity in

size and intensity values. To model the color distribution of each individual

character and its surrounding background, Gaussian Mixture Model was

employed to identify two peaks, one corresponding to the foreground and the

other corresponding to the background. Line fitting (based on Hough

transform) was used to group CCs into words and lines.

23

(Yi & Tian 2011) proposed and compared two different features for text

localization, one based on color and the other based on gradient. For the color

feature, the method performed K-means clustering in the RGB space to

identify the dominant colors in the input image (Figure 2.10). For the gradient

feature, the method identified ―pixel couples‖, pairs of pixels that had similar

gradient magnitudes and almost opposite directions. Using the above two

features, a set of candidate text CCs were obtained. In the experiments, the

color feature outperformed the gradient feature. However, it also required

more computational time because each color cluster had to be handled

separately.

Figure 2.10. The left most column shows the input image while the remaining columns

show the color clusters identified by K-means. (Figure taken from (Yi & Tian 2011).)

In summary, intensity-based and color-based methods assume that the

characters in the same word/line have similar intensity values or colors.

Recent methods tend to use intensity values/colors in hybrid approaches, i.e.,

together with either gradient features or texture features. This is because in

challenging situations, e.g., stylized graphics text and scene text with uneven

24

illumination, the intensity/color homogeneity assumption only holds at the

finest level (the character level). Hence, using intensity/color features alone

may not be sufficient for text localization.

2.3.4 Summary

In this section, we have reviewed various text localization methods.

They can be classified into three approaches: gradient-based, texture-based

and intensity/color-based. The first approach locates potential text lines by

identifying regions with high contrast variation or dense edges. This approach

is fast but may produce many false positives for images with complex

backgrounds. To deal with this problem, the second approach extracts textual

features using techniques such as wavelet decomposition and Discrete Cosine

Transform. Neural networks and SVM are used for text/non-text classification.

Although it can be re-trained for different datasets, this approach requires a lot

of positive and negative samples for training and is computationally

expensive. The last approach is based on the assumption that characters of the

same word/line often have similar intensity values or colors. Recent works

often combine them with either gradient features or texture features to

improve the performance.

Although many methods have been proposed, there are still several

research issues that need to be addressed. First, most methods focus solely on

features which are extracted from the characters. However, due to the

challenges of scene text and video text (e.g., blurring, distortion, low

resolution, etc.), the edges and the shapes of the characters may not be reliable

(e.g., some edges may be broken into multiple parts or even missing).

25

Therefore, additional features should be explored to improve the robustness of

text localization. In section 3.1, we propose novel inter-character features,

which are extracted from the gaps between consecutive characters, and show

that these features help to improve the text localization performance.

 Second, many methods are designed for only horizontal texts, and are

not able to pick up multi-oriented texts. However, in practice, text can appear

with any orientation. Hence, to address this issue, our work in section 3.2

employs skeletonization to handle multi-oriented text.

2.4 Text Tracking

One of the key differences between videos and the related types of text

images is the availability of temporal information. In order to be readable, a

text line usually appears on the screen for at least 2 seconds (Wang et al. 2004;

Miao et al. 2007). Hence, the temporal redundancy can be used to improve the

performance of a video text extraction system.

Text tracking helps to track the movement of a text object over multiple

frames. It can be classified into intensity-based tracking, signature-based

tracking, probabilistic tracking and tracking in compressed domain. Given a

text instance in the current frame, the first two approaches look for potential

text instances in the next frame that minimize a similarity score. The third

approach employs a probabilistic framework to handle partial occlusion while

the fourth and final approach makes use of the information readily available in

the compressed domain to reduce the computational time.

There are also methods that do not really track text but rather perform

text localization for every N
th

 frame. Methods in this category often employ

26

similarity measures to determine whether different text instances belong to the

same text object.

Another aspect of text tracking is whether a method tracks general text

or is designed for specific types of text motions, e.g., text moving from bottom

to top in movie credits and text scrolling from right to left in news

programmes. Most of the methods reviewed in this section are for general text.

In the following sections, the term text object refers to a single text line

that appears in multiple frames. Each appearance in a particular frame is called

a text instance.

2.4.1 Localization-based Tracking

As aforementioned, this approach does not really track text but instead

focuses on matching different instances of the same text object. Several

criteria have been explored: the degree of overlapping of the bounding boxes

(Wolf et al. 2002), the sum of absolute differences (Lee et al. 2003), the sum

of squared differences (Zhao et al. 2011) and the similarity of cumulative

histograms of intensities (Shiratori et al. 2006; Tanaka & Goto 2008; Goto &

Tanaka 2009). (Yi et al. 2009) combined these features and also introduced a

new feature based on the similarity of edge pixel distributions. (Wolf 2003)

matched text instances by comparing the horizontal and vertical projection

profiles of Sobel gradient values. (Liu et al. 2010) went one step further and

performed matching based on not only the magnitudes but also the

orientations of the gradients.

The major drawback of this approach is that the tracking result is at a

very coarse level (because text localization only is performed once every N
th

27

frame). The remaining sections cover methods which are capable of tracking

text at the frame level.

2.4.2 Intensity-based Tracking

(Li & Doermann 1999; Li et al. 2000) performed text tracking using the

sum of squared differences (SSD) under a pure 2D translational model

between consecutive frames. This method is not able to track texts with

complex motions due to the use of a pure translation model and the

assumption that texts move at a constant velocity. Another drawback of this

method, as mentioned in (Crandall et al. 2003), is that the SSD takes into

account both the text pixels and the background pixels and thus the method

may track both types of pixels, instead of just tracking the text pixels (Figure

2.11).

2.4.3 Signature-based Tracking

Instead of using the SSD of intensity values, (Wernicke & Lienhart

2000; Lienhart & Wernicke 2002) computed a signature (or descriptor) of

each text object. Text localization was performed for every 30
th

 frame. If a text

object was detected in a particular frame, it would be tracked both forward and

backward. The signature of a text object was defined as the horizontal and

vertical projection profiles of gradient magnitudes (Figure 2.12). Although the

gradient-based signature is more robust than the SSD of intensity values, the

authors mentioned that this method is still not able to track cases of text fading

in/out or zooming in/out.

28

Figure 2.11. SSD-based text tracking. Top row: different instances of the same text

object. Bottom row: plot of SSD values. The SSD values increase significantly when the

text object moves over a complex background (frame 100). (Figure taken from (Li et al.

2000).)

Figure 2.12. Projection profiles of gradient magnitudes. (Figure adapted from (Lienhart

& Wernicke 2002).)

Projection profile-based signature was also used in (Qian et al. 2007).

However, it was computed from the intensity values instead of the gradient

magnitudes. This method faces the same problem as (Li et al. 2000) because

intensity-based comparisons are not robust enough when text objects move

through regions with complex backgrounds.

29

2.4.4 Probabilistic Tracking

Probabilistic tracking has been used for many computer vision tasks. Its

main advantage is the ability to handle partial/total occlusion of the target (for

a short period of time) by maintaining multiple hypotheses about the target‘s

possible locations.

(Merino & Mirmehdi 2007) adopted particle filtering (Isard & Blake

1996; Isard & Blake 1998) for text tracking. Each text line was tracked by an

independent tracker. The state representation was simply the 2D translation

and rotation of the centroid of a text line. To handle the complex movements

of text in natural scenes, a new state was generated based on the current state

with added Gaussian noise. The observation likelihood was computed based

on the Scale-invariant Feature Transform (SIFT) descriptors (Lowe 2004) of

individual character CCs. Particle filtering was also used in (Minetto et al.

2011) for tracking text in outdoor videos. However, the observation likelihood

was computed based on Histogram of Oriented Gradients features instead.

The advantage of these methods is that they are able to deal with partial

occlusion of text objects (Figure 2.13). However, there is still room for

improvement. For (Merino & Mirmehdi 2007), raw intensity values were used

for CC generation. More robust features, as explored by text localization

methods surveyed in section 2.3, can be used. In addition, the paper did not

explain the handling of the interaction between the independent trackers.

Switching of targets may occur if nearby text objects happen to contain similar

characters. Similarly, the performance measures used in (Minetto et al. 2011)

did not penalize target switch. Hence, it is not clear how well these two

methods perform in this aspect. Avoiding target switch is important because

30

multiple-frame integration methods (section 2.5.2) assume that the different

text instances to be integrated belong to the same text object (in other words,

they must have exactly the same text content).

Figure 2.13. By using a probabilistic framework, (Merino & Mirmehdi 2007) is able

handle partial occlusion. However, the tracking result is at a very coarse level (the whole

sign instead of individual text lines). (Figure taken from (Merino & Mirmehdi 2007).)

2.4.5 Tracking in Compressed Domain

Similar to text localization, text tracking can be done in the compressed

domain with the main advantage of reducing the computational time. (Gargi et

al. 1999) and later (Crandall et al. 2003) explored using motion vectors in the

P-frames of the MPEG format for text tracking (Figure 2.14). This section

only covers the latter because it is an improved work of the former. In

(Crandall et al. 2003), two tracking algorithms were presented, one for rigid

text and the other for text that could rotate between different frames. Given a

text instance in the current frame, the first algorithm searched for macroblocks

in the next frame which pointed back to the text instance. A clustering

algorithm was then performed on the motion vectors of the macroblocks. The

mean of the largest cluster was chosen as the representative motion vector and

was used to compute the position of the text instance. The authors mentioned

31

that the performance of this algorithm is dependent on the quality of the

motion vectors, which is in turn affected by the encoding quality of MPEG

videos.

The second tracking algorithm allowed text to change size and rotate.

Since the motions were more complex, MPEG motion vectors were no longer

used. Instead, the localization method proposed in the same paper was applied

on every frame (similar to section 2.4.1 on localization-based tracking

methods). A text object‘s signature was defined based on the character

contours as it was assumed that the shapes of the characters stayed almost the

same under growing, shrinking and rotation. A binarization method was

applied to obtain individual character CCs from the localization result. Feature

points (points with maximum curvature) were extracted from the CC contours

and their coordinates were normalized to to achieve scale invariance.

The set of normalized coordinates then became the signature of a text object.

Although it is still computationally expensive (because localization is

performed on every frame), this method is one of the first attempts to track

non-rigid text in complex video scenes, e.g., commercials. A drawback of this

method is that the matching criterion is dependent on the quality of

binarization. For example, suppose we have two instances of the same text

object, one on clean background and the other on complex background. For

the former, it is possible to obtain a good binarization result while for the

latter, the binarization result may contain a lot of noise. Due to this difference

in the binarization results, the two instances may be wrongly classified as

belonging to two different text objects.

32

A closely related work to the above method is (Gllavata et al. 2004). The

difference is that in the latter, instead of using all the macroblocks, a selection

process was performed to increase the reliability of the motion vectors. Given

the bounding box of a text instance in the previous frame, the intersection area

between a macroblock and this box was required to be more than 30% of the

macroblock‘s own area. This method shares the same advantages and

disadvantages as the previous method. In particular, when the motion vectors

are not available, e.g., in I-frames, both methods attempt to estimate this

information from other P-frames, e.g., by assuming constant velocity.

However, this may introduce errors.

Figure 2.14. Motion vectors in a P-frame. (Figure taken from (Gllavata et al. 2004).)

2.4.6 Summary

Text tracking plays an important role in a video text extraction system

because it identifies the different instances of a text object, which is required

for multiple-frame enhancement (discussed in the next section). Text tracking

is, however, less researched than text localization (in quantity and to a certain

extent, quality) (Zhang & Kasturi 2008). Many methods only handle simple

translational motions, although there have been attempts to track non-rigid text

33

(Crandall et al. 2003) and partially occluded text (Merino & Mirmehdi 2007;

Minetto et al. 2011). Tracking in compressed domain has also been explored

by exploiting the motion vectors in the MPEG format.

An area that can be further explored is to determine which features to

track. Some methods, e.g., (Lienhart & Wernicke 2002; Gllavata et al. 2004;

Minetto et al. 2011), simply extract features from all the pixels in text regions

(including the background pixels). Thus, instead of tracking only the texts,

these methods may also (wrongly) track parts of the backgrounds. To deal

with this problem, we present a technique for identifying the text pixels prior

to tracking in section 4.2.

2.5 Text Enhancement

Although OCR engines work well for scanned documents, they do not

produce satisfactory results out-of-the-box for natural scene images and video

frames due to the reasons mentioned in section 2.1. The goal of text

enhancement (and subsequently text binarization) is to pre-process a localized

text image so that it can be recognized by an OCR engine.

For still images such as document images and video key frames, single-

frame enhancement methods can be used to improve the contrast and/or

resolution of a text image. However, using only a single frame, it is very

difficult to achieve significant enhancement (Mancas-Thillou 2006). Multiple-

frame enhancement methods, which exploit the redundancy in multiple video

frames, generally have more success than single-frame enhancement methods.

Two common types of multiple-frame enhancements are temporal integration

and super resolution. The former enables better binarization results while the

34

latter helps to enlarge small texts and low-contrast texts so that they can be

recognized by an OCR engine.

2.5.1 Single-frame Enhancement

As mentioned above, it is difficult to achieve significant enhancement

using only a single frame. Therefore, existing methods often use simple

techniques such as contrast stretching/histogram equalization (Kuo &

Ranganath 1995; Lyu et al. 2005), bilinear interpolation (Sato et al. 1998; Sato

et al. 1999), bicubic interpolation (Lienhart & Wernicke 2002; Pilu & Pollard

2002) and edge sharpening (Chen et al. 2001b; Mancas-Thillou 2006).

Another challenge of performing single-frame enhancement for natural

scene images and video frames is that the text lines are typically much shorter

than those in document images. Thus, it may not be feasible to utilize the

information redundancy, as done in e.g., (Luong & Philips 2008) which

exploited the multiple occurrences of the same characters in a single document

image.

2.5.2 Multiple-frame Integration

One of the key differences between videos and images is the temporal

redundancy, i.e., a text line may appear on the screen for several frames. A

popular multiple-frame enhancement technique to simplify the background is

to apply the max (min) operator for dark (bright) text on bright (dark)

background (Figure 2.15), as done in e.g., (Sato et al. 1998; Sato et al. 1999;

Lienhart & Wernicke 2002; Teo et al. 2004; Wang et al. 2004; Zhou et al.

35

2007). The rationale for this technique is that the text pixels of the same text

object (i.e., with the same content) often have the same intensity values

throughout the multiple frames while the background pixels keep changing.

Therefore, applying the max/min operator on each individual pixel across the

multiple frames does not affect the text pixels while simplifying the

background considerably. This method does not work well if both the text and

the background are moving, unless registration is performed to align the

multiple text instances. Another drawback of the max/min operator is that it

can be affected by a single ―outlier‖ text instance, e.g., an instance that is

much brighter or darker than the rest.

Figure 2.15. Result of the max/min operator (b) on text instances (a). In this case, the

min operator is used because text is brighter than the background. (Figure adapted from

(Lienhart 2003).)

An alternative technique is to take the average of the text instances

(Figure 2.16), as done in e.g., (Li & Doermann 1999; Hua et al. 2002; Guo et

al. 2007).

Furthermore, instead of using all the text instances, several methods

have been proposed to select only the good frames. By assuming that text was

monochrome and brighter than the background, (Hua et al. 2002) considered

only frames of high contrast, which was measured by the percentage of dark

pixels (Figure 2.17). The same idea could also be applied at the block level

36

(Figure 2.18). This method has two drawbacks. First, the selection criteria are

rather simple and thus it does not work well for frames with complex

backgrounds. Second, it is limited to bright text on dark background and does

not deal with the other text polarity (dark text on bright background).

Figure 2.16. Taking the average of text instances (a)-(d) helps to simplify the background

(e). (Figure adapted from (Li & Doermann 1999).)

Figure 2.17. The results of averaging all text frames (a) and averaging only the selected

frames (b). The contrast between text and background in the latter is improved. (Figure

taken from (Hua et al. 2002).)

Figure 2.18. Averaging at the frame level (left) and at the block level (right). The latter

gives better contrast around the individual words. (Figure adapted from (Hua et al.

2002).)

37

(Goto & Tanaka 2009) tested other criteria for frame selection based on

the edge information and Otsu‘s binarization result. The best performing

criteria were the number of edges and the sum of absolute values of edge

intensities. (Yi et al. 2009) designed four filters to extract text strokes in four

directions. Text instances were sorted based on their responses to the four

filters. Only a few clearest instances were selected for enhancement. Another

improvement of this work over the previous methods was the use of both the

max/min operator and averaging. Based on Otsu‘s binarization result,

averaging was applied for text pixels while the max/min operator was applied

for background pixels. Like (Hua et al. 2002), this work is limited to bright

text on dark background.

2.5.3 Multiple-frame Super Resolution

Other than multiple-frame integration, another approach to utilize the

temporal redundancy in videos is multiple-frame super resolution. According

to (Mancas-Thillou 2006), although there are many super resolution methods,

most of them are for general images and do not exploit the characteristics of

text. The two methods reviewed in this section have been applied for text in

video/image sequences. They both formulate super resolution as an estimation

of a high resolution image given a set of low resolution observations. In

addition, both methods require the low resolution images to be registered

beforehand.

(Capel & Zisserman 2000) compared four different estimators: an ML

(maximum likelihood) estimator, an ML estimator with error back-projection,

an MAP (maximum a posteriori) estimator and a Total Variation estimator.

38

The likelihood of an observed low resolution image given a high resolution

estimate was:

(2.1)

where , and were the observed low resolution image, the high

resolution estimate and the estimate‘s projection to low resolution using the

assumed image acquisition model, respectively. was the variance of the

Gaussian image noise (whose mean was assumed to be zero). With this

formulation, the ML estimator did not work well and introduced a lot of noise

in the high resolution estimate. This is because the problem was ill-posed due

to the limited number of low resolution observations and the unknown

blurring process (Mancas-Thillou 2006).

The second estimator improved the result of the ML estimator by

incorporating an error back-projection method (Irani & Peleg 1991). Given a

high resolution estimate, this method computed the errors between the

observed low resolution images and the estimate‘s projection to low resolution

(using the assumed image acquisition model). These errors were then mapped

back to high resolution and used to update the estimate iteratively.

MAP, the third estimator, added a regularization term based on the

Huber gradient penalty function and thus encouraged smooth and piecewise

constant results. The last estimator achieved a similar effect by incorporating a

Total Variation regularization term. Experimental results showed that the last

two estimators produced visually sharper results than the first two estimators.

It was also noticed that the Total Variation estimator required fewer

39

parameters than the MAP estimator. Unfortunately, the improvement in

recognition rate was not reported.

In another approach, (Donaldson & Myers 2005) used a similar

likelihood as the above method and compared two different priors for MAP

estimation: a smoothness prior and a bimodality prior. While the former had

often been used in the literature for general images, the latter was specific to

text and had only been explored in very few works. The bimodality prior,

which was defined as an exponential of a fourth-order polynomial, worked

based on the assumption that the intensity histogram of a text image consisted

of two peaks, one for the foreground and the other for the background (Figure

2.19). The experiments were conducted using three different priors: only the

smoothness prior, only the bimodality prior and a combined smoothness-

bimodality prior. The bimodality prior outperformed the smoothness prior.

Moreover, adding the smoothness constraint to the bimodality prior did not

improve the performance noticeably (Figure 2.20). This work could be further

improved in the following two areas. First, the authors mentioned that the

form of the bimodality prior was rather simplistic because it assumed that the

foreground peak and the background peak had the same variance. Therefore,

the bimodality model could be made more accurate (at the cost of a more

complex optimization process). Second, the method is not fully automatic

because parameters such as the blur diameters and the variances of the

foreground and background peaks had to be manually tuned.

40

Figure 2.19. The bimodality model used in (Donaldson & Myers 2005). 0 and 1 are the

two intensity peaks. (Figure taken from (Donaldson & Myers 2005).)

Figure 2.20. Super resolution of text on license plates using 16 images. From left to right,

top to bottom: one of the low resolution images, bicubic interpolation, ML estimation,

MAP estimation with bimodality prior, MAP estimation with smoothness prior and

MAP estimation with combined bimodality-smoothness prior. The text strings are the

recognition results. (Figure taken from (Donaldson & Myers 2005).)

2.5.4 Summary

In summary, text enhancement methods can be classified into single-

frame enhancement and multiple-frame enhancement. Due to the limited

information available, the former often employs simple techniques such as

contrast stretching, bilinear/bicubic interpolation and edge sharpening. In

section 4.1, we present a method for single-frame enhancement. We go

beyond the simple techniques and propose a combination of character

41

segmentation and binarization
1
. In this way, our method can better adapt to the

local background of each character and produce a superior enhancement

result.

For multiple-frame enhancement, the two common techniques are

temporal integration and super resolution. Given multiple instances of a text

object, temporal integration helps to improve the contrast and simplify the

background by using averaging or the max/min operator. A drawback of these

operations is that they may also accidentally enhance the background regions.

Hence, to overcome this drawback, we describe a method that focuses on only

the text pixels in section 4.2. Our experiments show that the proposed method

outperforms common operations such as average and max/min.

Another approach that utilizes multiple frames is super resolution, which

aims to produce a high resolution estimate from low resolution observations.

Both of the methods reviewed in this section use an MAP formulation and

introduce text-specific priors such as smoothness and bimodality.

2.6 Text Binarization

Given a localized and enhanced text region, the binarization step helps

to produce a black and white image which can be recognized by an OCR

engine. Text pixels should be preserved and set to black while background

pixels should be suppressed and set to white. Although binarization is usually

performed at the text line level (i.e., the whole localized text region),

1
 Our work can be classified as both an enhancement method (because it helps to enhance the

contrast of an image) and a binarization method (because it produces a black and white image

as the final output). In section 4.1, we choose to present it as an enhancement method.

42

sometimes it is also done at the word level (Hua et al. 2002) and at the

character level (Tang et al. 2002; Huang et al. 2009). The advantage of using a

finer level is that the local background of each word/character may be less

complex than the background of the whole line. Hence, it may be easier to

perform binarization at these levels. In addition, different words/characters

could be binarized using different parameter values.

A sub-problem of binarization is to determine text polarity, i.e., whether

a text region contains normal text (bright text on dark background) or inverse

text (dark text on bright background). This is required because some OCR

engines only work for inverse text (Li et al. 1998). Some methods attempt to

classify text polarity (Crandall et al. 2003; Lyu et al. 2005; Liu et al. 2006)

while others simply assume a fixed polarity (Ngo & Chan 2005; Liu & Wang

2010).

Binarization is not a new problem and many methods have been

proposed for document images. This section focuses on binarization methods

that have been applied for scene images and video frames. These methods can

be classified into three main approaches: intensity-based, color-based and

stroke-based. The first approach analyzes the intensity histogram of a text

region to find suitable binarization thresholds. Methods in this approach can

be further classified as global and local, depending on whether they use a

single threshold for the whole text region or different thresholds for different

local regions. The second approach assumes that the characters in a text region

have similar colors and thus often performs color clustering to identify the

dominant peaks in the color space. The third and final approach focuses on

extracting text strokes. A region growing process may also be used to include

43

neighboring pixels of the stroke pixels to obtain more complete shapes of the

characters.

2.6.1 Intensity-based Binarization

Many traditional binarization algorithms for document images, e.g.,

(Otsu 1979; Niblack 1986; Sauvola & Pietikäinen 2000), belong to this

approach. Although some papers for scene images and video frames use a

global thresholding algorithm, e.g., Otsu‘s method (Chen et al. 2001b), most

papers utilize an adaptive thresholding algorithm, e.g., Niblack‘s method (Li

& Doermann 1999; Newman et al. 1999; Chen & Yuille 2004; Pan et al. 2011)

and Sauvola‘s method (Wolf et al. 2002), due to their abilities to deal with

intensity variations and complex backgrounds.

(Lyu et al. 2005) proposed an adaptive version of Otsu‘s method,

together with an ―inward filling‖ algorithm to clean up the binarization result.

The method first moved a window horizontally across a text region and

binarized the window‘s content using Otsu‘s algorithm. After that, another

pass was done in the vertical direction in a similar manner. Given the

binarization result, the method applied an ―inward filling‖ process, a variant of

the seed filling process proposed in (Lienhart & Wernicke 2002). The aim was

to clean up non-text pixels by performing flood filling from the boundary.

Figure 2.21 compares the binarization results of this method, Otsu‘s method

(Otsu 1979) and Sato‘s method (Sato et al. 1998) (which will be described in

section 2.6.3 on stroke-based binarization methods).

44

Figure 2.21. From top to bottom: a text region, the binarization results by (Lyu et al.

2005), by (Otsu 1979) and by (Sato et al. 1998), and the ground truth. (Figure adapted

from (Lyu et al. 2005).)

The drawback of the above methods is that they do not model the spatial

relationships between adjacent pixels. To overcome this problem, (Wolf &

Doermann 2002) posed the binarization problem as an MAP estimation

problem, in which Markov Random Field (MRF) was employed to capture the

spatial relationships. The likelihood (or conditional density) was modelled as

Gaussian noise with its mean being the shift amount of Niblack‘s adaptive

threshold values from 127.5 (the average of 0 and 255) and its variance

estimated using Otsu‘s method. The prior distribution was modelled by MRF

and was learned from training data of binary characters for 4 × 4 pixel cliques.

By capturing the spatial relationships between the pixels, this method was able

to recover some of the missing pixels (Figure 2.22). However, its

improvement in terms of the recognition rate was not significant. It only

slightly outperformed Sauvola‘s method, a variant of Niblack‘s method. The

authors mentioned that the method‘s performance is sensitive to parameter

values, e.g., the variance of Gaussian noise.

Since each binarization method has its own strengths and weaknesses,

(Chen et al. 2002; Chen et al. 2004a) proposed a multi-hypothesis approach in

which pixels within a text region were clustered into K classes, with K varying

from 2 to 4. Different clustering and labelling algorithms were tested: EM

45

Figure 2.22. Binarization results of Sauvola‟s method (a) and the MAP-MRF method in

(Wolf & Doermann 2002) (b). By capturing the spatial relationships, the latter is able to

recover some of the missing pixels. (Figure taken from (Wolf & Doermann 2002).)

(Expectation Maximization), K-means and MRF. For each hypothesis (i.e.,

each of the K classes), CC filtering was used to remove non-text CCs based on

geometric constraints. The experiments showed that K = 2 (i.e., bimodal)

combined with either K-means or MRF gave the best results. The

disadvantage of using multiple hypotheses is the high computational time. The

MRF results of this work also confirmed those of (Wolf & Doermann 2002):

modelling the spatial relationships of the pixels does not improve the

recognition rate significantly.

2.6.2 Color-based Binarization

While the previous approach only uses intensity values, this approach

also incorporates color information to obtain better binarization results.

Similar to color-based text localization, color-based binarization mainly relies

on the assumption that the characters in the same word/line have similar

colors. In (Liu et al. 2010; Liu & Wang 2010), the text color was determined

as the dominant peak in a 512-bin RGB color histogram. All the pixels in the

corresponding histogram bin were marked as text pixels. As a verification

step, the brightness values of the text pixels were also required to be greater

than a pre-defined threshold. Due to the last step, these methods only handle

bright text on dark background.

46

To deal with the problem of text polarity, (Wernicke & Lienhart 2000;

Lienhart & Wernicke 2002) compared two color histograms, one covering the

middle rows of a text region and the other covering a few rows immediately

above and below the text region. The maximum and minimum values of the

difference histogram were considered as the dominant text and background

colors, respectively. Text polarity was then determined by simply comparing

these two colors. For binarization, a seed filling algorithm was used to remove

background pixels. The bounding box of a text region was first extended

horizontally by 20% and vertically by 40% to ensure that no text pixels

touched the boundary. After that, for every pixel on the boundary, a 4-

neighborhood flood filling algorithm was applied where connectivity was

defined based on the Euclidean distance of RGB colors. Finally, CC filtering

based on geometric constraints was used to clean up the binarization result. As

discussed in (Lyu et al. 2005), the drawback of this method is that the seed

filling algorithm sometimes remove true text pixels which happen to touch the

boundary (even after the bounding box has been extended).

Like the previous approach, this approach also has multi-hypothesis

methods. In (Mancas-Thillou & Gosselin 2007), the foreground hypotheses of

a text region were obtained by performing K-means clustering with two

different measures: Euclidean distance and cosine-based similarity. Since

these two measures were complementary, each was useful for different cases

of text regions (Figure 2.23). The best hypothesis was chosen based on the

average response to Log-Gabor filters, which were expected to produce large

responses for text strokes. This method works well for natural scene images.

However, the authors mentioned that using color information alone may not be

47

sufficient for challenging cases such as ―embossed‖ texts (which have similar

colors as the backgrounds).

Figure 2.23. Different measures work well for different inputs: the input text regions

(left) and the two foreground hypotheses, one based on Euclidean distance (middle) and

the other one based on cosine similarity (right). (Figure taken from (Mancas-Thillou &

Gosselin 2007).)

2.6.3 Stroke-based Binarization

Since a character‘s shape can be approximated by its strokes, methods in

this approach extracts text strokes from an input text region and use them as a

―base‖ for the final binarization result. A region growing process may be used

to include more pixels and obtain more complete shapes of the characters.

(Sato et al. 1998; Sato et al. 1999) designed four filters for extracting

text strokes in four directions: horizontal, vertical, left diagonal and right

diagonal. The filter responses were combined in a unified stroke map. Global

thresholding with a fixed threshold was used to obtain the final binarization

result. A drawback of this method, as discussed in (Lyu et al. 2005), is that it

generates relatively weaker responses for stroke intersections (which appear

more in Chinese texts than in English texts) than individual strokes.

Another stroke filter, with two parameters for scale and orientation, was

designed by (Liu et al. 2006; Jung et al. 2008) (Figure 2.24a). The mean

intensity values in the three local rectangular regions were used to calculate

the filter response in two different ways, called the ―bright‖ and ―dark‖

48

responses. Pixels of the correct polarity and closer to the filter center would

generate greater responses. For binarization, the filter was applied on a text

region with three different scales and four different orientations. From all the

combinations of these two parameters, two overall response maps (one for

bright and the other for dark) contained the largest possible response at each

pixel. Given these two maps, SVM was used for text polarity classification

based on two features: the sum of the response values and the number of edge

points. The map chosen by SVM was then binarized by a simple adaptive

thresholding algorithm. The authors mentioned that this method has

difficulties with text lines which contain more than one polarity (Figure

2.24b).

 (a) Stroke filter (b) Sample result for text

 with two polarities

Figure 2.24. (a) The stroke filter used in (Liu et al. 2006). (b) This method does not

handle text with two different polarities well. (Figures adapted from (Liu et al. 2006).)

2.6.4 Summary

In summary, text binarization converts an input text region to a black

and white image which can be recognized by an OCR engine. It can be

classified into three approaches: intensity-based, color-based and stroke-based.

In addition, several methods have shown that different binarization algorithms

49

perform well for different cases of input text regions. Hence, a multi-

hypothesis approach can be used to achieve better recognition accuracy at the

cost of increasing the processing time.

An area that can be further explored is the use of binarization at a finer

level (i.e., either at the word level or at the character level instead of at the text

line level). Its advantage is that the local background of each character can be

much simpler than the overall background of the whole text line. However,

only a few works have pursued this direction (Hua et al. 2002; Tang et al.

2002; Huang et al. 2009). Our work in section 4.1 also follows this direction.

Our experiments show that performing binarization at the character level helps

to improve the recognition accuracy.

2.7 Text Recognition

Text recognition aims to produce the final output of a text extraction

system in the form of text strings, which can be used for indexing purposes.

There are two main approaches: recognition using OCR and recognition

without OCR. The first approach relies on text enhancement (section 2.5) and

text binarization (section 2.6) to produce a black and white image from a

localized text region. This binary image is then fed into an OCR engine, e.g.,

ABBY FineReader
2
 and Tesseract

3
, to get the recognized text string. However,

because OCR engines are designed for scanned documents of high resolution

and with little distortion, they may not be able to recognize video texts of very

low resolutions or scene texts with heavy distortions, e.g., perspective

2
 http://www.abbyy.com/

3
 http://code.google.com/p/tesseract-ocr/

50

distortions. To overcome this problem, in the second approach, researchers use

their own feature extraction schemes and classifiers to achieve better

recognition accuracy.

2.7.1 Recognition using OCR

One of the main advantages of using an OCR engine for recognition is

that the engine typically makes extensive use of a language model (at the

character level and at the word level) to improve the recognition accuracy.

Thus, many methods simply use an OCR engine as a black box to recognize

the binarized text regions (Lienhart & Wernicke 2002; Chen & Odobez 2005;

Lyu et al. 2005; Wang et al. 2008; Huang et al. 2009; Liu et al. 2009). This is

a sensible approach for texts which have sufficient contrast against the local

backgrounds and can be well binarized by a text binarization algorithm. An

example is video graphics text.

Various post-processing techniques can be used to refine the OCR

output. For domain-specific applications, the recognition rate can be improved

by introducing a lexicon. For example, a lexicon of team names and player

names can be used for sports videos (Zhang et al. 2002; Ballan et al. 2010). A

recognized text string can then be compared with the lexicon words. If the edit

distance is below a pre-defined threshold, it can be corrected to the nearest

word in the lexicon. Otherwise, if the distance is greater than the threshold, the

string can be rejected.

For general post-processing, a popular technique is to use multiple

hypotheses. (Chen & Odobez 2005) coupled binarization and recognition in a

particle filtering algorithm and used a language model to combine the OCR

51

outputs of multiple hypotheses into a final text string. The state representation

of the particle filtering algorithm was a pair of upper and lower binarization

thresholds (assuming a 3-class model for the intensity histogram of a text

region). The state transition probability within a small range of the current

state followed a uniform distribution, with some Gaussian noise added at the

boundary of the uniform range. The observation likelihood of a state was

obtained by first binarizing the text region according to the state‘s pair of

thresholds, getting the OCR output and finally computing its probability using

a language model. The best K hypotheses from the above procedure went

through a voting process which combined their OCR outputs into a single text

string. Dynamic programming was used to align the multiple OCR outputs.

Each character‘s confidence value in a column was defined based on the

number of its occurrences in that column (Figure 2.25).

Figure 2.25. The voting process used in (Chen & Odobez 2005) to combine the OCR

outputs of different binarization hypotheses (all rows except the last one) into a single

text string (the last row). (Figure adapted from (Chen & Odobez 2005).)

Similar voting-based post-processing methods were also used in (Mita &

Hori 2001) and (Liu et al. 2009). The difference between these two methods

52

and the previous method is that the multiple OCR outputs came from

recognizing different text instances of the same text object in different video

frames, rather than from recognizing different binarization hypotheses of the

same text instance.

Another technique that has been used for post-processing is document-

specific modelling (Kae et al. 2010). This method first performed a

consistency check on the OCR output to identify a set of high confidence

characters, i.e., characters whose different instances had consistently been

given the same labels by an OCR engine. From this set of characters, it was

possible to build a document-specific font model (instead of using the OCR

engine‘s pre-trained font models). A multiclass SVM based on SIFT

descriptors (Lowe 2004) was used for recognition. This method has offered a

new perspective into the recognition problem. However, its success depends

on the amount of information redundancy. Although this is inherent in

document images, it may not be so for scene texts and video texts, which tend

to be much briefer. For the case of video texts, characters from different

frames can be used at the risk of violating the assumption made by this

method: the characters should be of the same or very similar fonts.

In summary, recognition using OCR is a sensible approach for texts that

can be well binarized. However, this approach has two drawbacks. First, for

text regions with complex backgrounds, e.g., scene texts, text binarization may

lead to information loss. Second, as mentioned before, because OCR engines

are designed for the controlled settings of scanned documents, they are not

able to handle texts with low resolutions, heavy distortions or fancy fonts.

53

2.7.2 Recognition without OCR

This approach overcomes the drawbacks of the previous one by using

custom-built features and classifiers. Many methods in this approach also

recognize grayscale/color images directly, thereby avoiding information loss.

According to (Casey & Lecolinet 1996), text recognition consists of four

steps: format analysis, character segmentation, feature extraction and

classification (Figure 2.26). The text localization step discussed in section 2.3

has already played the role of format analysis, i.e., locating the text lines. The

remainder of this section covers the last three steps of text recognition:

character segmentation, feature extraction and classification. It also surveys

various methods for combining individual character recognition hypotheses

into final word recognition results.

Figure 2.26. The four main steps of text recognition. (Figure adapted from (Casey &

Lecolinet 1996).)

2.7.2.1 Character Segmentation

Character segmentation, the splitting of a text line into individual

character images, is a well-known problem in document analysis, especially

for handling touching handwritten characters. (Casey & Lecolinet 1996)

provided a comprehensive survey of character segmentation methods for

document images. There are three main approaches mentioned in the paper:

dissection, the decomposition of a text line image into individual character

images, recognition-based, the use of recognition results to provide feedback

54

for segmentation, and holistic, the direct recognition of words (without

segmentation) through matching features such as ascenders and descenders.

Many of the methods surveyed in the above paper were designed solely

for document images and thus rely on CC analysis. However, this is not

suitable for scene and video characters because text pixels cannot be reliably

extracted as complete CCs due to the complex backgrounds and low

resolutions of the text lines. Therefore, a number of character segmentation

methods for scene characters and video characters have been proposed and

most of them belong to the first approach. The second approach is not

common because the recognition of scene characters and video characters is a

challenging problem itself, while the third approach is limited to predefined

lexicons.

A common video character segmentation method is projection profile

analysis (Lienhart & Wernicke 2002). The edge information (or other kinds of

―energy‖) in each column is analyzed to distinguish between columns that

contain text and gap columns. The former is often assumed to have higher

energy than the latter. Heuristic rules have also been proposed to further split

and merge the segmented regions based on assumptions about the characters‘

widths and heights (Miao et al. 2007; Huang et al. 2009). Although these

methods are simple and fast, it is difficult to determine a good threshold that

works for images of different contrast (Figure 2.27). In addition, because they

work based on columns, they can only produce vertical cuts, which are not

sufficient for difficult cases such as touching characters. (In these cases, more

flexible cuts, e.g., curved cuts, would be needed to separate the characters

from each other.)

55

Figure 2.27. The results of projection profile analysis are sensitive to threshold values.

With a high threshold, true cuts are missed (left), while with a low threshold, many false

cuts are detected (right).

To overcome this problem, a number of papers, inspired by works on

touching handwritten characters, modelled the segmentation problem as a

minimum cost path finding problem. (Kopf et al. 2005) used Dijkstra‘s

algorithm to perform path finding from the top row to the bottom row of the

input image. A path‘s cost was defined as the cumulative absolute difference

in grayscale intensities between consecutive pixels, based on the assumption

that the background region had little variation in intensity. This method may

not work well for images with complex backgrounds. In a similar approach,

(Tse et al. 2007) applied path finding recursively until the segmented regions

met the stopping criteria, e.g., their widths were below a threshold. The major

drawback of this method is that it requires binarization to get CCs, which is

extremely difficult to do reliably for scene characters and video characters, as

aforementioned.

Different from the previous methods, (Saidane & Garcia 2008) used a

machine learning technique, convolutional neural networks, for segmentation.

The input was the three images corresponding to three color channels of the

text line image. The output was a vector which classified whether each column

was a gap column between consecutive characters. The drawback of this

method is that it allows only vertical cuts.

56

2.7.2.2 Feature Extraction and Character Classification

For a comprehensive survey of feature extraction methods for character

recognition in document images, the reader is referred to (Due Trier et al.

1996). Some of the best performing features mentioned in that survey have

been applied for scene text and video text. For example, (Zhang et al. 2002)

used Zernike moments (Khotanzad & Hong 1990) to recognize text in

basketball videos.

Gabor features, although not mentioned in the above survey, are also

quite popular for character recognition. The advantage of Gabor features is

that they can be extracted directly from grayscale images. (In contrast, features

such as Zernike moments require binary inputs.) This is important because the

binarization process may lose some valuable information available in the

original grayscale image. In (Chen et al. 2004c), each character was

normalized in size and divided into local regions using a 7 × 7 grid. Local

Gabor wavelet features were then extracted from each region. An earlier work

by (Yoshimura et al. 2000) also used Gabor filters but in a different way.

Instead of pure Gabor jets (the responses to Gabor filters), this work used the

accumulated values in four directions (Figure 2.28). The latter was found to be

more robust to the different appearances of the characters.

Recently, Histogram of Oriented Gradients, a feature that has been

shown to work well for many object recognition problems, has been adopted

for recognizing natural scene characters in (Wang & Belongie 2010; Wang et

al. 2011; Mishra et al. 2012a; Mishra et al. 2012b). Unsupervised feature

learning has also been explored for the same problem in (Coates et al. 2011;

Wang et al. 2012). Although these features have shown promising results on

57

Figure 2.28. Gabor jets (left) and the corresponding accumulated values in four

directions (right). (Figures taken from (Yoshimura et al. 2000).)

datasets for frontal scene characters, they are not robust to rotation and

viewpoint change. Thus, they may not work well for scene characters which

are affected by perspective distortions.

2.7.2.3 Word Recognition

The word recognition result may not simply be the combination of the

characters with the highest estimated probabilities. The rationale is that there

may be errors in the estimated probabilities. Furthermore, in a given language,

different character combinations may have drastically different frequencies.

Therefore, most methods use additional information to find the most likely

word from the set of character probabilities.

(Zhang & Chang 2003) proposed a framework which allowed for

integration of multiple language models from different sources, e.g.,

combining a general linguistic corpus and the (specific) surrounding text in the

web page that contained a video. The problem of word recognition was posed

as an MAP estimation problem. The conditional density function was

computed based on the features extracted, e.g., Zernike moments, and the prior

was a linear combination of the different language models. The combination

weights were learned from training data.

58

(Weinman & Learned-Miller 2006; Weinman et al. 2009; Smith et al.

2011) proposed a novel similarity constraint to force characters which were

visually similar to take the same label. The appearance features of each

character were extracted using Gabor filters at 3 different scales and 6

different orientations. The similarity between two characters was then

computed using the vector angle distance. The final probabilistic framework

classified a character using three different sources of information: the

individual character appearance, the language model and the similarity

between all pairs of characters in the input text region.

(Wang & Belongie 2010; Wang et al. 2011) adopted Pictorial Structures

(Felzenszwalb & Huttenlocher 2005), an object recognition framework, for

word recognition. In this framework, each word was considered as an object.

The characters of the word then became the object parts. The score of a word

took into account both the individual character probabilities and the regularity

of the characters (in terms of sizes, distances and so on). Dynamic

programming was used to return the top-scoring words. These works have

shown that object recognition frameworks can be adopted for text recognition.

However, their drawback is that they require all characters of a word to be

correctly recognized. In other words, they cannot handle cases where one or

more characters are occluded.

To overcome this drawback, recent works formulate word recognition as

an optimization problem. (Wang et al. 2012) estimated the probabilities of the

character candidates and used a variant of the Viterbi algorithm (Sarawagi &

Cohen 2004) to find the optimal alignment between the character candidates

and the words in a lexicon. (Mishra et al. 2012a; Mishra et al. 2012b) went one

59

step further and incorporated the language model, i.e., character n-grams, into

the optimization process. The character candidates were used to build a

Conditional Random Field (CRF) (Lafferty et al. 2001) with unary and

pairwise terms. The unary terms captured the character probabilities while the

pairwise terms captured the character bigram statistics. Finally, the CRF

energy was minimized to find the optimal word. Similarly, (Novikova et al.

2012) used weighted finite-state transducers (Mohri et al. 2002; Povey et al.

2012), which was capable of capturing both the character probabilities and the

language model, for optimization. The drawback of these works is that they

were only tested on scene texts that were frontal parallel to the image plane.

In practice, scene texts can appear with perspective distortion. One

approach is to rectify perspective texts prior to recognition, e.g., (Dance 2001;

Myers et al. 2005; Neumann & Matas 2010). However, these methods rely

heavily on the quality of the binarized character shapes. Thus, although they

work for texts on plain backgrounds, it is unclear whether they can handle

texts with cluttered backgrounds. In a recent work, (Li & Tan 2010)

recognized perspective characters without rectification. However, this work

only focused on character recognition, and did not address word recognition.

The dataset was also limited to simple sign images. Therefore, despite its

importance, the issue of handling perspective texts has not been adequately

addressed by existing works.

2.7.3 Summary

In summary, there are two approaches to text recognition: recognition

using OCR and recognition without OCR. Methods in the first approach

60

simply use existing OCR engines as a black box and instead focus on pre-

processing, e.g., enhancement and binarization, and post-processing, e.g.,

using lexicon, language model, and voting based on the OCR outputs of

multiple hypotheses.

In the second approach, researchers propose their own character

segmentation and recognition schemes to improve the recognition accuracy.

For character segmentation, many methods only allow vertical cuts and thus

may fail to separate low contrast and touching scene characters and video

characters. To overcome this drawback, we propose a character segmentation

technique that is able to produce curved segmentation paths in section 4.1. For

character recognition, various schemes have been explored, from traditional

features such Zernike moments and Gabor filters to more recent techniques

such as Histogram of Oriented Gradients and unsupervised feature learning.

Finally, for word recognition, most methods use not only the character

probabilities but also additional information like the language model to find

the most likely word. To incorporate multiple sources of information, different

optimization frameworks have been used such as CRF and weighted finite-

state transducers.

It is worth mentioning that most recognition methods are still limited to

texts that are frontal parallel to the image plane. However, in many real-world

scenarios, texts (especially those in natural scene images) suffer from various

deformations such as perspective distortions. Therefore, to address this issue,

we present a method for recognizing perspective scene texts in Chapter 5.

61

This section concludes our review of existing text extraction techniques.

Based on the review, we have identified several research gaps. The following

chapters present our works to address them.

62

Chapter 3

Text Localization in Natural Scene Images

and Video Key Frames

This chapter describes our work on text localization. We have proposed

two methods, one for natural scene images and the other for video key frames.

The first method introduces novel inter-character features, which are extracted

from the spaces between consecutive characters, to localize difficult cases of

scene text. The second method employs skeletonization to localize multi-

oriented video text. This is an improvement over existing works, which

typically pick up only horizontal text.

3.1 Text Localization in Natural Scene Images

3.1.1 Motivation

From our survey in section 2.3, we have noticed that most existing

methods focus solely on character features (e.g., character intensity values

(Neumann & Matas 2012) and character stroke widths (Epshtein et al. 2010)).

There has been little work on utilizing the gap regions between consecutive

characters for the purpose of text localization. This information is useful for

cases in which the character edges are broken and not reliable for extracting

features, but the regular gaps between them are still visible. Therefore, we

propose a novel method that combines both the character features and the gap

features.

63

Our contributions are two-fold. (1) To exploit both text and gap features,

we employ Gradient Vector Flow (GVF) (Xu & Prince 1998) for symmetry

detection. To the best of our knowledge, this is the first attempt to use GVF

for text localization. (2) Our method is shown to work well on two public

datasets.

3.1.2 Proposed Method

We first use GVF to detect local symmetries and identify character

candidates. The second step then groups these characters into text lines based

on the similarity in size, GVF distance and color. The final step performs

texture analysis to remove false positives.

3.1.2.1 Text Candidate Identification

Characters in a line exhibit many local symmetries. In this work, we

focus on two types of symmetries: intra-character symmetry (or self-

symmetry) and inter-character symmetry (or symmetry between consecutive

characters). The former arises because of the symmetry between the inner and

outer contours of the same character. The latter is due to the correspondence

between the outer contours of two consecutive characters.

Therefore, to locate text regions, we adopt GVF (Xu & Prince 1998) to

extract both types of symmetries. GVF is traditionally used together with

active contour for non-rigid registration and motion tracking. Unlike the

normal gradient which gives little information in homogenous regions, GVF

propagates the gradient information, i.e., the magnitude and direction, from

64

nearby regions into these regions. Hence, it helps to increase the capture range

of the edges and attract the active contour into concave regions. The GVF field

is computed by minimizing the below expression (Xu & Prince 1998):

 (3.1)

where is the GVF vector field. and

 represent the horizontal component and the vertical component of a

GVF vector, respectively. is the edge map of the input image (Figure

3.1a and b).

A property of the GVF field is that starting from any point, if we follow

the GVF directions, we will reach a nearby edge. Thus, local symmetry points

are identified as the locations where two neighboring GVF arrows are opposite

of each other, because this indicates that the region is at the center of two

edges (Figure 3.1c).

Concretely, is a vertical symmetry point if and only if:

 (3.2)

Intuitively, the above three conditions require that: the GVF vector at

points to the left, the GVF vector at points to the right, and there is

an adequately large angle (e.g., greater than) between them. The last

condition ensures that there are enough attraction forces from the edges on the

two sides.

65

 (a) Edge map (b) GVF field

 (c) Zoomed-in GVF field (d) 2 gap SCs and 6 text SCs

 between ‗n‘ and ‗e‘

Figure 3.1. GVF helps to detect local text symmetries. In (d), the 2 gap SCs and the 6 text

SCs are shown in gray. The two gap SCs are between „o‟ and „n‟, and between „n‟ and

„e‟. The remaining SCs are all text SCs.

In addition to the vertical direction, we derive similar constraints for

symmetry points in three other directions: horizontal, left-diagonal and right-

diagonal. Together, they represent the four main orientations of text strokes

(Liu et al. 2005), and thus help to detect most of the local symmetries in text

regions.

To illustrate the effectiveness of the proposed symmetry detection, we

first apply it to a single text line (Figure 3.1d). The intra-character and inter-

character symmetries are shown in gray. Due to the structure of text,

symmetry points of the same type often form ―clusters‖. Hereafter, we refer to

these clusters as symmetry components (SC).

For the purpose of scene text localization, we use the same process on

full images. In Figure 3.2b and c, in Equation (3.1) is set to the Sobel

edge map and the Canny edge map (Canny 1986), respectively. Similar to the

previous example, most local symmetries in text regions are picked up.

Gap SCs

Text SCs

Text

SCs

66

Although SCs are also detected for symmetrical structures in the background,

it is possible to distinguish between the two cases.

The key difference between text SCs and non-text SCs is that when GVF

is run on two different edge maps, the former remains relatively stable while

the latter is highly inconsistent. The rationale is that the character edges in the

two edge maps resemble each other, while there are drastic changes in the

background, i.e., a lot more edges are picked up by the Canny edge detector

but not by the Sobel edge detector.

We have also observed that using Sobel-GVF gives better precision (i.e.,

a higher percentage of SCs are true text SCs). However, Canny-GVF helps in

recall, especially for small text.

Based on the above two observations, we propose a relaxed intersection

to filter out non-text SCs and combine the advantages of both Sobel-GVF and

Canny-GVF. Let and be the sets of Canny and Sobel SCs,

respectively. is retained if:

 (3.3)

Otherwise, it is removed. Thus, this intersection retains only Canny SCs which

have sufficient overlap (measured by the number of pixels) with a Sobel SC.

Based on the training data, is set to 0.4. (In section 3.1.3.5, we analyze how

the performance of the proposed method changes with respect to this

parameter.) Figure 3.2d shows that the above process helps to suppress most

of the non-text SCs.

67

Note that the use of two different edge maps as above can also be

interpreted in the spirit of hysteresis thresholding, a physics-inspired technique

that uses two thresholds instead of one for better result (Canny 1986). Sobel-

GVF and Canny-GVF correspond to the high and low ―thresholds‖,

respectively. The former contains high confidence symmetry points but may

suffer in recall. Thus, the latter is used to recover points that are connected to

the high confidence ones.

 (a) Input image (b) Sobel SCs

 (c) Canny SCs (d) Text candidates

Figure 3.2. Text candidate identification.

3.1.2.2 Text Grouping

The remaining SCs (after filtering) in Figure 3.2d are considered as text

candidates. The purpose of this step is to group horizontally-aligned text

candidates which have consistent properties into text lines. In each iteration of

the grouping process, we create a new group (i.e., text line) which initially

contains the first unassigned SC in the input image (in top left to bottom right

order). In the immediate left and right regions of the current group, if there are

68

any unassigned SCs which satisfy the similarity constraints (to be defined

below), we add them into the group and re-examine the expanded

neighborhood. Otherwise, we go to the next iteration and repeat the process,

until there are no more unassigned SCs.

The similarity constraints are based on the following observations:

 In a line, characters have comparable heights.

 The character stroke thickness is consistent. Similarly, the spaces

between characters (gap “thickness”) are regular.

 Many scene texts are of uniform colors (so that they are easy to

read from distance).

More formally, let be the current group and be an unassigned SC in ‘s

neighborhood. is added to if:

 (3.4)

where returns the distance from a SC to either of the two

edges that give rise to it. (This can easily be computed by following the GVF

directions until we reach the edges.) If is an intra-character SC, the distance

corresponds to half of the stroke thickness. Otherwise, if is an inter-character

SC, it corresponds to half of the gap thickness. Therefore, this constraint fully

captures the second observation mentioned above.

Although stroke thickness has been explored in a previous work

(Epshtein et al. 2010), gap thickness is new and is a by-product of the GVF

69

formulation in the previous section. Thus, GVF not only helps to detect local

symmetries but also plays an important role in the grouping process.

The parameter values are determined empirically based on the training

data: , and . Figure 3.3a shows some of the groups

formed by the text candidates in Figure 3.2d. Note that the first two groups

actually cover the whole length of the first text line. However, for illustration

purpose, only the word ―Centre‖ is shown. Furthermore, the second group

corresponds to the gaps between the characters (rather than the characters

themselves). This is the advantage of the proposed method. Groups formed by

gap SCs are especially useful for difficult cases of scene text where the

character edges are broken, but the gaps are still visible.

To obtain the final grouping output in Figure 3.3b, we impose one more

constraint: most text lines have at least three characters (Epshtein et al. 2010;

Chen et al. 2011). Hence, only groups with three or more SCs are retained. For

cases of double detection, i.e., two groups are detected for the same text line,

we take the union of the two bounding boxes.

 (a) Text groups (b) Output for Figure 3.2a

Figure 3.3. Text grouping. In (a), the SCs are shown in white. For the second group, the

characters are shown in gray to illustrate why the gap SCs are detected in the first place.

70

3.1.2.3 Text Verification

At the end of the previous step, we obtain a set of candidate text lines.

However, some of them may correspond to text-like patterns, e.g.,

symmetrical structures with regular spaces, in the background. Hence, we

perform local texture analysis for verification purpose.

To learn the texture of text, we use Histogram of Oriented Gradients

(HOG) (Dalal & Triggs 2005), a popular descriptor that has successfully been

employed for many object detection problems. Using the training data, we

collect 11,600 positive samples and 14,100 negative samples. The patch size is

fixed to 48 × 48.

Furthermore, as suggested in (Chen & Yuille 2004), we divide a patch

into three partitions (Figure 3.4a). HOG features are extracted for each

partition and then concatenated to form the feature vector. The rationale for

such a division is that the top 1/6 and bottom 1/6 correspond to the ascender

and descender of text, which typically have different gradient orientation

distributions than the middle partition. Experimentally, we have found that this

approach is more effective for rejecting false positives than applying HOG on

the whole patch (i.e., without division).

SVM is used to classify whether each candidate region is text or non-

text. We normalize each region to 48-pixel height. A window is then slid

across, and at each position, SVM is used to estimate the confidence score that

the window contains text. The overall score of the region is computed by a

weighted average where the weights follow a Gaussian distribution (Chen et

al. 2004a). If the score is non-negative, the region is retained; otherwise, it is

discarded.

71

Figure 3.4b shows some of the false positives that have successfully

been removed by HOG-SVM. It is evident that the texture features supplement

the symmetry features used in the previous steps.

 (a) (b)

Figure 3.4. Block pattern (a) and sample false positives that are successfully removed by

using HOG-SVM (b).

3.1.3 Experimental Results

3.1.3.1 Datasets

We performed experiments on two public datasets, ICDAR 2003 (Lucas

et al. 2003) and Microsoft Text Detection dataset (MS) (Epshtein et al. 2010).

The first dataset consists of the training set (250 images) and the test set (249

images). It has a wide range of images, e.g., book covers, bill boards and

outdoor scenes. The resolutions vary from 307 × 93 to 2048 × 1536. The

second dataset contains 307 street images, with resolutions from 1024 × 768 to

1280 × 960.

Because the MS dataset does not contain separate training data, our

method was trained on the ICDAR training set for both experiments. The

parameter values, as mentioned in the previous sections, also remained the

same for both experiments.

72

3.1.3.2 Performance Measures and Methods for Comparison

For quantitative evaluation, we used the performance measures of the

ICDAR 2005 competition (Lucas 2005): precision (P), recall (R) and f-

measure (F). These measures are briefly summarized below.

Let be the set of bounding boxes returned by a text localization

method and be the set of groundtruth bounding boxes. The best matched

area of a bounding box with respect to a set is defined as:

 (3.5)

where
 is the intersection area of the two bounding boxes

divided by the area of the minimum box that encloses both boxes. if

the two boxes are identical and if there is no overlap.

Precision, recall and f-measure are then computed as:

 (3.6)

 (3.7)

(3.8)

where to balance recall and precision.

73

In the experiments, we compared the proposed method against two

recent localization methods for scene text: (Neumann & Matas 2011) and

(Epshtein et al. 2010).

3.1.3.3 Experiment on Natural Scenes

In the ICDAR 2003 dataset, the ground truth is provided at the word

level. We used projection profile analysis to split the localized text lines into

words. Figure 3.5 shows sample localization results of our method. In Figure

3.5a, the text line contains touching characters. It is mentioned in (Neumann &

Matas 2011) that this method cannot handle such cases because it requires

each Maximally Stable Extremal Region to be an isolated character. Similarly,

the method by (Epshtein et al. 2010) expects a text line to have at least three

characters, which is not satisfied because the whole line is extracted as one

single region (with consistent stroke width). On the other hand, our method

detects skeleton-like SCs, which are disconnected from each other and thus

form a valid group. Figure 3.5b shows another challenging case where text has

the same color as the background. In the edge map, the top portions of the

character edges are lost. However, the bottom and especially the side contours

are still visible. Thus, our method is able to detect and group SCs into a text

line, while the methods by (Neumann & Matas 2011) and (Epshtein et al.

2010) will have difficulties because the characters become connected to each

other (through the background at the top).

Figure 3.6 illustrates that a variety of texts in the dataset are successfully

picked up despite the stylish fonts, blurring, partial occlusion and complex

backgrounds.

74

 (a) (b) (c)

 (d) (e) (f) (g)

Figure 3.5. Sample text localization results on the ICDAR 2003 dataset.

Figure 3.6. Sample localized text lines on the ICDAR 2003 dataset.

On the ICDAR test set, the proposed method outperformed the top

entries of the ICDAR 2005 competition, as well as recent methods (Epshtein

et al. 2010; Neumann & Matas 2011), in terms of f-measure (Table 3.1). (Note

that the ICDAR 2005 competition reused the dataset from the ICDAR 2003

competition).

Our method also achieved the highest recall, which shows the advantage

of using GVF SCs to exploit both text and gap features to pick up more text

lines. On the other hand, existing methods typically ignore the latter. Both

methods by (Epshtein et al. 2010) and (Neumann & Matas 2011) only extract

character features, through Stroke Width Transform and Maximally Stable

Extremal Regions, respectively.

75

The proposed method had a slightly worse precision than the methods by

(Epshtein et al. 2010) and (Neumann & Matas 2011) because the background

may contain structures that happen to satisfy the symmetry constraints, e.g.,

regular vertical stripes. This problem will be explored in the future. For

example, an OCR engine can be employed to recognize these patterns and

reject highly unlikely strings, e.g., ‗11111‘.

Table 3.1. Results on the ICDAR 2003 dataset.

Method Precision Recall F-measure

1st ICDAR 2005 0.62 0.67 0.62

2nd ICDAR 2005 0.60 0.60 0.58

(Neumann & Matas 2011) 0.72 0.62 0.67

(Epshtein et al. 2010) 0.73 0.60 0.66

Our method 0.70 0.69 0.69

Our method without HOG 0.63 0.69 0.66

3.1.3.4 Experiment on Street Scenes

Figure 3.7 shows sample localization results of our method on street

images. Figure 3.8 shows that our method is able to pick up texts of a variety

of appearances.

Our method achieved a significantly higher recall and a better overall f-

measure than the method by (Epshtein et al. 2010) (Table 3.2). (The results of

the other methods on this dataset are not available.). Both the proposed

method and the method by (Epshtein et al. 2010) degraded in performance on

this dataset because it is more challenging than the ICDAR dataset. The

images have a wider view and contain more objects, e.g., buildings,

pedestrians and cars. Moreover, 45% of the text lines are less than 20 pixels in

height. (That in the ICDAR dataset is only 9%.)

76

Figure 3.7. Sample text localization results on the Microsoft dataset.

Figure 3.8. Sample localized text lines on the Microsoft dataset.

Table 3.2. Results on the Microsoft dataset.

Method Precision Recall F-measure

(Epshtein et al. 2010) 0.54 0.42 0.47

Our method 0.50 0.51 0.51

Our method without HOG 0.44 0.52 0.48

77

3.1.3.5 Additional Experiments

To show the contribution of the first two steps alone (i.e., local

symmetry detection and text grouping), we turned off the HOG-based text

verification step (denoted as Our method without HOG in Table 3.1 and Table

3.2). The last rows in these two tables indicate the effectiveness of the

proposed symmetry detection, as the recalls on both datasets were much

higher than those of (Epshtein et al. 2010) and (Neumann & Matas 2011). In

addition, it shows that the texture feature supplements the symmetry features,

and helps to improve the precision.

We also examined how the performance of our method changes with

respect to in Equation (3.3). Figure 3.9 demonstrates that the overall f-

measure is not too sensitive to , as long as .

Figure 3.9. F-measures for different values of T1.

One of the main contributions of this work is the local symmetry

detection technique based on GVF. It allows our method to exploit both the

text features and the gap features to localize text regions. The latter is new and

has not been explored by existing methods.

0.35

0.45

0.55

0.65

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7

F-
m

ea
su

re

T1

ICDAR dataset MS dataset

78

In addition, the proposed GVF-based symmetry detection technique will

be further used in section 4.1 for a different purpose: single-frame text

enhancement. In that section, due to the nature of the task, we only focus on

the inter-character symmetry (i.e., the gap SCs) and ignore the intra-character

symmetry (i.e., the text SCs).

3.2 Text Localization in Video Key Frames

Our scene text localization method in the previous section follows a

bottom-up approach. However, video frames are typically of much lower

resolutions than natural scene images. Due to this challenge, it is difficult to

reliably extract the video characters and the gaps between them. Hence, a

bottom-up approach is not suitable for video frames. This section presents a

top-down approach to text localization in video frames.

This work does not utilize the temporal information (yet) so its input is a

video key frame. The use of temporal information will be discussed in a later

work in section 4.2.

3.2.1 Motivation

It is evident from our survey in section 2.3 that most methods for videos

address the localization of horizontal text but not multi-oriented text. This is

because most of the non-horizontal text lines are video scene text, which is

much more difficult to localize due to varying lighting and complex

transformations (Jung et al. 2004; Zhang & Kasturi 2008). For some existing

methods, extension to multi-oriented text is no trivial matter. For example, the

uniform-colored method (Mariano & Kasturi 2000) performs color clustering

79

on each row, while the gradient-based method (Wong & Chen 2003) identifies

candidate text segments row-wise. The edge-based method (Cai et al. 2002)

analyzes the horizontal and vertical projection profiles of the edge map. Thus

many existing methods rely heavily on the horizontal text assumption and

break down on multi-oriented text.

Only a few papers consider text of arbitrary orientation in video, e.g.,

(Kim et al. 2003; Wang et al. 2008), under the assumption that text is of large

font size and of high contrast. (Crandall et al. 2003) proposed a method for

extracting multi-oriented special effects text; however, this method is limited

to graphics text of fixed directions (0, 15, 30 degrees and so on).

A few methods for text in natural scene images, e.g. (Chen et al. 2004c;

Epshtein et al. 2010; Yi & Tian 2011), can handle multi-oriented text.

However, they require each single character to be extracted as a complete CC.

For example, to allow for non-horizontal text, (Chen et al. 2004c; Yi & Tian

2011) performed line fitting using Hough transform on individual character

CC centroids. Although this requirement is reasonable for scene characters, it

is not guaranteed for video characters. Due to the poor resolution and the low

contrast of the video frames, a CC may only contain the partial shape of a

character and thus the performance of these CC-based methods will degrade.

Multi-oriented text localization in video key frames without any

constraints on background, contrast and orientation, and with high precision

and recall is still a challenging problem (Lienhart & Wernicke 2002; Crandall

et al. 2003; Lyu et al. 2005). Therefore, we propose a method which is able to

handle video graphics text and video scene text of arbitrary orientation under

the assumption that the characters are aligned on a straight line.

80

3.2.2 Proposed Method

The proposed method consists of four steps: text localization, connected

component classification, connected component segmentation and false

positive elimination. In the first step, we identify candidate text regions by

using the Laplacian operator. The second step uses skeletonization to analyze

each CC in the text regions. Simple CCs are retained while complex CCs are

segmented in the third step. False positives are removed in the last step. Figure

3.10 shows the flowchart of the proposed method.

Figure 3.10. Flowchart of the proposed method.

3.2.2.1 Text Localization

Because video text can have a very low contrast against complex local

backgrounds, it is important to pre-process the input image to highlight the

difference between text and non-text regions. Text regions typically have a

large number of discontinuities, e.g., the transitions between text and

background. Therefore, the input video key frame is converted to grayscale

and filtered by a 3 × 3 Laplacian mask to detect the discontinuities in four

directions: horizontal, vertical, left diagonal and right diagonal (Figure 3.11).

1 1 1

1 -8 1

1 1 1

Figure 3.11. The 3 × 3 Laplacian mask.

81

Since the Laplacian mask produces two values for every edge, text

regions have many positive and negative peaks of large magnitudes, and the

reverse is true for non-text regions. It is observed that the zero crossings

correspond to the transitions between text and background (Figure 3.12).

(a) Input

(b) Laplacian filtered

(c) Profile of the middle row of (b)

Figure 3.12. Profiles of text and non-text regions. In (c), the x-axis shows the column

numbers while the y-axis shows the pixel values.

Ideally, there should be the same number of text-to-background and

background-to-text transitions. This condition, however, does not hold for low

contrast text on complex background so we use a weaker condition to ensure

that the low contrast text is not missed. Maximum difference (MD) (Wong &

Chen 2003), defined as the difference between the maximum value and the

minimum value within a local 1 × window, is computed from the Laplacian-

filtered image :

(3.9)

82

The MD map is obtained by moving the window over the image (Figure

3.13c). is empirically determined to be 21.

Text regions typically have larger MD values than non-text regions due

to the larger magnitudes of the positive and negative peaks. Therefore, we use

K-means to classify all pixels into two clusters, text and non-text, based on the

Euclidean distance of MD values. The morphological operation opening is

used to remove small artifacts (Figure 3.13d).

 (a) Input (b) Laplacian filtered (c) MD map (d) Text cluster

Figure 3.13. The intermediate results of text localization.

3.2.2.2 Connected Component Classification

Traditionally, bounding boxes are used for displaying the localized text

blocks. This is sufficient for horizontal text lines; however, for skewed text

lines, rectangular boxes will enclose many unnecessary background pixels.

Neighboring skewed text lines will also lead to overlapping bounding boxes.

Hence we propose to use CCs for displaying text lines. We further propose

using skeletonization to segment CCs into separate text lines.

There are two types of CCs: simple and complex. A simple CC is either a

single text string or a false positive. For example, the CCs at the bottom of

Figure 3.13d are simple CCs. On the other hand, a complex CC contains

multiple text strings which are connected to each other and to false positives in

the background. For example, the CC in the middle of Figure 3.13d contains

83

three text strings and a false positive (the logo). High contrast text often

appears as simple CCs while low contrast text often appears as complex CCs.

In the first case (simple CCs), the whole component is displayed in the

result (if it is a text CC) while in the second case (complex CCs), we want to

output only the text part and suppress the non-text part of the CC. In order to

do so, we need to segment a complex CC into multiple simple CCs and retain

only the text CCs.

The segmentation step will be described in detail later. For now, we

discuss how to classify every CC as either simple or complex. Skeleton is a

well-defined concept in digital image processing to represent the structure of a

region (Figure 3.14). The intersection points (or junction points) of a skeleton

show the locations where the sub-components of different orientation are

connected to each other. Hence, the rule for CC classification is defined based

on the number of intersection points:

(3.10)

 is the set of CCs in the text cluster obtained in the previous step.

 returns the result of skeletonization. returns the

set of intersection points. At the end of this step, simple CCs are retained

while complex CCs are sent for segmentation in the next step.

84

 (a) Connected component (b) Skeleton

Figure 3.14. Skeleton of a connected component from Figure 3.13d.

3.2.2.3 Connected Component Segmentation

In order to output only the text part of a complex CC, we need to

segment, or split, it into multiple simple CCs based on the intersection points.

In Figure 3.15, point A shows the location where the first text line of Figure

3.13a connects to the logo (a false positive). By segmenting the complex CC

from A to B, we are able to get back the first text line.

AB is called a skeleton segment, which is defined as a continuous path

from an intersection point to either an end point or another intersection point.

In addition, the path should not include any other point in the middle. For each

skeleton segment, we extract the corresponding sub-component from the

complex CC. In Figure 3.16, sub-components 1, 2 and 3 correspond to the first

three text lines in Figure 3.13a while sub-components 4 and 5 correspond to

non-text regions (they are part of the logo in Figure 3.13a).

Figure 3.15. End points and intersection points of Figure 3.14b.

85

Figure 3.16. Skeleton segments of Figure 3.14b and their corresponding sub-components.

(Only 5 sample sub-components are shown here.)

To remove false positives (such as sub-components 4 and 5), we propose

using text-specific features, which are described in the next section.

3.2.2.4 False Positive Elimination

After the previous step, we have a set of simple CCs, , each of which

is either an original simple CC or a new simple CC segmented from a complex

CC. is a true text block if:

 (3.11)

The first feature, straightness, comes from the observation that text

strings appear on a straight line (our assumption) while false positives can

have irregular shapes. It is defined as:

(3.12)

86

Note that all ‘s are simple CCs and thus all ‘s have exactly two end points

and zero intersection points. For text, , the length of the skeleton, is

close to , the straight line distance between the two end

points while for non-text, is much larger than

(Figure 3.17).

The second feature, edge density, is defined as:

(3.13)

 returns the binary Sobel edge map (for only the white pixels of).

 is the total length of all the edges in the edge map.

 is the area of the CC. This feature assumes that edges are denser

in text regions than in non-text regions because the former typically contains

many text strokes (Figure 3.18). The parameters are empirically determined:

 and .

 (a) Text (b) Connected component (c) Skeleton

 (d) Non-text (e) Connected component (f) Skeleton

Figure 3.17. False positive elimination based on skeleton straightness.

87

 (a) Text (b) Connected component (c) Edges

 (d) Non-text (e) Connected component (f) Edges

Figure 3.18. False positive elimination based on edge density.

3.2.3 Experimental Results

3.2.3.1 Datasets

As there is no standard benchmarking dataset for video text, we selected

a variety of video key frames, extracted from news programmes, sports videos

and movie clips to form two datasets:

 The horizontal text dataset contained 960 video key frames. The

English sub-dataset contained 800 images (652 images for video

graphics text and 148 images for video scene text) while the

Chinese sub-dataset contained 160 images (153 for video graphics

text and 7 for video scene text).

 The non-horizontal text dataset contained 241 video key frames.

The English sub-dataset contained 220 images (44 for video

graphics text and 176 for video scene text) while the Chinese sub-

dataset contained 21 images (4 for video graphics text and 17 for

video scene text).

88

3.2.3.2 Methods for Comparison

We implemented four existing methods. (Liu et al. 2005), denoted as

edge-based method 1, extracts six statistical features from four Sobel edge

maps. (Cai et al. 2002), denoted as edge-based method 2, performs Sobel edge

detection in the YUV color space and applies two text area enhancement

filters. (Wong & Chen 2003), denoted as gradient-based method, computes

the maximum gradient difference to identify candidate text regions. (Mariano

& Kasturi 2000), denoted as uniform-colored method, performs hierarchical

clustering in the L*a*b* color space to locate uniform-colored text strings.

We chose these four methods because they make use of different

features for text localization: edge features (Cai et al. 2002; Liu et al. 2005),

gradient features (Wong & Chen 2003) and color features (Mariano & Kasturi

2000). Another reason was that they are all unsupervised methods and thus, no

training data were required. On the other hand, supervised methods often

require a large number of positive and negative samples. It is especially hard

to ensure that the negative samples are representative (Kim et al. 2003).

The parameters of the existing methods were set according to the

respective papers. The same parameter values were used for all the

experiments.

3.2.3.3 Performance Measures

We evaluated the performance at the text line level, which is a common

granularity level in the literature (Mariano & Kasturi 2000; Cai et al. 2002;

Wong & Chen 2003; Chen et al. 2004b; Ye et al. 2005). For each video key

frame in the dataset, we manually counted the number of Actual Text Blocks

89

(ATB). The following categories were defined for each localized block by a

method.

 Falsely Localized Block (FLB): A block that does not contain text.

 Truly Localized Block (TLB): A block that contains at least one

true character.

 Partially Localized Block (PLB): A TLB that misses some

characters of a text line. In other words, PLB is the subset of TLB

that only enclose the text lines partially.

For example, the numbers of the different types of blocks in Figure 3.19

are 3 ATBs (3 text lines), 3 TLBs (all lines are localized), 2 PLBs (the first

two lines are only partially localized) and 1 FLB (the eye).

 (a) Input (b) Localized text blocks

Figure 3.19. Sample ATBs, TLBs, FLBs and PLBs.

The performance measures were defined as follows:

 Recall (R) = TLB / ATB

 Precision (P) = TLB / (TLB + FLB)

 F-measure (F) = 2 P R / (P + R)

 Partial Localization Rate (PLR) = PLB / TLB

Our definition of Recall is more forgiving than the traditional definition

because it considers both fully and partially localized text lines. Due to the

challenges of video scene text and the arbitrary orientation of the text lines, it

90

is difficult for a method to always enclose a full text line in a block.

Sometimes it misses some characters of very low contrast and localizes only

parts of a line. Since the goal of this work is text localization (how well a

method locates potential text blocks), partial detection is still acceptable

because it shows that a method is able to detect the presence of text (albeit

partially). Having said that, we also included PLR as a performance measure

and provide discussion on partial localization in all experiments to ensure a

fair comparative study.

3.2.3.4 Experiment on Horizontal Text

In this experiment, we used the horizontal text dataset described earlier.

Figure 3.20 shows a sample image with two horizontal Chinese text lines on a

complex background. The edge-based method 1 misses some characters of the

first line. The edge-based method 2 and the uniform-colored method produce

many false positives, while the gradient-based method fails to localize the first

line. The proposed method is the only one that fully localizes and separates the

text lines from each other, without any false positives.

Table 3.3 shows the performance of the four existing methods and the

proposed method on the horizontal text dataset. The proposed method had the

highest recall, the second highest precision (almost the same as that of the

gradient-based method) and the highest F-measure. This shows the advantage

of the proposed method because it achieved good results (including high

precision) while making fewer assumptions about text. By assuming that text

has horizontal orientation, the existing methods can remove false positives

more easily, e.g., by using projection profile analysis.

91

 (a) Input (b) Edge 1 (c) Edge 2

 (d) Gradient (e) Color (f) Proposed

Figure 3.20. The localized blocks of the four existing methods and the proposed method

for a horizontal text image.

The drawback of the proposed method is PLR, which was not as good as

those of the gradient-based method and the edge-based method 2. This

drawback will be discussed in detail in the next section.

Table 3.3 also shows that the proposed method works slightly better for

English text than for Chinese text. The latter has more complicated strokes and

thus, for text lines of small font sizes, it is difficult to distinguish the strokes

from the complex backgrounds. In addition, the spaces between Chinese

characters can be larger than those of English characters, which leads to more

partial localization.

Table 3.3. Experimental results on horizontal text.

Method
English Chinese

R P F PLR R P F PLR

Edge 1 0.58 0.68 0.63 0.22 0.79 0.63 0.70 0.43

Edge 2 0.58 0.39 0.47 0.12 0.61 0.36 0.45 0.18

Gradient 0.66 0.83 0.74 0.03 0.69 0.76 0.72 0.10

Color 0.55 0.45 0.50 0.35 0.69 0.51 0.59 0.56

Proposed 0.86 0.82 0.84 0.13 0.79 0.75 0.77 0.23

92

3.2.3.5 Experiment on Non-horizontal Text

The non-horizontal text dataset (described in Section 3.2.3.1) was used

for this experiment. Figure 3.21 shows a sample image which has four non-

horizontal text strings. Although the existing methods are able to localize the

three text strings in the middle, they all fail to separate them because the (non-

rotated) rectangular bounding boxes of the skewed text lines overlap with each

other. On the other hand, the proposed method localizes all the text strings

correctly without any false positives.

Figure 3.22 shows more sample results where the proposed method

works for multi-oriented texts of different font sizes.

It is clear from Figure 3.21 that the existing methods are not designed

for non-horizontal text. The gradient-based method and the uniform-colored

method work on a row by row basis. Similarly, the edge-based method 2

employs projection profile analysis in the horizontal and vertical direction to

localize the text blocks. The only method that is easy to extend to multi-

oriented text is the edge-based method 1. This method works based on the text

cluster (similar to Figure 3.13d) and thus, all the subsequent steps of the

proposed method can be applied for this method. Even then, the quality of the

text cluster, e.g., whether low contrast text lines are included, will make a

difference. According to the experimental results in the previous section, the

proposed method outperformed the edge-based method 1, which implies that

the text cluster of the former is better than that of the latter.

Since the existing methods did not produce satisfactory results for multi-

oriented text, we considered only the proposed method in this experiment.

Even though this dataset was more difficult than the previous one because it

93

 (a) Input (b) Edge 1 (c) Edge 2

 (d) Gradient (e) Color (f) Proposed

Figure 3.21. The localized blocks of the four existing methods and the proposed method

for a non-horizontal text image.

(a) Input key frames

(b) Localized blocks

Figure 3.22. Results of the proposed method for non-horizontal text.

contained more video scene texts, the proposed method was still able to

achieve similar F-measures on both the English and Chinese sub-datasets

(Table 3.4). These results show that the proposed method can handle multi-

oriented video scene text well.

94

Similar to previous experiment, the drawback of the proposed method is

the high PLR due to the CC segmentation step. The intention of this step is to

segment a whole text string into a simple CC. Nevertheless, sometimes a

string is split into multiple CCs. If one of them does not satisfy the false

positive elimination rule, only part of the string is extracted (Figure 3.23). This

happens more often for Chinese text than English text because the former has

larger spaces between the characters.

Table 3.4. Experimental results on non-horizontal text.

Method
English Chinese

R P F PLR R P F PLR

Proposed 0.85 0.77 0.81 0.14 0.81 0.74 0.77 0.35

 (a) Input (b) A CC and its skeleton (c) Extracted pixels

Figure 3.23. The CC segmentation step may split a text line into multiple parts. For

clarity, (b) and (c) only show the corresponding results of the largest Chinese text line,

although the English text line is also localized.

3.2.3.6 Experiment on Processing Time

Table 3.5 shows the average processing time of the proposed method

and the existing methods for 256 × 256 video key frames on a Core 2 Duo 2.0

GHz machine. For the existing methods, the processing time is reported only

for horizontal text because they were not included in the experiment on non-

horizontal text. The proposed method was slower than the gradient-based

method, slightly slower than the edge-based method 2 but much faster than the

95

edge-based method 1 and the uniform-colored method. The proposed method

also took longer to localize non-horizontal text because more time was

required to segment complex CCs into simple CCs.

Table 3.5. Average processing time (in seconds).

Method Horizontal Text Non-horizontal Text

Edge 1 22.1 N.A

Edge 2 6.1 N.A

Gradient 1.1 N.A

Color 13.9 N.A

Proposed 7.8 10.3

One of the main contributions of this work is the use of skeletonization

to segment a complex CC into constituent parts and separate the connected

text lines from each other. It allows our method to localize multi-oriented text

and thus improves over exiting methods which are typically limited to only

horizontal text. In the future, we will study the problem of partial localization,

especially for Chinese text. For example, the edge map could be used to verify

the intersection points found by skeletonization.

3.3 Summary

In this chapter, we have presented two methods for text localization, one

for natural scenes and the other for video key frames. The main contribution of

the first work is the use of gap, i.e., inter-character, features for text

localization. This direction has not been explored by previous methods.

Experimental results on two public datasets demonstrate the effectiveness of

the proposed gap features.

96

The second work uses skeletonization to localize multi-oriented video

text. Thus, it has relaxed the horizontal text assumption of many existing

methods. Experimentally, the proposed method performs well on both English

and Chinese texts.

97

Chapter 4

Single-frame and Multiple-frame Text

Enhancement

After text lines have been localized using our methods in the previous

chapter, they need to be enhanced prior to recognition. This chapter presents

two methods for text enhancement, one for single-frame text and the other for

multiple-frame text. In the first method, instead of binarizing a whole text line,

we first segment it into individual characters and then binarize each of them

individually. In this way, the parameters of the binarization algorithm can be

set adaptively according to the local background of each character to produce

a better binarized text image. In the second method, given a localized word in

a video key frame, we track it both forward and backward in time to identify

its first frame and last frame of occurrence. After that, all the text instances

within the word‘s framespan are integrated to derive the final binarized text

image.

4.1 Single-frame Enhancement

As mentioned above, this work aims to binarize each character in a text

line individually to achieve a better binarization. Our focus is on character

segmentation, i.e., separating the characters in the same text line from each

other. For the binarization step, we use an existing method (Su et al. 2010).

Hence, the next sections describe the details of our character segmentation

98

technique. The combination of character segmentation and binarization will be

discussed in section 4.1.3.5.

4.1.1 Motivation

From our survey in section 2.7.2.1, we have noticed that existing

character segmentation methods often have two limitations. First, methods

which are originally designed for text in scanned documents typically require

a binary image as input. Thus, they are not suitable for scene text and video

text. Second, many methods allow only vertical segmentation paths. However,

in difficult cases such as touching characters, more flexible paths would be

needed to separate the characters from each other.

Hence, to overcome these limitations, we extend the GVF-based

symmetry detection technique in section 3.1.2.1 to segment an input text line

into individual characters. Our method works directly on grayscale images and

is able to produce curved segmentation paths. Therefore, it overcomes both of

the limitations of existing methods.

4.1.2 Proposed Method

An overview of our approach is shown in Figure 4.1. The input is a

cropped text line image (which can be obtained using the text localization

methods in sections 3.1 and 3.2). A simple pre-processing step is used: the text

line is rotated back to horizontal orientation (if it is non-horizontal) and

normalized to a fixed height of 128 pixels (because some text lines are too

small to be readable at their original sizes). After that, there are three main

99

steps: cut candidate identification, minimum cost path finding and false

positive elimination. The first step identifies pixels that are potentially part of

non-vertical cuts. In the second step, we find multiple least cost paths from the

top row to the bottom row of an image. The third step helps to remove false

cuts that go through the middle of the characters. The final outputs are the

character segmentation paths.

Figure 4.1. The flowchart of the proposed method.

4.1.2.1 Cut Candidate Identification

We modify the GVF-based symmetry detection technique in section

3.1.2.1 for the purpose of character segmentation. Within a gap between two

consecutive characters, there is more than one segmentation path that can

separate the two characters. One way to define a good path is that it should

stay as far as possible from the two character edges to allow room for errors in

case the edge information is not accurate or the character contours are partly

broken due to low contrast.

The symmetry detection technique in section 3.1.2.1 identifies points

that are equally far from the two character edges. Hence, these points satisfy

the criterion of a good path as mentioned above. We define a candidate cut

pixel as a pixel that satisfies Equation (3.2) in section 3.1.2.1. For the

reader‘s convenience, this equation is reproduced below:

100

 (4.1)

where is the GVF field and returns the

angle between two vectors.

Figure 4.2 shows the detected candidate cut pixels of a text line with

complex background. GVF is able to detect pixels in the gaps between

consecutive characters. Although these pixels do not form complete cuts yet,

they play an important role in the path finding process, which is described in

the next step, where the segmentation paths are encouraged to go through

these pixels instead of other pixels in the same gap.

A side effect of Equation (4.1) is that it also captures ―medial‖ (or intra-

character) pixels, i.e., those that are in the middle of the character strokes

(Figure 4.2). However, it is still possible to distinguish between candidate cut

pixels and medial pixels. Since medial pixels are part of a character, if a

segmentation path wants to go through these pixels, it has to make several

background-to-character and character-to-background transitions. This is not

the case for candidate cut pixels because the path would only stay in the

background.

 (a) Input (b) Candidate cut pixels

Figure 4.2. Candidate cut pixels of a sample image. In (b), the image is blurred to make

the (white) cut pixels more visible.

101

We would like to mention that the use of GVF in this work is different

from that in section 3.1.2.1 in the following ways:

 Section 3.1.2.1 uses the intra-character and inter-character

symmetries in four directions (vertical, horizontal, left-diagonal

and right-diagonal) to localize the text lines. However, in this

work, due to the nature of the segmentation task, we only focus on

the inter-character symmetry, i.e., the gaps between consecutive

characters, in the vertical direction. The rationale for using only

the inter-character symmetry and only the vertical direction is that

we are mainly interested in symmetry components that can

separate two consecutive characters from each other
4
.

 Section 3.1.2.1 only deals with scene text (which typically has

sufficient resolution) and thus it is reasonable to assume that the

intra-character/inter-character symmetry of the same character/gap

often form connected components. On the other hand, this work

also handles video text. Due to the low resolution of video text, the

inter-character symmetry component within a single gap may no

longer be a single connected component. Instead, it may be broken

into multiple disconnected components (Figure 4.2b). Hence, to

form a complete cut from top to bottom, we propose a minimum

cost path finding algorithm (which is described in the next

section).

4
 And it is assumed that multi-oriented text lines have already been rotated back to the

horizontal orientation after the pre-processing step.

102

4.1.2.2 Minimum Cost Path Finding

Inspired by a method for segmenting merged characters in document

images (Wang & Jean 1993), we formulate the character segmentation

problem as a minimum cost path finding problem where from the top row, it

costs less to go through a gap and reach the bottom row than cutting through

the middle of a character.

The input image can be considered as a graph where the vertices are the

pixels, and pixel is connected to neighboring pixels in the left-down,

down and right-down directions, i.e., pixels , and

 . The minimum cost paths are found by dynamic programming

as follows.

Let be the grayscale input image, be a starting pixel on the top

row, be the cost of moving from pixel to pixel , and be

the cumulative cost of the minimum cost path from pixel to pixel .

Initialization:

 (4.2)

Update rule:

 (4.3)

103

where , and

 . The cost function is defined as:

 (4.4)

where returns true if is a candidate cut pixel and is the

diagonal move penalty (to be explained later). (Recall that candidate cut pixels

are defined in Equation (4.1).)

The cost function is designed to encourage non-vertical cuts to go

through candidate cut pixels. It is thus set to be zero at these pixels. For other

pixels, the cost function is set to the squared difference between two gray

intensities because we assume that for text to be readable, there should be

some contrast between the characters and the background. (We use the

squared difference to penalize large differences more, instead of penalizing the

differences linearly.) A large difference may indicate background-to-character

and character-to-background transitions, i.e., cutting through the characters

instead of traversing within the gaps. Therefore, paths that go through medial

pixels are discouraged by this cost function.

Curved segmentation paths are also naturally allowed. However, in

many cases, vertical paths are sufficient so is set to to avoid paths with

excessive curvature.

Note that the above algorithm finds the best path for only one starting

point on the top row. To segment all the characters, we run it multiple times

with different starting points. Ideally, we only need to put a starting point

104

every pixels where is the estimated character width (based on the height

of the input image). However, because the characters have variable widths,

e.g., ‗i‘ versus ‗m‘, and furthermore, the gaps between the words may not be a

multiple of , more frequent starting points are required. In our

implementation, a starting point is placed every pixels.

4.1.2.3 False Positive Elimination

In the previous step, the cost function is carefully designed to discourage

segmentation paths that cut through the characters. However, these false cuts

may still occur for various reasons, e.g., low contrast which leads to a small

difference in intensity values of consecutive pixels on the path. In this step, we

aim to remove these false cuts.

It is interesting to observe that if there are more starting points than

required in a gap, the minimum cost paths usually converge to the same end

point (Figure 4.3a). This suggests that end points are more reliable than the

starting points, especially because the latter are placed according to a heuristic

rule based on the estimated character width.

In order to verify whether a segmentation path is a true cut or a false cut

(going through a character), we perform backward path finding from the end

points to the top row (similar to forward path finding, except that the

directions of the edges are reversed). For true cuts, it is likely that the forward

path and the backward path are close to each other because they both aim to

pass through the candidate cut pixels in the background. However, for false

cuts, instead of going the same route as the forward path, the backward path

may switch to either side of the character because the cost would be lower

105

since there are no transitions between the character and the background

(Figure 4.3b).

Our method can be considered as a two-pass path finding algorithm

where the forward direction locates potential cuts and the backward direction

verifies them.

 (a) Forward path finding (b) Backward path verification

Figure 4.3. Two-pass path finding algorithm. In (a), different starting points converge to

the same end points. In (b), the false cuts going „F‟ have been removed while the true

cuts are retained.

4.1.3 Experimental Results

4.1.3.1 Datasets

We used our text localization method in section 3.2 to extract a variety

of text lines from TRECVID videos
5
, including news programmes,

commercials and movie clips. The text lines were divided into 4 datasets:

English horizontal (200 images), English non-horizontal (100 images),

Chinese horizontal (200 images) and Chinese non-horizontal (100 images).

The horizontal datasets mostly contained video graphics text while the non-

horizontal datasets mostly contained video scene text.

5
 http://trecvid.nist.gov/

106

4.1.3.2 Methods for Comparison

For comparison purpose, we implemented two existing methods: (Huang

et al. 2009), denoted as Huang’s method, and (Kopf et al. 2005), denoted as

Kopf’s method. Huang‘s method binarizes the gradient map of a text image

and performs projection profile analysis to locate potential vertical cuts.

Heuristic rules are used to merge the segmented regions based on assumptions

about a character‘s height and width. Kopf‘s method performs minimum cost

path finding and uses a similar graph structure as our method but with a

different cost function. It makes a simple modification from document

analysis methods by using the absolute difference in grayscale intensities

between consecutive pixels on a path. On the other hand, our method defines

the cost function based on GVF and also employs backward path verification.

4.1.3.3 Sample Segmentation Results

Figure 4.4 shows sample segmentation results of the existing methods

and the proposed method. The image on the left hand side contains English

characters of very low contrast. Huang‘s method misses 3 cuts (between ‗B‘

and ‗U‘, between ‗U‘ and ‗I‘ and between ‗I‘ and ‗T‘) and produces 4 false

cuts. Kopf‘s method has the same number of false cuts but reduces the number

of missing true cuts to 2 (between ‗U‘ and ‗I‘, and between ‗I‘ and ‗T‘). The

proposed method is the only one that identifies all the cuts correctly, without

any false cuts.

In the image on the right hand side, the Chinese characters are also of

low contrast. The proposed method detects all the cuts correctly while both

107

existing methods miss one cut (Huang‘s method misses the cut between the

first and the second characters and Kopf‘s method misses the cut between the

second and the third characters). Similar to the previous image, both existing

methods produce many more false cuts than the proposed method (4 (Huang‘s

method) and 6 (Kopf‘s method) versus 2 (our method)).

Figure 4.5 shows more results of the proposed method.

(a) Segmentation results by Huang‘s method

(b) Segmentation results by Kopf‘s method

(c) Segmentation results by our method

Figure 4.4. Results of the existing methods and the proposed method.

Figure 4.5. Results of the proposed method for non-horizontal text (b) and logo text with

touching characters (c). In (c), the gap between „R‟ and „I‟ is missed because the

touching part is quite thick.

4.1.3.4 Segmentation Accuracy

We used Recall (R), Precision (P) and F-measure (F) as the performance

measures, and made the following definitions:

 Actual Cuts (AC): Ground truth cuts, which are counted manually.

(b) Result for a line in (a)

(c) Result for logo text (a) Frame with video scene text

108

 True Cuts (TC): Detected cuts that only pass through the

background region.

 False Cuts (FC): Detected cuts that go through the characters.

The performance measures were calculated as follows:

 R = TC / AC

 P = TC / (TC + FC)

 F = 2 × P × R / (P + R)

Table 4.1 shows the performance of the existing methods and our

method on English horizontal and non-horizontal text lines. Huang‘s method

did not perform as well as the other two methods because the threshold values

used in projection profile analysis do not generalize well to images of different

contrast. Although the remaining two methods had similar recall, the proposed

method had significantly higher precision and F-measure. Kopf‘s method

produces many false cuts for images with complex background. On the other

hand, by using GVF and backward path verification, the proposed method is

able to stay as far as possible from the character edges (to allow room for

errors) and remove the majority of the false cuts.

Similarly, for Chinese horizontal and non-horizontal text lines, our

method achieved higher precision and F-measure than Kopf‘s method,

although the latter had a slightly higher recall for Chinese horizontal text lines

(Table 4.2). Huang‘s method still did not perform well for these two datasets

for reasons mentioned above.

The recall of both Kopf‘s method and the proposed method increased for

Chinese text, compared to English text. The English datasets are more

challenging than the Chinese datasets because they have more variety of text

109

lines, including stylized text used in commercials. Another reason is that

Chinese characters have more regular widths than English characters and thus

it is easier to detect the gaps.

In terms of precision, all three methods degraded in performance. A

Chinese character typically consists of multiple sub-components and

furthermore, there are gaps between these components. Therefore, more false

cuts were detected.

Similarly, all three methods had a lower precision for non-horizontal

text, compared to horizontal text. Multi-oriented text is often stylized video

graphics text or video scene text. In both cases, the background is complex;

and the contrast is also low in the second case. Hence, the methods are more

likely to make mistakes. The degradation in F-measure of Huang‘s method

and the proposed method were, however, less than that of Kopf‘s method.

Table 4.1. Segmentation results on English text.

Method
English Horizontal English Non-horizontal

Recall Precision F Recall Precision F

Huang‘s

method
0.66 0.55 0.60 0.64 0.49 0.55

Kopf‘s method 0.89 0.76 0.82 0.88 0.62 0.73

Our method 0.89 0.91 0.90 0.91 0.85 0.88

Table 4.2. Segmentation results on Chinese text.

Method
Chinese Horizontal Chinese Non-horizontal

Recall Precision F Recall Precision F

Huang‘s

method
0.64 0.47 0.54 0.63 0.46 0.53

Kopf‘s method 0.96 0.60 0.74 0.95 0.57 0.71

Our method 0.95 0.81 0.87 0.96 0.74 0.84

110

4.1.3.5 Recognition Accuracy

To show that character segmentation helps to improve the recognition

rate, we used a recent binarization method (Su et al. 2010), denoted as Su’s

method, at two different levels: the text line level and the character level (i.e.,

the individual characters segmented by the proposed method). This method

outperforms traditional methods such as Otsu‘s method and Niblack‘s method

on the dataset of the Document Image Binarization Contest 2009 (Gatos et al.

2009).

In this experiment, we considered only English text lines. The

performance measure was the character recognition rate (CRR) using

Tesseract, Google‘s open source OCR engine. Moreover, to ensure a fair

comparison, for the character level, we put the binarized results together into a

line so that the OCR engine could utilize its language model to better

recognize the characters.

Figure 4.6 shows the binarization results of Su‘s method for a

challenging image with a complex and uneven background. Without

segmentation, the last four characters are not binarized well because the

method is not able to handle both characters with clean background and

characters with complex background in the same text line. Hence, only the

first two characters are recognized correctly. On the other hand, with

segmentation, the binarization result is significantly improved because the

method is free to choose the appropriate parameter values for each individual

character (instead of for the whole text line). As a result, six characters are

recognized correctly.

111

 (a) Input (b) Line level (c) Character level

 ‗TO‘ ‗TONIGH §‘

Figure 4.6. Binarization results using Su‟s method without segmentation (b) and with

segmentation (c), together with the recognition results. In (c), both the binarization and

recognition results are improved.

Table 4.3 shows that it is better to perform binarization at the character

level than at the text line level. Part-by-part binarization helps to reduce the

problem of complex and uneven background by using local information.

Hence, the CRR was greatly improved.

In addition, because Otsu‘s method and Niblack‘s method are widely

used in the literature, their performance on the same dataset is also reported.

The combination of the proposed character segmentation method and Su‘s

binarization method gave a higher CRR than both of these methods.

It is also observed that Su‘s method (without segmentation) was only

slightly better than Otsu‘s method and Niblack‘s method in terms of CRR,

although it outperforms them on a document image dataset, as mentioned

above. This can be explained by the fact that the performance on that dataset

was measured based on several visual metrics (i.e., not goal-oriented) such as

ground truth binary pixels (Su et al. 2010). As discussed in (Wolf &

Doermann 2002), visually better binarization results may not necessarily lead

to better CRR.

Table 4.3. Recognition rates on English text.

Method CRR

Su‘s method (line level) 59.1%

Segmentation + Su‘s method (character level) 66.6%

Otsu‘s method 54.0%

Niblack‘s method 58.1%

112

The main contribution of this work is that GVF is used in a novel way to

allow our method to produce curved segmentation paths. Binarizing each

character individually leads to better binarization, which in turn improves the

recognition accuracy. As mentioned in the experiments, the proposed method

has lower precision on Chinese text than on English text because it sometimes

produces false gaps between the sub-components of a single Chinese

character. This problem will be studied in the future.

4.2 Multiple-frame Integration

The single-frame enhancement method in the previous section has not

utilized the temporal information. When the input to a text extraction system is

a video, it is crucial to exploit the temporal redundancy to improve the

recognition accuracy. This section presents a method for multiple-frame

integration of video text.

4.2.1 Motivation

While there are existing methods for multiple-frame integration (section

2.5.2), they have two drawbacks. First, the end result of many multiple-frame

integration methods such as (Li & Doermann 1999; Hua et al. 2002; Lienhart

& Wernicke 2002; Zhou et al. 2007; Yi et al. 2009) is an enhanced grayscale

image. In other words, these methods need to rely on another binarization

method to binarize the enhanced image before sending it to an OCR engine.

Second, some methods such as (Hua et al. 2002; Yi et al. 2009) can handle

only a fixed text polarity, e.g., bright text on dark background.

113

Therefore, we propose a multiple-frame integration method to overcome

these two drawbacks. The end result of our method is a binarized image,

which can be readily fed to an OCR engine. In addition, we have a text

polarity detection step, which allows our method to handle both bright text on

dark background and dark text on bright background.

4.2.2 Proposed Method

We use our text localization method in section 3.2 to extract the text

lines from a video key frame. Non-horizontal texts are rotated back to

horizontal orientation. We then split the text lines into individual words using

the method proposed by (Shivakumara et al. 2011a). The motivation for using

words (instead of text lines) for multiple-frame integration is that it is useful to

have different framespans for different words. For example, if one word is

occluded for a few frames, we can use a shorter framespan for it, while still

having longer framespans for the remaining words. In contrast, using text lines

means that all the words in the same line need to have the same framespan.

Thus, lines are less flexible than words.

Our method requires two inputs: (1) the word bounding box in a

reference frame and (2) the frame ID of the reference frame. Most video texts

are either static or have linear motion (e.g., right-to-left) (Lienhart 2003).

Hence, the scope of this work is limited to these two types of motion. Note

that static texts also benefit from multiple-frame integration if their local

backgrounds change between the frames. Our method has three main steps:

text instance identification, text probability estimation and character shape

refinement.

114

4.2.2.1 Identification of Text Instances

We use the term word instance to refer to the appearance of a word in a

particular frame. Let be the frame ID of the reference word instance. This

step aims to identify the first frame () and the last frame () of

occurrence of the word. Furthermore, because the word may move between

the frames, we need to identify its bounding box in each frame.

This step is important in two aspects. First, we need to ensure that the

extracted instances contain the same word as the reference one. Otherwise, the

irrelevant instances would negatively affect the integration, e.g., blurring the

character edges. Second, we need to extract as many relevant instances as

possible because with more information, we can achieve a better integration.

We propose to combine SIFT (Lowe 2004) and Stroke Width Transform

(SWT) (Epshtein et al. 2010).

4.2.2.1.1 Text Descriptor Extraction

Due to the low-resolution nature of video words, applying SIFT on them

directly will give only a few keypoints, which are not sufficient for robust

tracking. Hence, we first use SWT to identify the text pixels, from which we

can extract more keypoints and descriptors.

SWT has been described in section 2.3.1 (survey on gradient-based text

localization methods). Its main idea is to find pairs of corresponding text

pixels. It first computes the Canny edge map. For each edge pixel, it follows

that pixel‘s gradient direction. If it reaches another edge pixel with opposite

gradient direction, the two pixels are considered to be a pair of corresponding

115

text pixels. To handle both bright text on dark background and dark text on

bright background, we propose the following rule. We apply SWT on the

reference word instance twice, once by following the gradient directions of

edge pixels and once by following the inverse gradient directions. Each time

we count the number of corresponding pixels. The polarity with more

corresponding pixels is selected as the correct polarity. The rationale is that

when the polarity is wrong, tracing the ray from an edge pixel will lead us to

the background, without finding any matching edge pixel. Thus there will be

much fewer corresponding pixels.

After identifying the text polarity, for each pixel in a pair of

corresponding pixels, we extract its SIFT descriptor at a fixed scale. (The

orientation at the specified location and scale is left to SIFT to determine.) We

refer to this scheme as SWT-SIFT.

4.2.2.1.2 Text Tracking

To track linearly moving texts, we first extract the descriptors of the

reference word instance using SWT-SIFT. To identify the end frame, we go

from to (the number of frames of the video). For each

frame under consideration, we slightly extend the word bounding box in the

previous frame to form the search area in the current frame. Within this area,

we again extract the descriptors using SWT-SIFT. We use the nearest

neighbor algorithm (Lowe 2004) to match the two sets of SIFT descriptors,

one set from the reference word instance and the other set from the search area

in the current frame. To obtain the homography between the two sets of

descriptors, we use the RANSAC algorithm (Fischler & Bolles 1981).

116

Figure 4.7 illustrates the tracking process. (a) and (b) show the keypoints

extracted with normal SIFT and with SWT-SIFT. As mentioned before, the

latter gives more keypoints. In (c) and (d), the left hand side shows a reference

word instance, and the right hand side shows the search area in a few frames

later. The colored lines show the matched SIFT descriptors. With normal

SIFT, there are no matches, while with SWT-SIFT, there are many matches.

This illustrates the advantage of the latter. In (e), we use the estimated

homography to project the bounding box coordinates of the reference word

instance onto the search area, and obtain the new bounding box position.

 (a) Keypoints extracted with (b) Keypoints extracted with

 normal SIFT SWT-SIFT

 (c) Descriptor matching for (d) Descriptor matching for

 normal SIFT keypoints SWT-SIFT keypoints

(e) The projection of the reference bounding box

Figure 4.7. Text tracking using SIFT. In (c), all keypoints are shown. In (d), for clarity,

only matched keypoints are shown.

The criterion for declaring a frame to be the end frame is based on the

number of SIFT descriptor matches that conform to the overall homography.

This number is typically much smaller than the number of SIFT descriptors in

117

the reference instance due to two reasons. First, when the word moves, its

local background changes, and we do not expect all the reference keypoints to

be matched in the search area of a new frame. Second, RANSAC performs

geometric verification to filter out false matches that do not conform to the

homography. Hence, the number of matched SIFT descriptors is further

reduced. Due to these reasons, we use a conservative threshold of 0.1. That is,

if the number of matched SIFT descriptors according to RANSAC is less than

10% of the number of reference SIFT descriptors, the frame before the current

frame is declared as the end frame (Algorithm 4.1). We use a similar

procedure to identify , by going backward in time.

Algorithm 4.1. End frame estimation.

for to

 initialize the search area based on the bounding box in frame

 extract text descriptors from the search area using SWT-SIFT

 if

 break

 else

 use the homography to estimate the bounding box in the current frame

 end if

end for

if is still not set

end if

118

4.2.2.1.3 Text Instance Alignment

The bounding box coordinates returned by the tracking step may be off

by a few pixels due to the error in the estimated homography. For temporal

integration, we need the text instances to be aligned at pixel level. Thus, we

use SWT to estimate the text mask as follows. After identifying the pairs of

corresponding pixels, we set all the pixels that lie on a ray connecting a pair of

pixels to 1, and all other pixels to 0. With this process, we get the text mask of

the reference word instance. For each word bounding box estimated by the

tracking step, we slightly extend it and also obtain its text mask. Then, we

slide the reference text mask over the text mask of the extended bounding box.

The position that gives the most number of intersected pixels (counting only

pixels with values of 1) is selected as the correct alignment between the

current instance and the reference one.

Figure 4.8a shows a reference word instance and its text mask. In (b), we

show a few instances of the same word that are tracked in other frames,

without alignment. It is observed that the extracted instances are off by a few

pixels compared to the reference one. The first instance is shifted in the down-

right direction, the second instance is shifted to the left, and the last instance is

shifted in the up-left direction. In (c), we show the corresponding instances,

but with pixel-level alignment using the text mask in (a). It is evident that

alignment helps to ―stabilize‖ the text instances and ensure that the text pixels

in the different instances have the same positions. This is crucial for multiple-

frame integration.

119

 (a) Reference instance (c) Extracted text instances with alignment

 and its text mask

Figure 4.8. Sample extracted text instances.

The advantage of our tracking technique over existing methods is that it

tracks only text pixels. Thus, it is more robust to background changes than

methods that do not attempt to identify the text pixels. For example, (Lienhart

& Wernicke 2002; Gllavata et al. 2004; Minetto et al. 2011) perform tracking

by extracting features from all pixels in a bounding box, including background

pixels. Moreover, SWT is rotation-invariant, and SIFT is robust to rotation,

scale change and viewpoint change. Hence, our technique can be extended to

track complex text movements.

4.2.2.2 Text Probability Estimation

At the end of the previous step, we have identified all the word instances

between and . We also have their text masks. The text probability

map is integrated from these masks:

 (4.5)

where is the number of frames between and .

Figure 4.9b shows a sample probability map. It is observed that true text pixels

(b) Extracted text instances without alignment

120

have higher values (represented by brighter colors) while background pixels

have lower values (represented by darker colors). The rationale is that after the

text instances have been aligned, the text pixels will be ―stable‖, i.e., they stay

at the same position across the different instances. Thus, when we sum up the

text masks, these pixels will accumulate high values. On the other hand, the

background changes from one word instance to another, and thus will not

accumulate high values. Another advantage of the proposed integration is that

even if a text part is missed in one or few instances (e.g., due to occlusion or

blurring), it will still accumulate high values in the text probability map

because it can clearly be seen in the remaining instances.

 (a) Word instances and their corresponding (b) Text (c) Initial

 SWT masks probability map binarization

Figure 4.9. Text probability estimation.

We then apply a simple thresholding on the text probability map to

obtain an initial binarization of the word:

 (4.6)

 is determined empirically to be 0.7. In other words, it is expected that true

text pixels will take a value of 1 (i.e., white pixel) in at least 70% of the text

masks. (Section 4.2.3.4 analyzes how the recognition accuracies vary with

respect to .)

121

Figure 4.9 shows a few instances from a word‘s framespan. Because this

is a difficult case, the text masks contain erroneous background information.

However, as explained above, these background parts are not stable enough to

accumulate high values. In addition, in the last two instances, a large part of

‗T‘ is missing due to the low contrast and the similar background colors.

Despite these problems, the text probability map in Figure 4.9b shows that the

character shapes are recovered by using information from the other instances.

The initial binarization in Figure 4.9c successfully separates text from the

background, despite the imperfect individual text masks in Figure 4.9a.

4.2.2.3 Character Shape Refinement

The initial binarization in the previous step may not reflect the true

character shapes because SWT tends to produce rounded strokes. In addition,

there may be disconnections in the strokes due to complex backgrounds. Thus,

in this final step, we refine the character shapes to improve the recognition

accuracy.

We slide a window over , the averaged intensity image of all the

word instances between and . For a window centered at , we

refine the character shapes as follows:

(4.7)

 and are the average intensity values of the foreground and

background pixels in the local window. The classification of pixels into

122

foreground and background is based on the corresponding window in

 . In other words, the white pixels in the corresponding window in

 are assumed to be foreground and their intensity values in are

used to estimate . Similarly, for the black pixels in the corresponding

window in , their intensity values in are used to estimate

 . Intuitively, Equation (4.7) means that in each window, if the center

pixel is closer to the estimated foreground intensity, it is set to foreground.

Otherwise, it is set to background.

The rationale is that within a small neighborhood, text pixels often have

similar intensity values. Thus, we can recover true text pixels which may be

missed by SWT. In addition, we can suppress background pixels (e.g., those

inside the hole of a character) which may have been wrongly picked up by

SWT. Thus, this step helps to preserve the distinctive character features (e.g.,

sharp edges and holes), which are crucial for correct recognition.

In Figure 4.10, each pair of images consists of the results before

refinement () and after refinement (). The strings below

the images are the recognition result by an OCR engine (ABBYY FineReader

9.0). For ―10PM‖, refinement helps to separate touching characters. For ―to‖,

before refinement, the left part of the horizontal stroke of ‗t‘ is missing. After

refinement, it is recovered. And for ―Call‖, before refinement, the hole of ‗a‘

is not clear, which becomes much better after refinement. In all of these cases,

the recognition results are wrong before refinement, but become correct after

refinement. Note that in Figure 4.8 and Figure 4.9, the text pixels are shown in

white and the background is shown in black. However, in Figure 4.10 and the

subsequent figures, before sending a binarized word for recognition, we

123

change the polarity to black text on white background (which is the polarity

that the OCR engine expects).

 10?M 10PM CO to Coll Call

Figure 4.10. Character shape refinement.

4.2.3 Experimental Results

4.2.3.1 Datasets

Since there is no standard dataset for video text, we used our text

localization method in section 3.2 to extract a variety of video words. The

moving text dataset contained words extracted from English videos (from

TRECVID 2005 and 2006
6
) and German videos

7
. The static text dataset

contained English words extracted from TRECVID 2005 and 2006. Table 4.4

provides the statistics of the datasets.

Table 4.4. Statistics of the moving text dataset and the static text dataset.

 Moving text Static text

Frame rate

(frames/second)
30 30

Frame resolutions 352 × 240 to 384 × 288 352 × 240

Text motion types
Bottom to top, right to left

and left to right
Static

Number of words 250 212

Number of characters 1545 1389

6
 http://trecvid.nist.gov/

7
 The MoCA Project. http://pi4.informatik.uni-

mannheim.de/pi4.data/content/projects/moca/Project-textSegmentationAndRecognition.html

124

4.2.3.2 Methods for Comparison

For comparison, we implemented three methods:

 Niblack binarization on only the reference instance.

 Min/max operator (used in (Lienhart & Wernicke 2002; Zhou et

al. 2007)) on multiple instances, followed by Niblack binarization.

 Combination of average and min/max operators (used in (Yi et al.

2009)) on multiple instances (denoted Average-Min/max),

followed by Niblack binarization.

The first method is included to show the difference between using only a

single instance and using temporal integration. For the other two methods, we

need to detect the text polarity to decide whether to use the min operator or the

max operator. (Lienhart & Wernicke 2002; Zhou et al. 2007) used heuristic

rules while (Yi et al. 2009) did not address this issue. Since we are more

interested in the different integration techniques, we used the same polarity

detection technique (in section 4.2.2.1) for both methods. Similarly, whenever

multiple instances were required, they were identified using the same

technique in section 4.2.2.1.

For our method, we ran it with two different settings:

 On only the reference instance (Ours-Reference instance). In this

setting, no temporal integration was done, i.e., is equal to

the text mask of the reference instance. We still performed

character shape refinement.

 On multiple instances (Ours-Multiple instances).

125

4.2.3.3 Sample Results

Figure 4.11 shows sample results on a word affected by lighting (special

effect). The proposed method on multiple instances is the only one that

produces a good binarization. The recognition result by the OCR engine is

also correct (―preserve‖). For all the other methods, the OCR engine returns an

empty string because the binarized results contain a lot of background

information.

Figure 4.12 shows more results of our method. Note the fact that the last

image has a different text polarity than the rest. This shows that the polarity

detection technique in section 4.2.2.1 allows our method to handle different

text polarities.

 (a) Reference instance (b) Niblack (c) Ours-Single frame

 (d) Min/max (e) Average-Min/max (f) Ours-Multiple frames

Figure 4.11. Sample results of the existing methods and our method. For Min/max and

Average-Min/max, only the final binarized images are shown.

 stryker INFLUENTIALS

 only ET GLOBAL

Figure 4.12. Sample results of our method. The left image in each pair is the reference

instance. The strings below the images are the OCR results.

126

4.2.3.4 Recognition Accuracy

To examine whether temporal integration helps to improve the

recognition rate, we used ABBYY FineReader 9.0 as the OCR engine. The

performance measures were the case-sensitive character recognition rate

(CRR) and word recognition rate (WRR). Following (Ntirogiannis et al.

2011), CRR and WRR were computed by comparing the recognized strings

and the ground truth (GT) strings. (Characters such as punctuation marks are

ignored.)

 (4.8)

 (4.9)

where

 . Insertions, substitutions and deletions are

between the recognized strings and the GT strings.

Table 4.5 shows the recognition rates on the moving and static text

datasets, respectively. In each table, the first two methods only use the

reference instance while the remaining ones use multiple instances. The first

observation is that using multiple instances leads to significantly better CRRs

and WRRs. This demonstrates the importance of temporal integration.

Between the two single-instance methods, our method achieved better

CRR and WRR than Niblack, especially on the static text dataset. The

advantage of using SWT to estimate text masks is that it searches for a text-

specific feature, namely pairs of edges with constant stroke widths. In contrast,

127

Niblack does not analyze the edge structures and only works on the intensity

values. Thus, it may produce noise for cluttered backgrounds.

Among the multiple-instance methods, our method achieved the best

CRR and WRR on both datasets. In terms of WRR, our method was 14.8%

and 13.2% better than Average-Min/max on the moving text and static text

datasets, respectively. This demonstrates the advantage of our method.

Between the two existing multiple-instance methods, Average-Min/max

was better than Min/max. The latter had a significant drop in accuracies for

moving texts. The reason is that for moving texts, the alignment of the text

instances may not be perfect. If an instance is misaligned, it will introduce

―outlier‖ values (intensity values that are significantly higher or lower than the

corresponding values in other instances). Min/max is sensitive to such outlier

values. In contrast, Average-Min/max only uses the min/max operator on

background pixels, and thus is less affected by outlier values. However, its

drawback is the use of Otsu‘s binarization for estimating text and background

pixels. This binarization method is not able to handle video words with

complex backgrounds.

To examine the effectiveness of character shape refinement, we turned it

off in the last row of Table 4.5. The results show that refinement helps to

improve the WRRs on the moving text and the static text datasets by 3.6% and

6.6%, respectively.

We also examined how the recognition rates of our method change with

respect to parameter (in Equation (4.6)). Figure 4.13 shows that the WRRs

were not too sensitive to as long as .

128

Table 4.5. Recognition rates on the moving text dataset and the static text dataset (in %).

Method
Moving text Static text

CRR WRR CRR WRR

Niblack 68.2 51.2 54.6 32.1

Ours-Reference instance 70.7 52.8 65.4 47.6

Min/max 49.9 26.8 63.2 43.9

Average-Min/max 74.0 55.6 73.0 58.0

Ours-Multiple instances 82.8 70.4 80.9 71.2

Ours-Multiple instances, without shape

refinement

81.9 66.8 78.6 64.6

Figure 4.13. Word recognition rates of our method for different values of .

This work has shown the importance of text pixel identification prior to

enhancement, in both the tracking step and the integration step. It allows our

method to track only the text pixels and enhance only the text regions. In

contrast, many existing methods use all pixels for enhancement, which may

result in accidental enhancement of the background regions. Currently, the

proposed method works for static text and moving text with linear motion

(e.g., right-to-left). In the future, we will study more complex text movements.

4.3 Summary

This chapter has described two methods for text enhancement, one for

single-frame enhancement and the other for multiple-frame enhancement. The

55

60

65

70

75

0.4 0.5 0.6 0.7 0.8 0.9W
o

rd
 r

e
co

gn
it

io
n

 r
at

e
 (%

)

K

Moving Texts Static Texts

129

main contribution of the first work is that GVF is used in a novel way to

produce curved segmentation paths. This in turn allows our method to binarize

each character individually (instead of binarizing a whole text line) and leads

to improved recognition accuracy.

The second work has shown the importance of utilizing the temporal

redundancy to achieve significantly better recognition accuracy. Our work has

also demonstrated the advantages of text pixel identification prior to

enhancement. It allows our method to track and enhance only the text regions.

In contrast, many previous methods utilize all pixels for enhancement, which

may lead to accidental enhancement of the background regions.

130

Chapter 5

Recognition of Scene Text with Perspective

Distortion

The previous chapter has shown that text enhancement methods can be

used together with an OCR engine (as a black box) to improve the recognition

accuracy. While it is a reasonable choice for texts which are frontal parallel to

the image plane, this approach is not suitable for scene texts with perspective

distortions because OCR engines are not designed to handle these distortions.

Hence, we have explored a different approach in which we propose our own

algorithms for character and word recognition.

This chapter presents our work on scene text recognition. We focus on

texts with perspective distortions, which is an improvement over many

existing methods which handle only frontal texts.

5.1 Motivation

As mentioned in section 2.7, although there are existing works to

recognize text in natural scene images, e.g., (Smith et al. 2011; Wang et al.

2011; Novikova et al. 2012; Mishra et al. 2012b), their scopes are limited to

horizontal texts which are frontal parallel to the image plane. However, in

practice, scene texts can appear in any orientation, and with perspective

distortion. Thus, the important issue of handling perspective texts has been

neglected by previous works.

131

This work attempts to address the recognition of perspective texts in

street images, which facilitates the application of business name search on

online maps (Wang et al. 2011). This application is motivated by the

availability of ground-level, 360 views of various locations on Google Maps

and Microsoft Bing Maps. These geo-tagged images contain useful text

information such as business names, addresses, operating hours and so on. The

large-scale nature of street image data provides an exciting opportunity to

benefit millions of users.

Using a traditional visual feature such as Histogram of Oriented

Gradients (HOG) (as employed in (Wang et al. 2011; Mishra et al. 2012b))

would lead to a low accuracy on perspective texts. The reason is that the

feature is not able to handle the different poses of the characters. To deal with

this problem, one approach is to train a classifier on discretized poses of

individual characters. However, the major drawback of this approach is that it

is labor-intensive and time-consuming to collect enough training samples for a

large number of character classes (62 classes for English characters and

digits), each with, say, 10 discrete poses. In addition, when collecting

character samples from natural scenes, it is very difficult to control the poses

of the characters accurately.

Hence, we take a different approach and use SIFT in a bag-of-keypoints

approach. Because SIFT is robust to both rotation and viewpoint change, our

system is trained on only frontal characters (from commonly used datasets

such as ICDAR 2003 (Lucas et al. 2003)). Our extensive experiments show

that this approach achieves good accuracies, while avoiding the high cost of

collecting samples of perspective characters.

132

Following recent works (Wang et al. 2011; Mishra et al. 2012b), the

scope of this work is limited to cropped word recognition with a lexicon, i.e., a

list of words of interest. The lexicon serves as a form of context information,

and is especially relevant for the application of business name search. Given a

street image and its address, the lexicon can be built by collecting the shop

names around the address via a search engine (Wang et al. 2011). There are

also other applications where such a lexicon is available. (Ballan et al. 2010)

used a list of soccer players‘ names for text recognition in sports videos.

(Graves et al. 2009) constructed a list of the most common English words for

handwriting recognition. Another example is the list of products in a

supermarket, which can be used for the application of aiding the visually-

impaired. Figure 5.1 illustrates the problem setting.

Figure 5.1. The problem of cropped word recognition. A “cropped word” refers to the

region cropped from the original image based on the word bounding box returned by a

text localization method. Given a cropped word image, the task is to recognize the word

using the provided lexicon.

Our contributions are as follows. (1) We present an approach to

recognize perspective scene texts. This issue is of great practical importance,

but has been neglected by most previous works. (2) Our system is trained on

only frontal characters, which drastically reduces the cost of collecting

Lexicon: GARAGE, SAKE,

YOGA, BAR, …

Lexicon: GARAGE, SAKE,

YOGA, BAR, …

Cropped word recognition

Text

localization

133

training data. (3) For performance evaluation, we introduce a new dataset

called StreetViewText-Perspective, which contains texts in street images with

a variety of viewpoints. On this dataset, our method compares favorably to the

state-of-the-art.

5.2 Proposed Method

An overview of our approach to perspective text recognition is shown in

Figure 5.2. We describe the detection and recognition of characters below. The

optimized alignment of the recognized characters with the lexicon will be

discussed in section 5.2.2.

Figure 5.2. The flowchart of the proposed method.

5.2.1 Character Detection and Recognition

5.2.1.1 Detection of Character Candidates

In the first step, we use Maximally Stable Extremal Regions (MSERs)

(Matas et al. 2002) to detect the potential character locations in a cropped

word image (hereafter referred to as character candidates). The main idea of

MSER is to identify regions which remain stable over a range of thresholds on

the intensity values. It has been shown that scene characters can be extracted

as MSERs (Neumann & Matas 2010; Neumann & Matas 2012). MSERs are

also robust to viewpoint change (Mikolajczyk et al. 2005). Hence, they are

suitable for perspective characters.

134

However, not all the extracted MSERs from a cropped word correspond

to characters. Thus, we classify them into text MSERs and non-text MSERs

using four features: relative height, aspect ratio, number of holes and number

of horizontal crossings (Neumann & Matas 2010; Neumann & Matas 2012).

The text MSERs are retained while the non-text MSERs are discarded.

In (Neumann & Matas 2010; Neumann & Matas 2012), the text MSERs

were directly used for text localization. However, in this work, we use the

bounding boxes of the MSERs instead. The reason is that although MSERs

provide a useful initial segmentation of the characters, they do not always

correspond to the whole characters. Figure 5.3 shows an example where the

MSERs corresponding to ‗E‘ and ‗S‘ have incomplete shapes. Therefore,

using the MSER bounding boxes as character candidates helps to recover

some of the missing parts (if any) of the characters.

 (a) Cropped word image (b) MSERs

(c) Character candidates based on MSER bounding boxes

Figure 5.3. Character detection based on MSERs. For better illustration, only the non-

overlapping MSERs are shown in (b). The handling of overlapping MSERs will be

discussed later.

5.2.1.2 Estimation of Character Probabilities

For each character candidate detected in the previous section, we need to

estimate the probability that it takes character label . In this work, we focus

on English characters: . Formally, we would

135

like to estimate , the probability that , the th character candidate,

takes label .

As mentioned before, our goal is to train the system on only frontal

characters (to reduce the cost of collecting training data). This requires the

features extracted from the character candidates to be robust to rotation and

viewpoint change. Thus, we propose to use SIFT. SIFT has been explored for

text recognition in (Zheng et al. 2010; Iwamura et al. 2011) and for word

spotting in (Rusinol et al. 2011; Yalniz & Manmatha 2012). The first two

works extracted the descriptors only at sparse interest points, which is not

sufficient for perspective characters (to be explained later). The last two works

were only tested on frontal scanned document images. In contrast, we adopt

dense SIFT (which was used for scene classification in (Bosch et al. 2006)) for

perspective character recognition.

More specifically, the region inside a character candidate
8
 is normalized

to a fixed size of 48 × 48. We use a grid with spacing of 2 pixels. At each grid

point, we extract SIFT descriptors at multiple scales. Note that only the

locations and the scales are fixed. The dominant gradient directions of the

descriptors may vary across different grid points, as well as across different

scales at the same grid point. (In the literature, the term ―dense SIFT‖

sometimes refers to an extraction scheme where the orientations of the dense

interest points are fixed. However, we allow them to vary to ensure the

rotation-invariance of the descriptors.)

The rationale for using dense SIFT is that it provides more information

to discriminate among a large number of classes (62 character classes). With

8
 Recall that character candidate refers to the bounding box of a character detected by MSER.

136

the original SIFT, the descriptors are only extracted at interest points.

However, scene characters typically suffer from deformations, e.g., blurring

and uneven illumination, which reduce the number of detected interest points.

More importantly, instances of the same class often suffer from different types

of deformations. Thus, the sets of detected interest points are not consistent.

This negatively affects the matching of the descriptors. Figure 5.4 shows that

using dense SIFT helps to overcome the above problems.

 (a) Interest points using normal SIFT (b) Interest points using dense SIFT

 (c) Descriptor matching using (d) Descriptor matching using

 normal SIFT dense SIFT

Figure 5.4. Using normal SIFT leads to few descriptor matches. In contrast, dense SIFT

provides more information for character recognition. The left image in each pair is from

the training set while the right one is from the test set. Note the fact that the right one is

a rotated character. For better illustration, in (b), we only show one scale at each point.

Furthermore, instead of matching the descriptors directly, we follow a

bag-of-keypoints approach (Csurka et al. 2004). By ignoring the spatial

information of the keypoints, this approach allows for more distortion between

the training and the testing samples. K-means clustering is used to build a

vocabulary of 3,000 visual words from a random subset of (dense) SIFT

descriptors extracted from training samples. (Section 5.4.1.4 shows how the

recognition accuracy varies with respect to the vocabulary size.) With this

vocabulary, the descriptors of a character candidate are assigned to the nearest

137

clusters. The feature representation then becomes a histogram which counts

the number of descriptors belonging to each of the visual clusters. We use a

standard SVM package
9
 with Histogram Intersection Kernel (Maji et al. 2013)

to estimate . (The training and the testing data are described in

section 5.4.)

The fact that our method recognizes perspective characters directly is an

advantage over methods which rely on rectification such as (Neumann &

Matas 2010; Neumann & Matas 2011). The rectification process is error-prone

due to the challenges of scene characters, including blurring and cluttered

backgrounds.

5.2.1.3 Non-maximal Suppression

Since multiple MSERs may be detected for the same character

(Neumann & Matas 2012), we perform non-maximal suppression

(Felzenszwalb et al. 2010) on the set of character candidates. A character

candidate is suppressed if it has a significant overlap with another character

candidate and the latter has a higher confidence. The overlap ratio is

calculated based on the two MSER areas. The confidence of a character

candidate is defined as the maximum character probability:

 (5.1)

9
 LIBSVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

138

After suppression, the remaining character candidates are fed into the next step

for word recognition.

MSER and SIFT have been used separately for character detection and

character recognition in previous works. However, to the best of our

knowledge, this work is the first attempt to combine them in a coherent way to

recognize perspective characters while using only frontal training data.

5.2.2 Recognition at the Word Level

The recognition of perspective texts is much more difficult than that of

frontal, horizontal texts due to additional challenges. With arbitrary

orientation, it is difficult to distinguish characters such as ‗6‘ and ‗9‘, and ‗u‘

and ‗n‘, unless there is context information. Furthermore, some characters may

be hard to read (due to severe distortions) or even occluded. To deal with these

problems, we use a lexicon as the context information. We formulate word

recognition as finding the optimal alignment between the character candidates

and the lexicon words.

Let denote the lexicon of an image. Let be the set of

character candidates. Each character candidate can take a label from ,

where and is the empty label. Let denote an

alignment vector of to a word label . () represents

that is aligned with , the th
 character of string . indicates

that takes the empty label.

For example, in Figure 5.5, indicates that is aligned

with the 7
th

 character (‗R‘). and because

 and take the empty label. Note that for this image, some of the characters

139

are missed (‗N‘) or partially detected (‗P‘ and ‗O‘). However, the alignment

vector still allows for a flexible matching.

Figure 5.5. A sample alignment between a set of 6 character candidates (shown in

yellow) and the word “PIONEER”. The top row shows the value of the alignment vector

(of length 6).

We define to be the alignment score, which measures

how well the labels of the character candidates match the word label (to be

explained more later). The optimal word label can then be found as

follows:

 (5.2)

where

 (5.3)

 denotes the set of all the possible alignments between the character

candidates and word label .

Intuitively, Equations (5.2) and (5.3) mean that for each word label in

the lexicon, we compute its maximum alignment score. Then, among all the

140

lexicon words, the one with the highest maximum alignment score is returned

as the optimal word label.

5.2.2.1 Ordering of Character Candidates

Our optimized alignment algorithm requires the character candidates to

be ordered into a sequence. For simplicity, we assume that text is written from

left to right or from top to bottom. If a word image is nearer to the horizontal

orientation, the character candidates are ordered by the x-coordinates.

Otherwise, they are ordered by the y-coordinates. A word image is classified

as either nearer to the horizontal orientation or to the vertical orientation based

on the angle of the major axis of its bounding quadrilateral. (For perspective

word images, we use quadrilaterals to mark the word locations (Section 5.3).)

5.2.2.2 Alignment Score

As mentioned before, the alignment score measures how well the labels

of the character candidates match a word label in the lexicon. It is computed

based on the individual scores of the character candidates. Let be

the score of assigning label to character candidate :

 (5.4)

If a character candidate takes a non-empty label, we directly use the

corresponding SVM probability. Otherwise, if it takes the empty label, we use

a penalty score (inspired by (Mishra et al. 2012b)). The purpose of the penalty

141

score is to discourage character candidates with high confidence from taking

the empty label.

The alignment score of the whole word is the average of the individual

scores of the character candidates:

 (5.5)

Recall that is the index of string that is aligned to. Thus,

is the label assigned to .

5.2.2.3 Optimized Alignment Algorithm

Equation (5.2) is implemented by looping through the word labels in the

lexicon. For each word label , we need to compute

(Equation (5.3)). The rest of this section describes our optimized alignment

algorithm for doing this. Since is fixed in Equation (5.3), we drop in

some of the below notations for clarity.

Let be the optimal alignment score of character candidates

 , with aligned at index of . can be computed using

dynamic programming.

The initialization is described in Algorithm 5.1. Intuitively, Equation

(5.6) means that only is assigned a non-empty label while are

assigned the empty label. Hence, we use the score of and add the penalty

scores of .

142

Algorithm 5.1. Initializing F‟s.

for down to

 for down to

 end for

end for

(5.6)

After that, we update backwards using Algorithm 5.2. In this

algorithm, and . can be thought of as the

first character candidate with a non-empty label after . Intuitively, the right

hand side (RHS) of Equation (5.7) means that we loop through the

combinations of and . For each combination of and :

 We use , the optimal alignment score for , as the

starting point. (Note that because we compute backwards,

has already been computed, and thus we can use its value.)

 We then add the penalty scores of assigning the empty label to

 .

 Finally, we add the score of .

 After we have looped through all the combinations of and , if the

RHS of Equation (5.7) is greater than the initialized value of

(in Equation (5.6)), we update the value of the latter to the former.

In our implementation, to reduce the computational time, we restrict the

range of based on ‘s relative position in the image. For example, if is

near the left boundary of the image, ‘s range can be restricted to only the first

few indices of . ‘s range can also be restricted in a similar way.

143

Algorithm 5.2. Updating F‟s.

for down to

 for down to

 if

 update to

 end if

 end for

end for

(5.7)

When all ‘s have been computed, in Equation

(5.3) is obtained by:

 (5.8)

The intuition of Equation (5.8) is that we loop through the combinations of

and . For each combination of and , acts as the first character candidate

with a non-empty label (among all the detected character candidates). Hence,

we use the score of and add the penalty scores of .

Our optimized alignment algorithm has a few advantages over existing

works. First, it explicitly allows the empty label, and thus is able to handle

cases where one or more characters are missed or occluded. This is an

advantage over (Wang et al. 2011), which does not allow skipping characters

when matching with a word label in the lexicon. Second, many methods, e.g.,

(Wang et al. 2011; Novikova et al. 2012), require normalization for word

144

length to avoid bias towards shorter words. In contrast, because the magnitude

of our alignment score depends on the number of character candidates (and not

on the lexicon word length), no normalization is required.

5.2.3 Recognition at the Text Line Level

Most recent methods, e.g., (Wang et al. 2011; Mishra et al. 2012a; Novikova

et al. 2012; Wang et al. 2012; Mishra et al. 2012b; Neumann & Matas 2013; Shi et al.

2013b), perform recognition at the word level. One of the reasons is that most

common datasets, e.g. ICDAR 2003 (Lucas et al. 2003) and Street View Text

(Wang et al. 2011), are annotated at the word level. However, at this level,

each word is recognized independently, and the labels of the neighboring

words are not taken into account.

Hence, in this work, we also explore recognition at the text line level. In

particular, we utilize the language context information at the text line level to

improve the recognition accuracy. For example, suppose that a text line

contains two words: the first one is easy to recognize while the second one is

hard to read. Further suppose that for the second word, we have two

hypotheses with similar scores: ―FRANCISCA‖ and ―FRANCISCO‖. Without

any context information, the hypothesis with the higher score will be returned

as the recognition result. However, if the first word is recognized as ―SAN‖

with high confidence, it is reasonable to favor ―FRANCISCO‖ because

―SAN‖ and ―FRANCISCO‖ often appear together.

Thus, we will describe a recognition scheme in which the scores of all

the words in a text line are taken into account. More specifically, we model a

text line using a linear-chain Conditional Random Field (CRF) (Lafferty et al.

145

2001). For each word in the text line, we add a node in the CRF graph

(according to the order that the words appear in the text line). We also add

edges so that a node is connected to the previous node (corresponding to the

previous word) and to the next node (corresponding to the next word).

Let denote the node corresponding to the th word image on a text

line. Let denote the label assigned to . To find the optimal set of word

labels for a text line, we need to minimize the following energy function:

(5.9)

 is the unary term that represents the cost of assigning label to .

 is the pairwise term that captures the relationship between two

neighboring word labels. is the set of neighboring pairs.

To construct the CRF graph for a text line, we need to know which

words belong to that text line, as well as their ordering in the text line. As

aforementioned, most common datasets do not provide these information.

Hence, we manually annotate these information for the datasets that we use for

experiments (which are described in Sections 5.3 and 5.4). Our annotations

consist of two fields:

 : This field specifies which text line a cropped word

image belongs to.

 : This field specifies the order of a cropped word

image on a text line.

Figure 5.6 show example annotations for a street image. With these

annotations, we would be able to construct the CRF graphs (two graphs in this

146

case, one for the ―liquid‖ text line, and the other one for the ―LIQUID

AGENCY‖ text line).

 (a) Original full image of a street scene (b) Our annotations for the

 cropped word images

Figure 5.6. Example LineNumber and WordNumber annotations.

Having explained the CRF graph construction, we will now describe the

cost functions. The cost (or penalty) function for the unary term in Equation

(5.9) is defined as follows:

 (5.10)

where is the score of assigning label to , i.e., to

the th cropped word image. It has been defined earlier in Equation (5.3).

For the pairwise term in Equation (5.9), one way to capture the

relationship between the labels of two neighboring words is to use the word -

gram model:

 (5.11)

147

where is the word bigram probability. This cost function helps to

give preferences to sequences of words that occur frequently (in text

corpuses).

To estimate the word bigram probabilities, we use Google‘s Web 1T 5-

gram dataset
10

, which provides the word -gram
11

 counts obtained from a

trillion word tokens crawled from web pages on the Internet. This dataset is a

huge corpus with 13.6 million distinct words. More importantly, one of its key

advantages over traditional corpuses is that since it uses texts from web pages,

it contains more brand names, shop names, street names, etc. Thus, it is

suitable for our problem because these kinds of words often appear in natural

scene images, especially street images.

This dataset was first used for scene text recognition in a recent

publication (Feild & Learned-Miller 2013). However, the authors only used

the word unigram probabilities to verify the recognition results at the word

level. In contrast, we use the word bigram probabilities to perform recognition

at the text line level.

Finally, to minimize the energy function in Equation (5.9), we use the

well-known Viterbi algorithm (Viterbi 1967). In addition, to reduce the

computational time and to avoid over-correction by the word bigram model,

for each node in the CRF graph, we only keep its top hypotheses. In other

words, in Equation (5.10) is modified as follows:

 (5.12)

10

 http://catalog.ldc.upenn.edu/LDC2006T13
11

 Up to 5-gram

148

Note that because each corresponds to a different cropped word image, it

will have a different set of top hypotheses. We empirically set to 5 in our

implementation.

In Section 5.4, we will present our experiments for recognition at both

the word level and the text line level. Before that, we describe the dataset that

we specifically propose for evaluating perspective text recognition in the next

section.

5.3 StreetViewText-Perspective Dataset

Most of the standard datasets for scene text recognition, e.g., (Lucas et

al. 2003; de Campos et al. 2009; Weinman et al. 2009; Wang et al. 2011;

Mishra et al. 2012a), are limited to frontal texts. For example, the annotators

of the Street View Text (SVT) dataset were instructed to ―minimize skew‖

when choosing the angles of texts (Wang et al. 2011). Recently, there are more

challenging datasets: NEOCR (Nagy et al. 2011) and MSRA-TD500 (Yao et

al. 2012), which include multi-oriented texts and perspective texts. However,

because they are not specifically designed for perspective texts, many of the

words in these datasets are still frontal.

Hence, although we do include MSRA-TD500 in our experiments, we

also introduce a new dataset called StreetViewText-Perspective (SVT-

Perspective)
12

, which is specifically designed for evaluating perspective text

recognition. Our dataset is built based on the original SVT dataset (Wang et al.

12

 Available at http://www.comp.nus.edu.sg/~phanquyt/

149

2011) for two reasons. (SVT is a public dataset that contains images taken

from Google Street View with frontal texts of shop names, street names, etc.)

First, we would like to reuse the lexicons in SVT, which were collected

by Amazon Mechanical Turk workers. As a consequence, our dataset contains

images taken at the same addresses on Google Street View. However, instead

of choosing the frontal texts, we intentionally picked side-view angles such

that texts are still readable to humans. The lexicon of each image was taken to

be the same as that of the corresponding SVT image. Second, as our images

were taken at the same locations, they allow for a meaningful analysis of the

degradation in performance between frontal and perspective texts.

For each image in our dataset, the words were manually annotated using

quadrilaterals. Similar to SVT, we only annotated the words that were present

in the image-specific lexicons. Figure 5.7 shows a comparison of an image

from SVT and an image from SVT-Perspective.

 Lexicon: PICKLES, PUB, Lexicon: PICKLES, PUB,

 HOTEL, INN, … HOTEL, INN, …

 (a) SVT image (b) SVT-Perspective image

Figure 5.7. An image from SVT and the corresponding image from SVT-Perspective.

Both images are taken at the same address, and thus have the same lexicon. In (b), the

bounding quadrilaterals are shown in black for “PICKLES” and “PUB”.

150

Our dataset contains 238 images
13

, which correspond to the images in

the SVT test set. The number of cropped words is 639. The words are of a

variety of viewpoints and orientations. Their heights vary from 9 to 330 pixels.

5.4 Experimental Results

We performed experiments on perspective texts, multi-oriented texts and

frontal texts, at both the word level and the text line level. For the first class of

texts, we used our own dataset for reasons explained in the previous section.

For the second class of texts, we picked MSRA-TD500 (Yao et al. 2012)

because it is a very recent dataset that is specifically designed for multi-

oriented texts. (Note that in terms of size, NEOCR (Nagy et al. 2011) is larger

than MSRA- TD500. However, it also contains more languages. The English

subsets of these two datasets, which are our focus in this work, are comparable

in size (Nagy et al. 2011; Yao et al. 2012).) For the third and final class of

texts, among the various datasets that have been used in the literature (de

Campos et al. 2009; Weinman et al. 2009; Mishra et al. 2012a), we chose

ICDAR 2003 (Lucas et al. 2003) and SVT (Wang et al. 2011) because they are

the most widely used datasets with many reported results.

MSRA-TD500 only contains annotations at the text line level. Thus, to

evaluate word recognition, we manually added word-level annotations
14

 for

the English words in this dataset (denoted as MSRA-TD500-Word).

13

 The test set of the SVT dataset contains 249 images. We excluded a small number of images

(11 images) because we were not able to find the same shops or buildings using the addresses

provided in SVT. The reason is that these shops or buildings have closed or moved. Thus,

when Google updated the original addresses with more recent street images, they could no

longer be found.
14

 Available at http://www.comp.nus.edu.sg/~phanquyt/

151

For ICDAR 2003, we used the benchmarks for character recognition

(ICDAR-Char) and word recognition (ICDAR-Word).

For SVT, we used both the original word-level annotations (SVT-Word)

and the character-level annotations provided in (Mishra et al. 2012b) (SVT-

Char).

Following recent works, e.g., (Wang et al. 2011; Mishra et al. 2012b),

we used the case-insensitive word recognition accuracy as the performance

measure. This is reasonable considering the application of business name

search in street images, where, for indexing purpose, case does not matter.

Moreover, although it is mentioned in the previous section that each

word was manually annotated using a quadrilateral, we have experimentally

found that there is negligible difference (in word recognition accuracy)

between using the quadrilaterals and using their minimum bounding rectangles

(Figure 5.8). Thus, all the experiments in this section used the latter. This

helps to ensure that the same input images are used for all the methods in the

experiments, because the existing methods that we used for comparison

assume rectangular cropped words.

 (a) Cropped word using quadrilateral (b) Cropped word using the minimum

 bounding rectangle of the quadrilateral

Figure 5.8. All the experiments in this section used rectangular cropped words (b).

Due to the large number of visual words used (Section 5.2.1.2), we need

to collect enough data to train the character classifier. We used samples from

152

ICDAR-Char (only the training subset) and two other public datasets for

frontal texts: Weinman‘s dataset (Weinman et al. 2009) and Chars74k (de

Campos et al. 2009) (only the English subset). In total, we had 19,800 training

samples. This training set was used for all the experiments in this section.

We will now describe the experiments for recognition at the word level.

The experiments for the text line level will be discussed in Section 5.4.2.

5.4.1 Recognition at the Word Level

5.4.1.1 Experiment on Perspective Texts

In this experiment, we used our SVT-Perspective dataset for evaluation.

We obtained the source codes of (Wang et al. 2011) and (Wang et al. 2012)

from the authors‘ websites. We also re-implemented (Mishra et al. 2012b)

following the descriptions in the paper, and included ABBYY FineReader 9.0,

a commercial OCR engine, in the comparative study. We used the same

experimental settings as (Wang et al. 2011; Mishra et al. 2012b). In particular,

words with less than 3 characters or containing non-alphanumeric characters

were ignored.

The second column of Table 5.1 shows that our method significantly

outperformed the other methods. The increase in accuracy from 45.7% (of

(Mishra et al. 2012b)) to 62.3% (of our method) represents a relative

improvement of 36%. In Figure 5.9, our method recognized the words

correctly despite the blurring, occlusion and large variation in text appearance.

These results show the advantage of using dense SIFT to recognize

perspective texts. Our alignment algorithm also contributes to the handling of

153

Table 5.1. Recognition accuracy on perspective words (in %).

Method SVT-Perspective-Word SVT-Perspective-Word (Full)

ABBYY FineReader 9.0 16.9 9.7

(Wang et al. 2011) 40.5 26.1

(Mishra et al. 2012b) 45.7 24.7

(Wang et al. 2012) 40.2 32.4

Our method 62.3 42.2

(Wang et al. 2011) COFFEES LIGHT ADLER

(Mishra et al. 2012b) SQUARE FOR SAN

(Wang et al. 2012) INC THE SAN

Our method MURPHY JONES LIGHTS

(Wang et al. 2011) FIRST ALLEY ICON LION

(Mishra et al. 2012b) SAKE CENTER AND AMC

(Wang et al. 2012) FRY AMC
SPA-

GHETTI

AMC

Our method GARAGE CINERAMA WARE-

HOUSE

CINE-

RAMA

Figure 5.9. Sample recognition results for multi-oriented texts and perspective texts.

154

characters that are occluded or hard to read. Moreover, we have shown that

using only frontal characters for training is a sensible and realistic approach

because it avoids the cost of collecting perspective character samples.

We would like to emphasize that our training data did not contain any

samples from SVT. The training data came from other datasets, as

aforementioned. Thus, the successful recognition of the perspective words is

purely due to the generalization power of dense SIFT and SVM (and not

because of the similarity between SVT and SVT-Perspective).

We also analyzed how the recognition accuracy varied with the lexicon

size. Intuitively, a larger lexicon makes it more difficult to recognize a word,

especially if there are several similar words in the lexicon. In addition to the

original lexicon size (of around 50 words per image), we used another lexicon

size denoted as Full. This lexicon contained 377 words (an increase of 7.5

times in size) and was constructed by putting all the ground truth words in the

test set into a list (following the procedure in (Wang et al. 2011)). The third

column of Table 5.1 shows that even when a larger lexicon was used, our

method still achieved the best accuracy.

5.4.1.2 Experiment on Multi-oriented Texts

In this experiment, we ran the same set of methods on MSRA-TD500-

Word. Since this dataset does not have lexicons, we constructed a Full lexicon

of 395 words in a similar way as in the previous section. Table 5.2 shows that

our method also significantly outperformed the other methods on this dataset.

The increase in accuracy from 44.5% (of (Wang et al. 2011)) to 58.4% (of our

155

method) represents a relative improvement of 31%. Figure 5.10 shows sample

results of our method.

We are the first to report the recognition accuracy on MSRA-TD500, a

very recent public dataset for multi-oriented texts. The fact that our method

performed well on both SVT-Perspective and MSRA-TD500 demonstrates its

advantage over existing methods.

Table 5.2. Accuracy on multi-oriented words (in %).

Method MSRA-TD500-Word (Full)

ABBYY FineReader 9.0 23.2

(Wang et al. 2011) 44.5

(Mishra et al. 2012b) 27.8

(Wang et al. 2012) 20.8

Our method 58.4

 AZONA EXPO HYDRANT TARGET

Figure 5.10. Sample recognition results of our method for multi-oriented words.

5.4.1.3 Experiment on Frontal Texts

In the previous sections, we do not evaluate cropped character

recognition because SVT-Perspective and MSRA-TD500 do not have

character-level annotations. In contrast, ICDAR and SVT do have annotations

at the character level. Thus, we compared the character recognition accuracy

(using 62 classes) on cropped character images. We have also included the

results reported by other recent works.

156

Table 5.3 shows that on SVT-Char, our method achieved the state-of-

the-art accuracy of 67.0%. The previous best known result on this dataset was

61.9% (Mishra et al. 2012b).

On ICDAR-Char, our method outperformed (Wang et al. 2011).

Although its accuracy was lower than those of (Coates et al. 2011; Wang et al.

2012), these results should be interpreted with the following consideration:

when rotation-invariant features are used, it is difficult to distinguish pairs of

characters such as ‗u‘ and ‗n‘, and ‗6‘ and ‗9‘, especially because no context

information is available at the character level. Therefore, because our method

uses rotation-invariant features, it is at a slight disadvantage compared to the

other methods, including (Coates et al. 2011; Wang et al. 2012). Figure 5.11

shows sample results of our method.

Table 5.3. Cropped character recognition accuracy (in %).

Method ICDAR-Char SVT-Char

ABBYY FineReader 9.0 21.0 11.7

(Wang et al. 2011) 64.0 N.A

(Mishra et al. 2012b) N.A 61.9

(Coates et al. 2011) 81.7 N.A

(Wang et al. 2012) 83.9 N.A

Our method 75.6 67.0

 (a) Success cases (b) Failure cases

Figure 5.11. Sample character recognition results of our method. In (a), the characters

were correctly recognized despite the strong highlight, small occlusion, similar text and

background colors, and rotation. In (b), the characters were wrongly recognized due to

low resolution, strong shadow and rotation invariance. The last character was

recognized as „6‟.

The next experiment is on word recognition. Each image in SVT-Word

comes with a lexicon (of around 50 words). On the other hand, ICDAR-Word

157

does not have lexicons. For fair comparison, we used the lexicons provided in

(Wang et al. 2011). Table 5.4 shows that on SVT-Word, our method achieved

the best recognition accuracy. Our accuracy of 73.7% is slightly higher than

the previous best known result of 73.6% (Mishra et al. 2012a). On ICDAR-

Word, our method achieved the third best accuracy. Sample results of our

method are shown in Figure 5.12.

Furthermore, the fact that the images in SVT and SVT-Perspective were

taken at the same addresses on Google Street View allows for an analysis of

the degradation in performance between frontal and perspective texts. The

drop in accuracy of our method (-15.5%) was significantly lower than those of

the other methods (Table 5.5). This shows that our method is more robust

Table 5.4. Recognition accuracy on frontal words (in %).

Method ICDAR-Word SVT-Word

ABBYY FineReader 9.0 56.0 35.0

(Wang et al. 2011) 76.0 57.0

(Wang et al. 2012) 90.0 70.0

(Novikova et al. 2012) 82.8
15

 72.9

(Mishra et al. 2012b) 81.8 73.3

(Mishra et al. 2012a) 80.3 73.6

Our method 82.2 73.7

 REDUCTIONS CELCON

 NEUMOS COPIES SHINING

Figure 5.12. Sample results of our method for frontal words. It was able to recognize the

words under challenging scenarios: transparent text, occlusion, fancy font, similar text

and background colors and strong highlight.

15

 Achieved using a slightly larger lexicon for ICDAR-Word.

158

Table 5.5. Degradation in performance between frontal and perspective texts (in %).

Method
SVT-Word SVT-Perspective-

Word

% change

ABBYY FineReader 9.0 35.0 16.9 -51.7

(Wang et al. 2011) 57.0 40.5 -28.9

(Mishra et al. 2012b) 73.3
16

 45.7
17

 -37.7

(Wang et al. 2012) 70.0 40.2 -42.6

Our method 73.7 62.3 -15.5

against rotation and perspective distortion, which is highly important for

practical applications.

5.4.1.4 Experiment on Number of Visual Words

We analyzed how the recognition accuracy of our method changed with

respect to the number of visual words, which is used for K-means clustering in

section 5.2.1.2. As illustrated in Figure 5.13, there was a trend on all four

datasets: the accuracies increased with the number of visual words used.

However, the accuracies slightly dropped at 4,000 visual words for ICDAR-

Word and SVT-Word (for SVT-Perspective-Word and MSRA-TD500-Word,

there were very small increases in accuracy). Thus, with the amount of

training data that we have, the typical value to use for the vocabulary size is

2,0004,000 visual words.

5.4.2 Recognition at the Text Line Level

In addition to the word level, we performed an experiment at the text

line level. As mentioned in Section 5.2.3, we manually annotated two

16

 Taken from (Mishra et al. 2012b).
17

 Obtained from our re-implementation of (Mishra et al. 2012b), which follows the paper

closely. Its accuracy on SVT-Word was 69.1%, which is close to the 73.3% accuracy reported

in (Mishra et al. 2012b) for the same dataset.

159

Figure 5.13. Recognition accuracies of our method for different vocabulary sizes.

additional fields (and) for SVT-Perspective,

MSRA, SVT and ICDAR.

Figure 5.14 shows sample results of performing recognition at the text

line level. In both cases, the language context information at the text line level

helps to correct the word-level results. In particular, for the image on the right

hand side, the correct label of the first word (―HOLIDAY‖) is only the 4
th

 best

hypothesis (based on its at the word level). However,

because ―HOLIDAY INN‖ is a well-known brand name, this combination has

a higher word bigram count in the corpus than the other combinations such as

―HARBOR INN‖ and ―HOTEL INN‖. Thus, our CRF model utilizes this

information to ―flip‖ the label of the first word from ―HARBOR‖ to ―HOTEL‖

and return the correct recognition result.

In this experiment, we did not include any existing methods because all

the methods previously used for comparison in Section 5.4.1 do not utilize the

text line-level context information.

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0 1000 2000 3000 4000W
o

rd
 r

e
co

gn
it

io
n

 a
cc

u
ra

cy

Number of visual words

ICDAR-Word SVT-Word

SVT-Perspective-Word MSRA-TD500-Word

160

(a) Input images

(b) The top 5 hypotheses of each word

(c) The recognition results at different levels

Figure 5.14. Sample results of recognition at the text line level. In (a), the image on the

left contains a single text line (“CONVENTION CENTER”) and the image on the right

also contains a single text line (“HOLIDAY INN”). In (c), the words that are changed

due to the use of the language context information at the text line level are bolded and

underlined.

Table 5.6 shows the accuracies of our method on various datasets when

performing recognition at the word level and at the text line level. Note that

the accuracies still refer the word recognition accuracies, i.e., the percentage

of words correctly recognized. The difference is that when recognition is

performed at the text line level, some word labels may be ―flipped‖ due to the

availability of context information (as illustrated in Figure 5.14 above).

It is observed that the recognition accuracies at the text line level are

greater than or equal to those at the word level. On SVT-Perspective-Word,

Result at the word level:

CONVENTION CONVENTION

Result at the text line level:

CONVENTION CENTER

Result at the word level:

HARBOR INN

Result at the text line level:

HOLIDAY INN

CONVENTION

RED

CONDOMINIUMS

NETWORK

CAFE

CONVENTION

CENTER

RED

LION

DENNY

HARBOR

HOTEL

SAN

HOLIDAY

WESTERN

INN

INC

SAN

LAW

LLC

161

the recognition accuracy increases by 1.4%, thanks to use of the language

context information. The gains on the other three frontal text datasets are

smaller, ranging from 0% (on MSRA-TD500-Word (Full)) to 0.3% (on SVT-

Word).

A reason is that perspective texts are much harder to recognize, and the

scores of the word label hypotheses may be less accurate, which leaves more

room for improvement when incorporating the word bigram probabilities. On

the other hand, frontal texts are easier to recognize and thus, the increases in

accuracies are smaller.

Nevertheless, the results demonstrate that the language context

information is useful for perspective text recognition. In the future, we will

explore other forms of context information to further improve the recognition

accuracy.

Table 5.6. Accuracies of our method when performing recognition at the word level and

at the text line level (in %).

Dataset
Recognition at the

word level

Recognition at the text

line level

SVT-Perspective-Word 62.3 63.7

MSRA-TD500-Word (Full) 58.4 58.4

SVT-Word 73.7 74.0

ICDAR-Word 82.2 82.3

5.4.3 Experiment on Processing Time

On SVT-Perspective (with the original lexicons of around 50 words per

image), the average processing time of our unoptimized Matlab code was 59

seconds, which include 38.6 seconds to recognize a cropped word image (i.e.,

at the word level) and 20.4 seconds to incorporate the language context

162

information (i.e., at the text line level). This was measured on a machine with

Intel Core i5 processor (quad-core, 3.2 GHz) and 4 GB RAM.

In the future, we will explore optimization techniques to reduce the

computational time. For example, at the word level, a trie structure can be

used for the lexicon to avoid redundant computation (Wang et al. 2011). At

the text line level, more efficient data structures can be implemented to speed

up the querying of word bigram counts from the large corpus.

5.5 Summary

Our work serves as a step towards practical applications (of scene text

extraction) in two aspects. First, most existing works make the simplistic

assumption that text is horizontal and frontal parallel to the image plane.

However, in many real-world scenarios, this assumption does not hold. Thus,

by handling perspective texts, this work has attempted to address an important

research gap. Second, an attractive feature of our method is that it is trained on

only frontal character samples, and thus does not require collecting samples of

perspective characters. This drastically reduces the cost of data collection.

The second aspect is achieved by the use of dense SIFT in a bag-of-

keypoints framework, which is robust to rotation and viewpoint change. Our

optimized alignment algorithm is also designed to handle the challenges of

perspective texts, e.g., one or more characters may be hard to read or

occluded.

Another contribution is the SVT-Perspective dataset, which we propose

to evaluate perspective text recognition. On this dataset, our method compares

163

favorably to the state-of-the-art. Therefore, our results and dataset serve as a

baseline for future studies on perspective texts.

Currently, our method is limited to cases where lexicons are available.

Although this assumption is common in the literature (Wang et al. 2011;

Mishra et al. 2012b), it restricts the applicability of our method. Relaxing or

even removing this assumption will be left for future research.

164

Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

In this thesis, we address the problem of text extraction in images and

videos, which can be used for many applications such as content-based

image/video retrieval, sign translation and navigation aid for the visually-

impaired and robots. From our literature review, we have identified a number

of research gaps and proposed novel works to address them. Our works

contribute to the progress of the research field in the following areas:

 Text Localization

We have proposed two text localization works, one for text in

natural scene images (Phan et al. 2012) and the other for text in

video key frames (Phan et al. 2009; Shivakumara et al. 2011b).

 The first work introduces novel gap, i.e., inter-character,

features to localize difficult cases of scene text. While previous

methods for scene text focus on only the character features, this

work has shown that the gap features can also play an important

role in text localization. Our work achieves better localization

performance than existing ones on two public datasets (Lucas et

al. 2003; Epshtein et al. 2010).

 The second work uses skeletonization to localize multi-oriented

video text. This is an improvement over previous methods for

165

video text, which typically localize only horizontal text. Our

work outperforms existing ones on video frames with multi-

oriented English and Chinese texts. It has been cited by recent

papers, e.g., (Bouman et al. 2011; Chen et al. 2011; Du et al.

2011; Mosleh et al. 2012; Shi et al. 2012; Sun & Lu 2012; Wen

et al. 2012; Shi et al. 2013a), including those which further

pursue the direction of multi-oriented text localization, e.g.,

(Sharma et al. 2012; Yao et al. 2012; Zhang & Lai 2012).

 Text Enhancement

We have presented two works, one for single-frame text

enhancement (Phan et al. 2011) and the other for multiple-frame

enhancement (Phan et al. 2013a).

 With the first work, we have shown that binarizing each

character in a text line individually (instead of binarizing the

whole text line) helps to improve the recognition accuracy. This

is achieved through our character segmentation technique

which is capable of producing curved segmentation paths to

closely match the characters‘ shapes. Hence, it improves over

many existing techniques which allow only vertical cuts. This

work has been cited by recent papers, e.g., (Elagouni et al.

2013; Goel et al. 2013; Sharma et al. 2013).

 With the second work, we have demonstrated that exploiting

the temporal redundancy in videos leads to significantly better

recognition accuracy. Our work also emphasizes the importance

of identifying the text pixels prior to enhancement so that the

166

text region is enhanced while the background region is

suppressed. In contrast, many previous methods utilize all

pixels (including background pixels) for enhancement, which

may result in accidental enhancement of the background region.

 Text Recognition

We have proposed a work (Phan et al. 2013b) to address an issue

which has been neglected by most previous methods for scene

text: the recognition of perspective texts. By using features which

are robust to rotation and viewpoint change, our work achieves the

state-of-the-art recognition accuracy on several public datasets

(Wang et al. 2011; Yao et al. 2012; Mishra et al. 2012b).

Moreover, our work requires only frontal character samples for

training, thereby avoiding the labor-intensive and time-consuming

process of collecting perspective character samples. We also

propose a dataset for evaluating perspective text recognition.

Hence, our results and dataset serve as a baseline for future studies

in this direction.

6.2 Future Research Directions

There are several directions for future research. One direction is to

utilize more sophisticated context information. Our work in Chapter 5

explores the language model at the text line level by using word bigram

probabilities. It may be worthwhile to explore not only the co-occurrence

statistics but also the semantic coherence of the words that appear in a same

image. For example, suppose that a word is equally likely to be ―food‖ or

167

―foot‖ (because the last character is hard to recognize). If we know that the

word ―restaurant‖ is also present in the same image, it makes sense to give

preference to the former due to the semantic coherence.

Moreover, our work in Chapter 5 assumes the availability of image-

specific lexicons. In practice, there are cases where such lexicons cannot be

obtained. Thus, if this assumption can be relaxed or even removed (i.e.,

performing lexicon-free recognition), it will make the proposed method more

general and applicable to more real-world scenarios.

Another direction, which is specific to the case of video text, is to

investigate techniques that can track texts with complex motions. The

proposed multiple-frame text enhancement method in section 4.2 currently

handles only static text and linearly moving text. If it can be extended to track

more complex movements (e.g., rotation and zooming in/out), it can be used

for a wider range of video texts.

168

Publications during Candidature

1. T. Q. Phan, P. Shivakumara, S. Tian and C. L. Tan. Recognizing Text

with Perspective Distortion in Natural Scenes. International Conference

on Computer Vision 2013.

2. T. Q. Phan, P. Shivakumara and C. L. Tan. Recognition of Video Text

Through Temporal Integration. International Conference on Document

Analysis and Recognition 2013.

3. T. Q. Phan, P. Shivakumara and C. L. Tan. Detecting Text in the Real

World. ACM International Conference on Multimedia 2012.

4. T. Q. Phan, P. Shivakumara and C. L. Tan. Text Detection in Natural

Scenes Using Gradient Vector Flow-Guided Symmetry. International

Conference on Pattern Recognition 2012.

5. T. Q. Phan, P. Shivakumara and C. L. Tan. A Gradient Vector Flow-

Based Method for Video Character Segmentation. International

Conference on Document Analysis and Recognition 2011.

6. P. Shivakumara, T. Q. Phan and C. L. Tan. A Laplacian Approach to

Multi-Oriented Text Detection in Video. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 33(2), 2011, pp. 412–419.

7. T. Q. Phan, P. Shivakumara and C. L. Tan. A Skeleton-Based Method

for Multi-Oriented Video Text Detection. International Workshop on

Document Analysis Systems 2010.

169

8. T. Q. Phan, P. Shivakumara, S. Bhowmick, S. Li, C. L. Tan and U. Pal.

Semi-Automatic Ground Truth Generation for Text Detection and

Recognition in Video Images. IEEE Transactions on Circuits and

Systems for Video Technology, 2014 (to appear).

9. P. Shivakumara, T. Q. Phan, S. Lu and C. L. Tan. Gradient Vector

Flow and Grouping based Method for Arbitrarily-Oriented Scene text

Detection in Video Images. IEEE Transactions on Circuits and Systems

for Video Technology, 23(10), 2013, pp. 1729–1739.

10. P. Shivakumara, T. Q. Phan, S. Bhowmick, C. L. Tan and U. Pal. A

Novel Ring Radius Transform for Video Character Reconstruction.

Pattern Recognition, 46(1), 2013, pp. 131–140.

11. S. Tian, P. Shivakumara, T. Q. Phan and C. L. Tan. Scene Character

Reconstruction through Medial Axis. International Conference on

Document Analysis and Recognition 2013.

12. P. Shivakumara, R. P. Sreedhar, T. Q. Phan, S. Lu and C. L. Tan.

Multi-Oriented Video Scene Text Detection through Bayesian

Classification and Boundary Growing. IEEE Transactions on Circuits

and Systems for Video Technology, 22(8), 2012, pp. 1227–1235.

13. B. Su, S. Lu, T. Q. Phan and C. L. Tan. Character Extraction in Web

Images for Text Recognition. International Conference on Pattern

Recognition 2012.

170

14. T. Q. Phan, P. Shivakumara and C. L. Tan. Video Script Identification

based on Text Lines. International Conference on Document Analysis

and Recognition 2011.

15. P. Shivakumara, T. Q. Phan and C. L. Tan. Video Character

Recognition through Hierarchical Classification. International

Conference on Document Analysis and Recognition 2011.

16. P. Shivakumara, A. Dutta, T. Q. Phan, C. L. Tan and U. Pal. A Novel

Mutual Nearest Neighbor based Symmetry for Text Frame

Classification in Video. Pattern Recognition, 44(8), 2011, pp. 1671–

1683.

17. P. Shivakumara, T. Q. Phan and C. L. Tan. New Fourier-Statistical

Features in RGB Space for Video Text. IEEE Transactions on Circuits

and Systems for Video Technology, 20(11), 2010, pp. 1520–1532.

18. P. Shivakumara, T. Q. Phan and C. L. Tan. New Wavelet and Color

Features for Text Detection in Video. International Conference on

Pattern Recognition 2010.

19. P. Shivakumara, W. Hua, T. Q. Phan and C. L. Tan. Accurate Video

Text Detection through Classification of Low and High Contrast

Images. Pattern Recognition, 43(6), 2010, pp. 2165–2185.

171

Bibliography

Ballan, L., Bertini, M., Del Bimbo, A. & Serra, G. (2010). Semantic

Annotation of Soccer Videos by Visual Instance Clustering and

Spatial/temporal Reasoning in Ontologies. Multimedia Tools and

Applications, 48(2), pp. 313–337.

Bosch, A., Zisserman, A. & Munoz, X. (2006). Scene Classification Via

pLSA. In Proceedings of the 2006 European Conference on Computer

Vision, pp. 517–530.

Bouman, K.L., Abdollahian, G., Boutin, M. & Delp, E.J. (2011). A Low

Complexity Sign Detection and Text Localization Method for Mobile

Applications. IEEE Transactions on Multimedia, 13(5), pp. 922–934.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), pp. 5–32.

Cai, M., Song, J. & Lyu, M.R. (2002). A New Approach for Video Text

Detection. In Proceedings of the 2002 International Conference on

Image Processing, pp. 117–120.

De Campos, T., Babu, B.R. & Varma, M. (2009). Character Recognition in

Natural Images. In Proceedings of the 2009 International Conference

on Computer Vision Theory and Applications, pp. 273–280.

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 8(6), pp.

679–698.

172

Capel, D. & Zisserman, A. (2000). Super-Resolution Enhancement of Text

Image Sequences. In Proceedings of the 2000 International

Conference on Pattern Recognition, pp. 600–605.

Casey, R.G. & Lecolinet, E. (1996). A Survey of Methods and Strategies in

Character Segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 18(7), pp. 690–706.

Chen, D., Bourlard, H. & Thiran, J.-P. (2001a). Text Identification in Complex

Background Using SVM. In Proceedings of the 2001 Conference on

Computer Vision and Pattern Recognition, pp. 621–626.

Chen, D. & Odobez, J.-M. (2005). Video text recognition using sequential

Monte Carlo and error voting methods. Pattern Recognition Letters,

26(9), pp. 1386–1403.

Chen, D., Odobez, J.-M. & Bourlard, H. (2004a). Text detection and

recognition in images and video frames. Pattern Recognition, 37(3),

pp. 595–608.

Chen, D., Odobez, J.-M. & Thiran, J.-P. (2004b). A localization/verification

scheme for finding text in images and video frames based on contrast

independent features and machine learning methods. Signal

Processing: Image Communication, 19(3), pp. 205–217.

Chen, D., Olobez, J.-M. & Bourlard, H. (2002). Text segmentation and

recognition in complex background based on Markov random field. In

Proceedings of the 2002 International Conference on Pattern

Recognition, pp. 227–230.

173

Chen, D., Shearer, K. & Bourlard, H. (2001b). Text Enhancement with

Asymmetric Filter for Video OCR. In Proceedings of the 2001

International Conference on Image Analysis and Processing, pp. 192–

197.

Chen, H., Tsai, S.S., Schroth, G., Chen, D.M., Grzeszczuk, R. & Girod, B.

(2011). Robust Text Detection in Natural Images with Edge-enhanced

Maximally Stable Extremal Regions. In Proceedings of the 2011

International Conference on Image Processing, pp. 2609–2612.

Chen, X., Yang, J., Zhang, J. & Waibel, A. (2004c). Automatic Detection and

Recognition of Signs From Natural Scenes. IEEE Transactions on

Image Processing, 13(1), pp. 87–99.

Chen, X. & Yuille, A.L. (2004). Detecting and reading text in natural scenes.

In Proceedings of the 2004 Conference on Computer Vision and

Pattern Recognition, pp. 366–373.

Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B., Wang, T., Wu,

D.J. & Ng, A.Y. (2011). Text Detection and Character Recognition in

Scene Images with Unsupervised Feature Learning. In Proceedings of

the 2011 International Conference on Document Analysis and

Recognition, pp. 440–445.

Crandall, D., Antani, S. & Kasturi, R. (2003). Extraction of special effects

caption text events from digital video. International Journal on

Document Analysis and Recognition, 5(2-3), pp. 138–157.

174

Csurka, G., Dance, C.R., Fan, L., Willamowski, J. & Bray, C. (2004). Visual

Categorization with Bags of Keypoints. In Proceedings of the 2004

European Conference on Computer Vision, pp. 1–22.

Dalal, N. & Triggs, B. (2005). Histograms of oriented gradients for human

detection. In Proceedings of the 2005 Conference on Computer Vision

and Pattern Recognition, pp. 886–893.

Dance, C.R. (2001). Perspective Estimation for Document Images. In

Proceedings of the 2001 SPIE Conference on Document Recognition

and Retrieval, pp. 244–254.

Donaldson, K. & Myers, G.K. (2005). Bayesian Super-Resolution of Text in

Video with a Text-Specific Bimodal Prior. In Proceedings of the 2005

Conference on Computer Vision and Pattern Recognition, pp. 1188–

1195.

Du, Y., Ai, H. & Lao, S. (2011). Dot Text Detection Based on FAST Points.

In Proceedings of the 2011 International Conference on Document

Analysis and Recognition, pp. 435–439.

Elagouni, K., Garcia, C., Mamalet, F. & Sébillot, P. (2013). Text recognition

in multimedia documents: a study of two neural-based OCRs using and

avoiding character segmentation. International Journal on Document

Analysis and Recognition, 17(1), pp. 1–13.

Epshtein, B., Ofek, E. & Wexler, Y. (2010). Detecting Text in Natural Scenes

with Stroke Width Transform. In Proceedings of the 2010 Conference

on Computer Vision and Pattern Recognition, pp. 2963–2970.

175

Feild, J.L. & Learned-Miller, E.G. (2013). Improving Open-Vocabulary Scene

Text Recognition. In Proceedings of the 2013 International

Conference on Document Analysis and Recognition, pp. 604–608.

Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A. & Ramanan, D. (2010).

Object Detection with Discriminatively Trained Part-Based Models.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

32(9), pp. 1627–1645.

Felzenszwalb, P.F. & Huttenlocher, D.P. (2005). Pictorial structures for object

recognition. International Journal of Computer Vision, 61(1), pp. 55–

79.

Fischler, M.A. & Bolles, R.C. (1981). Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6), pp. 381–395.

Freund, Y. & Schapire, R.E. (1996). Experiments with a New Boosting

Algorithm. In Proceedings of the 1996 International Conference on

Machine Learning, pp. 148–156.

Gargi, U., Crandall, D., Antani, S., Gandhi, T., Keener, R. & Kasturi, R.

(1999). A system for automatic text detection in video. In Proceedings

of the 1999 International Conference on Document Analysis and

Recognition, pp. 29–32.

Gatos, B., Ntirogiannis, K. & Pratikakis, I. (2009). ICDAR 2009 Document

Image Binarization Contest (DIBCO 2009). In Proceedings of the 2009

176

International Conference on Document Analysis and Recognition, pp.

1375–1382.

Gllavata, J., Ewerth, R. & Freisleben, B. (2004). Tracking text in MPEG

videos. In Proceedings of the 2004 ACM International Conference on

Multimedia, pp. 240–243.

Goel, V., Mishra, A., Alahari, K. & Jawahar, C.V. (2013). Whole is Greater

than Sum of Parts: Recognizing Scene Text Words. In Proceedings of

the 2013 International Conference on Document Analysis and

Recognition, pp. 398–402.

Goto, H. & Tanaka, M. (2009). Text-Tracking Wearable Camera System for

the Blind. In Proceedings of the 2009 International Conference on

Document Analysis and Recognition, pp. 141–145.

Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H. &

Schmidhuber, J. (2009). A Novel Connectionist System for

Unconstrained Handwriting Recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(5), pp. 855 –868.

Guo, G., Jin Jin, Xijian Ping & Tao Zhang (2007). Automatic Video Text

Localization and Recognition. In Proceedings of the 2007

International Conference on Image and Graphics, pp. 484–489.

Harris, C. & Stephens, M. (1988). A combined corner and edge detector. In

Proceedings of the 1988 Alvey Vision Conference, pp. 147–151.

177

Hua, X.-S., Yin, P. & Zhang, H.-J. (2002). Efficient Video Text Recognition

Using Multiple Frame Integration. In Proceedings of the 2002

International Conference on Image Processing, pp. 22–25.

Huang, X., Ma, H. & Zhang, H. (2009). A new video text extraction approach.

In Proceedings of the 2009 International Conference on Multimedia

and Expo, pp. 650–653.

Irani, M. & Peleg, S. (1991). Improving resolution by image registration.

Computer Vision, Graphics, and Image Processing, 53(3), pp. 231–

239.

Isard, M. & Blake, A. (1998). CONDENSATION - conditional density

propagation for visual tracking. International Journal of Computer

Vision, 29(1), pp. 5–28.

Isard, M. & Blake, A. (1996). Contour tracking by stochastic propagation of

conditional density. In Proceedings of the 1996 European Conference

on Computer Vision, pp. 343–356.

Iwamura, M., Kobayashi, T. & Kise, K. (2011). Recognition of Multiple

Characters in a Scene Image Using Arrangement of Local Features. In

Proceedings of the 2011 International Conference on Document

Analysis and Recognition, pp. 1409 –1413.

Jain, A.K. & Yu, B. (1998). Automatic text location in images and video

frames. In Proceedings of the 1998 International Conference on

Pattern Recognition, pp. 1497–1499.

178

Jung, C., Liu, Q. & Kim, J. (2008). A new approach for text segmentation

using a stroke filter. Signal Processing, 88(7), pp. 1907–1916.

Jung, K. & Han, J. (2004). Hybrid approach to efficient text extraction in

complex color images. Pattern Recognition Letters, 25(6), pp. 679–

699.

Jung, K., In Kim, K. & K. Jain, A. (2004). Text information extraction in

images and video: a survey. Pattern Recognition, 37(5), pp. 977–997.

Kae, A., Huang, G., Doersch, C. & Learned-Miller, E. (2010). Improving

state-of-the-art OCR through high-precision document-specific

modeling. In Proceedings of the 2010 Conference on Computer Vision

and Pattern Recognition, pp. 1935–1942.

Khotanzad, A. & Hong, Y.H. (1990). Invariant Image Recognition by Zernike

Moments. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(5), pp. 489–497.

Kim, K., Jung, K., Park, S. & Kim, H. (2001). Support vector machine-based

text detection in digital video. Pattern Recognition, 34(2), pp. 527–

529.

Kim, K.I., Jung, K. & Kim, J.H. (2003). Texture-Based Approach for Text

Detection in Images Using Support Vector Machines and Continuously

Adaptive Mean Shift Algorithm. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(12), pp. 1631–1639.

179

Kim, W. & Kim, C. (2009). A new approach for overlay text detection and

extraction from complex video scene. IEEE Transactions on Image

Processing, 18(2), pp. 401–411.

Kopf, S., Haenselmann, T., Effelsberg, W. & Kopf, S.; H. (2005). Robust

Character Recognition in Low-Resolution Images and Videos.

Technical report. Department for Mathematics and Computer Science,

University of Mannheim.

Kuo, S.-S. & Ranganath, M.V. (1995). Real time image enhancement for both

text and color photo images. In Proceedings of the 1995 International

Conference on Image Processing, pp. 159–162.

Lafferty, J.D., McCallum, A. & Pereira, F.C.N. (2001). Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence

Data. In Proceedings of the 2001 International Conference on Machine

Learning, pp. 282–289.

Lee, C.W., Jung, K. & Kim, H.J. (2003). Automatic text detection and

removal in video sequences. Pattern Recognition Letters, 24(15), pp.

2607–2623.

Li, H. & Doermann, D. (1999). Text enhancement in digital video using

multiple frame integration. In Proceedings of the 1999 ACM

International Conference on Multimedia, pp. 19–22.

Li, H., Doermann, D. & Kia, O. (2000). Automatic text detection and tracking

in digital video. IEEE Transactions on Image Processing, 9(1), pp.

147–156.

180

Li, H., Doermann, D.S. & Kia, O.E. (1998). Text Extraction, Enhancement

and OCR in Digital Video. In Proceedings of the 1998 International

Workshop on Document Analysis Systems, pp. 363–377.

Li, L. & Tan, C.L. (2010). Recognizing Planar Symbols with Severe

Perspective Deformation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(4), pp. 755–762.

Liang, J., Doermann, D. & Li, H. (2005). Camera-based Analysis of Text and

Documents: A Survey. International Journal on Document Analysis

and Recognition, 7(2), pp. 84–104.

Lienhart, R. (2003). Video OCR: A Survey and Practitioner‘s Guide. In Video

Mining, pp. 155–184.

Lienhart, R. & Wernicke, A. (2002). Localizing and Segmenting Text in

Images and Videos. IEEE Transactions on Circuits and Systems for

Video Technology, 12(4), pp. 256–268.

Liu, A., Jinghao Fei, Jianping Fan, Lin Pang, Yongdong Zhang & Jintao Li

(2009). Confusion network based Video OCR post-processing

approach. In Proceedings of the 2009 International Conference on

Multimedia and Expo, pp. 137–140.

Liu, C., Wang, C. & Dai, R. (2005). Text Detection in Images Based on

Unsupervised Classification of Edge-based Features. In Proceedings of

the 2005 International Conference on Document Analysis and

Recognition, pp. 610–614.

181

Liu, Q., Jung, C. & Moon, Y. (2006). Text segmentation based on stroke filter.

In Proceedings of the 2006 ACM International Conference on

Multimedia, pp. 129–132.

Liu, X. & Wang, W. (2010). Extracting captions from videos using temporal

feature. In Proceedings of the 2010 ACM International Conference on

Multimedia, pp. 843–846.

Liu, X., Wang, W. & Zhu, T. (2010). Extracting Captions in Complex

Background from Videos. In Proceedings of the 2010 International

Conference on Pattern Recognition, pp. 3232–3235.

Lowe, D.G. (2004). Distinctive Image Features from Scale-Invariant

Keypoints. International Journal on Computer Vision, 60(2), pp. 91–

110.

Lucas, S.M. (2005). ICDAR 2005 text locating competition results. In

Proceedings of the 2005 International Conference on Document

Analysis and Recognition, pp. 80–84.

Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S. & Young, R. (2003).

ICDAR 2003 Robust Reading Competitions. In Proceedings of the

2003 International Conference on Document Analysis and

Recognition, pp. 682–687.

Luong, H. & Philips, W. (2008). Robust reconstruction of low-resolution

document images by exploiting repetitive character behaviour.

International Journal on Document Analysis and Recognition, 11(1),

pp. 39–51.

182

Lyu, M.R., Song, J. & Cai, M. (2005). A Comprehensive Method for

Multilingual Video Text Detection, Localization, and Extraction. IEEE

Transactions on Circuits and Systems for Video Technology, 15(2), pp.

243–255.

Maji, S., Berg, A.C. & Malik, J. (2013). Efficient Classification for Additive

Kernel SVMs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(1), pp. 66–77.

Mancas-Thillou, C. (2006). Natural Scene Text Understanding. PhD Thesis.

Belgium: Faculte Polytechnique de Mons.

Mancas-Thillou, C. & Gosselin, B. (2007). Color text extraction with selective

metric-based clustering. Computer Vision and Image Understanding,

107(1-2), pp. 97–107.

Mariano, V.Y. & Kasturi, R. (2000). Locating Uniform-Colored Text in Video

Frames. In Proceedings of the 2000 International Conference on

Pattern Recognition, pp. 539–542.

Matas, J., Chum, O., Urban, M. & Pajdla, T. (2002). Robust Wide Baseline

Stereo from Maximally Stable Extremal Regions. In Proceedings of

the 2002 British Machine Vision Conference, pp. 384–393.

Merino, C. & Mirmehdi, M. (2007). A Framework Towards Realtime

Detection and Tracking of Text. In Proceedings of the 2007

International Workshop on Camera-Based Document Analysis and

Recognition, pp. 10–17.

183

Miao, G., Zhu, G., Jiang, S., Huang, Q., Xu, C. & Gao, W. (2007). A Real-

Time Score Detection and Recognition Approach for Broadcast

Basketball Video. In Proceedings of the 2007 International

Conference on Multimedia and Expo, pp. 1691–1694.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J.,

Schaffalitzky, F., Kadir, T. & Van Gool, L. (2005). A Comparison of

Affine Region Detectors. International Journal on Computer Vision,

65(1-2), pp. 43–72.

Minetto, R., Thome, N., Cord, M., Leite, N.J. & Stolfi, J. (2011).

SnooperTrack: Text Detection and Tracking for Outdoor Videos. In

Proceedings of the 2011 International Conference on Image

Processing, pp. 505–508.

Mishra, A., Alahari, K. & Jawahar, C.V. (2012a). Scene Text Recognition

using Higher Order Language Priors. In Proceedings of the 2012

British Machine Vision Conference, pp. 1–11.

Mishra, A., Alahari, K. & Jawahar, C.V. (2012b). Top-Down and Bottom-up

Cues for Scene Text Recognition. In Proceedings of the 2012

Conference on Computer Vision and Pattern Recognition, pp. 2687–

2694.

Mita, T. & Hori, O. (2001). Improvement of Video Text Recognition by

Character Selection. In Proceedings of the 2001 International

Conference on Document Analysis and Recognition, pp. 1089–1093.

184

Mohri, M., Pereira, F. & Riley, M. (2002). Weighted finite-state transducers in

speech recognition. Computer Speech & Language, 16(1), pp. 69–88.

Mosleh, A., Bouguila, N. & Hamza, A.B. (2012). Image Text Detection Using

a Bandlet-Based Edge Detector and Stroke Width Transform. In

Proceedings of the 2012 British Machine Vision Conference, pp. 1–12.

Myers, G.K., Bolles, R.C., Luong, Q.-T., Herson, J.A. & Aradhye, H.B.

(2005). Rectification and Recognition of Text in 3-D Scenes.

International Journal of Document Analysis and Recognition, 7(2-3),

pp. 147–158.

Nagy, R., Dicker, A. & Meyer-Wegener, K. (2011). NEOCR: A Configurable

Dataset for Natural Image Text Recognition. In Proceedings of the

2011 International Workshop on Camera-Based Document Analysis

and Recognition, pp. 150–163.

Neumann, L. & Matas, J. (2010). A Method for Text Localization and

Recognition in Real-world Images. In Proceedings of the 2010 Asian

Conference on Computer Vision, pp. 770–783.

Neumann, L. & Matas, J. (2012). Real-Time Scene Text Localization and

Recognition. In Proceedings of the 2012 Conference on Computer

Vision and Pattern Recognition, pp. 3538–3545.

Neumann, L. & Matas, J. (2013). Scene Text Localization and Recognition

with Oriented Stroke Detection. In Proceedings of the 2013

International Conference on Computer Vision, pp. 97–104.

185

Neumann, L. & Matas, J. (2011). Text Localization in Real-world Images

using Efficiently Pruned Exhaustive Search. In Proceedings of the

2011 International Conference on Document Analysis and

Recognition, pp. 687–691.

Newman, W., Dance, C., Taylor, A., Taylor, S., Taylor, M. & Aldhous, T.

(1999). CamWorks: A Video-Based Tool for Efficient Capture from

Paper Source Documents. In Proceedings of the 1999 International

Conference on Multimedia Computing and Systems, pp. 647–653.

Ngo, C.W. & Chan, C.K. (2005). Video text detection and segmentation for

optical character recognition. Multimedia Systems, 10(3), pp. 261–272.

Niblack, W. (1986). An Introduction to Digital Image Processing, New Jersey:

Prentice Hall.

Novikova, T., Barinova, O., Kohli, P. & Lempitsky, V. (2012). Large-Lexicon

Attribute-Consistent Text Recognition in Natural Images. In

Proceedings of the 2012 European Conference on Computer Vision,

pp. 752–765.

Ntirogiannis, K., Gatos, B. & Pratikakis, I. (2011). Binarization of Textual

Content in Video Frames. In Proceedings of the 2011 International

Conference on Document Analysis and Recognition, pp. 673–677.

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms.

IEEE Transactions on Systems, Man and Cybernetics, 9(1), pp. 62–66.

186

Ozuysal, M., Fua, P. & Lepetit, V. (2007). Fast Keypoint Recognition in Ten

Lines of Code. In Proceedings of the 2007 Conference on Computer

Vision and Pattern Recognition, pp. 1–8.

Pan, Y.-F., Hou, X. & Liu, C.-L. (2011). A Hybrid Approach to Detect and

Localize Texts in Natural Scene Images. IEEE Transactions on Image

Processing, 20(3), pp. 800–813.

Pan, Y.-F., Hou, X. & Liu, C.-L. (2008). A Robust System to Detect and

Localize Texts in Natural Scene Images. In Proceedings of the 2008

International Workshop on Document Analysis Systems, pp. 35–42.

Pan, Y.-F., Hou, X. & Liu, C.-L. (2009). Text Localization in Natural Scene

Images Based on Conditional Random Field. In Proceedings of the

2009 International Conference on Document Analysis and

Recognition, pp. 6–10.

Phan, T.Q., Shivakumara, P., Lu, T. & Tan, C.L. (2013a). Recognition of

Video Text Through Temporal Integration. In Proceedings of the 2013

International Conference on Document Analysis and Recognition, pp.

589–593.

Phan, T.Q., Shivakumara, P., Su, B. & Tan, C.L. (2011). A Gradient Vector

Flow-Based Method for Video Character Segmentation. In

Proceedings of the 2011 International Conference on Document

Analysis and Recognition, pp. 1024–1028.

187

Phan, T.Q., Shivakumara, P. & Tan, C.L. (2009). A Laplacian Method for

Video Text Detection. In Proceedings of the 2009 International

Conference on Document Analysis and Recognition, pp. 66–70.

Phan, T.Q., Shivakumara, P. & Tan, C.L. (2012). Detecting Text in the Real

World. In Proceedings of the 2012 ACM International Conference on

Multimedia, pp. 765–768.

Phan, T.Q., Shivakumara, P., Tian, S. & Tan, C.L. (2013b). Recognizing Text

with Perspective Distortion in Natural Scenes. In Proceedings of the

2013 International Conference on Computer Vision, pp. 569–576.

Pilu, M. & Pollard, S. (2002). A light-weight text image processing method

for handheld embedded cameras. In Proceedings of the 2002 British

Machine Vision Conference, pp. 1–10.

Povey, D., Hannemann, M., Boulianne, G., Burget, L., Ghoshal, A., Janda, M.,

Karafiát, M., Kombrink, S., Motlícek, P., Qian, Y., Riedhammer, K.,

Veselý, K. & Vu, N.T. (2012). Generating exact lattices in the WFST

framework. In Proceedings of the 2012 International Conference on

Acoustics, Speech and Signal Processing, pp. 4213–4216.

Qian, X., Liu, G., Wang, H. & Su, R. (2007). Text detection, localization, and

tracking in compressed video. Image Communication, 22(9), pp. 752–

768.

Rusinol, M., Aldavert, D., Toledo, R. & Llados, J. (2011). Browsing

Heterogeneous Document Collections by a Segmentation-Free Word

188

Spotting Method. In Proceedings of the 2011 International Conference

on Document Analysis and Recognition, pp. 63–67.

Saidane, Z. & Garcia, C. (2008). An Automatic Method for Video Character

Segmentation. In Proceedings of the 2008 International Conference on

Image Analysis and Recognition, pp. 557–566.

Sarawagi, S. & Cohen, W.W. (2004). Semi-Markov conditional random fields

for information extraction. In Proceedings of the 2004 Conference on

Neural Information Processing Systems, pp. 1185–1192.

Sato, T., Kanade, T., Hughes, E.K. & Smith, M.A. (1998). Video OCR for

Digital News Archive. In Proceedings of the 1998 International

Workshop on Content-Based Access of Image and Video Databases,

pp. 52–60.

Sato, T., Kanade, T., Hughes, E.K., Smith, M.A. & Satoh, S. (1999). Video

OCR: indexing digital news libraries by recognition of superimposed

captions. Multimedia Systems, 7(5), pp. 385–395.

Sauvola, J. & Pietikäinen, M. (2000). Adaptive document image binarization.

Pattern Recognition, 33(2), pp. 225–236.

Sharma, N., Shivakumara, P., Pal, U., Blumenstein, M. & Tan, C.L. (2012). A

New Method for Arbitrarily-Oriented Text Detection in Video. In

Proceedings of the 2012 International Workshop on Document

Analysis Systems, pp. 74–78.

189

Sharma, N., Shivakumara, P., Pal, U., Blumenstein, M. & Tan, C.L. (2013). A

New Method for Character Segmentation from Multi-oriented Video

Words. In Proceedings of the 2013 International Conference on

Document Analysis and Recognition, pp. 413–417.

Shi, C., Wang, C., Xiao, B., Zhang, Y. & Gao, S. (2013a). Scene text detection

using graph model built upon maximally stable extremal regions.

Pattern Recognition Letters, 34(2), pp. 107–116.

Shi, C., Wang, C., Xiao, B., Zhang, Y., Gao, S. & Zhang, Z. (2013b). Scene

Text Recognition Using Part-Based Tree-Structured Character

Detection. In Proceedings of the 2013 Conference on Computer Vision

and Pattern Recognition, pp. 2961–2968.

Shi, C., Xiao, B., Wang, C. & Zhang, Y. (2012). Graph-Based Background

Suppression for Scene Text Detection. In Proceedings of the 2012

International Workshop on Document Analysis Systems, pp. 210–214.

Shi, J. & Tomasi, C. (1994). Good features to track. In Proceedings of the

1994 Conference on Computer Vision and Pattern Recognition, pp.

593–600.

Shiratori, H., Goto, H. & Kobayashi, H. (2006). An Efficient Text Capture

Method for Moving Robots Using DCT Feature and Text Tracking. In

Proceedings of the 2006 International Conference on Pattern

Recognition, pp. 1050–1053.

Shivakumara, P., Bhowmick, S., Su, B., Tan, C.L. & Pal, U. (2011a). A New

Gradient Based Character Segmentation Method for Video Text

190

Recognition. In Proceedings of the 2011 International Conference on

Document Analysis and Recognition, pp. 126–130.

Shivakumara, P., Phan, T.Q. & Tan, C.L. (2011b). A Laplacian Approach to

Multi-Oriented Text Detection in Video. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 33(2), pp. 412–419.

Smith, D.L., Field, J. & Learned-Miller, E. (2011). Enforcing Similarity

Constraints with Integer Programming for Better Scene Text

Recognition. In Proceedings of the 2011 Conference on Computer

Vision and Pattern Recognition, pp. 73–80.

Smith, S.M. & Brady, J.M. (1997). SUSAN—A New Approach to Low Level

Image Processing. International Journal of Computer Vision, 23(1),

pp. 45–78.

Sobottka, K., Bunke, H. & Kronenberg, H. (1999). Identification of Text on

Colored Book and Journal Covers. In Proceedings of the 1999

International Conference on Document Analysis and Recognition, pp.

57–63.

Sochman, J. & Matas, J. (2005). WaldBoost - learning for time constrained

sequential detection. In Proceedings of the 2005 Conference on

Computer Vision and Pattern Recognition, pp. 150–156.

Su, B., Lu, S. & Tan, C.L. (2010). Binarization of historical document images

using the local maximum and minimum. In Proceedings of the 2010

International Workshop on Document Analysis Systems, pp. 159–166.

191

Sun, Q. & Lu, Y. (2012). Text Location for Scene Image with Inherent

Features. In Proceedings of the 2012 Chinese Conference on Pattern

Recognition, pp. 522–529.

Tanaka, M. & Goto, H. (2008). Text-tracking wearable camera system for

visually-impaired people. In Proceedings of the 2008 International

Conference on Pattern Recognition, pp. 1–4.

Tang, X., Gao, X., Liu, J. & Zhang, H. (2002). A spatial-temporal approach

for video caption detection and recognition. IEEE Transactions on

Neural Networks, 13(4), pp. 961–971.

Teo, B.C., Ghosh, D. & Ranganath, S. (2004). Video-text extraction and

recognition. In Proceedings of the 2004 IEEE Region 10 Conference,

pp. 319–322.

Due Trier, Ø., Jain, A.K. & Taxt, T. (1996). Feature extraction methods for

character recognition-A survey. Pattern Recognition, 29(4), pp. 641–

662.

Tse, J., Jones, C., Curtis, D. & Yfantis, E. (2007). An OCR-Independent

Character Segmentation Using Shortest-Path in Grayscale Document

Images. In Proceedings of the 2007 International Conference on

Machine Learning and Applications, pp. 142–147.

Viterbi, A.J. (1967). Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm. IEEE Transactions on

Information Theory, 13(2), pp. 260–269.

192

Wang, F., Ngo, C.-W. & Pong, T.-C. (2008). Structuring low-quality

videotaped lectures for cross-reference browsing by video text

analysis. Pattern Recognition, 41(10), pp. 3257–3269.

Wang, J. & Jean, J. (1993). Segmentation of merged characters by neural

networks and shortest-path. In Proceedings of the 1993 ACM/SIGAPP

Symposium on Applied Computing: States of the Art and Practice, pp.

762–769.

Wang, K., Babenko, B. & Belongie, S. (2011). End-to-End Scene Text

Recognition. In Proceedings of the 2011 International Conference on

Computer Vision, pp. 1457–1464.

Wang, K. & Belongie, S. (2010). Word Spotting in the Wild. In Proceedings

of the 2010 European Conference on Computer Vision, pp. 591–604.

Wang, R., Jin, W. & Wu, L. (2004). A Novel Video Caption Detection

Approach Using Multi-Frame Integration. In Proceedings of the 2004

International Conference on Pattern Recognition, pp. 449–452.

Wang, T., Wu, D.J., Coates, A. & Ng, A.Y. (2012). End-to-End Text

Recognition with Convolutional Neural Networks. In Proceedings of

the 2012 International Conference on Pattern Recognition, pp. 3304–

3308.

Weinman, J.J. & Learned-Miller, E. (2006). Improving Recognition of Novel

Input with Similarity. In Proceedings of the 2006 Conference on

Computer Vision and Pattern Recognition, pp. 308–315.

193

Weinman, J.J., Learned-Miller, E. & Hanson, A.R. (2009). Scene Text

Recognition Using Similarity and a Lexicon with Sparse Belief

Propagation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(10), pp. 1733–1746.

Wen, S., Song, Y., Zhang, Y. & Yu, Y. (2012). A Phase-Based Approach for

Caption Detection in Videos. In Proceedings of the 2012 Asian

Conference on Computer Vision, pp. 408–419.

Wernicke, A. & Lienhart, R. (2000). On the segmentation of text in videos. In

Proceedings of the 2000 International Conference on Multimedia and

Expo, pp. 1511–1514.

Wolf, C. (2003). Text detection in images taken from video sequences for

semantic indexing. PhD Thesis. INSA de Lyon.

Wolf, C. & Doermann, D. (2002). Binarization of Low Quality Text using a

Markov Random Field Model. In Proceedings of the 2002

International Conference on Pattern Recognition, pp. 160–163.

Wolf, C., Jolion, J.-M. & Chassaing, F. (2002). Text localization,

enhancement and binarization in multimedia documents. In

Proceedings of the 2002 International Conference on Pattern

Recognition, pp. 1037–1040.

Wong, E.K. & Chen, M. (2003). A new robust algorithm for video text

extraction. Pattern Recognition, 36(6), pp. 1397–1406.

194

Xu, C. & Prince, J.L. (1998). Snakes, Shapes, and Gradient Vector Flow.

IEEE Transactions on Image Processing, 7(3), pp. 359–369.

Yalniz, I.Z. & Manmatha, R. (2012). An Efficient Framework for Searching

Text in Noisy Document Images. In Proceedings of the 2012

International Workshop on Document Analysis Systems, pp. 48–52.

Yao, C., Bai, X., Liu, W., Ma, Y. & Tu, Z. (2012). Detecting Texts of

Arbitrary Orientations in Natural Images. In Proceedings of the 2012

Conference on Computer Vision and Pattern Recognition, pp. 1083–

1090.

Ye, Q., Huang, Q., Gao, W. & Zhao, D. (2005). Fast and robust text detection

in images and video frames. Image and Vision Computing, 23(6), pp.

565–576.

Yi, C. & Tian, Y. (2011). Text String Detection from Natural Scenes by

Structure-based Partition and Grouping. IEEE Transactions on Image

Processing, 20(9), pp. 2594–2605.

Yi, J., Peng, Y. & Xiao, J. (2009). Using Multiple Frame Integration for the

Text Recognition of Video. In Proceedings of the 2009 International

Conference on Document Analysis and Recognition, pp. 71–75.

Yoshimura, H., Etoh, M., Kondo, K. & Yokoya, N. (2000). Gray-scale

character recognition by Gabor jets projection. In Proceedings of the

2000 International Conference on Pattern Recognition, pp. 335–338.

195

Zhang, D. & Chang, S.-F. (2003). A Bayesian framework for fusing multiple

word knowledge models in videotext recognition. In Proceedings of

the 2003 Conference on Computer Vision and Pattern Recognition, pp.

528–533.

Zhang, D., Rajendran, R.K. & Chang, S.-F. (2002). General and domain-

specific techniques for detecting and recognizing superimposed text in

video. In Proceedings of the 2002 International Conference on Image

Processing, pp. 22–25.

Zhang, J. & Kasturi, R. (2008). Extraction of Text Objects in Video

Documents: Recent Progress. In Proceedings of the 2008 International

Workshop on Document Analysis Systems, pp. 5–17.

Zhang, Y. & Lai, J. (2012). Arbitrarily oriented text detection using geodesic

distances between corners and skeletons. In Proceedings of the 2012

International Conference on Pattern Recognition, pp. 1896–1899.

Zhao, X., Lin, K.-H., Fu, Y., Hu, Y., Liu, Y. & Huang, T.S. (2011). Text From

Corners: A Novel Approach to Detect Text and Caption in Videos.

IEEE Transactions on Image Processing, 20(3), pp. 790–799.

Zheng, Q., Chen, K., Zhou, Y., Gu, C. & Guan, H. (2010). Text Localization

and Recognition in Complex Scenes Using Local Features. In

Proceedings of the 2010 Asian Conference on Computer Vision, pp.

121–132.

196

Zhong, Y., Karu, K. & Jain, A.K. (1995). Locating text in complex color

images. In Proceedings of the 1995 International Conference on

Document Analysis and Recognition, pp. 146–149.

Zhong, Y., Zhang, H. & Jain, A.K. (2000). Automatic Caption Localization in

Compressed Video. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(4), pp. 385–392.

Zhou, J., Lei Xu, Baihua Xiao, Ruwei Dai & Si si (2007). A robust system for

text extraction in video. In Proceedings of the 2007 International

Conference on Machine Vision, pp. 119–124.

