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Summary 

 

With the rapid growth of the Internet, the amount of image and video 

data is increasing exponentially. In some image categories (e.g., natural 

scenes) and video categories (e.g., news, documentaries, commercials and 

movies), there is often text information. This information can be used as a 

semantic feature, in addition to visual features such as colors and shapes, to 

improve the retrieval of the relevant images and videos. 

This thesis addresses the problem of text extraction in natural scene 

images and in videos, which typically consists of text localization, tracking, 

enhancement, binarization and recognition. 

Text localization, i.e., identifying the positions of the text lines in an 

image or video, is the first and one of the most important components in a text 

extraction system. We have developed two works, one for text in natural scene 

images and the other for text in videos. The first work introduces novel gap 

features to localize difficult cases of scene text. The use of gap features is new 

because most existing methods extract features from only the characters, and 

not from the gaps between them. The second work employs skeletonization to 

localize multi-oriented video text. This is an improvement over previous 

methods which typically localize only horizontal text. 

After the text lines have been localized, they need to be enhanced in 

terms of contrast so that they can be recognized by an Optical Character 

Recognition (OCR) engine. We have proposed two works, one for single-

frame enhancement and the other for multiple-frame enhancement. The main 

idea of the first work is to segment a text line into individual characters and 
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binarize each of them individually to better adapt to the local background. Our 

character segmentation technique based on Gradient Vector Flow is capable of 

producing curved segmentation paths. In contrast, many previous techniques 

allow only vertical cuts. In the second work, we exploit the temporal 

redundancy of video text to improve the recognition accuracy. We develop a 

tracking technique to identify the framespan of a text object, and for all the 

text instances within the framespan, we devise a scheme to integrate them into 

a text probability map. 

The two text enhancement works above use an OCR engine for 

recognition. To obtain better recognition accuracy, we have also explored 

another approach in which we build our own algorithms for character 

recognition and word recognition, recognition i.e., without OCR. In addition, 

we focus on perspective scene text recognition, which is an issue of practical 

importance but has been neglected by most previous methods. By using 

features which are robust to rotation and viewpoint change, our work requires 

only frontal character samples for training, thereby avoiding the labor-

intensive process of collecting perspective character samples. 

Overall, this thesis describes novel methods for text localization, text 

enhancement and text recognition in natural scene images and videos. 

Experimental results show that the proposed methods compare favourably to 

the state-of-the-art on several public datasets. 
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Chapter 1  

Introduction 

With the rapid growth of the Internet, more image and video databases 

are available online. In such databases, there is a need for search and retrieval 

of images and videos. As most search engines are still text-based, manual 

keyword annotations have traditionally been used. However, this process is 

laborious and inconsistent, i.e., two users may choose different keywords for 

the same image or video. An alternative approach is to generate the keywords 

from the text that appears in an image (e.g., road signs and bill boards) or a 

video (e.g., captions). These keywords can then be used as semantic features 

(in addition to visual features such as colors and shapes) to improve the 

retrieval of the relevant images and videos. Other general applications include 

sign translation, intelligent driving assistance, navigation aid for the visually-

impaired and robots, video summarization, and video skimming. Domain-

specific applications are also possible, e.g., aligning segments of lecture 

videos with the corresponding external slides. Therefore, there is an increasing 

demand for text extraction in images and videos. 

Although many methods have been proposed over the past years, text 

extraction is still a challenging problem because of the almost unconstrained 

text appearances, i.e., texts can vary drastically in fonts, colors, sizes and 

alignments. Moreover, videos are typically of low resolutions, while natural 

scene images are often affected by deformations such as perspective 

distortion, blurring and uneven illumination. 
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In this thesis, we address the problem of text extraction in images and 

videos. We formally define the problem and the scope of study in the next 

section. 

 

1.1 Problem Description and Scope of Study 
 

Given an image or a video, the goal of text extraction is to locate the text 

regions in the image or video and recognize them into text strings (so that they 

can be used for e.g., indexing). Furthermore, if the input is a video, each text 

string is annotated with the time stamps (or frame numbers) that mark its 

appearance/disappearance in the video. Its position in each frame is also 

recorded because a text line may move between the frames. 

The scope of this thesis is text extraction in natural scene images (Figure 

1.1a) and in videos (e.g., news, documentaries, commercials and movies) 

(Figure 1.1b). 

 

          

 (a) Natural scene image (b) Video frame 

Figure 1.1. A scene image and a video frame. 
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1.2 Contributions 
 

This thesis makes the following contributions: 

 We present two text localization works, one for scene text and the 

other for video text (Chapter 3). The former proposes using gap 

features for text localization, which is a novel approach because 

most existing methods utilize only character features. The latter 

addresses the problem of multi-oriented text localization, which 

has been neglected by most previous methods. 

 After the text lines are localized, they need to be enhanced prior to 

recognition. Thus, we propose two text enhancement works, one 

for single-frame enhancement and the other for multiple-frame 

enhancement (Chapter 4). The first work illustrates the 

importance of binarizing each character in a text line individually 

instead of binarizing the whole line. The second work shows that 

integrating the multiple instances of the same video text leads to 

significantly better recognition accuracy. 

 In addition to using OCR engines for text recognition (in the above 

two works), we also explore a different approach: recognition 

without OCR. In particular, we propose a technique for 

recognizing perspective scene text (Chapter 5). This problem is of 

great practical importance, but has been neglected by most 

previous methods (which only handle frontal texts). Thus, with 

this work, we address an important research gap. 
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Chapter 2  

Background & Related Work 

This chapter provides a brief overview of the challenges of the different 

types of texts considered in this thesis. We also review existing text extraction 

methods and identify some of the research gaps that need to be addressed. 

 

2.1 Challenges of Different Types of Text 
 

The extraction of text in images has been well-studied by document 

analysis techniques such as Optical Character Recognition (OCR). However, 

these techniques are limited to scanned documents. It is evident from Figure 

2.1, Figure 1.1 and Figure 2.2 that natural scene images and videos are much 

more complex and challenging than document images. Hence, traditional 

document analysis techniques generally do not work well for text in natural 

scene images and videos. As an illustrative example, if OCR engines are used 

to recognize text in videos directly, the recognition rate would typically be in 

the range 0% to 45% (Chen & Odobez 2005). For comparison, the typical 

OCR accuracy for document images is over 90%. 

 

 

Figure 2.1. A document image. 
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 (a) Document character (b) Natural scene character (c) Video character 

Figure 2.2. A document character, a scene character and a video character. 

 

The major challenges of scene text and video text are listed in Table 2.1. 

While the majority of the challenges are common to both scene text and video 

text, some of them are applicable to only one type of text. For example, low 

resolution is specific to video text, while perspective distortion mainly affects 

scene text. 

Note that Table 2.1 shows the typical challenges for each type of text. In 

practice, there are exceptions. For example, a video text line with special 3D 

effects may also be considered as having perspective ―distortion‖. 

 

Table 2.1. Challenges of text in natural scenes and text in videos. 
 

 Text in Natural 

Scene Images 

Text in 

Videos 

Low resolution   

Compression artifacts   

Unconstrained appearances   

Complex backgrounds   

Varying contrast   

Perspective distortion   

Lighting   

Domain-independence and multilingualism   

 

We will now describe each of the challenges in detail: 

 Low resolution: For fast streaming on the Internet, videos are 

often compressed and resized to low resolutions. For comparison, 

the resolutions of video frames can be as small as 50 dpi (dots per 

inch) while that of scanned documents is typically much larger, 
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e.g., from 150 to 400 dpi (Liang et al. 2005). This translates to a 

typical character height of 10 pixels for the former and 50 pixels 

for the latter (Li & Doermann 1999). Therefore, traditional OCR 

engines, which are tuned for scanned documents, do not work well 

for videos. 

 Compression artifacts: Since most compression algorithms are 

designed for general images, i.e., not optimized for text images, 

they may introduce noise and compression artifacts, and cause 

blurring and color bleeding in text areas (Liang et al. 2005). 

 Unconstrained appearances: Texts in different images and 

videos have drastically different appearances, in terms of fonts, 

font sizes, colors, positions within the frames, alignments of the 

characters and so on. The variation comes from not only the text 

styles but also the contents, i.e., the specific combination of 

characters that appear in a text line. According to (Chen & Yuille 

2004), text has much more variation than other objects, e.g., face. 

By performing Principle Component Analysis, the authors noticed 

that text required more than 100 eigenvalues to capture 90% of the 

variance while face only required around 15 eigenvalues. 

 Complex backgrounds: While scanned documents contain simple 

black texts on white backgrounds, natural scenes and videos have 

much more complex backgrounds, e.g., a street scene or a stadium 

in a sports news video. Hence, without pre-processing steps such 

as contrast enhancement and binarization, OCR engines are not 

able to recognize the characters directly. 
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 Varying contrast: Some text lines may have very low contrast 

against their local backgrounds (partly due to the compression 

artifacts and the complex backgrounds mentioned above). It is 

difficult to detect both high contrast text and low contrast text 

(sometimes in the same image or video frame), and at the same 

time, keep the false positive rate low. 

 Perspective distortion: Because a natural scene image often 

contains a wide variety of objects, e.g., buildings, cars, trees and 

people, text may not be the main object in the image. Hence, the 

text in a natural scene image may not always be frontal and 

parallel to the image plane. In other words, scene text may be 

affected by perspective distortion (Jung et al. 2004; Liang et al. 

2005; Zhang & Kasturi 2008). Since OCR engines are designed 

for frontal scanned documents, they cannot handle perspective 

characters. 

 Lighting: Natural scene images are captured under varying 

lighting conditions. Some characters may not receive enough 

lighting. They appear dark and do not have sufficient contrast to 

the local background. On the other hand, some characters may be 

affected by the camera flash. They appear too bright and some of 

the edges are not visible. These problems make it much more 

difficult to correctly recognize the characters. 

 Domain-independence and multilingualism: Although there are 

some domain-specific text extraction systems (e.g., for sports 

videos), the majority of the methods in the literature are designed 
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for general videos, which means that there is no prior information 

about the text position and appearance. Moreover, the characters 

of different languages such as English, Chinese and Arabic have 

different properties. Certain textual features, e.g., contrast with the 

local background, are observed across different languages while 

other features, e.g., text stroke statistics, are highly language-

dependent (Lyu et al. 2005). 

It is worth noting that video text can be further classified into two types: 

video graphics text and video scene text. The former is artificially added to the 

video during the editing process, e.g., captions, while the latter appears in the 

scene captured by the camera (similar to text in natural scene images) (Figure 

2.3). In the literature, the term ―scene text‖ is used for both scene text in 

videos and scene text in still images. To avoid confusion, in this thesis, we 

will use the various terms with the following meanings: 

 Scene text refers to text that appears in a still image of a natural 

scene. 

 Video text refers to text that appears in a video in general. 

 Video graphics text refers to text that is artificially added to a 

video. 

 Video scene text refers to text that appears as part of a scene in a 

video. 

In general, video scene text is much more challenging (e.g., having 

lower contrast, more blurring and more complex background) than video 

graphics text because the former is captured in an uncontrolled environment 

while the latter is intentionally added for the viewers and thus have better 
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readability. Moreover, similar to scene text in natural images, video scene text 

might be affected by perspective distortion and lighting. 

 

    

Figure 2.3. Video graphics text (left) and video scene text (right). 

 

This section has summarized the challenges of the different types of 

texts. In the following sections, we review existing text extraction methods for 

both natural scene images and videos. For the sake of completeness, we will 

also mention relevant methods for document images. 

 

2.2 Text Extraction Pipeline 
 

A text extraction system typically consists of five steps: (1) Localization, 

(2) Tracking, (3) Enhancement, (4) Binarization and (5) Recognition (Figure 

2.4). The first step (Localization) aims to detect and accurately locate all the 

text lines in an image or a video frame. The second step (Tracking) helps to 

track the movement of the text lines over multiple frames, e.g., a text line 

moving from bottom to top in a movie credits scene. In the third step 

(Enhancement), the localized and tracked text lines are enhanced in terms of 

contrast and resolution to improve their readability. The fourth step 

(Binarization) converts the text lines into black and white images so that they 

can be used in the last step (Recognition), which recognizes the characters by 
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using either an existing OCR engine or a custom-built OCR engine with its 

own feature extraction scheme. 

 

 

Figure 2.4. The typical steps of a text extraction system. (Figure adapted from (Jung et 

al. 2004).) 

 

Some text extraction systems may slightly change the order of the steps 

or omit certain steps. For example, Binarization is not needed if the 

Recognition step can work on grayscale or color images directly. As another 

example, because temporal information is not available in natural scene 

images, the Tracking step is omitted for these images. 

The next section discusses Localization, the first step in the pipeline. 

 

2.3 Text Localization 
 

The goal of text localization is to locate all the text lines in an input 

image or a video frame. A text line‘s position is usually represented by a 

rectangular bounding box (Figure 2.5). Some methods may provide additional 

information about a localized text line, e.g., a ―text mask‖, which indicates 

whether a particular pixel in the bounding box is a text pixel or a background 

pixel. Depending on the application, localization can also be performed at the 

word level, instead of at the text line level. 

Localization 

Tracking 

Enhancement Binarization Recognition 

Text strings 

Image

or 

video  
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Figure 2.5. The (white) bounding boxes of the localized text lines. 

 

Text in images often has the following characteristics, which makes it 

distinguishable from the background: 

 Text has sufficient contrast to the local background (to be 

readable). 

 The strokes of a character are in four main directions: horizontal, 

vertical, left diagonal and right diagonal. 

 The pixels of a single character have almost uniform intensity 

values or colors. 

 Characters of the same text line are aligned on a straight line. 

 Characters of the same text line have similar widths and heights. 

 Characters of the same text line are spaced regularly. 

Different methods make use of different properties to localize the text 

lines. They can be classified into three main approaches: gradient-based, 

intensity/color-based and texture-based. As its name suggests, the first 

approach relies on the first two properties of text and often performs edge 

detection to identify regions in the input image with those properties. 

Similarly, the second approach analyzes regions in which the pixels have 

similar intensity values or colors (the third text property). Different from the 
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previous two approaches, the last approach considers text as a special texture 

and applies techniques such as Discrete Cosine Transform and wavelet 

decomposition for feature extraction. For text/non-text classification, this 

approach typically employs machine learning techniques such as neural 

networks and Support Vector Machines (SVM). 

It is worth mentioning that unlike the first three properties, the last three 

properties of text are usually used at a later stage in a localization method 

(rather than as the main feature). For example, these properties can be used to 

remove false positives. 

 

2.3.1 Gradient-based Localization 
 

Gradient-based methods assume that in order for text to be readable, it 

needs to have enough contrast with the local background. Therefore, these 

methods look for regions with high intensity variation and/or dense edges. In 

addition, while most methods make use of ―unstructured‖ edges (e.g., in the 

form of edge energy or edge density), a few recent works focus on 

―structured‖ edges such as strokes (parallel edges) and corners (intersected 

edges). 

(Cai et al. 2002; Lyu et al. 2005) used both global thresholding and 

adaptive local thresholding of the edge map to suppress edges in complex 

backgrounds. In addition, two operators were proposed to enhance the 

remaining edges. The disadvantage of this method is that if the global and 

local thresholding processes fail to suppress all the non-text edges, the two 

proposed operators will enhance edges in not only the text regions but also in 
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the background regions. This will increase the number of false positives in the 

localization result. 

Different from the previous methods which do not use the edge 

orientation information, (Liu et al. 2005) computed 4 Sobel edge maps for the 

4 main directions of text strokes: horizontal, vertical, left diagonal and right 

diagonal. For each edge map, a sliding window was used to extract 6 statistical 

features: mean, standard deviation, energy, entropy, inertia, local homogeneity 

and correlation. K-means was employed to classify pixels into two clusters: 

text and non-text. This method is good at localizing reasonably high contrast 

text but may miss low contrast text because the Sobel edge operator mainly 

detects the strong edges. 

Other than edge-related features, the property of high intensity variation 

in text regions has also been explored for text localization. (Kim & Kim 2009) 

made an interesting observation that due to color bleeding, there were often 

―transient‖ pixels between text and background. These pixels were identified 

as groups of 3 consecutive pixels that followed an exponential 

increase/decrease in intensity values (depending on whether text was 

brighter/darker than the background). Region growing were performed to 

extend the transient pixels into candidate text regions. This method offers a 

new perspective into the problem of text localization and handles video 

graphics text well. However, it can only localize horizontal text and fails to 

pick up scene text, as shown in the sample results in the paper. 

(Wong & Chen 2003) exploited the intensity variation in a different 

way. The method first computed the horizontal gradients by using the        

mask. For each 1 × 21 region, the maximum gradient difference value was 
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computed as the difference between the largest and the smallest gradient 

values. Candidate line segments were found by thresholding the difference 

map, and were then filtered by using heuristic rules based on the number of 

transitions between text and background, and the mean and variance of the 

distances between these transitions. Because this method makes extensive use 

of heuristic rules and threshold values for analyzing the candidate line 

segments, it may not generalize well to other datasets. In addition, the simple 

       mask may miss non-horizontal text because it only detects vertical 

edges. 

As mentioned at the beginning of this section, a few recent methods 

extract features from structured edges, e.g., strokes and corners, instead of 

from unstructured edges. The former is more robust than the latter due to the 

additional constraints on the edges. For example, to form a stroke, two edges 

have to be almost parallel to each other. 

(Epshtein et al. 2010) observed that characters in the same word or text 

line had almost constant stroke widths. The proposed Stroke Width Transform 

assigned a stroke width value to each pixel in the input image, based on the 

width of the stroke that it most likely belonged to. For each Canny edge pixel 

 , the method searched for another edge pixel   along the gradient direction at 

 . Ideally, if   and   belonged to the same stroke, the gradient directions at   

and   should be exactly opposite of each other. However, to allow for some 

tolerance, as long as  ‘s gradient direction was roughly opposite that of   

(within      ), all the pixels along the traversed ray were declared to have a 

stroke width of           (Figure 2.6). Pixels with similar strokes widths were 

merged into candidate text regions. 
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(Yao et al. 2012) also used Stroke Width Transform to identify the 

character candidates. However, instead of using heuristic rules for false 

positive elimination and character linking, the authors designed several 

character-level and chain-level features and used Random Forest (Breiman 

2001) as classifiers. 

Stroke Width Transform-based methods are fast and are able to handle 

multi-oriented text (as long as the characters are aligned on a straight line). 

However, the accuracy of the Stroke Width Transform is highly dependent on 

whether the inner and outer contours of a character are almost parallel to each 

other. For stroke intersections, this condition does not hold, which leads to 

connected components (CCs) that contain holes or do not preserve the 

complete shape of a character (Chen et al. 2011). These CCs may be wrongly 

classified as non-text. 

 

 

Figure 2.6. Stroke Width Transform. (Figure adapted from (Epshtein et al. 2010).) 

 

Another feature that can be derived from text strokes is corner point, i.e., 

the intersection of two stokes in different directions. This feature can be 

extracted using operators such as Harris corner detector (Harris & Stephens 

1988), Susan corner detector (Smith & Brady 1997) and Shi-Tomasi corner 

detector (Shi & Tomasi 1994). 
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(Liu et al. 2010; Liu & Wang 2010) used the Shi-Tomasi detector to 

look for regions with dense corner points. The input video frame was divided 

into 64 non-overlapping blocks. Each block was considered as a candidate text 

block if it contained more than a certain number of corner points. In a similar 

approach, (Zhao et al. 2011) dilated Harris corner points to form candidate text 

regions. For text/non-text classification, this method used heuristic rules based 

on a region‘s corner point density and shape. 

The above three methods were designed for video captions (i.e., graphics 

text), which have reasonably high contrast with the local background, and thus 

the corner point feature works well. However, for texts with lower contrast 

like scene texts, a detector may fail to detect sufficient corner points to classify 

a region as text region. In addition, the method by (Zhao et al. 2011) does not 

work for multi-oriented text due to the constraints used for false positive 

elimination. For example, it was assumed that for a true text region, its width 

was always greater than its height. Although this assumption is true for 

horizontal text, it does not hold for multi-oriented text. 

In summary, gradient-based methods make the assumption that text has 

sufficient contrast with the local background and thus find potential text lines 

in regions with high contrast, high intensity variation and dense edges (either 

structured or unstructured). These methods are generally fast but can be 

sensitive to the threshold values used for edge detection. High values may 

cause low contrast text to be missed, while low values may increase the 

number of false positives, especially in complex backgrounds. 
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2.3.2 Texture-based Localization 
 

To overcome the problem of complex background of gradient-based 

methods, the texture-based approach considers text as a special texture. These 

methods apply techniques such as Discrete Cosine Transform and wavelet 

decomposition for feature extraction. For text/non-text classification, they 

often employ machine learning techniques such as neural networks and SVM. 

(Kim et al. 2001; Kim et al. 2003; Jung & Han 2004) extracted raw 

intensity values and used SVM to classify every pixel as text/non-text. For 

each M × M window, the feature vector of the center pixel was defined as the 

intensity values of the neighboring pixels according a mask which captured 

the four main directions of text strokes (Figure 2.7). 

 

 

Figure 2.7. In each window, only the pixels at the positions marked by gray are fed into 

SVM. (Figure adapted from (Kim et al. 2003).) 

 

In general, intensity values are not robust against the different text 

appearances in different input images. Therefore, a number of methods have 

used gradient information instead. (Lienhart & Wernicke 2002) extracted 

features from the edge orientation image, which was computed based on the 

gradient information in all the RGB channels. A neural network classified 

each 20 × 10 window as text/non-text. The authors noticed that the 

localization rate decreased significantly for texts of small font sizes, e.g., less 

than 10 pixels in height. 
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The gradient information was also employed by (Chen et al. 2001a; 

Chen et al. 2004a; Chen et al. 2004b). A 16 × 16 sliding window was used to 

extract the following features from each text candidate region: the x and y 

derivatives of the intensity values, the distance map (to strong edge points) 

and the normalized gradient values (such that the local mean became zero and 

the local variance matched the global variance) (Figure 2.8). In the 

experiments, the normalized gradient value was found to be better than the 

other features, because it achieved a degree of invariance to texts of different 

intensity values and backgrounds. 

 

 

Figure 2.8. The various features tested in (Chen et al. 2004b). From top to bottom: 

candidate text region, x-derivative, y-derivative, distance map and normalized gradient 

values. (Figure adapted from (Chen et al. 2004b).) 

 

(Chen & Yuille 2004) also employed many intensity and gradient 

features. The main difference between this method and the previous methods 

lies in the use of AdaBoost (Freund & Schapire 1996), which is capable of 

building a strong classifier out of a set of weak classifiers. To extract the 

intensity and gradient features, the authors designed several block patterns 

(Figure 2.9). The aim of these patterns was to average out the variances for 

regions with large variances, and thus achieve a low entropy, i.e., similar 

responses for different text appearances in different images. Based on these 
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block patterns, the means and standard deviations of the intensity values and 

the x and y intensity derivatives were extracted. One of the contributions of 

this work is the convincing explanation of the motivation for designing the 

block patterns. However, these patterns are mainly for horizontal text and thus 

this method will have difficulties localizing multi-oriented text. 

 

 

Figure 2.9. Block patterns. (Figure taken from (Chen & Yuille 2004).) 

 

Similar to the previous method, (Pan et al. 2008; Pan et al. 2009; Pan et 

al. 2011) and (Wang et al. 2011) employed a sliding window scheme. 

However, these methods put more emphasis on the gradient orientations and 

used Histogram of Oriented Gradients (Dalal & Triggs 2005) as the main 

feature. The classifiers used were WaldBoost (Sochman & Matas 2005) and 

Random Ferns (Ozuysal et al. 2007), respectively. Due to the use of sliding 

window at multiple scales, these methods are computationally expensive. 

In addition to gradient features, another way to analyze high contrast 

pixels and edges is through wavelet decomposition. (Li et al. 2000) extracted 

Haar wavelet features using an image pyramid. Text regions were expected to 

have high responses in the high frequency subbands (HL, LH and HH). 

Therefore, the following features were extracted from each 16 × 16 window in 

each of the subbands: mean, second-order and third-order central moments. 
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(Ye et al. 2005) also employed wavelet features. Other than wavelet 

moments (inspired by the previous method), this work also extracted wavelet 

energy histogram, wavelet direction histogram, wavelet co-occurrences and 

crossing count histogram (which captured the periodicity of the peaks in the 

vertical projection profile). 

Compared to other texture analysis approaches, the unique advantage of 

Discrete Cosine Transform (DCT) is that it is available in the compressed 

domain, e.g., in JPEG and MPEG formats. Hence, little or no decoding is 

required. (Zhong et al. 2000) observed that text regions usually had high 

intensity variation in both the horizontal direction (due to the characters and 

the spaces between them) and the vertical direction (due to the spaces between 

the text lines). For each DCT block in an MPEG I-frame, the horizontal 

energy was calculated by summing the absolute values of the DCT 

coefficients with zero horizontal frequency (i.e., summing across different 

vertical frequencies). Candidate text blocks were found by adaptively 

thresholding the energy map. The main advantage of this method is the 

computational time. However, the authors mentioned that it has difficulties 

with texts of large font sizes because the 8 × 8 DCT blocks fail to capture the 

local variations of such large text strokes. 

In summary, texture-based methods aim to extract the distinctive 

features of text from various sources of information: intensity values, gradient 

magnitudes and orientations, wavelet responses, DCT coefficients and so on. 

Machine learning techniques are used for text/non-text classification. Texture-

based methods are more robust than gradient-based methods against complex 

backgrounds. They can also be re-trained for different datasets. However, they 



21 

 

have two drawbacks. First, classifiers such as neural networks and SVM 

require a large training set, sometimes in thousands, of text and non-text 

samples. Moreover, it is especially hard to ensure that the non-text samples are 

representative (Kim et al. 2003). Second, most texture-based methods are 

computationally expensive. 

 

2.3.3 Intensity-based and Color-based Localization 
 

The main assumption of intensity-based and color-based methods is that 

characters in the same ―group‖ have similar intensity values or colors. 

Different methods make this assumption at different levels: the text line level, 

the word level or the character level. 

(Neumann & Matas 2010; Neumann & Matas 2011; Neumann & Matas 

2012) used Maximally Stable Extremal Regions (MSER) (Matas et al. 2002) 

to extract character candidates. The main idea of MSER is to identify regions 

which remain stable over a range of thresholds on the intensity values. Many 

natural scene characters have almost uniform intensity values and thus, they 

can be extracted as MSERs. MSER-based methods are fast because there are 

efficient algorithms for MSER extraction. However, the main drawback of 

these methods is that for images with blurring and uneven illumination, the 

assumption that the pixels of a scene character have almost uniform intensity 

values no longer holds. Thus, a single character may be split into several 

MSERs. In addition, touching characters may also be detected as a single 

MSER. Both of these problems affect the text localization result. 

In general, colors provide more information than intensity values. 

Designed for high resolution images such as book and journal covers, early 
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color-based methods, e.g., (Zhong et al. 1995; Jain & Yu 1998; Sobottka et al. 

1999), relied purely on color features to localize the text lines. These methods 

employed color quantization and region growing (or splitting) to group 

neighboring pixels of similar colors into CCs. 

(Mariano & Kasturi 2000) proposed a technique to capture the 

periodicity of patterns in text regions. Hierarchical color clustering was 

performed in the L*a*b* color space for every third row in the input image. 

Each cluster was checked using empirical rules to determine whether they 

formed the color streaks of a text line. The method then found the text box 

boundaries for each set of streaks. This method is good at localizing low 

contrast text. However, the false positive rate reported in the paper was very 

high (39%). 

The drawback of methods that use only color features (such as the above 

methods) is that the CCs obtained by color similarity may not preserve the 

complete shapes of the characters due to noise and color bleeding. Therefore, 

more recent methods often combine colors with other features. 

Gradient features and color features were combined in (Chen et al. 

2004c). The edges in the input image were obtained by using the Laplacian of 

Gaussian. CCs were generated by grouping edges based on the similarity in 

size and intensity values. To model the color distribution of each individual 

character and its surrounding background, Gaussian Mixture Model was 

employed to identify two peaks, one corresponding to the foreground and the 

other corresponding to the background. Line fitting (based on Hough 

transform) was used to group CCs into words and lines. 
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(Yi & Tian 2011) proposed and compared two different features for text 

localization, one based on color and the other based on gradient. For the color 

feature, the method performed K-means clustering in the RGB space to 

identify the dominant colors in the input image (Figure 2.10). For the gradient 

feature, the method identified ―pixel couples‖, pairs of pixels that had similar 

gradient magnitudes and almost opposite directions. Using the above two 

features, a set of candidate text CCs were obtained. In the experiments, the 

color feature outperformed the gradient feature. However, it also required 

more computational time because each color cluster had to be handled 

separately. 

 

 

Figure 2.10. The left most column shows the input image while the remaining columns 

show the color clusters identified by K-means. (Figure taken from (Yi & Tian 2011).) 

 

In summary, intensity-based and color-based methods assume that the 

characters in the same word/line have similar intensity values or colors. 

Recent methods tend to use intensity values/colors in hybrid approaches, i.e., 

together with either gradient features or texture features. This is because in 

challenging situations, e.g., stylized graphics text and scene text with uneven 
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illumination, the intensity/color homogeneity assumption only holds at the 

finest level (the character level). Hence, using intensity/color features alone 

may not be sufficient for text localization. 

 

2.3.4 Summary 
 

In this section, we have reviewed various text localization methods. 

They can be classified into three approaches: gradient-based, texture-based 

and intensity/color-based. The first approach locates potential text lines by 

identifying regions with high contrast variation or dense edges. This approach 

is fast but may produce many false positives for images with complex 

backgrounds. To deal with this problem, the second approach extracts textual 

features using techniques such as wavelet decomposition and Discrete Cosine 

Transform. Neural networks and SVM are used for text/non-text classification. 

Although it can be re-trained for different datasets, this approach requires a lot 

of positive and negative samples for training and is computationally 

expensive. The last approach is based on the assumption that characters of the 

same word/line often have similar intensity values or colors. Recent works 

often combine them with either gradient features or texture features to 

improve the performance. 

Although many methods have been proposed, there are still several 

research issues that need to be addressed. First, most methods focus solely on 

features which are extracted from the characters. However, due to the 

challenges of scene text and video text (e.g., blurring, distortion, low 

resolution, etc.), the edges and the shapes of the characters may not be reliable 

(e.g., some edges may be broken into multiple parts or even missing). 
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Therefore, additional features should be explored to improve the robustness of 

text localization. In section 3.1, we propose novel inter-character features, 

which are extracted from the gaps between consecutive characters, and show 

that these features help to improve the text localization performance. 

 Second, many methods are designed for only horizontal texts, and are 

not able to pick up multi-oriented texts. However, in practice, text can appear 

with any orientation. Hence, to address this issue, our work in section 3.2 

employs skeletonization to handle multi-oriented text. 

 

2.4 Text Tracking 
 

One of the key differences between videos and the related types of text 

images is the availability of temporal information. In order to be readable, a 

text line usually appears on the screen for at least 2 seconds (Wang et al. 2004; 

Miao et al. 2007). Hence, the temporal redundancy can be used to improve the 

performance of a video text extraction system. 

Text tracking helps to track the movement of a text object over multiple 

frames. It can be classified into intensity-based tracking, signature-based 

tracking, probabilistic tracking and tracking in compressed domain. Given a 

text instance in the current frame, the first two approaches look for potential 

text instances in the next frame that minimize a similarity score. The third 

approach employs a probabilistic framework to handle partial occlusion while 

the fourth and final approach makes use of the information readily available in 

the compressed domain to reduce the computational time. 

There are also methods that do not really track text but rather perform 

text localization for every N
th

 frame. Methods in this category often employ 
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similarity measures to determine whether different text instances belong to the 

same text object. 

Another aspect of text tracking is whether a method tracks general text 

or is designed for specific types of text motions, e.g., text moving from bottom 

to top in movie credits and text scrolling from right to left in news 

programmes. Most of the methods reviewed in this section are for general text. 

In the following sections, the term text object refers to a single text line 

that appears in multiple frames. Each appearance in a particular frame is called 

a text instance. 

 

2.4.1 Localization-based Tracking 
 

As aforementioned, this approach does not really track text but instead 

focuses on matching different instances of the same text object. Several 

criteria have been explored: the degree of overlapping of the bounding boxes 

(Wolf et al. 2002), the sum of absolute differences (Lee et al. 2003), the sum 

of squared differences (Zhao et al. 2011) and the similarity of cumulative 

histograms of intensities (Shiratori et al. 2006; Tanaka & Goto 2008; Goto & 

Tanaka 2009). (Yi et al. 2009) combined these features and also introduced a 

new feature based on the similarity of edge pixel distributions. (Wolf 2003) 

matched text instances by comparing the horizontal and vertical projection 

profiles of Sobel gradient values. (Liu et al. 2010) went one step further and 

performed matching based on not only the magnitudes but also the 

orientations of the gradients. 

The major drawback of this approach is that the tracking result is at a 

very coarse level (because text localization only is performed once every N
th
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frame). The remaining sections cover methods which are capable of tracking 

text at the frame level. 

 

2.4.2 Intensity-based Tracking 
 

(Li & Doermann 1999; Li et al. 2000) performed text tracking using the 

sum of squared differences (SSD) under a pure 2D translational model 

between consecutive frames. This method is not able to track texts with 

complex motions due to the use of a pure translation model and the 

assumption that texts move at a constant velocity. Another drawback of this 

method, as mentioned in (Crandall et al. 2003), is that the SSD takes into 

account both the text pixels and the background pixels and thus the method 

may track both types of pixels, instead of just tracking the text pixels (Figure 

2.11). 

 

2.4.3 Signature-based Tracking 
 

Instead of using the SSD of intensity values, (Wernicke & Lienhart 

2000; Lienhart & Wernicke 2002) computed a signature (or descriptor) of 

each text object. Text localization was performed for every 30
th

 frame. If a text 

object was detected in a particular frame, it would be tracked both forward and 

backward. The signature of a text object was defined as the horizontal and 

vertical projection profiles of gradient magnitudes (Figure 2.12). Although the 

gradient-based signature is more robust than the SSD of intensity values, the 

authors mentioned that this method is still not able to track cases of text fading 

in/out or zooming in/out. 



28 

 

 

Figure 2.11. SSD-based text tracking. Top row: different instances of the same text 

object. Bottom row: plot of SSD values. The SSD values increase significantly when the 

text object moves over a complex background (frame 100). (Figure taken from (Li et al. 

2000).) 

 

    

Figure 2.12. Projection profiles of gradient magnitudes. (Figure adapted from (Lienhart 

& Wernicke 2002).) 

 

Projection profile-based signature was also used in (Qian et al. 2007). 

However, it was computed from the intensity values instead of the gradient 

magnitudes. This method faces the same problem as (Li et al. 2000) because 

intensity-based comparisons are not robust enough when text objects move 

through regions with complex backgrounds. 
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2.4.4 Probabilistic Tracking 
 

Probabilistic tracking has been used for many computer vision tasks. Its 

main advantage is the ability to handle partial/total occlusion of the target (for 

a short period of time) by maintaining multiple hypotheses about the target‘s 

possible locations. 

(Merino & Mirmehdi 2007) adopted particle filtering (Isard & Blake 

1996; Isard & Blake 1998) for text tracking. Each text line was tracked by an 

independent tracker. The state representation was simply the 2D translation 

and rotation of the centroid of a text line. To handle the complex movements 

of text in natural scenes, a new state was generated based on the current state 

with added Gaussian noise. The observation likelihood was computed based 

on the Scale-invariant Feature Transform (SIFT) descriptors (Lowe 2004) of 

individual character CCs. Particle filtering was also used in (Minetto et al. 

2011) for tracking text in outdoor videos. However, the observation likelihood 

was computed based on Histogram of Oriented Gradients features instead. 

The advantage of these methods is that they are able to deal with partial 

occlusion of text objects (Figure 2.13). However, there is still room for 

improvement. For (Merino & Mirmehdi 2007), raw intensity values were used 

for CC generation. More robust features, as explored by text localization 

methods surveyed in section 2.3, can be used. In addition, the paper did not 

explain the handling of the interaction between the independent trackers. 

Switching of targets may occur if nearby text objects happen to contain similar 

characters. Similarly, the performance measures used in (Minetto et al. 2011) 

did not penalize target switch. Hence, it is not clear how well these two 

methods perform in this aspect. Avoiding target switch is important because 
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multiple-frame integration methods (section 2.5.2) assume that the different 

text instances to be integrated belong to the same text object (in other words, 

they must have exactly the same text content). 

 

 

Figure 2.13. By using a probabilistic framework, (Merino & Mirmehdi 2007) is able 

handle partial occlusion. However, the tracking result is at a very coarse level (the whole 

sign instead of individual text lines). (Figure taken from (Merino & Mirmehdi 2007).) 

 

2.4.5 Tracking in Compressed Domain 
 

Similar to text localization, text tracking can be done in the compressed 

domain with the main advantage of reducing the computational time. (Gargi et 

al. 1999) and later (Crandall et al. 2003) explored using motion vectors in the 

P-frames of the MPEG format for text tracking (Figure 2.14). This section 

only covers the latter because it is an improved work of the former. In 

(Crandall et al. 2003), two tracking algorithms were presented, one for rigid 

text and the other for text that could rotate between different frames. Given a 

text instance in the current frame, the first algorithm searched for macroblocks 

in the next frame which pointed back to the text instance. A clustering 

algorithm was then performed on the motion vectors of the macroblocks. The 

mean of the largest cluster was chosen as the representative motion vector and 

was used to compute the position of the text instance. The authors mentioned 



31 

 

that the performance of this algorithm is dependent on the quality of the 

motion vectors, which is in turn affected by the encoding quality of MPEG 

videos. 

The second tracking algorithm allowed text to change size and rotate. 

Since the motions were more complex, MPEG motion vectors were no longer 

used. Instead, the localization method proposed in the same paper was applied 

on every frame (similar to section 2.4.1 on localization-based tracking 

methods). A text object‘s signature was defined based on the character 

contours as it was assumed that the shapes of the characters stayed almost the 

same under growing, shrinking and rotation. A binarization method was 

applied to obtain individual character CCs from the localization result. Feature 

points (points with maximum curvature) were extracted from the CC contours 

and their coordinates were normalized to       to achieve scale invariance. 

The set of normalized coordinates then became the signature of a text object. 

Although it is still computationally expensive (because localization is 

performed on every frame), this method is one of the first attempts to track 

non-rigid text in complex video scenes, e.g., commercials. A drawback of this 

method is that the matching criterion is dependent on the quality of 

binarization. For example, suppose we have two instances of the same text 

object, one on clean background and the other on complex background. For 

the former, it is possible to obtain a good binarization result while for the 

latter, the binarization result may contain a lot of noise. Due to this difference 

in the binarization results, the two instances may be wrongly classified as 

belonging to two different text objects. 
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A closely related work to the above method is (Gllavata et al. 2004). The 

difference is that in the latter, instead of using all the macroblocks, a selection 

process was performed to increase the reliability of the motion vectors. Given 

the bounding box of a text instance in the previous frame, the intersection area 

between a macroblock and this box was required to be more than 30% of the 

macroblock‘s own area. This method shares the same advantages and 

disadvantages as the previous method. In particular, when the motion vectors 

are not available, e.g., in I-frames, both methods attempt to estimate this 

information from other P-frames, e.g., by assuming constant velocity. 

However, this may introduce errors. 

 

 

Figure 2.14. Motion vectors in a P-frame. (Figure taken from (Gllavata et al. 2004).) 

 

2.4.6 Summary 
 

Text tracking plays an important role in a video text extraction system 

because it identifies the different instances of a text object, which is required 

for multiple-frame enhancement (discussed in the next section). Text tracking 

is, however, less researched than text localization (in quantity and to a certain 

extent, quality) (Zhang & Kasturi 2008). Many methods only handle simple 

translational motions, although there have been attempts to track non-rigid text 
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(Crandall et al. 2003) and partially occluded text (Merino & Mirmehdi 2007; 

Minetto et al. 2011). Tracking in compressed domain has also been explored 

by exploiting the motion vectors in the MPEG format. 

An area that can be further explored is to determine which features to 

track. Some methods, e.g., (Lienhart & Wernicke 2002; Gllavata et al. 2004; 

Minetto et al. 2011), simply extract features from all the pixels in text regions 

(including the background pixels). Thus, instead of tracking only the texts, 

these methods may also (wrongly) track parts of the backgrounds. To deal 

with this problem, we present a technique for identifying the text pixels prior 

to tracking in section 4.2. 

 

2.5 Text Enhancement 
 

Although OCR engines work well for scanned documents, they do not 

produce satisfactory results out-of-the-box for natural scene images and video 

frames due to the reasons mentioned in section 2.1. The goal of text 

enhancement (and subsequently text binarization) is to pre-process a localized 

text image so that it can be recognized by an OCR engine. 

For still images such as document images and video key frames, single-

frame enhancement methods can be used to improve the contrast and/or 

resolution of a text image. However, using only a single frame, it is very 

difficult to achieve significant enhancement (Mancas-Thillou 2006). Multiple-

frame enhancement methods, which exploit the redundancy in multiple video 

frames, generally have more success than single-frame enhancement methods. 

Two common types of multiple-frame enhancements are temporal integration 

and super resolution. The former enables better binarization results while the 
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latter helps to enlarge small texts and low-contrast texts so that they can be 

recognized by an OCR engine. 

 

2.5.1 Single-frame Enhancement 
 

As mentioned above, it is difficult to achieve significant enhancement 

using only a single frame. Therefore, existing methods often use simple 

techniques such as contrast stretching/histogram equalization (Kuo & 

Ranganath 1995; Lyu et al. 2005), bilinear interpolation (Sato et al. 1998; Sato 

et al. 1999), bicubic interpolation (Lienhart & Wernicke 2002; Pilu & Pollard 

2002) and edge sharpening (Chen et al. 2001b; Mancas-Thillou 2006). 

Another challenge of performing single-frame enhancement for natural 

scene images and video frames is that the text lines are typically much shorter 

than those in document images. Thus, it may not be feasible to utilize the 

information redundancy, as done in e.g., (Luong & Philips 2008) which 

exploited the multiple occurrences of the same characters in a single document 

image. 

 

2.5.2 Multiple-frame Integration 
 

One of the key differences between videos and images is the temporal 

redundancy, i.e., a text line may appear on the screen for several frames. A 

popular multiple-frame enhancement technique to simplify the background is 

to apply the max (min) operator for dark (bright) text on bright (dark) 

background (Figure 2.15), as done in e.g., (Sato et al. 1998; Sato et al. 1999; 

Lienhart & Wernicke 2002; Teo et al. 2004; Wang et al. 2004; Zhou et al. 
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2007). The rationale for this technique is that the text pixels of the same text 

object (i.e., with the same content) often have the same intensity values 

throughout the multiple frames while the background pixels keep changing. 

Therefore, applying the max/min operator on each individual pixel across the 

multiple frames does not affect the text pixels while simplifying the 

background considerably. This method does not work well if both the text and 

the background are moving, unless registration is performed to align the 

multiple text instances. Another drawback of the max/min operator is that it 

can be affected by a single ―outlier‖ text instance, e.g., an instance that is 

much brighter or darker than the rest. 

 

 

Figure 2.15. Result of the max/min operator (b) on text instances (a). In this case, the 

min operator is used because text is brighter than the background. (Figure adapted from 

(Lienhart 2003).) 

 

An alternative technique is to take the average of the text instances 

(Figure 2.16), as done in e.g., (Li & Doermann 1999; Hua et al. 2002; Guo et 

al. 2007). 

Furthermore, instead of using all the text instances, several methods 

have been proposed to select only the good frames. By assuming that text was 

monochrome and brighter than the background, (Hua et al. 2002) considered 

only frames of high contrast, which was measured by the percentage of dark 

pixels (Figure 2.17). The same idea could also be applied at the block level 
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(Figure 2.18). This method has two drawbacks. First, the selection criteria are 

rather simple and thus it does not work well for frames with complex 

backgrounds. Second, it is limited to bright text on dark background and does 

not deal with the other text polarity (dark text on bright background). 

 

 

Figure 2.16. Taking the average of text instances (a)-(d) helps to simplify the background 

(e). (Figure adapted from (Li & Doermann 1999).) 

 

 

Figure 2.17. The results of averaging all text frames (a) and averaging only the selected 

frames (b). The contrast between text and background in the latter is improved. (Figure 

taken from (Hua et al. 2002).) 

 

 

Figure 2.18. Averaging at the frame level (left) and at the block level (right). The latter 

gives better contrast around the individual words. (Figure adapted from (Hua et al. 

2002).) 
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(Goto & Tanaka 2009) tested other criteria for frame selection based on 

the edge information and Otsu‘s binarization result. The best performing 

criteria were the number of edges and the sum of absolute values of edge 

intensities. (Yi et al. 2009) designed four filters to extract text strokes in four 

directions. Text instances were sorted based on their responses to the four 

filters. Only a few clearest instances were selected for enhancement. Another 

improvement of this work over the previous methods was the use of both the 

max/min operator and averaging. Based on Otsu‘s binarization result, 

averaging was applied for text pixels while the max/min operator was applied 

for background pixels. Like (Hua et al. 2002), this work is limited to bright 

text on dark background. 

 

2.5.3 Multiple-frame Super Resolution 
 

Other than multiple-frame integration, another approach to utilize the 

temporal redundancy in videos is multiple-frame super resolution. According 

to (Mancas-Thillou 2006), although there are many super resolution methods, 

most of them are for general images and do not exploit the characteristics of 

text. The two methods reviewed in this section have been applied for text in 

video/image sequences. They both formulate super resolution as an estimation 

of a high resolution image given a set of low resolution observations. In 

addition, both methods require the low resolution images to be registered 

beforehand. 

(Capel & Zisserman 2000) compared four different estimators: an ML 

(maximum likelihood) estimator, an ML estimator with error back-projection, 

an MAP (maximum a posteriori) estimator and a Total Variation estimator. 
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The likelihood of an observed low resolution image given a high resolution 

estimate was: 

 

          
 

    
    

                

   
 

   

 
(2.1) 

 

where   ,    and     were the observed low resolution image, the high 

resolution estimate and the estimate‘s projection to low resolution using the 

assumed image acquisition model, respectively.   was the variance of the 

Gaussian image noise (whose mean was assumed to be zero). With this 

formulation, the ML estimator did not work well and introduced a lot of noise 

in the high resolution estimate. This is because the problem was ill-posed due 

to the limited number of low resolution observations and the unknown 

blurring process (Mancas-Thillou 2006). 

The second estimator improved the result of the ML estimator by 

incorporating an error back-projection method (Irani & Peleg 1991). Given a 

high resolution estimate, this method computed the errors between the 

observed low resolution images and the estimate‘s projection to low resolution 

(using the assumed image acquisition model). These errors were then mapped 

back to high resolution and used to update the estimate iteratively. 

MAP, the third estimator, added a regularization term based on the 

Huber gradient penalty function and thus encouraged smooth and piecewise 

constant results. The last estimator achieved a similar effect by incorporating a 

Total Variation regularization term. Experimental results showed that the last 

two estimators produced visually sharper results than the first two estimators. 

It was also noticed that the Total Variation estimator required fewer 
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parameters than the MAP estimator. Unfortunately, the improvement in 

recognition rate was not reported. 

In another approach, (Donaldson & Myers 2005) used a similar 

likelihood as the above method and compared two different priors for MAP 

estimation: a smoothness prior and a bimodality prior. While the former had 

often been used in the literature for general images, the latter was specific to 

text and had only been explored in very few works. The bimodality prior, 

which was defined as an exponential of a fourth-order polynomial, worked 

based on the assumption that the intensity histogram of a text image consisted 

of two peaks, one for the foreground and the other for the background (Figure 

2.19). The experiments were conducted using three different priors: only the 

smoothness prior, only the bimodality prior and a combined smoothness-

bimodality prior. The bimodality prior outperformed the smoothness prior. 

Moreover, adding the smoothness constraint to the bimodality prior did not 

improve the performance noticeably (Figure 2.20). This work could be further 

improved in the following two areas. First, the authors mentioned that the 

form of the bimodality prior was rather simplistic because it assumed that the 

foreground peak and the background peak had the same variance. Therefore, 

the bimodality model could be made more accurate (at the cost of a more 

complex optimization process). Second, the method is not fully automatic 

because parameters such as the blur diameters and the variances of the 

foreground and background peaks had to be manually tuned. 
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Figure 2.19. The bimodality model used in (Donaldson & Myers 2005). 0 and 1 are the 

two intensity peaks. (Figure taken from (Donaldson & Myers 2005).) 

 

 

Figure 2.20. Super resolution of text on license plates using 16 images. From left to right, 

top to bottom: one of the low resolution images, bicubic interpolation, ML estimation, 

MAP estimation with bimodality prior, MAP estimation with smoothness prior and 

MAP estimation with combined bimodality-smoothness prior. The text strings are the 

recognition results. (Figure taken from  (Donaldson & Myers 2005).) 

 

2.5.4 Summary 
 

In summary, text enhancement methods can be classified into single-

frame enhancement and multiple-frame enhancement. Due to the limited 

information available, the former often employs simple techniques such as 

contrast stretching, bilinear/bicubic interpolation and edge sharpening. In 

section 4.1, we present a method for single-frame enhancement. We go 

beyond the simple techniques and propose a combination of character 
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segmentation and binarization
1
. In this way, our method can better adapt to the 

local background of each character and produce a superior enhancement 

result. 

For multiple-frame enhancement, the two common techniques are 

temporal integration and super resolution. Given multiple instances of a text 

object, temporal integration helps to improve the contrast and simplify the 

background by using averaging or the max/min operator. A drawback of these 

operations is that they may also accidentally enhance the background regions. 

Hence, to overcome this drawback, we describe a method that focuses on only 

the text pixels in section 4.2. Our experiments show that the proposed method 

outperforms common operations such as average and max/min. 

Another approach that utilizes multiple frames is super resolution, which 

aims to produce a high resolution estimate from low resolution observations. 

Both of the methods reviewed in this section use an MAP formulation and 

introduce text-specific priors such as smoothness and bimodality. 

 

2.6 Text Binarization 
 

Given a localized and enhanced text region, the binarization step helps 

to produce a black and white image which can be recognized by an OCR 

engine. Text pixels should be preserved and set to black while background 

pixels should be suppressed and set to white. Although binarization is usually 

performed at the text line level (i.e., the whole localized text region), 

                                                 

 
1
 Our work can be classified as both an enhancement method (because it helps to enhance the 

contrast of an image) and a binarization method (because it produces a black and white image 

as the final output). In section 4.1, we choose to present it as an enhancement method. 
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sometimes it is also done at the word level (Hua et al. 2002) and at the 

character level (Tang et al. 2002; Huang et al. 2009). The advantage of using a 

finer level is that the local background of each word/character may be less 

complex than the background of the whole line. Hence, it may be easier to 

perform binarization at these levels. In addition, different words/characters 

could be binarized using different parameter values. 

A sub-problem of binarization is to determine text polarity, i.e., whether 

a text region contains normal text (bright text on dark background) or inverse 

text (dark text on bright background). This is required because some OCR 

engines only work for inverse text (Li et al. 1998). Some methods attempt to 

classify text polarity (Crandall et al. 2003; Lyu et al. 2005; Liu et al. 2006) 

while others simply assume a fixed polarity (Ngo & Chan 2005; Liu & Wang 

2010). 

Binarization is not a new problem and many methods have been 

proposed for document images. This section focuses on binarization methods 

that have been applied for scene images and video frames. These methods can 

be classified into three main approaches: intensity-based, color-based and 

stroke-based. The first approach analyzes the intensity histogram of a text 

region to find suitable binarization thresholds. Methods in this approach can 

be further classified as global and local, depending on whether they use a 

single threshold for the whole text region or different thresholds for different 

local regions. The second approach assumes that the characters in a text region 

have similar colors and thus often performs color clustering to identify the 

dominant peaks in the color space. The third and final approach focuses on 

extracting text strokes. A region growing process may also be used to include 
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neighboring pixels of the stroke pixels to obtain more complete shapes of the 

characters. 

 

2.6.1 Intensity-based Binarization 
 

Many traditional binarization algorithms for document images, e.g., 

(Otsu 1979; Niblack 1986; Sauvola & Pietikäinen 2000), belong to this 

approach. Although some papers for scene images and video frames use a 

global thresholding algorithm, e.g., Otsu‘s method (Chen et al. 2001b), most 

papers utilize an adaptive thresholding algorithm, e.g., Niblack‘s method (Li 

& Doermann 1999; Newman et al. 1999; Chen & Yuille 2004; Pan et al. 2011) 

and Sauvola‘s method  (Wolf et al. 2002), due to their abilities to deal with 

intensity variations and complex backgrounds. 

(Lyu et al. 2005) proposed an adaptive version of Otsu‘s method, 

together with an ―inward filling‖ algorithm to clean up the binarization result. 

The method first moved a window horizontally across a text region and 

binarized the window‘s content using Otsu‘s algorithm. After that, another 

pass was done in the vertical direction in a similar manner. Given the 

binarization result, the method applied an ―inward filling‖ process, a variant of 

the seed filling process proposed in (Lienhart & Wernicke 2002). The aim was 

to clean up non-text pixels by performing flood filling from the boundary. 

Figure 2.21 compares the binarization results of this method, Otsu‘s method 

(Otsu 1979) and Sato‘s method (Sato et al. 1998) (which will be described in 

section 2.6.3 on stroke-based binarization methods). 
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Figure 2.21. From top to bottom: a text region, the binarization results by (Lyu et al. 

2005), by (Otsu 1979) and by (Sato et al. 1998), and the ground truth. (Figure adapted 

from (Lyu et al. 2005).) 

 

The drawback of the above methods is that they do not model the spatial 

relationships between adjacent pixels. To overcome this problem, (Wolf & 

Doermann 2002) posed the binarization problem as an MAP estimation 

problem, in which Markov Random Field (MRF) was employed to capture the 

spatial relationships. The likelihood (or conditional density) was modelled as 

Gaussian noise with its mean being the shift amount of Niblack‘s adaptive 

threshold values from 127.5 (the average of 0 and 255) and its variance 

estimated using Otsu‘s method. The prior distribution was modelled by MRF 

and was learned from training data of binary characters for 4 × 4 pixel cliques. 

By capturing the spatial relationships between the pixels, this method was able 

to recover some of the missing pixels (Figure 2.22). However, its 

improvement in terms of the recognition rate was not significant. It only 

slightly outperformed Sauvola‘s method, a variant of Niblack‘s method. The 

authors mentioned that the method‘s performance is sensitive to parameter 

values, e.g., the variance of Gaussian noise. 

Since each binarization method has its own strengths and weaknesses, 

(Chen et al. 2002; Chen et al. 2004a) proposed a multi-hypothesis approach in 

which pixels within a text region were clustered into K classes, with K varying 

from 2 to 4. Different clustering and labelling algorithms were tested: EM 
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Figure 2.22. Binarization results of Sauvola‟s method (a) and the MAP-MRF method in 

(Wolf & Doermann 2002) (b). By capturing the spatial relationships, the latter is able to 

recover some of the missing pixels. (Figure taken from (Wolf & Doermann 2002).) 

 

(Expectation Maximization), K-means and MRF. For each hypothesis (i.e., 

each of the K classes), CC filtering was used to remove non-text CCs based on 

geometric constraints. The experiments showed that K = 2 (i.e., bimodal) 

combined with either K-means or MRF gave the best results. The 

disadvantage of using multiple hypotheses is the high computational time. The 

MRF results of this work also confirmed those of (Wolf & Doermann 2002): 

modelling the spatial relationships of the pixels does not improve the 

recognition rate significantly. 

 

2.6.2 Color-based Binarization 
 

While the previous approach only uses intensity values, this approach 

also incorporates color information to obtain better binarization results. 

Similar to color-based text localization, color-based binarization mainly relies 

on the assumption that the characters in the same word/line have similar 

colors. In (Liu et al. 2010; Liu & Wang 2010), the text color was determined 

as the dominant peak in a 512-bin RGB color histogram. All the pixels in the 

corresponding histogram bin were marked as text pixels. As a verification 

step, the brightness values of the text pixels were also required to be greater 

than a pre-defined threshold. Due to the last step, these methods only handle 

bright text on dark background. 
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To deal with the problem of text polarity, (Wernicke & Lienhart 2000; 

Lienhart & Wernicke 2002) compared two color histograms, one covering the 

middle rows of a text region and the other covering a few rows immediately 

above and below the text region. The maximum and minimum values of the 

difference histogram were considered as the dominant text and background 

colors, respectively. Text polarity was then determined by simply comparing 

these two colors. For binarization, a seed filling algorithm was used to remove 

background pixels. The bounding box of a text region was first extended 

horizontally by 20% and vertically by 40% to ensure that no text pixels 

touched the boundary. After that, for every pixel on the boundary, a 4-

neighborhood flood filling algorithm was applied where connectivity was 

defined based on the Euclidean distance of RGB colors. Finally, CC filtering 

based on geometric constraints was used to clean up the binarization result. As 

discussed in (Lyu et al. 2005), the drawback of this method is that the seed 

filling algorithm sometimes remove true text pixels which happen to touch the 

boundary (even after the bounding box has been extended). 

Like the previous approach, this approach also has multi-hypothesis 

methods. In (Mancas-Thillou & Gosselin 2007), the foreground hypotheses of 

a text region were obtained by performing K-means clustering with two 

different measures: Euclidean distance and cosine-based similarity. Since 

these two measures were complementary, each was useful for different cases 

of text regions (Figure 2.23). The best hypothesis was chosen based on the 

average response to Log-Gabor filters, which were expected to produce large 

responses for text strokes. This method works well for natural scene images. 

However, the authors mentioned that using color information alone may not be 
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sufficient for challenging cases such as ―embossed‖ texts (which have similar 

colors as the backgrounds). 

 

 

Figure 2.23. Different measures work well for different inputs: the input text regions 

(left) and the two foreground hypotheses, one based on Euclidean distance (middle) and 

the other one based on cosine similarity (right). (Figure taken from (Mancas-Thillou & 

Gosselin 2007).) 

 

2.6.3 Stroke-based Binarization 
 

Since a character‘s shape can be approximated by its strokes, methods in 

this approach extracts text strokes from an input text region and use them as a 

―base‖ for the final binarization result. A region growing process may be used 

to include more pixels and obtain more complete shapes of the characters. 

(Sato et al. 1998; Sato et al. 1999) designed four filters for extracting 

text strokes in four directions: horizontal, vertical, left diagonal and right 

diagonal. The filter responses were combined in a unified stroke map. Global 

thresholding with a fixed threshold was used to obtain the final binarization 

result. A drawback of this method, as discussed in (Lyu et al. 2005), is that it 

generates relatively weaker responses for stroke intersections (which appear 

more in Chinese texts than in English texts) than individual strokes. 

Another stroke filter, with two parameters for scale and orientation, was 

designed by (Liu et al. 2006; Jung et al. 2008) (Figure 2.24a). The mean 

intensity values in the three local rectangular regions were used to calculate 

the filter response in two different ways, called the ―bright‖ and ―dark‖ 
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responses. Pixels of the correct polarity and closer to the filter center would 

generate greater responses. For binarization, the filter was applied on a text 

region with three different scales and four different orientations. From all the 

combinations of these two parameters, two overall response maps (one for 

bright and the other for dark) contained the largest possible response at each 

pixel. Given these two maps, SVM was used for text polarity classification 

based on two features: the sum of the response values and the number of edge 

points. The map chosen by SVM was then binarized by a simple adaptive 

thresholding algorithm. The authors mentioned that this method has 

difficulties with text lines which contain more than one polarity (Figure 

2.24b). 

 

               

 (a) Stroke filter (b) Sample result for text 

  with two polarities 

Figure 2.24. (a) The stroke filter used in (Liu et al. 2006). (b) This method does not 

handle text with two different polarities well. (Figures adapted from (Liu et al. 2006).) 

 

2.6.4 Summary 
 

In summary, text binarization converts an input text region to a black 

and white image which can be recognized by an OCR engine. It can be 

classified into three approaches: intensity-based, color-based and stroke-based. 

In addition, several methods have shown that different binarization algorithms 
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perform well for different cases of input text regions. Hence, a multi-

hypothesis approach can be used to achieve better recognition accuracy at the 

cost of increasing the processing time. 

An area that can be further explored is the use of binarization at a finer 

level (i.e., either at the word level or at the character level instead of at the text 

line level). Its advantage is that the local background of each character can be 

much simpler than the overall background of the whole text line. However, 

only a few works have pursued this direction (Hua et al. 2002; Tang et al. 

2002; Huang et al. 2009). Our work in section 4.1 also follows this direction. 

Our experiments show that performing binarization at the character level helps 

to improve the recognition accuracy. 

 

2.7 Text Recognition 
 

Text recognition aims to produce the final output of a text extraction 

system in the form of text strings, which can be used for indexing purposes. 

There are two main approaches: recognition using OCR and recognition 

without OCR. The first approach relies on text enhancement (section 2.5) and 

text binarization (section 2.6) to produce a black and white image from a 

localized text region. This binary image is then fed into an OCR engine, e.g., 

ABBY FineReader
2
 and Tesseract

3
, to get the recognized text string. However, 

because OCR engines are designed for scanned documents of high resolution 

and with little distortion, they may not be able to recognize video texts of very 

low resolutions or scene texts with heavy distortions, e.g., perspective 

                                                 

 
2
 http://www.abbyy.com/ 

3
 http://code.google.com/p/tesseract-ocr/ 
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distortions. To overcome this problem, in the second approach, researchers use 

their own feature extraction schemes and classifiers to achieve better 

recognition accuracy. 

 

2.7.1 Recognition using OCR 
 

One of the main advantages of using an OCR engine for recognition is 

that the engine typically makes extensive use of a language model (at the 

character level and at the word level) to improve the recognition accuracy. 

Thus, many methods simply use an OCR engine as a black box to recognize 

the binarized text regions (Lienhart & Wernicke 2002; Chen & Odobez 2005; 

Lyu et al. 2005; Wang et al. 2008; Huang et al. 2009; Liu et al. 2009). This is 

a sensible approach for texts which have sufficient contrast against the local 

backgrounds and can be well binarized by a text binarization algorithm. An 

example is video graphics text. 

Various post-processing techniques can be used to refine the OCR 

output. For domain-specific applications, the recognition rate can be improved 

by introducing a lexicon. For example, a lexicon of team names and player 

names can be used for sports videos (Zhang et al. 2002; Ballan et al. 2010). A 

recognized text string can then be compared with the lexicon words. If the edit 

distance is below a pre-defined threshold, it can be corrected to the nearest 

word in the lexicon. Otherwise, if the distance is greater than the threshold, the 

string can be rejected. 

For general post-processing, a popular technique is to use multiple 

hypotheses. (Chen & Odobez 2005) coupled binarization and recognition in a 

particle filtering algorithm and used a language model to combine the OCR 
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outputs of multiple hypotheses into a final text string. The state representation 

of the particle filtering algorithm was a pair of upper and lower binarization 

thresholds (assuming a 3-class model for the intensity histogram of a text 

region). The state transition probability within a small range of the current 

state followed a uniform distribution, with some Gaussian noise added at the 

boundary of the uniform range. The observation likelihood of a state was 

obtained by first binarizing the text region according to the state‘s pair of 

thresholds, getting the OCR output and finally computing its probability using 

a language model. The best K hypotheses from the above procedure went 

through a voting process which combined their OCR outputs into a single text 

string. Dynamic programming was used to align the multiple OCR outputs. 

Each character‘s confidence value in a column was defined based on the 

number of its occurrences in that column (Figure 2.25). 

 

 

Figure 2.25. The voting process used in (Chen & Odobez 2005) to combine the OCR 

outputs of different binarization hypotheses (all rows except the last one) into a single 

text string (the last row). (Figure adapted from (Chen & Odobez 2005).) 

 

Similar voting-based post-processing methods were also used in (Mita & 

Hori 2001) and (Liu et al. 2009). The difference between these two methods 
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and the previous method is that the multiple OCR outputs came from 

recognizing different text instances of the same text object in different video 

frames, rather than from recognizing different binarization hypotheses of the 

same text instance. 

Another technique that has been used for post-processing is document-

specific modelling (Kae et al. 2010). This method first performed a 

consistency check on the OCR output to identify a set of high confidence 

characters, i.e., characters whose different instances had consistently been 

given the same labels by an OCR engine. From this set of characters, it was 

possible to build a document-specific font model (instead of using the OCR 

engine‘s pre-trained font models). A multiclass SVM based on SIFT 

descriptors (Lowe 2004) was used for recognition. This method has offered a 

new perspective into the recognition problem. However, its success depends 

on the amount of information redundancy. Although this is inherent in 

document images, it may not be so for scene texts and video texts, which tend 

to be much briefer. For the case of video texts, characters from different 

frames can be used at the risk of violating the assumption made by this 

method: the characters should be of the same or very similar fonts. 

In summary, recognition using OCR is a sensible approach for texts that 

can be well binarized. However, this approach has two drawbacks. First, for 

text regions with complex backgrounds, e.g., scene texts, text binarization may 

lead to information loss. Second, as mentioned before, because OCR engines 

are designed for the controlled settings of scanned documents, they are not 

able to handle texts with low resolutions, heavy distortions or fancy fonts. 
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2.7.2 Recognition without OCR 
 

This approach overcomes the drawbacks of the previous one by using 

custom-built features and classifiers. Many methods in this approach also 

recognize grayscale/color images directly, thereby avoiding information loss. 

According to (Casey & Lecolinet 1996), text recognition consists of four 

steps: format analysis, character segmentation, feature extraction and 

classification (Figure 2.26). The text localization step discussed in section 2.3 

has already played the role of format analysis, i.e., locating the text lines. The 

remainder of this section covers the last three steps of text recognition: 

character segmentation, feature extraction and classification. It also surveys 

various methods for combining individual character recognition hypotheses 

into final word recognition results. 

 

 

Figure 2.26. The four main steps of text recognition. (Figure adapted from (Casey & 

Lecolinet 1996).) 

 

2.7.2.1 Character Segmentation 

 

Character segmentation, the splitting of a text line into individual 

character images, is a well-known problem in document analysis, especially 

for handling touching handwritten characters. (Casey & Lecolinet 1996) 

provided a comprehensive survey of character segmentation methods for 

document images. There are three main approaches mentioned in the paper: 

dissection, the decomposition of a text line image into individual character 

images, recognition-based, the use of recognition results to provide feedback 
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for segmentation, and holistic, the direct recognition of words (without 

segmentation) through matching features such as ascenders and descenders. 

Many of the methods surveyed in the above paper were designed solely 

for document images and thus rely on CC analysis. However, this is not 

suitable for scene and video characters because text pixels cannot be reliably 

extracted as complete CCs due to the complex backgrounds and low 

resolutions of the text lines. Therefore, a number of character segmentation 

methods for scene characters and video characters have been proposed and 

most of them belong to the first approach. The second approach is not 

common because the recognition of scene characters and video characters is a 

challenging problem itself, while the third approach is limited to predefined 

lexicons. 

A common video character segmentation method is projection profile 

analysis (Lienhart & Wernicke 2002). The edge information (or other kinds of 

―energy‖) in each column is analyzed to distinguish between columns that 

contain text and gap columns. The former is often assumed to have higher 

energy than the latter. Heuristic rules have also been proposed to further split 

and merge the segmented regions based on assumptions about the characters‘ 

widths and heights (Miao et al. 2007; Huang et al. 2009). Although these 

methods are simple and fast, it is difficult to determine a good threshold that 

works for images of different contrast (Figure 2.27). In addition, because they 

work based on columns, they can only produce vertical cuts, which are not 

sufficient for difficult cases such as touching characters. (In these cases, more 

flexible cuts, e.g., curved cuts, would be needed to separate the characters 

from each other.) 
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Figure 2.27. The results of projection profile analysis are sensitive to threshold values. 

With a high threshold, true cuts are missed (left), while with a low threshold, many false 

cuts are detected (right). 

 

To overcome this problem, a number of papers, inspired by works on 

touching handwritten characters, modelled the segmentation problem as a 

minimum cost path finding problem. (Kopf et al. 2005) used Dijkstra‘s 

algorithm to perform path finding from the top row to the bottom row of the 

input image. A path‘s cost was defined as the cumulative absolute difference 

in grayscale intensities between consecutive pixels, based on the assumption 

that the background region had little variation in intensity. This method may 

not work well for images with complex backgrounds. In a similar approach, 

(Tse et al. 2007) applied path finding recursively until the segmented regions 

met the stopping criteria, e.g., their widths were below a threshold. The major 

drawback of this method is that it requires binarization to get CCs, which is 

extremely difficult to do reliably for scene characters and video characters, as 

aforementioned. 

Different from the previous methods, (Saidane & Garcia 2008) used a 

machine learning technique, convolutional neural networks, for segmentation. 

The input was the three images corresponding to three color channels of the 

text line image. The output was a vector which classified whether each column 

was a gap column between consecutive characters. The drawback of this 

method is that it allows only vertical cuts. 
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2.7.2.2 Feature Extraction and Character Classification 

 

For a comprehensive survey of feature extraction methods for character 

recognition in document images, the reader is referred to (Due Trier et al. 

1996). Some of the best performing features mentioned in that survey have 

been applied for scene text and video text. For example, (Zhang et al. 2002) 

used Zernike moments (Khotanzad & Hong 1990) to recognize text in 

basketball videos. 

Gabor features, although not mentioned in the above survey, are also 

quite popular for character recognition. The advantage of Gabor features is 

that they can be extracted directly from grayscale images. (In contrast, features 

such as Zernike moments require binary inputs.) This is important because the 

binarization process may lose some valuable information available in the 

original grayscale image. In (Chen et al. 2004c), each character was 

normalized in size and divided into local regions using a 7 × 7 grid. Local 

Gabor wavelet features were then extracted from each region. An earlier work 

by (Yoshimura et al. 2000) also used Gabor filters but in a different way. 

Instead of pure Gabor jets (the responses to Gabor filters), this work used the 

accumulated values in four directions (Figure 2.28). The latter was found to be 

more robust to the different appearances of the characters. 

Recently, Histogram of Oriented Gradients, a feature that has been 

shown to work well for many object recognition problems, has been adopted 

for recognizing natural scene characters in (Wang & Belongie 2010; Wang et 

al. 2011; Mishra et al. 2012a; Mishra et al. 2012b). Unsupervised feature 

learning has also been explored for the same problem in (Coates et al. 2011; 

Wang et al. 2012). Although these features have shown promising results on 
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Figure 2.28. Gabor jets (left) and the corresponding accumulated values in four 

directions (right). (Figures taken from (Yoshimura et al. 2000).) 

 

datasets for frontal scene characters, they are not robust to rotation and 

viewpoint change. Thus, they may not work well for scene characters which 

are affected by perspective distortions. 

 

2.7.2.3 Word Recognition 

 

The word recognition result may not simply be the combination of the 

characters with the highest estimated probabilities. The rationale is that there 

may be errors in the estimated probabilities. Furthermore, in a given language, 

different character combinations may have drastically different frequencies. 

Therefore, most methods use additional information to find the most likely 

word from the set of character probabilities. 

(Zhang & Chang 2003) proposed a framework which allowed for 

integration of multiple language models from different sources, e.g., 

combining a general linguistic corpus and the (specific) surrounding text in the 

web page that contained a video. The problem of word recognition was posed 

as an MAP estimation problem. The conditional density function was 

computed based on the features extracted, e.g., Zernike moments, and the prior 

was a linear combination of the different language models. The combination 

weights were learned from training data. 
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(Weinman & Learned-Miller 2006; Weinman et al. 2009; Smith et al. 

2011) proposed a novel similarity constraint to force characters which were 

visually similar to take the same label. The appearance features of each 

character were extracted using Gabor filters at 3 different scales and 6 

different orientations. The similarity between two characters was then 

computed using the vector angle distance. The final probabilistic framework 

classified a character using three different sources of information: the 

individual character appearance, the language model and the similarity 

between all pairs of characters in the input text region. 

(Wang & Belongie 2010; Wang et al. 2011) adopted Pictorial Structures 

(Felzenszwalb & Huttenlocher 2005), an object recognition framework, for 

word recognition. In this framework, each word was considered as an object. 

The characters of the word then became the object parts. The score of a word 

took into account both the individual character probabilities and the regularity 

of the characters (in terms of sizes, distances and so on). Dynamic 

programming was used to return the top-scoring words. These works have 

shown that object recognition frameworks can be adopted for text recognition. 

However, their drawback is that they require all characters of a word to be 

correctly recognized. In other words, they cannot handle cases where one or 

more characters are occluded. 

To overcome this drawback, recent works formulate word recognition as 

an optimization problem. (Wang et al. 2012) estimated the probabilities of the 

character candidates and used a variant of the Viterbi algorithm (Sarawagi & 

Cohen 2004) to find the optimal alignment between the character candidates 

and the words in a lexicon. (Mishra et al. 2012a; Mishra et al. 2012b) went one 
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step further and incorporated the language model, i.e., character n-grams, into 

the optimization process. The character candidates were used to build a 

Conditional Random Field (CRF) (Lafferty et al. 2001) with unary and 

pairwise terms. The unary terms captured the character probabilities while the 

pairwise terms captured the character bigram statistics. Finally, the CRF 

energy was minimized to find the optimal word. Similarly, (Novikova et al. 

2012) used weighted finite-state transducers (Mohri et al. 2002; Povey et al. 

2012), which was capable of capturing both the character probabilities and the 

language model, for optimization. The drawback of these works is that they 

were only tested on scene texts that were frontal parallel to the image plane. 

In practice, scene texts can appear with perspective distortion. One 

approach is to rectify perspective texts prior to recognition, e.g., (Dance 2001; 

Myers et al. 2005; Neumann & Matas 2010). However, these methods rely 

heavily on the quality of the binarized character shapes. Thus, although they 

work for texts on plain backgrounds, it is unclear whether they can handle 

texts with cluttered backgrounds. In a recent work, (Li & Tan 2010) 

recognized perspective characters without rectification. However, this work 

only focused on character recognition, and did not address word recognition. 

The dataset was also limited to simple sign images. Therefore, despite its 

importance, the issue of handling perspective texts has not been adequately 

addressed by existing works. 

 

2.7.3 Summary 
 

In summary, there are two approaches to text recognition: recognition 

using OCR and recognition without OCR. Methods in the first approach 
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simply use existing OCR engines as a black box and instead focus on pre-

processing, e.g., enhancement and binarization, and post-processing, e.g., 

using lexicon, language model, and voting based on the OCR outputs of 

multiple hypotheses. 

In the second approach, researchers propose their own character 

segmentation and recognition schemes to improve the recognition accuracy. 

For character segmentation, many methods only allow vertical cuts and thus 

may fail to separate low contrast and touching scene characters and video 

characters. To overcome this drawback, we propose a character segmentation 

technique that is able to produce curved segmentation paths in section 4.1. For 

character recognition, various schemes have been explored, from traditional 

features such Zernike moments and Gabor filters to more recent techniques 

such as Histogram of Oriented Gradients and unsupervised feature learning. 

Finally, for word recognition, most methods use not only the character 

probabilities but also additional information like the language model to find 

the most likely word. To incorporate multiple sources of information, different 

optimization frameworks have been used such as CRF and weighted finite-

state transducers. 

It is worth mentioning that most recognition methods are still limited to 

texts that are frontal parallel to the image plane. However, in many real-world 

scenarios, texts (especially those in natural scene images) suffer from various 

deformations such as perspective distortions. Therefore, to address this issue, 

we present a method for recognizing perspective scene texts in Chapter 5. 
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This section concludes our review of existing text extraction techniques. 

Based on the review, we have identified several research gaps. The following 

chapters present our works to address them.  
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Chapter 3  

Text Localization in Natural Scene Images 

and Video Key Frames 

This chapter describes our work on text localization. We have proposed 

two methods, one for natural scene images and the other for video key frames. 

The first method introduces novel inter-character features, which are extracted 

from the spaces between consecutive characters, to localize difficult cases of 

scene text. The second method employs skeletonization to localize multi-

oriented video text. This is an improvement over existing works, which 

typically pick up only horizontal text. 

 

3.1 Text Localization in Natural Scene Images 
 

3.1.1 Motivation 
 

From our survey in section 2.3, we have noticed that most existing 

methods focus solely on character features (e.g., character intensity values 

(Neumann & Matas 2012) and character stroke widths (Epshtein et al. 2010)). 

There has been little work on utilizing the gap regions between consecutive 

characters for the purpose of text localization. This information is useful for 

cases in which the character edges are broken and not reliable for extracting 

features, but the regular gaps between them are still visible. Therefore, we 

propose a novel method that combines both the character features and the gap 

features. 
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Our contributions are two-fold. (1) To exploit both text and gap features, 

we employ Gradient Vector Flow (GVF) (Xu & Prince 1998) for symmetry 

detection. To the best of our knowledge, this is the first attempt to use GVF 

for text localization. (2) Our method is shown to work well on two public 

datasets. 

 

3.1.2 Proposed Method 
 

We first use GVF to detect local symmetries and identify character 

candidates. The second step then groups these characters into text lines based 

on the similarity in size, GVF distance and color. The final step performs 

texture analysis to remove false positives. 

 

3.1.2.1 Text Candidate Identification 

 

Characters in a line exhibit many local symmetries. In this work, we 

focus on two types of symmetries: intra-character symmetry (or self-

symmetry) and inter-character symmetry (or symmetry between consecutive 

characters). The former arises because of the symmetry between the inner and 

outer contours of the same character. The latter is due to the correspondence 

between the outer contours of two consecutive characters. 

Therefore, to locate text regions, we adopt GVF (Xu & Prince 1998) to 

extract both types of symmetries. GVF is traditionally used together with 

active contour for non-rigid registration and motion tracking. Unlike the 

normal gradient which gives little information in homogenous regions, GVF 

propagates the gradient information, i.e., the magnitude and direction, from 
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nearby regions into these regions. Hence, it helps to increase the capture range 

of the edges and attract the active contour into concave regions. The GVF field 

is computed by minimizing the below expression (Xu & Prince 1998): 

 

       
    

    
    

                    (3.1) 

 

where                        is the GVF vector field.        and 

       represent the horizontal component and the vertical component of a 

GVF vector, respectively.        is the edge map of the input image (Figure 

3.1a and b). 

A property of the GVF field is that starting from any point, if we follow 

the GVF directions, we will reach a nearby edge. Thus, local symmetry points 

are identified as the locations where two neighboring GVF arrows are opposite 

of each other, because this indicates that the region is at the center of two 

edges (Figure 3.1c). 

Concretely,       is a vertical symmetry point if and only if: 

 

 

        

          

                           

  (3.2) 

 

Intuitively, the above three conditions require that: the GVF vector at       

points to the left, the GVF vector at         points to the right, and there is 

an adequately large angle (e.g., greater than    ) between them. The last 

condition ensures that there are enough attraction forces from the edges on the 

two sides. 
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 (a) Edge map (b) GVF field 

 

 (c) Zoomed-in GVF field (d) 2 gap SCs and 6 text SCs 

 between ‗n‘ and ‗e‘ 

Figure 3.1. GVF helps to detect local text symmetries. In (d), the 2 gap SCs and the 6 text 

SCs are shown in gray. The two gap SCs are between „o‟ and „n‟, and between „n‟ and 

„e‟. The remaining SCs are all text SCs. 

 

In addition to the vertical direction, we derive similar constraints for 

symmetry points in three other directions: horizontal, left-diagonal and right-

diagonal. Together, they represent the four main orientations of text strokes 

(Liu et al. 2005), and thus help to detect most of the local symmetries in text 

regions. 

To illustrate the effectiveness of the proposed symmetry detection, we 

first apply it to a single text line (Figure 3.1d). The intra-character and inter-

character symmetries are shown in gray. Due to the structure of text, 

symmetry points of the same type often form ―clusters‖. Hereafter, we refer to 

these clusters as symmetry components (SC). 

For the purpose of scene text localization, we use the same process on 

full images. In Figure 3.2b and c,        in Equation (3.1) is set to the Sobel 

edge map and the Canny edge map  (Canny 1986), respectively. Similar to the 

previous example, most local symmetries in text regions are picked up. 

Gap SCs 

Text SCs 

Text 

SCs 
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Although SCs are also detected for symmetrical structures in the background, 

it is possible to distinguish between the two cases. 

The key difference between text SCs and non-text SCs is that when GVF 

is run on two different edge maps, the former remains relatively stable while 

the latter is highly inconsistent. The rationale is that the character edges in the 

two edge maps resemble each other, while there are drastic changes in the 

background, i.e., a lot more edges are picked up by the Canny edge detector 

but not by the Sobel edge detector. 

We have also observed that using Sobel-GVF gives better precision (i.e., 

a higher percentage of SCs are true text SCs). However, Canny-GVF helps in 

recall, especially for small text. 

Based on the above two observations, we propose a relaxed intersection 

to filter out non-text SCs and combine the advantages of both Sobel-GVF and 

Canny-GVF. Let        and        be the sets of Canny and Sobel SCs, 

respectively.    is retained if: 

 

     
       

    
    (3.3) 

 

Otherwise, it is removed. Thus, this intersection retains only Canny SCs which 

have sufficient overlap (measured by the number of pixels) with a Sobel SC. 

Based on the training data,    is set to 0.4. (In section 3.1.3.5, we analyze how 

the performance of the proposed method changes with respect to this 

parameter.) Figure 3.2d shows that the above process helps to suppress most 

of the non-text SCs. 
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Note that the use of two different edge maps as above can also be 

interpreted in the spirit of hysteresis thresholding, a physics-inspired technique 

that uses two thresholds instead of one for better result (Canny 1986). Sobel-

GVF and Canny-GVF correspond to the high and low ―thresholds‖, 

respectively. The former contains high confidence symmetry points but may 

suffer in recall. Thus, the latter is used to recover points that are connected to 

the high confidence ones. 

 

 

 (a) Input image (b) Sobel SCs 

 

 (c) Canny SCs (d) Text candidates 

Figure 3.2. Text candidate identification. 

 

3.1.2.2 Text Grouping 

 

The remaining SCs (after filtering) in Figure 3.2d are considered as text 

candidates. The purpose of this step is to group horizontally-aligned text 

candidates which have consistent properties into text lines. In each iteration of 

the grouping process, we create a new group (i.e., text line) which initially 

contains the first unassigned SC in the input image (in top left to bottom right 

order). In the immediate left and right regions of the current group, if there are 
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any unassigned SCs which satisfy the similarity constraints (to be defined 

below), we add them into the group and re-examine the expanded 

neighborhood. Otherwise, we go to the next iteration and repeat the process, 

until there are no more unassigned SCs. 

The similarity constraints are based on the following observations: 

 In a line, characters have comparable heights. 

 The character stroke thickness is consistent. Similarly, the spaces 

between characters (gap “thickness”) are regular. 

 Many scene texts are of uniform colors (so that they are easy to 

read from distance). 

More formally, let   be the current group and   be an unassigned SC in  ‘s 

neighborhood.   is added to   if: 

 

 
 

    
         

               
     

                                        
                        

  (3.4) 

 

where                returns the distance from a SC to either of the two 

edges that give rise to it. (This can easily be computed by following the GVF 

directions until we reach the edges.) If   is an intra-character SC, the distance 

corresponds to half of the stroke thickness. Otherwise, if   is an inter-character 

SC, it corresponds to half of the gap thickness. Therefore, this constraint fully 

captures the second observation mentioned above. 

Although stroke thickness has been explored in a previous work 

(Epshtein et al. 2010), gap thickness is new and is a by-product of the GVF 
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formulation in the previous section. Thus, GVF not only helps to detect local 

symmetries but also plays an important role in the grouping process. 

The parameter values are determined empirically based on the training 

data:       ,      and      . Figure 3.3a shows some of the groups 

formed by the text candidates in Figure 3.2d. Note that the first two groups 

actually cover the whole length of the first text line. However, for illustration 

purpose, only the word ―Centre‖ is shown. Furthermore, the second group 

corresponds to the gaps between the characters (rather than the characters 

themselves). This is the advantage of the proposed method. Groups formed by 

gap SCs are especially useful for difficult cases of scene text where the 

character edges are broken, but the gaps are still visible. 

To obtain the final grouping output in Figure 3.3b, we impose one more 

constraint: most text lines have at least three characters (Epshtein et al. 2010; 

Chen et al. 2011). Hence, only groups with three or more SCs are retained. For 

cases of double detection, i.e., two groups are detected for the same text line, 

we take the union of the two bounding boxes. 

 

 

 (a) Text groups (b) Output for Figure 3.2a 

Figure 3.3. Text grouping. In (a), the SCs are shown in white. For the second group, the 

characters are shown in gray to illustrate why the gap SCs are detected in the first place. 
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3.1.2.3 Text Verification 

 

At the end of the previous step, we obtain a set of candidate text lines. 

However, some of them may correspond to text-like patterns, e.g., 

symmetrical structures with regular spaces, in the background. Hence, we 

perform local texture analysis for verification purpose. 

To learn the texture of text, we use Histogram of Oriented Gradients 

(HOG) (Dalal & Triggs 2005), a popular descriptor that has successfully been 

employed for many object detection problems. Using the training data, we 

collect 11,600 positive samples and 14,100 negative samples. The patch size is 

fixed to 48 × 48. 

Furthermore, as suggested in (Chen & Yuille 2004), we divide a patch 

into three partitions (Figure 3.4a). HOG features are extracted for each 

partition and then concatenated to form the feature vector. The rationale for 

such a division is that the top 1/6 and bottom 1/6 correspond to the ascender 

and descender of text, which typically have different gradient orientation 

distributions than the middle partition. Experimentally, we have found that this 

approach is more effective for rejecting false positives than applying HOG on 

the whole patch (i.e., without division). 

SVM is used to classify whether each candidate region is text or non-

text. We normalize each region to 48-pixel height. A window is then slid 

across, and at each position, SVM is used to estimate the confidence score that 

the window contains text. The overall score of the region is computed by a 

weighted average where the weights follow a Gaussian distribution (Chen et 

al. 2004a). If the score is non-negative, the region is retained; otherwise, it is 

discarded. 
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Figure 3.4b shows some of the false positives that have successfully 

been removed by HOG-SVM. It is evident that the texture features supplement 

the symmetry features used in the previous steps. 

 

 

 (a) (b) 

Figure 3.4. Block pattern (a) and sample false positives that are successfully removed by 

using HOG-SVM (b). 

 

3.1.3 Experimental Results 
 

3.1.3.1 Datasets 

 

We performed experiments on two public datasets, ICDAR 2003 (Lucas 

et al. 2003) and Microsoft Text Detection dataset (MS) (Epshtein et al. 2010). 

The first dataset consists of the training set (250 images) and the test set (249 

images). It has a wide range of images, e.g., book covers, bill boards and 

outdoor scenes. The resolutions vary from 307 × 93 to 2048 × 1536. The 

second dataset contains 307 street images, with resolutions from 1024 × 768 to 

1280 × 960. 

Because the MS dataset does not contain separate training data, our 

method was trained on the ICDAR training set for both experiments. The 

parameter values, as mentioned in the previous sections, also remained the 

same for both experiments. 
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3.1.3.2 Performance Measures and Methods for Comparison 

 

For quantitative evaluation, we used the performance measures of the 

ICDAR 2005 competition (Lucas 2005): precision (P), recall (R) and f-

measure (F). These measures are briefly summarized below. 

Let   be the set of bounding boxes returned by a text localization 

method and   be the set of groundtruth bounding boxes. The best matched 

area of a bounding box   with respect to a set   is defined as: 

 

                      
    (3.5) 

 

where       
         is the intersection area of the two bounding boxes 

divided by the area of the minimum box that encloses both boxes.      if 

the two boxes are identical and      if there is no overlap. 

Precision, recall and f-measure are then computed as: 

          
            

   
 (3.6) 
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(3.8) 

 

where       to balance recall and precision. 
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In the experiments, we compared the proposed method against two 

recent localization methods for scene text: (Neumann & Matas 2011) and  

(Epshtein et al. 2010). 

 

3.1.3.3 Experiment on Natural Scenes 

 

In the ICDAR 2003 dataset, the ground truth is provided at the word 

level. We used projection profile analysis to split the localized text lines into 

words. Figure 3.5 shows sample localization results of our method. In Figure 

3.5a, the text line contains touching characters. It is mentioned in (Neumann & 

Matas 2011) that this method cannot handle such cases because it requires 

each Maximally Stable Extremal Region to be an isolated character. Similarly, 

the method by (Epshtein et al. 2010) expects a text line to have at least three 

characters, which is not satisfied because the whole line is extracted as one 

single region (with consistent stroke width). On the other hand, our method 

detects skeleton-like SCs, which are disconnected from each other and thus 

form a valid group. Figure 3.5b shows another challenging case where text has 

the same color as the background. In the edge map, the top portions of the 

character edges are lost. However, the bottom and especially the side contours 

are still visible. Thus, our method is able to detect and group SCs into a text 

line, while the methods by (Neumann & Matas 2011) and (Epshtein et al. 

2010) will have difficulties because the characters become connected to each 

other (through the background at the top). 

Figure 3.6 illustrates that a variety of texts in the dataset are successfully 

picked up despite the stylish fonts, blurring, partial occlusion and complex 

backgrounds. 
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 (a) (b) (c) 

 

 (d) (e) (f) (g) 

Figure 3.5. Sample text localization results on the ICDAR 2003 dataset. 

 

 

Figure 3.6. Sample localized text lines on the ICDAR 2003 dataset. 

 

On the ICDAR test set, the proposed method outperformed the top 

entries of the ICDAR 2005 competition, as well as recent methods (Epshtein 

et al. 2010; Neumann & Matas 2011), in terms of f-measure (Table 3.1). (Note 

that the ICDAR 2005 competition reused the dataset from the ICDAR 2003 

competition). 

Our method also achieved the highest recall, which shows the advantage 

of using GVF SCs to exploit both text and gap features to pick up more text 

lines. On the other hand, existing methods typically ignore the latter. Both 

methods by (Epshtein et al. 2010) and (Neumann & Matas 2011) only extract 

character features, through Stroke Width Transform and Maximally Stable 

Extremal Regions, respectively. 
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The proposed method had a slightly worse precision than the methods by 

(Epshtein et al. 2010) and (Neumann & Matas 2011) because the background 

may contain structures that happen to satisfy the symmetry constraints, e.g., 

regular vertical stripes. This problem will be explored in the future. For 

example, an OCR engine can be employed to recognize these patterns and 

reject highly unlikely strings, e.g., ‗11111‘. 

 

Table 3.1. Results on the ICDAR 2003 dataset. 

 

Method Precision Recall F-measure 

1st ICDAR 2005 0.62 0.67 0.62 

2nd ICDAR 2005 0.60 0.60 0.58 

(Neumann & Matas 2011) 0.72 0.62 0.67 

(Epshtein et al. 2010) 0.73 0.60 0.66 

Our method 0.70 0.69 0.69 

Our method without HOG 0.63 0.69 0.66 

 

3.1.3.4 Experiment on Street Scenes 

 

Figure 3.7 shows sample localization results of our method on street 

images. Figure 3.8 shows that our method is able to pick up texts of a variety 

of appearances. 

Our method achieved a significantly higher recall and a better overall f-

measure than the method by (Epshtein et al. 2010) (Table 3.2). (The results of 

the other methods on this dataset are not available.). Both the proposed 

method and the method by (Epshtein et al. 2010) degraded in performance on 

this dataset because it is more challenging than the ICDAR dataset. The 

images have a wider view and contain more objects, e.g., buildings, 

pedestrians and cars. Moreover, 45% of the text lines are less than 20 pixels in 

height. (That in the ICDAR dataset is only 9%.) 
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Figure 3.7. Sample text localization results on the Microsoft dataset. 

 

 

Figure 3.8. Sample localized text lines on the Microsoft dataset. 

 

Table 3.2. Results on the Microsoft dataset. 

 

Method Precision Recall F-measure 

(Epshtein et al. 2010) 0.54 0.42 0.47 

Our method 0.50 0.51 0.51 

Our method without HOG 0.44 0.52 0.48 

 



77 

 

3.1.3.5 Additional Experiments 

 

To show the contribution of the first two steps alone (i.e., local 

symmetry detection and text grouping), we turned off the HOG-based text 

verification step (denoted as Our method without HOG in Table 3.1 and Table 

3.2). The last rows in these two tables indicate the effectiveness of the 

proposed symmetry detection, as the recalls on both datasets were much 

higher than those of  (Epshtein et al. 2010) and  (Neumann & Matas 2011). In 

addition, it shows that the texture feature supplements the symmetry features, 

and helps to improve the precision. 

We also examined how the performance of our method changes with 

respect to    in Equation (3.3). Figure 3.9 demonstrates that the overall f-

measure is not too sensitive to   , as long as             . 

 

 

Figure 3.9. F-measures for different values of T1. 

 

One of the main contributions of this work is the local symmetry 

detection technique based on GVF. It allows our method to exploit both the 

text features and the gap features to localize text regions. The latter is new and 

has not been explored by existing methods. 
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In addition, the proposed GVF-based symmetry detection technique will 

be further used in section 4.1 for a different purpose: single-frame text 

enhancement. In that section, due to the nature of the task, we only focus on 

the inter-character symmetry (i.e., the gap SCs) and ignore the intra-character 

symmetry (i.e., the text SCs). 

 

3.2 Text Localization in Video Key Frames 
 

Our scene text localization method in the previous section follows a 

bottom-up approach. However, video frames are typically of much lower 

resolutions than natural scene images. Due to this challenge, it is difficult to 

reliably extract the video characters and the gaps between them. Hence, a 

bottom-up approach is not suitable for video frames. This section presents a 

top-down approach to text localization in video frames. 

This work does not utilize the temporal information (yet) so its input is a 

video key frame. The use of temporal information will be discussed in a later 

work in section 4.2. 

 

3.2.1 Motivation 
 

It is evident from our survey in section 2.3 that most methods for videos 

address the localization of horizontal text but not multi-oriented text. This is 

because most of the non-horizontal text lines are video scene text, which is 

much more difficult to localize due to varying lighting and complex 

transformations (Jung et al. 2004; Zhang & Kasturi 2008). For some existing 

methods, extension to multi-oriented text is no trivial matter. For example, the 

uniform-colored method (Mariano & Kasturi 2000) performs color clustering 
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on each row, while the gradient-based method (Wong & Chen 2003) identifies 

candidate text segments row-wise. The edge-based method (Cai et al. 2002) 

analyzes the horizontal and vertical projection profiles of the edge map. Thus 

many existing methods rely heavily on the horizontal text assumption and 

break down on multi-oriented text. 

Only a few papers consider text of arbitrary orientation in video, e.g., 

(Kim et al. 2003; Wang et al. 2008), under the assumption that text is of large 

font size and of high contrast. (Crandall et al. 2003) proposed a method for 

extracting multi-oriented special effects text; however, this method is limited 

to graphics text of fixed directions (0, 15, 30 degrees and so on). 

A few methods for text in natural scene images, e.g. (Chen et al. 2004c; 

Epshtein et al. 2010; Yi & Tian 2011), can handle multi-oriented text. 

However, they require each single character to be extracted as a complete CC. 

For example, to allow for non-horizontal text, (Chen et al. 2004c; Yi & Tian 

2011) performed line fitting using Hough transform on individual character 

CC centroids. Although this requirement is reasonable for scene characters, it 

is not guaranteed for video characters. Due to the poor resolution and the low 

contrast of the video frames, a CC may only contain the partial shape of a 

character and thus the performance of these CC-based methods will degrade. 

Multi-oriented text localization in video key frames without any 

constraints on background, contrast and orientation, and with high precision 

and recall is still a challenging problem (Lienhart & Wernicke 2002; Crandall 

et al. 2003; Lyu et al. 2005). Therefore, we propose a method which is able to 

handle video graphics text and video scene text of arbitrary orientation under 

the assumption that the characters are aligned on a straight line. 
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3.2.2 Proposed Method 
 

The proposed method consists of four steps: text localization, connected 

component classification, connected component segmentation and false 

positive elimination. In the first step, we identify candidate text regions by 

using the Laplacian operator. The second step uses skeletonization to analyze 

each CC in the text regions. Simple CCs are retained while complex CCs are 

segmented in the third step. False positives are removed in the last step. Figure 

3.10 shows the flowchart of the proposed method. 

 

 

Figure 3.10. Flowchart of the proposed method. 

 

3.2.2.1 Text Localization 

 

Because video text can have a very low contrast against complex local 

backgrounds, it is important to pre-process the input image to highlight the 

difference between text and non-text regions. Text regions typically have a 

large number of discontinuities, e.g., the transitions between text and 

background. Therefore, the input video key frame is converted to grayscale 

and filtered by a 3 × 3 Laplacian mask to detect the discontinuities in four 

directions: horizontal, vertical, left diagonal and right diagonal (Figure 3.11). 

 

1 1 1 

1 -8 1 

1 1 1 
 

Figure 3.11. The 3 × 3 Laplacian mask. 
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Since the Laplacian mask produces two values for every edge, text 

regions have many positive and negative peaks of large magnitudes, and the 

reverse is true for non-text regions. It is observed that the zero crossings 

correspond to the transitions between text and background (Figure 3.12). 

 

   

(a) Input 

   

(b) Laplacian filtered 

 

(c) Profile of the middle row of (b) 

Figure 3.12. Profiles of text and non-text regions. In (c), the x-axis shows the column 

numbers while the y-axis shows the pixel values. 

 

Ideally, there should be the same number of text-to-background and 

background-to-text transitions. This condition, however, does not hold for low 

contrast text on complex background so we use a weaker condition to ensure 

that the low contrast text is not missed. Maximum difference (MD) (Wong & 

Chen 2003), defined as the difference between the maximum value and the 

minimum value within a local 1 ×   window, is computed from the Laplacian-

filtered image  : 

 

         
   

                        

         
   

            
            

                          

(3.9) 
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The MD map is obtained by moving the window over the image (Figure 

3.13c).   is empirically determined to be 21. 

Text regions typically have larger MD values than non-text regions due 

to the larger magnitudes of the positive and negative peaks. Therefore, we use 

K-means to classify all pixels into two clusters, text and non-text, based on the 

Euclidean distance of MD values. The morphological operation opening is 

used to remove small artifacts (Figure 3.13d). 

 

       

 (a) Input (b) Laplacian filtered (c) MD map (d) Text cluster 

Figure 3.13. The intermediate results of text localization. 

 

3.2.2.2 Connected Component Classification 

 

Traditionally, bounding boxes are used for displaying the localized text 

blocks. This is sufficient for horizontal text lines; however, for skewed text 

lines, rectangular boxes will enclose many unnecessary background pixels. 

Neighboring skewed text lines will also lead to overlapping bounding boxes. 

Hence we propose to use CCs for displaying text lines. We further propose 

using skeletonization to segment CCs into separate text lines. 

There are two types of CCs: simple and complex. A simple CC is either a 

single text string or a false positive. For example, the CCs at the bottom of 

Figure 3.13d are simple CCs. On the other hand, a complex CC contains 

multiple text strings which are connected to each other and to false positives in 

the background. For example, the CC in the middle of Figure 3.13d contains 
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three text strings and a false positive (the logo). High contrast text often 

appears as simple CCs while low contrast text often appears as complex CCs. 

In the first case (simple CCs), the whole component is displayed in the 

result (if it is a text CC) while in the second case (complex CCs), we want to 

output only the text part and suppress the non-text part of the CC. In order to 

do so, we need to segment a complex CC into multiple simple CCs and retain 

only the text CCs. 

The segmentation step will be described in detail later. For now, we 

discuss how to classify every CC as either simple or complex. Skeleton is a 

well-defined concept in digital image processing to represent the structure of a 

region (Figure 3.14). The intersection points (or junction points) of a skeleton 

show the locations where the sub-components of different orientation are 

connected to each other. Hence, the rule for CC classification is defined based 

on the number of intersection points: 

 

                                                

          
                           

                 
  

(3.10) 

 

     is the set of CCs in the text cluster obtained in the previous step. 

            returns the result of skeletonization.                 returns the 

set of intersection points. At the end of this step, simple CCs are retained 

while complex CCs are sent for segmentation in the next step. 
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 (a) Connected component (b) Skeleton 

Figure 3.14. Skeleton of a connected component from Figure 3.13d. 

 

 

 

3.2.2.3 Connected Component Segmentation 

 

In order to output only the text part of a complex CC, we need to 

segment, or split, it into multiple simple CCs based on the intersection points. 

In Figure 3.15, point A shows the location where the first text line of Figure 

3.13a connects to the logo (a false positive). By segmenting the complex CC 

from A to B, we are able to get back the first text line. 

AB is called a skeleton segment, which is defined as a continuous path 

from an intersection point to either an end point or another intersection point. 

In addition, the path should not include any other point in the middle. For each 

skeleton segment, we extract the corresponding sub-component from the 

complex CC. In Figure 3.16, sub-components 1, 2 and 3 correspond to the first 

three text lines in Figure 3.13a while sub-components 4 and 5 correspond to 

non-text regions (they are part of the logo in Figure 3.13a). 

 

 

Figure 3.15. End points and intersection points of Figure 3.14b. 
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Figure 3.16. Skeleton segments of Figure 3.14b and their corresponding sub-components. 

(Only 5 sample sub-components are shown here.) 

 

To remove false positives (such as sub-components 4 and 5), we propose 

using text-specific features, which are described in the next section. 

 

3.2.2.4 False Positive Elimination 

 

After the previous step, we have a set of simple CCs,     , each of which 

is either an original simple CC or a new simple CC segmented from a complex 

CC.    is a true text block if: 

 

                                        (3.11) 

 

The first feature, straightness, comes from the observation that text 

strings appear on a straight line (our assumption) while false positives can 

have irregular shapes. It is defined as: 

 

                

                 
          

                
 

(3.12) 
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Note that all   ‘s are simple CCs and thus all   ‘s have exactly two end points 

and zero intersection points. For text,          , the length of the skeleton, is 

close to                , the straight line distance between the two end 

points while for non-text,           is much larger than                 

(Figure 3.17). 

The second feature, edge density, is defined as: 

 

             

                 
               

           
 

(3.13) 

 

         returns the binary Sobel edge map (for only the white pixels of   ). 

               is the total length of all the edges in the edge map. 

           is the area of the CC. This feature assumes that edges are denser 

in text regions than in non-text regions because the former typically contains 

many text strokes (Figure 3.18). The parameters are empirically determined: 

       and       . 

 

    

 (a) Text (b) Connected component (c) Skeleton 

    

 (d) Non-text (e) Connected component (f) Skeleton 

Figure 3.17. False positive elimination based on skeleton straightness. 
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 (a) Text (b) Connected component (c) Edges 

    

 (d) Non-text (e) Connected component (f) Edges 

Figure 3.18. False positive elimination based on edge density. 

 

3.2.3 Experimental Results 
 

3.2.3.1 Datasets 

 

As there is no standard benchmarking dataset for video text, we selected 

a variety of video key frames, extracted from news programmes, sports videos 

and movie clips to form two datasets: 

 The horizontal text dataset contained 960 video key frames. The 

English sub-dataset contained 800 images (652 images for video 

graphics text and 148 images for video scene text) while the 

Chinese sub-dataset contained 160 images (153 for video graphics 

text and 7 for video scene text). 

 The non-horizontal text dataset contained 241 video key frames. 

The English sub-dataset contained 220 images (44 for video 

graphics text and 176 for video scene text) while the Chinese sub-

dataset contained 21 images (4 for video graphics text and 17 for 

video scene text). 
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3.2.3.2 Methods for Comparison 

 

We implemented four existing methods. (Liu et al. 2005), denoted as 

edge-based method 1, extracts six statistical features from four Sobel edge 

maps. (Cai et al. 2002), denoted as edge-based method 2, performs Sobel edge 

detection in the YUV color space and applies two text area enhancement 

filters. (Wong & Chen 2003), denoted as gradient-based method, computes 

the maximum gradient difference to identify candidate text regions. (Mariano 

& Kasturi 2000), denoted as uniform-colored method, performs hierarchical 

clustering in the L*a*b* color space to locate uniform-colored text strings. 

We chose these four methods because they make use of different 

features for text localization: edge features (Cai et al. 2002; Liu et al. 2005), 

gradient features (Wong & Chen 2003) and color features (Mariano & Kasturi 

2000). Another reason was that they are all unsupervised methods and thus, no 

training data were required. On the other hand, supervised methods often 

require a large number of positive and negative samples. It is especially hard 

to ensure that the negative samples are representative (Kim et al. 2003). 

The parameters of the existing methods were set according to the 

respective papers. The same parameter values were used for all the 

experiments. 

 

3.2.3.3 Performance Measures 

 

We evaluated the performance at the text line level, which is a common 

granularity level in the literature (Mariano & Kasturi 2000; Cai et al. 2002; 

Wong & Chen 2003; Chen et al. 2004b; Ye et al. 2005). For each video key 

frame in the dataset, we manually counted the number of Actual Text Blocks 
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(ATB). The following categories were defined for each localized block by a 

method. 

 Falsely Localized Block (FLB): A block that does not contain text. 

 Truly Localized Block (TLB): A block that contains at least one 

true character. 

 Partially Localized Block (PLB): A TLB that misses some 

characters of a text line. In other words, PLB is the subset of TLB 

that only enclose the text lines partially. 

For example, the numbers of the different types of blocks in Figure 3.19 

are 3 ATBs (3 text lines), 3 TLBs (all lines are localized), 2 PLBs (the first 

two lines are only partially localized) and 1 FLB (the eye). 

 

    

 (a) Input (b) Localized text blocks 

Figure 3.19. Sample ATBs, TLBs, FLBs and PLBs. 

 

The performance measures were defined as follows: 

 Recall (R) = TLB / ATB 

 Precision (P) = TLB / (TLB + FLB) 

 F-measure (F) = 2  P  R / (P + R) 

 Partial Localization Rate (PLR) = PLB / TLB 

Our definition of Recall is more forgiving than the traditional definition 

because it considers both fully and partially localized text lines. Due to the 

challenges of video scene text and the arbitrary orientation of the text lines, it 
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is difficult for a method to always enclose a full text line in a block. 

Sometimes it misses some characters of very low contrast and localizes only 

parts of a line. Since the goal of this work is text localization (how well a 

method locates potential text blocks), partial detection is still acceptable 

because it shows that a method is able to detect the presence of text (albeit 

partially). Having said that, we also included PLR as a performance measure 

and provide discussion on partial localization in all experiments to ensure a 

fair comparative study. 

 

3.2.3.4 Experiment on Horizontal Text 

 

In this experiment, we used the horizontal text dataset described earlier. 

Figure 3.20 shows a sample image with two horizontal Chinese text lines on a 

complex background. The edge-based method 1 misses some characters of the 

first line. The edge-based method 2 and the uniform-colored method produce 

many false positives, while the gradient-based method fails to localize the first 

line. The proposed method is the only one that fully localizes and separates the 

text lines from each other, without any false positives. 

Table 3.3 shows the performance of the four existing methods and the 

proposed method on the horizontal text dataset. The proposed method had the 

highest recall, the second highest precision (almost the same as that of the 

gradient-based method) and the highest F-measure. This shows the advantage 

of the proposed method because it achieved good results (including high 

precision) while making fewer assumptions about text. By assuming that text 

has horizontal orientation, the existing methods can remove false positives 

more easily, e.g., by using projection profile analysis. 
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 (a) Input (b) Edge 1 (c) Edge 2 

   

 (d) Gradient (e) Color (f) Proposed 

Figure 3.20. The localized blocks of the four existing methods and the proposed method 

for a horizontal text image. 

 

The drawback of the proposed method is PLR, which was not as good as 

those of the gradient-based method and the edge-based method 2. This 

drawback will be discussed in detail in the next section. 

Table 3.3 also shows that the proposed method works slightly better for 

English text than for Chinese text. The latter has more complicated strokes and 

thus, for text lines of small font sizes, it is difficult to distinguish the strokes 

from the complex backgrounds. In addition, the spaces between Chinese 

characters can be larger than those of English characters, which leads to more 

partial localization. 

 

Table 3.3. Experimental results on horizontal text. 
 

Method 
English Chinese 

R P F PLR R P F PLR 

Edge 1 0.58 0.68 0.63 0.22 0.79 0.63 0.70 0.43 

Edge 2 0.58 0.39 0.47 0.12 0.61 0.36 0.45 0.18 

Gradient 0.66 0.83 0.74 0.03 0.69 0.76 0.72 0.10 

Color 0.55 0.45 0.50 0.35 0.69 0.51 0.59 0.56 

Proposed 0.86 0.82 0.84 0.13 0.79 0.75 0.77 0.23 
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3.2.3.5 Experiment on Non-horizontal Text 

 

The non-horizontal text dataset (described in Section 3.2.3.1) was used 

for this experiment. Figure 3.21 shows a sample image which has four non-

horizontal text strings. Although the existing methods are able to localize the 

three text strings in the middle, they all fail to separate them because the (non-

rotated) rectangular bounding boxes of the skewed text lines overlap with each 

other. On the other hand, the proposed method localizes all the text strings 

correctly without any false positives. 

Figure 3.22 shows more sample results where the proposed method 

works for multi-oriented texts of different font sizes. 

It is clear from Figure 3.21 that the existing methods are not designed 

for non-horizontal text. The gradient-based method and the uniform-colored 

method work on a row by row basis. Similarly, the edge-based method 2 

employs projection profile analysis in the horizontal and vertical direction to 

localize the text blocks. The only method that is easy to extend to multi-

oriented text is the edge-based method 1. This method works based on the text 

cluster (similar to Figure 3.13d) and thus, all the subsequent steps of the 

proposed method can be applied for this method. Even then, the quality of the 

text cluster, e.g., whether low contrast text lines are included, will make a 

difference. According to the experimental results in the previous section, the 

proposed method outperformed the edge-based method 1, which implies that 

the text cluster of the former is better than that of the latter. 

Since the existing methods did not produce satisfactory results for multi-

oriented text, we considered only the proposed method in this experiment. 

Even though this dataset was more difficult than the previous one because it 
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 (a) Input (b) Edge 1 (c) Edge 2 

   

 (d) Gradient (e) Color (f) Proposed 

Figure 3.21. The localized blocks of the four existing methods and the proposed method 

for a non-horizontal text image. 

 

       

(a) Input key frames 

       

(b) Localized blocks 

Figure 3.22. Results of the proposed method for non-horizontal text. 

 

contained more video scene texts, the proposed method was still able to 

achieve similar F-measures on both the English and Chinese sub-datasets 

(Table 3.4). These results show that the proposed method can handle multi-

oriented video scene text well. 



94 

 

Similar to previous experiment, the drawback of the proposed method is 

the high PLR due to the CC segmentation step. The intention of this step is to 

segment a whole text string into a simple CC. Nevertheless, sometimes a 

string is split into multiple CCs. If one of them does not satisfy the false 

positive elimination rule, only part of the string is extracted (Figure 3.23). This 

happens more often for Chinese text than English text because the former has 

larger spaces between the characters. 

 

Table 3.4. Experimental results on non-horizontal text. 
 

Method 
English Chinese 

R P F PLR R P F PLR 

Proposed 0.85 0.77 0.81 0.14 0.81 0.74 0.77 0.35 

 

       

 (a) Input (b) A CC and its skeleton (c) Extracted pixels 

Figure 3.23. The CC segmentation step may split a text line into multiple parts. For 

clarity, (b) and (c) only show the corresponding results of the largest Chinese text line, 

although the English text line is also localized. 

 

3.2.3.6 Experiment on Processing Time 

 

Table 3.5 shows the average processing time of the proposed method 

and the existing methods for 256 × 256 video key frames on a Core 2 Duo 2.0 

GHz machine. For the existing methods, the processing time is reported only 

for horizontal text because they were not included in the experiment on non-

horizontal text. The proposed method was slower than the gradient-based 

method, slightly slower than the edge-based method 2 but much faster than the 
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edge-based method 1 and the uniform-colored method. The proposed method 

also took longer to localize non-horizontal text because more time was 

required to segment complex CCs into simple CCs. 

 

Table 3.5. Average processing time (in seconds). 
 

Method Horizontal Text Non-horizontal Text 

Edge 1 22.1 N.A 

Edge 2 6.1 N.A 

Gradient 1.1 N.A 

Color 13.9 N.A 

Proposed 7.8 10.3 

 

One of the main contributions of this work is the use of skeletonization 

to segment a complex CC into constituent parts and separate the connected 

text lines from each other. It allows our method to localize multi-oriented text 

and thus improves over exiting methods which are typically limited to only 

horizontal text. In the future, we will study the problem of partial localization, 

especially for Chinese text. For example, the edge map could be used to verify 

the intersection points found by skeletonization. 

 

3.3 Summary 
 

In this chapter, we have presented two methods for text localization, one 

for natural scenes and the other for video key frames. The main contribution of 

the first work is the use of gap, i.e., inter-character, features for text 

localization. This direction has not been explored by previous methods. 

Experimental results on two public datasets demonstrate the effectiveness of 

the proposed gap features. 
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The second work uses skeletonization to localize multi-oriented video 

text. Thus, it has relaxed the horizontal text assumption of many existing 

methods. Experimentally, the proposed method performs well on both English 

and Chinese texts. 
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Chapter 4  

Single-frame and Multiple-frame Text 

Enhancement 

After text lines have been localized using our methods in the previous 

chapter, they need to be enhanced prior to recognition. This chapter presents 

two methods for text enhancement, one for single-frame text and the other for 

multiple-frame text. In the first method, instead of binarizing a whole text line, 

we first segment it into individual characters and then binarize each of them 

individually. In this way, the parameters of the binarization algorithm can be 

set adaptively according to the local background of each character to produce 

a better binarized text image. In the second method, given a localized word in 

a video key frame, we track it both forward and backward in time to identify 

its first frame and last frame of occurrence. After that, all the text instances 

within the word‘s framespan are integrated to derive the final binarized text 

image. 

 

4.1 Single-frame Enhancement 
 

As mentioned above, this work aims to binarize each character in a text 

line individually to achieve a better binarization. Our focus is on character 

segmentation, i.e., separating the characters in the same text line from each 

other.  For the binarization step, we use an existing method (Su et al. 2010). 

Hence, the next sections describe the details of our character segmentation 
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technique. The combination of character segmentation and binarization will be 

discussed in section 4.1.3.5. 

 

4.1.1 Motivation 
 

From our survey in section 2.7.2.1, we have noticed that existing 

character segmentation methods often have two limitations. First, methods 

which are originally designed for text in scanned documents typically require 

a binary image as input. Thus, they are not suitable for scene text and video 

text. Second, many methods allow only vertical segmentation paths. However, 

in difficult cases such as touching characters, more flexible paths would be 

needed to separate the characters from each other. 

Hence, to overcome these limitations, we extend the GVF-based 

symmetry detection technique in section 3.1.2.1 to segment an input text line 

into individual characters. Our method works directly on grayscale images and 

is able to produce curved segmentation paths. Therefore, it overcomes both of 

the limitations of existing methods. 

 

4.1.2 Proposed Method 
 

An overview of our approach is shown in Figure 4.1. The input is a 

cropped text line image (which can be obtained using the text localization 

methods in sections 3.1 and 3.2). A simple pre-processing step is used: the text 

line is rotated back to horizontal orientation (if it is non-horizontal) and 

normalized to a fixed height of 128 pixels (because some text lines are too 

small to be readable at their original sizes). After that, there are three main 
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steps: cut candidate identification, minimum cost path finding and false 

positive elimination. The first step identifies pixels that are potentially part of 

non-vertical cuts. In the second step, we find multiple least cost paths from the 

top row to the bottom row of an image. The third step helps to remove false 

cuts that go through the middle of the characters. The final outputs are the 

character segmentation paths. 

 

 

Figure 4.1. The flowchart of the proposed method. 

 

4.1.2.1 Cut Candidate Identification 

 

We modify the GVF-based symmetry detection technique in section 

3.1.2.1 for the purpose of character segmentation. Within a gap between two 

consecutive characters, there is more than one segmentation path that can 

separate the two characters. One way to define a good path is that it should 

stay as far as possible from the two character edges to allow room for errors in 

case the edge information is not accurate or the character contours are partly 

broken due to low contrast. 

The symmetry detection technique in section 3.1.2.1 identifies points 

that are equally far from the two character edges. Hence, these points satisfy 

the criterion of a good path as mentioned above. We define a candidate cut 

pixel       as a pixel that satisfies Equation (3.2) in section 3.1.2.1. For the 

reader‘s convenience, this equation is reproduced below: 

 



100 

 

 

        

          

                           

  (4.1) 

 

where                        is the GVF field and          returns the 

angle between two vectors. 

Figure 4.2 shows the detected candidate cut pixels of a text line with 

complex background. GVF is able to detect pixels in the gaps between 

consecutive characters. Although these pixels do not form complete cuts yet, 

they play an important role in the path finding process, which is described in 

the next step, where the segmentation paths are encouraged to go through 

these pixels instead of other pixels in the same gap. 

A side effect of Equation (4.1) is that it also captures ―medial‖ (or intra-

character) pixels, i.e., those that are in the middle of the character strokes 

(Figure 4.2). However, it is still possible to distinguish between candidate cut 

pixels and medial pixels. Since medial pixels are part of a character, if a 

segmentation path wants to go through these pixels, it has to make several 

background-to-character and character-to-background transitions. This is not 

the case for candidate cut pixels because the path would only stay in the 

background. 

 

 

 (a) Input (b) Candidate cut pixels 

Figure 4.2. Candidate cut pixels of a sample image. In (b), the image is blurred to make 

the (white) cut pixels more visible. 
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We would like to mention that the use of GVF in this work is different 

from that in section 3.1.2.1 in the following ways: 

 Section 3.1.2.1 uses the intra-character and inter-character 

symmetries in four directions (vertical, horizontal, left-diagonal 

and right-diagonal) to localize the text lines. However, in this 

work, due to the nature of the segmentation task, we only focus on 

the inter-character symmetry, i.e., the gaps between consecutive 

characters, in the vertical direction. The rationale for using only 

the inter-character symmetry and only the vertical direction is that 

we are mainly interested in symmetry components that can 

separate two consecutive characters from each other
4
. 

 Section 3.1.2.1 only deals with scene text (which typically has 

sufficient resolution) and thus it is reasonable to assume that the 

intra-character/inter-character symmetry of the same character/gap 

often form connected components. On the other hand, this work 

also handles video text. Due to the low resolution of video text, the 

inter-character symmetry component within a single gap may no 

longer be a single connected component. Instead, it may be broken 

into multiple disconnected components (Figure 4.2b). Hence, to 

form a complete cut from top to bottom, we propose a minimum 

cost path finding algorithm (which is described in the next 

section). 

 

 

                                                 

 
4
 And it is assumed that multi-oriented text lines have already been rotated back to the 

horizontal orientation after the pre-processing step. 



102 

 

4.1.2.2 Minimum Cost Path Finding 

 

Inspired by a method for segmenting merged characters in document 

images (Wang & Jean 1993), we formulate the character segmentation 

problem as a minimum cost path finding problem where from the top row, it 

costs less to go through a gap and reach the bottom row than cutting through 

the middle of a character. 

The input image can be considered as a graph where the vertices are the 

pixels, and pixel       is connected to neighboring pixels in the left-down, 

down and right-down directions, i.e., pixels          ,         and 

         . The minimum cost paths are found by dynamic programming 

as follows. 

Let        be the grayscale input image,    be a starting pixel on the top 

row,          be the cost of moving from pixel    to pixel   , and      be 

the cumulative cost of the minimum cost path from pixel    to pixel  . 

Initialization: 

 

      
         

            
  (4.2) 

 

Update rule: 

 

         

                         

               

                           

  (4.3) 

 



103 

 

where                       ,                 and           

             . The cost function is defined as: 

 

          

                  

             
              

               
          

  (4.4) 

 

where              returns true if   is a candidate cut pixel and   is the 

diagonal move penalty (to be explained later). (Recall that candidate cut pixels 

are defined in Equation (4.1).) 

The cost function is designed to encourage non-vertical cuts to go 

through candidate cut pixels. It is thus set to be zero at these pixels. For other 

pixels, the cost function is set to the squared difference between two gray 

intensities because we assume that for text to be readable, there should be 

some contrast between the characters and the background. (We use the 

squared difference to penalize large differences more, instead of penalizing the 

differences linearly.) A large difference may indicate background-to-character 

and character-to-background transitions, i.e., cutting through the characters 

instead of traversing within the gaps. Therefore, paths that go through medial 

pixels are discouraged by this cost function. 

Curved segmentation paths are also naturally allowed. However, in 

many cases, vertical paths are sufficient so   is set to    to avoid paths with 

excessive curvature. 

Note that the above algorithm finds the best path for only one starting 

point on the top row. To segment all the characters, we run it multiple times 

with different starting points. Ideally, we only need to put a starting point 
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every   pixels where   is the estimated character width (based on the height 

of the input image). However, because the characters have variable widths, 

e.g., ‗i‘ versus ‗m‘, and furthermore, the gaps between the words may not be a 

multiple of  , more frequent starting points are required. In our 

implementation, a starting point is placed every     pixels. 

 

4.1.2.3 False Positive Elimination 

 

In the previous step, the cost function is carefully designed to discourage 

segmentation paths that cut through the characters. However, these false cuts 

may still occur for various reasons, e.g., low contrast which leads to a small 

difference in intensity values of consecutive pixels on the path. In this step, we 

aim to remove these false cuts. 

It is interesting to observe that if there are more starting points than 

required in a gap, the minimum cost paths usually converge to the same end 

point (Figure 4.3a). This suggests that end points are more reliable than the 

starting points, especially because the latter are placed according to a heuristic 

rule based on the estimated character width. 

In order to verify whether a segmentation path is a true cut or a false cut 

(going through a character), we perform backward path finding from the end 

points to the top row (similar to forward path finding, except that the 

directions of the edges are reversed). For true cuts, it is likely that the forward 

path and the backward path are close to each other because they both aim to 

pass through the candidate cut pixels in the background. However, for false 

cuts, instead of going the same route as the forward path, the backward path 

may switch to either side of the character because the cost would be lower 
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since there are no transitions between the character and the background 

(Figure 4.3b). 

Our method can be considered as a two-pass path finding algorithm 

where the forward direction locates potential cuts and the backward direction 

verifies them. 

 

 

 (a) Forward path finding (b) Backward path verification 

Figure 4.3. Two-pass path finding algorithm. In (a), different starting points converge to 

the same end points. In (b), the false cuts going „F‟ have been removed while the true 

cuts are retained. 

 

4.1.3 Experimental Results 
 

4.1.3.1 Datasets 

 

We used our text localization method in section 3.2 to extract a variety 

of text lines from TRECVID videos
5
, including news programmes, 

commercials and movie clips. The text lines were divided into 4 datasets: 

English horizontal (200 images), English non-horizontal (100 images), 

Chinese horizontal (200 images) and Chinese non-horizontal (100 images). 

The horizontal datasets mostly contained video graphics text while the non-

horizontal datasets mostly contained video scene text. 

 

 

 

                                                 

 
5
 http://trecvid.nist.gov/ 
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4.1.3.2 Methods for Comparison 

 

For comparison purpose, we implemented two existing methods: (Huang 

et al. 2009), denoted as Huang’s method, and (Kopf et al. 2005), denoted as 

Kopf’s method. Huang‘s method binarizes the gradient map of a text image 

and performs projection profile analysis to locate potential vertical cuts. 

Heuristic rules are used to merge the segmented regions based on assumptions 

about a character‘s height and width. Kopf‘s method performs minimum cost 

path finding and uses a similar graph structure as our method but with a 

different cost function. It makes a simple modification from document 

analysis methods by using the absolute difference in grayscale intensities 

between consecutive pixels on a path. On the other hand, our method defines 

the cost function based on GVF and also employs backward path verification. 

 

4.1.3.3 Sample Segmentation Results 

 

Figure 4.4 shows sample segmentation results of the existing methods 

and the proposed method. The image on the left hand side contains English 

characters of very low contrast. Huang‘s method misses 3 cuts (between ‗B‘ 

and ‗U‘, between ‗U‘ and ‗I‘ and between ‗I‘ and ‗T‘) and produces 4 false 

cuts. Kopf‘s method has the same number of false cuts but reduces the number 

of missing true cuts to 2 (between ‗U‘ and ‗I‘, and between ‗I‘ and ‗T‘). The 

proposed method is the only one that identifies all the cuts correctly, without 

any false cuts. 

In the image on the right hand side, the Chinese characters are also of 

low contrast. The proposed method detects all the cuts correctly while both 
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existing methods miss one cut (Huang‘s method misses the cut between the 

first and the second characters and Kopf‘s method misses the cut between the 

second and the third characters). Similar to the previous image, both existing 

methods produce many more false cuts than the proposed method (4 (Huang‘s 

method) and 6 (Kopf‘s method) versus 2 (our method)). 

Figure 4.5 shows more results of the proposed method. 

 

 

(a) Segmentation results by Huang‘s method 

 

(b) Segmentation results by Kopf‘s method 

 

(c) Segmentation results by our method 

Figure 4.4. Results of the existing methods and the proposed method. 

 

 

Figure 4.5. Results of the proposed method for non-horizontal text (b) and logo text with 

touching characters (c). In (c), the gap between „R‟ and „I‟ is missed because the 

touching part is quite thick. 

 

4.1.3.4 Segmentation Accuracy 

 

We used Recall (R), Precision (P) and F-measure (F) as the performance 

measures, and made the following definitions: 

 Actual Cuts (AC): Ground truth cuts, which are counted manually. 

(b) Result for a line in (a) 

(c) Result for logo text (a) Frame with video scene text 
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 True Cuts (TC): Detected cuts that only pass through the 

background region. 

 False Cuts (FC): Detected cuts that go through the characters. 

The performance measures were calculated as follows: 

 R = TC / AC 

 P = TC / (TC + FC) 

 F = 2 × P × R / (P + R) 

Table 4.1 shows the performance of the existing methods and our 

method on English horizontal and non-horizontal text lines. Huang‘s method 

did not perform as well as the other two methods because the threshold values 

used in projection profile analysis do not generalize well to images of different 

contrast. Although the remaining two methods had similar recall, the proposed 

method had significantly higher precision and F-measure. Kopf‘s method 

produces many false cuts for images with complex background. On the other 

hand, by using GVF and backward path verification, the proposed method is 

able to stay as far as possible from the character edges (to allow room for 

errors) and remove the majority of the false cuts. 

Similarly, for Chinese horizontal and non-horizontal text lines, our 

method achieved higher precision and F-measure than Kopf‘s method, 

although the latter had a slightly higher recall for Chinese horizontal text lines 

(Table 4.2). Huang‘s method still did not perform well for these two datasets 

for reasons mentioned above. 

The recall of both Kopf‘s method and the proposed method increased for 

Chinese text, compared to English text. The English datasets are more 

challenging than the Chinese datasets because they have more variety of text 
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lines, including stylized text used in commercials. Another reason is that 

Chinese characters have more regular widths than English characters and thus 

it is easier to detect the gaps. 

In terms of precision, all three methods degraded in performance. A 

Chinese character typically consists of multiple sub-components and 

furthermore, there are gaps between these components. Therefore, more false 

cuts were detected. 

Similarly, all three methods had a lower precision for non-horizontal 

text, compared to horizontal text. Multi-oriented text is often stylized video 

graphics text or video scene text. In both cases, the background is complex; 

and the contrast is also low in the second case. Hence, the methods are more 

likely to make mistakes. The degradation in F-measure of Huang‘s method 

and the proposed method were, however, less than that of Kopf‘s method. 

 

Table 4.1. Segmentation results on English text. 
 

Method 
English Horizontal English Non-horizontal 

Recall Precision F Recall Precision F 

Huang‘s 

method 
0.66 0.55 0.60 0.64 0.49 0.55 

Kopf‘s method 0.89 0.76 0.82 0.88 0.62 0.73 

Our method 0.89 0.91 0.90 0.91 0.85 0.88 

 

Table 4.2. Segmentation results on Chinese text. 
 

Method 
Chinese Horizontal Chinese Non-horizontal 

Recall Precision F Recall Precision F 

Huang‘s 

method 
0.64 0.47 0.54 0.63 0.46 0.53 

Kopf‘s method 0.96 0.60 0.74 0.95 0.57 0.71 

Our method 0.95 0.81 0.87 0.96 0.74 0.84 
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4.1.3.5 Recognition Accuracy 

 

To show that character segmentation helps to improve the recognition 

rate, we used a recent binarization method (Su et al. 2010), denoted as Su’s 

method, at two different levels: the text line level and the character level (i.e., 

the individual characters segmented by the proposed method). This method 

outperforms traditional methods such as Otsu‘s method and Niblack‘s method 

on the dataset of the Document Image Binarization Contest 2009 (Gatos et al. 

2009). 

In this experiment, we considered only English text lines. The 

performance measure was the character recognition rate (CRR) using 

Tesseract, Google‘s open source OCR engine. Moreover, to ensure a fair 

comparison, for the character level, we put the binarized results together into a 

line so that the OCR engine could utilize its language model to better 

recognize the characters. 

Figure 4.6 shows the binarization results of Su‘s method for a 

challenging image with a complex and uneven background. Without 

segmentation, the last four characters are not binarized well because the 

method is not able to handle both characters with clean background and 

characters with complex background in the same text line. Hence, only the 

first two characters are recognized correctly. On the other hand, with 

segmentation, the binarization result is significantly improved because the 

method is free to choose the appropriate parameter values for each individual 

character (instead of for the whole text line). As a result, six characters are 

recognized correctly. 
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 (a) Input (b) Line level (c) Character level 

  ‗TO‘ ‗TONIGH §‘ 

Figure 4.6. Binarization results using Su‟s method without segmentation (b) and with 

segmentation (c), together with the recognition results. In (c), both the binarization and 

recognition results are improved. 

 

Table 4.3 shows that it is better to perform binarization at the character 

level than at the text line level. Part-by-part binarization helps to reduce the 

problem of complex and uneven background by using local information. 

Hence, the CRR was greatly improved. 

In addition, because Otsu‘s method and Niblack‘s method are widely 

used in the literature, their performance on the same dataset is also reported. 

The combination of the proposed character segmentation method and Su‘s 

binarization method gave a higher CRR than both of these methods. 

It is also observed that Su‘s method (without segmentation) was only 

slightly better than Otsu‘s method and Niblack‘s method in terms of CRR, 

although it outperforms them on a document image dataset, as mentioned 

above. This can be explained by the fact that the performance on that dataset 

was measured based on several visual metrics (i.e., not goal-oriented) such as 

ground truth binary pixels (Su et al. 2010). As discussed in (Wolf & 

Doermann 2002), visually better binarization results may not necessarily lead 

to better CRR. 

 

Table 4.3. Recognition rates on English text. 
 

Method CRR 

Su‘s method (line level) 59.1% 

Segmentation + Su‘s method (character level) 66.6% 

Otsu‘s method 54.0% 

Niblack‘s method 58.1% 
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The main contribution of this work is that GVF is used in a novel way to 

allow our method to produce curved segmentation paths. Binarizing each 

character individually leads to better binarization, which in turn improves the 

recognition accuracy. As mentioned in the experiments, the proposed method 

has lower precision on Chinese text than on English text because it sometimes 

produces false gaps between the sub-components of a single Chinese 

character. This problem will be studied in the future. 

 

4.2 Multiple-frame Integration 
 

The single-frame enhancement method in the previous section has not 

utilized the temporal information. When the input to a text extraction system is 

a video, it is crucial to exploit the temporal redundancy to improve the 

recognition accuracy. This section presents a method for multiple-frame 

integration of video text. 

 

4.2.1 Motivation 
 

While there are existing methods for multiple-frame integration (section 

2.5.2), they have two drawbacks. First, the end result of many multiple-frame 

integration methods such as (Li & Doermann 1999; Hua et al. 2002; Lienhart 

& Wernicke 2002; Zhou et al. 2007; Yi et al. 2009) is an enhanced grayscale 

image. In other words, these methods need to rely on another binarization 

method to binarize the enhanced image before sending it to an OCR engine. 

Second, some methods such as (Hua et al. 2002; Yi et al. 2009) can handle 

only a fixed text polarity, e.g., bright text on dark background. 
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Therefore, we propose a multiple-frame integration method to overcome 

these two drawbacks. The end result of our method is a binarized image, 

which can be readily fed to an OCR engine. In addition, we have a text 

polarity detection step, which allows our method to handle both bright text on 

dark background and dark text on bright background. 

 

4.2.2 Proposed Method 
 

We use our text localization method in section 3.2 to extract the text 

lines from a video key frame. Non-horizontal texts are rotated back to 

horizontal orientation. We then split the text lines into individual words using 

the method proposed by (Shivakumara et al. 2011a). The motivation for using 

words (instead of text lines) for multiple-frame integration is that it is useful to 

have different framespans for different words. For example, if one word is 

occluded for a few frames, we can use a shorter framespan for it, while still 

having longer framespans for the remaining words. In contrast, using text lines 

means that all the words in the same line need to have the same framespan. 

Thus, lines are less flexible than words. 

Our method requires two inputs: (1) the word bounding box in a 

reference frame and (2) the frame ID of the reference frame. Most video texts 

are either static or have linear motion (e.g., right-to-left) (Lienhart 2003). 

Hence, the scope of this work is limited to these two types of motion. Note 

that static texts also benefit from multiple-frame integration if their local 

backgrounds change between the frames. Our method has three main steps: 

text instance identification, text probability estimation and character shape 

refinement. 
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4.2.2.1 Identification of Text Instances 

 

We use the term word instance to refer to the appearance of a word in a 

particular frame. Let      be the frame ID of the reference word instance. This 

step aims to identify the first frame (      ) and the last frame (    ) of 

occurrence of the word. Furthermore, because the word may move between 

the frames, we need to identify its bounding box in each frame. 

This step is important in two aspects. First, we need to ensure that the 

extracted instances contain the same word as the reference one. Otherwise, the 

irrelevant instances would negatively affect the integration, e.g., blurring the 

character edges. Second, we need to extract as many relevant instances as 

possible because with more information, we can achieve a better integration. 

We propose to combine SIFT (Lowe 2004) and Stroke Width Transform 

(SWT) (Epshtein et al. 2010). 

 

4.2.2.1.1 Text Descriptor Extraction 

 

Due to the low-resolution nature of video words, applying SIFT on them 

directly will give only a few keypoints, which are not sufficient for robust 

tracking. Hence, we first use SWT to identify the text pixels, from which we 

can extract more keypoints and descriptors. 

SWT has been described in section 2.3.1 (survey on gradient-based text 

localization methods). Its main idea is to find pairs of corresponding text 

pixels. It first computes the Canny edge map. For each edge pixel, it follows 

that pixel‘s gradient direction. If it reaches another edge pixel with opposite 

gradient direction, the two pixels are considered to be a pair of corresponding 
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text pixels. To handle both bright text on dark background and dark text on 

bright background, we propose the following rule. We apply SWT on the 

reference word instance twice, once by following the gradient directions of 

edge pixels and once by following the inverse gradient directions. Each time 

we count the number of corresponding pixels. The polarity with more 

corresponding pixels is selected as the correct polarity. The rationale is that 

when the polarity is wrong, tracing the ray from an edge pixel will lead us to 

the background, without finding any matching edge pixel. Thus there will be 

much fewer corresponding pixels. 

After identifying the text polarity, for each pixel in a pair of 

corresponding pixels, we extract its SIFT descriptor at a fixed scale. (The 

orientation at the specified location and scale is left to SIFT to determine.) We 

refer to this scheme as SWT-SIFT. 

 

4.2.2.1.2 Text Tracking 

 

To track linearly moving texts, we first extract the descriptors of the 

reference word instance using SWT-SIFT. To identify the end frame, we go 

from        to           (the number of frames of the video). For each 

frame under consideration, we slightly extend the word bounding box in the 

previous frame to form the search area in the current frame. Within this area, 

we again extract the descriptors using SWT-SIFT. We use the nearest 

neighbor algorithm (Lowe 2004) to match the two sets of SIFT descriptors, 

one set from the reference word instance and the other set from the search area 

in the current frame. To obtain the homography between the two sets of 

descriptors, we use the RANSAC algorithm (Fischler & Bolles 1981). 
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Figure 4.7 illustrates the tracking process. (a) and (b) show the keypoints 

extracted with normal SIFT and with SWT-SIFT. As mentioned before, the 

latter gives more keypoints. In (c) and (d), the left hand side shows a reference 

word instance, and the right hand side shows the search area in a few frames 

later. The colored lines show the matched SIFT descriptors. With normal 

SIFT, there are no matches, while with SWT-SIFT, there are many matches. 

This illustrates the advantage of the latter. In (e), we use the estimated 

homography to project the bounding box coordinates of the reference word 

instance onto the search area, and obtain the new bounding box position. 

 

 

 (a) Keypoints extracted with (b) Keypoints extracted with 

 normal SIFT SWT-SIFT 

 

 (c) Descriptor matching for (d) Descriptor matching for 

 normal SIFT keypoints SWT-SIFT keypoints 

 

(e) The projection of the reference bounding box 

Figure 4.7. Text tracking using SIFT. In (c), all keypoints are shown. In (d), for clarity, 

only matched keypoints are shown. 

 

The criterion for declaring a frame to be the end frame is based on the 

number of SIFT descriptor matches that conform to the overall homography. 

This number is typically much smaller than the number of SIFT descriptors in 
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the reference instance due to two reasons. First, when the word moves, its 

local background changes, and we do not expect all the reference keypoints to 

be matched in the search area of a new frame. Second, RANSAC performs 

geometric verification to filter out false matches that do not conform to the 

homography. Hence, the number of matched SIFT descriptors is further 

reduced. Due to these reasons, we use a conservative threshold of 0.1. That is, 

if the number of matched SIFT descriptors according to RANSAC is less than 

10% of the number of reference SIFT descriptors, the frame before the current 

frame is declared as the end frame (Algorithm 4.1). We use a similar 

procedure to identify       , by going backward in time. 

 

Algorithm 4.1. End frame estimation. 
 

for          to           

    initialize the search area based on the bounding box in frame     

    extract text descriptors from the search area using SWT-SIFT 

    if                                              

                 

        break 

    else 

        use the homography to estimate the bounding box in the current frame 

    end if 

end for 

if      is still not set 

                   

end if 
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4.2.2.1.3 Text Instance Alignment 

 

The bounding box coordinates returned by the tracking step may be off 

by a few pixels due to the error in the estimated homography. For temporal 

integration, we need the text instances to be aligned at pixel level. Thus, we 

use SWT to estimate the text mask as follows. After identifying the pairs of 

corresponding pixels, we set all the pixels that lie on a ray connecting a pair of 

pixels to 1, and all other pixels to 0. With this process, we get the text mask of 

the reference word instance. For each word bounding box estimated by the 

tracking step, we slightly extend it and also obtain its text mask. Then, we 

slide the reference text mask over the text mask of the extended bounding box. 

The position that gives the most number of intersected pixels (counting only 

pixels with values of 1) is selected as the correct alignment between the 

current instance and the reference one. 

Figure 4.8a shows a reference word instance and its text mask. In (b), we 

show a few instances of the same word that are tracked in other frames, 

without alignment. It is observed that the extracted instances are off by a few 

pixels compared to the reference one. The first instance is shifted in the down-

right direction, the second instance is shifted to the left, and the last instance is 

shifted in the up-left direction. In (c), we show the corresponding instances, 

but with pixel-level alignment using the text mask in (a). It is evident that 

alignment helps to ―stabilize‖ the text instances and ensure that the text pixels 

in the different instances have the same positions. This is crucial for multiple-

frame integration. 
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 (a) Reference instance (c) Extracted text instances with alignment 

 and its text mask 

Figure 4.8. Sample extracted text instances. 

 

The advantage of our tracking technique over existing methods is that it 

tracks only text pixels. Thus, it is more robust to background changes than 

methods that do not attempt to identify the text pixels. For example, (Lienhart 

& Wernicke 2002; Gllavata et al. 2004; Minetto et al. 2011) perform tracking 

by extracting features from all pixels in a bounding box, including background 

pixels. Moreover, SWT is rotation-invariant, and SIFT is robust to rotation, 

scale change and viewpoint change. Hence, our technique can be extended to 

track complex text movements. 

 

4.2.2.2 Text Probability Estimation 

 

At the end of the previous step, we have identified all the word instances 

between        and     . We also have their text masks. The text probability 

map is integrated from these masks: 

 

         
 

 
      

    

        

 (4.5) 

 

where                 is the number of frames between        and     . 

Figure 4.9b shows a sample probability map. It is observed that true text pixels 

(b) Extracted text instances without alignment 
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have higher values (represented by brighter colors) while background pixels 

have lower values (represented by darker colors). The rationale is that after the 

text instances have been aligned, the text pixels will be ―stable‖, i.e., they stay 

at the same position across the different instances. Thus, when we sum up the 

text masks, these pixels will accumulate high values. On the other hand, the 

background changes from one word instance to another, and thus will not 

accumulate high values. Another advantage of the proposed integration is that 

even if a text part is missed in one or few instances (e.g., due to occlusion or 

blurring), it will still accumulate high values in the text probability map 

because it can clearly be seen in the remaining instances. 

 

 

 (a) Word instances and their corresponding (b) Text (c) Initial 

 SWT masks probability map binarization 

Figure 4.9. Text probability estimation. 

 

We then apply a simple thresholding on the text probability map to 

obtain an initial binarization of the word: 

 

              
                 
           

  (4.6) 

 

  is determined empirically to be 0.7. In other words, it is expected that true 

text pixels will take a value of 1 (i.e., white pixel) in at least 70% of the text 

masks. (Section 4.2.3.4 analyzes how the recognition accuracies vary with 

respect to  .) 
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Figure 4.9 shows a few instances from a word‘s framespan. Because this 

is a difficult case, the text masks contain erroneous background information. 

However, as explained above, these background parts are not stable enough to 

accumulate high values. In addition, in the last two instances, a large part of 

‗T‘ is missing due to the low contrast and the similar background colors. 

Despite these problems, the text probability map in Figure 4.9b shows that the 

character shapes are recovered by using information from the other instances. 

The initial binarization in Figure 4.9c successfully separates text from the 

background, despite the imperfect individual text masks in Figure 4.9a. 

 

4.2.2.3 Character Shape Refinement 

 

The initial binarization in the previous step may not reflect the true 

character shapes because SWT tends to produce rounded strokes. In addition, 

there may be disconnections in the strokes due to complex backgrounds. Thus, 

in this final step, we refine the character shapes to improve the recognition 

accuracy. 

We slide a window over      , the averaged intensity image of all the 

word instances between        and     . For a window centered at      , we 

refine the character shapes as follows: 

 

                

  
                                         

           
  

(4.7) 

 

       and        are the average intensity values of the foreground and 

background pixels in the local window. The classification of pixels into 
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foreground and background is based on the corresponding window in 

       . In other words, the white pixels in the corresponding window in 

        are assumed to be foreground and their intensity values in       are 

used to estimate       . Similarly, for the black pixels in the corresponding 

window in        , their intensity values in       are used to estimate 

      . Intuitively, Equation (4.7) means that in each window, if the center 

pixel is closer to the estimated foreground intensity, it is set to foreground. 

Otherwise, it is set to background. 

The rationale is that within a small neighborhood, text pixels often have 

similar intensity values. Thus, we can recover true text pixels which may be 

missed by SWT. In addition, we can suppress background pixels (e.g., those 

inside the hole of a character) which may have been wrongly picked up by 

SWT. Thus, this step helps to preserve the distinctive character features (e.g., 

sharp edges and holes), which are crucial for correct recognition. 

In Figure 4.10, each pair of images consists of the results before 

refinement (       ) and after refinement (           ). The strings below 

the images are the recognition result by an OCR engine (ABBYY FineReader 

9.0). For ―10PM‖, refinement helps to separate touching characters. For ―to‖, 

before refinement, the left part of the horizontal stroke of ‗t‘ is missing. After 

refinement, it is recovered. And for ―Call‖, before refinement, the hole of ‗a‘ 

is not clear, which becomes much better after refinement. In all of these cases, 

the recognition results are wrong before refinement, but become correct after 

refinement. Note that in Figure 4.8 and Figure 4.9, the text pixels are shown in 

white and the background is shown in black. However, in Figure 4.10 and the 

subsequent figures, before sending a binarized word for recognition, we 
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change the polarity to black text on white background (which is the polarity 

that the OCR engine expects). 

 

 

 10?M 10PM CO to Coll Call 

Figure 4.10. Character shape refinement. 

 

4.2.3 Experimental Results 
 

4.2.3.1 Datasets 

 

Since there is no standard dataset for video text, we used our text 

localization method in section 3.2 to extract a variety of video words. The 

moving text dataset contained words extracted from English videos (from 

TRECVID 2005 and 2006
6
) and German videos

7
. The static text dataset 

contained English words extracted from TRECVID 2005 and 2006. Table 4.4 

provides the statistics of the datasets. 

 

Table 4.4. Statistics of the moving text dataset and the static text dataset. 
 

 Moving text Static text 

Frame rate 

(frames/second) 
30 30 

Frame resolutions 352 × 240 to 384 × 288 352 × 240 

Text motion types 
Bottom to top, right to left 

and left to right 
Static 

Number of words 250 212 

Number of characters 1545 1389 

 

                                                 

 
6
 http://trecvid.nist.gov/ 

7
 The MoCA Project. http://pi4.informatik.uni-

mannheim.de/pi4.data/content/projects/moca/Project-textSegmentationAndRecognition.html 
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4.2.3.2 Methods for Comparison 

 

For comparison, we implemented three methods: 

 Niblack binarization on only the reference instance. 

 Min/max operator (used in (Lienhart & Wernicke 2002; Zhou et 

al. 2007)) on multiple instances, followed by Niblack binarization. 

 Combination of average and min/max operators (used in (Yi et al. 

2009)) on multiple instances (denoted Average-Min/max), 

followed by Niblack binarization. 

The first method is included to show the difference between using only a 

single instance and using temporal integration. For the other two methods, we 

need to detect the text polarity to decide whether to use the min operator or the 

max operator. (Lienhart & Wernicke 2002; Zhou et al. 2007) used heuristic 

rules while (Yi et al. 2009) did not address this issue. Since we are more 

interested in the different integration techniques, we used the same polarity 

detection technique (in section 4.2.2.1) for both methods. Similarly, whenever 

multiple instances were required, they were identified using the same 

technique in section 4.2.2.1. 

For our method, we ran it with two different settings: 

 On only the reference instance (Ours-Reference instance). In this 

setting, no temporal integration was done, i.e.,         is equal to 

the text mask of the reference instance. We still performed 

character shape refinement. 

 On multiple instances (Ours-Multiple instances). 
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4.2.3.3 Sample Results 

 

Figure 4.11 shows sample results on a word affected by lighting (special 

effect). The proposed method on multiple instances is the only one that 

produces a good binarization. The recognition result by the OCR engine is 

also correct (―preserve‖). For all the other methods, the OCR engine returns an 

empty string because the binarized results contain a lot of background 

information. 

Figure 4.12 shows more results of our method. Note the fact that the last 

image has a different text polarity than the rest. This shows that the polarity 

detection technique in section 4.2.2.1 allows our method to handle different 

text polarities. 

 

 

 (a) Reference instance (b) Niblack (c) Ours-Single frame 

 

 (d) Min/max (e) Average-Min/max (f) Ours-Multiple frames 

Figure 4.11. Sample results of the existing methods and our method. For Min/max and 

Average-Min/max, only the final binarized images are shown. 

 

 

 stryker INFLUENTIALS 

 

 only ET GLOBAL 

Figure 4.12. Sample results of our method. The left image in each pair is the reference 

instance. The strings below the images are the OCR results. 
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4.2.3.4 Recognition Accuracy 

 

To examine whether temporal integration helps to improve the 

recognition rate, we used ABBYY FineReader 9.0 as the OCR engine. The 

performance measures were the case-sensitive character recognition rate 

(CRR) and word recognition rate (WRR). Following (Ntirogiannis et al. 

2011), CRR and WRR were computed by comparing the recognized strings 

and the ground truth (GT) strings. (Characters such as punctuation marks are 

ignored.) 

 

    
                    

               
 (4.8) 

    
               

          
 (4.9) 

 

where                                                    

                            . Insertions, substitutions and deletions are 

between the recognized strings and the GT strings. 

Table 4.5 shows the recognition rates on the moving and static text 

datasets, respectively. In each table, the first two methods only use the 

reference instance while the remaining ones use multiple instances. The first 

observation is that using multiple instances leads to significantly better CRRs 

and WRRs. This demonstrates the importance of temporal integration. 

Between the two single-instance methods, our method achieved better 

CRR and WRR than Niblack, especially on the static text dataset. The 

advantage of using SWT to estimate text masks is that it searches for a text-

specific feature, namely pairs of edges with constant stroke widths. In contrast, 
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Niblack does not analyze the edge structures and only works on the intensity 

values. Thus, it may produce noise for cluttered backgrounds. 

Among the multiple-instance methods, our method achieved the best 

CRR and WRR on both datasets. In terms of WRR, our method was 14.8% 

and 13.2% better than Average-Min/max on the moving text and static text 

datasets, respectively. This demonstrates the advantage of our method. 

Between the two existing multiple-instance methods, Average-Min/max 

was better than Min/max. The latter had a significant drop in accuracies for 

moving texts. The reason is that for moving texts, the alignment of the text 

instances may not be perfect. If an instance is misaligned, it will introduce 

―outlier‖ values (intensity values that are significantly higher or lower than the 

corresponding values in other instances). Min/max is sensitive to such outlier 

values. In contrast, Average-Min/max only uses the min/max operator on 

background pixels, and thus is less affected by outlier values. However, its 

drawback is the use of Otsu‘s binarization for estimating text and background 

pixels. This binarization method is not able to handle video words with 

complex backgrounds. 

To examine the effectiveness of character shape refinement, we turned it 

off in the last row of Table 4.5. The results show that refinement helps to 

improve the WRRs on the moving text and the static text datasets by 3.6% and 

6.6%, respectively. 

We also examined how the recognition rates of our method change with 

respect to parameter   (in Equation (4.6)).  Figure 4.13 shows that the WRRs 

were not too sensitive to   as long as            . 
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Table 4.5. Recognition rates on the moving text dataset and the static text dataset (in %). 
 

Method 
Moving text Static text 

CRR WRR CRR WRR 

Niblack 68.2 51.2 54.6 32.1 

Ours-Reference instance 70.7 52.8 65.4 47.6 

Min/max 49.9 26.8 63.2 43.9 

Average-Min/max 74.0 55.6 73.0 58.0 

Ours-Multiple instances 82.8 70.4 80.9 71.2 

Ours-Multiple instances, without shape 

refinement 

81.9 66.8 78.6 64.6 

 

 

Figure 4.13. Word recognition rates of our method for different values of  . 

 

This work has shown the importance of text pixel identification prior to 

enhancement, in both the tracking step and the integration step. It allows our 

method to track only the text pixels and enhance only the text regions. In 

contrast, many existing methods use all pixels for enhancement, which may 

result in accidental enhancement of the background regions. Currently, the 

proposed method works for static text and moving text with linear motion 

(e.g., right-to-left). In the future, we will study more complex text movements. 

 

4.3 Summary 
 

This chapter has described two methods for text enhancement, one for 

single-frame enhancement and the other for multiple-frame enhancement. The 
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main contribution of the first work is that GVF is used in a novel way to 

produce curved segmentation paths. This in turn allows our method to binarize 

each character individually (instead of binarizing a whole text line) and leads 

to improved recognition accuracy. 

The second work has shown the importance of utilizing the temporal 

redundancy to achieve significantly better recognition accuracy. Our work has 

also demonstrated the advantages of text pixel identification prior to 

enhancement. It allows our method to track and enhance only the text regions. 

In contrast, many previous methods utilize all pixels for enhancement, which 

may lead to accidental enhancement of the background regions. 
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Chapter 5  

Recognition of Scene Text with Perspective 

Distortion 

The previous chapter has shown that text enhancement methods can be 

used together with an OCR engine (as a black box) to improve the recognition 

accuracy. While it is a reasonable choice for texts which are frontal parallel to 

the image plane, this approach is not suitable for scene texts with perspective 

distortions because OCR engines are not designed to handle these distortions. 

Hence, we have explored a different approach in which we propose our own 

algorithms for character and word recognition. 

This chapter presents our work on scene text recognition. We focus on 

texts with perspective distortions, which is an improvement over many 

existing methods which handle only frontal texts. 

 

5.1 Motivation 
 

As mentioned in section 2.7, although there are existing works to 

recognize text in natural scene images, e.g., (Smith et al. 2011; Wang et al. 

2011; Novikova et al. 2012; Mishra et al. 2012b), their scopes are limited to 

horizontal texts which are frontal parallel to the image plane. However, in 

practice, scene texts can appear in any orientation, and with perspective 

distortion. Thus, the important issue of handling perspective texts has been 

neglected by previous works. 
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This work attempts to address the recognition of perspective texts in 

street images, which facilitates the application of business name search on 

online maps (Wang et al. 2011). This application is motivated by the 

availability of ground-level, 360 views of various locations on Google Maps 

and Microsoft Bing Maps. These geo-tagged images contain useful text 

information such as business names, addresses, operating hours and so on. The 

large-scale nature of street image data provides an exciting opportunity to 

benefit millions of users. 

Using a traditional visual feature such as Histogram of Oriented 

Gradients (HOG) (as employed in (Wang et al. 2011; Mishra et al. 2012b)) 

would lead to a low accuracy on perspective texts. The reason is that the 

feature is not able to handle the different poses of the characters. To deal with 

this problem, one approach is to train a classifier on discretized poses of 

individual characters. However, the major drawback of this approach is that it 

is labor-intensive and time-consuming to collect enough training samples for a 

large number of character classes (62 classes for English characters and 

digits), each with, say, 10 discrete poses. In addition, when collecting 

character samples from natural scenes, it is very difficult to control the poses 

of the characters accurately. 

Hence, we take a different approach and use SIFT in a bag-of-keypoints 

approach. Because SIFT is robust to both rotation and viewpoint change, our 

system is trained on only frontal characters (from commonly used datasets 

such as ICDAR 2003 (Lucas et al. 2003)). Our extensive experiments show 

that this approach achieves good accuracies, while avoiding the high cost of 

collecting samples of perspective characters. 
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Following recent works (Wang et al. 2011; Mishra et al. 2012b), the 

scope of this work is limited to cropped word recognition with a lexicon, i.e., a 

list of words of interest. The lexicon serves as a form of context information, 

and is especially relevant for the application of business name search. Given a 

street image and its address, the lexicon can be built by collecting the shop 

names around the address via a search engine (Wang et al. 2011). There are 

also other applications where such a lexicon is available. (Ballan et al. 2010) 

used a list of soccer players‘ names for text recognition in sports videos. 

(Graves et al. 2009) constructed a list of the most common English words for 

handwriting recognition. Another example is the list of products in a 

supermarket, which can be used for the application of aiding the visually-

impaired. Figure 5.1 illustrates the problem setting. 

 

 

Figure 5.1. The problem of cropped word recognition. A “cropped word” refers to the 

region cropped from the original image based on the word bounding box returned by a 

text localization method. Given a cropped word image, the task is to recognize the word 

using the provided lexicon. 

 

Our contributions are as follows. (1) We present an approach to 

recognize perspective scene texts. This issue is of great practical importance, 

but has been neglected by most previous works. (2) Our system is trained on 

only frontal characters, which drastically reduces the cost of collecting 

Lexicon: GARAGE, SAKE, 

YOGA, BAR, … 

Lexicon: GARAGE, SAKE, 

YOGA, BAR, … 

Cropped word recognition 

Text 

localization 
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training data. (3) For performance evaluation, we introduce a new dataset 

called StreetViewText-Perspective, which contains texts in street images with 

a variety of viewpoints. On this dataset, our method compares favorably to the 

state-of-the-art. 

 

5.2 Proposed Method 
 

An overview of our approach to perspective text recognition is shown in 

Figure 5.2. We describe the detection and recognition of characters below. The 

optimized alignment of the recognized characters with the lexicon will be 

discussed in section 5.2.2. 

 

 

Figure 5.2. The flowchart of the proposed method. 

 

5.2.1 Character Detection and Recognition 
 

5.2.1.1 Detection of Character Candidates 

 

In the first step, we use Maximally Stable Extremal Regions (MSERs) 

(Matas et al. 2002) to detect the potential character locations in a cropped 

word image (hereafter referred to as character candidates). The main idea of 

MSER is to identify regions which remain stable over a range of thresholds on 

the intensity values. It has been shown that scene characters can be extracted 

as MSERs (Neumann & Matas 2010; Neumann & Matas 2012). MSERs are 

also robust to viewpoint change (Mikolajczyk et al. 2005). Hence, they are 

suitable for perspective characters. 
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However, not all the extracted MSERs from a cropped word correspond 

to characters. Thus, we classify them into text MSERs and non-text MSERs 

using four features: relative height, aspect ratio, number of holes and number 

of horizontal crossings (Neumann & Matas 2010; Neumann & Matas 2012). 

The text MSERs are retained while the non-text MSERs are discarded. 

In (Neumann & Matas 2010; Neumann & Matas 2012), the text MSERs 

were directly used for text localization. However, in this work, we use the 

bounding boxes of the MSERs instead. The reason is that although MSERs 

provide a useful initial segmentation of the characters, they do not always 

correspond to the whole characters. Figure 5.3 shows an example where the 

MSERs corresponding to ‗E‘ and ‗S‘ have incomplete shapes. Therefore, 

using the MSER bounding boxes as character candidates helps to recover 

some of the missing parts (if any) of the characters. 

 

 

 (a) Cropped word image (b) MSERs 

 

(c) Character candidates based on MSER bounding boxes 

Figure 5.3. Character detection based on MSERs. For better illustration, only the non-

overlapping MSERs are shown in (b). The handling of overlapping MSERs will be 

discussed later. 

 

5.2.1.2 Estimation of Character Probabilities 

 

For each character candidate detected in the previous section, we need to 

estimate the probability that it takes character label  . In this work, we focus 

on English characters:                        . Formally, we would 
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like to estimate        , the probability that   , the  th character candidate, 

takes label  . 

As mentioned before, our goal is to train the system on only frontal 

characters (to reduce the cost of collecting training data). This requires the 

features extracted from the character candidates to be robust to rotation and 

viewpoint change. Thus, we propose to use SIFT. SIFT has been explored for 

text recognition in (Zheng et al. 2010; Iwamura et al. 2011) and for word 

spotting in (Rusinol et al. 2011; Yalniz & Manmatha 2012). The first two 

works extracted the descriptors only at sparse interest points, which is not 

sufficient for perspective characters (to be explained later). The last two works 

were only tested on frontal scanned document images. In contrast, we adopt 

dense SIFT (which was used for scene classification in (Bosch et al. 2006)) for 

perspective character recognition. 

More specifically, the region inside a character candidate
8
 is normalized 

to a fixed size of 48 × 48. We use a grid with spacing of 2 pixels. At each grid 

point, we extract SIFT descriptors at multiple scales. Note that only the 

locations and the scales are fixed. The dominant gradient directions of the 

descriptors may vary across different grid points, as well as across different 

scales at the same grid point. (In the literature, the term ―dense SIFT‖ 

sometimes refers to an extraction scheme where the orientations of the dense 

interest points are fixed. However, we allow them to vary to ensure the 

rotation-invariance of the descriptors.) 

The rationale for using dense SIFT is that it provides more information 

to discriminate among a large number of classes (62 character classes). With 

                                                 

 
8
 Recall that character candidate refers to the bounding box of a character detected by MSER. 
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the original SIFT, the descriptors are only extracted at interest points. 

However, scene characters typically suffer from deformations, e.g., blurring 

and uneven illumination, which reduce the number of detected interest points. 

More importantly, instances of the same class often suffer from different types 

of deformations. Thus, the sets of detected interest points are not consistent. 

This negatively affects the matching of the descriptors. Figure 5.4 shows that 

using dense SIFT helps to overcome the above problems. 

 

 

 (a) Interest points using normal SIFT (b) Interest points using dense SIFT 

 

 (c) Descriptor matching using (d) Descriptor matching using 

 normal SIFT dense SIFT 

Figure 5.4. Using normal SIFT leads to few descriptor matches. In contrast, dense SIFT 

provides more information for character recognition. The left image in each pair is from 

the training set while the right one is from the test set. Note the fact that the right one is 

a rotated character. For better illustration, in (b), we only show one scale at each point. 

 

Furthermore, instead of matching the descriptors directly, we follow a 

bag-of-keypoints approach (Csurka et al. 2004). By ignoring the spatial 

information of the keypoints, this approach allows for more distortion between 

the training and the testing samples. K-means clustering is used to build a 

vocabulary of 3,000 visual words from a random subset of (dense) SIFT 

descriptors extracted from training samples. (Section 5.4.1.4 shows how the 

recognition accuracy varies with respect to the vocabulary size.) With this 

vocabulary, the descriptors of a character candidate are assigned to the nearest 
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clusters. The feature representation then becomes a histogram which counts 

the number of descriptors belonging to each of the visual clusters. We use a 

standard SVM package
9
 with Histogram Intersection Kernel (Maji et al. 2013) 

to estimate              . (The training and the testing data are described in 

section 5.4.) 

The fact that our method recognizes perspective characters directly is an 

advantage over methods which rely on rectification such as (Neumann & 

Matas 2010; Neumann & Matas 2011). The rectification process is error-prone 

due to the challenges of scene characters, including blurring and cluttered 

backgrounds. 

 

5.2.1.3 Non-maximal Suppression 

 

Since multiple MSERs may be detected for the same character 

(Neumann & Matas 2012), we perform non-maximal suppression 

(Felzenszwalb et al. 2010) on the set of character candidates. A character 

candidate is suppressed if it has a significant overlap with another character 

candidate and the latter has a higher confidence. The overlap ratio is 

calculated based on the two MSER areas. The confidence of a character 

candidate is defined as the maximum character probability: 

 

               
          

   
 (5.1) 

 

                                                 

 
9
 LIBSVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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After suppression, the remaining character candidates are fed into the next step 

for word recognition. 

MSER and SIFT have been used separately for character detection and 

character recognition in previous works. However, to the best of our 

knowledge, this work is the first attempt to combine them in a coherent way to 

recognize perspective characters while using only frontal training data. 

 

5.2.2 Recognition at the Word Level 
 

The recognition of perspective texts is much more difficult than that of 

frontal, horizontal texts due to additional challenges. With arbitrary 

orientation, it is difficult to distinguish characters such as ‗6‘ and ‗9‘, and ‗u‘ 

and ‗n‘, unless there is context information. Furthermore, some characters may 

be hard to read (due to severe distortions) or even occluded. To deal with these 

problems, we use a lexicon as the context information. We formulate word 

recognition as finding the optimal alignment between the character candidates 

and the lexicon words. 

Let   denote the lexicon of an image. Let             be the set of 

character candidates. Each character candidate can take a label from      , 

where                       and   is the empty label. Let    denote an 

alignment vector of   to a word label    .         (   ) represents 

that    is aligned with     , the  th
 character of string  .         indicates 

that    takes the empty label. 

For example, in Figure 5.5,               indicates that    is aligned 

with the 7
th

 character (‗R‘).               and               because 

   and    take the empty label. Note that for this image, some of the characters 
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are missed (‗N‘) or partially detected (‗P‘ and ‗O‘). However, the alignment 

vector still allows for a flexible matching. 

 

 

Figure 5.5. A sample alignment between a set of 6 character candidates (shown in 

yellow) and the word “PIONEER”. The top row shows the value of the alignment vector 

(of length 6). 

 

We define                to be the alignment score, which measures 

how well the labels of the character candidates match the word label   (to be 

explained more later). The optimal word label    can then be found as 

follows: 

 

   
                     

   
 (5.2) 

 

where 

 

                
                 

     
 (5.3) 

 

   denotes the set of all the possible alignments between the character 

candidates and word label  . 

Intuitively, Equations (5.2) and (5.3) mean that for each word label in 

the lexicon, we compute its maximum alignment score. Then, among all the 
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lexicon words, the one with the highest maximum alignment score is returned 

as the optimal word label. 

 

5.2.2.1 Ordering of Character Candidates 

 

Our optimized alignment algorithm requires the character candidates to 

be ordered into a sequence. For simplicity, we assume that text is written from 

left to right or from top to bottom. If a word image is nearer to the horizontal 

orientation, the character candidates are ordered by the x-coordinates. 

Otherwise, they are ordered by the y-coordinates. A word image is classified 

as either nearer to the horizontal orientation or to the vertical orientation based 

on the angle of the major axis of its bounding quadrilateral. (For perspective 

word images, we use quadrilaterals to mark the word locations (Section 5.3).) 

 

5.2.2.2 Alignment Score 

 

As mentioned before, the alignment score measures how well the labels 

of the character candidates match a word label in the lexicon. It is computed 

based on the individual scores of the character candidates. Let             be 

the score of assigning label   to character candidate   : 

 

             
              

                       
  (5.4) 

 

If a character candidate takes a non-empty label, we directly use the 

corresponding SVM probability. Otherwise, if it takes the empty label, we use 

a penalty score (inspired by (Mishra et al. 2012b)). The purpose of the penalty 
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score is to discourage character candidates with high confidence from taking 

the empty label. 

The alignment score of the whole word is the average of the individual 

scores of the character candidates: 

 

               
 

 
                   

 

   
 (5.5) 

 

Recall that       is the index of string   that    is aligned to. Thus,          

is the label assigned to   . 

 

5.2.2.3 Optimized Alignment Algorithm 

 

Equation (5.2) is implemented by looping through the word labels in the 

lexicon. For each word label  , we need to compute                 

(Equation (5.3)). The rest of this section describes our optimized alignment 

algorithm for doing this. Since   is fixed in Equation (5.3), we drop   in 

some of the below notations for clarity. 

Let         be the optimal alignment score of character candidates 

            , with    aligned at index   of  .   can be computed using 

dynamic programming. 

The initialization is described in Algorithm 5.1. Intuitively, Equation 

(5.6) means that only    is assigned a non-empty label while           are 

assigned the empty label. Hence, we use the score of    and add the penalty 

scores of          . 
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Algorithm 5.1. Initializing F‟s. 
 

for     down to   

  for          down to   

                                   
 

     
 

  end for 

end for 

(5.6) 

 

After that, we update   backwards using Algorithm 5.2. In this 

algorithm,           and               .    can be thought of as the 

first character candidate with a non-empty label after   . Intuitively, the right 

hand side (RHS) of Equation (5.7) means that we loop through the 

combinations of   and  . For each combination of   and  : 

 We use        , the optimal alignment score for        , as the 

starting point. (Note that because we compute   backwards,         

has already been computed, and thus we can use its value.) 

 We then add the penalty scores of assigning the empty label to 

           . 

 Finally, we add the score of   . 

 After we have looped through all the combinations of   and  , if the 

RHS of Equation (5.7) is greater than the initialized value of         

(in Equation (5.6)), we update the value of the latter to the former. 

In our implementation, to reduce the computational time, we restrict the 

range of   based on   ‘s relative position in the image. For example, if    is 

near the left boundary of the image,  ‘s range can be restricted to only the first 

few indices of  .  ‘s range can also be restricted in a similar way. 
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Algorithm 5.2. Updating F‟s. 
 

for     down to   

  for          down to   

    if                                  
   
                      

   

 

            update         to       

   
 

    end if 

  end for 

end for 

 

 

 

 

 
(5.7) 

 

When all  ‘s have been computed,                 in Equation 

(5.3) is obtained by: 

 

                
                        

   

   
 

   

 (5.8) 

 

The intuition of Equation (5.8) is that we loop through the combinations of   

and  . For each combination of   and  ,    acts as the first character candidate 

with a non-empty label (among all the detected character candidates). Hence, 

we use the score of    and add the penalty scores of          . 

Our optimized alignment algorithm has a few advantages over existing 

works. First, it explicitly allows the empty label, and thus is able to handle 

cases where one or more characters are missed or occluded. This is an 

advantage over (Wang et al. 2011), which does not allow skipping characters 

when matching with a word label in the lexicon. Second, many methods, e.g., 

(Wang et al. 2011; Novikova et al. 2012), require normalization for word 
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length to avoid bias towards shorter words. In contrast, because the magnitude 

of our alignment score depends on the number of character candidates (and not 

on the lexicon word length), no normalization is required. 

 

5.2.3 Recognition at the Text Line Level 
 

Most recent methods, e.g., (Wang et al. 2011; Mishra et al. 2012a; Novikova 

et al. 2012; Wang et al. 2012; Mishra et al. 2012b; Neumann & Matas 2013; Shi et al. 

2013b), perform recognition at the word level. One of the reasons is that most 

common datasets, e.g. ICDAR 2003 (Lucas et al. 2003) and Street View Text 

(Wang et al. 2011), are annotated at the word level. However, at this level, 

each word is recognized independently, and the labels of the neighboring 

words are not taken into account. 

Hence, in this work, we also explore recognition at the text line level. In 

particular, we utilize the language context information at the text line level to 

improve the recognition accuracy. For example, suppose that a text line 

contains two words: the first one is easy to recognize while the second one is 

hard to read. Further suppose that for the second word, we have two 

hypotheses with similar scores: ―FRANCISCA‖ and ―FRANCISCO‖. Without 

any context information, the hypothesis with the higher score will be returned 

as the recognition result. However, if the first word is recognized as ―SAN‖ 

with high confidence, it is reasonable to favor ―FRANCISCO‖ because 

―SAN‖ and ―FRANCISCO‖ often appear together. 

Thus, we will describe a recognition scheme in which the scores of all 

the words in a text line are taken into account. More specifically, we model a 

text line using a linear-chain Conditional Random Field (CRF) (Lafferty et al. 
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2001). For each word in the text line, we add a node in the CRF graph 

(according to the order that the words appear in the text line). We also add 

edges so that a node is connected to the previous node (corresponding to the 

previous word) and to the next node (corresponding to the next word). 

Let    denote the node corresponding to the  th  word image on a text 

line. Let    denote the label assigned to   . To find the optimal set of word 

labels for a text line, we need to minimize the following energy function: 

 

                         
        

 
(5.9) 

 

         is the unary term that represents the cost of assigning label    to   . 

               is the pairwise term that captures the relationship between two 

neighboring word labels.   is the set of neighboring pairs. 

To construct the CRF graph for a text line, we need to know which 

words belong to that text line, as well as their ordering in the text line. As 

aforementioned, most common datasets do not provide these information. 

Hence, we manually annotate these information for the datasets that we use for 

experiments (which are described in Sections 5.3 and 5.4). Our annotations 

consist of two fields: 

           : This field specifies which text line a cropped word 

image belongs to. 

           : This field specifies the order of a cropped word 

image on a text line. 

Figure 5.6 show example annotations for a street image. With these 

annotations, we would be able to construct the CRF graphs (two graphs in this 
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case, one for the ―liquid‖ text line, and the other one for the ―LIQUID 

AGENCY‖ text line). 

 

 

 (a) Original full image of a street scene (b) Our annotations for the 

  cropped word images 

Figure 5.6. Example LineNumber and WordNumber annotations. 

 

Having explained the CRF graph construction, we will now describe the 

cost functions. The cost (or penalty) function for the unary term in Equation 

(5.9) is defined as follows: 

 

                               (5.10) 

 

where                     is the score of assigning label    to   , i.e., to 

the  th cropped word image. It has been defined earlier in Equation (5.3). 

For the pairwise term in Equation (5.9), one way to capture the 

relationship between the labels of two neighboring words is to use the word  -

gram model: 

 

                          (5.11) 
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where          is the word bigram probability. This cost function helps to 

give preferences to sequences of words that occur frequently (in text 

corpuses). 

To estimate the word bigram probabilities, we use Google‘s Web 1T 5-

gram dataset
10

, which provides the word  -gram
11

 counts obtained from a 

trillion word tokens crawled from web pages on the Internet. This dataset is a 

huge corpus with 13.6 million distinct words. More importantly, one of its key 

advantages over traditional corpuses is that since it uses texts from web pages, 

it contains more brand names, shop names, street names, etc. Thus, it is 

suitable for our problem because these kinds of words often appear in natural 

scene images, especially street images. 

This dataset was first used for scene text recognition in a recent 

publication (Feild & Learned-Miller 2013). However, the authors only used 

the word unigram probabilities to verify the recognition results at the word 

level. In contrast, we use the word bigram probabilities to perform recognition 

at the text line level. 

Finally, to minimize the energy function in Equation (5.9), we use the 

well-known Viterbi algorithm (Viterbi 1967). In addition, to reduce the 

computational time and to avoid over-correction by the word bigram model, 

for each node in the CRF graph, we only keep its top   hypotheses. In other 

words,          in Equation (5.10) is modified as follows: 

 

          
                                             

           
  (5.12) 

                                                 

 
10

 http://catalog.ldc.upenn.edu/LDC2006T13 
11

 Up to 5-gram 
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Note that because each    corresponds to a different cropped word image, it 

will have a different set of top   hypotheses. We empirically set   to 5 in our 

implementation. 

In Section 5.4, we will present our experiments for recognition at both 

the word level and the text line level. Before that, we describe the dataset that 

we specifically propose for evaluating perspective text recognition in the next 

section. 

 

5.3 StreetViewText-Perspective Dataset 
 

Most of the standard datasets for scene text recognition, e.g., (Lucas et 

al. 2003; de Campos et al. 2009; Weinman et al. 2009; Wang et al. 2011; 

Mishra et al. 2012a), are limited to frontal texts. For example, the annotators 

of the  Street View Text (SVT) dataset were instructed to ―minimize skew‖ 

when choosing the angles of texts (Wang et al. 2011). Recently, there are more 

challenging datasets: NEOCR (Nagy et al. 2011) and MSRA-TD500 (Yao et 

al. 2012), which include multi-oriented texts and perspective texts. However, 

because they are not specifically designed for perspective texts, many of the 

words in these datasets are still frontal. 

Hence, although we do include MSRA-TD500 in our experiments, we 

also introduce a new dataset called StreetViewText-Perspective (SVT-

Perspective)
12

, which is specifically designed for evaluating perspective text 

recognition. Our dataset is built based on the original SVT dataset (Wang et al. 

                                                 

 
12

 Available at http://www.comp.nus.edu.sg/~phanquyt/ 
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2011) for two reasons. (SVT is a public dataset that contains images taken 

from Google Street View with frontal texts of shop names, street names, etc.) 

First, we would like to reuse the lexicons in SVT, which were collected 

by Amazon Mechanical Turk workers. As a consequence, our dataset contains 

images taken at the same addresses on Google Street View. However, instead 

of choosing the frontal texts, we intentionally picked side-view angles such 

that texts are still readable to humans. The lexicon of each image was taken to 

be the same as that of the corresponding SVT image. Second, as our images 

were taken at the same locations, they allow for a meaningful analysis of the 

degradation in performance between frontal and perspective texts. 

For each image in our dataset, the words were manually annotated using 

quadrilaterals. Similar to SVT, we only annotated the words that were present 

in the image-specific lexicons. Figure 5.7 shows a comparison of an image 

from SVT and an image from SVT-Perspective. 

 

 

 Lexicon: PICKLES, PUB, Lexicon: PICKLES, PUB, 

 HOTEL, INN, … HOTEL, INN, … 

 (a) SVT image (b) SVT-Perspective image 

Figure 5.7. An image from SVT and the corresponding image from SVT-Perspective. 

Both images are taken at the same address, and thus have the same lexicon. In (b), the 

bounding quadrilaterals are shown in black for “PICKLES” and “PUB”. 

 



150 

 

Our dataset contains 238 images
13

, which correspond to the images in 

the SVT test set. The number of cropped words is 639. The words are of a 

variety of viewpoints and orientations. Their heights vary from 9 to 330 pixels. 

 

5.4 Experimental Results 
 

We performed experiments on perspective texts, multi-oriented texts and 

frontal texts, at both the word level and the text line level. For the first class of 

texts, we used our own dataset for reasons explained in the previous section. 

For the second class of texts, we picked MSRA-TD500 (Yao et al. 2012) 

because it is a very recent dataset that is specifically designed for multi-

oriented texts. (Note that in terms of size, NEOCR (Nagy et al. 2011) is larger 

than MSRA- TD500. However, it also contains more languages. The English 

subsets of these two datasets, which are our focus in this work, are comparable 

in size (Nagy et al. 2011; Yao et al. 2012).) For the third and final class of 

texts, among the various datasets that have been used in the literature (de 

Campos et al. 2009; Weinman et al. 2009; Mishra et al. 2012a), we chose 

ICDAR 2003 (Lucas et al. 2003) and SVT (Wang et al. 2011) because they are 

the most widely used datasets with many reported results. 

MSRA-TD500 only contains annotations at the text line level. Thus, to 

evaluate word recognition, we manually added word-level annotations
14

 for 

the English words in this dataset (denoted as MSRA-TD500-Word). 

                                                 

 
13

 The test set of the SVT dataset contains 249 images. We excluded a small number of images 

(11 images) because we were not able to find the same shops or buildings using the addresses 

provided in SVT. The reason is that these shops or buildings have closed or moved. Thus, 

when Google updated the original addresses with more recent street images, they could no 

longer be found. 
14

 Available at http://www.comp.nus.edu.sg/~phanquyt/ 



151 

 

For ICDAR 2003, we used the benchmarks for character recognition 

(ICDAR-Char) and word recognition (ICDAR-Word). 

For SVT, we used both the original word-level annotations (SVT-Word) 

and the character-level annotations provided in (Mishra et al. 2012b) (SVT-

Char). 

Following recent works, e.g., (Wang et al. 2011; Mishra et al. 2012b), 

we used the case-insensitive word recognition accuracy as the performance 

measure. This is reasonable considering the application of business name 

search in street images, where, for indexing purpose, case does not matter. 

Moreover, although it is mentioned in the previous section that each 

word was manually annotated using a quadrilateral, we have experimentally 

found that there is negligible difference (in word recognition accuracy) 

between using the quadrilaterals and using their minimum bounding rectangles 

(Figure 5.8). Thus, all the experiments in this section used the latter. This 

helps to ensure that the same input images are used for all the methods in the 

experiments, because the existing methods that we used for comparison 

assume rectangular cropped words. 

 

 

 (a) Cropped word using quadrilateral (b) Cropped word using the minimum 

  bounding rectangle of the quadrilateral 

Figure 5.8. All the experiments in this section used rectangular cropped words (b). 

 

Due to the large number of visual words used (Section 5.2.1.2), we need 

to collect enough data to train the character classifier. We used samples from 
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ICDAR-Char (only the training subset) and two other public datasets for 

frontal texts: Weinman‘s dataset (Weinman et al. 2009) and Chars74k (de 

Campos et al. 2009) (only the English subset). In total, we had 19,800 training 

samples. This training set was used for all the experiments in this section. 

We will now describe the experiments for recognition at the word level. 

The experiments for the text line level will be discussed in Section 5.4.2. 

 

5.4.1 Recognition at the Word Level 
 

5.4.1.1 Experiment on Perspective Texts 

 

In this experiment, we used our SVT-Perspective dataset for evaluation. 

We obtained the source codes of (Wang et al. 2011) and (Wang et al. 2012) 

from the authors‘ websites. We also re-implemented (Mishra et al. 2012b) 

following the descriptions in the paper, and included ABBYY FineReader 9.0, 

a commercial OCR engine, in the comparative study. We used the same 

experimental settings as (Wang et al. 2011; Mishra et al. 2012b). In particular, 

words with less than 3 characters or containing non-alphanumeric characters 

were ignored. 

The second column of Table 5.1 shows that our method significantly 

outperformed the other methods. The increase in accuracy from 45.7% (of 

(Mishra et al. 2012b)) to 62.3% (of our method) represents a relative 

improvement of 36%. In Figure 5.9, our method recognized the words 

correctly despite the blurring, occlusion and large variation in text appearance. 

These results show the advantage of using dense SIFT to recognize 

perspective texts. Our alignment algorithm also contributes to the handling of 
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Table 5.1. Recognition accuracy on perspective words (in %). 
 

Method SVT-Perspective-Word SVT-Perspective-Word (Full) 

ABBYY FineReader 9.0 16.9 9.7 

(Wang et al. 2011) 40.5 26.1 

(Mishra et al. 2012b) 45.7 24.7 

(Wang et al. 2012) 40.2 32.4 

Our method 62.3 42.2 

 

 

(Wang et al. 2011) COFFEES LIGHT ADLER 

(Mishra et al. 2012b) SQUARE FOR SAN 

(Wang et al. 2012) INC THE SAN 

Our method MURPHY JONES LIGHTS 

 

 

(Wang et al. 2011) FIRST ALLEY ICON LION 

(Mishra et al. 2012b) SAKE CENTER AND AMC 

(Wang et al. 2012) FRY AMC 
SPA-

GHETTI 

AMC 

Our method GARAGE CINERAMA WARE-

HOUSE 

CINE-

RAMA 

 

Figure 5.9. Sample recognition results for multi-oriented texts and perspective texts. 
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characters that are occluded or hard to read. Moreover, we have shown that 

using only frontal characters for training is a sensible and realistic approach 

because it avoids the cost of collecting perspective character samples. 

We would like to emphasize that our training data did not contain any 

samples from SVT. The training data came from other datasets, as 

aforementioned. Thus, the successful recognition of the perspective words is 

purely due to the generalization power of dense SIFT and SVM (and not 

because of the similarity between SVT and SVT-Perspective). 

We also analyzed how the recognition accuracy varied with the lexicon 

size. Intuitively, a larger lexicon makes it more difficult to recognize a word, 

especially if there are several similar words in the lexicon. In addition to the 

original lexicon size (of around 50 words per image), we used another lexicon 

size denoted as Full. This lexicon contained 377 words (an increase of 7.5 

times in size) and was constructed by putting all the ground truth words in the 

test set into a list (following the procedure in (Wang et al. 2011)). The third 

column of Table 5.1 shows that even when a larger lexicon was used, our 

method still achieved the best accuracy. 

 

5.4.1.2 Experiment on Multi-oriented Texts 

 

In this experiment, we ran the same set of methods on MSRA-TD500-

Word. Since this dataset does not have lexicons, we constructed a Full lexicon 

of 395 words in a similar way as in the previous section. Table 5.2 shows that 

our method also significantly outperformed the other methods on this dataset. 

The increase in accuracy from 44.5% (of (Wang et al. 2011)) to 58.4% (of our 
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method) represents a relative improvement of 31%. Figure 5.10 shows sample 

results of our method. 

We are the first to report the recognition accuracy on MSRA-TD500, a 

very recent public dataset for multi-oriented texts. The fact that our method 

performed well on both SVT-Perspective and MSRA-TD500 demonstrates its 

advantage over existing methods. 

 

Table 5.2. Accuracy on multi-oriented words (in %). 
 

Method MSRA-TD500-Word (Full) 

ABBYY FineReader 9.0 23.2 

(Wang et al. 2011) 44.5 

(Mishra et al. 2012b) 27.8 

(Wang et al. 2012) 20.8 

Our method 58.4 

 

 

 AZONA EXPO HYDRANT TARGET 

Figure 5.10. Sample recognition results of our method for multi-oriented words. 

 

5.4.1.3 Experiment on Frontal Texts 

 

In the previous sections, we do not evaluate cropped character 

recognition because SVT-Perspective and MSRA-TD500 do not have 

character-level annotations. In contrast, ICDAR and SVT do have annotations 

at the character level. Thus, we compared the character recognition accuracy 

(using 62 classes) on cropped character images. We have also included the 

results reported by other recent works. 
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Table 5.3 shows that on SVT-Char, our method achieved the state-of-

the-art accuracy of 67.0%. The previous best known result on this dataset was 

61.9% (Mishra et al. 2012b). 

On ICDAR-Char, our method outperformed (Wang et al. 2011). 

Although its accuracy was lower than those of (Coates et al. 2011; Wang et al. 

2012), these results should be interpreted with the following consideration: 

when rotation-invariant features are used, it is difficult to distinguish pairs of 

characters such as ‗u‘ and ‗n‘, and ‗6‘ and ‗9‘, especially because no context 

information is available at the character level. Therefore, because our method 

uses rotation-invariant features, it is at a slight disadvantage compared to the 

other methods, including (Coates et al. 2011; Wang et al. 2012). Figure 5.11 

shows sample results of our method. 

 

Table 5.3. Cropped character recognition accuracy (in %). 
 

Method ICDAR-Char SVT-Char 

ABBYY FineReader 9.0 21.0 11.7 

(Wang et al. 2011) 64.0 N.A 

(Mishra et al. 2012b) N.A 61.9 

(Coates et al. 2011) 81.7 N.A 

(Wang et al. 2012) 83.9 N.A 

Our method 75.6 67.0 

 

 

 (a) Success cases (b) Failure cases 

Figure 5.11. Sample character recognition results of our method. In (a), the characters 

were correctly recognized despite the strong highlight, small occlusion, similar text and 

background colors, and rotation. In (b), the characters were wrongly recognized due to 

low resolution, strong shadow and rotation invariance. The last character was 

recognized as „6‟. 

 

The next experiment is on word recognition. Each image in SVT-Word 

comes with a lexicon (of around 50 words). On the other hand, ICDAR-Word 
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does not have lexicons. For fair comparison, we used the lexicons provided in 

(Wang et al. 2011). Table 5.4 shows that on SVT-Word, our method achieved 

the best recognition accuracy. Our accuracy of 73.7% is slightly higher than 

the previous best known result of 73.6% (Mishra et al. 2012a). On ICDAR-

Word, our method achieved the third best accuracy. Sample results of our 

method are shown in Figure 5.12. 

Furthermore, the fact that the images in SVT and SVT-Perspective were 

taken at the same addresses on Google Street View allows for an analysis of 

the degradation in performance between frontal and perspective texts. The 

drop in accuracy of our method (-15.5%) was significantly lower than those of 

the other methods (Table 5.5). This shows that our method is more robust  

 

Table 5.4. Recognition accuracy on frontal words (in %). 
 

Method ICDAR-Word SVT-Word 

ABBYY FineReader 9.0 56.0 35.0 

(Wang et al. 2011) 76.0 57.0 

(Wang et al. 2012) 90.0 70.0 

(Novikova et al. 2012) 82.8
15

 72.9 

(Mishra et al. 2012b) 81.8 73.3 

(Mishra et al. 2012a) 80.3 73.6 

Our method 82.2 73.7 

 

 

 REDUCTIONS CELCON 

 

 NEUMOS COPIES SHINING 

Figure 5.12. Sample results of our method for frontal words. It was able to recognize the 

words under challenging scenarios: transparent text, occlusion, fancy font, similar text 

and background colors and strong highlight. 

 

                                                 

 
15

 Achieved using a slightly larger lexicon for ICDAR-Word. 
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Table 5.5. Degradation in performance between frontal and perspective texts (in %). 
 

Method 
SVT-Word SVT-Perspective-

Word 

% change 

ABBYY FineReader 9.0 35.0 16.9 -51.7 

(Wang et al. 2011) 57.0 40.5 -28.9 

(Mishra et al. 2012b) 73.3
16

 45.7
17

 -37.7 

(Wang et al. 2012) 70.0 40.2 -42.6 

Our method 73.7 62.3 -15.5 

 

against rotation and perspective distortion, which is highly important for 

practical applications. 

 

5.4.1.4 Experiment on Number of Visual Words 

 

We analyzed how the recognition accuracy of our method changed with 

respect to the number of visual words, which is used for K-means clustering in 

section 5.2.1.2. As illustrated in Figure 5.13, there was a trend on all four 

datasets: the accuracies increased with the number of visual words used. 

However, the accuracies slightly dropped at 4,000 visual words for ICDAR-

Word and SVT-Word (for SVT-Perspective-Word and MSRA-TD500-Word, 

there were very small increases in accuracy). Thus, with the amount of 

training data that we have, the typical value to use for the vocabulary size is 

2,0004,000 visual words. 

 

5.4.2 Recognition at the Text Line Level 
 

In addition to the word level, we performed an experiment at the text 

line level. As mentioned in Section 5.2.3, we manually annotated two 

                                                 

 
16

 Taken from (Mishra et al. 2012b). 
17

 Obtained from our re-implementation of (Mishra et al. 2012b), which follows the paper 

closely. Its accuracy on SVT-Word was 69.1%, which is close to the 73.3% accuracy reported 

in (Mishra et al. 2012b) for the same dataset. 
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Figure 5.13. Recognition accuracies of our method for different vocabulary sizes. 

 

additional fields (           and           ) for SVT-Perspective, 

MSRA, SVT and ICDAR. 

Figure 5.14 shows sample results of performing recognition at the text 

line level. In both cases, the language context information at the text line level 

helps to correct the word-level results. In particular, for the image on the right 

hand side, the correct label of the first word (―HOLIDAY‖) is only the 4
th

 best 

hypothesis (based on its              at the word level). However, 

because ―HOLIDAY INN‖ is a well-known brand name, this combination has 

a higher word bigram count in the corpus than the other combinations such as 

―HARBOR INN‖ and ―HOTEL INN‖. Thus, our CRF model utilizes this 

information to ―flip‖ the label of the first word from ―HARBOR‖ to ―HOTEL‖ 

and return the correct recognition result. 

In this experiment, we did not include any existing methods because all 

the methods previously used for comparison in Section 5.4.1 do not utilize the 

text line-level context information. 
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(a) Input images 

 

(b) The top 5 hypotheses of each word 

 

(c) The recognition results at different levels 

Figure 5.14. Sample results of recognition at the text line level. In (a), the image on the 

left contains a single text line (“CONVENTION CENTER”) and the image on the right 

also contains a single text line (“HOLIDAY INN”). In (c), the words that are changed 

due to the use of the language context information at the text line level are bolded and 

underlined. 

 

Table 5.6 shows the accuracies of our method on various datasets when 

performing recognition at the word level and at the text line level. Note that 

the accuracies still refer the word recognition accuracies, i.e., the percentage 

of words correctly recognized. The difference is that when recognition is 

performed at the text line level, some word labels may be ―flipped‖ due to the 

availability of context information (as illustrated in Figure 5.14 above). 

It is observed that the recognition accuracies at the text line level are 

greater than or equal to those at the word level. On SVT-Perspective-Word, 

Result at the word level: 

CONVENTION CONVENTION 

 

Result at the text line level: 

CONVENTION CENTER 

Result at the word level: 

HARBOR INN 

 

Result at the text line level: 

HOLIDAY INN 

CONVENTION 

RED 

CONDOMINIUMS 

NETWORK 

CAFE 

CONVENTION 

CENTER 

RED 

LION 

DENNY 

HARBOR 

HOTEL 

SAN 

HOLIDAY 

WESTERN 

INN 

INC 

SAN 

LAW 

LLC 
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the recognition accuracy increases by 1.4%, thanks to use of the language 

context information. The gains on the other three frontal text datasets are 

smaller, ranging from 0% (on MSRA-TD500-Word (Full)) to 0.3% (on SVT-

Word). 

A reason is that perspective texts are much harder to recognize, and the 

scores of the word label hypotheses may be less accurate, which leaves more 

room for improvement when incorporating the word bigram probabilities. On 

the other hand, frontal texts are easier to recognize and thus, the increases in 

accuracies are smaller. 

Nevertheless, the results demonstrate that the language context 

information is useful for perspective text recognition. In the future, we will 

explore other forms of context information to further improve the recognition 

accuracy. 

 

Table 5.6. Accuracies of our method when performing recognition at the word level and 

at the text line level (in %). 
 

Dataset 
Recognition at the 

word level 

Recognition at the text 

line level 

SVT-Perspective-Word 62.3 63.7 

MSRA-TD500-Word (Full) 58.4 58.4 

SVT-Word 73.7 74.0 

ICDAR-Word 82.2 82.3 

 

5.4.3 Experiment on Processing Time 
 

On SVT-Perspective (with the original lexicons of around 50 words per 

image), the average processing time of our unoptimized Matlab code was 59 

seconds, which include 38.6 seconds to recognize a cropped word image (i.e., 

at the word level) and 20.4 seconds to incorporate the language context 
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information (i.e., at the text line level). This was measured on a machine with 

Intel Core i5 processor (quad-core, 3.2 GHz) and 4 GB RAM. 

In the future, we will explore optimization techniques to reduce the 

computational time. For example, at the word level, a trie structure can be 

used for the lexicon to avoid redundant computation (Wang et al. 2011). At 

the text line level, more efficient data structures can be implemented to speed 

up the querying of word bigram counts from the large corpus. 

 

5.5 Summary 
 

Our work serves as a step towards practical applications (of scene text 

extraction) in two aspects. First, most existing works make the simplistic 

assumption that text is horizontal and frontal parallel to the image plane. 

However, in many real-world scenarios, this assumption does not hold. Thus, 

by handling perspective texts, this work has attempted to address an important 

research gap. Second, an attractive feature of our method is that it is trained on 

only frontal character samples, and thus does not require collecting samples of 

perspective characters. This drastically reduces the cost of data collection. 

The second aspect is achieved by the use of dense SIFT in a bag-of-

keypoints framework, which is robust to rotation and viewpoint change. Our 

optimized alignment algorithm is also designed to handle the challenges of 

perspective texts, e.g., one or more characters may be hard to read or 

occluded. 

Another contribution is the SVT-Perspective dataset, which we propose 

to evaluate perspective text recognition. On this dataset, our method compares 
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favorably to the state-of-the-art. Therefore, our results and dataset serve as a 

baseline for future studies on perspective texts. 

Currently, our method is limited to cases where lexicons are available. 

Although this assumption is common in the literature (Wang et al. 2011; 

Mishra et al. 2012b), it restricts the applicability of our method. Relaxing or 

even removing this assumption will be left for future research. 
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Chapter 6  

Conclusions and Future Work 

6.1 Summary of Contributions 
 

In this thesis, we address the problem of text extraction in images and 

videos, which can be used for many applications such as content-based 

image/video retrieval, sign translation and navigation aid for the visually-

impaired and robots. From our literature review, we have identified a number 

of research gaps and proposed novel works to address them. Our works 

contribute to the progress of the research field in the following areas: 

 Text Localization 

We have proposed two text localization works, one for text in 

natural scene images (Phan et al. 2012) and the other for text in 

video key frames (Phan et al. 2009; Shivakumara et al. 2011b). 

 The first work introduces novel gap, i.e., inter-character, 

features to localize difficult cases of scene text. While previous 

methods for scene text focus on only the character features, this 

work has shown that the gap features can also play an important 

role in text localization. Our work achieves better localization 

performance than existing ones on two public datasets (Lucas et 

al. 2003; Epshtein et al. 2010). 

 The second work uses skeletonization to localize multi-oriented 

video text. This is an improvement over previous methods for 
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video text, which typically localize only horizontal text. Our 

work outperforms existing ones on video frames with multi-

oriented English and Chinese texts. It has been cited by recent 

papers, e.g., (Bouman et al. 2011; Chen et al. 2011; Du et al. 

2011; Mosleh et al. 2012; Shi et al. 2012; Sun & Lu 2012; Wen 

et al. 2012; Shi et al. 2013a), including those which further 

pursue the direction of multi-oriented text localization, e.g., 

(Sharma et al. 2012; Yao et al. 2012; Zhang & Lai 2012). 

 Text Enhancement 

We have presented two works, one for single-frame text 

enhancement (Phan et al. 2011) and the other for multiple-frame 

enhancement (Phan et al. 2013a). 

 With the first work, we have shown that binarizing each 

character in a text line individually (instead of binarizing the 

whole text line) helps to improve the recognition accuracy. This 

is achieved through our character segmentation technique 

which is capable of producing curved segmentation paths to 

closely match the characters‘ shapes. Hence, it improves over 

many existing techniques which allow only vertical cuts. This 

work has been cited by recent papers, e.g., (Elagouni et al. 

2013; Goel et al. 2013; Sharma et al. 2013). 

 With the second work, we have demonstrated that exploiting 

the temporal redundancy in videos leads to significantly better 

recognition accuracy. Our work also emphasizes the importance 

of identifying the text pixels prior to enhancement so that the 
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text region is enhanced while the background region is 

suppressed. In contrast, many previous methods utilize all 

pixels (including background pixels) for enhancement, which 

may result in accidental enhancement of the background region. 

 Text Recognition 

We have proposed a work (Phan et al. 2013b) to address an issue 

which has been neglected by most previous methods for scene 

text: the recognition of perspective texts. By using features which 

are robust to rotation and viewpoint change, our work achieves the 

state-of-the-art recognition accuracy on several public datasets 

(Wang et al. 2011; Yao et al. 2012; Mishra et al. 2012b). 

Moreover, our work requires only frontal character samples for 

training, thereby avoiding the labor-intensive and time-consuming 

process of collecting perspective character samples. We also 

propose a dataset for evaluating perspective text recognition. 

Hence, our results and dataset serve as a baseline for future studies 

in this direction. 

 

6.2 Future Research Directions 
 

There are several directions for future research. One direction is to 

utilize more sophisticated context information. Our work in Chapter 5 

explores the language model at the text line level by using word bigram 

probabilities. It may be worthwhile to explore not only the co-occurrence 

statistics but also the semantic coherence of the words that appear in a same 

image. For example, suppose that a word is equally likely to be ―food‖ or 



167 

 

―foot‖ (because the last character is hard to recognize). If we know that the 

word ―restaurant‖ is also present in the same image, it makes sense to give 

preference to the former due to the semantic coherence. 

Moreover, our work in Chapter 5 assumes the availability of image-

specific lexicons. In practice, there are cases where such lexicons cannot be 

obtained. Thus, if this assumption can be relaxed or even removed (i.e., 

performing lexicon-free recognition), it will make the proposed method more 

general and applicable to more real-world scenarios. 

Another direction, which is specific to the case of video text, is to 

investigate techniques that can track texts with complex motions. The 

proposed multiple-frame text enhancement method in section 4.2 currently 

handles only static text and linearly moving text. If it can be extended to track 

more complex movements (e.g., rotation and zooming in/out), it can be used 

for a wider range of video texts. 
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