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Summary

High dimensionality is often considered a “curse” for machine learning algorithms, in

a sense that the required amount of data to learn a generic model increases exponen-

tially with dimension. Fortunately, most real problems possess certain low-dimensional

structures which can be exploited to gain statistical and computational tractability. The

key research question is “How”. Since low-dimensional structures are often highly

non-convex or combinatorial, it is often NP-hard to impose such constraints. Recent

development in compressive sensing and matrix completion/recovery has suggested a

way. By combining the ideas in optimization (in particular convex optimization theory),

statistical learning theory and high-dimensional geometry, it is sometimes possible to

learn these structures exactly by solving a convex surrogate of the original problem.

This approach has led to notable advances and in quite a few disciplines such as signal

processing, computer vision, machine learning and data mining. Nevertheless, when the

data are noisy or when the assumed structures are only a good approximation, learning

the parameters of a given structure becomes a much more difficult task.

In this thesis, we study the robust learning of low-dimensional structures when there

are uncertainties in the data. In particular, we consider two structures that are common

in real problems: “low-rank subspace model” that underlies matrix completion and Ro-

bust PCA, and “union-of-subspace model” that arises in the problem of subspace clus-

tering. In the upcoming chapters, we will present (i) stability of matrix factorization and

its consequences in the robustness of collaborative filtering (movie recommendations)

against manipulators; (ii) sparse subspace clustering under random and deterministic

xiii



SUMMARY

noise; (iii) simultaneous low-rank and sparse regularization for subspace clustering; and

(iv) Proximal Alternating Robust Subspace Minimization (PARSuMi), a robust matrix

recovery algorithm that handles simultaneous noise, missing data and gross corruptions.

The results in these chapters either solve a real engineering problem or provide interest-

ing insights into why certain empirically strong algorithms succeed in practice. While

in each chapter, only one or two real applications are described and demonstrated, the

ideas and techniques in this thesis are general and applicable to any problems having

the assumed structures.
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Chapter 1

Introduction

We live in the Big Data Era. According to Google CEO Eric Schmidt, the amount of

information we create in 2 days in 2010 is the same as we did from the dawn of civiliza-

tion to 2003 [120]1. On Facebook alone, there are 1.2 billion users who generate/share

70 billion contents every month in 2012[128]. Among these, 7.5 billion updates are

photos [72]. Since a single digital image of modest quality contains more than a million

pixels, a routine task of indexing these photos in their raw form involves dealing with

a million by billion data matrix. If we consider instead the problem of recommend-

ing these photos to roughly 850 million daily active users [72] based on the “likes”

and friendship connections, then we are dealing with a billion by billion rating matrix.

These data matrices are massive in both size and dimension and are considered impos-

sible to analyze using classic techniques in statistics[48]. The fundamental limitation in

the high dimensional statistical estimation is that the number of data points required to

successfully fit a general Lipschitz function increases exponentially with the dimension

of the data [48]. This is often described metaphorically as the “curse of dimensionality”.

Similar high dimensional data appear naturally in many other engineering problems

too, e.g., image/video segmentation and recognition in computer vision, fMRI in medi-

cal image processing and DNA microarray analysis in bioinformatics. The data are even

more ill-posed in these problems as the dimension is typically much larger than number

1 That’s approx. 5× 1021 binary bit of data according to the reference.
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of data points, making it hard to fit even a linear regression model. The prevalence of

such data in real applications makes it a fundamental challenge to develop techniques

to better harness the high dimensionality.

The key to overcome this “curse of dimensionality” is to identify and exploit the

underlying structures in the data. Early examples of this approach include principal

component analysis (PCA)[78] that selects an optimal low-rank approximation in the

`2 sense and linear discriminant analysis (LDA)[88] that maximizes class discrimina-

tion for categorical data. Recent development has further revealed that when the data

indeed obey certain low-dimensional structures, such as sparsity and low-rank, the high

dimensionality can result in desirable data redundancy which makes it possible to prov-

ably and exactly recover the correct parameters of the structure by solving a convex

relaxation of the original problem, even when data are largely missing (e.g., matrix

completion [24]) and/or contaminated with gross corruptions (e.g., LP decoding [28]

and robust PCA [27]). This amazing phenomenon is often referred to as the “blessing

of dimensionality”[48].

One notable drawback of these convex optimization-based approaches is that they

typically require the data to exactly follow the given structure, namely free of noise and

model uncertainties. Real data, however, are at best well-approximated by the structure.

Noise is ubiquitous and there are sometimes adversaries intending to manipulate the sys-

tem to the worst possible. This makes robustness, i.e. the resilience to noise/uncertainty,

a desideratum in any algorithm design.

Robust extensions of the convex relaxation methods do exist for sparse and low-

rank structures (see [49][22][155]), but their stability guarantees are usually weak and

their empirical performances are often deemed unsatisfactory for many real problems

(see our discussions and experiments in Chapter 5). Furthermore, when the underlying

dimension is known in prior, there is no intuitive way to restrict the solution to be of

the desirable dimension as one may naturally do in classic PCA. Quite on the contrary,

rank-constrained methods such as matrix factorization are widely adopted in practice

but, perhaps due to its non-convex formulation, lack of proper theoretical justification.
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For other structures, such as the union-of-subspace model, provable robustness is still

an open problem.

This thesis focuses on understanding and developing methodology in the robust

learning of low-dimensional structures. We contribute to the field by providing both

theoretical analysis and practically working algorithms to robustly learn the parameter-

ization of two important types of models: low-rank subspace model and the union-

of-subspace model. For the prior, we developed the first stability bound for matrix

factorization with missing data with applications to the robustness of recommenda-

tion systems against manipulators. On the algorithmic front, we derived PARSuMi,

a robust matrix completion algorithm with explicit rank and cardinality constraints that

demonstrates superior performance in real applications such as structure from motion

and photometric stereo. For the latter, we proposed an algorithm called Lasso-SSC that

can obtain provably correct subspace clustering even when data are noisy (the first of its

kind). We also proposed and analyzed the performance of LRSSC, a new method that

combines the advantages of two state-of-the-art algorithms. The results reveal an inter-

esting tradeoff between two performance metrics in the subspace clustering problem.

It is important to note that while our treatments of these problems are mainly the-

oretical, there are always clear real problems in computer vision and machine learning

that motivate the analysis and we will relate to the motivating applications throughout

the thesis.

1.1 Low-Rank Subspace Model and Matrix Factorization

Ever since the advent of compressive sensing[50][30][28], the use of `1 norm to pro-

mote sparsity has received tremendous attention. It is now well-known that a sparse

signal can be perfectly reconstructed from a much smaller number of samples than what

Nyquist-Shannon sampling theorem requires via `1 norm minimization if the measure-

ments are taken with a sensing matrix that obeys the the so-called restricted isometry

property (RIP) [50][20]. This result can also be equivalently stated as correcting sparse
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errors in a decoding setting [28] or as recovering a highly incomplete signal in the con-

text of signal recovery[30].

In computer vision, sparse representation with overcomplete dictionaries leads to

breakthroughs in image compression[1], image denoising[52], face recognition[148],

action/activity recognition[33] and many other problems. In machine learning, it brings

about advances and new understanding in classification [74], regression [85], clustering

[53] and more recently dictionary learning [125].

Sparsity in the spectral domain corresponds to the rank of a matrix. Analogous to

`1 norm, nuclear norm (a.k.a. trace norm) defined as the sum of singular values is a

convex relaxation of the rank function. Notably, nuclear norm minimization methods

are shown effective in completing a partially observed low-rank matrix, namely ma-

trix completion[24] and in recovering a low-rank matrix from sparse corruptions as in

RPCA[27]). The key assumptions typically include uniform random support of obser-

vations/corruptions and that the underlying subspace needs to be incoherent (or close to

orthogonal) against standard basis[32][114].

Motivating applications of matrix completion are recommendation systems (also

called collaborative filtering in some literature)[14, 126], imputing missing DNA data

[60], sensor network localization[123], structure from motion (SfM)[68] and etc. Sim-

ilarly, many problems can be modeled in the framework of RPCA, e.g. foreground

detection[64], image alignment[112], photometric stereo[149] in computer vision.

Since real data are noisy, robust extensions of matrix completion and RPCA have

been proposed and rigorously analyzed[22, 155]. Their empirical performance however

is not satisfactory in many of the motivating applications[119]. In particular, those with

clear physical meanings on the matrix rank (e.g., SfM, sensor network localization and

photometric stereo) should benefit from a hard constraint on rank and be solved better

by matrix factorization1. This intuition essentially motivated our studies in Chapter 5,

where we propose an algorithm to solve the difficult optimization with constraints on

rank and `0 norm of sparse corruptions. In fact, matrix factorization has been success-

1where rank constraint is implicitly imposed by the inner dimension of matrix product.
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fully adopted in a wide array of applications such as movie recommendation [87], SfM

[68, 135] and NRSfM [111]. For a more complete list of matrix factorization’s appli-

cations, we refer the readers to the reviews in [122] (for machine learning) and [46](for

computer vision) and the references therein.

A fundamental limit of the matrix factorization approach is the lack of theoreti-

cal analysis. Notable exceptions include [84] which studies the unique recoverability

from a combinatorial algebraic perspective and [76] that provides performance and con-

vergence guarantee for the popular alternating least squares (ALS) method that solves

matrix factorization. These two studies however do not generalize to noisy data. Our

results in Chapter 2 (first appeared in [142]) are the first robustness analysis of matrix

factorization/low-rank subspace model hence in some sense justified its good perfor-

mance in real life applications.

1.2 Union-of-Subspace Model and Subspace Clustering

Building upon the now-well-understood low-rank and sparse models, researchers have

started to consider more complex structures in data. The union-of-subspace model ap-

pears naturally when low-dimensional data are generated from different sources. As a

mixture model, or more precisely a generalized hybrid linear model, the first problem to

consider is to cluster the data points according to their subspace membership, namely,

“subspace clustering”.

Thanks to the prevalence of low-rank subspace models in applications (as we sur-

veyed in the previous section), subspace clustering has been attracting increasing at-

tention from diverse fields of study. For instance, subspaces may correspond to mo-

tion trajectories of different moving rigid objects[53], different communities in a social

graph[77] or packet hop-count within each subnet in a computer network[59].

Existing methods on this problem include EM-like iterative algorithms [18, 137], al-

gebraic methods (e.g., GPCA [140]), factorization [43], spectral clustering [35] as well

as the latest Sparse Subspace Clustering (SSC)[53, 56, 124] and Low-Rank Represen-
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tation (LRR)[96, 98]. While a number of these algorithms have theoretical guarantee,

SSC is the only polynomial time algorithm that is guaranteed to work on a condition

weaker than independent subspace. Moreover, prior to the technique in Chapter 3 (first

made available online in [143] in November 2012), there has been no provable guar-

antee for any subspace clustering algorithm to work robustly under noise and model

uncertainties, even though the robust variation of SSC and LRR have been the state-of-

the-art on the Hopkins155 benchmark dataset[136] for quite a while.

In addition to the robustness results in Chapter 3, Chapter 4 focuses on developing

a new algorithm that combines the advantages of LRR and SSC. Its results reveal new

insights into both LRR and SSC as well as some new findings on the graph connectivity

problem [104].

1.3 Structure of the Thesis

The chapters in this thesis are organized as follows.

In Chapter 2 Stability of Matrix Factorization for Collaborative Filtering, we

study the stability vis a vis adversarial noise of matrix factorization algorithm for noisy

and known-rank matrix completion. The results include stability bounds in three differ-

ent evaluation metrics. Moreover, we apply these bounds to the problem of collaborative

filtering under manipulator attack, which leads to useful insights and guidelines for col-

laborative filtering/recommendation system design. Part of the results in this chapter

appeared in [142].

In Chapter 3 Robust Subspace Clustering via Lasso-SSC, we considers the prob-

lem of subspace clustering under noise. Specifically, we study the behavior of Sparse

Subspace Clustering (SSC) when either adversarial or random noise is added to the un-

labelled input data points, which are assumed to follow the union-of-subspace model.

We show that a modified version of SSC is provably effective in correctly identifying

the underlying subspaces, even with noisy data. This extends theoretical guarantee of

this algorithm to the practical setting and provides justification to the success of SSC in
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a class of real applications. Part of the results in this chapter appeared in [143].

In Chapter 4 When LRR meets SSC: the separation-connectivity tradeoff, we

consider a slightly different notion of robustness for the subspace clustering problem:

the connectivity of the constructed affinity graph for each subspace block. Ideally, the

corresponding affinity matrix should be block diagonal with each diagonal block fully

connected. Previous works such consider only the block diagonal shape1 but not the

connectivity, hence could not rule out the potential over-segmentation of subspaces. By

combining SSC with LRR into LRSSC, and analyzing its performance, we find that

the tradeoff between the `1 and nuclear norm penalty essentially trades off between

separation (block diagonal) and connection density (implying connectivity). Part of the

results in this chapter is submitted to NIPS[145] and is currently under review.

In Chapter 5 PARSuMi: Practical Matrix Completion and Corruption Recov-

ery with Explicit Modeling, we identify and address the various weakness of nuclear

norm-based approaches on real data by designing a practically working robust matrix

completion algorithm. Specifically, we develop a Proximal Alternating Robust Sub-

space Minimization (PARSuMi) method to simultaneously handle missing data, sparse

corruptions and dense noise. The alternating scheme explicitly exploits the rank con-

straint on the completed matrix and uses the `0 pseudo-norm directly in the corruption

recovery step. While the method only converges to a stationary point, we demonstrate

that its explicit modeling helps PARSuMi to work much more satisfactorily than nuclear

norm based methods on synthetic and real data. In addition, this chapter also includes

a comprehensive evaluation of existing methods for matrix factorization as well as their

comparisons to the nuclear norm minimization-based convex methods, which is inter-

esting on its own right. Part of the materials in this chapter is included in our manuscript

[144] which is currently under review.

Finally, in Chapter 6 Conclusion and Future Work, we wrap up the thesis with

a concluding discussions and then list the some open questions and potential future

developments related to this thesis.

1also known as, self-expressiveness in [56] and subspace detection property in [124].
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Chapter 2

Stability of Matrix Factorization

for Collaborative Filtering

In this chapter, we study the stability vis a vis adversarial noise of matrix factorization

algorithm for matrix completion. In particular, our results include: (I) we bound the gap

between the solution matrix of the factorization method and the ground truth in terms

of root mean square error; (II) we treat the matrix factorization as a subspace fitting

problem and analyze the difference between the solution subspace and the ground truth;

(III) we analyze the prediction error of individual users based on the subspace stability.

We apply these results to the problem of collaborative filtering under manipulator attack,

which leads to useful insights and guidelines for collaborative filtering system design.

Part of the results in this chapter appeared in [142].

2.1 Introduction

Collaborative prediction of user preferences has attracted fast growing attention in the

machine learning community, best demonstrated by the million-dollar Netflix Chal-

lenge. Among various models proposed, matrix factorization is arguably the most

widely applied method, due to its high accuracy, scalability [132] and flexibility to

incorporating domain knowledge [87]. Hence, not surprisingly, matrix factorization
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is the centerpiece of most state-of-the-art collaborative filtering systems, including the

winner of Netflix Prize [12]. Indeed, matrix factorization has been widely applied to

tasks other than collaborative filtering, including structure from motion, localization in

wireless sensor network, DNA microarray estimation and beyond. Matrix factoriza-

tion is also considered as a fundamental building block of many popular algorithms in

regression, factor analysis, dimension reduction, and clustering [122].

Despite the popularity of factorization methods, not much has been done on the

theoretical front. In this chapter, we fill the blank by analyzing the stability vis a vis ad-

versarial noise of the matrix factorization methods, in hope of providing useful insights

and guidelines for practitioners to design and diagnose their algorithm efficiently.

Our main contributions are three-fold: In Section 2.3 we bound the gap between

the solution matrix of the factorization method and the ground truth in terms of root

mean square error. In Section 2.4, we treat the matrix factorization as a subspace fitting

problem and analyze the difference between the solution subspace and the ground truth.

This facilitates an analysis of the prediction error of individual users, which we present

in Section 2.5. To validate these results, we apply them to the problem of collaborative

filtering under manipulator attack in Section 2.6. Interestingly, we find that matrix

factorization are robust to the so-called “targeted attack”, but not so to the so-called

“mass attack” unless the number of manipulators are small. These results agree with

the simulation observations.

We briefly discuss relevant literatures. Azar et al. [4] analyzed asymptotic perfor-

mance of matrix factorization methods, yet under stringent assumptions on the fraction

of observation and on the singular values. Drineas et al. [51] relaxed these assumptions

but it requires a few fully rated users – a situation that rarely happens in practice. Srebro

[126] considered the problem of the generalization error of learning a low-rank matrix.

Their technique is similar to the proof of our first result, yet applied to a different con-

text. Specifically, they are mainly interested in binary prediction (i.e., “like/dislike”)

rather than recovering the real-valued ground-truth matrix (and its column subspace).

In addition, they did not investigate the stability of the algorithm under noise and ma-
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nipulators.

Recently, some alternative algorithms, notably StableMC [22] based on nuclear

norm optimization, and OptSpace [83] based on gradient descent over the Grassman-

nian, have been shown to be stable vis a vis noise [22, 82]. However, these two methods

are less effective in practice. As documented in Mitra et al. [101], Wen [146] and many

others, matrix factorization methods typically outperform these two methods. Indeed,

our theoretical results reassure these empirical observations, see Section 2.3 for a de-

tailed comparison of the stability results of different algorithms.

2.2 Formulation

2.2.1 Matrix Factorization with Missing Data

Let the user ratings of items (such as movies) form a matrix Y , where each column

corresponds to a user and each row corresponds to an item. Thus, the ijth entry is the

rating of item-i from user-j. The valid range of the rating is [−k,+k]. Y is assumed

to be a rank-r matrix1, so there exists a factorization of this rating matrix Y = UV T ,

where Y ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r. Without loss of generality, we assume

m ≤ n throughout the chapter.

Collaborative filtering is about to recover the rating matrix from a fraction of entries

possibly corrupted by noise or error. That is, we observe Ŷij for (ij) ∈ Ω the sampling

set (assumed to be uniformly random), and Ŷ = Y + E being a corrupted copy of Y ,

and we want to recover Y . This naturally leads to the optimization program below:

min
U,V

1

2

∥∥∥PΩ(UV T − Ŷ )
∥∥∥2

F

subject to
∣∣[UV T ]i,j

∣∣ ≤ k, (2.1)

1In practice, this means the user’s preference of movies are influenced by no more than r latent factors.
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where PΩ is the sampling operator defined to be:

[PΩ(Y )]i,j =

 Yi,j if (i, j) ∈ Ω;

0 otherwise.
(2.2)

We denote the optimal solution Y ∗ = U∗V ∗T and the error ∆ = Y ∗ − Y.

2.2.2 Matrix Factorization as Subspace Fitting

As pointed out in Chen [37], an alternative interpretation of collaborative filtering is

fitting the optimal r-dimensional subspace N to the sampled data. That is, one can

reformulate (2.1) into an equivalent form1:

min
N

f(N) =
∑
i

‖(I − Pi)yi‖2 =
∑
i

yTi (I − Pi)yi, (2.3)

where yi is the observed entries in the ith column of Y , N is an m × r matrix repre-

senting an orthonormal basis2 of N, Ni is the restriction of N to the observed entries in

column i, and Pi = Ni(N
T
i Ni)

−1NT
i is the projection onto span(Ni).

After solving (2.3), we can estimate the full matrix in a column by column manner

via (2.4). Here y∗i denotes the full ith column of recovered rank-r matrix Y ∗.

y∗i = N(NT
i Ni)

−1NT
i yi = Npinv(Ni)yi. (2.4)

Due to error term E, the ground truth subspace Ngnd can not be obtained. Instead,

denote the optimal subspace of (2.1) (equivalently (2.3)) by N∗, and we bound the gap

between these two subspaces using Canonical angle. The canonical angle matrix Θ is

an r × r diagonal matrix, with the ith diagonal entry θi = arccosσi((N
gnd)TN∗).

The error of subspace recovery is measured by ρ = ‖ sin Θ‖2, justified by the fol-

1Strictly speaking, this is only equivalent to (2.1) without the box constraint. See the discussion in
appendix for our justifications.

2It is easy to see N = ortho(U) for U in (2.1)
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lowing properties adapted from Chapter 2 of Stewart and Sun [130]:

‖Pgnd − PN∗‖F =
√

2‖ sin Θ‖F ,

‖Pgnd − PN∗‖2 =‖ sin Θ‖2 = sin θ1.
(2.5)

2.2.3 Algorithms

We focus on the stability of the global optimal solution of Problem (2.1). As Prob-

lem (2.1) is not convex, finding the global optimum is non-trivial in general. While this

is certainly an important question, it is beyond the scope of this chapter. Instead, we

briefly review some results on this aspect.

The simplest algorithm for (2.1) is perhaps the alternating least squares method

(ALS) which alternatingly minimizes the objective function over U and V until conver-

gence. More sophisticatedly, second-order algorithms such as Wiberg, Damped New-

ton and Levenberg Marquadt are proposed with better convergence rate, as surveyed

in Okatani and Deguchi [109]. Specific variations for CF are investigated in Takács

et al. [133] and Koren et al. [87]. Furthermore, Jain et al. [76] proposed a variation of

the ALS method and show for the first time, factorization methods provably reach the

global optimal solution under a similar condition as nuclear norm minimization based

matrix completion[32].

From an empirical perspective, Mitra et al. [101] reported that the global optimum

is often obtained in simulation and Chen [37] demonstrated satisfactory percentage of

hits to global minimum from randomly initialized trials on a real data set. To add to the

empirical evidence, we provide a comprehensive numerical evaluation of popular matrix

factorization algorithms with noisy and ill-conditioned data matrices in Section 5.3 of

Chapter 5. The results seem to imply that matrix factorization requires fundamentally

smaller sample complexity than nuclear norm minimization-based approaches.

13



STABILITY OF MATRIX FACTORIZATION FOR COLLABORATIVE
FILTERING

2.3 Stability

We show in this section that when sufficiently many entries are sampled, the global

optimal solution of factorization methods is stable vis a vis noise – i.e., it recovers a

matrix “close to” the ground-truth. This is measured by the root mean square error

(RMSE):

RMSE =
1√
mn
‖Y ∗ − Y ‖ (2.6)

Theorem 2.1. There exists an absolute constant C, such that with probability at least

1− 2 exp(−n),

RMSE ≤ 1√
|Ω|
‖PΩ(E)‖F +

‖E‖F√
mn

+ Ck

(
nr log(n)

|Ω|

) 1
4

.

Notice that when |Ω| � nr log(n) the last term diminishes, and the RMSE is es-

sentially bounded by the “average” magnitude of entries of E, i.e., the factorization

methods are stable.

Comparison with related work

We recall similar RMSE bounds for StableMC of Candes and Plan [22] and OptSpace

of Keshavan et al. [82]:

StableMC: RMSE ≤

√
32 min (m,n)

|Ω|
‖PΩ(E)‖F +

1√
mn
‖PΩ(E)‖F , (2.7)

OptSpace: RMSE ≤ Cκ2n
√
r

|Ω|
‖PΩ(E)‖2. (2.8)

Albeit the fact that these bounds are for different algorithms and under different assump-

tions (see Table 2.1 for details), it is still interesting to compare the results with Theo-

rem 2.1. We observe that Theorem 2.1 is tighter than (2.7) by a scale of
√

min (m,n),

and tighter than (2.8) by a scale of
√
n/ log(n) in case of adversarial noise. However,

the latter result is stronger when the noise is stochastic, due to the spectral norm used.
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2.3 Stability

Rank constraint Yi,j constraint σ constraint incoherence global optimal
Theorem 2.1 fixed rank box constraint no no assumed
OptSpace fixed rank regularization condition

number
weak not necessary

NoisyMC relaxed to trace implicit no strong yes

Table 2.1: Comparison of assumptions between stability results in our Theorem 2.1,
OptSpace and NoisyMC

Compare with an Oracle

We next compare the bound with an oracle, introduced in Candes and Plan [22], that is

assumed to know the ground-truth column space N a priori and recover the matrix by

projecting the observation to N in the least squares sense column by column via (2.4).

It is shown that RMSE of this oracle satisfies,

RMSE ≈
√

1/|Ω|‖PΩ(E)‖F . (2.9)

Notice that Theorem 2.1 matches this oracle bound, and hence it is tight up to a constant

factor.

2.3.1 Proof of Stability Theorem

We briefly explain the proof idea first. By definition, the algorithm finds the optimal

rank-r matrices, measured in terms of the root mean square (RMS) on the sampled

entries. To show this implies a small RMS on the entire matrix, we need to bound their

gap

τ(Ω) ,
∣∣∣ 1√
|Ω|
‖PΩ(Ŷ − Y ∗)‖F −

1√
mn
‖Ŷ − Y ∗‖F

∣∣∣.
To bound τ(Ω), we require the following theorem.

Theorem 2.2. Let L̂(X) = 1√
|Ω|
‖PΩ(X − Ŷ )‖F and L(X) = 1√

mn
‖X − Ŷ ‖F be

the empirical and actual loss function respectively. Furthermore, assume entry-wise

constraint maxi,j |Xi,j | ≤ k. Then for all rank-r matrices X , with probability greater
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than 1− 2 exp(−n), there exists a fixed constant C such that

sup
X∈Sr

|L̂(X)− L(X)| ≤ Ck
(nr log(n)

|Ω|

) 1
4
.

Indeed, Theorem 2.2 easily implies Theorem 2.1.

Proof of Theorem 2.1. The proof makes use of the fact that Y ∗ is the global optimal of

(2.1).

RMSE =
1√
mn
‖Y ∗ − Y ‖F =

1√
mn
‖Y ∗ − Ŷ + E‖F

≤ 1√
mn
|Y ∗ − Ŷ ‖F +

1√
mn
‖E‖F

(a)

≤ 1√
|Ω|
‖PΩ(Y ∗ − Ŷ )‖F + τ(Ω) +

1√
mn
‖E‖F

(b)

≤ 1√
|Ω|
‖PΩ(Y − Ŷ )‖F + τ(Ω) +

1√
mn
‖E‖F

=
1√
|Ω|
‖PΩ(E)‖F + τ(Ω) +

1√
mn
‖E‖F .

Here, (a) holds from definition of τ(Ω), and (b) holds because Y ∗ is optimal solution of

(2.1). Since Y ∗ ∈ Sr, applying Theorem 2.2 completes the proof.

The proof of Theorem 2.2 is deferred to Appendix A.1 due to space constraints. The

main idea, briefly speaking, is to bound, for a fixed X ∈ Sr,

∣∣(L̂(X))2 − (L(X))2
∣∣ =

∣∣ 1

|Ω|
‖PΩ(X − Ŷ )‖2F −

1

mn
‖X − Ŷ ‖2F

∣∣,
using Hoeffding’s inequality for sampling without replacement; then bound

∣∣L̂(X) −

L(X)
∣∣ using ∣∣L̂(X)− L(X)

∣∣ ≤√∣∣(L̂(X))2 − (L(X))2
∣∣;

and finally, bound supX∈Sr |L̂(X)− L(X)| using an ε−net argument.
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2.4 Subspace Stability

In this section we investigate the stability of recovered subspace using matrix factor-

ization methods. Recall that matrix factorization methods assume that, in the idealized

noiseless case, the preference of each user belongs to a low-rank subspace. Therefore,

if this subspace can be readily recovered, then we can predict preferences of a new user

without re-run the matrix factorization algorithms. We analyze the latter, prediction

error on individual users, in Section 2.5.

To illustrate the difference between the stability of the recovered matrix and that of

the recovered subspace, consider a concrete example in movie recommendation, where

there are both honest users and malicious manipulators in the system. Suppose we

obtain an output subspace N∗ by (2.3) and the missing ratings are filled in by (2.4).

If N∗ is very “close” to ground truth subspace N , then all the predicted ratings for

honest users will be good. On the other hand, the prediction error of the preference of

the manipulators – who do not follow the low-rank assumption – can be large, which

leads to a large error of the recovered matrix. Notice that we are only interested in

predicting the preference of the honest users. Hence the subspace stability provides a

more meaningful metric here.

2.4.1 Subspace Stability Theorem

Let N,M and N∗,M∗ be the r-dimensional column space-row space pair of matrix Y

and Y ∗ respectively. We’ll denote the correspondingm×r and n×r orthonormal basis

matrix of the vector spaces using N ,M ,N∗,M∗. Furthermore, Let Θ and Φ denote the

canonical angles ∠(N∗,N) and ∠(M∗,M) respectively.

Theorem 2.3. When Y is perturbed by additive error E and observed only on Ω, then

there exists a ∆ satisfying ‖∆‖ ≤
√

mn
|Ω| ‖PΩ(E)‖F + ‖E‖F +

√
mn |τ(Ω)|, such that:

‖ sin Θ‖ ≤
√

2

δ
‖(PN⊥∆)‖; ‖ sin Φ‖ ≤

√
2

δ
‖(PM⊥∆T )‖,
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where ‖ · ‖ is either the Frobenious norm or the spectral norm, and δ = σ∗r , i.e., the rth

largest singular value of the recovered matrix Y ∗.

Furthermore, we can bound δ by:


σr − ‖∆‖2 ≤ δ ≤ σr + ‖∆‖2

σỸNr − ‖PN⊥∆‖2 ≤ δ ≤ σỸNr + ‖PN⊥∆‖2

σỸMr − ‖PM⊥∆T ‖2 ≤ δ ≤ σỸMr + ‖PM⊥∆T ‖2

where ỸN = Y + PN∆ and ỸM = Y + (PM∆T )T .

Notice that in practice, as Y ∗ is the output of the algorithm, its rth singular value

δ is readily obtainable. Intuitively, Theorem 2.3 shows that the subspace sensitivity vis

a vis noise depends on the singular value distribution of original matrix Y . A well-

conditioned rank-r matrix Y can tolerate larger noise, as its rth singular value is of the

similar scale to ‖Y ‖2, its largest singular value.

2.4.2 Proof of Subspace Stability

Proof of Theorem 2.3. In the proof, we use ‖·‖ when a result holds for both Frobenious

norm and for spectral norm. We prove the two parts separately.

Part 1: Canonical Angles.

Let ∆ = Y ∗ − Y . By Theorem 2.1, we have ‖∆‖ ≤
√

mn
|Ω| ‖PΩ(E)‖F + ‖E‖F +

√
mn |τ(Ω)|. The rest of the proof relates ∆ with the deviation of spaces spanned by

the top r singular vectors of Y and Y ∗ respectively. Our main tools are Weyl’s Theorem

and Wedin’s Theorem (Lemma A.4 and A.5 in Appendix A.6).

We express singular value decomposition of Y and Y ∗ in block matrix form as in

(A.10) and (A.11) of Appendix A.6, and set the dimension of Σ1 and Σ̂1 to be r × r.

Recall, rank(Y ) = r, so Σ1 = diag(σ1, ..., σr), Σ2 = 0, Σ̂1 = diag(σ
′
1, ..., σ

′
r). By

setting Σ̂2 to 0 we obtained Y ′, the nearest rank-r matrix to Y ∗. Observe thatN∗ = L̂1,

M∗ = (R̂1)T .
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To apply Wedin’s Theorem (Lemma A.5), we have the residual Z and S as follows:

Z = YM∗ −N∗Σ̂1, S = Y TN∗ −M∗Σ̂1,

which leads to

‖Z‖ = ‖(Ŷ −∆)M∗ −N∗Σ̂1‖ = ‖∆M∗‖,

‖S‖ = ‖(Ŷ −∆)TN∗ −M∗Σ̂1‖ = ‖∆TN∗‖.

Substitute this into the Wedin’s inequality, we have

√
‖ sin Φ‖2 + ‖ sin Θ‖2 ≤

√
‖∆TN ′‖2 + ‖∆M ′‖2

δ
, (2.10)

where δ satisfies (A.12) and (A.13). Specifically, δ = σ∗r . Observe that Equation (2.10)

implies

‖ sin Θ‖ ≤
√

2

δ
‖∆‖; ‖ sin Φ‖ ≤

√
2

δ
‖∆‖.

To reach the equations presented in the theorem, we can tighten the above bound by

decomposing ∆ into two orthogonal components.

Y ∗ = Y + ∆ = Y + PN∆ + PN⊥∆ := Ỹ N + PN⊥∆. (2.11)

It is easy to see that column space of Y and ỸN are identical. So the canonical angle Θ

between Y ∗ and Y are the same as that between Y ∗ and ỸN. Therefore, we can replace

∆ by PN⊥∆ to obtain the equation presented in the theorem. The corresponding result

for row subspace follows similarly, by decomposing ∆T to its projection on M and M⊥.

Part 2: Bounding δ.

We now bound δ, or equivalently σ∗r . By Weyl’s theorem (Lemma A.4),

|δ − σr| < ‖∆‖2.
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Moreover, Applying Weyl’s theorem on Equation (2.11), we have

|δ − σỸNr | ≤ ‖PN⊥∆‖2.

Similarly, we have

|δ − σỸMr | ≤ ‖PM⊥∆T ‖2.

This establishes the theorem.

2.5 Prediction Error of individual user

In this section, we analyze how confident we can predict the ratings of a new user y ∈

Ngnd, based on the subspace recovered via matrix factorization methods. In particular,

we bound the prediction ‖ỹ∗ − y‖, where ỹ∗ is the estimation from partial rating using

(2.4), and y is the ground truth.

Without loss of generality, if the sampling rate is p, we assume observations occur

in first pm entries, such that y =

 y1

y2

 with y1 observed and y2 unknown.

2.5.1 Prediction of y With Missing data

Theorem 2.4. With all the notations and definitions above, and let N1 denote the re-

striction of N on the observed entries of y. Then the prediction for y ∈ Ngnd has

bounded performance:

‖ỹ∗ − y‖ ≤
(

1 +
1

σmin

)
ρ‖y‖,

where ρ = ‖ sin Θ‖ (see Theorem 2.3), σmin is the smallest non-zero singular value of

N1 (rth when N1 is non-degenerate).
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Proof. By (2.4), and recall that only the first pm entries are observed, we have

ỹ∗ = N · pinv(N1)y1 :=

 y1 − ẽ1

y2 − ẽ2

 := y + ẽ.

Let y∗ be the vector obtained by projecting y onto subspace N , and denote y∗ = y∗1

y∗2

 =

 y1 − e1

y2 − e2

 = y − e, we have:

ỹ∗ =N · pinv(N1)(y∗1 + e1)

=N · pinv(N1)y∗1 +N · pinv(N1)e1 = y∗ +N · pinv(N1)e1.

Then

‖ỹ∗ − y‖ =‖y∗ − y +N · pinv(N1)e1‖

≤‖y∗ − y‖+
1

σmin
‖e1‖ ≤ ρ‖y‖+

1

σmin
‖e1‖.

Finally, we bound e1 as follows

‖e1‖ ≤ ‖e‖ = ‖y − y∗‖ ≤ ‖(Pgnd − PN)y‖ ≤ ρ‖y‖,

which completes the proof.

Suppose y 6∈ Ngnd and y = Pgndy + (I − Pgnd)y := ygnd + ygnd
⊥

, then we have

‖e1‖ ≤ ‖(Pgnd − PN)y‖+ ‖ygnd⊥‖ ≤ ρ‖y‖+ ‖ygnd⊥‖,

which leads to

‖ỹ∗ − ygnd‖ ≤
(

1 +
1

σmin

)
ρ‖y‖+

‖ygnd⊥‖
σmin

.
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2.5.2 Bound on σmin

To complete the above analysis, we now bound σmin. Notice that in general σmin can

be arbitrarily close to zero, if N is “spiky”. Hence we impose the strong incoherence

property introduced in Candes and Tao [26] (see Appendix A.3 for the definition) to

avoid such situation. Due to space constraint, we defer the proof of the following to the

Appendix A.3.

Proposition 2.1. If matrix Y satisfies strong incoherence property with parameter µ,

then:

σmin(N1) ≥ 1−
( r
m

+ (1− p)µ
√
r
) 1

2
.

For Gaussian Random Matrix

Stronger results on σmin is possible for randomly generated matrices. As an example,

we consider the case that Y = UV where U , V are two Gaussian random matrices of

size m× r and r × n, and show that σmin(N1) ≈ √p.

Proposition 2.2. Let G ∈ Rm×r have i.i.d. zero-mean Guassian random entries. Let

N be its orthonormal basis1. Then there exists an absolute constant C such that with

probability of at least 1− Cn−10,

σmin(N1) ≥
√
k

m
− 2

√
r

m
− C

√
logm

m
.

Due to space limit, the proof of Proposition 2.2 is deferred to the Appendix. The

main idea is to apply established results about the singular values of Gaussian random

matrix G [e.g., 45, 116, 121], then show that the orthogonal basis N of G is very close

to G itself.

We remark that the bound on singular values we used has been generalized to ran-

dom matrices following subgaussian [116] and log-concave distributions [95]. As such,

the the above result can be easily generalized to a much larger class of random matrices.

1 Hence N is also the orthonormal basis of any Y generated with G being its left multiplier.
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2.6 Robustness against Manipulators

In this section, we apply our results to study the ”profile injection” attacks on collab-

orative filtering. According to the empirical study of Mobasher et al. [102], matrix

factorization, as a model-based CF algorithm, is more robust to such attacks compared

to similarity-based CF algorithms such as kNN. However, as Cheng and Hurley [40]

pointed out, it may not be a conclusive argument that model-based recommendation

system is robust. Rather, it may due to the fact that that common attack schemes, effec-

tive to similarity based-approach, do not exploit the vulnerability of the model-based

approach.

Our discovery is in tune with both Mobasher et al. [102] and Cheng and Hurley

[40]. Specifically, we show that factorization methods are resilient to a class of common

attack models, but are not so in general.

2.6.1 Attack Models

Depending on purpose, attackers may choose to inject ”dummy profiles” in many ways.

Models of different attack strategies are surveyed in Mobasher et al. [103]. For con-

venience, we propose to classify the models of attack into two distinctive categories:

Targeted Attack and Mass Attack.

Targeted Attacks include average attack [89], segment attack and bandwagon at-

tack [103]. The common characteristic of targeted attacks is that they pretend to be the

honest users in all ratings except on a few targets of interest. Thus, each dummy user

can be decomposed into:

e = egnd + s,

where egnd ∈ N and s is sparse.

Mass Attacks include random attack, love-hate attack [103] and others. The com-

mon characteristic of mass attacks is that they insert dummy users such that many en-
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tries are manipulated. Hence, if we decompose a dummy user,

e = egnd + egnd
⊥
,

where egnd = PNe and egnd
⊥

= (I−PN)e ∈ N⊥, then both components can have large

magnitude. This is a more general model of attack.

2.6.2 Robustness Analysis

By definition, injected user profiles are column-wise: each dummy user corresponds to

a corrupted column in the data matrix. For notational convenience, we re-arrange the

order of columns into [Y |E ], where Y ∈ Rm×n is of all honest users, andE ∈ Rm×ne

contains all dummy users. As we only care about the prediction of honest users’ ratings,

we can, without loss of generality, set ground truth to be [Y |Egnd ] and the additive

error to be [ 0 |Egnd⊥ ]. Thus, the recovery error Z = [Y ∗ − Y |E∗ − Egnd ].

Proposition 2.3. Assume all conditions of Theorem 2.1 hold. Under ”Targeted At-

tacks”, there exists an absolute constant C, such that

RMSE ≤ 4k

√
smaxne
|Ω|

+ Ck

(
(n+ ne)r log(n+ ne)

|Ω|

) 1
4

. (2.12)

Here, smax is maximal number of targeted items of each dummy user.

Proof. In the case of “Targeted Attacks”, we have (recall that k = max(i,j) |Yi,j |)

‖Egnd⊥‖F <
∑

i=1,...,ne

‖si‖ ≤
√
nesmax(2k)2.

Substituting this into Theorem 2.1 establishes the proposition.

Remark 2.1. Proposition 2.3 essentially shows that matrix factorization approach is

robust to the targeted attack model due to the fact that smax is small. Indeed, if the

sampling rate |Ω|/(m(n+ ne)) is fixed, then RMSE converges to zero as m increases.

This coincides with empirical results on Netflix data [12]. In contrast, similarity-based
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algorithms (kNN) are extremely vulnerable to such attacks, due to the high similarity

between dummy users and (some) honest users.

It is easy to see that the factorization method is less robust to mass attacks, simply

because ‖Egnd⊥‖F is not sparse, and hence smax can be as large as m. Thus, the right

hand side of (2.12) may not diminish. Nevertheless, as we show below, if the number

of ”Mass Attackers” does not exceed certain threshold, then the error will mainly con-

centrates on the E block. Hence, the prediction of the honest users is still acceptable.

Proposition 2.4. Assume sufficiently random subspace N (i.e., Propostion 2.2 holds),

above definition of “Mass Attacks”, and condition number κ. If ne <
√
n

κ2r
(
E|Yi,j |2
k2

) and

|Ω| = pm(n + ne) satisfying p > 1/m1/4, furthermore individual sample rate of each

users is bounded within [p/2, 3p/2],1 then with probability of at least 1 − cm−10, the

RMSE for honest users and for manipulators satisfies:

RMSEY ≤ C1κk

(
r3 log(n)

p3n

)1/4

, RMSEE ≤
C2k√
p
,

for some universal constant c, C1 and C2.

The proof of Proposition 2.4, deferred in the appendix, involves bounding the pre-

diction error of each individual users with Theorem 2.4 and sum over Y block and E

block separately. Subspace difference ρ is bounded with Theorem 2.1 and Theorem 2.3

together. Finally, σmin is bounded via Proposition 2.2.

2.6.3 Simulation

To verify our robustness paradigm, we conducted simulation for both models of attacks.

Y is generated by multiplying two 1000× 10 gaussian random matrix and ne attackers

are appended to the back of Y . Targeted Attacks are produced by randomly choosing

from a column of Y and assign 2 “push” and 2 “nuke” targets to 1 and -1 respectively.

Mass Attacks are generated using uniform distribution. Factorization is performed us-

ing ALS. The results of the simulation are summarized in Figure 2.1 and 2.2. Figure 2.1
1This assumption is made to simplify the proof. It easily holds under i.i.d sampling.
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compares the RMSE under two attack models. It shows that when the number of attack-

ers increases, RMSE under targeted attack remains small, while RMSE under random

attack significantly increases. Figure 2.2 compares RMSEE and RMSEY under ran-

dom attack. It shows that when ne is small, RMSEY � RMSEE . However, as ne

increases, RMSEY grows and eventually is comparable to RMSEE . Both figures agree

with our theoretic prediction. Additionally, from Figure 2.3, we can see a sharp tran-

sition in error level from honest user block on the left to the dummy user blocks on

the right. This agrees with the prediction in Proposition 2.4 and the discussion in the

beginning of Section 2.4. Lastly, Figure 2.4 illustrates the targeted attack version of

Figure 2.2. From the curves, we can tell that while Proposition 2.3 bounds the total-

RMSE, the gap between honest block and malicious block exists too. This leads to an

even smaller manipulator impacts on honest users.

2.7 Chapter Summary

This chapter presented a comprehensive study of the stability of matrix factorization

methods. The key results include a near-optimal stability bound, a subspace stability

bound and a worst-case bound for individual columns. Then the theory is applied to the

notorious manipulator problem in collaborative filtering, which leads to an interesting

insight of MF’s inherent robustness.

Matrix factorization is an important tool both for matrix completion task and for

PCA with missing data. Yet, its practical success hinges on its stability – the abil-

ity to tolerate noise and corruption. The treatment in this chapter is a first attempt to

understand the stability of matrix factorization, which we hope will help to guide the

application of matrix factorization methods.

We list some possible directions to extend this research in future. In the theoretical

front, the arguably most important open question is that under what conditions matrix

factorization can reach a solution near global optimal. In the algorithmic front, we

showed here that matrix factorization methods can be vulnerable to general manipu-

26



2.7 Chapter Summary

Figure 2.1: Comparison of two attack
models.

Figure 2.2: Comparison of RMSEY and
RMSEE under random attack.

Figure 2.3: An illustration of error dis-
tribution for Random Attack, ne = 100,
p = 0.3.

Figure 2.4: Comparison ofRMSE in Y -
block and E-block for targeted attacks.

lators. Therefore, it is interesting to develop a robust variation of MF that provably

handles arbitrary manipulators.

Later in Chapter D, we provide further study on matrix factorization, including

empirical evaluation of existing algorithms, extensions to handle sparse corruptions and

how the matrix factorization methods perform against nuclear norm minimization based

approaches in both synthetic and real data.
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Chapter 3

Robust Subspace Clustering via

Lasso-SSC

This chapter considers the problem of subspace clustering under noise. Specifically,

we study the behavior of Sparse Subspace Clustering (SSC) when either adversarial or

random noise is added to the unlabelled input data points, which are assumed to lie

in a union of low-dimensional subspaces. We show that a modified version of SSC is

provably effective in correctly identifying the underlying subspaces, even with noisy

data. This extends theoretical guarantee of this algorithm to the practical setting and

provides justification to the success of SSC in a class of real applications. Part of the

results in this chapter appeared in [143].

3.1 Introduction

Subspace clustering is a problem motivated by many real applications. It is now widely

known that many high dimensional data including motion trajectories [42], face im-

ages [8], network hop counts [59], movie ratings [153] and social graphs [77] can be

modelled as samples drawn from the union of multiple low-dimensional subspaces (il-

lustrated in Figure 3.1). Subspace clustering, arguably the most crucial step to under-

stand such data, refers to the task of clustering the data into their original subspaces
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Figure 3.1: Exact (a) and noisy (b) data in union-of-subspace

and uncovers the underlying structure of the data. The partitions correspond to different

rigid objects for motion trajectories, different people for face data, subnets for network

data, like-minded users in movie database and latent communities for social graph.

Subspace clustering has drawn significant attention in the last decade and a great

number of algorithms have been proposed, including K-plane [18], GPCA [140], Spec-

tral Curvature Clustering [35], Low Rank Representation (LRR) [96] and Sparse Sub-

space Clustering (SSC) [53]. Among them, SSC is known to enjoy superb empirical

performance, even for noisy data. For example, it is the state-of-the-art algorithm for

motion segmentation on Hopkins155 benchmark [136]. For a comprehensive survey

and comparisons, we refer the readers to the tutorial [139].

Effort has been made to explain the practical success of SSC. Elhamifar and Vidal

[54] show that under certain conditions, disjoint subspaces (i.e., they are not overlap-

ping) can be exactly recovered. Similar guarantee, under stronger “independent sub-

space” condition, was provided for LRR in a much earlier analysis[79]. The recent

geometric analysis of SSC [124] broadens the scope of the results significantly to the

case when subspaces can be overlapping. However, while these analyses advanced our

understanding of SSC, one common drawback is that data points are assumed to be ly-

ing exactly in the subspace. This assumption can hardly be satisfied in practice. For

example, motion trajectories data are only approximately rank-4 due to perspective dis-

tortion of camera.

In this chapter, we address this problem and provide the first theoretical analysis of
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SSC with noisy or corrupted data. Our main result shows that a modified version of SSC

(see (3.2)) when the magnitude of noise does not exceed a threshold determined by a

geometric gap between inradius and subspace incoherence (see below for precise defi-

nitions). This complements the result of Soltanolkotabi and Candes [124] that shows the

same geometric gap determines whether SSC succeeds for the noiseless case. Indeed,

our results reduce to the noiseless results [124] when the noise magnitude diminishes.

While our analysis is based upon the geometric analysis in [124], the analysis is

much more involved: In SSC, sample points are used as the dictionary for sparse re-

covery, and therefore noisy SSC requires analyzing noisy dictionary. This is a hard

problem and we are not aware of any previous study that proposed guarantee in the case

of noisy dictionary except Loh and Wainwright [100] in the high-dimensional regres-

sion problem. We also remark that our results on noisy SSC are exact, i.e., as long as

the noise magnitude is smaller than the threshold, the obtained subspace recovery is

correct. This is in sharp contrast to the majority of previous work on structure recovery

for noisy data where stability/perturbation bounds are given – i.e., the obtained solution

is approximately correct, and the approximation gap goes to zero only when the noise

diminishes.

3.2 Problem Setup

Notations: We denote the uncorrupted data matrix by Y ∈ Rn×N , where each column

of Y (normalized to unit vector) belongs to a union of L subspaces

S1 ∪ S2 ∪ ... ∪ SL.

Each subspace S` is of dimension d` and contains N` data samples with N1 + N2 +

... + NL = N . We observe the noisy data matrix X = Y + Z, where Z is some

arbitrary noise matrix. Let Y (`) ∈ Rn×N` denote the selection of columns in Y that

belongs to S`, and let the corresponding columns in X and Z be denoted by X(`)

and Z(`). Without loss of generality, let X = [X(1), X(2), ..., X(L)] be ordered. In
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addition, we use subscript “−i” to represent a matrix that excludes column i, e.g.,

X
(`)
−i = [x

(`)
1 , ..., x

(`)
i−1, x

(`)
i+1, ..., x

(`)
N`

]. Calligraphic letters such as X,Y` represent the

set containing all columns of the corresponding matrix (e.g., X and Y (`)).

For any matrix X , P(X) represents the symmetrized convex hull of its columns,

i.e., P(X) = conv(±X). Also let P(`)
−i := P(X

(`)
−i ) and Q

(`)
−i := P(Y

(`)
−i ) for short. PS

and ProjS denote respectively the projection matrix and projection operator (acting on

a set) to subspace S. Throughout the chapter, ‖ · ‖ represents 2-norm for vectors and

operator norm for matrices; other norms will be explicitly specified (e.g., ‖ · ‖1, ‖ · ‖∞).

Method: Original SSC solves the linear program

min
ci
‖ci‖1 s.t. xi = X−ici (3.1)

for each data point xi. Solutions are arranged into matrix C = [c1, ..., cN ], then spectral

clustering techniques such as Ng et al. [106] are applied on the affinity matrix W =

|C| + |C|T . Note that when Z 6= 0, this method breaks down: indeed (3.1) may even

be infeasible.

To handle noisy X , a natural extension is to relax the equality constraint in (3.1)

and solve the following unconstrained minimization problem instead [56]:

min
ci
‖ci‖1 +

λ

2
‖xi −X−ici‖2. (3.2)

We will focus on Formulation (3.2) in this chapter. Notice that (3.2) coincide with

standard LASSO. Yet, since our task is subspace clustering, the analysis of LASSO

(mainly for the task of support recovery) does not extend to SSC. In particular, existing

literature for LASSO to succeed requires the dictionary X−i to satisfy RIP [20] or the

Null-space property [49], but neither of them is satisfied in the subspace clustering

setup.1

In the subspace clustering task, there is no single “ground-truth” C to compare the

1There may exist two identical columns in X−i, hence violate RIP for 2-sparse signal and has maxi-
mum incoherence µ(X−i) = 1.
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Figure 3.2: Illustration of LASSO-Subspace Detection Property/Self-Expressiveness
Property. Left: SEP holds. Right: SEP is violated even though spectral clustering is
likely to cluster this affinity graph perfectly into 5 blocks.

solution against. Instead, the algorithm succeeds if each sample is expressed as a linear

combination of samples belonging to the same subspace, as the following definition

states.

Definition 3.1 (LASSO Subspace Detection Property). We say subspaces {S`}k`=1 and

noisy sample points X from these subspaces obey LASSO subspace detection property

with λ, if and only if it holds that for all i, the optimal solution ci to (3.2) with parameter

λ satisfies:

(1) ci is not a zero vector, (2) Nonzero entries of ci correspond to only columns

of X sampled from the same subspace as xi.

This property ensures that output matrix C and (naturally) affinity matrix W are

exactly block diagonal with each subspace cluster represented by a disjoint block.1 The

property is illustrated in Figure 3.2. For convenience, we will refer to the second re-

quirement alone as “Self-Expressiveness Property” (SEP), as defined in Elhamifar and

Vidal [56].

Models of analysis: Our objective here is to provide sufficient conditions upon

which the LASSO subspace detection properties hold in the following four models.

Precise definition of the noise models will be given in Section 3.3.

1Note that this is a very strong condition. In general, spectral clustering does not require the exact
block diagonal structure for perfect classifications (check Figure 3.6 in our simulation section for details).
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• fully deterministic model

• deterministic data+random noise

• semi-random data+random noise

• fully random model.

3.3 Main Results

3.3.1 Deterministic Model

We start by defining two concepts adapted from Soltanolkotabi and Candes’s original

proposal.

Definition 3.2 (Projected Dual Direction1). Let ν be the optimal solution to

max
ν
〈x, ν〉 − 1

2λ
νT ν, subject to: ‖XT ν‖∞ ≤ 1;

and S is a low-dimensional subspace. The projected dual direction v is defined as

v(x,X, S, λ) ,
PSν

‖PSν‖
.

Definition 3.3 (Projected Subspace Incoherence Property). Compactly denote projected

dual direction v(`)
i = v(x

(`)
i , X

(`)
−i , S`, λ) and V (`) = [v

(`)
1 , ..., v

(`)
N`

]. We say that vector

set X` is µ-incoherent to other points if

µ ≥ µ(X`) := max
y∈Y\Y`

‖V (`)T y‖∞.

Here, µ measures the incoherence between corrupted subspace samples X` and

clean data points in other subspaces. As ‖y‖ = 1 by definition, the range of µ is

[0, 1]. In case of random subspaces in high dimension, µ is close to zero. Moreover, as

we will see later, for deterministic subspaces and random data points, µ is proportional

to their expected angular distance (measured by cosine of canonical angles).

1This definition relate to (3.8), the dual problem of (3.2), which we will define in the proof.
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Figure 3.3: Illustration of inradius and data distribution.

Definition 3.2 and 3.3 are different from their original versions proposed in Soltanolkotabi

and Candes [124] in that we require a projection to a particular subspace to cater to the

analysis of the noise case.

Definition 3.4 (inradius). The inradius of a convex body P, denoted by r(P), is defined

as the radius of the largest Euclidean ball inscribed in P.

The inradius of a Q
(`)
−i describes the distribution of the data points. Well-dispersed

data lead to larger inradius and skewed/concentrated distribution of data have small

inradius. An illustration is given in Figure 3.3.

Definition 3.5 (Deterministic noise model). Consider arbitrary additive noise Z to Y ,

each column zi is characterized by the three quantities below:

δ := max
i
‖zi‖ δ1 := max

i,`
‖PS`zi‖ δ2 := max

i,`
‖PS⊥`

zi‖

Theorem 3.1. Under deterministic noise model, compactly denote

µ` = µ(X`), r` := min
{i:xi∈X`}

r(Q
(`)
−i), r = min

`=1,...,L
r`.

If µ` < r` for each ` = 1, ..., L, furthermore

δ ≤ min
`=1,...,L

r(r` − µ`)
3r2
` + 8r` + 2

then LASSO subspace detection property holds for all weighting parameter λ in the
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range 
λ >

1

(r − δ1)(1− 3δ)− 3δ − 2δ2
,

λ <
2r

δ2(r + 1)
∨ min
`=1,..,L

r` − µ` − 2δ1

δ(1 + δ)(3 + 2r` − 2δ1)
,

which is guaranteed to be non-empty.

Remark 3.1 (Noiseless case). When δ = 0, i.e., there is no noise, the condition reduces

to µ` < r`, precisely the form in Soltanolkotabi and Candes [124]. However, the latter

only works for the the exact LP formulation (3.1), our result works for the (more robust)

unconstrained LASSO formulation (3.2) for any λ > 1
r .

Remark 3.2 (Signal-to-Noise Ratio). Condition δ ≤ r(r−µ)
3r2+8r+2

can be interpreted as

the breaking point under increasing magnitude of attack. This suggests that SSC by

(3.2) is provably robust to arbitrary noise having signal-to-noise ratio (SNR) greater

than Θ
(

1
r(r−µ)

)
. (Notice that 0 < r < 1, we have 3r2 + 8r + 2 = Θ(1).)

Remark 3.3 (Geometric Interpretation). The geometric interpretation of our results is

give in Figure 3.4. On the left, Theorem 2.5 of Soltanolkotabi and Candes [124] sug-

gests that the projection of external data points must fall inside the solid blue polygon,

which is the intersection of halfspaces defined by dual directions (blue dots) that are

tangent planes of the red inscribing sphere. On the right, the guarantee of Theorem 3.1

means that the whole red sphere (analogous to uncertainty set in Robust Optimization

[13, 15]) of each external data point must fall inside the dashed red polygon, which is

smaller than the blue polygon by a factor related to the noise level.

Remark 3.4 (Matrix version of the algorithm). The theorem suggests there’s a single

λ that works for all xi, X−i in (3.2). This makes it possible to extend the results to the

compact matrix algorithm below

min
C
‖C‖1 +

λ

2
‖X −XCi‖2F

s.t. diag(C) = 0,

(3.3)
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3.3 Main Results

Figure 3.4: Geometric interpretation and comparison of the noiseless SSC (Left) and noisy
Lasso-SSC (Right).

which can be solved numerically using alternating direction method of multipliers (ADMM) [17].

See the appendix for the details of the algorithm.

3.3.2 Randomized Models

We analyze three randomized models with increasing level of randomness.

• Determinitic+Random Noise. Subspaces and samples in subspace are fixed; noise

is random (according to Definition 3.6).

• Semi-random+Random Noise. Subspace is deterministic, but samples in each sub-

space are drawn uniformly at random, noise is random.

• Fully random. Both subspace and samples are drawn uniformly at random; noise is

also random.

Definition 3.6 (Random noise model). Our random noise model is defined to be any

additive Z that is (1) columnwise iid; (2) spherical symmetric; and (3) ‖zi‖ ≤ δ with

high probability.

Example 3.1 (Gaussian noise). A good example of our random noise model is iid Gaus-

sian noise. Let each entry Zij ∼ N(0, σ/
√
n). It is known that

δ := max
i
‖zi‖ ≤

√
1 +

6 logN

n
σ
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with probability at least 1− C/N2 for some constant C (by Lemma B.5).

Theorem 3.2 (Deterministic+Random Noise). Under random noise model, compactly

denote r`, r and µ` as in Theorem 3.1, furthermore let

ε :=

√
6 logN + 2 log max` d`

n−max` d`
≤ C log(N)√

n
.

If r > 3ε/(1− 6ε) and µ` < r` for all ` = 1, ..., k, furthermore

δ < min
`=1,...,L

r` − µ`
3r` + 6

,

then with probability at least 1 − 7/N , LASSO subspace detection property holds for

all weighting parameter λ in the range


λ >

1

(r − δε)(1− 3δ)− 3δ − 2δ2
,

λ <
2r

δ2(r + 1)
∨ min
`=1,...,L

r` − µ` − 2δε

εδ(1 + δ)(3 + 2r` − 2δε)
,

which is guaranteed to be non-empty.

Remark 3.5 (Margin of error). Compared to Theorem 3.1, Theorem 3.2 considers a

more benign noise which leads to a much stronger result. Observe that in the random

noise case, the magnitude of noise that SSC can tolerate is proportional to r`−µ` – the

difference of inradius and incoherence – which is the fundamental geometric gap that

appears in the noiseless guarantee of Soltanolkotabi and Candes [124]. We call this

gap the Margin of error.

We now analyze this margin of error. We start from the semi-random model, where

the distance between two subspaces is measured as follows.

Definition 3.7. The affinity between two subspaces is defined by:

aff(Sk, S`) =

√
cos2 θ

(1)
k` + ...+ cos2 θ

(min(dk,d`))
k` ,
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where θ(i)
k` is the ith canonical angle between the two subspaces. Let Uk and U` be a set

of orthonormal bases of each subspace, then aff(Sk, S`) = ‖UTk U`‖F .

When data points are randomly sampled from each subspace, the geometric entity

µ(X`) can be expressed using this (more intuitive) subspace affinity, which leads to the

following theorem.

Theorem 3.3 (Semi-random+random noise). Suppose N` = κ`d` + 1 data points are

randomly chosen on each S`, 1 ≤ ` ≤ L. Use ε as in Theorem 3.2 and let c(κ) be a

positive constant that takes value 1/
√

8 when κ is greater than some numerical constant

κo. If

max
k:k 6=`

t log [LN`(Nk + 1)]
aff(Sk, S`)√

dk
> c(κ`)

√
log κ`

2
(3.4)

and c(κ`)
√

log κ`/2d` > 3ε/(1− 6ε) for each `, furthermore

δ <
1

9
min
`

{
c(κ`)

√
log κ`√

2d`
− max
k:k 6=`

t log [LN`(Nk + 1)]
aff(Sk, S`)√

dkd`

}
,

then LASSO subspace detection property holds for some λ1 with probability at least

1− 7
N −

∑L
`=1N` exp(−

√
d`(N` − 1))− 1

L2

∑
k 6=`

1
N`(Nk+1) exp(−t/4).

Remark 3.6 (Overlapping subspaces). Similar to Soltanolkotabi and Candes [124],

SSC can handle overlapping subspaces with noisy samples, as subspace affinity can

take small positive value while still keeping the margin of error positive.

Theorem 3.4 (Fully random model). Suppose there are L subspaces each with dimen-

sion d, chosen independently and uniformly at random. For each subspace, there are

κd+ 1 points chosen independently and uniformly at random. Furthermore, each mea-

surements are corrupted by iid Gaussian noise∼ N(0, σ/
√
n). Then for some absolute

constant C, the LASSO subspace detection property holds for some λ with probability

1The λ here (and that in Theorem 3.4) has a fixed non-empty range as in Theorem 3.1 and 3.2, which
we omit due to space constraints.
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Application Cluster rank
3D motion segmentation [42] rank = 4

Face clustering (with shadow) [8] rank = 9

Diffuse photometric face [154] rank = 3

Network topology discovery [59] rank = 2

Hand writing digits [70] rank = 12

Social graph clustering [77] rank = 1

Table 3.1: Rank of real subspace clustering problems

at least 1− C
N −Ne

−
√
κd if

d <
c2(κ) log κ

12 logN
n and σ <

1

18

(
c(κ)

√
log κ

2d
−
√

6 logN

n

)
.

Remark 3.7 (Trade-off between d and the margin of error). Theorem 3.4 extends our

results to the paradigm where the subspace dimension grows linearly with the ambient

dimension. Interestingly, it shows that the margin of error scales Θ̃(
√

1/d), implying a

tradeoff between d and robustness to noise. Fortunately, most interesting applications

indeed have very low subspace-rank, as summarized in Table 3.1.

Remark 3.8 (Robustness in the many-cluster setting). Another interesting observation

is that the margin of error scales logarithmically with respect to L, the number of clus-

ters (in both log κ and logN since N = L(κd + 1)). This suggests that SSC is robust

even if there are many clusters, and Ld� n.

Remark 3.9 (Range of valid λ in the random setting). Substitute the bound of inradius

r and subspace incoherence µ of fully random setting into the λ’s range of Theorem 3.3,

we have the the valid range of λ is

C1

√
d√

log κ
< λ <

C2n

σ
√
d log(dL)

, (3.5)

for some constant C1, C2. This again illustrates that the robustness is sensitive to d but

not L.
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3.4 Roadmap of the Proof

In this section, we lay out the roadmap of the proof for Theorem 3.1 to 3.4. Instead of

analyzing (3.2) directly, we consider an equivalent constrained version by introducing

slack variables:

P0 : min
ci,ei

‖ci‖1 +
λ

2
‖ei‖2 s.t. x

(`)
i = X−ici + ei. (3.6)

The constraint can be rewritten as

y
(`)
i + z

(`)
i = (Y−i + Z−i)ci + ei. (3.7)

The dual program of (3.6) is:

D0 : max
ν
〈xi, ν〉 −

1

2λ
νT ν s.t. ‖(X−i)T ν‖∞ ≤ 1. (3.8)

Recall that we want to establish the conditions on noise magnitude δ, structure of the

data (µ and r in deterministic model and affinity in semi-random model) and ranges of

valid λ such that by Definition 3.1, the solution ci is non-trivial and has support indices

inside the column set X(`)
−i (i.e., satisfies SEP).

We focus on the proof of Theorem 3.1 and 3.2 and briefly explain the randomized

models. Indeed, Theorem 3.3 and 3.4 follow directly by plugging to Theorem 3.2 the

bound of r and µ from Soltanolkotabi and Candes [124] (with some modifications). The

proof of Theorem 3.1 and 3.2 constitutes three main steps: (1) proving SEP, (2) proving

non-trivialness, and (3) showing existence of proper λ.

3.4.1 Self-Expressiveness Property

We prove SEP by duality. First we establish a set of conditions on the optimal dual

variable of D0 corresponding to all primal solutions satisfying SEP. Then we construct

such a dual variable ν as a certificate of proof.

41



ROBUST SUBSPACE CLUSTERING VIA LASSO-SSC

3.4.1.1 Optimality Condition

Define general convex optimization:

min
c,e
‖c‖1 +

λ

2
‖e‖2 s.t. x = Ac+ e. (3.9)

We state Lemma 3.1, which extends Lemma 7.1 in Soltanolkotabi and Candes [124].

The proof is deferred to the appendix.

Lemma 3.1. Consider a vector y ∈ Rd and a matrixA ∈ Rd×N . If there exists a triplet

(c, e, ν) obeying y = Ac+ e and c has support S ⊆ T , furthermore the dual certificate

vector ν satisfies

ATs ν = sgn(cS), ν = λe, ‖ATT∩Scν‖∞ ≤ 1, ‖ATT cν‖∞ < 1,

then any optimal solution (c∗, e∗) to (3.9) obeys c∗T c = 0.

The next step is to apply Lemma 3.1 with x = x
(`)
i andA = X−i and then construct

a triplet (c, e, ν) such that dual certificate ν satisfying all conditions and c satisfies SEP.

Then we can conclude that all optimal solutions of (3.6) satisfy SEP.

3.4.1.2 Construction of Dual Certificate

To construct the dual certificate, we consider the following fictitious optimization prob-

lem that explicitly requires that all feasible solutions satisfy SEP1 (note that one can not

solve such problem in practice without knowing the subspace clusters).

P1 : min
c
(`)
i ,ei

‖ci‖1 +
λ

2
‖ei‖2

s.t. y
(`)
i + z

(`)
i = (Y

(`)
−i + Z

(`)
−i )c

(`)
i + ei.

(3.10)

This problem is feasible. Moreover, it turns out that the dual solution of this fictitious

problem v is a good candidate as our dual certificate. Observe that v automatically

1To be precise, it’s the corresponding ci = [0, ..., 0, (c
(`)
i )T , 0, ..., 0]T that satisfies SEP.
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satisfies the first three conditions in Lemma 3.1 and we are left to show that for all data

point x ∈ X \ X`,

|〈x, ν〉| < 1. (3.11)

Let ν1 and ν2 be the projection of ν to subspace S` and its complement respectively.

The strategy is to provide an upper bound of |〈x, ν〉| then impose the inequality on the

upper bound.

|〈x, ν〉| =|〈y + z, ν〉| ≤ |〈y, ν1〉|+ |〈y, ν2〉|+ |〈z, ν〉|

≤µ(X`)‖ν1‖+ ‖y‖‖ν2‖| cos(∠(y, ν2))|+ ‖z‖‖ν‖| cos(∠(z, ν))|.
(3.12)

To complete the proof, we need to bound ‖ν1‖ and ‖ν2‖ and the two cosine terms (for

random noise model). The proof makes use of the geometric properties of symmetric

convex polytope and optimality of solution. See the appendix for the details.

3.4.2 Non-trivialness and Existence of λ

The idea is that when λ is large enough, trivial solution c∗ = 0, e∗ = x
(`)
i can never

occur. This is formalized by setting

OptVal(D0) = 〈x(`)
i , ν〉 − 1

2λ
‖ν‖2 < λ

2
‖x(`)

i ‖
2. (3.13)

Notice that (3.13) essentially requires that λ > A and (3.12) requires λ < B for some

A and B. Hence, existence of a valid λ requires A < B, which leads to the condition

on the error magnitude δ < C and completes the proof. While conceptually straight-

forward, the details of the proof are involved and left in the appendix due to space

constraints.

3.4.3 Randomization

Our randomized results consider two types of randomization: random noise and random

data. Random noise model improves the deterministic guarantee by exploiting the fact
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that the directions of the noise are random. By the well-known bound on the area of

spherical cap (Lemma B.4), the cosine terms in (3.12) diminishes when the ambient

dimension grows. Similar advantage also appears in the bound of ‖ν1‖ and ‖ν2‖ and

the existence of λ.

Randomization of data provides probabilistic bounds of inradius r and incoherence

µ. The lower bound of inradius r follows from a lemma in the study of isotropy con-

stant of symmetric convex body [2]. The upper bound of µ(X
(`)
−i) requires more effort.

It involves showing that projected dual directions v(`)
i (see Definition 3.2) distributes

uniformly on the subspace projection of the unit n-sphere, then applying the spherical

cap lemma for all pairs of (v
(`)
i , y). We defer the full proof in the appendix.

3.5 Numerical Simulation

To demonstrate the practical implications of our robustness guarantee for LASSO-SSC,

we conduct three numerical experiments to test the effects of noise magnitude δ, sub-

space rank d and number of subspace L. To make it invariant to parameter, we scan

through an exponential grid of λ ranging from
√
n × 10−2 to

√
n × 103. In all ex-

periments, ambient dimension n = 100, relative sampling κ = 5, subspace and data

are drawn uniformly at random from unit sphere and then corrupted by Gaussian noise

Zij ∼ N(0, σ/
√
n). We measure the success of the algorithm by the relative violation

of Self-Expressiveness Property defined below.

RelViolation (C,M) =

∑
(i,j)/∈M |C|i,j∑
(i,j)∈M |C|i,j

where M is the ground truth mask containing all (i, j) such that xi, xj ∈ X(`) for some

`. Note that RelViolation (C,M) = 0 implies that SEP is satisfied. We also check that

there is no all-zero columns in C, and the solution is considered trivial otherwise.

The simulation results confirm our theoretical findings. In particular, Figure 3.5

shows that LASSO subspace detection property is possible for a very large range of λ

and the dependence on noise magnitude is roughly 1/σ as remarked in (3.5). In addition,
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the sharp contrast of Figure 3.8 and 3.7 demonstrates precisely our observations on the

sensitivity of d and L in Remark 3.7 and 3.8.

A remark on numerical algorithms: For fast computation, we use ADMM im-

plementation of LASSO solver1. It has complexity proportional to problem size and

convergence guarantee [17]. We also implement a simple solver for the matrix version

SSC (3.3) which is consistently faster than the column-by-column LASSO version. De-

tails of the algorithm and its favorable empirical comparisons are given in the appendix.

Figure 3.5: Exact recovery under noise.
Simulated with n = 100, d = 4, L =
3, κ = 5 with increasing Gaussian noise
N(0, σ/

√
n). Black: trivial solution

(C = 0); Gray: RelViolation > 0.1;
White: RelViolation = 0.

Figure 3.6: Spectral clustering accuracy
for the experiment in Figure 3.5. The rate
of accurate classification is represented in
grayscale. White region means perfect
classification. It is clear that exact sub-
space detection property (Definition 3.1)
is not necessary for perfect classification.

3.6 Chapter Summary

We presented the first theoretical analysis for noisy subspace clustering problem that

is of great practical interests. We showed that the popular SSC algorithm exactly (not

approximately) succeeds even in the noisy case, which justified its empirical success

on real problems. In addition, we discovered a fundamental trade-off between robust-

ness to noise and the subspace dimension, and we found that robustness is insensitive
1Freely available at:

http://www.stanford.edu/˜boyd/papers/admm/
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Figure 3.7: Effects of number of sub-
space L. Simulated with n = 100, d =
2, κ = 5, σ = 0.2 with increasing
L. Black: trivial solution (C = 0);
Gray: RelViolation > 0.1; White:
RelViolation = 0. Note that even at
the point when dL = 200(subspaces
are highly dependent), subspace detection
property holds for a large range of λ.

Figure 3.8: Effects of cluster rank
d. Simulated with n = 100, L =
3, κ = 5, σ = 0.2 with increasing
d. Black: trivial solution (C = 0);
Gray: RelViolation > 0.1; White:
RelViolation = 0. Observe that beyond
a point, subspace detection property is not
possible for any λ.

to the number of subspaces. Our analysis hence reveals fundamental relationships of

robustness, number of samples and dimension of the subspace. These results lead to

new theoretical understanding of SSC, as well as provides guidelines for practitioners

and application-level researchers to judge whether SSC could possibly work well for

their respective applications.

Open problems for subspace clustering include the graph connectivity problem

raised by Nasihatkon and Hartley [104] (which we will talk about more in Chapter 4),

missing data problem (a first attempt by Eriksson et al. [59], but requires an unrealistic

number of data), sparse corruptions on data and others. One direction closely related to

this chapter is to introduce a more practical metric of success. As we illustrated in this

chapter, subspace detection property is not necessary for perfect clustering. In fact from

a pragmatic point of view, even perfect clustering is not necessary. Typical applications

allow for a small number of misclassifications. It would be interesting to see whether

stronger robustness results can be obtained for a more practical metric of success.

46



Chapter 4

When LRR Meets SSC: the

Separation-Connectivity Tradeoff

We continue to study the problem of subspace clustering in this chapter. The motivation

deviates from the robustness to noise, but instead address the known weakness of SSC:

the constructed graph may be too sparse within a single class.

This is the complete opposite of another successful algorithm termed Low-Rank

Representation (LRR) that exploits the the same intuition of “Self-Expressiveness” as

SSC. LRR often yields a very dense graph, as it minimizes nuclear norm (aka trace

norm) to promote a low-rank structure in contract to SSC that minimizes the vector `1

norm of the representation matrix to induce sparsity.

We propose a new algorithm, termed Low-Rank Sparse Subspace Clustering (LRSSC),

by combining SSC and LRR, and develops theoretical guarantees of when the algorithm

succeeds. The results reveal interesting insights into the strength and weakness of SSC

and LRR and demonstrate how LRSSC can take the advantages of both methods in pre-

serving the “Self-Expressiveness Property” and “Graph Connectivity” at the same time.

Part of the materials in this chapter is included in our submission[145].
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4.1 Introduction

As discussed in the previous chapter, the wide array of problems that assume the struc-

ture of a union of low-rank subspaces has motivated various researchers to propose algo-

rithms for the subspace clustering problem. Among these algorithms, Sparse Subspace

Clustering (SSC) [53], Low Rank Representation (LRR) [98], based on minimizing

the nuclear norm and `1 norm of the representation matrix respectively, remain the top

performers on the Hopkins155 motion segmentation benchmark dataset[136]. More-

over, they are among the few subspace clustering algorithms supported with theoretic

guarantees: Both algorithms are known to succeed when the subspaces are indepen-

dent [98, 140]. Later, [56] showed that subspace being disjoint is sufficient for SSC to

succeed1, and [124] further relaxed this condition to include some cases of overlapping

subspaces. Robustness of the two algorithms has been studied too. Liu et. al. [97]

showed that a variant of LRR works even in the presence of some arbitrarily large out-

liers, while Wang and Xu [143] provided both deterministic and randomized guarantees

for SSC when data are noisy or corrupted.

Despite LRR and SSC’s success, there are questions unanswered. LRR has never

been shown to succeed other than under the very restrictive “independent subspace”

assumption. SSC’s solution is sometimes too sparse that the affinity graph of data from

a single subspace may not be a connected body [104]. Moreover, as our experiment with

Hopkins155 data shows, the instances where SSC fails are often different from those

that LRR fails. Hence, a natural question is whether combining the two algorithms lead

to a better method, in particular since the underlying representation matrix we want to

recover is both low-rank and sparse simultaneously.

In this chapter, we propose Low-Rank Sparse Subspace Clustering (LRSSC), which

minimizes a weighted sum of nuclear norm and vector 1-norm of the representation

matrix. We show theoretical guarantees for LRSSC that strengthen the results in [124].

The statement and proof also shed insight on why LRR requires independence assump-

1 Disjoint subspaces only intersect at the origin. It is a less restrictive assumption comparing to
independent subspaces, e.g., 3 coplanar lines passing the origin are not independent, but disjoint.
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tion. Furthermore, the results imply that there is a fundamental trade-off between the

interclass separation and the intra-class connectivity. Indeed, our experiment shows

that LRSSC works well in cases where data distribution is skewed (graph connectivity

becomes an issue for SSC) and subspaces are not independent (LRR gives poor separa-

tion). These insights would be useful when developing subspace clustering algorithms

and applications. We remark that in the general regression setup, the simultaneous nu-

clear norm and 1-norm regularization has been studied before [115]. However, our focus

is on the subspace clustering problem, and hence the results and analysis are completely

different.

4.2 Problem Setup

Notations: We denote the data matrix by X ∈ Rn×N , where each column of X

(normalized to unit vector) belongs to a union of L subspaces

S1 ∪ S2 ∪ ... ∪ SL.

Each subspace ` contains N` data samples with N1 +N2 + ...+NL = N . We observe

the noisy data matrix X . Let X(`) ∈ Rn×N` denote the selection (as a set and a matrix)

of columns inX that belong to S` ⊂ Rn, which is an d`-dimensional subspace. Without

loss of generality, let X = [X(1), X(2), ..., X(L)] be ordered. In addition, we use ‖ · ‖ to

represent Euclidean norm (for vectors) or spectral norm (for matrices) throughout the

chapter.

Method: We solve the following convex optimization problem

LRSSC : min
C
‖C‖∗ + λ‖C‖1 s.t. X = XC, diag(C) = 0.

(4.1)

Spectral clustering techniques (e.g., [106]) are then applied on the affinity matrix W =

|C| + |C|T where C is the solution to (4.1) to obtain the final clustering and | · | is the

elementwise absolute value.
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Criterion of success: In the subspace clustering task, as opposed to compressive sens-

ing or matrix completion, there is no “ground-truth” C to compare the solution against.

Instead, the algorithm succeeds if each sample is expressed as a linear combination of

samples belonging to the same subspace, i.e., the output matrix C are block diagonal

(up to appropriate permutation) with each subspace cluster represented by a disjoint

block. Formally, we have the following definition.

Definition 4.1 (Self-Expressiveness Property (SEP)). Given subspaces {S`}L`=1 and

data points X from these subspaces, we say a matrix C obeys Self-Expressiveness

Property, if the nonzero entries of each ci (ith column of C) corresponds to only those

columns of X sampled from the same subspace as xi.

Note that the solution obeying SEP alone does not imply the clustering is correct,

since each block may not be fully connected. This is the so-called “graph connectivity”

problem studied in [104]. On the other hand, failure to achieve SEP does not necessar-

ily imply clustering error either, as the spectral clustering step may give a (sometimes

perfect) solution even when there are connections between blocks. Nevertheless, SEP is

the condition that verifies the design intuition of SSC and LRR. Notice that if C obeys

SEP and each block is connected, we immediately get the correct clustering.

4.3 Theoretic Guanratees

4.3.1 The Deterministic Setup

Before we state our theoretical results for the deterministic setup, we need to define a

few quantities.

Definition 4.2 (Normalized dual matrix set). Let {Λ1(X)} be the set of optimal solu-

tions to

max
Λ1,Λ2,Λ3

〈X,Λ1〉 s.t. ‖Λ2‖∞ ≤ λ, ‖XTΛ1 − Λ2 − Λ3‖ ≤ 1, diag⊥(Λ3) = 0,
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where ‖ · ‖∞ is the vector `∞ norm and diag⊥ selects all the off-diagonal entries. Let

Λ∗ = [ν∗1 , ..., ν
∗
N ] ∈ {Λ1(X)} obey ν∗i ∈ span(X) for every i = 1, ..., N .1 For every

Λ = [ν1, ..., νN ] ∈ {Λ1(X)}, we define normalized dual matrix V for X as

V (X) ,

[
ν1

‖ν∗1‖
, ...,

νN
‖ν∗N‖

]
,

and the normalized dual matrix set {V (X)} as the collection of V (X) for all Λ ∈

{Λ1(X)}.

Definition 4.3 (Minimax subspace incoherence property). Compactly denote V (`) =

V (X(`)). We say the vector set X(`) is µ-incoherent to other points if

µ ≥ µ(X(`)) := min
V (`)∈{V (`)}

max
x∈X\X(`)

‖V (`)Tx‖∞.

The incoherence µ in the above definition measures how separable the sample

points in S` are against sample points in other subspaces (small µ represents more

separable data). Our definition differs from Soltanokotabi and Candes’s definition of

subspace incoherence [124] in that it is defined as a minimax over all possible dual di-

rections. It is easy to see that µ-incoherence in [124, Definition 2.4] implies µ-minimax-

incoherence as their dual direction are contained in {V (X)}. In fact, in several inter-

esting cases, µ can be significantly smaller under the new definition. We illustrate the

point with the two examples below and leave detailed discussions in the appendix.

Example 4.1 (Independent Subspace). Suppose the subspaces are independent, i.e.,

dim(S1 ⊕ ... ⊕ SL) =
∑

`=1,...,L dim(S`), then all X(`) are 0-incoherent under our

Definition 4.3. This is because for each X(`) one can always find a dual matrix V (`) ∈

{V (`)}whose column space is orthogonal to the span of all other subspaces. To contrast,

the incoherence parameter according to Definition 2.4 in [124] will be a positive value,

potentially large if the angles between subspaces are small.

1If this is not unique, pick the one with least Frobenious norm.
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Example 4.2 (Random except 1 subspace). Suppose we have L disjoint 1-dimensional

subspaces in Rn (L > n). S1, ..., SL−1 subspaces are randomly drawn. SL is chosen

such that its angle to one of the L − 1 subspace, say S1, is π/6. Then the incoher-

ence parameter µ(X(L)) defined in [124] is at least cos(π/6). However under our new

definition, it is not difficult to show that µ(X(L)) ≤ 2

√
6 log(L)

n with high probability1.

The result also depends on the smallest singular value of a rank-d matrix (denoted

by σd) and the inradius of a convex body as defined below.

Definition 4.4 (inradius). The inradius of a convex body P, denoted by r(P), is defined

as the radius of the largest Euclidean ball inscribed in P.

The smallest singular value and inradius measure how well-represented each sub-

space is by its data samples. Small inradius/singular value implies either insufficient

data, or skewed data distribution, in other word, it means that the subspace is “poorly

represented”. Now we may state our main result.

Theorem 4.1 (LRSSC). Self-expressiveness property holds for the solution of (4.1) on

the data X if there exists a weighting parameter λ such that for all ` = 1, ..., L, one of

the following two conditions holds:

µ(X(`))(1 + λ
√
N`) < λmin

k
σd`(X

(`)
−k), (4.2)

or µ(X(`))(1 + λ) < λmin
k
r(conv(±X(`)

−k)), (4.3)

where X−k denotes X with its kth column removed and σd`(X
(`)
−k) represents the dth`

(smallest non-zero) singular value of the matrix X(`)
−k.

We briefly explain the intuition of the proof. The theorem is proven by duality. First

we write out the dual problem of (4.1),

Dual LRSSC :

max
Λ1,Λ2,Λ3

〈X,Λ1〉 s.t. ‖Λ2‖∞ ≤ λ, ‖XTΛ1 − Λ2 − Λ3‖ ≤ 1, diag⊥(Λ3) = 0.

1The full proof is given in the Appendix. Also it is easy to generalize this example to d-dimensional
subspaces and to “random except K subspaces”.
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This leads to a set of optimality conditions, and leaves us to show the existence of a

dual certificate satisfying these conditions. We then construct two levels of fictitious

optimizations (which is the main novelty of the proof) and construct a dual certificate

from the dual solution of the fictitious optimization problems. Under condition (4.2) and

(4.3), we establish this dual certifacte meets all optimality conditions, hence certifying

that SEP holds. Due to space constraints, we defer the detailed proof to the appendix

and focus on the discussions of the results in the main text.

Remark 4.1 (SSC). Theorem 4.1 can be considered a generalization of Theorem 2.5 of

[124]. Indeed, when λ→∞, (4.3) reduces to the following

µ(X(`)) < min
k
r(conv(±X(`)

−k)).

The readers may observe that this is exactly the same as Theorem 2.5 of [124], with the

only difference being the definition of µ. Since our definition of µ(X(`)) is tighter (i.e.,

smaller) than that in [124], our guarantee for SSC is indeed stronger. Theorem 4.1 also

implies that the good properties of SSC (such as overlapping subspaces, large dimen-

sion) shown in [124] are also valid for LRSSC for a range of λ greater than a threshold.

To further illustrate the key difference from [124], we describe the following sce-

nario.

Example 4.3 (Correlated/Poorly Represented Subspaces). Suppose the subspaces are

poorly represented, i.e., the inradius r is small. If furthermore, the subspaces are highly

correlated, i.e., canonical angles between subspaces are small, then the subspace inco-

herence µ′ defined in [124] can be quite large (close to 1). Thus, the succeed condition

µ′ < r presented in [124] is violated. This is an important scenario because real data

such as those in Hopkins155 and Extended YaleB often suffer from both problems, as

illustrated in [57, Figure 9 & 10]. Using our new definition of incoherence µ, as long

as the subspaces are “sufficiently independent”1 (regardless of their correlation) µ will

1Due to space constraint, the concept is formalized in appendix.
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assume very small values (e.g., Example 4.2), making SEP possible even if r is small,

namely when subspaces are poorly represented.

Remark 4.2 (LRR). The guarantee is the strongest when λ → ∞ and becomes super-

ficial when λ → 0 unless subspaces are independent (see Example 4.1). This seems

to imply that the “independent subspace” assumption used in [97, 98] to establish suf-

ficient conditions for LRR (and variants) to work is unavoidable.1 On the other hand,

for each problem instance, there is a λ∗ such that whenever λ > λ∗, the result satisfies

SEP, so we should expect phase transition phenomenon when tuning λ.

Remark 4.3 (A tractable condition). Condition (4.2) is based on singular values, hence

is computationally tractable. In contrast, the verification of (4.3) or the deterministic

condition in [124] is NP-Complete, as it involves computing the inradii of V-Polytopes

[67]. When λ→∞, Theorem 4.1 reduces to the first computationally tractable guaran-

tee for SSC that works for disjoint and potentially overlapping subspaces.

4.3.2 Randomized Results

We now present results for the random design case, i.e., data are generated under some

random models.

Definition 4.5 (Random data). “Random sampling” assumes that for each `, data

points in X(`) are iid uniformly distributed on the unit sphere of S`. “Random sub-

space” assumes each S` is generated independently by spanning d` iid uniformly dis-

tributed vectors on the unit sphere of Rn.

Lemma 4.1 (Singular value bound). Assume random sampling. If d` < N` < n, then

there exists an absolute constant C1 such that with probability of at least 1−N−10
` ,

σd`(X) ≥ 1

2

(√
N`

d`
− 3− C1

√
logN`

d`

)
, or simply σd`(X) ≥ 1

4

√
N`

d`
,

if we assume N` ≥ C2d`, for some constant C2.
1Our simulation in Section 4.6 also supports this conjecture.
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Lemma 4.2 (Inradius bound [2, 124]). Assume random sampling of N` = κ`d` data

points in each S`, then with probability larger than 1−
∑L

`=1N`e
−
√
d`N`

r(conv(±X(`)
−k)) ≥ c(κ`)

√
log (κ`)

2d`
for all pairs (`, k).

Here, c(κ`) is a constant depending on κ`. When κ` is sufficiently large, we can take

c(κ`) = 1/
√

8.

Combining Lemma 4.1 and Lemma 4.2, we get the following remark showing that

conditions (4.2) and (4.3) are complementary.

Remark 4.4. Under the random sampling assumption, when λ is smaller than a thresh-

old, the singular value condition (4.2) is better than the inradius condition (4.3). Specifi-

cally, σd`(X) > 1
4

√
N`
d`

with high probability, so for some constant C > 1, the singular

value condition is strictly better if

λ <
C
(√

N` −
√

log (N`/d`)
)

√
N`

(
1 +

√
log (N`/d`)

) , or when N` is large, λ <
C

1 +
√

log (N`/d`)
.

By further assuming random subspace, we provide an upper bound of the incoher-

ence µ.

Lemma 4.3 (Subspace incoherence bound). Assume random subspace and random

sampling. It holds with probability greater than 1− 2/N that for all `,

µ(X(`)) ≤
√

6 logN

n
.

Combining Lemma 4.1 and Lemma 4.3, we have the following theorem.

Theorem 4.2 (LRSSC for random data). Suppose L rank-d subspace are uniformly

and independently generated from Rn, and N/L data points are uniformly and in-

dependently sampled from the unit sphere embedded in each subspace, furthermore

N > CdL for some absolute constant C, then SEP holds with probability larger than
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1− 2/N − 1/(Cd)10, if

d <
n

96 logN
, for all λ >

1√
N
L

(√
n

96d logN − 1
) . (4.4)

The above condition is obtained from the singular value condition. Using the inra-

dius guarantee, combined with Lemma 4.2 and 4.3, we have a different succeed con-

dition requiring d < n log(κ)
96 logN for all λ > 1√

n log κ
96d logN

−1
. Ignoring constant terms, the

condition on d is slightly better than (4.4) by a log factor but the range of valid λ is

significantly reduced.

4.4 Graph Connectivity Problem

The graph connectivity problem concerns when SEP is satisfied, whether each block of

the solutionC to LRSSC represents a connected graph. The graph connectivity problem

concerns whether each disjoint block (since SEP holds true) of the solutionC to LRSSC

represents a connected graph. This is equivalent to the connectivity of the solution of

the following fictitious optimization problem, where each sample is constrained to be

represented by the samples of the same subspace,

min
C(`)

‖C(`)‖∗ + λ‖C(`)‖1 s.t. X(`) = X(`)C(`), diag(C(`)) = 0. (4.5)

The graph connectivity for SSC is studied by [104] under deterministic conditions

(to make the problem well-posed). They show by a negative example that even if the

well-posed condition is satisfied, the solution of SSC may not satisfy graph connectivity

if the dimension of the subspace is greater than 3. On the other hand, graph connectivity

problem is not an issue for LRR: as the following proposition suggests, the intra-class

connections of LRR’s solution are inherently dense (fully connected).

Proposition 4.1. When the subspaces are independent, X is not full-rank and the data

points are randomly sampled from a unit sphere in each subspace, then the solution to
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LRR, i.e.,

min
C
‖C‖∗ s.t. X = XC,

is class-wise dense, namely each diagonal block of the matrix C is all non-zero.

The proof makes use of the following lemma which states the closed-form solution

of LRR.

Lemma 4.4 ([98]). Take skinny SVD of data matrix X = UΣV T . The closed-form

solution to LRR is the shape interaction matrix C = V V T .

Proposition 4.1 then follows from the fact that each entry of V V T has a continuous

distribution, hence the probability that any is exactly zero is negligible (a complete

argument is given in the Appendix).

Readers may notice that when λ → 0, (4.5) is not exactly LRR, but with an addi-

tional constraint that diagonal entries are zero. We suspect this constrained version also

have dense solution. This is demonstrated numerically in Section 4.6.

4.5 Practical issues

4.5.1 Data noise/sparse corruptions/outliers

The natural extension of LRSSC to handle noise is

min
C

1

2
‖X −XC‖2F + β1‖C‖∗ + β2‖C‖1 s.t. diag(C) = 0. (4.6)

We believe it is possible (but maybe tedious) to extend our guarantee to this noisy ver-

sion following the strategy of [143] which analyzed the noisy version of SSC. This is

left for future research.

According to the noisy analysis of SSC, a rule of thumb of choosing the scale of β1

and β2 is

β1 =
σ( 1

1+λ)
√

2 logN
, β2 =

σ( λ
1+λ)

√
2 logN

,
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where λ is the tradeoff parameter used in noiseless case (4.1), σ is the estimated noise

level and N is the total number of entries.

In case of sparse corruption, one may use `1 norm penalty instead of the Frobenious

norm. For outliers, SSC is proven to be robust to them under mild assumptions [124],

and we suspect a similar argument should hold for LRSSC too.

4.5.2 Fast Numerical Algorithm

As subspace clustering problem is usually large-scale, off-the-shelf SDP solvers are

often too slow to use. Instead, we derive alternating direction methods of multipliers

(ADMM) [17], known to be scalable, to solve the problem numerically. The algorithm

involves separating out the two objectives and diagonal constraints with dummy vari-

ables C2 and J like

min
C1,C2,J

‖C1‖∗ + λ‖C2‖1

s.t. X = XJ, J = C2 − diag(C2), J = C1,

(4.7)

and update J,C1, C2 and the three dual variables alternatively. Thanks to the change of

variables, all updates can be done in closed-form. To further speed up the convergence,

we adopt the adaptive penalty mechanism of Lin et.al [94], which in some way ame-

liorates the problem of tuning numerical parameters in ADMM. Detailed derivations,

update rules, convergence guarantee and the corresponding ADMM algorithm for the

noisy version of LRSSC are made available in the appendix.

4.6 Numerical Experiments

To verify our theoretical results and illustrate the advantages of LRSSC, we design

several numerical experiments. In all our numerical experiments, we use the ADMM

implementation of LRSSC with fixed set of numerical parameters. The results are given

against an exponential grid of λ values, so comparisons to only 1-norm (SSC) and only

nuclear norm (LRR) are clear from two ends of the plots.
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4.6.1 Separation-Sparsity Tradeoff

We first illustrate the tradeoff of the solution between obeying SEP and being connected

(this is measured using the intra-class sparsity of the solution). We randomly generate L

subspaces of dimension 10 from R50. Then, 50 unit length random samples are drawn

from each subspace and we concatenate into a 50 × 50L data matrix. We use Relative

Violation [143] to measure of the violation of SEP and Gini Index [75] to measure the

intra-class sparsity1. These quantities are defined below:

RelViolation (C,M) =

∑
(i,j)/∈M |C|i,j∑
(i,j)∈M |C|i,j

,

where M is the index set that contains all (i, j) such that xi, xj ∈ S` for some `.

GiniIndex (C,M) is obtained by first sorting the absolute value of Cij∈M into a

non-decreasing sequence ~c = [c1, ..., c|M|], then evaluate

GiniIndex (vec(CM)) = 1− 2

|M|∑
k=1

ck
‖~c‖1

(
|M| − k + 1/2

|M|

)
.

Note that RelViolation takes the value of [0,∞] and SEP is attained when RelViolation

is zero. Similarly, Gini index takes its value in [0, 1] and it is larger when intra-class

connections are sparser.

The results for L = 6 and L = 11 are shown in Figure 4.1. We observe phase

transitions for both metrics. When λ = 0 (corresponding to LRR), the solution does not

obey SEP even when the independence assumption is only slightly violated (L = 6).

When λ is greater than a threshold, RelViolation goes to zero. These observations match

Theorems 4.1 and 4.2. On the other hand, when λ is large, intra-class sparsity is high,

indicating possible disconnection within the class.

Moreover, we observe that there exists a range of λwhere RelViolation reaches zero

yet the sparsity level does not reaches its maximum. This justifies our claim that the

1We choose Gini Index over the typical `0 to measure sparsity as the latter is vulnerable to numerical
inaccuracy.
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Figure 4.1: Illustration of the separation-sparsity trade-off. Left: 6 subspaces. Right: 11
subspace.

solution of LRSSC, taking λ within this range, can achieve SEP and at the same time

keep the intra-class connections relatively dense. Indeed, for the subspace clustering

task, a good tradeoff between separation and intra-class connection is important.

4.6.2 Skewed data distribution and model selection

In this experiment, we use the data for L = 6 and combine the first two subspaces

into one 20-dimensional subspace and randomly sample 10 more points from the new

subspace to “connect” the 100 points from the original two subspaces together. This is

to simulate the situation when data distribution is skewed, i.e., the data samples within

one subspace has two dominating directions. The skewed distribution creates trouble

for model selection (judging the number of subspaces), and intuitively, the graph con-

nectivity problem might occur.

We find that model selection heuristics such as the spectral gap [141] and spectral

gap ratio [90] of the normalized Laplacian are good metrics to evaluate the quality of

the solution of LRSSC. Here the correct number of subspaces is 5, so the spectral gap is

the difference between the 6th and 5th smallest singular value and the spectral gap ratio

is the ratio of adjacent spectral gaps. The larger these quantities, the better the affinity

matrix reveals that the data contains 5 subspaces.

Figure 4.2 demonstrates how singular values change when λ increases. When λ = 0

(corresponding to LRR), there is no significant drop from the 6th to the 5th singular
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value, hence it is impossible for either heuristic to identify the correct model. As λ

increases, the last 5 singular values gets smaller and become almost zero when λ is

large. Then the 5-subspace model can be correctly identified using spectral gap ratio.

On the other hand, we note that the 6th singular value also shrinks as λ increases, which

makes the spectral gap very small on the SSC side and leaves little robust margin for

correct model selection against some violation of SEP. As is shown in Figure 4.3, the

largest spectral gap and spectral gap ratio appear at around λ = 0.1, where the solution

is able to benefit from both the better separation induced by the 1-norm factor and the

relatively denser connections promoted by the nuclear norm factor.

Figure 4.2: Last 20 singular values of the nor-
malized Laplacian in the skewed data experi-
ment.

Figure 4.3: Spectral Gap and Spec-
tral Gap Ratio in the skewed data
experiment.

4.7 Additional experimental results

4.7.1 Numerical Simulation

Exp1: Disjoint 11 Subspaces Experiment

Randomly generate 11 subspaces of dimension 10 from R50. 50 unit length random

samples are drawn from each subspace and we concatenate into a 50× 550 data matrix.

Besides what is shown in the main text, we provide a qualitative illustration of the

separation-sparsity trade-off in Figure 4.4.
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Figure 4.4: Qualitative illustration of the 11 Subspace Experiment. From left to right, top
to bottom: λ = [0, 0.05, 1, 1e4], corresponding RelViolation is [3.4, 1.25, 0.06, 0.03] and
Gini Index is [0.41, 0.56, 0.74, 0.79]
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Exp2: when exact SEP is not possible

In this experiment, we randomly generate 10 subspaces of rank 3 from a 10 dimensional

subspace, each sampled 15 data points. All data points are embedded to the ambient

space of dimension 50.

This is to illustrate the case when perfect SEP is not possible for any λ. In other

word, the smallest few singular values of the normalized Laplacian matrix is not exactly

0. Hence we will rely on heuristics such as Spectral Gap and Spectral Gap Ratio to

tell how many subspaces there are and hopefully spectral clustering will return a good

clustering. Figure 4.5 gives an qualitative illustration how the spectral gap emerges

as λ increases. Figure 4.6 shows quantitatively the same thing with the actual values

of the two heuristics changes. Clearly, model selection is much easier in the SSC-

side comparing to the LRR side, when SEP is the main issue (see the comparison in

Figure 4.7).

Figure 4.5: Last 50 Singular values of the normalized Laplacian in Exp2. See how the
spectral gap emerges and become larger as λ increases.

Exp3: Independent-Skewed data distribution

Assume ambient dimension n = 50, 3 subspaces. The second and the third 3-d sub-

spaces are generated randomly, each sampled 15 points. The first subspace is a 6-d
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Figure 4.6: Spectral Gap and Spectral Gap Ratio for Exp2. When perfect SEP is not
possible, model selection is easier on the SSC side, but the optimal spot is still somewhere
between LRR and SSC.

Figure 4.7: Illustration of representation matrices. Left: λ = 0, Right: λ = 1e4. While it
is still not SEP, there is significant improvement in separation.
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Figure 4.8: Spectral Gap and Spectral Gap Ratio for Exp3. The independent subspaces
have no separation problem, SEP holds for all λ. Note that due to the skewed data distri-
bution, the spectral gap gets quite really small at the SSC side.

subspace spanned by two random 3-d subspaces. 15 data points are randomly gener-

ated from each of the two spanning 3-d subspaces and only 3 data points are randomly

taken from the spanned 6-D subspace two glue them together.

As a indication of model selection, the spectral gap and spectral ratio for all λ is

shown in Figure 4.8. While all experiments return clearly defined three disjoint compo-

nents (smallest three singular values equal to 0 for all λ), the LRR side gives the largest

margin of three subspaces (when λ = 0, the result gives the largest 4th smallest singular

value). This illustrates that when Skewed-Data-Distribution is the main issue, LRR side

is better than SSC side. This can be qualitatively seen in Figure 4.9

Exp4: Disjoint-Skewed data distribution

In this experiment, we illustrate the situation when subspaces are not independent and

one of them has skewed distribution, hence both LRR and SSC are likely to to encounter

problems. The setup is the same as the 6 Subspace experiment except the first two

subspaces are combined into a 20-dimensional subspace moreover 10 more random

points are sampled from the spanned subspace. Indeed, as Figure 4.2 and 4.3 suggest,
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Figure 4.9: Illustration of representation matrices. Left: λ = 0, Right: λ = 1e4. The 3
diagonal block is clear on the LRR side, while on the SSC side, it appear to be more like 4
blocks plus some noise.

Figure 4.10: Illustration of model selection with spectral gap (left) and spectral gap ratio
(right) heuristic. The highest point of each curve corresponds to the inferred number of
subspaces in the data. We know the true number of subspace is 5.

taking λ somewhere in the middle gives the largest spectral gap and spectral gap ratio,

which indicates with large margin that the correct model is a 5 Subspace Model.

In addition to that, we add Figure 4.10 here to illustrate the ranges of λ where two

heuristics give correct model selection. It appears that “spectral gap” suggests a wrong

model for all λ despite the fact that the 5th “spectral gap” enlarges as λ increase. On

the other hand, the “spectral gap ratio” reverted its wrong model selection at the LRR

side quickly as λ increases and reaches maximum margin in the blue region (around

λ = 0.5). This seems to imply that “spectral gap ratio” is a better heuristic in the case

when one or more subspaces are not well-represented.
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4.7.2 Real Experiments on Hopkins155

To complement the numerical experiments, we also run our NoisyLRSSC on the Hop-

kins155 motion segmentation dataset[136]. The dataset contains 155 short video se-

quence with temporal trajectories of the 2D coordinates of the feature points summa-

rizing in a data matrix. The task is to unsupervisedly cluster the given trajectories into

blocks such that each block corresponds to one rigid moving objects. The motion can

be 3D translation, rotation or combination of translation and rotation. Ground truth is

given together with the data so evaluation is simply by the misclassification rate. A few

snapshots of the dataset is given in Figure 4.11.

4.7.2.1 Why subspace clustering?

Subspace clustering is applicable here because collections of feature trajectories on a

rigid body captured by a moving affine camera can be factorized into camera motion

matrix and a structure matrix as follows

X =


x11 ... x1n

... ... ...

xm1 ... xmn

 =


M1

...

Mm

( S1 ... Sn

)
,

whereMi ∈ R2×4 is a the camera projection matrix from 3D homogeneous coordinates

to 2D image coordinates and Sj ∈ R4 is one feature points in 3D with 1 added at the

back to form the homogeneous coordinates. Therefore, the inner dimension of the ma-

trix multiplication ensures that all column vectors ofX lies in a 4 dimensional subspace

(see [69, Chapter 18] for details).

Depending on the types of motion, and potential projective distortion of the image

(real camera is never perfectly affine) the subspace may be less than rank 4 (degenerate

motion) or only approximately rank 4.
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Figure 4.11: Snapshots of Hopkins155 motion segmentation data set.

4.7.2.2 Methods

We run the ADMM version of the NoisyLRSSC (C.22) using the same parameter

scheme (but with different values) proposed in [57] for running Hopkins155. Specifi-

cally, we rescaled the original problem into:

min
C1,C2,J

α

2
‖X −XJ‖2F + αβ1‖C1‖∗ + αβ2‖C2‖1

s.t. J = C2 − diag(C2), J = C1,

and set

α =
αz
µz
, β1 =

1

1 + λ
, β2 =

λ

1 + λ
.

with αz = 150001, and

µz = min
i

max
i 6=j
〈xi, xj〉.

Numerical parameters in the Lagrangian are set to µ2 = µ3 = 0.1α. Note that we have

a simple adaptive parameter that remains constant for each data sequence.

Also note that we do not intend to tune the parameters to its optimal and outperform

the state-of-the-art. This is just a minimal set of experiments on the real data to justify

how the combinations of the two objectives may be useful when all other factors are

equal.

1In [57], they use αz = 800, but we find it doesn’t work out in our case. We will describe the
difference to their experiments on Hopkins155 separately later.
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Figure 4.12: Average misclassification rates vs. λ.

4.7.2.3 Results

Figure 4.12 plots how average misclassification rate changes with λ. While it is not clear

on the two-motion sequences, the advantage of LRSSC is drastic on three motions.

To see it more clearly, we plot the RelViolation, Gini index and misclassification of

all sequence for all λ in Figure 4.14, Figure 4.15 and Figure 4.13 respectively. From

Figure 4.14 and 4.15, we can tell that the shape is well predicted by our theorem and

simulation. Since a correct clustering depends on both inter-class separation and intra-

class connections, it is understandable that we observe the phenomena in Figure 4.13

that some sequences attain zero misclassification on the LRR side, some on the SSC

side, and to our delight, some reaches the minimum misclassification rate somewhere

in between.

4.7.2.4 Comparison to SSC results in [57]

After carefully studying the released SSC code that generates Table 5 in [57], we re-

alized that they use two post processing steps on the representation matrix C before

constructing affinity matrix |C| + |CT | for spectral clustering. First, they use a thresh-

olding step to keep only the largest non-zero entries that sum to 70% of the `1 norm

of each column. Secondly, there is a normalization step that scales the largest entry in
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Figure 4.13: Misclassification rate of the 155 data sequence against λ. Black regions refer
to perfect clustering, and white regions stand for errors.

Figure 4.14: RelViolation of representation matrix C in the 155 data sequence against λ.
Black regions refer to zero RelViolation (namely, SEP), and white regions stand for large
violation of SEP.

Figure 4.15: GiniIndex of representation matrix C in the 155 data sequence against λ.
Darker regions represents denser intra-class connections, lighter region means that the con-
nections are sparser.
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each column to one (and the rest accordingly). The results with 4.4% and 1.95% mis-

classification rates for respectively 3-motion and 2-motion sequences essentially refer

to the results with postprocessing.

Without postprocessing, the results we get are 5.67% for 3-motions and 1.91% for

2-motions. Due to the different implementation of the numerical algorithms (in stop-

ping conditions and etc), we are unable to reproduce the same results on the SSC end

(when λ is large) with the same set of weighting factor, but we managed to make the

results comparable (slightly better) with a different set of weighting even without any

post-processing steps. Moreover, when we choose λ such that we have a meaningful

combination of `1 norm and nuclear norm regularization, the 3-motion misclassification

rate goes down to 3%.

Since the Hopkins155 dataset is approaching saturation, it is not our point to con-

clude that a few percentage of improvement is statistically meaningful, since one single

failure case that has 40% of misclassification will already raise the overall misclassifi-

cation rate by 1.5%. Nevertheless, we are delighted to see LRSSC in its generic form

performs in a comparable level as other state-of-the-art algorithms.

4.8 Chapter Summary

In this chapter, we proposed LRSSC for the subspace clustering problem and provided

theoretical analysis of the method. We demonstrated that LRSSC is able to achieve per-

fect SEP for a wider range of problems than previously known for SSC and meanwhile

maintains denser intra-class connections than SSC (hence less likely to encounter the

“graph connectivity” issue). Furthermore, the results offer new understandings to SSC

and LRR themselves as well as problems such as skewed data distribution and model se-

lection. An important future research question is to mathematically define the concept

of the graph connectivity, and establish conditions that perfect SEP and connectivity

indeed occur together for some non-empty range of λ for LRSSC.
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Chapter 5

PARSuMi: Practical Matrix

Completion and Corruption

Recovery with Explicit Modeling

Low-rank matrix completion is a problem of immense practical importance. Recent

works on the subject often use nuclear norm as a convex surrogate of the rank func-

tion. Despite its solid theoretical foundation, the convex version of the problem often

fails to work satisfactorily in real-life applications. Real data often suffer from very

few observations, with support not meeting the random requirements, ubiquitous pres-

ence of noise and potentially gross corruptions, sometimes with these simultaneously

occurring. This chapter proposes a Proximal Alternating Robust Subspace Minimiza-

tion (PARSuMi) method to tackle the three problems. The proximal alternating scheme

explicitly exploits the rank constraint on the completed matrix and uses the `0 pseudo-

norm directly in the corruption recovery step. We show that the proposed method for

the non-convex and non-smooth model converges to a stationary point. Although it is

not guaranteed to find the global optimal solution, in practice we find that our algorithm

can typically arrive at a good local minimizer when it is supplied with a reasonably good

starting point based on convex optimization. Extensive experiments with challenging
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synthetic and real data demonstrate that our algorithm succeeds in a much larger range

of practical problems where convex optimization fails, and it also outperforms vari-

ous state-of-the-art algorithms. Part of the materials in this chapter is included in our

manuscript [144] that is currently under review.

5.1 Introduction

Completing a low-rank matrix from partially observed entries, also known as matrix

completion, is a central task in many real-life applications. The same abstraction of

this problem has appeared in diverse fields such as signal processing, communications,

information retrieval, machine learning and computer vision. For instance, the miss-

ing data to be filled in may correspond to plausible movie recommendations [61, 87],

occluded feature trajectories for rigid or non-rigid structure from motion, namely SfM

[19, 68] and NRSfM [111], relative distances of wireless sensors [107], pieces of un-

collected measurements in DNA micro-array [60], just to name a few.

Figure 5.1: Sampling pattern of the Dinosaur sequence: 316 features are tracked over 36
frames. Dark area represents locations where no data is available; sparse highlights are
injected gross corruptions. Middle stripe in grey are noisy observed data, occupying 23%
of the full matrix. The task of this chapter is to fill in the missing data and recover the
corruptions.

The common difficulty of these applications lies in the scarcity of the observed data,

uneven distribution of the support, noise, and more often than not, the presence of gross
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corruptions in some observed entries. For instance, in the movie rating database Netflix

[14], only less than 1% of the entries are observed and 90% of the observed entries

correspond to 10% of the most popular movies. In photometric stereo, the missing data

and corruptions (arising from shadow and specular highlight as modeled in Wu et al.

[149]) form contiguous blocks in images and are by no means random. In structure

from motion, the observations fall into a diagonal band shape, and feature coordinates

are often contaminated by tracking errors (see the illustration in Figure 5.1). Therefore,

in order for any matrix completion algorithm to work in practice, these aforementioned

difficulties need to be tackled altogether. We refer to this problem as practical matrix

completion. Mathematically, the problem to be solved is the following:

Given Ω, Ŵij for all (i, j) ∈ Ω,

find W, Ω̃,

s.t. rank(W ) is small; card(Ω̃) is small;

|Wij − Ŵij | is small ∀(i, j) ∈ Ω|Ω̃.

where Ω is the index set of observed entries whose locations are not necessarily se-

lected at random, Ω̃ ∈ Ω represents the index set of corrupted data, Ŵ ∈ Rm×n is

the measurement matrix with only Ŵij∈Ω known, i.e., its support is contained in Ω.

Furthermore, we define the projection PΩ : Rm×n 7→ R|Ω| so that PΩ(Ŵ ) denotes the

vector of observed data. The adjoint of PΩ is denoted by P∗Ω.

Extensive theories and algorithms have been developed to tackle some aspect of

the challenges listed in the preceding paragraph, but those tackling the full set of chal-

lenges are far and few between, thus resulting in a dearth of practical algorithms. Two

dominant classes of approaches are nuclear norm minimization, e.g. Candes and Plan

[21], Candes and Recht [24], Candès et al. [27], Chen et al. [39], and matrix factor-

ization, e.g., Buchanan and Fitzgibbon [19], Chen [36], Eriksson and Van Den Hengel

[58], Koren et al. [87], Okatani and Deguchi [108]. Nuclear norm minimization meth-

ods minimize the convex relaxation of rank instead of the rank itself, and are supported
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by rigorous theoretical analysis and efficient numerical computation. However, the con-

ditions under which they succeed are often too restrictive for it to work well in real-life

applications (as reported in Shi and Yu [119] and Jain et al. [76]). In contrast, matrix

factorization is widely used in practice and are considered very effective for problems

such as movie recommendation [87] and structure from motion [111, 135] despite its

lack of rigorous theoretical foundation. Indeed, as one factorizes matrix W into UV T ,

the formulation becomes bilinear and thus optimal solution is hard to obtain except

in very specific cases (e.g., in Jain et al. [76]). A more comprehensive survey of the

algorithms and review of the strengths and weaknesses will be given in the next section.

In this chapter, we attempt to solve the practical matrix completion problem un-

der the prevalent case where the rank of the matrix W and the cardinality of Ω̃ are

upper bounded by some known parameters r and N0 via the following non-convex,

non-smooth optimization model:

min
W,E

1
2‖PΩ(W − Ŵ + E)‖2 + λ

2‖PΩ(W )‖2

s.t. rank(W ) ≤ r, W ∈ Rm×n

‖E‖0 ≤ N0, ‖E‖ ≤ KE , E ∈ Rm×nΩ

(5.1)

where Rm×nΩ denotes the set ofm×nmatrices whose supports are subsets of Ω and ‖·‖

is the Frobenius norm; KE is a finite constant introduced to facilitate the convergence

proof. Note that the restriction of E to Rm×nΩ is natural since the role of E is to capture

the gross corruptions in the observed data Ŵij∈Ω. The bound constraint on E is natural

in some problems when the true matrix W is bounded (e.g., Given the typical movie

ratings of 0-10, the gross outliers can only lie in [-10, 10]). In other problems, we

simply choose KE to be some large multiple (say 20) of
√
N0 ×median(PΩ(Ŵ )), so

that the constraint is essentially inactive and has no impact on the optimization. Note

that without making any randomness assumption on the index set Ω or assuming that

the problem has a unique solution (W ∗, E∗) such that the singular vector matrices of

W ∗ satisfy some inherent conditions like those in Candès et al. [27], the problem of
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practical matrix completion is generally ill-posed. This motivated us to include the

Tikhonov regularization term λ
2‖PΩ(W )‖2 in (5.1), where Ω denotes the complement

of Ω, and 0 < λ < 1 is a small constant. Roughly speaking, what the regularization

term does is to pick the solution W which has the smallest ‖PΩ(W )‖ among all the

candidates in the optimal solution set of the non-regularized problem. Notice that we

only put a regularization on those elements of W in Ω as we do not wish to perturb

those elements of W in the fitting term. Finally, with the Tikhonov regularization and

the bound constraint on ‖E‖, we can show that problem (5.1) has a global minimizer.

By defining H ∈ Rm×n to be the matrix such that

Hij =


1 if (i, j) ∈ Ω

√
λ if (i, j) 6∈ Ω,

(5.2)

we can rewrite the objective function in (5.1) in a compact form, and the problem be-

comes:

min
W,E

1
2‖H ◦ (W + E − Ŵ )‖2

s.t. rank(W ) ≤ r, W ∈ Rm×n

‖E‖0 ≤ N0, ‖E‖ ≤ KE , E ∈ Rm×nΩ .

(5.3)

In the above, the notation “◦” denotes the element-wise product between two matrices.

We propose PARSuMi, a proximal alternating minimization algorithm motivated by

the algorithm in Attouch et al. [3] to solve (5.3). This involves solving two subprob-

lems each with an auxiliary proximal regularization term. It is important to emphasize

that the subproblems in our case are non-convex and hence it is essential to design ap-

propriate algorithms to solve the subproblems to global optimality, at least empirically.

We develop essential reformulations of the subproblems and design novel techniques

to efficiently solve each subproblem, provably achieving the global optimum for one,

and empirically so for the other. We also prove that our algorithm is guaranteed to con-

verge to a limit point, which is necessarily a stationary point of (5.3). Together with
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the initialization schemes we have designed based on the convex relaxation of (5.3), our

method is able to solve challenging real matrix completion problems with corruptions

robustly and accurately. As we demonstrate in the experiments, PARSuMi is able to

provide excellent reconstruction of unobserved feature trajectories in the classic Ox-

ford Dinosaur sequence for SfM, despite structured (as opposed to random) observation

pattern and data corruptions. It is also able to solve photometric stereo to high pre-

cision despite severe violations of the Lambertian model (which underlies the rank-3

factorization) due to shadow, highlight and facial expression difference. Compared to

state-of-the-art methods such as GRASTA [71], Wiberg `1 [58] and BALM [46], our

results are substantially better both qualitatively and quantitatively.

Note that in (5.3) we do not seek convex relaxation of any form, but rather constrain

the rank and the corrupted entries’ cardinality directly in their original forms. While it

is generally not possible to have an algorithm guaranteed to compute the global optimal

solution, we demonstrate that with appropriate initializations, the faithful representation

of the original problem often offers significant advantage over the convex relaxation

approach in denoising and corruption recovery, and is thus more successful in solving

real problems.

The rest of the chapter is organized as follows. In Section 5.2, we provide a compre-

hensive review of the existing theories and algorithms for practical matrix completion,

summarizing the strengths and weaknesses of nuclear norm minimization and matrix

factorization. In Section 5.3, we conduct numerical evaluations of predominant ma-

trix factorization methods, revealing those algorithms that are less-likely to be trapped

at local minima. Specifically, these features include parameterization on a subspace

and second-order Newton-like iterations. Building upon these findings, we develop the

PARSuMi scheme in Section 5.4 to simultaneously handle sparse corruptions, dense

noise and missing data. The proof of convergence and a convex initialization scheme

are also provided in this section. In Section 5.5, the proposed method is evaluated on

both synthetic and real data and is shown to outperform the current state-of-the-art al-

gorithms for robust matrix completion.
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5.2 A survey of results

5.2.1 Matrix completion and corruption recovery via nuclear norm mini-

mization

MC[32] RPCA [27] NoisyMC [22]
StableRPCA
[155]

RMC[93] RMC[39]

Missing data Yes No Yes No Yes Yes
Corruptions No Yes No Yes Yes Yes

Noise No No Yes Yes No No
Deterministic Ω No No No No No Yes
Deterministic Ω̃ No No No No No Yes

Table 5.1: Summary of the theoretical development for matrix completion and corruption
recovery.

Recently, the most prominent approach for solving a matrix completion problem is

via the following nuclear norm minimization:

min
W

{
‖W‖∗

∣∣∣PΩ(W − Ŵ ) = 0
}
, (5.4)

in which rank(X) is replaced by the nuclear norm ‖X‖∗ =
∑

i σi(X), where the latter

is the tightest convex relaxation of rank over the unit (spectral norm) ball. Candes and

Recht [24] showed that when sampling is uniformly random and sufficiently dense, and

the underlying low-rank subspace is incoherent with respect to the standard bases, then

the remaining entries of the matrix can be exactly recovered. The guarantee was later

improved in Candès and Tao [29], Recht [114] and extended for noisy data in Candes

and Plan [21], Negahban and Wainwright [105] relaxed the equality constraint to

‖PΩ(W − Ŵ )‖ ≤ δ.

Using similar assumptions and arguments, Candès et al. [27] proposed solution to the

related problem of robust principal component analysis (RPCA) where the low-rank

matrix can be recovered from sparse corruptions (with no missing data). This is formu-
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lated as

min
W,E

{
‖W‖∗ + λ‖E‖1

∣∣∣W + E = Ŵ
}
. (5.5)

Using deterministic geometric conditions concerning the tangent spaces of the ground

truth (W̄ , Ē), Chandrasekaran et al. [34] also established strong recovery result via the

convex optimization problem (5.5). Noisy extension and improvement of the guarantee

for RPCA were provided by Zhou et al. [155] and Ganesh et al. [63] respectively. Chen

et al. [39] and Li [93] combined (5.4) and (5.5) and provided guarantee for the following

min
W,E

{
‖W‖∗ + λ‖E‖1

∣∣∣PΩ(W + E − Ŵ ) = 0
}
. (5.6)

In particular, the results in Chen et al. [39] lifted the uniform random support assump-

tions in previous works by laying out the exact recovery condition for a class of deter-

ministic sampling (Ω) and corruptions (Ω̃) patterns.

We summarize the theoretical and algorithmic progress in practical matrix com-

pletion achieved by each method in Table 5.1. It appears that researchers are moving

towards analyzing all possible combinations of the problems; from past indication, it

seems entirely plausible albeit tedious to show the noisy extension

min
W,E

{
‖W‖∗ + λ‖E‖1

∣∣∣ ‖PΩ(W + E − Ŵ )‖ ≤ δ
}

(5.7)

will return a solution stable around the desiredW andE under appropriate assumptions.

Wouldn’t that solve the practical matrix completion problem altogether?

The answer is unfortunately no. While this line of research have provided profound

understanding of practical matrix completion itself, the actual performance of the con-

vex surrogate on real problems (e.g., movie recommendation) is usually not competitive

against nonconvex approaches such as matrix factorization. Although convex relax-

ation is amazingly equivalent to the original problem under certain conditions, those

well versed in practical problems will know that those theoretical conditions are usually

not satisfied by real data. Due to noise and model errors, real data are seldom truly
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low-rank (see the comments on Jester joke dataset in Keshavan et al. [81]), nor are they

as incoherent as randomly generated data. More importantly, observations are often

structured (e.g., diagonal band shape in SfM) and hence do not satisfy the random sam-

pling assumption needed for the tight convex relaxation approach. As a consequence

of all these factors, the recovered W and E by convex optimization are often neither

low-rank nor sparse in practical matrix completion. This can be further explained by

the so-called “Robin Hood” attribute of `1 norm (analogously, nuclear norm is the `1

norm in the spectral domain), that is, it tends to steal from the rich and give it to the

poor, decreasing the inequity of “wealth” distribution. Illustrations of the attribute will

be given in Section 5.5.

Nevertheless, the convex relaxation approach has the advantage that one can design

efficient algorithms to find or approximately reach the global optimal solution of the

given convex formulation. In this chapter, we take advantage of the convex relaxation

approach and use it to provide a powerful initialization for our algorithm to converge to

the correct solution.

5.2.2 Matrix factorization and applications

Another widely-used method to estimate missing data in a low-rank matrix is matrix

factorization (MF). It is at first considered as a special case of the weighted low-rank

approximation problem with {0, 1} weight by Gabriel and Zamir in 1979 and much

later by Srebro and Jaakkola [127]. The buzz of Netflix Prize further popularizes the

missing data problem as a standalone topic of research. Matrix factorization turns out to

be a robust and efficient realization of the idea that people’s preferences of movies are

influenced by a small number of latent factors and has been used as a key component in

almost all top-performing recommendation systems [87] including BellKor’s Pragmatic

Chaos, the winner of the Netflix Prize [86].

In computer vision, matrix factorization with missing data is recognized as an im-

portant problem too. Tomasi-Kanade affine factorization [135], Sturm-Triggs projective

factorization [131], and many techniques in Non-Rigid SfM and motion tracking [111]
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can all be formulated as a matrix factorization problem. Missing data and corruptions

emerge naturally due to occlusions and tracking errors. For a more exhaustive survey of

computer vision problems that can be modelled by matrix factorization, we refer readers

to Del Bue et al. [46].

Regardless of its applications, the key idea is that when W = UV T , one ensures

that the required rank constraint is satisfied by restricting the factors U and V to be in

Rm×r and Rn×r respectively. Since the (U, V ) parameterization has a much smaller

degree of freedom than the dimension of W , completing the missing data becomes a

better posed problem. This gives rise to the following optimization problem:

min
U,V

1

2

∥∥∥PΩ(UV T − Ŵ )
∥∥∥2

(5.8)

or its equivalence reformulation

min
U

{
1

2

∥∥∥PΩ(UV (U)T − Ŵ )
∥∥∥2
∣∣∣∣UTU = Ir

}
(5.9)

where the factor V is now a function of U .

Unfortunately, (5.8) is not a convex optimization problem. The quality of the solu-

tions one may get by minimizing this objective function depends on specific algorithms

and their initializations. Roughly speaking, the various algorithms for (5.8) may be

grouped into three categories: alternating minimization, first order gradient methods

and second order Newton-like methods.

Simple approaches like alternating least squares (ALS) or equivalently PowerFac-

torization [68] fall into the first category. They alternatingly fix one factor and minimize

the objective over the other using least squares method. A more sophisticated algorithm

is BALM [46], which uses the Augmented Lagrange Multiplier method to gradually im-

pose additional problem-specific manifold constraints. The inner loop however is still

alternating minimization. This category of methods has the reputation of reducing the

objective value quickly in the first few iterations, but they usually take a large number

of iterations to converge to a high quality solution [19].
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First order gradient methods are efficient, easy to implement and they are able to

scale up to million-by-million matrices if stochastic gradient descent is adopted. There-

fore it is very popular for large-scale recommendation systems. Typical approaches

include Simon Funk’s incremental SVD [61], nonlinear conjugate gradient [127] and

more sophisticatedly, gradient descent on the Grassmannian/Stiefel manifold, such as

GROUSE [7] and OptManifold [147]. These methods, however, as we will demonstrate

later, easily get stuck in local minima1.

The best performing class of methods are the second order Newton-like algorithms,

in that they demonstrate superior performance in both accuracy and the speed of con-

vergence (though each iteration requires more computation); hence they are suitable

for small to medium scale problems requiring high accuracy solutions (e.g., SfM and

photometric stereo in computer vision). Representatives of these algorithms include the

damped Newton method [19], Wiberg(`2) [108], LM S and LM M of Chen [36] and

LM GN, which is a variant of LM M using Gauss-Newton (GN) to approximate the

Hessian function.

As these methods are of special importance in developing our PARSuMi algorithm,

we conduct extensive numerical evaluations of these algorithms in Section 5.3 to un-

derstand their pros and cons as well as the key factors that lead to some of them finding

global optimal solutions more often than others.

In addition, there are a few other works in each category that take into account the

corruption problem by changing the quadratic penalty term of (5.8) into `1-norm or

Huber function

min
U,V

∥∥∥PΩ(UV T − Ŵ )
∥∥∥

1
, (5.10)

min
U,V

∑
(ij)∈Ω

Huber
(
(UV T − Ŵ )ij

)
. (5.11)

Notable algorithms to solve these formulations include alternating linear programming

(ALP) and alternating quadratic programming (AQP) in Ke and Kanade [80], GRASTA

1Our experiment on synthetic data shows that the strong Wolfe line search adopted by Srebro and
Jaakkola [127] and Wen and Yin [147] somewhat ameliorates the issue, though it does not seem to help
much on real data.
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[71] that extends GROUSE, as well as Wiberg `1 [58] that uses a second order Wiberg-

like iteration. While it is well known that the `1-norm or Huber penalty term can bet-

ter handle outliers, and the models (5.10) and (5.11) are seen to be effective in some

problems, there is not much reason for a “convex” relaxation of the `0 pseudo-norm1,

since the rank constraint is already highly non-convex. Empirically, we find that `1-

norm penalty offers poor denoising ability to dense noise and also suffers from “Robin

Hood” attribute. Comparison with this class of methods will be given later in Sec-

tion 5.5, which shows that our method can better handle noise and corruptions.

The practical advantage of `0 over `1 penalty is well illustrated in Xiong et al. [151],

where Xiong et al. proposed an `0-based robust matrix factorization method which deals

with corruptions and a given rank constraint. Our work is similar to Xiong et al. [151] in

that we both eschew the convex surrogate `1-norm in favor of using the `0-norm directly.

However, our approach treats both corruptions and missing data. More importantly, our

treatment of the problem is different and it results in a convergence guarantee that covers

the algorithm of Xiong et al. [151] as a special case; this will be further explained in

Section 5.4.

5.2.3 Emerging theory for matrix factorization

As we mentioned earlier, a fundamental drawback of matrix factorization methods for

low rank matrix completion is the lack of proper theoretical foundation. However,

thanks to the better understanding of low-rank structures nowadays, some theoretical

analysis of this problem slowly emerges. This class of methods are essentially designed

for solving noisy matrix completion problem with an explicit rank constraint, i.e.,

min
W

{
1

2

∥∥∥PΩ(W − Ŵ )
∥∥∥2
∣∣∣∣ rank(W ) ≤ r

}
. (5.12)

From a combinatorial-algebraic perspective, Kiraly and Tomioka [84] provided a suf-

ficient and necessary condition on the existence of an unique rank-r solution to (5.12).

1The cardinality of non-zero entries, which strictly speaking is not a norm.
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Figure 5.2: Exact recovery with increasing number of random observations. Algo-
rithms (random initialization) are evaluated on 100 randomly generated rank-4 matrices of
dimension 100×100. The number of observed entries increases from 0 to 50n. To account
for small numerical error, the result is considered “exact recovery” if the RMSE of the re-
covered entries is smaller than 10−3. On the left, CVX [66], TFOCS [11] and APG [134]
(in cyan) solves the nuclear norm based matrix completion (5.4), everything else aims to
solve matrix factorization (5.8). On the right, the best solution of MF across all algorithms
is compared to the CVX solver for nuclear norm minimization (solved with the highest nu-
merical accuracy) and a lower bound (below the bound, the number of samples is smaller
than r for at least a row or a column).

It turns out that if the low-rank matrix is generic, then the unique completability de-

pends only on the support of the observations Ω. This suggests that the incoherence and

random sampling assumptions typically required by various nuclear norm minimization

methods may limit the portion of problems solvable by the latter to only a small subset

of those solvable by matrix factorization methods.

Around the same time, Wang and Xu [142] studied the stability of matrix factor-

ization under arbitrary noise. They obtained a stability bound for the optimal solu-

tion of (5.12) around the ground truth, which turns out to be better than the corre-

sponding bound for nuclear norm minimization in Candes and Plan [21] by a scale of√
min (m,n) (in Big-O sense). The study however bypassed the practical problem of

how to obtain the global optimal solution for this non-convex problem.

This gap is partially closed by the recent work of Jain et al. [76], in which the

global minimum of (5.12) can be obtained up to an accuracy εwithO(log 1/ε) iterations

using a slight variation of the ALS scheme. The guarantee requires the observation to

be noiseless, sampled uniformly at random and the underlying subspace of W needs
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to be incoherent—basically all assumptions in the convex approach—yet still requires

slightly more observations than that for nuclear norm minimization. It does not however

touch on when the algorithm is able to find the global optimal solution when the data is

noisy. Despite not achieving stronger theoretical results nor under weaker assumptions

than the convex relaxation approach, this is the first guarantee of its kind for matrix

factorization. Given its more effective empirical performance, we believe that there is

great room for improvement on the theoretical front. A secondary contribution of the

results in this chapter is to find the potentially “right” algorithm or rather constituent

elements of algorithm for theoreticians to look deeper into.

5.3 Numerical evaluation of matrix factorization methods

To better understand the performance of different methods, we compare the following

attributes quantitatively for all three categories of approaches that solve (5.8) or (5.9)1:

Sample complexity Number of samples required for exact recovery of random uni-

formly sampled observations in random low-rank matrices, an index typically

used to quantify the performance of nuclear norm based matrix completion.

Hits on global optimal[synthetic] The proportion of random initializations that lead

to the global optimal solution on random low rank matrices with (a) increasing

Gaussian noise, (b) exponentially decaying singular values.

Hits on global optimal[SfM] The proportion of random initializations that lead to the

global optimal solution on the Oxford Dinosaur sequence [19] used in the SfM

community.

The sample complexity experiment in Figure 5.2 shows that the best performing

matrix factorization algorithm attains exact recovery with the number of observed en-

tries at roughly 18%, while CVX for nuclear norm minimization needs roughly 36%

(even worse for numerical solvers such as TFOCS and APG). This seems to imply that

1As a reference, we also included nuclear norm minimization that solve (5.4) where applicable.
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Figure 5.3: Percentage of hits on global optimal with increasing level of noise. 5 rank-4
matrices are generated by multiplying two standard Gaussian matrices of dimension 40×4
and 4 × 60. 30% of entries are uniformly picked as observations with additive Gaussian
noise N(0, σ). 24 different random initialization are tested for each matrix. The “global
optimal” is assumed to be the solution with lowest objective value across all testing algo-
rithm and all initializations.

the sample requirement for MF is fundamentally smaller than that of nuclear norm min-

imization. As MF assumes known rank of the underlying matrix while nuclear norm

methods do not, the results we observe are quite reasonable. In addition, among dif-

ferent MF algorithms, some perform much better than others. The best few of them

achieve something close to the lower bound1. This corroborates our intuition that MF

is probably a better choice for problems with known rank.

From Figure 5.3 and 5.4, we observe that the following classes of algorithms,

including LM X series [36], Wiberg [108], Non-linear Conjugate Gradient method

(NLCG) [127] and the curvilinear search on Stiefel manifold

(OptManifold [147]) perform significantly better than others in reaching the global op-

timal solution despite their non-convexity. The percentage of global optimal hits from

random initialization is promising even when the observations are highly noisy or when

the condition number of the underlying matrix is very large2.

1The lower bound is given by the percentage of randomly generated data that have at least one column
or row having less than r samples. Clearly, having at least r samples for every column and row is a
necessary condition for exact recovery.

2When α = 3.5 in Figure 5.4, rth singular value is almost as small as the spectral norm of the input
noise.
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Figure 5.4: Percentage of hits on global optimal for ill-conditioned low-rank matrices.
Data are generated in the same way as in Fig. 5.3 with σ = 0.05, except that we further
take SVD and rescale the ith singular value according to 1/αi. The Frobenious norm is
normalized to be the same as the original low-rank matrix. The exponent α is given on the
horizontal axis.

The common attribute of the four algorithms is that they are all applied to the model

(5.9) which parameterize the factor V as a function of U and then optimize over U

alone. This parameterization essentially reduces the problem to finding the best sub-

space that fits the data. What is slightly different between them is the way they avoid

local minima. OptManifold and NLCG adopt a Strong Wolfe line search that allows the

algorithm to jump from one valley to another with long step sizes. The second order

methods approximate each local neighborhood with a convex quadratic function and

jump directly to the minimum of the approximation, thus rendering them liable to jump

in an unpredictable fashion1 until they reach a point in the basin of convergence where

the quadratic approximation makes sense.

The difference in how the local minima are avoided appears to matter tremendously

on the SfM experiment (see Figure 5.5). We observe that only the second order meth-

ods achieve global optimal solution frequently, whereas the Strong Wolfe line search

adopted by both OptManifold and NLCG does not seem to help much on the real data

experiment like it did in simulation with randomly generated data. Indeed, neither ap-

proach reaches the global optimal solution even once in the hundred runs, though they

1 albeit always reducing the objective value due to the search on the Levenberg-Marquadt damping
factor
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Figure 5.5: Accumulation histogram on the pixel RMSE for 100 randomly initialized
runs are conducted for each algorithm on Dinosaur sequence. The curve summarizes how
many runs of each algorithm corresponds to the global optimal solution (with pixel RMSE
1.0847) on the horizontal axis. Note that the input pixel coordinates are normalized to
between [0, 1] for experiments, but to be comparable with [19], the objective value is scaled
back to the original size.

are rather close in quite a few runs. Despite these close runs, we remark that in applica-

tions like SfM, it is important to actually reach the global optimal solution. Due to the

large amount of missing data in the matrix, even slight errors in the sampled entries can

cause the recovered missing entries to go totally haywire with a seemingly good local

minimum (see Figure 5.6). We thus refrain from giving any credit to local minima even

if the RMSEvisible error (defined in (5.13)) is very close to that of the global minimum.

RMSEvisible :=
‖PΩ(Wrecovered − Ŵ )‖√

|Ω|
. (5.13)

Another observation is that LM GN seems to work substantially better than other

second-order methods with subspace or manifold parameterization, reaching global

minimum 93 times out of the 100 runs. Compared to LM S and LM M, the only differ-

ence is the use of Gauss-Newton approximation of the Hessian. According to the anal-

ysis in Chen [38], the Gauss-Newton Hessian provides the only non-negative convex

quadratic approximation that preserves the so-called “zero-on-(n−1)-D” structure of a

class of nonlinear least squares problems, for which (5.8) can be formulated. Compared

to the Wiberg algorithm that also uses Gauss-Newton approximation, the advantage of
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(a) Local minimum (b) Global minimum

Figure 5.6: Comparison of the feature trajectories corresponding to a local minimum and
global minimum of (5.8), given partial uncorrupted observations. Note that RMSEvisible =
1.1221pixels in (a) and RMSEvisible = 1.0847pixels in (b). The latter is precisely the
reported global minimum in Buchanan and Fitzgibbon [19], Okatani and Deguchi [108]
and Chen [36]. Despite the tiny difference in RMSEvisible, the filled-in values for missing
data in (a) are far off.

LM GN is arguably the better global convergence due to the augmentation of the LM

damping factor. Indeed, as we verify in the experiment, Wiberg algorithm fails to con-

verge at all in most of its failure cases. The detailed comparisons of the second order

methods and their running time on the Dinosaur sequence are summarized in Table 5.2.

Part of the results replicate that in Chen [36]; however, Wiberg algorithm and LM GN

have not been explicitly compared previously. It is clear from the Table that LM GN is

not only better at reaching the optimal solution, but also computationally cheaper than

other methods which require explicit computation of the Hessian1.

To summarize the key findings of our experimental evaluation, we observe that: (a)

the fixed-rank MF formulation requires less samples than nuclear norm minimization

to achieve exact recovery; (b) the compact parameterization on the subspace, strong

line search or second order update help MF algorithms in avoiding local minima in high

noise, poorly conditioned matrix setting; (c) LM GN with Gauss-Newton update is able

to reach the global minimum with a very high success rate on a challenging real SfM

data sequence.

1Wiberg takes longer time mainly because it sometimes does not converge and exhaust the maximum
number of iterations.
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DN Wiberg LM S LM M LM GN
No. of hits at global
min.

2 46 42 32 93

No. of hits on stop-
ping condition

75 47 99 93 98

Average run
time(sec)

324 837 147 126 40

No. of variables (m+n)r (m-r)r mr (m-r)r (m-r)r
Hessian Yes Gauss-Newton Yes Yes Gauss-Newton
LM/Trust Region Yes No Yes Yes Yes
Largest Linear sys-
tem to solve

[(m+ n)r]2 |Ω| ×mr mr ×mr [(m− r)r]2 [(m− r)r]2

Table 5.2: Comparison of various second order matrix factorization algorithms

We remark that while getting global optimal solution is important in applications

like SfM, it is much less important in other applications such as collaborative filtering

and feature learning etc. In those applications, the data set is bigger, but sparser and

noisier and the low-rank model itself may be inaccurate in the first place. Getting a

globally optimal solution may not correspond to a better estimate of unobserved data

(aka smaller generalization error). Therefore, getting a somewhat reasonable solution

really fast and making it online updatable are probably more important priorities. In

this light, incremental algorithms like SimonFunk and GROUSE would be more appro-

priate, despite their inability to attain globally (perhaps even locally) optimal solution.

5.4 Proximal Alternating Robust Subspace Minimization for

(5.3)

Our proposed PARSuMi method for problem (5.3) works in two stages. It first obtains a

good initialization from an efficient convex relaxation of (5.3), which will be described

in Section 5.4.5. This is followed by the minimization of the low rank matrix W and

the sparse matrix E alternatingly until convergence. The efficiency of our PARSuMi

method depends on the fact that the two inner minimizations ofW andE admit efficient

solutions, which will be derived in Sections 5.4.1 and 5.4.2 respectively. Specifically,
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in step k, we compute W k+1 from

min
W

1

2
‖H ◦ (W − Ŵ + Ek)‖2 +

β1

2
‖H ◦ (W −W k)‖2

subject to rank(W ) ≤ r,
(5.14)

and Ek+1 from

min
E

1

2
‖H ◦ (W k+1 − Ŵ + E)‖2 +

β2

2
‖E − Ek‖2

subject to ‖E‖0 ≤ N0, ‖E‖ ≤ KE , E ∈ Rm×nΩ ,

(5.15)

where H is defined as in (5.2). Note that the above iteration is different from applying

a direct alternating minimization of (5.3). We have added the proximal regularization

terms ‖H ◦ (W −W k)‖2 and ‖E − Ek‖2 to make the objective functions in the sub-

problems coercive and hence ensuring that W k+1 and Ek+1 are well defined. As is

shown in Attouch et al. [3], the proximal terms are critical to ensure the critical point

convergence of the sequence. We provide the formal critical point convergence proof of

our algorithm in Section 5.4.4.

5.4.1 Computation of W k+1 in (5.14)

Our solution for (5.14) consists of two steps. We first transform the rank-constrained

minimization (5.14) into an equivalent (which we will show later) subspace fitting prob-

lem, then solve the new formulation using LM GN.

Motivated by the findings in Section 5.3 where the most successful algorithms

for solving (5.12) are based on the formulation (5.9), we will now derive a similar

equivalent reformulation of (5.14). Our reformulation of (5.14) is motivated by the

N -parametrization of (5.12) due to Chen [36], who considered the task of matrix com-

pletion as finding the best subspace to fit the partially observed data. In particular, Chen
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proposes to solve (5.12) using

min
N

{
1

2

∑
i

ŵTi (I − Pi)ŵi

∣∣∣∣∣NTN = I

}
(5.16)

where N is a m × r matrix whose column space is the underlying subspace to be

reconstructed, Ni is N but with those rows corresponding to the missing entries in

column i removed. Pi = NiN
+
i is the projection onto span(Ni) with N+

i being the

Moore-Penrose pseudo inverse of Ni, and the objective function minimizes the sum of

squares distance between ŵi to span(Ni), where ŵi is the vector of observed entries in

the ith column of Ŵ .

5.4.1.1 N-parameterization of the subproblem (5.14)

First define the matrix H ∈ Rm×n as follows:

H ij =


√

1 + β1 if (i, j) ∈ Ω

√
λ+ λβ1 if (i, j) 6∈ Ω.

(5.17)

Let Bk ∈ Rm×n be the matrix defined by

Bij =


1√

1+β1
(Ŵij − Ekij + β1W

k
ij) if (i, j) ∈ Ω

λβ1√
λ+λβ1

W k
ij if (i, j) 6∈ Ω.

(5.18)

Define the diagonal matrices Di ∈ Rm×m to be

Di = diag(H i), i = 1, . . . , n (5.19)

where H i is the ith column of H . It turns out that the N -parameterization for the

regularized problem (5.14) has a similar form as (5.16), as shown below.

Proposition 5.1 (Equivalence of subspace parameterization). Let Qi(N) = DiN(NTD2
iN)−1NTDi,

which is them×m projection matrix onto the column space of DiN . The problem (5.14)
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is equivalent to the following problem:

min
N

f(N) :=
1

2

n∑
i=1

‖Bk
i −Qi(N)Bk

i ‖2

subject to NTN = I, N ∈ Rm×r
(5.20)

where Bk
i is the ith columns of Bk. If N∗ is an optimal solution of (5.20), then W k+1,

whose columns are defined by

W k+1
i = D−1

i Qi(N∗)B
k
i , (5.21)

is an optimal solution of (5.14).

Proof. We can show by some algebraic manipulations that the objective function in

(5.14) is equal to

1

2
‖H ◦W −Bk‖2 + constant

Now note that we have

{W ∈ Rm×n | rank(W ) ≤ r} = {NC | N ∈ Rm×r, C ∈ Rr×n, NTN = I}.

Thus the problem (5.14) is equivalent to

min
N
{f(N) | NTN = I,N ∈ Rm×r} (5.22)

where

f(N) := min
C

1

2
‖H ◦ (NC)−Bk‖2.

To derive (5.20) from the above, we need to obtain f(N) explicitly as a function of N .

For a given N , the unconstrained minimization problem over C in f(N) has a strictly

convex objective function in C, and hence the unique global minimizer satisfies the
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following optimality condition:

NT ((H ◦H) ◦ (NC)) = NT (H ◦Bk). (5.23)

By considering the ith column Ci of C, we get

NTD2
iNCi = NTDiBk

i , i = 1, . . . , n. (5.24)

Since N has full column rank and Di is positive definite, the coefficient matrix in the

above equation is nonsingular, and hence

Ci = (NTD2
iN)−1NTDiBk

i .

Now with the optimal Ci above for the given N , we can show after some algebra ma-

nipulations that f(N) is given as in (5.20).

We can see that when β1 ↓ 0 in (5.20), then the problem reduces to (5.16), with

the latter’s ŵi appropriately modified to take into account of Ek. Also, from the above

proof, we see that the N -parameterization reduces the feasible region of W by restrict-

ing W to only those potential optimal solutions among the set of W satisfying the

expression in (5.21). This seems to imply that it is not only equivalent but also advan-

tageous to optimize over N instead of W . While we have no theoretical justification

of this conjecture, it is consistent with our experiments in Section 5.3 which show the

superior performance of those algorithms using subspace parameterization in finding

global minima and vindicates the design motivations of the series of LM X algorithms

in Chen [36].

5.4.1.2 LM GN updates

Now that we have shown how to handle the regularization term and validated the equiv-

alence of the transformation, the steps to solve (5.14) essentially generalize those of

LM GN (available in Section 3.2 and Appendix A of Chen [38]) to account for the gen-

95



PARSUMI: PRACTICAL MATRIX COMPLETION AND CORRUPTION
RECOVERY WITH EXPLICIT MODELING

eral mask H . The derivations of the key formulae and their meanings are given in this

section.

In general, Levenberg-Marquadt solves the non-linear problem with the following

sum-of-squares objective function

L(x) =
1

2

∑
i=1:n

‖yi − fi(x)‖2, (5.25)

by iteratively updating x as follows:

x← x+ (JTJ + λI)−1JT r,

where J = [J1; . . . ; Jn] is the Jacobian matrix where Ji is the Jacobian matrix of fi; r

is the concatenated vector of residual ri := yi − fi(x) for all i, and λ is the damping

factor that interpolates between Gauss-Newton update and gradient descent. We may

also interpret the iteration as a Damped Newton method with a first order approximation

of the Hessian matrix using H ≈ JTJ .

Note that the objective function of (5.20) can be expressed in the form of (5.25) by

taking x := vec(N), data yi := Bk
i , and function

fi(x := vec(N)) = Qi(N)Bk
i = Qiyi

Proposition 5.2. Let T ∈ Rmr×mr be the permutation matrix such that vec(XT ) =

Tvec(X) for any X ∈ Rm×r. The Jacobian of fi(x) = Qi(N)yi is given as follows:

Ji(x) = (ATi yi)T ⊗ ((I −Qi)Di) + [(Diri)T ⊗ Ai]T. (5.26)

Also JTJ =
∑n

i=1 J
T
i Ji, J

T r =
∑n

i=1 J
T
i ri, where

JTi Ji = (ATi yiyTi Ai)⊗ (Di(I −Qi)Di) + TT [(DirirTi Di)⊗ (ATi Ai)]T(5.27)

JTi ri = vec(Diri(ATi yi)T ). (5.28)
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In the above, ⊗ denotes the Kronecker product.

Proof. Let Ai = DiN(NTD2
iN)−1. Given sufficiently small δN , we can show that the

directional derivative of fi at N along δN is given by

f ′i(N + δN) = (I −Qi)DiδNATi yi + AiδNTDiri.

By using the property that vec(AXB) = (BT ⊗A)vec(X), we have

vec(f ′i(N + δN)) = [(ATi yi)T ⊗ ((I −Qi)Di)]vec(δN)

+[(Diri)T ⊗ Ai]vec(δNT )

From here, the required result in (5.26) follows.

To prove (5.27), we make use the following properties of Kronecker product: (A⊗

B)(C ⊗D) = (AC)⊗ (BD) and (A⊗ B)T = AT ⊗ BT . By using these properties,

we see that JTi Ji has 4 terms, with two of the terms contain the Kronecker products

involving Di(I − Qi)Ai or its transpose. But we can verify that QiAi = Ai and hence

those two terms become 0. The remaining two terms are those appearing in (5.27) after

using the fact that (I −Qi)
2 = I −Qi. Next we prove (5.28). We have

JTi ri = vec(Di(I −Qi)ri(ATi yi)T ) + TTvec(ATi rirTi Di).

By noting that ATi ri = 0 and Qiri = 0, we get the required result in (5.28).

The complete procedure of solving (5.14) is summarized in Algorithm 1.

5.4.2 Sparse corruption recovery step (5.15)

In the sparse corruption step, we need to solve the `0-constrained least squares mini-

mization (5.15). This problem is combinatorial in nature, but fortunately, for our prob-

lem, we show that a closed-form solution can be obtained. Let x := PΩ(E). Observe
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Algorithm 1 Leverberg-Marquadt method for (5.14)

Input: Ŵ , Ek,W k,Ω, objective function L(x) and initial Nk; numerical parameter
λ, ρ > 1.
Initialization: Compute yi = Bk

i for i = 1, ..., n, and x0 = vec(Nk), j = 0.
while not converged do

1. Compute JT r and JTJ using (5.28) and(5.27).
2. Compute ∆x = (JTJ + λI)−1JT r
while L(x+ ∆x) < L(x) do

(1) λ = ρλ.
(2) ∆x = (JTJ + λI)−1JT r.

end while
3. λ = λ/ρ.
4. Orthogonalize N = orth[reshape(xj + ∆x)].
5. Update xj+1 = vec(N).
6. Iterate j = j + 1

end while
Output: Nk+1 = N , W k+1 using (5.21) with Nk+1 replacing N∗.

that (5.15) can be expressed in the following equivalent form:

min
x

{
‖x− b‖2 | ‖x‖0 ≤ N0, ‖x‖2 −K2

E ≤ 0
}

(5.29)

where b = PΩ(Ŵ −W k+1 + β2E
k)/(1 + β2).

Proposition 5.3. Let I be the set of indices of the N0 largest (in magnitude) component

of b. Then the nonzero components of the optimal solution x of (5.29) is given by

xI =


KEbI/‖bI‖ if ‖bI‖ > KE

bI if ‖bI‖ ≤ KE .
(5.30)

Proof. Given a subset I of {1, . . . , |Ω|} with cardinality at most N0 such that bI 6= 0.

Let J = {1, . . . , |Ω|}\I . Consider the problem (5.29) for x ∈ R|Ω| supported on I , we

get the following:

vI := min
xI

{
‖xI − bI‖2 + ‖bJ‖2 | ‖xI‖2 −K2

E ≤ 0
}
,
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Algorithm 2 Closed-form solution of (5.15)

Input:Ŵ ,W k+1, Ek,Ω.
1. Compute b using (5.29).
2. Compute x using (5.30).
Output: Ek+1 = P ∗Ω(x).

which is a convex minimization problem whose optimality conditions are given by

xI − bI + µxI = 0, µ(‖xI‖2 −K2
E) = 0, µ ≥ 0

where µ is the Lagrange multiplier for the inequality constraint. First consider the

case where µ > 0. Then we get xI = KEbI/‖bI‖, and 1 + µ = ‖bI‖/KE (hence

‖bI‖ > KE). This implies that vI = ‖b‖2 + K2
E − 2‖bI‖KE . On the other hand, if

µ = 0, then we have xI = bI and vI = ‖bJ‖2 = ‖b‖2 − ‖bI‖2. Hence

vI =


‖b‖2 +K2

E − 2‖bI‖KE if ‖bI‖ > KE

‖b‖2 − ‖bI‖2 if ‖bI‖ ≤ KE .

In both cases, it is clear that vI is minimized if ‖bI‖ is maximized. Obviously ‖bI‖

is maximized if I is chosen to be the set of indices corresponding to the N0 largest

components of b.

The procedure to obtain the optimal solution of (5.15) is summarized in Algo-

rithm 2. We remark that this is a very special case of `0-constrained optimization;

the availability of the exact closed form solution depends on both terms in (5.15) be-

ing decomposable into individual (i, j) term. In general, if we change the operator

M → H ◦ M in (5.15) to a general linear transformation (e.g., a sensing matrix in

compressive sensing), or change the norm ‖ ·‖ of the proximal term to some other norm

such as spectral norm or nuclear norm, then the problem becomes NP-hard.
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Algorithm 3 Proximal Alternating Robust Subspace Minimization (PARSuMi)

Input:Observed data Ŵ , sample mask Ω, parameter r,N0. Initialization W 0 and E0

(typically by Algorithm 5 described in Section 5.4.5), k = 0.
repeat

1. Solve (5.14) using Algorithm 1 with W k,Ek,Nk, obtain updates W k+1 and
Nk+1

2. Solve (5.15) using Algorithm 2 with W k+1,Ek obtain updates Ek+1.
until ‖W k+1 −W k‖ < ‖W k‖ · 10−6 and ‖Ek+1 − Ek‖ < ‖Ek‖ · 10−6

Output: Accumulation points W and E

5.4.3 Algorithm

Our Proximal Alternating Robust Subspace Minimization method is summarized in Al-

gorithm 3. Note that we do not need to know the exact cardinality of the corrupted

entries; N0 can be taken as an upper bound of allowable number of corruption. As a

rule of thumb, 10%-15% of |Ω| is a reasonable size. The surplus in N0 will only label a

few noisy samples as corruptions, which should not affect the recovery of either W or

E, so long as the remaining |Ω| −N0 samples are still sufficient.

5.4.4 Convergence to a critical point

In this section, we show the convergence of Algorithm 3 to a critical point. This critical

point guarantee is of theoretical significance because as far as we know, our critical point

guarantee produces a stronger result compared to the widely used alternating minimiza-

tion or block coordinate descent (BCD) methods in computer vision problems. A rele-

vant and interesting comparison is the Bilinear Alternating Minimization(BALM) [46]

work, where the critical point convergence of the alternating minimization is proven in

Xavier et al. [150]. The proof is contingent on the smoothness of the Stiefel manifold.

In contrast, our proposed proximal alternating minimization framework based on At-

touch et al. [3] is more general in the sense that convergence to a critical point can be

established for non-smooth and non-convex objective functions or constraints.

We start our convergence proof by first defining an equivalent formulation of (5.3)

in terms of closed, bounded sets. The convergence proof is then based on the indicator
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functions for these closed and bounded sets, which have the key lower semicontinuous

property.

Let KW = 2‖Ŵ‖+KE . Define the closed and bounded sets:

W = {W ∈ Rm×n | rank(W ) ≤ r, ‖H ◦W‖ ≤ KW }

E = {E ∈ Rm×nΩ | ‖E‖0 ≤ N0, ‖E‖ ≤ KE}.

We will first show that (5.3) is equivalent to the problem given in the next proposition.

Proposition 5.4. The problem (5.3) is equivalent to the following problem:

min f(W,E) := 1
2‖H ◦ (W + E − Ŵ )‖2

s.t. W ∈W, E ∈ E.

(5.31)

Proof. Observe the only difference between (5.3) and (5.31) is the inclusion of the

bound constraint on ‖H ◦ W‖ in (5.31). To show the equivalence, we only need to

show that any minimizer (W ∗, E∗) of (5.3) must satisfy the bound constraint in W. By

definition, we know that

f(W ∗, E∗) ≤ f(0, 0) =
1

2
‖Ŵ‖2.

Now for any (W,E) such that rank(W ) ≤ r, E ∈ E and ‖H ◦W‖ > KW , we must

have

‖H ◦ (W + E − Ŵ )‖ ≥ ‖H ◦W‖ − ‖H ◦ (E − Ŵ )‖

> KW − ‖E‖ − ‖Ŵ‖ ≥ ‖Ŵ‖.

Hence f(W,E) > 1
2‖Ŵ‖

2 = f(0, 0). This implies that we must have ‖H ◦W ∗‖ ≤

KW .

Let X and Y be the finite-dimensional inner product spaces, Rm×n and Rm×nΩ , re-
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spectively. If we define f : X → R ∪ {∞}, g : Y → R ∪ {∞} to be the following

indicator functions,

f(x) = δW(x) =

 0 if x ∈W

∞ otherwise

g(y) = δE(y) =

 0 if y ∈ E

∞ otherwise

then we can rewrite (5.31) as the following equivalent problem:

minimize
x,y

{L(x, y) := f(x) + g(y) + q(x, y)} (5.32)

where

q(x, y) =
1

2
‖Ax+By − c‖2

and A : X → X, B : Y → X are given linear maps defined by A(x) = H ◦ x,

B(y) = H ◦ y, and c = Ŵ . Note that in this case, f are g are lower semicontinuous

since indicator functions of closed sets are lower semicontinuous [117].

Consider the proximal alternating minimization outlined in Algorithm 4, as pro-

posed in Attouch et al. [3]. The algorithm alternates between minimizing x and y,

but with the important addition of the quadratic Moreau-Yoshida regularization term

(which is also known as the proximal term) in each step. The importance of Moreau-

Yoshida regularization for convex matrix optimization problems has been demonstrated

and studied in Bin et al. [16], Liu et al. [99], Yang et al. [152]. For our non-convex, non-

smooth setting here, the importance of the proximal term will become clear when we

prove the convergence of Algorithm 4. The positive linear maps S and T in Algorithm

4 correspond to (H ◦H)◦ and the identity map respectively. Note that our formulation

is slightly more general than that of Attouch et al. [3] in which the positive linear maps

S and T are simply the identity maps.
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Algorithm 4 Proximal alternating minimization

Input:(x0, y0) ∈ X× Y

repeat
1. xk+1 = arg min{L(x, yk) + β1

2 ‖x− x
k‖2S}

2. yk+1 = arg min{L(xk+1, y) + β2
2 ‖y − y

k‖2T }
until convergence
Output: Accumulation points x and y

In the above, S and T are given positive definite linear maps, and ‖x − xk‖2S = 〈x −
xk, S(x− xk)〉, ‖y − yk‖2T = 〈y − yk, T (y − yk)〉.

In Attouch et al. [3], the focus is on non-smooth and non-convex problems where

q(x, y) is a smooth function with Lipschitz continuous gradient on the domain {(x, y) |

f(x) < ∞, g(y) < ∞}, and f and g are lower semicontinuous functions (not nec-

essarily indicator functions) such that L(x, y) satisfy a key property (known as the

Kurdyka-Lojasiewicz (KL) property) at some limit point of {(xk, yk)}. Typically the

KL property can be established for semi-algebraic functions based on abstract mathe-

matical arguments. Once the KL property is established, convergence to a critical point

is guaranteed by virtue of Theorem 9 in Attouch et al. [3]1. The KL property also allows

stronger property to be derived. For example, Theorem 11 gives the rate of convergence,

albeit depending on some constants which are usually not known explicitly.

For our more specialized problem (5.31), the KL property can also be established,

although the derivation is non-trivial. Here we prefer to present a less abstract and sim-

pler convergence proof. For the benefit of those readers who do not wish to deal with

abstract concepts, Theorem 5.1 is self-contained and does not require the understanding

of the abstract KL property. Our result is analogous to that in Section 3.1 in Attouch

et al. [3] which proved a weaker form of convergence to a critical point without invoking

the KL property. But note that our proposed algorithm 4 involves the more general pos-

itive linear maps (‖.‖S and ‖.‖T ) in the proximal regularization. We therefore provide

Theorem 5.1 for this more general form of proximal regularization.

There are four parts to Theorem 5.1. Part(a) establishes the non-increasing mono-

1Thus, the critical point convergence for BALM follows automatically by identifying the Stiefel man-
ifold as a semialgebraic object and therefore satisfying the KL property.
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tonicity of the proximal regularized update. Leveraging on part(a), part(b) ensures the

existence of the limits. Using Part(a), (b) and (c), (d) then shows the critical point

convergence proof.

Theorem 5.1. Let {(xk, yk)} be the sequence generated by Algorithm 4. Then the

following statements hold.

(a) For all k ≥ 0,

1

2
‖xk+1 − xk‖2S +

1

2
‖yk+1 − yk‖2T

≤ L(xk, yk)− L(xk+1, yk+1)

(5.33)

(b)
∑∞

k=0
1
2‖xk+1−xk‖2S + 1

2‖yk+1−yk‖2T <∞. Hence limk→∞ ‖xk+1−xk‖ = 0 =

limk→∞ ‖yk+1 − yk‖.

(c) Let ∆xk+1 = A∗B(yk+1 − yk) − S(xk+1 − xk) and ∆yk+1 = −T (yk+1 − yk).

Then

(∆xk+1,∆yk+1) ∈ ∂L(xk+1, yk+1) (5.34)

where ∂L(x, y) denotes the subdifferential of L at (x, y).

(d) The sequence {(xk, yk)} has a limit point. Any limit point (x̄, ȳ) is a stationary

point of the problem (5.31). Moreover, limk→∞ L(xk, yk) = L(x̄, ȳ) = infk L(xk, yk).

Proof. (a) By the minimal property of xk+1, we have

L(xk+1, yk) +
1

2
‖xk+1 − xk‖2S

=
(
f(xk+1) + q(xk+1, yk) +

1

2
‖xk+1 − xk‖2S

)
+ g(yk)

≤
(
f(ξ) + q(ξ, yk) +

1

2
‖ξ − xk‖2G

)
+ g(yk)

= L(ξ, yk) +
1

2
‖ξ − xk‖2S ∀ ξ ∈ X. (5.35)
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Similarly, by the minimal property of yk+1, we have

L(xk+1, yk+1) +
1

2
‖yk+1 − yk‖2T ≤ L(xk+1, η) +

1

2
‖η − yk‖2T ∀ η ∈ Y.(5.36)

By taking ξ = xk in (5.35) and η = yk in (5.36), we get the required result.

(b) We omit the proof since the results are easy consequences of the result in (a). Note

that to establish limk→∞ ‖xk+1 − xk‖ = 0, we used the fact that ‖xk+1 − xk‖S → 0

as k →∞, and that S is a positive definite linear operator. Similar remark also applies

to {yk+1 − yk}.

(c) The result in (5.34) follows from the minimal properties of xk+1 and yk+1 in Step 1

and 2 of Algorithm 4, respectively.

(d) Because ‖H ◦xk‖ ≤ KW and ‖yk‖ ≤ KE , the sequence {(xk, yk)} is bounded and

hence it has a limit point. Let (xk′ , yk′) be a convergent subsequence with limit (x̄, ȳ).

From (5.35), we have ∀ ξ ∈ X

lim sup
k′→∞

f(xk′) + q(x̄, ȳ) ≤ f(ξ) + q(ξ, ȳ) +
1

2
‖ξ − ȳ‖2S .

By taking ξ = x̄, we get lim supk′→∞ f(xk′) ≤ f(x̄). Also, we have lim infk′→∞ f(xk′) ≥

f(x̄) since f is lower semicontinuous. Thus limk′→∞ f(xk′) = f(x̄). Similarly, by us-

ing (5.36), we can show that limk′→∞ g(yk′) = g(ȳ). As a result, we have

lim
k′→∞

L(xk′ , yk′) = L(x̄, ȳ).

Since {L(xk, yk)} is a nonincreasing sequence, the above implies that limk→∞ L(xk, yk) =

L(x̄, ȳ) = infk L(xk, yk). Now from (c), we have

(∆xk′ ,∆yk′) ∈ ∂L(xk′ , yk′), (∆xk′ ,∆yk′) → (0, 0).

By the closedness property of ∂L [41, Proposition 2.1.5], we get 0 ∈ ∂L(x̄, ȳ). Hence

(x̄, ȳ) is a stationary point of L.
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5.4.5 Convex relaxation of (5.3) as initialization

Due to the non-convexity of the rank and `0 cardinality constraints, it is expected that

the outcome of Algorithm 3 depends on initializations. A natural choice for the initial-

ization of PARSuMi is the convex relaxation of both the rank and `0 function:

min
{
f(W,E) + λ‖W‖∗ + γ‖E‖1 |W ∈ Rm×n, E ∈ Rm×nΩ

}
(5.37)

where f(W,E) = 1
2‖H ◦ (W +E − Ŵ )‖2, ‖ · ‖∗ is the nuclear norm, and λ and γ are

regularization parameters.

Problem (5.37) can be solved efficiently by the quadratic majorization-APG (ac-

celerated proximal gradient) framework proposed by Toh and Yun [134]. At the kth

iteration with iterate (W̄ k, Ēk), the majorization step replaces (5.37) with a quadratic

majorization of f(W,E), so that W and E can be optimized independently, as we shall

see shortly. Let Gk = (H ◦H) ◦ (W̄ k + Ēk + Ŵ ). By some simple algebra, we have

f(W,E)− f(W̄ k, Ēk) =
1

2
‖H ◦ (W − W̄ k + E − Ēk)‖2

+ 〈W − W̄ k + E − Ēk, Gk〉

≤ ‖W − W̄ k‖2 + ‖E − Ēk‖2 + 〈W − W̄ k + E − Ēk, Gk〉

= ‖W − W̃ k‖2 + ‖E − Ẽk‖2 + constant

where W̃ k = W̄ k − Gk/2 and Ẽk = Ēk − Gk/2. At each step of the APG method,

one minimizes (5.37) with f(W,E) replaced by the above quadratic majorization. As

the resulting problem is separable in W and E, we can minimize them separately, thus

yielding the following two optimization problems:

W k+1 = argmin
1

2
‖W − W̃ k‖2 +

λ

2
‖W‖∗ (5.38)

Ek+1 = argmin
1

2
‖E − Ẽk‖2 +

γ

2
‖E‖1 (5.39)

The main reason for performing the above majorization is because the solutions to
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(5.38) and (5.39) can readily be found with closed-form solutions. For (5.38), the min-

imizer is given by the Singular Value Thresholding (SVT) operator. For (5.39), the

minimizer is given by the well-known soft thresholding operator [47]. The APG algo-

rithm, which is adapted from Beck and Teboulle [9] and analogous to that in Toh and

Yun [134], is summarized below.

Algorithm 5 An APG algorithm for (5.37)

Input: Initialize W 0 = W̄ 0 = 0, E0 = Ē0 = 0, t0 = 1, k = 0
repeat

1. Compute Gk = (H ◦H) ◦ (W̄ k + Ēk + Ŵ ), W̃ k, Ẽk.
2. Update W k+1 by applying the SVT on W̃ k in (5.38).
3. Update Ek+1 by applying the soft-thresholding operator on Ẽk in (5.39).

4. Update tk+1 = 1
2(1 +

√
1 + 4t2k).

5. (W̄ k+1, Ēk+1) = (W k+1, Ek+1) + tk−1
tk+1

(W k+1 −W k, Ek+1 − Ek)
until Convergence
Output: Accumulation points W and E

As has already been proved in Beck and Teboulle [9], the APG algorithm, including

the one above, has a very nice worst case iteration complexity result in that for any given

ε > 0, the APG algorithm needs at most O(1/
√
ε) iterations to compute an ε-optimal

(in terms of function value) solution.

The tuning of the regularization parameters λ and γ in (5.37) is fairly straightfor-

ward. For λ, we use the singular values of the converged W as a reference. Starting

from a relatively large value of λ, we reduce it by a constant factor in each pass to ob-

tain a W such that its singular values beyond the rth are much smaller than the first r

singular values. For γ, we use the suggested value of 1/
√

max(m,n) from RPCA [27].

In our experiments, we find that we only need a ballpark figure, without having to do a

lot of tuning. Taking λ = 0.1 and γ = 1/
√

max(m,n) serve the purpose well.

5.4.6 Other heuristics

In practice, we design two heuristics to further boost the quality of the convex initial-

ization. These are tricks that allow PARSuMi to detect corrupted entries better and are
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always recommended.

We refer to the first heuristic as “Huber Regression”. The idea is that the quadratic

loss term in our matrix completion step (5.14) is likely to result in a dense spread of es-

timation error across all measurements. There is no guarantee that those true corrupted

measurements will hold larger errors comparing to the uncorrupted measurements. On

the other hand, we note that the quality of the subspace Nk obtained from LM GN is

usually good despite noisy/corrupted measurements. This is especially true when the

first LM GN step is initialized with Algorithm 5. Intuitively, we should be better off

with an intermediate step, using Nk+1 to detect the errors instead of W k+1, that is,

keeping Nk+1 as a fixed input and finding coefficient C and E simultaneously with

minimize
E,C

1

2
‖H ◦ (Nk+1C − Ŵ + E)‖2

subject to ‖E‖0 ≤ N0.

(5.40)

To make it computationally tractable, we relax (5.40) to

minimize
E,C

1

2
‖H ◦ (Nk+1C − Ŵ + E)‖2 + η0‖E‖1 (5.41)

where η0 > 0 is a penalty parameter. Note that each column of the above problem can

be decomposed into the following Huber loss regression problem (E is absorbed into

the Huber penalty)

minimize
Cj

m∑
i=1

Huberη0/Hij (Hij((N
k+1Cj)i − Ŵij)). (5.42)

Since Nk+1 is known, (5.41) can be solved very efficiently using the APG algorithm,

whose derivation is similar to that of Algorithm 5, with soft-thresholding operations on

C and E. To further reduce the Robin Hood effect (that haunts all `1-like penalties) and

enhance sparsity, we may optionally apply the iterative re-weighted Huber minimization

(a slight variation of the method in Candes et al. [31]), that is, solving (5.42) for lmax

iterations using an entrywise weighting factor inversely proportional to the previous
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iteration’s fitting residual. In the end, the optimal columns Cj’s are concatenated into

the optimal solution matrix C∗ of (5.41), and we set

W k+1 = Nk+1C∗.

With this intermediate step between the W step and the E step, it is much easier for the

E step to detect the support of the actual corrupted entries.

The above procedure can be used in conjunction with another heuristic that avoids

adding false positives into the corruption set in the E step when the subspace N has

not yet been accurately recovered. This is achieved by imposing a threshold η on the

minimum absolute value of Ek’s non-zero entries, and shrink this threshold by a factor

(say 0.8) in each iteration. The “Huber regression” heuristic is used only when η > η0,

and hence only in a very small number of iteration before the support of E has been

reliably recovered. Afterwards the pure PARSuMi iterations (without the Huber step)

will take over, correct the Robin Hood effect of Huber loss and then converge to a high

quality solution.

Note that our critical point convergence guarantee in Section 5.4.4 is not hampered

at all by the two heuristics, since after a small number of iterations, η ≤ η0 and we

come back to the pure PARSuMi.

5.5 Experiments and discussions

In this section, we present the methodology and results of various experiments designed

to evaluate the effectiveness of our proposed method. The experiments revolve around

synthetic data and two real-life datasets: the Oxford Dinosaur sequence, which is rep-

resentative of data matrices in SfM works, and the Extended YaleB face dataset [91],

which we use to demonstrate how PARSuMi works on photometric stereo problems.

In the synthetic data experiments, our method is compared with the state-of-the-art

algorithms for the objective function in (5.10) namely Wiberg `1 [58] and GRASTA

[71]. ALP and AQP [80] are left out since they are shown to be inferior to Wiberg `1
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in Eriksson and Van Den Hengel [58]. For the sake of comparison, we perform the

experiment on recovery effectiveness using the same small matrices as in Section 5.1 of

Eriksson and Van Den Hengel [58]. Other synthetic experiments on Gaussian noise and

phase diagram are conducted with more reasonably-sized matrices.

For the Dinosaur sequence, we investigate the quantitative effectiveness by adding

realistic large errors to random locations of the data and checking against the known

ground truth for E, and the qualitative effectiveness by looking at the trajectory plot

which is revealing. We have normalized image pixel dimensions (width and height) to

be in the range [0,1]; all plots, unless otherwise noted, are shown in the normalized

coordinates. For the Extended YaleB, we reconstruct the full scale 3D face shape of all

38 subjects. Since there are no known locations for the corruption, we will carry out a

qualitative comparison with the results of the nuclear norm minimization approach (first

proposed in Wu et al. [149] to solve photometric stereo) and to BALM [46] which is a

factorization method with specific manifold constraints for this problem.

Given the prevalence of convex relaxation of difficult problems in optimization, we

also investigate the impact of convex relaxation as an initialization step. The fact that the

initialization result is much less than desired also serves to vindicate our earlier state-

ment about the relative merits of the nuclear norm minimization and the factorization

approach.

In all our experiments, r is assumed to be known and N0 is set to 1.2 times the true

number of corruptions. In all synthetic data experiments, γ is fixed as 1/
√
mn for the

initialization (5) and λ is automatically tuned using a binary search like algorithm to

find a good point where the (r + 1)th singular value of W is smaller than a threshold.

In all real experiments, λ is set as 0.2. Our Matlab implementation is run on a 64-bit

Windows machine with a 1.6 GHz Core i7 processor and 4 GB of memory.

5.5.1 Convex Relaxation as an Initialization Scheme

We first investigate the results of our convex initialization scheme by testing on a ran-

domly generated 100× 100 rank-4 matrix. A random selection of 70% and 10% of the
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Figure 5.7: The Robin Hood effect of Algorithm 5 on detected sparse corruptions EInit.
Left: illustration of a random selection of detected E vs. true E. Note that the support is
mostly detected, but the magnitude falls short. Right: scatter plot of the detected E against
true E (perfect recovery falls on the y = x line, false positives on the y-axis and false
negatives on the x-axis).

entries are considered missing and corrupted respectively. Corruptions are generated

by adding large uniform noise between [−1, 1]. In addition, Gaussian noise N(0, σ)

for σ = 0.01 is added to all observed entries. From Figure 5.7, we see that the convex

relaxation outlined in Section 5.4.5 was able to recover the error support, but there is

considerable difference in magnitude between the recovered error and the ground truth,

owing to the “Robin Hood” attribute of `1-norm as a convex proxy of `0. Nuclear norm

as a proxy of rank also suffers from the same woe, because nuclear norm and rank are

essentially the `1 and `0 norm of the vector of singular values respectively. As clearly

illustrated in Figure 5.8, the recovered matrix from Algorithm 5 has smaller first four

singular values and non-zero singular values beyond the fourth. Similar observations

can be made on the results of the Dinosaur experiments, which we will show later.

Despite the problems with the solution of the convex initialization, we find that it is

a crucial step for PARSuMi to work well in practice. As we have seen from Figure 5.7,

the detected error support can be quite accurate. This makes the E-step of PARSuMi

more likely to identify the true locations of corrupted entries.
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Figure 5.8: The Robin Hood effect of Algorithm 5 on singular values of the recovered
WInit.. Left: illustration of the first 4 singular values. Note that the magnitude is smaller
than that of the ground truth. Right:The difference of the true and recovered singular values
(first 20). Note that the first 4 are positive and the rest are negative.

5.5.2 Impacts of poor initialization

When the convex initialization scheme fails to obtain the correct support of the error,

the “Huber Regression” heuristic may help PARSuMi to identify the support of the cor-

rupted entries. We illustrate the impact by intentionally mis-tuning the parameters of

Algorithm 5 such that the initial E bears little resemblance to the true injected cor-

ruptions. Specifically, we test the cases when the initialization fails to detect many of

the corrupted entries (false negatives) and when many entries are wrongly detected as

corruptions (false positives). From Figure 5.9, we see that PARSuMi is able to recover

the corrupted entries to a level comparable to the magnitude of the injected Gaussian

noise in both experiments. Note that a number of false positives persist in the second

experiment. This is understandable because false positives often contaminate an entire

column or row, making it impossible to recover that column/row in later iterations even

if the subspace is correctly detected1. To avoid such an undesirable situation, we prefer

“false negatives” over “false positives” when tuning Algorithm 5. In practice, it suffices

to keep the initial E relatively sparse.

1We may add arbitrary error vector in the span of the subspace. In the extreme case, all observed
entries in a column can be set to zero.
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(a) False negatives (b) False positives

Figure 5.9: Recovery of corruptions from poor initialization.

In most of our experiments, we find that PARSuMi is often able to detect the cor-

ruptions perfectly from a simple initializations with all zeros, even without the “Huber

Regression” heuristic. This is especially true when the data are randomly generated with

benign sampling pattern and well-conditioned singular values. However, in challeng-

ing applications such as SfM, a good convex initialization and the “Huber Regression”

heuristic are always recommended.

5.5.3 Recovery effectiveness from sparse corruptions

For easy benchmarking, we use the same synthetic data in Section 5.1 of Eriksson

and Van Den Hengel [58] to investigate the quantitative effectiveness of our proposed

method. A total of 100 random low-rank matrices with missing data and corruptions

are generated and tested using PARSuMi, Wiberg `1 and GRASTA.

In accordance with Eriksson and Van Den Hengel [58], the ground truth low rank

matrix Wgroundtruth ∈ Rm×n,m = 7, n = 12, r = 3, is generated as Wgroundtruth =

UV T , where U ∈ Rm×r, V ∈ Rn×r are generated using uniform distribution, in the

range [-1,1]. 20% of the data are designated as missing, and 10% are added with cor-

ruptions, both at random locations. The magnitude of the corruptions follows a uniform

distribution [−5, 5]. Root mean square error(RMSE)is used to evaluate the recovery
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Figure 5.10: A histogram representing the frequency of different magnitudes of RMSE in
the estimates generated by each method.

precision:

RMSE :=
‖Wrecovered −Wgroundtruth‖F√

mn
. (5.43)

Out of the 100 independent experiments, the number of runs that returned RMSE values

of less than 5 are 100 for PARSuMi, 78 and 58 for Wiberg `1 (with two different initial-

izations) and similarly 94 and 93 for GRASTA. These are summarized in Figure 5.10.

We see that our method has the best performance. Wiberg `1 and GRASTA performed

similarly, though GRASTA converged to a reasonable solution more often. In addition,

our convex initialization improves the results of Wiberg `1 and GRASTA, though not

significantly.

5.5.4 Denoising effectiveness

An important difference between our method and the algorithms that solve (5.10) (e.g.,

Wiberg `1) is the explicit modelling of Gaussian noise. We set up a synthetic rank-4 data

matrix of size 40 × 60, with 50% missing entries, 10% sparse corruptions in the range

[−5, 5], and Gaussian noise N(0, σ) with standard deviation σ in the range [0,0.2]. The

amount of missing data and corruptions are selected such that both Wiberg `1 and PAR-

SuMi can confidently achieve exact recovery in noise-free scenario. We also adapt the

oracle lower bound from Candes and Plan [21] to represent the theoretical limit of re-
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Figure 5.11: Effect of increasing Gaussian noise: PARSuMi is very resilient while
Wiberg `1 becomes unstable when noise level gets large. GRASTA is good when noise
level is high, but not able to converge to a good solution for small σ even if we initialize it
with Algorithm 5.

covery accuracy under noise. Our extended oracle bound under both sparse corruptions

and Gaussian noise is:

RMSEoracle = σ

√
(m+ n− r)r

p− e
, (5.44)

where p is the number of observed entries and e is the number of corruptions in the

observations.

We see from Figure 5.11 that under such conditions, Wiberg `1 is able to tolerate

small Gaussian noise, but becomes unstable when the noise level gets higher. In con-

trast, since our method models Gaussian noise explicitly, the increasing noise level has

little impact. In particular, our performance is close to the oracle bound. Moreover,

we observe that GRASTA is not able to achieve a high quality recovery when the noise

level is low, but becomes near optimal when σ gets large.

Another interesting observation is that Wiberg `1 with convex relaxation as initial-

ization is more tolerant to the increasing Gaussian noise. This could be due to the better

initialization, since the convex relaxation formulation also models Gaussian noise.
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5.5.5 Recovery under varying level of corruptions, missing data and noise

The experiments conducted so far investigate only specific properties. To gain a holistic

understanding of our proposed method, we perform a series of systematically parame-

terized experiments on 40 × 60 rank-4 matrices (with the elements of the factors U, V

drawn independently from the uniform distribution on [−1, 1]), with conditions ranging

from 0-80% missing data, 0-20% corruptions of range [-2,2], and Gaussian noise with

σ in the range [0,0.1]. By fixing the Gaussian noise at a specific level, the results are

rendered in terms of phase diagrams showing the recovery precision as a function of

the missing data and outliers. The precision is quantified as the difference between the

recovered RMSE and the oracle bound RMSE. As can be seen from Figure 5.12(a), our

algorithm obtains near optimal performance at an impressively large range of missing

data and outlier at σ = 0.011.

For comparison, we also displayed the phase diagram of our convex initialization

in Figure 5.12(b) and that for GRASTA from two different initialization schemes in

Figure 5.12(c) and 5.12(d), Wiberg `1 is omitted because it is too slow. Without the

full non-convex machinery, the relaxed version is not able to reconstruct the exact ma-

trix. Its RMSE value grows substantially with the increase of missing data and outliers.

GRASTA is also incapable of denoising and cannot achieve a high-precision recovery

result even when there is neither missing nor corrupted data (at the top left corner).

5.5.6 SfM with missing and corrupted data on Dinosaur

In this section, we apply PARSuMi to the problem of SfM using the Dinosaur sequence

and investigate how well the corrupted entries can be detected and recovered in real

data.

To simulate data corruptions arising from wrong feature matches, we randomly add

sparse error of the range [-2,2]2 to 1% of the sampled entries. This is a more realistic

1The phase diagrams for other levels of noise look very much like Figure 5.12; we therefore did not
include them.

2In SfM data corruptions are typically matching failures. Depending on where true matches are, error
induced by a matching failure can be arbitrarily large. If we constrain true match to be inside image frame
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(a) PARSuMi (b) Convex Relaxation

(c) GRASTA RandInit (d) GRASTA NucInit

Figure 5.12: Phase diagrams (darker is better) of RMSE with varying proportion of miss-
ing data and corruptions with Gaussian noise σ = 0.01 (roughly 10 pixels in a 1000×1000
image).

(and much larger1) definition of outliers for SfM compared to the [-50,50] pixel range

used to evaluate Wiberg `1 in Eriksson and Van Den Hengel [58]. In fact, both algo-

rithms work almost perfectly under the condition given in Section 5.2 of Eriksson and

Van Den Hengel [58]. An evaluation on larger corruptions helps to show the differing

performance under harsher condition.

We conducted the experiment 10 times each for PARSuMi, Wiberg `1 (with SVD

initialization) and GRASTA (random initialization as recommended in the original pa-

per) and count the number of times they succeed. As there are no ground truth to com-

[0, 1](which is often not the case), then the maximum error magnitude is 1. We found it appropriate to at
least double the size to account for general matching failures in SfM, hence [−2, 2].

1[-50,50] in pixel is only about [-0.1,0.1] in our normalized data, which could hardly be regarded as
“gross” corruptions.

117



PARSUMI: PRACTICAL MATRIX COMPLETION AND CORRUPTION
RECOVERY WITH EXPLICIT MODELING

PARSuMi Wiberg `1 GRASTA
No. of success 9/10 0/10 0/10
Run time (mins):
min/avg/max

2.2/2.9/5.2 76/105/143 0.2/0.5/0.6

Min RMSE (original
pixel unit)

1.454 2.715 22.9

Min RMSE exclud-
ing corrupted entries

0.3694 1.6347 21.73

Table 5.3: Summary of the Dinosaur experiments. Note that because there is no ground
truth for the missing data, the RMSE is computed only for those observed entries as in
Buchanan and Fitzgibbon [19].

pare against, we cannot use the RMSE to evaluate the quality of the filled-in entries.

Instead, we plot the feature trajectory of the recovered data matrix for a qualitative

judgement. As is noted in Buchanan and Fitzgibbon [19], a correct recovery should

consist of all elliptical trajectories. Therefore, if the recovered trajectories look like that

in Figure 5.6(b), we count the recovery as a success.

The results are summarized in Table 5.3. Notably, PARSuMi managed to cor-

rectly detect the corrupted entries and fill in the missing data in 9 runs while Wiberg `1

and GRASTA failed on all 10 attempts. Typical feature trajectories recovered by each

method are shown in Figure 5.13. Note that only PARSuMi is able to recover the ellip-

tical trajectories satisfactorily.

For comparison, we also include the input (partially observed trajectories) and the

results of our convex initialization in Figure 5.13(a) and 5.13(b) respectively. Due to the

Robin Hood attribute of nuclear norm, the filled-in trajectories of the convex relaxation

has a significant bias towards smaller values (note that the filled-in shape tilts towards

the origin). This is because nuclear norm is not as magnitude insensitive as the rank

function. Smaller filled-in data usually lead to a smaller nuclear norm.

Another interesting and somewhat surprising finding is that the result of PARSuMi

is even better than the global optimal solution for data containing supposedly no corrup-

tions (and thus can be obtained with `2 method) (see Figure 5.6(b), which is obtained

under no corruptions in the observed data)! In particular, the trajectories are now closed.

The reason becomes clear when we look at Figure 5.14(b), which shows two large

spikes in the vectorized difference between the artificially injected corruptions and the
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(a) Input (b) Convex relaxation (c) Wiberg `1

(d) GRASTA (e) PARSuMi

Figure 5.13: Comparison of recovered feature trajectories with different methods. It is
clear that under dense noise and gross outliers, neither convex relaxation nor `1 error mea-
sure yields satisfactory results. Solving the original non-convex problem with (b) as an
initialization produces a good solution.

recovered corruptions by PARSuMi. This suggests that there are hitherto unknown cor-

ruptions inherent in the Dinosaur data. We trace the two large ones into the raw images,

and find that they are indeed data corruptions corresponding to mismatched feature

points from the original dataset (see Figure 5.15); our method managed to recover the

correct feature matches (left column of Figure 5.15).

The result shows that PARSuMi recovered not only the artificially added errors,

but also the intrinsic errors in the data set. In Buchanan and Fitzgibbon [19], it was

observed that there is a mysterious increase of the objective function value upon closing

the trajectories by imposing orthogonality constraint on the factorized camera matrix.

Our discovery of these intrinsic tracking errors explained this matter evidently. It is also

the reason why the `2-based algorithms find a global minimum solution that is of poorer

119



PARSUMI: PRACTICAL MATRIX COMPLETION AND CORRUPTION
RECOVERY WITH EXPLICIT MODELING

(a) Initialization via Algorithm 5 and the final recovered errors by PARSuMi (Algorithm 3)

(b) Difference of the recovered and ground truth error (in original pixel unit)

Figure 5.14: Sparse corruption recovery in the Dinosaur experiments: The support of all
injected outliers are detected by Algorithm 5 (see (a)), but the magnitudes fall short by
roughly 20% (see (b)). Algorithm 3 is able to recover all injected sparse errors, together
with the inherent tracking errors in the dataset (see the red spikes in (b)).

quality (trajectories fail to close loop).

To complete the story, we generated the 3D point cloud of Dinosaur with the com-

pleted data matrix. The results viewed from different directions are shown in Fig-

ure 5.16.

5.5.7 Photometric Stereo on Extended YaleB

Another intuitive application for PARSuMi is photometric stereo, a problem of recon-

structing the 3D shape of an object from images taken under different lighting con-
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(a) Zoom-in view: recovered matching error in frame 13

(b) Zoom-in view: recovered matching error in frame 15

Figure 5.15: Original tracking errors in the Dinosaur data identified (yellow box) and
corrected by PARSuMi (green box with red star) in frame 13 feature 86 (a) and frame 15
feature 144 (b).

ditions. In the most ideal case of Lambertian surface model (diffused reflection), the

intensity of each pixel is proportional to the inner product of the surface normal ~n as-

sociated with the pixel and the lighting direction ~l of the light source. This leads to the

matrix factorization model

[I1, ..., Ik] = ρ


α1 ~n1

T

...

αp ~np
T

( L1
~l1 ... Lk~lk

)
= ρATB, (5.45)

where Ij represents the vectorized greyscale image taken under lighting j, ρ is the

Lambertian coefficient, αi is the albedo of a pixel i, and Lj is the light intensity in

image j. The consequence is that the data matrix obtained by concatenating vectorized

images together is of rank 3.

Real surfaces are of course never truly Lambertian. There are usually some local-

ized specular regions appearing as highlights in the image. Moreover, since there is no

way to obtain a negative pixel value, all negative inner products will be observed as

zero. This is the so-called attached shadow. Images of non-convex object often also

contain cast shadow, due to the blocking of light path. If these issues are teased out,

then the seemingly naive Lambertian model is able to approximate many surfaces very

well.

Wu et al. [149] subscribed to this low-rank factorization model in (5.45) and pro-

posed to model all dark regions as missing data, all highlights as sparse corruptions and
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Figure 5.16: 3D point cloud of the reconstructed Dinosaur.

then use a variant of RPCA (identical to (5.6)) to recover the full low-rank matrix. The

solution however is only tested on noise-free synthetic data and toy-scale real examples.

Del Bue et al. [46] applied their BALM on photometric stereo too, attempting on both

synthetic and real data. Their contribution is to impose the normal constraint of each

normal vector during the optimization. Del Bue et. al. also propose using a sophisti-

cated inpainting technique to initialize the missing entries in the image, which is likely

to improve the chance of BALM converging to a good solution. Later we will provide a

qualitative comparison of the results obtained by BALM, our convex initialization and

PARSuMi. Note that the method in Wu et al. [149] is almost the same as our initializa-

tion, except that it does not explicitly handle noise. Since they have not released their

source code, we will simply use Algorithm 5 to demonstrate the performance of this

type of convex relaxation methods.

Methodology: To test the effectiveness of PARSuMi on full scale real data, we run
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through all 38 subjects in the challenging Extended YaleB face database. The data ma-

trix for each subject is a 32256× 64 matrix where each column represents a vectorized

x×y image and each row gives the intensities of a particular pixel across all 64 lighting

conditions. After setting the shadow and highlight as missing data by thresholding1,

about 65% of the data are observed, with the sampling distribution being rather skewed

(for some images, only 5-10% of the pixels are measured). In addition, subjects tend

to change facial expressions in different images and there are some strange corruptions

in the data, hence jeopardizing the rank-3 assumption. We model these unpredictable

issues as sparse corruptions.

(a) Cast shadow and attached shadow are recovered. Re-
gion of cast shadow is now visible, and attached shadow
is also filled with meaningful negative values.

(b) Facial expressions are set to normal.

(c) Rare corruptions in image acquisition are recovered. (d) Light comes from behind (negative 20 degrees to the
horizontal axis and 65 degrees to the vertical axis).

Figure 5.17: Illustrations of how PARSuMi recovers missing data and corruptions. From
left to right: original image, input image with missing data labeled in green, reconstructed
image and detected sparse corruptions.

Results: PARSuMi is able to successfully reconstruct the 3D face of all 38 subjects

with little artifacts. An illustration of the input data and how PARSuMi recovers the

missing elements and corruptions are shown in Figure 5.17, and the reconstruction of

selected faces across genders and ethnic groups are shown in Figure 5.18. We remark

that the results are of high precision and even the tiny wrinkles and moles on the faces

can be observed. Furthermore, we attach the results of all 64 images of Subject 10 in

the Appendix (Figure D.1) for further scrutiny by interested readers.
1In our experiment, all pixels with values smaller than 20 or greater than 240 are set as missing data.
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(a) Subject 02 (b) Subject 5 (c) Subject 10

(d) Subject 15 (e) Subject 12 (f) Subject 22

Figure 5.18: The reconstructed surface normal and 3D shapes for Asian (first row), Cau-
casian (second row) and African (third row), male (first column) and female (second col-
umn), in Extended YaleB face database.(Zoom-in to look at details)

We compare PARSuMi, BALM and our convex initialization using Subject 3 in the

YaleB dataset since it was initially used to evaluate BALM in Del Bue et al. [46]1.

The results are qualitatively compared in Figure 5.19. As we can see, both BALM and

Algorithm 5 returned obvious artifact in the recovered face image, while PARSuMi’s

results looked significantly better. The difference manifests itself further when we take

the negative of the recovered images by the three algorithms (see Figure 5.19(c)). From

(5.45), it is clear that taking negative is equivalent to inverting the direction of lighting.

The original lighting is −20◦ from the left posterior and 40◦ from the top, so the in-

verted light should illuminate the image from the right and from below. The results in

Figure 5.19(c) clearly show that neither BALM nor Algorithm 5 is able to recover the

missing data as well as PARSuMi. In addition, we reconstruct the 3D depth map with

the classic method by Horn [73] and show the side face in Figure 5.19(d). The shape

from PARSuMi reveals much richer depth information than those from the other two

algorithms, whose reconstructions appear flattened.

1The authors claimed that it is Subject 10 [46, Figure 9], but careful examination of all faces shows
that it is in fact Subject 3.
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(a) Comparison of the recovered image

(b) Comparison of the recovered image (details)

(c) Taking the negative of (a) to see the filled-in negative values.

(d) Comparison of reconstructed 3D surface (albedo rendered)

Figure 5.19: Qualitative comparison of algorithms on Subject 3. From left to right, the
results are respectively for PARSuMi, BALM and our convex initialization. In (a) and (c),
they are preceded by the original image and the image depicting the missing data in green.

5.5.8 Speed

The computational complexity of PARSuMi is cheap for some problems but not for

others. Since PARSuMi uses LM GN for its matrix completion step, the numerical cost

is dominated by either solving the linear system (JTJ + λI)δ = Jr which requires

the Cholesky factorization of a potentially dense mr ×mr matrix, or the computation

of J which requires solving a small linear system of normal equation involving the

m × r matrix N for n times. As the overall complexity of O(max(m3r3,mnr2))

scales merely linearly with number of columns n but cubic with m and r, PARSuMi
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is computationally attractive when solving problems with small m and r, and large n,

e.g., photometric stereo and SfM (since the number of images is usually much smaller

than the number of pixels and feature points). However, for a typical million by million

data matrix as in social networks and collaborative filtering, PARSuMi will take an

unrealistic amount of time to run.

Experimentally, we compare the runtime between our algorithm and Wiberg `1

method in our Dinosaur experiment in Section 5.5.6. We see from Table 5.3 that there

is a big gap between the speed performance. The near 2-hour runtime for Wiberg `1

is discouragingly slow, whereas ours is vastly more efficient. On the other hand, as an

online algorithm, GRASTA is inherently fast. Examples in He et al. [71] show that it

works in real time for live video surveillance. However, our experiment suggests that

it is probably not appropriate for applications such as SfM, which requires a higher

numerical accuracy.

We note that PARSuMi is currently not optimized for computation. Speeding up

the algorithm for application on large scale dataset would require further effort (such

as parallelization) and could be a new topic of research. For instance, the computation

of Jacobians Ji and evaluating objective function can be easily done in parallel and

the Gauss-Newton update (a positive definite linear system of equations) can be solved

using the conjugate gradient method; hence, we do not even need to store the matrix in

memory. Furthermore, since PARSuMi seeks to find the best subspace, perhaps using

only a small portion of the data columns is sufficient. If the subspace is correct, the

rest of the columns can be recovered in linear time with our iterative reweighted Huber

regression technique (see Section 5.4.6). A good direction for future research is perhaps

on how to choose the best subset of data to feed into PARSuMi.

5.6 Chapter Summary

In this chapter, we have presented a practical algorithm (PARSuMi) for low-rank ma-

trix completion in the presence of dense noise and sparse corruptions. Despite the
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non-convex and non-smooth optimization formulation, we are able to derive a set of

update rules under the proximal alternating scheme such that the convergence to a crit-

ical point can be guaranteed. The method was tested on both synthetic and real life

data with challenging sampling and corruption patterns. The various experiments we

have conducted show that our method is able to detect and remove gross corruptions,

suppress noise and hence provide a faithful reconstruction of the missing entries. By

virtue of the explicit constraints on both the matrix rank and cardinality, and the novel

reformulation, design and implementation of appropriate algorithms for the non-convex

and non-smooth model, our method works significantly better than the state-of-the-art

algorithms in nuclear norm minimization, `2 matrix factorization and `1 robust matrix

factorization in real life problems such as SfM and photometric stereo.

Moreover, we have provided a comprehensive review of the existing results pertain-

ing to the “practical matrix completion” problem that we considered in this chapter. The

review covered the theory of matrix completion and corruption recovery, and the theory

and algorithms for matrix factorization. In particular, we conducted extensive numer-

ical experiments which reveals (a) the advantages of matrix factorization over nuclear

norm minimization when the underlying rank is known, and (b) the two key factors that

affect the chance of `2-based factorization methods reaching global optimal solutions,

namely “subspace parameterization” and “Gauss-Newton” update. These findings pro-

vided critical insights into this difficult problem, upon the basis which we developed

PARSuMi as well as its convex initialization.

The strong empirical performance of our algorithm calls for further analysis. For

instance, obtaining the theoretical conditions for the convex initialization to yield good

support of the corruptions should be plausible (following the line of research discussed

in Section 5.2.1), and this in turn guarantees a good starting point for the algorithm

proper. Characterizing how well the following non-convex algorithm works given such

initialization and how many samples are required to guarantee high-confidence recovery

of the matrix remain open questions for future study.

Other interesting topics include finding a cheaper but equally effective alternative
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to the LM GN solver for solving (5.20), parallel/distributed computation, incorporating

additional structural constraints, selecting optimal subset of data for subspace learning

and so on. Step by step, we hope this will eventually lead to a practically working robust

matrix completion algorithm that can be confidently embedded in real-life applications.
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Conclusion and Future Work

This thesis investigates the problem of robust learning with two prevalent low-dimensional

structures: low-rank subspace model and the union-of-subspace model. The results are

encouraging in both theoretical and algorithmic fronts. With the well-justified robust-

ness guarantee, the techniques developed in this thesis can often be directly applied to

real problems, even under considerable noise and model inaccuracy. In this chapter,

we briefly summarize the contribution of the thesis and then list the open questions for

future research.

6.1 Summary of Contributions

In Chapter 2 and 3, we considered two empirically working yet theoretically unsup-

ported methods, matrix factorization and the noisy variant of SSC. By rigorous analysis

of each method with techniques in compressive sensing, convex optimization, and statis-

tical learning theory, we are able to understand their behaviors under noise/perturbations

hence justify their good performance on real data. Furthermore, the results clearly iden-

tifies the key features of the problems that can be robustly solved and those that are

more sensitive to noise thereby providing guidelines to practitioners, in particular, in

designing collaborative filtering systems or doing clustering analysis of high dimen-

sional data. In the context of machine learning, the main result in Chapter 2 can be
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considered a generalization bound with natural implication on sample complexity (how

many iid observations are needed).

In Chapter 4, we proposed a method that build upon the two arguably most success-

ful subspace clustering methods (LRR and SSC). We demonstrated that their advantages

can be combined but not without some tradeoff. The `1 penalty induces sparsity not only

between classes but also within each class, while the nuclear norm penalty in general

promotes a dense connectivity in both instances too. Interestingly, the analysis suggests

that perfect separation can be achieved whenever the weight on `1 norm is greater than

the threshold, thus showing that the best combination in practice is perhaps not the pure

SSC or LRR but is perhaps a linear combination of them, i.e., LRSSC.

In Chapter 5, we focused on modelling and corresponding non-convex optimization

for the so-called “Practical Matrix Completion” problem. It is related to Chapter 2 in

that it seeks to solve a fixed rank problem. The problem is however much harder due

to the possible gross corruptions in data. Our results suggest that the explicit modelling

of PARSuMi provides substantial advantages in denoising, corruption recovery and in

learning the underlying low-rank subspace over convex relaxation methods. At a point

where the nuclear norm and `1-norm approaches are exhausting their theoretical chal-

lenges and reaching a bottleneck in practical applications, it may be worthwhile for the

field to consider an alternate path.

6.2 Open Problems and Future Work

The works in this thesis also point to a couple of interesting open problems. These could

be the future directions of research.

Theoretical foundation for matrix factorization

We studied the robustness of matrix factorization in Chapter 2 and showed that its global

optimal solution has certain desirable properties, the most daunting problem: under

what conditions the global optimal solution can be obtained and how to obtain it is still
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an open question.

As a start, Jain et al. [76] analyzed the performance of ALS for the noiseless case,

but there is an apparent gap between their assumptions and what empirical experiments

showed. In particular, our evaluation in Section 5.3 suggests that ALS may not be

the best approach for solving MF. Further improvement on the conditions in [76] and

to allow for noise are clearly possible and should reveal good tricks to improve the

performance of MF in practical problems.

Graph connectivity and missing data in subspace clustering

For the problem of subspace clustering, our results for LRSSC guarantee self-expressiveness

at points when the solution is intuitively and empirically denser than SSC, yet there is

still a gap in quantifying the level of connection density and in showing how dense a

connectivity would guarantee that each block is a connected-body.

Missing data is another problem for subspace clustering techniques that exploit the

intuition of self-expressiveness (SSC and LRR). A sampling mask like matrix comple-

tion in the constraint essentially makes the problem non-convex. Eriksson et al. [59]

proposed the first provable algorithm for the missing data problem in subspace cluster-

ing using a bottom-up nearest neighbor-based approach, however require an unrealistic

number of samples for each subspace, which could hardly be met in practice due to time

and budget constraints. Advances on this missing data problem could potentially lead

to immediate applications in the community clustering of social networks and motion

segmentation in computer vision.

What we find interesting in this thesis is that we can use the same techniques (with

minor adaptations) for simple structures like low-rank and sparsity to devise solutions

for more sophisticated structures such as union-of-subspace model. Therefore, the key

elements for solving the connectivity problem and missing data problem are probably

already out there in the literature awaiting discovery.
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General manifold clustering problem

From a more general point of view, the subspace clustering problem can be considered

a special case of the manifold clustering problem. Is is possible to provably cluster

data on general manifolds using the same intuition of “self-expressiveness” and with

convex optimization1? On the other hand, could the rich topological structures of some

manifolds (see [5]) be exploited in the problem of clustering?

This direction may potentially result in a uniform theory of clustering and unsuper-

vised learning and go well beyond the current solutions such as k-means and spectral

clustering [5].

Scalability for the big data: algorithmic challenges

As we have shown in this thesis, exploiting the low-dimensional structures is the key to

gain statistical tractability for big and high dimensional data. It remains a computational

challenge to actually solve these structure learning problems for internet-scale data in a

reasonable amount of time.

Proposals such as matrix completion/RPCA as well as Lasso-SSC and LRSSC in-

troduced in this thesis are typically just a convex optimization formulation. While one

can be solved them in polynomial time with off-the-shelf SDP solvers, large-scale appli-

cations which often requires linear or even sub-linear runtime. Our proposed numerical

solvers for our methods (ADMM algorithms for Matrix-Lasso-SSC in Chapter 3 and

LRSSC in Chapter 4) could scale up for data matrices in the scale of tens of thousands,

but is still considered impropriate for problems in the scale of millions and billions as

described in the very beginning of this thesis.

It is therefore essential to adopt techniques such as divide-and-conquer for batch

processing and incremental updates that minimizes memory cost. The algorithmic and

theoretical challenge is to design large-scale extensions that can preserve the robustness

and other good properties of the original methods. Results in this front will naturally

attract avid attention in the emerging data industry.
1Elhamifar and Vidal [55] explored this possibility with some empirical results.
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Appendix A

Appendices for Chapter 2

A.1 Proof of Theorem 2.2: Partial Observation Theorem

In this appendix we prove Theorem 2.2. The proof involves a covering number argu-

ment and a concentration inequality for sampling without replacement. The two lemmas

are stated below.

Lemma A.1 (Hoeffding Inequality for Sampling without Replacement [118]). LetX =

[X1, ..., Xn] be a set of samples taken without replacement from a distribution {x1, ...xN}

of mean u and variance σ2. Denote a , maxi xi and b , mini xi. Then we have:

Pr(| 1
n

n∑
i=1

Xi − u| ≥ t) ≤ 2 exp(− 2nt2

(1− n−1
N )(b− a)2

). (A.1)

Lemma A.2 (Covering number for low-rank matrices of bounded size). Let Sr = {X ∈

Rn1×n2 : rank(X) ≤ r, ‖X‖F ≤ K}. Then there exists an ε-net S̄r for the Frobenius

norm obeying

|S̄r(ε)| ≤ (9K/ε)(n1+n2+1)r.

This Lemma is essentially the same as Lemma 2.3 of [23], with the only difference

being the range of ‖X‖F : instead of having ‖X‖F = 1, we have ‖X‖F ≤ K. The

proof is given in the next section of Appendix.
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Proof of Theorem 2.2. Fix X ∈ Sr. Define the following to lighten notations

û(X) =
1

|Ω|
‖PΩ(X − Ŷ )‖2F = (L̂(X))2,

u(X) =
1

mn
‖X − Ŷ ‖2F = (L(X))2.

Notice that
{

(Xij − Ŷij)2
}
ij

form a distribution of nm elements, u is its mean, and û

is the mean of |Ω| random samples drawn without replacement. Hence, by Lemma A.1:

Pr(|û(X)− u(X)| > t) ≤ 2 exp

(
− 2|Ω|mnt2

(mn− |Ω|+ 1)M2

)
, (A.2)

where M , maxij(Xij − Ŷij)2 ≤ 4k2. Apply union bound over all X ∈ S̄r(ε), we

have

Pr( sup
X̄∈S̄r(ε)

|û(X̄)− u(X̄)| > t) ≤ 2|S̄r(ε)| exp

(
− 2|Ω|mnt2

(mn− |Ω|+ 1)M2

)

Equivalently, with probability at least 1− 2 exp (−n).

sup
X̄∈S̄r(ε)

|û(X̄)− u(X̄)| ≤

√
M2

2
(n+ log |S̄r(ε)|)

(
1

|Ω|
− 1

mn
+

1

mn|Ω|

)
.

Notice that ‖X‖F ≤
√
mnk. Hence substituting Lemma A.2 into the equation, we get:

sup
X̄∈S̄r(ε)

|û(X̄)− u(X̄)|

≤
[
M2

2

(
n+ (m+ n+ 1)r log

9k
√
mn

ε

)(
1

|Ω|
− 1

mn
+

1

mn|Ω|

)] 1
2

:= ξ(Ω)

where we define ξ(Ω) for convenience. Recall that û(X̄) = (L̂(X))2 and u(X̄) =

(L(X))2. Notice that for any non-negative a and b, a2 + b2 ≤ (a + b)2. Hence the
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following inequalities hold for all X̄ ∈ S̄r(ε):

(L̂(X̄))2 ≤ (L(X̄))2 + ξ(Ω) ≤ (L(X̄) +
√
ξ(Ω))2,

(L(X̄))2 ≤ (L̂(X̄))2 + ξ(Ω) ≤ (L̂(X̄) +
√
ξ(Ω))2,

which implies

sup
X̄∈S̄r

|L̂(X̄)− L(X̄)| ≤
√
ξ(Ω).

To establish the theorem, we need to relate Sr and S̄r(ε). For any X ∈ Sr, there exists

c(X) ∈ S̄r(ε) such that:

‖X − c(X)‖F ≤ ε; ‖PΩ(X − c(X))‖F ≤ ε;

which implies,

|L(X)− L(c(X))| = 1√
mn

∣∣∣‖X − Ŷ ‖F − ‖c(X)− Ŷ ‖F
∣∣∣ ≤ ε√

mn
;

|L̂(X)− L̂(c(X))| = 1√
|Ω|

∣∣∣‖PΩ(X − Ŷ )‖F − ‖PΩ(c(X)− Ŷ )‖F
∣∣∣ ≤ ε√

|Ω|
.

Thus we have,

sup
X∈Sr

|L̂(X)− L(X)|

≤ sup
X∈Sr

{
|L̂(X)− L̂(c(X))|+ |L(c(X))− L(X)|+ |L̂(c(X))− L(c(X))|

}
≤ ε√
|Ω|

+
ε√
mn

+ sup
X∈Sr

|L̂(c(X))− L(c(X))|

≤ ε√
|Ω|

+
ε√
mn

+ sup
X̄∈S̄r(ε)

|L̂(X̄)− L(X̄)| ≤ ε√
|Ω|

+
ε√
mn

+
√
ξ(Ω).
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Substitute in the expression of ξ(Ω) and take ε = 9k, we have,

sup
X∈Sr

|L̂(X)− L(X)| ≤ 2
ε√
|Ω|

+

(
M2

2

2nr log(9kn/ε)

|Ω|

) 1
4

≤ 18k√
|Ω|

+
√

2k

(
nr log(n)

|Ω|

) 1
4

≤ Ck
(
nr log(n)

|Ω|

) 1
4

,

for some universal constant C. This complete the proof.

A.2 Proof of Lemma A.2: Covering number of low rank ma-

trices

In this appendix, we prove the covering number lemma used in Appendix A.1. As

explained in the main text of this thesis, this is an extension of Lemma 2.1 in [23].

Proof of Lemma A.2. This is a two-step proof. First we prove for ‖X‖F ≤ 1, then we

scale it to ‖X‖F ≤ K.

Step 1: The first part is almost identical to that in Page 14-15 of [23]. We prove

via SVD and bound the ε/3-covering number of U , Σ and V individually. U and V are

bounded the same way. So we only cover the part for of r × r diagonal singular value

matrix Σ.

Now ‖Σ‖ ≤ 1 instead of ‖Σ‖ = 1. diag(Σ) lying inside a unit r-sphere (denoted

by A). We want to cover this r-sphere with smaller r-sphere of radius ε/3 (denoted

by B). Then there is a lower bound and an upper bound of the (ε/3)-covering number

N(A,B).

vol(A)

vol(B)
≤ N(A,B) ≤ N̄(A,B) = N̄(A,

B

2
− B

2
)

≤M(A,
B

2
) ≤ vol(A+B/2)

vol(B/2)

where N̄(A,B) is the covering number from inside, and M(A,B) is the number of

separated points. Set B = B
2 −

B
2 because B is symmetrical (an n-sphere).
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A.2 Proof of Lemma A.2: Covering number of low rank matrices

(
1

ε/3
)r ≤ N(A,B) ≤ (

1 + ε/6

ε/6
)r

We are only interested in the upper bound of covering number:

N(A,B) ≤ (1 + 6/ε)r ≤ (6/ε+
1

ε/3
) = (9/ε)r

The inequality is due to the fact that ε/3 < 1 (otherwise covering set B > A).

In fact, we may further tighten the bound by using the fact that all singular values are

positive, then A is further constrained in side the first orthant. This should reduce the

covering number to its 1
2r .

Everything else follows exactly the same way as in [23, Page 14-15].

Step 2: By definition, if ‖X‖F = 1, then a finite set of (9/ε)(n1+n2+1)r elements

are sufficient to ensure that, for every X ∈ Sr, it exists an X̄ ∈ S̄r, such that

‖X̄ −X‖F ≤ ε

Scale both side by K, we get:

‖KX̄ −KX‖F ≤ Kε

let β = Kε, then the β-net covering number of the set of ‖X‖F = K is:

|S̄r| ≤ (9/ε)(n1+n2+1)r = (9K/β)(n1+n2+1)r

Revert the notation back to ε, the proof is complete.
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A.3 Proof of Proposition 2.1: σmin bound

In this appendix, we develop proof for Proposition 2.1. As is explained in main text of

the thesis, σmin can be arbitrarily small in general1, unless we make assumptions about

the structure of matrix. That is why we need strong incoherence property[26] for the

proof of Proposition 2.1, which is stated below.

Strong incoherence property with parameter µ, implies that exist µ1, µ2 ≤ µ, such

that:

A1 There exists µ1 > 0 such that for all pair of standard basis vector ei and ej

(overloaded in both column space and row space of different dimension), there

is:

∣∣∣〈ei, PUej〉 − r

m
1i=j

∣∣∣ ≤ µ1

√
r

m
;

∣∣∣〈ei, PV ej〉 − r

n
1i=j

∣∣∣ ≤ µ1

√
r

n

A2 There exists µ2 > 0 such that for all i, j, the ”sign matrix” E defined by E =

UV T satisfies: |Ei,j | = µ2

√
r√
mn

To interpret A1, again let singular subspace U be denoted by a orthonormal basis

matrix N , PU = NNT . If i = j, we have

r − µ
√
r

m
≤ ‖ni‖2 = ‖nj‖2 ≤

r + µ
√
r

m
. (A.3)

When i 6= j, we have −µ
√
r

m ≤ nTi nj ≤
µ
√
r

m .

Proof of Proposition 2.1. Instead of showing smallest singular value of N1 directly, we

find the σmax(N2) or ‖N2‖, and then use the fact that all σmin(N) = 1 to bound

σmin(N1) with their difference.

Let N2 be of dimension k × r. ‖N2‖ = ‖NT
2 ‖, so the maximum singular value

equals to maxu ‖NT
2 u‖ with u being a unit vector of dimension k. We may consider k

1Consider a matrix N with first r rows identity matrix and the rest zero(verify that this is an orthonor-
mal basis matrix). If no observations are taken from first r-rows of user y then all singular values of the
N1 will be zero and (2.4) is degenerate.
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a coefficient with k = [c1, c2, ...ck]
T . It is easy to see that c2

1 + ...+ c2
k = 1.

‖NT
2 u‖2 =uTN2N

T
2 u = (c1n

T
1 + c2n

T
2 + ...+ ckn

T
k )(c1n1 + c2n2 + ...+ cknk)

=(c2
1n

T
1 n1 + ...+ c2

kn
T
k nk) + 2

∑
i<j

cicjn
T
i n

T
j

≤
∑

i=1,...,k

(c2
i ) max

i
‖ni‖2 +

∑
i<j

2|cicj |max
i,j

nTi nj

≤max
i
‖ni‖2 +

∑
i<j

(c2
i + c2

j ) max
i,j

nTi nj

= max
i
‖ni‖2 + (k − 1)

∑
i=1,...,k

(c2
i ) max

i,j
nTi nj

= max
i
‖ni‖2 + (k − 1) max

i,j
nTi nj

≤r + µ1
√
r

m
+ (k − 1)

µ1
√
r

m
=

r

m
+ k

µ1
√
r

m

The second inequality is by a2 + b2 ≥ 2ab and last inequality is by the strong incoher-

ence condition.

Similarly, using the mini ‖ni‖2 and mini,j ‖ni‖2 we have a lower bound of ‖NT
2 u‖2 ≥

r
m − k

µ1
√
r

m . But his bound is not useful/trivial because it decreases with the increase of

k, which counters the intuition.

Now, we may express the bound of max singular value sigma in terms of sample

rate p of N1 (hence sample rate of N2 is (1− p))

σmax(N2) ≤
( r
m

+ (1− p)µ1

√
r
) 1

2

The desired bound on minimum singular value of N1 is hence 1 − σmax(N2) = 1 −(
r
m + (1− p)µ1

√
r
) 1

2 .
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A.4 Proof of Proposition 2.2: σmin bound for random matrix

Proof. Without loss of generality we can assume k > r (otherwise the theorem holds

trivially), and normalize G such that E‖G‖2F = r. Indeed, random matrix theory [e.g.,

45, 116, 121] asserts that G is close to an orthonomal matrix, as the following lemma,

adapted from Theorem II.13 of Davidson and Szarek [45], shows:

Lemma A.3. With probability of at least 1− 2γ,

1−
√

r

m
−
√

2 log(1/γ)

m
≤ σmin(G) ≤ σmax(G) ≤ 1 +

√
r

m
+

√
2 log(1/γ)

m
.

Now let G =

 G1

G2

 such that G1 is of dimension k × r. Notice that by

Lemma A.3, we conclude that there exists an absolute constant such that with prob-

ability 1− C ′m−10,

‖G1 −N1‖ ≤ ‖G−N‖ ≤
√

r

m
+ C ′

√
logm

m
.

To see this, take compact SVD of G = USV T , U is m× r, S and V are both r × r. In

particular, U is orthonormal and V is a rotation matrix. Let N = UV T , then N is an

orthonormal basis of G. Furthermore, G − N = USV T − UV T = U(S − Ir×r)V T

implies ‖G−N‖ = |σmax(G)− 1|.

Then using the fact that G1 is again Gaussian random matrix, we apply Lemma A.3

on G1 to obtain

Pr

(
σmin(G1) ≤

√
k

m
−
√

r

m
− C ′

√
logm

m

)
≤ C ′m−10.

This implies that with probability 1− 2C ′m−10

σmin(N1) ≥ σmin(G1)− ‖G1 −N1‖ ≥
√
k

m
− 2

√
r

m
− 2C ′

√
logm

m
.
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A.5 Proof of Proposition 2.4: Weak Robustness for Mass At-

tack

Proof of Proposition 2.4. First observe ‖(Egnd⊥)‖F ≤ k
√
mne. Note by assumption,

sample rate in E block is capped at 3p/2, thus ‖PΩ(Egnd
⊥

)‖F ≤ k
√

3p
2 mne. Apply

Theorem 2.1, we obtained Frobenious norm error:

‖∆‖F ≤
1
√
p
‖PΩ(Egnd

⊥
)‖F + ‖(Egnd⊥)‖F + |τ(Ω)|

= (

√
3

2
+ 1)k

√
mne + Ck

√
m(n+ ne)

(
nr log(n)

|Ω|

) 1
4

.

Simplify the equation by absorbing small terms into constant, we get:

‖∆‖F ≤ Ck

[
√
mne +

(
n3r log(n)

p

) 1
4

]

By Theorem 2.3:

‖Pgnd − PN
∗‖ ≤

√
2
‖∆‖
δ

= ρ.

and δ is greater than σr − σ1(Egnd
⊥

).

With condition number κ:

σr =
‖Y ‖2
κ
≥ ‖Y ‖F

κ
√
r

=

√
mnE|Yi,j |2
κ
√
r

(A.4)

≥
√
mnE|Yi,j |2σ1(Egnd

⊥
)

κ
√
r‖Egnd⊥‖F

≥
√
nE|Yi,j |2σ1(Egnd

⊥
)

kκ
√
r
√
ne

≥ σ1(Egnd
⊥

)

√
nE|Yi,j |2
k2κ2r

/ne. (A.5)

Substitute ne into (A.5), we get σr ≥ n1/4σ1(Egnd
⊥

), or rather σ1(Egnd
⊥

) ≤
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σr/n
1/4. Together with (A.4),

δ ≥ (1− 1/n1/4)σr =
(1− 1/n1/4)

√
mnE|Yi,j |2

κ
√
r

It follows that

ρ =
‖∆‖F
δ
≤
Ck

[
√
mne +

(
n3r log(n)

p

) 1
4

]
· κ
√
r

(1− 1/n1/4)
√
mnE|Yi,j |2

≤ C

[
1

n1/4
+

kκ√
E|Yi,j |2

(
r3 log(n)

pn

) 1
4

]
(A.6)

≤ Ckκ√
E|Yi,j |2

(
r3 log(n)

pn

)1/4

. (A.7)

To reach (A.6), we substitute ne with its maximum value, which cancels out the

E|Yi,j |2, κ,
√
r in δ and k as well. (1 − 1/n1/4) is absorbed into the constant C. In

the second term in the square brackets, n3/4 is canceled out by (mn)1/2 with the ratio√
n/m absorbed into constant term. Also note that k√

E|Yi,j |2
> 1, κ > 1, r

3 log(n)
p > 1,

so the second term is larger than 1
n1/4 and we may reach (A.7).

Apply Theorem 2.4:

‖y∗ − ygnd‖ ≤ 2Ckκ‖y‖
σmin

√
E|Yi,j |2

(
r3 log(n)

pn

)1/4

, (A.8)

‖e∗ − egnd‖ ≤ 2Ckκ‖egnd⊥‖
σmin

√
E|Yi,j |2

(
r3 log(n)

pn

)1/4

+
‖egnd⊥‖
σmin

=
C‖egnd⊥‖
σmin

. (A.9)

Now let us deal with σmin. By assumption, all user have sample rate of at least
p
2 . By Proposition 2.2 and union bound, we confirm that for some constant c, with

probability greater than 1 − cn−10, σmin ≥
√

p
2 (relaxed by another

√
2 to get rid of

the small terms) for all users.
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Summing (A.8) over all users, we get:

‖Y ∗ − Y ‖F

=

√ ∑
allusers

‖y∗ − ygnd‖2 =
2Ckκ

σmin
√

E|Yi,j |2

(
r3 log(n)

pn

)1/4√ ∑
allusers

‖y‖2

≤ 2
√

2Ckκ√
pE|Yi,j |2

(
r3 log(n)

pn

)1/4√
mnE|Yi,j |2 ≤ C1κk

√
mn

(
r3 log(n)

p3n

)1/4

,

so RMSEY ≤ C1κk
(
r3 log(n)
p3n

)1/4
is proved.

Similarly from (A.9), RMSEE ≤ C ‖E
gnd⊥‖F√
mne

√
2
p ≤

C2k√
p .

A.6 SVD Perturbation Theory

The following theorems in SVD Perturbation Theory [129] are applied in our proof of

the subspace stability bound (Theorem 2.3).

1. Weyl’s Theorem gives a perturbation bound for singular values.

Lemma A.4 (Weyl).

|σ̂i − σi| ≤ ‖E‖2, i = 1, ..., n.

2. Wedin’s Theorem provides a perturbation bound for singular subspace. To state

the Lemma, we need to re-express the singular value decomposition of Y and Ŷ in

block matrix form:

Y =
(
L1 L2 L3

)
Σ1 0

0 Σ2

0 0


 R1

R2

 (A.10)

Ŷ =
(
L̂1 L̂2 L̂3

)
Σ̂1 0

0 Σ̂2

0 0


 R̂1

R̂2

 (A.11)
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Let Φ denotes the canonical angles between span(L1) and span(L̂1); let Θ denotes

the canonical angle matrix between span(R1) and span(R̂1). Also, define residuals:

Z = Y R̂T1 − L̂1Σ̂1, S = Y T L̂1 − R̂T1 Σ̂1.

The Wedin’s Theorem bounds Φ and Θ together using the Frobenious norm of Z and

S.

Lemma A.5 (Wedin). If there is a δ > 0 such that

min |σ(Σ̂1)− σ(Σ2)| ≥ δ, (A.12)

minσ(Σ̂1) ≥ δ, (A.13)

then √
‖ sin Φ‖2F + ‖ sin Θ‖2F ≤

√
‖Z‖2F + ‖S‖2F

δ
(A.14)

Besides Frobenious norm, the same result goes for ‖·‖2, the spectral norm of everything.

Lemma A.5(Wedin’s Theorem) says that if the two separation conditions on singular

value (A.12) and (A.13) are satisfied, we can bound the impact of perturbation on the

left and right singular subspace simultaneously.

A.7 Discussion on Box Constraint in (2.1)

The box constraint is introduced due to the proof technique used in Section 2.3. We

suspect that a more refined analysis may be possible to remove such a constraint. As for

results of other sections, such constraint is not needed. Yet, it does not hurt to impose

such constraint to (2.3), which will lead to similar results of subspace stability (though

much more tedious in proof). Moreover, notice that for sufficiently large k, the solution

will remain unchanged with or without the constraint.
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On the other hand, we remark that such the box constraint is most natural for the

application in collaborative filtering. Since user ratings are usually bounded in a pre-

defined range. In real applications, either such box constraint or regularization will be

needed to avoid over fitting to the noisy data. This is true regardless whether formulation

(2.1) or (2.3) is used.
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A.8 Table of Symbols and Notations

For easy reference of the readers, we compiled the following table.

Table A.1: Table of Symbols and Notations

Y m× n ground truth rating matrix.
E m× n error matrix, in Section 2.6 dummy user matrix.
Ŷ Noisy observation matrix Ŷ = Y + E.
Y ∗, U∗, V ∗ Optimal solution of (2.1) Y ∗ = U∗V ∗T

(·)∗, (̂·), (·)gnd Refer to optimal solution, noisy observation, ground truth.
i, j Item index and user index
r Rank of ground truth matrix
Ω The set of indices (i, j) of observed entries.
|Ω| Cardinality of set Ω.
PΩ The projection defined in (2.2).
k [−k, k] Valid range of user rating.
∆ Frobenious norm error ‖Y ∗ − Y ‖F
N,N⊥ Denote subspace and complement subspace
N,N⊥ Orthonormal basis matrix of N,N⊥

Ni Shortened N with only observed rows in column i
yi Observed subset of column i
PN Projection matrix to subspace N

Pi Projection matrix to shortened subspace span(Ni)
τ The gap of RMSE residual in the proof of Theorem 2.1.
L, L̂ Loss function in Theorem 2.2.
ρ Bounded value of ‖ sin(Θ)‖ of Theorem 2.3.
δ The rth singular value of Y ∗ used in Theorem 2.3.
Sr The collection of all rank-r m× n matrices.
µ Coherence parameter in Proposition 2.1
smax Sparse parameter in Proposition 2.3
κ Matrix condition number used in Proposition 2.4
p Sample rate |Ω|

m(n+ne) used in Proposition 2.4
C, c, C1, C2, C

′
Numerical constants

σi, σmin, σmax ith, minimum, maximum singular value.
θi ith canonical angle.
Θ,Φ Diagonal canonical angle matrix.
| · | Either absolute value or cardinality.
‖ · ‖2 2-norm of vector/spectral norm of matrix.
‖ · ‖F Frobenious norm of a matrix.
‖ · ‖ In Theorem 2.3 means both Frobenious norm and

spectral norm, otherwise same as ‖ · ‖2.
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Appendix B

Appendices for Chapter 3

B.1 Proof of Theorem 3.1

Our main deterministic result Theorem 3.1 is proved by duality. We first establish a set

of conditions on the optimal dual variable of D0 corresponding to all primal solutions

satisfying self-expression property. Then we construct such a dual variable ν, hence

certify that the optimal solution of P0 satisfies the LASSO Subspace Detection Property.

B.1.1 Optimality Condition

Define general convex optimization:

min
c,e
‖c‖1 +

λ

2
‖e‖2 s.t. x = Ac+ e. (B.1)

We may state an extension of the Lemma 7.1 in Soltanolkotabi and Candes’s SSC Proof.

Lemma B.1. Consider a vector y ∈ Rd and a matrix A ∈ Rd×N . If there exists triplet

(c, e, ν) obeying y = Ac+ e and c has support S ⊆ T , furthermore the dual certificate

vector ν satisfies

ATs ν = sgn(cS), ν = λe,

‖ATT∩Scν‖∞ ≤ 1, ‖ATT cν‖∞ < 1,

then all optimal solution (c∗, e∗) to (B.1) obey c∗T c = 0.
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Proof. For optimal solution (c∗, e∗), we have:

‖c∗‖1 +
λ

2
‖e∗‖2 = ‖c∗S‖1 + ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +

λ

2
‖e∗‖2

≥‖cS‖1 + 〈sgn(cS), c∗S − cS〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e‖2 + 〈λe, e∗ − e〉

=‖cS‖1 + 〈ν,AS(c∗S − cS)〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e‖2 + 〈ν, e∗ − e〉

=‖cS‖1 +
λ

2
‖e‖2 + ‖c∗T∩Sc‖1 − 〈ν,AT∩Sc(c∗T∩Sc)〉+ ‖c∗T c‖1 − 〈ν,AT c(c∗T c)〉

(B.2)

To see λ
2‖e
∗‖2 ≥ λ

2‖e‖
2+〈λe, e∗−e〉, note that right hand side equals to λ

(
−1

2e
T e+ (e∗)T e

)
,

which takes a maximal value of λ
2‖e
∗‖2 when e = e∗. The last equation holds because

both (c, e) and (c∗, e∗) are feasible solution, such that 〈ν,A(c∗ − c)〉 + 〈ν, e∗ − e〉 =

〈ν,Ac∗ + e∗ − (Ac+ e)〉 = 0. Also, note that ‖cS‖1 + λ
2‖e‖

2 = ‖c‖1 + λ
2‖e‖

2.

With the inequality constraints of ν given in the Lemma statement, we know

〈ν,AT∩Sc(c∗T∩Sc)〉 = 〈ATT∩Scν, (c∗T∩Sc)〉 ≤ ‖ATT∩Scν‖∞‖c∗T∩Sc‖1 ≤ ‖c∗T∩Sc‖1.

Substitute into (B.2), we get:

‖c∗‖1 +
λ

2
‖e∗‖2 ≥ ‖c‖1 +

λ

2
‖e‖2 + (1− ‖ATT cν‖∞)‖c∗T c‖1,

where (1− ‖ATT cν‖∞) is strictly greater than 0.

Using the fact that (c∗, e∗) is an optimal solution, ‖c∗‖1 + λ
2‖e
∗‖2 ≤ ‖c‖1 + λ

2‖e‖
2.

Therefore, ‖c∗T c‖1 = 0 and (c, e) is also an optimal solution. This concludes the proof.

Apply Lemma B.1 (same as the Lemma 3.1 in Section 3.4) with x = x
(`)
i and

A = X−i, we know that if we can construct a dual certificate ν such that all conditions

are satisfied with respect to a feasible solution (c, e) and c satisfy SEP, then the all

optimal solution of (3.6) satisfies SEP, in other word ci =
[
0, ..., 0, (c

(`)
i )T , 0, ..., 0

]T
.

By definition of LASSO detection property, we must further ensure ‖c(`)
i ‖1 6= 0
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to avoid the trivial solution that x(`)
i = e∗. This is a non-convex constraint and hard

to impose. To this matter, we note that given sufficiently large λ, ‖c(`)
i ‖1 6= 0 never

occurs.

Our strategy of avoiding this trivial solution is hence showing the existence of a λ

such that the dual optimal value is smaller than the trivial optimal value, namely:

OptV al(D0) = 〈xi, ν〉 −
1

2λ
‖ν‖2 < λ

2
‖x(`)

i ‖
2. (B.3)

B.1.2 Constructing candidate dual vector ν

A natural candidate of the dual solution ν is the dual point corresponding to the optimal

solution of the following fictitious optimization program.

P1 : min
c
(`)
i ,ei

‖c(`)
i ‖1 +

λ

2
‖ei‖2 s.t. y

(`)
i + zi = (Y

(`)
−i + Z

(`)
−i )c

(`)
i + ei (B.4)

D1 : max
ν
〈x(`)
i , ν〉 − 1

2λ
νT ν s.t. ‖(X(`)

−i )
T ν‖∞ ≤ 1. (B.5)

This optimization is feasible because y(`)
i ∈ span(Y

(`)
−i ) = S` so any c(`)

i obeying

y
(`)
i = Y

(`)
−i c

(`)
i and corresponding ei = zi−Z(`)

−i c
(`)
i is a pair of feasible solution. Then

by strong duality, the dual program is also feasible, which implies that for every optimal

solution (c, e) of (B.4) with c supported on S, there exist ν satisfying:
‖((Y (`)

−i )TSc + (Z
(`)
−i )

T
Sc)ν‖∞ ≤ 1, ν = λe,

((Y
(`)
−i )TS + (Z

(`)
−i )

T
S )ν = sgn(cS).


This construction of ν satisfies all conditions in Lemma B.1 with respect to


ci = [0, ..., 0, c

(`)
i , 0, ..., 0] with c(`)

i = c,

ei = e,

(B.6)

except ∥∥[X1, ..., X`−1, X`+1, ..., XL]T ν
∥∥
∞ < 1,
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i.e., we must check for all data point x ∈ X \ X`,

|〈x, ν〉| < 1. (B.7)

Showing the solution of (B.5) ν also satisfies (B.7) gives precisely a dual certificate as

required in Lemma B.1, hence implies that the candidate solution (B.6) associated with

optimal (c, e) of (B.4) is indeed the optimal solution of (3.6).

B.1.3 Dual separation condition

In this section, we establish the conditions required for (B.7) to hold. The idea is to

provide an upper bound of |〈x, ν〉| then make it smaller than 1.

First, we find it appropriate to project ν to the subspace S` and its complement

subspace then analyze separately. For convenience, denote ν1 := PS`(ν), ν2 := PSc`
(ν).

Then

|〈x, ν〉| =|〈y + z, ν〉| ≤ |〈y, ν1〉|+ |〈y, ν2〉|+ |〈z, ν〉|

≤µ(X`)‖ν1‖+ ‖y‖‖ν2‖| cos(∠(y, ν2))|+ ‖z‖‖ν‖| cos(∠(z, ν))|.
(B.8)

To see the last inequality, check that by Definition 3.3, |〈y, ν1
‖ν1‖〉| ≤ µ(X`).

Since we are considering general (possibly adversarial) noise, we will use the re-

laxation | cos(θ)| ≤ 1 for all cosine terms (a better bound under random noise will

be given later). Now all we have to do is to bound ‖ν1‖ and ‖ν2‖ (note ‖ν‖ =√
‖ν1‖2 + ‖ν2‖2 ≤ ‖ν1‖+ ‖ν2‖).

B.1.3.1 Bounding ‖ν1‖

We first bound ‖ν1‖ by exploiting the feasible region of ν1 in (B.5).

‖(X(`)
−i )

T ν‖∞ ≤ 1
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is equivalent to xTi ν ≤ 1 for every xi that is the column of X(`)
−i . Decompose the

condition into

yTi ν1 + (PS`zi)
T ν1 + zTi ν2 ≤ 1.

Now we relax each of the term into

yTi ν1 + (PS`zi)
T ν1 ≤ 1− zTi ν2 ≤ 1 + δ‖ν2‖. (B.9)

The relaxed condition contains the feasible region of ν1 in (B.5).

It turns out that the geometric interpretation of the relaxed constraints gives a upper

bound of ‖ν1‖.

Definition B.1 (polar set). The polar set Ko of set K ∈ Rd is defined as

Ko =
{
y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ K

}
.

By the polytope geometry, we have

‖(Y (`)
−i + PS`(Z

(`)
−i ))

T ν1‖∞ ≤ 1 + δ‖ν2‖

⇔ ν1 ∈

[
P

(
Y

(`)
−i + PS`(Z

(`)
−i )

1 + δ‖ν2‖

)]o
:= To.

(B.10)

Now we introduce the concept of circumradius.

Definition B.2 (circumradius). The circumradius of a convex body P, denoted byR(P),

is defined as the radius of the smallest Euclidean ball containing P.

The magnitude ‖ν1‖ is bounded by R(To). Moreover, by the the following lemma

we may find the circumradius by analyzing the polar set of To instead. By the property

of polar operator, polar of a polar set gives the tightest convex envelope of original set,

i.e., (Ko)o = conv(K). Since T = conv

(
±Y

(`)
−i +PS`

(Z
(`)
−i )

1+δ‖ν2‖

)
is convex in the first place,

the polar set of To is essentially T.
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Lemma B.2. For a symmetric convex body P, i.e. P = −P, inradius of P and circum-

radius of polar set of P satisfy:

r(P)R(Po) = 1.

Lemma B.3. Given X = Y + Z, denote ρ := maxi ‖PSzi‖, furthermore Y ∈ S where

S is a linear subspace, then we have:

r(ProjS(P(X))) ≥ r(P(Y ))− ρ

Proof. First note that projection to subspace is a linear operator, hence ProjS(P(X)) =

P(PSX). Then by definition, the boundary set of P(PSX) is

B := {y | y = PSXc; ‖c‖1 = 1} .

Inradius by definition is the largest ball containing in the convex body, hence r(P(PSX)) =

miny∈B ‖y‖. Now we provide a lower bound of it:

‖y‖ ≥ ‖Y c‖ − ‖PSZc‖ ≥ r(P(Y ))−
∑

j
‖PSzj‖|cj | ≥ r(P(Y ))− ρ‖c‖1.

This concludes the proof.

A bound of ‖ν1‖ follows directly from Lemma B.2 and Lemma B.3:

‖ν1‖ ≤(1 + δ‖ν2‖)R(P(Y
(`)
−i + PS`(Z

(`)
−i )))

=
1 + δ‖ν2‖

r(P(Y
(`)
−i + PS`(Z

(`)
−i ))

=
1 + δ‖ν2‖

r(ProjS`(P(X
(`)
−i )))

≤ 1 + δ‖ν2‖
r
(
Q`−i
)
− δ1

. (B.11)

This bound unfortunately depends ‖ν2‖. This can be extremely loose as in general, ν2

is not well-constrained (see the illustration in Figure B.2 and B.3). That is why we need

to further exploit the fact ν is the optimal solution of (B.5), which provides a reasonable

bound of ‖ν2‖.
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B.1.3.2 Bounding ‖ν2‖

By optimality condition: ν = λei = λ(xi − X−ic) and ν2 = λPS⊥`
(xi − X−ic) =

λPS⊥`
(zi − Z−ic) so

‖ν2‖ ≤ λ
(
‖PS⊥`

zi‖+ ‖PS⊥`
Z−ic‖

)
≤ λ(‖PS⊥`

zi‖+
∑
j∈S
|cj |‖PS⊥`

zj‖)

≤ λ(‖c‖1 + 1)δ2 ≤ λ(‖c‖1 + 1)δ (B.12)

Now we will bound ‖c‖1. As c is the optimal solution, ‖c‖1 ≤ ‖c‖1 + λ
2‖e‖

2 ≤

‖c̃‖1 + λ
2‖ẽ‖

2 for any feasible solution (c̃, ẽ). Let c̃ be the solution of

min
c
‖c‖1 s.t. y

(`)
i = Y

(`)
−i c, (B.13)

then by strong duality, ‖c̃‖1 = maxν

{
〈ν, y(`)

i 〉 | ‖[Y
(`)
−i ]T ν‖∞ ≤ 1

}
. By Lemma B.2,

optimal dual solution ν̃ satisfies ‖ν̃‖ ≤ 1
r(Q`−i)

. It follows that ‖c̃‖1 = 〈ν̃, y(`)
i 〉 =

‖ν̃‖‖y(`)
i ‖ ≤

1
r(Q`−i)

.

On the other hand, ẽ = zi−Z(`)
−i c̃, so ‖ẽ‖2 ≤ (‖zi‖+

∑
j ‖zj‖|c̃j |)2 ≤ (δ+‖c̃‖1δ)2,

thus: ‖c‖1 ≤ ‖c̃‖1 + λ
2‖ẽ‖

2 ≤ 1
r(Q`−i)

+ λ
2 δ

2

[
1 + 1

r(Q`−i)

]2

. This gives the bound we

desired:

‖ν2‖ ≤ λ

 1

r(Q`−i)
+
λ

2
δ2

[
1 +

1

r(Q`−i)

]2

+ 1

 δ

= λδ

(
1

r(Q`−i)
+ 1

)
+
δ

2

{
λδ

(
1

r(Q`−i)
+ 1

)}2

.

By choosing λ satisfying

λδ2 ≤ 2

1 + 1/r(Q`−i)
, (B.14)

the bound can be simplified to:

‖ν2‖ ≤ 2λδ

(
1

r(Q`−i)
+ 1

)
(B.15)
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B.1.3.3 Conditions for |〈x, ν〉| < 1

Putting together (B.8), (B.11) and (B.15), we have the upper bound of |〈x, ν〉|:

|〈x, ν〉| ≤ (µ(X`) + ‖PS`z‖)‖ν1‖+ (‖y‖+ ‖PS⊥`
z‖)‖ν2‖

≤ µ(X`) + δ1

r
(
Q`−i
)
− δ1

+

(
(µ(X`) + δ1)δ

r
(
Q`−i
)
− δ1

+ 1 + δ

)
‖ν2‖

≤ µ(X`) + δ1

r
(
Q`−i
)
− δ1

+ 2λδ(1 + δ)

(
1

r(Q`−i)
+ 1

)
+

2λδ2(µ(X`) + δ1)

r
(
Q`−i
)
− δ1

(
1

r(Q`−i)
+ 1

)

For convenience, we further relax the second r(Q`−i) into r(Q`−i) − δ1. The dual

separation condition is thus guaranteed with

µ(X`) + δ1 + 2λδ(1 + δ) + 2λδ2(µ(X`) + δ1)

r
(
Q`−i
)
− δ1

+2λδ(1 + δ) +
2λδ2(µ(X`) + δ1)

r
(
Q`−i
)
(r
(
Q`−i
)
− δ1)

< 1.

Denote ρ := λδ(1 + δ), assume δ < r
(
Q`−i
)
, (µ(X`) + δ1) < 1 and simplify the form

with

2λδ2(µ(X`) + δ1)

r
(
Q`−i
)
− δ1

+
2λδ2(µ(X`) + δ1)

r
(
Q`−i
)
(r
(
Q`−i
)
− δ1)

<
2ρ

r
(
Q`−i
)
− δ1

,

we get a sufficient condition

µ(X`) + 3ρ+ δ1 < (1− 2ρ) (r(Q`−i)− δ1). (B.16)

To generalize (B.16) to all data of all subspaces, the following must hold for each ` =

1, ..., k:

µ(X`) + 3ρ+ δ1 < (1− 2ρ)

(
min

{i:xi∈X(`)}
r(Q

(`)
−i)− δ1

)
. (B.17)

This gives a first condition on δ and λ, which we call it “dual separation condition”

under noise. Note that this reduces to exactly the geometric condition in [124]’s Theo-

rem 2.5 when δ = 0.
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B.1.4 Avoid trivial solution

In this section we provide sufficient conditions on λ such that trivial solution c = 0,

e = x
(`)
i is not the optimal solution. For any optimal triplet (c, e, ν) we have ν = λe,

a condition: ‖ν‖ < λ‖x(`)
i ‖ implies that optimal ‖e‖ < ‖x(`)

i ‖, so e 6= x
(`)
i . By the

equality constraint, X(`)
−i c = x

(`)
i − e 6= 0, therefore ‖c‖1 6= 0. Now we will establish

the condition on λ such that ‖ν‖ < λ‖x(`)
i ‖.

An upper bound of ‖ν‖ and a lower bound of λ‖x(`)
i ‖ are readily available:

‖ν‖ ≤ ‖ν1‖+ ‖ν2‖ ≤
1

r
(
Q`−i
)
− δ1

+ 2λδ

(
1

r(Q`−i)
+ 1

)(
1 +

δ

r
(
Q`−i
)
− δ1

)

≤ 1 + 3λδ + 2λδ2

r
(
Q`−i
)
− δ1

+ 2λδ,

λ‖x(`)
i ‖ ≥ λ(‖y(`)

i ‖ − ‖z
(`)
i ‖) ≥ λ(1− δ).

So the sufficient condition on λ such that solution is non-trivial is

1 + 3λδ + 2λδ2

r
(
Q`−i
)
− δ1

+ 2λδ < λ(1− δ).

Reorganize the condition, we reach

λ >
1

(r
(
Q`−i
)
− δ1)(1− 3δ)− 3δ − 2δ2

. (B.18)

For the inequality operations above to be valid, we need:

 r
(
Q`−i
)
− δ1 > 0

(r
(
Q`−i
)
− δ1)(1− 3δ)− 3δ − 2δ2 > 0

Relax δ1 to δ and solve the system of inequalities, we get:

δ <
3r + 4−

√
9r2 + 20r + 16

2
=

2r

3r + 4 +
√

9r2 + 20r + 16
.

Use
√

9r2 + 20r + 16 ≤ 3r + 4 and impose the constraint for all x(`)
i , we choose to

171



APPENDICES FOR CHAPTER 3

impose a stronger condition for every ` = 1, ..., L:

δ <
mini r

(
Q`−i
)

3 mini r
(
Q`−i
)

+ 4
. (B.19)

B.1.5 Existence of a proper λ

Basically, (B.17), (B.18) and (B.14) must be satisfied simultaneously for all ` = 1, ..., L.

Essentially (B.18) gives condition of λ from below, the other two each gives a condition

from above. Denote r` := min{i:xi∈X(`)} r(Q
(`)
−i), µ` := µ(X`), the condition on λ is:


λ > max`

1
(r`−δ1)(1−3δ)−3δ−2δ2

λ < min`

(
r`−µ`−2δ1

δ(1+δ)(3+2r`−2δ1) ∨
2r`

δ2(r`+1)

)
Note that on the left

max
`

{
1

(r` − δ1)(1− 3δ)− 3δ − 2δ2

}
=

1

(max` r` − δ1)(1− 3δ)− 3δ − 2δ2
.

On the right

min
`

{
2r`

δ2(r` + 1)

}
=

2 min` r`
δ2(min` r` + 1)

.

Denote r = min` r`, it suffices to guarantee for each `:


λ > 1

(r−δ1)(1−3δ)−3δ−2δ2

λ < r`−µ`−2δ1
δ(1+δ)(3+2r`−2δ1) ∨

2r
δ2(r+1)

(B.20)

To understand this, when δ and µ is small then any λ values satisfying Θ(r) < λ <

Θ(r/δ) will satisfy separation condition. We will now derive the condition on δ such

that (B.20) is not an empty set.
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B.1.6 Lower bound of break-down point

(B.19) gives one requirement on δ and the range of (B.20) being non-empty gives an-

other. Combining these two leads to lower bound of the breakdown point. In other

word, the algorithm will be robust to arbitrary corruptions with magnitude less than this

point for some λ. Again, we relax δ1 to δ in (B.20) to get:


1

(r−δ)(1−3δ)−3δ−2δ2
< r`−µ`−2δ

δ(1+δ)(3+2r`−2δ)

1
(r−δ)(1−3δ)−3δ−2δ2

< 2r
δ2(r+1)

.

The first inequality in standard form is:

Aδ3 +Bδ2 + Cδ +D < 0 with

A = 0

B = −(6r − r` + 7− µ`)

C = 3r`r + 6r` + 2r − 3µ`r + 3− 4µ`

D = −r(r` − µ`)

This is an extremely complicated 3rd order polynomial. We will try to simplify it im-

posing a stronger condition. First extract and regroup µ` in first three terms, we get

(δ2 − 4δ − 3rδ)µ` which is negative, so we drop it. Second we express the remaining

expression using:

f(r, δ)δ < r(r − µ),

where f(r, δ) = −(6r − r` + 7)δ + 3r`r + 6r` + 2r + 2. Note that since δ < 1, we

can write f(r, δ) ≤ f(r, 0) = 3r`r + 6r` + 2r + 2 ≤ 3r2
` + 8r` + 2. Thus, a stronger

condition on δ is established:

δ <
r(r` − µ`)

3r2
` + 8r` + 2

(B.21)
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The second inequality in standard form is:

(1− r)δ2 + (6r2 + 8r)δ − 2r2 < 0

By definition r < 1, we solve the inequality and get:


δ > −3r2−4r−r

√
9r2+22r+18

1−r

δ < −3r2−4r+r
√

9r2+22r+18
1−r

The lower constraint is always satisfied. Rationalized the expression of the upper con-

straint, 1− r gets cancelled out:

δ <
2r2

3r2 + 4r + r
√

9r2 + 22r + 18
.

It turns out that (B.19) is sufficient for the inequality to hold. This is by

√
9r2 + 22r + 18 <

√
9r2 + 24r + 16 = 3r + 4.

Combine with (B.21) we reach the overall condition:

δ <

{
r(r` − µ`)

3r2
` + 8r` + 2

}
∨ r

3r + 4
=

r(r` − µ`)
3r2
` + 8r` + 2

. (B.22)

The first expression is always smaller because:

r

3r + 4
≥ rr`

3rr` + 4r`
≥ rr`

3rr` + 4r` + 3r` + 2
≥ r(r` − µ`)

3r2
` + 8r` + 2

.

Verify that when (B.22) is true for all `, there exists a single λ for solution of (3.2)

to satisfy subspace detection property for all xi. The proof of Theorem 3.1 is now

complete.
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B.2 Proof of Randomized Results

In this section, we provide proof to the Theorems about the three randomized models:

• Determinitic data+random noise

• Semi-random data+random noise

• Fully random

To do this, we need to bound δ1, cos(∠(z, ν)) and cos(∠(y, ν2)) when the Z fol-

lows Random Noise Model, such that a better dual separation condition can be obtained.

Moreover, for Semi-random and Random data model, we need to bound r(Q(`)
−i) when

data samples from each subspace are drawn uniformly and bound µ(X`) when sub-

spaces are randomly generated.

These requires the following Lemmas.

Lemma B.4 (Upper bound on the area of spherical cap). Let a ∈ Rn be a random

vector sampled from a unit sphere and z is a fixed vector. Then we have:

Pr
(
|aT z| > ε‖z‖

)
≤ 2e

−nε2
2

This Lemma is extracted from an equation in page 29 of Soltanolkotabi and Candes

[124], which is in turn adapted from the upper bound on the area of spherical cap in Ball

[6]. By definition of Random Noise Model, zi has spherical symmetric, which implies

that the direction of zi distributes uniformly on an n-sphere. Hence Lemma B.4 applies

whenever an inner product involves z.

As an example, , we write the following lemma

Lemma B.5 (Properties of Gaussian noise). For Gaussian random matrix Z ∈ Rn×N ,

if each entry Zi,j ∼ N(0, σ√
n

), then each column zi satisfies:

1. Pr(‖zi‖2 > (1 + t)σ2) ≤ e
n
2

(log(t+1)−t)

2. Pr(|〈zi, z〉| > ε‖zi‖‖z‖) ≤ 2e
−nε2

2

175



APPENDICES FOR CHAPTER 3

where z is any fixed vector(or random generated but independent to zi).

Proof. The second property follows directly from Lemma B.4 as Gaussian vector has

uniformly random direction.

To show the first property, we observe that the sum of n independent square Gaus-

sian random variables follows χ2 distribution with d.o.f n, in other word, we have

‖zi‖2 = |Z1i|2 + ...+ |Zni|2 ∼
σ2

n
χ2(n).

By Hoeffding’s inequality, we have an approximation of its CDF [44], which gives us

Pr(‖zi‖2 > ασ2) = 1− CDFχ2
n
(α) ≤ (αe1−α)

n
2 .

Substitute α = 1 + t, we get exactly the concentration statement.

By Lemma B.5, δ = maxi ‖zi‖ is bounded with high probability. δ1 has an even

tighter bound because each S` is low-rank. Likewise, cos(∠(z, ν)) is bounded to a

small value with high probability. Moreover, since ν = λe = λ(xi − X−ic), ν2 =

λPS⊥`
(zi − Z−ic), thus ν2 is merely a weighted sum of random noise in a (n − d`)-

dimensional subspace. Consider y a fixed vector, cos(∠(y, ν2)) is also bounded with

high probability.

Replace these observations into (B.7) and the corresponding bound of ‖ν1‖ and

‖ν2‖. We obtained the dual separation condition for under Random noise model.

Lemma B.6 (Dual separation condition under random noise). Let ρ := λδ(1 + δ) and

ε :=

√
6 logN + 2 log max` d`

n−max` d`
≤ C log(N)√

n

for some constant C. Under random noise model, if for each ` = 1, ..., L

µ(X`) + 3ρε+ δε ≤ (1− 2ρε)(max
i
r(Q

(`)
−i)− δε),
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then dual separation condition (B.7) holds for all data points with probability at least

1− 7/N .

Proof. Recall that we want to find an upper bound of |〈x, ν〉|.

|〈x, ν〉| ≤µ‖ν1‖+ ‖y‖‖ν2‖| cos(∠(y, ν2))|+ ‖z‖‖ν‖| cos(∠(z, ν))| (B.23)

Here we will bound the two cosine terms and δ1 under random noise model.

As discussed above, directions of z and ν2 are independently and uniformly dis-

tributed on the n-sphere. Then by Lemma B.4,

Pr

(
cos(∠(z, ν)) >

√
6 logN
n

)
≤ 2

N3

Pr
(

cos(∠(y, ν2)) >
√

6 logN
n−d`

)
≤ 2

N3

Pr

(
cos(∠(z, ν2)) >

√
6 logN
n

)
≤ 2

N3

Using the same technique, we provide a bound for δ1. Given orthonormal basis U of

S`, PS`z = UUT z, then

‖UUT z‖ = ‖UT z‖ ≤
∑

i=1,...,d`

|UT:,iz|.

Apply Lemma B.4 for each i , then apply union bound, we get:

Pr

(
‖PS`z‖ >

√
2 log d` + 6 logN

n
δ

)
≤ 2

N3

Since δ1 is the worse case bound for all L subspace and all N noise vector, then a union

bound gives:

Pr

(
δ1 >

√
2 log d` + 6 logN

n
δ

)
≤ 2L

N2

Moreover, we can find a probabilistic bound for ‖ν1‖ too by a random variation of (B.9)
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which is now

yTi ν1 + (PS`zi)
T ν1 ≤ 1− zTi ν2 ≤ 1 + δ2‖ν2‖| cos∠(zi, ν2)|. (B.24)

Substituting the upper bound of the cosines, we get:

|〈x, ν〉| ≤ µ‖ν1‖+ ‖y‖‖ν2‖

√
6 logN

n− d`
+ ‖z‖‖ν‖

√
6 logN

n

‖ν1‖ ≤
1 + δ‖ν2‖

√
6 logN
n

r(Q`−i)− δ1
, ‖ν2‖ ≤ 2λδ

(
1

r(Q`−i)
+ 1

)

Denote r := r(Q`−i), ε :=
√

6 logN+2 log max` d`
n−max` d`

and µ := µ(X`) we can further relax

the bound into

|〈x, ν〉| ≤µ+ δε

r − εδ
+

(µ+ δε)2δ2ε

r − εδ

(
1

r
+ 1

)
+ 2λδε

(
1

r
+ 1

)
+ 2λδ2ε

(
1

r
+ 1

)
≤µ+ δε+ 3λδ(1 + δ)ε

r − εδ
+ 2λδ(1 + δ)ε.

Note that here in order to get rid of the higher order term 1
r(r−εδ) , we used δ < r and

µ+ δε < 1 to construct (µ+δε)δ2ε
r(r−δε) < δε

r−δε as in the proof of Theorem 3.1. Now impose

the dual detection constraint on the upper bound, we get:

2λδ(1 + δ)ε+
µ+ δε+ 3λδ(1 + δ)ε

r − δε
< 1.

Replace ρ := λδ(1 + δ) and reorganize the inequality, we reach the desired condition:

µ+ 3ρε+ δε ≤ (1− 2ρε)(r − δε).

There are N2 instances for each of the three events related to the consine value, apply

union bound we get the failure probability 6
N + 2L

N2 ≤ 7
N . This concludes the proof.
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B.2.1 Proof of Theorem 3.2

Lemma B.6 has already provided the separation condition. The things left are to find

the range of λ and update the condition of δ.

The range of λ: Follow the same arguments in Section B.1.4 and Section B.1.5, re-

derive the upper bound from the relationship in Lemma B.6 and substitute the tighter

bound of δ1 where applicable. Again let r` = mini r(Q
`
−i), µ` = µ(X`) and r =

min` r`. We get the range of λ under random noise model:


λ >

1

(r − δε)(1− 3δ)− 3δ − 2δ2

λ < min
`=1,...,L

{
r` − µ` − 2δε

εδ(1 + δ)(3 + 2r` − 2δε)

}
∨ 2r

δ2(r + 1)

(B.25)

Remark B.1. A critical difference from the deterministic noise model is that now under

the paradigm of small µ and δ, if δ > ε, the second term in the upper bound is actually

tight. Then the valid range of λ is expanded an order to Θ(1/r) ≤ λ < Θ(r/δ2).

The condition of δ: Re-derive (B.19) using δ1 ≤ εδ, we get:

δ <
r

3r + 3 + ε
(B.26)

Likewise, we re-derive (B.21) from the new range of λ in (B.25). The first inequality

in standard form is,

Aδ3 +Bδ2 + Cδ +D < 0 with

A = 6ε2 − 6ε,

B = −(3ε+ 4ε2 + εr` − 2r` + 6εr + 2µ` − 3µ`ε),

C = 3r`r + 3r` + 3εr` + 3ε+ 2εr − 3µ`r − 3µ` − εµ`,

D = −r(r` − µ`),

apply the same trick of removing the negative µ term and define

f(r, δ) :=Aδ2 +Bδ + C

179



APPENDICES FOR CHAPTER 3

such that the 3rd-order polynomial inequality becomes f(r, δ)δ < r(r`−µ`).Rearrange

the expressions and drop negative terms, we get

f(r, δ) < Bδ + C

=−
[
3ε+ 4ε2 + 2ε(r` − µ`) + 6εr

]
δ + 2(r` − µ`)δ

+ [3(r` − µ`)r + 3(r` − µ`) + 3ε(r` − µ`) + 2εr + 3ε]

+ (r` − µ`)εδ + 2µ`εδ − µ`ε

<3(r` − µ`)r + 5(r` − µ`) + 4ε(r` − µ`) + 2εr + 3ε.

Therefore, a sufficient condition of δ is

δ <
r(r` − µ`)

3(r` − µ`)r + 5(r` − µ`) + 4ε(r` − µ`) + 2εr + 3ε
. (B.27)

When r > r` − µ`, we have (r` − µ`)/r < 1. Then

(B.27)⇐ δ <
r` − µ`

3(r` − µ`) + 5 + ε(4 + 2 + 3/r)
⇐ δ <

r` − µ`
3r + 5 + ε(6 + 3/r)

.

When r < r` − µ`, we have r/(r` − µ`) < 1. Since r < r`,

(B.27)⇐ δ <
r

3r + 5 + ε(4 + 2 + 3/(r` − µ`))
⇐ δ <

r

3r + 5 + ε(6 + 3/r)

Combining the two cases, we have:

δ <
min{r, r` − µ`}

3r + 5 + ε(6 + 3/r)
(B.28)

For the second inequality, the quadratic polynomial is now

(1 + 5r − 6rε)δ2 + (6r2 + 2εr + 6r)δ − 2r2 < 0.

Check that 1 + 5r − 6rε > 0. We solve the quadratic inequality and get a slightly

180



B.2 Proof of Randomized Results

stronger condition than (B.26), which is

δ <
r

3r + 4 + ε
. (B.29)

Note that (B.28)⇒ (B.29), so (B.28) alone is sufficient. In fact, when ε(6r+ 3)/r < 1

or equivalently r > 3ε/(1− 6ε), which are almost always true, a neater expression is:

δ <
min{r, r` − µ`}

3r + 6
.

Finally, as the condition needs to be satisfied for all `, the output of the min function at

the smallest bound is always r`−µ`. This observation allows us to replace min{r, r`−

µ`} with simple (r` − µ`), which concludes the proof for Theorem 3.2.

B.2.2 Proof of Theorem 3.3

To prove Theorem 3.3, we only need to bound inradii r and incoherence parameter µ

under the new assumptions, then plug into Theorem 3.2.

Lemma B.7 (Inradius bound of random samples). In random sampling setting, when

each subspace is sampled N` = κ`d` data points randomly, we have:

Pr

c(κ`)
√
β log (κ`)

d`
≤ r(Q(`)

−i) for all pairs (`, i)

 ≥ 1−
L∑
`=1

N`e
−dβ`N

1−β
`

This is extracted from Section-7.2.1 of Soltanolkotabi and Candes [124]. κ` =

(N` − 1)/d` is the relative number of iid samples. c(κ) is some positive value for all

κ > 1 and for a numerical value κ0, if κ > κ0, we can take c(κ) = 1√
8
. Take β = 0.5,

we get the required bound of r in Theorem 3.3.

Lemma B.8 (Incoherence bound). In deterministic subspaces/random sampling setting,
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the subspace incoherence is bounded from above:

Pr
{
µ(X`) ≤ t (log[(N`1 + 1)N`2 ] + logL)

aff(S`1 , S`2)√
d`1
√
d`2

for all pairs(`1, `2) with `1 6= `2

}
≥ 1− 1

L2

∑
`1 6=`2

1

(N`1 + 1)N`2

e−
t
4

Proof of Lemma B.8. The proof is an extension of the same proof in Soltanolkotabi and

Candes [124]. First we will show that when noise z(`)
i is spherical symmetric, and clean

data points y(`)
i has iid uniform random direction, projected dual directions v(`)

i also

follows uniform random distribution.

Now we will prove the claim. First by definition,

v
(`)
i = v(x

(`)
i , X

(`)
−i , S`, λ) =

PS`ν
‖PS`ν‖

=
ν1

‖ν1‖
.

ν is the unique optimal solution of D1 (B.5). Fix λ, D1 depends on two inputs, so we

denote ν(x,X) and consider ν a function. Moreover, ν1 = PSν and ν2 = PS⊥ν. Let

U ∈ n × d be a set of orthonormal basis of d-dimensional subspace S and a rotation

matrix R ∈ Rd×d. Then rotation matrix within subspace is hence URUT .

x1 :=PSx = y + z1 ∼ URUT y + URUT z1

x2 :=PS⊥x = z2

As y is distributed uniformly on unit sphere of S, and z is spherical symmetric noise(hence

z1 and z2 are also spherical symmetric in subspace), for any fixed ‖x1‖, the distribution

is uniform on the sphere. It suffices to show the uniform distribution of ν1 with fixed

‖x1‖.

Since inner product 〈x, ν〉 = 〈x1, ν1〉 + 〈x2, ν2〉, we argue that if ν is optimal

solution of

max
ν
〈x, ν〉 − 1

2λ
νT ν, subject to: ‖XT ν‖∞ ≤ 1,
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then the optimal solution of R-transformed optimization

max
ν
〈URUTx1 + x2, ν〉 −

1

2λ
νT ν,

subject to: ‖(URUTX1 +X2)T ν‖∞ ≤ 1,

is merely the transformed ν under the same R:

ν(R) = ν(URUTx1 + x2, URU
TX1 +X2)

= URUT ν1(x,X) + ν2(x,X) = URUT ν1 + ν2. (B.30)

To verify the argument, check that νT ν = ν(R)T ν(R) and

〈URUTx1 + x2, ν(R)〉 = 〈URUTx1, URU
T ν1〉+ 〈x1, ν2〉 = 〈x, ν〉

for all inner products in both objective function and constraints, preserving the optimal-

ity.

By projecting (B.30) to subspace, we show that operator v(x,X, S) is linear vis a

vis subspace rotation URUT , i.e.,

v(R) =
PS`ν(R)

‖PS`ν(R)‖
=

URUT ν1

‖URUT ν1‖
= URUT v. (B.31)

On the other hand, we know that

v(R) = v(URUTx1 + x2, URU
TX1 +X2, S) ∼ v(x,X, S), (B.32)

where A ∼ B means that the random variables A and B follows the same distribution.

When ‖x1‖ is fixed and each columns in X1 has fixed magnitudes, URUTx1 ∼ x1 and

URUTX1 ∼ X1. Since (x1, X1) and (x2, X2) are independent, we can also marginal-

ize out the distribution of x2 and X2 by considering fixed (x2, X2). Combining (B.31)

183



APPENDICES FOR CHAPTER 3

and (B.32), we conclude that for any rotation R,

v
(`)
i (R) ∼ URUT v(`)

i .

Now integrate the marginal probability of v(`)
i over ‖x`i1‖, every column’s magnitude

of X`
−i1 and all (x2, X2), we showed that the overall distribution of v(`)

i is indeed uni-

formly distributed in the unit sphere of S.

After this key step, the rest is identical to Lemma 7.5 of Soltanolkotabi and Candes

[124]. The idea is to use Lemma B.4(upper bound of area of spherical caps) to bound

pairwise inner product and Borell’s inequality to bound the deviation from expected

consine canonical angles, namely, ‖U (k)TU (`)‖F /
√
d`.

B.2.3 Proof of Theorem 3.4

The proof of this theorem is also an invocation of Theorem 3.2 with specific inradii

bound and incoherence bound. The bound of inradii is exactly Lemma B.7 with β =

0.5, κ` = κ, d` = d. The bound of incoherence is given by the following Lemma that

is extracted from Step 2 of Section 7.3 in Soltanolkotabi and Candes [124].

Lemma B.9 (Incoherence bound of random subspaces). In random subspaces setting,

the projected subspace incoherence is bounded from above:

Pr

{
µ(X`) ≤

√
6 logN

n
for all `

}
≥ 1− 2

N
.

Now that we have shown that projected dual directions are randomly distributed in

their respective subspace, as the subspaces themselves are randomly generated, all clean

data points y and projected dual direction v from different subspaces can be considered

iid generated from the ambient space. The proof of Lemma B.9 follows by simply

applying Lemma B.4 and union bound across all N2 events.

By plug in these expressions into Theorem 3.2, we showed that it holds with high

probability as long as the conditions in Theorem 3.4 is true.
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B.3 Geometric interpretations

In this section, we attempt to give some geometric interpretation of the problem so that

the results stated in this chapter can be better understood and at the same time, reveal

the novelties of our analysis over Soltanolkotabi and Candes [124]. All figures in this

section are drawn with “geom3d” [92] and “GBT7.3” [138] in Matlab.

We start with an illustration of the projected dual direction in contrast to the original

dual direction[124].

Dual direction v.s. Projected dual direction:

An illustration of original dual direction is given in Figure B.1 for data point y. The

Figure B.1: The illustration of dual direction in Soltanolkotabi and Candes [124].

projected dual direction can be easier understood algebraically. By definition, it is the

projected optimal solution of (B.5) to the true subspace. To see it more clearly, we plot

the feasible region of ν in Figure B.2 (b), and the projection of the feasible region in

Figure B.3. As (B.5) is not an LP (it has a quadratic term in the objective function),

projected dual direction cannot be easily determined geometrically as in Figure B.1.

Nevertheless, it turns out to be sufficient to know the feasible region and the optimality

of the solution.

Magnitude of dual variable ν:

A critical step of our proof is to bound the magnitude of ‖ν1‖ and ‖ν2‖. This

is a simple task in the noiseless case as Soltanolkotabi and Candes merely take the

circumradius of the full feasible region as a bound. This is sufficient because the feasible
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Figure B.2: Illustration of (a) the convex hull of noisy data points, (b) its polar set and (c)
the intersection of polar set and ‖ν2‖ bound. The polar set (b) defines the feasible region
of (B.5). It is clear that ν2 can take very large value in (b) if we only consider feasibility.
By considering optimality, we know the optimal ν must be inside the region in (c).

region is a cylinder perpendicular to the subspace and there is no harm choosing only

solutions within the intersection of the cylinder and the subspace. Indeed, in noiseless

case, we can choose arbitrary ν2 because Y T (ν1 + ν2) = Y T ν1.

In the noisy case however, the problem becomes harder. Instead of a cylinder, the

feasible region is now a spindle shaped polytope (see Figure B.2(b)) and the choice of

ν2 has an impact on the objective value. That is why we need to consider the optimality

condition and give ‖ν2‖ a bound.

In fact, noise may tilt the direction of the feasible region (especially when the noise

is adversarial). As ‖ν2‖ grows, ‖ν1‖ can potentially get large too. Our bound of ‖ν1‖

reflects precisely the case as it is linearly dependent on ‖ν2‖ (see (B.11)). We remark

that in the case of random noise, the dependency on ‖ν2‖ becomes much weaker (see

the proof of Lemma B.6).

Geometrically, the bound of ν2 can be considered a cylinder1 (`2 constrained in the

S⊥ and unbounded in S subspace) that intersect the spindle shaped feasible region, so

1In the simple illustration, the cylinder is in fact just the sandwich region |z| ≤ some bound.
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Figure B.3: The projection of the polar set (the green area) in comparison to the projection
of the polar set with ‖ν2‖ bound (the blue polygon). It is clear that the latter is much
smaller.

that we know the optimal ν may never be at the tips of the spindle (see Figure B.2 and

B.3). Algebraically, we can consider this as an effect of the quadratic penalty term of ν

in the (B.5).

The guarantee in Theorem 3.1:

The geometric interpretation and comparison of the noiseless guarantee and our

noisy guarantee are given earlier in Figure 3.4. Geometrically, noise reduces the suc-

cessful region (the solid blue polygon) in two ways. One is subtractive, in a sense that

the inradius is smaller (see the bound of ‖ν1‖); the other is multiplicative, as the entire

successful region shrinks with a factor related to noise level (something like 1− f(δ)).

Readers may refer to (B.16) for an algebraic point of view.

The subtractive effect can also be interpreted in the robust optimization point of

view, where the projection of every points inside the uncertainty set (the red balls in

Figure 3.4) must fall into the successful region (the dashed red polygon). Either way, it

is clear that the error Lasso-SSC can provably tolerate is proportional to the geometric

gap r − µ given in the noiseless case.
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B.4 Numerical algorithm to solve Matrix-Lasso-SSC

In this section we outline the steps of solving the matrix version of Lasso-SSC below

((3.3) in the Chapter 3)

min
C
‖C‖1 +

λ

2
‖X −XC‖2F

s.t. diag(C) = 0,

(B.33)

While this convex optimization can be solved by some off-the-shelf general purpose

solver such as CVX, such approach is usually slow and non-scalable. An ADMM [17]

version of the problem is described here for fast computation. It solves an equivalent

optimization program

min
C
‖C‖1 +

λ

2
‖X −XJ‖2F

s.t. J = C − diag(C).

(B.34)

We add to the Lagrangian with an additional quadratic penalty term for the equality

constraint and get the augmented Lagrangian

L =‖C‖1 +
λ

2
‖X −XJ‖2F +

µ

2
‖J − C + diag(C)‖2F

+ tr(ΛT (J − C + diag(C))),

where Λ is the dual variable and µ is a parameter. Optimization is done by alternat-

ingly optimizing over J , C and Λ until convergence. The update steps are derived by

solving ∂L/∂J = 0 and ∂L/∂C = 0, it’s non-differentiable for C at origin so we

use the now standard soft-thresholding operator[47]. For both variables, the solution is

in closed-form. For the update of Λ, it is simply gradient descent. For details of the

ADMM algorithm and its guarantee, please refer to Boyd et al. [17]. To accelerate the

convergence, it is possible to introduce a parameter ρ and increase µ by µ = ρµ at every

iteration. The full algorithm is summarized in Algorithm 6.

Note that for the special case when ρ = 1, the inverse of (λY TY + µI) can be

pre-computed, such that the iteration is linear time. Empirically, we found it good to

set µ = λ and it takes roughly 50-100 iterations to converge to a sufficiently good
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Algorithm 6 Matrix-Lasso-SSC

Input: Data points as columns in X ∈ Rn×N , tradeoff parameter λ, numerical
parameters µ0 and ρ.
Initialize C = 0, J = 0, Λ = 0, k = 0.
while not converged do

1. Update J by J = (λXTX + µkI)−1(λXTX + µkC − Λ).
2. Update C by C

′
= SoftThresh 1

µk

(J + Λ/µk) , C = C
′ − diag(C

′
).

3. Update Λ by Λ = Λ + µk(J − C)
4. Update parameter µk+1 = ρµk.
5. Iterate k = k + 1;

end while
Output: Affinity matrix W = |C|+ |C|T

points. We remark that the matrix version of the algorithm is much faster than column-

by-column ADMM-Lasso especially for the cases when N > n. See the experiments.

We would like to point out that Elhamifar and Vidal [57] had formulated a more

general version of SSC to account for not only noisy but also sparse corruptions in the

Appendix of their arxiv paper while we were preparing for submission. The ADMM

algorithm for Matrix-Lasso-SSC described here can be considered as a special case of

the Algorithm 2 in their paper.
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Figure B.4: Run time comparison with increas-
ing number of data. Simulated with n = 100, d =

4, L = 3, σ = 0.2, κ increases from 2 to 40 such
that the number of data goes from 24- 480. It appears
that the matrix version scales better with increasing
number of data compared to columnwise LASSO.

Figure B.5: Objective value comparison with
increasing number of data. Simulated with n =

100, d = 4, L = 3, σ = 0.2, κ increases from 2

to 40 such that the number of data goes from 24-
480. The objective value obtained at stop points of
two algorithms are nearly the same.

Figure B.6: Run time comparison with increas-
ing dimension of data. Simulated with κ = 5, d =

4, L = 3, σ = 0.2, ambient dimension n increases
from 50 to 1000. Note that the dependence on di-
mension is weak at the scale due to the fast vector-
ized computation. Nevertheless, it is clear that the
matrix version of SSC runs faster.

Figure B.7: Objective value comparison with in-
creasing dimension of data. Simulated with κ =

5, d = 4, L = 3, σ = 0.2, ambient dimension n
increases from 50 to 1000. The objective value ob-
tained at stop points of two algorithms are nearly the
same.
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Appendices for Chapter 4

C.1 Proof of Theorem 4.1 (the deterministic result)

Theorem 4.1 is proven by duality. As described in the main text, it involves constructing

two levels of fictitious optimizations. For convenience, we illustrate the proof with only

three subspaces. Namely, X = [X(1)X(2)X(3)] and S1 S2 S3 are all d-dimensional

subspaces. Having more than 3 subspaces and subspaces of different dimensions are

perfectly fine and the proof will be the same.

C.1.1 Optimality condition

We start by describing the subspace projection critical in the proof of matrix completion

and RPCA[25, 27]. We need it to characterize the subgradient of nuclear norm.

Define projection PT (and PT⊥) to both column and row space of low-rank matrix

C (and its complement) as

PT (X) = UUTX +XV V T − UUTXV V T ,

PT⊥(X) = (I − UUT )X(I − V V T ),

where UUT and V V T are projections matrix defined from skinny SVD ofC = UΣV T .
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Lemma C.1 (Properties of PT and PT⊥ ).

〈PT (X), Y 〉 = 〈X,PT (Y )〉 = 〈PT (X),PT (Y )〉

〈PT⊥(X), Y 〉 = 〈X,PT⊥(Y )〉 = 〈PT⊥(X),PT⊥(Y )〉

Proof. Using the property of inner product 〈X,Y 〉 = 〈XT , Y T 〉 and definition of ad-

joint operator 〈AX,Y 〉 = 〈X,A∗Y 〉, we have

〈PT (X), Y 〉 = 〈UUTX,Y 〉+ 〈XV V T , Y 〉 − 〈UUTXV V T , Y 〉

= 〈UUTX,Y 〉+ 〈V V TXT , Y T 〉 − 〈V V TXT , (UUTY )T 〉

= 〈X,UUTY 〉+ 〈XT , V V TY T 〉 − 〈XT , V V TY TUUT 〉

= 〈X,UUTY 〉+ 〈X,Y V V T 〉 − 〈X,UUTY V V T 〉 = 〈X,PT (Y )〉.

Use the equality with X = X,Y = PT (Y ), we get

〈X,PT (PT (Y ))〉 = 〈PT (X),PT (Y )〉.

The result for PT⊥ is the same as the third term in the previous derivation as I − UUT

and I − V V T are both projection matrices that are self-adjoint.

In addition, given index set D, we define projection PD, such that

PD(X) =

 [PD(X)]ij = Xij , if (i, j) ∈ D;

[PD(X)]ij = 0, Otherwise.

For example, when D = {(i, j)|i = j}, PD(X) = 0⇔ diag(X) = 0.

Consider general convex optimization problem

min
C1,C2

‖C1‖∗ + λ‖C2‖1 s.t. B = AC1, C1 = C2, PD(C1) = 0 (C.1)

where A ∈ Rn×m is arbitrary dictionary and B ∈ Rn×N is data samples. Note that
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when B = X , A = X , (C.1) is exactly (4.1).

Lemma C.2. For optimization problem (C.1), if we have a quadruplet (C,Λ1,Λ2,Λ3)

where C1 = C2 = C is feasible, supp(C) = Ω ⊆ Ω̃, rank(C) = r and skinny SVD of

C = UΣV T (Σ is an r×r diagonal matrix and U , V are of compatible size), moreover

if Λ1, Λ2, Λ3 satisfy

1© PT (ATΛ1 − Λ2 − Λ3) = UV T 3© [Λ2]Ω = λsgn([C]Ω) 5© [Λ2]Ω̃c < λ

2© ‖PT⊥(ATΛ1 − Λ2 − Λ3)‖ ≤ 1 4© [Λ2]Ωc
⋂

Ω̃ ≤ λ 6© PDc(Λ3) = 0

then all optimal solutions to (C.1) satisfy supp(C) ⊆ Ω̃.

Proof. The subgradient of ‖C‖∗ is UV T + W1 for any W1 ∈ T⊥ and ‖W1‖ ≤ 1. For

any optimal solution C∗ we may choose W1 such that ‖W1‖ = 1, 〈W1,PT⊥C
∗〉 =

‖PT⊥C∗‖∗. Then by the definition of subgradient, convex function ‖C‖∗ obey

‖C∗‖∗ ≥ ‖C‖∗ + 〈UV T +W1, C
∗ − C〉

= 〈UV T ,PT (C∗ − C)〉+ 〈UV T ,PT⊥(C∗ − C)〉+ 〈W1, C
∗ − C〉

= 〈UV T ,PT (C∗ − C)〉+ ‖PT⊥C∗‖∗. (C.2)

To see the equality, note that 〈UV T ,PT⊥(A)〉 = 0 for any compatible matrix A and the

following identity that follows directly from the construction of W1 and Lemma C.1

〈W1, C
∗−C〉 = 〈PT⊥W1, C

∗−C〉 = 〈W1,PT⊥(C∗−C)〉 = 〈W1,PT⊥C
∗〉 = ‖PT⊥C∗‖∗.

Similarly, the subgradient of λ‖C‖1 is λsgn(C)+W2, for anyW2 obeying supp(W2) ⊆

Ωc and ‖W2‖∞ ≤ λ. We may choose W2 such that ‖W2‖∞ = λ and 〈[W2]Ωc , C
∗
Ωc〉 =

‖C∗Ωc‖1, then by the convexity of one norm,

λ‖C∗‖1 ≥ λ‖C‖1 +λ〈∂‖C‖1, C∗−C〉 = λ‖C‖1 +〈λsgn(CΩ), C∗Ω−CΩ〉+λ‖C∗Ωc‖1.

(C.3)
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Then we may combine (C.2) and (C.3) with condition 1© and 3© to get

‖C∗‖∗ + λ‖C∗‖1 ≥ ‖C‖∗ + 〈UV T ,PT (C∗ − C)〉+ ‖PT⊥(C∗)‖∗ + λ‖C‖1

+ 〈λsgn(CΩ), C∗Ω − CΩ〉+ λ‖C∗Ωc‖1

= ‖C‖∗ + 〈PT (ATΛ1 − Λ2 − Λ3),PT (C∗ − C)〉+ ‖PT⊥(C∗)‖∗ + λ‖C‖1

+ 〈Λ2, C
∗
Ω − CΩ〉+ λ‖C∗

Ωc∩Ω̃
‖1 + λ‖C∗

Ω̃c
‖1. (C.4)

By Lemma C.1, we know

〈PT (ATΛ1 − Λ2 − Λ3),PT (C∗ − C)〉

=〈ATΛ1 − Λ2 − Λ3,PT (PT (C∗ − C))〉

=〈ATΛ1 − Λ2 − Λ3,PT (C∗)〉 − 〈ATΛ1 − Λ2 − Λ3,PT (C)〉

=〈Λ1, APT (C∗)〉 − 〈Λ2 + Λ3,PT (C∗)〉 − 〈Λ1, AC〉+ 〈Λ2 + Λ3, C〉

=〈Λ1, AC
∗ −AC〉 − 〈Λ1, APT⊥(C∗)〉+ 〈Λ2 + Λ3, C〉 − 〈Λ2 + Λ3,PT (C∗)〉

=− 〈Λ1, APT⊥(C∗)〉+ 〈Λ2 + Λ3, C〉 − 〈Λ2 + Λ3, C
∗〉+ 〈Λ2 + Λ3,PT⊥(C∗)〉

=− 〈ATΛ1 − Λ2 − Λ3,PT⊥(C∗)〉 − 〈Λ2 + Λ3, C
∗〉+ 〈Λ2 + Λ3, C〉

=− 〈PT⊥(ATΛ1 − Λ2),PT⊥(C∗)〉 − 〈Λ2 + Λ3, C
∗〉+ 〈Λ2 + Λ3, C〉

=− 〈PT⊥(ATΛ1 − Λ2),PT⊥(C∗)〉 − 〈Λ2, C
∗〉+ 〈Λ2, C〉.

Note that the last step follows from condition 6© and C, C∗’s primal feasibility. Substi-

tute back into (C.4), we get

‖C∗‖∗ + λ‖C∗‖1

≥‖C‖∗ + λ‖C‖1 + ‖PT⊥(C∗)‖∗ − 〈PT⊥(ATΛ1 − Λ2 − Λ3),PT⊥(C∗)〉

+ λ‖C∗
Ωc∩Ω̃

‖1 − 〈[Λ2]Ωc∩Ω̃, C
∗
Ωc∩Ω̃

〉+ λ‖C∗
Ω̃c
‖1 − 〈[Λ2]Ω̃c , C

∗
Ω̃c
〉

≥‖C‖∗ + λ‖C‖1 − (1− ‖PT⊥(ATΛ1 − Λ2 − Λ3)‖)‖PT⊥(C∗)‖∗

(λ− ‖[Λ2]Ωc∩Ω̃‖∞)‖C∗
Ωc∩Ω̃

‖1 + (λ− ‖[Λ2]Ω̃c‖∞)‖C∗
Ω̃c
‖1
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Assume C∗
Ω̃c
6= 0. By condition 4©, 5© and 2©, we have the strict inequality

‖C∗‖∗ + λ‖C∗‖1 > ‖C‖∗ + λ‖C‖1.

Recall that C∗ is an optimal solution, i.e., ‖C∗‖∗ + λ‖C∗‖1 ≤ ‖C‖∗ + λ‖C‖1. By

contradiction, we conclude that C∗
Ω̃c

= 0 for any optimal solution C∗.

C.1.2 Constructing solution

Apply Lemma C.2 with A = X , B = X and Ω̃ guarantees the Self-Expressiveness

Property (SEP), then if we can find Λ1 and Λ2 satisfying the five conditions with respect

to a feasible C, then we know all optimal solutions of (4.1) obey SEP. The dimension

of the dual variables are Λ1 ∈ Rn×N and Λ2 ∈ RN×N .

First layer fictitious problem

A good candidate can be constructed by the optimal solutions of the fictitious pro-

grams for i = 1, 2, 3

P1 : min
C

(i)
1 ,C

(i)
2

‖C(i)
1 ‖∗ + λ‖C(i)

2 ‖1s.t. X(i) = XC
(i)
1 , C

(i)
1 = C

(i)
2 , PDi(C

(i)
1 ) = 0.

(C.5)

Corresponding dual problem is

D1 : max
Λ
(i)
1 ,Λ

(i)
2 ,Λ

(i)
3

〈X(i),Λ
(i)
1 〉

s.t. ‖Λ(i)
2 ‖∞ ≤ λ, ‖X

TΛ
(i)
1 − Λ

(i)
2 − Λ

(i)
3 ‖ ≤ 1, PDci (Λ

(i)
3 ) = 0

(C.6)

where Λ
(i)
1 ∈ Rn×Ni and Λ

(i)
2 ,Λ

(i)
3 ∈ RN×Ni . Di is the diagonal set of the ith Ni ×Ni

block of C(i)
1 . For instance for i = 2,

C
(2)
1 =


0

C̃
(2)
1

0

 , D2 =

(i, j)

∣∣∣∣∣∣∣∣∣∣


0

I

0


ij

6= 0

 ,
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The candidate solution is C =
[
C

(1)
1 C

(2)
1 C

(3)
1

]
. Now we need to use a second

layer of fictitious problem and the same Lemma C.2 with A = X , B = X(i) to show

that the solution support Ω̃(i) is like the following

C
(1)
1 =


C̃

(1)
1

0

0

 , C
(2)
1 =


0

C̃
(2)
1

0

 , C
(3)
1 =


0

0

C̃
(3)
1

 . (C.7)

Second layer fictitious problem

The second level of fictitious problems are used to construct a suitable solution.

Consider for i = 1, 2, 3,

P2 : min
C̃

(i)
1 ,C̃

(i)
2

‖C̃(i)
1 ‖∗ + λ‖C̃(i)

2 ‖1

s.t. X(i) = X(i)C̃
(i)
1 , C̃

(i)
1 = C̃

(i)
2 , diag(C̃

(i)
1 ) = 0.

(C.8)

which is apparently feasible. Note that the only difference between the second layer fic-

titious problem (C.8) and the first layer fictitious problem (C.5) is the dictionary/design

matrix being used. In (C.5), the dictionary contains all data points, whereas here in

(C.8), the dictionary is nothing but X(i) itself. The corresponding dimension of rep-

resentation matrix C(i)
1 and C̃(i)

1 are of course different too. Sufficiently we hope to

establish the conditions where the solutions of (C.8) and (C.5) are related by (C.7).

The corresponding dual problem is

D2 : max
Λ̃
(i)
1 ,Λ̃

(i)
2 ,Λ̃

(i)
3

〈X(i), Λ̃
(i)
1 〉

s.t. ‖Λ̃(i)
2 ‖∞ ≤ λ, ‖[X

(i)]T Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ‖ ≤ 1, diag⊥

(
Λ̃

(i)
3

)
= 0

(C.9)

where Λ̃
(i)
1 ∈ Rn×Ni and Λ̃

(i)
2 , Λ̃

(i)
3 ∈ RNi×Ni .

The proof is two steps. First we show the solution of (C.8), zero padded as in (C.7)

are indeed optimal solutions of (C.5) and verify that all optimal solutions have such

shape using Lemma C.2. The second step is to verify that solutionC =
[
C

(1)
1 C

(2)
1 C

(3)
1

]
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is optimal solution of (4.1).

C.1.3 Constructing dual certificates

To complete the first step, we need to construct Λ
(i)
1 , Λ

(i)
2 and Λ

(i)
3 such that all condi-

tions in Lemma C.2 are satisfied. We use i = 1 to illustrate. Let the optimal solution1

of (C.9) be Λ̃
(1)
1 , Λ̃

(1)
2 and Λ̃

(1)
3 . We set

Λ
(1)
1 = Λ̃

(1)
1 Λ

(1)
2 =


Λ̃

(1)
2

Λa

Λb

 and Λ
(1)
3 =


Λ̃

(1)
3

0

0


As Ω̃ defines the first block now, this construction naturally guarantees 3© and 4©. 6©

follows directly from the dual feasibility. The existence of Λa and Λb obeying 5© 1© 2©

is something we need to show.

To evaluate 1© and 2©, let’s first define the projection operator. Take skinny SVD

C̃
(1)
1 = Ũ (1)Σ̃(1)(Ṽ (1))T .

C
(1)
1 =


C̃

(1)
1

0

0

 =


Ũ (1)

0

0

 Σ̃(1)(Ṽ (1))T

U (1)[U (1)]T =


Ũ (1)[Ũ (1)]T 0 0

0 0 0

0 0 0

 , V (1)[V (1)]T = Ṽ (1)(Ṽ (1))T

1It need not be unique, for now we just use them to denote any optimal solution.
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For condition 1© we need

PT1

(
XTΛ

(1)
1 − Λ

(1)
2

)
= PT1


[X(1)]

T
Λ̃

(1)
1 − Λ̃2 − Λ̃3

[X(2)]
T

Λ̃
(1)
1 − Λa

[X(3)]
T

Λ̃
(1)
1 − Λb



=


PT̃1([X(1)]

T
Λ̃

(1)
1 − Λ̃2 − Λ̃3)

([X(2)]T Λ̃
(1)
1 − Λa)Ṽ

(1)(Ṽ (1))T

([X(3)]
T

Λ̃
(1)
1 − Λb)Ṽ

(1)(Ṽ (1))T

 =


Ũ (1)[Ṽ (1)]T

0

0


The first row is guaranteed by construction. The second and third row are something

we need to show. For condition 2©

∥∥∥PT⊥1 (XTΛ
(1)
1 − Λ

(1)
2 − Λ̃3

)∥∥∥ =

∥∥∥∥∥∥∥∥∥


PT̃⊥1

([X(1)]
T

Λ̃
(1)
1 − Λ̃2 − Λ̃3)

([X(2)]
T

Λ̃
(1)
1 − Λa)(I − Ṽ (1)(Ṽ (1))T )

([X(3)]
T

Λ̃
(1)
1 − Λb)(I − Ṽ (1)(Ṽ (1))T )


∥∥∥∥∥∥∥∥∥

≤‖PT̃⊥1 ([X(1)]
T

Λ̃
(1)
1 − Λ̃2 − Λ̃3)‖+ ‖[X(2)]

T
Λ̃

(1)
1 − Λa‖+ ‖[X(3)]

T
Λ̃

(1)
1 − Λb‖

Note that as ([X(2)]
T

Λ̃
(1)
1 −Λa)Ṽ

(1)(Ṽ (1))T = 0, the complement projection ([X(2)]
T

Λ̃
(1)
1 −

Λa)(I − Ṽ (1)(Ṽ (1))T ) = ([X(2)]
T

Λ̃
(1)
1 −Λa). The same goes for the third row. In fact,

in worst case, ‖PT̃⊥1 ([X(1)]
T

Λ̃
(1)
1 − Λ̃2)‖ = 1, then for both 1© and 2© to hold, we need

[X(2)]
T

Λ̃
(1)
1 − Λa = 0, [X(3)]

T
Λ̃

(1)
1 − Λb = 0. (C.10)

In other words, the conditions reduce to whether there exist Λa,Λb obeying entry-wise

box constraint λ that can nullify [X(2)]
T

Λ̃
(1)
1 and [X(3)]

T
Λ̃

(1)
1 .

In fact, as we will illustrate, (C.10) is sufficient for the original optimization (4.1)

too. We start the argument by taking the skinny SVD of constructed solution C.

C =


C̃1 0 0

0 C̃2 0

0 0 C̃3

 =


Ũ1 0 0

0 Ũ2 0

0 0 Ũ3




Σ̃1 0 0

0 Σ̃2 0

0 0 Σ̃3




Ṽ1 0 0

0 Ṽ2 0

0 0 Ṽ3

 .
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Check that U, V are both orthonormal, Σ is diagonal matrix with unordered singular

values. Let the block diagonal shape be Ω, the five conditions in Lemma C.2 are met

with

Λ1 =
(

Λ̃
(1)
1 Λ̃

(2)
1 Λ̃

(3)
1

)
, Λ2 =


Λ̃

(1)
2 Λ

(2)
a Λ

(3)
a

Λ
(1)
a Λ̃

(2)
2 Λ

(3)
b

Λ
(1)
b Λ

(2)
b Λ̃

(3)
2

 , Λ3 =


Λ̃

(1)
3 0 0

0 Λ̃
(2)
3 0

0 0 Λ̃
(3)
3

 ,

as long as Λ
(i)
1 , Λ

(i)
2 and Λ

(i)
3 guarantee the optimal solution of (C.5) obeys SEP for each

i. Condition 3© 4© 5© and 6© are trivial. To verify condition 1© and 2©,

XTΛ1 − Λ2 − Λ3

=


[X(1)]

T
Λ̃

(1)
1 − Λ̃

(1)
2 − Λ̃

(1)
3 [X(1)]

T
Λ̃

(2)
1 − Λ

(2)
a [X(1)]

T
Λ̃

(3)
1 − Λ

(3)
a

[X(2)]
T

Λ̃
(1)
1 − Λ

(1)
a [X(2)]

T
Λ̃

(2)
1 − Λ̃

(2)
2 − Λ̃

(2)
3 [X(2)]

T
Λ̃

(3)
1 − Λ

(3)
b

[X(3)]
T

Λ̃
(1)
1 − Λ

(1)
b [X(3)]

T
Λ̃

(2)
1 − Λ

(2)
b [X(3)]

T
Λ̃

(3)
1 − Λ̃

(3)
2 − Λ̃

(3)
3



=


[X(1)]

T
Λ̃

(1)
1 − Λ̃

(1)
2 − Λ̃

(1)
3 0 0

0 [X(2)]
T

Λ̃
(2)
1 − Λ̃

(2)
2 − Λ̃

(2)
3 0

0 0 [X(3)]
T

Λ̃
(3)
1 − Λ̃

(3)
2 − Λ̃

(3)
3

 .

Furthermore, by the block-diagonal SVD of C, projection PT can be evaluated for

each diagonal block, where optimality condition of the second layer fictitious problem

guarantees that for each i

PT̃i([X
(i)]

T
Λ̃

(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ) = ŨiṼ

T
i .
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It therefore holds that

1© PT (XTΛ1 − Λ2 − Λ3) =


Ũ1Ṽ

T
1 0 0

0 Ũ2Ṽ
T

2 0

0 0 Ũ3Ṽ
T

3

 = UV T ,

2© ‖PT⊥(XTΛ1 − Λ2)‖

=

∥∥∥∥∥∥∥∥∥
PT̃⊥i

([X(1)]
T

Λ̃
(1)
1 − Λ̃

(1)
2 ) 0 0

0 PT̃⊥i
([X(2)]

T
Λ̃

(2)
1 − Λ̃

(2)
2 ) 0

0 0 PT̃⊥i
([X(3)]

T
Λ̃

(3)
1 − Λ̃

(3)
2 )

∥∥∥∥∥∥∥∥∥
= max
i=1,2,3

‖PT̃⊥i ([X(1)]
T

Λ̃
(i)
1 − Λ̃

(i)
2 )‖ ≤ 1.

C.1.4 Dual Separation Condition

Definition C.1 (Dual Separation Condition). For X(i), if the corresponding dual opti-

mal solution Λ̃
(i)
1 of (C.9) obeys ‖[X(j)]T Λ̃

(i)
1 ‖∞ < λ for all j 6= i, then we say that

dual separation condition holds.

Remark C.1. Definition C.1 directly implies the existence of Λa, Λb obeying (C.10).

Bounding ‖[X(j)]T Λ̃
(i)
1 ‖∞ is equivalent to bound the maximal inner product of ar-

bitrary column pair of X(j) and Λ̃
(i)
1 . Let x be a column of X(j) and ν be a column of

Λ̃
(i)
1 ,

〈x, ν〉 = ‖ν∗‖〈x, ν

‖ν∗‖
〉 ≤ ‖ν∗‖‖[V (i)]Tx‖∞ ≤ max

k
‖ProjSi(Λ̃

(i)
1 )ek‖ max

x∈X\Xi
‖[V (i)]Tx‖∞.

where V (i) = [ ν1
‖ν∗1‖

, ...,
νNi
‖ν∗Ni‖

] is a normalized dual matrix as defined in Definition 4.2

and ek denotes standard basis. Recall that in Definition 4.2, ν∗ is the component of ν

inside Si and ν is normalized such that ‖ν∗‖ = 1. It is easy to verify that [Λ̃
(i)
1 ]∗ =

ProjSi(Λ̃
(i)
1 ) is minimum-Frobenious-norm optimal solution. Note that we can choose

Λ̃
(i)
1 to be any optimal solution of (C.9), so we take Λ̃

(i)
1 such that the associated V (i) is

the one that minimizes maxx∈X\Xi ‖[V (i)]Tx‖∞.
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Now we may write a sufficient dual separation condition in terms of the incoherence

µ in Definition 4.3,

〈x, ν〉 ≤ max
k
‖[Λ̃(i)

1 ]∗ek‖µ(Xi) ≤ λ. (C.11)

Now it is left to bound maxk ‖[Λ̃
(i)
1 ]∗ek‖ with meaningful properties of X(i).

C.1.4.1 Separation condition via singular value

By the second constraint of (C.9), we have

1 ≥ ‖[X(i)]T Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ‖ ≥ max

k
‖([X(i)]T Λ̃

(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 )ek‖ := ‖v‖

(C.12)

Note that maxk ‖([X(i)]
T

Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 )ek‖ is the 2-norm of a vector and we con-

veniently denote this vector by v. It follows that

‖v‖ =

√
|vk|2 +

∑
i 6=k
|vi|2 ≥

√∑
i 6=k
|vi|2 = ‖v−k‖, (C.13)

where vk denotes the kth element and v−k stands for v with the kth element removed.

For convenience, we also define X−k to be X with the kth column removed and Xk to

be the kth column vector of X .

By condition 6© in Lemma C.2, Λ̃
(i)
3 is diagonal, hence Λ̃

(i)
3 ek =

[
0, ..., [Λ̃

(i)
3 ek]k, ..., 0

]T
and [Λ̃

(i)
3 ek]−k = 0. To be precise, we may get rid of Λ̃

(i)
3 all together

‖v−k‖ = max
k

∥∥∥([X
(i)
−k]

T Λ̃
(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥.
Note that maxk ‖Xek‖ is a norm, as is easily shown in the following lemma.

Lemma C.3. Function f(X) := maxk ‖Xek‖ is a norm.

Proof. We prove by definition of a norm.

(1) f(aX) = maxk ‖[aX]k‖ = maxk(|a|‖Xk‖) = ‖a‖f(X).

(2) Assume X 6= 0 and f(X) = 0. Then for some (i, j), Xij = c 6= 0, so f(X) ≥ |c|
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which contradicts f(X) = 0.

(3) Triangular inequality:

f(X1 +X2) = max
k

(‖[X1 +X2]k‖) ≤ max
k

(‖[X1]k‖+ ‖[X2]k‖)

≤ max
k1

(‖[X1]k1‖) + max
k2

(‖[X2]k2‖) = f(X1) + f(X2).

Thus by triangular inequality,

‖v−k‖ ≥max
k

∥∥∥[X
(i)
−k]

T [Λ̃
(i)
1 ek]

∥∥∥−max
k

∥∥∥[[Λ̃
(i)
2 ]T ]−kek

∥∥∥
≥σdi(X

(i)
−k) max

k
‖[Λ̃(i)

1 ]∗ek‖ − λ
√
Ni − 1 (C.14)

where σdi(X
(i)
−k) is the rth (smallest non-zero) singular value of X(i)

−k. The last inequal-

ity is true because X(i)
−k and [Λ̃

(i)
1 ]∗ belong to the same di-dimensional subspace and

the condition ‖Λ̃(i)
2 ‖∞ ≤ λ. Combining (C.12)(C.13) and (C.14), we find the desired

bound

max
k
‖[Λ̃(i)

1 ]∗ek‖ ≤
1 + λ

√
Ni − 1

σdi(X
(i)
−k)

<
1 + λ

√
Ni

σdi(X
(i)
−k)

.

The condition (C.11) now becomes

〈x, ν〉 ≤ µ(1 + λ
√
Ni)

σdi(X
(i)
−k)

< λ ⇔ µ(1 + λ
√
Ni) < λσdi(X

(i)
−k). (C.15)

Note that when X(i) is well conditioned with condition number κ,

σdi(X
(i)
−k) =

1

κ
√
di
‖X(i)
−k‖F = (1/κ)

√
Ni/di.

To interpret the inequality, we remark that when µκ
√
di < 1 there always exists a λ

such that SEP holds.
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C.1.4.2 Separation condition via inradius

This time we relax the inequality in (C.14) towards the max/infinity norm.

‖v−k‖ = max
k

∥∥∥([X
(i)
−k]

T Λ̃
(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥
≥max

k

∥∥∥([X
(i)
−k]

T Λ̃
(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥
∞

≥max
k

∥∥∥[X
(i)
−k]

T [Λ̃
(i)
1 ]∗

∥∥∥
∞
− λ (C.16)

This is equivalent to for all k = 1, .., Ni

‖[X(i)
−k]

T
ν∗1‖∞ ≤ 1 + λ,

‖[X(i)
−k]

T
ν∗2‖∞ ≤ 1 + λ,

...

‖[X(i)
−k]

T
ν∗Ni‖∞ ≤ 1 + λ,

⇔



ν∗1 ∈ (1 + λ)[conv(±X(i)
−k)]

o,

ν∗2 ∈ (1 + λ)[conv(±X(i)
−k)]

o,

...

ν∗Ni ∈ (1 + λ)[conv(±X(i)
−k)]

o,

where Po represents the polar set of a convex set P, namely, every column of Λ̃
(i)
1 in

(C.11) is within this convex polytope [conv(±X(i)
−k)]

o scaled by (1+λ). A upper bound

follows from the geometric properties of the symmetric convex polytope.

Definition C.2 (circumradius). The circumradius of a convex body P, denoted byR(P),

is defined as the radius of the smallest Euclidean ball containing P.

The magnitude ‖ν∗‖ is bounded by R([conv(±X(i)
−k)]

o). Moreover, by the the fol-

lowing lemma we may find the circumradius by analyzing the polar set of [conv(±X(i)
−k)]

o

instead. By the property of polar operator, polar of a polar set gives the tightest convex

envelope of original set, i.e., (Ko)o = conv(K). Since conv(±X(i)
−k) is convex in the

first place, the polar set is essentially conv(±X(i)
−k).

Lemma C.4. For a symmetric convex body P, i.e. P = −P, inradius of P and circum-

radius of polar set of P satisfy:

r(P)R(Po) = 1.
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By this observation, we have for all j = 1, ..., Ni

‖ν∗j ‖ ≤ (1 + λ)R(conv(±X(i)
−k)) =

1 + λ

r(conv(±X(i)
−k))

.

Then the condition becomes

µ(1 + λ)

r(conv(±X(i)
−k))

< λ ⇔ µ(1 + λ) < λr(conv(±X(i)
−k)), (C.17)

which reduces to the condition of SSC when λ is large (if we take the µ definition in

[124]).

With (C.15) and (C.17), the proof for Theorem 4.1 is complete.

C.2 Proof of Theorem 4.2 (the randomized result)

Theorem 4.2 is essentially a corollary of the deterministic results. The proof of it

is no more than providing probabilistic lower bounds of smallest singular value σ

(Lemma 4.1), inradius (Lemma 4.2) and upper bounds for minimax subspace inco-

herence µ (Lemma 4.3), then use union bound to make sure all random events happen

together with high probability.

C.2.1 Smallest singular value of unit column random low-rank matrices

We prove Lemma 4.1 in this section. Assume the following mechanism of random

matrix generation.

1. Generate n× r Gaussian random matrix A.

2. Generate r ×N Gaussian random matrix B.

3. Generate rank-r matrix AB then normalize each column to unit vector to get X .

The proof contains three steps. First is to bound the magnitude. When n is large,

each column’s magnitude is bounded from below with large probability. Second we
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C.2 Proof of Theorem 4.2 (the randomized result)

show that if we reduce the largest magnitude column to smallest column vector, the

singular values are only scaled by the same factor. Thirdly use singular value bound of

A and B to show that singular value of X .

2σr(X) > σr(AB) > σr(A)σr(B)

Lemma C.5 (Magnitude of Gaussian vector). For Gaussian random vector z ∈ Rn, if

each entry zi ∼ N(0, σ√
n

), then each column zi satisfies:

Pr((1− t)σ2 ≤ ‖z‖2 ≤ (1 + t)σ2) > 1− e
n
2

(log(t+1)−t) − e
n
2

(log(1−t)+t)

Proof. To show the property, we observe that the sum of n independent square Gaussian

random variables follows χ2 distribution with d.o.f n, in other word, we have

‖z‖2 = |z1|2 + ...+ |zn|2 ∼
σ2

n
χ2(n).

By Hoeffding’s inequality, we have a close upper bound of its CDF [44], which gives

us

Pr(‖z‖2 > ασ2) = 1− CDFχ2
n
(α) ≤ (αe1−α)

n
2 for α > 1,

P r(‖z‖2 < βσ2) = CDFχ2
n
(β) ≤ (βe1−β)

n
2 for β < 1.

Substitute α = 1 + t and β = 1− t, and apply union bound we get exactly the concen-

tration statement.

To get an idea of the scale, when t = 1/3, the ratio of maximum and minimum ‖z‖

is smaller than 2 with probability larger than 1 − 2 exp(−n/20). This proves the first

step.

By random matrix theory [e.g., 45, 116, 121] asserts that G is close to an orthonor-

mal matrix, as the following lemma, adapted from Theorem II.13 of [45], shows:

Lemma C.6 (Smallest singular value of random rectangular matrix). Let G ∈ Rn×r
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has i.i.d. entries ∼ N(0, 1/
√
n). With probability of at least 1− 2γ,

1−
√
r

n
−
√

2 log(1/γ)

n
≤ σmin(G) ≤ σmax(G) ≤ 1 +

√
r

n
+

√
2 log(1/γ)

n
.

Lemma C.7 (Smallest singular value of random low-rank matrix). Let A ∈ Rn×r,

B ∈ Rr×N , r < N < n, furthermore, Aij ∼ N(0, 1/
√
n) and Bij ∼ N(0, 1/

√
N).

Then there exists an absolute constant C such that with probability of at least 1−n−10,

σr(AB) ≥ 1− 3

√
r

N
− C

√
logN`

N
.

The proof is by simply by σr(AB) ≥ σr(A)σr(B), apply Lemma C.5 to both terms

and then take γ = 1
2N10

`
.

Now we may rescale each column of AB to the maximum magnitude and get AB.

Naturally,

σr(AB) ≥ σr(AB).

On the other hand, by the results of Step 1,

σr(X) ≥ σr(AB) ≥ 1

2
σr(AB) ≥ 1

2
σr(AB).

Normalizing the scale of the random matrix and plug in the above arguments, we get

Lemma 4.1 in Chapter C.

C.2.2 Smallest inradius of random polytopes

This bound in Lemma 4.2 is due to Alonso-Gutiérrez in his proof of lower bound of

the volume of a random polytope[2, Lemma 3.1]. The results was made clear in the

subspace clustering context by Soltanokotabi and Candes[124, Lemma 7.4]. We refer

the readers to the references for the proof.
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C.2 Proof of Theorem 4.2 (the randomized result)

C.2.3 Upper bound of Minimax Subspace Incoherence

The upper bound of the minimax subspace incoherence (Lemma 4.3) we used in this

chapter is the same as the upper bound of the subspace incoherence in [124]. This is

because for by taking V = V ∗, the value will be larger by the minimax definition1. For

completeness, we include the steps of proof here.

The argument critically relies on the following lemma on the area of spherical cap

in [6].

Lemma C.8 (Upper bound on the area of spherical cap). Let a ∈ Rn be a random

vector sampled from a unit sphere and z is a fixed vector. Then we have:

Pr
(
|aT z| > ε‖z‖

)
≤ 2e

−nε2
2

With this result, Lemma 4.3 is proven in two steps. The first step is to apply

Lemma C.8 to bound 〈ν∗i , x〉 and every data point x /∈ X(`), where ν∗i (a fixed vector)

is the central dual vector corresponding to the data point xi ∈ X(`) (see the Defini-

tion 4.3). When ε =

√
6 log(N)

n , the failure probability for one even is 2
N3 . Recall that

ν∗i . The second step is to use union bound across all x and then all ν∗i . The total number

of events is less than N2 so we get

µ <

√
6 logN

n
with probability larger than 1− 2

N
.

C.2.4 Bound of minimax subspace incoherence for semi-random model

Another bound of the subspace incoherence can be stated under the semi-random model

in [124], where subspaces are deterministic and data in each subspaces are randomly

sampled. The upper bound is given as a log term times the average cosine of the canon-

ical angles between a pair of subspaces. This is not used in this chapter, but the case

of overlapping subspaces can be intuitively seen from the bound. The full statement is

1We did provide proof for some cases where incoherence following our new definition is significantly
smaller.
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rather complex and is the same form as equation (7.6) of [124], so we refer the readers

there for the full proof there and only include what is different from there: the proof

that central dual vector ν∗i distributes uniformly on the unit sphere of S`.

Let U be a set of orthonormal basis of S`. Define rotation RS` := URUT with

arbitrary d×d rotation matrixR. If Λ∗ be the central optimal solution of (C.9), denoted

by OptVal(X(`)), it is easy to see that

RS`Λ
∗ = OptVal(RS`X

(`)).

Since X(`) distribute uniformly, the probability density of getting any X(`) is identical.

For each fixed instance of X(`), consider R a random variable, then the probability

density of each column of Λ∗ be transformed to any direction is the same. Integrating

the density over all different X(`), we completed the proof for the claim that the overall

probability density of ν∗i (each column of Λ∗) pointing towards any directions in S` is

the same.

Referring to [124], the upper bound is just a concentration bound saying that the

smallest inner product is close to the average cosines of the canonical angles between

two subspaces, which follows from the uniform distribution of ν∗i and uniform distri-

bution of x in other subspaces. Therefore, when the dimension of each subspace is

large, the average can still be small even though a small portion of the two subspaces

are overlapping (a few canonical angles being equal to 1).

C.3 Numerical algorithm

Like described in the main text, we will derive Alternating Direction Method of Multi-

pliers (ADMM)[17] algorithm to solve LRSSC and NoisyLRSSC. We start from noise-

less version then look at the noisy version.
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C.3 Numerical algorithm

C.3.1 ADMM for LRSSC

First we need to reformulate the optimization with two auxiliary terms, C = C1 = C2

as in the proof to separate the two norms, and J to ensure each step has closed-form

solution.

min
C1,C2,J

‖C1‖∗ + λ‖C2‖1 s.t. X = XJ, J = C2 − diag(C2), J = C1

(C.18)

The Augmented Lagrangian is:

L =‖C1‖∗ + λ‖C2‖1 +
µ1

2
‖X −XJ‖2F +

µ2

2
‖J − C2 + diag(C2)‖2F +

µ3

2
‖J − C1‖2F

+ tr(ΛT1 (X −XJ)) + tr(ΛT2 (J − C2 + diag(C2))) + tr(ΛT3 (J − C1)),

where µ1, µ2 and µ3 are numerical parameters to be tuned. By assigning the partial

gradient/subgradient of J , C2 and C1 iteratively and update dual variables Λ1,Λ2,Λ3

in every iterations, we obtain the update steps of ADMM.

J =
[
µ1X

TX + (µ2 + µ3)I
]−1 [

µ1X
TX + µ2C2 + µ3C1 +XTΛ1 − Λ2 − Λ3

]
(C.19)

Define soft-thresholding operator πβ(X) = (|X|−β)+sgn(X) and singular value soft-

thresholding operator Πβ(X) = Uπβ(Σ)V T , where UΣV T is the skinny SVD of X .

The update steps for C1 and C2 followed:

C2 = π λ
µ2

(
J +

Λ2

µ2

)
, C2 = C2 − diag(C2), C1 = Π 1

µ3

(
J +

Λ3

µ3

)
. (C.20)

Lastly, the dual variables are updated using gradient ascend:

Λ1 = Λ1 + µ1(X −XJ), Λ2 = Λ2 + µ2(J − C2), Λ3 = Λ3 + µ3(J − C1).

(C.21)
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Algorithm 7 ADMM-LRSSC (with optional Adaptive Penalty)

Input: Data points as columns in X ∈ Rn×N , tradeoff parameter λ, numerical
parameters µ(0)

1 , µ
(0)
2 , µ

(0)
3 and (optional ρ0, µmax, η,ε).

Initialize C1 = 0, C2 = 0, J = 0, Λ1 = 0, Λ2 = 0 and Λ3 = 0.
Pre-compute XTX and H =

[
µ1X

TX + (µ2 + µ3)I
]−1 for later use.

while not converged do
1. Update J by (C.19).
2. Update C1, C2 by (C.20).
3. Update Λ1,Λ2,Λ3 by (C.21).
4. (Optional) Update parameter (µ1, µ2, µ3) = ρ(µ1, µ2, µ3) and the pre-
computed H = H/ρ where

ρ =

{
min (µmax/µ1, ρ0), if µprev

1 max(
√
η‖C1 − Cprev

1 ‖F )/‖X‖F ≤ ε;
1, otherwise.

end while
Output: Affinity matrix W = |C1|+ |C1|T

The full steps are summarized in Algorithm 7, with an optional adaptive penalty step

proposed by Lin et. al[94]. Note that we deliberately constrain the proportion of µ1, µ2

and µ3 such that the
[
µ1X

TX + (µ2 + µ3)I
]−1 need to be computed only once at the

beginning.

C.3.2 ADMM for NoisyLRSSC

The ADMM version of NoisyLRSSC is very similar to Algorithm 7 in terms of its

Lagrangian and update rule. Again, we introduce dummy variable C1, C2 and J to

form
min

C1,C2,J
‖X −XJ‖2F + β1‖C1‖∗ + β2‖C2‖1

s.t. J = C2 − diag(C2), J = C1.

(C.22)

Its Augmented Lagrangian is

L =‖C1‖∗ + λ‖C2‖1 +
1

2
‖X −XJ‖2F +

µ2

2
‖J − C2 + diag(C2)‖2F

+
µ3

2
‖J − C1‖2F + tr(ΛT2 (J − C2 + diag(C2))) + tr(ΛT3 (J − C1)),
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and update rules are:

J =
[
XTX + (µ2 + µ3)I

]−1 [
XTX + µ2C2 + µ3C1 − Λ2 − Λ3

]
(C.23)

C2 = π β2
µ2

(
J +

Λ2

µ2

)
, C2 = C2 − diag(C2), C1 = Π β1

µ3

(
J +

Λ3

µ3

)
. (C.24)

Update rules for Λ2 and Λ3 are the same as in (C.21). Note that the adaptive penalty

scheme also works for NoisyLRSSC but as there is a fixed parameter in front of XTX

in (C.23) now, we will need to recompute the matrix inversion every time µ2, µ3 get

updated.

C.3.3 Convergence guarantee

Note that the general ADMM form is

min
x,z

f(x) + g(z) s.t. Ax+Bz = c. (C.25)

In our case, x = J , z = [C1, C2], f(x) = 1
2‖X −XJ‖

2
F , g(z) = β1‖C1‖∗ + β2‖C2‖1

and constraints can be combined into a single linear equation after vectorizing J and

[C1, C2]. Verify that f(x) and g(z) are both closed, proper and convex and the unaug-

mented Lagrangian has a saddle point, then the convergence guarantee follows directly

from Section 3.2 in [17].

Note that the reason we can group C1 and C2 is because the update steps of C1 and

C2 are concurrent and do not depends on each other (see (C.20) and (C.24) and verify).

This trick is important as the convergence guarantee of the three-variable alternating

direction method is still an open question.
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C.4 Proof of other technical results

C.4.1 Proof of Example 4.2 (Random except 1)

Recall that the setup is L disjoint 1-dimensional subspaces in Rn (L > n). S1, ..., SL−1

subspaces are randomly drawn. SL is chosen such that its angle to one of the L − 1

subspace, say S1, is π/6. There is at least one samples in each subspace, so N ≥ L.

Our claim is that

Proposition C.1. Assume the above problem setup and Definition 4.3, then with prob-

ability at least 1− 2L/N3

µ ≤ 2

√
6 log(L)

n
.

Proof. The proof is simple. For xi ∈ S` with ` = 2, ..., L − 1, we simply choose

νi = ν∗i . Note that ν∗i is uniformly distributed, so by Lemma C.8 and union bound,

the maximum of |〈x, νi〉| is upper bounded by 2

√
6 log(N)

n with probability at least 1−
2(L−2)2

N12
. Then we only need to consider νi in S1 and SL, denoted by ν1 and νL. We

may randomly choose any ν1 = ν∗1 + ν⊥1 obeying ν1 ⊥ SL and similarly νL ⊥ S1.

By the assumption that ∠(S1, SL) = π/6,

‖ν1‖ = ‖νL‖ =
1

sin(π/6)
= 2.

Also note that they are considered a fixed vector w.r.t. all random data samples in

S2, .., SL, so the maximum inner product is 2

√
6 log(N)

n , summing up the failure proba-

bility for the remaining 2L− 2 cases, we get

µ ≤ 2

√
6 log(N)

n
with probability 1− 2L− 2

N3
− 2(L− 2)2

N12
> 1− 2L

N3
.

C.4.2 Proof of Proposition 4.1 (LRR is dense)

For easy reference, we copy the statement of Proposition 4.1 here.
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Proposition C.2. When the subspaces are independent and X is not full rank and the

data points are randomly sampled from a unit sphere in each subspace, then the solution

to LRR is class-wise dense, namely each diagonal block of the matrix C is all non-zero.

Proof. The proof is of two steps. First we prove that because the data samples are

random, the shape interaction matrix V V T in Lemma 4.4 is a random projection to a

rank-d` subspace in RN` . Furthermore, each column is of a random direction in the

subspace.

Second, we show that with probability 1, the standard bases are not orthogonal to

these N` vectors inside the random subspace. The claim that V V T is dense can hence

be deduced by observing that each entry is the inner product of a column or row1 of

V V T and a standard basis, which follows a continuous distribution. Therefore, the

probability that any entries of V V T being exactly zero is negligible.

C.4.3 Condition (4.2) in Theorem 4.1 is computational tractable

First note that µ(X(`)) can be computed by definition, which involves solving one

quadratically constrained linear program (to get dual direction matrix [V (`)]∗) then find-

ing µ(X(`)) by solving the following linear program for each subspace

min
V (`)

‖[V (`)]TX(`)‖∞ s.t. ProjS`V
(`) = [V (`)]∗,

where we use X(`) to denote [X(1), ..., X(`−1), X(`+1), ..., X(L)].

To compute σd`(X
(`)
−k), one needs to compute N` SVD of the n × (N` − 1) ma-

trix. The complexity can be further reduced by computing a close approximation of

σd`(X
(`)
−k). This can be done by finding the singular values of X(`) and use the follow-

ing inequality

σd`(X
(`)
−k) ≥ σd`(X

(`))− 1.

This is a direct consequence of the SVD perturbation theory [129, Theorem 1].

1It makes no difference because V V T is a symmetric matrix
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C.5 Table of Symbols and Notations

Table C.1: Summary of Symbols and Notations

| · | Either absolute value or cardinality.

‖ · ‖ 2-norm of vector/spectral norm of matrix.

‖ · ‖1 1-norm of a vector or vectorized matrix.

‖ · ‖∗ Nuclear norm/Trace norm of a matrix.

‖ · ‖F Frobenious norm of a matrix.

S` for ` = 1, .., L The L subspaces of interest.

n,d` Ambient dimension, dimension of S`.

X(`) n×N` matrix collecting all points from S`.

X n×N data matrix, containing all X(`).

C N ×N Representation matrix X = XC. In some context, it may also

denote an absolute constant.

λ Tradeoff parameter betwenn 1-norm and nuclear norm.

A,B Generic notation of some matrix.

Λ1,Λ2,Λ3 Dual variables corresponding to the three constraints in (C.1).

ν, νi, ν
(`)
i Columns of a dual matrix.

Λ∗, ν∗i Central dual variables defined in Definition 4.2.

V (X), {V (X)} Normalized dual direction matrix, and the set of all V (X) (Defini-

tion 4.2).

V (`) An instance of normalized dual direction matrix V (X(`)).

vi, v
(`)
i Volumns of the dual direction matrices

µ, µ(X(`)) Incoherence parameters in Definition 4.3

σd, σd(A) dth singular value (of a matrix A).

X
(`)
−k X(`) with kth column removed.

r, r(conv(±X(`)
−k)) Inradius (of the symmetric convex hull of X(`)

−k).

RelViolation(C,M) A soft measure of SEP/inter-class separation.

GiniIndex(vec(CM)) A soft measure of sparsity/intra-class connectivity.

Ω, Ω̃, M,D Some set of indices (i, j) in their respective context.

U,Σ, V Usually the compact SVD of a matrix, e.g., C.

Continued on next page
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C.5 Table of Symbols and Notations

C
(`)
1 , C

(`)
2 Primal variables in the first layer fictitious problem.

C̃
(`)
1 , C̃

(`)
2 Primal variables in the second layer fictitious problem.

Λ
(`)
1 ,Λ

(`)
2 ,Λ

(`)
3 Dual variables in the first layer fictitious problem.

Λ̃
(`)
1 , Λ̃

(`)
2 , Λ̃

(`)
3 Dual variables in the second layer fictitious problem.

U (`),Σ(`), V (`) Compact SVD of C(`).

Ũ (`), Σ̃(`), Ṽ (`) Compact SVD of C̃(`).

diag(·)/diag⊥(·) Selection of diagonal/off-diagonal elements.

supp(·) Support of a matrix.

sgn(·) Sign operator on a matrix.

conv(·) Convex hull operator.

(·)o Polar operator that takes in a set and output its polar set.

span(·) Span of a set of vectors or matrix columns.

null(·) Nullspace of a matrix.

PT /PT⊥ Projection to both column and row space of a low-rank matrix / Pro-

jection to its complement.

PD Projection to index set D.

ProjS(·) Projection to subspace S.

β1, β2 Tradeoff parameters for NoisyLRSSC.

µ1, µ2, µ3 Numerical parameters for the ADMM algorithm.

J Dummy variable to formulate ADMM.
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Appendix D

Appendices for Chapter 5

D.1 Software and source code

The point cloud in Fig. 5.16 are generated using VincentSfMToolbox [113]. Source

codes of BALM, GROUSE, GRASTA, Damped Newton, Wiberg, LM X used in the

experiments are released by the corresponding author(s) of [46][7][71][19][108] and

[36]1. For Wiberg `1 [58], we have optimized the computation for Jacobian and adopted

the commercial LP solver: cplex. The optimized code performs identically to the re-

leased code in small scale problems, but it is beyond the scope for us to verify for

larger scale problems. In addition, we implemented SimonFunk’s SVD ourselves. The

ALS implementation is given in the released code package of LM X. For OptManifold,

TFOCS and CVX, we use the generic optimization packages released by the author(s)

of [147][10][65] and customize for the particular problem. For NLCG, we implement

the derivations in [127] and used the generic NLCG package[110].

D.2 Additional experimental results

1For most of these software packages, we used the default parameter in the code, or suggested by the
respective authors. More careful tuning of their parameters will almost certainly result in better perfor-
mances.
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(a) The 64 original face images (b) Input images with missing data (in green)

(c) The 64 recovered rank-3 face images (d) Sparse corruptions detected

Figure D.1: Results of PARSuMi on Subject 10 of Extended YaleB. Note that the facial
expressions are slightly different and some images have more than 90% of missing data.
Also note that the sparse corruptions detected unified the irregular facial expressions and
recovered and recovered those highlight and shadow that could not be labeled as missing
data by plain thresholding.
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