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Summary

Computer vision techniques have been widely applied to control and navigation

of autonomous vehicles nowadays. It is worth noting that vision inherently is

a bearing-only sensing approach: it is easy for vision to obtain the bearing of a

target relative to the camera, but much harder to obtain the distance from the

target to the camera. Due to the bearing-only property of visual sensing, many

interesting research topics arise in control and navigation of multi-vehicle systems

using visual measurements. In this thesis, we will study several important ones

of these topics.

The thesis consists of three parts. The topic addressed in each part is an

interdisciplinary topic of control/navigation and computer vision. The three

parts are summarized as below.

1) The first part of the thesis studies optimal placement of sensor networks for

target localization and tracking. When localizing a target using multiple sen-

sors, the placement of the sensors can greatly affect the target localization

accuracy. Although optimal placement of sensor networks has been studied

by many researchers, most of the existing results are only applicable to 2D

space. Our main contribution is that we proved the necessary and sufficient

conditions for optimal placement of sensor networks in both 2D and 3D s-

paces. We have also established a unified framework for analyzing optimal

placement of different types of sensor networks.

2) The second part of the thesis investigates bearing-only formation control.

Although a variety of approaches have been proposed in the literature to solve

vision-based formation control, very few of them can be applied to practical

applications. That is mainly because the conventional approaches treat vision
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as a powerful sensor and hence require complicated vision algorithms, which

heavily restrict real-time and robust implementations of these approaches in

practice. Motivated by that, we treat vision as a bearing-only sensor and then

formulate vision-based formation control as bearing-only formation control.

This formulation poses minimal requirements on the end of vision and can

provide a practical solution to vision-based formation control. In our work,

we have proposed a distributed control law to stabilize cyclic formations using

bearing-only measurements. We have also proved the local formation stability

and local collision avoidance.

3) The third part of the thesis explores vision-based navigation of unmanned

aerial vehicles (UAVs). This part considers two scenarios. In the first sce-

nario, we assume the environment is unknown. The visual measurements are

fused with the measurements of other sensors such as a low-cost inertial mea-

surement unit (IMU). Our proposed vision-based navigation system is able to:

firstly online estimate and compensate the unknown biases in the IMU mea-

surements; secondly provide drift-free velocity and attitude estimates which

are crucial for UAV stabilization control; thirdly reduce the position drift

significantly compared to pure inertial navigation. In the second scenario, we

assume there are artificial landmarks in the environment. The vision system

is required to estimate the position of the UAV relative to the artificial land-

marks without the assistance of any other sensors. In our work, the artificial

landmarks are chosen as circles with known diameters. We have developed a

robust and real-time vision system to navigate a UAV based on the circles.

This vision system has been applied to the 2013 International UAV Grand

Prix and helped us making a great success in this competition.
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Chapter 1

Introduction

New advancements in the fields of computer vision and embedded systems have

boosted the applications of computer vision to the area of control and naviga-

tion. Computer vision including 3D vision techniques have been investigated

extensively up to now. However, due to the unique properties of visual mea-

surements, many novel interesting problems emerge in vision-based control and

navigation systems.

Vision inherently is a bearing-only sensing approach. Given an image and the

associated intrinsic parameters of the camera, it is straightforward to compute

the bearing of each pixel in the image. As a result, it is trivial for vision to

obtain the bearing of a target relative to the camera once the target can be

recognized in the image. It would be, however, much harder for vision to obtain

the range from the target to the camera. Estimating the target range poses

high requirements for both hardware and software of the vision system. First, in

order to obtain the target range, geometric information of the vehicle is required,

or the vehicle needs to carry a pre-designed artificial marker whose geometry is

perfectly known. Second, pose estimation algorithms are required in order to

estimate the target range. Range estimation will increase the computational

burden significantly. The burden will be particularly high when estimating the

positions of multiple targets. In summary, the bearing-only property of visual

measurements plays a key role in many vision-based control and navigation tasks.

This thesis consists of three parts and four chapters. As illustrated in Fig-

ure 1.1, the topic addressed in each part is an interdisciplinary topic of computer

1



Computer Vision

Sensor Network Formation Control

Navigation of UAV

(Case of Natural 

Landmark)

Navigation of UAV

(Case of Artificial 

Landmark)

Part 1

(Chapter 2)

Part 2

(Chapter 3)

Part 3

(Chapter 5)

Part 3

(Chapter 4)

Figure 1.1: An illustration of the organization of the thesis.

vision and control/navigation. The visual measurement is the core of all the top-

ics. Specifically, the first part (Chapter 2) addresses optimal placement of sensor

networks for target localization, which is an interdisciplinary topic of sensor net-

work and computer vision. The second part (Chapter 3) focuses on bearing-only

formation control, which is an interdisciplinary topic of formation control and

computer vision. The third part (Chapter 4 and Chapter 5) explores vision-

based navigation of UAVs, which is an interdisciplinary topic of UAV navigation

and computer vision.

1.1 Background

As aforementioned, it is easy for vision to obtain the bearing but hard to obtain

the range of a target. As a result, if vision is treated as a bearing-only sensing

approach, the burden on the end of vision can be significantly reduced, and

consequently the reliability and efficiency of the vision system can be greatly

enhanced. In fact, vision can be practically treated as a bearing-only sensor in

some multi-vehicle systems.

In multi-vehicle cooperative target tracking, suppose each vehicle carries a

monocular camera to measure the bearing of the target. If the multiple vehi-

cles/cameras are deployed in a general placement, the target position can be

determined cooperatively from the multiple bearing measurements. Cooperative

2



target localization/tracking by sensor networks is a mature research area. How-

ever, it is still an unsolved problem how to place the sensors in 3D space such

that the target localization uncertainty can be minimized. When localizing a

target from noisy measurements of multiple sensors, the placement of the sen-

sors can significantly affect the estimation accuracy. In Chapter 2, we investigate

the optimal sensor placement problem. One main contribution of our work is

that we propose and prove the necessary and sufficient conditions for optimal

sensor placement in both 2D and 3D spaces. Our research result was initially

developed for bearing-only sensor networks, but later extended to range-only

and received-strength-signal (RSS) sensor networks.

In cooperative target tracking, the bearing measurements are ultimately used

for target position estimation. As a comparison, in multi-vehicle formation con-

trol, the bearing measurements can be directly used for formation stabilization

while no position estimation is required.

It is necessary for each vehicle obtaining certain information such as positions

of their neighbors in multi-vehicle formation control. The information exchange

can be realized by vision. In the conventional framework for vision-based for-

mation control, it is commonly assumed that vision is a very powerful sensor

which can provide the relative positions of the neighbors. This assumption is

practically unreasonable because it poses high requirements for both hardware

and software of the vision system. Treating vision as a bearing-only sensing

approach is a practically meaningful solution to vision-based formation control.

In Chapter 3, vision-based formation control is formulated to a bearing-only for-

mation control problem. We propose a distributed bearing-only control law to

stabilize cyclic formations. It is proved that the control law can guarantee local

exponential or finite-time stability.

The burden on the end of vision can be greatly reduced if vision can be

treated as a bearing-only sensing approach. However, estimation of the target

range cannot be always avoided in practice. We have to estimate the target

range in many cases such as vision-based navigation of unmanned aerial vehi-

cles (UAVs). My thesis will address vision-based navigation using natural and

artificial landmarks, respectively.

3



In Chapter 4, we investigate navigation of UAVs using natural landmarks.

Inertial measurement units (IMUs) are common sensors used for UAV naviga-

tion. The measurements of low-cost IMUs usually are corrupted by high noises

and large biases. As a result, pure inertial navigation based on low-cost IMUs

would drift rapidly. In practice, inertial navigation is usually aided by the global

positioning system (GPS) to achieve drift-free navigation. However, GPS is un-

available in certain environments. In addition to GPS, vision is also a popular

technique to aid inertial navigation. Chapter 4 addresses vision-aided navigation

of UAVs in unknown and GPS-denied environments. We design and implement

a navigation system based on a minimal sensor suite including vision to achieve

drift-free attitude and velocity estimation.

Chapter 5 will present a vision-based navigation system using artificial land-

marks. The navigation system can be used for cargo transporting by UAVs be-

tween moving platforms, and was successfully applied to the 2013 International

UAV Innovation Grand Prix (UAVGP), held in Beijing, China, September 2013.

The UAVGP competition contains several categories such as Rotor-Wing Cate-

gory and Creativity Category. We next briefly introduce the tasks required by

the Rotor-Wing Category that we have participated in. Two platforms moving

on the ground are used to simulate two ships. Four circles are drawn on each

platform. Four buckets are initially placed, respectively, inside the four circles

on one platform. The weight of each bucket is about 1.5 kg. The competition

task requires a UAV to transfer the four buckets one by one from one platform

to the other. In addition to bucket transferring, the UAV should also perform

autonomous taking off, target searching, target following and landing. The en-

tire task must be completed by the UAV fully autonomously without any human

intervention. Our team from the Unmanned Aircraft Systems (UAS) Group at

National University of Singapore has successfully completed the entire task and

made a great success in the competition. The great success is partially due to

the vision-based navigation system presented in Chapter 5.
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1.2 Literature Review

Optimal placement of sensor networks has been investigated extensively up to

now. The existing studies can be characterized from the following several aspects.

In the literature, there are generally two kinds of mathematical formulations

for optimal sensor placement problems. One is optimal control [97, 106, 96, 86]

and the other is parameter optimization [11, 12, 13, 38, 83, 118, 37, 64, 88]. The

optimal control formulations are usually adopted for cooperative path planning

problems [97, 106, 96], the aim of which is to estimate the target position on

one hand and plan the path of sensor platforms to minimize the estimation un-

certainty on the other hand. These problems are also referred to simultaneous

localization and planning (SLAP) [106]. The disadvantage of this kind of formu-

lation is that the optimal control with various constraints generally can only be

solved by numerical methods. Analytical properties usually cannot be obtained.

Optimal sensor placement problems are also widely formulated as parameter op-

timization problems [11, 12, 13, 38, 83, 118, 37, 64, 88]. The target estimation

uncertainty is usually characterized by the Fisher information matrix (FIM). In

contrast to optimal control formulations, parameter optimization formulations

can be solved analytically. The analytical solutions are important because they

can provide valuable insights into the impact of sensor placements on target lo-

calization/tracking uncertainty. Many studies have shown that target tracking

performance can be improved when sensors are steered to form an optimal place-

ment. In our work, we only focus on determining optimal placements and will

not address target tracking. One may refer to [83] for an example that illustrates

the application optimal sensor placements to cooperative target tracking.

Until now, most of the existing results have been only concerned with optimal

sensor placements in 2D space [11, 12, 13, 38, 83, 118, 64]. Very few studies

have tackled 3D cases [88]. Analytical characterization of generic optimal sensor

placements in 3D is still an open problem. Furthermore, the existing work on

optimal sensor placement has addressed many sensor types such as bearing-only

[11, 38, 122], range-only [83, 11, 66], RSS [13], time-of-arrival (TOA) [11, 12],

time-difference-of-arrival (TDOA) [11, 64], and Doppler [14]. However, these
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types of sensor networks are addressed individually in the literature. A unified

framework for analyzing different types of sensor networks is still lacking.

Unlike optimal sensor placement, bearing-only formation control is still a

new research topic that has not attracted much attention yet.

We next review studies related to bearing-only formation control from the

following two aspects. The first aspect is what kinds of measurements are used

for formation control. In conventional formation control problems, it is com-

monly assumed that each vehicle can obtain the positions of their neighbors

via, for example, wireless communications. It is notable that the position in-

formation inherently consists of two kinds of partial information: bearing and

distance. Formation control using bearing-only [89, 5, 10, 8, 41, 49] or distance-

only measurements [21, 20] has become an active research topic in recent years.

The second aspect is how the desired formation is constrained. In recent years,

control of formations with inter-vehicle distance constraints has become a hot

research topic [94, 74, 36, 117, 107, 63]. Recently researchers also investigated

control of formations with bearing/angle constraints [5, 10, 8, 41, 49, 9]. For-

mations with a mix of bearing and distance constraints has also been studied by

[42, 15].

From the point of view of the above two aspects, the problem studied in our

work can be stated as control of formations with angle constraints using bearing-

only measurements. This problem is a relatively new research topic. Up to now

only a few special cases have been solved. The work in [89] proposed a dis-

tributed control law for balanced circular formations of unit-speed vehicles. The

proposed control law can globally stabilize balanced circular formations using

bearing-only measurements. The work in [5, 10, 8] studied distributed control

of formations of three or four vehicles using bearing-only measurements. The

global stability of the proposed formation control laws was proved by employing

the Poincare-Bendixson theorem. But the Poincare-Bendixson theorem is only

applicable to the scenarios involving only three or four vehicles. The work in

[41] investigated formation shape control using bearing measurements. Parallel

rigidity was proposed to formulate bearing-based formation control problems. A

bearing-based control law was designed for a formation of three nonholonomic
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vehicles. Based on the concept of parallel rigidity, the research in [49] pro-

posed a distributed control law to stabilize bearing-constrained formations using

bearing-only measurements. However, the proposed control law in [49] requires

communications among the vehicles. That is different from the problem consid-

ered in our work where we assume there are no communications between any

vehicles and each vehicle cannot share their bearing measurements with their

neighbors. The work in [9, 15] designed control laws that can stabilize gener-

ic formations with bearing (and distance) constraints. However, the proposed

control laws in [9, 15] require position instead of bearing-only measurements. In

summary, although several frameworks have been proposed in [42, 41, 49, 15]

to solve bearing-related formation control tasks, it is still an open problem to

design a control law that can stabilize generic bearing-constrained formations

using bearing-only measurements.

In cooperative target tracking or vision-based formation control, it is prac-

tically possible to treat vision as a bearing-only sensing approach. However, we

have retrieve range information from visual measurements in many cases such as

vision-based navigation of UAVs. Hence it is determined by the specific appli-

cation whether vision can be treated as a bearing-only sensor. We next review

the literature on vision-based navigation of UAVs. We first consider the case of

unknown environments and the UAV is navigated based on natural landmarks.

Then we consider the case of known environments where the UAV is navigated

based on artificial landmarks.

The existing vision-based navigation tasks can be generally categorized to

two kinds of scenarios. In the first kind of scenarios, maps or landmarks of

the environments are available [120, 119, 114, 90, 59, 27]. Then the states of

the UAV can be estimated without drift using image registration or pose esti-

mation techniques. In the second kind of scenarios, maps or landmarks of the

environments are not available. Visual odometry [27, 18, 67, 104] and simulta-

neous localization and mapping (SLAM) [69, 70, 18, 108, 17] are two popular

techniques for vision-based navigation in unmapped environments. Given an im-

age sequence taken by the onboard camera, the inter-frame motion of the UAV

can be retrieved from pairs of consecutive images. Then visual odometry can
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estimate the UAV states by accumulating these inter-frame motion estimates.

However, the states estimated in this way will drift over time due to accumu-

lation errors. As a comparison, SLAM not only estimates the UAV states, but

also simultaneously builds up a map of the environment. Visual odometry usu-

ally discards the past vision measurements, but SLAM stores the past vision

measurements in the map and consequently uses them to refine the current state

estimation. Thus SLAM potentially can give better navigation accuracy than

visual odometry. However, maintaining a map requires high computational and

storage resources, which makes it difficult to implement real-time SLAM over

onboard systems of small-scale UAVs. Moreover, SLAM is not able to complete-

ly remove drift without loop closure. But loop closure is not available in many

navigation tasks in practice. Therefore, compared to SLAM, visual odometry

is more efficient and suitable for navigating small-scale UAVs especially when

mapping is not required. In this work we will adopt a visual odometry scheme

to build up a real-time vision-based navigation system.

The particular vision technique used in our navigation system is homogra-

phy, which has been successfully applied to a variety of UAV navigation tasks

[27, 18, 67, 90, 59, 124, 123]. We recommend [82, Section 5.3] for a good intro-

duction to homography. Suppose the UAV is equipped with a downward-looking

monocular camera, which can capture images of the ground scene during flight.

When the ground is planar, a 3 by 3 homography matrix can be computed from

the feature matchings of two consecutive images. A homography matrix carries

certain useful motion information of the UAV. The conventional way to retrieve

the information is to decompose the homography matrix [18, 67]. However,

homography decomposition has several disadvantages. For example, the decom-

position gives two physically possible solutions. Other information is required to

disambiguate the correct solution. More importantly, the homography estimated

from two images certainly has estimation errors. These errors would propagate

through the decomposition procedure and may cause large errors in the final-

ly decomposed quantities. To avoid homography decomposition, the work in

[27, 59] uses IMU measurements to eliminate the rotation in the homography

and then retrieves the translational information only. Note drift-free attitude

8



estimation is not an issue in [27, 59]. But in our work the attitude (specifical-

ly the pitch and roll angles) of the UAV cannot be directly measured by any

sensors. Thus we have to fully utilize the information carried by a homogra-

phy to tackle the drift-free attitude estimation problem. It is notable that the

homography carries the information of the pitch and roll angles if the ground

plane is horizontal. For indoor environments, the floor surfaces normally are

horizontally planar; for outdoor environments, the ground can be treated as a

horizontal plane when the UAV flies at a relatively high altitude. By assuming

the ground as a horizontal plane, we will show homography plays a key role in

drift-free attitude and velocity estimation. Other vision-based methods such as

horizontal detection [32] can also estimate attitude (roll and pitch angles) but

the velocity cannot be estimated simultaneously.

In our work on vision-based navigation using artificial landmarks, we use

circles with known diameters as the artificial landmarks. In order to accomplish

the navigation task using circles, we need to solve the three key problems: ellipse

detection, ellipse tracking, and circle-based pose estimation.

Ellipse detection has been investigated extensively up to now [47, 1, 4, 84,

121]. We choose ellipse fitting [47, 1] as the core of our ellipse detection algorithm.

That is mainly because ellipse fitting is very efficient compared to, for example,

Hough transform based ellipse detection algorithms [4, 84]. Our work adopts the

well-implemented algorithm, the OpenCV function fitEllipse, for ellipse fitting.

Since a contour cannot be determined as an ellipse or not merely by ellipse fitting,

we present a three-step procedure to robustly detect ellipses. The procedure

consists of 1) pre-processing, 2) ellipse fitting and 3) post-processing. The pre-

processing is based on affine moment invariants (AMIs) [48]; the post-processing

is based on the algebraic error between the contour and the fitted ellipse. The

three-step procedure is not only robust against non-elliptical contours, but also

can detect partially occluded ellipses.

In practical applications, multiple ellipses may be detected in an image, but

we may be only interested in one of them. After certain initialization procedure,

the ellipse of interest needs to be tracked over the image sequence such that the

pose of the corresponding circle can be estimated continuously. There are several
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practical challenges for tracking an ellipse in the competition task. Firstly, the

areas enclosed by the ellipses are similar to each other in both color and shape.

As a result, pattern matching methods based only on color, shape or feature

points are not able to distinguish the target ellipse. Secondly, in order to track

the target ellipse consistently, the frame rate of the image sequence must be high.

This requires the tracking algorithm to be sufficiently efficient. Considering these

challenges, we choose the efficient image tracking method CAMShift [2] as the

core of our tracking algorithm. The proposed algorithm can robustly track the

target ellipse even when its scale, shape or even color is dynamically varying.

The application of circles in camera calibration and pose estimation has been

investigated extensively [57, 71, 65, 110, 40, 76]. However, the existing work

mainly focused on the cases of concentric circles [71, 65, 76, 40], while the aim

of our work is to do pose estimation based only on one single circle. The topic

addressed in [110] is similar to ours, but it is concluded in [110] that other

information such as parallel lines are required to estimate the pose of a single

circle. From a practical point of view, we can successfully solve the single-circle-

based pose estimation problem in our work by adopting a reasonable assumption.

Based on that assumption, we propose an accurate and efficient algorithm that

can estimate the position of the circle center from a single circle. The necessary

and sufficient conditions for the adopted assumption are also proved.

1.3 Contributions of the Thesis

We next summarize the contributions of each chapter.

Chapter 2 studies optimal placement of sensor networks for target localization

and tracking. We present a unified framework to analyze optimal placements of

bearing-only, range-only, and RSS sensor networks. We prove the necessary and

sufficient conditions for optimal placements in 2D and 3D spaces. It is shown

that there are two kinds of optimal sensor placements: regular and irregular.

An irregular optimal placement problem can be converted to a regular one in a

lower dimensional space. A number of important analytical properties of optimal

sensor placements are explored. We propose a gradient control law that not only
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verifies our analytical analysis, but also provides a convenient numerical method

to construct optimal placements. Since the existing results in the literature are

mainly applicable to 2D cases, our work for both 2D and 3D cases is a significant

generalization of the existing studies.

Chapter 3 addresses bearing-only formation control, a new research topic

that has not attracted much attention yet. Bearing-only formation control pro-

vides a novel and practical solution for implementing vision-based formation

control tasks. We investigate an important special case: cyclic formations with

underlying graphs as cycles. We design a distributed control law which merely

requires local bearing measurements. It is proved that the control law guarantees

local exponential or finite-time formation stability. Collision avoidance between

any vehicles can also be locally guaranteed. The stability analysis based on

Lyapunov approaches should be useful for future research on more complicated

bearing-based formation control problems.

Chapter 4 investigates vision-based navigation of UAVs using natural land-

marks. Specifically, we propose a novel homography-based vision-aided inertial

navigation system to provide drift-free velocity and attitude estimates. The

observability analysis of the proposed navigation system suggests that the veloc-

ity, attitude and unknown biases are all observable as expected when the UAV

speed is nonzero. Comprehensive simulations and flight experiments verify the

effectiveness and robustness of the proposed navigation system.

Chapter 5 studies a vision-based navigation task for UAVs using artificial

landmarks. Specifically, we propose reliable and efficient vision algorithms for

ellipse detection, ellipse tracking, and circle-based pose estimation. A series of

experiments and the great success of our team in UAVGP verify the efficiency,

accuracy, and reliability of the proposed vision system. In addition to the spe-

cific tasks proposed by UAVGP, the proposed algorithms are also applied to a

wide range of vision-based navigation and guidance tasks such as vision-based

autonomous takeoff and landing, target following and vision-based formation

control of UAVs.
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Chapter 2

Optimal Placement of Sensor

Networks for Target Tracking

2.1 Introduction

In this chapter, we will study optimal placement of sensor networks for target

tracking. Although this topic has been investigated extensively, several key

problems are still unsolved as discussed in Section 1.2. In our work, we adopt the

parameter optimization formulation to analyze optimal placements. Our aim is

to analytically determine the optimal sensor-target geometry based on an initial

estimate of the target position. In practice, the initial estimate can be obtained

by using, for example, Kalman filter. The optimal placement deployed based

on the initial estimate is supposed to be able to improve the consequent target

localization/tracking accuracy. It should be noted that we will not discuss target

estimation or practical applications of optimal sensor placements in our work.

Interested readers may refer to [83, Section 4] for a comprehensive example that

illustrates how optimal sensor placements can be applied to cooperative target

tracking.

The main contributions of our research are summarized as below.

1) We generalize the existing results in [11, 38, 83, 13] from 2D to 3D. The

generalization is non-trivial. Maximizing the determinant of the FIM has

been widely adopted as the criterion for optimal placements in 2D. This
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criterion can be interpreted as maximizing the target information gathered

by the sensors. However, this criterion cannot be directly applied to 3D cases

because the determinant of the FIM is hardly analytically tractable in 3D

cases. Motivated by that, we propose a new criterion for optimal sensor

placement. This new criterion plays a key role in the generalization of the

existing results from 2D to 3D.

2) In our work, we consider three types of sensor networks: bearing-only, range-

only, and RSS-based. Optimal placements of these senor networks have been

analyzed individually in the literature. We present a unified framework for

analyzing optimal placement of these sensor networks. The results presented

in this chapter are applicable to the three types of sensor networks.

3) Based on recently developed frame theory, we prove the necessary and suffi-

cient conditions of optimal placement of sensor networks in 2D and 3D spaces.

This is the most important result of our research.

4) A number of important properties of optimal sensor placements are explored.

We also present a centralized gradient control law that can construct 2D and

3D optimal sensor placements numerically.

The chapter is organized as follows. Section 2.2 introduces preliminaries

to frame theory. Section 2.3 presents a unified mathematical formulation for

optimal placement problems of bearing-only, range-only, and RSS sensors in 2D

and 3D. In Section 2.4, we present necessary and sufficient conditions for optimal

placements. Section 2.5 further explores a number of important properties of

optimal placements. Section 2.6 proposes a gradient control law that can be

used to automatically deploy optimal sensor placements.

2.2 Preliminaries to Frame Theory

Frames can be defined in any Hilbert space. Here we are only interested in d-

dimensional Euclidean space Rd with d ≥ 2. Let ‖ · ‖ be the Euclidean norm

of a vector or the Frobenius norm of a matrix. As shown by [6, 23, 72, 73], a

set of vectors {ϕi}ni=1 in Rd (n ≥ d) is called a frame if there exist constants
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0 < a ≤ b < +∞ so that for all x ∈ Rd

a‖x‖2 ≤
n∑

i=1

〈x, ϕi〉2 ≤ b‖x‖2, (2.1)

where 〈·, ·〉 denotes the inner product of two vectors. The constants a and b are

called the frame bounds. A frame {ϕi}ni=1 is called unit-norm if ‖ϕi‖ = 1 for all

i ∈ {1, . . . , n}. Denote Φ = [ϕ1, . . . , ϕn] ∈ Rd×n. Because 〈x, ϕi〉2 = (xTϕi)
2 =

xTϕiϕ
T
i x, inequality (2.1) can be rewritten as

a‖x‖2 ≤ xTΦΦTx ≤ b‖x‖2,

where the matrix ΦΦT =
∑n

i=1 ϕiϕ
T
i is called the frame operator. The frame

bounds a and b obviously are the smallest and largest eigenvalues of ΦΦT, re-

spectively. Since a > 0, ΦΦT is positive definite and hence Φ is of full row rank.

Therefore, the frame {ϕi}ni=1 spans Rd. It is well known that d vectors in Rd

form a basis if they span Rd. Frame essentially is a generalization of the concept

of basis. Unlike a basis, a frame have n − d redundant vectors. The constant

n/d is referred as the redundancy of the system. When n/d = 1, a frame would

degenerate to a basis.

Tight frame is a particularly important concept in frame theory. A frame is

tight when a = b. From (2.1) it is easy to see the frame {ϕi}ni=1 is tight when

n∑

i=1

ϕiϕ
T
i = aId. (2.2)

Taking trace on both sides of (2.2) yields a =
∑n

i=1 ‖ϕi‖2/d. It is an important

and fundamental problem in frame theory to construct a tight frame {ϕi}ni=1 that

solves (2.2) with specified norms. This problem is also recognized as notoriously

difficult [24]. One approach to this problem is to characterize tight frames as

the minimizers of the frame potential

FP ({ϕi}ni=1) =
n∑

i=1

n∑

j=1

(
ϕT
i ϕj

)2
. (2.3)

Frame potential was first proposed by [6] for unit-norm frames, and then gener-
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alized by [23] for frames with arbitrary norms.

We can find tight frames by minimizing the frame potential. The following

concept of irregularity is crucial for characterizing the minimizers of the frame

potential [23, 72].

Definition 2.1 (Irregularity). For any positive non-increasing sequence {ci}ni=1

with c1 ≥ · · · ≥ cn > 0, and any integer d satisfying 1 ≤ d ≤ n, denote k0 as the

smallest nonnegative integer k for which

c2k+1 ≤
1

d− k
n∑

i=k+1

c2i . (2.4)

The integer k0 is called the irregularity of {ci}ni=1 with respect to d.

Remark 2.1. The irregularity of a sequence is evaluated with respect to a par-

ticular positive integer d. The irregularity of a given sequence may be different

when evaluated with respect to different positive integers. In this chapter, we will

omit mentioning this integer when the context is clear.

Because the index k = d − 1 always makes (2.4) hold, the irregularity k0

always exists and satisfies

0 ≤ k0 ≤ d− 1.

When k0 = 0, inequality (2.4) degenerates to the fundamental inequality [23]

max
j=1,...,n

c2j ≤
1

d

n∑

i=1

c2i . (2.5)

In this chapter we call the sequence {ci}ni=1 regular when k0 = 0, and irregular

when k0 6= 0. The fundamental inequality (2.5) intuitively implies: a sequence

is regular when no element is much larger than the others. Next we show several

examples to illustrate the concept of irregularity.

Example 2.1. Consider a sequence {ci}ni=1 with c1 = · · · = cn = c and any

d ≤ n. The fundamental inequality (2.5) holds because 1/d
∑n

i=1 c
2
i = nc2/d ≥

c2. Thus {ci}ni=1 is regular with respect to any integer d ≤ n. This result will be

frequently used in the sequel.
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Example 2.2. Consider a sequence {ci}4i=1 = {10, 1, 1, 1} and d = 3. Note

the feature of this sequence is that one element is much larger than the others.

Because 102 > 1/3(102 + 1 + 1 + 1), the sequence is irregular with respect to

d = 3. In order to determine the irregularity k0, we need to further check if

{ci}4i=2 = {1, 1, 1} is regular with respect to d − 1 = 2. Since the elements

of {ci}4i=2 equal to each other, {ci}4i=2 is regular with respect to 2 as shown in

Example 2.1. Hence the irregularity of {ci}4i=1 with respect to d = 3 is k0 = 1.

This example illustrates one important result: a sequence is irregular if certain

element is much larger than the others.

Example 2.3. Consider a sequence {ci}4i=1 = {10, 10, 1, 1} and d = 2 or 3.

When d = 2, we have 102 < 1/2(102 + 102 + 1 + 1). Hence {ci}4i=1 is regular

with respect to d = 2. When d = 3, we have 102 > 1/3(102 + 102 + 1 + 1),

102 > 1/2(102 + 1 + 1) and 1 < 1/1(1 + 1). Hence {ci}4i=1 is irregular with

respect to d = 3 and the irregularity is k0 = 2. This example shows that a

sequence may be regular with respect to one integer but irregular with respect to

another.

The minimizers of the frame potential in (2.3) are characterized by the fol-

lowing lemma [23], which will be used to prove the necessary and sufficient

conditions of optimal placements.

Lemma 2.1. In Rd, given a positive non-increasing sequence {ci}ni=1 with irreg-

ularity as k0, if the norms of the frame {ϕi}ni=1 are specified as ‖ϕi‖ = ci for all

i ∈ {1, . . . , n}, any minimizer of the frame potential in (2.3) is of the form

{ϕi}ni=1 = {ϕi}k0i=1 ∪ {ϕi}ni=k0+1,

where {ϕi}k0i=1 is an orthogonal set, and {ϕi}ni=k0+1 is a tight frame in the or-

thogonal complement of the span of {ϕi}k0i=1. Any local minimizer is also a global

minimizer.

From Lemma 2.1, a minimizer of the frame potential consists of an orthog-

onal set {ϕi}k0i=1 and a tight frame {ϕi}ni=k0+1. The partition of the two sets is

determined by the irregularity of the specified frame norms {ci}ni=1. When the
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irregularity k0 = 0, it is clear that a minimizer of the frame potential is a tight

frame. As a corollary of Lemma 2.1, the following result [23] gives the existence

condition of the solutions to (2.2).

Lemma 2.2. In Rd, given a positive sequence {ci}ni=1, there exists a tight frame

{ϕi}ni=1 with ‖ϕi‖ = ci for all i ∈ {1, . . . , n} solving (2.2) if and only if {ci}ni=1

is regular.

2.3 Problem Formulation

Consider one target and n sensors in Rd (d = 2 or 3 and n ≥ d). The n sensors

are of one of the following sensor types: bearing-only, range-only, and RSS.

Sensor networks with mixed sensor types are not considered in this chapter.

Following [11, 38, 83, 13], we assume that an initial target position estimate

p ∈ Rd is available. The optimal placement will be determined based on this

initial estimate. Denote the position of sensor i as si ∈ Rd, i ∈ {1, . . . , n}. Then

ri = si − p denotes the position of sensor i relative to the target. The sensor-

target placement can be fully described by {ri}ni=1. Our aim is to determine

the optimal {ri}ni=1 such that certain objective function can be optimized. The

distance between sensor i and the target is given by ‖ri‖. The unit-length vector

gi =
ri
‖ri‖

represents the bearing of sensor i relative to the target.

2.3.1 Sensor Measurement Model and FIM

For any sensor type in Table 2.1, the measurement model of sensor i can be

expressed as

zi = hi(ri) + vi,

where zi ∈ Rm denotes the measurement of sensor i, the function hi(ri) : Rd →

Rm is determined by the sensor type as shown in Table 2.1, and vi ∈ Rm is the

additive measurement noise. We assume vi to be a zero-mean Gaussian noise
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Table 2.1: Measurement models and FIMs of the three sensor types.

Sensor type Measurement model FIM Coefficient

Bearing-only hi(ri) =
ri
‖ri‖

F =

n∑

i=1

c2i (Id − gigTi ) ci =
1

σi‖ri‖

Range-only hi(ri) = ‖ri‖ F =
n∑

i=1

c2i gig
T
i ci =

1

σi

RSS hi(ri) = ln ‖ri‖ F =

n∑

i=1

c2i gig
T
i ci =

1

σi‖ri‖

with covariance as Σi = σ2i Im ∈ Rm×m, where Im denotes the m ×m identity

matrix. By further assuming the measurement noises of different sensors are

uncorrelated, the FIM given by n sensors is expressed as

F =

n∑

i=1

(
∂hi
∂p

)T

Σ−1i
∂hi
∂p

, (2.6)

where ∂hi/∂p denotes the Jacobian of hi(ri) = hi(si − p) with respect to p. For

a detailed derivation of the FIM formula in (2.6), we refer to [11, Section 3].

The measurement models of bearing-only, range-only, and RSS sensors are

given in Table 2.1. The measurement of a bearing-only sensor is conventionally

modeled as one angle (azimuth) in 2D or two angles (azimuth and altitude) in

3D. The drawback of this kind of model is that the model complexity increases

dramatically as the dimension increases. As a result, this conventional model is

not suitable for analyzing 3D optimal placements. Note that a unit-length vector

essentially characterizes a bearing and is very suitable to represent a bearing-only

measurement. Thus we model the measurement of a bearing-only sensor as a

unit-length vector pointing from the target to the sensor. As will be shown later,

this new bearing-only measurement model will greatly simplify the formulation

of optimal bearing-only placement problems in 2D and 3D. The measurement

model of range-only sensors in Table 2.1 is the same as the one given by [11].

The measurement model of RSS sensors in Table 2.1 is a modified version of the

one in [13]. Without loss of generality, we simplify the model in [13] by omitting

certain additive and multiplicative constants.

By substituting hi(ri) into (2.6), we can calculate the FIMs of the three sensor

types. The calculation is straightforward and omitted here. The FIMs have
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been calculated and given in Table 2.1. As will be shown later, the coefficients

{ci}ni=1 in the FIM are crucial for determining optimal placements. Following

[11, 38, 13, 83], we assume the coefficient ci to be arbitrary but fixed. (i) For

bearing-only or RSS sensors, as ci = 1/(σi‖ri‖), both σi and ‖ri‖ are assumed to

be fixed. Otherwise, if ‖ri‖ is unconstrained, the placement will be optimal when

‖ri‖ approaches zero. To avoid this trivial solution, it is reasonable to assume

‖ri‖ to be fixed. (ii) For range-only sensors, as ci = 1/σi, only σi is assumed to

be fixed. Hence ‖ri‖ will have no influence on the optimality of the placements

for range-only sensors.

To end this subsection, we would like to point out that the FIMs given in

Table 2.1 are consistent with the ones given in [11, 38, 13, 83] in 2D cases.

To verify that, we can substitute gi = [cos θi, sin θi]
T ∈ R2 into the FIMs in

Table 2.1.

2.3.2 A New Criterion for Optimal Placement

The existing work on optimal senor placement has adopted various objective

functions such as detF , trF , and trF−1. These objective functions are re-

spectively referred as D-, T-, and A-optimality criteria in the field of optimal

experimental design [100]. The most popular criterion used for optimal sensor

placement is to maximize detF , which can be interpreted as minimizing the vol-

ume of the uncertainty ellipsoid characterized by F−1. However, this criterion

is not suitable for analyzing optimal placements in 3D space because detF is

hardly analytically tractable in R3. In order to analytically characterize opti-

mal placements in R2 and R3, we next introduce a new criterion that is closely

related to the conventional one.

Denote {λi}di=1 as the eigenvalues of F . Let λ̄ = 1/d
∑d

i=1 λi. Since
∑d

i=1 λi =

trF , it is easy to examine that λ̄ is an invariant quantity for any F given in Ta-

ble 2.1. In this chapter, we will minimize the new objective function ‖F − λ̄Id‖2,

which is of strong analytical tractability. Note ‖F − λ̄Id‖2 =
∑d

i=1(λi − λ̄)2.

Hence minimizing ‖F−λ̄Id‖2 actually is to minimize the diversity of the eigenval-

ues of F . The following result shows that the new criterion has a close connection

with the conventional one.
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Lemma 2.3. For any one of the three sensor types given in Table 2.1, we have

detF ≤ λ̄d,

where the equality holds if and only if

‖F − λ̄Id‖2 = 0.

Proof. For any one of the three sensor types, the FIM F is symmetric positive

(semi) definite. Hence λj is real and nonnegative. From the FIMs shown in

Table 2.1, we have
∑d

j=1 λj = trF = (d − 1)
∑n

i=1 c
2
i for bearing-only sensors,

and
∑d

j=1 λj = trF =
∑n

i=1 c
2
i for range-only or RSS sensors. Note {ci}ni=1 is

assumed to be fixed. Hence
∑d

j=1 λj is an invariant quantity. By the inequality

of arithmetic and geometric means, the conventional objective function detF

satisfies

detF =

d∏

j=1

λj ≤


1

d

d∑

j=1

λj



d

= λ̄d,

where the equality holds if and only if λj = λ̄ for all j ∈ {1, . . . , d}, which means

F = λ̄Id ⇐⇒ ‖F − λ̄Id‖2 = 0.

In short, detF is maximized to its upper bound λ̄d if and only if ‖F − λ̄Id‖2 =

0.

Loosely speaking, Lemma 2.3 suggests that minimizing ‖F − λ̄Id‖2 is equiv-

alent to maximizing detF . We next further examine the relationship between

the new and conventional criterions case by case.

1) In R2, we have detF = 1/2((trF)2 − tr (F 2)) = 1/2
(
4λ̄2 − ‖F‖2

)
and ‖F −

λ̄I2‖2 = tr (F − λ̄I2)2 = ‖F‖2 − 2λ̄2, which suggest

‖F − λ̄I2‖2 = −2 detF + 2λ̄2.

Because 2λ̄2 is constant, minimizing ‖F − λ̄I2‖2 is rigorously equivalent to
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maximizing detF in R2. As a result, our analysis based on the new criterion

will be consistent with the 2D results in [11, 38, 83, 13].

2) In R3, if ‖F − λ̄I3‖2 is able to achieve zero, then detF can be maximized to

its upper bound as shown in Lemma 2.3. In this case the new criterion is still

rigorously equivalent to the conventional one.

3) In R3, ‖F − λ̄I3‖2 is not able to reach zero in certain irregular cases (see

Section 2.4 for the formal definition of irregular). In these cases detF and

‖F − λ̄I3‖2 may not be optimized simultaneously. But as will be shown later,

the analysis of irregular cases in R3 based on the new criterion is a reasonable

extension of the analysis of irregular cases in R2.

2.3.3 Problem Statement

We now formally state the optimal sensor placement problem that we are going

to solve.

Problem 2.1. Consider one target and n sensors in Rd (d = 2 or 3 and n ≥ d).

The sensors involve only one of the three sensor types in Table 2.1. Given

arbitrary but fixed positive coefficients {ci}ni=1, find the optimal placement {g∗i }ni=1

such that

{g∗i }ni=1 = arg min
{gi}ni=1⊂Sd−1

‖F − λ̄Id‖2, (2.7)

where Sd−1 denotes the unit sphere in Rd.

Remark 2.2. The sensor-target placement can be fully described by {ri}ni=1.

Recall ‖ri‖ is assumed to be fixed for bearing-only or RSS sensors, and ‖ri‖ has

no effect on the placement optimality for range-only sensors. Thus for any sensor

type, the optimal sensor placement can also be fully described by {gi}ni=1. That

means we only need to determine the optimal sensor-target bearings {g∗i }ni=1 to

obtain the optimal placement.

Although the FIMs of different sensor types may have different formulas as

shown in Table 2.1, the following result shows that substituting the FIMs of the
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three sensor types into (2.7) will lead to an identical objective function. The

following result is important because it enables us to unify the formulations of

optimal sensor placement for the three sensor types.

Lemma 2.4. Consider one target and n sensors in Rd (d = 2 or 3 and n ≥ d).

The sensors involve only one of the three sensor types in Table 2.1. The problem

defined in (2.7) is equivalent to

{g∗i }ni=1 = arg min
{gi}ni=1⊂Sd−1

‖G‖2 , (2.8)

where G =
∑n

i=1 c
2
i gig

T
i .

Proof. If all sensors are bearing-only, the FIM is F =
∑n

i=1 c
2
i (Id − gigTi ) and

then λ̄ = 1/d
∑d

j=1 λj = trF/d = (d− 1)/d
∑n

i=1 c
2
i . Hence

‖F − λ̄Id‖ =

∥∥∥∥∥
n∑

i=1

c2i (Id − gigTi )− d− 1

d

n∑

i=1

c2i Id

∥∥∥∥∥

=

∥∥∥∥∥−
n∑

i=1

c2i gig
T
i +

1

d

n∑

i=1

c2i Id

∥∥∥∥∥ .

If all sensors are range-only or RSS, the FIM is F =
∑n

i=1 c
2
i gig

T
i and then

λ̄ = 1/d
∑d

j=1 λj = trF/d = 1/d
∑n

i=1 c
2
i . Hence

‖F − λ̄Id‖ =

∥∥∥∥∥
n∑

i=1

c2i gig
T
i −

1

d

n∑

i=1

c2i Id

∥∥∥∥∥ .

Therefore, for any sensor type in Table 2.1, the new objective function can be

rewritten as

‖F − λ̄Id‖2 =

∥∥∥∥∥
n∑

i=1

c2i gig
T
i −

1

d

n∑

i=1

c2i Id

∥∥∥∥∥

2

= ‖G‖2 − 1

d

(
n∑

i=1

c2i

)2

. (2.9)

Because 1/d(
∑n

i=1 c
2
i )

2 is constant, minimizing ‖G‖2 is equivalent to minimizing

‖F − λ̄Id‖2.

One primary aim of this work is to solve the parameter optimization problem

(2.8). It should be noted that we must clearly know the type of the sensors such
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that the coefficients {ci}ni=1 in G can be calculated correctly. Once {ci}ni=1 are

calculated, the sensor types will be transparent to us. As a consequence, the

analysis of optimal sensor placement in the sequel of the chapter will apply to

all the three sensor types.

Remark 2.3. In this work, we only consider homogeneous sensor networks. But

it is worthwhile noting that Lemma 2.4 actually is also valid for a heterogeneous

sensor network which contains both range-only and RSS sensors. That is be-

cause the FIMs of the two sensor types have the same formula, and the total

FIM would simply be the sum of the two respective FIMs of range-only and RSS

sensors. As a result, the analysis in the rest of this chapter also applies to het-

erogeneous sensor networks that contain both range-only and RSS sensors. In

the heterogeneous case, the coefficient ci should be calculated correctly according

to the type of sensor i.

2.3.4 Equivalent Sensor Placements

Before solving (2.8), we identify a group of placements that result in the same

value of ‖G‖2.

Proposition 2.1. The objective function ‖G‖2 is invariant to the sign of gi for

all i ∈ {1, . . . , n} and any orthogonal transformations over {gi}ni=1.

Proof. First, gig
T
i = (−gi)(−gi)T for all i ∈ {1, . . . , n}, hence ‖G‖2 is invari-

ant to the sign of gi. Second, let U ∈ Rd×d be an orthogonal matrix satisfy-

ing UTU = Id. Applying U to {gi}ni=1 yields {g′i = Ugi}ni=1. Then we have

G′ =
∑n

i=1 c
2
i g
′
i(g
′
i)
T =

∑n
i=1 c

2
i (Ugi)(Ugi)

T = UGUT. Since G and G′ are both

symmetric, we have ‖G′‖2 = tr (UGUTUGUT) = tr (G2) = ‖G‖2.

Geometrically speaking, changing the sign of gi means flipping sensor i about

the target, and an orthogonal transformation represents a rotation, reflection or

both combined operation over all sensors. Therefore, Proposition 2.1 implies

that these geometric operations cannot affect the value of ‖G‖2. Furthermore,

it is straightforward to examine that detF is also invariant to these geometric

operations. It is noticed that the invariance to the sign change of gi was originally
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Figure 2.1: Examples of equivalent placements (d = 2, n = 3): (a) Original placement. (b)
Rotate all sensors about the target 60 degrees clockwise. (c) Reflect all sensors about the
vertical axis. (d) Flipping the sensor s3 about the target.

recognized in [38] for 2D bearing-only sensor placements. By Proposition 2.1,

we define the following equivalence relationship.

Definition 2.2 (Equivalent placements). Given arbitrary but fixed coeffi-

cients {ci}ni=1, two placements {gi}ni=1 and {g′i}ni=1 are called equivalent if they

are differed by indices permutation, flipping any sensors about the target, or any

global rotation, reflection or both combined over all sensors.

Due to the equivalence, there always exist an infinite number of equivalent

optimal placements minimizing ‖G‖2. If two optimal placements are equivalent,

they lead to the same objective function value. But the converse statement is

not true in general. In Section 2.5.3, we will give the condition under which the

converse is true. Examples of 2D equivalent placements are given in Figure 2.1.
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2.4 Necessary and Sufficient Conditions for Optimal

Placement

In this section, we prove the necessary and sufficient conditions for optimal

placements solving (2.8). Recall G =
∑n

i=1 c
2
i gig

T
i . Then we have

‖G‖2 =
n∑

i=1

n∑

j=1

(cicjg
T
i gj)

2

=
n∑

i=1

n∑

j=1

(ϕiϕj)
2,

where ϕi = cigi and ‖ϕi‖ = ci for any i ∈ {1, . . . , n}. The vectors {ϕi}ni=1 actu-

ally form a frame in Rd. Then the objective function ‖G‖2 is the frame potential

of {ϕi}ni=1 as shown in (2.3), and the matrix G is the frame operator. Further-

more, since ‖ϕi‖ = ci, the coefficient sequence {ci}ni=1 will fully determine the

minimizers of ‖G‖2. According to the irregularity of {ci}ni=1, optimal placements

can be categorized as regular and irregular as shown below.

When {ci}ni=1 is regular, the necessary and sufficient condition of optimal

placement is given below. The 2D version of the following result has been pro-

posed in [11, 38, 13].

Theorem 2.1 (Regular optimal placement). In Rd with d = 2 or 3, if the

positive coefficient sequence {ci}ni=1 is regular, then the objective function ‖G‖2

satisfies

‖G‖2 ≥ 1

d

(
n∑

i=1

c2i

)2

. (2.10)

The lower bound of ‖G‖2 is achieved if and only if

n∑

i=1

c2i gig
T
i =

1

d

n∑

i=1

c2i Id. (2.11)

Proof. Let {µj}dj=1 be the eigenvalues of G. Then
∑d

j=1 µj = trG =
∑n

i=1 c
2
i is
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constant. Let µ̄ = 1/d
∑d

j=1 µj = 1/d
∑n

i=1 c
2
i . It is obvious that

‖G‖2 =

d∑

j=1

µ2j ≥ dµ̄2 =
1

d

(
n∑

i=1

c2i

)2

. (2.12)

The lower bound of ‖G‖2 is achieved if and only if µj = µ̄ for all j ∈ {1, . . . , d},

which implies G = µ̄Id and hence equation (2.11). By denoting ϕi = cigi,

equation (2.11) becomes
∑n

i=1 ϕiϕ
T
i = 1/d

∑n
i=1 c

2
i Id which is the same as (2.2).

Thus a regular optimal placement solving (2.11) corresponds to a tight frame.

Because {ci}ni=1 is regular, by Lemma 2.2 there exist optimal placements solving

(2.11).

We call a placement regular when its coefficient sequence is regular, and reg-

ular optimal when it solves (2.11). To obtain a regular optimal placement, we

need further to solve (2.11). Details of the solutions to (2.11) will be given in

Section 2.5.1. When ‖G‖2 reaches its lower bound given in (2.12), it is straight-

forward to see ‖F − λ̄Id‖2 = 0 by (2.9). Thus by Lemma 2.3, the conventional

objective function detF would also be maximized to its upper bound. Then we

have the following result.

Corollary 2.1. In Rd with d = 2 or 3, a regular optimal placement not only

minimizes the new objective functions ‖G‖2 and ‖F − λ̄Id‖2, but also maximizes

the conventional one detF .

When {ci}ni=1 is irregular, (2.11) will have no solution by Lemma 2.2. Then

the the necessary and sufficient condition of optimal placement is given below.

The 2D version of the following result has been proposed in [11, 38, 13].

Theorem 2.2 (Irregular optimal placement). In Rd with d = 2 or 3, if

the positive coefficient sequence {ci}ni=1 is irregular with irregularity as k0 ≥ 1,

without loss of generality {ci}ni=1 can be assumed to be a non-increasing sequence,

and then the objective function ‖G‖2 satisfies

‖G‖2 ≥
k0∑

i=1

c4i +
1

d− k0




n∑

i=k0+1

c2i




2

. (2.13)
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The lower bound of ‖G‖2 is achieved if and only if

{gi}ni=1 = {gi}k0i=1 ∪ {gi}ni=k0+1, (2.14)

where {gi}k0i=1 is an orthogonal set, and {gi}ni=k0+1 forms a regular optimal place-

ment in the (d− k0)-dimensional orthogonal complement of {gi}k0i=1.

Proof. Recall ‖G‖2 is the frame potential of the frame {ϕi}ni=1 where ϕi = cigi.

From Lemma 2.1, the minimizer of ‖G‖2 is of the following form: {cigi}k0i=1

is an orthogonal set, and {cigi}ni=k0+1 is a tight frame (i.e., a regular optimal

placement) in the orthogonal complement of {cigi}k0i=1.

Let Φ1 = [ϕ1, . . . , ϕk0 ] ∈ Rd×k0 , Φ2 = [ϕk0+1, . . . , ϕn] ∈ Rd×(n−k0), and

Φ = [Φ1,Φ2] ∈ Rd×n. When {gi}ni=1 is of the form in (2.14), the columns of Φ1

are orthogonal to those of Φ2. Then

‖G‖2 = tr (ΦTΦ)2 = tr (ΦT
1 Φ1)

2 + tr (ΦT
2 Φ2)

2.

Because {gi}k0i=1 is an orthogonal set, we have tr (ΦT
1 Φ1)

2 =
∑k0

i=1 ‖ϕi‖4 =

∑k0
i=1 c

4
i . Because {gi}ni=k0+1 is a regular optimal placement in a (d − k0)-

dimensional subspace, we have tr (ΦT
2 Φ2)

2 = 1/(d− k0)(
∑n

i=k0+1 c
2
i )

2 by Theo-

rem 2.1. Therefore, when {gi}ni=1 is of the form in (2.14), the objective function

‖G‖2 reaches its lower bound as shown in (2.13).

We call a placement irregular when its coefficient sequence is irregular, and

irregular optimal when it is of the form in (2.14). In Theorem 2.2, {gi}ni=k0+1 is

a regular optimal placement in a (d− k0)-dimensional space. Thus Theorem 2.2

implies that an irregular optimal placement problem would be eventually con-

verted to a regular one in a lower dimensional subspace.

As shown by Theorems 2.2, the irregularity of {ci}ni=1 plays a key role in

determining optimal placements. Recall the irregularity k0 of an irregular se-

quence with respect to d satisfies 1 ≤ k0 ≤ d−1. As d = 2 or 3 in our work, it is

possible to enumerate all the kinds of irregular optimal placements. Specifically,

in R2, we have d = 2 and hence k0 = 1; in R3, we have d = 3 and hence k0 = 1

or 2. Thus there exist only three kinds of irregular optimal placements in R2
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Figure 2.2: An illustration of the three kinds of irregular optimal placements in R2 and R3. (a)
d = 2, k0 = 1; (b) d = 3, k0 = 1; (c) d = 3, k0 = 2.

and R3. By Theorem 2.2, these three kinds of irregular optimal placements can

be intuitively described as below.

1) Irregular optimal placement in R2 with irregularity k0 = 1: the vector g1

is orthogonal to {gi}ni=2, and {gi}ni=2 are collinear. See an illustration in

Figure 2.2 (a).

2) Irregular optimal placement in R3 with irregularity k0 = 1: the vector g1 is

orthogonal to {gi}ni=2, and {gi}ni=2 form a regular optimal placement in the

2D plane perpendicular to g1. See an illustration in Figure 2.2 (b).

3) Irregular optimal placement in R3 with irregularity k0 = 2: the vectors g1,

g2 and {gi}ni=3 are mutually orthogonal, and {gi}ni=3 are collinear. See an

illustration in Figure 2.2 (c).

Up to this point, Theorems 2.1 and 2.2 clearly indicate that the cruciality of

the coefficients {ci}ni=1 in determining optimal sensor placements. The coefficient

ci actually is the weight for sensor i. The larger the weight ci is, the more

sensor i contributes to the FIM. Recall ci = 1/σi for range-only sensors, and

ci = 1/(σi‖ri‖) for bearing-only or RSS sensors. Hence for range-only sensors,

the measurement noise level of a sensor can affect its weight; for bearing-only
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or RSS sensors, both measurement noise level and sensor-target range can affect

the weight of a sensor and hence the optimal placement. In addition, a sequence

{ci}ni=1 is irregular only if certain ci’s are much larger than the others. Since

large ci implies small σi (and small ‖ri‖), a placement is irregular only if certain

sensors can give much more accurate measurements (and are much closer to the

target) than the others.

To make our analysis more general, we do not assume σi’s to be identical in

this work. But it is also meaningful to check the special case that σi = σj for

all i 6= j. First, for bearing-only or RSS-based sensors, the coefficient is ci =

1/(σi‖ri‖). Then when σi = σj for all i 6= j, from the fundamental inequality

(2.5), a regular sequence {ci}ni=1 implies

max
j=1,...,n

1

‖rj‖2
≤ 1

d

n∑

i=1

1

‖ri‖2
, (2.15)

which geometrically means no sensor is much closer to the target than the others.

The 2D version of inequality (2.15) has been proposed in [11, 38, 13]. Second,

for range-only sensors, the coefficient is ci = 1/σi. If σi = σj for all i 6= j,

then ci = cj . Hence {ci}ni=1 is regular with respect to any d ≤ n as shown in

Example 2.1.

We next consider an important special case n = d, i.e., the sensor number

equals to the dimension of the space. This case is important because the opti-

mal placement will be independent to the coefficients {ci}ni=1 in this case. The

optimal placement in the case of n = d = 2 has been solved by [11, 38, 13, 83].

Theorem 2.3. In Rd with d = 2 or 3, if n = d, the objective function ‖G‖2

satisfies

‖G‖2 ≥
d∑

i=1

c4i .

The lower bound of ‖G‖2 is achieved if and only if {gi}di=1 is an orthogonal basis

of Rd.
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Proof. Since G =
∑d

i=1 c
2
i gig

T
i and gTi gi = 1 for all i ∈ {1, . . . , n}, we have

‖G‖2 = tr (G2)

=
d∑

i=1

d∑

j=1

c2i c
2
j (g

T
i gj)

2

=
d∑

i=1

d∑

j=1,j 6=i
c2i c

2
j (g

T
i gj)

2 +
d∑

i=1

c4i

≥
d∑

i=1

c4i ,

where the equality holds if and only if gTi gj = 0 for all i, j ∈ {1, . . . , d} and

i 6= j.

Theorem 2.3 actually can be proved as a corollary of Theorems 2.1 and 2.2.

But as shown above, we can also directly prove it in a straightforward way

without employing frame theory. This can be explained from the point of view

of redundancy. Recall the constant n/d reflects the redundancy of the system.

When n/d = 1, the system has no redundancy and hence frames are no longer

necessary for the optimality analysis.

2.5 Analytical Properties of Optimal Placements

In this section, we further explore a number of analytical properties of optimal

placements in 2D and 3D. Theorem 2.2 implies that an irregular optimal place-

ment problem can be eventually converted to a regular one in a lower dimensional

space. Hence we will only focus on regular optimal placements.

2.5.1 Explicit Construction

A number of methods to explicitly construct some special 2D optimal placements

have been proposed in [11, 38, 13, 83]. However, the construction of generic

optimal placements in 2D or 3D is still an open problem. In our work, as stated

in Theorem 2.1, constructing a regular optimal placement that solves (2.11)

is equivalent to constructing a tight frame. Thus we successfully convert the

optimal sensor placement problem to a tight frame problem. Note tight frame
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construction has already been well studied in the literature on frame theory.

Therefore, one can construct generic optimal placements (i.e., tight frames) of

an arbitrary number of sensors in 2D or 3D by referring to the literature on tight

frame construction. We will not discuss the construction of tight frames in detail

here. Interested readers may refer to [44, 25, 24], to name a few.

The necessary and sufficient condition for 2D optimal placements has already

been proposed in [11, 38, 13], where the sufficiency proof, however, is not giv-

en. Next we present a complete proof without employing frame theory. In the

meantime, more importantly we propose an algorithm for explicitly constructing

arbitrary 2D regular optimal placements. The following lemma can be found in

[11, 38, 13, 83, 6, 51, 45].

Lemma 2.5. In R2, the unit-length vector gi can be written as gi = [cos θi, sin θi]
T.

Then (2.11) is equivalent to

n∑

i=1

c2i ḡi = 0, (2.16)

where ḡi = [cos 2θi, sin 2θi]
T.

Proof. Substituting gi = [cos θi, sin θi]
T into (2.11) gives

n∑

i=1

c2i




1
2 cos 2θi

1
2 sin 2θi

1
2 sin 2θi −1

2 cos 2θi


 = 0,

which is equivalent to (2.16).

By Lemma 2.5, the matrix equation (2.11) is simplified to a vector equation

(2.16). In order to construct {gi}ni=1 solving (2.11), we can first construct {ḡi}ni=1

solving (2.16). Once ḡi = [cos 2θi, sin 2θi]
T is obtained, gi can be retrieved as

gi = ±[cos θi, sin θi]
T. Note the sign changes of gi will give equivalent optimal

placements as stated in Proposition 2.1.

Theorem 2.4. In R2, given a positive sequence {ci}ni=1, there exists {ḡi}ni=1 with
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‖ḡi‖ = 1 solving (2.16) if and only if

max
j=1,...,n

c2j ≤
1

2

n∑

i=1

c2i . (2.17)

Proof. Necessity: If
∑n

i=1 c
2
i ḡi = 0, then c2j ḡj =

∑
i 6=j c

2
i ḡi for all j ∈ {1, . . . , n}.

Hence c2j = ‖c2j ḡj‖ = ‖∑i 6=j c
2
i ḡi‖ ≤

∑
i 6=j ‖c2i ḡi‖ =

∑
i 6=j c

2
i . Then adding c2j on

both sides of the inequality gives 2c2j ≤
∑n

i=1 c
2
i .

Sufficiency: If c2j ≤ 1/2
∑n

i=1 c
2
i for all j ∈ {1, . . . , n}, it is obvious that there

always exists an index n0 (2 ≤ n0 ≤ n) such that

c21 + · · ·+ c2n0−1 ≤
1

2

n∑

i=1

c2i , (2.18)

c21 + · · ·+ c2n0−1 + c2n0
≥ 1

2

n∑

i=1

c2i . (2.19)

When n0 < n, denote

`1 = c21 + · · ·+ c2n0−1,

`2 = c2n0
,

`3 = c2n0+1 + · · ·+ c2n. (2.20)

Obviously `1 + `2 + `3 =
∑n

i=1 c
2
i . From (2.17), cn0 ≤ 1/2

∑n
i=1 c

2
i and hence

`1 + `3 ≥ `2. From (2.18), `1 ≤ 1/2
∑n

i=1 c
2
i and hence `2 + `3 ≥ `1. From (2.19),

`1 + `2 ≥ 1/2
∑n

i=1 c
2
i and hence `1 + `2 ≥ `3. Therefore, `1, `2 and `3 satisfy

the triangle inequality and can form a triangle. Choose ḡ1 = · · · = ḡn0−1. Then

∑n0−1
i=1 c2i ḡi = `1ḡ1. Choose ḡn0+1 = · · · = ḡn. Then

∑n
i=n0+1 c

2
i ḡi = `3ḡn. Then

(2.16) becomes

`1ḡ1 + `2ḡn0 + `3ḡn = 0. (2.21)

We can choose ḡ1, ḡn0 and ḡn that align with the three sides of the triangle

with side length as `1, `2 and `3, respectively (see Figure 2.3). Then (2.21) and

consequently (2.16) can be solved. When n0 = n, the above proof is still valid.

In this case, we have `3 = 0 and `1 = `2, and (2.21) becomes ḡ1 + ḡn0 = 0.
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Figure 3.: A geometric illustration of Algorithm 1.

solving (16) if and only if

max
j=1,...,n

c2
j ≤

1

2

n∑

i=1

c2
i . (17)

Proof Necessity: If
∑n

i=1 c
2
i ḡi = 0, then c2

j ḡj =
∑

i 6=j c
2
i ḡi for all j ∈ {1, . . . , n}. Hence c2

j =

‖c2
j ḡj‖ = ‖∑i 6=j c

2
i ḡi‖ ≤

∑
i 6=j ‖c2

i ḡi‖ =
∑

i 6=j c
2
i . Then adding c2

j on both sides of the inequality

gives 2c2
j ≤

∑n
i=1 c

2
i .

Sufficiency: If c2
j ≤ 1/2

∑n
i=1 c

2
i for all j ∈ {1, . . . , n}, it is obvious that there always exists an

index n0 (2 ≤ n0 ≤ n) such that

c2
1 + · · ·+ c2

n0−1 ≤
1

2

n∑

i=1

c2
i , (18)

c2
1 + · · ·+ c2

n0−1 + c2
n0
≥ 1

2

n∑

i=1

c2
i . (19)

When n0 < n, denote

`1 = c2
1 + · · ·+ c2

n0−1,

`2 = c2
n0
,

`3 = c2
n0+1 + · · ·+ c2

n. (20)

Obviously `1 + `2 + `3 =
∑n

i=1 c
2
i . From (17), cn0

≤ 1/2
∑n

i=1 c
2
i and hence `1 + `3 ≥ `2. From

(18), `1 ≤ 1/2
∑n

i=1 c
2
i and hence `2 + `3 ≥ `1. From (19), `1 + `2 ≥ 1/2

∑n
i=1 c

2
i and hence

`1+`2 ≥ `3. Therefore, `1, `2 and `3 satisfy the triangle inequality and can form a triangle. Choose
ḡ1 = · · · = ḡn0−1. Then

∑n0−1
i=1 c2

i ḡi = `1ḡ1. Choose ḡn0+1 = · · · = ḡn. Then
∑n

i=n0+1 c
2
i ḡi = `3ḡn.

Then (16) becomes

`1ḡ1 + `2ḡn0
+ `3ḡn = 0. (21)

We can choose ḡ1, ḡn0
and ḡn that align with the three sides of the triangle with side length as

`1, `2 and `3, respectively (see Figure 3). Then (21) and consequently (16) can be solved. When
n0 = n, the above proof is still valid. In this case, we have `3 = 0 and `1 = `2, and (21) becomes
ḡ1 + ḡn0

= 0. �

From the proof of Theorem 5.2, a method for explicitly constructing 2D regular optimal

Figure 2.3: A geometric illustration of Algorithm 2.1.

Algorithm 2.1 Construction of 2D regular optimal placements {gi}ni=1 with
coefficients {ci}ni=1.

1: Choose n0 satisfying (2.18) and (2.19). Then compute `1, `2 and `3 in (2.20).
2: Compute interior angles α12 and α13 of the triangle with side lengths as `1,
`2 and `3 (See Figure 2.3).

3: Choose gi = [1, 0]T for i ∈ {1, . . . , n0 − 1},
gn0 = [cos((π + α12)/2), sin((π + α12)/2)]T, and gi =
[cos((π − α13)/2), sin((π − α13)/2)]T for i ∈ {n0 + 1, . . . , n}.

From the proof of Theorem 2.4, a method for explicitly constructing 2D

regular optimal placements can be summarized in Algorithm 2.1. The following

example illustrates Algorithm 2.1.

Example 2.4. In R2, consider six bearing-only sensors with sensor-target ranges

respectively as ‖r1‖ = 5, ‖r2‖ = 6, ‖r3‖ = 7, ‖r4‖ = 8, ‖r5‖ = 9, and ‖r6‖ = 10.

The measurement noise variance is σi = 1 for all i ∈ {1, . . . , 6}. Recall ci =

1/(σi‖ri‖) for bearing-only sensors. Then c21 = 0.0400, c22 = 0.0278, c23 = 0.0204,

c24 = 0.0156, c25 = 0.0123, c26 = 0.0100, and 1/2
∑6

i=1 c
2
i = 0.0631. It is easy to

check the sequence {ci}6i=1 is regular. Because c21 < 1/2
∑6

i=1 c
2
i and c21 + c22 >

1/2
∑6

i=1 c
2
i , choose n0 = 2. Hence `1 = 0.0400, `2 = 0.0278, and `3 = 0.0584.

Then α12 = 2.0560 rad and α13 = 0.4344 rad. As instructed in Algorithm 2.1,

choose g1 = [1, 0]T, g2 = [0.8563,−0.5165]T, g3 = · · · = g6 = [0.2155, 0.9765]T.

Then it can be verified that
∑6

i=1 c
2
i gig

T
i = 1/2

∑6
i=1 c

2
i I2.

2.5.2 Equally-weighted Optimal Placements

The coefficient ci actually is the weight for sensor i. Hence we call a placement

equally-weighted if c1 = · · · = cn. In the equally-weighted case, all sensors
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(a) (b) (c) (d) (e)

Figure 2.4: Examples of 2D equally-weighted optimal placements: regular polygons. Red
square: target; blue dots: sensors.

(a) (b) (c) (d) (e)

Figure 2.5: Examples of 3D equally-weighted optimal placements: Platonic solids. Red square:
target; blue dots: sensors. (a) Tetrahedron, n = 4. (b) Octahedron, n = 6. (c) Hexahedron,
n = 8. (d) Icosahedron, n = 12. (e) Dodecahedron, n = 20.

play equal roles for target localization. For bearing-only or RSS sensors, the

placement is equally-weighted when σi = σj and ‖ri‖ = ‖rj‖ for all i 6= j as

ci = 1/(σi‖ri‖). The corresponding geometry is that all sensors are restricted

on a 2D circle or a 3D sphere centered at the target. For range-only sensors, the

placement is equally-weighted when σi = σj for all i 6= j as ci = 1/σi. As shown

in Example 2.1, {ci}ni=1 is regular with respect to any d ≤ n if c1 = · · · = cn.

Hence equally-weighted placements must be regular.

Equally-weighted placements are important because they often arise in prac-

tice and have some important special properties. In the equally-weighted case,

(2.11) is simplified to
∑n

i=1 gig
T
i = n/dId, which implies that an equally-weighted

optimal placement is essentially a unit-norm tight frame [6, 45]. In R2, an

equally-weighted placement is optimal if n (n ≥ 3) sensors are located at the

vertices of an n-side regular polygon [6, 45, 11, 38, 13, 83] as shown in Figure 2.4.

In R3, an equally-weighted placement is optimal if n sensors are located at the

vertices of a Platonic solid [6, 45]. There are only five Platonic solids as shown

in Figure 2.5. It should be noted that equally-weighted optimal placements are

not limited to regular polygons or Platonic solids. In Section 2.5.4 we will show

more examples of equally-weighted optimal placements.
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2.5.3 Uniqueness

Due to placement equivalence, there exist at least an infinite number of equiv-

alent optimal placements minimizing ‖G‖2. It is interesting to ask whether all

optimal placements that minimize ‖G‖2 are mutually equivalent, or in other

words, whether the optimal placement is unique up to the equivalence. We next

give the conditions under which the answer is positive.

According to Theorem 2.3, it is clear that the optimal placement is unique

in the case of n = d. We next show the regular optimal placement is also unique

in the case of n = d + 1 (i.e., three sensors in R2 or four sensors in R3). The

uniqueness will be proved by construction, which is inspired by the work in [51]

on unit-norm tight frames.

Theorem 2.5. In Rd with d = 2 or 3, if n = d + 1, given a regular coefficien-

t sequence {ci}d+1
i=1 , the regular optimal placement {gi}d+1

i=1 is unique up to the

equivalence in Definition 2.2.

Proof. Suppose {gi}d+1
i=1 is a regular optimal placement solving (2.11). Denote

ϕi = cigi and Φ = [ϕ1, . . . , ϕd+1] ∈ Rd×(d+1). Then (2.11) can be written in

matrix form as ΦΦT = 1/d
∑d+1

i=1 c
2
i Id. Hence Φ has mutually orthogonal rows

with row norm as
√

1/d
∑d+1

i=1 c
2
i . Let x = [x1, . . . , xd+1] ∈ Rd+1 be a vector in

the orthogonal complement of the row space of Φ. Assume ‖x‖ =
√

1/d
∑d+1

i=1 c
2
i .

Adding xT after the last row of Φ yields an augmented matrix Φaug =
[
ΦT, x

]T ∈

R(d+1)×(d+1). It is clear that ΦaugΦT
aug = 1

d

∑d+1
i=1 c

2
i Id+1. Thus Φaug is a scaled

orthogonal matrix and its columns are mutually orthogonal. The jth column of

Φaug is [ϕT
j , xj ]

T ∈ Rd+1 for all j ∈ {1, . . . , d + 1}. Note the column norm of

Φaug is
√

1/d
∑d+1

i=1 c
2
i . Then we have ‖ϕj‖2 + x2j = 1/d

∑d+1
i=1 c

2
i and hence

xj = ±

√√√√1

d

d+1∑

i=1

c2i − c2j . (2.22)

The regularity of {ci}d+1
i=1 ensures 1/d

∑d+1
i=1 c

2
i − c2j ≥ 0.

By reversing the above proof, we can obtain an explicit construction algorith-

m for optimal placement with n = d+1 as shown in Algorithm 2.2. The rest is to

prove the constructed optimal placements are mutually equivalent. First, given
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a vector x ∈ Rd+1 satisfying (2.22), let Φ and Φ′ be two different bases of the

orthogonal complement of x. Due to orthogonality, there exists an orthogonal

matrix U ∈ R(d+1)×(d+1) such that

U




Φ

xT


 =




Φ′

xT


 . (2.23)

Write U as

U =



U11 U12

U21 U22


 , (2.24)

where U11 ∈ Rd×d, U12 ∈ Rd×1, U21 ∈ R1×d, and U22 ∈ R. Substituting (2.24)

into (2.23) gives U21Φ+(U22−1)xT = 0. Since the rows of Φ and xT are linearly

independent, we have U21 = 0, U22 = 1. Thus U12 = 0 and U11Φ = Φ′. There-

fore, the placements described by Φ and Φ′ are differed only by an orthogonal

transformation U11. From Definition 2.2, the two placements are equivalent.

Second, let E ∈ R(d+1)×(d+1) be a diagonal matrix with diagonal entries as 1 or

−1. Given arbitrary x and x′ both satisfying (2.22), there exists an E such that

x′ = Ex. Note E is also an orthogonal matrix. It can be analogously proved

that the optimal placements would be differed by an orthogonal transformation

and a number of flipping of sensors about the target. From Definition 2.2, these

placements are also equivalent.

From the proof of Theorem 2.5, a method for explicitly constructing the

unique regular optimal placement in the case of n = d + 1 can be summarized

as Algorithm 2.2. The following example illustrates Algorithm 2.2.

Example 2.5. In R3, consider four bearing-only sensors with sensor-target

ranges respectively as ‖r1‖ = 20, ‖r2‖ = 21, ‖r3‖ = 22, and ‖r4‖ = 23. The

measurement noise variance of the ith sensor is σi = 0.01 with i ∈ {1, . . . , 4}.

Recall ci = 1/(σi‖ri‖) for bearing-only sensors. Then c21 = 25.00, c22 = 22.68,

c23 = 20.66, c24 = 18.90 and 1/3
∑4

i=1 c
2
i = 29.08. The sequence {ci}4i=1 is regular.

From (2.22), choose x = [2.02, 2.53, 2.90, 3.19]T. Compute the SVD of x and use
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Algorithm 2.2 Construction of the unique regular optimal placement {gi}d+1
i=1

with coefficients {ci}d+1
i=1 .

1: Choose x = [x1, . . . , xd+1] ∈ Rd+1 with xj = ±
√

1/d
∑d+1

i=1 c
2
i − c2j for i ∈

{1, . . . , d+ 1}.
2: Use the singular value decomposition (SVD) to numerically compute an or-

thogonal basis of the orthogonal complement of x. Let x = UΣV T be an
SVD of x, where U ∈ R(d+1)×(d+1) is an orthogonal matrix.

3: Let ui denote the ith column of U . Then x = ±
√

1/d
∑d+1

i=1 c
2
iu1, and Φ can

be constructed as

Φ =

√√√√1

d

d+1∑

i=1

c2i [u2, . . . , ud+1]
T ∈ Rd×(d+1). (2.25)

4: Compute gi = ϕi/ci for i ∈ {1, . . . , d+ 1}.

(2.25) to compute Φ as

Φ =




−2.5307 4.5286 −0.9906 −1.0891

−2.9016 −0.9906 4.2568 −1.2487

−3.1901 −1.0891 −1.2487 4.0197



.

It can be verified
∑4

i=1 c
2
i gig

T
i = ΦΦT = 1/3

∑4
i=1 c

2
i I3.

Figure 2.6 and Figure 2.7 show examples of unique optimal placements. Sup-

pose all sensors have the same measurement noise standard deviation. Then the

regular triangle in Figure 2.6 (a) is equally-weighted optimal as shown in Sec-

tion 2.5.2. By Theorem 2.5, the regular triangle placement is also unique. Thus

the two equivalent placements in Figure 2.6 represent all possible forms of the

equally-weighted optimal placements with n = 3 in R2. Analogously, the three

equivalent placements in Figure 2.7 present all possible forms of the equally-

weighted optimal placements with n = 4 in R3.

When n > d + 1, the regular optimal placement may not be unique. In

the next subsection, we will give examples to show the optimal placement may

not be unique when n ≥ 4 in R2 or n ≥ 6 in R3. Now a question remains:

whether the regular optimal placement with n = 5 in R3 is unique. The answer

is negative. The following gives an explanation as well as an algorithm for

explicitly constructing regular optimal placements with n = 5 in R3.

Suppose the sequence {ci}5i=1 is regular with respect to d = 3. Denote ϕi =
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Figure 2.6: The unique equally-weighted optimal placements with n = 3 in R2. Red square:
target; blue dots: sensors. (a) Regular triangle. (b) Flip s1 about the target.
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Figure 2.7: The unique equally-weighted optimal placements with n = 4 in R3. Red square:
target; blue dots: sensors. (a) Regular tetrahedron. (b) Flip s4 about the target. (c) Flip s4
and s3 about the target.

cigi and Φ = [ϕ1, . . . , ϕ5] ∈ R3×5. Then (2.11) becomes ΦΦT = 1/3
∑5

i=1 c
2
i I3.

There always exists Φ′ = [ϕ′1, . . . , ϕ
′
5] ∈ R2×5 in the orthogonal complement of

the row space of Φ such that




Φ

Φ′



[

ΦT Φ′T
]

=
1

3

5∑

i=1

c2i I5,

which implies ‖ϕj‖2 + ‖ϕ′j‖2 = 1/3
∑5

i=1 c
2
i and Φ′Φ′T = 1/3

∑5
i=1 c

2
i I2. Thus

{ϕ′j}5j=1 represents a 2D regular optimal placement with ‖ϕ′j‖ =
√

1/3
∑5

i=1 c
2
i − c2j

for all j ∈ {1, . . . , 5} (it can be verified {‖ϕ′j‖}5j=1 is regular with respect to

d = 2). Therefore, to obtain Φ, we can first construct {ϕ′j}5j=1 using Algorith-

m 2.1 for example, and then find Φ in the orthogonal complement of the row

space of Φ′. Since {ϕ′i}5i=1 may have non-equivalent solutions, {ϕi}5i=1 would not

be unique up to the equivalence.
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2.5.4 Distributed Construction

When there are a large number of sensors, it might be inconvenient to design the

optimal placement involving all sensors. The following property can be applied

to construct large-scale optimal placements in a distributed manner. The 2D

versions of the following result have been proposed in [11, 38, 13].

Theorem 2.6. The union of multiple disjoint regular optimal placements in Rd

(d = 2 or 3) is still a regular optimal placement in Rd.

Proof. In Rd, consider multiple disjoint regular optimal placements: {ci, gi}i∈Ik
with Ik as the index set of the kth placement (k = 1, . . . , q). The term disjoint

as used here means that different placements share no common sensors. Define

I =
⋃q
k=1 Ik. If | · | denotes the cardinality of a set, then |I| = ∑q

k=1 |Ik|.

For the kth placement, since {ci, gi}i∈Ik is regular optimal in Rd, from The-

orem 2.1 we have

∑

i∈Ik
c2i gig

T
i =

1

d

∑

i∈Ik
c2i Id.

For the union placement {ci, gi}i∈I , we have

∑

j∈I
c2jgjg

T
j =

q∑

k=1

∑

i∈Ik
c2i gig

T
i

=
1

d

q∑

k=1

∑

i∈Ik
c2i Id

=
1

d

∑

j∈I
c2jId.

By Theorem 2.1, the union placement is regular optimal in Rd.

Theorem 2.6 implies that a large-scale regular optimal placement can be con-

structed in a distributed manner: firstly divide the large-scale placement into a

number of disjoint regular sub-placements, secondly construct each regular opti-

mal sub-placement, and finally combine these optimal sub-placements together

to obtain a large regular optimal placement. We call this kind of method as dis-

tributed construction. Because the combination of the optimal sub-placements
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can be arbitrary, distributed construction will lead to an infinite number of op-

timal placements for the large system. These optimal placements have the same

FIM and ‖G‖2, but they are generally non-equivalent. Theorem 2.6 also implies

that only regular placements can be possibly divided into some regular subsets.

Figure 2.8 gives examples of optimal placements generated by distributed

construction. Suppose all sensors have the same measurement noise standard

deviation. The placement with n = 6 in Figure 2.8 (a), (b) or (c) is a com-

bination of two regular triangles with n = 3 (the sensors with the same color

form a triangle optimal placement). The placement with n = 8 in Figure 2.8

(d) or (e) is a combination of two regular optimal placements with n = 4 as

shown in Figure 2.7 (c), which is equivalent to the regular tetrahedron. Thus by

Theorem 2.6 all placements in Figure 2.8 are regular optimal.

The distributed construction method is suitable for (but not limited to)

constructing equally-weighted optimal placements. That is because a equally-

weighted placement can be easily divided into some regular subsets. Suppose we

have an equally-weighted placements in Rd. Its coefficient sequence {ci}ni=1 sat-

isfies ci = cj for all i 6= j. Then {ci}ni=1 can be divided into a number of subsets.

As long as the cardinality of each subset is no smaller than d, the subsets are

all regular (refer to Example 2.1). We next present two examples to show how

to divide equally-weighted placements into subsets. (i) For any integer n ≥ 4,

it is obvious that there exist nonnegative integers m1 and m2 such that n can

be decomposed as n = 2m1 + 3m2. Thus in R2 we can always distributedly

construct an equally-weighted optimal placement with n ≥ 4 by using the ones

with n = 2 or 3. (ii) For any integer n ≥ 6, there exist nonnegative integers

m1, m2 and m3 such that n = 3m1 + 4m2 + 5m3. Thus in R3 we can always

distributedly construct an equally-weighted optimal placement with n ≥ 6 by

using the ones with n = 3, 4 or 5. Note distributed construction yields an infinite

number of non-equivalent optimal placements. Hence the above two examples

also imply that equally-weighted placements with n ≥ 4 in R2 or n ≥ 6 in R3

are not unique.
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(a) (b) (c)

(d) (e)

Figure 2.8: Examples of distributedly constructed optimal placements. Red square: target;
dots: sensors.

2.6 Autonomously Deploy Optimal Sensor Placemen-

t

In addition to analytically determining optimal sensor placements, it is also prac-

tically important to study how to autonomously deploy the optimal placements.

There are generally three approaches to autonomous optimal sensor deployment.

(i) One approach is to use the optimal control formulation mentioned above. (ii)

The second approach is to develop numerical methods to solve the parameter

optimization formulation. For example, by numerically maximizing the deter-

minant of the FIM, sensor trajectory optimization algorithms are obtained in

[37, 96]. Compared to the optimal control approach, the second approach is easy

to be designed and implemented, and various constraints of sensor trajectories

can be easily included. (iii) The third approach is to design autonomous deploy-

ment algorithms based directly on analytical results of optimal sensor placement.

For example, the work in [83] proposed a distributed motion coordination algo-

rithm to autonomously deploy sensors for target tracking. Loosely speaking, that

algorithm is designed based on the fact that a placement is optimal if range-only
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sensors are uniformly distributed around the target. However, one limitation of

the approach used in [83] is that the uniformly distributed placement is merely a

special optimal placement as pointed out in Section 2.5.2. There are an infinite

number of optimal placements that can optimize the objective function. These

optimal placements may be more appropriate than the uniformly distributed one

for certain initial placements and sensor trajectory constraints. More important-

ly, the uniformly distributed placement is optimal only if the sensors are equally

weighted. If some of the sensors can provide more accurate measurements than

the others, the uniformly distributed placement will not be optimal any more.

With the above analysis, we will adopt the numerical optimization approach to

solve autonomous sensor deployment problems in this chapter.

Based on the previous analytical results, we first propose a gradient control

law to autonomously deploy optimal sensor placements in 2D and 3D. Con-

sidering the trajectories of the mobile sensors may be constrained in practice,

we further propose a control strategy that can deploy optimal sensor placements

while fulfilling the trajectory constraints. When there are trajectory constraints,

the corresponding control strategy is only applicable to range-only sensors; the

control law without sensor trajectory constraints is applicable to any of the three

sensor types.

2.6.1 Gradient Control without Trajectory Constraints

Assume the motion model of sensor i to be ṡi = ui, where ui ∈ Rd is the

control input. Then we have ṙi = ui because ri = si − p and the target position

estimation p is given. Let r = [rT1 , . . . , r
T
n ]T ∈ Rdn. Denote β as the constant

lower bound of ‖G‖2 in Theorems 2.1 and 2.2. Then the optimal placement

set is E0 = {r ∈ Rdn : ‖G‖2 − β = 0}. Choose the Lyapunov function as

V (r) = 1/4(‖G‖2− β). Clearly V is positive definite with respect to E0. Denote

∂V/∂ri as the Jacobian of V with respect to ri. Then we have

V̇ =

n∑

i=1

∂V

∂ri
ṙi =

n∑

i=1

c2i
‖ri‖

gTi GPiṙi,
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where Pi = Id − gigTi is an orthogonal projection matrix satisfying PT
i = Pi,

P 2
i = Pi, and Null(Pi) = span{gi}. Null(·) denotes the null space of a matrix.

Design the gradient control law as

ṙi = −PiGgi. (2.26)

Then

V̇ = −
n∑

i=1

c2i
‖ri‖
‖PiGgi‖2 ≤ 0

and V̇ = 0 when PiGgi = 0 for all i ∈ {1, . . . , n}.

Proposition 2.2. For any initial condition r(0) ∈ Rdn with ‖ri(0)‖ 6= 0 for all

i ∈ {1, . . . , n}, the solution to the nonlinear r-dynamics (2.26) asymptotically

converges to the set

E = {r ∈ S : PiGgi = 0, i = 1, . . . , n} ,

where S = {r ∈ Rdn : ‖ri‖ = ‖ri(0)‖, i = 1, . . . , n}.

Proof. The time derivative of ‖ri‖ is

d‖ri‖
dt

=
rTi
‖ri‖

ṙi = −gTi PiGgi = 0. (2.27)

The last equality uses the fact gTi Pi = 0. By (2.27) we have ‖ri(t)‖ ≡ ‖ri(0)‖ 6= 0.

Hence S is a positive invariant set with respect to the r-dynamics. The set S

consists of a group of spheres in Rd centered at the origin. Thus S is compact.

Note V̇ = 0 and ṙ = 0 for all points in E . By the invariance principle [68], every

solution starting in S asymptotically converges to E .

By Proposition 2.2, the r-dynamics converge either to the optimal placement

set E0 or the set E \ E0. By introducing Lagrange multipliers γi, i = 1, . . . , n,

the constrained optimization problem (2.8) is equivalent to minimizing the La-

grangian function L = ‖G‖2 +
∑n

i=1 γi(g
T
i gi−1). By calculating ∂L/∂gi = 0, we

can show that E is the critical point set, which consists of not only minimizers of
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Figure 2.9: Gradient control of equally-weighted (regular) placements with n = 4 in R3.

‖G‖2 (i.e., optimal placements) but also saddle points and maximizers of ‖G‖2

(i.e., non-optimal placements). The sets E0 and E are equilibrium manifolds. It

is noticed that nonlinear stabilization problems involving equilibrium manifolds

also emerge in formation control area recently [74, 36, 107]. It is possible to con-

duct strict stability analysis including identifying the attractive region of E0 by

using center manifold theory [74, 107] or differential geometry [36]. But that will

be non-trivial because the geometric structure of E0 is extremely complicated as

shown in [39].

Figure 2.9 and Figure 2.10 show several optimal placements obtained by

the proposed gradient control law. Due to space limitations, we only show 3D

examples. The three final converged placements in Figure 2.9 are actually the

three regular optimal ones shown in Figure 2.7. The three final placements in

Figure 2.10 are the two as illustrated in Figure 2.2 (b) and (c). Clearly the

numerical results are consistent with our previous analysis. The optimality error

refers to the difference between ‖G‖2 and its lower bound given in (2.10) or

(2.13). The optimality error can be used as a numerical indicator to evaluate

the optimality of a placement. As shown in Figure 2.9 and Figure 2.10, the

optimality errors all converge to zero.
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(a) n = 3, k0 = 1
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(c) n = 4, k0 = 2

Figure 2.10: Gradient control of irregular placements in R3.

2.6.2 Gradient Control with Trajectory Constraints

The mobile sensors usually cannot move freely in practical applications. For

example, the trajectory of each sensor may be constrained in the boundary of

a set in Rd. In order to autonomously deploy an optimal sensor placement, we

need to solve two problems: (i) minimize the objective function ‖G‖2, and in the

meantime (ii) fulfill the trajectory constraint of each mobile sensor. Hence we

define two artificial potentials for autonomous sensor deployment. First, define

VI = ‖G‖2 as the inter-sensor potential. The placement is optimal when VI is

minimized. Second, define VE as the external potential corresponding to the

sensor trajectory constraints. The sensor trajectory constraints are fulfilled if

and only if VE = 0. By combining the two potentials we have the total potential

as

V = kIVI + kEVE ,

where kI , kE > 0. The gradient control law for sensor i is designed as

ṡi = −(kI∇siVI + kE∇siVE), (2.28)
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where ∇si denotes the gradient with respect to si. The target is assumed to be

stationary. Hence we have ∇siVI = ∇riVI as ri = si − p.

Remark 2.4. Our previous analytical results are based on one assumption that

the coefficient for each sensor is constant. This assumption should also be satis-

fied while the sensors are moving. When there are no trajectory constraints, the

assumption can be satisfied when the sensors are moving on a circle or sphere.

But when there are trajectory constraints, the assumption may be invalid when

the trajectory constraints are fulfilled. Hence control law (3.14) only applies to

range-only sensors. That is because the coefficients of range-only sensors are

merely function of their noise covariances which are assumed to be independent

to the sensor trajectories.

Inter-sensor Force ∇siVI

Recall G =
∑n

i=1 c
2
i gig

T
i and GT = G. Then the differential of VI is

dVI = dtr (G2)

= 2tr (GdG)

= 2tr

(
G

n∑

i=1

c2i dgig
T
i

)
+ 2tr

(
G

n∑

i=1

c2i gidg
T
i

)

= 2
n∑

i=1

c2i g
T
i Gdgi + 2

n∑

i=1

c2i dg
T
i Ggi

= 4
n∑

i=1

c2i g
T
i Gdgi. (2.29)

Furthermore, from gi = ri/‖ri‖ we have

dgi =
1

‖ri‖
Pidri, (2.30)

where Pi = Id − gigTi ∈ Rd×d is an orthogonal projection matrix. Substituting

(2.30) into (2.29) yields

∇siVI = ∇riVI =
4c2i
‖ri‖

PiGgi. (2.31)

Remark 2.5. The implementation of (2.31) requires all-to-all communications
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among the sensors due to the term G. However, it is possible to implement (2.31)

in a distributed way. To do that, each sensor need to maintain an estimate Ĝi

of G, and Ĝi should converge to G given a non-complete underlying graph. The

distributed estimation of G actually is an average consensus problem which has

been investigated extensively (see, for example, [95, 80, 102]).

External Force ∇siVE

The external potential VE is chosen according to practical application require-

ments. Here we use two specific scenarios, one of which is 2D and the other is

3D, to demonstrate how control strategy (3.14) can be applied to solve practical

problems.

1) A 2D Scenario Suppose the sensors can only move on the boundary of an el-

lipse, while the stationary target is located inside the ellipse (see Figure 2.11).

The position of sensor i must satisfy

(si − s0)TQ(si − s0) = 1,

where s0 ∈ R2 is the center of the ellipse and Q = diag{1/a2, 1/b2} ∈ R2×2

with a > 0 and b > 0 as the lengths of the two semi-axes, respectively.

According to the constraint, we choose VE as

VE =
n∑

i=1

[
(si − s0)TQ(si − s0)− 1

]2
. (2.32)

Then it is straightforward to obtain

∇siVE = 4
[
(si − s0)TQ(si − s0)− 1

]
Q(si − s0). (2.33)

The implementation of (2.33) can be distributed because it only requires the

information of sensor i. The parameters of the ellipse such as Q and s0 should

be also known by sensor i.

2) A 3D Scenario

We now consider a 3D scenario which can be applied to cooperative air and
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where Pi = Id − gigTi ∈ Rd×d is an orthogonal projection
matrix satisfying PT

i = Pi and P 2
i = Pi. Substituting (10)

into (9) yields

∇siVI = ∇riVI =
4c2i
‖ri‖

PiGgi. (11)

Remark 2.1 The implementation of (11) requires all-to-
all communications among the sensors due to the term G.
However, it is possible to implement (11) in a distributed
way. To do that, each sensor need to maintain an estimate
Ĝi of G, and Ĝi should converge to G given a non-complete
underlying graph. The distributed estimation of G actually
is an average consensus problem which has been investigated
extensively (see, for example, [16–18]).

2.3 External Force ∇siVE

The external potential VE is chosen according to practical
application requirements. Here we use two specific scenar-
ios, one of which is 2D and the other is 3D, to demonstrate
how control strategy (8) can be applied to solve practical
problems.

(i) A 2D Scenario Suppose the sensors can only move on
the boundary of an ellipse, while the stationary target
is located inside the ellipse (see Fig. 2). The position
of sensor i must satisfy

(si − s0)TQ(si − s0) = 1,

where s0 ∈ R2 is the center of the ellipse and Q =
diag{1/a2, 1/b2} ∈ R2×2 with a > 0 and b > 0 as the
lengths of the two semi-axes, respectively. According
to the constraint, we choose VE as

VE =

n∑

i=1

[
(si − s0)TQ(si − s0)− 1

]2
. (12)

Then it is straightforward to obtain

∇siVE = 4
[
(si − s0)TQ(si − s0)− 1

]
Q(si − s0).

(13)

The implementation of (13) can be distributed be-
cause it only requires the information of sensor i. The
parameters of the ellipse such as Q and s0 should be
also known by sensor i.

(ii) A 3D Scenario

We now consider a 3D scenario which can be applied
to cooperative air and ground surveillance [12, 19].
Suppose there are multiple unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs). Each
vehicle is equipped with a range-only sensor, which
can measure the range between the vehicle and a tar-
get. The UAVs fly at fixed altitudes and the UGVs
move on the ground with altitude as zero (see Fig. 3).
Denote `i as the altitude of vehicle i. Then the exter-
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p

Figure 2: An illustration of the 2D scenario where all mobile
sensors move on the boundary of an ellipse.
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Figure 3: An illustration of the 3D scenario where each
sensor moves at a fixed altitude.

nal potential VE can be chosen as

VE =

n∑

i=1

(eT3 si − `i)2, (14)

where e3 = [0, 0, 1]T ∈ R3. Clearly all the altitude
constraints are satisfied if and only if VE = 0. It is
straightforward to obtain

∇siVE = 2(eT3 si − `i)e3. (15)

2.4 Compatibility of VI and VE

The proposed gradient control law (8) guarantees that
the gradient kI∇siVI + kE∇siVE for all i will converge to
zero. However, kI∇siVI + kE∇siVE = 0 does not sim-
ply imply ∇siVI = ∇siVE = 0. To have that implica-
tion, the external potential VE and the inter-sensor poten-
tial VI should be compatible with each other. By compat-
ible, we mean kI∇siVI + kE∇siVE = 0 for all i if only
if ∇siVI = ∇siVE = 0 for all i. If VE is not compatible
with VI , it is possible that kI∇siVI + kE∇siVE = 0 while
∇siVI 6= 0 and ∇siVE 6= 0. Since ∇siVI = 0 is a neces-
sary condition for optimal placements, the final converged
placement may be non-optimal in non-compatible cases.

We next prove VI = ‖G‖2 is compatible with VE given
in (12) or (14). To do that, we will show ∇siVI in (11) is
impossible to be parallel to ∇siVE in (13) or (15). Firstly
consider ∇siVI in (11). Since Pi = Id − gig

T
i , we have

Null (Pi) = span{gi} and hence Piri = 0. As a result,

rTi ∇siVI = 0,

Figure 2.11: An illustration of the 2D scenario where all mobile sensors move on the boundary
of an ellipse.
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where Pi = Id − gigTi ∈ Rd×d is an orthogonal projection
matrix satisfying PT

i = Pi and P 2
i = Pi. Substituting (10)

into (9) yields

∇siVI = ∇riVI =
4c2i
‖ri‖

PiGgi. (11)

Remark 2.1 The implementation of (11) requires all-to-
all communications among the sensors due to the term G.
However, it is possible to implement (11) in a distributed
way. To do that, each sensor need to maintain an estimate
Ĝi of G, and Ĝi should converge to G given a non-complete
underlying graph. The distributed estimation of G actually
is an average consensus problem which has been investigated
extensively (see, for example, [16–18]).

2.3 External Force ∇siVE

The external potential VE is chosen according to practical
application requirements. Here we use two specific scenar-
ios, one of which is 2D and the other is 3D, to demonstrate
how control strategy (8) can be applied to solve practical
problems.

(i) A 2D Scenario Suppose the sensors can only move on
the boundary of an ellipse, while the stationary target
is located inside the ellipse (see Fig. 2). The position
of sensor i must satisfy

(si − s0)TQ(si − s0) = 1,

where s0 ∈ R2 is the center of the ellipse and Q =
diag{1/a2, 1/b2} ∈ R2×2 with a > 0 and b > 0 as the
lengths of the two semi-axes, respectively. According
to the constraint, we choose VE as

VE =

n∑

i=1

[
(si − s0)TQ(si − s0)− 1

]2
. (12)

Then it is straightforward to obtain

∇siVE = 4
[
(si − s0)TQ(si − s0)− 1

]
Q(si − s0).

(13)

The implementation of (13) can be distributed be-
cause it only requires the information of sensor i. The
parameters of the ellipse such as Q and s0 should be
also known by sensor i.

(ii) A 3D Scenario

We now consider a 3D scenario which can be applied
to cooperative air and ground surveillance [12, 19].
Suppose there are multiple unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs). Each
vehicle is equipped with a range-only sensor, which
can measure the range between the vehicle and a tar-
get. The UAVs fly at fixed altitudes and the UGVs
move on the ground with altitude as zero (see Fig. 3).
Denote `i as the altitude of vehicle i. Then the exter-
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Figure 2: An illustration of the 2D scenario where all mobile
sensors move on the boundary of an ellipse.
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Figure 3: An illustration of the 3D scenario where each
sensor moves at a fixed altitude.

nal potential VE can be chosen as

VE =

n∑

i=1

(eT3 si − `i)2, (14)

where e3 = [0, 0, 1]T ∈ R3. Clearly all the altitude
constraints are satisfied if and only if VE = 0. It is
straightforward to obtain

∇siVE = 2(eT3 si − `i)e3. (15)

2.4 Compatibility of VI and VE

The proposed gradient control law (8) guarantees that
the gradient kI∇siVI + kE∇siVE for all i will converge to
zero. However, kI∇siVI + kE∇siVE = 0 does not sim-
ply imply ∇siVI = ∇siVE = 0. To have that implica-
tion, the external potential VE and the inter-sensor poten-
tial VI should be compatible with each other. By compat-
ible, we mean kI∇siVI + kE∇siVE = 0 for all i if only
if ∇siVI = ∇siVE = 0 for all i. If VE is not compatible
with VI , it is possible that kI∇siVI + kE∇siVE = 0 while
∇siVI 6= 0 and ∇siVE 6= 0. Since ∇siVI = 0 is a neces-
sary condition for optimal placements, the final converged
placement may be non-optimal in non-compatible cases.

We next prove VI = ‖G‖2 is compatible with VE given
in (12) or (14). To do that, we will show ∇siVI in (11) is
impossible to be parallel to ∇siVE in (13) or (15). Firstly
consider ∇siVI in (11). Since Pi = Id − gig

T
i , we have

Null (Pi) = span{gi} and hence Piri = 0. As a result,

rTi ∇siVI = 0,

Figure 2.12: An illustration of the 3D scenario where each sensor moves at a fixed altitude.

ground surveillance [52, 60]. Suppose there are multiple UAVs and unmanned

ground vehicles (UGVs). Each vehicle is equipped with a range-only sensor,

which can measure the range between the vehicle and a target. The UAVs

fly at fixed altitudes and the UGVs move on the ground with altitude as zero

(see Figure 2.12). Denote `i as the altitude of vehicle i. Then the external

potential VE can be chosen as

VE =

n∑

i=1

(eT3 si − `i)2, (2.34)

where e3 = [0, 0, 1]T ∈ R3. Clearly all the altitude constraints are satisfied if

and only if VE = 0. It is straightforward to obtain

∇siVE = 2(eT3 si − `i)e3. (2.35)

Compatibility of VI and VE

The proposed gradient control law (3.14) guarantees that the gradient kI∇siVI+

kE∇siVE for all i will converge to zero. However, kI∇siVI + kE∇siVE = 0 does

not simply imply ∇siVI = ∇siVE = 0. To have that implication, the external
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potential VE and the inter-sensor potential VI should be compatible with each

other. By compatible, we mean kI∇siVI + kE∇siVE = 0 for all i if only if

∇siVI = ∇siVE = 0 for all i. If VE is not compatible with VI , it is possible that

kI∇siVI + kE∇siVE = 0 while ∇siVI 6= 0 and ∇siVE 6= 0. Since ∇siVI = 0 is a

necessary condition for optimal placements, the final converged placement may

be non-optimal in non-compatible cases.

We next prove VI = ‖G‖2 is compatible with VE given in (2.32) or (2.34).

To do that, we will show ∇siVI in (2.31) is impossible to be parallel to ∇siVE in

(2.33) or (2.35). Firstly consider ∇siVI in (2.31). Since Pi = Id − gigTi , we have

Null (Pi) = span{gi} and hence Piri = 0. As a result,

rTi ∇siVI = 0,

which means ∇siVI ⊥ ri. Secondly, consider ∇siVE given in (2.33) and (2.35).

1) In the 2D scenario, the vector ∇siVE is the normal vector of the ellipse at

point si. Geometrically it is clear that ∇siVE is impossible to be orthogonal

to ri for any p inside the ellipse and any si on the ellipse. As a result, ∇siVE
is not parallel to ∇siVI , and hence kI∇siVI + kE∇siVE = 0 if and only if

∇siVI = ∇siVE = 0 for all i.

2) In the 3D scenario, the vector ∇siVE is the normal vector of the horizontal

planes. Define I = {1, . . . , n}, I>0 = {i ∈ I : `i > 0} and I=0 = {i ∈ I : `i =

0}. Geometrically it is clear that if `i > 0, then ∇siVE is impossible to be

orthogonal to ri. Hence ∇siVE is not parallel to ∇siVI for all i ∈ I>0. As a

result, kI∇siVI+kE∇siVE = 0 for all i ∈ I>0 if and only if∇siVI = ∇siVE = 0

for all i ∈ I>0. Since the inter-sensor forces are mutual, if ∇siVI = 0 for all

i ∈ I>0, then we have
∑

i∈I=0
∇siVI = 0. Furthermore, since ri for all

i ∈ I=0 is located in the plane with `i = 0, we have that ∇siVI is within

the plane and cannot be parallel to ∇siVE . Thus kI∇siVI + kE∇siVE = 0

for all i ∈ I=0 if and only if ∇siVI = ∇siVE = 0 for all i ∈ I=0. Therefore,

kI∇siVI + kE∇siVE = 0 for all i ∈ I if and only if ∇siVI = ∇siVE = 0 for all

i ∈ I.

In fact, if the sensors are constrained on the smooth boundary of an arbitrary
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convex set in Rd and the target is located inside the convex set, the norm vector

∇siVE is impossible to be parallel to ∇siVI . Hence the corresponding VE will

always be compatible with VI = ‖G‖2. We only consider the case that sensors

are constrained on the boundary of a set in this chapter. But more complicated

issues such as obstacle avoidance and collision avoidance among sensors could

also be solved by introducing more external potentials. At last, it should be

noted that the compatibility of VI and VE does not guarantee that the final

converged placement is optimal. That is because ∇siVI = 0 for all i is only

necessary but not sufficient for a placement to be optimal.

2.6.3 Simulation Results

We next present several scenarios to verify the proposed gradient control law

with sensor trajectory constraints. It is assumed that the sensor network has

all-to-all communications.

Autonomous Sensor Deployment for Static Targets

We first consider static targets.

2D Scenario In the 2D scenario, all sensors are constrained on the boundary of

an ellipse while the target is located inside the ellipse. The external force ∇siVE
is given in (2.33). The standard deviations of the sensor noises are assumed to

be one, i.e., σi = 1 for all i. Note the final optimal placement is determined

only by the relative values of {σi}ni=1 but not the absolute values. As shown in

Figure 2.13, given appropriate initial placements, the control strategy can steer

sensors to optimal placements while ensuring the sensor trajectory constraints

fulfilled. The optimality error shown in Figure 2.13 refers to the difference be-

tween the objective function ‖G‖2 and its lower bound given in (2.10) or (2.13).

As can be seen, the control strategy can efficiently reduce the optimality errors

to zero.

Numerically it is clear the final placements in Figure 2.13 are optimal be-

cause the optimality errors converge to zero. We next analytically examine the

optimality of the final placements based on the previous analytical results. As
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(c) n = 4

Figure 2.13: Sensor trajectory and optimality error for the 2D scenario.

shown in Figure 2.13(a), the angle subtended by the two sensors in the final

placement is 90 deg. Hence we have g1 ⊥ g2 in the final placement. Then the

final placement is optimal by Theorem 2.3. As shown in Figure 2.13(b), the

sensors are steered to equally spaced angular positions around the target. The

angle subtended by any two sensors in the final placement is 120 deg. This kind

of equally spaced angular placements are optimal as concluded in Section 2.5.2.

At the first glance, it is intuitively unclear whether the final placement in Fig-

ure 2.13(c) is optimal. The final placement of the four sensors can be viewed as

a combination of two sub-placements: the sub-placement of sensors 1 and 3, and

the sub-placement of sensors 2 and 4. Note the angle subtended by sensors 1 and

3 and the one by sensors 2 and 4 are both 90 deg in the final placement. That

means g1 ⊥ g3 and g2 ⊥ g4, and the two sub-placements are (regular) optimal,

respectively. By Theorem 2.6, the final placement Figure 2.13(c) is optimal.

3D Scenario In the 3D scenario, it is assumed that each sensor is carried by

a UAV or UGV that moves at a fixed altitude. The standard deviations of the

sensor noises are assumed to be one, i.e., σi = 1 for all i. Simulation results with

n = 3 and 4 are respectively shown in Figure 2.14(a) and Figure 2.14(b). As

shown in Figure 2.14, the optimality errors in the two cases are both reduced to

zero efficiently.
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Figure 2.14: Sensor trajectory and optimality error for the 3D scenario.

In Figure 2.14(a), the angle subtended by any two sensors is 90 deg in the

final placement. That means g1, g2 and g3 are mutually orthogonal in the final

placement. By Theorem 2.3, the final placement is optimal. The final optimal

placement shown in Figure 2.14(b) actually is the one given in Figure 2.7. In

both cases of n = 3 and n = 4, the final converged placements are optimal and

the sensor position constraints are simultaneously fulfilled.

Autonomous Sensor Deployment for Dynamic Targets

We next apply the proposed control strategy to track a dynamic target. We

consider a 3D cooperative target tracking scenario where there are three UAVs

flying at the same altitude. Each UAV carries a range-only sensor to measure the

distance to the ground target. In the simulation, the target moves on a non-flat

ground. The 3D maneuvering motion of the target is given as

p(t) =




0.5t

10 sin(π/5t)

3− 3 cos(π/20t)



.

See Figure 2.15 for the target trajectory.
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Figure 2.15: Autonomous optimal sensor deployment to track a dynamic target. The target
moves on the non-flat ground and the three UAVs fly at a fixed altitude.
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Figure 2.16: Target position estimation results by stationary and moving sensors.

In this cooperative target tracking scenario, all UAVs need to share their

range measurements to estimate the target position on one hand; and the UAVs

need to move to form an optimal placement that can improve the target estima-

tion accuracy on the other hand. The autonomous optimal sensor deployment

algorithm is summarized as Algorithm 2.3.

The real initial position of the target is p(0) = [0, 0, 0]T, while the initial

target estimate for the EKF is p̂(0) = [−4, 5, 3]T. The standard deviation of

noise wi is set as three meter. By Algorithm 2.3, the trajectories of the three

moving sensors are obtained as shown in Figure 2.15. The behaviors of the
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Algorithm 2.3 Autonomous Optimal Sensor Deployment for Target Tracking

1: Obtain an initial estimate of the target position p̂(0).
2: At time t, estimate the target position p̂(t) using a centralized extended

Kalman filter (EKF). The EKF is established based on the following process
and measurement models:

ṗ = v,

mi = ‖p− si‖+ wi, i = 1, . . . , n

where mi ∈ R is the measurement of sensor i, and v ∈ R3 and wi ∈ R for all
i are white Gaussian noises.

3: Based on p̂(t), autonomously deploy the optimal sensor placement using the
control strategy (3.14).

4: At time t+ 1, go to Step 2.

three sensors in Figure 2.15 can be explained as the following: the three sensors

attempt to form a placement where each angle subtended at the target by any

two sensors is 90 deg. In order to illustrate how optimal placements can improve

target tracking performance, we compare the target estimation results in the

cases of moving and stationary sensors. In the case of stationary sensors, the

three sensors stay statically at the initial placement shown in Figure 2.15. The

initial placement is obviously not optimal. The target estimation results in the

two cases are shown in Figure 2.16. Note the parameters of the EKF are the

same in the two cases. As can be seen, the target can be tracked accurately when

the sensors are steered to maintain an optimal placement, while the tracking

performance is worse when the sensors are stationary.
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Chapter 3

Bearing-only Formation

Control

3.1 Introduction

As discussed in the previous chapter, vision can be practically treated as a

bearing-only sensor in cooperative target tracking and localization. In this chap-

ter, we will show that vision-based formation control is another area where vision

can be thought of as a bearing-only sensor. More specifically, vision-based for-

mation control can be formulated as a bearing-only formation control problem.

Unlike optimal sensor placement, bearing-only formation control is a very new

research topic and has not attracted much attention yet. Moreover, the bearing

measurements are ultimately used to estimate the target position in cooperative

target tracking and localization. As a comparison, no position estimation will

be involved in bearing-only formation control and the control will be directly

implemented based on bearing measurements.

There are a number of challenging theoretical problems regarding bearing-

only formation control.

The first problem we need to consider is how to properly utilize the bear-

ing measurements for control. There are generally two approaches. The first

approach is that each vehicle uses its bearing measurements to estimate/track

the positions of their neighbors. One may refer to [92] for bearing-only target

tracking algorithms. Once the neighbors’ positions have been estimated, they
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can be used for control. Hence in the first approach, the formation control is still

based on position information and conventional control laws can be applied. But

several problems need to be noticed. Firstly, since the positions are estimated

from bearings, this approach leads to a coupled nonlinear estimation and con-

trol problem, whose stability needs to be rigorously analyzed. Secondly, position

tracking using bearing-only measurements requires certain observability condi-

tions, details of which are out of the scope of this work. Intuitively speaking,

in order to localize a vehicle from bearing measurements, we need to measure

the bearings of the vehicle from different angles. However, most of the practical

formation control tasks require relative static vehicle positions. Without rela-

tive motion, it is theoretically impossible for a vehicle to estimate its neighbors’

positions from bearings. As a result, considering this limitation of the first ap-

proach, we will follow [5, 41] and adopt the second approach, which is to directly

implement formation control laws based on bearing measurements.

Collision avoidance is a key issue in all kinds of formation control tasks.

This issue is especially important in bearing-only formation control as inter-

vehicle distances are unmeasurable and uncontrollable. In order to prove colli-

sion avoidance, we need to analyze the dynamics of the inter-vehicle distances

in the absence of distance measurements. As will be shown later, the distance-

and angle-dynamics of the formation are strongly coupled with each other. To

rigorously prove the formation stability, we need to analyze the two dynamic-

s simultaneously. Furthermore, asymptotic convergence of the angle-dynamics

would be insufficient to analyze the distance-dynamics. It is necessary to prove

exponential or finite-time convergence rate, which makes the problem more chal-

lenging.

Another challenging and interesting problem is the scale control of a forma-

tion. In fact, the scale of a formation is uncontrollable with bearing-only mea-

surements, and inter-vehicle distance measurements are required to control the

formation scale. One possible approach to formation scale control is to consider

mixed bearing and distance constraints/measurements. We will leave formation

scale control for future research. In our work, we will not consider distance

measurements or constraints. Finally, global stability analysis of bearing-based
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formation control undoubtedly is a challenging and meaningful research topic.

When position measurements are available for formation control, a globally sta-

ble control law has been proposed in [29] to stabilize formations in arbitrary

dimensions with fixed topology. However, when only bearing measurements are

available, up to now control laws that guarantee global stability is only applicable

to formations of three or four vehicles [5, 10, 8].

As a first step towards solving generic bearing-based formation control, the

work in this chapter studies an important special case, cyclic formation, whose

underlying information flow is described by an undirected cycle graph. In a

cyclic formation, each vehicle has exactly two neighbors. The angle subtended

at each vehicle by their two neighbors is pre-specified in the desired formation.

The control objective is to steer each vehicle in the plane such that the angles

converge to the pre-specified values. The main contributions of this chapter are

summarized as below.

1) We propose a distributed control law that can stabilize cyclic formations

merely using local bearing measurements. Compared to the existing work

[5, 8], the proposed control law can handle cyclic formations with an arbitrary

number of vehicles. In addition, this chapter does not make parallel rigidity

assumptions [42, 9, 41] on the desired formation.

2) We prove that the proposed control law ensures local exponential or finite-

time stability. The exponential or finite-time stability can be easily switched

by tuning a parameter in the control law. The stability analysis is based on

Lyapunov approaches and significantly different from those in [5, 8].

3) The dynamics of the inter-vehicle distances is analyzed in the absence of dis-

tance measurements. It is proved that the distance between any vehicles can

neither approach zero nor infinity. Collision avoidance between any vehicles

(no matter if they are neighbors or not) can be locally guaranteed.

If the vehicle number is larger than three, the shape of a cyclic formation

would be indeterminate. To well define the shape of a formation of more than

three vehicles, more complicated underlying graphs of the formation, such as
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rigid graphs, are required. More complicated cases are out of the scope of this

chapter and will be studied in the future.

The chapter is organized as follows. Notations and preliminaries are pre-

sented in Section 3.2. The control objective and proposed control law are given

in Section 3.3. The stability analysis of the continuous and discontinuous cas-

es are presented in Sections 3.4 and 3.5, respectively. Simulations are given in

Section 3.6 to verify the effectiveness and robustness of the control law.

3.2 Notations and Preliminaries

3.2.1 Notations

The eigenvalues of a symmetric positive semi-definite matrix A ∈ Rn×n are

denoted as 0 ≤ λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). Let 1 = [1, . . . , 1]T ∈ Rn, and I

be the identity matrix with appropriate dimensions. Denote [ · ]ij as the entry at

the ith row and jth column of a matrix, and [ · ]i as the ith entry of a vector. Let

| · | be the absolute value of a real number, and ‖ · ‖p be the p-norm of a vector.

For the sake of simplicity, we omit the subscript when p = 2, i.e., denoting ‖ · ‖

as the 2-norm. The null space of a matrix is denoted as Null (·). The angle

between two vectors is denoted as ∠(·, ·).

Given an arbitrary angle α ∈ R, the 2 by 2 rotation matrix

R(α) =




cosα − sinα

sinα cosα




geometrically rotates a vector in R2 counterclockwise through an angle α about

the origin. It is easy to see that for all nonzero x ∈ R2: (i) xTR(α)x > 0

when α ∈ (−π/2, π/2) (mod 2π); (ii) xTR(α)x = 0 when α = ±π/2 (mod 2π);

(iii) and xTR(α)x < 0 when α ∈ (π/2, 3π/2) (mod 2π). Moreover, we have

R−1(α) = RT(α) = R(−α) and R(α1)R(α2) = R(α1 + α2) for arbitrary angles

α1 and α2. Finally, for any x ∈ R2, denote x⊥ = R(π/2)x. Clearly xTx⊥ = 0.
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3.2.2 Graph Theory

An undirected graph G = (V, E) consists of a vertex set V = {1, . . . , n} and an

edge set E ⊆ V × V, where an edge is an unordered pair of distinct vertices.

The undirected edge between vertices i and j is denoted as (i, j) or (j, i). If

(i, j) ∈ E , then i and j are called to be adjacent. A path from i to j in a

graph is a sequence of distinct nodes starting with i and ending with j such that

consecutive vertices are adjacent. If there is a path between any two vertices in

G, then G is said to be connected. The set of neighbors of vertex i is denoted

as Ni = {j ∈ V : (i, j) ∈ E}. An undirected cycle is a connected graph where

every vertex has exactly two neighbors.

An orientation of an undirected graph is the assignment of a direction to

each edge. An oriented graph is an undirected graph together with a particular

orientation. A directed edge (i, j) in the oriented graph points from vertex i to

vertex j. The incidence matrix E of an oriented graph is the {0,±1}-matrix with

rows indexed by edges and columns by vertices. More specifically, suppose (j, k)

is the ith directed edge of the oriented graph. Then the entry of E in the ith

row and kth column is 1, the one in the ith row and jth column is −1, and the

others in the ith row are zero. Thus we have E1 = 0 by definition. Moreover, if

the graph is connected, we have rank(E) = n− 1 [50, Theorem 8.3.1] and hence

Null (E) = span{1}.

3.2.3 Nonsmooth Stability Analysis

Next we introduce some useful concepts and facts regarding discontinuous dy-

namic systems [46, 26, 98, 3, 30, 28].

Filippov Differential Inclusion

Consider the dynamic system

ẋ(t) = f (x(t)) , (3.1)
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where f : Rn → Rn is a measurable and essentially locally bounded function.

The Filippov differential inclusion [46] associated with the system (3.1) is

ẋ ∈ F [f ](x), (3.2)

where F [f ] : Rn → 2R
n

is defined by

F [f ](x) =
⋂

r>0

⋂

µ(S)=0

co {f (B(x, r) \ S)} . (3.3)

In (3.3), co denotes convex closure, B(x, r) denotes the open ball centered at x

with radius r > 0, and µ(S) = 0 means that the Lebesgue measure of the set

S is zero. The set-valued map F [f ] associates each point x with a set. Note

F [f ](x) is multiple valued only if f(x) is discontinuous at x.

A Filippov solution of (3.1) on [0, t1] ⊂ R is defined as an absolutely contin-

uous function x : [0, t1]→ Rn that satisfies (3.2) for almost all t ∈ [0, t1]. If f(x)

is measurable and essentially locally bounded, the existence of Filippov solutions

can be guaranteed [30, Lemma 2.5] [28, Proposition 3] though the uniqueness

cannot. The interested reader is referred to [28, p. 52] for the uniqueness condi-

tions of Filippov solutions. A solution is called maximal if it cannot be extended

forward in time. A set Ω is said to be weakly invariant (respectively strongly

invariant) for (3.1), if for each x(0) ∈ Ω, Ω contains at least one maximal solution

(respectively all maximal solutions) of (3.1).

Generalized Gradient

Suppose V : Rn → R is a locally Lipschitz function. If V (x) is differentiable

at x, denote ∇V (x) as the gradient of V (x) with respect to x. Let MV be the

set where V (x) fails to be differentiable. The generalized gradient [26, 30, 28] of

V (x) is defined as

∂V (x) = co

{
lim

i→+∞
∇V (xi) | xi → x, xi /∈ S ∪MV

}
,

where co denotes convex hull and S is an arbitrary set of Lebesgue measure

zero. The generalized gradient is a set-valued map. If V (x) is continuously
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differentiable at x, then ∂V (x) = {∇V (x)}.

Given any set S ⊆ Rn, let Ln : 2R
n → 2R

n
be the set-valued map that

associates S with the set of least-norm elements of S. If S is convex, Ln(S)

is singleton. In this chapter, we only apply Ln to generalized gradients which

are always convex. For a locally Lipschitz function V (x), Ln(∂V ) : Rn → Rn is

called the generalized gradient vector field. The following fact [28, Proposition

8]

F [Ln (∂V (x))] = ∂V (x) (3.4)

will be very useful in our work. A point x is called a critical point if 0 ∈ ∂V (x).

For a critical point x, it is obvious that Ln(∂V (x)) = {0}.

Set-valued Lie Derivative

The evolution of a locally Lipschitz function V (x) along the solutions to the

differential inclusion ẋ ∈ F [f ](x) can be characterized by the set-valued Lie

derivative [3, 30, 28], which is defined by

L̃FV (x) =
{
` ∈ R | ∃ξ ∈ F [f ](x), ∀ζ ∈ ∂V (x), ξTζ = `

}
.

With a slight abuse of notation, we also denote L̃fV (x) = L̃FV (x). The set-

valued Lie derivative may be empty. When L̃FV (x) = ∅, we take max L̃FV (x) =

−∞ (see [3, 30, 28]).

A function V : Rn → R is called regular [28, p. 57] at x if the right directional

derivative of V (x) at x exists and coincides with the generalized directional

derivative of V (x) at x. Note a locally Lipschitz and convex function is regular.

The following two lemmas are useful for proving the stability of discontinuous

systems using nonsmooth Lyapunov functions. The next result can be found in

[105, 3, 30].

Lemma 3.1. Let V : Rn → R be a locally Lipschitz and regular function.

Suppose the initial state is x0 and let Ω(x0) be the connected component of

{x ∈ Rn | V (x) ≤ V (x0)} containing x0. Assume the set Ω(x0) is bounded.
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If max L̃fV (x) ≤ 0 or L̃fV (x) = ∅ for all x ∈ Ω(x0), then Ω(x0) is strongly

invariant for (3.1). Let

Zf,V = {x ∈ Rn | 0 ∈ L̃fV (x)}. (3.5)

Then any solution of (3.1) starting from x0 converges to the largest weakly in-

variant set M contained in Zf,V ∩ Ω(x0). Furthermore, if the set M is a finite

collection of points, then the limit of all solutions starting from x0 exists and

equals one of them.

The next result can be found in [98, 30].

Lemma 3.2. Let V : Rn → R be a locally Lipschitz and regular function. Sup-

pose the initial state is x0 and let S be a compact and strongly invariant set for

(3.1). If max L̃fV (x) ≤ −κ < 0 almost everywhere on S\Zf,V , then any solution

of (3.1) starting at x0 ∈ S reaches Zf,V ∩S in finite time. The convergence time

is upper bounded by (V (x0)−minx∈S V (x)) /κ.

3.2.4 Useful Lemmas

We next prove and introduce some useful results.

Lemma 3.3. Let U , {x ∈ Rn : x 6= 0 and nonzero entries of x are not of the

same sign}. Suppose A ∈ Rn×n is a positive semi-definite matrix with λ1(A) = 0

and λ2(A) > 0. If 1 = [1, . . . , 1]T ∈ Rn is an eigenvector associated with the zero

eigenvalue of A, then

inf
x∈U

xTAx

xTx
=
λ2(A)

n
.

Remark 3.1. By the definition of U , any x ∈ U should at least contain one

positive entry and one negative entry. If the nonzero entries of x are all positive

or negative, then x /∈ U .
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Figure 3.1: A 2D illustration for the proof of Lemma 3.3.

Proof. By orthogonally projecting x ∈ U to 1 and the orthogonal complement

of 1, we decompose x as

x = x0 + x1,

where x0 ∈ Null (A) and x1 ⊥ Null (A). Let ϕ be the angle between 1 and x.

Then we have ‖x0‖ = cosϕ‖x‖ and ‖x1‖ = sinϕ‖x‖. As a result,

xTAx = xT1Ax1

≥ λ2(A)xT1 x1

= λ2(A) sin2 ϕ‖x‖2. (3.6)

By the definition of U , any x in U would not be in span{1}. That means ϕ 6= 0

or π and hence sinϕ 6= 0. We next identify the positive infimum of sinϕ.

Define Ūp = {x ∈ Rn : x 6= 0 and nonzero entries of x are all positive}

and Ūn = {x ∈ Rn : x 6= 0 and nonzero entries of x are all negative}. Let

Ū = {0} ∪ Ūp ∪ Ūn. Clearly U ∪ Ū = Rn. It is easy to see Ū is a closed

set and hence U is an open set. Figure 3.1 shows a 2D example to illustrate

the above notations. Denote ∂U as the boundary of U . The vector 1 ∈ Ū is

isolated from any x ∈ U by ∂U . Then we have infx∈U ϕ = minx∈∂U ∠(x,1)

and supx∈U ϕ = maxx∈∂U ∠(x,1). In fact, the boundary ∂U is formed by the

hyper-planes [x]i = 0 with i ∈ {1, . . . , n}. Denote pi ∈ Rn as the orthogonal

projection of 1 on the hyper-plane [x]i = 0. Then minx∈∂U ∠(x,1) = ∠(pi,1)

and maxx∈∂U ∠(x,1) = ∠(−pi,1). Note the ith entry of pi is zero and the others

are one. It can be calculated that cos∠(±pi,1) = ±
√
n− 1/

√
n and hence
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sin∠(±pi,1) = 1/
√
n. Thus

inf
x∈U

sinϕ =
1√
n
,

substituting which into (3.6) yields

inf
x∈U

xTAx

xTx
=
λ2(A)

n
.

Lemma 3.4. Let x(t) be a real positive scalar variable of t ∈ [0,+∞). Given

any positive constants α and k, if the time derivative of x(t) satisfies

|ẋ(t)| ≤ α exp

(∫ t

0
− k

x(τ)
dτ

)
, t ∈ [0,+∞), (3.7)

then x(t) for all t ∈ [0,+∞) has a finite upper bound.

Proof. The proof consists of three steps.

Step 1: Prove the special case of α = 1 and k ∈ (0, 1).

The idea of the proof is to repeatedly utilize inequality (3.7) and the following

inequality

x(t) ≤ x(0) +

∫ t

0
|ẋ(τ)|dτ. (3.8)

First of all, because x > 0, we have −k/x < 0 and hence by (3.7) we have

|ẋ(t)| ≤ exp(0) = 1,

substituting which into (3.8) gives

x(t) ≤ x(0) +

∫ t

0
1dτ = t+ c,

where c = x(0). Substituting the above inequality back into (3.7) yields

|ẋ(t)| ≤ exp

(∫ t

0
− k

τ + c
dτ

)
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= exp

(
−k ln

t+ c

c

)

=

(
c

t+ c

)k
.

Again by (3.8) we have

x(t) ≤ x(0) +

∫ t

0

(
c

τ + c

)k
dτ

= x(0) +
ck

1− k
[
(t+ c)1−k − c1−k

]

<
ck

1− k (t+ c)1−k, (3.9)

where the last inequality uses the fact c = x(0), 1 − k < 1 and hence x(0) −

c/(1− k) < 0. Denote µ = (1− k)/ck. Substituting (3.9) into (3.7) gives

|ẋ(t)| < exp

(∫ t

0
−µk(τ + c)k−1dτ

)

= exp
(
−µ(t+ c)k + µck

)

= e1−ke−µ(t+c)
k
.

One more by (3.8) we have

x(t) ≤ x(0) + e1−k
∫ t

0
e−µ(τ+c)

k
dτ

≤ x(0) + e1−k
∫ +∞

0
e−µ(τ+c)

k
dτ. (3.10)

Let s = µ(τ + c)k. Then dτ = (1/k)µ−1/ks1/k−1ds. The above integral becomes

∫ +∞

0
e−µ(τ+c)

k
dτ =

1

k
µ−

1
k

∫ +∞

µck
e−ss

1
k
−1ds

<
1

k
µ−

1
k

∫ +∞

0
e−ss

1
k
−1ds

=
1

k
µ−

1
kΓ

(
1

k

)
, (3.11)

where Γ(1/k) is the well-known Gamma function and it has a positive value at

1/k > 0. By substituting (3.11) into (3.10), we find a finite upper bound for x(t)
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as

x(t) < γ = x(0) +
1

k
µ−

1
k e1−kΓ

(
1

k

)
.

Step 2: Prove the special case of α = 1 and k ∈ [1,+∞).

Consider a constant k0 ∈ (0, 1). Then k > k0. Since x(t) > 0 for all

t ∈ [0,+∞), we have

∫ t

0
− k

x(τ)
dτ <

∫ t

0
− k0
x(τ)

dτ,

which implies

|ẋ(t)| ≤ exp

(∫ t

0
− k

x(τ)
dτ

)
< exp

(∫ t

0
− k0
x(τ)

dτ

)
.

Then by Step 1 there exists a finite upper bound γ such that x(t) < γ for all

t ∈ [0,+∞).

Step 3: Prove the generic case of α ∈ (0,+∞) and k ∈ (0,+∞).

Note the combination of Step 1 and Step 2 indicates that x(t) is bounded

above if α = 1 and k ∈ (0,+∞). When α ∈ (0,+∞), inequality (3.7) can be

rewritten as

∣∣∣∣
(
x(t)

α

)′∣∣∣∣ ≤ exp

(∫ t

0
− k/α

x(τ)/α
dτ

)
.

By Step 1 and Step 2, we know x(t)/α is bounded above, and so is x(t).

Lemma 3.5 ([112, Lemma 2]). Let x1, . . . , xn ≥ 0. Given p ∈ (0, 1], then

(
n∑

i=1

xi

)p
≤

n∑

i=1

xpi ≤ n1−p
(

n∑

i=1

xi

)p
.

Lemma 3.6 ([58, Corollary 5.4.5]). Let ‖ · ‖α and ‖ · ‖β be any two vector

norms on Rn. Then there exist finite positive constants Cm and CM such that

Cm‖x‖α ≤ ‖x‖β ≤ CM‖x‖α for all x ∈ Rn.
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3.3 Problem Formulation

3.3.1 Control Objective

Consider n (n ≥ 3) vehicles in R2. Denote the position of vehicle i as zi ∈ R2.

The dynamics of each vehicle is modeled as

żi = ui,

where ui ∈ R2 is the control input to be designed. This chapter focuses on cyclic

formations (see Figure 3.2), whose underlying information flow is described by

an undirected cycle graph. In a cyclic formation, each vehicle has exactly two

neighbors. Denote θi as the angle at vehicle i subtended by its two neighbors (see

Figure 3.2). The angle θi is specified as θ∗i ∈ [0, 2π) in the desired formation. The

desired angles {θ∗i }ni=1 should be feasible such that there exist {zi}ni=1 (zi 6= zj

for i 6= j) to realize the desired formation. We make the following assumptions

on {θ∗i }ni=1 and {zi(0)}ni=1.

Assumption 3.1. In the desired formation, θ∗i 6= 0 and θ∗i 6= π for all i ∈

{1, . . . , n}.

Remark 3.2. Assumption 3.1 means no three consecutive vehicles in the desired

formation are collinear. The collinear case is a theoretical difficulty in many for-

mation control problems (see, for example, [74, 36, 63, 8]). In practice, bearings

are usually measured by optical sensors such as cameras. Hence vehicle i cannot

measure the bearings of its two neighbors simultaneously when θi = 0 due to line-

of-sight occlusion. On the other hand, the field-of-view of a monocular camera

is usually less than 180 degrees. Hence vehicle i cannot measure the bearings of

its two neighbors simultaneously either when θi = π due to limited field-of-view.

Thus Assumption 3.1 is reasonable from the practical point of view.

Assumption 3.2. In the initial formation, no two vehicles coincide with each

other, i.e., zi(0) 6= zj(0) for all i 6= j.

The formation control objective is summarized as below.
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Figure 1: An illustration of cyclic formations.

line-of-sight occlusion. On the other hand, the field-of-view of a monocular camera is usually less

than 180 degrees. Hence vehicle i cannot measure the bearings of its two neighbors simultaneously

either when θi = π due to limited field-of-view. Thus Assumption 1 is reasonable from the practical

point of view.

Assumption 2. In the initial formation, no two vehicles coincide with each other, i.e., zi(0) �=
zj(0) for all i �= j.

The formation control objective is summarized as below.

Problem 1. Under Assumptions 1 and 2, design control input ui for vehicle i (i = 1, . . . , n)

based only on the local bearing measurements of its two neighbors such that the formation is steered

from its initial position {zi(0)}ni=1 to a finite final position {zi(tf )}ni=1 where θi(tf ) = θ∗i . The

final converged time tf can be either infinite or finite. During the formation evolution, collision

avoidance between any vehicles should be guaranteed.

3.2. Control Law Design

We first define some notations before proposing the formation control law. In the cyclic for-

mation, we can have Ni = {i − 1, i + 1} for i ∈ {1, . . . , n} by indexing the vehicles properly (see

Fig. 1). Then vehicle i can measure the bearings of vehicles i− 1 and i+ 1. The indices i+ 1 and

8

Figure 3.2: An illustration of cyclic formations.

Problem 3.1. Under Assumptions 3.1 and 3.2, design control input ui for ve-

hicle i (i = 1, . . . , n) based only on the local bearing measurements of its two

neighbors such that the formation is steered from its initial position {zi(0)}ni=1 to

a finite final position {zi(tf )}ni=1 where θi(tf ) = θ∗i . The final converged time tf

can be either infinite or finite. During the formation evolution, collision avoid-

ance between any vehicles should be guaranteed.

3.3.2 Control Law Design

We next define some notations and then propose our formation control law. In

the cyclic formation, we can have Ni = {i−1, i+1} for i ∈ {1, . . . , n} by indexing

the vehicles properly (see Figure 3.2). Then vehicle i can measure the bearings

of vehicles i−1 and i+1. The indices i+1 and i−1 are taken modulo n. Denote

ei , zi+1 − zi (3.12)

as the edge vector pointing from vehicle i to vehicle i+ 1. Then the unit-length

vector

gi ,
ei
‖ei‖

characterizes the relative bearing between vehicles i + 1 and i (see Figure 3.2).

Thus the bearings measured by vehicle i include gi and −gi−1. The control input
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ui will be designed as a function of gi and −gi−1.

The angle θi ∈ [0, 2π) is defined in the following way (see Figure 3.2): rotating

−gi−1 counterclockwise through an angle θi about vehicle i yields gi, which can

be expressed as

gi = R(θi)(−gi−1).

When θi is defined in the above way, the angles θi and θi+1 are on the same side

of ei for all i ∈ {1, . . . , n}. As a result, the quantity
∑n

i=1 θi is invariant to the

positions of the vehicles because the sum of the interior or exterior angles of a

polygon is constant. Thus if
∑n

i=1 θi(0) =
∑n

i=1 θ
∗
i , then

∑n
i=1 θi(t) ≡

∑n
i=1 θ

∗
i .

The angle error for vehicle i, which will be used for feedback control, is

defined as

εi , cos θi − cos θ∗i = −gTi gi−1 − cos θ∗i . (3.13)

The nonlinear control law for vehicle i is designed as

ui = sgn(εi)|εi|a(gi − gi−1), (3.14)

where a ∈ [0, 1] and sgn(εi) is defined by

sgn(εi) =





1 if εi > 0

0 if εi = 0

−1 if εi < 0

.

In the special case of a = 1, control law (3.14) becomes ui = εi(gi − gi−1)

because sgn(εi)|εi| = εi. In the special case of a = 0, control law (3.14) becomes

ui = sgn(εi)(gi − gi−1).

Remark 3.3. It should be noted that sgn(εi)|εi|a is continuous in εi for a ∈

(0, 1]. That is because limεi→0+ sgn(εi)|εi|a = limεi→0− sgn(εi)|εi|a = 0. There-

fore, the control law is continuous in εi if a ∈ (0, 1]. But the control law is

discontinuous if a = 0.
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Clearly (3.14) is a distributed control law as it only relies on the bearings

of vehicle i’s neighbors. Moreover, although gi and gi−1 in (3.14) are expressed

in a global coordinate frame, the control law can be implemented based on

the local bearings measured in the local coordinate frame of vehicle i. To see

that, denote Ri as the rotation transformation from a global frame to the local

frame of vehicle i. Then the bearings of vehicles i − 1 and i + 1 measured

in the local frame are Ri(−gi−1) and Rigi, respectively. Note εi defined in

(3.13) is invariant to Ri. Then substituting Ri(−gi−1) and Rigi into (3.14) gives

ui,local = sgn(εi)|εi|aRi(gi−gi−1). Converting ui,local into the global frame would

yield the same control input value given by (3.14).

As will be shown later, control law (3.14) ensures local exponential stability

if a = 1, and local finite-time stability if a ∈ [0, 1). Loosely speaking, finite-time

stability means εi for all i converges to zero in finite time. See [7] or [54, Section

4.6] for a formal definition of finite-time stability of nonlinear systems. Besides

fast convergence, finite-time stability can also bring benefits such as disturbance

rejection and robustness against uncertainties [7, 115, 22].

3.4 Stability Analysis of the Continuous Case

If a ∈ (0, 1], the control law (3.14) is continuous in ε, and the formation stability

can be proved based on traditional Lyapunov approaches. We first propose a

continuously differentiable Lyapunov function and then show its time derivative

under control law (3.14) is non-positive.

3.4.1 Lyapunov Function

Denote ε = [ε1, . . . , εn]T ∈ Rn and z = [zT1 , . . . , z
T
n ]T ∈ R2n. It is straightforward

to see from (3.14) that ε = 0 implies ż = 0 and then ε̇ = 0. Hence ε = 0 is an

equilibrium of the ε-dynamics. Consider the Lyapunov function

V (ε) =
1

a+ 1

n∑

i=1

|εi|a+1.

Clearly V is positive definite with respect to ε = 0. In the special case of a = 1,

we have V = 1/2εTε, which is a quadratic function of ε.
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We next show V is continuously differentiable in ε. (i) If εi > 0, ∂|εi|a+1

∂εi
=

∂εa+1
i
∂εi

= (a + 1)εai = (a + 1)sgn(εi)|εi|a and hence limεi→0+
∂|εi|a+1

∂εi
= 0. (ii) If

εi < 0, ∂|εi|a+1

∂εi
= ∂(−εi)a+1

∂εi
= −(a + 1)(−εi)a = (a + 1)sgn(εi)|εi|a and hence

limεi→0−
∂|εi|a+1

∂εi
= 0. From (i) and (ii) we have

∂|εi|a+1

∂εi
= (a+ 1)sgn(εi)|εi|a, ∀εi ∈ R. (3.15)

Note sgn(εi)|εi|a is continuous in εi for a ∈ (0, 1]. Thus |εi|a+1 is continuously

differentiable in εi. As a result, V is continuously differentiable in ε.

3.4.2 Time Derivative of V

We next derive the time derivative of V under control law (3.14) and show it is

non-positive. For the sake of simplicity, denote

σi , sgn(εi)|εi|a

and σ = [σ1, . . . , σn]T ∈ Rn. Then control law (3.14) can be rewritten as żi =

σi(gi − gi−1), and (3.15) becomes ∂|εi|a+1/∂εi = (a+ 1)σi. The time derivative

of V is

V̇ =
1

a+ 1

n∑

i=1

∂|εi|a+1

∂εi
ε̇i

=

n∑

i=1

σiε̇i (By (3.15))

=

n∑

i=1

σi(−gTi ġi−1 − gTi−1ġi) (By (3.13))

=

n∑

i=1

σi(−gTi ġi−1) +

n∑

i=1

σi(−gTi−1ġi)

=

n∑

i=1

σi+1(−gTi+1ġi) +

n∑

i=1

σi(−gTi−1ġi)

= −
n∑

i=1

(σi+1gi+1 + σigi−1)Tġi. (3.16)

Since gi = ei/‖ei‖, we have

ġi =
ėi
‖ei‖

− ei
‖ei‖2

d‖ei‖
dt

=
1

‖ei‖

(
I − ei
‖ei‖

eTi
‖ei‖

)
ėi ,

1

‖ei‖
Piėi, (3.17)
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where Pi = I − gigTi . Matrix Pi plays an important role in the stability analysis

in this chapter. Geometrically Pi is an orthogonal projection matrix which can

orthogonally project any vector onto the orthogonal compliment of gi. The

algebraic properties of Pi are listed below.

Lemma 3.7. Matrix Pi satisfies:

(i) PT
i = Pi and P 2

i = Pi.

(ii) Pi is positive semi-definite.

(iii) Null (Pi) = span{gi}.

Proof. (i) The two properties are trivial to check.

(ii) For any x ∈ R2, since P 2
i = Pi and PT

i = Pi, we have xTPix = xTPT
i Pix =

‖Pix‖2 ≥ 0.

(iii) First, it is easy to see Pigi = 0 and hence gi ∈ Null (Pi). Second, for any

x ∈ R2, we have Pix = x− (gTi x)gi. Clearly Pix = 0 only if x is parallel to

gi. Thus Null (Pi) = span{gi}.

Furthermore, from (3.12) and control law (3.14), we have

ėi = żi+1 − żi

= σi+1gi+1 + σigi−1 − (σi+1 + σi)gi. (3.18)

Because Pigi = 0, substituting the above ėi back into (3.17) gives

ġi =
1

‖ei‖
Pi(σi+1gi+1 + σigi−1).

Substituting the above ġi back into (3.16) yields

V̇ = −
n∑

i=1

1

‖ei‖
(σi+1gi+1 + σigi−1)TPi(σi+1gi+1 + σigi−1) ≤ 0. (3.19)

Now we can claim the equilibrium ε = 0 is at least Lyapunov stable.

We next derive the matrix form of (3.19), which will be useful to prove

exponential and finite-time stability. To do that, we need the following lemma.
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Lemma 3.8. Let g⊥i = R(π/2)gi. It is obvious that ‖g⊥i ‖ = 1 and (g⊥i )Tgi = 0.

Furthermore,

(i) Pi = g⊥i (g⊥i )T.

(ii) (g⊥i )Tgj = −(g⊥j )Tgi for all i 6= j.

(iii) (g⊥i )Tgi−1 = sin θi. As a result, (g⊥i )Tgi−1 > 0 if θi ∈ (0, π); and (g⊥i )Tgi−1 <

0 if θi ∈ (π, 2π).

Proof. (i) Denote Gi = [gi, g
⊥
i ] ∈ R2×2. It is easy to examine that Gi is an

orthogonal matrix satisfying GT
i Gi = GiG

T
i = I. Hence we have

gig
T
i + g⊥i (g⊥i )T = GiG

T
i = I.

Thus g⊥i (g⊥i )T = I − gigTi = Pi.

(ii) (g⊥i )Tgj = gTi R
T(π/2)gj = gTi R(−π/2)gj = gTi R(−π)R(π/2)gj = gTi R(−π)g⊥j =

gTi (−I)g⊥j = −(g⊥j )Tgi.

(iii) By the definition of θi, we have gi = R(θi)(−gi−1) and hence gi−1 =

−R(−θi)gi. Then

(g⊥i )Tgi−1 = −gTi R
(
−π

2

)
R(−θi)gi

= −gTi R
(
−π

2
− θi

)
gi

= −‖gi‖
∥∥∥R
(
−π

2
− θi

)
gi

∥∥∥ cos
(
−π

2
− θi

)

= sin θi.

Then it is straightforward to have the rest results in Lemma 3.8(iii).

Substituting Pi = g⊥i (g⊥i )T as shown in Lemma 3.8(i) into (3.19) yields

V̇ = −
n∑

i=1

1

‖ei‖
(

(g⊥i )T(σi+1gi+1 + σigi−1)
)2

≤ − 1∑n
i=1 ‖ei‖

n∑

i=1

(
σi+1(g

⊥
i )Tgi+1 + σi(g

⊥
i )Tgi−1

)2

= − 1∑n
i=1 ‖ei‖

‖ξ‖2 , (3.20)
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where

ξ =




σ2(g
⊥
1 )Tg2 + σ1(g

⊥
1 )Tgn

...

σ1(g
⊥
n )Tg1 + σn(g⊥n )Tgn−1




=




(g⊥1 )Tgn (g⊥1 )Tg2 0 . . . 0

0 (g⊥2 )Tg1 (g⊥2 )Tg3 . . . 0

0 0 (g⊥3 )Tg2 . . . 0

...
...

...
. . .

...

(g⊥n )Tg1 0 . . . 0 (g⊥n )Tgn−1







σ1

σ2

σ3
...

σn




=




1 −1 0 . . . 0

0 1 −1 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

−1 0 . . . 0 1




︸ ︷︷ ︸
E∈Rn×n

×




(g⊥1 )Tgn 0 0 . . . 0

0 (g⊥2 )Tg1 0 . . . 0

0 0 (g⊥3 )Tg2 . . . 0

...
...

...
. . .

...

0 0 . . . 0 (g⊥n )Tgn−1




︸ ︷︷ ︸
D∈Rn×n




σ1

σ2

σ3
...

σn




. (3.21)

The last equality above uses the fact that (g⊥i )Tgi−1 = −(g⊥i−1)
Tgi given by

Lemma 3.8(ii). Substituting (3.21) into (3.20) yields

V̇ ≤ − 1∑n
i=1 ‖ei‖

σTDTETEDσ. (3.22)

Inequality (3.22) is very important and will be used to prove the exponential

and finite-time stability of the control law in the next section. We would like to

mention that D is a diagonal matrix and E1 = 0. It can be easily checked that E

is the incidence matrix of an oriented cycle graph. Thus we have rank(E) = n−1

[50, Theorem 8.3.1] and hence Null (ETE) = Null (E) = span{1}.
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3.4.3 Exponential and Finite-time Stability Analysis

Based on inequality (3.22) obtained in the previous section, we next prove the

exponential and finite-time stability of control law (3.14). The proof of our

main result consists of three relatively independent steps, each of which will

be summarized as a proposition. As aforementioned, the inter-vehicle distance

dynamics is a theoretical difficulty. We will particularly analyze this issue in

the second and third steps. More specifically, the second step shows that the

distance between any two vehicles cannot approach infinity; the third step proves

that the distance between any two vehicles (no matter if they neighbors or not)

cannot approach zero during formation evolution.

At this point, it is still unclear whether any vehicles may collide with each

other during formation evolution. Nevertheless, we can always assume there is

a “collision time” Tc ∈ (0,+∞), at which at least two vehicles collide with each

other. Note Tc could be infinity. If Tc is infinity, there would be no collision

between any vehicles during the whole formation evolution. In fact, we will later

prove Tc to be infinity given sufficiently small initial error ε0. But at this point

we are only able to claim that inequality (3.22) is valid only for t ∈ [0, Tc).

Denote Ω(c) , {ε ∈ Rn : V (ε) ≤ c} with c > 0 as the level set of V (ε). Note

V can be written as V = 1/(a + 1)‖ε‖a+1
a+1 where ‖ · ‖a+1 is the (a + 1)-norm.

Hence Ω(c) is compact [58, Corollary 5.4.8]. Because V̇ ≤ 0 as shown in (3.22),

the level set Ω (V (ε0)) is also positively invariant with respect to (3.14).

Proposition 3.1. Under Assumptions 3.1 and 3.2, if the initial error ε0 is

sufficiently small, then there exists a positive constant K such that

V̇ ≤ − K∑n
i=1 ‖ei‖

V
2a
a+1 , ∀t ∈ [0, Tc). (3.23)

Proof. Suppose ε 6= 0 ⇔ σ 6= 0. Rewrite σTDTETEDσ on the right hand side

of (3.22) as

σTDTETEDσ =

(
σTDTETEDσ

σTDTDσ

)

︸ ︷︷ ︸
term 1

(
σTDTDσ

V
2a
a+1

)

︸ ︷︷ ︸
term 2

V
2a
a+1 . (3.24)

75



Step 1: analyze term 2 in (3.24). At the equilibrium point ε = 0 (i.e.,

θi = θ∗i for all i), we have [D]ii = (g⊥i )Tgi−1 6= 0 because θ∗i 6= 0 or π as

stated in Assumption 3.1. Thus by continuity we have [D]ii 6= 0 for every point

in Ω(V (ε0)) if ε0 is sufficiently small. Then DTD = D2 is positive definite and

hence λ1(D
TD) > 0 for all ε ∈ Ω(V (ε0)). Since Ω(V (ε0)) is compact, there exists

a lower bound λ1(D
TD) > 0 such that λ1(D

TD) ≥ λ1(DTD) and consequently

σTDTDσ ≥ λ1(DTD)σTσ (3.25)

for all ε ∈ Ω(V (ε0)). In addition, since 2a/(a+ 1) ∈ (0, 1], we have

V
2a
a+1 =

(
1

a+ 1

) 2a
a+1

(
n∑

i=1

|εi|a+1

) 2a
a+1

≤
(

1

a+ 1

) 2a
a+1

n∑

i=1

|εi|2a (By Lemma 3.5)

=

(
1

a+ 1

) 2a
a+1

n∑

i=1

σ2i (By |εi|2a = σ2i )

=

(
1

a+ 1

) 2a
a+1

σTσ. (3.26)

Thus (3.25) and (3.26) imply

σTDTDσ

V
2a
a+1

≥ λ1(D
TD)σTσ

(
1

a+1

) 2a
a+1

σTσ

= (a+ 1)
2a
a+1λ1(D

TD) (3.27)

for all ε ∈ Ω(V (ε0)) \ {0}.

Step 2: analyze term 1 in (3.24). Define

wi =
cos θi − cos θ∗i

θi − θ∗i
.

Note limθi→θ∗i wi = − sin θ∗i by L’Hôpital’s rule. Thus wi is well defined even if

θi − θ∗i = 0. Denote δi , θi − θ∗i and recall εi = cos θi − cos θ∗i . Then we have
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DW : same sign

δ: not same sign

⎫
⎬
⎭ DWδ = Dε: not same sign Dσ: not same sign Dσ ∈ U

Figure 2: Illustrate how to obtain Dσ ∈ U .

the same sign. Hence the nonzero entries of Dε = DWδ are not of the same sign. Furthermore,

because σi has the same sign as εi, the nonzero entries of Dσ are not of the same sign either. Thus

Dσ ∈ U where U is defined in Lemma 1. The above derivation is illustrated intuitively in Fig. 2.

Recall Null (ETE) = Null (E) = span{1}. Therefore, by Lemma 1 we have

σTDTETEDσ

σTDTDσ
>

λ2(E
TE)

n
. (18)

Substituting (17) and (18) into (14) yields

σTDTETEDσ ≥ λ2(E
TE)

n
(a+ 1)

2a
a+1λ1(D

TD)
︸ ︷︷ ︸

K

V
2a
a+1 . (19)

Then (13) can be obtained by substituting (19) into (12). Note (12) holds for all t ∈ [0, Tc), and

so does (13).

Proposition 1 requires ε0 to be sufficiently small, but does not give any explicit condition

of ε0. In order to determine the region of convergence, we next give a sufficient condition of

ε0 which ensures the validity of Proposition 1. The proof of Proposition 1 requires ε0 to be

sufficiently small such that (i) [D]ii �= 0 and (ii) both θi and θ∗i are in either (0, π) or (π, 2π) for all

ε ∈ Ω(V (ε0)). Since [D]ii = 0 if and only if θi = 0 or π, condition (ii) implies condition (i). Denote

Δi = min{θ∗i , |θ∗i −π|, 2π− θ∗i } and ε̄i = min{| cos(θ∗i +Δi)− cos θ∗i |, | cos(θ∗i −Δi)− cos θ∗i |}. Then
we have the following sufficient condition. If ε0 satisfies

V (ε0) <
1

a+ 1
min
i

ε̄ a+1
i , (20)

then condition (ii) can be satisfied and hence Proposition 1 is valid. To see that, for any j ∈
{1, . . . , n}, we have 1

a+1 |εj(t)|a+1 ≤ 1
a+1

∑n
i=1 |εi(t)|a+1 = V (ε(t)) ≤ V (ε0) < 1

a+1 mini ε̄
a+1
i ≤

1
a+1 ε̄

a+1
j . Thus |εj(t)| < ε̄j for all t ∈ [0, Tc). Since the cosine function is monotone in (0, π) or

(π, 2π), we have |εj(t)| < ε̄j =⇒ |θi(t) − θ∗i | < Δi and hence condition (ii) is valid. It should be

16

Figure 3.3: Illustrate how to obtain Dσ ∈ U .

εi = wiδi, whose matrix form is

ε = Wδ,

where W = diag{w1, . . . , wn} ∈ Rn×n and δ = [δ1, . . . , δn]T ∈ Rn. On one hand,

when ε0 is sufficiently small, we have θi is sufficiently close to θ∗i such that both

θi and θ∗i are in either (0, π) or (π, 2π) for all ε ∈ Ω(V (ε0)). It can be examined

that wi < 0 when θi, θ
∗
i ∈ (0, π), and wi > 0 when θi, θ

∗
i ∈ (π, 2π). On the other

hand, [D]ii = (g⊥i )Tgi−1 > 0 when θi ∈ (0, π), and [D]ii = (g⊥i )Tgi−1 < 0 when

θi ∈ (π, 2π) as shown in Lemma 3.8(iii). Thus we always have

[D]iiwi < 0

for all i ∈ {1, . . . , n} and all ε ∈ Ω(V (ε0)), which means the diagonal entries of

DW are of the same sign. However, because
∑n

i θi ≡
∑n

i θ
∗
i ⇔

∑n
i=1 δi = 0,

the nonzero entries in δ are not of the same sign. Hence the nonzero entries of

Dε = DWδ are not of the same sign. Furthermore, because σi has the same

sign as εi, the nonzero entries of Dσ are not of the same sign either. Thus

Dσ ∈ U where U is defined in Lemma 3.3. The above arguments are illustrated

intuitively in Figure 3.3. Recall Null (ETE) = Null (E) = span{1}. Therefore,

by Lemma 3.3 we have

σTDTETEDσ

σTDTDσ
>
λ2(E

TE)

n
. (3.28)

Step 3: substituting (3.27) and (3.28) into (3.24) yields

σTDTETEDσ ≥ λ2(E
TE)

n
(a+ 1)

2a
a+1λ1(D

TD)
︸ ︷︷ ︸

K

V
2a
a+1 . (3.29)

Then (3.23) can be obtained by substituting (3.29) into (3.22). Note (3.22) holds

for all t ∈ [0, Tc), and so does (3.23).
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Proposition 3.1 requires ε0 to be sufficiently small, but does not give any

explicit condition of ε0. In order to determine the region of convergence, we next

give a sufficient condition of ε0 which ensures the validity of Proposition 3.1. The

proof of Proposition 3.1 requires ε0 to be sufficiently small such that (i) [D]ii 6= 0

and (ii) both θi and θ∗i are in either (0, π) or (π, 2π) for all ε ∈ Ω(V (ε0)). Since

[D]ii = 0 if and only if θi = 0 or π, condition (ii) implies condition (i). Denote

∆i = min{θ∗i , |θ∗i − π|, 2π − θ∗i } and ε̄i = min{| cos(θ∗i + ∆i) − cos θ∗i |, | cos(θ∗i −

∆i)− cos θ∗i |}. Then we have the following sufficient condition. If ε0 satisfies

V (ε0) <
1

a+ 1
min
i
ε̄ a+1
i , (3.30)

then condition (ii) can be satisfied and hence Proposition 3.1 is valid. To see that,

for any j ∈ {1, . . . , n}, we have 1
a+1 |εj(t)|a+1 ≤ 1

a+1

∑n
i=1 |εi(t)|a+1 = V (ε(t)) ≤

V (ε0) <
1

a+1 mini ε̄
a+1
i ≤ 1

a+1 ε̄
a+1
j . Thus |εj(t)| < ε̄j for all t ∈ [0, Tc). Since

the cosine function is monotone in (0, π) or (π, 2π), we have |εj(t)| < ε̄j =⇒

|θi(t)−θ∗i | < ∆i and hence condition (ii) is valid. It should be noted that ∆i 6= 0

because θ∗i 6= 0 or π. Therefore, ε̄i > 0 and hence the set of ε0 that satisfies

(3.67) is always nonempty.

Since the inter-vehicle distances are not controlled directly, we cannot simply

rule out the possibility that
∑n

i=1 ‖ei‖ in (3.23) may go to infinity. Based on

Proposition 3.1, we next further prove
∑n

i=1 ‖ei‖ is bounded above by a finite

positive constant.

Proposition 3.2 (Finite Inter-vehicle Distance). Under Assumptions 3.1 and

3.2, if (3.23) holds and the initial error ε0 is sufficiently small such that V (ε0) ≤

1, then there exists a finite constant γ > 0 such that

n∑

i=1

‖ei(t)‖ ≤ γ, ∀t ∈ [0, Tc),

which holds even if Tc = +∞. As a result, (3.23) implies

V̇ ≤ −K
γ
V

2a
1+a , ∀t ∈ [0, Tc). (3.31)

Proof. Denote ρ(t) ,
∑n

i=1 ‖ei(t)‖ for the sake of simplicity. The time derivative
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of ρ is

ρ̇ =
n∑

i=1

d‖ei‖
dt

=
n∑

i=1

gTi ėi

=
n∑

i=1

gTi [σi+1(gi+1 − gi) + σi(gi−1 − gi)] (By (3.18))

=
n∑

i=1

[σi+1(g
T
i gi+1 − 1) + σi(g

T
i gi−1 − 1)]

=
n∑

i=1

σi(g
T
i−1gi − 1) +

n∑

i=1

σi(g
T
i gi−1 − 1)

= 2
n∑

i=1

σi(g
T
i gi−1 − 1)

= vTσ,

where v = [v1, . . . , vn]T ∈ Rn with vi = 2(gTi gi−1 − 1). By the Cauchy-Schwarz

inequality, we have

|ρ̇| = |vTσ| ≤ ‖v‖‖σ‖ ≤ β‖σ‖, (3.32)

where β is the maximum of ‖v‖ over the compact set Ω(V (ε0)).

Furthermore, note

V
2a
1+a =

(
1

a+ 1

) 2a
a+1

(
n∑

i=1

|εi|a+1

) 2a
a+1

≥
(

1

a+ 1

) 2a
a+1 1

n
1−a
1+a

n∑

i=1

|εi|2a (By Lemma 3.5)

=

(
1

a+ 1

) 2a
a+1 1

n
1−a
1+a

‖σ‖2,

which implies

‖σ‖2 ≤ (a+ 1)
2a
a+1n

1−a
1+a

︸ ︷︷ ︸
κ

V
2a
a+1 . (3.33)
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Substituting (3.33) into (3.32) yields

|ρ̇| ≤ β√κV a
a+1 . (3.34)

On the other hand, if ε0 is sufficiently small such that V (ε0) ≤ 1, then

V
2a
1+a ≥ V for all ε ∈ Ω(V (ε0)) as 2a/(1 + a) ≤ 1. Thus (3.23) implies

V̇ ≤ −K
ρ
V

2a
1+a ≤ −K

ρ
V

for ε ∈ Ω(V (ε0)). By the comparison lemma [68, Lemma 3.4], the above inequal-

ity suggests

V (t) ≤ V (0) exp

(∫ t

0
− K

ρ(τ)
dτ

)
. (3.35)

Substituting (3.35) into (3.34) yields

|ρ̇| ≤ β√κV (0)
a
a+1 exp

(∫ t

0
−

a
a+1K

ρ(τ)
dτ

)
. (3.36)

Note (3.36) holds for t ∈ [0, Tc).

Based on (3.36) we draw the following conclusions. (i) If Tc is infinity, (3.36)

holds for t ∈ [0,+∞). By Lemma 3.4 there exists a finite constant that bounds

ρ(t) above for all t ∈ [0,+∞). (ii) If Tc is finite, it is obvious that ρ(t) is finite for

all t ∈ [0, Tc) because the speed of each vehicle is finite. In either case, denote γ

as the finite upper bound of ρ. Then it is evident to have (3.31) from (3.23).

Remark 3.4. Since the formation is a cycle, the distance between any two ve-

hicles (even they are not neighbors) is smaller than
∑n

i=1 ‖ei‖. Hence Proposi-

tion 3.2 implies that the distance between any vehicles is always finite during the

whole formation evolution.

Collision avoidance is an important problem in various formation control

tasks. It is especially important for bearing-based formation control as the inter-

vehicle distances are unmeasurable and uncontrollable. Based on the results of

Proposition 3.2, we next further prove no vehicles will collide with each other

under control law (3.14) during the whole formation evolution.
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Proposition 3.3. [Collision Avoidance] Under Assumptions 3.1 and 3.2, if

(3.31) holds and the initial error ε0 is sufficiently small such that V (ε0) ≤ 1,

then there exists a positive constant η such that

n∑

i=1

‖zi(t)− zi(0)‖ ≤ η‖ε0‖aa+1, ∀t ∈ [0, Tc). (3.37)

Furthermore, if ε0 satisfies

‖zj(0)− zk(0)‖ > η‖ε0‖aa+1 (3.38)

for all j, k ∈ {1, . . . , n} and j 6= k, then Tc = +∞ and the distance between any

two vehicles is bounded below by a positive constant during the whole formation

evolution.

Proof. We first prove (3.37). The quantity
∑n

i=1 ‖zi(t) − zi(0)‖ actually char-

acterizes the “distance” from the formation at time t to the initial formation.

Recall

zi(t)− zi(0) =

∫ t

0
σi(gi − gi−1)dτ

by control law (3.14). Then we have

n∑

i=1

‖zi(t)− zi(0)‖ =

n∑

i=1

∥∥∥∥
∫ t

0
σi(gi − gi−1)dτ

∥∥∥∥

≤
n∑

i=1

∫ t

0
|εi|a‖gi − gi−1‖dτ

≤ 2

∫ t

0

n∑

i=1

|εi|adτ (Becuause ‖gi − gi−1‖ ≤ ‖gi‖+ ‖gi−1‖ = 2)

≤ 2n1−a
∫ t

0
‖ε(t)‖a1dτ (By Lemma 3.5)

≤ 2n1−aC
∫ t

0
‖ε(t)‖aa+1dτ. (By Lemma 3.6) (3.39)

If ε0 is sufficiently small such that V (ε0) ≤ 1 and hence V (t) ≤ 1 for all t ∈ [0, Tc),

then V
2a
1+a ≥ V as 2a/(1 + a) ≤ 1. Consequently (3.31) implies

V̇ ≤ −K
γ
V

2a
1+a ≤ −K

γ
V,
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which suggests

V (t) ≤ V (0)e
−K
γ
t
, ∀t ∈ [0, Tc). (3.40)

Substituting V = 1/(a+ 1)‖ε‖a+1
a+1 into (3.40) yields

‖ε(t)‖a+1 ≤ ‖ε(0)‖a+1e
− K

(a+1)γ
t
.

Substituting the above inequality into (3.39) gives

n∑

i=1

‖zi(t)− zi(0)‖ ≤ 2n1−aC
∫ t

0
‖ε(0)‖aa+1e

− aK
(a+1)γ

τ
dτ

= 2n1−aC‖ε(0)‖aa+1

(a+ 1)γ

aK

(
1− e−

aK
(a+1)γ

t
)

≤ 2n1−aC(a+ 1)γ

aK︸ ︷︷ ︸
η

‖ε(0)‖aa+1 (3.41)

for all t ∈ [0, Tc).

With the above preparation, we now prove collision avoidance by contradic-

tion. Assume vehicles j and k collide at a finite time Tc, which means

zj(Tc) = zk(Tc). (3.42)

Note vehicles j and k are not necessarily neighbors. However, since zj(t)−zk(t) ≡

zj(0) − zk(0) − [zk(t) − zk(0)] − [zj(0) − zj(t)], the distance between vehicles j

and k satisfies

‖zj(t)− zk(t)‖ ≥ ‖zj(0)− zk(0)‖ − ‖zk(t)− zk(0)‖ − ‖zj(t)− zj(0)‖

≥ ‖zj(0)− zk(0)‖ −
n∑

i=1

‖zi(t)− zi(0)‖

≥ ‖zj(0)− zk(0)‖ − η‖ε(0)‖aa+1 (By (3.41))

> 0, ∀t ∈ [0, Tc). (3.43)

The last inequality is by the condition (3.38). Inequality (3.43) indicates that

the distance between any two vehicles is bounded below by a positive constant
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for all t ∈ [0, Tc). Clearly (3.42) conflicts with (3.43). Thus we have Tc = +∞

and collision avoidance between any vehicles can be ensured.

Remark 3.5. As shown in (3.42) and (3.43), it is not assumed that vehicles

j and k are neighbors. Hence collision avoidance is guaranteed between any

vehicles no matter if they are neighbors or not.

We next summarize Propositions 3.1, 3.2 and 3.3 and give the main stability

results as below.

Theorem 3.1. Under Assumptions 3.1 and 3.2, the equilibrium ε = 0 is locally

exponentially stable by control law (3.14) if a = 1, and locally finite-time stable

if a ∈ (0, 1). Collision avoidance between any vehicles (no matter if they are

neighbors or not) is locally guaranteed.

Proof. By Propositions 3.2 and 3.3, we have

V̇ ≤ −K
γ
V

2a
1+a , ∀t ∈ [0,+∞), (3.44)

given sufficiently small ε(0). From (3.44) we conclude: (i) If a ∈ (0, 1) and hence

2a/(1 + a) ∈ (0, 1), the solution to (3.14) starting from Ω(V (ε0)) converges to

ε = 0 in finite time [7, Theorem 4.2]. (ii) If a = 1 and hence 2a/(1 + a) = 1,

the equilibrium ε = 0 is locally exponentially stable [54, Theorem 3.1]. Collision

avoidance has already been proved in Proposition 3.3.

Remark 3.6. As shown in Propositions 3.1, 3.2 and 3.3, if ε0 satisfies (3.67),

(3.38) and V (ε0) ≤ 1, then the convergence and collision avoidance can be guar-

anteed. Note the right hand side of (3.67) is less than one. Hence (3.67) implies

V (ε0) ≤ 1. As a result, we can obtain a convergence region from (3.67) and

(3.38). But this convergence region may be conservative. The real convergence

region is not necessarily small, which will be illustrated by simulations.

Up to this point, we have been primarily focusing on the convergence of

ε(t). It should be noted that the convergence of ε(t) does not simply imply the

formation {zi(t)}ni=1 converges to a finite final position. But this issue can be

solved by the exponential or finite-time convergence rate. Specifically, control
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law (3.14) implies that zi(t) = zi(0) +
∫ t
0 σi(gi − gi−1). Since εi converges to

zero exponentially or in finite time, the function σi(gi − gi−1) is integrable even

if t→ +∞. As a result, {zi(t)}ni=1 will converge to a finite position and control

law (3.14) successfully solves Problem 3.1.

Remark 3.7. The exponential or finite-time stability not only shows the fast

convergence rate of the proposed control law, but also is necessarily useful for

proving the finite position of the final converged formation. It is notable that

similar problems also appear in control of distance-constrained formations [35,

Section V], where the exponential convergence rate of distance dynamics is first

proved and then used to prove the formation converging to a finite final position.

At last, we characterize a number of important behaviors of the formation

evolution. (i) Inequality (3.37) intuitively indicates that the final converged

formation would not move far away from the initial formation if the initial angle

errors are small. (ii) From control law (3.14), it is obvious that ż = 0 if ε = 0. It

intuitively means that the vehicles will stop moving once the angles achieve the

desired values. (iii) Another important behavior of the formation is that ż = 0

if ε̇ = 0. That is because ε̇ = 0 ⇒ V̇ = 0 ⇒ V = 0 ⇒ ε = 0 ⇒ ż = 0. The

intuitive interpretation is that control law (3.14) cannot change the positions of

the vehicles without changing the angles in the formation.

3.5 Stability Analysis of the Discontinuous Case

In the case of a = 0, the control law (3.14) will be discontinuous in ε. Then we

need to use the non-smooth analysis tools to prove the formation stability.

3.5.1 Error Dynamics

We next derive the error dynamics of the closed-loop system under control law

(3.14). Denote ε = [ε1, ..., εn]T ∈ Rn. Recall gi is defined as gi = ei/‖ei‖. Then

the time derivative of gi is

ġi =
1

‖ei‖
Piėi, (3.45)
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where Pi = I − gigTi . Based on (3.45), we obtain the dynamics of ε as below.

Theorem 3.2. The ε-dynamics under control law (3.14) is

ε̇ = −Asgn(ε), (3.46)

where A ∈ Rn×n and all of the entries of A are zero except

[A]i(i−1) =
1

‖ei−1‖
gTi Pi−1gi−2,

[A]ii =
1

‖ei−1‖
gTi Pi−1gi +

1

‖ei‖
gTi−1Pigi−1,

[A]i(i+1) =
1

‖ei‖
gTi−1Pigi+1, (3.47)

for all i ∈ {1, . . . , n}.

Proof. Recall ei = zi+1 − zi. Then substituting control law (3.14) into ėi =

żi+1 − żi yields

ėi = żi+1 − żi

= sgn(εi+1)(gi+1 − gi)− sgn(εi)(gi − gi−1)

= sgn(εi+1)gi+1 + sgn(εi)gi−1 − [sgn(εi+1) + sgn(εi)] gi. (3.48)

Substituting (3.48) into (3.45) and using the fact that Pigi = 0 gives

ġi =
1

‖ei‖
Pi [sgn(εi+1)gi+1 + sgn(εi)gi−1] .

Recall εi = −gTi gi−1 − cos θ∗i as defined in (3.13) and θ∗i is constant. Then by

the above equation we have

ε̇i = −gTi ġi−1 − gTi−1ġi

= − 1

‖ei−1‖
gTi Pi−1 [sgn(εi)gi + sgn(εi−1)gi−2]−

1

‖ei‖
gTi−1Pi [sgn(εi+1)gi+1 + sgn(εi)gi−1]

= −[A]i(i−1)sgn(εi−1)− [A]iisgn(εi)− [A]i(i+1)sgn(εi+1), (3.49)

where [A]i(i−1), [A]ii and [A]i(i+1) are given in (3.47). It is straightforward to see

the matrix form of (3.49) is (3.46).
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We next prove the matrix A in (3.46) is symmetric positive semi-definite.

Corollary 3.1. The matrix A in (3.46) is symmetric positive semi-definite. For

any x = [x1, . . . , xn]T ∈ Rn,

xTAx =

n∑

i=1

1

‖ei‖
(gi+1xi+1 + gi−1xi)

T Pi (gi+1xi+1 + gi−1xi) ≥ 0. (3.50)

Proof. In order to prove A is symmetric, we only need to prove [A](i+1)i =

[A]i(i+1) for all i. By changing the index i in [A]i(i−1) in (3.47) to i + 1, we

obtain

[A](i+1)i =
1

‖ei‖
gTi+1Pigi−1.

It is clear that [A](i+1)i = [A]i(i+1) due to the symmetry of Pi. For any vector

x = [x1, . . . , xn]T ∈ Rn, we have

xTAx =

n∑

i=1

[A]i(i−1)xixi−1 + [A]iix
2
i + [A]i(i+1)xixi+1

=
n∑

i=1

(
1

‖ei−1‖
gTi Pi−1gi−2

)
xixi−1 +

n∑

i=1

(
1

‖ei−1‖
gTi Pi−1gi

)
x2i

+
n∑

i=1

(
1

‖ei‖
gTi−1Pigi−1

)
x2i +

n∑

i=1

(
1

‖ei‖
gTi−1Pigi+1

)
xixi+1

=
n∑

i=1

(
1

‖ei‖
gTi+1Pigi−1

)
xi+1xi +

n∑

i=1

(
1

‖ei‖
gTi+1Pigi+1

)
x2i+1

+
n∑

i=1

(
1

‖ei‖
gTi−1Pigi−1

)
x2i +

n∑

i=1

(
1

‖ei‖
gTi−1Pigi+1

)
xixi+1

=
n∑

i=1

1

‖ei‖
(gi+1xi+1 + gi−1xi)

T Pi (gi+1xi+1 + gi−1xi) ≥ 0,

where the last inequality is due to the fact that Pi is positive semi-definite.

3.5.2 Finite-time Stability Analysis

In this section we analyze the stability of the error dynamics (3.46). By em-

ploying a locally Lipschitz Lyapunov function and the nonsmooth analysis tools

introduced in Section 3.2.3, we prove that the origin ε = 0 is locally finite-time

stable with collision avoidance guaranteed. In addition to the dynamics of ε, we
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also analyze the behaviors of the vehicle positions during formation evolution.

We first consider the problem of collision avoidance. On one hand, Assump-

tion 3.2 states that no vehicles coincide with each other in the initial formation,

i.e., zi(0) 6= zj(0) for any i 6= j. On the other hand, control law (3.14) implies

that ‖żi‖ ≤ ‖gi − gi−1‖ ≤ 2, which means that the maximum speed of each ve-

hicle is two. Therefore, any two vehicles are not able to collide with each other

(no matter they are neighbors or not) for all t ∈ [0, T ∗) where

T ∗ , mini 6=j ‖zi(0)− zj(0)‖
4

.

In the sequel, we will only consider t ∈ [0, T ] with T < T ∗. We will prove that

the system can be stabilized within the finite time interval [0, T ].

Consider the Lyapunov function

V (ε) =
n∑

i=1

|εi|, (3.51)

which is positive definite in ε. Note V (ε) is locally Lipschitz and convex. Hence

V (ε) is also regular.

Theorem 3.3. For the error dynamics (3.46) and Lyapunov function (3.51),

the Filippov differential inclusion is ε̇ ∈ −A∂V (ε). The set-valued Lie derivative

is given by

L̃−A∂V V (ε) = {` ∈ R | ∃η ∈ ∂V (ε), ∀ζ ∈ ∂V (ε), −ζTAη = `}. (3.52)

When L̃−A∂V V (ε) 6= ∅, for any ` ∈ L̃−A∂V V (ε), there exsits η ∈ ∂V (ε) such that

` = −ηTAη ≤ 0. (3.53)

Proof. Step 1: calculate the generalized gradient. By definition we have the

generalized gradient as

∂V (ε) = {η = [η1, . . . , ηn]T ∈ Rn | ηi = sgn(εi) if εi 6= 0 and

ηi ∈ [−1, 1] if εi = 0 for i ∈ {1, . . . , n}}.
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Because |ηi| = |sgn(εi)| = 1 if εi 6= 0, we have the obvious but important fact

that

‖η‖ ≥ 1, ∀η ∈ ∂V (ε), ∀ε 6= 0. (3.54)

Additionally, if εi 6= 0, then Ln({sgn(εi)}) = {sgn(εi)}; and if εi = 0, then

Ln([−1, 1]) = {0} = {sgn(0)}. Thus we have the following useful property

Ln(∂V (ε)) = {sgn(ε)}. (3.55)

Step 2: calculate the Filippov differential inclusion. Since ‖ei(t)‖ 6= 0 for all

i and all t ∈ [0, T ], the matrix A in (3.14) is continuous. Then by [98, Theorem

1, 5)], the Filippov differential inclusion associated with the system (3.46) can

be calculated as

ε̇ ∈ F [−Asgn(ε)] = −AF [sgn(ε)]. (3.56)

Substituting (3.55) into (3.56) yields

F [sgn(ε)] = F [Ln(∂V (ε))] = ∂V (ε),

where the last equality uses the fact (3.4). Thus the Filippov differential inclusion

in (3.56) can be rewritten as

ε̇ ∈ −A∂V (ε). (3.57)

Step 3: calculate the set-valued Lie derivative. The set-valued Lie derivative

of V (ε) with respect to (3.57) is given by

L̃−A∂V V (ε) = {` ∈ R | ∃ξ ∈ −A∂V (ε), ∀ζ ∈ ∂V (ε), ζTξ = `}

= {` ∈ R | ∃η ∈ ∂V (ε), ∀ζ ∈ ∂V (ε), −ζTAη = `}.

The set L̃−A∂V V (ε) could be empty. When L̃−A∂V V (ε) 6= ∅, for any ` ∈

L̃−A∂V V (ε), there exists η ∈ ∂V such that ` = −ζTAη for all ζ ∈ ∂V . In

88



particular, by choosing ζ = η we have ` = −ηTAη ≤ 0. Note −ηTAη ≤ 0 is

due to the fact that A is a positive semi-definite matrix as shown in Lemma 3.1.

Therefore, we have either L̃−A∂V V (ε) = ∅ or max L̃−A∂V V (ε) ≤ 0.

We are ready to prove the formation stability based on Theorem 3.3. Note

if L̃−A∂V V (ε) = ∅, we have max L̃−A∂V V (ε) = −∞ (see Section 3.2.3). Hence

we need only to focus on the case of L̃−A∂V V (ε) 6= ∅.

Theorem 3.4. Consider the set-valued Lie derivative given in (3.52). When

L̃−A∂V V (ε) 6= ∅, for any ` ∈ L̃−A∂V V (ε), there exsits η ∈ ∂V (ε) such that

` ≤ − 1∑n
i=1 ‖ei‖

ηTDTETEDη, (3.58)

where

E =




1 −1 0 . . . 0

0 1 −1 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

−1 0 . . . 0 1




∈ Rn×n,

D =




(g⊥1 )Tgn 0 0 . . . 0

0 (g⊥2 )Tg1 0 . . . 0

0 0 (g⊥3 )Tg2 . . . 0

...
...

...
. . .

...

0 0 . . . 0 (g⊥n )Tgn−1




∈ Rn×n. (3.59)

Proof. By (3.50), we can rewrite ` = −ηTAη in (3.53) as

` = −
n∑

i=1

1

‖ei‖
(gi+1ηi+1 + gi−1ηi)

T Pi (gi+1ηi+1 + gi−1ηi)

≤ − 1∑n
i=1 ‖ei‖

n∑

i=1

(gi+1ηi+1 + gi−1ηi)
T Pi (gi+1ηi+1 + gi−1ηi)

= − 1∑n
i=1 ‖ei‖

n∑

i=1

[
(gi+1ηi+1 + gi−1ηi)

T g⊥i
]2

(By Lemma 3.8(ii))

= − 1∑n
i=1 ‖ei‖

n∑

i=1

[
(g⊥i )Tgi+1ηi+1 + (g⊥i )Tgi−1ηi

]2
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= − 1∑n
i=1 ‖ei‖

hTh, (3.60)

where

h =




(g⊥1 )Tg2η2 + (g⊥1 )Tgnη1
...

(g⊥n )Tg1η1 + (g⊥n )Tgn−1ηn




=




(g⊥1 )Tgn (g⊥1 )Tg2 0 . . . 0

0 (g⊥2 )Tg1 (g⊥2 )Tg3 . . . 0

0 0 (g⊥3 )Tg2 . . . 0

...
...

...
. . .

...

(g⊥n )Tg1 0 . . . 0 (g⊥n )Tgn−1







η1

η2

η3
...

ηn




= EDη (3.61)

with E and D given in (3.59). The last equality of (3.61) uses the fact that

(g⊥i )Tgi−1 = −(g⊥i−1)
Tgi as shown in Lemma 3.8(iii). Substituting (3.61) into

(3.60) gives (3.58).

Note that D is a diagonal matrix and E actually is an incidence matrix of a

directed and connected cycle graph. We now present the main stability result.

Theorem 3.5. Under Assumptions 3.2 and 3.1, the equilibrium ε = 0 of system

(3.46) is locally finite-time stable. Collision avoidance between any vehicles (no

matter they are neighbors or not) can be locally guaranteed.

Proof. Consider the time interval [0, T ] with T < T ∗. Then ‖ei(t)‖ 6= 0 and

‖ei(t)‖ 6= +∞ for all t ∈ [0, T ]. We will prove that ε can converge to zero in the

finite time interval [0, T ] if ε(0) is sufficiently small.

Let Ω(ε(0)) , {ε ∈ Rn | V (ε) ≤ V (ε(0))}. Since V (ε) =
∑n

i=1 |εi| = ‖ε‖1,

the level set Ω(ε(0)) is connected and compact. Because L̃−A∂V V (ε) = ∅ or

max L̃−A∂V V (ε) ≤ 0 for any ε ∈ Ω(ε(0)) as proved in Theorem 3.3, we have that

Ω(ε(0)) is strongly invariant to (3.46) over [0, T ] by Lemma 3.1.

Step 1: prove the nonzero entries of Dη do not have the same sign.

Denote δi = θi − θ∗i and δ = [δ1, . . . , δn]T ∈ Rn. Consider the case of ε 6= 0
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and hence δ 6= 0. Because
∑n

i=1 θi ≡
∑n

i=1 θ
∗
i , we have

∑n
i=1 δi ≡ 0. Thus the

nonzero entries of δ do not have the same sign if δ 6= 0. Let

wi ,
cos θi − cos θ∗i

θi − θ∗i
.

Then εi = wiδi and hence

ε = Wδ,

whereW = diag{w1, . . . , wn} ∈ Rn×n. Since limθi→θ∗i wi = − sin θ∗i by L’Hôpital’s

rule, the equations εi = wiδi and ε = Wδ are always valid even when θi−θ∗i = 0.

Suppose V (ε(0)) is sufficiently small such that θi(0) is sufficiently close to

θ∗i and hence θi, θ
∗
i ∈ (0, π) or θi, θ

∗
i ∈ (π, 2π) for all ε ∈ Ω(ε(0)). Then it is

easy to see that wi < 0 if θi, θ
∗
i ∈ (0, π), and wi > 0 if θi, θ

∗
i ∈ (π, 2π). On

the other hand, recall (g⊥i )Tgi−1 > 0 when θi ∈ (0, π), and (g⊥i )Tgi−1 < 0 when

θi ∈ (π, 2π) as shown in Lemma 3.8(iv). Thus we have

(g⊥i )Tgi−1wi < 0

for all i ∈ {1, . . . , n}. Since [D]ii = (g⊥i )Tgi−1, the above inequality implies that

the diagonal entries of DW have the same sign. Thus as the nonzero entries in

δ do not have the same sign, the nonzero entries of DWδ = Dε do not have the

same sign either. Furthermore, because ηi = sgn(εi) if εi 6= 0, the nonzero entry

εi has the same sign with ηi. As a result, the nonzero entries of Dη do not have

the same sign. Thus we have Dη ∈ U with U defined in Lemma 3.3.

Step 2: determine the negative upper bound of `.

Note E is an incidence matrix of a directed and connected cycle graph. By

[50, Theorem 8.3.1], we have rank(E) = n − 1 and Null (ETE) = Null (E) =

span{1}. Thus inequality (3.58) implies

` ≤ − 1∑n
i=1 ‖ei‖

λ2(E
TE)

n
‖Dη‖2 (By Lemma 3.3)

≤ − 1∑n
i=1 ‖ei‖

λ2(E
TE)

n
λ1(D

2)‖η‖2
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≤ − 1∑n
i=1 ‖ei‖

λ2(E
TE)

n
λ1(D

2), (3.62)

where the last inequality uses the fact ‖η‖ ≥ 1 if ε 6= 0 as shown in (3.54).

Now we analyze the two terms,
∑n

i=1 ‖ei‖ and λ1(D
2), in (3.62). (i) Over the

finite time interval [0, T ], the quantity
∑n

i=1 ‖ei‖ cannot go to infinity because the

vehicle speed is finite. Hence there exists a constant γ > 0 such that
∑n

i=1 ‖ei‖ ≤

γ. (ii) Since D is diagonal, we have λ1(D
2) = mini[D]2ii. At the equilibrium point

ε = 0 (i.e., θi = θ∗i for all i), we have [D]ii = (g⊥i )Tgi−1 6= 0 because θ∗i 6= 0

or π as stated in Assumption 3.1. By continuity, we can still have [D]ii 6= 0 for

all ε ∈ Ω(ε(0)) if ε(0) is sufficiently small. Because Ω(ε(0)) is compact, there

exists a lower bound β such that λ1(D
2) ≥ β for all ε ∈ Ω(ε(0)). By (i) and (ii),

inequality (3.62) can be rewritten as

` ≤ −βλ2(E
TE)

γn
, −κ < 0, ∀ε ∈ Ω(ε(0)) \ {0}. (3.63)

Step 3: draw the stability conclusion.

If ε = 0 we have 0 ∈ L̃−A∂V V (ε) because of (3.52) and the fact that 0 ∈

∂V (0); if ε 6= 0 we have 0 /∈ L̃−A∂V V (ε) because max L̃−A∂V V (ε) < 0 by (3.63).

Thus by the definition (3.5), we have

Z−Asgn(ε),V (ε) = {0}. (3.64)

Based on (3.63), (3.64) and Lemma 3.2, any solution of (3.46) starting from ε(0)

converges to ε = 0 in finite-time, and the convergence time is upper bounded by

V (ε(0))/κ. Thus if V (ε(0)) satisfies

V (ε(0))

κ
< T < T ∗, (3.65)

then the system can be stabilized within the time interval [0, T ] during which

collision avoidance between any vehicles can be guaranteed.

While the local formation stability is proved in Theorem 3.5, the convergence

region of the equilibrium ε = 0 is not given. We next give a sufficient condition

on ε(0) to guarantee the convergence and collision avoidance.
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Corollary 3.2. Let ∆i , min{θ∗i , |θ∗i − π|, 2π− θ∗i } where i ∈ {1, . . . , n}. There

exists ξ such that 0 < ξ < mini ∆i. Let ε̄i , min{| cos(θ∗i + ξ)− cos θ∗i |, | cos(θ∗i −

ξ)− cos θ∗i |}, ζ , mini{θ∗i − ξ, |π − θ∗i | − ξ, 2π − θ∗i − ξ} and γ ,
∑n

i=1 ‖ei(0)‖+

4T . Under Assumptions 3.2 and 3.1, the proposed control law guarantees the

convergence of ε to zero in [0, T ] with collision avoidance between any vehicles if

V (ε(0)) < min

{
min
i
ε̄i,

sin2 ζλ2(E
TE)

γn
T

}
. (3.66)

Proof. The proof of Theorem 3.5 requires ε(0) to be sufficiently small such that

the following three conditions hold: (i) λ1(D
2) = mini[D

2]ii > 0 for all ε ∈

Ω(ε(0)); (ii) θ∗i and θ(t) for all t ∈ [0, T ] are both in (0, π) or (π, 2π); (iii)

V (ε(0))/κ < T . Note condition (iii) ensures the collision avoidance.

Step 1: analyze condition (i). Recall [D]ii = (g⊥i )Tgi−1 = sin θi as proved in

Lemma 3.8. Hence mini[D
2]ii > 0 if θi(t) 6= 0 and θi(t) 6= π for all t ∈ [0, T ].

Thus condition (ii) implies condition (i).

Step 2: analyze condition (ii). Denote ∆i , min{θ∗i , |θ∗i −π|, 2π−θ∗i }. There

exists ξ such that 0 < ξ < mini ∆i. Let ε̄i , min{| cos(θ∗i + ξ)− cos θ∗i |, | cos(θ∗i −

ξ)− cos θ∗i |}. Then we have the following sufficient condition: if ε(0) satisfies

V (ε(0)) < min
i
ε̄i, (3.67)

then condition (ii) holds. To see that, for any j ∈ {1, . . . , n}, we have |εj(t)| ≤
∑n

i=1 |εi(t)| = V (ε(t)) ≤ V (ε(0)) < mini ε̄i ≤ ε̄j . Thus |εj(t)| < ε̄j for all

t ∈ [0, T ]. Since the cosine function is monotone in (0, π) or (π, 2π), we have

|εj(t)| < ε̄j =⇒ |θi(t) − θ∗i | < ξ and hence condition (ii) holds. It should be

noted ε̄i 6= 0 and hence the set of ε(0) that satisfies (3.67) is always nonempty.

Further define ζ , mini{θ∗i −ξ, |π−θ∗i |−ξ, 2π−θ∗i −ξ}. Then |θi(t)−θ∗i | < ξ

implies θi(t) > ζ, |π − θi(t)| > ζ and 2π − θi(t) > ζ for all t ∈ [0, T ]. Thus

[D2]ii = sin2 θi > sin2 ζ. Hence we have β = sin2 ζ, where β is the lower bound

of λ1(D
2) as defined in the proof of Theorem 3.5.

Step 3: analyze condition (iii). We first identify an upper bound of
∑n

i=1 ‖ei‖.

Since the speed of each vehicle is bounded above by two. It is easy to see

∑n
i=1 ‖ei(t)‖ ≤

∑n
i=1 ‖ei(0)‖ + 4T , γ for all t ∈ [0, T ]. Therefore, we have κ
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defined in (3.63) as

κ =
sin2 ζλ2(E

TE)

γn
,

substituting which into (3.65) yields

V (ε(0)) <
sin2 ζλ2(E

TE)

γn
T.

Therefore, if V (ε(0)) satisfies (3.66), then the three conditions are satisfied. By

Theorem 3.5, the convergence of ε and collision avoidance between any vehicles

can be guaranteed.

Up to this point, the stability of the ε-dynamics has been proved. From

control law (3.14), it is trivial to see that żi = 0 if εi = 0. Hence each vehicle

will converge to a finite stationary finial position within finite time. Additionally,

suppose the target formation is achieved at time tf < V (ε(0))/κ. Since ‖żi‖ ≤

‖gi − gi−1‖ ≤ 2, we have ‖zi(tf ) − zi(0)‖ ≤ 2tf ≤ 2V (ε(0))/κ. Therefore, the

final converged position zi(tf ) will be very close to its initial position zi(0) if the

initial angle error ε(0) is sufficiently small. In other words, the final converged

formation will not be far away from the initial formation given small initial angle

errors.

3.6 Simulation Results

Simulation results are presented in this section to verify the effectiveness and

robustness of the proposed control law.

The desired formation in Figure 3.4 is a non-convex star polygon with n = 5.

The angle at each vertex in the desired formation is θ∗1 = · · · = θ∗5 = 36 deg.

As can be seen, the proposed control law can effectively reduce the angle errors.

The desired formation in Figure 3.5 is a ten-side polygon, where the angle at

each vertex is θ∗1 = · · · = θ∗10 = 144 deg. In the stability analysis, we assume

the initial error ε(0) is sufficiently small such that θi, θ
∗
i ∈ (0, π) or (π, 2π) for

all points in Ω(V (ε0)). However, this assumption is not satisfied in the example

where θi(0) = π for i = 2, 3, 7, 8, 10 and θ5(0) ∈ (π, 2π) but θ∗5 ∈ (0, π). As can
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Figure 3.4: Formation and angle error evolution with n = 5 and θ∗1 = · · · = θ∗n = 36 deg.

be seen, the desired formation can still be achieved. The simulation suggests the

convergence region of the desired formation by the proposed control law is not

necessarily small. As shown in both Figure 3.4 and Figure 3.5, the angle errors

and the Lyapunov function converge to zero in finite time if a < 1. Figures 3.6,

3.7, 3.8 and 3.9 respectively show the formation control of three, four, five and

eight vehicles. As can be seen, the control law can stabilize the formation in

finite time if a = 0.

Figure 3.10 demonstrates the robustness of the proposed control law against

measurement noises and vehicle motion failure. In Figure 3.10(b), we add an

error to each εi to simulate measurement noises. Each error is randomly drawn

from a normal distribution with mean 0 and standard deviation 1. In Fig-

ure 3.10(b), vehicle 4 fails to move. As can be seen, the proposed control law

still performs well in the presence of measurement noises or motion failure of one

vehicle.
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Figure 3.5: Formation and angle error evolution with n = 10 and θ∗1 = · · · = θ∗n = 144 deg.

-12 -10 -8 -6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

8

10

1

2

3

1

2

3

 

 

Initial formation
Final formation
Trajectory

(a) Vehicle trajectory

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

 i a
nd

 V
(

)

 

 


i

V()

(b) Angle error and Lyapunov function

Figure 3.6: Control results by the proposed control law with n = 3, θ∗1 = θ∗2 = 45 deg and
θ∗3 = 90 deg.
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(b) Angle error and Lyapunov function

Figure 3.7: Control results by the proposed control law with n = 4 and θ∗1 = · · · = θ∗4 = 90 deg.
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(b) Angle error and Lyapunov function

Figure 3.8: Control results by the proposed control law with n = 5 and θ∗1 = · · · = θ∗5 = 36 deg.
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(b) Angle error and Lyapunov function

Figure 3.9: Control results by the proposed control law with n = 8 and θ∗1 = · · · = θ∗8 = 135
deg.
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(b) In the presence of measurement noise
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(c) In the presence of vehicle motion failure (Vehicle 4 fails to move)

Figure 3.10: An illustration of the robustness of the proposed control law against measurement
noise and vehicle motion failure. n = 4 and θ∗1 = · · · = θ∗4 = 90 deg.
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Chapter 4

Vision-based Navigation using

Natural Landmarks

4.1 Introduction

Chapters 2 and 3 addressed cooperative target tracking and vision-based forma-

tion control, respectively. It was shown that vision can be treated as a bearing-

only sensor for these two topics. In this and the next chapters, we will study

another important application of vision: vision-based navigation of UAVs. Vi-

sion will not be treated as a bearing-only sensor for navigation tasks. We need

to extract as much information as possible from vision instead of just bearing

information. In this chapter, we consider vision-based navigation using natural

landmarks, while the next chapter will address vision-based navigation using

artificial landmarks.

Computer vision techniques have been successfully applied to various UAV

navigation tasks (see, for example, [16] and the references therein). Compared

to inertial navigation systems, vision systems generally have two disadvantages.

First, the reliability of vision systems usually is low. That is because vision

systems heavily rely on environmental conditions. Inappropriate light condition

or insufficient environmental features can easily cause failures of vision systems.

Second, the update rate of vision systems usually is low. That is because image

processing and vision algorithms usually are very time-consuming. As the on-

board computers of small-scale UAVs typically have very limited computational
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and storage resources, the update rate of onboard vision systems generally is

much lower than that of IMUs. Therefore, since UAVs require reliable and high-

update-rate state estimates, pure vision navigation is not suitable for navigation

and control of UAVs. Hence in our navigation system we will adopt the vision-

aided inertial navigation scheme.

In this chapter, we propose a homography-based vision-aided inertial nav-

igation system for navigating small-scale UAVs in unmapped and GPS-denied

environments. The proposed navigation system adopts four types of commonly

used sensors: a low-cost IMU, a downward-looking monocular camera, a barom-

eter and a compass. The measurements from different sensors are fused by an

EKF. It is assumed the IMU measurements are corrupted by white noises and

unknown constant biases. As a result, the position, velocity and attitude esti-

mated by IMU dead reckoning would all drift rapidly. The main purpose of this

work is to: firstly online estimate and compensate the unknown IMU biases; sec-

ondly provide drift-free velocity and attitude estimates which are crucial for UAV

stabilization control; thirdly reduce the position drift significantly compared to

pure inertial navigation. Since no global references such as maps are available,

we do not aim at obtaining drift-free position estimates. But our vision-aided

navigation system will be able to significantly reduce the position drift such that

the UAV can perform acceptable long-duration navigation in unmapped and

GPS-denied environments.

The vision measurement is a 3 by 3 homography matrix, which can be com-

puted from pairs of consecutive images taken by the onboard camera. In con-

trast to the existing work [27, 18, 67], we avoid decomposing the homography

to retrieve the useful information therein. Instead, the homography matrix is

converted to a 9 by 1 vector and directly fed into the EKF as the vision mea-

surement. By assuming the ground is a horizontal plane, we show that the

homography plays a key role in drift-free velocity and attitude (specifically pitch

and roll angles) estimation. The observability of the proposed navigation system

is further analyzed. When the UAV speed is nonzero, we theoretically show the

velocity, attitude and unknown constant biases are all observable. Comprehen-

sive simulations and real flight experiments have been conducted to verify the
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effectiveness and robustness of the proposed navigation system. The simulation

and experimental results show the proposed navigation system can provide drift-

free velocity and attitude estimates. The drift of the position estimate is also

significantly reduced compared to pure inertial navigation.

This chapter is organized as follows. The homography-based vision-aided

navigation system is designed in Section 4.2. Then the observability of the

proposed navigation system is analyzed in Section 4.3. Simulation and real

flight experimental results are shown in Sections 4.4 and 4.5, respectively.

Notations: Let ei with i ∈ {1, 2, 3} be the ith column of the 3 by 3 identity

matrix I3×3. The operator vec converts a matrix to a column vector by stacking

its column vectors below one another. Given a matrix A, the null space and

range space of A are denoted as Null (A) and Range(A), respectively. For any

x = [x1, x2, x3]
T ∈ R3, the skew-symmetric matrix associated with x is denoted

as

[x]× =




0 −x3 x2

x3 0 −x1
−x2 x1 0



∈ R3×3.

4.2 Design of the Vision-aided Navigation System

The navigation system contains two main sensors: an IMU and a monocular

camera. The IMU measures the acceleration (also known as specific force) and

angular rate of the UAV. We assume the IMU measurements are corrupted by

zero-mean Gaussian white noises and unknown constant biases. The unknown

biases may vary every time the IMU is initialized. Hence they need to be esti-

mated online and then compensated in the navigation algorithm. The monocular

camera is directed downward and can capture images of the ground scene during

flight. The vision measurement, a 3 by 3 homography matrix, can be computed

from each pair of consecutive images captured by the camera. We assume each

of the entries of the homography matrix is corrupted by a zero-mean Gaussian

white noise. In addition to the IMU and camera, we also consider two auxiliary

sensors: a barometer and a compass, which can respectively measure the altitude
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Fig. 1: The structure of the proposed vision-aided navigation system.

plane of the navigation frame. The body and navigation frames are respectively denoted by subscripts b and n.

We use a slash to represent a transformation from one frame to the other. For example, subscript n/b represents a

transformation from the body frame to the navigation frame.

A. Process Model

We now design the process model of the vision-aided navigation system. Let pn = [pn,x, pn,y, pn,z]
T ∈ R3 and

vn = [vn,x, vn,y, vn,z]
T ∈ R3 respectively denote the position and velocity of the UAV in the navigation frame.

The attitude represented by Euler angles (roll, pitch and heading) is denoted as ρ = [φ, θ, ψ]T ∈ R3. The kinematic

model of the UAV is 


ṗn

v̇n

ρ̇


 =




vn

Rn/b anb + ge3

Ln/b ω
b
b/n


 , (1)

where anb ∈ R3 and ωb
b/n ∈ R3 respectively denote the acceleration and angular rate of the UAV; and g represents

the local gravitational acceleration. The transformation matrices Rn/b and Ln/b are given by

Rn/b =




cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


 , (2)

Ln/b =




1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ


 ,

where s∗ = sin(∗), c∗ = cos(∗) and t∗ = tan(∗).
Let anb,IMU and ωb

b/n,IMU
be the IMU measurements of the acceleration and angular rate, respectively. Then we

have

anb,IMU = anb − ba −wa, (3)

ωb
b/n,IMU = ωb

b/n − bω −wω, (4)

October 1, 2013 DRAFT

Figure 4.1: The structure of the proposed vision-aided navigation system.

and heading angle of the UAV.

The measurements of the above four types of sensors are fused by a 15th-order

EKF. The 15 states to be estimated are: 3-dimensional position, 3-dimensional

velocity, 3-dimensional attitude (roll, pitch and heading), 3-dimensional accel-

eration bias and 3-dimensional angular rate bias. In the rest of this section, we

will develop the process model and the measurement model for the EKF. The

IMU measurements enter the EKF through the process model as inputs; the

measurements of the vision, barometer and compass enter the EKF through the

measurement model. In our navigation system, the sampling rates of the IMU

and the vision system are 50 Hz and 10 Hz, respectively. Denote Ts and Tv

respectively as the sampling periods of the IMU and the vision system. Hence

Ts = 0.02 sec and Tv = 0.1 sec. The structure of our navigation system is

illustrated in Figure 4.1.

There are three reference frames in the navigation system: camera frame,

body frame and navigation frame. For the sake of simplicity, we can install

the camera on the UAV properly such that the axes of the camera frame are

parallel to those of the body frame and the origins of the two frames are very

close. Thus it can be assumed that the camera frame coincides with the body

frame. The navigation frame is a local North-East-Down frame fixed on the

ground plane. As the ground is assumed to be a horizontal plane, the ground

plane coincides with the x-y plane of the navigation frame. The body and

navigation frames are respectively denoted by subscripts b and n. We use a

slash to represent a transformation from one frame to the other. For example,

subscript n/b represents a transformation from the body frame to the navigation

frame.
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4.2.1 Process Model

We now design the process model of the vision-aided navigation system. Let

pn = [pn,x, pn,y, pn,z]
T ∈ R3 and vn = [vn,x, vn,y, vn,z]

T ∈ R3 respectively denote

the position and velocity of the UAV in the navigation frame. The attitude repre-

sented by Euler angles (roll, pitch and heading) is denoted as ρ = [φ, θ, ψ]T ∈ R3.

The kinematic model of the UAV is




ṗn

v̇n

ρ̇




=




vn

Rn/b anb + ge3

Ln/bω
b
b/n



, (4.1)

where anb ∈ R3 and ωb
b/n ∈ R3 respectively denote the acceleration and angular

rate of the UAV; and g represents the local gravitational acceleration. The

transformation matrices Rn/b and Ln/b are given by

Rn/b =




cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ



, (4.2)

Ln/b =




1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ



,

where s∗ = sin(∗), c∗ = cos(∗) and t∗ = tan(∗).

Let anb,IMU and ωb
b/n,IMU

be the IMU measurements of the acceleration and

angular rate, respectively. Then we have

anb,IMU = anb − ba −wa, (4.3)

ωb
b/n,IMU

= ωb
b/n − bω −wω, (4.4)

where ba = [ba,x, ba,y, ba,z]
T ∈ R3 and bω = [bω,x, bω,y, bω,z]

T ∈ R3 are unknown

but constant measurement biases; and wa ∈ R3 and wω ∈ R3 are zero-mean

Gaussian white noises.

Based on kinematic model (4.1), the position, velocity and attitude of the
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UAV can be estimated by integrating anb,IMU and ωb
b/n,IMU

. This kind of manner

is known as dead reckoning. However, the states estimated by dead reckoning

would drift rapidly due to the measurement biases and noises. Note IMU mea-

surement biases ba and bω may change every time the IMU is initialized. Hence

they must be online estimated and compensated. To that end, we augment the

state vector by adding the unknown biases. From (4.1), (4.3) and (4.4), the

nonlinear process model of the navigation system is given by




ṗn

v̇n

ρ̇

ḃa

ḃω




=




vn

Rn/b(anb,IMU + ba + wa) + ge3

Ln/b(ωb
b/n,IMU

+ bω + wω)

03×1

03×1




,

which can be rewritten in a compact form as

ẋ = f(x,u + b + w), (4.5)

where

x =




pn

vn

ρ

ba

bω




, f(x,u + b + w) =




fp

fv

fρ

fba

fbω




,

u =




anb,IMU

ωb
b/n,IMU


 , b =




ba

bω


 , w =




wa

wω


 . (4.6)

Clearly the IMU measurements anb,IMU and ωb
b/n,IMU

enter the process model as

inputs. Let

A =
∂f

∂x
, B =

∂f

∂w

be the Jacobians of f(x,u + b + w) with respect to x and w, respectively. It
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can be calculated that

A =




03×3 I3×3 03×3 03×3 03×3

03×3 03×3 ∂fv
∂ρ Rn/b 03×3

03×3 03×3
∂fρ
∂ρ 03×3 Ln/b

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3




15×15

, B =




03×3 03×3

Rn/b 03×3

03×3 Ln/b

03×3 03×3

03×3 03×3




15×6

,

(4.7)

where ∂fv/∂ρ and ∂fρ/∂ρ are given by

∂fv
∂ρ

=

[
∂Rn/b

∂φ
anb

∂Rn/b

∂θ
anb

∂Rn/b

∂ψ
anb

]

3×3
,

∂fρ
∂ρ

=

[
∂Ln/b

∂φ
ωb
b/n

∂Ln/b

∂θ
ωb
b/n 03×1

]

3×3
,

with

∂Rn/b

∂φ
=




0 cφsθcψ + sφsψ −sφsθcψ + cφsψ

0 cφsθsψ − sφcψ −sφsθsψ − cφcψ
0 cφcθ −sφcθ



,

∂Rn/b

∂θ
=




−sθcψ sφcθcψ cφcθcψ

−sθsψ sφcθsψ cφcθsψ

−cθ −sφsθ −cφsθ



,

∂Rn/b

∂ψ
=




−cθsψ −sφsθsψ − cφcψ −cφsθsψ + sφcψ

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

0 0 0



,

∂Ln/b

∂φ
=




0 cφtθ −sφtθ
0 −sφ −cφ
0 cφ/cθ −sφ/cθ



,

∂Ln/b

∂θ
=




1 cφ/c
2
θ −sφ/c2θ

0 0 0

0 cφsθ/c
2
θ −sφsθ/c2θ



.
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Figure 4.2: An illustration of the quantities R(t0, t), T(t0, t), N(t0) and d(t0) in H(t0, t).

4.2.2 Vision Measurement: Homography

The onboard camera is directed downward and can capture images of the ground

scene during flight. The vision measurement, a 3 by 3 homography matrix, can

be computed from two consecutive images. More specifically, let t and t0 = t−Tv
denote the current and the last sampling time instances, respectively. Given two

images captured respectively at t0 and t, the corresponding features of the two

images are related by a homography matrix H(t0, t) ∈ R3×3. Let R(t0, t) ∈ R3×3

and T(t0, t) ∈ R3 respectively be the rotation and translation of the UAV from

time t0 to time t. Denote N(t0) ∈ R3 as the unit-length normal vector of the

ground plane resolved in the camera frame at time t0. Let d(t0) > 0 be the

distance between the UAV and the ground plane at time t0. Since the ground

plane coincides with the x-y plane of the navigation frame, d(t0) is the altitude

of the UAV at time t0. These variables are all illustrated in Figure 4.2.

For ease of presentation, the time variables in H(t0, t), R(t0, t), T(t0, t),

N(t0) and d(t0) will be omitted in the sequel. The homography H is expressed

by [82, Section 5.3] [56, Chapter 13]

H = R +
1

d
TNT. (4.8)
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Furthermore, R, T, N and d can be written by the UAV states as

R = Rb/n(t)RT
b/n(t0), (4.9)

T = Rb/n(t) [pn(t0)− pn(t)] , (4.10)

N = Rb/n(t0)e3, (4.11)

d = −eT3 pn(t0), (4.12)

where Rb/n denotes the rotation from the navigation frame to the body frame

and Rb/n = RT
n/b. It is notable that (4.11) and (4.12) are valid only if the ground

plane is horizontal. As shown by (4.8) to (4.12), the homography H clearly is a

nonlinear function of the UAV states at both time t and t0.

We next qualitatively analyze the useful information carried by a homography

matrix.

Attitude Information

In (4.8) both R and N contain certain attitude information of the UAV. First,

R represents the rotation of the UAV from t0 to t. The UAV attitude can be

estimated by accumulating R. But the attitude estimated in that way will drift

because of the accumulating error. Second, N represents the normal vector of

the horizontal ground plane resolved in the camera frame. From (4.2) and (4.11),

we have

N =




−sθ
sφcθ

cφcθ



.

Clearly N contains the roll and pitch angles. Thus it is possible to obtain drift-

free estimates of the roll and pitch angles from N. In our work we will use

N instead of R for drift-free attitude estimation. Note the heading angle is

not contained in the homography. Hence it is impossible to obtain drift-free

estimates of the heading angle from the homography. In our navigation system,

the heading angle will be directly measured by a compass, which is a commonly

used sensor for UAVs nowadays.
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Velocity Information

The term T in (4.8) represents the translation of the UAV from time t0 to t,

and hence can be used to estimate the UAV velocity. But it can be observed

from (4.10) that T is expressed in the camera frame. In order to obtain the

UAV velocity in the navigation frame, we need to convert T to the navigation

frame. Note the rotation from the camera frame (i.e., body frame here) to the

navigation frame is described by the UAV attitude. Hence drift-free velocity

estimation requires drift-free attitude estimation. Another issue regarding the

velocity estimation is the altitude d. From (4.8), the magnitude of T will be

inaccurately scaled if d is inaccurate. Thus drift-free velocity estimation also

requires accurate altitude measurements. Since the altitude is also crucial for

the flight safety of the UAV, we will use a barometer to directly measure the

altitude of the UAV.

Up to this point, it is clear what information is carried by a homography. The

next is how to retrieve the information. One conventional method is to directly

decompose R, T and N from H. Interested readers may refer to [82, Section

5.3.3] for homography decomposition algorithms. A decomposition would give

two physically possible solutions. Prior knowledge of the UAV motion may be

required to disambiguate the two solutions. On the other hand, a homography is

computed from feature matchings of two images. Hence feature location errors

or mismatchings would certainly cause errors in the homography. These errors

would propagate through the decomposition procedure to the decomposed R,

T and N. The error propagation may become very severe in certain situations

[27]. Hence the errors in the homography matrix must be treated in a proper

manner.

In our navigation system, we can avoid the homography decomposition by

fully utilizing the IMU measurements. Note the angular rate of the UAV can

be measured by the IMU. As will be shown later, the term R can be computed

accurately using the angular rate measurements. By eliminating R from H,

we can obtain TNT/d, which is a rank-one matrix. Of course, one may use

low rank approximation techniques to decompose T/d and N. However, due to

the measurement errors, the low rank decomposition would be ill-posed when
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the translation T is very small. In the extreme case of T = 0, it would be

theoretically impossible to retrieve N. Hence in our work we will directly feed

the measurements of H and R into the EKF without any decompositions. In

that way, the measurement errors can be well handled by the EKF.

4.2.3 Measurement Model

We now present the measurement model of the vision-aided navigation system.

Let H and Hvis denote the true homography and the homography estimated

by the vision system, respectively. In our navigation system, we convert Hvis

to vecHvis ∈ R9 and then directly feed it into the EKF. Thus the nonlinear

measurement model of the vision system is

yvis = vecHvis = vecH + nvis,

where nvis ∈ R9 is assumed to be a zero-mean Gaussian white noise.

From (4.8) to (4.12), it is clear vecH is a nonlinear function of both x(t) and

x(t0). Since the state vector in the process model is x(t), we need to express

vecH as a nonlinear function of x(t) only. Otherwise, if the state vector of the

EKF contains both x(t) and x(t0), the EKF will be not only high-order but

also very complicated. To that end, we propose the following approximations to

express vecH as a function of x(t).

Approximating R

We now show R can be accurately computed from the angular rate measurements

of the IMU. The dynamics of Rb/n is given by

Ṙb/n = −
[
ωb
b/n

]
×

Rb/n. (4.13)

Recall R = Rb/n(t)RT
b/n(t0) as shown in (4.9). Hence R is irrelevant to the UAV

states, and can be computed from ωb
b/n according to (4.13). However, equation

(4.13) has no closed-form solutions unless ωb
b/n is (piecewise) constant. Since

the sampling period Tv = 0.1 sec is very short, the angular rate can be treated
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as constant over the time interval [t0, t]. Then R can be approximated by

R ≈ exp

{
−
[
ωb
b/n(t)

]
×
Tv

}

≈ exp

{
−
[
ωb
b/n,IMU

(t)
]
×
Tv

}
. (4.14)

Remark 4.1. The approximation error of R in (4.14) is caused by the mea-

surement errors in ωb
b/n,IMU

(t) and the assumption that ωb
b/n is constant over

[t0, t]. But the approximation of R given by (4.14) can be very accurate be-

cause the time interval Tv = 0.1 sec is very short and the measurement errors in

ωb
b/n,IMU

(t) usually are small.

Remark 4.2. The error of R will result in small errors in the estimates of the

velocity and attitude. But the error will not cause drift in these estimates.

Remark 4.3. The matrix exponential on the right hand side of (4.14) can be

rigorously computed by Rodrigues’ rotation formula [82, Theorem 2.9, p. 27].

Approximating T

Assume the UAV velocity to be constant over the time interval [t0, t]. Then

pn(t)− pn(t0) ≈ vn(t)Tv and hence T in (4.10) can be approximated by

T ≈ −Rb/n(t)vn(t)Tv. (4.15)

Approximating N

Recall N is the normal vector of the ground plane at time t0. Since Rb/n(t0) =

RTRb/n(t), we have N in (4.11) as

N ≈ RTRb/n(t)e3, (4.16)

where R is given by (4.14).
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Approximating d

Recall d is the altitude of the UAV at time t0. Since pn(t) − pn(t0) ≈ vn(t)Tv,

we can approximately write d in (4.12) as

d ≈ −eT3 [pn(t)− vn(t)Tv] . (4.17)

By using the above approximations of R, T, N and d, we can express vecH

as a nonlinear function of x(t) only. With a little abuse of notation, rewrite the

state vector of the EKF as x = [x1, ..., x15]
T. Then the Jacobian of vecH with

respect to x is

Cvis =
∂vecH

∂x

=

[
∂vecH

∂x1
, . . . ,

∂vecH

∂x15

]

9×15

=

[
vec

∂H

∂x1
, . . . , vec

∂H

∂x15

]

9×15
, (4.18)

where ∂H/∂xi for i = 1, . . . , 15 is given by

∂H

∂xi
= − 1

d2
∂d

∂xi
TNT +

1

d

[
∂T

∂xi
NT + T

(
∂N

∂xi

)T
]
. (4.19)

The partial derivatives on the right hand side of (4.19) can be calculated from

(4.15), (4.16) and (4.17). These partial derivatives are listed as below.

∂H

∂xn
= 03×3,

∂H

∂yn
= 03×3,

∂H

∂zn
=

1

d2
TNT,

∂H

∂vn,x
= −Tv

d
Rb/ne1N

T,

∂H

∂vn,y
= −Tv

d
Rb/ne2N

T,

∂H

∂vn,z
= −Tv

d
Rb/ne3N

T − Tv
d2

TNT,
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∂H

∂φ
=

1

d



−
∂Rb/n

∂φ
vnTvN

T + T




0

cθcφ

−cθsφ




T

R



,

∂H

∂θ
=

1

d



−
∂Rb/n

∂θ
vnTvN

T + T




−cθ
−sφsθ
−cφsθ




T

R



,

∂H

∂ψ
=

1

d

(
−
∂Rb/n

∂ψ
vnTvN

T

)
.

The other derivatives not listed above are all zero.

In addition to the vision measurement model, the measurement models of

the compass and barometer are respectively given by

ycomp = ψ + ncomp = Ccompx + ncomp,

ybaro = pn,z + nbaro = Cbarox + nbaro,

where ncomp ∈ R and nbaro ∈ R are assumed to be zero-mean Gaussian white

noises and

Ccomp =

[
01×3 01×3 eT3 01×3 01×3

]

1×15
, (4.20)

Cbaro =

[
eT3 01×3 01×3 01×3 01×3

]

1×15
. (4.21)

To sum up, the nonlinear measurement model of the vision-aided navigation

system is

y = h(x) + n, (4.22)

where

y =




yvis

ycomp

ybaro



11×1

, h(x) =




vecH

ψ

pn,z



11×1

, n =




nvis

ncomp

nbaro



11×1

. (4.23)
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The Jacobian of h(x) with respect to x is given by

C =
∂h

∂x
=




Cvis

Ccomp

Cbaro



11×15

. (4.24)

4.2.4 Extended Kalman Filtering

We have established the continuous process model (4.5) and the measurement

model (4.22). The corresponding Jacobians have been given in (4.7) and (4.24).

Now it is ready to apply the EKF to fuse the measurements of the IMU, vision,

compass and barometer. The procedure of the EKF is standard, but we list the

equations here for readers’ reference.

1) Predict state estimation:

x̂k,k−1 = x̂k−1 + Tsf(x̂k−1,uk−1 + b̂k−1 + 0),

where x and f are given in (4.6).

2) Predict error covariance:

Pk,k−1 = FkPk−1F
T
k + GkQcovG

T
k ,

where the state transition matrix F is

F = I + TsA,

and the noise input matrix G is

G = TsB.

The matrices A and B are given in (4.7), and Qcov is the covariance of the

process noise w in (4.6).
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3) Compute the Kalman gain:

Kk = Pk,k−1C
T
k (CkPk,k−1C

T
k + Rcov)−1,

where C is given in (4.24), and Rcov is the covariance of the measurement

noise n in (4.23).

4) Update state estimation:

x̂k = x̂k,k−1 + Kk[yk − h(x̂k,k−1)],

where y and h are given in (4.23).

5) Update error covariance:

Pk = (I−KkCk)Pk,k−1.

In practice, light condition changing or insufficient features of the ground

scene can cause extremely large homography estimation errors. These inaccu-

rate homography estimates must be detected and rejected. Otherwise, they may

cause large errors or even instability of the EKF. Motivated by that, we adopt

innovation filtering [53, Section 15.3] in our navigation system. Innovation fil-

tering is also called spike filtering, measurement gating or prefiltering. Its basic

idea is to compare the real measurement given by sensors with the predicted one

given by EKF. If the discrepancy between them exceeds a threshold, then the

real measurement for that iteration is rejected. The innovation filter is straight-

forward to implement and requires little computational resource. In our flight

experiments, innovation filtering can effectively detect spikes of vision measure-

ments and hence significantly improve the robustness of the navigation system.

Details of innovation filtering are omitted here. Interested readers may refer to

[53, Section 15.3].
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4.3 Observability Analysis of the Vision-aided Navi-

gation System

In this section we analyze the observability of the proposed navigation system.

Since process model (4.5) and measurement model (4.22) are highly nonlinear,

we will mainly consider the observability of linearized systems. More specifically,

the nonlinear models (4.5) and (4.22) will be linearized under two typical flight

conditions: hovering and straight and steady level (SSL) flight. Note hovering

is a flight mode only possible for rotorcrafts such as quadrotor UAVs.

When the UAV is in SSL flight or hovering condition, the UAV states are

approximately given by

φ = θ = ψ = 0,

ωb
b/n = 03×1,

anb = −ge3,

vn = κe1, (4.25)

where κ ≥ 0 represents the UAV speed. When κ > 0, the UAV flies to the north

with the speed as κ; when κ = 0, the UAV is hovering. As will be shown later,

the value of the UAV speed κ can affect the observability of the system. Due to

symmetry, the value of the heading angle has no influence on the observability

analysis. For the sake of simplicity, we choose ψ = 0 which means the UAV is

heading north.

Remark 4.4. Although (4.25) is a simplified condition, the observability anal-

ysis under this condition can characterize the observability of the system under

generic flight conditions. That will be verified later by simulation and flight

experimental results.

115



Substituting the linearized condition (4.25) into (4.7) gives

A =




03×3 I3×3 03×3 03×3 03×3

03×3 03×3 g[e3]× I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3




. (4.26)

Substituting the linearized condition (4.25) into (4.14), (4.15) and (4.16) yields

R = I3×3, T = −Tvvn and N = e3, respectively. Further substituting the values

of R, T and N into (4.18) gives

Cvis =
1

α




03×3 03×3 −κe1e
T
2 03×3 03×3

03×3 03×3 κe1e
T
1 03×3 03×3

03×3 I3×3 κ[e1]× 03×3 03×3



. (4.27)

where α = −d/Tv. While calculating (4.27), we omit the small terms containing

T 2
v /d

2 or Tv/d
2 considering Tv is small. The detailed derivation of (4.27) is given

as below. Substituting the condition (4.25) into the partial derivatives of H gives

∂H

∂vn,x
= −Tv

d
e1e

T
3 ,

∂H

∂vn,y
= −Tv

d
e2e

T
3 ,

∂H

∂vn,z
= −Tv

d
e3e

T
3 ,

∂H

∂φ
= −Tv

d

(
−[e1]×vne

T
3 + vne

T
2

)
,

∂H

∂θ
= −Tv

d

(
−[e2]×vne

T
3 − vne

T
1

)
,

∂H

∂ψ
= −Tv

d

(
−[e3]×vne

T
3

)
.

Thus

[
vec

∂H

∂vn,x
vec

∂H

∂vn,y
vec

∂H

∂vn,z

]
= −Tv

d




03×3

03×3

I3×3



,
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[
vec

∂H

∂φ
vec

∂H

∂θ
vec

∂H

∂ψ

]
= −Tv

d




03×1 −vn 03×1

vn 03×1 03×1

−[e1]×vn −[e2]×vn −[e3]×vn




= −Tv
d




−vne
T
2

vne
T
1

[vn]×



.

All the other entries in Cvis are zero. Hence we obtain (4.27).

Recall Ccomp and Cbaro are given (4.20) and (4.21). Then C can be obtained

by substituting (4.20), (4.21) and (4.27) into (4.24). We next analyze the rank

of the observability matrix

O =
[
CT, (CA)T, · · · , (CA14)T

]T
(4.28)

under the condition (4.25).

4.3.1 Case 1: SSL Flight

We first consider the SSL flight condition with κ > 0. Substituting (4.26), (4.27),

(4.20) and (4.21) into (4.28) yields the observability matrix

OSSL =




03×3 03×3 −κe1e
T
2 03×3 03×3

03×3 03×3 κe1e
T
1 03×3 03×3

03×3 I3×3 κ[e1]× 03×3 03×3

01×3 01×3 αeT3 01×3 01×3

αeT3 01×3 01×3 01×3 01×3

03×3 03×3 03×3 03×3 −κe1e
T
2

03×3 03×3 03×3 03×3 κe1e
T
1

03×3 03×3 g[e3]× I3×3 κ[e1]×

01×3 01×3 01×3 01×3 αeT3

01×3 αeT3 01×3 01×3 01×3

03×3 03×3 03×3 03×3 g[e3]×

01×3 01×3 01×3 αeT3 01×3



26×15

. (4.29)
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The scale factor 1/α and zero rows of OSSL are omitted as they do not con-

tribute to the rank of OSSL. By examining the row rank (or column rank), it is

straightforward to see

rank(OSSL) = 13.

Hence there are two unobservable modes. In order to identify the two unob-

servable modes, we need to determine the unobservable subspace, i.e., the null

space of OSSL. By observation we obtain an orthogonal basis of the unobservable

subspace as

Null (OSSL) = Range




e1 e2

03×1 03×1

03×1 03×1

03×1 03×1

03×1 03×1




15×2

. (4.30)

Form (4.30), the two unobservable modes are

xunobs
SSL = {pn,x, pn,y}.

Therefore, in the case of SSL flight, the position (pn,x and pn,y) is unobservable,

but the velocity, attitude and unknown biases are all observable. In fact, this

is the best situation we can have because it is impossible to make the position

observable without any global references such as maps or GPS. Although the

position estimate still drifts, the drift will be significantly reduced compared to

pure inertial navigation as will be shown later.
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4.3.2 Case 2: Hovering

We now consider the hovering condition with κ = 0. By substituting κ = 0 into

(4.29), OSSL degenerates to

Ohover =




03×3 I3×3 03×3 03×3 03×3

01×3 01×3 αeT3 01×3 01×3

αeT3 01×3 01×3 01×3 01×3

03×3 03×3 g[e3]× I3×3 03×3

01×3 01×3 01×3 01×3 αeT3

01×3 αeT3 01×3 01×3 01×3

03×3 03×3 03×3 03×3 g[e3]×

01×3 01×3 01×3 αeT3 01×3



14×15

.

Note Ohover is merely a special case of OSSL. By counting the row rank (or

column rank), it is straightforward to see

rank(Ohover) = 11.

Hence there are four unobservable modes. Clearly the observability of the system

degenerates when the UAV speed is zero. By observation we can identify an

orthogonal basis of the null space of Ohover as

Null (Ohover) = Range




e1 e2 03×1 03×1

03×1 03×1 03×1 03×1

03×1 03×1 e1 e2

03×1 03×1 −ge2 ge1

03×1 03×1 03×1 03×1




15×4

,

from which the unobservable modes can be determined as

xunbos
hover = {pn,x, pn,y, φ− gba,y, θ + gba,x}.

In the case of hovering, the position (pn,x and pn,y) is still unobservable. More-

over, φ−gba,y and θ+gba,x are also unobservable. In other words, φ and θ as well

119



as ba,x and ba,y become unobservable when the UAV speed is zero. This obser-

vation can be intuitively explained by using the homography formula (4.8): the

attitude information of the pitch and roll angles originally comes from the nor-

mal vector N in the homography; when the UAV speed is zero, the translational

vector T in (4.8) is zero; consequently the term TNT will vanish and the attitude

information carried by N cannot be retrieved. It can also be seen from (4.27)

that the vision measurement actually is equivalent to a velocity measurement

when κ = 0.

4.3.3 Numerical Rank Analysis

In the preceding subsections we have analytically determined the rank of the

observability matrix. In fact, we can also numerically compute the singular

values and then determine the rank of the observability matrix. The numerical

rank analysis can provide us new insights into the observability of the navigation

system.

Denote the singular values of OSSL as σ1 ≥ · · · ≥ σ15 ≥ 0. When κ > 0 we

have rank(OSSL) = 13 and hence σ12 ≥ σ13 > 0 = σ14 = σ15; when κ = 0 we have

rank(Ohover) = 11 and hence σ12 = · · · = σ15 = 0. Clearly if κ → 0 we would

have σ12 → 0 and σ13 → 0. Thus it is reasonable to choose the ratio σ1/σ13 as

an indicator to evaluate the rank of OSSL: if σ1/σ13 is very large, OSSL is on

the verge of rank deficiency, and the rank of OSSL almost degenerates to that of

Ohover. Hence if σ1/σ13 is very large, the observability of θ and φ would become

weak though they are still observable. The term weak as used here intuitively

means that the estimation of pitch and roll angles may converge slow.

The UAV speed κ is not the only parameter that affects σ1/σ13. In addition

to κ, OSSL is also parameterized by the UAV altitude d.1 Figure 4.3 shows how

κ and d affect σ1/σ13. It is observed from Figure 4.3 that σ1/σ13 is large when κ

is small or d is large. In other words, the observability of θ and φ is weak if the

UAV speed is slow or the altitude is large. This observation can be explained by

the homography formula (4.8): when the speed is slow or the altitude is large,

1The altitude d is contained in α = −d/Tv. The vision sampling period Tv can also affect
σ1/σ13. Here we only consider Tv = 0.1 sec.
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Figure 4.3: The ratio σ1/σ13 is large when κ is small or d is large.

the term TNT/d would almost vanish, which will cause difficulty to recover

the attitude information in N. This observation can also be explained from a

more intuitive and fundamental point of view, which involves the bearing-only

property of vision systems. Note monocular cameras are inherently bearing-only

sensors because the depth information of the scene is lost during perspective

projection when forming an image. Hence an image inherently only carries the

bearings of the ground features. In our vision system, a homography is computed

from two consecutive images. If the two images are captured from very different

angles relative to the ground features, certain useful information (pitch and

roll angles in our case) can be recovered from the bearings carried by the two

images. Otherwise, if the UAV speed is slow or the UAV altitude is large,

the two consecutive images are almost captured from the same angle relative

to the ground features. Then the two images would not provide much new

information other than bearings. Hence the pitch and roll angles become difficult

to estimate. Interested readers may refer to [122, 91, 92] on the interesting and

special properties of bearing-only measurements.

4.4 Comprehensive Simulation Results

In this section, we show comprehensive simulation results to verify the effective-

ness of the proposed vision-aided navigation system.
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Fig. 4: Block diagram of the simulation.

TABLE I: Noise standard deviation and biases in the simulation.

Measurement Noise standard deviation Bias

Acceleration (m/s2) 0.05 (for each entry) 0.03g (for each entry)

Angular rate (rad/s) 0.02 (for each entry) π/180 (for each entry)

Heading angle (degree) 1 None

Altitude (m) 2 None

ground features, certain useful information (pitch and roll angles in our case) can be recovered from the bearings

carried by the two images. Otherwise, if the UAV speed is slow or the UAV altitude is large, the two consecutive

images are almost captured from the same angle relative to the ground features. Then the two images would not

provide much new information other than bearings. Hence the pitch and roll angles become difficult to estimate.

Interested readers may refer to [21]–[23] on the interesting and special properties of bearing-only measurements.

IV. COMPREHENSIVE SIMULATIONS

In this section, we show comprehensive simulation results to verify the effectiveness of the proposed vision-aided

navigation system.

A. Simulation Settings

The structure of our simulation program is illustrated by the block diagram in Fig. 4. In the simulation we

consider a 6-DOF nonlinear unmanned helicopter model and a flight control law, the details of which can be found

in [24], [25]. Given a trajectory reference, true states of the UAV as well as the acceleration and angular rate can

be computed. Then we add noises and biases to the true acceleration and angular rate to generate the simulated

IMU measurements, and add noises to the true altitude and heading angle to generate the simulated measurements
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Figure 4.4: Block diagram of the simulation.

Table 4.1: Noise standard deviation and biases in the simulation.

Measurement Noise standard deviation Bias

Acceleration (m/s2) 0.05 (for each entry) 0.03g (for each entry)
Angular rate (rad/s) 0.02 (for each entry) π/180 (for each entry)
Heading angle (degree) 1 None
Altitude (m) 2 None

4.4.1 Simulation Settings

The structure of our simulation program is illustrated by the block diagram

in Figure 4.4. In the simulation we consider a 6-DOF nonlinear unmanned

helicopter model and a flight control law, the details of which can be found

in [85, 19]. Given a trajectory reference, true states of the UAV as well as

the acceleration and angular rate can be computed. Then we add noises and

biases to the true acceleration and angular rate to generate the simulated IMU

measurements, and add noises to the true altitude and heading angle to generate

the simulated measurements of barometer and compass, respectively. Table 4.1

shows the values of the biases and the standard deviations of the noises.

In our simulation, the homography matrices are computed from real images.

We have developed an image generation program using Matlab and C++. A

satellite image (3384×2766 pixels) is used to simulate the ground scene. By

setting appropriate intrinsic parameters of the downward-looking camera, images

(320×240 pixels) captured by the camera can be generated according to the

position and attitude of the UAV relative to the satellite image. Samples of the

generated images are given in Figure 4.5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.5: Samples of the generated images. The arrows in the images represent the detected
optical flow.

In our work we employ OpenCV 2.3.1 to realize real-time vision processing.

The following vision processing tasks are required to compute the homography

matrix from two consecutive images: (i) extracting feature points in each image

(OpenCV function goodFeaturesToTrack), (ii) matching feature points of the two

images (OpenCV function calcOpticalFlowPyrLK ) and (iii) computing homogra-

phy from feature matchings (OpenCV function findHomography). Note the sec-

ond largest singular value of a homography equals one [82, Lemma 5.18, p. 135].

Hence the homography given by function findHomography should be normal-

ized before usage. In order to improve the homography estimation accuracy, we

may utilize a number of auxiliary functions such as image undistortion (OpenCV

function undistort), histogram equalization (OpenCV function equalizeHist) and

sub-pixel feature location refinement (OpenCV function cornerSubPix ).

4.4.2 Simulation Results

The trajectory reference of the UAV in the simulation is a sine wave with con-

stant heading angle and altitude. This is a typical maneuvering flight motion

called slalom [19]. Figure 4.5 shows samples of the generated images. The ar-

rows in the images represent the detected optical flow. Homography matrices

are computed from each pair of consecutive images. Since the true states of

the UAV are known in the simulation, true homography matrices can also be

computed. Thus we can obtain the errors of the estimated homography matrices

(see Figure 4.6). As can be seen, the error of each entry of the homography is
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Figure 4.6: The errors of the homography matrices computed from the generated images.

zero-mean and can be reasonably assumed as a zero-mean Gaussian white noise.

Most of the homography estimates are accurate though there exist a number of

spike measurements whose errors are much larger than the others. In practice,

innovation filtering can be used to effectively detect these spikes.

The UAV states are shown in Figure 4.7. The green solid lines represent

the true UAV states; the red dotted ones are the UAV states estimated by

the vision-aided navigation system; and the cyan dashed ones are the estimates

by pure inertial navigation. From Figure 4.7, we have the following important

observations.

1) Due to the large biases in the acceleration and angular rate measurements,

pure inertial navigation drifts very fast. Vision-aided navigation can signifi-

cantly reduce the position drift as shown in Figure 4.7(a) and (b) though the

position (pn,x and pn,y) estimate still drifts slowly.

2) Vision-aided navigation provides drift-free estimates of velocity and attitude

as shown in Figure 4.7(c) and (d).

3) As shown in Figure 4.7(e) and (f), the biases of the IMU measurements can

124



-400 -300 -200 -100 0 100 200 300 400
-100

0

100

200

300

400

500

600

700

800  

West - East (m)

2D Trajectory

 

S
ou

th
 -

 N
ot

h 
(m

)

True
Pure inertial navigation
Vision-aided navigation

(a) 2D trajectory

0 50 100 150 200 250 300

0

200

400

600

800
Position

p n,
x (

m
)

 

 

0 50 100 150 200 250 300

-50

0

50

p n,
y (

m
)

0 50 100 150 200 250 300
-15

-10

-5

0

p n,
z (

m
)

Time (s)

True
Pure inertial navigation
Vision-aided navigation

(b) Position

0 50 100 150 200 250 300

0

2

4

Velocity

v n,
x (

m
/s

)

 

 

0 50 100 150 200 250 300

-2

0

2

4

v n,
y (

m
/s

)

0 50 100 150 200 250 300
-1

0

1

v n,
z (

m
/s

)

Time (s)

True
Pure inertial navigation
Vision-aided navigation

(c) Velocity

0 50 100 150 200 250 300
-10

0

10
Eular Angles

 
(d

eg
)

 

 

0 50 100 150 200 250 300
-10

0

10

 
(d

eg
)

0 50 100 150 200 250 300
-5

0

5


 (

de
g)

Time (s)

True
Pure inertial navigation
Vision-aided navigation

(d) Euler angle

0 50 100 150 200 250 300
0

0.2

0.4

Bias of Accelaration

b a,
 x

 (
m

/s
2 )

 

 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

b a,
 y

 (
m

/s
2 )

0 50 100 150 200 250 300
0

0.2

0.4

0.6

b a,
 z

 (
m

/s
2 )

Time (s)

True
Vision-aided navigation

(e) Bias of acceleration

0 50 100 150 200 250 300
-0.02

0

0.02

0.04
Bias of Angular Rate

b 
, 

x (
ra

d/
s)

 

 

0 50 100 150 200 250 300
-0.02

0

0.02

0.04

b 
, 

y (
ra

d/
s)

0 50 100 150 200 250 300
-0.02

0

0.02

0.04

b 
, 

z (
ra

d/
s)

Time (s)

True
Vision-aided navigation

(f) Bias of angular rate

Figure 4.7: Simulation results.
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Figure 4.8: The quadrotor UAV and the flight test field.

be estimated accurately.

The above three observations are consistent with our observability analysis in

Section 4.3. More specifically, observation 1) verifies the observability analysis

that the the position (pn,x and pn,y) is unobservable; observations 2) and 3) are

consistent with the observability analysis that the velocity, attitude and biases

are all observable. Due to space limitations, more simulation results are omitted

here. From the simulation results under various flight conditions, it is noticed

that the convergence of the estimates of θ, ψ, ba,x and ba,y would be slow when

the UAV altitude is high or the UAV speed is slow. That is also consistent with

the numerical observability analysis in Section 4.3.3.

4.5 Flight Experimental Results

In this section we present flight experimental results to verify the effectiveness

and robustness of the proposed navigation system.

4.5.1 Platform and Experimental Settings

As shown in Figure 4.8, the flight experimental platform is an autonomous

quadrotor UAV constructed by NUS UAS Team. The key specifications of the

quadrotor UAV are listed in Table 4.2. The main onboard systems of this plat-

form are introduced as below.
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Table 4.2: Main specifications of the quadrotor UAV.

Specifications Quadrotor UAV

Dimensions 61× 61× 35 (l × w × h) cm
No-load weight 1 kg
Maximum takeoff weight 3 kg
Power source Lithium polymer battery
Flight endurance 15 mins

Navigation Sensor

The quadrotor UAV is equipped with a navigation sensor IG-500N, which con-

tains an IMU, a GPS receiver and a barometer. The navigation sensor can

provide a variety of measurements such as the acceleration and angular rate of

the UAV. It can also give drift-free measurements of the position, velocity and

attitude of the UAV in the presence of GPS. For the purpose of comparison, the

UAV states (position, velocity and attitude) measured by the navigation sensor

are treated as the ground truth in the flight experiments. For our vision-aided

navigation system, we only use the measurements of acceleration, angular rate,

heading angle and altitude. The update rate of the acceleration and angular rate

is 50 Hz, while that of the heading angle and altitude is 10 Hz.

Flight Control System

The primary tasks of the flight control system include collecting measurements

from various sensors, executing the proposed navigation algorithm and perform-

ing flight control laws. The flight control system also communicates with the

ground control station for real-time monitoring and command issuing. The flight

control computer is a Gumstix Overo Fire embedded computer with a 720 MHz

processor. The navigation and control algorithms run at 50 Hz in the flight con-

trol computer. In order to improve the real-time performance, the original Linux

operating system in the Gumstix is replaced by a QNX Neutrino real-time oper-

ating system. For details of the onboard software system and the ground control

station, please refer to [33, 34, 81]. The quadrotor platform is able to perform

autonomous hovering and way point following. For details of the modeling and

control of the quadrotor UAV, please refer to [109, Sections II and III].
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Fig. 9: The connections between the onboard systems. The 15th-order EKF is executed in real-time in the control computer.

altitude. The update rate of the acceleration and angular rate is 50 Hz, while that of the heading angle and altitude

is 10 Hz.

2) Flight Control System: The primary tasks of the flight control system include collecting measurements from

various sensors, executing the proposed navigation algorithm and performing flight control laws. The flight control

system also communicates with the ground control station for real-time monitoring and command issuing. The

flight control computer is a Gumstix Overo Fire embedded computer with a 720 MHz processor. The navigation

and control algorithms run at 50 Hz in the flight control computer. In order to improve the real-time performance,

the original Linux operating system in the Gumstix is replaced by a QNX Neutrino real-time operating system.

For details of the onboard software system and the ground control station, please refer to [26]–[28]. The quadrotor

platform is able to perform autonomous hovering and way point following. For details of the modeling and control

of the quadrotor UAV, please refer to [29, Sections II and III].

3) Vision System: The onboard vision system consists of a monocular downward-looking camera (Pointgrey

Firefly) and an embedded vision computer (fit-PC2i). The weight of the entire vision system is about 350 g. The

camera is directed downwards in order to capture images of the ground scene during flight. It captures images of

160×120 pixels at 10 FPS (frame per second). The parameters of the camera such as exposure and shutter speed can

be customized for outdoor applications. A wide-angle lens is connected to the camera to enhance the image quality.

The intrinsic parameters of the camera have been calibrated before flight tests. To process the images captured by

the camera, a light-weight embedded computer, fit-PC2i, is adopted as the vision computer. This vision computer

contains an Intel Atom Z530 1.6 GHz CPU, a solid-state drive (SSD), 1 GB memory and four USB 2.0 high-speed

ports. Compared to hard disk drives, the SSD is less susceptible to physical vibration during flight. The image and

vision processing algorithms are implemented on a Linux operating system installed in the vision computer. The

camera and the vision computer are connected through a USB 2.0 port. Homography matrices are computed in the

vision computer at 10 Hz and sent to the flight control computer through a RS232 full UART.

The vision algorithm for computing homography matrices has already been discussed in the last paragraph of

Section IV-A. But since the onboard computational resource is very limited, we need to adjust the vision algorithm

in order to realize real-time onboard vision processing. For example, the image size in simulations is 320×240

pixels, but we need to reduce the image size to 160×120 pixels in flight experiments to reduce computational

October 1, 2013 DRAFT

Figure 4.9: The connections between the onboard systems. The 15th-order EKF is executed in
real-time in the control computer.

Vision System

The onboard vision system consists of a monocular downward-looking camera

(Pointgrey Firefly) and an embedded vision computer (fit-PC2i). The weight of

the entire vision system is about 350 g. The camera is directed downwards in

order to capture images of the ground scene during flight. It captures images of

160×120 pixels at 10 FPS (frame per second). The parameters of the camera

such as exposure and shutter speed can be customized for outdoor applications.

A wide-angle lens is connected to the camera to enhance the image quality. The

intrinsic parameters of the camera have been calibrated before flight tests. To

process the images captured by the camera, a light-weight embedded computer,

fit-PC2i, is adopted as the vision computer. This vision computer contains an

Intel Atom Z530 1.6 GHz CPU, a solid-state drive (SSD), 1 GB memory and

four USB 2.0 high-speed ports. Compared to hard disk drives, the SSD is less

susceptible to physical vibration during flight. The image and vision processing

algorithms are implemented on a Linux operating system installed in the vision

computer. The camera and the vision computer are connected through a USB

2.0 port. Homography matrices are computed in the vision computer at 10 Hz

and sent to the flight control computer through a RS232 full UART.

The vision algorithm for computing homography matrices has already been

discussed in the last paragraph of Section 4.4.1. But since the onboard compu-

tational resource is very limited, we need to adjust the vision algorithm in order

to realize real-time onboard vision processing. For example, the image size in

simulations is 320×240 pixels, but we need to reduce the image size to 160×120

pixels in flight experiments to reduce computational burden. In addition, some
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Figure 4.10: Samples of the consecutive images captured by the onboard camera. The arrows
in the images represent the detected optical flow.

time-consuming functions such as sub-pixel feature location refinement have al-

so been removed. In our flight experiments, we notice that the dynamically

changing light condition in outdoor environments can easily cause large errors

in homography estimates. It is experimentally proved that the histogram equal-

ization function can effectively eliminate the affect of light condition changing.

The connections between the above onboard systems are illustrated in Fig-

ure 4.9.

4.5.2 Experimental Results

The flight experiments are conducted in a flat grass field (see Figure 4.8). Figure

4.10 shows samples of the images of the grass field captured by the onboard

camera. As can be seen, features and optical flow can be smoothly detected in

the images.

Next we show two sets of flight experimental results: open-loop and closed-

loop. (i) In the open-loop flight experiment, the UAV is controlled manually.

The flight data and the images captured by the onboard camera are used to test

the vision-aided navigation algorithm. The term open-loop simply means the

navigation results are not fed back for flight control. (ii) In the closed-loop flight

experiment, the UAV flies autonomously to follow the pre-specified way points.

The navigation results are fed back for autonomous flight control. The vision-

aided navigation algorithm is executed in the onboard computer in real-time.

According to the position and attitude provided by GPS/IMU, we can com-
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pute the true homography matrices, based on which the errors of the onboard

estimated homography matrices can be obtained. As shown in Figure 4.11, the

error of each entry of the homography can be reasonably assumed as a zero-mean

Gaussian white noise. The homography errors in the flight experiments are much

larger than those in the simulations. Nevertheless, the vision-aided navigation

can still perform well.

Figures 4.12 and 4.13 show the open-loop and closed-loop flight experimental

results, respectively. As can be seen, the vision-aided navigation can provide

accurate and drift-free estimates of the velocity and attitude. The UAV can be

successfully stabilized based on the vision-aided navigation. In Figure 4.12(a)

or Figure 4.13(a), the 2D trajectory is plotted against the satellite image of the

flight test field. Note the satellite image is only for illustration purposes and

it is not used for navigation. In Figure 4.12(c) or Figure 4.13(c), the z-axis

velocity vn,z given by the vision-aided navigation is inconsistent with the GPS

data. After conducting a series of experiments, we have verified that the vn,z

estimated by the vision-aided navigation is correct, while the vn,z given by GPS

is inaccurate due to certain technical problems which will be solved in the future.

The reason the vision-aided navigation can estimate vn,z accurately is because

pn,z can be directly measured by the barometer.
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(a) Open-loop experiment
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(b) Closed-loop experiment

Figure 4.11: The errors of the homography estimates.
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(a) 2D trajectory plotted against satellite image
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Figure 4.12: Open-loop flight experimental results.
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(a) 2D trajectory plotted against satellite image
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Figure 4.13: Closed-loop autonomous flight experimental results.
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Chapter 5

Vision-based Navigation using

Artificial Landmarks

5.1 Introduction

The previous chapter considered vision-based navigation of UAVs using natural

landmarks. In this chapter, we address vision-based navigation using artificial

landmarks such as circles with known diameters. The navigation system pre-

sented in this chapter was motivated by the 2013 UAVGP competition.

In order to accomplish the competition tasks proposed by the 2013 UAVGP,

our NUS UAS team has developed a fully autonomous unmanned helicopter

system. The whole system consists of two main sub-systems: automatic control

and vision processing. This chapter will only focus on the vision system; the

control system will be addressed in detail elsewhere. The developed vision system

is able to complete the following tasks. Firstly, detect all ellipses in the image,

determine whether there is a bucket in the corresponding circle, and then select

a target ellipse according to the current aim of the UAV; secondly, track the

target ellipse over the image sequence consistently once it has been selected by

certain initialization procedure; thirdly, estimate the position of the target circle

relative to the UAV such that the UAV can be guided to the target circle to grab

or drop a bucket.

We have developed a variety of algorithms for the vision system to complete

the competition tasks. But this chapter will mainly focus on the core algorithms
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Figure 5.1: Guidance, navigation and control structure of the unmanned helicopter system.

on ellipse detection, ellipse tracking and circle-based pose estimation. These

algorithms are not restricted to the specific competition tasks. They can also

be applied to a wide range of vision-based guidance and navigation tasks such

as autonomous takeoff and landing [76, 40, 116], target tracking and following

[79, 62], visual servoing [111, 43, 99, 75], and vision-based formation control [31].

Although computer vision provides a promising approach to many UAV tasks

[78, 93], too complicated and time-consuming vision algorithms are hardly appli-

cable to practical real-time applications due to the very limited onboard compu-

tational resources. In our work, we design and implement our algorithms mainly

from the practical point of view. The proposed algorithms can be conveniently

implemented by the popular library OpenCV (the version we used is 2.3.1). No

special functions of advanced vision processing or mathematical computation

are required. The implementation details of the algorithms are presented in the

hope that one can implement the algorithms for their own work by following the

chapter.

The chapter is organized as follows. We first introduce the unmanned heli-

copter systems and the vision system in Section 5.2. The algorithms for ellipse

detection, ellipse tracking and circle-based pose estimation are presented in Sec-

tions 5.3, 5.4 and 5.5, respectively. Experimental results are given in Section 5.6

to verify the proposed vision algorithms.
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(a) Unmanned helicopter (b) Onboard vision system

Figure 5.2: The unmanned helicopter and the onboard vision system.

5.2 System Overview

The guidance, navigation and control structure of the unmanned helicopter sys-

tem is given in Figure 5.1. It is worth noting that the navigation sensors on the

UAV include an IMU, a GPS receiver and a laser scanner. The laser scanner is

used to obtain the accurate altitude of the UAV. As shown in Figure 5.1, the

role of the vision system is to provide guidance for the UAV. The input of the

vision system is an image of the target circles and buckets; the output is the

position of the target circle. The vision estimation results will be consequently

used to guide the UAV to the target circle to grab or drop a bucket.

The unmanned helicopter developed by the our UAS Group at NUS is shown

in Figure 5.2(a). As shown in Figure 5.2(b), the onboard vision system is com-

posed of a camera, a pan-tilt mechanism and an onboard computer. We selected

a wide-angle camera in order to cover a large area. After image undistortion, the

horizontal angle of view is 87◦, and the vertical one is 71◦. The camera is mount-

ed on a pan-tilt mechanism, which can be controlled in 50 Hz to ensure that the

image plane is perfect horizontal. The pan-tilt mechanism can compensate the

fast dynamical rotation of the UAV. As a result, the location of the target in

the image changes smoothly which is essential for image tracking. The onboard

vision computer is AscTec Mastermind with the CPU as Intel Core2Duo SL9400

(2x1.86 GHz). The whole vision system including various image processing and

vision algorithms is run at 5 Hz in the onboard computer. The updating rate of

the vision system can also be chosen to 10 Hz, but 5 Hz is already sufficient for
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Figure 5.3: Flow chart of the vision system.

our applications.

The flow chart of the vision system is given in Figure 5.3. We next briefly

explain each procedure in the flow chart.

1) Image The image size is 640x480 pixels.

2) Image preparation The purpose of the image pre-processing is to detect the

contours corresponding to the circles. These detected contours will be conse-

quently used for ellipse detection.

3) Ellipse detection Once the contours has been obtained by the previous step,

the ones that correspond to ellipses will be detected. Ellipse detection is a

key procedure and will be addressed in detail later.

4) Ellipse clustering The main aim for ellipse clustering is to decide whether

the two ships are in the field of view. Since the four ellipses on each ship

are of the same size and they are distributed evenly on the ship, their size

and position information can be used for ellipse clustering. If two clusters of

ellipses can be obtained, it can be concluded that the two ships are in the

field of view.

5) Initialization The UAV takes off from a location far from the ships and is

guided to the ships based on GPS. Once the vision system has detected
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two ships, an initialization procedure will be triggered. The purpose of the

initialization procedure is to select a proper target circle according to the

UAVs current aim. The image tracking is also initialized in this procedure.

6) Select a target ellipse arbitrarily After the UAV takes off, it will be guided to

the ship area by GPS. However, the GPS accuracy is not perfect and hence

the UAV may not be guided to the exact desired area. Motivated by that,

the vision system will provide the position of any detected circle before the

initialization procedure such that the UAV can be guided to the exact ship

area.

7) Select a target ellipse based on two ships If two ships are in the field of view,

the vision system will select a target ellipse according to the current aim of

the UAV. For example, suppose the buckets are initially placed on the right

ship and they are required to be taken to the left one. If the current aim for

the UAV is to grab a bucket, the vision system will automatically select one

ellipse that corresponds to a circle on the right ship with bucket in it.

8) Select a target ellipse based on ellipse tracking In most of the cases, the two

ships cannot be the field of view simultaneously. Then it is essential to track

a target ellipse over the image sequence.

9) Pose estimation from the target ellipse Once the target ellipse has been s-

elected in any of the above ways, the ellipse will be used to estimate the

position of the circle center relative to the camera.

Ellipse detection, ellipse tracking and single-circle-based pose estimation are

three key problems in the vision system. In the sequel of the chapter, we will

present the details of our solutions to the three problems.

5.3 Ellipse Detection

In this section, we present the real-time and robust ellipse detection algorithm

developed for the vision system.
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(a) (b) (c) (d) (e)

Figure 5.4: An illustration of the preparation steps. (a) Original image; (b) Undistorted image;
(c) Converting the image from RGB to HSV; (d) Color thresholding; (e) Detect contours.

5.3.1 Preparation

Before presenting the ellipse detection algorithm, we first introduce several prepa-

ration steps. The purpose of the preparation steps is to obtain the contours that

correspond to the circles. These contours will be subsequently processed by the

ellipse detection algorithm. Though important, the preparation steps are not the

main focus of this chapter. One may choose different methods to detect contours

according to their own specific tasks. Edge detection and color thresholding are

two common methods. In our work, we detect contours by color thresholding

because the color information of the circles is already given in the competition

task.

The preparation steps mainly include image undistortion, converting RGB

to HSV, color thresholding and contour detection. These steps are illustrated

by Figure 5.4. Details of these steps are omitted here as they can be easily im-

plemented by using OpenCV. In our work, we are only interested in the extreme

outer contours and the inner ones are not detected (see, for example, the middle

contour in Figure 5.4(e)).

5.3.2 A Three-step Ellipse Detection Procedure

Once the contours have been detected, each of them will be processed by the

ellipse detection algorithm to see if it corresponds to an ellipse. The proposed el-

lipse detection algorithm contains three steps: 1) pre-processing based on AMIs,

2) ellipse fitting and 3) post-processing based on algebraic error. Ellipse fitting

is the core of our algorithm. But ellipse fitting itself is not able to determine

whether a contour corresponds to an ellipse or not. The purpose of the pre-

and post-processing steps is to robustly eliminate non-elliptical contours. We
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describe the three steps one by one in detail as follows.

Pre-processing based on AMIs

Moment invariants are very useful tools for pattern recognition. The most pop-

ular moment invariants were proposed by Hu [61]. Hu’s moment invariants are

invariant only under translation, rotation and scaling of the object. The work

in [48] proposed AMIs that are invariant under general affine transformations.

Since any ellipse can be obtained by applying an affine transformation to a circle,

all ellipses and all circles have exactly the same AMIs. As a result, AMIs are

powerful tools for ellipse detection [103, 87, 113].

Four AMIs were proposed in [48, Section 2.1]. In our work, we only use the

first three as the fourth one is much more complicated and less reliable than the

first three. The first three AMIs are expressed as

I1 = (µ20µ02 − µ211)/µ400,

I2 = (µ230µ
2
03 − 6µ30µ21µ12µ03 + 4µ30µ

3
12 + 4µ321µ03 − 3µ221µ

2
12)/µ

10
00,

I3 =
(
µ20(µ21µ03 − µ212)− µ11(µ30µ03 − µ21µ12) +µ02(µ30µ12 − µ221)

)
/µ700,

(5.1)

where the central moment µij is given by

µij =

∫ +∞

−∞

∫ +∞

−∞
(x− x̄)i(y − ȳ)jρ(x, y)dxdy. (5.2)

In the above equation, (x̄, ȳ) is the coordinate of the centroid and ρ(x, y) is the

density distribution function.

We now calculate the AMIs of ellipses and circles. Since all ellipses and circles

have the same AMIs, for the sake of simplicity, we can calculate the AMIs of a

special one: a circle centered at the origin with the radius as one unit. Suppose

ρ(x, y) = 1 when (x, y) is on the circle, and ρ(x, y) = 0 otherwise. Then (5.2)

can be rewritten as

µij =

∫ 2π

0
cosi θ sinj θdθ. (5.3)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Examples to verify the AMIs given in (5.4).

It can be calculated from (5.3) that µ00 = 2π, µ11 = 0, µ02 = µ20 = π and

µ12 = µ21 = µ03 = µ30 = 0. Substituting these values into (5.1) yields

I1 =
1

16π2
≈ 0.006332,

I2 = I3 = 0. (5.4)

Thus an arbitrary circle or ellipse has its I1, I2 and I3 as given in (5.4).

A number of artificial images are shown in Figure 5.5 to verify the theoreti-

cal values in (5.4). The contours in Figure 5.5(a)-(d) are elliptical contours with

different shape, scale, translation and rotation. As can be seen from Table 5.1,

their AMIs are very close to the theoretical values. As a comparison, the AMIs

of the non-elliptical contours in Figure 5.5(e)-(h) are significantly different from

the theoretical values. In addition, since an elliptical contour in an image al-

ways contains a finite number of points, the AMIs computed from the contour

usually have errors. Generally speaking, the fewer the points contained in the

contour, the larger the errors will be. It is observed that the elliptical contour

in Figure 5.5(d) contains fewer points than the others. As a result, the error of

its I1 is relatively larger.

To sum up, the pre-processing for ellipse detection is to compute the AMIs

of each contour and compare them with the theoretical values in (5.4). If the

AMIs of a contour is sufficiently close to the theoretical values, then the contour
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(a)

(b)

(c)

Figure 5.6: An example to illustrate the pre-processing and ellipse fitting. As can be seen, the
AMIs can be used to robustly detect the elliptical contours in the presence of a large number of
non-elliptical ones. (a) Color image; (b) Elliptical contours detected based on AMIs; (c) Fitted
ellipses with rotated bounding boxes.
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Table 5.1: The AMIs of the contours in Figure 5.5.

Image (a) (b) (c) (d)

I1 0.006333 0.006333 0.006334 0.006338
I2 0.000000 0.000000 0.000000 0.000000
I3 0.000000 0.000000 0.000000 0.000000

Image (e) (f) (g) (h)

I1 0.006944 0.006944 0.030369 0.007094
I2 0.000000 0.000000 0.000003 0.000000
I3 0.000000 0.000000 0.000114 -0.000003

can be classified as an ellipse. According to our experience, we recommend

the thresholds for I1, I2 and I3 to be ±0.0003, ±0.0000001 and ±0.000001,

respectively. At last, the OpenCV function moments can be used to compute all

the central moments that are required to calculate AMIs. An example is shown

in Figure 5.6 to verify the effectiveness and robustness of the pre-processing. As

can be seen, the contours that correspond to ellipses are all successfully detected

in the presence of a large number of non-elliptical contours.

Ellipse Fitting

There are a variety of ellipse fitting algorithms in the literature (see, for ex-

ample, [47, 1]). In our work, we choose the ellipse fitting function, fitEllipse,

implemented in OpenCV. Experiments show that this function is efficient and

accurate enough for our work. Figure 5.6 gives an example to illustrate the el-

lipse fitting. As shown in Figure 5.6(c), all ellipses in the image are successfully

obtained based on the elliptical contours given by the pre-processing.

Post-processing based on Algebraic Error

In the pre-processing, we usually set the thresholds to be a little loose such that

all elliptical contours can be successfully detected. But as a result of the loose

thresholds, non-elliptical contours may be falsely detected by the pre-processing.

In order to improve the robustness of the algorithm, we adopt a post-processing

procedure to remove these false detections. The post-processing calculates the

algebraic error between a contour and its fitted ellipse. If the algebraic error is

larger than a threshold, the fitted ellipse will be classified as a false detection.

The algebraic error between a contour and the fitted ellipse is defined as
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v

(uc, vc)

αθ

1

Figure 5.7: An illustration of the ellipse parameters and the angle returned by RotatedRect in
OpenCV.

follows. Let (u, v) be the coordinate of a pixel point in the image coordinate

frame. As shown in Figure 5.7, the u- and v-axis of the image frame defined

in OpenCV are pointing right and downward, respectively. The origin of the

image frame is located at the upper left corner of the image. Let (uc, vc) be the

coordinate of the ellipse center, and a and b be the lengths of the semi-major

and semi-minor axes, respectively. Denote α as the angle between the major

axis of the ellipse and the u-axis of the image frame (see Figure 5.7). The angle

α is positive clockwise based on the right-hand rule. Then the equation of the

ellipse in the image frame is expressed as

[(u− uc) cosα+ (v − vc) sinα]2

a2
+

[(u− uc) sinα− (v − vc) cosα]2

b2
= 1. (5.5)

Based on (5.5), the algebraic error between a contour and the fitted ellipse is

defined as

ealg , 1

n

n∑

i=1

∣∣∣∣
[(ui − uc) cosα+ (vi − vc) sinα]2

a2

+
[(ui − uc) sinα− (vi − vc) cosα]2

b2
− 1

∣∣∣∣ , (5.6)

where (ui, vi) with i = 1, . . . , n are the coordinates of the points on the contour.

The post-processing will eliminate a fitted ellipse if its algebraic error is

larger than a threshold. According to a variety of experiments, we recommend

the threshold for the algebraic error to be set as 0.1. An example is given in
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(a)

(b)

(c)

Figure 5.8: An example to illustrate the post-processing. (a) Color image; (b) Fitted ellipses
for all contours (contours with too few points are excluded); (c) Good ellipses detected based
on the algebraic error.
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Figure 5.8 to illustrate the effectiveness and robustness of the post-processing.

Note the ellipse detection in Figure 5.8 is based merely on ellipse fitting and

post-processing, while pre-processing is not used. As shown in Figure 5.8(b),

ellipses are fitted for all of the contours. As can be seen from Figure 5.8(c), all

falsely fitted ellipses can be eliminated by the post-processing.

In practical implementation, an ellipse is described by a structure named

RotatedRect in OpenCV. We can easily (but may not directly) obtain all the

parameters required to compute the algebraic error from RotatedRect. Here we

would like to highlight how to obtain the parameter α from RotatedRect since it

is a little tricky. The angle returned by RotatedRect is not α; instead, it is θ as

shown in Figure 5.7. According to a series of experiments we have conducted,

the angle θ is the angle between the minor-axis of the ellipse and the u-axis of

the image frame. Moreover, the angle θ is positive clockwise, and it is always in

the interval [135◦, 315◦). Therefore, the angle α can be obtained as α = π/2 + θ.

It is worth noting that adding kπ to α with k as an integer does not affect the

algebraic error in (5.6).

Discussion

It is not necessarily required that the pre- and post-processing procedures must

be both adopted in the ellipse detection algorithm. As illustrated in Figure 5.6

and Figure 5.8, either pre- or post-processing is already sufficient to detect all

the ellipses. But in order to improve the robustness of the algorithm, it is

recommended to use both of them unless the computational resource is extremely

limited.

More importantly, the pre-processing based on the AMIs can only detect

whole ellipses but not partial ones. As a comparison, the post-processing based

on the algebraic error can handle both whole and partial ellipses, but it is not

able to judge whether an ellipse is whole or partial. Therefore, the pre- and post-

processing procedures have their own advantages, which should be used flexibly

in practice. We will show later how the algebraic error can be used to detect

partially occluded ellipses.
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(a) Color image (b) All contours

(c) Whole ellipses (d) Concave contours

(e) Convex hulls (f) All ellipses

Figure 5.9: An example to illustrate the detection of partially occluded ellipses.

5.3.3 Special Cases

We next solve two important special cases.

Partially Occluded Ellipse

In practice, it is common that only part of a circle can be seen by the camera

due to occlusion or limited field of view. Then the contour corresponding to that

circle will not be elliptical (see, for example, the top and the bottom contours

in Figure 5.9(b)). We next show how to fit ellipses for these contours. The

procedure is as the following. Firstly, run the pre- and post-processing to detect
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whole ellipses. Secondly, compute the convex hull of each of the contours that

are not detected as whole ellipses. The OpenCV function convexHull can be

conveniently used to do this. Thirdly, fit ellipse for the convex hull, and then

compute the algebraic error between the fitted ellipse and the convex hull (not

the original contour). If the algebraic error is too large, the fitted ellipse will be

eliminated, otherwise it can be classified as an occluded ellipse.

Figure 5.9 shows an example to illustrate the above procedure. As can be

seen from Figure 5.9(a), there exists three circles in the image. The middle

circle can be entirely seen, but the top and the bottom ones are only partially

observable. As a result, the image of the middle circle is a whole ellipse, while

the images of the other two are concave contours (see Figure 5.9(b)). The whole

ellipse can be successfully detected by the pre- and post-processing procedures

while the concave ones cannot (see Figure 5.9(c)). But by employing the convex

hull based method introduced above, the top and the bottom ellipses can also

be successfully detected as shown in Figure 5.9(f).

Overlapped Ellipses

When solving the competition task, we encountered a very special problem:

although the circles are not overlapped in the real world, their images may

be slightly overlapped due to image blur or inappropriate color thresholding.

Figure 5.10 shows a typical example where there are actually eight circles on

the ground, but only three contours can be detected in the image. As shown

in Figure 5.10(b), the left four circles are detected as one single contour, and

so are the right top three. The pre- and post-processing can only detect the

isolated ellipse (the right bottom one). We next propose an algorithm to tackle

this special case.

The proposed algorithm consists of two steps. The first step is to detect the

overlapped contours based on AMIs. As shown in Figure 5.11, the AMIs of the

special contours are I1 ≈ 0.008 and I2 = I3 = 0. Hence by setting appropriate

thresholds (we recommend ±0.01 for I1, ±0.0000001 for I2 and ±0.000001 for I3),

these overlapped contours can be detected. In the second step, we need to de-

termine how many ellipses exist in an overlapped contour. The basic idea is trial
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(a) Color image (b) Whole ellipses (c) All ellipses

Figure 5.10: An example to illustrate the case of overlapped ellipses.

(a) (b) (c)

Figure 5.11: Three contours of slightly overlapped ellipses. The three cases are already sufficient
for the competition task. (a) The contour corresponds to two overlapped ellipses: I1 = 0.008017;
(b) The contour corresponds to three overlapped ellipses: I1 = 0.008192; (c) The contour
corresponds to four overlapped ellipses: I1 = 0.008194. The AMIs I2 = I3 = 0 for all the three
contours.

and error. For example, we partition an overlapped contour into n (n = 2, 3, 4)

parts and fit ellipse for each part. Then the algebraic error between the over-

lapped contour and the n fitted ellipses can be computed. If the algebraic error

is smaller than a threshold, the n ellipses can be retained as corrected ones. False

contours may be detected based on AMIs, but step two can effectively remove

these false detections. As shown in Figure 5.10(c), the proposed algorithm can

successfully detect all the eight ellipses.

5.3.4 Summary of the Ellipse Detection Algorithm

The proposed ellipse detection algorithm is summarized in Algorithm 5.1. Sev-

eral important remarks are given here. First, Algorithm 5.1 can detect both

whole and partial ellipses. The case of overlapped ellipses is not considered in

Algorithm 5.1 as that is a very special case. Second, the thresholds for I1, I2 and

I3 in Algorithm 5.1 are experiential values. They might need to be tuned accord-

ing to specific tasks in practice. Finally, as aforementioned, the pre-processing

can detect whole ellipses, while the post-processing can detect both whole and
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Algorithm 5.1 A Robust Real-time Ellipse Detection Algorithm

1: Preparation: Detect contours in the image using, for example, edge detec-
tion or color thresholding.

2: Pre-processing: For each contour, use the OpenCV function moments to
compute its central moments µ00, µ11, µ02, µ20, µ12, µ21, µ03 and µ30. Then
substitute the central moments into (5.1) to calculate I1, I2 and I3. Compare
the calculated I1, I2 and I3 with the values in (5.4). If

|I1 − 1/(16π2)| < 0.0003, |I2| < 0.0000001, |I3| < 0.000001, (5.7)

then the contour is a good candidate for a whole ellipse.
3: Ellipse fitting:

a) For each contour that satisfies (5.7), use the OpenCV function fitEllipse
to fit an ellipse.

b) For each contour that does not satisfy (5.7), use the OpenCV function
convexHull to obtain the convex hull of the contour, and then fit an
ellipse for the convex hull.

4: Post-processing:

a) For each contour that satisfies (5.7), compute its algebraic error ealg as
defined in (5.6).

b) For each contour that does not satisfy (5.7), compute its algebraic error
ealg between its convex hull and the fitted ellipse.

If |ealg| < 0.1, then the fitted ellipse can be confirmed as a correct one.

partial ones. They need to be used flexibly in practice according to the specific

task requirements.

5.4 Ellipse Tracking

After the ellipse detection procedure, multiple ellipses may be detected in an

image. But we are only interested in one specific ellipse and the relative position

of the corresponding circle. We next present an ellipse tracking algorithm which

can track an ellipse of interest over the image sequence consistently. The details

of the algorithm are given in Algorithm 5.2. Several important remarks are made

as follows.

1) The scale and shape of the target ellipse may keep changing when the camera

and the target circle are relatively moving. The color of the ellipse area

may also vary a little when observed from different angles. Therefore, the

histogram of the target ellipse area needs to be updated continuously. In

the histogram-update law as shown in (5.8), the new histogram is a convex
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.12: Examples to illustrate ellipse tracking over consecutive images. In each image, all
ellipses have been detected and drawn in cyan. The tracked ellipse is highlighted in green. The
yellow ellipse is the target area returned by CAMShift.

combination of the old one and the one of the ellipse area in frame k. If w = 1,

there will be no histogram update; if w = 0, the histogram would be exactly

the one of the area enclosed by the target ellipse in frame k. According to a

series of experiments, we choose w = 0.95 in our work.

2) The histogram h̃k should be the one for the exact area enclosed by the target

ellipse. But in order to speed up the histogram computation, h̃k actually is

for the area enclosed by the tangent rectangle of the ellipse. The tangent

rectangle contains not only the ellipse area but also some background area

out of the ellipse. In practice, it is recommended to scale down the tangent

rectangle a little in order reduce the effect of the background area on h̃k.

3) The CAMShift is performed over the hue channel of the color image. That is

because the ellipses are most distinguishable from the background in the hue

channel in the competition task.

4) The initialization procedure for the first frame is omitted in Algorithm 5.2 as

it may vary from task to task. For our specific task, there are totally eight

circles. When the corresponding eight ellipses can be detected in the image,
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Algorithm 5.2 Ellipse Tracking based on CAMShift

Require:
1: Update the tracking window: choose the initial tracking window for

CAMShift as the tangent rectangle of the target ellipse in frame k.
2: Update the histogram: denote hk and hk+1 as the histogram used for tracking

in frame k and k + 1, respectively. Let h̃k be the histogram of the target
ellipse area in frame k. Then update hk+1 by

hk+1 = whk + (1− w)h̃k, (5.8)

where w ∈ [0, 1] is a weight factor.
3: Compute the back projection image based on the updated histogram. This

can be done by using the OpenCV function calcBackProject.
4: Obtain the final tracking window computed by CAMShift. This can be done

by substituting the back projection image and the initial tracking window
to the OpenCV function CamShift.

5: Find the ellipse that is located closest to the final tracking window given by
CAMShift.

the initialization procedure is triggered to select one ellipse for tacking.

Figure 5.12 shows examples to illustrate the ellipse tracking over an image

sequence. As can be seen, the target ellipse is tracked robustly though its posi-

tion and scale keep changing. Moreover, since the target circle is only partially

observable in some images, the histogram of the area enclosed by the partial

ellipse is dynamically varying. But thanks to the histogram update law (5.8),

the target ellipse can still be tracked robustly.

5.5 Single-Circle-based Pose Estimation

After the ellipse of interest has been obtained, it can be used to estimate the

pose of the corresponding circle. Pose estimation from 3D-2D point correspon-

dences has been investigated extensively (see, for example, [55, 101, 77] and the

references therein). But unlike the existing studies in [71, 65, 76, 40, 110], we

aim at recovering the pose of a single circle. The main contribution of our work

is that we analyze the specific properties of circle-based pose estimation, and

identify four point correspondences that can be used for pose estimation. Based

on the four correspondences, various mature algorithms such as the OpenCV

function solvePnP can be applied to solve the pose estimation problem.
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5.5.1 Pose Estimation from Four Point Correspondences

We first introduce three coordinate frames involved in the pose estimation prob-

lem: world frame, camera frame and image frame. Without loss of generality,

we set the world frame in the following way: the origin of the world frame coin-

cides with the circle center; and the Z-axis of the world frame is orthogonal to

the plane Π1 that contains the circle. Thus the Z component of any points on

the circle is zero, and the coordinate of the circle center is (0, 0, 0) in the world

frame. The camera frame has its origin located at the camera center and its

z-axis orthogonal to the image plane Π2. The image frame defined in OpenCV

has been shown in Figure 5.7. The pose estimation problem we are going to

solve is summarized as below.

Problem 5.1. Suppose an ellipse has already been detected in an image, and

the parameters of the ellipse in the image frame are known. The ellipse is the

perspective projection of a circle. Given the diameter of the circle and the in-

trinsic parameters of the camera, estimate the coordinate of the circle center in

the camera frame.

Remark 5.1. In our task, the circles are used for vision-based guidance, and

we are only interested in the position of the circle center. The attitude of the

camera relative to the circle is not of our interests because the attitude of the

UAV can be obtained from GPS and inertial sensors. As will be shown later, we

only need to estimate the translation from the world frame to the camera frame

in order to solve Problem 5.1, while the rotation is not required.

Consider an arbitrary point on the circle. Denote p = [X,Y, Z]T ∈ R3 and

q = [x, y, z]T ∈ R3 as the coordinates of the point in the world and the camera

frame, respectively. Let R ∈ R3×3 and T ∈ R3 be the rotational and translational

transformation from the world frame to the camera frame, respectively. Then

we have

q = Rp+ T. (5.9)

Use the subscript c to denote the coordinate of the circle center. Then we have
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Figure 5.13: Perspective projection of a circle and the four point correspondences.

pc = [0, 0, 0]T and hence qc = T . Therefore, the translation T is the one we need

to estimate. The rotation R is not required to be estimated.

We next identify four sets of corresponding points on the ellipse and the

circle, respectively. Let m1, m2, m3 and m4 be the four vertexes of the ellipse in

the image (see Figure 5.13). Given the parameters of the ellipse such as (uc, vc),

a, b, α as shown in Figure 5.7, the coordinates of the four points can be easily

obtained as m1 = (uc + a cosα, vc + a sinα), m2 = (uc − b sinα, vc + b cosα),

m3 = (uc − a cosα, vc − a sinα) and m4 = (uc + b sinα, vc − b cosα). Let p1, p2,

p3 and p4 be the four corresponding points on the circle. Point pi corresponds

to mi for i = 1, . . . , 4. The following assumption on p1, . . . , p4 is a key to our

algorithm.

Assumption 5.1. The four points p1, . . . , p4 are evenly distributed on the circle,

which means p1, pc and p3 are collinear, p2, pc and p4 are collinear and the line

p1p3 is perpendicular to p2p4.

The necessary and sufficient condition of Assumption 5.1 will be proved lat-

er. Under Assumption 5.1, we are able to set the world frame such that the

four points p1, . . . , p4 are located at the X- and Y -axes, respectively (see Fig-

ure 5.13). As a result, if the diameter of the circle is d, we have p1 = (d/2, 0, 0),

p2 = (0,−d/2, 0), p3 = (−d/2, 0, 0) and p4 = (0, d/2, 0). It is worth noting
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Algorithm 5.3 Single-Circle-based Pose Estimation from Four Point Corre-
spondences

1: Obtain the four image points, which are the vertexes of the ellipse:

m1 = (uc + a cosα, vc + a sinα), m2 = (uc − b sinα, vc + b cosα),

m3 = (uc − a cosα, vc − a sinα), m4 = (uc + b sinα, vc − b cosα).

2: Obtain the four corresponding points on the circle:

p1 = (d/2, 0, 0), p2 = (0,−d/2, 0), p3 = (−d/2, 0, 0), p4 = (0, d/2, 0).

3: Substitute the four correspondences {m1, p1}, {m2, p2}, {m3, p3} and
{m4, p4} to the OpenCV function solvePnP. Suppose T is the translational
vector returned by solvePnP. Then T is the translation from the world frame
to the camera frame. Thus qc = T .

that the orientation of the world frame does not affect qc = T , and hence its

orientation can be set freely. Thus we obtain four sets of point correspondences

{m1, p1}, {m2, p2}, {m3, p3} and {m4, p4}, which can be consequently used for

pose estimation. Our pose estimation algorithm is summarized in Algorithm 5.3.

Although Algorithm 5.3 is designed for single-circle-based pose estimation,

it can also be applied to multi-circle-based pose estimation problems. The basic

idea is to estimate the coordinate of each circle center first and then estimate

the pose of the entire multi-circle pattern. For example, in the competition task,

there are totally eight circles on the two ships. The relative positions of the

eight circles are known in advance. If we can detect an eight-circle pattern in

the image, the pose (both rotation and translation) of the camera relative to the

ships can be determined.

5.5.2 Analysis of Assumption 5.1

Assumption 5.1 plays a key role in the propose pose estimation algorithm. We

now analyze when Assumption 5.1 is valid. The following theorem gives the

necessary and sufficient condition of Assumption 5.1.

Theorem 5.1. Assumption 5.1 holds if and only if the ellipse center coincides

with the projection of the circle center.

Proof. The proof is based on the fact that collinearity is preserved under per-

spective projection.
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Necessity: Assumption 5.1 implies that pc is collinear with p1 and p3. Thus

the projection point of pc is collinear with m1 and m3. Analogously the pro-

jection of pc is also collinear with m2 and m4. As a result, the projection of

pc is the intersection of the lines m1m3 and m2m4. Denote mc as the center of

the ellipse. Since mc is also the intersection of m1m3 and m2m4, we have mc

coincides with the projection of pc.

Sufficiency: In order to prove the sufficiency, we only need to prove: first,

the lines p1p3 and p2p4 intersect at pc; second, the two lines p1p3 and p2p4 are

perpendicular to each other. Firstly, if mc coincides with the projection of pc,

we have p1, p3 and pc are also collinear because m1, m3 and mc are collinear.

Similarly we have p2, p4 and pc collinear. Therefore, the lines p1p3 and p2p4

intersect at pc. Secondly, note ‖m1−mc‖ = ‖m3−mc‖ and ‖p1−pc‖ = ‖p3−pc‖,

where ‖ · ‖ denotes the Euclidean norm of a vector. As a result, if mc is the

perspective projection of pc, it is easy to prove that p1p3 is parallel to m1m3

based on similar triangles. Analogously, it can also be proved that p2p4 is parallel

to m2m4. Thus, p1p3 is perpendicular to p2p4 because m1m3 is perpendicular

to m2m4.

It has been proved in [57] that the ellipse center generally does not coincide

with the projection of the circle center. Next we further show when they coincide

with each other.

Theorem 5.2. The ellipse center coincides with the projection of the circle

center if and only if the image plane is parallel to the plane that contains the

circle.

Proof. Sufficiency: See [57, Section 2.3]. We give a brief explanation here. The

work in [57] does not state the sufficiency of Theorem 5.2 explicitly. But it is

stated that the projection of the circle center is the same as the ellipse center if

“the rotation is performed around the Z-axis” (see the paragraph below equation

(16) in [57]). The condition that the image plane is parallel to the object plane

in Theorem 5.2 actually is equivalent to the condition that “the rotation is

performed around the Z-axis” in [57].

Necessity: If mc is the projection of pc, we know pc is collinear with p1 and
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p3. Furthermore, since ‖m1 −mc‖ = ‖m3 −mc‖ and ‖p1 − pc‖ = ‖p3 − pc‖, it

is easy to prove that p1p3 is parallel to m1m3 based on similar triangles. It can

be analogously proved that p2p4 is parallel to m2m4. Since the image plane Π2

contains m1m3 and m2m4 while the plane Π1 contains p1p3 and p2p4, the two

planes are parallel to each other.

Remark 5.2. The work in [57] merely mentioned that the case of two parallel

planes is one of the examples that guarantee the ellipse center to coincide with

the projection of the circle center. The contribution of Theorem 5.2 is that it

shows that this case is the only example.

Theorems 5.1 and 5.2 clearly indicate that Assumption 5.1 is valid if and

only if the image plane is parallel to the plane that contains the circle. For

our competition task, the circles are placed horizontally on the ground. The

onboard camera is installed on a pan-tilt mechanism such that the image plane

can be automatically controlled to be horizontal. Thus Assumption 5.1 is always

satisfied in our system. But we will later show by experimental results that even

the assumption is not satisfied, the accuracy of the proposed four-point pose

estimation algorithm is still good.

5.6 Experimental and Competition Results

Our vision system including the proposed algorithms on ellipse detection, el-

lipse tracking and circle-based pose estimation have been implemented on the

unmanned helicopter for the 2013 UAVGP. Successful completion of all competi-

tion tasks is the strongest evidence for the accuracy and robustness of the vision

system. A video of the onboard vision processing for the final round competition

can be found at http://youtu.be/GSeafBsASTs.

5.6.1 Flight Data in the Competition

Figure 5.14 shows the helicopter UAV developed by our UAS Group at NUS.

Although the UAV is equipped with a GPS, the accuracy of the GPS is much

worse than that of the vision system. As a result, the GPS data cannot be used

as the ground truth to verify the accuracy of the vision estimation. Fortunately,
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(a) (b)

Figure 5.14: The helicopter UAV in the competition. (a) The UAV is approaching to a “ship”
to grab a bucket. (b) The UAV is flying with a bucket.
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Figure 5.15: The altitude measurements given by the vision system and the laser scanner.
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Figure 5.16: Experiment setup in a Vicon system to verify Algorithm 5.3.

a laser scanner is mounted at the back of the UAV to measure the accurate

altitude (see Figure 5.14(b)). Since the vision system can estimate the vertical

distance from the target circle to the UAV, we can estimate the UAV altitude

from vision by adding an offset (the height of the ship which is known) to the

vision estimates. Thus we can compare the altitude estimates by vision with

the laser measurements. It is worth noting that the laser measurement is par-

ticularly accurate in general, and hence it can be viewed as the ground truth of

the altitude. The flight data as shown in Figure 5.15 indicates that the vision

estimates are very accurate as they coincide with the laser measurements very

well.

5.6.2 Experiments for Algorithm 5.3

Experiments have been conducted to verify the accuracy of Algorithm 5.3. As

shown in Figure 5.16, the experiments are conducted in a Vicon system. The

Vicon system is used to obtain the ground truth of the range from the circle

center to the camera center. The diameter of the target circle in our experiment

is one meter.

The images of the target circle are given in Figure 5.17. Based on the detected

ellipse, the coordinate of the circle center in the camera frame can be estimated

by Algorithm 5.3. The estimation results are given in Table 5.2. As can be
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.17: Images captured in the experiment. From (a) to (d), the target circle is placed
almost vertically; from (e)-(h), the target circle is placed horizontally on the floor. The detected
ellipse is drawn on each image. The four red dots drawn on each ellipse are the detected vertexes
of the ellipse. The size of each image is 640× 480 pixels.

Table 5.2: Pose estimation results using the images in Figure 5.17.

Image ‖qc‖ by vision ‖qc‖ by Vicon Abs error of ‖qc‖
(a) 1.667 m 1.650 m 0.017 m
(b) 2.383 m 2.363 m 0.020 m
(c) 4.201 m 4.218 m 0.017 m
(d) 5.304 m 5.253 m 0.051 m

(e) 2.789 m 2.817 m 0.028 m
(f) 3.425 m 3.450 m 0.025 m
(g) 4.513 m 4.486 m 0.027 m
(h) 4.337 m 4.295 m 0.042 m

seen, the proposed algorithm can give very accurate estimates of the range from

the circle center to the camera center. Specifically, when the range is shorter

than 5 meter, the estimation error is smaller than 0.05 meter. It is worth noting

that Assumption 5.1 is not satisfied for the cases in Figure 5.17(e)-(h), but the

estimates are still very accurate in those cases.

5.6.3 Efficiency Test

We also have conducted experiments to test the efficiency of the proposed al-

gorithms. The algorithms were tested on a laptop with its CPU as Intel Core

i5-2520M 2.5 GHz. We used the proposed three algorithms to process 100 con-

secutive images (640x480 pixel) captured by the onboard camera in the com-

petition. The average time consumption of each algorithm (in debug mode) is

given in Table 5.3. As can be seen, the algorithms for ellipse detection, tracking
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Table 5.3: Time consumption of each procedure in the vision system.

Algorithm Time Consumption

Undistortion 0.0240 sec
RGB to HSV 0.0093 sec
Color Thresholding 0.0042 sec
Contour Detection 0.0011 sec

Ellipse Detection 0.0012 sec
Ellipse Tracking 0.0084 sec
Circle-based Pose Estimation 0.0030 sec

and pose estimation are very efficient. The most time-consuming procedure is

image undistortion. In order to improve the efficiency of the image undistortion,

we have written a new undistortion function to replace the OpenCV one undis-

tort. The core idea is to use the OpenCV function undistort just once to build

a lookup table. Then every image can be undistorted by simply indexing the

lookup table, and the undistortion time can be reduced to around 0.005 sec.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis focused on the area of control and navigation of multi-vehicle sys-

tems using visual measurements. It presented both theoretical and practical

contributions to this area.

One main theoretical contribution of this thesis is that we successfully solved

the optimal placement of sensor networks for target tracking in 2D and 3D

spaces. This problem is very important yet not solved by the existing studies.

We successfully proved the necessary and sufficient conditions for optimal sensor

placement in 2D and 3D spaces. We also established a unified framework for

analyzing the optimal placement of different types of sensors.

One main novelty of the thesis is that we formulated a new formation control

problem: control of multi-vehicle systems using bearing-only measurements. Our

idea on bearing-only formation control was motivated by vision-based formation

control. In conventional frameworks for vision-based formation control, it is

assumed that vision can provide the relative positions of the neighbors of one

vehicle. This assumption is, however, hard to be implemented in practice. If

vision is only required to provide bearing measurements, the burden on the

end of vision will be significantly reduced and consequently the efficiency and

reliability of the vision system can be greatly enhanced. As a result, bearing-only

formation control provides a novel and practical framework for implementing

vision-based formation control tasks. The research presented in this thesis solved
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an important special case: stabilization of cyclic formations using bearing-only

measurements. Of course, more research on this topic is needed in the future.

In addition to the theoretical research on control of multi-vehicle systems,

we also investigated an important application-oriented research topic: vision-

based navigation of UAVs using either natural or artificial landmarks. Our main

contrition for this part is that we presented systematic solutions to vision-based

navigation: the proposed algorithms were not only analyzed theoretically but

also verified by flight experiments. It was shown that the proposed navigation

systems are efficient and reliable. Specifically, the vision-based navigation system

presented in Chapter 5 was applied to the 2013 UAVGP competition and helped

our team made a great success in the competition. Completing all the required

competition tasks is the strongest evidence of the efficiency and reliability of our

proposed navigation system.

6.2 Future Work

The research presented in this thesis suggests a number of interesting and im-

portant future research directions.

1) In this thesis, we addressed optimal placement of sensor networks for tracking

one single target. It is of great practical interests to study optimal placement

of sensor networks for covering an area instead of just one point. For exam-

ple, suppose the sensor network is fixed while the target may move within a

bounded area. Then it is interesting to study how to place the sensor network

optimally such that the average target tracking accuracy can be maximized.

It is conjectured that analytical solutions can be obtained only for certain

areas with regular shapes.

2) We proposed a gradient control law to autonomously deploy optimal place-

ments of sensor networks. But the proposed control law is a centralized one

based on all-to-all communications. It is meaningful to study distributed op-

timization algorithms or control laws that can distributedly deploy optimal

sensor placements. In addition, our work only focused on homogeneous sensor

networks. It is also important to analytically characterize 2D or 3D optimal
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placements of heterogeneous sensors in the future.

3) Our research on control of cyclic formations using bearing-only measurements

is a first but important step towards solving generic bearing-based formation

control problems. Formations with more complicated underlying graphs need

to be studied in the future. Moreover, in order to control the formation scale,

bearing-only constraints and measurements would be insufficient; distance

constraints and measurements need be considered. Distributed control of

formations with mixed bearing and distance constraints using mixed mea-

surements is of both theoretical and practical importance.

4) Since bearing-only formation control is motivated by vision-based formation

control tasks, implementation of the proposed control laws certainly is mean-

ingful. There are a number of problems on the end of vision in practical

implementation. For example, the field of view (FOV) of a camera usually is

limited. With limited FOV, one vehicle may not be able to observe its neigh-

bors continuously. In addition, it is also an interesting research topic whether

and how stereo vision can be applied to vision-based formation control.

5) Cooperative vision-based navigation of multiple vehicles is a hot research

topic in recent years. The vision-based navigation systems presented in this

thesis, however, are mainly designed for navigating one single vehicle. It

is meaningful to study how to apply the proposed vision-based navigation

systems to cooperative navigation tasks.

164



Bibliography

[1] S. J. Ahn, W. Rauh, and H.-J. Warnecke. Least-squares orthogonal dis-

tances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern

Recognition, 34:2283–2303, 2001.

[2] J. G. Allen, R. Y. D. Xu, and J. S. Jin. Object tracking using CamShift

algorithm and multiple quantized feature spaces. In Proceedings of the

Pan-Sydney area workshop on Visual information processing, pages 3–7,

Darlinghurst, Australia, 2004.

[3] A. Bacciotti and F. Ceragioli. Stability and stabilization of discontinuous

systems and nonsmooth Lyapunov functions. ESAIM: Control, Optimisa-

tion and Calculus of Variations, 4:361–376, January 1999.

[4] D. H. Ballard. Generalizing the hough transform to detect arbitrary

shapes. Pattern Recognition, 13(2):111–122, 1981.

[5] M. Basiri, A. N. Bishop, and P. Jensfelt. Distributed control of triangular

formations with angle-only constraints. Systems & Control Letters, 59:147–

154, 2010.

[6] J. J. Benedetto and M. Fickus. Finite normalized tight frames. Advances

in Computational Mathematics, 18:357–385, 2003.

[7] S. P. Bhat and D. S. Bernstein. Finite-time stability of continu-

os autonomous systems. SIAM Journal on Control and Optimization,

38(3):751–766, 2000.

165



[8] A. N. Bishop. Distributed bearing-only quadrilateral formation control. In

Proceedings of the 18th IFAC World Congress, pages 4507–4512, Milano,

Italy, August 2011.

[9] A. N. Bishop. Stabilization of rigid formations with direction-only con-

straints. In Proceedings of the 50th IEEE Conference on Decision and

Control and European Control Conference, pages 746–752, Orlando, FL,

USA, December 2011.

[10] A. N. Bishop. A very relaxed control law for bearing-only triangular for-

mation control. In Proceedings of the 18th IFAC World Congress, pages

5991–5998, Milano, Italy, August 2011.

[11] A. N. Bishop, B. Fidan, B. D. O. Anderson, K. Doğançay, and P. N.
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