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Analysis of Cylindrical Shells 
Using Generalized 
Differential Quadrature 

The analysis of cylindrical shells using an improved version of the differential quadrature 
method is presented. The generalized differential quadrature (GDQ) method has computa­
tional advantages over the existing differential quadrature method. The GDQ method 
has been applied in solutions to fluid dynamics and plate problems and has shown superb 
accuracy, efficiency, convenience, and great potential in solving differential equations. 
The present article attempts to apply the method to the solutions of cylindrical shell 
problems. To illustrate the implementation of the GDQ method, the frequencies and 
fundamental frequencies for simply supported-simply supported, clamped-clamped, and 
clamped-simply supported boundary conditions are determined. Results obtained are 
validated by comparing them with those in the literature. © 1997 John Wiley & Sons, Inc. 

INTRODUCTION 

The differential quadrature method developed by 
Bellman and Casti (1971) is an alternative discrete 
approach to directly solving the governing equa­
tions of engineering problems. The simplicity and 
ease of use of the method has gained popularity 
among researchers. Recently the differential quad­
rature method has been applied to the solutions of 
beam, plate, shell, and frame structure problems. 
Notable studies in the applications of the differen­
tial quadrature method in these areas include Bert 
et al. (1994), Bert and Malik (1966), Laura and 
Gutierrez (1993, 1994), and Striz et al. (1995). 

In this article an improved version of the differ­
ential quadrature method called the generalized 
differential quadrature (GDQ) method developed 
by Shu (1991) is used to study the cylindrical shell 
problem. In the GDQ method the derivative of a 
function with respect to a space variable at a given 
discrete point is approximated as a weighted linear 
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sum of all the functional values at all the discrete 
points. The advantages of the GDQ method in­
clude no restriction on the number of grid points 
used for the approximation and the weighting co­
efficients are determined using a simple recurrence 
relation instead of solving a set of linear algebraic 
equations as in other versions of the differential 
quadrature method. A more in-depth analysis of 
the merits of the GDQ method can be found in 
Du et al. (1994). The GDQ method has been ap­
plied to solutions of fluid dynamics problems by 
Shu and Richards (1992) and to plate problems 
by Shu and Du (1995a,b). In all the applications 
the GDQ method has shown superb accuracy, ef­
ficiency, convenience, and great potential in solv­
ing differential equations. 

The objective of the present work is to extend 
the GDQ method to solutions of cylindrical shell 
problems. To illustrate the implementation, the 
method is used to determine the frequencies for 
simply supported-simply supported, clamped-
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FIGURE 1 Geometry of a cylindrical shell. 

clamped, and clamped-simply supported cylindri­
cal shells. 

GOVERNING EQUATIONS 

Consider a cylindrical shell shown in Fig. 1: R is 
the radius, L is the length, h is the thickness, and 
(x, {}, z) is the orthogonal coordinate system fixed 
at the middle surface. The deformations in the 
x, {}, and z directions are denoted as u, v, and 
w, respectively. 

The equations of motion for thin cylindrical 
shells in terms of the force N ij and moment resul­
tants Mij are given as 

Nx,x + ~ Nx6,6 - phil = 0, (1) 

1 1 1 
Nx6,x + R N6,6 + R Mx6,x + R2 M6,6 - phv = 0, (2) 

2 1 N6 .. 
Mx,xx + R Mx6,X6 + R2 M6,66 - R - phw = O. (3) 

The subscripts x, xx, {}, x{}, and {}{} denote the partial 
derivatives with respect to these parameters and 
N ij and Mij are given by 

(4) 

(5) 

where Ux and U6 are the normal stresses in the x 
and {} directions and U x6 is the shearing stress in 
the x{} plane. For thin cylindrical shells the stresses 
UX, U6, and Ux6 are related to the strains ex, e6, and 
ex6 by 

{
ux} (Ql1 Q12 0 ){ex} U6 = Q12 Q22 0 e6, 

U x6 0 0 Q66 ex6 

(6) 

where the reduced stiffnesses Qij for isotropic ma­
terials are defined as 

E 
Ql1 = Q22 = 1 - v' 

vE E 
Q12 = 1 - v' Q66 = 2(1 + v)' 

(7) 

where E is the Young's modulus and v is the Pois­
son's ratio. Using Love's first approximation shell 
theory (1927), the strain components are written as 

ex6 = av + 1.. au _ 2z (a2w _ av). 
ax R a{} R axa{} ax 

(8) 



Substituting Eqs. (4)-(8) into Eqs. (1)-(3), the 
governing equations for thin cylindrical shells can 
be obtained as 

(9) 

(10) 

(11) 

where Lij are the partial differential operators of 
x and e. The general solutions for modal vibration 
can be written as 

u(x, e, t) = cf>(x)cos(ne)cos(wt), 

vex, e, t) = y(x)sin(ne)cos(wt), 

w(x, e, t) = a(x)cos(ne)cos(wt). 

(12) 

Substituting the displacement fields from Eq. (12) 
into Eqs. (9)-(11), the governing equations can 
be obtained as 

a2cf> ay 
1111 cf> + 1m -2 + 1121 -

ax ax 

aa a3a + 1131 - + 1132 - 3 = 0, 
ax ax 

(13) 

a cf> a2y a2a 
1211 - + 1221y + 1222 -2 + 1231a + 1232 -2 = 0, (14) 

ax ax ax 

(15) 

where 1ijk are some constant coefficients. 
For cylindrical shells with simply supported­

simply supported, clamped-clamped, and 
clamped-simply supported boundary conditions, 
these boundary conditions are expressed mathe­
matically as simply supported-simply supported: 

v = w = N x = Mx = 0 x = 0, L; 

clamped -clamped: 

aw 
u = v = w = - = 0 x = 0, L", 

ax ' 

clamped-simply supported: 

aw 
u = v = w = - = 0 x = 0; 

ax 

v = w = Nx = Mx = 0 x = L. 

(16) 

(17) 

(18) 
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For the solutions given in Eq. (12), these boundary 
conditions can be further written as simply sup­
ported-simply supported: 

acf>(x) a2a y(x) = a(x) = -- = - = 0 x = 0, L; (19) 
ax ax2 

clamped-clamped: 

acf>(x) a2a 
y(x) = a(x) = -- = - = 0 x = 0, L; (20) 

ax ax2 

clamped-simply supported: 

aa(x) 
cf>(x) = y(x) = a(x) = -- = 0 x = 0, 

ax 

acf>(x) a2a(x) 
y(x) = a(x) = -- = --0 x = L. 

ax ax2 

GDQ 

(21) 

The basic idea of GDQ is to approximate a deriva­
tive of a function IjJ (x, t) at the ith discrete point 
in a domain by a weighted linear sum of all the 
functional values in the domain. For the mth order 
derivative of IjJ (x, t), it is approximated as 

where dT) are the weighting coefficients associated 
with the mth order derivative and N is the number 
of grid points used in the approximation. The 
weighting coefficients 4m) can be easily obtained 
using the GDQ method; for details see Shu (1991). 
For the first-order derivative, the weighting coef­
ficients are given by 

N 

C(l) = - " c(1) l· 1 2 N 
II L.J II =" ... " 

j~IJ1'i 

for i, j = 1,2, ... , N, where 

N 

M(I)(Xi) = IT (Xi - Xj). 
j~1.j"i 

(23) 

(24) 

(25) 

For the second- and higher order derivatives, the 
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weighting coefficients can be computed by using 
a recurrence relationship as follows: 

i ¥- j, m = 2,3, ... , N - 1, 

i,j = 1,2, ... ,N, 
N 

C(!"l = - ~ c(ml l' - 1 2 N 
II LJ'J -" ... , , 

j~l,j"i 

and the grid points are chosen as 

i = 1,2, ... ,N. 

APPLICATION OF GDQ METHOD TO 
CYLINDRICAL SHELL PROBLEM 

(26) 

(27) 

(28) 

To illustrate the implementation of the GDQ 
method to analyze cylindrical shell problems, the 
following boundary conditions are considered: 
simply supported-simply supported, clamped­
clamped, and clamped-simply supported. To 
apply the GDQ method, the partial derivatives in 
the governing equations of Eqs. (13)-(15) and the 
boundary conditions of Eqs. (19)-(21) are first 
approximated as in Eq. (22). After spatial discreti­
zation, Eqs. (13)-(15) become 

N N 

1 1114>j + 1112 2: cg>4>j + 11212: cW'Yj 
j~l j~l 

N N 

+ 1131 2: cWaj + 1132 2: d]laj = 0, 
j~l j~l 

N N N 

1211 2: cf}l4>j + 1221 2: Ci/Y + 1222 2: cgtYj 
j~l j~l j~l 

N N 

+ 1'l3l2: Cijaj + 11322: cWlaj = 0, 
j~l j~l 

N N 

1311 2: cW4>j + 1312 2: d]l4>j + 1321'Yi 
j~l j~l 

N N 

+ 1322 2: dP'Yj + 1331 aj + 1332 2: dP aj 
j~l j~l 

N 

+ 1333 2: c~laj = 0, 
j~l 

(29) 

(30) 

(31) 

and Eqs. (19)-(21) become simply supported­
simply supported: 

N N 

'Y1 = a1 = 2: d}l4>j = 2: d7laj = 0, 
j=l j=l 

N N 

'YN = aN = 2: c~J4>j = 2: c~Jaj = 0; 
j~l j~l 

clamped-clamped: 

IV 

4>t = 'Y1 = a1 = 2: cWaj = 0, 
j=l 

N 

4>N = 'YN = aN = 2: cWaj = 0; 
j~l 

clamped-simply supported: 

IV 

4>t = 'Y1 = a1 = 2: d}laj = 0, 
j=l 

N N 

'YN = aN = 2: c~J4>j = 2: c~Jaj = 0. 
j=l j=l 

(32) 

(33) 

(34) 

Substituting the above boundary conditions, Eqs. 
(32)-(34), into Eqs. (29)-(31), the resulting set of 
equations can be written in the form 

A·x = Ax, (35) 

where A is a matrix, x is a column vector defined as 

x T = {4>z cf>J... 4>N-1 'Y2 

'Y3' .. 'YN-1 a3 ~ ..• aN-2}, (36) 

and A is a parameter defined as oJph. Solving for 
the eigenvalues of matrix A and equating to oJph, 
the natural frequencies ill of the cylindrical shell 
are obtained. 

NUMERICAL RESULTS 
AND DISCUSSION 

To examine the GDQ method for the analysis of 
cylindrical shells, a comparison of the results with 



Table 1. Comparison of Frequency Parameter 0 = 
wRY[(1- ,r)p]IE for Simply Supported-Simply 
Supported Cylindrical Shell (m = 1, RIL = O.OS) 

0 

Markus 
hlR n (1988)" Present % Diff. 

0.05 0 0.0929296 0.09295 0.0002 
1 0.0161063 0.01610 -0.04 
2 0.0392332 0.03930 0.17 
3 0.109477 0.109824 0.32 
4 0.209008 0.210284 0.61 

0.002 0 0.0929296 0.09293 0.0004 
1 0.0161011 0.016101 -0.0006 
2 0.00545243 0.005453 0.01 
3 0.00503724 0.005042 0.09 
4 0.00853409 0.008534 -0.001 

'Three-dimensional elasticity solution. 

those in the literature were carried out. Table 1 
shows the comparison of results for the clamped­
clamped boundary condition, Table 2 shows the 
comparison of results for the simply supported­
simply supported boundary condition, and Table 
3 shows the comparison of the results for the 
clamped-simply supported boundary condition. 
In these tables m is the axial wave number and 
n is the circumferential wave number. In all the 
comparisons the present results were computed 
using 21 grid points approximations. As one can 
see from the comparisons, very good agreement 
with those in the literature was obtained. 

As an illustration of the application of the 
GDQ method, the frequency parameter 0 = 

wRV[(l - v)p]/E) and the fundamental fre­
quency parameter Of = wfRV[(l - v)p]/E) for 
the simply supported-simply supported, 
clamped-clamped, and clamped-simply sup­
ported boundary conditions for various circumfer­
ential wave numbers nand L/ R ratios are pre­
sented in Tables 4 and 5. 

Table 2. Comparison of Frequency Parameter 0 = 
wRY[(I- ,r)p]IE for Clamped-Clamped Cylindrical 
Shell (p = 0.3, m = 1) 

Case 

LlR = 10, Rlh = 500, n = 4 
LlR = 10, Rlh = 20, n = 2 
LlR = 2, Rlh = 20, n = 3 

Dym (1973) Present 

0.01508 
0.05784 
0.3118 

0.01512 
0.05789 
0.3119 
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Table 3. Comparison of Frequency Parameter 0 = 
wRY[(I- ,r)p]IE for Clamped-Simply Supported 
Cylindrical Shell (m = 1, LIR = 20; hlR = 0.002, 
P = 0.3) 

n Lam and Loy (1995) Present 

1 0.024830 0.023974 
2 0.008410 0.008223 
3 0.005897 0.005842 
4 0.008717 0.008705 
5 0.013682 0.013679 
6 0.019974 0.019973 
7 0.027461 0.027460 
8 0.036113 0.036112 
9 0.045924 0.045923 

10 0.056891 0.056890 

Table 4. Frequency Parameter 0 = 
wRY[(I- p2)p]IE for Simply Supported-Simply 
Supported (SS-SS), Clamped-Clamped (C-C), and 
Clamped-Simply Supported (C-SS) Cylindrical Shell 
(m = 1, LIR = 20; hlR = 0.01, p = 0.3) 

n 
n SS-SS C-C C-SS 

1 0.016101 0.032885 0.023974 
2 0.009382 0.013932 0.011225 
3 0.022105 0.022672 0.022310 
4 0.042095 0.042208 0.042139 
5 0.068008 0.068046 0.068024 
6 0.099730 0.099748 0.099738 
7 0.137239 0.137249 0.137244 
8 0.180527 0.180535 0.180531 
9 0.229594 0.229599 0.229596 

10 0.284435 0.284439 0.284437 

Table S. Fundamental Frequency Parameter 
Of = wfRY[(I- p2)p]IE for SS-SS, C-C, and C-SS 
Cylindrical Shell (m = 1, hlR = 0.01 p = 0.3) 

LlR 

2 
5 

10 
20 
50 

100 

SS-SS 

0.112275 (5) 
0.044272 (3) 
0.021957 (2) 
0.009382 (2) 
0.002648 (1) 
0.000665 (1) 

C-C 

0.153272 (6) 
0.062767 (4) 
0.030686 (3) 
0.013932 (2) 
0.005911 (1) 
0.001505 (1) 

C-SS 

0.135651 (5) 
0.054442 (4) 
0.026776 (3) 
0.011225 (2) 
0.004110 (1) 
0.001038 (1) 

See Table 4 for abbreviations. Parameters in parentheses 
indicate the circumferential numbers at which the fundamental 
frequencies occur. 
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CONCLUSIONS 

The article has presented the analysis of cylindrical 
shells using the GDQ method. Results obtained 
using the method have been evaluated against 
those available in the literature and the agreement 
has been found to be good. Frequency parameters 
and fundamental frequency parameters for the 
simply supported-simply supported, clamped­
clamped, and clamped-simply supported bound­
ary conditions for various circumferential wave 
numbers nand LI R ratios are also presented. The 
GDQ method can be easily extended to other 
mixed boundary conditions and shell structures. 
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