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SYNOPSIS 

Telomeres – arrays of G-rich DNA and the terminal part of chromosomes – 

interact dynamically with specialised proteins, shelterins, to protect chromosomal 

and hence, genetic integrity. Shelterins ensure telomere maintenance by allowing 

or denying access to various telomere-interacting factors, depending on the 

cellular context, in a highly evolved manner. Despite the barrage of mutations that 

accumulate in a cell that is straying away from normalcy towards becoming 

cancerous over time, functional telomeres prevents mitotic catastrophe and in 

about 90% of the cases, it happens by activation of an otherwise mostly repressed 

enzyme – telomerase, which interacts with the telomere dynamically and adds on 

telomeric repeats. Some key DNA repair orchestrators such as DNA-PK and 

ATM kinase form the second line of defence, by a prolonged cell arrest upon 

telomere dysfunction, in order to repair the damage and prevent genomic 

instability. Any perturbation in the interaction between the shelterin complex at 

the telomeres, and telomerase is likely to challenge the immortality of cancer 

cells. This study involves harnessing the tendency of the G-rich single-stranded 

overhang at the telomere to form secondary structures. G-quadruplexes, which are 

stacks of tetrads of guanine molecules, is the major type of secondary structure 

that can form preferentially at the telomeres and thus, small molecules that bind to 

and stabilises these structures have achieved the destruction of normal telomere 

homeostasis. One such small molecule, meso-5,10,15,20-Tetrakis-(N-methyl-4-

pyridyl)porphine, Tetratosylate, also known as TMPyP4 – one of the first ligands 

to be explored for their quadruplex-binding – has been shown hitherto by other 
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groups, to preferentially localise to the nucleus, diminish telomerase activity, 

enforce cell arrest and apoptosis in a range of cancer cell types. High-grade 

human brain tumours –glioblastoma multiforme and medulloblastoma, owing to 

their poor survival rate and prognosis, and lack of efficient treatment strategies 

apart from surgery, radiotherapy and DNA damage inducer, temozolamide. Thus, 

they require immediate attention for drug development. This study delved into the 

mechanistic insights behind the above-mentioned observations upon TMPyP4 

treatment; validated its combination with DNA repair inhibition; and also 

explored the potential of TMPyP4 to sensitise brain tumour cells to radiation-

induced cell death. 

Short-term, proof-of-principle assessment of TMPyP4 exhibited a dose-dependent 

effect on the viability, and also arrested the proliferation of the brain tumour cells 

at IC50 dose, while having a negligible effect on the control cell type – normal 

human lung fibroblasts. The observation in this study that the levels of TRF2 (a 

key shelterin protein) steeply reduced as early as 2 hours after treatment seems  to 

corroborate with previous studies by other groups on the selective binding of 

TMPyP4 to telomeric sequences in vitro. Our study also found that this was 

accompanied by a relatively more gradual reduction of hTERT (the catalytic 

subunit of human telomerase) levels and telomerase activity, along with a great 

increase in the DNA damage levels, assessed after 48 hours of treatment. 

TMPyP4 thus seemed to specifically bind to the telomeres, interfere with telomere 

architecture, and inhibit telomerase activity indirectly.  
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Over short-term treatment, TMPyP4 enhanced the DNA damage, potentiated the 

cell arrest and hampered to a greater extent, the viability of the brain tumour cells 

upon irradiation, thus demonstrating a potential and much-needed radiosensitising 

property for a cancer drug. There are reports of some drugs antagonising the 

inhibition of DNA repair, but this study on TMPyP4 showed that, the inhibition of 

either of the two DNA repair lynchpins – ATM kinase and DNA-PK, led to the 

potentiation and increased the irreversibility of TMPyP4-induced DNA damage, 

cell arrest and viability.  

Assessment treatment of the effects of TMPyP4 over therapeutically relevant 

long-term treatment on glioblastoma cells revealed concordance with the 

predictions of the short-term assessment on glioblastoma and medulloblastoma 

cells, showing that TMPyP4 exhibited a dose- and time- dependent effect on the 

viability, and DNA damage. More relevantly, TMPyP4 induced telomere 

aberrations, caused telomere shortening over time, and led to potential telomere-

recombination in the glioblastoma cells, culminating in cell death en masse. 
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1.1 TELOMERE BIOLOGY AND CANCER THERAPEUTICS – A 

HISTORICAL PERSPECTIVE 

1.1.1 Cancer, genetic material, and DNA – uncovering the link 

In 1914, at a time when we did not even know that the genetic material was 

composed of nucleic acids, key research on sea urchin eggs revealed an 

association between inappropriate chromosome segregation during cell division 

with changes in cellular growth. This led to the hypothesis that abnormal 

chromosomes cause cancer (Boveri, 1914).  

As Gregor Mendel’s work was being rediscovered and its significance becoming 

more apparent by the day, and about a decade after the word “somatic mutation” 

had been coined, genetic mutations were being attributed as the origin of cancer 

(Bauer, 1928; Tyzzer, 1916). 

It was long known that chronic occupational exposure to some chemicals could 

cause cancer. By 1915, there was even an established mouse model to recapitulate 

carcinogenesis by coal tar (Yamagiwa, 1915). However, the pathogenesis of such 

environmental exposures wasn’t known and people never fancied that the genetic 

material would be mutated directly. The perception was however set to change 

radically in a few years. By 1928, X-rays were shown to be mutagenic in nature, 

in Drosophila melanogaster (Muller, 1928). 

The first speculation at the existence of a special structure at the ends of 

chromosomes was in a lecture given by Hermann Muller in 1938 (Muller, 1938). 

Experimental observation of the same was seen by Barbara McClintock with the 
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observation of fusion of broken ends of chromatids in meiotic anaphase in Zea 

mays (McClintock, 1941). Only four decades later would they be named 

‘telomeres’ and a completely new perspective of its effects on cell physiology 

would be unravelled. 

After DNA and not protein was proven to be the genetic material, and possible 

mechanisms of DNA replication postulated, the important concept of DNA repair 

was demonstrated in Chinese hamster ovary cells. The surviving population of 

cells following irradiation, lacked heritable change in their DNA and seemed to 

repair it before they divided. This clearly established the presence of well-

regulated DNA repair mechanisms in cells and possibly their modulation in 

cancer (Elkind and Sutton, 1959). 

1.1.2 Telomeres – implications in ageing and cancer 

Although way back in 1881 itself, it was proposed that tissues get worn out due to 

limitation in the number of cell divisions and that this affects the organ’s 

performance, it was not until Leonard Hayflick in 1961 showed the first 

experimental evidence of limited lifespan of somatic cells (Hayflick and 

Moorhead, 1961). Hayflick co-cultured ‘old’ normal human male fibroblasts with 

‘young’ normal female human fibroblasts, and had unmixed controls as well.  He 

found that after a few doublings in culture, when the control male cells stopped 

dividing, there were only female fibroblasts in the mix. This was proof enough 

that not all cells in culture are immortal: fibroblasts had limited lifespan in 

culture. This showed that although there are ‘young’ cells in the vicinity, cells had 

an inherent control mechanism to know that they were ‘old’ (Shay and Wright, 



4 
 

2000). Despite this elegant demonstration, scepticism was still rife. According to 

Nobel Laureate Peyton Rous who reviewed and rejected Hayflick’s first attempt 

at publishing it: “the largest fact to have come from tissue culture in the last fifty 

years is that cells inherently capable of multiplying will do so indefinitely if 

supplied with the right milieu in vitro” (Shay and Wright, 2000). Later work in 

Hayflick’s lab by doctoral student Woodring Wright showed that the cell’s 

“replicometers” lay in the nucleus (Wright and Hayflick, 1975). 

James Watson, in 1972, proposed that the 3’ end of linear DNA cannot be fully 

copied during replication, owing to the inability of DNA polymerase to add 

nucleotides without a primer. This was called the ‘end replication problem’ 

(Figure 1.1) (Watson, 1972). 

 

 

 

 

 

 

 

 

 

 

Another independent proposition came, from Alexey Olovnikov a theoretical 

biologist from Russia at around the same time (Olovnikov, 1971, 1973). In 1966, 

Figure 1.1 DNA end-replication problem: DNA replication at the leading 

strand poses no problem to DNA polymerase (Polα) as it can extend the 

leading strand in a continuous manner. Replication at the other strand (the 

lagging strand), however, takes place by using primers at various points and 

synthesis in the form of short Okazaki fragments as Polα cannot add 

nucleotides in 3’-5’ direction. The lagging strand also cannot replicate 

completely, as a primer cannot attach beyond the end of the template DNA. 

This leaves a 3' overhang. The leading strand is also processed to leave a 3' 

overhang. Image source: (Shay and Wright, 2000). 
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Olovnikov later recalled his ‘Eureka’ moment while returning home after 

attending a lecture where Hayflick’s work was discussed:  

“The Theory of Marginotomy came to me in that Moscow subway station. 

I heard the deep roar of an approaching train coming out from the tunnel 

into the station itself. I imagined the DNA polymerase to be the train 

moving along the tunnel that I imagined to be the DNA molecule. I 

thought that this polymerase cannot begin to copy from the very beginning 

because there is a dead zone between the front end of the polymerase 

molecule and its catalytic centre. This is analogous to the dead zone 

between the front end of a subway car standing at the beginning of the 

subway platform and the nearest entrance door to the first car.” 

(Olovnikov, 1996) 

Thus, Olovnikov went a step further from Watson’s finding of the end-replication 

problem and proposed that the ends of chromosomes of linear DNA (telomeres) 

shorten with time (i.e. with every cell division cycle) and this could be the 

mechanism behind Hayflick’s observation on cellular ageing.  Experimental proof 

backing the theory and bringing it back to focus would only happen two decades 

later though.  

Meanwhile, study of telomeres gathers pace. In 1978, Elizabeth Blackburn, doing 

her post-doctoral fellowship at Yale University, was mapping DNA sequences of 

the unicellular eukaryotic ciliate, Tetrahymena. They can have up to hundreds of 

chromosomes upon differentiation. Blackburn observed one particular repeat 

sequence (TTGGGG)n, at the ends of chromosomes (Blackburn and Gall, 1978). 
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Jack Szostak, a postdoctoral fellow at Harvard Medical School, had just observed 

that minichromosomal linear DNA when introduced into yeast, underwent rapid 

degradation (Szostak and Wu, 1979). McClintock’s and Muller’s proposition was 

proven right when Blackburn and Szostak introduced the Tetrahymena end 

sequence into the yeast minichromosomes. Astonishingly, the repeat element 

protected them from the anticipated rapid degradation and was named 

‘telomeres’. (‘Telo’ means ‘end’ and ‘meros’ means part in Greek.) The 

protection of yeast chromosomes by DNA from the completely unrelated 

Tetrahymena species also pointed out to the existence of telomeres as a 

fundamental mechanism across many organisms (Szostak and Blackburn, 1982). 

This would soon lead to the unravelling of a distinct pattern conserved across all 

eukaryotes – a guanosine-rich hexameric DNA repeats at the chromosome ends. 

The sequence of human telomeres was later revealed to be composed of 

hexameric 5’-TTAGGG-3’ repeats (Moyzis et al., 1988). 

Carol Greider, graduate student in Elizabeth Blackburn’s lab in 1985 observed 

that the Tetrahymena telomeres were getting longer with every generation during 

its logarithmic phase of growth. Greider realised that due to the DNA end-

replication problem, the telomeres should not lengthen, if not shorten with every 

generation. Greider and Blackburn then looked for an unknown enzymatic 

activity that could lead to the addition of repeats in 3’-5’ direction. This led to the 

discovery of a terminal transferase activity, which they found was an enzyme that 

they named ‘telomerase (Figure 1.2) (Greider and Blackburn, 1985). 
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Figure 1.2 The discovery of telomere and telomerase Image source(Rohl, 2013) 

Telomere shortening was already being speculated to happen with cellular ageing. 

The first experimental hints were obtained from the finding that telomere lengths 

varied considerably among different tissues (Cooke and Smith, 1986). Direct 

evidence of telomere shortening with increasing passage number followed soon 
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after by studies on cultured human fibroblasts in vitro and primary human skin 

cells (Harley et al., 1990; Lindsey et al., 1991).  

This was followed by investigations on identifying telomerase activity in various 

human tissues. Studies revealed telomerase activity in, germline cells and cancer 

cells (Kim et al., 1994; Morin, 1989). Telomere shortening, thus, underlies an 

elegant method adopted by human system for maintaining cellular homeostasis 

and cell turnover. 

While the core components of human telomerase holoenzyme – human 

telomerase RNA (hTR) and catalytic subunit, human telomerase reverse 

transcriptase (hTERT) were being identified, signs of existence of an alternative 

telomere lengthening mechanism in humans, leading to cell immortalisation was 

being observed as well (Blasco et al., 1997; Bryan et al., 1995; Feng et al., 1995; 

Nakamura et al., 1997). Another landmark study was the finding that the 

introduction of hTERT into normal human cells led to the extension of their 

lifespan by at least 20 population doublings (Bodnar et al., 1998). This was the 

first study to demonstrate the tantalising link between telomeres and senescence. 

This led to a host of studies on the nature of the telomerase components, and 

eventually led to explosion of studies on a new field by itself – telomere biology. 

1.2 HALLMARKS OF CANCER 

Since the advent of molecular biology, there has been immense improvement in 

our understanding of the molecular events underlying carcinogenesis.  Major 

hallmarks of cancer (Figure 1.3) have been unravelled from a body of work and 

have been reviewed extensively. Cancer cells invariably possess or eventually 
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gain the abilities to sustain incessant growth signalling; inactivate or repress cell 

death signalling; maintain factors needed for perpetual cell division; reprogramme 

their metabolism to survive challenging micro-environments; evade destruction 

by the immune system; induce formation of angiogenic lymph and blood vessels; 

and invade and colonise in tissues of distant organs (Hanahan and Weinberg, 

2000, 2011).Understanding the precursor of all the hallmarks is key to designing 

therapeutic strategies for cancer. 
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Figure 1.3 Hallmarks of cancer Image source: (Negrini et al., 2010) 

1.2.1 Genomic instability 

It has been well-established that telomeres guard chromosome integrity and thus 

genome stability by preventing attack by exonucleases; protection from 

illegitimate recombination; proper positioning of chromosomes in the nucleus; 

and facilitating alignment of chromosomes to allow for meiotic recombination, 

among others (Blackburn, 1991; Greider, 1991, 1996; Hande, 2004; Tomita and 

Cooper, 2007; Zakian, 1995).  Genome stability is also threatened by spontaneous 

mutations that occur owing to rare errors inevitable during DNA replication and 
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proof-reading  and to a greater extent by damage due to by-products of cellular 

metabolism, chronic exposure to environmental agents such as X-rays, UV-

radiation, and various chemicals lead to damaging of cellular structures, mainly 

the DNA (Hoeijmakers, 2009; Hughes and Reynolds, 2005; Johnson et al., 2000; 

Wilson et al., 2008). Mammalian cells deploy hundreds of DNA repair proteins 

belonging to specific pathways, whose activation depends on the type of DNA 

damage and the phase of cell cycle (Figure 1.4) (Hoeijmakers, 2001; Matsuoka et 

al., 2007). 

DSBs are the major threat to a cell’s survival and are often catastrophic to the 

stability of the genome. Unrepaired SSBs can get converted to DSBs as a result of 

replication (Khanna and Jackson, 2001). Classical DSB repair is executed by two 

Figure 1.2 DNA repair pathways in mammalian cells Cells employ specialised 

pathways for repair od DNA damage depending on the type and intensity of 

damage and the phase of cell cycle. Image source: (Hoeijmakers, 2001). 
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major pathways: homologous recombination (HR) and non-homologous end 

joining (NHEJ) (Khanna and Jackson, 2001). HR mediates accurate repair of 

DSBs by using available homologous DNA as template, while NHEJ operates by 

involving ligases to join the broken segments in an error-prone, homology-

independent manner (Hoeijmakers, 2001).  

Cells encountering irreparable DNA damage or possessing critically short 

telomeres undergo senescence or apoptosis. This is ensured by cellular checkpoint 

machinery like p53 and Rb (Evan and Vousden, 2001). Cells that acquire the 

ability to bypass these barriers in this turmoil do so by virtue of mutations in 

checkpoint proteins or by telomere elongation (Evan and Vousden, 2001). This 

underscores the importance of genome maintenance mechanisms in cells. 

Not in all cases are cancer genomes unstable (Bodmer et al., 2008; Muleris et al., 

1995; Sieber et al., 2003). Nevertheless, genomic instability, if not the primer for 

carcinogenesis, accelerates the process in an overwhelming majority of cases 

(Negrini et al., 2010; Sieber et al., 2003). Although somatic mutations are 

rampant in cancers, not all mutations cause genomic instability. Mutations in 

DNA repair factors could lead to lack of repair or erroneous repair, both of which 

would give rise to a mutator phenotype and hence, genomic instability, have been 

shown to be the cause of a majority of hereditary cancers (Hoeijmakers, 2001; 

Loeb, 2001). 
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Oncogene activation in sporadic cancers has been shown to cause genomic 

instability via DNA replication stress. The emergence of genomic instability, 

when coupled with the frequently observed p53-incativating mutations would fuel 

the acquisition of other hallmarks and hence facilitate carcinogenesis (Figure 1.5) 

(Halazonetis et al., 2008; Negrini et al., 2010). 

Most full-blown cancers are genetically unstable and have been shown to be 

sensitive to therapeutic interventions by way of DNA repair inhibition, hitherto 

and thus has been an active area of drug research and development (Ashworth, 

2008; Fong et al., 2009; Jacinto and Esteller, 2007; Shay and Wright, 2002). 

Mounting evidence indicates that genomic instability by way of telomere 

dysfunction results in more aggressive tumours than those arising without 

telomere dysfunction (Artandi and DePinho, 2010). In any case, telomeres would 

be maintained stably during malignant progression, and hence would be over-

Figure 1.5 Temporal order of acquisition of the hallmarks in hereditary and 

sporadic cancers Image source: (Negrini et al., 2010). 
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dependent on telomere stability to survive the challenges thrown by the 

microenvironment along with build-up of inherent and potentially catastrophic 

genomic instability.  

1.3 TELOMERES IN HUMANS 

The biology of telomeres has been an enigmatic one, involving various molecules 

interacting dynamically in an evolutionarily well-trimmed fashion. Telomeres 

consist of tandem hexameric DNA repeats, with specialised protein complexes 

that envelop it also regulating access to the ends to legitimate enzymes involved 

in telomere metabolism. Telomeres also transcribe into repetitive RNA which also 

seems to be playing significant roles in telomere maintenance. Telomeres thus 

form the intersection of DNA, protein, and RNA molecules acting in concert to 

maintain chromosome and genomic integrity. Telomeres are cancer’s Achilles 

heel and manipulating the same in view of therapy is a promising strategy. 

1.3.1 Telomere sequence 

Telomeres are composed of hexameric tandem repeats with each repeat 

containing three or more guanosine residues. Vertebrates, regardless of 

chromosome number or chromosome length, have highly-conserved 5’-

TTAGGG-3’ terminal repeats with a long double-stranded region and a short 

single-stranded overhang or the G-tail (Blackburn, 2000; Collins, 2000; Moyzis et 

al., 1988). The telomeric repeats protects chromosome integrity and also serves as 

buffer for the loss of terminal DNA due to the inherent ‘end-replication’ problem. 

A few telomeric repeats are also found in interstitial chromosome regions (ITS or 

interstitial telomeric sequences) (Azzalin et al., 1997). It has been postulated that 
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ITS not only signifies past evolutionary telomere recombination-based events of 

genetic instability, but also reveal potential sites of future evolutionary 

rearrangement events (Zhdanova et al., 2007). 

Telomeres are separated from the main chromosomal body of coding regions by 

sub-telomeric DNA. Those regions usually consist of clusters of duplicated 

sequences interspersed with canonical telomeric repeats (Lin and Yan, 2008). 

Sub-telomeric regions are characterised by their dynamic nature, being regarded 

as hypervariable, and also highly liable to recombination and amplification 

(Mefford and Trask, 2002). Sub-telomeric regions code for a diverse range of 

proteins, including transcription factors, in addition to harbouring genes that code 

for proteins of unknown functions (Linardopoulou et al., 2005). Since these 

regions are prone to stochastic recombination, it is possible that telomeric 

integrity might also get affected during such events. Interestingly, sub-telomeric 

rearrangements have also been implicated in some mental retardation cases (Flint 

et al., 1995). 

1.3.1.1 G-quadruplex structures  

G-rich stretches of DNA or RNA are known to form stable secondary structures 

called G-quadruplexes in vitro. Intramolecular G-quadruplex just requires a single 

molecule of nucleic acid, while intermolecular G-quadruplexes are formed with at 

least two strands of nucleic acid (Figure 1.6) (Bochman et al., 2012; Burge et al., 

2006). Although they have been shown to exist in vivo in Stylonichia and yeast, 

their existence in human cells has largely been a colloquium with compelling, 
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multiple lines of indirect evidence by means of studies mimicking physiological 

conditions (Paeschke et al., 2008; Paeschke et al., 2005; Schaffitzel et al., 2001). 

However, their existence in vivo in human cells has been only recently 

demonstrated; and the study shows about 25% of the G-quadruplex forming 

regions are at the telomeres (Biffi et al., 2013). Due to the repetitive occurrence of 

guanosine residues, telomeres are prone to forming secondary structures such as 

G-quadruplexes at the ssDNA overhang or the G-tail or during replication when 

they are unwound.  

Emerging evidence that numerous helicases like Dog1 and RTEL assist with the 

removal of secondary structures such as G quartets reveals a variety of ironing-out 

processes that the cell has evolved to counteract the innate problem posed by 

telomeric composition and elsewhere in other G-rich regions too (Cheung et al., 

2002; Ding et al., 2004; Wu et al., 2009). However, recent findings of such 

structures serving to maintain telomeres by occurring transiently in lower 

organisms like yeast and Stylonichia implies an either possibly well-regulated 

roles or evolutionarily suppressed roles for G-quadruplexes (Paeschke et al., 

2005; Smith et al., 2011). Emerging evidence points to the former – the presence 

of potentially G-quadruplex forming regions in more than 40% of gene promoters 

in humans; and hence, a temporally well-regulated role in gene expression 

(Huppert and Balasubramanian, 2007). Strikingly, potential G-quadruplexes seem 

to be concentrated in promoters of proto-oncogenes and seem rare in those of 

tumour suppressor genes (Eddy and Maizels, 2006). G-quadruplex formation at 

telomeric repeat-containing RNA has also been found to be involved in telomere 
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heterochromatinisation (Biffi et al., 2012). It is becoming evident that G-

quadruplex forming regions in the genome are not merely present as coincidence. 

Overall, although G-quadruplexes can form at many places in the human genome, 

the greatest concentration of such regions is at the telomeres, and they have a 

greater propensity to form G-quadruplexes due to favourable energy of 

stabilisation, abundance of long tracts of G-rich repeats, and the more dynamic 

nature of telomere configurations as compared to the rest of the genome (Huppert, 

2010; Lipps and Rhodes, 2009).  

Figure 1.6 Graphical representation of the possible G-quadruplex structures Four guanine 

nucleotides in proximity, associate with each other through Hoogsteen bonding to form a G-quartet. 

Three or more G-quartets from the same strand or two strands of DNA when stacked upon one 

another gives rise to intra- or inter-molecular G-quadruplexes respectively Image cource: (Bochman 

et al., 2012). 
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The study assesses the usefulness of harnessing this tendency of telomeres to be 

folded into stable quadruplexes, in the purview of cancer therapy. 

1.3.2 Telomere maintenance mechanisms 

Telomere length and the integrity of the telomere complex are both important in 

constituting a functional telomere (Blackburn, 2000). Dysfunctional telomeres 

may cause the cell to undergo replicative senescence or apoptosis. If the cell is not 

arrested in a chance event, sister chromatids of the concerned chromosome would 

fuse following replication, owing to lack of functional telomeres (Figure 1.7).The 

cell could possibly continue cycling in a phenomenon called breakage – fusion – 

bridge cycle. 
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Figure 1.7 Telomere-mediated chromosome instability. Fusion of sister 

chromatids about their dysfunctional telomere would lead to biased distribution of 

DNA at anaphase. This results in addition of certain regions in the inverted 

orientation in the chromosome of one daughter cell potentially leading to frame-

shift mutations or gene amplifications/ silencing, while the other cell receives a 

chromosome with potentially large sub-terminal deletions. Image source: 

(Colnaghi et al., 2011). 

 In the absence of arrest, this phenomenon continues as a chain and eventually 

leads to a creation of a mutator phenotype – one that could potentially fuel 

carcinogenesis (Bailey and Murnane, 2006; Loeb, 2001). It has been shown very 

recently that cellular immortalisation happens upon ectopic expression of an 

hTERT mutant incapable of contributing to telomere lengthening or maintenance 

(Miller et al., 2013). Functional telomeres are nevertheless, essential for genome 

maintenance and to prevent mitotic catastrophe in the potentially emerging 

cancerous clones (Hoeijmakers, 2009; Maser and DePinho, 2002; Shay, 1997). 

Hence, tipping this balance over in cancer cells by way of perturbing telomere 
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maintenance mechanisms is a guaranteed strategy, universal to managing any 

rampant cancer. 

1.3.2.1 Telomere length maintenance in human cancer 

Telomere length in humans typically ranges from 5-20 kb. It is well established 

that telomeres shorten with every replication cycle in most somatic cells (Allsopp 

et al., 1995). At some point during carcinogenesis, the cells would experience 

telomere crisis and those that manage to overcome this crisis are able to 

successfully gain replicative immortality and survive amidst other control 

mechanisms in place (Greider, 1998; Tang et al., 1998). In case of normal human 

fibroblasts at crisis, 1 in 10 million clones manage to escape the checkpoints of 

cell cycle arrest and execution of apoptosis independent of checkpoint status, 

mainly governed by telomere length (Figure 1.8) (Shay and Wright, 1989; Wright 

et al., 1996).  
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Figure 1.3 Telomere length dynamics and ageingAs illustrated, germ cells and 

normal stem cells have long telomeres due to telomerase activity. The observation 

that telomerase-positive cancer cells typically have shorter telomeres than normal 

differentiate. Image source: (Harley, 2008). 

1.3.2.1.1 Reactivation of telomerase 

Access to the telomeres and the extent of elongation by telomerase is tightly 

regulated by a sophisticated network of telomere-associated proteins. 

Consequently, approximately 90% of the cases, those clones that reactivate the 

otherwise repressed telomerase go on to become cancer cells (Kim et al., 1994; 

Shay, 1997) (Figure 1.9). 
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Figure 1.4 Cell lineages and telomere length dynamics Stem cells and germline 

cells have a greater and more stable telomere length over one's lifespan, as 

compared to normal somatic cells. In most cases, escape from telomere-crisis and 

progression towards malignancy occurs by telomerase reactivation. Image source: 

(Harley, 2008). 

The temporal frame of telomerase activation in cancers is varied and thus 

postulated to be highly dependent on the tissue of origin, and the 

microenvironment (Hahn, 2001). Telomerase reactivation has been shown to 

happen, in a majority of cases by overexpression due to chromosomal 

rearrangement to be juxtaposed to a highly active promoter, or alternative splicing 

of hTERT (Hahn, 2001).Nevertheless, the intricate network of telomerase 

regulation that would lead to its reactivation is still a vaguely understood 

niche(Shay and Keith, 2008).  

The core of human telomerase holoenzyme consists of a catalytically active 

protein subunit telomerase reverse transcriptase (hTERT) and a template for 
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telomere repeat addition – telomerase RNA (hTR) (Collins, 1996; Feng et al., 

1995; Lingner et al., 1997; Nakamura et al., 1997). Telomerase also contains a 

nucleolar protein, dyskerin that has been shown to affect the assembly of hTR, 

leading to a reduction in telomerase activity (Mochizuki et al., 2004). Dyskerin is 

part of a small nucleolar ribonucleoprotein complex, H/ACA snoRNP, that is 

responsible for hTR processing and maturation, which in turn localises hTR to the 

telomerase holoenzyme complex (Mitchell et al., 1999a; Mitchell et al., 1999b).  

Overall, active telomerase, when assembled, carries out de novo telomeric repeat 

addition with great processivity (acting on the same telomere again and again) and 

activity (acting on several molecules of telomeres after processive addition on one 

molecule). 

Figure1.5 Mechanism of lagging-strand telomere elongation by telomerase 

hTERT harbours the catalytically active site, while the processed hTR (due to the 

H/ACA snoRNPs (the blue and green hinges)) serves as a template for primer 

attachment to the end of the G- tail. Multiple telomerase complexes can act on the 

same telomere or the same complex can process more cycles of repeat addition 

following translocation of the newly synthesised telomere end. Image source: 

(Harley, 2008). 
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1.3.2.1.2 Alternative lengthening of telomeres (ALT) 

The first indications of the presence of telomerase-independent telomere 

maintenance mechanisms arose from observations of prolonged survival of 

several mammalian cell type in telomerase-null background, by a few pioneering 

studies (Hande et al., 1999a; Niida et al., 2000; Rogan et al., 1995). Since then, a 

body of research has shown that most of the 10-15% of cancers that are 

telomerase-negative seems to maintain their telomeres by ALT. ALT activity has 

been observed more frequently in cancers of mesenchymal origin, namely 

glioblastoma multiforme, and osteosarcoma (Cesare and Reddel, 2010; Lafferty-

Whyte et al., 2009). ALT activation is typically characterized by heterogeneity in 

telomere length, with some unusually long telomeres; the presence of ALT-

associated promyelocytic leukaemia (PML) bodies (APBs), which contain 

extrachromosomal telomeric DNA, TRF1 and TRF2 and proteins implicated in 

DNA recombination and replication, including the MRN complex — MRE11, 

RAD51 and NBS — which has been shown to be necessary for APB formation 

and ALT as well (Henson et al., 2002; Yeager et al., 1999; Zhong et al., 2007). 

ALT-positive cells also possess extrachromosomal circular telomeres in the form 

of double-stranded telomeric DNA (t-loops), C-rich strands (C-circles) and G-rich 

strands (G-circles) whose relative abundance has been speculated with a telomere-

trimming mechanism, one that is a result of runaway-telomere elongation by 

recombination events (Griffith et al., 1999; Henson et al., 2009; Pickett et al., 

2009). 
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The staggering increase in recombination events and also the pattern of telomere 

length changes observed in ALT cells, points recombination as a compelling 

mechanism of telomere maintenance by ALT. Although the important proteins 

Figure1.11: Recombination-based models for telomere maintenance by ALT a. 

unequal telomere sister-chromatid exchange (T-SCE) and b. homologous 

recombination-based net telomere lengthening using the sister chromatid as a 

template. Image source: (Cesare and Reddel, 2010). 



26 
 

orchestrating the recombination have been revealed, the exact recombinatorial 

mechanism has not yet been established (Figure 1.11) (Cesare and Reddel, 2010).  

The proteins known to facilitate ALT are present in normal cells as well, where 

they perform normal DNA recombination and repair functions in response to 

DNA damage (Cesare and Reddel, 2010). The mechanism that helps normal cells 

prevent those proteins from engaging in ALT-associated telomere recombination 

is not known. The presence of telomere DNA damage response and the absence of 

chromosome fusions in ALT cells calls for the abundance of intermediate 

telomeres – not entirely dysfunctional (Cesare et al., 2009). Some epigenetic 

modifications are strongly implicated in activation of ALT (Blasco, 2007; 

Lovejoy et al., 2012).  

Telomere elongation by telomerase gives rise to homogenous repeats, unlike that 

observed in ALT (Conomos et al., 2012; de Lange, 2004). Presumably due to this 

reason, and also perhaps due to relatively greater ease of telomerase activation 

over ALT by normal cells due to the selective pressure during telomere crisis, it 

happens to be the major telomere elongation mechanism. 

Although there have been observations of coexistence of ALT and telomerase in 

normal mouse somatic cells, and in human tumour samples recently, and the 

interplay between the both and their effect on telomere homeostasis is yet to be 

brought to light (Neumann et al., 2013; Plantinga et al., 2013; Villa et al., 2008). 

Recently, another mechanism reminiscent of telomere maintenance by 

transposons lacking canonical telomeric sequences in Drosophila was observed a 

in minority of telomerase-negative yeast survivors and named ‘HAATI’ – 
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heterochromatin amplification-mediated and telomerase-independent survivors 

(Jain et al., 2010). The fact that evolutionarily distant Drosophila and yeast 

exhibit the same mechanism, hints at the possibility of existence of such a 

mechanism in humans as well. 

1.3.2.2 Telomeres protection by well-coordinated protein complexes and 

accessory factors 

At the core of the telomeres are some protein complexes and other players that 

expose telomeres to legitimate interacting partners like telomerase, for instance, 

during telomere replication in S phase; and protect the telomeres from those 

factors that trigger DNA damage response illegitimate recombination like the 

MRN complex. Though not all is known of their interactions in various cellular 

states, the past decade has seen the unravelling of many new and unexpected 

factors associated with the telomeres. 

1.3.2.2.1 The shelterin complex: 

The presence of a complex of six proteins that bind to the telomeres specifically 

has been identified and named ‘shelterin’ (Figures 1.12 and 1.13). The subunits in 

mammals – TRF1, TRF2, TIN2, Rap1, TPP1, and POT1 were identified by 

looking for proteins with binding specificity to the telomeric repeats; by using 

sequence homology with their unicellular counterparts; and by searching for 

protein-protein interactions at the telomere, within a span of 10 years (Baumann 

and Cech, 2001; Bilaud et al., 1997; Broccoli et al., 1997; Chong et al., 1995; 

Houghtaling et al., 2004; Kim et al., 1999; Li et al., 2000; Zhong et al., 1992). 
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TRF1, TRF2 and POT1 bind to telomeric DNA with exquisite specificity (Bianchi 

et al., 1999; Broccoli et al., 1997; Court et al., 2005; de Lange, 2005; Palm and de 

Lange, 2008). POT1 binds to the single-stranded G-overhang and to the single-

stranded region of a telomeric secondary structure, elaborated below (Baumann 

and Cech, 2001; Lei et al., 2004; Loayza and De Lange, 2003; Palm and de 

Lange, 2008). 

 

 

While TRF1 and TRF2 do not interact with each other, and bind to the telomeres 

independently, TRF1 interacts with and improves the association of POT1 to the 

Figure 1.6 Shelterin – The Border Security Force a. Shelterin also protects 

the telomeres by facilitating the formation of a secondary structure – with T-

loop (telomere loop) and D-loop (displacement loop). b. TRF1 and TRF2 bind 

directly to the dsDNA independently, while POT1 binds specifically to the 

ssDNA overhang or the G-tail. RAP1 associates with TRF2; TIN2 serves as a 

tether between TRF1 and TRF2; and TPP1 localises POT1 to the G-tail. Image 

source: (Martinez and Blasco, 2011) 
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single-stranded region (Loayza and De Lange, 2003). Numerous DDR proteins 

that also serve to maintain telomeres associate with TRF2 at the telomeres 

(Blasco, 2005; Smogorzewska and de Lange, 2004). TIN2 acts as the fulcrum 

between the double-strand binding and the single-strand binding subunits. It binds 

TRF1 and TRF2 independently and also to the TPP1-POT1 complex (Chen et al., 

2008; Kim et al., 2004; Ye et al., 2004).  TPP1 while, not binding to telomere 

directly, recruits POT1 to the telomeric G-overhang by binding to it (Chen et al., 

2007; Kibe et al., 2010). In addition, their interaction has also been shown to 

recruit telomerase to the telomeric single-stranded overhang (Xin et al., 2007). 

Intact POT1-TPP1 telomere complex has been found to increase telomerase 

processivity during telomere extension (Wang et al., 2007). The interaction of 

RAP1 with TRF2 enables its association with telomeres. RAP1 seems to be 

dispensable for telomere capping but its specific function is largely unknown 

(Celli and de Lange, 2005; Li and de Lange, 2003; Li et al., 2000). Shelterin 

proteins, apart from their interactions with each other and also with many other 

factors ensure dynamic regulation at the telomere. Recent evidence has suggested 

that multiple POT1-TPP1 complexes along the telomeric single-strand overhang 

results in a compact and ordered structure. There is emerging evidence that intact 

shelterin complexes along the length of telomeres are accompanied by significant 

compaction of the telomeres, and this seems to mute DNA damage response at the 

telomeres (Baker et al., 2011; Bandaria and Yildiz, 2013; Deng et al., 2009; 

Martinez et al., 2010; Paeschke et al., 2008; Poulet et al., 2009; Schoeftner and 

Blasco, 2009).  
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One problem that the telomere structure poses is the prevention of DDR factors 

from recognising the G-tail or ssDNA overhang at the telomere as a canonical 

DNA break. Analysis of human telomeric DNA revealed that the telomere, 

instead of the expected dsDNA region followed by an ssDNA overhang, exhibited 

a closed configuration in the form of a loop, called the ‘t-loop’ or the telomeric 

loop (Griffith et al., 1999). There is compelling evidence of a strand invasion 

mechanism of the G-tail into the intact dsDNA region, due to the observation of a 

displaced strand that forms a displacement loop or the ‘D loop’. 

Figure 1.13: Shelterin – the gatekeeper that prohibits access to DDR 

orchestrators. A. TRF2 and B. POT1 are crucial for the integrity of the t-loop 

structure. TRF2 deficiency activates ATM kinase-mediated DDR, while POT1 

deficiency activates ATR kinase-mediated DDR. Image source: (de Lange, 2009). 
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 The t-loop structure seems to be the solution to prevent access of DNA damage 

sensors with DNA-end binding ability, to the telomeres (Figure 1.13). By 

preventing the Ku 70/80 complex from loading itself to the terminus, NHEJ 

activation is thwarted. Also, protection from MRN complex to bind to the 

terminus means no activation of ATM kinase as well (de Lange, 2009). TRF2 

emerges as a linchpin in this context, by virtue of having the innate ability to 

induce t-loop formation of naked telomeric DNA in vitro and also due to its 

ability to repress ATM and NHEJ at the telomeres (Griffith et al., 1999; Poulet et 

al., 2009; Stansel et al., 2001). It is known that while both RPA and POT1 have 

the ability to bind to the G-tail, RPA is usually detectable at the telomeres only 

when POT1 is depleted at the telomeres (Barrientos et al., 2008; Denchi and de 

Lange, 2007). Since RPA is known to activate an ATR-mediated DNA damage 

response when bound to any ssDNA strand, it has been speculated that the 

association of POT1 to the telomeric ssDNA protects it from the activation of the 

ATR pathway (de Lange, 2009). Unlike telomerase-deficient mice (TERC and 

TERT knock-out mouse models) that survive until they reach adulthood, thorough 

depletion of at least TRF1, TRF2, POT1a, TPP1 or TIN2 results in early 

embryonic lethality, while abrogation of RAP1 does not affect mouse viability 

(Celli and de Lange, 2005; Celli et al., 2006; Chiang et al., 2004; Hockemeyer et 

al., 2006; Karlseder et al., 2003; Kibe et al., 2010; Sfeir et al., 2010; Wu et al., 

2006). Components of the shelterin, when deregulated, result in changes in 

telomere length, depending on the shelterin protein and the nature of deregulation 
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(Kim et al., 1999; Loayza and De Lange, 2003; Smogorzewska et al., 2000; van 

Steensel and de Lange, 1997). Moreover, TRF1, TRF2, POT1 and TIN2 have 

been documented to be overexpressed in some cancers and TRF2 has been 

implicated as a major factor in some events of carcinogenesis (Blasco, 2005). This 

underscores the importance of understanding the biology of the shelterin complex 

and manipulating it in cancer therapy. 

The understanding of more intricate details of the mechanisms by which the 

shelterin serves to shelter the telomeres, which are still being studied, could lead 

to building more sophisticated models for the regulation of access to various 

factors to the telomeres in various cellular contexts. 

1.3.2.2.2 CST (Ctc-Stn1-Ten1) complex 

One recent scientific discovery based on the approach of looking for human 

homologues of protein complexes found in yeast was that of the CST complex at 

the telomere (Miyake et al., 2009; Surovtseva et al., 2009). CST complex 

consisting of CTC1, STN1 and TEN1, and acting independently of shelterin 

complex, has been shown to ensure smooth replication at the telomeres and 

replication restart after stalling of the replication fork (Stewart et al., 2012). STN1 

has been shown to be required by DNA-polymerase α for complete extension of 

the telomere following telomerase action (Wang et al., 2012). CST complex has 

also been shown to ensure that telomerase acts only once per cell cycle on each 

telomere (Chen et al., 2012). 
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1.3.2.2.3 HOT1 (Homeobox telomere-binding protein 1) 

hTERT and hTR are brought together and active telomerase assembled in Cajal 

bodies (Jady et al., 2006). However, the exact mechanism by which telomeres are 

recruited to the proximity of telomerase in the Cajal bodies is not well understood. 

HOT1, a newly identified protein that has been shown to directly bind to the 

telomeres, seems to be aiding in localising telomere sequences to Cajal bodies 

that contain TERT (Kappei et al., 2013; Tarsounas, 2013). 

CST complex, though shown to bind to the telomeres independently of POT1, has 

been surmised to interact with shelterin to protect the telomeres (Giraud-Panis et 

al., 2010; Miyake et al., 2009). Thus, the complete understanding of all 

interactions of the telomeric proteins is being revealed by numerous recent studies 

and the field is only expanding. 

1.3.2.2.4 TERRA (Telomere repeat containing RNA) 

Telomeres are transcriptionally active regions, giving rise to long non-coding 

RNA called TERRA (Azzalin et al., 2007). TERRA levels are tightly regulated 

through the cell cycle as TERRA has been shown to affect the replication of 

leading-strand telomeres (Le et al., 2013). TERRA has also been found to 

orchestrate the binding of POT1 and RPA to the telomere ssDNA and to ensure 

that POT1displaces RPA promptly after replication is complete as RPA is known 

to activate DNA damage response (Flynn et al., 2011).Thus, TERRA seems to 

play an important role too, in regulating telomere capping state, depending on the 

cellular context. Our understanding about the purpose of TERRA and its crosstalk 

with the telomere-protecting complexes is only increasing. 
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1.3.2.2.5 DNA repair factors and telomere maintenance 

An early observation that formally linked telomeres with DNA damage response 

mechanisms included an apparent telomere dysfunction phenotype in cells from 

Ataxia telangiectasia (AT) patients (Metcalfe et al., 1996). In a study, the first of 

its kind, cells from mice that lacked ATM exhibited accelerated telomere 

shortening, accumulation of extrachromosomal telomeres and chromosome 

alterations (Hande et al., 2001). Eventually, ATM, PARP1, DNA-PKcs, Ku70/80, 

and XRCC4, among others were all implicated in the maintenance of telomere 

function, in addition to their role in DNA repair (d'Adda di Fagagna et al., 1999; 

Gilley et al., 2001; Hande, 2004; Hsu et al., 2000).The MRN complex, that is 

known to bind to DNA and activate an ATM-mediated DDR, has been shown to 

associate with TRF2 at the telomeres (Zhu et al., 2000). 

One possible reason for this intriguing relationship could be that it may allow for 

efficient control over cell cycle progression (Gasser, 2000).It also points to the 

possibility that the DDR proteins, when acting at the telomere at well-regulated 

cellular contexts such as telomere replication, do not transduce their signal 

beyond a certain point. Moreover, at least some of the DDR proteins implicated at 

the telomeres have some novel function, independent of their checkpoint 

activation and DDR functions (Francia et al., 2007). It is also possible that the 

stoichiometry of DDR proteins versus the shelterin complex determines the 

balance between telomere protection and initiation of unrestrained damage 

response. Also, the observation that there is no striking structural commonality 

among all the DDR proteins in telomere maintenance points to the possibility that 



35 
 

telomere maintenance is not a discrete function of the cell’s machinery, but more 

integrated with DNA maintenance as such evolutionarily(Slijepcevic, 2006).The 

exact mechanisms by which many of these factors act to serve in telomere 

maintenance in various contexts of cell physiology is still an active area of 

research. 

1.3.3. DNA damage response at the telomeres  

Studies in senescent cells reveal that telomeres mounting DNA damage-based 

checkpoint activation seems to be the main trigger behind a senescence 

programme (d'Adda di Fagagna et al., 2003; Herbig et al., 2004). Even a single 

DSB at the telomeres of mouse embryonic stem cells seems to have a great effect 

on chromosomal instability, as opposed to that in interstitial DNA (Zschenker et 

al., 2009).  

The execution of an NHEJ response at the telomeres is controlled greatly by ATM 

kinase, unlike that in interstitial DNA where ATM regulates NHEJ to a lesser 

extent; and a failure to activate NHEJ at the telomeres and sub-telomeric regions 

results in large deletions and gene rearrangements, leading to catastrophic 

chromosomal instability in human cells (Fumagalli et al., 2012; Miller et al., 

2011; Muraki et al., 2012). Damage to interstitial DNA is usually completely 

reparable; but telomeres exhibit an inability to repair DSBs and also elicit 

persistent DDR (Fumagalli et al., 2012; Kulkarni et al., 2010; Muraki et al., 

2012). Thus, multiple lines of evidence have been accumulating over the recent 

past about damaged telomeres mounting a unique DDR profile as compared with 

a damaged interstitial DNA segment. 
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Nevertheless, targeting these DDR factors in the purview of cancer therapy may 

serve to dampen canonical DDR as well as weaken telomere protection, even in 

cancers with stable genomes. Thus, despite the lack of sophisticated 

understanding behind the intertwined fates of DDR factors and telomeres, 

targeting telomere maintenance and DNA repair in cancer cells has been a 

strategy much resorted to in the past decade of research, and is the focus of the 

study as well. 

1.4 TELOMERES AND TELOMERASE IN HEALTH AND DISEASE 

Telomere states and telomerase activity have been implicated in wide range of 

disorders, some of them even rendering one susceptible to cancer. Variant 

telomere repeats have been shown to be hallmarks of cancers exhibiting ALT 

(Conomos et al., 2012). Mutations in the shelterin proteins have been implicated 

in a range of diseases (Armanios et al., 2007; Martinez and Blasco, 2011; Savage 

et al., 2008). Telomere length has been associated with a staggering variety of 

disorders and susceptibility to various diseases (Armanios and Blackburn, 2012; 

Zhu et al., 2011). Mutations in the components of telomerase holoenzyme have 

also been observed to give rise to cancer susceptibility syndromes (Perona et al., 

2009). Mutations in components of the telomeres seem to have a greater 

penetrance than that of those in components of telomerase holoenzyme, in the 

aetiology of a wide range of diseases (Figure 1.14). 

Telomerase activity has been shown to be diagnostic and prognostic marker for a 

wide range of cancers. (Reviewed in (Hiyama and Hiyama, 2002)) 
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Figure 1.14 Telomeres and telomerase – aetiology of cancer susceptibility 

syndromes A. Penetrance and environmental contribution B. Cancer Risk (as 

measured by odds ratio) and Telomere erosion. Image source: (Calado and Young, 

2009) 
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Thus, cancer cells maintain their telomeres more vigorously and in a way that is 

different from normal somatic cells. Targeting telomere homeostasis has been a 

promising strategy in cancer therapy as normal cells would presumably take more 

time to get affected as compared to cancer cells.  

1.4.1 Targeting Telomere-Telomerase homeostasis in cancer: 

Several strategies have been resorted to, that affects telomerase-positive cells.  

 

Figure 1.15 Strategies for targeting telomere maintenance in cancer cells  

The above strategies are expected to work only in telomerase-positive cancers. 

Although clinical evidence is lacking, studies in mouse models and transformed 

cell lines have shown that survivors of long-term anti-telomerase treatment in 

cancer can adapt to ALT to maintain their telomeres and become resistant to 

telomerase inhibition (Cesare and Reddel, 2010; Chang et al., 2003; Chin et al., 

1999; Hu et al., 2012). Image source: Harley, 2008. 

 

Telomere-targeted treatment strategies may serve to affect both, telomerase-

positive and telomerase-negative tumours alike. Some of the strategies include the 
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use of G-quadruplex stabilising ligands, and targeting protein-protein interactions 

at the telomeres. However, not all is known of such interactions in various cellular 

contexts yet, and is conceivably, uncharted territory (Bilsland et al., 2011). 

1.4.1.1 G-quadruplex stabilising ligands 

To reiterate, G-quadruplex structures have been observed to form at many places 

in the genome, and regulated temporally in contexts of gene transcription, DNA 

replication, RNA biogenesis, etc. (Maizels and Gray, 2013) However, telomeric 

G-quadruplexes form with greater ease and telomeres can form more robust ones. 

Support for this view comes from the fact that many well characterised G-

quadruplex ligands like RHPS4, BRACO-19, and Telomestatin, among others 

exhibit minimal toxicity to normal cells, while largely affecting cancer cells by 

inducing telomere-dysfunction (Burger et al., 2005; Kim et al., 2002; Leonetti et 

al., 2004). Moreover, telomere maintenance amidst typically intermittent periods 

of genomic instability is crucial for the survival of cancer cells (Ding et al., 2012; 

Shay and Wright, 2002). A wide variety of quadruplex conformations can form 

naturally in a cell, depending on the cellular milieu (Phan, 2010). Hence, in 

principle, the addition of drugs that stabilise a specific conformation of 

quadruplex would ensure specificity and minimise toxicity (Huppert, 2010). 

Therapeutic intervention by adding ligands that can stabilise G-quadruplexes have 

shown to result in telomere dysfunction and inaccessibility of telomerase to 

critically short telomeres and hence a proven therapeutic modality in cancer 
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treatment, either alone or in combination with conventional therapy (Figure 1.16) 

(Read et al., 2001; Shay and Wright, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 Representative mechanism of action of telomere-G quadruplex-

stabilising agents Typically, G-quadruplex stabilising ligands could affect the 

access of telomerase to telomere, thereby inhibiting its activity. In addition, by 

virtue of telomeric G-quadruplex formation, they could even cause telomere length-

independent dysfunction, and rapid induction of senescence or apoptosis.   

Image source: (Neidle and Read, 2000) 

apoptosis.Image source:(Neidle and Read, 2000) 
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Overall, though the use of G-quadruplex ligands is a great avenue for cancer drug 

discovery, few drugs have advanced to the clinic. Quarfloxin, a drug that works 

by selectively inhibiting rRNA synthesis (usually highly upregulated in cancers) 

is the only one of its kind in clinical trials right now (Drygin et al., 2009). The 

main problem behind the lack of quadruplex ligand in the clinic has been, in the 

first place, the unavailability of in vivo data for many quadruplex-ligands that 

showed desirable inhibition in vitro (Balasubramanian et al., 2011). This problem 

has been compounded by the advancement of in silico modelling of drug-DNA 

interactions, as a result of which, many more potential drug candidates are being 

rolled out.  

Among the telomeric quadruplex-stabilising ligands, Telomestatin – a highly 

specific quadruplex ligand isolated from Streptomyces anulatus – has been the 

most promising drug of its class, but has had problems in terms of bioavailability 

due to its neutral charge, and mass production efforts (Monchaud et al., 2010; 

Shin-ya et al., 2001). While xenograft models of RHPS4 and BRACO-19 showed 

excellent telomeric quadruplex stabilisation with minimal toxicity, their 

progression to the clinic has been thwarted by the lack of some characteristics that 

a successful drug must possess, and also due to shifting focus away from 

telomeric quadruplex ligands due to the emergence of other classes of promising 

drugs (Balasubramanian et al., 2011).  
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1.4.1.1.1 TMPyP4 – adopted and then left behind 

Porphyrins are a group of naturally occurring compounds with a porphine ring as 

the common moiety and excellent ability to bind metals. They are present in 

various forms in cells, and associated with a range of biological functions, e.g., 

drug efflux pumps on the cell membrane, and constituting haemoglobin, etc. 

Porphyrins, which can be either anionic or cationic, have been used as 

photosensitisers photodynamic therapy of some superficial cancers, owing to their 

specific tumour localisation (Carvalho et al., 2002).  

Synthesised cationic porphyrins are the ones of therapeutic relevance for use as 

nuclear localising, DNA-binding, G-quadruplex stabilising ligands that 

preferentially affects dividing cells (Han et al., 1999; Shibata et al., 1998). Among 

the numerous structural isomers analysed in a panel of pioneering efforts to 

identify promising G-quadruplex ligands, 5,10,15,20 tetrakis-(N-methyl 4-

pyridyl)porphine or TMPyP4 emerged the most superior, in terms of protection of 

telomeric DNA G-quadruplexes from unwinding by helicases, inhibition of 

telomerase activity, downregulation of hTERT and c-MYC in human cancer cell 

lines, and extension of survival of tumour-bearing mice (Han et al., 2001; Hurley 

et al., 2000; Read et al., 2001). 

Although TMPyP4 exhibits excellent affinity to quadruplex DNA, in vitro studies 

showed that TMPyP4 has been shown to exhibit only modest specificity for 

quadruplex DNA over duplex DNA raising concerns over its imminent cytotoxic 

effects (which is perhaps why no thorough study of its biological effects on 
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cancer cells has been carried out) (De Cian et al., 2005). The effects of TMPyP4, 

when carried out in a later study, under molecular crowding conditions that 

simulates a more realistic intracellular microenvironment shows high degree of 

specificity to quadruplexes (Martino et al., 2009; Monchaud et al., 2010).  

While there have been a few studies on TMPyP4 showing promise hitherto, 

unfortunately there has not been a thoroughly consistent investigation on its 

effects on telomere homeostasis, leading to cancer-specific death. While most of 

them are prima facie results on cell fate, in secondary cancer cell lines, only one 

study using a tumour-bearing xenograft mouse model shows convincing effects 

on extending its lifespan, albeit lacking mechanistic insights (Table 1).
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Table 1 Summary of key findings on quadruplex-related effects of TMPyP4 in cancer cells 

 

Study Cell typeline used    Finding Dose range used  

(μM) 

Kim et al., (Kim et al., 

2003) 

SW39, SW26 TMPyP4 acts against telomerase negative cancer cells too 1 for 8 weeks 

Parkinson et al., 

(Parkinson et al., 2007) 

SW39, SW26 TMPyP4 forms anaphase bridges  between telomeres of different 

chromosomes 

60 

Izbicka et al., (Izbicka 

et al., 1999) 

Breast, prostrate, 

lymphoma, normal 

TMPyP4 induces G2M arrest, causes chromosomal aberrations, 

telomerase inhibition, preferentially localizes in tumor cell nucleus 

1, 2.5, 5, 10, 50; for 

upto15 days 

Mikami-Terao et al., 

(Mikami-Terao et al., 

2008) 

Leukemic K562, 

K562/hTERT 

TMPyP4 reduced hTERT, c-myc, expression, increased p21, p57, 

p38 MAPK 

100 for 48 hrs 

Mikami-Terao et al., 

(Mikami-Terao et al., 

2009) 

Retinoblastoma TMPyP4 causes telomere shortening, increases MAPK, phospho 

p53, induces apoptosis ; S, G2/M arrest 

10, 20, 40, 60 for 

48/72 hrs 

Shammas et al., 

(Shammas et al., 2003) 

Myeloma TMPyP4 decreases telomerase activity, causes telomere shortening, 

growth arrest,  death by apoptosis 

1, 5, 10, for upto28 

days 

Aviezer et al., (Aviezer 

et al., 2000) 

CHO cells , in vivo 

xenograft mouse model 

EGFR, FGFR gets reduced by TMPyP4 and analogues 25mg/kg for 5 

weeks 
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1.5 MODEL OF STUDY 

Malignant gliomas make up approximately 70% of the 22,500 new cases of 

malignant primary brain tumours diagnosed in adults in the United States per 

year(Wen and Kesari, 2008). Despite being relatively uncommon, 

medulloblastoma and malignant gliomas account for disproportionately high 

morbidity and mortality. Glioblastoma multiforme accounts for approximately 60 

to 70% of malignant gliomas, and also the worst prognosis among brain tumours 

(Wen and Kesari, 2008). The standard of care for GBM is Stupp’s regimen, which 

is maximal surgical resection followed by radiotherapy and concomitant or 

adjuvant chemotherapy with Temozolamide, a DNA alkylating agent (Stupp et 

al., 2005). However, while the median survival rate for people with no treatment 

is around 2 months, the rate went up to only a paltry 7 months in those who 

received either radiotherapy or chemotherapy alone, and a modest 15 months in 

those who received both radiotherapy and temozolamide (Yabroff et al., 2012). 

Although some patients are ineligible for surgical resection, owing to tumour 

inaccessibility or the criticality of the affected lobe, Stupp’s regimen works better 

in those with surgical resection (Desjardins and Friedman, 2012). Even this adds 

only a few months’ survival, nonetheless. 

The past few years has ushered in an era of targeted therapy, where single-

molecule treatment has come to the forefront of treating some cancer subtypes 

with promise. With respect to growth factor inhibition, chances of response is 

bleak, however, with a response rate of 0-15% and no prolongation of 6-month 

progression-free survival upon treatment of malignant glioma with single agents 
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(Sathornsumetee et al., 2007). Another problem with treating brain tumours, in 

general, has been that of the efficiency of drug delivery across the blood-brain 

barrier. With more targeted therapeutic agents being developed to respond to 

many glioma subtypes, and with better drug delivery methods being invented, the 

search is on to make a giant leap towards significantly extending disease-free 

survival of glioblastoma, and the hint could lie in attacking cancer’s Achilles heel 

– which is stirring up genetic instability. 

1.6 RATIONALE BEHIND THE STUDY 

Cancer-related deaths have gone down by 20% in the past two decades, and five-

year survival rates increased to 68% from 49% in the 1970s in the U.S. (Siegel et 

al., 2013). There have been quite a few drugs that remarkably reduced progression 

of a few cancer sub-types for a while, only for the cancers to evolve into a 

resistant one eventually. Combination therapeutics has not turned out in the clinic 

as envisaged either. As such, DNA alkylating chemotherapeutics are still the 

mainstay of treatment, apart from surgical resection and radiotherapy. Although 

they work well to debulk tumours, their side effects on normal fast-proliferating 

cells in many cases, outweigh their benefits. Hence, there is a fervent need for a 

turnaround in the way we manage cancers. The last two decades has seen the 

realisation of genomic instability as a main underlying event during 

tumourigenesis in an overwhelming majority of cases. More importantly, from 

extensive research on cancer cell lines and animal models, it has emerged that 

perturbing the same could potentially cause catastrophic genomic rearrangements 

which would be too much for the cancer cells to adapt. However, the anticipated 
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effects on normal cells in the tumour is not entirely reassuring, given the past 

record of cancer treatments that had promise aplenty but proved little. 

Concurrently though, science has seen the field of telomere biology burgeon into 

one of the most enigmatic systems in biology. Although not all is known yet, 

about all the interacting players at the telomeres and in all cellular contexts, it is 

already evident that this is the direction that cancer therapeutics should explore 

next. Ironically, as is often the case in biology, the same aspect that drives a 

strong selection programme for cells on their way to becoming full-blown cancers 

- telomere dysfunction-induced genomic instability, if induced in cancer cells, 

would cause mitotic catastrophe that is nearly impossible to cope with. Ways of 

inducing telomere dysfunction seem, in principle at least, to be highly specific to 

cancer cells, keeping a therapeutic window in mind. On that note, there have been 

just a few drugs in clinical trials and the need for more is only getting exigent by 

the day. 

This study investigates the mechanism of one particular small molecule, TMPyP4 

that though has shown to be promising in its specificity towards stabilising a 

secondary DNA structure – the G-quadruplex- at the telomeres and holds promise 

for inducing telomere dysfunction in cancer cells, has been left rather abandoned. 

Glioblastoma multiforme and medulloblastoma, the two high-grade malignant 

brain tumours for which the standard-of-care essentially adds only a few months 

to two years, is the model of the study. 
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1.7 HYPOTHESES OF THE STUDY 

TMPyP4, by virtue of its ability to stabilise G-quadruplexes (a secondary DNA 

structure) predominantly at the telomeres, can render telomeric architecture 

defunct, thereby affecting shelterin binding and telomerase access to the 

telomeres, eventually signalling DNA damage response, cell cycle arrest, and 

senescence or apoptosis. Since, it is the cancer cells that maintain their telomeres 

just above the critical set-point in order to survive, TMPyP4, like other telomere-

based agents are expected to act with minimal toxicity. 
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1.8 OBJECTIVES OF THE STUDY 

1. Since TMPyP4 has been shown to be a telomere-perturbing molecule in 

vitro, the study’s first objective is to assess the ability ofTMPyP4 in the 

cancer cells, in affecting telomerase activity, and telomere maintenance 

over short term, and whether that leads to DNA damage signalling, cell 

cycle arrest, and cell death, largely in cancer cells. 

2. Telomeres and DNA repair orchestrators ATM and DNA-PK are more 

intertwined functionally, than previously ever thought, with recent 

research uncovering their importance in regulating signalling events 

downstream of telomeric DNA damage. The study would ascertain if 

blocking DNA-PK and ATM kinase pathways, following TMPyP4 

treatment would be catastrophic to the cancer cells, thereby highlighting 

the need for rational combinational strategies to tackle cancer. 

3. There has been a tantalising link between telomere destabilisation and 

radiosensitisation, though it has not been exploited in the clinic, yet. 

Therefore, the study will assess if TMPyP4 could potentially sensitise the 

cancer cells to gamma-radiation. 

4. Since, the ultimate promise for such a drug lies in exhibiting its effects 

over a therapeutically relevant treatment regime, the study would 

investigate the effects of chronic, non-cytotoxic low-dose of TMPyP4 on 

telomere dysfunction in the cancer cells by affecting at the least, telomere 

extension by telomerase, and most likely the binding of shelterin proteins 

to the telomere as well. 
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Overall, this study aims to ascertain if TMPyP4 continues the promise it 

showed in in vitro studies, in vivo as well, in human-derived brain tumour 

cells. This would then pave way for studies in animal models, and then 

modifications to its side chains to reduce any unknown toxicity and 

treatment, and hopefully to clinical trials.
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2. MATERIALS AND METHODS 

2.1 Experimental design 

The study is divided into three phases of investigation into the mechanism of the 

G-quadruplex ligand TMPyP4 in cancer cells. 

The first phase was that of exploring the efficacy of TMPyP4 over a broad range 

of cell types – human-derived medulloblastoma (ONS76), and glioblastoma 

(KNS60) cells, with a normal lung fibroblast cell type (IMR90). This involved 

proof-of-principle studies with doses cytotoxic to the cancer cells but not the 

normal control, IMR90 over short-term of treatment (48 hours). Since the next 

phases of study were more focussed on the underlying mechanisms, the model of 

study was restricted to glioblastoma cells in order to increase the chances of 

potentially unravelling a cancer-specific mechanism of TMPyP4. 

The second phase of study involved the testing of the promise of TMPyP4 in 

sensitising cancer cells to radiation-induced cell death; and also proof-of-principle 

studies on the potentiation of TMPyP4 acting in cancer cells with impaired DNA 

repair response – that mediated by ATM kinase and DNA-PK. The model of 

study for the radiosensitisation and ATM kinase inhibition parts were KNS60 and 

A172 cells; and that of DNA-PK inhibition study were M059K and M059J cells 

which starkly differ in their ability to repair of DNA by DNA-PK-dependent 

NHEJ. 
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The third phase of study, also in KNS60 and A172 cells involved studying the 

mechanism of telomere perturbation in glioblastoma cells at non-cytotoxic 

concentrations over a few weeks, mimicking a therapeutic window in the clinic. 

2.2 Treatment agents 

TMPyP4 (Merck, Germany) was obtained as a 25 mg powder and reconstituted to 

10 mM with PBS. This was the stock from which the necessary working stock 

was made for all experiments involving TMPyP4. 

KU-60019 (Selleck Chemicals, USA), the ATM kinase inhibitor used was 

obtained as a 10 mg powder and reconstituted with DMSO to a concentration of 

10 mM. Further serial dilutions needed to make the working stock were made 

using PBS as the diluent. 

NU7026 (Merck, Germany), the DNA-PK inhibitor was obtained as a powder and 

reconstituted to 10 mM using DMSO. Similar to KU-60019, further serial 

dilutions needed to make the working stock were made using PBS as the diluent. 

For the study of γ-radiation, the irradiator used was Gammacell 40 Exactor (Best 

Theratronics Ltd., Canada) with a Co-60 source and a dose rate of 1.16 

Gy/minute.  

For chromosome visualisation experiments, GIBCO Karyomax Colcemid (Life 

Technologies, USA) was used to break the mitotic spindle and arrest cells at 

metaphase.  
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2.3 Cell types and cell culture 

Human glioblastoma multiforme cell lines A172 (Japanese Collection of Research 

Bioresources, JCRB0228), KNS60 (Institute for Fermentation, IF050357), and 

medulloblastoma ONS76 (Institute for Fermentation, IF050355) were obtained 

from Dr. Masao Suzuki, National Institute for Radiological Sciences, Chiba, 

Japan. Two more human glioblastoma multiforme cell lines M059K (ATCC 

CRL-2365) and M059J (ATCC CRL-2366) were obtained from Dr. Susan Loong, 

National Cancer Centre, Singapore. All the above-mentioned cells were cultured 

in DMEM (Invitrogen, Life Technologies, USA), supplemented with FBS 

(Hyclone, Thermo Fisher Scientific, USA) (10% v/v in the final mix) and 100 

U/ml Penicillin/ Streptomycin (Pan Biotech, Germany) (1% v/v in the final mix). 

Early passage normal lung fibroblasts IMR90 was obtained from Coriell Cell 

Repositories, USA and cultured in minimum essential medium with Earle’s salt, 

MEM (Invitrogen, Life Technologies, USA), supplemented with MEM essential 

amino acids (Invitrogen, Life Technologies) (2% v/v in the final mix), 10 mM 

non-essential amino acids (Invitrogen, Life Technologies, USA) (1% v/v in the 

final mix), MEM vitamin solution (Invitrogen, Life Technologies, USA) (1 % v/v 

in the final mix), FBS (15% v/v in the final mix), and 100 U/ml Penicillin/ 

Streptomycin (1% v/v in the final mix). All cells were maintained in a humidified 

incubator at 37°C and 5% CO2, the cell density was kept below 80% generally 

and culture medium was changed every two days for long-term treatment studies. 

Subculturing was facilitated by detachment of the cells using a ten-fold dilution of 

trypsin-EDTA solution (0.05% stock) (GE Healthcare, UK). 
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2.4 Assays to study cell fate 

The study used a wide range of assays to assess cell fate, such as methods to study 

the metabolic activity, membrane permeability, and caspase activity to find out 

the effect of a particular treatment on cell viability and the activity of apoptosis of 

the cells. Flow cytometry was used to assess the effect of treatment on the cell 

cycle. 

2.4.1 MTT assay 

This assay works on the principle that MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide), a yellow dye that permeates living cells, is reduced 

to purple formazan by active mitochondrial reductases and the extent of this 

conversion is proportional to the proportion of viable cells in the mix.  

About 2,000 cells were plated in 96 well plates and necessary treatments carried 

out along with media to a final volume of 200 µl. At the end of the time point, the 

old media was replaced with a final concentration of 1mg/ml of MTT in 200 µl of 

fresh DMEM. The plate was incubated at 37C in a humidified chamber for 2.5 

hours. Typically, the converted formazan product violet crystals would be 

observed in the media and need to be solubilised by the addition of a good non-

polar solvent, preferably DMSO (50 µl). The absorbance was read at 570 nm 

using Tecan SpectraFluor Plus multi-well plate reader (Tecan, Switzerland). The 

viability is then expressed as relative absorbance with respect to the appropriate 

control. 
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2.4.2 Cell Titer Glo assay kit 

Another method used in the study for measuring cell viability was the Cell Titer 

Glo assay kit (Promega, USA) that uses a reagent that penetrates the cells and 

binds to ATP, giving out a luminescent signal. Since ATP in dying cells is rapidly 

degraded by ATPase, the amount of ATP detected is taken to be proportional to 

the number of viable cells present in a population of cells. About 2,000 cells were 

plated in white-walled 96 well plates preferably, and necessary treatments carried 

out along with media to a final volume of 100 µl. After the time-point, 100 µl of 

the supplied reagent was added to each well, then shaken for about 5 minutes and 

let to settle for another 5 minutes on the bench. Once the luminescence stabilises, 

the reading was taken using Tecan Infinite 200 Pro multi-well plate reader. The 

luminescence was read using Tecan SpectraFluor Plus multi-well plate reader 

(Tecan, Switzerland). The viability is then expressed as relative luminescence 

with respect to the appropriate control. 

2.4.3 Apotox Glo Triplex assay kit 

Apotox Glo Triplex assay (Promega, USA) assesses cell viability, cytotoxicity 

and caspase activity simultaneously and hence was used to determine the mode of 

cell death of the cancer cells upon treatment with TMPyP4. The principle behind 

the measurement of the first two parameters is the addition of substrates specific 

to cleavage by certain proteases – a cell permeant fluorogenic substrate to 

measure the cell viability, a cell-impermeant fluorogenic substrate to measure the 

activity of proteases released from a dying cell upon loss of membrane integrity. 

Caspase activity is measured by the addition of a luminogenic Caspase 3/7 
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substrate. About 2,000 cells were plated in black-welled 96 well plates preferably, 

and necessary treatments carried out along with media to a final volume of 100 µl. 

After the time-point, 20 µl of the supplied viability/ cytotoxicity substrates were 

added together in each well and incubated at 37°C for 30 minutes, followed by 

reading fluorescence at 400Ex/505Em for viability and 485Ex/520Em for 

cytotoxicity. Once the readings are taken, 100 µl of the caspase reagent is added 

to all the wells and incubated for 30 minutes at room temperature. Luminescence 

reading was taken, again using Tecan SpectraFluor Plus multi-well plate reader 

and the values were expressed in terms of absolute units and compared among 

treatments  

2.4.4 Population doubling analysis 

The rate of doubling of a cell population is a good index of its proliferative 

capacity and is a useful measure in long-term treatment studies. At the end of 

every week, the cells were passaged again and the count was taken before re-

seeding the same number of cells as at the beginning. Upon detachment from the 

flasks by trypsin incubation, the cell suspension was mixed with an equal volume 

of trypan blue, a dye that permeates and stains a cell blue upon membrane 

compromise during cell death. This enables counting of the viable cells only, 

using a haemocytometer. Population doubling number (PDN) was calculated as: 

The cumulative PDN was then calculated and used as the representation of the 

number of divisions an average cell in a population has undergone. 

PDN = log2 (No. of cells harvested/ No. of cells plated initially) 
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2.4.5 Flow cytometry analysis of cell cycle profiles 

The cells were seeded in a 10 cm culture plate, treated appropriately, and 

harvested at the end of the time-point. Harvesting was done by washing the cells 

in 0.1% BSA in PBS, spun at 900 rpm for 4 minutes at room temperature, fixed 

overnight using 70% ethanol, and stained with propidium iodide (Sigma, USA)/ 

Triton X-100 (Biorad, USA) for 30 minutes at 37°C.  Samples were run in a flow 

cytometer (FACSCaliburTM, Becton Dickinson, USA) at wavelengths 

488Ex/610Em. Data from a total of 10,000 cells were recorded for each sample and 

analysis performed using WINMDI software. 

2.5 Assays to study genome integrity and DNA damage 

The study employed techniques to assess the extent of total DNA damage, the 

activity od DSB repair response, and genome integrity upon treatment. 

 2.5.1 Alkaline single-cell gel electrophoresis (Comet assay) 

Comet assay so named because of the resemblance of a cell with a damaged 

genome to that of a comet, upon electrophoresis under DNA secondary-structure 

denaturing alkaline conditions. Findings of the comet assay, a standard one for 

detecting total DNA damage in a cell is represented by the measurement of the 

displacement of damaged DNA molecules (the tail) from the integral DNA 

molecule (the head) as tail moment and the evaluation of the staining intensities 

of tail versus the head as the percentage of DNA damage. 

Cells, after the treatment period are detached, washed and resuspended in ice cold 

PBS. The resuspension should allow enough cells for analysis (at least 50), nor 
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should it be too concentrated. Meanwhile, a solution of 0.7% low melting point 

agarose (Conda Laboratories, Spain) was prepared in PBS, and melted at 70°C 

and cooled to 39°C until further use. 50 µl of agarose solution was mixed with 6 

µl of cell suspension and laid down flat on specially coated comet slides 

(Trevigen, USA), and allowed to polymerise at 4°C for about ten minutes. The 

cells were then lysed in a solution containing 2.5 M NaCl, 100 mM pH 8.0 

EDTA, 10 mM Tris-HCL, 1% Triton –X at 4°C for 1 hour, following which 

denaturation of DNA secondary structures including disruption of inter-strand 

hydrogen bonding was carried out for 40 minutes, in cold alkaline electrophoresis 

buffer (pH 13.0–13.7). Electrophoresis was subsequently carried out for 20 

minutes. Slides were immersed in neutralization buffer (0.5 M Tris-HCL, pH 7.4), 

dehydrated, air-dried and stained with SYBR Green dye (Trevigen). Images were 

captured using Zeiss Axioplan 2 imaging fluorescence microscope (Carl Zeiss, 

Germany) equipped with triple band filter. At least fifty comets per sample were 

randomly selected and analysed using Comet Analysis Software (Metasystems, 

Germany) and represented as mean tail moment and percentage of DNA damage. 

2.5.2 Immunofluorescent visualisation of γ-H2AX 

Cells were seeded in six-well plates on 22x22 mm coverslips, and treated until the 

end of the desired time-point. Harvesting was carried out by washing the wells 

with ice-cold PBS, and fixing in 4% formaldehyde, followed by cell permeation 

using Triton X/100. This facilitates the entry of the antibodies into the cell. This 

was followed by incubations with blocking agent, 0.5% BSA, primary antibody 

mouse anti-H2AX (Merck Millipore, USA), and secondary antibody goat anti-
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mouse IgG TR (Invitrogen) for an hour each, with the antibody incubations 

interspersed with three washing steps of five minutes each using 0.1% BSA. The 

coverslips were then dehydrated, dried and mounted onto slides with DAPI 

(Vectashield, Vector Labs, USA) as the counterstain. Imaging was done using a 

Zeiss Axioplan 2 imaging fluorescence microscope (Carl Zeiss, Germany) 

equipped with triple band filter. At least 50 cells were analysed at x63 

magnification or more cells at x20 magnification. Cells were analysed for their 

semi-quantitative signals of red γ-H2AX foci against the blue-stained nuclei.  

2.5.3 Cytokinesis-block Micronucleus (CBMN) assay 

CBMN assay gives another measure of genome integrity and an indirect measure 

of the extent of irreparable DNA damage in a cell. Cytochalasin B, a chemical 

that can arrest cells at cytokinesis phase is made use of, in order to visualise the 

cells at the binucleated stage so as to detect any damaged DNA ejected from the 

macronucleus during cell division. 

Cells were seeded in six-well plates and treated with TMPyP4 to the appropriate 

time-point, then arrested at cytokinesis by treatment with 4 µg/ml Cytochalasin B 

for a further 22 hours. The cells were then detached, washed and treated with ice-

cold 0.075 M KCl, hypotonic solution for 15 minutes and spun at 180 g for 8 

minutes at room temperature, following which they were fixed in fixative 

containing 90% of 3:1 mixture of methanol and acetic acid and 10% of 

formaldehyde. The fixed cells were then laid onto dry and clean slides and dried 

overnight, followed by staining with 20 µl of 30 µg/ml Acridine Orange (Sigma 

Aldrich). At least 1000 binucleated cells with/without the presence of micronuclei 
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were scored under an Axioplan 2 imaging fluorescence microscope (Carl Zeiss, 

Germany) with an appropriate triple band filter. 

2.6 Western blotting 

Western blotting is a technique that was used extensively in the study to assess the 

status of DNA repair, cell cycle checkpoint-activation, and telomere-interacting 

proteins among others. 

Cells were seeded in six-well plates and washed with PBS, once. Whole cell 

protein extraction was facilitated by using a radio-immunoprecipitation assay 

(RIPA) buffer containing 50 mM NaCl (NUMI), 1mM EDTA (Sigma Aldrich), 

50 mM Tris-HCl (1st Base, Singapore), 1% Triton X-100 (Biorad), 0.05% SDS 

(NUMI), 1x Proteasome inhibitor (Roche, USA), 1x Phosphatase inhibitor 

(Roche, USA), and 0.1% Sodium deoxycholate (Sigma Aldrich). Lysates were 

collected using a cell scraper and transferred onto pre-chilled eppendorf tubes and 

incubated in ice for 20 minutes with intermittent voxtexing to ensure uniform and 

efficient lysis. They were then spun at 15,400g at 4°C using a cooling centrifuge 

(Eppendorf 5417R) for 10 minutes, and the supernatant was carefully collected in 

a fresh eppendorf tube and stored at -20 °C or -80 °C until further use. 

The lysates were then quantified for then protein concentration, as equal loading 

on all wells is fundamental to comparing the band intensities. Bradford’s reagent 

(Biorad) was reconstituted by diluting it by four-fold with water to obtain 

workable concentration. Bradford’s reagent contains copper-containing reducing 

agents, which bind to the amino acid residues specifically, resulting in a shift in 

the absorbance peak to 595 nm. In order to fall in the linear range of detection of 
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protein concentration by Bradford’s assay so as to extrapolate absorbance to 

concentration, protein lysates were diluted ten-fold with water and mixed with 

Bradford’s reagent. Absorbance was measured using µQuant plate reader (Biotek 

Instruments, Singapore), and the protein concentration was calculated by the 

standard procedure. 

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) was the method used to 

resolve proteins solely based on their molecular weight. The composition of the 

gel was tweaked based on the size of the protein of interest, in order to obtain 

optimum resolution for that protein/ group of proteins. Gels were cast using 

equipment provided by Biorad, and 30% Acrylamide-Bis solution 37.5 : 1 (2.6% 

C) (Biorad) was used as the monomer. Also, the gels vary in concentration at least 

twice – initially more loose to facilitate stacking of the protein samples, followed 

by a tight gel that would facilitate optimal resolution of the proteins. Gel 

polymerisation was facilitated by crosslinkers ammonium persulfate and 

tetramethylethylenediamine (Biorad). Meanwhile, protein lysates were mixed 

with a concoction called loading dye that would facilitate in rendering the proteins 

some density to sink in the well once loaded, and also stains the samples so as to 

make it trackable. The samples were then denatured by heating at 95°C for 5 

minutes, spun briefly to ensure no wastage, and then loaded onto the wells in the 

gel. Electrophoresis was facilitated by a running buffer (3.03 g Tris base, 14.4 g 

Glycine, 10 ml of 10% SDS per litre of solution). Proteins were transferred onto a 

nitrocellulose membrane (Thermo Fisher Scientific) following electrophoresis, to 

make post processing steps easier and amenable for handling and protein 
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visualisation. The so-called wet transfer was done by electroblotting, facilitated 

by a polarised running buffer (with 25% methanol) for 1-3 hours depending on 

the size range of the proteins of interest.  

The nitrocellulose membrane was then incubated for 1 hour with 5% w/v 

skimmed milk in 1x PBST (PBS and Tween-20 (Biorad), a non-ionic detergent) 

to minimise non-specific binding of antibodies. This was followed by incubation 

with the primary antibody of interest for 1 hour at room temperature or overnight 

at 4°C, followed by 3 washes with 1x PBST for 5 minutes. The primary 

antibodies used in the study are anti-p-ATM (Santa Cruz), hTERT (Epitomics, 

USA), TRF2 (Santa Cruz), TRF1 (Cell Signaling, USA), c-MYC (Santa Cruz), β-

Actin (Santa Cruz), Cyclin D1 (Santa Cruz), and p21 (Santa Cruz). 

The membrane was then incubated with the appropriate secondary antibody 

(which are usually tagged with an enzyme horse raddish peroxidase, HRP) for 1 

hour at room temperature, and then washed with 1x PBST for thrice for 5 

minutes.  

The detection of the antibody-bound protein is made easy by the addition of a 

chemiluminescent substrate of HRP, Femto ECL (Thermo Fisher Scientific, 

USA), followed by exposing a light-sensitive film to the membrane and 

developing using an X-ray developer to obtain protein levels commensurate with 

the band intensity on the film at the expected molecular weight, facilitated by the 

presence of molecular weight ladders. 
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2.7 Techniques to study telomere-telomerase functionality 

The effect of TMPyP4 on telomere homeostasis is the crux of the study; hence a 

multi-centric approach was used to study the same, including the assessment of 

telomerase activity in vitro, telomere length, telomere stability and chromosomal 

integrity. 

2.7.1 Telomere Repeat Amplification Protocol (TRAP) 

Telomerase activity was assessed using Telomeric Repeat Amplification Protocol 

(TRAP) using TRAPeze® XL Telomerase Detection Kit (Chemicon 

International, USA). The principle of this assay is testing the extent of elongation 

of a synthetic oligonucleotide primer (that resembles the telomeric sequence) by 

telomerase in the non-denatured protein extract from cells. All steps were done 

according to the manufacturer's instructions with some modifications. Briefly, 

total protein was extracted using CHAPS lysis buffer, a non-denaturing buffer, 

provided and 1.5 µg protein was quantified and used for all samples. Samples 

were treated with 1 µl/ml RNase inhibitor to preserve the RNA integrity during 

amplification cycles by PCR. The PCR was initiated by using the telomerase 

mediated elongation products (i.e. the telomeric DNA repeats) as template, not 

earlier than 30 minutes to give enough time for in vitro elongation of the synthetic 

oligonucleotide primer by telomerase present in the protein extract. Subsequently 

normal PCR cycle was performed using forward and reverse primers with 

quenched fluorescein to amplify the telomeric DNA repeats. Fluorescence signals 

were generated by unquenching the fluorescein on PCR primers upon 

amplification of that oligonucleotide molecule, and the fluorescence signals were 
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measured by fluorescence multi-well plate reader. Fluorescence signals of PCR 

products were measured using fluorescence plate reader TECAN SpectraFluor 

Plus.  

Negative controls in this experiment were Taq-negative control, CHAPS-only 

negative control, heat treated sample and sulforhodamine house-keeping control. 

Fluorescein levels essentially are a measure of relative telomerase activity, 

provided the negative control which is a measure of sulforhodamine activity 

remains low. Telomerase activity was represented as percentage of fluorescein to 

sulforhodamine values with respect to the untreated controls upon subtracting the 

blanks. 

2.7.2 Peptide Nucleic Acid – Fluorescence in situ Hybridisation (PNA-FISH) 

Cells were treated up to the desired time-point and then incubated with 40 µl of 

10 µg/ml Colcemid (Life Technologies) in 10 ml of media for about 12-16 hours 

to allow quite a few cells at least, to be arrested at metaphase. Cells were then 

detached by trypsin treatment, followed by washing off the residual trypsin (after 

inactivating it by adding serum-containing media) by spinning the cells down. 

The cell pellet was then tapped and resuspended in a hypotonic solution of 75 mM 

KCl for about 11 minutes at 37°C and spun down at 1000 rpm (270 g) for 8 

minutes at room temperature. After discarding the supernatant, the pellet was then 

tapped gently and mixed agitated vigorously after adding 1 ml of modified 

Carnoy’s fixative (3:1 mixture of methanol & acetic acid) so as to dispense any 

clumps that may form. Three ml of fixative was added after stopping the agitation 

and the cells allowed to stand in the fixative for at least 2 hours before washing 
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with fresh fixative. Cells were dropped onto slides in a way that spreads the 

metaphases well, but not excessively so as to splatter the chromosomes all over 

the place. 

The following day, the slides were rehydrated with 1x PBS for 15 minutes, fixed 

with 4% formaldehyde for 2 minutes, washed and then treated with a solution of 

Pepsin-HCl (pH~2) at 37°C  for 1-3 minutes to destroy the chromatin around the 

chromosomes and to make them more accessible for the probes to bind to. The 

timing of pepsin treatment depends on the quality of the metaphase spreads; 1 

minute was sufficient for well spread metaphases. The cells were fixed again with 

4% formaldehyde, washed, dehydrated with a series of 70%, 90%, and 100% 

ethanol for 5 minutes each and air-dried. 

Hybridization mixture containing 70% formamide, 0.5 μg/ml Cy-3-conjugated 

TelC and 3 μg/ml FITC-conjugated Cent-FAM peptide nucleic acid (PNA) probe 

(Panagene, Korea), 0.25% (w/v) blocking reagent in 10 mM Tris (pH 7) was 

added to the slide, a coverslip (24 × 50 mm) was added followed by DNA 

denaturation (3 minutes at 80°C). After hybridization for 2-2.5 hours at room 

temperature, slides were washed with 70% formamide/10 mM Tris (pH 7.2) (two 

times for 15 minutes) and with 0.05 M Tris/0.15 M NaCl (pH 7.5) containing 

0.05% Tween-20 (three times for 5 minutes). Slides were dehydrated with 

successive ethanol steps (70-100%), air-dried, and covered by 20 μl antifade 

solution (Vectashield; Vector Laboratories) containing 0.2 μg/ml of 4′-6-

diamidino-2-phenylindole (DAPI). 
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Imaging was done using a Zeiss Axioplan 2 imaging fluorescence microscope 

(Carl Zeiss, Germany) equipped with triple band filter. At least twenty metaphase 

spreads were captured and analysed wherever possible, using Isis software 

(Metasystems, Germany). 

2.7.3 Telomere Restriction Fragment (TRF) analysis 

TRF analysis has the gold standard assay to determine the mean telomere length 

and the spread of telomere lengths in a given cell population.  

Cells were treated for a period of up to eight weeks and were kept frozen until 

use. DNA was extracted using DNeasy Tissue Kit (Qiagen, USA), according to 

the manufacturers' protocol. TRF assay was performed using Telo-TAGGG 

Length Assay Kit (Roche, USA). One and a half micrograms of pure genomic 

DNA was digested with Hinf1 and Rsa1 which have genome-wide recognition 

sites for restriction digestion for 2 hours at 37°C, thus potentially sparing only the 

telomeric and sub-telomeric regions intact owing to the lack of any restriction 

sites in those regions. The resulting DNA was subjected to gel electrophoresis in 

0.8% agarose gel at 60 V for 3 hours, thus leaving the small and digested DNA 

out of the gel. The DNA in the gel was then transferred overnight by Southern 

blotting onto a nylon membrane by capillary action across the assembly and 

cross-linked onto the membrane using a UV cross-linker (Stratagene, USA). 

Telomere restriction fragments were hybridised with telomere-specific 

digoxigenin-labelled (DIG-labelled) probe and incubated with anti-DIG alkaline 

phosphatase and tetramethylbenzidine, according to manufacturer's protocol. The 

membrane was incubated with a chemiluminescent substrate (supplied with the 
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kit), specific to alkaline phosphatase for 5 minutes and the exposed X-ray film 

developed. The films were then scanned by Kodak Gel imaging system (Kodak, 

USA) and analysed by Kodak MI imaging software (Kodak) to calculate the 

quantitative measurements of the mean TRF length. 

2.8 Genome-wide gene expression microarray 

The formation of G-quadruplexes has been demonstrated in regions other than 

telomeres as well (Bochman et al., NRG, 2012). Although G-quadruplex ligands 

have demonstrated preferential binding to the telomeres at large, telomere-

independent effects of such ligands including that of TMPyP4 have been reported 

hitherto (Granotier et al., 2005) (Siddiqui-Jain et al., 2002). Hence, profiling of 

genome-wide gene expression upon TMPyP4 treatment was carried out as well. 

Owing to the practical impossibility of isolating the transient and dynamic mRNA 

from cells to study gene expression, total RNA would first be extracted, as is the 

standard procedure. Reverse transcription of total RNA in turn, would yield 

cDNA which is only reflective of mRNA. cDNA is then transcribed to biotin-

labelled cRNA, so as to bind with exquisite affinity to streptavidin-labelled 

probes, and amplified prior to hybridisation onto the probes embedded on a chip. 

ONS76 and KNS60 cells were seeded in 10 cm culture dishes, treated with 100 

µM TMpyP4 for 48 hours and then detached, washed and pelleted. Treatment was 

done as duplicates and all subsequent steps were performed on duplicates of the 

samples, in order to account for any experimental variations. Total RNA was thus 

first extracted from about a million ONS76 and KNS60 cells using QIAmp RNA 

Blood Mini Kit (Qiagen, Germany). The concentration and the purity of the 
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extracted RNA was obtained using Nanodrop 1000 (Thermo Fisher Scientific) 

and the integrity of RNA using Bioanalyzer (Agilent Technologies, USA). 

Reverse transcription to cDNA was done with 500 ng of extracted RNA using 

SuperscriptTM II Reverse Transcriptase (Invitrogen) primed with T7-(dT)-24 

primer. cRNA was then transcribed in vitro from cDNA as biotin-labelled, in the 

presence of T7 RNA polymerase and biotinylated ribonucleotides (Enzo 

Diagnostics, USA). The cRNA was then amplified using TotalPrep RNA 

Amplification Kit (Ambion Inc., USA) in order to obtain a workable amount of 

RNA. Hybridization of the biotin-labelled, amplified cRNA was done onto 

HumanRef8 V3.0, Human Whole-Genome Expression BeadChips (Illumina) for 

16 hours at 58°C. After the incubation period, the arrays were washed and stained 

with Streptavidin-Cy3 (GE Healthcare), followed by scanning the arrays using 

Illumina Bead Array Reader. The signal values of cRNA bound to each probe was 

further translated into gene expression values using Partek® Genomics Suite™ 

version 6.5 (Partek Inc., USA).  

Principal component analysis was performed before analysis of gene expression 

to ensure quality control. Analysis of variance (ANOVA) was conducted on the 

complete data set and a list of differentially expressed genes was obtained using 

FDR (Benjamini Hochberg) of 0.05 with a two-fold cut-off for fold-change. 

Unsupervised two-dimensional average-linkage hierarchical clustering of the 

genes, differentially expressed upon the treatment, was performed for both the 

cell types by using Spearman’s correlation as similarity matrix. 
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Biological significance of the differentially expressed gene list was better realised 

by classifying the genes based on their biological pathways and molecular 

functions using Ingenuity Pathways Analysis (IPA) software (Ingenuity Systems, 

USA). Parameters such as probeset ID, gene symbol, Entrez gene ID as clone 

clone identifier, p-value, and fold-change values obtained from the statistically 

differentially expressed dataset were uploaded into IPA, and the significance of 

the connection between the expression data and canonical pathway were 

calculated by ratio and Fisher’s exact test. 

2.8 Statistical analyses 

Two-tailed, unpaired Student’s t-test; single factor and two-factor ANOVA were 

employed as tests of statistical significance, wherever applicable, using Microsoft 

Excel. p <0.05 was used as the threshold; and the degree of statistical significance 

was indicated by asterisks, as follows: * for p <0.05; ** for p <0.01; *** for p 

<0.001. All values were computed against their respective controls unless 

mentioned otherwise. 
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Chapter 3 

An acute dose response study of TMPyP4 
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3. AN ACUTE DOSE RESPONSE STUDY OF TMPyP4 

3.1 BACKGROUND 

TMPyP4 was among the first drugs to be shown to be a specific G-quadruplex 

ligand in vitro. It had been explored in detail to get to know the prerequisites that 

a chemical must possess, to stabilise G-quadruplexes. However, following some 

early studies using synthetic oligonucleotides in vitro that assessed the affinity 

and specificity to quadruplex DNA over duplex DNA of a few promising 

macrocyclic compounds showed that TMPyP4 was among the least specific 

quadruplex binder, albeit with high affinity (Grand et al., 2002; Han et al., 2001; 

Izbicka et al., 1999; Kim et al., 2003; Martino et al., 2009; Monchaud et al., 2010; 

Weisman-Shomer et al., 2003). Over time, other ligands took precedence, in terms 

of research concentration – both, in understanding more about its effect on the 

physiology of cells upon binding, and in improving its toxicity profile and 

therapeutic efficacy by modifying the side chains if need be. 

In 2009, a study simulated molecular crowding conditions in solution, which 

resembled the milieu that would exist in vivo. It was revealed that TMPyP4 

actually exhibited remarkable quadruplex-specificity (Martino et al., 2009). 

Taking cue from that, our study tries to delineate the effects of TMPyp4 on cell 

physiology, downstream of stabilising G-quadruplexes.  

This chapter deals with the assessment of proof-of-principle aspects of TMPyP4 

as a telomere-interacting molecule. The effect of TMPyP4 on telomere 

architecture is studied immediately upon treatment; and its effects on cell fate, 

genome-wide gene expression, and cell motility.
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3.2 RESULTS 

3.2.1 Determination of dose and time of treatment with TMPyP4 

 As mentioned earlier, TMPyP4 has been shown to cause a dose reduction of 

viability of cancer cell lines of a few types. So, the first aspect that was studied 

was assessing if TMPyP4 affects the gliobalstoma and medulloblastoma cell lines 

alike in a dose- and time-dependent manner, while sparing normal cells to a great 

extent. As shown in figures 3.1 A and B., in the viability profiling of KNS60 and 

ONS76 cells, TMPyP4 exhibited a minimal toxicity at 24 hours over the various 

doses tested, while showing a gradual reduction in viability following 48 hours of 

treatment.  

Since 100 µM of TMPyP4 for a period of 48 hours is the common IC50 dose for 

the cancer cells, that would be the dose in the following experiments to 

investigate the effects of TMPyP4 on telomeres and cell fate. 

  



 

74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

. 

Figure 3.1 Dose-time response of TMPyP4 on the viability of ONS76 and KNS60 

cells. Data represented as mean of values obtained from three independent repeats ± 

S.D. A. KNS60 cells; B. ONS76 cells 
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3.2.2 Evaluation of cytotoxicity of TMPyP4 

There have been reports of many promising potential G-quadruplex stabilising 

ligands being preferentially toxic to cancer cells, while sparing normal cells. 

Accordingly, it was seen if TMPyP4 also had the same effect. Hence, along with a 

panel of 2 brain tumour cell types – KNS60 and ONS76, a normal human lung 

fibroblast, IMR90 was also used as a model for testing the effects of TMPyP4 on 

their viability, due to the unavailability of a normal human-derived glial cell type. 

Notably, while 100 µM of TMPyP4 after 48 hours caused nearly 50% reduction 

in the viability of KNS60 and ONS76 cells, it reduced merely 8% of that of the 

normal control used – IMR90 (normal lung fibroblasts). This indicates that 

TMPyP4 acts preferentially on cancer cells (Figure 3.2A).  
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Figure 3.2 Cytotoxicity of TMPyP4 A. Viability of IMR90, ONS76 and KNS60 upon 

treatment with 100 μM TMPyP4 for 48 hours. Significance was evaluated by Student’s 

t-test. B. Cell cycle profile of ONS76 and KNS60 upon the same treatment. ‘Recovery’ 

indicates 24 hours of recovery period following the treatment. C. Cell cycle profile of 

IMR90 following 48 hours of treatment. Significance was evaluated by Single factor 

ANOVA.  A and B The values represent Mean ± S.D. of three independent repeats. 
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Analysis of the effect of TMPyP4 on the cell cycle of the cell types was assessed 

using flow cytometry following treatment with 100 µM of TMPyP4 for 48 hours. 

KNS60 and ONS76 cells were significantly arrested after treatment, in G2/M and 

G1 phases respectively, whereas IMR90 cells displayed a very mild arrest at G1 

phase (Figure 3.2).  

Moreover, after incubating the cancer cells in TMPyP4-free media for a further 24 

hours following treatment, both KNS60 and ONS76 cells showed significant 

recovery from the arrest induced by TMPyP4. This was corroborated by assessing 

the protein levels of Cyclin D1, the executioner of progression through G1 

checkpoint, by western blotting of whole cell lysates (Figure 3.3). Cyclin D1 

levels in ONS76 reduced after treatment, only to increase after the 24-hour 

recovery period. Cyclin D1 levels were rather low and undetected at the same 

exposure, in KNS60 cells. This could merely be attributed to the innate 

differences in the physiology of the two cell types. On similar lines, the levels of 

p21, a protein that is phosphorylated by p53 to execute cell cycle arrest upon a 

DNA damage stimulus, was assessed (Figure 3.3). It was observed that p21 levels 

were promptly upregulated following treatment in ONS76, whereas KNS60 

lacked any detectable p21 even after long exposure. This is due to the fact the 

KNS60 harbours functionally mutant p53, as opposed to WT p53 in ONS76 cells. 

Such differences in the cancer cell types are to be expected, and only projects 

what is to be anticipated in a clinical scenario where tumour heterogeneity is the 

norm, and a successful drug is expected to work largely efficiently, across those 
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groups. Suitably enough, this variability has been a common strand throughout 

the study. 

Overall, TMPyP4 arrests cancer cells and does not interfere with the cycling and 

viability of normal IMR90 cells largely in the IC50 dose, which is a high dose, as 

such. 

 

Figure 3.3 TMPyP4 treatment and checkpoint activation Western blot analysis 

of Cyclin D1 and p21 levels in ONS76 and KNS60 cells, following treatment with 

100 μM TMPyP4. 'Recovery' indicates 24 hours of incubation in TMPyP4-free 

media following treatment 

3.2.3 Effect of TMPyP4 on telomere maintenance in cancer cells 

Since TMPyP4 is a ligand that has shown promise to bind to and stabilise 

telomeric G-quadruplexes, the next thing that was assessed in the study was its 

effects on perturbing telomere maintenance in the cancer cells. To this end, the 

effect of TMPyP4 on telomerase activity was evaluated by measuring telomerase 

activity using TRAP, following treatment. Not surprisingly, TMPyP4 treatment 

for 48 hours caused telomerase activity to plummet (Figure 3.4A). Consequently, 

its effects on hTERT, the catalytic component of telomerase, and TRF2, the most 
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crucial shelterin protein were assessed by western blotting of whole cell lysates. 

Indeed, the levels of both hTERT and TRF2, reduced appreciably following 48 

hours of treatment (Figure 3.4 B and C). Conversely, after a recovery period of 24 

hours in TMPyP4-free media, the levels of hTERT and TRF2 sprang back to 

normalcy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Effect of TMPyP4 on telomeres in ONS76 and KNS60 after 48 hours 

treatment with 100 µM TMPyP4 A. Telomerase activity, as measured by TRAP after 

treatment. Error bars indicate S.D. from three independent repeats. Student’s t-test was 

performed to assess significance. B. Levels of hTERT and C. TRF2 determined by western 

blotting after treatment and recovery, where ‘recovery’ means incubation in TMPyP4-free 

media for a further 24 hours after treatment.  
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It is possible that the effect of TMPyP4 on telomerase activity and TRF2 levels 

may, at least in part, be a consequence of the toxicity exerted over the 48 hours of 

treatment. In order to ascertain if the effects of TMPyP4 on telomere maintenance 

was specific, rather than due to a multitude of other cellular perturbations, the 

levels of TRF2 and hTERT were assessed intermittently in ONS76 cells over a 

72-hour regime, with the first 48 hours being treatment with 100 µM TMPyP4; 

and the next 24 hours being incubation in normal media following the removal of 

TMPyP4-containing media. There was a staggering reduction in TRF2 levels 

from as early as 2 hours after treatment; and notably, the levels did not recover 

even after incubation in TMPyP4-free media, when assessed after the 72-hour 

regime (Figure 3.5 A). hTERT levels showed a more gradual reduction though, 

and also appreciable recovery following incubation in TMPyP4-free media 

(Figure 3.5 B). This indicates that TMPyP4 is an agent whose effects are 

specifically telomere-mediated. Thus, clearly, TMPyP4 affects telomere 

architecture and telomerase activity, and hence telomere maintenance in the 

cancer cells assessed. 
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If TMPyP4 mediates its effects specifically at the telomeres, then the reduction in 

hTERT protein levels which would normally be a repercussion of that of 

telomerase activity; but this occurs too soon upon TMpyP4 treatment. To seek an 

explanation for this reduction in hTERT, the levels of c-MYC, a major 

transcription factor of hTERT, was assessed amidst reports that c-MYC also 

harbours potential G-quadruplex forming regions at its promoter sites, and that 

TMPyP4 can stabilise those structures as well. Indeed, at least following 48 hours 

of treatment, c-MYC levels went down appreciably in both – KNS60 and ONS76 

Figure 3.5 The immediate effect of TMPyP4 at the telomeres Western blot time-

course analysis of the following in ONS76 cells: A. TRF2 B. hTERT upon treatment 

with 100 µM TMPyP4. '72 hours' means 48 hours of TMPyP4 treatment, followed by 

24 hours of growth in TMPyP4-free media. C. c-MYC levels after treatment with 100 

µM TMPyP4 for 48 hours.  
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cells. This could, at least in part, account for the reduction in hTERT that was 

observed (Figure 3.5 C). 

3.2.4 TMPyP4 treatment and the DNA damage response in cancer cells 

Following the observation of telomere-damage by TMPyP4 in ONS76 and 

KNS60, a telomere-mediated DNA damage response was anticipated. ATM 

kinase-mediated DNA damage response at the telomeres is known to be 

suppressed by intact TRF2 in normal cells (de Lange, 2009). In the cancer cells 

studied, since TRF2 levels were reduced upon TMPyP4 treatment, ATM kinase 

activation may be the reason for the potent checkpoint activation leading to cell 

arrest. Indeed, a time-course analysis of phosphor-ATM (Ser1981) using western 

blotting revealed the activation of ATM kinase after 24 hours of TMPyP4 

treatment in ONS76 (Figure 3.6A).  

Since an IC50 dose of TMPyP4 was used in these experiments, stochastic DNA 

damage across the genome, apart from just at the telomeres cannot be ruled out. 

Hence, alkaline single cell gel electrophoresis (COMET assay) was resorted to, to 

get the levels of total DNA damage upon TMPyP4 treatment. Indeed, TMPyP4 

triggered enormous DNA damage in both KNS60 and ONS76 alike. However, the 

observed damage after the recovery period of 24 hours in TMPyP4-free media 

was of significantly smaller magnitude when compared with the levels right after 

treatment (Figures 3.6 B and C). The appreciable release from arrest during the 

recovery period suggests that the cells either managed to repair the damaged 

DNA, or have ejected the irreparable DNA from the nucleus and evade 

checkpoints to continue proliferating. To this end, we assessed genome stability 
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by blocking the cells in cytokinesis, following treatment, and then looking for 

ejected DNA in the form of micronuclei using cytokinesis-blocked micronucleus 

assay (CBMN). CBMN showed that both – KNS60 and ONS76 had highly 

elevated levels of micronuclei following treatment with 100 µM treatment with 

TMPyP4 for 48 hours. Surely enough, the cancer cells must possess highly 

efficient ways to deal with genomic instability (Figures 3.6 D and E).  
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Figure 3.6 DNA damage induced by TMPyP4 A. Time-course western blot 

analysis of p-ATM in ONS76 (72 hours indicate the recovery period) B. 

Representative images of undamaged and damaged ONS76 and KNS60 nuclei by 

alkaline COMET assay. The intact nucleus is brighter than the tail (damaged 

DNA)  C. Dot-Scatter plot of the intensity of total DNA damage represented as 

tail moment. Each dot represents one cell; Mean and S.E. of mean of at least 50 

cells  are represented in dashes. D. Evaluation of micronuclei as a measure of 

genome stability after treatment. E Representative images of cells with and 

without micronuclei (smaller bright dots) F. Western blot analysis of phospho-

H2AX levels after treatment and ‘recovery’. All the experiments were performed 

in ONS76 and KNS60 cells. Treated refers to 100 µM TMPyP4 for 48 hours; and 

Recovery – growth in TMPyP4-free emdia for a further 24 hours. 

Consequently, the levels of ɣ-H2AX, the protein that makes the chromatin of the 

damaged DNA, amenable to binding by various DNA repair factors during 

double-strand breaks, was obtained upon TMPyP4 treatment, by western blotting. 

Although ONS76 showed a canonical DNA damage response profile, with ɣ-

H2AX highly amplified following treatment and appreciable reduction following 
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recovery, KNS60 showed an unexpected profile. Although, COMET results show 

that damage occurs upon treatment and repair takes place in KNS60 cells upon 

removal of TMPyP4 from the medium, it did not reflect in ɣ-H2AX profile 

(Figure 3.6F). This underscores the variation that cancer cells tend to exhibit 

often. It is possible that DNA repair is orchestrated in a different way in KNS60 

cells. 

3.2.5 The mode of cell death following TMPyP4 treatment 

Previous studies have shown that G-quadruplex ligands, in general, induce 

senescence or apoptosis eventually. In the study, TMPyP4 led to cell death as 

seen earlier in the viability assay. In order to assess the underlying mechanism, a 

kit that evaluates viability, cytotoxicity, and caspase 3/7 activity at the same time, 

was made use of and the profile of ONS76 and KNS60 were determined. Caspase 

3/7 activity, which translates to the execution of apoptosis, usually is 

accompanied by a concomitant reduction in the viability and mild increase in 

cytotoxicity. ONS76, to an extent, revealed signs of classical apoptosis when 

observed after 48 hours of treatment in a dose-dependent manner (Figure 3.8 A). 

KNS60, however, exhibited a reduction in caspase activity, with a reduction in 

both viability and cytotoxicity (Figure 3.8B). This may seem paradoxical; but it 

could mean that the initiation of apoptosis in these cells has taken place at an 

earlier time-point. The cells may have undergone fast-acting apoptosis. 



 

86 
 

 

Figure 3.8 Mode of cancer cell death induced by TMPyP4 A. ONS76 B. KNS60 by virtue 

of a simultaneous measure of viability, cytotoxicity, and caspase 3/7 activity using Apotox 

Glo Triplex assay kit. 
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3.2.6 Genome-wide gene expression profiling of TMPyP4 in the cancer cells 

Apart from assessing the above specific effects of TMPyP4 on the cancer cells, in 

order have a comprehensive understanding of other pathways by which it 

eventually causes death, a genome-wide gene expression microarray was 

performed in KNS60 and ONS76 cells.  cDNA from cells were hybridised onto a 

human genomic probes on an Illumina chip, following reverse transcription from 

total RNA extracts from the cells. Microarray was then performed in duplicates of 

all categories, chips scanned for their resulting fluorescent ability, data imported 

in to Partek Genomics Suite, then analysed.  

At a time point where about 50% of the cells were killed, a profound effect on 

genome-wide gene expression is to be expected, and that was indeed the case. 

Plotting commonly deregulated genes between control and treated of both cell 

types revealed that 1471 genes were significantly deregulated in ONS76, whereas 

it was 1860 in KNS60 (ANOVA, FDR p<0.05, fold change > 1.5). Notably, about 

20-25% of the differentially regulated genes in either cell type following 

treatment was common between the two cancer cell types (Figure 3.9). 

Corroborating with the previously quoted experimental observations, genes 

involved in DNA damage and repair, cell survival, cell cycle, and stress response 

were deregulated following 48 hours of treatment in both the cancer cells alike. In 

addition, many transcriptional factors were repressed too, thus possibly indicating 

a transcriptional shutdown, consistent with the intense cell cycle arrest following 

48 hours of treatment (Figure 3.10) 
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Figure 3.9 Venn Diagram of deregulated genes Stringent analysis with p<0.05 with 

FDR, and FC>2 (fold change) performed using Partek Genomics Suite revealed 364 

genes common to both, G. ONS76 and E. KNS60, following treatment with 100 µM 

TMPyP4 for 48 hours. 
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Figure 3.10 Unsupervised clustering of significantly deregulated genes. Seven patterns of concentrated deregulation were picked out using 

Partek Genomics Suite and plotted along with their associated molecular and cellular functions usinig Inguinuity Pathway Analysis, following 

treatment of ONS76 and KNS60 cells with 100 µM TMPyP4 for 48 hrs. Numbers of genes involved in the differential regulation of the molecular 

and cellular functions are mentioned within brackets; the order of the functions mentioned in each cluster is based on the significance of the 

differential regulation; the colour gradient represents fold change. 
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3.2.7 TMPyP4 and cancer cell migration 

Genes from other interesting pathways were deregulated too, as revealed by 

pathway analysis using Ingenuity Pathway Analysis, following treatment. 

Interestingly, three out of the seven deregulated clusters showed ‘cellular 

movement’ deregulated with 245 genes involved in the process; and with ‘cellular 

movement’ being among the top two affected functions in two of the three 

clusters (Figure 3.9). The other affected pathways are largely related to cell fate, 

which is expected to happen with the IC50 dose used. However, deregulation of 

cellular movement was an unanticipated observation.  

This study therefore looked into the ability of TMPyP4 to affect cell motility of 

ONS76 and KNS60 cells. To this end, a scratch wound assay was performed. 

Cells were plated in a confluent manner in culture dishes and a scratch was done 

using a micro-pipette tip. The closure of the ‘wound’ or the gap created, gives an 

indirect assessment of cell motility Accordingly, TMPyP4 hampered wound 

closure in both the cell types alike, as seen after 48 hours of treatment (Figure 

3.11A). Probing at molecular players could be more confirmatory of such 

functional assays, and hence the levels of one class of integrins – the cell surface 

proteins in charge of cell adhesion – was measured using flow cytometry- based 

detection of integrin β1. An appreciable reduction in the cell surface expression of 

integrin β1 was observed in both, KNS60 and ONS76 after TMPyP4 treatment 

(Figure 3.11B). 
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A 

B 

Figure 3.11 Effect of TMPyP4 on cancer cell metastasis A. Scratch wound assay revealed TMPyP4 treatment hampered 

wound closure in both, KNS60 and ONS76 cells. B. Reduction of cell surface expression of integrin β1, as measured by flow 

cytometry. 
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3.3 DISCUSSION  

This is the first study of TMPyP4 in glioblastoma and medulloblastoma cells. 

Previous studies on TMPyP4 were performed in leukemia, myeloma, 

retinoblastoma, breast cancer, and prostate cancer cell lines and breast and 

prostate tumour xenograft mouse models (Table 1.1). All the studies, hitherto, 

have shown a largely cancer-specific effect of TMPyP4, compared to normal cell 

types tested.  

In this study, short term treatment with TMPyP4 caused a reduction in telomerase 

activity in the cancer cells, much like what has been documented previously. Also 

its effect on c-MYC has been observed in earlier studies with TMPyP4. However, 

the effect of TMPyP4 on TRF2 levels in the cancer cells as early as 2 hours after 

treatment, has not been shown before. The observation that TRF2 levels do not 

recover even after growth in TMPyP4-free media elucidates the telling, yet 

specific effect of TMPyP4 on telomeres. TRF2, which has been shown to be the 

linchpin of telomere integrity, is essential for cancer cells’ survival in a stressful 

and challenging microenvironment. The mechanism of the plummeting of TRF2 

levels after treatment could be attributed to cytoplasmic trafficking of TRF2, 

followed by ubiquitin-mediated degradation. Telomeres consist of G-rich 

hexameric tandem repeats and is prone to forming many secondary structures like 

the hairpin, t-loops, and quadruplexes. It is known that the preference for a 

particular conformation depends on the microenvironment, the competition 

between various ligands/ conducive ions like Na+ and K+, and the stabilisation 

energy of the reaction (Zahler et al., 1991). Shelterin proteins dictate terms at the 
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telomeres by binding strongly to the telomeres and inducing the formation of t-

loops and d-loops, in order to regulate legitimate access to the telomeres (de 

Lange, 2009). A majority of original G-quadruplex ligands exert their anticancer 

effect by causing telomere uncapping and hence, telomere dysfunction. A study 

with RHPS4, a promising G-quadruplex ligand on melanoma cells revealed 

telomere uncapping as the mechanism behind the cancer-specific effects observed 

(Salvati et al., 2007). A study of neuroblastoma cell lines on the effects of 

telomestatin, one of the first G-quadruplex drugs to enter clinical trials, showed 

disruption of telomere maintaenance over short term of treatment (Binz et al., 

2005). Another study, on uterine carcinoma cells in vitro and xenograft models 

showed telomere uncapping as one of the mechanisms attributable to the 

anticancer effect of BRACO-19, the first drug synthesised based on 

computational modelling analyses for optimal G-quadruplex stabilisation(Burger 

et al., 2005). The current study strongly supports an uncapping mechanism at the 

telomeres upon TMPyP4 treatment, much like other promising G-quadruplex 

ligands like RHPS4, Telomestatin, and BRACO-19. It is highly likely that 

TMPyP4 is able to dislodge shelterins from the telomeres, by binding more 

strongly to the telomeres. This though, would mean a reduction in the amount of 

other shelterin proteins as well; but that is yet to be assessed. 

In ONS76 cells, appreciable reduction in hTERT levels occurs at a later time 

point though, around 12 hours unlike TRF2, which was spontaneous. Nonetheless, 

the reduction in hTERT happens too soon for it to get affected by the c-MYC 

reduction which was only assessed after 48 hours. It is noteworthy that TMPyP4 
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has been shown to directly bind to and stabilise G-quadruplexes at a c-MYC 

promoter (Siddiqui-Jain et al., 2002). Notwithstanding this ability of TMPyP4, the 

effects observed here are at least majorly attributable to the direct binding of 

TMPyP4 to the telomeres and presumably by stabilising G-quadruplex structures 

there due to the fact that it resulted in a drastic reduction in TRF2 levels as early 

as two hours after treatment, and also because as shown in earlier studies, 

TMPyP4 is able to block telomerase from accessing the telomeres. The observed 

reduction in hTERT levels may also be due to trafficking of hTERT out of the 

nucleus and subsequent degradation by the proteasome machinery as 

demonstrated upon treatment with another G-quadruplex compound, BRACO-19 

(Burger et al., 2005). 

The enormous amounts of DNA damage observed upon TMPyP4 treatment could 

well be a result of telomere-mediated genomic instability. However, since the 

concentration of TMPyP4 used was an IC50 dose, non-specific effects is 

understandable and may well cause stochastic DNA damage throughout. The 

observation that the extent of damage observed after the 24-hour recovery period 

is significantly lower as compared to the treated category, there are two 

speculations about the nature of the DNA damage. One possibility is that, the 

nature of DNA damage induced is mild, though extensive, and hence, is reparable 

largely. Alternatively, the nature of the inflicted damage is severe and irreparable, 

and is rejected from the nucleus in the form of micronuclei during the next round 

of cell division. Another aspect to note is that the cells get back to cycling at a 

nearly normal rate after 24 hours of recovery, as compared to that after 48 hours 
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of treatment. Therefore, both the possibilities exist: TMPyP4 induces mild DNA 

damage that is reparable and also severe, irreparable damage that is often ejected 

in the form of micronuclei. The observation that IMR90, a normal cell line with 

proficient arrest checkpoints is largely not arrested upon TMPyP4 treatment, as 

opposed to the cancer cells, explains the cancer-specific nature of TMPyP4, at 

least in terms of stochastic DNA damage. This is intriguing, but possibly indicates 

that the cancer cells are inherently, genomically unstable. Hence, it is may be 

easier to induce catastrophic DNA damage specifically in the cancer cells, similar 

to the rationale behind radiotherapy for cancers. The cytotoxicity of short term 

treatment with TMPyP4 is conceivable, keeping the specific effects in mind and 

also given that other studies on G-quadruplex ligands like RHPS4 also reported 

the same (Salvati et al., 2007).  

Cells after TMPyP4 treatment seem destined for cell death, and not senescence, 

consistent with the massive DNA damage observed. The mode of cell death 

seems to be apoptosis, as evidenced by caspase 3/7 levels after treatment along 

with the reduction of viability and an increase in cytotoxicity in ONS76 cells. 

KNS690 and A172 also seem to undergo apoptosis, a profile of decreasing 

cytotoxicity and viability, with decreasing caspase activity with dose is consistent 

with the possibility of fast-acting apoptosis in the cells. Perhaps the 48-hour time 

point is too late to look for signs of apoptosis in KNS60 and A172 cells. 

Once again, this dissonance in the timing of initiation of cell death only reiterates 

the heterogeneous nature of cancer cells, even those derived from the same tissue. 

The other notable differences in the behaviour of KNS60 are the non-canonical 
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regulation of ɣ-H2AX in response to massive DNA damage, which at least in 

part, would account for DSBs; and the execution of arrest in the p53-lacking 

KNS60 similar to the extent in ONS76 bearing WT p53, among others. The use of 

such model systems with a variety of cell types would in fact, be helpful in 

screening for agents that are effective against a broad range of such cells. 

The gene expression profiling corroborated largely with the observation in other 

experiments, in terms of deregulation of similar pathways, if not genes. In both, 

KNS60 and ONS76, TMPyP4 exhibited changes in the expression of quite a few 

oncogenes as well. Overall, genes of telomere maintenance, DNA damage and 

repair response factors, cell arrest checkpoint genes, oxidative stress response 

genes, among others. An assessment of gene expression profile at an earlier time-

point would give a more specific profile of the hit by TMPyP4 in the cancer cells. 

Nonetheless, it should not be ignored that the gene expression profiling was 

carried out after the execution of cell cycle checkpoints, and so, apart from the 

canonical specific pathways, the rest may well be repercussions, largely. Since the 

study demonstrated telomere-mediated effects TMPyP4 at early time-points itself, 

which was then followed by the induction of DNA damage en masse in the cancer 

cells, the gene expression profile obtained, perhaps reiterates the repercussions of 

telomere dysfunction in cancer cells. Profiling of genome-wide gene expression 

was also done upon short term treatment with 100 µM TMPyP4 after 48 hours in 

a leukemia cell type, K562. While the analysis was not as extensive as that in our 

study, it showed the deregulation of genes of a similar spectrum of cellular 

pathways, predominantly that of cell signalling and transcriptional regulation 



 

97 
 

(Mikami-Terao et al., 2009). A smaller subset of genes in that study was a result 

of a more stringent cut-off set for deregulated genes, which may have led to the 

loss of detection of some key genes(Mikami-Terao et al., 2009) .  

This is not the first time that antitelomerase treatment comes along with that of 

metastasis as well. RHPS4, a G-quadruplex stabilising agent and GRN163L, a 

telomerase inhibitor have been shown to exhibit anti-metastatic ability in mouse 

models (Leonetti et al., Clin Can Res, 2008; Jackson, Zhu and Paulson, Cancer 

Res, 2007). Therapeutic intervention by causing telomere shortening leads to the 

inhibition of migration of malignant tumours (Uziel et al., PLoS One, 2010). Also 

G-quadruplex ligands have been observed to affect promoter regions of a growing 

list of oncogenes like MYC and the angiogenesis inducer VEGF, which can affect 

metastasis(Siddiqui-Jain et al., 2002; Sun et al., 2005; Sun et al., 2011)  Also, 

malignant gliomas are known to exhibit intracranial and extracranial metastases in 

advanced cases, and hence is of interest. In addition, targeting integrins in glioma 

therapy has been shown to be rewarding (Sathornsumetee et al., 2007).   

Overall, TMPyP4 during short term treatment, shows telomere-mediated effects 

in glioblastoma and medulloblastoma cells, sparing normal cells IMR90. 

Telomere dysfunction, telomerase inhibition, and DNA damage induction 

together resulted in cell cycle arrest and apoptotic cell death in the cancer cells, in 

addition to exhibiting slightly uncharacteristic role in the inhibition of cell 

migration as well. 
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Chapter 4 

Investigation into potential for DNA repair inhibition and 

radiation along with TMPyP4 treatment 
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4. INVESTIGATION INTO POTENTIAL FOR DNA REPAIR 

INHIBITION AND RADIATION ALONG WITH TMPyP4 TREATMENT 

4.1 TESTING THE POTENTIAL OF TMPyP4 AS A RADIOSENSITISER 

4.1.1 BACKGROUND 

Radiotherapy has been the mainstay of cancer management in general, and more 

so for malignant brain tumours, for which treatment options are lacking and 

survival rate despite treatment remains dismal (Yabroff et al., 2012). Ionising 

radiation – while it affects cancer cells largely, by inducing massive DNA damage 

– also affects somatic cells of fast proliferative nature. Consequently, quite often, 

the dose of irradiation is limited to ensure that the benefit outweighs the side 

effects considerably at least. Hence, radiotherapy though in principle can 

eradicate much of the tumour, is often unable to be used to its full potential. To 

circumvent this, pre-treatment with a few drugs have been resorted to with the 

aim of sensitising cells to irradiation, and hence to achieve a higher therapeutic 

efficacy with a lower dose of IR. Combining treatment with cytotoxic drugs and 

irradiation has been employed in the past, but although it efficiently reduced 

tumour bulk, was often limited by toxicity to normal somatic cells and also lacked 

a definitive rationale (Tannock, 1996). Potential targets for radiosensitisation that 

have been studied hitherto include mediators of DNA repair, modulators of 

apoptotic response, transcription factors, growth factor receptors, cytoplasmic 

signal transduction (Tofilon and Camphausen, 2009). These strategies are not 

surprising ones, given that cellular response to IR is mediated by all of the above. 

Even so, there are not many studies on these lines in vivo (Raleigh and Haas-
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Kogan, 2013). However, there is one concept that has not been given importance 

that is commensurate with the promise it holds – telomere maintenance.  

Targeting telomere maintenance in combination with conventional therapy has a 

strong mechanistic backing, owing to the limiting of cancer cell proliferation by 

the former strategy, as explained in Figure 4.1 (Shay and Wright, 2002).  

 

Figure 4.1 Combining telomerase inhibition or telomere-targeting along with 

standard-of-care therapies in cancer. Conventional therapies like chemotherapy 

or radiotherapy typically counter the tumour mass by eliminating the fast-

proliferating cells by way of DNA damage-induced cell death. While this results 

in tumour debulking, the risk of tumour relapse is still intact. Targeting telomere-

telomerase pathway would invariably limit the proliferation of cancer cells with 

high specificity as cancer cells predominantly have near-critical telomeres, unlike 

normal somatic cells and germline cells. Image source: (Shay and Wright, 2002). 

Working model of the above hypothesis is illustrated in the table below, that 

shows a compilation of studies employing standard-of-care treatments for various 

cancers showing promising synergism or increase in sensitivity when combined 
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with a treatment affecting telomere biosynthesis (Figure 4.2)(Cunningham et al., 

2006). 

 

 

The link between telomere functionality and radiosensitivity is one that has been 

demonstrated in a handful of studies. Direct evidence of telomere dysfunction 

rendering sensitivity to ionising radiation in a mouse model was shown a decade 

ago (Wong et al., 2000). A study of 181 individuals uncovered an inverse 

correlation between telomere length and in vitro radiosensitivity as evidenced by 

an increase in micronuclei (irreparable damaged DNA ejected from the nucleus, a 

mark of genome instability) induced by ionising radiation (Castella et al., 2007). 

Also, telomerase activity was shown to negatively correlate with radiosensitivity 

independent of telomere length in neuroblastoma cell types (Wesbuer et al., 

2010). Coherently, telomerase recruitment has been speculated to be necessary in 

the repair of ionising radiation-induced DSBs from a wealth of studies on in vivo 

Figure 4.2 Sensitisation of cancer cells to standard therapeutic agents by telomerase 

inhibitors Image source: (Cunningham et al., 2006). 
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models and in vitro cell lines (Ayouaz et al., 2008). Disruption of telomere 

maintenance has been postulated to be a hallmark of irradiation(Ayouaz et al., 

2008). Moreover, the observation of accelerated telomere shortening and telomere 

dysfunction in radiosensitive cell types, points to the possibility that defective 

telomere maintenance mechanisms may lead to radiosensitivity (Cabuy et al., 

2005). 

Given the realisation that cancer cells have a certain vulnerability to perturbation 

of telomere maintenance, this trend in the lack of studies and clinical application 

of telomere-related radiosensitivity is alarming, and is clearly a lacuna in 

literature on the repertoire of strategies to eradicate cancer cells with maximum 

efficacy. Investigations on the radiosensitivity of G4 ligands are particularly 

lacking, with only one study till date on the effects of a G4 ligand, TAC in 

glioblastoma cell types (Merle et al., 2011). To this end, the current study 

investigates the potential of TMPyP4 pre-treatment in sensitising the glioblastoma 

cells, KNS60 and A172 cells to irradiation. 
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4.1.2 RESULTS 

4.1.2.1 Determination of dose of the combination treatment 

To determine the dose of γ-radiation to be used in the study, KNS60 and A172 

cells were irradiated with doses 2 and 4 Gray (Gy) of γ-radiation and the viability 

assessed using Cell Titer Glo kit after 24 hours. While 2 Gy γ-radiation did not 

affect the viability of A172, it reduced that of KNS60 meagrely (Figure 4.3 A). 

However, 4 Gy γ-radiation led reduced the viability of both – KNS60 and A172 

cells considerably (Figure 4.3 A). Hence, 4 Gy γ-radiation was chosen as the dose 

for this study. Since the question for study is on the ability of TMPyP4 to merely 

sensitise the cancer cells to irradiation than to eradicate the cells by itself, the dose 

of TMPyP4 had to be lower than that used in studies in chapter 3 (100 µM). 

Assessment of viability of KNS60 and A172 cells revealed that a dose of 50 µM 

TMPyP4 is not as cytotoxic as 100 µM over 48 hours (Figure 4.3 B). Moreover, 

evaluation of telomerase activity of 50 µM TMPyP4 after 48 hours of treatment 

performed using TRAP assay showed extensive inhibition of the same, and hence 

was the chosen dose (Figure 4.3 E).  

4.1.2.2 Effect of TMPyP4 pre-treatment on the viability of the irradiated 

cancer cells 

With the doses of the individual treatments optimised, the effect of pre-treatment 

with 50 µM TMPyP4 for 24 hours, followed by incubation of the irradiated cells 

for a further 24 hours with TMPyP4 on the viability of KNS60 and A172 cells 
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was assessed using Cell Titer Glo kit. Signs of radiosensitisation of both – KNS60 

and A172 cells by TMPyP4 was witnessed, as seen by more than a 10% and 27% 

reduction respectively, in the viability between cells that were exposed to 4 Gy γ-

radiation, with and without TMPyP4 pre-treatment (Figures 4.3 C and D). 

Following this observation, a possible activation of cell cycle checkpoints was 

assessed. 
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Figure 4.3 Dose determination of TMPyP4 and γ-radiation and study of the combination treatment on the viability of the cancer cells. The 

viability of cells as a percentage of the control cells, as measured by the Cell Titer Glo kit  upon treatment with different doses of A. γ-radiation; B. 

TMPyP4; C & D. pre-treatment with TMPyP4 for 24 hours, followed by irradiation and further incubation in TMPyP4-containing media for another 

24 hours in A172 and KNS60, respectively. E. Evaluation of relative telomerase activity of A172 and KNS60 extracts, following 50 µM TMPyP4 

treatment for 48 hours, as measured by the TRAP assay. 
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To check if the additive reduction in viability of the combination treatment is due 

to the enforcement of cell cycle arrest, the cell cycle profile of KNS60 and A172 

cells were obtained using staining of the cellular DNA by Propidium Iodide (a 

nucleic acid intercalator) following RNase treatment and fixing the cells. 

4.1.2.3 Determination of a possible cell arrest induced by TMPyP4 treatment 

prior to irradiation 

Flow cytometric analysis of the fixed cells indeed revealed some striking patterns 

of cell arrest. Fifty micromolar of TMPyP4 treatment for 48 hours induced a 

significant G2/M arrest (p < 0.05, ANOVA) in KNS60 cells, while A172 cells did 

not seem to be arrested significantly (Figure 4.4). It is noteworthy that this pattern 

of arrest was similar to that observed earlier with 100 µM TMPyP4 in KNS60 

cells (Chapter 3, Figure 3.2 B). A172 cells were arrested in G1 phase (p < 0.05, 

ANOVA), as observed 24 hours after irradiation, while KNS60 cells were not 

significantly arrested (Figure 4.4). These variations notwithstanding, the TMPyP4 

pre-treatment, followed by irradiation resulted in a robust G2/M arrest of both 
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KNS60 and A172 cells (Figure 4.4). Given the existence of considerable body of 

literature on the nature of anti-telomere agents and also on the modus operandi of 

ionising radiation, an assessment of direct/ indirect infliction of DNA damage was 

a natural consequence of this experimental outcome. 

 

Figure 4.4 Assessment of the contribution cell cycle arrest towards the 

radiosensitising ability of TMPyP4. The cells were stained with Propidium 

Iodide (PI), following treatment with RNase, and fixation using ethanol. Flow 

cytometry was used to obtain the cell cycle profile of KNS60 and A172 cells 

following the combination treatment, alongside appropriate controls. The 

combination – ‘TMPyP4 + 4 Gy’ represents pre-treatment with TMPyP4 for 24 

hours, followed by irradiation and further incubation in TMPyP4-containing 

media for another 24 hours. Single factor ANOVA was performed to assess 

significance. 

  

* 
* * 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

P
er

ce
n

ta
g
e 

o
f 

ce
ll

s 
(%

)

G2/M

S

G1

Sub-G1

KNS60 A172



 

108 
 

4.1.2.3 Evaluation of total DNA damage induced by the combination 

treatment 

Total DNA damage present in a population of cells was assessed by alkaline 

single cell gel electrophoresis assay. The intensity of damage was expressed as 

mean tail moment, a measure of the distance moved away from the integral DNA 

by fragmented DNA upon electrophoresis. This showed while the cells that were 

just irradiated had a higher level of damage intensity than the controls, the 

combination treatment resulted in a similar spread of tail moments as that of 

TMPyP4-treated cells – an apparently much higher intensity of damage (Figures 

4.5 A & B).  

 

Figure 4.5 Intensity of total DNA damage induced by TMPyP4 treatment and irradiation in 

the cancer cells. Total DNA damage assessment was done by performing single-cell gel 

electrophoresis under denaturing (alkaline) conditions and its intensity plotted as tail moment of 

A. KNS60 and B. A172 cells. ‘Ctrl’ refers to the untreated controls; ’50 µM TMPyP4’ and ‘Por 

50’, both to  treatment with 50 µM TMPyP4 for 48 hours; ‘4 Gy’ to the dose of γ-radiation; and 

‘’50 µM TMPyP4 + 4 Gy’ and ‘Por 50 + 4 Gy’ to the combination treatment, i.e. pre-treatment 

with TMPyP4 for 24 hours, followed by irradiation and further incubation in TMPyP4-

containing media for another 24 hours. The nuclei were stained with SYBR Green dye and 

images captured using COMET Imager software. At least 15 nuclei were analysed for each 

category.

A B 
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 4.1.3 DISCUSSION 

Treatment with radiosensitising agents renders cells more susceptible to a given 

dose of radiation, than they would be without the treatment. Interestingly, the 

formation of G-quadruplexes has been implicated previously with regard to 

rendering cells susceptible to radiation-induced DNA damage: a study of the 

effects of treatment with telomere-sequence mimicking oligonucleotide (T-oligo) 

on mammary carcinoma cells in vitro and xenograft model attributes the 

radiosensitivity conferred by the treatment to the possible formation of 

intermolecular G-quadruplexes with the telomeric single-stranded overhang 

(Weng et al., 2010). There has been only one G-quadruplex stabilising (G4) 

ligand though, TAC, that has been evaluated for and that has demonstrated 

radiosensitising ability, also in glioma cells (Merle et al., 2011). In this study, 

TMPyP4 clearly accentuated the effect of γ-radiation on cell death (Figure 4.3 C 

& D). This study also corroborated with the one on TAC in terms of induction of 

G2/M arrest in the combination (Figure 4.4) (Merle et al., 2011). The sheer 

proportion of cells arrested in G2 phase in strongly suggestive of precedence of an 

extensive DNA damage checkpoint. Thus, it follows that although the intensity of 

DNA damage as measured by alkaline single-cell gel electrophoresis was similar 

in both – TMPyP4 treated and the combination categories in KNS60 and A172, 

the more robust enforcement of the damage checkpoint in the combination is 

reflective of the actual extent of DNA damage suffered by the cells of that 

category. The study on the G4 ligand, TAC, demonstrated a slow decay of γ-

H2AX foci (indicative of DNA damage response activation) in the combination 
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category as opposed to that with just irradiation, indicating that pre-treatment with 

TAC, the G-quadruplex ligand, resulted in the persistence of DNA damage 

induced by irradiation.  

Remarkably, a study on a small molecule inhibitor of survivin, YM155, in a 

model of non-small cell lung cancer cell lines showed the radiosensitivity 

conferred was due to the attenuation of DNA repair response (Iwasa et al., 2008). 

Moreover, a study on the assessment of the strategy of combining a histone 

deacetylase inhibitor, NVP-LAQ824, with irradiation in a mouse model of non-

small cell lung cancer showed decrease in DNA repair efficiency before the onset 

of the observed radiosensitivity (Cuneo et al., 2007). Another study in a tumour 

xenograft model, also of non-small cell lung cancer, evaluated the radiosensitising 

effects of a small molecule inhibitor of insulin growth factor 1 receptor, CO-

751,871, and speculated the inhibition of DNA repair response as one of the main 

factors behind the observed radiosensitivity (Iwasa et al., 2009). Thus, it emerges 

that studies investigating the radiosensitivity of small molecules with other 

mechanisms have also implicated the hampering of DNA damage response, either 

directly or indirectly as the underlying mechanism. 

With the mechanistic insight behind impairment of DNA damage response in case 

of telomere dysfunction-induced radiosensitivity being largely elusive, a study of 

normal human fibroblasts revealed that short telomeres in the late passage cells 

invoked localised chromatin modifications that hampered the activation of ATM-

mediated DNA damage response, thereby giving rise to the observed 

radiosensitivity (Drissi et al., 2011). Hence, it is possible that the telomere 
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dysfunction induced by TMPyP4, as observed in Chapter 3, may have led to the 

radiosensitivity of the TMPyP4-treated cancer cells. Although it remains to be 

seen if 50 µM TMPyP4 induced telomere dysfunction, it led to effective 

suppression of telomerase activity (Figure 4.3 E) and potent infliction of DNA 

damage (Figure 4.5 A & B), much like 100 µM TMPyP4 did (as seen in Chapter 

3, Figure 3.4 A) albeit with lesser cytotoxicity. Therefore, it is highly likely these 

effects of 50 µM TMPyP4 is initiated by telomere dysfunction in the cancer cells 

assessed. 
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4.2 TESTING THE IMPACT OF HAMPERING DNA REPAIR UPON 

TMPyP4 TREATMENT ON THE FATE OF CANCER CELLS 

4.2.1 BACKGROUND 

As mentioned in chapter 1 (Section 1.3.2.2.5), it is now known that key DDR 

proteins are involved in telomere maintenance. Recent work suggests differential 

regulation of DDR pathways following damage at the telomeric region, as 

opposed to that at interstitial regions of a chromosome (Section 1.3.3). Cancer 

genomes, despite being prone to a certain level of threat to its stability deploy 

efficient DDR pathways to the rescue. Moreover, cancer cells tend to be over-

reliant on a limited set of DNA repair pathways, owing to the genomic alterations 

that take place during carcinogenesis (Helleday et al., 2008). Hence, inhibiting 

key DNA repair proteins in combination with the induction of telomeric 

instability not only supresses DNA repair response by the cell, but also hampers 

the activation back up telomere maintenance mechanisms by those proteins. A 

classic example of such a strategy is the inhibition of PARP-1 (a DNA repair 

protein implicated in telomere maintenance as well) along with telomere 

uncapping by RHPS4, a G-quadruplex stabilising ligand in vitro and in a 

xenograft mouse model of cancer (Gomez et al., 2006) (Salvati et al., 2010). 

To reiterate, DNA repair is orchestrated by a range of pathways depending on the 

type of damage, the cell cycle, and the intracellular milieu (Figure 1.4) 

(Hoeijmakers, 2009). Insults to the DNA range from base adduct formations to 

base modifications to single and double strand breaks. Although any kind of 

damage can be mutagenic, double strand breaks are potentially catastrophic, more 
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often than not, if not repaired meticulously. The commonest inducer of direct 

DSBs is IR of high linear energy transfer (LET). Double strand breaks can be a 

result of direct break at both strands of DNA at a particular locus, or indirectly by 

conversion from SSBs, either by replication of a DNA segment with a break or 

upon conversion of base modifications by DNA-metabolising enzymes (Figure 

4.6). 

 

 

 

Figure 4.6 Formation of double-strand breaks (DSBs). DSBs can form either by direct 

insults to DNA or by conversion of SSBs (single-strand breaks) to DSBs upon replication, 

or by conversion of base damages to DSBs by stochastic enzymatic processing.        

Image source: (Mladenov and Iliakis, Mutat Res, 2011). 
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As mentioned earlier in chapter 1, DSB repair is typically executed by two major 

pathways: homologous recombination (HR) and non-homologous end joining 

(NHEJ) (Figure 4.7) (Khanna and Jackson, 2001). HR mediates error-free repair 

of DSBs by using available homologous DNA as template, while NHEJ operates 

by involving ligases to join the broken segments in an error-prone, homology-

independent manner  (Hoeijmakers, 2001).  

Repair by HR takes place by a sequence of steps, viz. autophosphorylation-based 

activation of ATM (Ser1981), leading to the phosphorylation and activation of 

histone protein, γ-H2AX followed by recognition of DSBs and binding to the 

vicinity of damage, making it conducive binding by DNA processing enzymes 

and recombination-mediators including the MRN complex, and also checkpoint 

activators like MDC1 and Chk2 to ensure cell arrest until efficient 

repai(Hoeijmakers, 2001). Upon recombination-mediated strand fill-in, DNA 

ligases seal the gaps in the DNA, while resolvases ensure disentanglement of 

Holliday junctions formed during invasion of homologous strand so as to serve as 

template for homologous recombination (Hoeijmakers, 2001). The importance of 

HR in telomere maintenance has been demonstrated in studies involving the 

inhibition of MRN complex, Rad54 knock-out cells among others, which show 

telomere trimming and uncapping in these scenarios (Jaco et al., 2003) (Chai et 

al., 2006). Moreover, the requirement of Rad51 and MRN complex in facilitating 

telomere recombination-mediated alternative lengthening of telomeres have also 

been brought to light (Tarsounas, 2013) (Cesare and Reddel, 2010). ATM kinase 

has been previously implicated in positive regulation of telomere length by 
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affecting the association of TRF1 from telomeric DNA (Wu et al., 2006). Recnt 

evidence unravels the direct role of ATM in telomere maintenance. ATM was 

shown to phosphorylate TRF1, thereby coating it for proteosomal degradation, 

thereby promoting the access of telomerase to telomeres for elongation (McKerlie 

et al., 2012). ATM is important to efficiently arrest cells displaying telomere 

dysfunction and attempt to repair the damage so as to preserve genome stability 

(Thanasoula et al., 2012). 

While HR requires the presence of sequence homology between the template and 

the damaged NDA, NHEJ involves a less cumbersome mode of DSB repair, 

without the need for a homologous DNA template for repair. NHEJ, though more 

error-prone, restores genomic integrity nonetheless, and ensures resuming of cell 

cycling and proliferation (Hoeijmakers, 2001). A few NHEJ pathways have been 

recently uncovered to take place when the major NHEJ pathway, DNA-PK-

dependent NHEJ (D-NHEJ) is unable to be activated. D-NHEJ involves 

recognition of and binding to DNA breaks by Ku, which facilitates recruitment of 

DNA-PK, (the major kinase responsible for orchestrating the repair) to the site of 

damage. DNA-PK, by phosphorylating various proteins, facilitates processing of 

the damages ends by nuclease Artemis to make it conducive for subsequent 

sealing of the breaks by DNA ligase, LigIV, and recombination proteins 

XRCC4/XLF complex (Mladenov and Iliakis, 2011). 

A study of the telomeric state of primary mouse embryonic fibroblasts that lacked 

Ku uncovered the accumulation of telomere end to end fusions, and revealed the 

interaction of Ku with the telomere-binding shelterin protein, TRF1 (Hsu et al., 
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2000). Another pioneering study on immunodeficient (SCID) mice that exhibited 

the suppression of DNA-PK activity to a great extent due to a loss-of-function 

mutation in DNA-PKcs (the catalytic subunit of the enzyme DNA-PK) unveiled 

unusually long telomeres as opposed to that of normal mice, pointing to the role 

of DNA-PK in telomere capping (Hande et al., 1999b). These studies along with 

more others reviewed in detail elsewhere, underscore the role of NHEJ factors in 

telomere maintenance too (Ayouaz et al., 2008) 
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Figure 4.7 Repair of DSBs in mammalian cells. DSB repair in cells take place by 

a meticulous, error-free, homology-dependent pathway - homologous 

recombination (HR), and an error-prone non-homologous end joining (NHEJ) 

pathway. The choice of their deployment is dictated by factors such as the phase of 

cell cycle, availability of repair proteins (especially in cancer cells), and 

intracellular milieu. Image source: (Hoeijmakers, 2001). 
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4.2.2 RESULTS 

4.2.2.1 Evaluation of the effect of TMPyP4 in glioblastoma cells upon 

inactivation of ATM kinase 

Although ATM activation in ONS76 cells coincided with the observation of 

efficient DNA repair in the cancer cells following TMPyP4 treatment, it still was 

not clear if the activation of ATM in the cells led to the DDR (Chapter 3; Figure 

3.6 A). To answer this, 3 µM (dose chosen based on preliminary results) a 

chemical inhibitor Ku60019 that would prevent the activation of ATM, was used 

during the recovery period following 48 hours of TMPyP4 treatment in the two 

glioblastoma cells used extensively throughout the course of the entire study, 

KNS60 and A172 cells. Western blotting showed that ATM was indeed activated 

in both ONS76 and KNS60 following TMPyP4 treatment, and that, 3 µM 

Ku600019 in TMPyP4-free medium over 24 hours, following 48 hours of 100 µM  

TMPyP4, successfully inhibited ATM kinase that was activated upon TMPyP4 

treatment to a great extent (Figure 4.8 A).  The effect of this unavailability of 

ATM kinase on DNA repair was assessed by performing alkaline single cell gel 

electrophoresis (COMET analysis). It showed that while Ku600019 alone and 

TMPyP4 treatment alone led to an increase in the total DNA damage, the 

recovery period led to a reduction in the observed DNA damage, corroborating 

with those obtained earlier in ONS76 cells. However, ATM inhibition (Ku600019 

treatment) during the recovery period caused a staggering increase in the observed 

total DNA damage (Figure 4.8 B). This not only showed that ATM kinase is the 
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main orchestrator of TMPyP4-induced DNA damage in the cancer cells, but also 

that the cancer cells had been actively involved in repair process during TMPyP4 

treatment itself. 

 

 

 

 

Figure 4.8 ATM-mediated repair of DNA damage induced by TMPyP4. A. 

Western blot analysis of activated ATM kinase (p-ATM) B. Dot-scatter of the 

intensity of DNA damage (tail moment in µm) by alkaline COMET; each cell 

represented as a dot. Mean and S.E.M. of at least 50 cells represented as dashes. 

Legend: C- Control; Ku- 3 µM Ku60019 for 24 hours; P48- 100 µM TMPyP4 for 

48 hours; P72- 100 µM TMPyP4 for 48 hours followed by no treatment for 24 

hours; P+Ku-100 µM TMPyP4 for 48 hours, followed by 3 µM Ku60019 for 24 

hours in fresh media. At least 50 cells were analysed for each category. 
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4.2.2.2 Evaluation of the effect of TMPyP4 in glioblastoma cells upon 

inactivation of DNA-PKcs  

As mentioned in the introduction to DNA repair, earlier in section 4.2.1, the repair 

of DSBs are essential for cell survival. Clearly, given that the inhibition of ATM 

kinase potentiated the DNA damage-mediated cell death of glioblastoma cells, the 

inhibition of the NHEJ orchestrator – DNA-PKcs in combination with TMPyP4 

treatment in glioblastoma cells is a worthwhile strategy. Owing to the availability 

of two glioma cell lines derived from the same patient, one with DNA-PK 

deficiency attributed to spontaneous point mutations (M059J) and the other with 

normally functional DNA-PK (M059K), they were the models of this 

investigation.  

A small molecule inhibitor of DNA-PKcs (the catalytic subunit of DNA-PK 

holoenzyme), NU7026 was used in studying the effects of abolition of NHEJ in 

M059K cells. The dose of NU7026, 10 µM was chosen by pre-determined studies 

in the laboratory (Data not shown). Cells were also allowed 24 hours after 

treatment to repair the inflicted DNA damage by the treatment modalities. M059K 

cells showed remarkable ability to repair the damage induced by 48 hours of 100 

µM TMPyP4 treatment. Strikingly, upon NU7026 pre-treatment, the cells 

displayed an evident inability to repair the damage (Figure 4.9 A). This profile 

was mimicked by M059J cells (that inherently lack DNA-PKcs) upon 48 hours of 

TMPyP4 treatment followed by recovery in TMPyP4-free media (Figure 4.9 B). 
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Figure 4.9 Effect of combination of TMPyP4 treatment and DNA-PKcs 

inhibition on the intensity of DNA damage in the cancer cells. Alkaline single-

cell gel electrophoresis of A. M059K cells upon DNA-PKcs inhibition and 

TMPyP4 treatment and B. M059J cells upon TMPyP4 treatment. Legend: 

‘Response’ means treatment for 48 hours; ‘Repair’ means incubation for a further 

24 hours in media devoid of any treatment agents, following the ‘Response’ 

period. ‘TMPyP4’ means treatment with 100 µM TMPyP4; ‘NU7026 + TMPyP4’ 

means pre-treatment with 10 µM NU7026 for 2 hours, followed by incubation 

along with 100 µM TMPyP4 for a further 48 hours. At least 50 cells were 

analysed for each category. 

 

The effect of absence of DNA-PKcs upon TMPyP4 treatment on double-strand 

break repair was assessed by immunofluorescent visualisation of γ-H2AX foci, 

the regions of DSB damage signalling. Snapshots of representative images show 

the persistence of the foci even after the 24 hour response period in M059K 

(NU7026 + TMPyP4 repair) and M059J (TMPyP4 repair) as opposed to that 

without DNA-PK inhibition in M059K cells (TMPyP4 repair) (Figure 4.10). 
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M059J 

M059K 

  Control 

Figure 4.10 Effect of TMPyP4 treatment following DNA-PKcs deficiency on double-strand break repair in glioblastoma cells. Semi-

quantitative analysis of γ-H2AX foci by immunofluorescence staining of γ-H2AX upon TMPyP4 and NU7026 treatment in M059K cells; 

and just TMPyP4 in M059J cells. Legend: ‘Response’ means treatment for 48 hours; ‘Repair’ means incubation for a further 24 hours in 

media devoid of any treatment agents, following the ‘Response’ period. ‘TMPyP4’ means treatment with 100 µM TMPyP4; ‘NU7026 + 

TMPyP4’ means pre-treatment with 10 µM NU7026 for 2 hours, followed by incubation along with 100 µM TMPyP4 for a further 48 

hours. DAPI – nuclear staining; TR (Texas Red) – γ-H2AX staining. Images captured using MetaSystems isis software at 200X 

magnification. 
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Cell cycle arrest, as we have seen earlier in this study, has been a natural 

consequence of persistent DNA damage response. Both, TMPyP4 alone and in 

combination with NU7026 induced a G2/M arrest in M059K cells, with the latter 

treatment inducing a slightly more robust arrest (p < 0.05, ANOVA) (Figure 

4.11). Thus, DNA-PKcs absence proved fatal to the glioblastoma cells treated 

with TMPyP4 too. 
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Figure 4.11 DNA-PKcs inhibition, TMPyP4 treatment and cell arrest. Cell cycle 

profile of TMPyP4-treated M059K cells upon DNA-PKcs inhibition was assessed using 

flow cytometry of a population of at least 10,000 cells. The experiment was repeated with 

three independent repeats of cells. Legend: ‘TMPyP4’ means treatment with 100 µM 

TMPyP4; ‘NU7026 + TMPyP4’ means pre-treatment with 10 µM NU7026 for 2 hours, 

followed by incubation along with 100 µM TMPyP4 for a further 48 hours. Single factor 

ANOVA was performed to assess statistical significance. 
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4.2.3 DISCUSSION 

The strategy of inhibiting DNA repair-orchestrating enzymes along with the 

induction of telomere-mediated genomic instability has been made use of in a 

study with another promising G-quadruplex interacting ligand, RHPS4 (Salvati et 

al., 2009). RHPS4 induced telomere dysfunction in vivo and PARP inhibition led 

to the irreparability of the telomere uncapping effect of RHPS4 (Salvati et al., 

2010). Although RHPS4 was shown to activate an ATR-dependent ATM pathway 

of cell arrest following telomeric replication stress, the possibility of potentiation 

of RHPS4 upon ATM inhibition was not explored (Salvati et al., 2010). The 

development of highly specific inhibitors to PARP and DNA-PKcs for the clinic 

envisages more studies using DNA repair perturbation as combination to the 

primary treatment (Riabinska et al., 2013); (Tinoco et al., 2013). ATM was shown 

to be essential in repairing the telomeric insult by a G-quadruplex ligand, 360A, 

in a model of normal and AT (lacking ATM) lymphocyte cell lines (Pennarun et 

al., 2008) 

Since the cell has evolved only two major DSB repair pathways, it should follow 

that a cell that is defective in one of the two canonical DSB repair pathways – HR 

or NHEJ, must be proficient enough in repairing spontaneous DSBs by the other 

pathway in order to survive. While studies on the mechanism of most small 

molecules, including G-quadruplex ligands implicate one major DNA repair 

pathway, a recent study on 360A implicated the role of both – ATM kinase and 

DNA-PK in repairing the telomeric damage induced by 360A in a panel of human 

cancer cell lines (Gauthier et al., 2012). This is not surprising, given that the two 
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major pathways of DSB repair are interlinked, that too in response to telomeric 

damage. Although an early, pioneering study on the delineation of the role of 

DNA-PK at mammalian telomeres suggested that ATM and DNA-PK pathways 

operate through separate pathways following telomeric damage, this view has 

been overturned by recent work (Bailey and Murnane, 2006). Recent studies have 

shown that ATM kinase exercises greater control over DDRs corresponding to the 

telomeres, than that over interstitial DNA in human cells (Miller et al., 2011). A 

very recent study in human clinical samples has concluded just that – that 

disabling ATM mutations occur in a fraction of human lung and haematological 

malignancies among others, and that although these cancers seem to be refractory 

to conventional chemotherapeutics, they appear to be over-reliant on DNA-PKcs 

mediated DDR (Riabinska et al., 2013). All this put together brings out the picture 

of inter-dependence of HR and NHEJ pathways; and even more so in response to 

telomere dysfunction. 

In this study, combining either ATM inhibition or DNA-PK inhibition, with 

TMPyP4 treatment showed glimpses of promise as a combination modality for 

the efficient reduction of tumour mass and prevention of recurrences. Similar to 

the radiosensitisation study in Section 4.1, this study also seems to underscore the 

importance of inducing telomere dysfunction, leading to persistence of DNA 

damage signalling, and eventually to weakened cellular defences. 
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Chapter 5 

Chronic low dose study of TMPyP4 
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5. CHRONIC LOW DOSE STUDY OF TMPyP4 

5.1. BACKGROUND 

It is customary for telomere-telomerase targeting agents to be evaluated over 

long-term, as telomere shortening takes a few population doublings before 

eliciting an apparent effect on cell physiology. Also, long-term treatment over a 

few weeks is more clinically relevant, given that it takes some time for the 

treatment to take effect on the heterogeneous cell populations within a tumour.  

Some G-quadruplex ligands that have entered clinical trials in the past have 

exhibited telling effects on telomere maintenance over long-term treatment in 

various cancer models including xenograft models (Burger et al., 2005; Kim et al., 

2002; Leonetti et al., 2004). TMPyP4 has shown promise as a telomere-specific 

agent that could induce telomere dysfunction and DNA damage over short-term 

treatment, as seen in chapter 3. In order to evaluate the potential for TMPyP4 to 

become a cancer drug, it is essential to investigate the effects of TMPyP4 on 

telomere maintenance over a few weeks of treatment in glioblastoma cells owing 

to the lack of studies on the same. Hence, human-derived glioblastoma 

multiforme cell types, KNS60 and A172 will be the model of this study. 
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5.2 RESULTS 

5.2.1 Dose response with long-term treatment with TMPyP4 

Various concentrations of TMPyP4 (1-10 µM) were tried out on the cancer cells 

KNS60 and A172, over long term in an attempt to use a therapeutically relevant 

dose-time regime using chronic, low doses. While 1 µM was ineffective in 

causing massive cell death at least until eight weeks of treatment, the rest of the 

doses eliminated the cancer cells within six weeks, with 4, 5 and 10 µM being 

potentially cytotoxic, all inflicting massive cell death within two weeks. 

TMPyP4 (µM) Cell survival (weeks) 

 KNS60 A172 

10 1 1 

5 2 2 

4 2 2 

3 4 3 

2 6 5 

1 >9 8 

Table 2:Survival of cancer cells in long-term chronic doses of TMPyP4 

Since TMPyP4 inflicted accelerated death at higher concentrations, their effect on 

cyclins and hence on cell cycle arrest was evaluated for G1/S checkpoint 

activation by assessing the levels of cyclin D1 (which gets diminished upon G1 

arrest) in A172 cells using western blotting after treatment with 1, 5 and 10 µM 

TMPyP4 over a few weeks or until complete cell death was achieved. It was 

observed that 5 and 10 µM TMPyP4 significantly reduced cyclin D1 and hence 

prominently arrested cell proliferation after just 1 week of treatment, while 1 µM 
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TMPyP4 only mildly reduced cyclin D1 levels and largely permitted cell 

proliferation, at least in the initial few weeks (Figure 5.1). This corroborated with 

the observation of cell death in A172 cells over a range of doses of TMPyP4 

(Table 5.1). While the effect of this treatment of TMPyP4 on inducing arrest in 

KNS60 cells was not evaluated, the gradual reduction in the viability of these 

cells over weeks of treatment, similar to that of A172 cells point out to the 

possibility of the same. Subsequently, lower doses viz. 1, 2 and 3 µM of TMpyP4 

were used to potentially hamper telomere maintenance with minimal toxicity, so 

as to affect the cancer cells largely. 

Figure 5.1 Effect of long-term chronic doses of TMPyP4 on cell proliferation 

Cyclin D1 levels were obtained by western blotting after the various dose-time 

treatments with TMPyP4 in A172, as a measure of cell cycle progression. 

Cells were counted using Trypan Blue dye exclusion at the end of every week 

before seeding for the subsequent week. A detailed population doubling analysis 

of 1 and 2 µM TMPyP4 in A172 cells at the end of every week of treatment 

showed that TMPyP4 reduced the viability of the cells in a dose- and time-

dependent manner (Figure 5.2). 
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Figure 5.2 TMPyP4 and long-term doubling of cancer cells Population 

doubling analysis of A172 cells with 1&2 µM TMPyP4 over 5 weeks of 

treatment.  

5.2.2 Deregulation of telomere-associated proteins by TMPyP4 

TMPyP4 showed prominent telomere-specific binding as seen by its immediate 

effect on TRF2 levels as shown earlier (Figure 3.5). Hence, the effect of long term 

treatment with TMPyP4 on telomere maintenance was assessed by probing for the 

most important shelterin protein, TRF2 and the catalytic subunit of telomerase, 

hTERT in KNS60 and A172 cells. TMPyP4 has been noted to exhibit drastic 

effects on telomere maintenance at high doses as seen after 48 hours of treatment 

with 100 µM TMPyP4 on KNS60 and ONS76 cells (Figure 3.4). Not surprisingly, 

the higher doses 5 and 10 µM exerted a strong reduction on the associated 

proteins at the telomeres, following treatment for one week, in the case of A172 
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cells and for two weeks, in the case of KNS60 cells (Figure 5.3 A). While, 

treatment with low dose of 1 µM TMPyP4 led to a slight reduction in hTERT 

levels in the early weeks and a pronounced reduction in the later weeks, TRF2 

levels reduced drastically just before the onset of massive cell death, in both 

KNS60 and A172 (Figure 5.3 A). To see if this is the case with other shelterin 

proteins too and other low-range doses of TMPyP4 too, the levels of another 

telomeric dsDNA binding protein, TRF1 was assessed after treatment with 1 and 

3 µM TMPyP4 in KNS60 and A172 cells for up to 3 weeks which was when 

massive cell death was induced by 3 µM TMPyP4 (Table 5.1). While TRF1 levels 

remained largely unaffected by 1 µM TMPyP4 within the three-week time period 

except in the case of KNS60 cells treated for three weeks, 3 µM led to 

plummeting of TRF1 levels in two weeks in A172 cells and three weeks in 

KNS60 cells (Figure 5.3 B). To reiterate, A172 cells were eliminated within three 

weeks; and KNS60 cells in four weeks upon treatment with 3 µM TMPyP4 (Table 

5.1).  As shown in chapter 3 (Figure 3.5), TMPyP4 treatment could lead to a 

staggering reduction in the levels of shelterin proteins, almost immediately after 

treatment. Taking this together with the observation of reduction in TRF1 and 

TRF2 levels upon long term treatment with TMPyP4, it is convincing that 

telomere uncapping is the modus operandi of TMPyP4. 
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Figure 5.3 Deregulation of telomeric proteins by chronic treatment with low doses of 

TMPyP4. Effect of A. 1, 5, and 10 µM TMPyP4 on TRF2 and hTERT B. 1 and 3 µM 

TMPyP4 on TRF1, as assessed by western blotting of whole cell proteins. 
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5.2.3. Telomere shortening caused by TMPyP4 

TMPyP4 treatment as observed in the earlier section (5.2.2) led to substantial 

reduction in the levels of TRF1, TRF2 and hTERT, at least in the later weeks, 

before massive cell death. As hTERT, the catalytic subunit of telomerase, is 

necessary for telomerase activity; and shelterin integrity for telomerase 

recruitment to the telomeres, TMPyP4 may induce telomere shortening.  

Accordingly, KNS60 and A172 cells were treated with 1, 2, 5, and 10 µM of 

TMPyP4 until massive cell death was observed, and their telomere lengths 

measured using Telomere Restriction Fragment analysis (TRF) following 

southern blotting of the DNA digested using pan-restriction endonucleases. 

Corroborating with the earlier observations on the effect of TMPyP4 on TRF2 and 

hTERT, the higher doses, 5 and 10 µM caused appreciable reduction in mean 

telomere length by a few hundred base pairs within a week of treatment in KNS60 

cells, a week before massive cell death was observed (Figure 5.4 B). The same 

doses effected massive cell death in a week in A172 cells and hence, telomere 

length measurement was not attempted within that time period.  

The lower and less toxic doses displayed an interesting profile. On the one hand, 

low dose of 1 µM TMPyP4 did not induce any significant telomere shortening in 

A172 cells (Figure 5.4 A), as observed until eight weeks of treatment and a mild 

shortening of a few hundred base pairs reduction in KNS60 in the sixth week of 

treatment (Figure 5.4 B).  On the other hand, while a dose of 2 µM TMPyP4 did 

not affect telomere length for the first two weeks of treatment, it led to shortening 

of a few hundred base pairs after three weeks; and a staggering profile of 
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unprecedented increase in the mean telomere length by as much as seven times, 

and a homogenous smear, characteristic of a very wide range of telomere lengths, 

suggestive of acute changes to telomere architecture at that time-point (Figure 5.4 

C). Remarkably, massive cell death ensued in the fifth week, resulting in a wipe-

out of the entire cell population (Table 5.1). Thus, piecing information from 

telomere-associated protein levels and telomere length analyses, the induction of 

telomere dysfunction by TMPyP4 is highly likely.
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Figure 5.4 Telomere shortening and TMPyP4 Effect of long term 

treatment with TMPyP4 on telomere length, as assessed by 

Telomere Restriction Fragment (TRF) analysis A. 1 µM TMPyP4 

on A172 cells. B. 1 µM TMPyP4 on KNS60 cells C. 2 µM TMPyP4 

on A172 cells. Dashes represent mean of telomere lengths of a 

population of cells. Normally, telomere length profiles of cells bear 

a thick smear, with a short range of telomere lengths. 
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5.2.4. Chromosome instability (CIN) induced by TMPyP4 

CIN is the major contributor of genomic instability, and cancer cells that already 

have shorter telomeres and deregulated cellular checkpoints, have a certain level 

of persisting genomic instability and are highly prone to triggers of telomere 

dysfunction. To check the extent of CIN upon TMPyP4 treatment, KNS60 and 

A172 cells were subjected to 1 µM TMPyP4 for a few weeks until massive cell 

death, and cells harvested at the end of every week and analysed for telomere and 

chromosomal aberrations using telomere-FISH, that makes use of fluorescently 

labelled peptide nucleic acid probes against telomeres and centromeres, along 

with whole chromosome staining using DAPI. Telomere dysfunction was indeed 

induced by TMPyP4 treatment, as evidenced by the observation that missing 

telomere signals were more frequent in TMPyP4-treated cells than in untreated 

controls; and dicentric chromosomes also increased with treatment, progressively 

over weeks, in both – KNS60 and A172 cells (Table 5.2).  It is noteworthy that 

while treatment with 1 µM TMPyP4 resulted in an increase in missing telomere 

signals and dicentric chromosomes to an extent, it still was incapable of inducing 

genomic instability en masse as evidenced by the lack of spontaneous chromatid 

breaks and DNA fragments upon treatment (Table 5.2). Figure 5.5 shows the 

various aberrations found in the treated cells. This is understandable, given that 1 

µM TMPyP4 was not good enough to induce significant telomere shortening, nor 

drastic telomere uncapping as seen in the results of earlier experiments. 

Nonetheless, these results show that TMPyP4 acts by uncapping of telomeres, 

telomere shortening and telomere dysfunction.
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Cell Type Duration Condition No. of cells Signal Free 

Ends 

DNA 

Fragments 

Dicentric & 

Tricentric 

fusions 

Chromatid Breaks 

A172 Day7 Control 17 24 (141.1) 0 (0.00) 1 (5.88) 0 

1 µM 6 34 (570.0) 1 (16.67) 2 (33.33) 0 

Day 28 Control 18 78 (433.0) 0 (0.00) 8 (44.44) 1 

1 µM 11 110 (1000.0) 1 (9.09) 14 (127.27) 0 

Day 49 Control 18 112 (620.0) 0 (0.00) 17 (94.44) 1 

1µM 12 128 (1070.0) 1 (8.33) 20 (166.67) 1 

KNS60 Day 14 Control 20 59 (295.0) 6 (30.00) 1 (5.00) 0 

1 µM 20 143 (715.0) 7 (35.00) 3 (15.00) 3 

Day 28 Control 15 47 (313.0)  10 (66.67) 0 (0.00) 1 

1 µM 20 150 (750.0) 11 (55.00) 2 (10.00) 1 

Day 42  Control 5 23 (460.0) 3 (60.00) 1 (20.00) 0 

1 µM 16 147 (920.0) 3 (18.75) 6 (37.50) 0 

 

Table 3 Chromosomal instability induced by TMPyP4 Telomere-FISH was used to evaluate chromosomal instability in KNS60 and 

A172 cells upon treatment with 1 µM TMPyP4 for up to seven weeks. Number of aberrations per 100 cells is given within parenthesis 

and in bold. Two-factor ANOVA (without replication) for signal free ends: in A172 between control and treated of days 28 and 49 

with p < 0.05; in KNS60 between control and treated of days 14 and 28 with p < 0.01. Note: Day 7 in A172 and Day 42 in KNS60 

were omitted from statistical analysis due to the lack of a sizeable number of cells analysed.  
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Figure 5.5 Chromosome instability induced by TMPyP4. Telomere PNA-FISH was used to assess chromosome instability by 

detecting telomere dysfunction and chromosomal aberrations; telomeres were stained by a Cy3-Telomere PNA probe (red); 

centromere by FITC-Centromere PNA probe (green); and DNA counter-stained by DAPI (blue). Representative images of: A. a 

typical metaphase from untreated A172 cells; B. a tricentric chromosome (presumably fused due to loss of telomeres); C. a terminal 

deletion (accompanied by loss of telomeres); D. a triradial-like structure (complex fusion); E. a chromatid break. All aberrations are 

using white arrows. 
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5.2.5. DNA damage inflicted by TMPyP4 

To summarise, long term treatment of KNS60 and A172 cells with 2 µM or 

more of TMPyP4 induced telomere uncapping, telomere dysfunction, genome 

instability, cell cycle arrest, and cell death as seen earlier in this chapter. 

Hence, it is highly likely the observed genomic instability upon TMPyP4 

treatment could be due to triggering massive DNA damage, including that at 

the telomeres. To test this notion, alkaline single cell gel electrophoresis was 

resorted to, upon 1 and 2 µM TMPyP4 treatment in A172 cells, for up to five 

weeks when massive cell death was occurred. Analysis of the tail moment of 

nuclei subjected to electrophoresis in alkaline buffer, a measure of the total 

DNA damage, shows an obvious DNA damaging effect of TMPyP4 which 

increases with dose (Figure 5.6).  
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Figure 5.6 DNA damage induced by TMPyP4. Total DNA damage inflicted by TMPyP4 

in A172 cells was evaluated by subjecting nuclei to electrophoresis in alkaline conditions 

and staining the nuclei using SYBR Green, followed by measurement of tail moment, i.e. 

the length of the non-integral DNA as an indicator of the intensity of damage. 
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It is noteworthy that the cells (A172) undergo massive cell death after five 

weeks of treatment with 2 µM TMPyP4. It was earlier seen that, upon 

treatment with 100 µM TMPyP4 over short term, ATM kinase gets efficiently 

activated in ONS76 cells (Figures 3.6A and 3.7). To check if the same is the 

case with long term treatment as well, the whole cell levels of phosphrylated 

ATM (Ser1981) (that constitutes active ATM kinase) was probed and analysed 

using western blotting. It revealed that, indeed, there is progressive activation 

of ATM kinase over three weeks of treatment with 2 µM TMPyP4 in A172 

cells (Figure 5.7).  

 

Figure 5.7 Activation of DDR upon TMPyP4 treatment.  Western blotting 

was employed to assess the activation of ATM kinase (p-ATM Ser1981) upon 

1 and 2 µM TMPyP4 treatment for up to three weeks on A172 cells. 
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5.3. DISCUSSION 

The higher doses, 5 and 10 µM of TMPyP4 induced extensive telomere 

uncapping and telomere shortening in one week of treatment (Figures 5.3 A 

and 5.4 B respectively). However, as seen by the thorough depletion of cyclin 

D1 levels (Figure 5.1) and rapid cell death en masse in a week of treatment 

(Table 5.1), it is highly likely that those doses work by inducing extensive 

genomic DNA damage, not restricted to the telomeres alone. A low dose of 1 

µM TMPyP4, though not cytotoxic like the higher doses, was not effective 

either in inducing telomere dysfunction and hence, cell death in the cancer 

cells (Tables 5.2 and 5.1 respectively). Though it reduced the proliferation of 

the cancer cells, it was not effective enough in inducing massive cell death 

even after eight weeks of treatment in the cancer cells studied. It resulted in an 

increase in missing telomeric signals, but could not induce chromosomal 

instability of note. It did not lead to significant telomere shortening, either 

(Figures 5.4 A and B). A dose of 2 µM TMPyP4 was found to be ideal for 

long term treatment of A172 cells as it resulted in telomere shortening of a few 

hundred base pairs after three weeks of treatment and in extensive alteration of 

telomere architecture after four weeks (Figure 5.4 C). The intensity of total 

DNA damage was very high too, following four and five weeks of treatment 

(Figure 5.6). Consequently, it also resulted in the extermination of the entire 

cell population after five weeks (Table 5.1 and Figure 5.2). 

The effect of TMPyP4 on shelterin levels is telling. TMPyP4 causes extensive 

reduction of TRF1 and TRF2 (the other shelterin proteins were not assessed), 

hinting at telomere uncapping, at least before massive cell death was observed 

(Figures 5.3 A and B). The delocalisation of some shelterin proteins from the 
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telomeres has been demonstrated before, upon treatment with G-quadruplex 

ligands. Treatment with a chronic low dose of a reputed G-quadruplex ligand, 

RHPS4, in human transformed fibroblasts and melanoma cells in vitro, led to 

rapid delocalisation of POT1 and TRF2 from the telomeres before the onset of 

cell death (Salvati et al., 2007). Another study on the effects of treatment of 

cancer cells with telomestatin (the first G-quadruplex drug to enter clinical 

trials) revealed the delocalisation of TRF2 as the main mechanism behind the 

resulting telomere deprotection and the onset of apoptosis (Tahara et al., 

2006). Although the levels of TRF1 upon treatment with 1 µM TMPyP4 and 

that of TRF2 upon treatment with 3 µM TMPyP4 were not assessed, the 

reduction in telling TRF2 upon 1 µM TMPyP4 and that of TRF1 with 3 µM 

TMPyP4 in A172 cells indicated the possibility that a particular dose of 

TMPyP4 could lead to a robust suppression of both TRF1 and TRF2 levels. 

Remarkably, none of the previous studies have implicated the reduction in the 

levels of both TRF1 and TRF2 in the same study of any particular G-

quadruplex ligand. To reiterate, TRF1 and TRF2 are cogs of the shelterin 

machinery and also the so-called telosome – the interactome of telomeres (de 

Lange, 2009). Thus, a reduction in the levels of both TRF1 and TRF2 would 

mean telomere destabilisation-mediated catastrophe. 

TMPyP4 also exhibited effects on telomere stability and hence, chromosome 

stability, as visualised by telomere-FISH. Although the treated cells exhibited 

fairly uniform chromosome stability, this could be attributed to the lack of 

potency of 1 µM TMPyP4 on the cancer cells. Similar effects of the higher 

doses were not assessed. Nonetheless, signal-free ends, a measure of missing 

telomeres were more frequent upon 1 µM TMPyP4 treatment in both, KNS60 
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and A172 cells (Table 5.2). Moreover, extensive DNA damage was observed 

upon treatment with 1 and 2 µM TMPyP4, progressively over time (Figure 

5.6). Although the presence of DNA damage at the telomeres was not assessed 

in this study, it is highly likely that a sizeable proportion of DNA damage 

observed could be at the telomeres, given the nature of TMPyP4 and the FISH 

result that shows highly abundant signal-free ends following treatment (Table 

5.2). A specific G-quadruplex ligand, 360A, induced telomere aberrations 

including signal-fee ends, telomere sister-chromatid exchanges, and fragile 

telomeres in HeLa cells after 8 days of treatment with a non-cytotoxic dose 

(Pennarun et al., 2008). RHPS4, which exhibited its anticancer effects by 

virtue of its ability to stabilise G-quadruplexes, was shown to inflict telomeric 

damage as soon as 8 hours after treatment, in human melanoma cells but not in 

primary cells or even transformed fibroblasts (Salvati et al., 2007). 

Apart from eliciting telomere de-protection and telomere damaging effects, 

TMPyP4 induces appreciable telomere shortening, presumably to below the 

crisis levels, in addition to reducing hTERT levels significantly, in the 

telomerase-positive cancer cells before the onset of massive cell death 

(Figures 5.3 A and 5.4 C respectively). Other G-quadruplex ligands have 

induced telomere shortening as well in various cancer models. Of note, 

treatment with a low dose of BRACO-19, in a study of prostate a cancer cell 

type exhibited progressive telomere shortening over three weeks as seen 

indirectly by an increase in the number of telomere end to end fusion events 

(Incles et al., 2004). To reiterate our study, telomere length pattern after four 

weeks of treatment with 2 µM TMPyP4 exhibited a largely homogenous 

smear, which portrays a wide range of telomere lengths, unlike in a typically 
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normal cell. The pattern is a hallmark of cells undergoing massive telomere 

recombination, suggestive of an ALT (Alternate Lengthening of Telomeres) 

phenotype (Cesare and Reddel, 2010). Given that the effect of 2 µM of 

TMPyP4 on telomere shortening and the intensity of DNA damage got 

exacerbated with time, it is possible that extensive telomere dysfunction and 

telomere shortening in A172 cells, leading to a surge in telomere 

recombinatorial events, in an attempt to survive the telomere crisis, only to go 

in vain, as observed by their elimination within a week after the observation. 

Interestingly, a metaphase spread of adenocarcinoma cells Du-145 after three 

weeks of BRACO-19 treatment showed numerous end to end fusions, 

reflecting the fact that the telomeres have shortened to critical levels (Incles et 

al., 2004). A dose of 3 µM, while it proved cytotoxic to A172 cells (that 

underwent massive cell death within 3 weeks), it bore well with KNS60, as 

seen by its gradual reduction of the shelterin protein TRF1 with time, and 

induction of massive cell death not before 4 weeks of treatment (Figure 5.3 B 

and Table 5.1 respectively). Hence, 3 µM TMPyP4 in KNS60 cells may have 

an effect, equivalent to that of 2 µM TMPyP4 in A172 cells. 

Although the effect of 2 µM TMPyP4 in A172 cells on telomerase and hTERT 

was not evaluated, it is highly likely that telomerase activity may have been 

diminished largely, following the effects of 1, 5 and 10 µM TMPyP4 in these 

cells, as seen earlier.  

Given the involvement of ATM kinase in response to telomere dysfunction 

and DNA damage inflicted by 2 µM TMPyP4 over four weeks (Figure 5.7), it 

is intriguing to note that an apparent attempt at the activation of ALT by A172 

cells after four weeks was overhauled, resulting in their elimination, instead. 
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Although ATM kinase is the main orchestrator of homologous recombination, 

another complex of proteins – the MRN complex has been shown to be 

required for the execution of ALT (Cesare and Reddel, 2010). MRN complex 

also seems to bind to sites of DSBs first and functions beyond ATM-mediated 

HR pathway (Lamarche et al., 2010). Moreover, it was observed that TMPyP4 

induces massive DNA damage. Hence, it is likely that along with telomeric 

DNA, interstitial DNA is damaged as well, though to unknown extent. Also, 

telomere elongation can occur by mechanisms independent of homologous 

recombination in ALT (Figure 1.11) (Cesare and Reddel, 2010). Putting these 

together, it is possible that TMPyP4, along with the induction of telomeric 

damage, also inflicts interstitial DNA damage which may explain the 

occupation of some of the activated ATM at least. Consequently, since the 

levels of MRN complex in the treated cells remain unassessed, it is possible 

that activated ATM, that is available for the repair of telomeric DNA, is 

insufficient to mediate ALT and rescue these cells from telomere crisis. It is 

remarkable to note that a study on sea urchin eggs as the model has shown the 

formation of anaphase bridges upon treatment with TMPyP4 (Kim et al., 

2003). Mechanistically, TMPyP4 predominantly stabilises intermolecular G-

quadruplexes, like telomeres of sister chromatids for instance, unlike 

telomestatin which likely stabilises intramolecular G-quadruplexes (Kim et al., 

2003). This could potentially initiate breakage-fusion-bridge cycles, leading to 

mitotic catastrophe. Although it would be worthwhile to look for the formation 

of anaphase-bridges upon TMPyP4 treatment over long-term and upon 

cytokinesis arrest, it follows that TMPyP4 is highly likely to be effective 

against ALT-positive, telomerase-negative cancer cells as well. 
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Promising telomere-targeting G-quadruplex ligands such as RHPS4 and 

BRACO-19 have been shown to cause telomere dysfunction in colon, 

prostrate and uterus carcinoma cell types over a few weeks of treatment 

(Burger et al., 2005) (Salvati et al., 2007) G-quadruplex ligands have exerted 

an intriguing range of functions depending on the dose and time period of 

treatment. RHPS4, telomestatin and 360A– all cause telomere uncapping over 

short-term treatment, while acting as a telomerase inhibitor over long-term 

treatment with a non-cytotoxic dose (Tahara et al., 2006) (Pennarun et al., 

2008; Salvati et al., 2007). The effects of BRACO-19 (while not as well 

characterised as it TMPyP4 has been in this study) have been attributed to 

both telomere uncapping as well as telomerase inhibition over long-term 

treatment (Burger et al., 2005). The subtle variations in such physiological 

behaviour of cells in response to G-quadruplex stabilising ligands have been 

attributed to the physical interaction between the ligand and the DNA (Kim et 

al., 2003). The present study strongly indicates that TMPyP4 induces a 

combination of telomerase inhibition and disruption of telomere maintenance 

over long-term treatment, resulting in telomere dysfunction as well. 
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CONCLUSION 

G-quadruplexes has been realised to be a hugely promising target for cancer 

therapy because of their tendency to form at the telomeres to a great extent. 

Strategies to stabilise G-quadruplexes could pave way to triggering DNA 

damage signalling and telomerase inhibition at the same time, thereby 

promising relatively immediate effects on cancer cells, with enhanced 

specificity (Neidle and Read, 2000). Two attributes of the promising G-

quadruplex ligands studied are baffling. Firstly, G-quadruplex ligands have 

exhibited minimal toxicity at large, in both in vitro and in vivo models of 

study, while effectively eliminating cancer cell populations and greatly 

reducing tumour mass (Hurley et al., 2000; Monchaud et al., 2010). Secondly, 

while it is known that G-quadruplexes have a tendency to form at regions 

other than the telomeres, G-quadruplex ligands have elicited telomere-specific 

effects on the cells (Bochman et al., 2012). Somehow, by mechanisms not 

greatly understood, G-quadruplex ligands have been shown to preferentially 

localise to the telomeres instead of other chromosomal regions (Granotier et 

al., 2005). Interestingly, TMPyP4 has been shown to preferentially localise 

inside the nucleus of cancer cells (Izbicka et al., 1999). 

Porphyrins are the first family of ligands that were tested extensively for 

quadruplex-stabilising ability of small molecules; and TMPyP4 was the first 

ligand to show early promise in that regard (Hurley et al., 2000; Izbicka et al., 

1999). TMPyP4 is still used extensively in studies as a tool for understanding 

telomere dynamics amidst the presence of secondary structures like the 

quadruplexes (Monchaud et al., 2010).While a number of ligands have shown 

promise in stabilising G-quadruplexes, it is noteworthy that TMPyP4 has been 
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a template for structure of a potential G-quadruplex ligand (Dixon et al., 

2007). Early studies on the preferential binding of TMPyP4 to quadruplexes 

using G-rich oligonucleotides in vitro demonstrated high affinity but low 

selectivity of binding quadruplexes over duplexes (De Cian et al., 2005).  This 

coincided with the advent of in silico modelling of small molecules that has 

given rise to a deluge of potential G-quadruplex ligands (Bochman et al., 

2012; Monchaud et al., 2010). However, owing to the nature of molecular 

biology research, laboratory-based research has not been able to catch up with 

the pace at which in silico approaches spew out promising molecules. Hence, 

amidst all this, TMPyP4, a harbinger of sorts, has been ignored, largely 

(Martino et al., 2009; Monchaud et al., 2010). With few studies existing on the 

anticancer effects of TMPyP4 that lay down the sequence of events 

quadruplex stabilisation to arrest or death of cancer cells (Table 1.1, Chapter 

1), this study on the mechanism of TMPyP4 has filled that knowledge gap 

considerably. 

TMPyP4 has been shown by studies on various synthetic oligonucleotides, to 

bind to telomeric sequence with remarkable specificity in vitro (Han et al., 

2001; Neidle and Read, 2000; Read et al., 2001). The current study shows that 

TMPyP4 treatment almost instantly led to the plummeting of the levels of 

shelterin protein, TRF2; and hTERT – soon after, in the cancer cells. At non-

cytotoxic doses of treatment with TMPyP4 over a few weeks, the brain tumour 

cells exhibited signs of telomere shortening, telomere aberrations, and 

telomere dysfunction progressively. The current study has thus, demonstrated 

the specificity of TMPyP4 to the telomeres in the glioblastoma and 

medulloblastoma cells. 
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One of the main hurdles for promising drug candidates and one of the main 

advantages of modest, yet safe candidates is their toxicity profile. 

Telomestatin, a promising drug that entered clinical trials exhibited a 

remarkably low toxicity profile (Monchaud et al., 2010). In the current study, 

TMPyP4 induced a dose-dependent reduction of the cancer cell viability and 

also the induction of cell arrest, whereas the normal control cell type, IMR90 

was neither affected in the viability nor in its cell cycle profile. While it would 

be worthwhile to use a normal glial cell type as a control, or to assess the long-

term effects of TMPyP4 on IMR90, and also to assess the DNA damage levels 

in IMR90, the safety of TMPyP4 is nevertheless, convincing, Another 

advantage with TMPyP4 is that the mechanism of binding to the telomeres and 

stabilisation of G-quadruplex has been thoroughly investigated, understood 

and endorsed (Monchaud et al., 2010). Moreover, porphyrins have been used 

as photosensitisers in the treatment of malignant solid tumours and are well 

known for their preferential tumour-localisation (Dougherty et al., 1998). 

Hence, it is highly likely that the promise shown by TMPyP4 would hold good 

in studies in vivo too. 

The efficacy of TMPyP4 as a drug is thus left to be examined, by xenograft 

models and genetic mouse models of cancers, particularly malignant glioma as 

that was the model of this study. It is intriguing though to note that, despite 

there being a report on TMPyP4 in malignant liver xenograft mouse showing 

nearly complete abrogation of tumour mass and metastatic potential, TMPyP4 

has been left untouched, largely (Aviezer et al., 2000). One main concern for 

drug delivery to brain tumours is the passage across blood-brain-barrier 

(BBB). It would be great to investigate the potential of TMPyP4 to cross BBB. 
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Even if a side-chain modification is needed to improve the delivery, it is 

possible to find one, given that TMPyP4 has been a template for design of 

many candidate drugs in silico (Monchaud et al., 2010). More remarkable is 

the fact that TMPyP4 has given rise to a modified compound with nearly 

10,000 fold specificity in vitro for quadruplex DNA over duplex DNA (Dixon 

et al., 2007). 

Most importantly, the findings on the mechanism of TMPyP4 action in this 

study – which is perhaps the most comprehensive one on TMPyP4 yet, among 

studies in cancer cell types – can be extrapolated to any modified analogue of 

TMPyP4, if needed, during the drug development process. 
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