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Abstract

This thesis aims to investigate both facial paralysis diagnosis and facial

highlight features based on 2D and 3D facial models.

First, a novel automated objective asymmetry grading system is
developed for facial paralysis diagnosis. The development of this grading
system combines observations and clinical assessments of the patients for
different degrees of motion dysfunction in various facial expressions. To
improve the performance of the system, higher order surface properties in
facial imaging technique for 3D model analysis are used. Also, to
overcome the subjectivity of diagnosis encountered by the landmark
based computer aided grading methods, facial symmetry grading is
carried out based on fine registration result of the original and mirror
facial mesh by the iterated closest-point algorithm (ICP), which does not
rely on any landmarks. Moreover, to avoid overfitting caused by small
sample set, the noise injected artificial neural networks (ANNSs) in feature
extraction and classification for 3D objects were implemented. Compared
with standard ANNSs, the accuracy, sensitivity and specificity of the

VII



Abstract

proposed noise-injected ANNSs are significantly improved. The system is
also tested with data of patients having follow-up treatment and diagnosis
after the initial treatment. The proposed ANN system can detect the
improvement of the patients quite well. A plausible explanation of the
appreciably improved performance is that the injected noise increases the
generalization ability, and reduces the sensitivity to the disturbance in this

manner.

Meanwhile, the highlight feature patterns of natural faces are explored as
a planning aid for plastic surgery. Different from previous reported
studies on attractive face patterns, which have mainly based their criteria
on facial profile, this study intends to determine the position and shape of
the highlights of natural faces across race and gender. Some relevant
conclusions can be drawn from the present study. First, nasal highlights
are discontinuous, thus the implant or filler should keep the dorsum and
tip at different levels. Second, the shape of the nasion saddle is intimately
associated with race. Also, the forehead highlight has mainly two types, T
shape and maple leaf shape. The distributions of these two types are

closely related to race and gender.
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Introduction

Chapter 1. Introduction

The face region would be the primary visual identifier of a human being,
and it carries remarkable significance of biological vitality and aesthetic
beauty or as a way of communication through various facial expressions.
Given the importance of the face, it is no wonder that all through the
mankind history, attempts have been made to understand the features of
the face. Over the years, scientists have shown a keen interest in facial
feature analysis studies. Their studies are not limited to aesthetic research,
but involved in facial identification, facial expression recognition,
differential analysis of gender, age and race, and other aspects. There are
various applications of these studies in a large number of areas, such as
face recognition system for identity recognition and security check,!
automated face age-verification system for cigarette vending machines,?
and human face and smile detection system for digital camera.’* All these
successful applications have proved the advanced character of facial

feature analysis technology.

Meanwhile, the great advances in computer image techniques have

opened new perspectives for facial feature analysis. Traditional two-
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Introduction

dimensional (2D) image based studies have been extended to three-
dimensional (3D) image analysis by high quality 3D image reconstruction
technologies such as computed tomography (CT) scan, magnetic
resonance imaging (MRI) scan, as well as some non-invasive imaging
techniques such as 3D laser scan imaging technique and 3dMD scan
system (www.3dMD.com). In addition, continuously renewed research
achievements of artificial intelligence (AI) have enhanced the ability of

image processing and information processing.

Benefiting from the particular properties of intelligence, objectivity and
efficiency, computer aided facial feature analysis applied in medical field
has been the subject of intensive investigations of lots of researchers. In
this thesis, we closely cooperate with the clinicians from the National
University Hospital, Singapore (NUH) for the study related to facial

appearance, facial paralysis diagnosis and facial feature analysis.

1.1 Facial paralysis and diagnosis

1.1.1 Facial Paralysis

Facial paralysis (FP) is a condition when the facial muscles” function is

weak or complete paralyzed on one or two sides of the face as a result of

2
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Bell’s palsy (also termed idiopathic facial paralysis), post-surgical trauma
in parotid surgery, skull base tumors or fractures of the temporal bone,
however in a lot of cases without known cause.’> The cosmetic drawback
for the patient is clearly visible as shown in Figure 1.1. The patients
usually suffer from huge psychological stress along with short-term or
long-term disfigurement, difficulty in speaking, eating and drinking,
decreased taste in the mouth and reduced tear production from the
affected eye. Not knowing the cause, there is no effective treatment to
avoid sequelae or persistent palsy in the around 30% of patients who

would fail to recover completely.®

E’“ ] E d
(a) (b)

Figure 1.1 Patients with Bell’s palsy.” (a) Asymmetric elevation of brow
and wrinkling of the forehead; (b) Incomplete eyelid closure; (c)
Flattened nasolabial fold and poor turning upward of the left side of
mouth.

()

The most common facial paralysis is Bell's palsy, and bilateral facial
paralysis is clinically rare. Kevin Tsai, a famous writer and television host
in Taiwan, was diagnosed with Bell's palsy previously and almost failed

to take up the responsibility as the host and judge for the 50 Golden

3
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Horse Awards.® Bell's palsy was named after Sir Charles Bell (1774 - 1842),
who first identified the syndrome as well as the anatomy and function of
the facial nerves.” The annual incidence of Bell’s palsy is 15 to 30 cases per
100,000 people, with equivalent amounts of males and females affected.
The etiology of Bell's palsy is still under debate. It is usually “believed to
be caused by inflammation of the facial nerve at the geniculate ganglion,
which leads to compression and possible ischemia and demyelination”
(Figure 1.2),° Infection with herpesviruses, especially herpes simplex virus
type 1 (HSV-1) and varicella-zoster virus (VZV), has gained support as a

possible cause.!?

e is ceral efferent fibers (facial expression muscles, stapedius rmusde)
e isceral motor fibers (lacrimal, salivary glan )

e Specizl sensory fibers supplies taste to anterior two thirds of the tongue)

Greater
petrosal
nerve

l' Geniculate
'|||I canalion Superior
| salivatory

nucleus

Mo tor nucleus
of facial nerve

aoolstic
Chotda meatus

tyrm pani
nerve

Figure 1.2 Anatomy of the facial nerve.’
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Grading facial function is required for identifying and confirming the
spontaneous course of FP and especially the consequence of medical or
surgical treatments. The diagnosis of facial paralysis is usually made
based on patient’s asymmetric and weak facial presentation while
interpreting different facial expressions. However, FP studies are limited
by the lack of an objective, standardized evaluation method. The
subjectivity of the grading methods leads to intra- and inter-observer

variation.’

1.1.2 Clinical Facial Paralysis Assessment Methods

A diagnosis of facial paralysis is usually made based on patient’s weak or
completely lost facial presentation while interpreting a specified series of
facial expressions. The most common assessment of the severity of facial
paralysis is by the six-grade House-Brackmann grading system (HBGS),"
which was originally proposed by House,'? and then soon improved by
Brackmann and Barrs.”® It has been officially adopted as the universal
standard of the American Academy of Otolaryngology-Head and Neck
Surgery for facial paralysis diagnosis. The patient is requested to perform
a series of certain facial movements which will be subjectively assigned a

grade of paralysis ranging from grade I (normal) to grade VI (no
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movement) by the clinician. The HB grading system is simple to apply
and it is able to achieve a single-score description of facial function. The
main criticisms are that it relies on a subjective judgment with remarkable
inter- and intra-observer variation'* and it is insensitive to local
differences of facial movement. For instance, Neely et al.!® reported that
when nine patients were examined by 13 assessors in the study, none of
the grades of the patients had 100% agreement, although most of the
differences among these assessors were within one grade. In another
reported study by Coulson et al.,'” there was complete agreement of six
assessors for only one patient out of the 21 patients in the reported study,
one grade apart for 12 patients, two grades apart for six patients, and for
two patients, assessments were even three grades apart. Since the HB
system is only a gross scale with six grades, even one grade either up or
down reflects a considerable difference in facial function. The subjectivity
of the evaluation makes it even more difficult to determine the
improvement or deterioration of the conditions of the patients after a short

time lapse.

There are some other traditional manual classification methods as well.
Some methods preferred to provide a more accurate measurement of the

disease’s severity, such as the facial nerve paralysis grading system of

6
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May,? the facial paralysis score of Stennert,® the Yanagihara’s 40-point
scale system,?! a detailed evaluation of facial symmetry (DEFS) by
Pillsbury and Fisch,?2% the Sydney facial grading system,? and the
function level grading scale by Smith et al.?>?* While these methods may
be precise in their diagnosis, they are considered to be too complex for
implementation. Some other methods aim to simplify the grading process,
such as the Sunnybrook facial grading system (SFGS),” the Ardour-
Swanson Facial Paralysis Recovery Profile (FPRP) and Index (FPRI).?28
However, a patient’s condition may be improved or worsen clinically
while such variation may not be detected by the grading system. In
summary, these methods are all limited by their subjectivity and disparity,
although they tend to strike a balance between sensitivity and complexity.
Different clinician may grade the same patient differently using the same
scale. Therefore, an objective grading system for facial paralysis diagnosis

would be desirable.

In this thesis, the SFGS grading method proposed by Ross et al.,” was
adopted as the reference grading system. It was also named as Toronto
Facial Grading System because that the writers, Ms. Ross and Dr.
Nedzelsk were from Sunnybrook Health Science Centre Toronto. The

evaluation of SFGS is performed by fulfilling a form as shown in Figure

7
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1.3, and addressing a weighted and subjective scale together with
incorporation of secondary defects into a single composite score. The first
step requires the observer to evaluate the symmetry of the eye, cheek, and
mouth at rest with a score of zero to two, and the sum of these three scores
is multiplied by five. In the second step, the observer rate facial
movements of the patient while doing five standard facial expressions on
a scale of one to five. Then, the scores are totaled and multiplied by four.
In the next step, in a departure from the yes or no assessment of the
Nottingham system, the observer is required to grade the severity of
synkinesis on a four-point score for the five facial expressions same as in
the second step. From these three scores, a total composite score in the
range from 0 for total facial paralysis to 100 for normal function is attained
by subtraction of the synkinesis and resting score from the voluntary
movement score. It has been proven to have high intra-system reliability
and good intersystem association for the assessment of patient facial

movement. 172

The HBGS with continuous scale was able to successfully distinguish
among finer levels of facial nerve functions before and after rehabilitation
treatment of facial nerve injury. On the other hand, this grading system

cannot distinguish rehabilitative improvements in facial nerve function.

8
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Eye

(choose one only)
normal
narrow
wide
eyelld surgery

—_—

Cheek (naso-lablal fold)

acial Grading System

Degree of muscle EXCURSION
compared to normal side

Y
/4 if’fff

Standard
Expressions

Mlilh"m of INVOLUNTARY MUSCLE

assoclated with each expression

less pronounced
more pronounced

- )

Mouth
normal 0
comner drooped 1
comer pulled upfout 1

rcmD
Total x 5 D

74494 w0
e

Synkinesls score:

Patient's name

Voluntary movement score:

Date

Figure 1.3 SFGS standard form.

1.1.3 2D Image and Video Based Computer Aided Diagnosis

To overcome the shortcomings of subjectivity and disparity in the various
manual grading systems, several objective facial asymmetry grading
systems have been reported. They are typically based on 2D images or
videos focusing on automated analysis of asymmetry of facial features.
Apparently, the severity of the patient’s condition is closely relevant to the
degree of the asymmetry of the face. Several of pioneering works also
involve manually placing markers on the face®* to trace the facial

movements, or label the feature points on the images. For example,
9



Introduction

Wachtman et al.* evaluated the severity of facial paralysis by measuring
the facial asymmetry for static 2D images. Facial feature points were
labeled manually on the images to define the face midline. Although these
methods make the image processing simpler, they have relatively poor
maneuverability since they need well-trained technicians to accurately

and precisely place the markers on the right positions.

Some other automated methods without the use of markers have also
been developed. McGrenary et al.® and Neely et al.®® quantified the
differences between the images of a video as the measurement of facial
paralysis. Wang et al.’® developed an objective facial paralysis grading
method based on Prcee and eigenflow on the static pictures of voluntary
expressions of a patient. P, which stems from a human identification
index, is a facial asymmetry measurement between two sides of the face.
Eigenflow is a measurement of the expression variation between the
patient and normal subjects. He et al.¥ presented an approach
automatically analyzing patient video data, which would need to
manually define the relevant facial regions. However, 2D image and video
acquisitions are the projection process from 3D to 2D space, which
definitely causes information loss. Compared to traditional 2D images or

videos, three-dimensional (3D) images retain more information of local

10
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contour, and thus should be introduced to the facial contour analysis
work. Some of these methods also analyze the difference of radial
coordinates between opposite points in cylindrical coordinate system, and

thus require an accurately set reference coordinate system.

In summary, although facial paralysis is a 3D problem, most reported
works on the development of computer based objective grading system
for facial paralysis are based on 2D images or videos. Few studies have
applied the 3D technology which provides more local contour information
of the face. Moreover, few reported works have examined the sensitivity
of the proposed grading system for the evaluation of improvement or

deterioration of the proposed objective grading systems.

As a result, lots of practitioners have considered computer-based 3D
technologies, which offer surgical professionals with more contour
information than mere 2D images. This is in view of the fact that details
are lost while projecting a 3D object to 2D, and 3D models are also not
susceptible to the lighting condition variation or camera pose. Moreover,
advanced 3D scanners are characterized by their convenience, portability,

non-invasiveness, precision, and accuracy, and the adoption of 3D

11
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technology to aid plastic surgeons will avoid uncertainty and subjectivity

which is inherent to current analysis techniques.

All the objective facial paralysis diagnosis studies reviewed above
suffered from a serious limitation in that they rely on manually setting the
landmarks. Meanwhile, there is still a huge potential of untapped 3D
techniques for facial mesh asymmetric analysis. The specific gaps relates

to facial paralysis diagnosis are:

1) To overcome the subjectivity of the traditional diagnosing methods,
current works in this area are mainly based on locating the
landmarks and evaluating the movement of these landmarks
throughout the subject’s facial movements. Apparently, the process
of placing landmarks requires technicians to be well trained. This is
also a subjective process itself. So far, there is still a requirement for
developing objective diagnosis systems.

2) Although 3D image has been introduced in some facial paralysis
diagnosis studies, they are simple extensions from 2D to 3D. The
traditional 2D methods are transferred directly to 3D methods.
There are various 3D surface based measurements and algorithms,

which have not been applied on this topic.

12
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1.2 Facial highlight Features Analysis

The face region would be the primary visual identifier of a human being,
and it carries remarkable significance of biological vitality and aesthetic
beauty or as a way of communication through various facial expressions.
Given the importance of the face, it is no wonder that all through the

mankind history, attempts have been made not only to observe and to

Figure 1.4 Comparison of two pictures with Andie MacDowell in
different ages.

13
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record the facial features, but also to generalize and to uncover the
principles. Ancient Greeks were known to study facial dimensions using
classical geometry, and some others, like D’Arcy Thompson, applied
mathematical analysis to the patient observation of biological

phenomena.’®

At the same time, more and more modern plastic surgeries are taken not
only to correct the facial abnormality, but also to improve the aesthetic
appearance of the face. The characterization of the individual face is a
primary activity of a plastic surgery, whose role is usually to reconstruct
the appearance of the face for restorative or aesthetic purposes. The
surgery is to enhance facial harmony by reshaping the patient’s face with
prosthetic implant or filler injection. Even one minor corrective surgery
may have a dramatic effect to the way people look and feel. Recently, soft
tissue deflation also has been recognized as a key component of facial
aging. With the advent of non invasive surgery, the restoration of facial
volume via fillers has been increasingly popular. Figure 1.4 shows one
example of how the volume losses and the highlight changes on the face
of a celebrity as the time passed, and it is believed that she had cosmetic
surgery and injected Botox to improve the appearance.” Where shall we

refill the volume? Apparently, it is essential for surgical procedures to

14
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identify the desirable facial profile, a beautiful and natural one. To
determine the appropriate surgical intervention, surgical analysis should

be based on different ethnic descent and accepted cultural standards.*

Historically, science and medicine have tried to quantify facial features in
its own terms with some repeatability and reliability. The neoclassical
canons of Leonardo da Vinci were one of the first attempts to define the
proportions of human body and head* (Figure 1.5). In more recent times,
Leslie G. Farkas — a plastic and reconstructive surgeon — has defined the
field of facial anthropometry, describing countless soft tissue
measurements to characterize the face.”? Quite a few studies investigating
facial standards have been carried out on defining angles and proportions
of the facial features. For example, Jefferson studied the aesthetics
significance of divine proportion (1.618, also known as golden ratio) as a
universal standard for facial beauty.* Gunes and Piccardi found the
strong central tendency of the perception of universal human facial beauty
based on a survey of diverse human grading a group of female facial
images.* Specially, Woodard and Park analyzed the aesthetic facial and
nasal proportions in people of different ethnic descent.®> Significant social

science literatures have attempted to identify the objective factors which

15
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describe faces of different race and gender. These works tend to focus on

bone cuts and movements and their effect on profile change.

Figure 1.5 Study of the proportions of human body and head by
Leonardo da Vinci.

Besides symmetry, proportions, and angles, which are more convenient to
be objectively measured, some other facial features, the shape and
position of the highlight regions have also been recognized as key
components of facial appearance. The highlight regions are what the eyes

will focus on at the first sight. It has been a long time since the make-up

16
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artists found the secret of highlighting and contouring with foundation or
powder that could bring new dimensions to the face. The highlight color
is usually applied on the forehead, on the nasal bridge, at the top of the
cheekbones, or the tip of the chin (Figure 1.6).% For example, creating the
illusion with some highlight powder over the nasal bridge may make the
nose looks long and straight and thus improve the appearance of the face.
However, according to our literature review, researchers have not treated
facial highlights in much detail. Data is still missing on where these
highlights should be on natural faces, especially on faces of different
ethnic descent and gender. Such knowledge may assist cosmetic surgeon

in making surgery plan and make the face appear natural.

Figure 1.6 Makeup expert applies highlight foundation on the face of
the model, and tries to enhance the facial features.*

17
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Traditional surgical planning is based on subjective opinion of the
surgeons, which is not quite reliable. In this study, objective facial
highlight and contour feature analysis by means of 2D and 3D image
technologies are carried out to assist surgeons on operation plan

designing. So far, very few works have been carried out in this area.

1.3 Objectives of the Thesis

The proposed study aims to develop an automated objective asymmetry
grading system for facial paralysis diagnosis (Figure 1.7) combining
higher order surface properties for 3D model local contour description,
artificial neural networks (ANNSs) for classification of the subjects. In this
system, 3D models of the human face with different facial expressions are
tirst reconstructed. Second, higher order properties of each point are
calculated as descriptions of the surface local features for grading the
asymmetry of the faces. After that, the original surface and its mirror one
are superimposed by the ICP algorithm and compared to evaluate the
asymmetry degree of the face. The comparison result is quantified by
several indices as the input of an ANN. The trained ANN is then expected
to output a diagnosis result of the facial paralysis patient. Overfitting

frequently occurs when high-dimension and small-size sample set is
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applied while training neural network. Thereafter, noise injected neural

networks are used to improve the performance of the classifier. A large

number of previous studies have shown that injecting noise to the input

data can improve the ANN’s generalization ability.*4

Automatic objective asymmetry grading

system for facial paralysis diagnosis

Data acquisition

| I |
surface contour

normal
planes of vecicr
principal
curvatures

ciiginal
datg set
.'/ \\ e}
tmngent o~/
o N
AN

N
ragistration

Figure 1.7 Overview of the objective asymmetry grading system

1.4 Overview of the Thesis

In this chapter, an introduction to facial paralysis, some clinical

assessment methods, and previous facial feature studies has been given,

followed by the objectives and organization of the thesis.

In Chapter 2, an introduction of some concepts and methods related to

this study, including 3D curvatures for surface local contour measurement,
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iterative closest point method for 3D surface matching, and artificial

neural networks for classification are given.

Chapter 3 describes an objective facial paralysis diagnosis system
developed in this study. 3D curvatures and shape index are introduced in
for grading the severity of facial asymmetry. Noise injected neural
networks are applied to reduce the overfitting effect and improve the

classifier’s performance.

In Chapter 4, the facial highlight features are studied. The study focuses
on the positions and schemas of the facial highlight regions, as well as the

difference among the race and gender factors.

Finally, some closing remarks are given in Chapter 5.
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Chapter 2. Methodology

2.1 3D Curvatures

We've gained much from the improved 3D images reconstruction
techniques and the 3D curvatures of a surface are now able to be easily
calculated. These curvature measurements are found in studies on facial
feature detection and automatic face recognition.*>® Salient face features,
including the eyes and nose, are detected with a research into the
curvature on the surface. However, there is no known previous study on
facial deformity or attractiveness that experimented with incorporate

measurements using curvature.

Curvatures measure the degree of a curve or surface bends at one point. In
2D space, the osculating circle is the one among all the circles that tangent
to a curve C at point p that most closely approximates C near p. The
curvature of C at p is defined as the reciprocal of the osculating circle’s

radius R.

| =

2.1
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In 3D Euclidean space, the degree of the surface S bends at a point p in

different directions can be measured by curvatures of this point.

normal
planes of vector
principal
curvatures

tangent
plane

Figure 2.1 Normal planes in directions of principal curvatures of a
saddle surface.>

At any point p on a differentiable surface in 3D Euclidean space, and any
chosen unit vector from point p, the normal plane at point p which
contains the chosen vector can be determined. The normal plane
determines a direction that is tangent to the surface at point p, and cut this
surface with a plane curve. Generally, this curve has different curvatures

for different normal planes at point p. The normal curvature at p is defined
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as the curvature of the 2D curve, which is the reciprocal of the osculating
circle's radius along the desired direction. Then, the principal curvatures
at point p, which denoted by k: and kz, are defined as the maximum and
minimum values of the curvature (Figure 2.1). The mean curvature H is

defined as the average of the two principal curvatures.

H = (k1 + kz)/z 2.2
Gaussian curvature K is defined as the product of the two principle

curvatures:

K=k *k, 2.3
Curvatures of point p on a surface measure the degree of the surface
bends in different directions at this point. The signs of the curvatures
describe the shape of the surface. To take the principal curvatures for
example, at elliptical points, both have the same sign, and the local surface
is convex; at hyperbolic points, the two principal curvatures will have
opposite signs, and the local surface will be saddle-shaped; at parabolic
points, one of the principal curvatures is zero. Parabolic points usually lie
in a curve which separates hyperbolic and elliptical regions. These
properties of the principal curvatures can be used on the study of nasal

bridge feature.
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Gaussian curvature K is also frequently chosen for being an index of
quantified contour due to its ability of well describing the neighborhood
contour on the surface along with only one value. It is considered as one
of the most widely used indicators for surface shape classification. At
point p, if K > 0, the contour of the surface is dome shaped. If K < 0, the
contour of the surface at point p is saddle shaped. If K = 0, the surface is

parabolic.

There is another shape scale known as the Shape Index (S.I.) that was
proposed by Koenderink 2. The Shape Index scale was originally defined

by the principal curvatures using the equation:

s.1=Zarctan 25 g 5
..—narcankz_k1 (k1 = ky)

2.4
It maps the 3D shapes on the segment of [-1, +1]. In order to prevent
interaction of attributes and loss of information, Dorai 5 redefined the

index to a positive range of S.I. €[0,+1] as followed:

1 1 k, +ky
S.1.= ———arctan
2 T kz_kl

2.5
The Shape index also quantitatively measures the shape of a local surface,

such that all manners of curved surfaces can be characterized by it (Figure
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2.2). Unlike mean curvature and Gaussian curvature, each Shape Index
value refers to a unique shape, such as a spherical cap (S.1. = 1.0), or saddle
(5.I. = 0.5). Table 2.1 indicates the different surface shapes and their
corresponding principal, mean and Gaussian curvatures, and the Shape

index.

o

Spherical cap Dome Ridge

(1.0) (0.875) (0.75)

Saddle ridge Saddle Saddle rut

(0.625) (0.5) (0.375)

Rut Trouegh Spherical cup
g ] 1

(0.25) (0.125) (0.0)

Figure 2.2 The Shape index as a shape descriptor for different shape of
surface®.
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Table 2.1 Surface shapes and their corresponding principal, mean and Gaussian curvatures, and the Shape index®.

Shape ki k2 H K S.I.

Concave (Cup) - - - + [0, 0.1875]
Parabolic (Rut) 0 - - 0/- [0.1875, 0.3125]
Hyperbolic (Saddle) + - +/0/- - [0.3125, 0.6875]
Parabolic (Ridge) + 0 + +/0 [0.6875, 0.8125]
Convex (Cap) + + + + [0.8125, 1]
Plane 0 0 0 0 N/A
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Both curvatures and S.I. are translation invariant and rotation invariant.
Although S.I. is also scale invariant, curvatures are not, and normalization
operation is necessary to adjust the measurements to a common scale

before analyzing and comparing different subjects.

To derive the curvatures and S.I., we have adapted a rather robust and
accurate approach based on a surface patch fitting method in this work.>*
Since the mesh is only a discrete representation of real surface, to evaluate
the contour at a particular point on the mesh, a local surface geometry was
fitted to the region by an osculating paraboloid represented by a quadratic
polynomial. Thereafter with the coefficients of the fitting surface, the

curvatures can be calculated by the theory of differential geometry.

In the neighborhood of a point x, the local surface can be approximated by
an osculating paraboloid that may be represented by a quadratic
polynomial with du and dv, where u and v are the parameters of the
underlying geometry. This polynomial can be represented as a Taylor
expansion at the point x of the paraboloid surface, by omitting the higher

order terms of the quadratic term:

x(u + du, v + dv) = xq0 + x,du + x,dv + (xy, du? + 2x,,dudv +
X,y dv?)/2 2.6
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The coefficients xo, xu, Xv, Xus, Xwo and xw represent the zero, first and
second derivatives of x with respect to u and v at the surface point xo = x(u,
v). Then, the curvatures of the surface could be computed with these six
derivatives. A function of z = f(x, y), which is a second order polynomial of

the form

Z =y + Cp + c3q + ¢4p? + cspq + cq? 2.7
is used to fit the approximating surface region. p = x — x0o and g =y — yo,
where x0 and yo are the x and y coordinates of the center point xo of the
local surface geometry under consideration. In this way, the six
coefficients of the paraboloid can be calculated by the least-squares

solution of an over-determined system of linear equations:

(71 1 P @G P Pida G (gl\
EA [1 P2 Q2 p; D292 q%] |CZ l
42'3$=|1 b3 43 pZz P393 q§|{c3}
| : | [ : : : : E J C4

kZInJ 1 Pn qn p‘rzl Pndn q‘rzl l Cz J

2.8

where 71 is the number of nearby points in the neighborhood of a selected

surface point, and the coefficients ci are obtained by .

It is desired that the coefficients ci~cs are obtained in ways that the

divergence with the fitted paraboloid as well as the data points are
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minimized, which is comparable to minimizing the differences between z.
(measured z value) and 7, (calculated z value). The minimization issue at

the desired point is then expressed with regard to error function E, as

E(2) = Xne1 Gn(zn' — 23)* = Enet Gn(2(0n, @) — 20)° 2.9
Where N represents the amount of points in the fitted paraboloid, and G is

acquired from a distance weighting function as follows:

(4
i=f<e @ >,i=1,2,3,...,N 210

where f and d are arbitrary constants that could be adjusted accordingly.

The error function E may reach to a minimum when

oE

— =0, i=1,2,3,456
aCl'

2.11
thus variant six linear equations needed to calculate the six coefficients.

The coefficient c1 is the z value of the central point xo of the fitting surface
patch, and the other five coefficients c2~cs could be interpreted as the first
and second derivatives of x regarding to p and g at xo. Using these
coefficients, the principal curvatures ki and k: can be easily derived with
the theory of differential geometry.*>” The normal curvature at that point

is then calculated as
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L+2MA+ NA?
E+2F1+GA?

k(A) =
212

where A = dv/du, such that u and v are the parameters of the underlying
geometry, and {E, F, G} and {L, M, N} are components of the first and
second fundamental forms, respectively. The extreme values ki and k: of
k(A) are the maximum and minimum principal curvatures, respectively,

and they are obtained from the roots of the equation:

L—kE M-—kF]_

M—kF N —kG =0 213

det [
2.2 Iterative Closest Point

The Iterative Closest Point (ICP) algorithm is a widely adopted solution to
the surface alignment problem. This algorithm firstly proposed by Besl
and McKay?®® is intended to minimize the difference or distance between
two clouds of points. ICP is frequently employed to reconstruct 2D or 3D
surfaces from several scan pieces, to localize robots and optimize path
planning (particularly when wheel odometry is unreliable because of
slippery terrain), etc. In this work, ICP is applied to superimpose the
original and mirror meshes for evaluating the asymmetry degree of the

face. The algorithm is conceptually efficient and is frequently employed in
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real-time applications. The main idea of the algorithm is to iteratively
revises the transformation (translation, rotation) and minimize the amount

of the distance between the paired points of two scan pieces.

This algorithm aims to solve the problem of Euclidean alignment of two or
more roughly pre-registered, especially overlapping 3D point clouds with
measurement outliers and, perhaps, contour defects. This issue has been
primarily considered in 3D model acquisition (scene reconstruction,
reverse engineering) and motion tracking and analysis, including model-
based tracking. Given two 3D point sets with coordinates, P and M, the
aim is to find the Euclidean motion that transfer P to the best possible

alignment position with M.

The ICP algorithm has three main steps:

1. For each point of P find the closest point in M by the nearest

neighbor criteria by means of the k-d tree® to make a pair;

2. Compute the motion parameters (the parameters of shift and
rotation) using a mean square cost function to minimize the mean

square error (MSE) between the paired points;
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3. Apply the motion using the estimated parameters of step 2 to P

and update the MSE.

These three steps are iteratively applied. It has been proven that the

iterations converge in terms of the MSE.

The concept of ICP has been proven very effective in view of the fact that
it was implemented by many applications, improvements and
modifications. Pulli,*® Rusinkiewicz and Levoy® provided comprehensive
surveys oriented towards range images that offer a summary of the
variants of the ICP algorithm. They categorize the variants based on the
way the algorithms: (1) select subsets of point sets P and M; (2) match
points to pairs; (3) weight the pairs; (4) reject pairs; (5) assign error metric;

(6) reduce the error metric.

2.3 Artificial Neural Network

Artificial neural networks (ANNSs) are a well known artificial intelligence
technology that intends to mimic the mechanism of the brain and nervous
system. The structure and operation of ANNs have been described by
many authors®6>%, Here is one definition: “A neural network is a

massively parallel distributed processor made up of simple processing

32



Methodology

units, which has a neural propensity for storing experiential knowledge
and making it available for use.”® Generally, ANNs comprises a number
of neurons (also called nodes or processing elements (PEs)) that are
normally connected and arranged in layers. A typical ANN has three
layers: an input layer with input neurons, an output layer with output
neurons, and one or more hidden layers®” (Figure 2.3). Signals are
transferred from neurons of lower layers to the ones of higher layers
through the connecting links. The neurons in the same hidden layer may
also be connected. Neural networks with a large number of nodes are
frequently used since they are sufficient for many nonlinear practical

problems.

I
—»0 T _/
‘\\
Q) I (O—»
Layer O Layer 1 Layer2 Layver 3
(input layer) - _ (output layer)
Hidden layer

Figure 2.3 Architecture of Artificial neural network

33



Methodology

For each neuron k, the input signals (stated as some numerical values)
from the previous neurons x, are multiplied by the adjustable synaptic
weights w, that characterize the connecting links, and then are summed
and a bias value b, is added by a linear combiner. This combined input v, is
then passed through a non-linear activation function ¢(.) to limit the
amplitude range of the output signal (typically [0, 1] or [-1, 1]) and
produce the output of the neuron y. The output of one neuron may
provide the input to the neurons next to it, or the output of the neural
network. This process is described in Figure 2.4 and illustrated in

Equation 2.14 and 2.15.

,,,,, T

" number of input data |

\

X A X

S

= Vi @(®)
o »e Output y;
= Activation
function
mn
=D WX, Y, =@, +b)

1
v

Figure 2.4 Model of a neuron k.
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m
VUV = z ijXj + bk
j=1

summation 2.14

Vi = @(vy) activation  2.15

A single layer neural network is called perceptron, and is only able to
solve linearly separable classification problem and linear regression
problem. However, a neural network combining a number of perceptrons
is capable of solving a considerable number of complex and highly non-
linear problems. Multilayer perceptron (MLP) networks with feedforward
connections as shown in Figure 2.5 are most commonly used networks.
Neurons of the networks receive the output signals of the preceding layer
as their input signals only, and there is no connection between the
neurons in the same layer. There may be one or more layers in the hidden
layer. Generally, each neuron adopts a nonlinear (differentiable) activation

function, such as logistic function:

1

Vi 1+ exp (—v))

2.16
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Input laver of laver of
layer hidden output
neurons neurons

Figure 2.5 Architectural graph of multilayer perceptron feedforward
networks.

Once the structure of the neural network is determined, the neural
network will go through a process called “learning” or “training”. The
neural network is iteratively fed with training data that describes the
desired input/output mapping. The free parameters of the network are
adjusted in each epoch according to the error signal that is the difference
between the desired and actual outputs. The training method determines
how the parameters change and when the learning process stops. Back-
Propagation (BP) algorithm is a common method of training neural

networks that will also be used in this thesis. Different from the direction
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of function signals, the error signal is propagated back from the output
layer to the input layer. There are two alternate passes of computation in

each epoch:

1. Forward pass: Computation of function signals for each neuron.

2. Backward pass: Starts from the output layer, recursively calculate the
error signal d for each neuron beginning with the output layer towards the
first hidden layer. At each layer, the synaptic weights w, are updated
accordingly. Suppose in the n' iteration, the MLP is fed with an input x(n),
and produces an output vector y(n), and d(n) denotes the desired neural

network output,

i) = x5, () = 9@ @ () 217
(S) n+1)= (S) (n) + nd; ) (n)x(()fulli)(n) 2.18
Where
6]-(5) (n) =(dmn) - x((,i)t’ i (n))<p(5)’(vj(s) (n)) for output layer 2.19
or

59m) = Et 67 M MwSTP ) (v (n)) for hidden layer  2.20
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The training phase usually stops when the mean squared error signal is
less than some desired threshold value, or the free parameters of the
network are stable. When the training phase of the network is successfully
completed, the performance of the trained model needs to be validated

using a testing set independent with the training set. %7

As described above, ANNSs learn from the examples from training data set
presented to them and attempt to learn the "behavior" of the data set, or
the relationship between the input and the corresponding outputs.
Therefore, compared to most statistical and empirical methods, ANNs do
not need any prior knowledge about the nature, which is one of the

advantages that ANNs have.

In the real applications, the problems are likely to be complex and highly
non-linear. Usually, traditional regression analysis method is not
adequate.” On the contrary, ANNs can be used to solve this complexity
by altering the transfer function or network structure, and the type of non-
linearity can be changed by varying the amount of hidden layers and the
amount of nodes in each layer. Furthermore, both the number of input

and that of output nodes are variant.
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Figure 2.6 Overfitting occurs when excessive number of nodes is used in
the MLP neural network.

A trained neural network is expected to generalize well for test data. The
performance of the network depends not only on the size and accuracy of
the training set, but also the conformability of the network structure. A
simple network structure might not be sufficient to fit the data; on the
other hand, overfitting may take place if the complexity of the target
problem is overestimated.” As shown in Figure 2.6, the neural network
learns the random error or the noise in the training data instead of the real
relationship and results in poor predictive performance. Generally, with
an error of 10% the number of training examples needed should be about
10 times the number of free parameters in the network.” Overfitting may
be overcome with optimized network structure, and improved training

strategy. Noise injected neural networks have been proven that they are
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capable of reducing overfitting to a great degree.” It will be described in a

subsequent chapter, and applied in this study.
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Chapter 3. Objective Grading System for Facial

Paralysis Diagnosis

3.1 Overview

The proposed study aims to develop an automated objective asymmetry
grading system of facial paralysis diagnosis combining higher order
surface properties in facial imaging technique for 3D model imaging and
reconstruction, artificial neural networks (ANNSs) for data mining in terms
of feature extraction and classification for the 3D subjects. Higher order
properties are introduced for grading the asymmetry of the faces as
descriptions of the surface local features. Overfitting is a serious problem
that high dimension small-size sample set would typically encounter in
training neural network. In order to avoid overfitting, noise injected
neural networks are applied in this study to improve the classifier’s
performance. A substantial number of previous studies have shown that
injecting noise to the input data can improve the ANNSs’ generalization

ability.
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More specifically, the objectives of this work were:

1) To combine higher order surface properties in facial imaging
technique for 3D model analysis by specifically considering 3D
principle curvatures and Gaussian curvatures.

2) To achieve facial symmetry grading based on the comparison
between the original and mirror facial mesh after fine
registration by the iterated closest-point algorithm (ICP), which
does not rely on any landmarks.

3) To achieve small sample set feature extraction and classification

for 3D objects by noise-injected neural network.

This present study should provide a landmark-independent method for
evaluating the degree of facial paralysis. Higher order surface
measurements such as 3D curvatures describe local contour of the surface
rather than simply provide the position. So this work is expected to
improve the diagnosing performance compared to previous 3D based

works.

The program was developed using MATLAB (version 7.10.0 (R2010a), The
MathWorks Inc., Natick, Massachusetts, 2010) and Visual C++ under
Microsoft Visual Studio 2005 environment.
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Bell's palsy is the most common condition of facial paralysis, which covers
all of the conditions except for cases caused by brain tumor, stroke, and
Lyme disease. Meanwhile, only rare cases (1%) of facial paralysis occur
bilaterally resulting in total facial paralysis.”” Hence, like previous studies,
we focused on unilateral facial dysfunction caused by Bell’s palsy. The

other few conditions were not considered.

3.2 Data acquisition

In this study, a 3dMDface system (www.3dMD.com, Figure 3.1) was used

to produce 3D facial meshes with texture of the individuals. This multiple
camera photogrammetry system with structured light patterns takes non-
invasive photographs from different viewpoints simultaneously and
reconstructs them as a 180-degree face (ear-to-ear) mesh with texture.”
This system has two sets of three cameras (one color and two infrared) on
each side of the photographed subject. A random light pattern is projected
onto the subject, and images are captured in 1.5 milliseconds by these
synchronized digital cameras precisely set in an optimum configuration.
Thereafter, the 3D image is reconstructed as a triangulated polygon mesh

(Figure 3.2) by calculation based on the difference of the images captured
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from different angles. The meshes are composed of vertices, edges, and

triangular facets.

(a) (b)

Figure 3.1 (a) 3dMDface system and (b) reconstructed 3D image.

Figure 3.2 Detail of triangulated polygon facial mesh.
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Each image file is kept in the form of a triangular mesh, which consists of
x-,y-,z- coordinate triples of the points (scanned locations of the surface),
and a list of triangles (plane segments) that connect these points. The
triangle mesh representation method is widely used as a piecewise linear
approximation to the real surface of the object in 3D Euclidean space. The
raw data may contain approximately 200, 000 mesh points and 250, 000
triangles for each subject. The meshes need to be normalized with respect

to user-selected landmarks on the face.

3D image data of eight single-side facial paralysis patients and twelve
normal subjects were obtained in the Department of Otolarygology, Head
and Neck Surgery, National University Hospital of Singapore (NUH).
Approval from the relevant Institutional Review Board (IRB) had been
obtained prior to the study. The patients have been diagnosed as Bell’s
palsy by clinicians based on the SFGS.?*7” SEGS is a physician based score
instrument. The patient face is assessed with 5 standard expressions, and
graded with a composite score in the range from 0 for total facial paralysis
to 100 for normal function. It has been proven to have high intra-system
reliability and good intersystem association for the assessment of patient

facial movement'’.
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(c)

Figure 3.3 3D models of face acquired by 3dMD system for four
different expressions: (a) straight and natural stare, (b) smiling to show
teeth, (c) raising eyebrow to wrinkle forehead, and (d) closing the eyes
tightly.

Five out of the eight patients in the study were also involved in the follow-
up studies during the subsequent treatments. For each subject, four

models were obtained while they were asked to form four different
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expressions: namely, eyes straight and natural stare, smiling to show teeth,
raising eyebrow to wrinkle forehead, and closing the eyes tightly (Figure
3.3). These meshes were then trimmed to facial oval region only,
excluding hairline, ears and neck. The abnormal muscle functions of the
patients would cause facial asymmetric response.” We aimed to evaluate

the facial asymmetry degree as the objective diagnoses of facial paralysis.

3.3 Objective Measurement of the surface contour

Since 3D images were collected, we were able to introduce in 3D
curvatures, the second-order descriptions of the local surface contour for
further analysis. In previous reported studies, these factors have not been
introduced for the grading of the asymmetry of the faces. In this study we
have adapted a rather robust and accurate approach based on a surface
patch fitting method as described in Chapter 2 to derive the curvatures.>%
In the vicinity of point P, the surface is approximated by an osculating
paraboloid, which is represented by a quadratic polynomial. Thereafter
with the coefficients of the fitting surface, the principal curvatures, the

Gaussian curvature, and the Shape Index can be directly calculated by the
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theory of differential geometry. The program was developed using Visual

C++ under Microsoft Visual Studio 2005 environment.

To adjust the measurements to a common scale and take the size of the
face into consideration, the Gaussian curvature was normalized by a
constant face size index, the distance between the two inner eye corners. A
software Meshlab v1.2.0 (Apr 30, 2009)"® performs the function of
measuring the distance between two arbitrary points on a 3D mesh
surface. The distance measurements were repeated twice at different times
and then averaged. They were proceeded by a single person to ensure
consistency and avoid inter-observer error.”® Since the principal
curvatures have units of inverse distance, the Gaussian curvature was
normalized by multiplying the square of this normalizing factor. S.I. is

scale invariant, and we do not need to normalize this.

The distribution of normalized Gaussian curvature K and the Shape Index
S.1. were visualized by color coded maps (Figure 3.4) for the face to
provide an intuitive understanding of facial geometry. In view of the fact
that there was no sufficient content obtained from the patients for the use
of images for publication, a model of unilateral facial paralysis simulated

by a normal participant was used as the demo in this study.
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By observing the color distribution of the color maps in Figure 3.4, the
following Gaussian curvature and the Shape Index characteristics of the

face are noted:

L. The nose tip appears as a region of high Gaussian curvature (GC >9)
and high Shape Index (S.I. > 0.90), corresponding to the geometric
features of a dome or spherical cap.

II. The nasion appears as a region of low Gaussian curvature (GC < -6)
and intermediate Shape Index (0.4 < S.I. < 0.6), corresponding to the
geometric features of a saddle shape.

II.  The region outside the features (eyes, nose, mouth) appears as
regions of intermediate Gaussian curvature (-1 < GC < 1) but not

convergent S.I..

Generally speaking, the Gaussian curvature emphasizes unevenness (cap,
saddle, or cup), while the Shape Index emphasizes the type of the shape.
However, common to both of these two attributes is the close correlation
with the symmetry: a symmetric face would have symmetric color maps

of Gaussian curvature and the Shape Index; an asymmetric face would
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(a)

S.1.

ll.ﬂ

0.75
(b) 0.50
0.25

0.00

Figure 3.4 Rendering of (a) Gaussian curvature and (b) Shape Index
color map on 3D face scan model of smiling to show teeth expressions.

also have asymmetric color maps of these two indices. Therefore, we may
evaluate the symmetry of the face by evaluating the symmetry degree of

the GC and S.I. values.
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3.4 Asymmetry degree index

Since facial paralysis would cause greater asymmetric facial response of
various facial motions, the extent of asymmetry, namely the asymmetry
degree was evaluated and correlated with the objective grading of facial
paralysis. A landmark-independent method®#! was adapted to determine
the facial asymmetry degree by comparing the original mesh and its
mirror mesh as shown in Figure 3.5. First, a mirror face mesh of the
original one is generated. Then, the original mesh and its mirror one are
superimposed and registered based on the Iterated Closest-Point
algorithm (ICP)®2. The algorithm iteratively applies translation and
rotation on the mirror mesh to minimize the geometrical distances of two
meshes. An example of the registration result is shown in Figure 3.6. The

two meshes are represented in two different colors.

Based on the ICP registration result, we evaluated the asymmetry degree
by measuring the matching degree between the original mesh and its
mirror one. The comparison included both the geometric distance and the

local contour difference described by the Gaussian curvature and the
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Figure 3.5 Registration between original and mirror faces by ICP.%

(a) (b) (<)

Figure 3.6 (a) Original mesh. (b) Mirror mesh. (c) ICP registration result
of original and mirror meshes.
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Shape Index. Before comparison, the unmatched edge of the two meshes

was trimmed and excluded.

For each vertex pi on the original mesh, we first search the nearest vertex
p’i on the mirror mesh by means of the k-d tree. Then, the shortest
distance from pi to the vicinity triangle surface containing p’i is calculated
and assigned as the distance from pi to the mirror mesh (dpi > 0).
Meanwhile, the absolute difference of the Gaussian curvature (dgci) and
the Shape Index (dsii) between pi and p’i were also computed. As described
before, normalization operation is necessary to adjust the measurements

to a common scale. The distance between the two inner eye corners was

used for normalization of the distance.

Figure 3.7 shows the color maps of the normalized geometric distance, the
absolute difference of the Gaussian curvature, and the one of the Shape
Index difference between the original and superimposed mirror meshes

for one mesh sample.
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Figure 3.7 Color maps of the difference between the original and mirror
meshes. (a) Geometry Distance, (b) difference of the Gaussian curvature
and (c) difference of the Shape Index.
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By observing the color distribution of the color maps in Figure 3.7, the
threshold values of the distance, the Gaussian curvature and the Shape
Index were chosen as shown in Table 3.1. The points of the original mesh
with a value higher than the threshold would be considered not matched
to any point on the mirror mesh. Then, the percentages of the matching
points on the whole mesh for each index were calculated as asymmetry
degree index for further analysis: RD for distance, RGC for the Gaussian
curvature, and RSI for the Shape Index. Apparently, the values of these
three indices are closely related to the degree of asymmetry of the face,

and thus the severity of the disease.

Table 3.1 Threshold value chosen for no-match points filter.

Distance Gaussian Curvature Shape Index

0.01 1.5 0.08

3.5 Noise Injected Neural Network

Artificial neural networks (ANNSs) are capable of learning from training
samples presented to them and capturing the correlation between the
input variables and their corresponding outputs without any prior

knowledge. The excellent predictive ability of ANNSs has been proven in a
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wide range of issues including medical diagnosis.®* In this study, MLP
ANNSs,#8 the most commonly used ANNs, were implemented to perform
a pattern classification for facial paralysis. All data processing of neural

networks was performed offline using Matlab.

Since the index RD is essentially a geometric measurement, and RGC and
RSI are 3D contour measurements, we combined them to two groups as
the input of the ANN classifier: {RD, RGC} and {RD, RSI}. The
performance of these two input groups would be compared. For each
sample subject (one person), we calculated the average index values of the
four facial models separately for the three indices as the input of the
neural networks. Each ANN has two input nodes corresponding to the
two indices, a single hidden layer of six hidden nodes with hyperbolic
tangent sigmoid transfer functions, and one binary output node with

linear activation functions representing the diagnosis result.

When the training samples are rare, overfitting is common that trained
ANNs could only provide the satistied output for those well-trained
inputs while their performance is poor for random samples. For
regularization algorithm,® a popular solution for overfitting, the necessity

of a separate validation set is very difficult to be satisfied by such a small
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data set. To reduce the effect of overfitting caused by the use of a small
training set, the noise injection method® was used to expand the training
set. Noise injection is capable of enhancing the ANNSs" generalization
ability on unknown data. This method is based on the assumption that
ANNSs should produce similar outputs for similar inputs. Some synthetic
training samples were first created by adding random noise to each of the
original samples. For a training set with n training samples, p noise
vectors were first generated independently all at once and injected to each
input vector while keeping the output unchanged to produce new training
samples. Thus, the training set was expanded to n + np samples prior to
training process. Then, the new training set was applied to train the
networks in the conventional manner. The ratio of sample numbers of
each class usually remained unchanged. In this manner, the decision
boundary of the neural networks classifier would be smoother. Then, the
regularization algorithm for MLP implemented by the training algorithm
called “trainbr” of MATLAB neural network toolbox is applied to stop the

training process before the network begin to over-fit the noise.

The noise vectors were randomly generated by zero mean Gaussian
distribution functions. The variances of these noise vectors are essential to

control the effects of the method. Ideal variances should properly extend
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the ANN training samples to the underlying samples in the feature space.
If the variances are too small, then these noises would have little effect of
inhibiting overfitting during the training process. On the other hand, with
too large variances of noise, the classes of the training sample set would
become indistinguishable. Intuitively, addition of noise may make the
classification boundary smoother. As a result, the generalization
performance of the neural networks is significantly improved.” In our
study, we applied various variance values and numbers of injected noise

subjects to find out the optimal noise strength for better performance.

3.6 Performance Evaluation

As previously mentioned, we had sample sets of eight patient subjects and
twelve healthy subjects. The sample set was small as it is not easy to
obtain sizable human subject volunteers in a single clinic. Moreover, there
were five out of eight patients who were also followed up and
photographed during the clinical sessions. These samples were used to
examine the sensibility of the classifier to detect the improvement of the

patients’” condition.
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A four-fold cross validation procedure was performed in training the
ANNSs. All the original subjects were first divided into four subsets, each
having two patient samples and three normal samples. Sequentially one
subset was tested using the classifier system trained on the remaining 15
samples and the new samples generated by adding random noise on them.
Thus, each subject of the whole training set was predicted once in the
entire process, and the cross-validation accuracy was the percentage of the
test data that were correctly classified. For the same training and test data
sets, we trained each ANN 100 times with different initial weight values.
In this manner, the prediction accuracy on this set could more precisely
reflect the performance on classifying unknown data. The performance of
the conventional ANNs and noise-injected ANNs using different training

sets were compared.

3.7 Results

The goal of our work was to establish an objective facial paralysis
diagnosis system having good generalization performance with a small

training sample set.
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To assess the performance of the ANNSs, the test samples were grouped

into the following four categories.?%

1. True positive (TP): The ANN classifies a patient sample as a

patient.

2. True negative (TN): The ANN classifies a healthy sample as a

normal.

3. False positive (FP): A normal sample is labeled as a patient by the

ANN.

4. False negative (FN): A patient sample is labeled as a normal by the

ANN.

The performance of the neural networks was evaluated in terms of

accuracy, sensitivity and specificity as follows:

Accuracy Ac: The rate of the total subjects correctly classified.

Aee= (TP +TN)/(TP + TN + FP + FN)

Sensitivity Se: The rate of the patient subjects correctly detected.

S, =TP/(TP + FN)

Specificity Sp: The rate of the normal subjects correctly detected.
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S, =TN/(TN + FP) 3.3
To investigate the performance of noise injection method, we simulated
adding 60, 150, and 300 artificial subjects with different noise variance of
0.05 and 0.1 into the training set prior to training process. Classification
results of the training neural networks without and with injected noise

prior to conventional training are summarized in Table 3.2 for {RD, RGC}

and Table 3.3 for {RD, RSI}.

It can be seen that although the original data set is rather small, the ANNs
are still able to provide reasonable classifications for the samples in the
test set. Compared with training the ANNs with original training set,
training with noise-injected sample sets was able to overcome the problem
of overfitting and significantly improve the performance of the ANNS.
Basically, the performance of the ANNs with the input group of {RD, RGC}
is much better than the ones with {RD, RSI}. The maximum accuracy and
specificity were reached when a set of 150 noise-injected training samples
were added and noise variance value of 0.05 was applied. With the same
size of noised training set, and noise variance value of 0.1, the maximum

sensitivity value was reached.
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Table 3.2 Results provided by the ANNs with input of {RD, RGC} in the conventional manner and with noise-
injected methods.

Number of training samples  Noise variance Acc (%) Se (%) Sy (%)
Original 15 68.3 75.8 63.3
Noised 15 + 60 0.05 74.3 779 71.9
0.1 76.6 81.5 73.3
Noised 15 + 150 0.05 78.6 84.1 74.9
0.1 77.3 80.6 75.0
Noised 15 + 300 0.05 72.8 76.8 70.2

0.1 70.1 74.9 66.9




Objective Grading System for Facial Paralysis Diagnosis

Table 3.3 Results provided by the ANNs with input of {RD, RSI} in the conventional manner and with noise-
injected methods.

Number of training samples  Noise variance Acc (%) Se (%) Sy (%)
Original 15 61.2 68.8 56.1
Noised 15 + 60 0.05 64.8 77.0 56.7
0.1 65.0 75.8 57.8
Noised 15 + 150 0.05 72.5 81.0 66.8
0.1 70.8 78.3 65.8
Noised 15 + 300 0.05 69.6 77.8 60.0
0.1 67.2 77.9 57.8
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To verify the sensitivity of the proposed diagnosis system to the improvement of
the patients after medical treatments, the ANN having the highest accuracy and
specificity was also tested by the 3D samples of the patients taken for their
follow-up visit, and compared with the diagnosis result given by clinician based
on the SFGS. Totally 5 pairs of patient data were tested on the ANN having the
best performance, which was trained with a set of 75 noise-injected training

samples and the noise variance value of 0.05.

Table 3.4 Diagnosis results comparison for the patients before and after
medical treatments

Patient 1 Patient 2 Patient 3 Patient4 Patient5

SFGS 18 30 45 18 13
Visit 1

ANN *P P P P P

SFGS 63 100 67 18 91
Visit 2

ANN N N N P N
Agreement =Y Y Y Y Y

*The diagnosis of ANN is represented by P for positive and N for negative.

** The agreement of the two diagnosis by SFGS and ANN is represented by Y for yes and N for

no.
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The comparison of the diagnosis results by SFGS and noise-injected ANN is
shown in Table 3.4. The 100% agreement of these two diagnosis methods
indicates that our proposed objective diagnosis system can well detect the

improvement of the patients after medical treatments.

3.8 Discussion and Conclusion

An automated facial paralysis diagnosis system based on objective 3D image
asymmetry grading is presented in this work. Different from traditional 2D
image based diagnosis systems, 3D Gaussian curvatures and the Shape Index are
applied to provide local contour information for 3D model analysis. To overcome
the subjectivity encountered by the landmark based computer aided grading
methods, we achieved facial symmetry grading based on the fine registration
result of the original and mirror facial meshes by the ICP, which does not rely on
any manually set landmarks. The analysis results are not sensitive to the position
of the head or the size of the face. However, the face boundary could affect the
classification result, and should be carefully determined in the preprocessing

steps.
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To avoid overfitting caused by small sample set, we applied noise injected MLP
ANN:s in feature extraction and classification for 3D objects. The results in Table
3.2 and Table 3.3 validate the classification system proposed in this study. Our
method allows the system to improve accuracy, sensitivity as well as specificity.
Overfitting was reduced by smoothening the decision boundary near the original
samples with artificial samples around them. Therefore, the generalization ability
of the system was increased. The number of injected noise subjects and the
variance of the noises relevant influence factors of the output of the neural
network. Too many noise samples and too large noise injected would reduce the
accuracy of the diagnosis. Compared to the rather small size of the data set, the
performance of the system was rather high. As the classifier inputs, the index

group of {RD, RGC} was more effective than the group of {RD, RSI}.

We also tested the system having the highest accuracy with scan data of five
patients having follow-up diagnosis after the medical treatment. These data are
applied to verify the sensitivity of the classifier to the improvement of the
patients. The trained noise injected MLP classifier has provided promising
results with 100% agreement with the diagnosis result given by clinicians to the
follow-up cases. The MLP system can well detect the improvement of the
patients. A plausible explanation of the appreciably improved performance is

that the injected noise increases the generalization ability, and reduces the
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sensitivity to the disturbance in this way. Noise injected neural network should
be considered as effective diagnosis tools, especially when the clinic dataset is
small. Meanwhile, the proposed system would demonstrate a more adequate

performance if it is trained with larger sample dataset.

In summary, we verified that the proposed 3D image based noise injected ANN
system was a suitable tool for facial paralysis diagnosis. Gaussian curvatures
applied in this study provided useful local contour information for classification.
The performance of our ANN classifier was trained and tested on a data set with
the total of 20 subjects. An accuracy of 78.6% and a sensitivity of 84.1% were
achieved by the developed MLP ANN with a relative small data set. Therefore,

the proposed system could be useful for facial paralysis diagnosis.
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Chapter 4. Facial Highlight Features Analysis

4.1 Introduction

Analyzing the highlight features is complex work. Because of the central position
of nose, it is usually considered to be the most prominent feature. Based on
interviews with practicing plastic surgeons, we start our analysis from nose, and
then extend to the whole face (Figure 4.1). This study will quantitatively compare

facial features across race and gender.

Glabella
MNasion
Dorsum
Malar
Alar Nasal tip
Upper lip Columella
Lower lip

Chin

Figure 4.1 Anatomy of human face.
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More specifically, this study seeks to address the following questions, which

were brought up by clinicians of plastic surgery:

1) Identify the positions and basic schemas of the highlight regions. Till now,
the location and shape of this highlight region has yet to be studied.

2) Study the schema of forehead highlight region.

3) Determine the shape of the nasion according to race and gender by the

survey of the Gaussian curvature.

4.2 Data Acquisition

In this research, we employed a database of randomly selected 64 human
subjects consisting of 37 Chinese (18 males, 19 females), 19 Eurasians (8 males, 11
females) and 8 Caucasians (6 males, 2 females), aged between 16-40 years. The
Chinese subjects trace their origins from Southern China, the Caucasian subjects
from the European continent, and the Eurasian subjects have a heritage including
ancestors of both Caucasian and Chinese origins. The subjects were evenly
divided by gender, and none of these subjects had taken any facial cosmetic

surgery. For details of age, race and gender on the subjects, please see Table 4.1.
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Approval from the relevant Institutional Review Board (IRB) had been obtained

prior to the study.

Table 4.1 Age, race and gender information of sample subjects

Age 16~30 Age above 30
Chinese Male 14 5
Female 13 5
Eurasian Male 2 6
Female 5 6
Caucasian Male 5 1
Female 2 0

2D colorful facial images with neutral face expression of the subjects have been
used extensively in the extraction of facial highlights. Both anterior and lateral
views of the faces were captured in a reproducible and controlled illuminating
environment. Figure 4.2 shows the images taken for six subjects of different race

and gender.
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(@)

(b)

(c)

(1) (2)
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(d)

(e)

69)

(4]

Figure 4.2 Anterior and lateral facial views of six sample subjects. Rows
correspond to six subjects of (a) Chinese male, (b) Chinese female, (c) Eurasian
male, (d) Eurasian female, (e) Caucasian male, and (f) Caucasian female.
Columns correspond to different views of (1) anterior view, and (2) lateral
view.
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Meanwhile, the 3D data of these faces had also been collected by using plaster
casts of nose region of all the subjects, and the casts were subsequently captured
in 3D using a 3dMD system. The 3D face models were stored in the form of

triangulated meshes.

(a)

(b)

Figure 4.3 (a) Plaster cast of nose region; (b) 3D model reconstructed by
scanning the plaster cast.
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4.3 Highlight region extraction

The Adobe Photoshop CS3 software was applied to extract the highlight region

on the images. We demonstrate this process with Figure 4.3 (a.1), first.

Figure 4.4 Grayscale image with nose tip landmark prn and alar landmark al
added.

The first step was to convert the original color image of anterior face to grayscale
image (Figure 4.4). The gray levels in the images are integers in the range of [0,
255]. Second, in order to extract the highlight regions, a threshold of gray level
was set and the gray image was converted to black and white mode. The
threshold value should be between the gray level of the brightest highlight point
and the dark area. Based on our observation, the brightest highlight point is at

the nasal tip prn, and the edge of nasal alar al is the dark point. So we set the gray
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(d)

(e)

(f)

1) (2 (3)

Figure 4.5 Facial highlight region extraction process. Rows correspond to six
subjects of (a) Chinese male, (b) Chinese female, (c) Eurasian male, (d)
Eurasian female, (e) Caucasian male, and (f) Caucasian female. Columns
correspond to highlight extraction steps of (1) grayscale image, (2) setting gray
level threshold for grayscale image, and (3) extracted highlight regions.
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level threshold value as the mean value of the gray level of prn and the one of al.
Then the grayscale image was transferred to a black and white mode image, and
the white areas on the face are the extracted highlight regions. The
corresponding regions were separated on the grayscale image for further
analysis. The white regions corresponding to the white eyes were ignored since
they are not the highlight regions. We did this highlight extraction process to all
of the 64 subjects. Figure 4.5 shows the highlight extraction process results of the

previous six sample subjects.

4.4 Facial highlight features

In this section, we will discuss some schemas of the facial highlight regions.
Thereafter, Fisher’s exact test was applied to examine the correlations among the

race and gender factors.”!

Fisher's exact test is a statistical test used to compare proportions between
independent groups and examine the significance of the association between the
two kinds of classification when the outcome variables are binary or categorical
(e.g. gender, yes/no). Different from other tests with similar functions, it is valid

when there are sparse data (some cells <5).
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4.4.1 Highlight regions distribution

As we can see from Figure 4.5, there are actually six consistent regions of
highlight: forehead (glabella and nasion), two malar projection, nasal tip, central
lower lip, and chin projection. Some samples also have highlight region on upper

lip. Some samples have separated glabella and nasion highlights.

4.4.2 Highlight of nasal bridge

Although modern makeup artists generally make a continue highlight along the
nasal bridge, by checking the results of the 64 subjects, we did not find a subject
with a continue highlight from the nasion down to the nasal tip. For the most
cases, there is one highlight at the forehead, and one spot at the nasal tip. Only a
few cases have a bar highlight along the nasal bridge, but broken between the
nasion and the nasal tip. For the nasal bridge highlight details of race and gender
on the subjects, please see Table 4.2. This indicates that on natural face, the
highlights of the bridge are broken in half rather than appear in whole. This may
explain why many nasal implants may make the nose looks fake if they are
straight all the way down the nose. Creating a perfectly straight highlight on the

nasal bridge appears unnatural.
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Table 4.2 Race and gender distributions

of the highlight shape on the nasal

bridge.
Missing Bar highlight Amount
Chinese
Total 30 (81.1%) 7 (18.9%) 37
Male 13 (72.2%) 5 (27.8%) 18
Female 17 (89.5%) 2 (10.5%) 19
Eurasian
Total 18 (94.7%) 1 (5.3%) 19
Male 8 (100%) 0 (0%) 8
Female 10 (90.9%) 1(9.1%) 11
Caucasian
Total 6 (75%) 2 (25%) 8
Male 4 (66.7%) 2 (33.3%) 6
Female 2 (100%) 0 (0%) 2

4.4.3 Schema of forehead highlight region.

Basically, all the forehead highlight regions can be divided into two types. For
the first type, the shape of the highlight region is like the one in Figure 4.6 (a),
which resembles the capital letter T. It is usually located in the middle of the two
eyebrows. We named it as T shape. For the second type, the shape of the region
is more like an upside-down maple leaf as shown in Figure 4.6 (b), and we
named this as maple leaf shape. The position of the center is higher than the one
of T shape.
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(@ (b)

Figure 4.6 Two type of forehead highlight regions: (a) T shape, and (b) Maple
leaf shape.

To investigate the correlations of both race and gender along with the forehead
highlight shape, the subjects were categorized and counted according to race,
gender, and shape. Then, Fisher’s exact test was applied to examine the

correlations among these factors.

This study included 64 randomly chosen Chinese, Eurasian, and Caucasian
subjects who had never undergone any facial cosmetic surgery. The forehead
highlight regions of these subjects were extracted from their anterior images.
Table 4.3 shows the number of subjects per forehead highlight type along with

race and gender distributions.
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Table 4.3 Race and gender distributions of the forehead highlight shape for
the 64 subjects.

T shape Maple leaf shape Amount
Chinese
Total 24 (65%) 13 (35%) 37
Male 17 (94.4%) 1 (5.6%) 18
Female 7 (36.8%) 12 (63.2%) 19
Eurasian
Total 8 (42.1%) 11 (57.9%) 19
Male 3 (37.5%) 5 (62.5%) 8
Female 5 (45.5%) 6 (54.5%) 11
Caucasian
Total 1 (12.5%) 7 (87.5%) 8
Male 1 (16.7%) 5 (83.3%) 6
Female 0 (0%) 2 (100%) 2

The distinct forehead highlight region shape proportion differences were
observed between the race and gender groups. For Chinese subjects, the
percentage of maple leaf shape subjects is only 35%, whereas for the Caucasian
population, this value is as high as 87.5%. It shows that maple leaf shape is much
more common for Caucasian people, while T shape is more common for Chinese
people. Eurasian people fall between the other two populations. By using
Fisher’s exact test on the statistical data according to race only, significant

correlation of race and forehead highlight shape was confirmed (p = 0.017).
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For Chinese subjects, we found that the proportion of T shape highlight of the
male group is much higher than the one of the female group. With a rather small
p value of 0.00036, the Fisher’s exact test proved that Chinese men and women
have huge different forehead highlight shape aspect. However, there were no
significant differences found between the two gender subgroups for Eurasian

and Caucasian groups.

As such, the above statistical results suggest that the forehead highlight region

shape is quite related to race and gender.

The shape and position of the facial highlights have been considered as
important aspects when performing various types of plastic surgeries. The
desired highlight shape and position tell us where exactly to put in the fillers or

implants to create a healthy, natural, and attractive face.

After extracting forehead highlight from the anterior image for all the subjects,
we found out two shape schemas of this region, T shape and maple leaf shape.
Referring to the lateral images of these subjects, the ones with T shape highlight
usually have lower and more flat forehead and higher superciliary arches. On the
contrary, the ones with maple leaf shape highlight usually have a higher

forehead, and a less prominent superciliary arch.

82



Facial Highlight Features Analysis

Meanwhile, the statistical data show that there is large shape proportion
difference among the three race groups. The proportion of maple leaf in the
Chinese group is the lowest, while the one in the Caucasian group is the highest.
These facts should be determined by different gene structure. Since Eurasians are
the mixed ancestry of Chinese and Caucasians, it is not difficult to understand
that the statistical values of the FEurasian group are all between the
corresponding ones of the Chinese and Caucasian groups. However, the reason
why there is significant shape proportion difference between the two genders of

Chinese subjects is still unknown.

4.5 3D Objective Measurement of the surface contour

The reconstructed 3D models of the subjects allowed us to calculate the Gaussian
curvature. The program was developed using Visual C++ under Microsoft Visual
Studio 2005 environment. The two-way ANOVA is used to test for differences
according to race and gender. If the null hypothesis of the ANOVA F-test is
rejected (p < 0.05), a statistical difference exists between the population means. In
that case, the Tukey’s HSD test is carried out to make a pair-wise comparison

between each population mean to determine if there is a statistical difference.
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Figure 4.7 Gaussian curvature value color map

The statistical analysis works were achieved by the software R%, an SPSS-like
statistical analysis tool which conducts analyses such as ANOVA (Analysis of
Variance), the Tukey’s HSD (Honestly Significant Difference) test, as well as the

Fisher’s test.

We surveyed the lowest Gaussian curvature value of the nasion region for each
sample and analyzed the correlation between this index along with race and
gender. A two-way ANOVA analysis was used to test the differences according
to race and gender. It was determined that gender was not a significant factor.

However, Gaussian curvature at the nasion differed significantly across race, F
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(2, 63) = 3.342, p = 3.5E-05. Tukey’s HSD comparisons of the three levels of race
indicate that Eurasians (Mean = 0.0905) have a significantly lower Gaussian
curvature at the nasion than Chinese (Mean = 0.0623), Caucasians (Mean =
0.0953) have a significantly lower Gaussian curvature at the nasion than Chinese.

Comparisons between Eurasians and Caucasians were not significantly different

(p=0.912).

We also tested the relationship between the Gaussian curvature and the forehead
highlight shape using ANOVA test. The result showed that the Gaussian
curvature at the nasion differed significantly across the forehead highlight shape,
F (1, 62) = 3.918, p = 5.63E-03. Tukey’s HSD comparisons of the two forehead
highlight shape indicate that the subjects of maple leave shape (Mean = 0.580)
have a significantly lower Gaussian curvature at the nasion than the ones of T

shape (Mean = 0.548).
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Chapter 5. Conclusion

There are mainly two parts in this study. First, we developed a novel
automated objective asymmetry grading system for facial paralysis
diagnosis. The development of this grading system combined
observations and clinical assessments of the patients for different degrees
of motion dysfunction in various facial expressions. To improve the
performance of the system, we involved higher order surface properties in
facial imaging technique for 3D model analysis. 3D principle curvatures,
Gaussian curvatures and S.I. were essentially considered. Also, to
overcome the subjectivity encountered by the landmark based computer
aided grading methods, we achieved facial symmetry grading based on
fine registration result of the original and mirror facial mesh by the ICP
algorithm, which does not rely on any landmarks. Moreover, to avoiding
overfitting caused by small sample set, we applied noise injected ANNs in

feature extraction and classification for 3D objects.

Compared with standard MLP ANNSs, accuracy and specificity of our
proposed noise-injected ANNs are significantly better, while sensitivity

remains the same. We also tested the system with data of six patients
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having follow-up diagnosis after recovery. These data are applied to
verify the sensitivity of the classifier to the improvement of the patients.
The trained noise injected ANNSs classifier was capable of identifying 100%
of the recovered patient samples as normal cases. The ANNSs system can
well detect the improvement of the patients. A plausible explanation of
the appreciably improved performance is that the injected noise increases
the generalization ability, and reduces the sensitivity to the disturbance in

this way.

Different from most of the reported works, this study provides a novel
landmark-independent method for evaluating the degree of facial
paralysis. Based on higher order surface measurements, the Gaussian
curvature and the Shape Index, which describe local contour of the surface
rather than simply provide the position, the novel method improves

performance compared to previous 3D based works.

Due to our method which is based on facial asymmetry grading, we only
considered unilateral facial dysfunction caused by Bell’s palsy. The other
very few conditions were not included in our research. However, Bell's
palsy covers all of the conditions except for cases caused by brain tumor,

stroke, and Lyme disease, which is the most common condition of facial
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paralysis. Also, only rare cases (1%), facial paralysis occurs bilaterally
resulting in total facial paralysis (Bell’s palsy information site). Hence, we

were capable of covering the majority of all cases in practice.

There are some meaningful directions for future work in the area of

computer aided facial paralysis grading research.

As we know, facial paralysis causes patients loss partial facial expression
functions. This is also the reason why clinical diagnosis of this disease is
made mainly based on facial presentation of several different expressions.
However, the importance of these expressions could be quite different,
which has not been well studied. Rough set theory specializes in
knowledge reduction in decision table, and is well suitable for the
assessment for the attributes significance, which represent the importance

of different expressions in this case.

Although noise-injected method has improved the performance of our
classification system, we still believe in that the small data size limits the
study. The MLP ANNs would be more reliable if it is trained by larger
data set. In practice, the intensity difference of people’s facial expression
was noticed. Some patients are used to have less facial expression. They
are hard to be diagnosed correctly by the classifier trained by data of usual
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Conclusion

people. Also, the current clinical judgments of each patient sample were
from only one professional assessor. The diagnosis data from multiple

assessors would be more reliable and objective.

For the facial highlight study, the highlight feature patterns of natural
faces are analyzed based on interviews with practicing plastic surgeons.
Since data is still missing on where these highlights should be on natural
faces, especially on faces of different ethnic descent and gender, this study
intends to determine the position and shape of the highlights of natural
faces across race and gender. Such knowledge may assist cosmetic
surgeon in planning aid for plastic surgery. Some relevant conclusions
can be drawn from the present study. First, there are mainly six consistent
regions of highlight: forehead, two malar projection, nasal tip, central
lower lip, and chin projection. Second, we found out that nasal highlights
are discontinuous. Only a few cases have a bar highlight along the nasal
bridge, but broken between the nasion and the nasal tip. For the most
cases, there is one highlight at the forehead, and one spot at the nasal tip.
Also, the forehead highlight has mainly two types, T shape and maple leaf
shape. The distributions of these two types are closely related to race and
gender. Furthermore, by surveying the Gaussian curvature, we found out

that the shape of the nasion saddle is intimately associated with race.
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