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SUMMARY 

A nonlinear lumped element transmission line (NLETL) that consists of a LC 

ladder network can be used to convert a rectangular input pump pulse to a series of RF 

oscillations at the output. The discreteness of the LC sections in the network 

contributes to the line dispersion while the nonlinearity of the LC elements produces 

the nonlinear characteristics of the line. Both of these properties combine to produce 

wave trains of high frequency. Three types of lines were studied: a) nonlinear 

capacitive line (NLCL) where only the capacitive component is nonlinear; b) nonlinear 

inductive line (NLIL) where only the inductive component is nonlinear; and c) 

nonlinear hybrid line (NLHL) where both LC components are nonlinear. Based on 

circuit theory, a NLETL circuit model was developed for simulation and extensive 

parametric studies were carried out to understand the behaviour and characteristics of 

these lines. Generally, results from the NLETL model showed good agreement to the 

experimental data. The voltage modulation and the frequency content of the output RF 

pulses were analyzed. An innovative method for more efficient RF extraction was 

implemented in the NLCL. A simple novel method was also found to obtain the 

necessary material parameters for modeling the NLIL. For better matching to resistive 

load, the NLHL (where no experimental NLHL has been reported to date) was 

successfully demonstrated in experiment. 
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CHAPTER 1: INTRODUCTION 

____________________________ 

 

 

1.1 BACKGROUND 

1.1.1 DESCRIPTION OF  NONLINEAR TRANSMISSION LINE (NLTL) 
 
The focus of the research work here is on lumped element transmission line 

(TL) that is periodically loaded with nonlinear elements and can be represented by an 

equivalent LC ladder circuit. These elements can be made up of nonlinear dielectric 

materials (or capacitors) or nonlinear magnetic materials (or inductors). This type of 

nonlinear transmission line (NLTL) is known to cause two effects on an input 

rectangular pulse: 1) forming electromagnetic (EM) shock waves [1] to sharpen the 

rise time of the input pulse and; 2) modulating the input pulse to produce an array of 

solitons. The term “soliton” was coined by Zabusky and Kruskal [2] in 1965 and it is a 

localized self-reinforcing solitary wave [3] that does not change its shape as it 

propagates and preserves its form after interaction with other solitons. Solitons are 

encountered in the analysis of water waves, plasmas, fiber optics, shock compression 

and NLTL [4]. The nonlinearity of the TL elements causes the pulse sharpening effect 

and if this nonlinearity is balanced by the dispersive characteristic of the TL, radio 

frequency (RF) oscillations in the form of solitons are produced. For the discrete and 

nonlinear nature of this type of line, it is called the nonlinear lumped element 
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transmission line (NLETL). The NLETL should be differentiated from the usual 

distributed transmission line filled with continuous media. 

NLETL
input rectangular

pulse
oscillating pulse

modulation
 

Figure 1.1  RF generation in NLETL. 

 

As illustrated in Figure 1.1, a NLETL with nonlinear LC ladder network 

comprising either nonlinear inductors or nonlinear capacitors can be used to convert an 

input rectangular pump pulse into a train of oscillating pulses [5]-[7]. The input 

rectangular pump pulse injected into the line is steepened by the nonlinearity effect 

and, subsequently, modulated and broken into an array of solitons (oscillating pulse) 

due to dispersion that arises from the discreteness of the line. The background on this 

method of using nonlinear discrete elements to generate a train of solitons (resulting in 

oscillating signals) and a simplified theory on solitons are well described in [8]. 

Possible applications of the NLETL as a RF generator include satellite 

communications and communication systems in space vehicle, as high power 

microwave (HPM) sources for electronic countermeasures and remote sensing, as 

HPM source for radar applications and battlefield communication disruption, and in 

directed energy and nonlethal defense systems. Compared to conventional microwave 

sources that use electron beam [9]-[11], the advantages of NLETL as a beamless 

device for RF generation are: 

a) simple discrete components are used; 

b) does not use an electron beam in which heating from beam and beam 
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control will be a concern; 

c) no applied external magnetic field is needed when compared to electron 

beam devices (eg. magnetron, gyrotron, klystron); 

d) no vacuum required compare to microwave tubes;  

e) no secondary x-ray radiation as no electron beam is employed; and 

f) wide frequency tunability by DC biasing.  

 

Research on NLETL is important as this method of RF generation offers a 

potentially simpler, compact and less costly system. The defence industries will be 

particularly interested in using it on a mobile platform to disrupt electronics. For 

homeland security, a mobile system based on NLETL can be used to stop runaway cars 

and boats.   

 

1.1.2 SURVEY ON NLETL RESEARCH 

Investigation of nonlinear lumped element transmission lines (NLETLs) has 

long been carried out to understand the principle of soliton generation [12]-[16] and 

the principle of pulse sharpening of the rise time of a voltage waveform [17]-[20]. 

Each of these lines consists of discrete parallel capacitive/dielectric and series 

inductive/magnetic elements connected in such a way to make up a chain of cascading 

LC segments. Nonlinearity in the line is introduced by having either nonlinear 

capacitive elements (with constant inductance) or nonlinear inductive elements (with 

constant capacitance). On the other hand, Afshari [21] and [22] has made use of 

NLETL for pulse shaping. 

Earlier work on generating solitons using NLETLs has focused on 

comprehending the characteristics of soliton propagation and interaction. Ikezi [23]-



 
Chapter 1   Introduction 

 
4 

 

[25] and Kuusela [26]-[30] have done a great deal of work investigating soliton 

generation in NLETLs. Gradually, research on NLETL has progressed to producing a 

train of narrow pulses (solitary waves) [5], [6], [31]-[33]. It is now possible to use the 

NLETL technique to generate a series of narrow radio frequency (RF) pulses at 

megawatt power levels from an input rectangular pump pulse using nonlinear inductive 

line (NLIL) (consisting of nonlinear inductors but linear capacitors) and nonlinear 

capacitive line (NLCL) (consisting of nonlinear capacitors but linear inductors). NLIL 

and NLCL have been used for energy compression in the early days and can be traced 

to the Melville line [34] and Johannessen line [35] respectively. Belyantsev and his 

team have studied intensively the RF generation properties of NLCL [36] and [37] and 

NLIL [38]-[40]. A LC ladder network with both nonlinear capacitors and nonlinear 

inductors is called the nonlinear hybrid line (NLHL) or simply hybrid line.  

The group from Oxford University has made use of nonlinear capacitive lines 

to produce 60 MW peak RF power at frequencies of 200 MHz by means of a 

modulated strip line cooled to 77 K using liquid nitrogen [7]; and also to produce 25 

MW peak RF power at frequencies of 30 MHz by means of asymmetric parallel 

NLETL [41]. In [7], a numerical computer model was also developed to study the 

behaviour of the modulated strip line. When the input voltage increases, the 

modulation depth and frequency of the solitons produced by the line also increase. The 

modulation depth of the solitons can also be increased by adding more sections to the 

line. The model also studied the matching of the strip line to a linear load for 3 cases: 

under matched, approximately matched and over matched. In summary, the group 

believes that higher powers and higher frequencies are attainable by using materials 

with higher relaxation frequency and lower loss, better pulse injection and more line 

sections. This method has the possibility of rapid frequency change by biasing the 



 
Chapter 1   Introduction 

 
5 

 

modulated line since the frequency of solitons generated is voltage dependent. 

Another group from BAE systems (UK) has achieved 20 MW peak RF power 

at 1.0 GHz by using a nonlinear inductive line [42]. They made use of an LC ladder 

network with saturable magnetic material in the inductor and cross-link capacitors 

were added to modify the dispersion characteristic of the LC ladder network. Using 

this technique, they showed that it is possible to control the timing of the RF wave at 

the output and the frequency of the RF signal by adding a DC bias current in the 

nonlinear inductors. They also demonstrated that it is possible to increase system 

power by building phased arrays of NLTL circuits. They have built a NLIL circuit 

measuring 0.5 m x 0.5 m x 0.07 m that has a centre frequency of 1 GHz and peak 

output power of 20 MW. It can operate at a pulse repetition frequency (PRF) up to 1.5 

kHz. The input pump pulse has amplitude 30-50 kV with rise time of 10 ns and pulse 

width of 50 ns. They have also demonstrated phase and frequency control by using 4 

identical NLIL circuits (each producing RF pulses of 30ns with 1 GHz centre 

frequency and tuneability from 700 MHz to 1.3 GHz). The NLIL can operate with 

centre frequencies from 200 MHz to 2 GHz and is suitable for operation in phased 

arrays with tuneability of at least +/-20% about the centre frequency having bandwidth 

from 2.5% to 40%. 

Work has also been carried out to study the hybrid line using numerical 

simulation with the goal of better matching to a resistive load [43] and [44]. In [43], 

the authors used Spice simulator to study the nonlinear hybrid line that consists of 

discrete nonlinear inductors and nonlinear capacitors. They simulated a 50-section line 

made up of varactor diodes MV2201 and variable inductors with initial value of 54 nH. 

The nonlinear inductors were modelled by using hyperbolic tangent function. Results 

using nonlinear and linear inductors were compared. In summary, the authors opined 



 
Chapter 1   Introduction 

 
6 

 

that there is a minimum rise time for the input pulse to excite high frequency 

oscillations at the output and there is a range of optimal values to produce maximum 

modulation depth close to saturation. They projected that a hybrid line made of parallel 

plates with nonlinear medium having alternate lumped ferroelectric tiles (capacitors) 

and ferrite blocks (inductors) could be developed to produce solitons with frequency 

between 1-2 GHz. 

It should be noted that a distributed NLTL filled with ferrites has also been 

used to sharpen the rise time of an input pulse [45]-[48] and by introducing an external 

biasing magnetic field, it can be tuned to produce RF oscillations. Dolan has carried 

out a number of works on pulse-sharpening effect in ferrite-loaded NLTL [49]-[52] 

that is due to the formation of an electromagnetic shock front at the leading edge of a 

pulse waveform. Rostov and his team has numerous publications on applying an 

external biasing magnetic field on a coaxial line filled with ferrite cores to produce 

subgigawatt RF pulses [53]-[56]. Similar magnetic biased ferrite-filled line or 

gyromagnetic NLTL are also investigated by Bragg [57] and [58] and Chadwick [59]. 

Another interesting research area related to NLTL is the work of D. S. 

Ricketts at Harvard University on self-sustained electrical soliton oscillator with 

experimental demonstration [60]. The oscillator consists of a NLTL and a nonlinear 

amplifier with adaptive bias control. This one-port system can self-generate a periodic 

soliton pulse train from ambient noise. One of the amplifiers was implemented using 

MOS transistors for a low megahertz soliton oscillator prototype with pulse repetition 

rate of 1 MHz and soliton pulse width of 100 ns. Another prototype was constructed 

using RF bipolar transistors in the amplifier and p-n junction diodes as varactors in the 

artificial NLTL. It produced soliton with pulse width of 827 ps and has pulse repetition 

rate of 130 MHz. 
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1.1.3 THEORETICAL CONSIDERATIONS 

There are three basic equations for describing the discrete LC ladder network. 

The phase velocity vp, Bragg’s frequency fB, and characteristic impedance Z0 of the 

line are given as follows [61] and [62]: 

 
1

( ) ( )
pv

L I C V
�  (1.1) 

 
1

( ) ( )
Bf

L I C V�
�

�
 (1.2) 

 0

( )

( )

L I
Z

C V
�   , (1.3) 

where 

C(V) – capacitance as a function of voltage V  

L(I) – inductance as a function of current I. 

 

The principle of RF or soliton generation using an artificial LC ladder circuit 

is simple to describe qualitatively [8], [21], [42] but to analyse it mathematically is a 

very difficult task. The formation of a soliton requires a combination of the nolinearity 

effect and the dispersion effect of the transmission line. If either of the nonlinear 

components of the line, L(I) or C(V),  has a characteristic that decreases with 

increasing current I or voltage V, respectively,  the phase velocity according to Eq.(1.1) 

will increase. This means that due to the nonlinearity, points closer to the peak of the 

current or voltage waveform will have a faster propagation (phase) velocity and 

produce a shockwave front as shown in the upper part of  Figure 1.2. On the other 

hand, dispersion due to the discreteness of the NLETL causes the waveform to spread 

out as indicated in the lower half of Figure 1.2. The combination of both nonlinearity 

and dispersion leads to the formation of a soliton. A series of solitons propagating will 
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then result in the formation of RF pulses. Marksteiner [63] and [64] estimated that the 

RF efficiency from a solition generating NLETL in the absence of dissipation is close 

to 1/3. 

 

Figure 1.2  Dispersion and nonlinear effects in NLETL. 

 

Nonetheless, it has been shown that the differential-difference equations for 

the NLETL can be derived by applying Kirchoff’s law to the LC sections. These 

nonlinear equations can be combined into a higher order equation which subsequently 

can be reduced to the normal or modified Korteweg-de Vries (KdV) equation through 

a coordinate transformation [12], [13], [65].  The derivation of the KdV equation as 

depicted in Eq.(1.4) for a LC ladder circuit with nonlinear capacitors is illustrated in 

Appendix A.  

 
3

3
6 0

u u u
u

t x x

� � �
� � �

� � �
. (1.4) 

This method of obtaining the KdV equation from a NLETL has been known to be 

applied to the nonlinear dielectric line and the nonlinear magnetic line [66]. More 

works on KdV equation can be found in [67]-[72]. 
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The soliton formation process can be described in 3 time intervals [2]: (i) 

initially, the first two terms of Eq.(1.4) dominate and u steepens in regions where it has 

a positive slope; (ii) after u has steepened sufficiently, the third term becomes 

important and oscillations develop on the left of the front; (iii) each oscillation or 

soliton begins to move uniformly at a rate which is proportional to its amplitude. The 

solitons spread apart and eventually overlap spatially and interact nonlinearly. The 

nonlinear partial differential KdV equation can be solved analytically using the 

“Inverse Scattering Method” [73] and the “Direct Method” by Hirota [74]. Analytic 

solutions in terms of single or multiple solitons [75]-[78] can be obtained from the 

KdV equations. An example of a single soliton solution is shown in Eq.(1.5), 

 � � � �2 2 2
0

1
, sec

2 2

a
u x t a h x x a t

� �� � � �� �� �
 (1.5) 

where x0 is the initial position and � �  √� as a function of the soliton velocity v. It is 

worth noting that the amplitude of the soliton pulse is proportional to the velocity of 

propagation and its pulse width is inversely proportional to the square root of the 

velocity. By assuming the solution is in the form of a “sech2” function travelling wave, 

the details of obtaining a single-soliton solution for the KdV equation are shown in 

Appendix B. 

It should be noted that this process of deriving the KdV equation assumes that 

the number of LC sections is large (in the continuum limit) and resistive losses are 

negligible. Furthermore, the nonlinear elements (dielectric or magnetic) have to follow 

a certain function that allows for a simple first order approximation and ignoring of 

higher order terms. Hence, the analytic solution is only good enough for understanding 

the basics of solitons generation and their characteristics. It could not be used to 

predict the exact output waveform of the NLETL with an input rectangular pump 

pulse. A numerical method has to be used instead to solve the system of equations 
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associated with the NLETL. It is with this in mind that a circuit model was developed 

for the NLETL in this research work so that it could be implemented numerically in 

any programming software. Parametric studies could then be carried out to understand 

the effect of each parameter variation in the NLETL.  

 

1.2 OBJECTIVES AND CONTRIBUTION 

This section describes the objectives of the research work and the 

contributions that the results of the research will make to the archival engineering 

literature. In brief, an NLETL circuit model based on circuit theory was developed for 

simulation and extensive parametric studies were carried out to understand the 

behaviour and characteristics of these lines. An innovative method for more efficient 

RF extraction was implemented in the NLCL and a simple novel method was also 

found to obtain the necessary material parameters for modeling the NLIL. Last but not 

least, the NLHL (where no experimental NLHL has been reported to date) was 

successfully demonstrated in experiment. 

Most current circuit models and PSpice (Personal Simulation Program with 

Integrated Circuit Emphasis) models for NLETL focus on studying the rise time of the 

output pulse and only a handful reported having done simulations for RF generation. 

These simulations for RF generation do not include resistive losses and the authors do 

not show how well their model matched to the experimental data. The omission of the 

resistive element in the circuit model and the lack of validation of the model through 

practical experiment led to an impetus to develop an in-house NLETL circuit model. 

Hence, one of the objectives in the research work is to develop a generic NLETL 

circuit model to simulate the three types of NLETL (NLCL, NLIL and NLHL) and 

validate their results against experiments. The in-house NLETL model was 
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successfully validated with low voltage experiments before being utilized in high 

voltage work. The NLETL model forms the backbone of the research work as it 

becomes a crucial tool used in designing the high voltage lines and it helps to guide the 

physical implementation of the NLETL. In addition, an extensive and comprehensive 

parametric study using the NLETL model was carried out to understand how the 

parameters of the line and input pulse affect the output pulse oscillation. Literature 

reports on the effect of parameters change are limited and most give very brief 

descriptions on only a few line or input pulse parameters. Through this study, all line 

and input pulse parameters were investigated thoroughly, and the trends and conditions 

for good output oscillating pulse can now be better understood.        

Another objective of the research work is to improve the extraction efficiency 

of the RF pulses. It is known that there is a problem with extraction when a resistor is 

connected to a conventional NLETL as a load. The oscillation of the pulse at the load 

is greatly damped and a high pass filter is needed to remove the DC content. A novel 

method is proposed in this thesis where direct AC extraction is possible without the 

need for filtering. Furthermore, the proposed method whereby the load is strategically 

located in the line gives better modulation depth and RF efficiency. This novel method 

was successfully demonstrated in the nonlinear capacitive line (NLCL) and results 

from the in-house NLETL model gives good match to the experimental data.      

For a nonlinear inductive line (NLIL), it is reported in the open literature that 

a simplified form of the Landau-Lifshitz-Gilbert (LLG) equation can be used to model 

the dynamics of the nonlinear inductor made of ferrite. However, there is a lack of 

information on the critical parameters used in the LLG equation and how these 

parameters can be obtained. This spurs the formation of another objective which is to 

develop a procedure to find out the critical parameters in the simplified LLG equation 
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for use in the in-house NLETL model. An innovative method was eventually 

developed to obtain the key parameters in the LLG equation. Simulation results from 

the NLETL model where the LLG equation is used show very good match to the NLIL 

experimental data. Furthermore, a simple and quick method was also developed to 

obtain the characteristic L-I curve of the nonlinear inductor for use in the NLETL 

model. Henceforth, the curve-fit function attained for the L-I curve can also be easily 

implemented in PSpice software.   

Last but not least is the objective to design and build a nonlinear hybrid line 

(NLHL). Current literature reveals that only simulation work has been done on NLHL 

and no experimental work has been carried out on NLHL to date. This could be due to 

the difficulty in getting the right combination of both nonlinear magnetic and nonlinear 

dielectric materials. With the help of the in-house NLETL circuit model, a NLHL was 

successfully constructed and tested in the research work undertaken here. Simulation 

results show good match to the NLHL experimental data.   
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1.3 ORGANIZATION 

There are altogether 6 chapters in this dissertation. Following the introduction 

in this chapter, Chapter 2 describes the development of the NLETL circuit model 

which forms an essential tool in simulating the various types of NLETL (NLCL, NLIL 

and NLHL). In addition, the model was used to carry out a comprehensive and 

extensive parametric study of the NLETL. Taking reference to a NLETL with fixed 

parameter values, every parameter was varied to find the trend and effects on the 

output voltage waveform. 

Chapter 3 features the implementation of the NLCL at low voltage and high 

voltage. The low voltage work validated the NLETL circuit model and subsequently 

the model was used to design the NLCL at high voltage. A proposed innovative 

method to directly extract the RF waveform to give better efficiency without the need 

for a high pass filter as compared to a conventional NLCL is described. The results 

obtained from the NLETL model are evaluated against the experimental data.  

The design and construction of a high voltage NLIL is described in Chapter 4. 

A novel method to find the critical parameters of the simplified Landau-Lifshitz-

Gilbert (LLG) equation for use in the NLETL model is shown. Another simple and 

quick method to obtain the characteristic L-I curve of the nonlinear inductor for 

modeling is also presented.  

Chapter 5 compares the performances of a NLHL as compared to the NLCL 

and NLIL through simulations using the NLETL circuit model. The prospect of using 

the NLHL is evaluated and discussed. Subsequently, the design and implementation of 

a high voltage NLHL is illustrated. The experimental results are presented and 

discussed.  

The final chapter concludes this thesis and suggests the scope for future work. 
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____________________________________ 

CHAPTER 2: NLETL CIRCUIT MODEL 

____________________________________ 

 

 

This chapter describes the development of the nonlinear lumped element 

transmission line (NLETL) circuit model which forms the backbone of this research as 

it is used in simulating the various nonlinear lines (NLCL, NLIL and NLHL). It should 

be noted that even though the Korteweg-de Vries (KdV) equation for NLETL gives an 

analytic solution in the form of solitary waves [65], it cannot be used to predict the 

output waveforms. Numerical simulation has to be used instead and the NLETL circuit 

model provides the basis for the computation. 

 

2.1 DESCRIPTION OF MODEL 

This section describes the process of implementing and verifying a numerical 

model for a nonlinear lumped element transmission line (NLETL). The main goal is to 

establish a generic model that is flexible for making changes in the various parameters 

of the line and hence can be conveniently used for conducting quick parametric 

studies. The model is also built such that it can incorporate characteristics of nonlinear 

elements defined by equations or obtained via experiments, such as for example, the 

capacitance C(V) that is voltage dependent for a nonlinear capacitor and the inductance 

L(I) that is current dependent for a nonlinear inductor. The equations for these 

dependencies could normally be obtained from the component manufacturers. If the 
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capacitance versus voltage (C-V characteristic) curve and inductance versus current 

(L-I characteristic) curve are obtained experimentally, the data can be implemented as 

a look-up table or as a curve fit function in the numerical model. 

The circuit diagram used for constructing the numerical model for the NLETL 

is depicted in Figure 2.1. Similar to the numerical techniques used for modeling pulse 

sharpening circuits by Turner [79], the NLETL circuit model was formulated with the 

addition of dissipative losses for the inductive and capacitive elements. The model 

comprises three parts: 1) the input that is a user-defined pump pulse or a discharge 

pulse from a storage capacitor, and input impedance “Rgen”; 2) the passive NLETL 

itself that comprises n number of LC sections in which each section contains a single 

series L connected to a single shunt C arranged in an inverted “L” shape; and 3) a load 

“Rload” that is resistive. “RL” and “RC” are included for losses in the inductor and 

capacitor, respectively.  

  

 
 

Figure 2.1  Circuit diagram of a nonlinear lumped element transmission line (NLETL). 

 

Using Kirchoff’s voltage and current laws, the equations for the 1st section of 

the LC ladder circuit can be obtained as follows: 

 � �0
0 0pump gen L

dI
V L V I R R

dt
� � � � � �  (2.1) 
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 0 0 1dVc I I

dt C

�
�  (2.2) 

 � �0 0 0 1 CV Vc I I R� � � �   . (2.3) 

 

The equations for the (i+1)th section are:  

 1
i

i i i L

dI
V L V I R

dt� � � � � �  (2.4) 

 1i i idVc I I

dt C
��

�  (2.5) 

 � �1i i i i CV Vc I I R�� � � �   . (2.6) 

 

The equations for the final loop at the load are: 

 1 1n n ndVc I I

dt C
� � ��  (2.7) 

 � �1 1 1n n n n CV Vc I I R� � �� � � �  (2.8) 

 1n n loadV I R� � �   . (2.9) 

 

For the nonlinear elements of the line, i.e. nonlinear capacitor and nonlinear 

inductor, their values are functions of voltage and current respectively, and are user-

defined in the form of a mathematical expression or empirical look-up table: 

 ( )C f V�  (2.10) 

 ( )L f I� . (2.11) 

where 

Vpump – input voltage pump pulse 

Vci – voltage across capacitor at (i+1)th section 

Vi – voltage at (i+1)th node 
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Ii – current flowing in inductor at (i+1)th section  

n – number of LC sections 

i – index ranging from 0 to (n-1) 

C – capacitance as a function of voltage  

L – inductance as a function of current. 

 

The NLETL circuit model was implemented as a system of ordinary 

differential equations (ODE) using the MathCad software and the numerical solver 

used is the 4th-order Runge Kutta method. 

To test the validity of the model, a low voltage nonlinear capacitive line was 

first constructed and the experimental results are compared with the simulated ones 

from the NLETL circuit model. The details of the experiments are documented in 

Chapter 3. The results from the NLETL circuit model are in very good agreement with 

the ones from the experiments. An example to show the good matching of the output 

waveforms for a rectangular pump pulse of amplitude 5 V, duration 400 ns, and rise 

time 10 ns that is input into a 10-section line with constant L = 1 �H and nonlinear C 

as defined in Eq.(2.12) [80] is illustrated in Figure 2.2. Rgen and Rload are taken as 50 �. 

RC and RL are 2.0 � and 0.16 �, respectively. 

 � � � �0 1
V

aC V C b b e
�� �

� � � � �� �
� �

 (2.12) 

where C0 = 816.14 pF, a = 2.137 V  and b = 6.072 x 10-3. 
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Figure 2.2  Comparison of output waveforms from the NLETL circuit model and 
experiment. 

 

 

2.2 PARAMETRIC STUDIES 

Having verified that the NLETL circuit model can predict waveforms that 

closely matched the experimental results, parametric studies using the model were 

subsequently conducted to understand the trend and effects by varying the parameters 

of the line. As a starting point, the parameters used for producing the waveform in 

Figure 2.2 as given in Section 2.1 will be used as reference values. For each parametric 

study, only one parameter will vary while the others will remain unchanged. The effect 

of each parameter change is elaborated in subsequent subsections. Subsections 2.2.1 to 

2.2.6 refer to nonlinear capacitive lines while subsection 2.2.7 refers to a nonlinear 

inductive line. To avoid cluttering only 3 or 4 cases are plotted for the load voltage 

simulations to be shown. 
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2.2.1 INPUT RECTANGULAR PULSE 

2.2.1.1 Rise Time 

   

 

Figure 2.3  Effect of input pulse rise time tr on output load voltage. 

 

Here the rise time and fall time of the input pulse are taken to be the same. It 

is also maintained that the reduction in rise time �T as indicated in Eq.(2.13) and rise 

time tr are such that �T >> tr  so that solitons are generated instead of simply pulse 

sharpening occurring [43]. 

 � � � �� �min maxT n LC V LC V� � � �  (2.13) 

The rise time tr is varied from 20 ns to 200 ns in steps of 20 ns and the effect on the 

output load voltage is shown in Figure 2.3. It is observed that once the line is capable 

of producing solitary waves, the frequency of the oscillations remain the same as the 

rise time varies. However, the number of oscillations decreases as the rise time 

increases because pulse duration being constant, the portion of the flat top reduces as 

the rise time increases, thus limiting the number of cycles for the same frequency. 
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2.2.1.2 Pulse Duration 

 

Figure 2.4  Effect of input pulse duration tp  on output load voltage. 

 

The pulse duration tp is varied from 50 ns to 500 ns in steps of 50 ns and the 

effect on the output load voltage is shown in Figure 2.4. It is observed that a minimum 

duration is needed to initiate oscillations and as the duration increases, the frequency 

of oscillation remains the same, but the oscillation amplitudes continue to decay. 

 

2.2.1.3 Pulse Amplitude 

The pulse amplitude amp is varied from 1 V to 10 V in steps of 1 V and the 

effect on the output load voltage is shown in Figure 2.5. It is observed that a low 

amplitude pulse will not generate any oscillations as the nonlinear capacitance C(V) 

does not vary much with small voltages applied. Too large an amplitude will cause the 

oscillations to shift upwards, ultimately resulting in distortions which are due to load 

reflections. Generally, as the amplitude increases, the frequency of oscillations also 

increases. 
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Figure 2.5  Effect of input pulse amplitude amp on output load voltage. 

 

 

2.2.2 NUMBER OF SECTIONS 

The number of LC sections n is varied from 5 to 50 in steps of 5 and the effect 

on the output load voltage is shown in Figure 2.6. It is observed that the frequency of 

oscillations stays approximately the same for all cases, but there is an optimum number 

of sections where the number of oscillations is greatest. As the number of sections 

increases, the fall time of the output pulse increases (i.e. the tail lengthens) and the 

oscillations shift downwards following the tail; the peak voltage also correspondingly 

decreases.  
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Figure 2.6  Effect of the number of LC sections n on output load voltage. 

 

2.2.3 VALUE OF RESISTIVE LOAD 

The value of the resistive load Rload is varied from 100 � to 1000 � in steps of 100 

� and the effect on the output load voltage is shown in Figure 2.7. It is observed that 

the peak voltage and the peak-to-trough oscillation amplitudes increase as the load 

value increases. However, there is an optimum point at which the peak power is 

maximum and this occurs at Rload = 700 �, as depicted in Figure 2.8. It could be 

considered that the changing impedance of the nonlinear capacitive line is best 

matched to the load at this value. The frequency of oscillations increases as the load 

resistance increases and approaches the Bragg’s frequency limit of the line. Distortion 

also sets in at the end of the pulse for a large load resistance. 
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Figure 2.7  Effect of resistive load Rload on output load voltage. 

 

 

Figure 2.8  Peak power as a function of Rload. 
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oscillations start to diminish. The DC value of the pulse also decreases for higher value 

of RL because for the same input voltage, the current in RL decreases as RL increases 

and, hence, a smaller current will flow in the load resulting in a lower output voltage. 

 

Figure 2.9  Effect of resistor RL on output load voltage. 

 

2.2.4.2 Dissipation in Resistor RC 

The value of resistor RC is varied from 1 � to 10 � in steps of 1 � and the 
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Figure 2.10  Effect of resistor RC on output load voltage. 

 

2.2.5 VALUE OF INDUCTOR 

The value of the inductor L is varied from 0.2 �H to 2.0 �H in steps of 0.2 �H 

and the effect on the output load voltage is shown in Figure 2.11. It is observed that at 

low value of L, there are no oscillations (agrees with the observation in [80]) and the 

output pulse appears in staggered steps.  

 

Figure 2.11  Effect of constant inductor L on output load voltage. 
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Oscillations start at higher value of L and there is an optimum point at which 

the peak power is maximum and this occurs at L = 1.0 �H as depicted in Figure 2.12. 

It could be considered that the load is best matched to the changing impedance of the 

nonlinear capacitive line at this value. The frequency of oscillations decreases as L 

increases. 

 

Figure 2.12  Peak power as a function of L. 

 

2.2.6 NONLINEARITY OF CAPACITOR 

The equation used for the nonlinear capacitor is shown in Eq.(2.12). The 

nonlinearity factor a determines the steepness of the nonlinear capacitance whereas the 

nonlinearity factor b determines the final capacitance as the voltage approaches infinity 

and lies in the range 0 < b <1. 
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1.5, the output pulses oscillate at high frequencies but with distortion. For a = 2.0 to 

5.0, normal sinusoidal oscillations appear and the frequency decreases with increasing 

a (less steepness).  It is observed that there is an optimum point at which the peak 

power is maximum and this occurs at a = 2.5, as depicted in Figure 2.14. 

 

Figure 2.13  Effect of capacitive nonlinearity factor a on output load voltage. 

 

 
Figure 2.14  Peak power as a function of capacitive nonlinearity factor a. 
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2.2.6.2 Nonlinearity Factor b 

 

 

Figure 2.15  Effect of capacitive nonlinearity factor b on output load voltage. 

 

The value of the factor b is varied from 0.1 to 1 in steps of 0.1 and the effect 
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1, the capacitance becomes a constant. 
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 � � � � 2
0 1 tanhS S

S

I
L I L L L

I

� �� �
� � � �� �� �

� �� �
 (2.14) 

where 

L0 – initial inductance (at zero current) 

LS – asymptotic inductance with current increase 

I – current flowing through inductor 

IS – inductive nonlinearity factor.  

 
Figure 2.16  Effect of inductive nonlinearity factor IS on output load voltage. 

 

 

Figure 2.17  Peak power as a function of inductive nonlinearity factor IS. 
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In this study, the values of the parameters in Eq.(2.14) are taken as L0 = 500 

nH and Ls = 50 nH. The other line parameters are similar to those in Section 2.1 but 

with an input pulse duration of 50 ns, C = 100 pF, and RC = 0.2 �. The value of the 

nonlinearity factor IS is varied from 0.01 A to 0.10 A in steps of 0.01 A and the effect 

on the output load voltage is shown in Figure 2.16. A low value of IS indicates steep 

nonlinearity of the inductance. As IS increases (less steepness), the frequency of 

oscillation decreases but there appears to be an optimum point at which the peak power 

is maximum and this occurs at IS = 0.04 A depicted in Figure 2.17. 
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2.3 SUMMARY OF PARAMETERIC STUDIES 

The results of the parametric studies are summarized in Table 2.1 where the 

effects and trends on each parameter variation are tabulated. 

  

Table 2.1  Summary of Parametric Studies on NLETL. 

S/N Parameter 
Effect on 

Frequency 
(freq) 

Remarks 

1 Input Rectangular Pulse   
 a) Rise Time, tr increase tr 

� freq remain 
approx. constant 
 

increase tr, 
� no. of oscillations decreases 
 
 

 b) Pulse Duration, td increase td  
� freq remain 
approx. constant 
 

minimum duration needed to 
initiate oscillations 
 
 

 c) Pulse Amplitude, amp increase amp 
 � freq 
increases 
 

too large an amplitude will cause 
the oscillations to shift upwards 
resulting in distortions 
 

2 No. of Sections, n increase n � 
freq remain 
approx. constant 
 
 
 

increase n, 
� increase fall time 
� oscillations shift downwards, 

following the tail 
� peak voltage decreases 
 

3 Resistive Load, Rload increase Rload � 
freq increases 

increase Rload, 
� oscillation amplitudes 

increase 
� optimum point where peak 

power is maximum (load 
best matched to changing 
line impedance)  

4 Resistive Losses   
 a) Loss in Inductor, RL increase RL � 

freq decreases 
increase RL, 
� oscillation amplitudes 

decrease 
� DC value of pulse decreases 

(for same input voltage, 
current in RL decreases, 
hence smaller current flow in 
load resulting in lower 
voltage) 
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b) Loss in Capacitor, RC increase RC � 
freq decreases 

increase RC, 
� oscillation amplitudes 

decrease 
� DC value of pulse remains 

unchanged (RC only 
attenuates the AC 
component of the inductor 
current)  

 
5 Linear Inductor, L increase L � 

freq decreases 
� no oscillations at low value 

of L  
� optimum point where peak 

power is maximum 
  

6 Nonlinearity of 
Capacitor 

� � � �0 1
V

aC V C b b e
�� �

� � � � �� �
� �

 

  

 a) Nonlinearity Factor a 
 

increase “a” � 
freq decreases 

� low “a” indicates steep 
nonlinearity 

� at low “a”, output pulses 
oscillate at high frequency 
but with distortion  

� optimum point where peak 
power is maximum 

 
 b) Nonlinearity Factor b increase “b” � 

freq decreases 
� low “b” indicates steep 

nonlinearity 
� increase “b”, 

� oscillation amplitudes 
decrease 

� peak power decreases 
 

7 Nonlinearity of Inductor 

� � � � 2
0 1 tanhS S

S

I
L I L L L

I

� �� �
� � � �� �� �

� �� �

 nonlinearity factor Is 

increase Is � 
freq decreases 

� low Is indicates steep 
nonlinearity 

� increase Is,  
� optimum point where 

peak power is maximum  
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2.4 CONCLUSIONS 

A circuit model has been developed and described for a nonlinear lumped 

element transmission line (NLETL). This NLETL model has been used to extensively 

investigate the effects of various parameters changes of the NLETL. It is observed that 

an optimum point exists in peak load power for certain parameter combinations. Even 

though a steep nonlinearity of the nonlinear L or C elements and small values of 

constant L or C elements could result in high frequency oscillations, they could also 

cause distortion to the output oscillations. As the impedance of the NLETL changes 

with time due to the nonlinear elements, it is difficult to find the value of the resistive 

load to match to the line. However, a parameter sweep can be simulated using the 

NLETL model to find the load value that gives the best match in terms of maximum 

peak load power. 
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______________________________________________ 

CHAPTER 3: NONLINEAR CAPACITIVE LINE 

(NLCL) 

______________________________________________ 

 

 

This chapter showcases the implementation of low voltage and high voltage 

nonlinear capacitive lines (NLCLs). For ease of reference and clarity, the phase 

velocity vp, Bragg frequency fB, and characteristic impedance Z0 of the line are 

reproduced here from Section 1.1.3 in Eqs. (3.1), (3.2) and (3.3) respectively; but in 

this case, the inductor is linear and the inductance is taken as a constant L. 

� �
1

pv
L C V

�
�

     (3.1) 

� �
1

Bf
L C V�

�
� �

     (3.2) 

� �0

L
Z

C V
�          (3.3) 

 
3.1 LOW VOLTAGE NLCL 

This section presents a low voltage nonlinear capacitive line (NLCL) that was 

designed and built using reverse-biased varactor diodes as the nonlinear elements to 

generate RF pulses. Frequency control of the line was demonstrated by using a simple 

biasing circuit. Two different configurations of connecting capacitive NLETLs were 

also implemented to study the quality of the RF oscillations. 



 
Chapter 3   Nonlinear Capacitive Line 

 
35 

 

3.1.1 DESCRIPTION OF LOW VOLTAGE NLCL 
 

To demonstrate the generation of RF oscillations using a NLETL, a nonlinear 

capacitive line (NLCL) was built with commercial-off-the-shelf (COTS) components. 

The circuit diagram for setting up the experiment is illustrated in Figure 3.1 where the 

capacitor C is nonlinear and the inductor L is constant.  

 

 

Figure 3.1  Circuit diagram of a nonlinear capacitive line (NLCL). 

 

The nonlinear capacitors were implemented using Sanyo SVC388 hyper-

abrupt junction type silicon composite varactors operated in the reverse-bias mode. 

They are twin type varactor diodes meant for AM electronic tuning applications and 

have a high capacitance ratio that offers steep nonlinearity for the capacitance. Only 

one of the pairs in each module is used in constructing the line. The characteristic 

capacitance versus reverse voltage (C-V) profile given by the manufacturer is shown 

by the blue dotted line in Figure 3.2. A curve fitting was performed using Eq.(3.4) [80] 

where it was subsequently utilized in the NLETL circuit model. For best fit, the 

parameters in the equation were obtained as follows: C0 = 816.14 pF, a = 2.137 V and 

b = 6.072 x 10-3. The curve fitting line is depicted as the red solid line in Figure 3.2. 

 � � � �0 1
V

aC V C b b e
�� �

� � � � �� �
� �

 (3.4) 

  



 
Chapter 3   Nonlinear Capacitive Line 

 
36 

 

 

Figure 3.2  Characteristic curve of a SVC388 diode. 

 

In general for NLCL, the COTS nonlinear capacitor was first selected based 

on the largest nonlinearity among those surveyed. The selected Sanyo SVC388 

varactor diodes have capacitance ratio of 18.5; subsequently, inductors of 1 µH were 

chosen to give the operating frequency in the 10s MHz range. The constant value 

inductors L were implemented using EPCOS 1 �H BC series RF chokes with ferrite 

drum core. The line was then optimized by performing a parameter sweep on the load 

to find the load value that gives the maximum peak power. 

The input pump pulse was produced using an Agilent 33250A function 

generator. The input pulse has amplitude of 5 V, duration 400 ns with rise and fall time 

of 10 ns. The number of LC sections for the NLCL is n = 10. The input impedance 

Rgen and load impedance Rload are both 50 �. The resistances of the inductors and 

capacitors are RL = 0.16 � and RC = 2.0 �, respectively. A photograph of the 

experimental set-up is shown in Figure 3.3. The experimental waveforms for the input 

and output of the line are shown in Figure 3.4 and they verified the results predicted by 

the NLETL model. The node voltage at each section of the line was also measured and 
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all the node voltages indicated good match to the simulated ones. Voltage 

measurements are made with Lecroy PP007-WR voltage probes and the data are 

captured on Lecroy WaveRunner 6050 oscilloscope that has a bandwidth of 500 MHz. 

Examples of two such node voltage measurements are shown in Figure 3.5. 

Some interesting phenomena were observed on the phases of the node voltage 

at the capacitors and the currents in the inductors. The adjacent node voltages 

(preceding node and subsequent node voltages) for a particular node are approximately 

180 degrees out of phase to the voltage at that node. The current in each inductor is 

approximately 90 degree out of phase to the node voltages at either of its ends. These 

phenomena are a result of the discrete nature of the line where lumped L and C 

components are being used. Energy is passed from inductor to capacitor in a step-by-

step manner and appears to propagate in a “bucket-brigade” mode as described by P. 

W. Smith [81]. He also investigated load reflection on a short circuited NLCL whereby 

the number of pulses in the voltage waveform increases as the stage number decreases. 

He attributed this observation to the fact that at the penultimate stage, the reflected 

wave is delayed from the incident wave by the delay of one line section.              

 

 

Figure 3.3  Photograph of a typical experimental set-up for a 10-section low voltage 
NLCL. 
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Figure 3.4  Input and output waveforms for the NLETL circuit model and experiment 
(Vpump = 5 V, n = 10, Rload = 50 �). 

 

 

Figure 3.5  Node voltages at Node 1 and Node 5 for NLETL circuit model and 
experiment (Vpump = 5 V, n =10, Rload = 50 �). 
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value, the load was increased by a factor of 10 to Rload = 500 � in the experiment. The 

load voltage measured is shown in Figure 3.7. It matches very well to what is predicted 

by the NLETL model. 

 

 

Figure 3.6  Peak power vs. Rload (Vpump = 5 V, n = 10). 

 
 
 

 

Figure 3.7  Output load voltage for NLETL circuit model and experiment (Vpump = 5 V, 
n = 10, Rload = 500 �). 
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It is of interest to understand how the frequency of the oscillations changes 

with time rather than performing fast fourier transform (FFT) on the output voltage 

pulse. The frequency of each cycle in the oscillations is calculated and plotted against 

the time when the cycle ends. This time-frequency plot can also show the number of 

cycles of oscillations by simply counting the number of points plotted. 

 

 

Figure 3.8  Voltage oscillation frequency vs. time for Rload = 50 � and Rload = 500 � 
(Vpump = 5 V, n = 10). 

 

Time-frequency plots for the cases where Rload = 50 � and Rload = 500 � are 

depicted in Figure 3.8. It is observed that both cases have 5 cycles of oscillation and 

the frequency is higher for higher load value. This can be explained by the fact that for 

a transmission line, the voltage across the load and voltages along the line will increase 

as the resistive load value increases. (This was observed in the parametric study on 

varying the load value in Section 2.2.3.) Consequently, the capacitance of the line will 

decrease with increasing voltage as shown in Figure 3.2. Hence, according to Eq.(3.2), 

the oscillation frequency will increase with lowering C(V) values. The higher voltages 
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along the line due to higher load values are attributed to the positive reflection 

coefficient as Rload > Z0. The reflected voltages propagate back on the line and add on 

to the incident voltages resulting in higher total voltages. It is noted that the frequency 

of oscillations is not truly monochromatic and tends to increase with time. 

 

 

Figure 3.9  Experiment: output load voltage for n = 10 and n = 20 (Vpump = 10 V, Rload 
= 200 �). 

 

 

Figure 3.10  Experiment: voltage oscillation frequency vs. time for n =10 and n = 20 
(Vpump = 10 V, Rload = 200 �). 
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Experiments were also carried out with higher amplitude input pump pulse 

and larger number of LC sections. The cases where input pulses of 10 V were injected 

into 10-section and 20-section lines with 200 � loads are shown in Figure 3.9 (the 

other parameters remain the same as before). It is expected that the output pulse 

appears later at about 300 ns for the 20-section line as every additional LC section 

introduces a time delay. The time-frequency plots for the two lines are compared in 

Figure 3.10. Both lines have oscillation frequencies within 45 to 70 MHz and their 

frequencies generally increase with time. The 10-section line has 7 cycles of oscillation 

(not counting the cycles in the later part of the pulse which appeared disjointed due to 

load reflections) whereas the 20-section has 10. Hence, the NLETL with larger number 

of LC sections can have more cycles of oscillation, but at the cost of a slight decrease 

in the peak amplitude of the pulses. 
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3.1.2 FREQUENCY CONTROL OF NLCL 
 

 

Figure 3.11  Nonlinear capacitive line (NLCL) with resistive biasing circuit. 

 

To illustrate the ease of tuning the NLCL to produce waveforms of different 

frequencies, a simple biasing circuit consisting of a DC voltage source and a parallel 

network of resistors (Rbias = 5.1 k�) was added to the line as shown in Figure 3.11. In 

this experiment, the DC voltage source was adjusted until the biasing voltages at the 

nonlinear capacitors (varactors) reached the desired value. For demonstration of 

frequency tuning, the bias voltage Vbias at the capacitors was varied from 0 to 2.5 V. 

At each bias voltage, a 5 V pulse was pumped into a 10-section line connected to a 

500 � load. For prediction of output waveform, the NLETL circuit model was 

expanded to include the biasing circuit. The simulated results from the NLETL model 

showed very good match to the experimental waveforms; an example of the 

comparison at Vbias = 1 V is depicted in Figure 3.12. 
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Figure 3.12  Output load voltage for NLETL circuit model and experiment at Vbias = 
1.0 V (Vpump = 5 V, n = 10, Rload = 500 �). 

 

The output load voltage waveforms for the various bias voltages are shown in 

Figure 3.13. It is observed that the output pulse appears earlier at higher bias voltage 

but the time at which the pulse starts to decrease and the fall rate remain about the 

same regardless of the bias voltage. The time-frequency plot in Figure 3.14 reveals 

that the frequency of oscillations can be tuned from 25 MHz to 55 MHz when Vbias is 

varied from 0 to 2.5 V. This demonstrates the wide frequency tunability of the 

NLETL. It is also noticed that the number of cycles in the oscillation is the same (5 

cycles) for all cases of biasing but the range of frequency is larger at higher biasing 

voltage. 
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Figure 3.13  Experiment: Output Load Voltages for Vbias = 0 to 2.5 V (Vpump = 5 V, n = 
10, Rload = 500 �). 

 

Figure 3.14  Experiment: Voltage Oscillation Frequency vs. Time for Vbias = 0 to 2.5 V 
(Vpump = 5 V, n = 10, Rload = 500 �). 
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3.1.3 VARIATION OF NLCLs 
 

This section describes the experiments carried out on two configurations of 

NLETLs based on nonlinear capacitors with the aim of obtaining greater output 

oscillation amplitudes. 

   

3.1.3.1 Two Parallel Lines 

 

 

Figure 3.15  Two NLETLs in parallel: each with number of sections n = 10. 

 

By making use of the soliton property whereby the joint amplitude of two 

colliding solitons is greater than the sum of the amplitudes of the two solitons [13]-

[15], two NLETLs can be connected in parallel to achieve this effect as shown in 

Figure 3.15. 

A demonstration using two parallel nonlinear capacitive lines (NLCLs) each 

with 10 LC sections was carried out using an input pump pulse of 10 V and a load of 

200 �.  The output load voltage of the two parallel lines is compared to that of a single 

line in Figure 3.16.     
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Figure 3.16  Experiment: output load voltages for single NLCL and two parallel 
NLCLs (Vpump = 10 V, n = 10, Rload = 200 �). 

 

 

Figure 3.17  Experiment: voltage oscillation frequency vs. time for single NLCL and 
two parallel NLCLs (Vpump = 10 V, n = 10, Rload = 200 �). 

 

It is observed that the oscillation amplitudes are indeed higher in the two 

parallel lines than in the single line. However, this result comes with a compromise as 

the oscillation frequencies drop from 45-65 MHz for the single line to 35-50 MHz for 
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the number of oscillation cycles is fewer in the two parallel lines due to the lower 

frequencies. The drop in frequency is due to the power from the single source being 

distributed to the two parallel lines. The voltage and current oscillations in each of the 

two parallel lines are less than those in a single line. From the characteristic C-V curve 

in Figure 3.2, the smaller voltage swing will result in a larger capacitance value.  

Hence, according to the Bragg frequency in Eq.(3.2), lower oscillating frequency will 

be produced. However, at the load, the sum of the lower voltages from each of the two 

parallel lines yields a higher voltage than that of a single line. 

 

3.1.3.2 Asymmetric Parallel Lines 

 

Figure 3.18  Asymmetric parallel (ASP) NLETL [80] with number of sections n = 10 
and n = 9. 

 

By utilizing the property of NLCLs whereby the voltage waveforms of 

alternate sections are in anti-phase, the asymmetric parallel (ASP) line was proposed in 

[80] to obtain waveforms with greater oscillation amplitudes. The diagram of an ASP 

line using a 10 LC section line in parallel with a 9 LC section line is depicted in Figure 

3.18. Experiments were carried out using input pump pulses of 5, 8 and 10 V into a 

200 � load. Two voltage probes were used to measure the voltage at node 10 of the 

first line and node 9 of the second line (with respect to ground). The output load 
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voltages were taken as the difference between the two probe measurements and are 

shown in Figure 3.19. As expected, the oscillation amplitudes are higher for higher 

pump pulse voltages since the nonlinearity of capacitors are fully utilized. The 

oscillation frequencies also increase as the pump pulse voltage increases, as indicated 

in the time-frequency plot in Figure 3.20. 

  

Figure 3.19  Experiment: output load voltages for ASPL for Vpump = 5, 8 and 10 V (n1 
= 10, n2 = 9, Rload = 200 �). 

 

Figure 3.20   Experiment: voltage oscillation frequency vs. time for ASPL for Vpump = 
5, 8 and 10 V (n1 = 10, n2 = 9, Rload = 200 �). 
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3.2 HIGH VOLTAGE NLCL 
 

This section describes experimental work carried out in building and testing a 

high voltage NLCL using COTS components. The design of the NLCL was made 

possible by using an NLETL circuit model developed Section 2.1 that is well validated 

with experiments in Section 3.1. Results from the NLETL model show good match to 

the data obtained from the experiments described in this section. In order to study the 

quality of the output oscillating pulses, the voltage modulation and the frequency 

content of the pulses are carefully analyzed. A refined definition of voltage modulation 

depth (VMD) is proposed and a time-frequency plot is used to better differentiate the 

cycles in the oscillations. A novel method is also proposed to directly extract the AC 

component of the output signal as compared to a conventional single NLETL [41]-[44] 

where a decoupling capacitor needs to be used. The use of a decoupling capacitor or 

high-pass filter in series with the load often results in decreasing the efficiency of the 

line. The new RF extraction method proposed here placed the load across the last 

inductor of the LC ladder results in better performance in terms of power and voltage 

modulation compared to the conventional method where the load is placed across the 

last capacitor of the LC ladder.  A biasing circuit is added to this proposed line to 

demonstrate the ability to tune the output frequency. 
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3.2.1 DESCIPTION OF HIGH VOLTAGE NLCL 
  

 

 

Figure 3.21  Experimental setup of the NLCL with possible Rload attachment across the 
capacitor or across the inductor. 

 

The NLCL whose circuit diagram for setting up the experiment is illustrated 

in Figure 3.21 was built using COTS components. It describes two possible 

configurations: a) one with a resistive load Rload placed across the capacitor in the last 

section of the LC ladder network as in a conventional line and b) a proposed new 

method of placing the resistor Rload across the inductor. The results and analyses of 

both configurations will be described in subsequent sections of this chapter. 

For the NLCL to operate, a pulse generator is required to inject a rectangular 

pulse into the line. Instead of using complex pulse generators [82] and those that 

involve pulse forming networks or pulse forming lines [41], we have implemented a 

much simpler pulse generator with only a few components. Our pulse generator 

consists of a storage capacitor Cst and a fast high voltage (HV) MOSFET 

semiconductor switch. This HV switch module actually consists of a large number of 

MOSFETs that are connected in parallel and in series, combined into a compact block 

that outputs a positive terminal and a negative terminal for external connections. For 

input, it requires a TTL-compatible control signal and a 5-volt auxiliary supply 

voltage. According to the manufacturer, the switch is rated at 10 kV and 200 A, and 
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has rise and fall times of 10-35 ns. A DC power supply charges the storage capacitor to 

the working voltage and a low voltage trigger pulse with the desired pulse duration 

activates the high voltage semiconductor switch to discharge the storage capacitor. The 

discharge pulse has a waveform that is almost rectangular in shape. A typical 3 kV 

discharge pulse for a capacitor Cst = 1 �F into a 50 � load is depicted in Figure 3.22. 

The pulse has a rise time of 35 ns and a fall time of 30 ns. A 50 � current limiting 

resistor Rgen is placed in series with the switch before connection to the cascading LC 

sections. 

 

Figure 3.22 Typical output of pulse generator (charged to 3 kV) into a 50 � load. 

 

The LC ladder network consists of n = 10 LC sections in which each section 

contains a single L connected to a single C arranged in an inverted “L” shape. Similar 

to the low voltage NLCL in Section 3.1.1, the nonlinear capacitors were chosen to give 

the largest nonlinearity among those tested; the linear inductors were then selected to 

have values close to 1 µH to give operating frequencies in the 10s MHz range. The 

inductive element L in the line is an air-core inductor made up of a 3-turn coil with 

diameter 48 mm and has an inductance of 0.9 �H. For the nonlinear capacitive element 

C in the line a Murata DEBF33D102ZP2A ceramic capacitor rated at 1 nF and 2 kV is 
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used. This type of ceramic capacitor is made of barium titanate (BT) and a study of its 

relaxation effects and the characteristic capacitance versus applied voltage (C-V) curve 

can be found in [83]. In the experiment here, the C-V curve of the nonlinear capacitor 

is obtained with the help of the measurement circuits shown in Figure 3.23. 

 

 
(a) 

 

 
(b) 

Figure 3.23  Circuits measuring the capacitance vs. applied voltage (C-V) 
characteristic of a nonlinear capacitor: (a) static measurement and (b) dynamic 

measurement. 

 

From numerous experiments, modeling using static C-V curve gives fairly 

good match but tends to predict higher amplitudes. Using the dynamic C-V curve 

improves the matching as the capacitors are operated under rapidly pulsed voltage 

conditions. Figure 3.23(a) depicts the circuit for measuring the C-V characteristic 

under static conditions [18]. Values of the capacitance were plotted for voltages 
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ranging from 0 to 3 kV, as indicated in Figure 3.24. To improve the accuracy of the 

modeling, the C-V curve was also obtained under dynamic conditions where the time 

scale was consistent with the operation of the NLCL. The pulse generator was directly 

connected to the nonlinear capacitor under test as illustrated in Figure 3.23(b). By 

measuring the voltage Vc (using a commercial high voltage probe) across the capacitor 

and the current Igen (using a commercial current monitor) flowing through it, the 

nonlinear differential capacitance can be calculated using 

gen

c

dQ
IdQ dtC

dV dVdV
dt dt

� � �     (3.5) 

where Q is the charge in the capacitor C. Basically, C(V) is calculated from dividing 

the current through the capacitor by the derivative of the voltage across it (I = 

C�dV/dt). This method of obtaining the dynamic C-V curve is similar to the one used in 

[20]. The dynamic C-V curve obtained at pulse amplitude of 4 kV is plotted in Figure 

3.24.  A curve fitting was performed on the dynamic curve using the hyperbolic 

tangent function as follows: 

� � � � 2
0 1 tanhsat sat

sat

V
C V C C C

V

� �� �
� � � � �� �� �

� �� �� �
   (3.6) 

where 

V – applied voltage 

C0 – initial capacitance at V = 0 

Csat – saturation capacitance at large value of V 

Vsat – saturation factor. 

For best fit, the parameters obtained for Eq.(3.6) are C0 = 623 pF, Csat = 140 

pF and Vsat = 658.2 V. The curve fit equation is also plotted in Figure 3.24 and is used 

in the NLETL model. 
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Figure 3.24  C-V curve of a nonlinear capacitor. 

 

 
3.2.2 HIGH VOLTAGE NLCL WITH LOAD ACROSS 

CAPACITOR 
 

This section discusses the NLCL with the resistive load placed across the 

nonlinear capacitor in the last LC section. The usual definition of voltage modulation 

depth (VMD) as a ratio of average peak-to-trough voltages [80] is good for comparing 

pulses with DC and AC components but cannot be used to compare pulses with only 

an AC component as the trough voltages are negative. We define here the average 

peak-to-trough load oscillation voltage for the first three pulse cycles as the voltage 

modulation depth (VMD) and it is given as  
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     (3.7) 

where, 

j – oscillation cycle number 

Vpt – peak-to-trough load oscillation voltage. 
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As can be seen in Eq.(3.3), the characteristic impedance will increase as C(V) 

decreases for increasing applied voltages.  In order to find the load that best matches to 

the line in terms of peak power, a parameter sweep on the load was performed using 

the NLETL simulation model. We refer to the “peak power” here as the “average peak 

load power, Pave” which is defined as the power calculated from half the average peak-

to-trough load oscillation voltage for the first three pulses and the equation is given as 

2

2
ave

ave
load

V

P
R

� �� �
� ��  .     (3.8) 

The VMD definition in Eq.(3.7) is more generic and allows for comparison of 

all waveforms where the amplitude of oscillation is a concern. The result of the 

simulated parameter sweep on the load is plotted in Figure 3.25 and indicates a 

maximum peak load power at around Rload = 100 �. Hence, for the experiment, a load 

of 100 � was placed across the capacitor at the last LC section. The measured load 

voltage indicates good match to the simulated one as depicted in Figure 3.26. From 

matching various experiment results with the NLETL model, the equivalent series 

resistance (ESR) of the nonlinear capacitor was estimated to be about 2 �.  

 

 

Figure 3.25  Load across capacitor: average peak load power as function of Rload. 
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Figure 3.26  Load across capacitor: load voltage vs. time. 

 

The frequency of each cycle in the oscillations is calculated and plotted 

against the time when the cycle ends. This time-frequency plot can also show the 

number of cycles of oscillations by simply counting the number of points plotted. The 

time-frequency plots for the simulation and experimental results are shown in Figure 

3.27. The frequencies obtained are close to the Bragg frequency limit of 28 MHz as 

defined in Eq.(3.2). 

 

 

Figure 3.27  Load across capacitor: voltage oscillation frequency vs. time. 
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Figure 3.28  Load across capacitor: peak-to-trough oscillation amplitude vs. oscillation 
cycle number. 

 

To see the quality of the load voltage modulation, the peak-to-trough 

oscillation amplitude Vpt is obtained for the first three cycles and is shown in the 

amplitude-cycle plot in Figure 3.28. The VMDs calculated from Eq.(3.7) for 

simulation and experiment are VMDsim = 659 V and VMDexpt = 624 V, respectively. 

The experimental peak RF power calculated using Eq.(3.8) is 973 W. We introduce 

here the VMD index (VMDI) where the VMD is normalized to the input voltage. This 

VMD index will be useful to compare the degree of voltage modulation for lines with 

input pulses of different amplitudes. For an input pulse of 3 kV, the VMDIs for the 

NLCL with the load across the capacitor are VMDIsim = 0.22 and VMDIexpt = 0.21. 

The total matching efficiency and RF efficiency can be defined as 

m out inE E� �  and RF RF inE E� �  respectively;  

where, 

Ein – total input energy calculated by integrating the power entering the first section of 

the line 

Eout  – output energy calculated by integrating the total power on the load 
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ERF  – output RF energy calculated by integrating the power of the oscillating portion 

of the pulse. 

In this case, 96%m� �  which indicates good matching to the load but the RF 

efficiency is only 0.36%RF� �  due to the fact that there is significant DC content in the 

output pulse (Figure 3.26) and the long duration of the input pulse where the latter part 

of the pulse did not result in any oscillations. 

 

 

3.2.3 HIGH VOLTAGE NLCL WITH LOAD ACROSS 
INDUCTOR 

 

For cascading LC sections in the NLCL it is observed that the voltage 

waveforms of the nonlinear capacitors are in anti-phase to their immediate neighbors.  

Based on this property, we proposed that the load be placed across the inductor in the 

last LC section so that the difference of the voltage waveforms for the last two 

nonlinear capacitors will result in higher amplitude AC waveforms in the resistive 

load. This method eliminates the need for a decoupling capacitor or high-pass filter at 

the end of the line which is required if the load is placed across the capacitor because 

this will contain both DC and AC components as seen in Section 3.2.2. It is also 

simpler than the asymmetric parallel (ASP) configuration in [80] where two lines are 

required. 

Similar to the previous section, a simulated parameter sweep on the load was 

performed and the result plotted in Figure 3.29.  The graph indicates a maximum 

average peak load power at around Rload = 300 �. For the experiment, a load of 300 � 

was placed across the inductor in the last LC section. A photograph of the 

experimental set-up is shown in Figure 3.30. The measured and simulated load 
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voltages in Figure 3.31 indicate good match. 

 

 

Figure 3.29  Load across inductor: average peak load power vs. Rload. 

 

 

 

Figure 3.30  Photograph of a typical experimental set-up for a 10-section NLCL with 
load across inductor. 
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Figure 3.31  Load across inductor: load voltage vs. time. 

 

The time-frequency plot and amplitude-cycle plot are shown in Figure 3.32 

and Figure 3.33, respectively. Compared to the NLCL with the load across the 

capacitor, the NLCL with the load across the inductor has approximately the same 

oscillation frequency of 28 MHz, although the latter has a much lower frequency for 

the first cycle. However, for the case with the load across the inductor, the output has 

much higher peak-to-trough oscillation amplitudes where the VMD and VMDI are 

significantly larger. In simulations VMDsim = 2136 V and VMDIsim = 0.712. The 

experimental values are comparatively lower at VMDexpt = 1818 V and VMDIexpt = 

0.606. 
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Figure 3.32  Load across inductor: voltage oscillation frequency vs. time. 

 

 

Figure 3.33  Load across inductor: oscillation amplitude vs. oscillation cycle number. 
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3.2.4 FREQUENCY TUNING 
 

To illustrate the ability to perform frequency tuning in a NLCL, a DC biasing 

voltage was applied to the nonlinear capacitors prior to the injection of the voltage 

pulse into the line. The DC biasing circuit consists of a DC power supply source VDC, a 

high voltage diode, and an isolating inductor Lbias = 800 �H. This biasing circuit was 

connected to the first section of the NLCL that has the load placed across the inductor 

at the last section, as shown in Figure 3.34. The biasing voltage of the nonlinear 

capacitors Vbias was charged to VDC before the trigger pulse was applied to the HV 

switch. To have wide frequency tunability it is necessary to have an input voltage pulse 

with amplitude that is farther away from the saturation voltage of the nonlinear 

capacitors, but it cannot be too low since a minimum voltage is required to initiate 

oscillations (Section 2.2.1.3). Consequently, we used an input pulse of 1 kV; as can be 

seen in Figure 3.24, this value is away from the capacitor saturation voltage of about 2 

kV and there is sufficient capacitance variation between 1 and 2 kV. By varying Vbias 

from 0 to 800 V, the voltage across the load Rload was measured and the waveforms are 

compared in Figure 3.35. 

 

 

 

Figure 3.34  NLCL with inductive biasing circuit. 
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Figure 3.35  Waveforms of load voltage vs. time for different Vbias voltage (waveforms 
shifted by 200 V intervals for easy comparison). 

 

As in previous sections, the measured load voltage waveforms were analyzed 

in terms of oscillation amplitudes and frequency contents. The amplitude-cycle plot in 

Figure 3.36 gives a very good indication of how the oscillation amplitudes for the first 

3 cycles of the pulse vary with different Vbias voltages. The oscillation amplitudes 

decrease rapidly as Vbias increases. This is expected as the initial capacitance of the 

nonlinear capacitors decreases when Vbias increases according to Figure 3.24. Hence, 

with biasing the initial capacitance is brought closer to the saturation value leading to a 

small capacitance variation (working range of the capacitance) during pulse 

application, which in turn reduces drastically the amplitudes obtained as indicated in 

Section 2.2.6. However, the frequencies of the cycles generally increase with the 

increase in Vbias as depicted by the time-frequency plot in Figure 3.37. The reason is 

that, as the initial capacitance of the nonlinear capacitors is decreased by applying Vbias, 

the frequency of oscillations will increase according to Eq.(3.2). In Figure 3.37, it is 

observed that the frequency of the second cycle varied from 12 MHz to 17 MHz. 
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Figure 3.36  Waveforms of oscillation amplitude vs. oscillation cycle number for 
different Vbias voltage. 

 

 

Figure 3.37  Waveforms of voltage oscillation frequency vs. time for different Vbias 
voltage. 
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3.3 DESIGN CONSIDERATIONS IN LOSSY NLCL 
 

Although, great success was achieved using ferrite-based bead element lines 

(or NLILs) up to 1 GHz, attempts to operate at higher frequencies above 100 MHz 

using dielectric element lines (or NLCLs) have been described as impractical due to 

the capacitor dielectric losses that damp significantly the amplitudes of the RF output 

oscillations. In order to address this issue, this section by means of numerical 

simulations (using the NLETL model) it will be shown the possibility of producing 

oscillations with lower damping using conventional dielectrics of higher losses at 

frequencies above 1 GHz using ceramic slabs such as the lead-manganese-niobate 

(PMN) piezoelectric with high equivalent series resistance (ESR) of about 2 Ω. 

  

3.3.1 BACKGROUND INFORMATION 
 

NLCLs using diodes with variable capacitance in embedded coplanar or 

micro-strip systems can possibly achieve frequency in the GHz range, but with 

extremely low power. On the other hand, by using commercial ceramic capacitor and 

air core linear inductors, it is possible to generate RF with only moderate frequency 

and power (10 to 100 MHz and a few kW of peak power) (Section 3.2). This is 

because commercial nonlinear ceramic capacitors are normally limited up to 3- 5 kV 

rated voltages and have self-resonant frequencies in hundreds of MHz range, which are 

limiting factors in high power and high frequency applications. For high power NLCLs, 

the best results so far was described in a pioneering work by Ikezi et al. [31] with a 

parallel plate segmented dielectric line inserted with slabs of barium titanate (BT), 

where it was reported soliton generation with peak power of 10 MW at a center 

frequency around 300 MHz below the BT relaxation frequency used of 400 MHz. 
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Another work that produced 60 MW of RF at 100 MHz using barium titanate using a 

similar geometry was developed by Brown and Smith [7]. Apparently in this case the 

lower output frequency obtained than in Ikezi’s work was due to the higher nominal 

unbiased capacitance in the range of nF of the BT slabs used (instead of pF). Anyway, 

results from both works indicated that pulses with lower damping could be obtained 

using dielectrics of lower losses, i.e. ESR less than 2 Ω. This result was also confirmed 

by French [84] recently using a segmented line with a different dielectric, a 

piezoelectric lead-manganese-niobate (designated PMN38) tile. In order to address that, 

in this section by means of numerical simulations using the NLETL model it will be 

shown the possibility of producing oscillations of higher amplitudes using PMN type 

dielectrics of higher losses (ESR ≈ 2 Ω) inserted in a planar geometry line as described 

in the literature [84]. Basically, this is made for lines with sections sweeping from 10 

to 50 and same simulation parameters by increasing the mismatch at the load and at 

generator side. 

 

3.3.2 MODELING OF NONLINEAR DIELECTRICS 
 

For applications in high power NLCLs, varicaps are not suitable because of 

their small reverse breakdown voltage and low current rate. Then in these applications, 

ceramic capacitors are more appropriate and thus, their characterization and the 

subsequent implementation of corresponding C-V curve in NLETL model is of great 

importance for the NLCL design. Normally, capacitance of nonlinear ceramic 

capacitors decreases with the voltage, but for capacitor with PMN38 dielectric there is 

an initial alignment of the dipoles before reaching saturation, which means an initial 

increase of C with voltage. A generic model to represent the C-V variation is based on 

the Gaussian-like curve named the Lorentzian [84]. The C-V curve obtained from the 
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manufacturer and represented by the Lorentzian function in solid line (red) is shown in 

Figure 3.38. The corresponding mathematical formulation for the capacitance as a 

function of the voltage C(V) is given below: 

2
0

2 2
0

( )
( )
HWFM

HWFM

C V
C V

V V V

�
�

� �
    (3.9) 

where VFWHM  = 4500 V is the full width at half maximum (FWHM) voltage peak 

amplitude of C, and C0  = 280 pF is the peak capacitance at the potential V0  = 4000 V. 

 

 
Figure 3.38  Comparison of the C-V curves for PMN38 capacitor: Lorentzian function 

(in red) and hyperbolic function (in blue). 

 
 

Another formulation with good fitting based on a hyperbolic tangent function 

proposed in Section 3.2.1 is represented by the dotted line in blue in Figure 3.38. The 
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where C is the capacitance for the applied voltage, C0 = 280 pF is the peak capacitance 

at V0 =  4 kV, Csat = 20 pF is the capacitance on saturation, and Vsat = 5 kV is the 

voltage at which saturation begins to take place. 
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In principle, Eqs. (3.9) and (3.10) can be used in the NLETL model to 

represent the PMN38 ceramic capacitor since as shown in Figure 3.38 that there is a 

good fitting between both formulations.  

 

3.3.3 SIMULATION RESULTS 
 

Simulations were made for a line of parallel plate geometry assumed with a 

linear fixed inductance of 13 nH per section and based on inserted PNM38 slab 

capacitors with C-V dependence of Figure 3.38. In the simulations, the line is excited 

by a 16 kV flat pump impulse generator with pulse of duration of the order of 50 ns 

and rise and fall times of about 6 ns. The first simulations were performed with the 

generator output and load basically matched to the characteristic impedance of the 

unbiased line on the order of 8 Ω.  

 

 
Figure 3.39  Output pulses obtained using two different functions for C-V curves (for 

matched case, n = 50, ESR = 0 �). 
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curves. In Figure 3.39 one can see a good agreement between both the results and the 

appearing of the output RF on the electromagnetic shock wave formed in the pulse 

beginning at half the Bragg frequency. By using only Lorentzian function the LC 

ladder is simulated with the same parameters, except for the ESR condition, as shown 

in Figure 3.40. Herein one can observe that the oscillations are damped strongly when 

ESR increases from 0.2 to 2 Ω, disappearing practically with ESR = 2 Ω. Normally for 

high power NLCLs, piezoelectric based dielectrics (eg. PMN38) or ceramic based 

dielectrics (eg. BT) are used, but their ESR can reach 2 Ω or more depending on the 

frequency range of operation, which causes in practice the elimination of output 

oscillations as seen in Figure 3.40. Therefore, in order to reduce damping the idea 

proposed in this work consists of working on “mismatching” conditions on both sides 

of the NLCL (input and output), i.e. to have the source impedance and load values 

differ to a great extent from the line impedance. The idea behind this technique is to 

trap the voltage reflections inside the NLCL structure (so as to raise the voltages 

applied to the nonlinear capacitors) to increase the voltage modulation and the Bragg 

frequency along the line length which is given by Eq.(3.2), where L is the section 

inductance and C(V) the section nonlinear capacitance. 

 

Figure 3.40  Output pulses obtained with different ESRs. 
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Figure 3.41  Lossy line simulation with load sweep for n=10 (waveforms shifted up by 
+50 kV for clarity). 

 

 

Figure 3.42  Amplitude-cycle plot obtained with load sweep. 
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oscillation voltages on the load for the first three pulse cycles. This sweep simulation is 

also used to determine the average load peak power as defined in Section 3.2.2. The 

plot of the average peak power as function of the load RL is shown in Figure 3.43, 

which has optimum power for RL in the range of 400-500 Ω. These simulations also 

indicated that frequency remains approximately the same above RL = 300 Ω as shown 

in Figure 3.44 for the time-frequency plot on the load. 

 

 

Figure 3.43  Average peak power plot as function of the load. 

 

 

Figure 3.44  Time-frequency plot obtained with load sweep. 
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In Figure 3.44, one can also observe that the output frequency can spike up to 

1.5 GHz or more depending on the load. This can be explained by the fact that voltage 

oscillation amplitudes at the load in simulations can reach 50 to 60 kV and from the C-

V characteristic curve modelled by the Lorentzian function in Eq.(3.9), very low 

capacitance value of about 3.2 pF can be obtained. Hence, according to the Bragg 

frequency equation, the low biased value of the capacitance will result in a high 

frequency of 1.5 GHz. It is also observed that voltages along the line can go as high as 

160 kV where dielectric breakdown issue will be a concern. For instance, Figure 3.45 

illustrates this showing the capacitor voltage versus time at different sections for the 

mismatched line with 10 sections and load of 500 Ω, where section 10 is connected to 

the load. 

 

 

Figure 3.45 Voltage swings shown along line sections. 
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downwards as n increases. Although, not shown herein, time-frequency and amplitude-

cycle plots indicated respectively that frequency and amplitude of oscillations are 

basically not dependent on n. As in the previous simulation with n =10, the frequency 

of voltage oscillations at the load are kept near Bragg frequency of about 1.5 GHz with 

peak-to-trough oscillating amplitudes decreasing from about 70 kV to 20 kV for the 

first three cycles. Also in this case, simulations show that average peak power remains 

constant at around 0.6 MW with increasing value of  n for a load of 500 Ω (as seen in 

Figure 3.43). 

 

 

Figure 3.46  Load oscillations for different number of sections. 
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Lorentzian function given by Eq. (3.9), which does not impose a lower limit on 

capacitance when it saturates. Nevertheless if C(V) is modelled using a hyperbolic 

tangent function given by Eq. (3.10), Csat is limited to 20 pF and the performance of 

the NLCL is seriously compromised as shown in Figure 3.47. 

 

 

Figure 3.47  Load voltages using two different functions for C-V curves (for 
unmatched case, n = 10, ESR = 2 �). 
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sections. Besides that, there are still relaxation frequency and self-resonant frequency 

of the dielectric, which are also serious limiting factors for a good performance. 

Relaxation frequency of the ceramic dielectric materials is no more over 1 GHz, and 

worse is the self-resonance between the capacitance and the parasitic inductance 

associated to the dielectric in the line structure that can be of the order of 700 MHz, 

considering an inductance of 0.5 nH for an unbiased capacitance on the order of 100 

pF. 

 

 
3.4 CONCLUSIONS 

 

Experimental demonstrations of NLCLs have been carried out using COTS 

components to validate the simulation results of the NLETL circuit model. The 

experimental results show very good match to the simulated waveforms. The 

implementation of the NLCLs using COTS components yields quick validation of the 

model. Frequency control of the NLCLs was also demonstrated by the addition of 

voltage biasing networks.  

Two variations of low voltage NLCLs: one with two NLCLs in parallel and 

another with asymmetric parallel configuration were explored to obtain greater 

oscillation amplitudes (i.e. voltage modulation depth). At high voltage, a compact 

oscillating pulse generator whereby a simple pulse generator comprising a storage 

capacitor and a fast semiconductor switch was used to drive a NLCL was 

implemented. Definitions for voltage modulation depth (VMD), VMD index, and 

average peak load power were introduced to better quantify the quality of the output 

waveforms. Time-frequency plots have been used for frequency analysis and 

amplitude-cycle plots for examination of voltage modulation. 
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An innovative method to place the load across the inductor in the last section 

of the NLCL for better performance was proposed and the idea was validated through 

simulation and experiment. This method results in a direct AC waveform and 

eliminates the need for a high-pass filter or decoupling capacitor. It produces 

significantly greater oscillation amplitudes and has better RF efficiency compared to 

conventional NLCL. Frequency tunability was also demonstrated on this proposed line 

by adding a biasing circuit. By increasing biasing voltage on the nonlinear capacitors, 

the frequency of the output oscillations can be increased, but the trade-off is that the 

oscillations amplitudes will decrease. 

Finally, a method is proposed in increasing the load voltage oscillations of a 

lossy dielectric NLCL by introducing mismatch at the generator and load sides. The 

proposed method is verified by simulation results obtained using the NLETL model. 

Critical issues are also highlighted in realising a practical lossy NLCL.   
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______________________________________________ 

CHAPTER 4: NONLINEAR INDUCTIVE LINE 

(NLIL) 

______________________________________________ 

 

 

4.1 INTRODUCTION 

This chapter describes the NLETL with nonlinear inductors and linear 

capacitors, herein called the nonlinear inductive line (NLIL) [82] and [85]. Better 

performance is obtained by introducing crosslink capacitors in the NLIL and there are 

numerous works about it from Belyantsev [38]-[40], Seddon [42] and Coleman [86]. 

The group from BAE systems (UK) has achieved 20 MW peak RF power at 1.0 GHz 

[42]. Generally, NLIL is capable of generating stronger pulse oscillations at higher 

frequencies than NLCL because the nonlinear component L in NLIL has higher quality 

factor Q (which means lower losses) compared to the nonlinear component C in 

NLCL. NLIL has the advantage of having higher nonlinearity due to its ferrite-based 

inductors compared to the nonlinear ceramic capacitors in NLCL. 

The load voltage waveforms in [82] and [85] appear distorted and skewed. 

Hence, one of the main objectives here is to produce sinusoidal oscillations with good 

modulation depth using a NLIL driven by a simple pulser that utilizes a fast 

semiconductor switch. Subsequent sections describe the experimental work carried out 

in building and testing a high voltage NLIL by using commercial-off-the-shelf (COTS) 

components. The design of the NLIL was made possible by using the NLETL circuit 
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model developed in Chapter 2 that is well validated by experiments in Chapter 3. 

Two novel methods are proposed here to characterize the ferrite-based 

nonlinear inductor. The first method is to obtain the nonlinear L-I profile of the 

inductor by a curve fitting process for use in the NLETL model.  The second method 

focuses on obtaining the key parameters in the Landau-Lifshitz-Gilbert (LLG) 

equation [87] and [88] for use in the NLETL model. Results simulated by the NLETL 

model show good match to the data obtained from the experiments. 

In order to better quantify the oscillating pulses produced by the NLIL, the 

voltage modulation and the frequency content of the pulses are carefully analyzed 

using amplitude-cycle and time-frequency plots. Trade-offs using crosslink capacitors 

are also discussed. 

 

4.2 DESCRIPTION OF NLIL 

 

 
 

Figure 4.1  Experimental set-up of a NLIL shown with crosslink capacitors Cx. 

 

The NLIL was built using COTS components and the circuit diagram for 

setting up the experiment is depicted in Figure 4.1. It shows a high voltage (HV) pulser 

connected to the line with resistive load Rload where crosslink capacitors Cx can be 
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added in-between the LC sections to improve performance. Instead of using a pulser 

that involves a pulse forming network (PFN) or pulse forming line (PFL) [41], or one 

with complex architecture [82], we have implemented a much simpler pulser with only 

a few key components. Our pulser was custom-made in which the high voltage 

charger, fast high voltage MOSFET semiconductor switch and current limiting resistor 

Rgen = 75 � are mounted on a circuit board; together with the storage capacitor Cst = 

1.3 �F, all parts are housed in a compact enclosure. This compact pulser can be 

charged up to 9 kV and produces an output waveform that is almost rectangular in 

shape with pulse repetition rate (PRF) of up to 100 kHz. The output pulse duration is 

adjustable (depending on the low voltage trigger pulse) and has a typical rise time of 

20 ns and fall time of 12 ns. Compared to the usual PFN and PFL, our pulser has a 

much simpler and compact configuration in generating HV flat pulses with short rise 

time. In addition, the semiconductor switch in our pulser allows great flexibility in 

controlling the pulse duration and achieving very high PRF. PFN and PFL usually 

have fixed pulse duration and are bulky in size; the former is useful for microsecond 

pulse generation with slower rise time (> 200 ns) whereas the latter is suitable for 

nanosecond pulse generation with faster rise time (< 100 ns).      

The NLIL consists of n number of LC sections in which each section contains 

a single L connected to a single C arranged in an inverted “L” configuration so that 

cascading the sections will form a “T” network. Similar to the low voltage NLCL in 

Section 3.1.1, the COTS ferrite beads were first selected as the nonlinear inductors 

based on the largest nonlinearity and subsequently, the value of the linear capacitors 

were selected to give 10s MHz operating frequency. A few ferrites and capacitors were 

actually shortlisted and tested, but only the ones that gave the best performance were 

presented.  
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The capacitive element C in the line is a Murata DEA1X3F101JA2B ceramic 

capacitor rated at 100 pF (with tolerance of � 5 %) and 3.15 kV. For the nonlinear 

inductive element L in the line a Fair-rite 2944666651 ferrite bead made of NiZn is 

used. It should be noted that the authors in [85] observed that their line with pre-shot 

reset current to the ferrite beads performed better than one without pre-shot reset 

current; even though both of their cases did not give good sinusoidal-shape oscillations. 

However, contrary to them, we observed in our experiments that the line without pre-

shot reset current was better than one with pre-shot reset current. Both our cases gave 

good sinusoidal-shape waveform and the one without pre-shot current produced better 

oscillation amplitudes. Hence, the experiments described in here were performed with 

the NLIL without pre-shot reset current. 

Pertaining to Section 1.1.3, the phase velocity vp, Bragg frequency fB, and 

characteristic impedance Z0 of the line are reproduced here for ease of reference in Eqs. 

(4.1), (4.2) and (4.3) respectively; but in this case, the capacitor is linear and the 

capacitance is taken as a constant C. 

� �
1

pv
L I C

�
�

     (4.1) 

� �
1
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L I C�

�
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4.2.1 CHARACTERIZATION USING CURVE FIT FUNCTION 

In order to characterize the nonlinear inductor made from the ferrite bead 

under dynamic conditions at the time scale of operation of the NLIL, the pulser was 

connected directly to the nonlinear inductor under test via the load Rload = 50 � that is 

to be used in the line. The characterization circuit is illustrated in Figure 4.2 where the 

voltage VL across the nonlinear inductor and the current IL flowing through it are 

measured. 

 

 
 

Figure 4.2  Circuit used for characterizing a nonlinear inductor. 

 

The method to obtain the flux-current curve for the ferrite is similar to [89]. 

For a charge voltage of 5 kV and output pulse duration of 400 ns from the pulser, 

measured waveforms of VL and IL for the rising part of the pulse are shown in Figure 

4.3(a). The magnetic flux linkage � in the ferrite bead can then be derived from VL = 

d�/dt using 

 ( ) ( )Lt V t dt� � � .      (4.4) 
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(a) 

 
(b) 

 

Figure 4.3  Measurements of: (a) voltage VL , current IL; and (b) derived flux linkage 
vs. current of the nonlinear inductor. 

 

 

Then the characteristic dynamic �-I curve of the nonlinear inductor can be 

plotted as indicated in Figure 4.3(b). Also shown in this figure, a curve fit was 

performed on the dynamic curve obtained by using the hyperbolic tangent function 

given by: 
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� � � �0 tanh t
sat sat sat t

sat

I I
I L L I L I

I

� ��
� � � � � � � � �� �

� �
,   (4.5) 

where, 

I - applied current; 

L0 - initial inductance at I = 0; 

Lsat - saturation inductance at large value of I; 

Isat - saturation scaling factor; 

It - current shifting factor; 

�t - flux shifting factor. 

 

For best curve fitting [see again Figure 4.3(b)], the parameters obtained for Eq.(4.5) 

are L0 = 1.122 �H, Lsat = 299 nH, Isat = 4.023 A, It = 4.681 A and �t = 2.672 �V·s. The 

differential inductance Ld [90] or effective inductance [91] for use in the NLETL 

model is then obtained by 

� � � � 2
0 1 tanh t

d sat sat
sat

I Id
L L I L L L

dI I

� �� ���
� � � � � �� �� �

� �� �� �
,     (4.6) 

where the characteristic L vs. I curve is plotted in Figure 4.4. The voltage equation for 

modeling the nonlinear inductor is thus 

L d

d d dI dI
V L

dt dI dt dt

� �
� � � � � .     (4.7) 

 

It should be noted that the measurements shown in Figure 4.3(a) were made on the 

ferrite bead condition with B-H hysteresis curve in the first quadrant. In this case, it 

was not necessary to find the constant remanent flux as the differential inductance is 

defined as the derivative of the flux in Eq.(4.6).  
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Figure 4.4  L vs. I curve obtained for the nonlinear inductor. 
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4.2.2 CHARACTERIZATION USING LANDAU-LIFSHITZ-

GILBERT (LLG) EQUATION 

 

The nonlinear magnetic property of the ferrite bead is modelled using the 

Landau-Lifshitz-Gilbert (LLG) equation [87] and [88] and the simplified form [40], 

[92]-[94] as derived in Appendix C is given as 

� �
� �

� � � �
2

0

2
1

1
s

s

dM t M tM
H t

dt M

� �
�

� �� �� � � �� � � �� �
� � �� �� �

   (4.8) 

where, 

M(t) = mean value of magnetization vector (parallel to magnetic field); 

Ms = saturation magnetization; 

H(t) = magnetic field strength; 

� = dimensionless damping parameter; 

0�  = 221 km/C, gyromagnetic ratio. 

 

We propose here a simple approach in determining the characteristic 

parameters Ms and � of the ferrite bead. In order to characterize the nonlinear inductor 

made from the ferrite bead under dynamic conditions at the time scale of operation of 

the NLIL, the pulser was connected directly to the nonlinear inductor under test via the 

load Rload = 50 � that is to be used in the line. The characterization circuit is illustrated 

in Figure 4.2 where the voltage VL across the nonlinear inductor and the current IL 

flowing through it are measured . 

For a charge voltage of 5 kV and output pulse duration of 400 ns from the 

pulser, VL and IL are measured without resetting the ferrite core and are shown in 

Figure 4.5(a). Similar waveforms [Figure 4.5(b)] are also obtained for the case where 
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the ferrite core was reset. The magnetic flux linkage � in the ferrite bead for both 

cases can then be calculated using Eq.(4.4). 

The characteristic dynamic �-I curves of the nonlinear inductor with and 

without core reset are plotted in Figure 4.5(c) and the saturation flux linkages noted at 

saturation current Is = 43 A are �s1 (with reset) = 23.4 �V�s and �s2(no reset) = 11.9 

�V�s respectively. The remanent flux is then calculated as �r = (�s1 - �s2)/2 = 5.73 

�V�s assuming that the B-H hysteresis curve is symmetrical. By applying the standard 

magnetic field strength and magnetic flux density equations: 

e

N I
H

l

�
�       (4.9) 

and � �0B H M�� � � ,     (4.10) 

we can calculate the magnetic flux as  

� �eN B A p I M� �� � � � � � �      (4.11) 

where, 

I = applied current; 

N = number of coil turns; 

le = effective magnetic path length; 

�0 = permeability of free space; 

Ae = effective cross-sectional area; 

0eN A� �� � � ; 

e

N
p

l
� . 

From the dimensions of the ferrite bead, we estimate that � = 0.088 nH�m and 

p = 997 m-1. 
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(a) 

 

 

(b) 
 

 
(c) 

 

Figure 4.5  (a) Measurements of voltage VL and current IL without core reset; (b) 
measurements of voltage VL and current IL with core reset; (c) derived flux linkage vs. 

current of the nonlinear inductor for cases with and without core reset. 
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(a) 

 

 

(b) 

Figure 4.6  Comparison of simulation and experiment: (a) flux linkage vs. current for 
case without core reset; (b) flux linkage vs. current for case with core reset. 
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4.6(b) depicts the case with core reset where Mr is negative [the experimental curve 

with reset from Figure 4.5(c) was shifted down by �r].    

To model the NLIL, the voltage equation for modeling the nonlinear inductor is 

taken as L

d
V

dt

�
� and the LLG equation in Eq.(4.8) is included in the NLETL model to 

account for the dynamics of the ferrites. 

 

4.3 RESULTS OF NLIL 

This section analyzes the results of a 20-section NLIL with Rload = 50 �. The 

pulser is charged to 5 kV and a discharge pulse of 400 ns duration with approximately 

rectangular shape is injected into the NLIL. For a saturation inductance of about 300 

nH, the linear capacitance is selected to be 100 pF (as indicated in Section 4.2) so that 

the line can operate close to the Bragg frequency of 58 MHz according to Eq.(4.2). In 

this case, the calculated characteristic impedance from Eq.(4.3) of the line at saturation 

is 55 �. We use here the average peak load power Pave and voltage modulation depth 

(VMD) as defined in Section 3.2.2. As can be seen in Eq.(4.3), the characteristic 

impedance will decrease as L(I) decreases for increasing applied currents.  In order to 

find the load that best matches to the line in terms of Pave, a parameter sweep on the 

load was performed using the NLETL simulation model. The load of 50 � was chosen 

as it gives peak power near to the maximum point in the sweep. The current through 

the load was measured using a commercial current monitor and the load voltage was 

measured using a commercial high voltage probe. 
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4.3.1 MODELING  USING CURVE-FIT L-I CURVE 

The measured load voltage indicates a good agreement with the simulated 

result as shown in Figure 4.7. 

 

 

Figure 4.7  Load voltage vs. time  for a  20-section NLIL without crosslink capacitor 
Cx (compared with simulation using L-I curve). 

 

The time-frequency plots for the simulation and experimental results are 

shown in Figure 4.8. The frequencies obtained are close to the Bragg frequency limit 

of 58 MHz as defined in Eq.(4.2) where the saturation inductance is about 300 nH. 

To see the quality of the load voltage modulation, the peak-to-trough 

oscillation amplitude Vpt is obtained for the first three cycles and is shown in the 

amplitude-cycle plot in Figure 4.9. The VMDs (as defined in Section 3.2.2) for 

simulation and experiment are VMDsim = 1380 V and VMDexpt = 1174 V, respectively. 
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Figure 4.8  Voltage oscillation frequency vs. time for a  20-section NLIL without 
crosslink capacitor Cx (compared with simulation using L-I curve). 

 

 

Figure 4.9  Peak-to-trough oscillation amplitude vs. oscillation cycle number for a 20-
section NLIL without crosslink capacitor Cx (compared with simulation using L-I 

curve). 
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4.3.2 MODELING USING  LANDAU-LIFSHITZ-GILBERT (LLG) 

EQUATION 

 

The measured load voltage indicates a good agreement with the simulated 

result as shown in Figure 4.10.  

 

 

Figure 4.10  Load voltage vs. time for a 20-section NLIL without crosslink capacitor 
Cx (compared with simulation using LLG equation). 

 

 

Figure 4.11  Voltage oscillation frequency vs. time for a  20-section NLIL without 
crosslink capacitor Cx (compared with simulation using LLG equation). 
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Figure 4.12  Peak-to-trough oscillation amplitude vs. oscillation cycle number for a 20-
section NLIL without crosslink capacitor Cx (compared with simulation using LLG 

equation). 

 

The time-frequency plots for the simulation and experimental results are 

shown in Figure 4.11. The frequencies obtained are close to the Bragg frequency limit 

of 58 MHz as defined in Eq.(4.2) where the saturation inductance is about 300 nH. 

To see the quality of the load voltage modulation, the peak-to-trough 

oscillation amplitude Vpt is obtained for the first three cycles and is shown in the 
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simulation and experiment are VMDsim = 1191 V and VMDexpt = 1174 V, respectively. 
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4.4 NLIL WITH CROSSLINK CAPACITORS 

In an attempt to increase the number of oscillations, the number of LC 

sections was increased from 20 to 40. However, it is observed that, although the 

number of oscillations increases for the same input pulse, the amplitude of oscillations 

decreases. This is due to greater resistive damping as the pulse propagates through a 

longer line. To solve this problem, crosslink capacitors Cx are introduced into the line 

as shown in Figure 4.1.  

 

4.4.1 THEORETICAL ANALYSIS 

To understand how the operating frequency changes by varying the value of 

the crosslink capacitors Cx, the dispersion equation for the NLIL was derived with 

reference to a similar case in [95] (the steps are illustrated in Appendix D) and shown 

in Eq.(4.12) which has the same form given by Belyantsev [38]   

2 2
2 2

2 2
sin 4 sin ( )

2 c c

� � �
� �
� �

� � � �� �
� �  .   (4.12) 

The coupling coefficient � and critical frequency �c are defined as follows: 

 
0

xC

C
� �       (4.13) 

 
0 0

2
c

L C
� �       (4.14) 

where L0 is the inductance at saturation and C0 is the linear capacitance.  

By letting kd� � , Eq.(4.12) becomes 

2 2
2 2

2 2
sin 4 sin ( )

2 c c

kd
kd

� �
�
� �

� � � �� �
� �     (4.15) 

where we assume d is the distance between sections and k is the wave number. 
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The phase velocity pv
 
and group velocity gv  are then determined by 

p

d
v

k

� �
�

� �      (4.16) 

g

d
v d

d

�
�

� .      (4.17) 

For L0 = 300 nH and C0 = 100 pF, the dispersion curves are plotted using 

Eq.(4.15) for Cx = 0 pF, 22 pF, 47 pF and 94 pF in Figure 4.13 . By using 2 f� ��  

and assuming that d = 1 m here without loss of generality, the dispersion relations of 

frequency f vs wavenumber k are plotted. For comparison, the case for a lossless 

continuous transmission line (TL) is also included where the dispersion equation [62] 

is given by  

 
2

ck�
� �      (4.18) 

 

 

Figure 4.13  Dispersion curves (frequency vs. wavenumber) for NLIL. 
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Figure 4.14  Phase velocity plots for NLIL. 

 

 

Figure 4.15  Group velocity plots for NLIL. 
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In Figure 4.13, it can be inferred that the discreteness of the NLIL without 

crosslink capacitors (i.e. Cx = 0 pF) makes the dispersion curve deviate from the linear 

form as exhibited by the case for a lossless continuous transmission line.  It is also 

observed that by introducing crosslink capacitors, the shape of the dispersion curves 

can be modified (as shown by the curves with Cx = 22 pF, 47 pF and 97 pF). 

Similarly, the phase velocities obtained using Eq.(4.16) are plotted in Figure 

4.14 and the group velocities obtained using  Eq.(4.17) are plotted in Figure 4.15 

where they show similarity to the ones obtained in [38].    

 

4.4.2 EXPERIMENTATION 

For a pulse of 5 kV and a load of 50 �, a parameter sweep on Cx was 

simulated using the NLETL model that included the LLG equation. The curves for the 

voltage oscillation frequency (noted for second cycle) and VMD (as defined in Section 

3.2.2) as Cx varies from 0 to 100 pF are plotted in Figure 4.16 and Figure 4.17, 

respectively. The case Cx = 0 pF corresponds to the NLIL without any crosslink 

capacitors. 

The voltage oscillation frequency can also be predicted by using the 

dispersion equation in Eq.(4.12) and the dispersion curves (frequency versus phase 

shift) for Cx = 0 pF, 22 pF, 47 pF and 94 pF are plotted in Figure 4.18. From 

experiment, it was noted that frequency for the case without crosslink capacitors (i.e. 

Cx = 0 pF) is around 52 MHz. From the curve for Cx = 0 pF in Figure 4.18, this 

corresponds to a phase shift of 126� . As the phase shift is primarily determined by L0 

and Co, it can be assumed that the phase shift remained constant with the addition of 

crosslink capacitors. Hence, by drawing a vertical line at phase 126�  to intersect the 

curves in Figure 4.18, the frequencies for NLIL with Cx = 22 pF, 47 pF and 94 pF can 
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be estimated to be f = 41 MHz, 34 MHz and 27 MHz, respectively. 

  

 

Figure 4.16  Voltage oscillation frequency vs. Cx for a 40-section NLIL (simulation). 

 

 

Figure 4.17  VMD (% of maximum value) vs. Cx for a 40-section NLIL (simulation). 
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Figure 4.18  Dispersion curves (frequency vs. phase) for NLIL. 
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included for reference. It is clear that the use of crosslink capacitors improves the 

amplitudes of oscillations. 

 
 

 

Figure 4.19  Photograph of a typical experimental set-up for a 40-section NLIL with 
cross-link capacitors Cx. 

 
 

 

Figure 4.20  Load voltages vs. time for different Cx values (waveforms shifted for easy 
comparison) for a 40-section NLIL with Cx (expt.). 
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Figure 4.21  Voltage oscillation frequency vs. time for a 40-section NLIL with Cx 

(expt.). 

 

 

Figure 4.22  Oscillation amplitude vs. cycle number for a 40-section NLIL with Cx 

(expt.). 
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should be noted that the dispersion equation was derived based on a long line with 

many LC sections and that it is lossless. 

In contrast, the amplitude-cycle plots in Figure 4.22 show little variation in 

the oscillation amplitudes when Cx increases. This trend also concurs with the 

simulated plot in Figure 4.17 where the VMD starts to level off at Cx = 20 pF. The 

optimal value for Cx seems to be at 40 pF as further increase in its value does not result 

in improvement in VMD. The simulated load voltage for the case Cx = 47 pF using the 

LLG equation in Eq.(4.8) indicates good agreement with the measured results as 

shown in Figure 4.23.  

 

 

Figure 4.23  Load voltage vs. time for a  40-section NLIL with crosslink capacitor Cx = 
47 pF. 
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4.5 CONCLUSIONS 

By using COTS components, we have demonstrated that a simple pulser 

comprising a storage capacitor and a fast MOSFET semiconductor switch is capable of 

driving a NLIL to produce oscillating pulses at a repetition rate of up to 100 kHz. Two 

quick and convenient methods are proposed to characterize the nonlinear inductor 

made of ferrite bead for use in the NLETL circuit model. The first method is to derive 

the L vs. I curve from experiments and then apply it in the NLETL model. The second 

method involved obtaining the key parameters in the LLG equation from experiments 

where it is then incorporated into the circuit model.  The simulation results for both 

methods show good agreement with the data from experiments. 

Generally, increasing the number of sections in a basic NLIL will increase the 

number of oscillation cycles, but the amplitudes of oscillations will tend to decrease. 

By adding crosslink capacitors, the oscillation amplitudes can be increased 

substantially, but at the cost of having lower oscillation frequencies as the crosslink 

capacitance increases. Hence, to use NLIL without or with crosslink capacitors (and at 

what capacitance value) will depend on the user’s requirement as there is a trade-off 

between VMD and frequency. 
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______________________________________________ 

CHAPTER 5: NONLINEAR HYBRID LINE (NLHL) 

______________________________________________ 

 

 

5.1 INTRODUCTION 

Conventional NLETL has only one of the nonlinear elements (either nonlinear 

capacitor or nonlinear inductor) and consequently, the impedance of the line will 

change with time causing unwanted reflections as line impedance is mismatched to the 

linear load. The concept of a nonlinear hybrid line (NLHL) is to have both the 

nonlinear elements in the line changing at the same rate so that the line impedance can 

be kept constant and matched to the linear load at all times. This chapter attempts to 

show that the NLHL will result in greater voltage modulation and higher frequency of 

RF oscillations. Hence, for the same desired output, it is projected that a system based 

on NLHL can be made more compact than one with the conventional NLETL.  

The idea of a nonlinear hybrid line (NLHL) where both capacitors and 

inductors are nonlinear was first proposed by Fallside [96] in 1966 for pulse 

sharpening and Zucker [97] showed theoretically in 1976 that the NLHL has greater 

energy compression per stage than a line with either nonlinear capacitance or nonlinear 

inductance. Gaudet [8] then suggested using the NLHL to achieve RF generation in 

2008. There is even greater motivation now to explore the hybrid line for RF 

generation as Smith [81] recently showed that there are some fundamental physical 

problems that limit the performance of the usual NLCL; in particular, the loss in the 
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dielectric material limits the operating frequencies to below 100 MHz. To date, 

research work on generating RF pulses using NLHL has been confined to modeling 

and simulation [43] and [44]; no experimental result on NLHL has been reported to 

date. Sanders [82] has intended to build a hybrid line using ferrite beads and capacitors 

with X7R dielectric (which is expected to exhibit a capacitance decrease of 30%) but 

he actually checked that the capacitors did not exhibit any significant capacitance 

changes. 

 

5.1.1 THEORY 

The underlying principle for implementing a NLHL is to create a constant 

characteristic impedance line to match to the resistive load by finding the right 

combination of the nonlinear functions C(V) and L(I) of the capacitors and inductors, 

respectively. It is possible to build such a hybrid line if the functions C(V) and L(I) are 

tailored such that the characteristic impedance of the line remains constant according 

to Eq.(1.3). We adopt here the exponential form of the functions for the nonlinear 

components that is slightly modified from the one derived by Fallside [96] based on a 

first-harmonic approximation analysis of nonlinear delay lines. His work actually 

focuses on pulse sharpening of the rise time, but his equations for a constant 

impedance line will be used here to study the NLHL for RF generation. For a line to 

have constant characteristic impedance, the functions L(I) and C(V) must be related so 

that the equation 

� �
� �IZC

IL
Z

�
�      (5.1) 

has at least one solution for Z which is independent of I. An example is a line with 

exponential functions 
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VqeCC ���� 0      (5.2) 

IpeLL ���� 0 .     (5.3) 

 

Substituting Eq.(5.2) and Eq.(5.3) into Eq.(5.1) yields 

 
� �1

2

1 2

0

0

pI qZIL
Z e

C
� �� �

� � �
� �

 .    (5.4) 

Then Z = Z0 exists only if [96] 

 

21

0

0
0 ��

�

�
��
�

�
��

C

L

q

p
Z  ,    (5.5) 

where, 

C – capacitance as a function of voltage V 

L – inductance as a function of current I 

C0 – initial capacitance (at zero voltage) 

L0 – initial inductance (at zero current) 

p, q – nonlinearity factors. 

 

In reality, the capacitance and inductance approach asymptotic values as the 

nonlinear elements saturate. Hence, the nonlinear functions in Eq.(5.2) and Eq.(5.3) 

can be enhanced to the form similar to Eq.(2.12) to give 

0 (1 ) q VC C x x e� �� �� � � � �� �     (5.6) 

0 (1 ) p IL L y y e� �� �� � � � �� � .    (5.7) 

Similarly, by substituting Eq.(5.6) and Eq.(5.7) into Eq.(5.1), Z = Z0 is found 

to exist (for small values of x and y) only if x = y and Eq.(5.5) is satisfied. The values x 
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and y are dimensionless and have typical values between 0 and 0.3. The forms in 

Eq.(5.6) and Eq.(5.7) are useful as the asymptotic values are given by the fraction x 

multiplied by initial capacitance C0 and the fraction y multiplied by initial inductance 

L0. 

In the study of the hybrid line here, it is assumed that the resistive losses RL 

and RC are neglected. The capacitive nonlinear parameters are chosen as C0 = 816.14 

pF, q = 0.3 V-1 and x = y = 0.001. For Z0 = 50 �, using Eq.(5.5) gives the inductive 

parameters  L0 = 2.04 �H and p = 15 A-1. The other simulation parameters are similar 

to those in Section 2.1. For comparison, a nonlinear capacitive line (NLCL) with 

constant inductor value of L0 and a nonlinear inductive line (NLIL) with constant 

capacitor value of C0 are also simulated. 

 
 
5.1.2 HYBRID LINE WITHOUT BIASING 

The output load voltage and characteristic impedance of the last LC section 

are depicted in Figure 5.1 and Figure 5.2, respectively. It is interesting to note that the 

output voltages of the NLCL and NLIL are observed to be identical. This is due to 

their nonlinear elements having similar exponential functions in Eq.(5.6) and Eq.(5.7) 

which are being tied to the impedance relationship in Eq.(5.4). 

In Figure 5.2, the characteristic impedances are calculated using Eq.(1.3) and 

all the lines have Z0 = 50 � in the unsaturated state where capacitor voltage and 

inductor current are both zeroes. For NLCL, the characteristic impedance varies from 

50 � to above 50 � as L(I) is constant and C(V) decreases. Similarly, characteristic 

impedance of NLIL varies from 50 � to below 50 � as C(V) is constant and L(I) 

decreases. For a hybrid line, the characteristic impedance oscillates around Z0 = 50 � 

as C(V) variation is more or less compensated by L(I) changes. It is observed that the 
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timings for the peaks and troughs of the load voltage for the hybrid line in Figure 5.1 

correspond to the timings for characteristic impedance of 50 � in Figure 5.2 as can be 

seen by putting the relevant waveforms together in Figure 5.3. This means that as the 

characteristic impedance of the last section changes with time, it will, at a matched 

condition of 50 �, produce maximum voltage swing at the load. 

 

Figure 5.1  Output voltages for NLCL, NLIL, and hybrid line  (Vpump = 5 V, n = 10, 
Rload = 50 �). 

 

Figure 5.2  Time variation of characteristic impedance of the last LC section for NLCL, 
NLIL, and hybrid line (Vpump = 5 V, n = 10, Rload = 50 �). 
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Figure 5.3  Capacitor voltage, inductor current and characteristic impedance 
waveforms of the last LC section for hybrid line (Vpump = 5 V, n = 10, Rload = 50 �). 

 

 

Figure 5.4  Voltage oscillation frequency vs. time for NLCL, NLIL, and hybrid line  
(Vpump = 5 V, n = 10, Rload = 50 �). 
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and a higher oscillation frequency than NLCL and NLIL. Referring to the PSpice 

soliton simulation results from Rossi [44], he also obtained an increase in frequency 

with hybrid line but with lower voltage peak amplitude compared to a standard NLCL. 

This discrepancy is probably due to the particular functions assumed for L(I) and C(V). 

 

Figure 5.5   Peak power as a function of Rload for a hybrid line (Vpump = 5 V, n = 10). 

 

By varying the value of the load, the hybrid line shows that the peak power 

has an optimum point at Rload = 50 � (Figure 5.5). This verifies the design objective of 
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5.1.3 HYBRID LINE WITH BIASING 
 

To investigate the effects of biasing the nonlinear elements, the functions 

C(V) and L(I) in Eq.(5.6) and Eq.(5.7) respectively, are modified as follows: 

( )
0 (1 ) biasq V VC C x x e� � �� �� � � � �� �     (5.8) 

( )
0 (1 ) biasp I IL L y y e� � �� �� � � � �� �     (5.9) 

where 

Vbias – bias voltage applied to nonlinear capacitor 

Ibias – bias current applied to nonlinear inductor. 

For a bias voltage applied to the nonlinear capacitors in the hybrid line, the 

corresponding bias current applied to the nonlinear inductors at the same time is given 

by 

0

bias
bias

V
I

Z
� .      (5.10) 

In the simulations here, it is assumed that the hybrid line is lossless and 

biasing is applied separately in which the biasing circuits are isolated from the hybrid 

line. In practice, the biasing circuit may be connected to the line and may affect, to a 

certain degree, its performance. Hence, care must be taken in designing the biasing 

circuits which is an art in itself to ensure sufficient isolation and the design will 

involve trade-offs between complexity and performance. Examples of simple biasing 

circuits for the capacitor in the hybrid line can be similar to the one shown in Figure 

3.11 and Figure 3.34. A nonlinear inductor can be built by winding a wire around a 

toroidal magnetic core. The biasing circuit for the nonlinear inductor can then be 

implemented by winding another wire on another part of the same core and connected 

to a DC source. This makes a good biasing circuit as biasing is applied through 

magnetic coupling and it is electrically isolated from the hybrid line. 
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Due to the similarity between NLCL and NLIL which gives identical results, 

only the results from the NLCL are compared with those from the hybrid line under the 

condition of biasing. The output voltages at different bias voltages for NLCL and 

hybrid line are depicted in Figure 5.6 and Figure 5.7, respectively. The oscillation 

amplitudes decrease with increasing bias voltage for the NLCL whereas the oscillation 

amplitudes remain the same with both increasing bias voltage and bias current for the 

hybrid line. Both lines show increase in output frequency with increase in biasing. For 

bias voltage of 0 to 5 V, the time-frequency plot in Figure 5.8 indicates that NLCL can 

have frequency variation of 10 to 21 MHz. On the other hand in Figure 5.9, the hybrid 

line shows a much greater frequency range of 15 to 70 MHz for the same bias voltage 

variation (with corresponding bias current). It is also noted that the hybrid line also 

produces many more cycles of oscillation as seen from the number of symbols in the 

graph. 

Hence, a hybrid line that is designed to have constant impedance can have a 

much wider range of frequency tunability and greater number of cycle of oscillations 

compared to either the NLCL or NLIL. The hybrid line also produces oscillations that 

do not degrade in oscillation amplitudes when the biasing values are increased. 

However, in practice, losses need to be taken into account for the nonlinear elements. 

For the nonlinear capacitor, the equivalent series resistor has to be kept small. For the 

nonlinear inductor, the hysteresis loss and eddy current loss in the magnetic core 

material need to be minimized. 
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Figure 5.6  Output voltages for NLCL at different bias voltages  (Vpump = 5 V, n = 10, 
Rload = 50 �). 

 

 

Figure 5.7  Output voltages for hybrid line at different bias voltages and corresponding 
bias currents of 0.02 A, 0.06 A and 0.1 A (Vpump = 5 V, n = 10, Rload = 50 �). 
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Figure 5.8  Voltage oscillation frequency vs. time for NLCL at different bias voltages 
(Vpump = 5 V, n = 10, Rload = 50 �). 

 

 

Figure 5.9  Voltage oscillation frequency vs. time for hybrid line  at different bias 
voltages and corresponding bias currents  of 0 A, 0.02 A, 0.04 A,  0.06 A, 0.08 A and 

0.1 A (Vpump = 5 V, n = 10, Rload = 50 �). 
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5.2 TESTING OF NLHL 

This section describes the experimental work carried out in building and 

testing a high voltage NLHL by using commercial-off-the-shelf (COTS) components. 

The design of the NLHL was made possible by using the NLETL circuit model 

developed in Chapter 2 that is well validated by experiments in Chapter 3 and Chapter 

4. Results simulated by the NLETL model show fairly good match to the data obtained 

from the experiments described in this section. In order to better quantify the 

oscillating pulses, the voltage modulation and the frequency content of the pulses are 

carefully analyzed using amplitude-cycle and time-frequency plots. 

The NLHL was built using COTS components and the circuit diagram for 

setting up the experiment is depicted in Figure 5.10. It shows a high voltage (HV) 

pulse generator circuit connected to a nonlinear LC ladder network with resistive load 

Rload = 50 �. Instead of using a pulse generator that involves a pulse forming network 

or pulse forming line [41], or one with complex architecture [82], we have 

implemented a much simpler pulse generator with only a few key components. It 

comprises a HV power supply, a storage capacitor Cst = 1 �F, a fast HV MOSFET 

semiconductor switch and a current limiting resistor Rgen = 50 �. This pulse generator 

can be charged up to 10 kV and produces an output waveform that is almost 

rectangular in shape. The output pulse duration is adjusted to about 600 ns (controlled 

by the low voltage trigger pulse) and has a typical rise time of 47 ns and fall time of 44 

ns at 6 kV. 

The NLHL in Figure 5.10 consists of n number of LC sections in which each 

section contains a single L connected to a single C. The L and C components were 

chosen by utilizing the nonlinear capacitors (the ones that give the best performance) 

used in the high voltage NLCL as described in Section 3.2.1 and the nonlinear 



 
Chapter 5   Nonlinear Hybrid Line 

 
117 

 

inductors (the ones that give the best performance) used in the NLIL as described in 

Section 4.2. The objective is to further validate the NLETL model and demonstrate 

that hybrid line can work and give better performance. 

The nonlinear capacitive element C in the line is a Murata 

DEBF33D102ZP2A ceramic capacitor rated at 1 nF and 2 kV. For the nonlinear 

inductive element L in the line a Fair-rite 2944666651 ferrite bead made of NiZn is 

used. In order to characterize the nonlinear capacitor and nonlinear inductor made from 

the ferrite bead under dynamic conditions at the time scale of operation of the NLHL, 

the pulse generator was connected directly to the nonlinear component under test with 

Rgen = 100 �. The characterization circuit is illustrated in Figure 5.11 where the 

voltage (VC or VL) across the nonlinear component and the current Igen flowing through 

it are measured. 

 

 
 

Figure 5.10  Experimental set-up of a NLHL. 

 



 
Chapter 5   Nonlinear Hybrid Line 

 
118 

 

 

Figure 5.11  Circuit used for measuring the C-V curve of a nonlinear capacitor and the 
L-I curve of a nonlinear inductor. 

 

To obtain the C-V curve (similar to the method used in Section 3.2.1), the 

pulse generator was used to discharge a 6 kV pulse into the capacitor. The nonlinear 

differential capacitance can be calculated using 

gen

c

dQ
IdQ dtC

dV dVdV
dt dt

� � �      (5.11) 

where Q is the charge in the capacitor C. The experimental C-V curve was then curve 

fitted using Eq.(5.6). For best fit, the parameters obtained for equation Eq.(5.6) are C0 

= 0.995 nF, x = 0.11 and q = 1.583 x 10-3 V-1. By using these parameters, Eq.(5.6) is 

plotted in Figure 5.12 with voltage varying up to 6 kV and used in the NLETL model. 

Likewise, to obtain the L-I curve (similar to the method used in Section 0), an 

8 kV pulse was discharge into the ferrite bead from the pulse generator. First, the flux 

linkage � in the ferrite bead is derived using 

 ( ) ( )Lt V t dt� � � ,     (5.12) 

where VL is the voltage across the inductor. 

 The characteristic dynamic �-I curve of the nonlinear inductor was plotted 

and a curve fit was performed on the curve by using an exponential function. The 

curve fit function for � was then differentiated with respect to current I to obtain the 
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differential inductance Ld that has the exponential form given in Eq.(5.7). For Ld 

function, the parameters obtained are L0 = 2.08 �H, y = 0.033, p = 0.169 A-1 and 

Eq.(5.7) is plotted in Figure 5.13 by using these parameters up to a current of 80 A. For 

comparison, the matching inductance function Lm for L-I curve to go with the 

capacitance function for C-V curve with Z0 = 50 � can be found by calculating the 

parameters using Eq.(5.5). For Lm function, the parameters obtained for Eq.(5.7) are L0 

= 2.49 �H, y = 0.11, p = 0.079 A-1 and the corresponding equation is also plotted in 

Figure 5.13. The functions Ld and Lm with the exponential form shown in Eq.(5.7) are 

used in the NLETL model for circuit simulations. 

It should be noted that the measurements for nonlinear inductor were made on 

the ferrite bead condition with B-H hysteresis curve in the first quadrant. In our case it 

was observed during experiment that the results for the line without pre-shot reset 

current to the ferrite beads are better than those with pre-shot reset current. Hence, 

only experiments performed with the NLHL without pre-shot reset current are 

described in this chapter. Reset current was applied by connecting in series a 20 V DC 

power supply and a 10 � resistor to the first and last inductors of the line.  

 

Figure 5.12  C vs. V curve obtained for the nonlinear capacitor. 
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Figure 5.13  L vs. I curve obtained for the nonlinear inductor. 

 

 

5.3 RESULTS OF NLHL 

This section analyzes the results of a 20-section NLHL with Rload = 50 � as 

described in Figure 5.10. The pulse generator is charged to 6 kV and a discharge pulse 

of 600 ns duration with approximately rectangular shape is injected into the NLHL. A 

photograph of the experimental set-up is shown in Figure 5.14.  

We use here the average peak load power Pave and voltage modulation depth 

(VMD) as defined in Section 3.2.2. In order to find the load that best matches to the 

line in terms of Pave, a parameter sweep on the load was performed using the NLETL 

simulation model. The load of 50 � was chosen as it gives peak power near to the 

maximum point in the sweep. The measured load voltage indicates a fairly good 

agreement with the simulated result (by means of Ld) as shown in Figure 5.15. The 

simulated matched case using Lm is also depicted in Figure 5.15 for comparison. 
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Figure 5.14  Photograph of a typical experimental set-up for a 20-section NLHL. 

 

 

Figure 5.15  Load voltage vs. time for a 20-section NLHL. The simulated matched 
case is offset by +1 kV for clarity. 
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Figure 5.16  Voltage oscillation frequency vs. time for a 20-section NLHL. 

 

 

Figure 5.17  Peak-to-trough oscillation amplitude vs. oscillation cycle number for a 20-
section NLHL. 
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To see the quality of the load voltage modulation, the peak-to-trough 

oscillation amplitude Vpt is obtained for the first three cycles and is shown in the 

amplitude-cycle plot in Figure 5.17. The VMDs as defined in Section 3.2.2 for the 

simulated actual case and experiment are VMDLd = 859 V and VMDexpt = 615 V, 

respectively. The simulated matched case has VMDLm = 1398 V which is higher as 

expected due to the ideally matched conditions specified in Eqs.(5.1), (5.4), (5.5), (5.6) 

and (5.7). 

The effects of the amplitude of the input pulse were also studied by varying 

the pulse generator voltage from 5 kV to 8 kV in steps of 1 kV. The measured load 

voltages are depicted in Figure 5.18. The time-frequency plot and amplitude-cycle plot 

are shown in Figure 5.19 and Figure 5.20, respectively. As the voltage increases from 

5 kV to 8 kV, the oscillation frequencies increase from around 50 MHz to 70 MHz and 

the oscillation amplitudes also show considerable increases. Line reflections can be 

seen shortly after the oscillations diminish; for example, in the 8 kV line there is a step 

rise at around 650 ns.  

 

Figure 5.18  Experiment: Load voltage vs. time for a 20-section NLHL for different 
pulse generator voltages. 
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Figure 5.19  Experiment: Voltage oscillation frequency vs. time for a  20-section 
NLHL for different pulse generator voltages. 

 
 

 

Figure 5.20  Experiment: Peak-to-trough oscillation amplitude vs. oscillation cycle 
number for a 20-section NLHL for different pulse generator voltages. 
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5.4 ANALYSIS 

From the simulation and experimental results in Section 5.3, it is estimated 

that the nonlinear capacitors have equivalent series resistors (ESRs) of about 1-2 �. 

This ESR represents the dielectric loss in the capacitor which contains the polar 

material barium titanate. The main source of this loss is due to hysteresis as the polar 

material forms domains in the ferroelectric phase [7]. The applied field (via applying 

voltage across the capacitor) causes the movement of these domains which translates 

to energy loss. In an attempt to study how critical the ESR damps output oscillations, 

simulations using the NLETL model were carried out in this section. 

 
 

 

Figure 5.21  Simulation: Load voltage vs. time for a 20-section NLHL for different 
ESRs. Waveforms are offset by +2 kV from each other  for clarity. 
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capacitor. To avoid cluttering, only four cases are plotted for the load voltage 

simulations shown in Figure 5.21. It is clear that increasing ESR will result in greatly 

reduced amplitudes of oscillations. The amplitude-cycle plot in Figure 5.22 indicates 

quantitatively the amount of oscillating voltage decrease for increasing ESR. 

 

Figure 5.22  Simulation: Peak-to-trough oscillation amplitude vs. oscillation cycle 
number for a 20-section NLHL for different ESRs. 
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matched Lm function (plotted in Figure 5.13) where the L-I curve is matched to the C-

V curve according to the criteria in Eqs. (5.4) to (5.7). The Pave for the case using the 

matched Lm function is also illustrated in Figure 5.24 and it shows greater average peak 

power than the case with actual Ld function. In particular, the case using Lm indicates at 

least twice the power of the case using Ld in the region of ESR = 0.4 to 2.0 �. 

 

Figure 5.23  Simulation: Voltage oscillation frequency vs. time for a  20-section NLHL 
for different ESRs. 

 

 

Figure 5.24  Simulation: Average peak load power vs. ESRs for a 20-section NLHL. 
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5.5 CONCLUSIONS 

It has been demonstrated using COTS components that a simple pulse 

generator comprising a storage capacitor and a fast MOSFET semiconductor switch 

can be used to drive a NLHL to produce RF oscillations. Although a matched L-I 

curve to the C-V curve will in theory produce oscillation with good voltage modulation 

depth (VMD), it is shown in this article that an unmatched case is also capable of 

producing RF oscillations albeit with reduced VMD. The VMD in the unmatched case 

can be increased by increasing the amplitude of the input driving pulse which also at 

the same time increase the oscillation frequency. A detailed analysis was also carried 

out on the effect of the equivalent series resistor (ESR) of the nonlinear capacitor and it 

shows that the ESR is a critical parameter that damps the output oscillations. The ESR 

of the nonlinear capacitors used in the experiment is estimated to be about 1 to 2 �. 

Reducing the ESR by a factor of 2 or more (if better nonlinear capacitors with reduced 

dielectric losses are employed) will substantially improve the VMD. The average peak 

load power can be doubled if the L-I curve of the nonlinear inductor is matched to the 

C-V curve of the nonlinear capacitor. 
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___________________________ 

CHAPTER 6: CONCLUSIONS 

___________________________ 

 

 

The research work undertaken in this thesis focuses on studying discrete 

lumped element transmission line (NLETL) for RF generation. In contribution to this 

field of work, a NLETL circuit model was developed to address the inadequacies of 

the current model in the open literature. This model was validated with experiments at 

low voltage before being applied in designing high voltage lines. Extensive and 

comprehensive parametric study using the NLETL model was carried out to fully 

understand how each parameter of the pulse and line will affect the output waveform. 

Consequently, the model was used in designing the three types of high voltage 

NLETL: namely, nonlinear capacitive line (NLCL), nonlinear inductive line (NLIL) 

and nonlinear hybrid line (NLHL). Other contributions include an innovative method 

for more efficient RF extraction in NLCL and a simple novel method for obtaining the 

necessary material parameters for modeling the NLIL. Last but not least, the NLHL 

(where no experimental NLHL has been reported to date) was successfully 

demonstrated in experiment. 

In the area of NLCL, an innovative method of RF extraction was proposed 

and implemented. The proposed method gives higher power efficiency and better 

voltage modulation depth of the output waveform as compared to a convention NLCL. 

In addition, this method does not require a high-pass filter to remove the DC from the 
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AC component which are both present in the standard line. This direct extraction 

method improves efficiency and makes the line more compact. 

  In an effort to model the NLIL, a simple procedure was developed to obtain 

the characteristic L-I curve of the nonlinear inductor. A curve-fit function for the L-I 

curve was then acquired for use in the NLETL model. It can also be applied in 

commercial PSpice software. Additionally, for better accuracy, a simplified form of 

the Landau-Lifshitz-Gilbert (LLG) equation was utilized in the NLETL model to better 

represent the dynamics of the magnetization in the inductor. A novel approach was 

thus created to find the critical parameters in the LLG equation.  

For NLHL, it was shown through the NLETL simulation that if the C-V curve 

of the nonlinear capacitor and L-I curve of the nonlinear inductor follows a certain 

impedance design equations to keep the characteristic of the line constant, output pulse 

at the matched load with better voltage modulation depth and higher operating 

frequency can be achieved (compared to NLC and NLIL). However, it was difficult to 

get the C-V and L-I curves to match each other in practice. Nonetheless, it was 

demonstrated in experiments that the NLHL could still produce oscillatory waveforms 

without the C-V and L-I curves matching each other. It was observed that if the 

characteristic impedance of the line at saturation of both nonlinear components is close 

to the load value, pulse oscillations can be realized. The experimental demonstration of 

the NLHL is the first of its kind as only simulation work has been reported to date.       

On the whole, the simulations results from the NLETL model show good 

match to the experiment data obtained from the NLCL, NLIL and NLHL. On future 

work, a possible extension to the model is to make the equivalent series resistor (ESR) 

for the nonlinear capacitors (which is assumed constant currently) frequency 

dependent. As this ESR affects the damping of the output oscillation, a model with a 
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frequency dependent ESR will probably yield better accuracy at higher operating 

frequency. Parametric study on the performance of the line as the ratio of L to C varies 

can also be explored using the model. Maximizing the ratio of L to C will be useful 

when a line with certain specifications needs to be designed. In addition, this NLETL 

model can be further applied to multiple cascading lines in parallel to investigate the 

combined effect of multiple lines. The NLETL model can also be extended to explore 

parametric amplification on NLETLs. This technique was proposed by A. B. Kozyrev 

[94] whereby a sinusoidal pulse and a rectangular pulse are injected simultaneously 

into the input of a NLETL and a RF pulse with higher power and increased frequency 

will be generated at the output. Besides using the NLETL model for RF generation, it 

can also be used for simulating pulse sharpening for nonlinear L and C; and simulating 

delay of input pulse for linear L and C. On the experimental aspect, part of future work 

can also include investigating the best type of antenna for NLETL to radiate RF pulses. 

It will also be interesting to synchronize multiple NLETLs to radiate and sum the RF 

power in space.       

  The result of having studied the three types of NLETL suggests that there is 

a need for custom-made capacitors (linear or nonlinear) with low ESR. The ESR is a 

critical parameter that affects the modulation depth of the output RF pulse and a low 

ESR value will greatly improve oscillation amplitudes leading to higher power 

efficiency. The prospect of using of NLHL for better performance also advocates the 

requirement to develop techniques to make dielectric materials and magnetic materials 

to conform to certain desired C-V curve and L-I curve, respectively. In other words, 

this heralds the need to produce materials with C-V and L-I curves that meet the 

impedance design equations so as to keep the characteristic impedance of the line 

constant in a nonlinear environment.  
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Figure A.1  Circuit diagram of NLCL. 

 

This appendix illustrates the derivation of the Korteweg-de Vries (KdV) 

equation from a nonlinear capacitive line (NLCL) where the inductive components are 

linear and the capacitive components are nonlinear. 

By applying Kirchoff’s law to the circuit in Figure A.1 and assuming the 

NLCL is lossless, the difference-differential equations are: 
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The charge on the capacitor with bias voltage V0 is given by 
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Assuming the nonlinear capacitors have the following capacitance function: 
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Sub. Eq.(A.5) into Eq.(A.4), 

 

� � � � � �
� � � � � �

� �

� � � �
� �

0 0
0 0

0 0 0

0
0

0 0

ln ln

where ln  is a constant.

n
n

F V F V V
Q t Q V Q V

F V V F V

F V
Q V

F V V

� � � �� � � ��
� �� � � �� � � �� � � ��� � � �� � � �� � � �

� �� �
� �� �� ��� �� �� �

 (A.6) 

 Differentiating Eq.(A.6) twice w.r.t. t gives 
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Differentiating Eq.(A.3) w.r.t. t gives 
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Sub. Eq.(A.1), Eq.(A.2) and Eq.(A.7) into Eq.(A.8), 
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Assume (Vn)max << F(V0), using the series expansion 
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Let n be a continuous variable such that 

 � �nV V n V� � .
 (A.12) 
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Sub. Eq.(A.11), (A.12), (A.13) and (A.14) into Eq.(A.9), 
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Putting 
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Using Gardner –Morikawa transformation: 
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 where � �,u u x �� .
 (A.20) 

For an arbitrary function � �,y y x �� , its derivative w.r.t. t gives 
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Differentiating Eq.(A.21) w.r.t. t gives 
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 (A.22) 

For L.H.S. of Eq.(A.16), it can be expanded by letting 
2

2

V
y V

F
� � in Eq.(A.22), 
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From Eq.(A.17), it can be inferred that 
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and 

hence R.H.S. of Eq.(A.16) can be written as 
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Sub. Eq.(A.23) and Eq.(A.24) into Eq.(A.16) and using Eq.(A.19) gives 

 

� � � �

2 22 2 2 2 2 2
2 0

0 2

2 2 2 2 2 4
3 2 20

02 2 4

2 2 2 23 3 2 4 4 2 5

2 2 2

2 8 12 2 8

1

24 2 8 2 12 2

4 12 48 24 4 24

vFu Fu Fu Fu
v

x x

v Fu Fu Fu Fu
v

x x

u uu u

x x x

�� � � �
�

�

� � � �
� � �

�

� � � � �
� � �

� � � �� �
� � � � �� � � �� � �� � � �

� � � �� � �� � � � � �� � � � � � �� � � �� � � � � �� � �� � � �� � � � � �

� �� �
� � � � �

� � � � � � �
� �2 2 3 4

2 2 412

u u

x

�
�

� �
�

� � .

(A.25) 
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Keeping terms of order �3, 
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Simplifying Eq.(A.26), 
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 (A.27) 

Integrating Eq.(A.27) w.r.t. x and assume that the integrating constant is zero gives the 

KdV equation, 

 

� �2 3

3

3

3

3 0

6 0

uu u

x x

u u u
u

x x

�

�

�� �
� � �

� � �
� � �

� � � �
� � � .

 (A.28) 

 



 
Appendix  B   One-Soliton Solution for KDV Equation 

 
145 

 

______________________________________________ 

APPENDIX B: ONE-SOLITON SOLUTION FOR 

KDV EQUATION 

______________________________________________ 

The KdV equation is given as follows: 
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� � �

� � �
� � � .

  (B.1) 

Assume u travels to the right side at velocity v, let 

 � � � �,u x u x v� �� � .
 (B.2) 

By letting z = x -v�, it can be inferred that  
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 (B.3) 

Hence, by using Eq.(B.3), PDE Eq.(B.1) can be transformed into an ordinary 

differential equation (ODE) 
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 (B.4) 

Integrating Eq.(B.4) w.r.t. x and assuming the integration constant to be zero, 
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 (B.5) 

Assume solution is in the form  

 � � � �2, secu x a h b x v� �� �� �� �  (B.6) 

where a and b are constants to be determined. 
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Differentiating Eq.(B.6) w.r.t. x, 
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Differentiating Eq.(B.7) w.r.t. x, 
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Sub. Eq.(B.6) and Eq.(B.8) into Eq.(B.5), 
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 (B.9) 

For the KdV equation to satisfy all x, the coefficients of the sech functions in Eq.(B.9) 

must be zero. 
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 (B.10) 

Sub. Eq.(B.10) into Eq.(B.6) gives the one soliton solution to the KdV equation, 
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 (B.11) 

To obtain the solution for the LC ladder circuit, sub. Eq.(A.17) and Eq.(A.18) into 

Eq.(B.11) and putting � = 1, 
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 (B.12) 

Hence, the voltages at the LC sections are found by sub. Eq.(B.12) into Eq.(A.19), 
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______________________________________________ 

APPENDIX C: SIMPLIFICATION OF LANDAU-

LIFSHITZ-GILBERT (LLG) 

EQUATION FOR USE IN 

MODELING 

______________________________________________ 

 

 

This appendix shows the simplification of the Landau-Lifshitz-Gilbert (LLG) equation 

for use in the NLETL circuit model. The standard LLG equation is given as follows: 
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,
 (C.1) 

where 

M�  = magnetization; 

Ms = saturation magnetization; 

H�  = magnetic field strength; 

� = dimensionless damping parameter; 

� = 221 km/C, gyromagnetic ratio. 

 

Take cross product M ��  on both sides of Eq.(C.1), 
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Using the vector cross product identity � � � � � �a b c b a c c a b� � � � � �
� � � � � � � � �

, Eq.(C.2) 

becomes 
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Since 0
dM

M
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� �
�

�  and 2
sM M M� �� � , Eq.(C.3) can be reduced to  
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Sub. Eq.(C.4) into Eq.(C.1) gives the Landau-Lifshitz equation in the Gilbert form, 
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Using the vector cross product identity � � � � � �a b c b a c c a b� � � � � �
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, Eq.(C.5) 

becomes 
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 (C.6) 

Assume that the magnetic field strength in the ferrite has only z-component, 

  ˆzH H z�� . (C.7) 

Sub. Eq.(C.7) into Eq.(C.6), 
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Expand Eq.(C.8) into components, 
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Hence, the component equations are 
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(C.12) 

Consider only the axial magnetic field strength in the z-direction, Eq.(C.12) is adjusted 

to form the simplified LLG equation (as shown in Eq.(C.13)) for use in the NLETL 

circuit model. 
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______________________________________________ 

APPENDIX D: DERIVATION OF NLIL 

DISPERSION EQUATION 

______________________________________________ 

 

 

 
 

Figure D.1  Circuit diagram of NLIL with crosslink capacitors. 

 

This appendix shows the derivation of the dispersion relation of the NLIL 

with crosslink capacitors (as depicted in Figure D.1) in the linear regime when the 

ferrite is saturated. By applying Kirchoff’s law to the NLIL circuit and assuming it is 

lossless, the difference-differential equations at saturated inductance L0 are: 

For nth and (n+1)th inductor, 
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For the node at Vn, 
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Differentiate Eq.(D.3) w.r.t. to t, 
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Use Eq.(D.1) – Eq.(D.2), 
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Sub. Eq.(D.4) into Eq.(D.5), 
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Now consider a particular harmonic solution of Eq.(D.6) in the form 
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Then it follows that 
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Differentiate twice for Eqs. (D.7), (D.10) and (D.11) w.r.t. t, 
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        (D.14) 

Sub. Eqs. (D.8), (D.9), (D.12), (D.13) and (D.14) into Eq.(D.6), 
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 (D.15) 

Let coupling coefficient � and critical frequency �c be defined as follows: 
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Sub. Eq.(D.16) into Eq.(D.15), 
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Hence, the dispersion equation is obtained by sub. Eq.(D.17) into Eq.(D.18), 
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(D.19) 

where � is the phase shift per link. 

Now switch from the n�  notation in Eq.(D.7) to the more common kx  notation. We 

define k  by 

� �kx n k nd n kd� � �� � � � �
,   

(D.20) 

where we assume d is the distance between sections and x is the distance from the first 

section. 

The phase velocity pv
 
and group velocity gv  are then determined by 
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