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Abstract

Random beamforming (RBF) is a practically favourable transmission scheme

for multiuser multi-antenna downlink systems since it requires only partial channel

state information (CSI) at the transmitter. Under the conventional single-cell setup,

RBF is known to achieve the optimal sum-capacity scaling law as the number of users

goes to infinity, thanks to themultiuser diversity enabled transmission scheduling that

virtually eliminates the intra-cell interference. In this thesis, we extend the study

of RBF to a more practical multi-cell downlink system with single/multi-antenna

receivers subject to the additional inter-cell interference (ICI).

First, we consider the case of finite signal-to-noise ratio (SNR) at each receiver

with one single antenna. We derive a closed-form expression of the achievable sum-

rate with the multi-cell RBF, based upon which we show an asymptotic sum-rate

scaling law as the number of users goes to infinity. Next, we consider the high-

SNR regime and for tractable analysis assume that the number of users in each cell

scales in a certain order with the per-cell SNR. Under this setup, we characterize the

achievable degrees of freedom (DoF) (which is defined as the sum-rate normalized by

the logarithm of the SNR as SNR goes to infinity) for the single-cell case with RBF.

Then we extend the analysis to the multi-cell RBF case by characterizing the DoF

region, which consists of all the achievable DoF tuples for all the cells subject to their

mutual ICI. It is shown that the DoF region characterization provides useful guideline

on how to design a cooperative multi-cell RBF system to achieve optimal throughput
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tradeoffs among different cells. Furthermore, our results reveal that the multi-cell

RBF scheme achieves the “interference-free” DoF region upper bound for the multi-

cell system, provided that the per-cell number of users has a sufficiently large scaling

order with the SNR. Our result thus confirms the optimality of multi-cell RBF in

this regime even without the complete CSI at the transmitter, as compared to other

full-CSI requiring transmission schemes such as interference alignment.

Furthermore, the impact of receive spatial diversity on the rate performance of

RBF is not yet fully characterized even in a single-cell setup. We thus study a multi-

cell multiple-input multiple-output (MIMO) broadcast system with RBF applied at

each base station and either the minimum-mean-square-error (MMSE), matched filter

(MF), or antenna selection (AS) based spatial receiver at each mobile terminal. We

investigate the effect of different spatial diversity receivers on the achievable sum-

rate of multi-cell RBF systems subject to both the intra- and inter-cell interferences.

We first derive closed-form expressions for the distributions of the receiver signal-to-

interference-plus-noise ratio (SINR) with different spatial diversity techniques, based

on which we compare their rate performances at given SNRs. We then investigate the

high-SNR regime and for a tractable analysis assume that the number of users in each

cell scales in a certain order with the per-cell SNR. Under this setup, we characterize

the DoF region for multi-cell MIMO RBF systems. Our results reveal that significant

sum-rate DoF gains can be achieved by the MMSE-based spatial receiver as compared

to the cases without spatial diversity receivers or with the suboptimal spatial receivers

(MF or AS). This is in sharp contrast to the existing result that spatial diversity

viii
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receivers only yield marginal sum-rate gains in RBF, which was obtained in the regime

of large number of users but fixed SNR per cell.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication paradigm has evolved from single-user single-input single-

output (SISO) and multiple-input multiple-output (MIMO) systems to multi-user

(MU) MIMO counterparts, which are shown greatly improving the rate performance

by transmitting to multiple users simultaneously. The sum-capacity and the capacity

region of a single-cell MU MIMO downlink system or the so-called MIMO broadcast

channel (MIMO-BC) can be attained by the nonlinear “Dirty Paper Coding (DPC)”

scheme [9] [10] [74]. However, DPC requires a high implementation complexity due to

the non-linear successive encoding/decoding at the transmitter/receiver, and is thus

not suitable for real-time applications. Other studies have proposed to use alternative

linear precoding schemes for the MIMO-BC, e.g., the block-diagonalization (BD)

scheme [67], to reduce the complexity. More information on the key developments of

1
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single-cell MIMO communication can be found in, for example, [5] [17] [55].

Moving to the multi-cell case, it is worth noting that the multi-cell downlink

system with inter-cell interference (ICI) in general can be modelled as a Gaussian

interference channel (IC). However, a complete characterization of the capacity region

of the Gaussian IC, even for the two-user case, is still open [14]. An important

recent development is the so-called “interference alignment (IA)” technique (see, e.g.,

[8] [19] [28] [54] and the references therein). With the aid of IA, the maximum

achievable degrees of freedom (DoF), which is defined as the sum-rate normalized

by the logarithm of the signal-to-noise ratio (SNR) as the SNR goes to infinity or

the so-called “pre-log” factor, has been obtained for various IC models to provide

useful insights on designing optimal transmission schemes for interference-limited MU

systems.

Besides IA-based studies for the high-SNR regime, there is a vast body of

works in the literature which investigated the multi-cell cooperative downlink pre-

coding/beamforming at a given finite user’s SNR. These results are typically catego-

rized based on two different types of assumptions on the level of base stations’ (BSs’)

cooperation. For the case of “fully cooperative” multi-cell systems with global trans-

mit message sharing across all the BSs, a virtual MIMO-BC channel is equivalently

formed. Therefore, existing single-cell downlink precoding techniques can be applied

(see, e.g., [48] [81] [82] and the references therein) with a non-trivial modification to

deal with the per-BS power constraints as compared to the conventional sum-power

constraint for the single-cell MIMO-BC case. In contrast, if transmit messages are

2
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only locally known at each BS, coordinated precoding/beamforming can be imple-

mented among BSs to control the ICI to their best effort [12] [43] [57]. In [6] [62]

[83], various parametrical characterizations of the Pareto boundary of the achievable

rate region have been obtained for the multiple-input single-output (MISO) IC with

coordinated transmit beamforming and single-user detection (SUD).

The most important point is that all such precoding schemes, for single- or

multi-cell systems, rely on the assumption of perfect channel state information (CSI)

at the transmitter, which may not be valid in practical cellular systems with a large

number of users. Consequently, the study of quantized channel feedback has become

an important and active area of research (see, e.g., [30] and the references therein).

In a landmark work [72], Viswanath et al. introduced a single-beam “oppor-

tunistic beamforming (OBF)” scheme for the MISO-BC, which exploits the multiuser

diversity gain and requires only partial channel feedback to the BS. Since spatial mul-

tiplexing gain can be captured by transmitting with more than one random beams,

the so-called “random beamforming (RBF)” scheme was also described in [72] and

further investigated in [64]. The achievable sum-rate with RBF in a single-cell system

has been shown in [64], [65], which scales identically to that with the optimal DPC

scheme assuming perfect CSI as the number of users goes to infinity, for any given

user’s SNR. Essentially, this result implies that the intra-cell interference in a single-

cell RBF system can be virtually eliminated when the number of users is sufficiently

large, and an “interference-free” MU broadcast system is realizable.

Although substantial extensions of the single-cell RBF scheme have been pur-
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sued, there is very limited work on the performance of the RBF scheme in a more

realistic multi-cell system, where the ICI becomes a dominant factor. It is worth not-

ing that since the universal frequency reuse is more favourable in future generation

cellular systems, ICI becomes a more severe issue as compared to the traditional case

with only a fractional frequency reuse. A notable work is [47], in which the sum-rate

scaling law for the multi-cell system with RBF has been shown to be similar to the

single-cell result in [64], [65] as the number of per-cell users goes to infinity, regard-

less of the ICI. This result, albeit appealing, does not provide any insight on how to

practically design RBF in an ICI-limited multi-cell system.

Furthermore, the effect of receive spatial diversity on the rate performance

of RBF with multi-antenna receivers is not yet fully characterized in the literature,

even in the single-cell case. Note that some prior works have studied RBF under a

single-cell MIMO setup, e.g., [64], [65]. Assuming that the number of users goes to

infinity for any given SNR, it has been shown therein that RBF schemes with single-

or multi-antenna receivers achieve the same sum-rate scaling law with the growing

number of users. The conventional asymptotic analysis thus leads to some pessimistic

results that receive spatial diversity provides only marginal gains to the achievable

rate of RBF [64], [65].

In this thesis, we aim to characterize the achievable rate for the multi-cell RBF

scheme by more judiciously analyzing the impacts of ICI on the system through-

put, for both the finite-SNR and high-SNR regimes. We furthermore investigate the

achievable rate of a multi-cell MIMO RBF system with different receive spatial di-
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versity techniques under the high-SNR regime. Our newly obtained insights are in

sharp contrast to the existing results in the literature. Particularly, it is revealed

that intra- and inter-cell interference play a very important role in multi-cell RBF

systems. Therefore, the optimal performance is achieved only by carefully allocating

the number of transmit beams in each cell. It is also discovered that receive spatial

diversity is significantly beneficial to the rate performance of multi-cell RBF systems.

More details and discussions will be given in the subsequent chapters.

1.2 Performance Measures

There are many different measures which can be used to characterize the performance

of wireless communication systems. In this section, we briefly summarize the key

measures which will be considered throughout this thesis.

1.2.1 Output Signal-to-Noise Ratio and Signal-to-Interference-

Plus-Noise Ratio

Consider a wireless communication system with either single or multiple antennas at

the receiver/user. The receiver can employ spatial diversity techniques if there are

multiple antennas at the receiver side. The output SNR is defined as

SNR =
Power of the desired signal at the output of the combiner

Power of the noise at the output of the combiner
. (1.1)

In a wireless system, the channel is time-varying. The output SNR, which

5
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depends explicitly on the channel, is thus a random quantity. It is obvious that the

performance becomes better with a higher output SNR.

A relevant performance measure to the SNR is the output signal-to-interference-

plus-noise ratio (SINR). In a multiuser and/or multicell system, the received signal

is affected by intra-/inter-cell interference and noise. Again, if there are multiple

antennas at the receiver side, the receiver can employ spatial diversity techniques to

(presumably) improve the performance. The output SINR is defined as

SINR =
Power of the desired signal at the output of the combiner

Total power of the interference plus noise at the output of the combiner
.

(1.2)

The output SINR is also a random quantity, depending on both the direct-

and cross-link channels of the desired user and interference, respectively.

1.2.2 Ergodic and Outage Capacity

In his landmark paper [63], Shannon et. al. defined the capacity as the maximum

amount of information that can be transferred reliably across a communication chan-

nel. Mathematically, the capacity is defined as the maximum of the mutual informa-

tion between the transmitter and the receiver.

Now consider an experiment represented by the probability space S. A stochas-

tic process is defined by assigning to every outcome ψ a function of time t, i.e., X(t, ψ).

The ensemble of a stochastic process is the set of all possible time functions that can

result from an experiment, i.e., the set
{

X(t, ψ1), . . . , X(t, ψk), . . .
}

. X(t, ψ) is

6
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called ergodic if the ensemble average equals time average

lim
T→∞

1

T

∫ T/2

−T/2

X(t, ψk)dt = E

{

X(tn, ψ)
}

=

∫ ∞

−∞

xf(x; tn)dx, (1.3)

∀k, n, where f(x; tn) is the first order probability density function (PDF) of the ran-

dom variable X(tn, ψ). That is, the time-averaged mean of X(t, ψ) equals its proba-

bilistic mean.

In a wireless communication system, the channels are often stochastic pro-

cesses, depending on both the time and state of the channel. For ergodic capacity,

the underlying assumption here is that the channel fading processes are ergodic, and

the transmission time is long as to reveal the long-term ergodic properties of such

processes.

Note that the ergodicity assumption, in general, might not be satisfied in some

fading channels. When there is no significant channel variability during the whole

transmission, it is possible that the Shannon capacity equals to 0. In such cases, the

q% outage capacity Cout should be considered, which is defined as the channel capacity

C which is guaranteed to be supported by (100 − q)% of the channel realizations,

required to provide a reliable service, i.e.,

Pr
{
C ≤ Cout

}
≤ q% (1.4)

1.2.3 Rate Region

In a point-to-point communication system, the channel capacity is a single number

that imposes the maximum data rate from the transmitter to the receiver. In a
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Base station

User 1

User 2

User 3

Figure 1.1: A broadcast channel with 3 users.

broadcast channel as shown in Fig. 1.1, the transmitter can simultaneously transmit

to more than one user. Thus, we obtain a set of all simultaneously achievable rate

vectors, often called the rate region. Similarly, the sum-rate region of a multi-cell

system, such as shown in Fig. 1.2, is defined as the set of all the achievable sum-rate

tuples for all the cells. Assume that we have C cells and Kc users in the c-th cell.

The C-dimensional sum-rate region of the C-cell system is actually a projection of a

(
∑C

c=1Kc

)

-dimensional rate region, consisting of
∑C

c=1Kc rate vectors for all users

in the system.

In real systems, there are several constraints on the transmit power, quality of

service (QoS), etc., as the specifications for the networks. It is necessary to note that

in those cases, the rate region should follow the specifications. Certainly, the rate

8
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Cell 1 Cell 2

Cell 3

Figure 1.2: A three-cell downlink system.

regions under different setups might be different.

1.2.4 Degrees of Freedom (DoF) and DoF Region

The DoF, or the so-called “pre-log” factor, is a useful and widely-accepted metric

for investigating the capacity/rate performance of wireless communication systems.

Mathematically, the DoF is defined as the rate normalized by the logarithm of the

SNR as the SNR goes to infinity

DoF = lim
SNR→∞

R(SNR)

log2(SNR)
, (1.5)

where R(SNR) is the throughput of the considered system, which is a function of the

SNR.

As the DoF is a summary parameter for the rate/capacity, we also have the

9
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DoF region which characterizes the rate region of multi-user systems. In particular,

the DoF region of a multi-cell system is defined as follows [19] [28].

Definition 1.2.1 (General DoF region) The DoF region of a C-cell downlink system

is defined as

D =

{

(d1, d2, · · · , dC) ∈ R
C
+ : ∀(ω1, ω2, · · · , ωC) ∈ R

C
+;

C∑

c=1

ωcdc ≤ lim
SNR→∞

sup
R∈R

C∑

c=1

ωc
Rc(SNR)

log2(SNR)

}

, (1.6)

where SNR here means the per-cell SNR; ωc, dc, and Rc(SNR) are the non-negative

rate weight, the achievable DoF, and the sum-rate of the c-th cell, respectively; and

the region R is the set of all the achievable sum-rate tuples for all the cells, denoted

by R = (R1(SNR), R2(SNR), · · · , RC(SNR).

1.3 Dissertation Overview and Major Contribu-

tions

1.3.1 Chapter 2 - Transmission Schemes for Single- and Multi-

Cell Downlink Systems

The pioneering works of [15] [70] and [76] showed that MIMO techniques can lead

to huge capacity improvements for point-to-point, or single-user, systems without

increasing either power or bandwidth. The situation is considerably different for

multi-user systems, where the inter-user/inter-cell interference exists and severely
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affects the performance. In Chapter 2, we give a literature review on the precoder

designing problem for single- and multi-cell downlink systems. For single-cell case, we

introduce the optimal DPC and the linear BD schemes. Moving to the multi-cell/IC

case, we describe the IA scheme which is asymptotically optimal for many types of

IC under high-SNR regime.

1.3.2 Chapter 3 - Single-Cell MISO RBF

Since its introduction in the landmark paper [72], opportunistic communication has

developed to a broad area with various constituent topics. In this chapter, we aim to

present a succinct overview on the key developments of OBF/RBF, summarizing some

of the most important results contributed to the field. Note that in the literature,

virtually all the works consider the single-cell case. It is only quite recent that the rate

performance of the multi-cell RBF is explored in our works [49] [50]. We therefore

limit our survey to the single-cell OBF/RBF.

1.3.3 Chapter 4 - Multi-Cell MISO RBF

In this chapter, the achievable rates of the MISO RBF scheme in a multi-cell setup

subject to the ICI are thoroughly investigated. Both finite-SNR and high-SNR

regimes are considered. For the finite-SNR case, we provide closed-form expressions

of the achievable average sum-rates for both single- and multi-cell RBF with a finite

number of users per cell. We also derive the sum-rate scaling law in the conven-

tional asymptotic regime, i.e., when the number of users goes to infinity with a fixed

11
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SNR. Since the finite-SNR analysis has major limitations, we furthermore consider

the high-SNR regime by adopting the DoF-region approach to characterize the op-

timal throughput tradeoffs among different cells in multi-cell RBF, assuming that

the number of users per cell scales in a polynomial order with the SNR as the SNR

goes to infinity. We show the closed-form expressions of the achievable DoF and

the corresponding optimal number of transmit beams, both as functions of the user

number scaling order or the user density, for the single-cell case. From this result, we

obtain a complete characterization of the DoF region for the multi-cell RBF, in which

the optimal boundary DoF point is achieved by BSs’ cooperative assignment of their

numbers of transmit beams according to individual cell’s user densities. Finally, if the

numbers of users in all cells are sufficiently large, we show that the multi-cell RBF,

albeit requiring only partial CSI at transmitters, achieve the optimal DoF region even

without the full transmitter CSI.

1.3.4 Chapter 5 - Multi-Cell MIMO RBF

The impact of receive spatial diversity on the rate performance of RBF is not fully

characterized even in a single-cell setup. This chapter studies the achievable sum-

rate in multi-cell MIMO RBF systems for the regime of both high SNR and large

number of users per cell. We propose three RBF schemes for spatial diversity receivers

with multiple antennas, namely, minimum-mean-square-error (MMSE), matched filter

(MF), or antenna selection (AS). The SINR distributions in the multi-cell RBF with

different types of spatial receiver are obtained in closed-form at any given finite SNR.
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Based on these results, we characterize the DoF region achievable by different multi-

cell MIMO RBF schemes under the assumption that the number of users per cell scales

in a polynomial order with the SNR as the SNR goes to infinity. Our study reveals

significant gains by using MMSE-based spatial receiver in the achievable sum-rate

and DoF region in multi-cell RBF, which considerably differs from the existing result

based on the conventional asymptotic analysis with fixed per-cell SNR. The results

of this paper thus provide new insights on the optimal design of interference-limited

multi-cell MIMO systems with only partial CSI at transmitters.

1.4 Publications

The following is the list of publications in referred journals and conference proceeding

produced during my Ph.D. candidature.

1.4.1 Book Chapter

1. H. D. Nguyen, R. Zhang, and H. T. Hui, “Random beamforming in multi-user

MIMO systems”, to appear in Recent Trends in Multiuser MIMO Communications,

InTech, ISBN: 980-953-307-459-2, 2013.

1.4.2 International Journal Papers

1. H. D. Nguyen, R. Zhang, and H. T. Hui, “Multi-cell random beamforming: achiev-

able rates and degrees of freedom region,” IEEE Trans. Sig. Proc., vol. 61, no. 14,
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pp. 3532-3544, July 2013 (Best Student Paper Award, 2nd NUS ECE Graduate Stu-

dent Symposium, National University of Singapore, 2012).

2. H. D. Nguyen, R. Zhang, and H. T. Hui,“Effect of receive spatial diversity on

the degrees of freedom region of multi-cell random beamforming,” submitted to IEEE

Trans. Wireless Commun., May 2013.
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1. H. D. Nguyen, X. Wang, and H. T. Hui, “Mutual coupling and transmit corre-
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Meeting (APS/URSI ’2011), pp. 301-304, Spokane, USA, July 2011.

3. H. D. Nguyen, X. Wang, and H. T. Hui, “Keyhole and multi-keyhole MIMO

channels: modeling and simulation,” in Proc. IEEE International Conference on

Information, Communications and Signal Processing (ICICS ’2011), pp. 1-5, Singa-

pore, Dec. 2011.

4. C. P. Ho, H. D. Nguyen, X. Wang, and H. T. Hui, “A simple channel simulator for

14



RBF FOR MULTI-CELL MIMO SYSTEMS H. D. NGUYEN

multi-user MIMO broadcast channel systems,” in Proc. Progress in Electromagnetics

Research Symposium (PIERS ’2012), pp. 1317-1322, Kuala Lumpur, Malaysia, Mar.

2012.

5. H. D. Nguyen, R. Zhang, and H. T. Hui, “Degrees of freedom region in multi-

cell random beamforming,” in Proc. IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP ’2012), pp. 2837-2840, Kyoto, Japan, Mar.
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Chapter 2

Transmission Schemes for Single-

and Multi-Cell Downlink Systems

MIMO techniques have led to additional degrees of freedom which can be utilized to

offer extra gains over conventional communication systems. The pioneering works of

[15] [70] [76] and subsequent studies have shown significant improvements on the array,

diversity, and multiplexing gains when MIMO techniques are employed in single-user,

point-to-point scenarios. Further investigations have considered multi-user MIMO

cases, where inter-user and inter-cell interferences become dominant factors. In this

chapter, we summary the main results of the precoder designing problem for single-

and multi-cell downlink systems.
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2.1 Single-Cell MIMO BC

In this section, we describe the mathematical model of the single-cell MIMO downlink

system. We then introduce the capacity-achieving scheme, i.e., DPC. It has been

shown in [74] that the DPC scheme can achieve the capacity region of the single-

cell MU MIMO downlink. The DPC scheme, however, is non-linear and requires a

high implementation complexity at both the transmitter and receivers. On the other

hand, linear precoding schemes are of low complexity but sub-optimal transmission

techniques. We then briefly discuss the well-known BD scheme which is introduced

in [67]. Finally, we present some asymptotic rate scaling laws for both the DPC and

BD schemes.

2.1.1 Channel Model

We consider a MU MIMO BC with NT antennas at the BS, and K users each with

NR,k antennas. The received signal for the k-th user can be expressed as

yk = Hkx+ nk, (2.1)

where nk ∈ C
NR,k×1 and Hk ∈ C

NR,k×NT are the additive white Gaussian noise

(AWGN) vector and the channel matrix associated with the k-th user, respectively;

it is assumed that the components of the noise nk are independent and identically dis-

tributed (i.i.d.) and each component is distributed as a circularly symmetric complex

Gaussian (CSCG) variable with zero mean and unit variance, denoted as CN (0, 1);

x =
[

xT1 , · · · ,xTK
]T

is the aggregated transmit signal (column) vector where xk is
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the signal from the BS to user k. The BS is subjected to an average power constraint

PT , i.e., Tr(Σx) ≤ PT where Σx = E[xxH ] is the transmit covariance matrix.

2.1.2 Dirty-Paper Coding

The DPC scheme approaches the precoder designing problem for single-cell MIMO

BC from an information theoretical point of view. The objective is to maximize the

weighted sum rate of all users. Note that the notion of DPC was first introduced in

[10] in 1983. The fundamental idea is that when the CSI in the form of interference is

present at the transmitter, the channel capacity is the same as that of a channel with

no interference. This result has motivated the application of DPC to MIMO BC. It

has been shown that the sum-capacity and the capacity region of a single-cell MU

MIMO downlink system can be attained by the DPC scheme (see, e.g., [9] [10] [74]).

In the MU MIMO downlink system with K users, the DPC scheme is employed

at the BS. At the k-th step, k = 1, . . . , K, the BS chooses the codeword for user uk.

Since the BS knows the codewords of user u1, . . . , uk−1, it can pre-subtract them.

User uk thus does not see the interferences from user u1, . . . , uk−1. The transmit

signal vector is

x = x1 + x2 + · · ·+ xK , (2.2)

and the covariance matrix of user k is denoted as Σk = E[xkx
H
k ] ∈ CNT×NT . In this

case, we have

Σx = E[xxH ] = Σ1 +Σ2 + · · ·+ΣK . (2.3)
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The achievable rate for user uk can be expressed as

Ruk = log2

∣
∣
∣I +Huk

(
∑

j≥kΣuj

)

HH
uk

∣
∣
∣

∣
∣
∣I +Huk

(
∑

j>kΣuj

)

HH
uk

∣
∣
∣

(2.4)

The rate region can be obtained by taking the convex hull of the union of

all possible orderings u1, . . . , uK and all positive semidefinite matrices Σu1 , . . . , ΣuK ,

subjected to
∑K

k=1 Tr
(
Σuk

)
≤ PT . It has been shown that the rate region of a MIMO-

BC employing the DPC scheme coincides with the capacity region of this MIMO-BC

channel (see [74]).

The sum capacity is defined as the maximum total rates, i.e.,

Csum = max
{Σk}K

k=1
,
∑K

k=1Tr
(
Σk

)
≤ PT

R1 +R2 + · · ·+RK . (2.5)

Note that (2.5) is neither a convex nor concave function of the covariance

matrices. Thus, numerically finding the maximum is a nontrivial problem. Based

on the notion of uplink-downlink duality for single-cell MIMO systems, it has been

shown in [31] that (2.5) is equivalent to

Csum = max

{Ωk}Kk=1 : Ωk � 0,

K∑

k=1

Tr
(
Ωk

)
≤ PT

log2

∣
∣
∣
∣
∣
I +

K∑

k=1

HH
k ΩkHk

∣
∣
∣
∣
∣
. (2.6)

Furthermore, Jindal et. al. introduced two algorithms to determine Csum. We

only present Algorithm 1 here since the second algorithm is similar but with some

slight modifications.
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Algorithm 1 [31]: Finding the sum capacity of a single-cell MIMO BC

Input: The power constraint PT , number of iterations N , and K channel matrices:

H1, . . . , HK .

1. Initialize the covariance matrices Ω
(n)
k such that

∑K
k=1 Tr

(
Ω

(n)
k

)
≤ PT , for k =

1, . . . , K and n = −(K − 2), . . . , 0. For example, we can choose Ω
(n)
k = PT

KN
I.

2. Repeat the following steps N times.

for n = 1 to N do

2. a. Generate the auxiliary matrices

G
(n)
k = Hk

(

I +

K−1∑

j=1

HH
[k+j]K

Ω
(n−K+j)
[k+j]K

H [k+j]K

)−1/2

(2.7)

for i = 1, . . . , K; where [x]K = mod ((x− 1), K) + 1.

2. b. Find the new covariance matrices
{

Ω
(n)
k

}K

k=1

{

Ω
(n)
k

}K

k=1
= arg max

{Ωk}Kk=1 : Ωk � 0,
K∑

k=1

Tr
(
Ωk

)
≤ PT

K∑

k=1

log2

∣
∣
∣I +

(
G

(n)
k

)H
ΩkG

(n)
k

∣
∣
∣ .

(2.8)

Here we can use the water-filling algorithm with power constraint PT .

end for
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2.1.3 Block Diagonalization

The DPC scheme can achieve the sum capacity and the capacity region of a MU

MIMO downlink system. However, the iterative nature of DPC typically results in

a high computational cost and complexity at both the transmitter and receivers. In

certain applications, such complexity might be forbidden especially at the receiver

side, where the mobile users’ devices are expected to be simple. Motivated by this

limitation of the DPC scheme, Spencer et. al. has proposed the BD scheme in [67].

The BD scheme is a linear precoding technique which has low computational cost and

complexity. We first describe the channel inversion (CI) technique for MU MIMO

downlink systems with single-antenna users, which is the root of the BD scheme.

2.1.3.1 Channel Inversion for Single-Antenna Users

Consider (2.1) with NR,k = 1 and NT ≥∑K
k=1NR,k. With only one antenna, each user

cannot perform any interference cancellation technique. The objective is to design the

precoder employed at the BS such that the inter-user interferences are minimized. In

the CI scheme, the BS simply takes the inverse/pseudo-inverse of the channel matrix,

thus completely eliminating the inter-user interference. The transmit signal can be

expressed as

x =

√

PT

Tr
[(
HHH

)−1]H
H
(
HHH

)−1
s, (2.9)

where H =
[
hT1 , . . . ,h

T
K

]T
is the aggregate channel matrix of K users and s =

[s1, s2, . . . , sK ]
T is the data signal vector intended to communicate to K users. Here,
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−

=
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Figure 2.1: The channel inversion scheme for a MU MIMO downlink

channel with single-antenna users.

the term
√

PT

Tr
[(
HH

H
)−1] is due to the average transmit power constraint.

With this approach, all inter-user interference is canceled. We thus obtain K

separate scalar channel. The received signal at the k-th user is

yk =

√

PT

Tr
[(
HHH

)−1]sk + nk. (2.10)

The CI scheme is illustrated in Fig. 2.1.
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2.1.3.2 Block Diagonalization for Multi-antenna Users

With multi-antenna at the receivers, the users in a MU MIMO downlink channel

can apply receive spatial techniques to enhance the rate performance. Note that

when the users have multiple antennas, the CI scheme can also be directly applied by

considering each antenna as a separate user. In such cases, both the inter-user and

inter-stream interferences are canceled out.

The BD scheme, rather than completely diagonalizing the channel, only block-

diagonalizes it. The idea is to remove the inter-user interference only. Each receiver,

however, needs to perform some types of signal processing to decode its data streams.

The received signal at user k is

rk = BkHkASs+ nk, (2.11)

where AS =
[
A1,A2, · · · ,AK

]
with Ak ∈ CNT×NR,k and s =

[

sT1 , · · · , sTK
]T

with

sk ∈ CNR,k×1 being, respectively, the precoding matrix and the transmit symbol of

the k-th user, who is allocated Lk ≤ NR,k transmit beams; Bk ∈ CNR,k×NR,k is the

receive decoder. The system model is illustrated in Fig. 2.2.

The goal is to find AS such that

HAS =















M 1 0 . . . 0

0 M 2 . . . 0

...
...

. . .
...

0 0 . . . MK















(2.12)
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H User 1

User 2

User K

Figure 2.2: The block diagonalization scheme for a MU MIMO downlink

channel with multi-antenna users.

We define the following singular value decomposition (SVD) [67]

[

HT
1 · · · HT

k−1 HT
k+1 · · · HT

K

]T

= Ū k

[

Λ̄k 0
][

V̄
(1)
k V̄

(0)
k

]H

. (2.13)

Note that
[

HT
1 · · · HT

k−1 HT
k+1 · · · HT

K

]T

V̄
(0)
k = 0. The columns of V̄

(0)
k thus are

the candidates to form Ak. We have

Heff = H
[
V̄

(0)
1 , V̄

(0)
2 , . . . , V̄

(0)
K

]
=















H1V̄
(0)
1 0 . . . 0

0 H2V̄
(0)
2 . . . 0

...
...

. . .
...

0 0 . . . HKV̄
(0)
K















(2.14)
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Suppose that the objective is to maximize the throughput. We define the

following SVD [67]

HkV̄
(0)
k =

[

U
(1)
k U

(0)
k

]







Λk 0

0 0







[

V
(1)
k V

(0)
k

]H

. (2.15)

The receive and transmit precoding matrix can be chosen as

Bk = U
(1)
k , (2.16)

AS =
[

V̄
(0)
1 V

(1)
1 , V̄

(0)
2 V

(1)
2 , · · · , V̄ (0)

K V
(1)
K

]

× P 1/2. (2.17)

Here, P 1/2 is the power allocation matrix, Tr(P ) = PT . We can further decompose

P 1/2 into P 1/2 = diag
(
P

1/2
1 ,P

1/2
2 , · · · ,P 1/2

K

)
in which the matrix P

1/2
k allocates the

power to the eigenvalues of Λk. The received signal of user k, rk, can be expressed

in the following form

rk = ΛkP
1/2
k sk + ñk, (2.18)

where the elements of ñk’s (= U
(1)
k nk) are i.i.d. CN (0, 1), k = 1, . . . , K.

The sum-rate thus can be expressed as

RBD =

K∑

k=1

log2 det
[
Λ2
kP k + I

]
=

K∑

k=1

Lk∑

i=1

log2
(
pk,iλ

2
k,i + 1

)
, (2.19)

in which
√
pk,i and λk,i are the elements of P

1/2
k and Λk, respectively. The transmit

power constraint is
∑K

k=1

∑Lk

i=1 pk,i = PT . Note that a joint power allocation is im-

plemented for all of the eigenvalues of K users. To maximize the sum-rate, standard

water-filling power allocation is applied. That means pk,i can be chosen as:

pk,i = (ρ− 1/λ2k,i)
+, (2.20)
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where,

ρ =

PT +
K∑

k=1

L̄k∑

i=1

λ−2
k,i

N̄T

, (2.21)

and L̄k denotes the number of non-zero elements in P k, i.e., pk,i > 0, i ∈ {1, 2, · · · , L̄k}

and pk,i = 0 otherwise. The total number of supported beams is N̄ =
K∑

k=1

L̄k. We

obtain the following sum-rate expression for the BD scheme:

RBD =
K∑

k=1

Lk∑

i=1

(

log(ρλ2k,i)
)+

. (2.22)

2.1.3.3 Asymptotic Scaling Laws

A relevant investigation is to compare the rate performance of any sub-optimal scheme

to the (optimal) DPC scheme. However, such exact study is difficult and often leads to

no significant insight. A widely-accepted alternative method is to consider asymptotic

analyses instead. There are two major approaches: high-SNR and large-number-of-

user analyses. In the following results, we assume that the channels are i.i.d. Rayleigh

fading, i.e., the components of Hk in (2.1) are i.i.d. CSCG random variable and each

distributed as CN (0, 1).

Theorem 2.1.1 ([42]) As the transmit power is asymptotically large, the ergodic

sum capacity and rate obtained by DPC and BD, respectively, converge to the same

scaling law

E[Csum], E[RBD]
PT→∞→ min

(

NT ,

K∑

k=1

NR,k

)

log2 (1 + PT ) . (2.23)
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Furthermore, assume that NT ≥ ∑K
k=0NR,k. The expected loss due to BD is given by

E[Csum]− E[RBD]
PT→∞→ log2(e)

K−1∑

k=0

N−1∑

n=0

K(N−1)
∑

i=kN+1

1

M − n− i
. (2.24)

Consider a MIMO point-to-point link with an
(
∑K

k=1NR,k

)

-antenna receiver

and an NT -antenna transmitter, it is well-known that the ergodic capacity of this

channel scales as min
(

NT ,
∑K

k=1NR,k

)

log2 (1 + PT ) as PT → ∞ [70]. We thus see

that the DoF for this point-to-point MIMO link and the MU MIMO downlink em-

ploying DPC or BD are all equal to min
(

NT ,
∑K

k=1NR,k

)

. This result is intuitive.

Note that the DPC pre-subtracts the interference, while the BD scheme cancels the

inter-user interference, creating K separate point-to-point links with NR,k DoF each.

Finally, Theorem 2.1.1 effectively states the optimality of the BD scheme as the

transmit power approaches infinity.

In Fig. 2.3, we compare the numerical sum-rates of the DPC and BD schemes

and the scaling law NT log2 (1 + PT ) as the transmit power PT → ∞. The parameters

for the two systems are: (a) K = 100, NT = 6, and each user in the system employing

the DPC or BD has NR,k = Lk = 2; (b) K = 50, NT = 4, and each user in the system

employing the DPC or BD has NR,k = Lk = 2. The DPC scheme successively

encodes the transmit beams for all K users, while
∑K

k=1NR,k/NT groups of users are

pre-defined for the BD and an exhausted search is performed within these groups to

find the assignment with the maximum sum-rate. It is observed that the scaling law

matches well with the numerical results.
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Figure 2.3: Comparisons of the numerical sum-rates of the DPC and BD

schemes and the scaling law NT log2 (1 + PT ) as functions of the transmit

power PT .

Theorem 2.1.2 ([65], [80]) 1 As the number of users is asymptotically large, the

ergodic sum capacity and rate obtained by DPC and BD (with semi-orthogonal user

selection2), respectively, converge to the same scaling law

1The result in [80] only states for the CI scheme. However, we can easily extend it to BD using

simple bounds.
2The semi-orthogonal user selection iteratively selects the user based on the interference it causes

to the existing users. The user with the least interference is added to the list. Please refer to [80]

for more information.
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Figure 2.4: Comparisons of the numerical sum-rates of the DPC and

BD schemes, and the scaling law NT log2

(

1 + PT

NT
log
(
∑K

k=1NR,k

))

as

functions of the number of users K.

E[Csum], E[RBD]
PT→∞→ NT log2

(

1 +
PT
NT

log

(
K∑

k=1

NR,k

))

. (2.25)

Essentially, Theorem 2.1.2 confirms the optimality of the BD scheme as the

number of users grows large. More information on this asymptotic analysis can be

found in the following Chapter 3.

In Fig. 2.4, we compare the numerical sum-rates of the DPC and BD schemes

and the scaling law as the number of users K → ∞. The DPC successively encodes
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the transmit beams for all K users, while
∑K

k=1NR,k/NT groups of users are pre-

defined for the BD and an exhausted search is performed within these groups to find

the group with the maximum sum-rate. The parameters for the two systems are: (a)

SNR = 20 dB, NT = 6, and each user in the system employing the DPC or BD has

NR,k = Lk = 2; (b) SNR = 10 dB, NT = 4, and each user in the system employing

the DPC or BD has NR,k = Lk = 2. It is quite clear that the optimal multiuser

diversity NT log2

(

1 + PT

NT
log
(
∑K

k=1NR,k

))

is achievable for the BD with exhaustive

group-searching. We note that the rate performance does not improve significantly

as K → ∞. As an example, consider system (a). The rate improvement as K grows

from 100 to 1000 is roughly 2.5 bps/Hz, i.e., merely 0.06 %. It is not surprising,

since the rate scaling law states that the rate only grows double-logarithmically with

respect to K as K is asymptotically large.

2.2 Multi-Cell/Interference Channel: Interference

Alignment

In the previous section, we have introduced the DPC scheme which can achieve the

capacity region and the sum capacity of single-cell MIMO BCs. A natural extension

is to find a scheme which is optimal for multi-cell MIMO BC with additional ICI.

Note that the multi-cell downlink system in general can be modelled as a Gaussian

IC. A complete characterization of the capacity region of the Gaussian IC, even for

the two-user case, is still open. The largest achievable rate region known to date is
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the so-called Han-Kobayashi region [22].

Although the exact capacity region and/or sum capacity are still unknown,

there have been considerable developments which reveal useful insights on IC systems.

An important recent advance is the IA technique. With the aid of IA, the maximum

achievable DoF has been obtained for various IC models which provides useful insights

on designing optimal transmission schemes. In a sense, we can consider IA as the

asymptotically optimal, sum-capacity achieving scheme under high-SNR regime for

certain ICs.

In this section, we describe the mathematical model of the K-user IC. We

then review the (asymptotic) IA scheme with symbol extensions, i.e., the signal is

encoded over multiple dimensions such as varying channel realizations. The asymp-

totic IA scheme is primarily of theoretical interest because of its strongly asymptotic

nature which limits its practical applications. Therefore, we also introduce three IA-

based schemes, which do not consider symbol extensions and thus are practical and

applicable even when the channel is static.

2.2.1 Channel Model

Consider a flat-fading K-user MIMO IC with K transmitters each with NT antennas

and K receivers each with NR antennas. The received signal at the k-th receiver over

the t-th time slot is given by

yk(t) = Hk,k(t)V k(t)sk(t) +

K∑

l=1, l 6=k

Hk,l(t)V l(t)sl(t) +wk(t), (2.26)

32



RBF FOR MULTI-CELL MIMO SYSTEMS H. D. NGUYEN

where t is the time-slot, frequency-slot, or time-frequency tuple index; Hk,l(t) ∈

CNR×NT is the channel between receiver k and transmitter l; V k(t) ∈ CNT×NT and

sk(t) ∈ C
NT×1 are the linear precoder and the signal symbol from the k-th trans-

mitter, respectively; wk(t) ∈ CNT×1 is the AWGN at the k-th receiver with i.i.d.

components each distributed as CN (0, σ2
k). The transmit power constraint is PT , i.e.,

Tr
(
Et[sk(t)s

H
k (t)]

)
≤ PT . Each receiver then linearly processes the received signal

with a decoder UH
k and obtain

rk(t) = UH
k (t)Hk,k(t)V k(t)sk(t) +

K∑

l=1, l 6=k

UH
k (t)Hk,l(t)V l(t)sl(t) +UH

k (t)wk(t).

(2.27)

As usual, the objective is to design UH
k (t) and V k(t) such that a high through-

put, or a low bit-error-rate, or a mixture of these two criteria, is achieved at each user.

Most of the IA-based schemes focus on maximizing the user throughput. The funda-

mental idea is to design the precoding matrices V k(t) such that the space spanned

by the interference signals is consolidated within a number of dimensions, which does

not overlap with the desired signals’ space. Therefore, a simple zero-forcing decoder

UH
k (t) can be employed to recover the desired, free-of-interference signals at each

receiver.

2.2.2 Asymptotic Interference Alignment with Symbol Ex-

tensions

Asymptotic IA plays an important role in the development of IA-based schemes and

the investigation of ICs. First and foremost, it is the first IA-based scheme proposed
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in [8], in which the idea of IA is formally established. More importantly, it shows that

by coding over multiple symbols, the maximum number of interference-free symbols

can be simultaneously transmitted over the IC, i.e., the maximum sum of DoF is

attainable. Achieving the IC’s maximum sum of DoF implies that the asymptotic IA

can approach the IC sum capacity at high SNR regime.

To illustrate the asymptotic IA scheme, we consider the K-user SISO IC. In

this case, (2.26) becomes

yk(t) = Hk,k(t)Vk(t)sk(t) +
K∑

l=1, l 6=k

Hk,l(t)Vl(t)sl(t) + wk(t). (2.28)

The following assumption is essential [8]

Assumption 2.2.1 The channel coefficient values are drawn i.i.d. from a continuous

distribution and the absolute value of all the channel coefficient is bounded between a

non-zero minimum value and a finite maximum value, i.e., 0 < Hmin <
∣
∣Hk,k(t)

∣
∣ <

Hmax < ∞.

Suppose that there are dk symbols transmitted over dk time or frequency slots

as a super-symbol. The super-symbol can be expressed as

s̄k(t) =















sk(dk(t− 1) + 1)

sk(dk(t− 1) + 2)

...

sk(dkt)















. (2.29)

Furthermore, assume that the signal is encoded over M > dk symbols. The

symbol extensions of the precoder and noise are denoted as V̄ k(t) and w̄k(t), respec-
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tively, where V̄ k(t) ∈ CM×dk and where w̄k(t) ∈ CM×1. The symbol extension of the

channel is a diagonal M ×M matrix, which is given as

H̄k,l(t) =















Hk,l(M(t− 1) + 1) 0 . . . 0

0 Hk,l(M(t− 1) + 2) . . . 0

... . . .
...

...

0 0 . . . Hk,l(Mt)















. (2.30)

We thus have

ȳk(t) = H̄k,k(t)V̄ k(t)s̄k(t) +

K∑

l=1, l 6=k

H̄k,l(t)V̄ l(t)s̄l(t) + w̄k(t). (2.31)

From this point onwards, we consider the channel model (2.31). The index t is

dropped for brevity. In [8], it was proved that the maximum sum of DoF achievable

for the K-user SISO IC is K
2
. The asymptotic IA scheme is then introduced and

shown that it can achieve K
2
DoF, thus establishing the optimality of the asymptotic

IA under high-SNR regime with symbol extensions. We describe the scheme in the

following sections.

2.2.2.1 Interference Alignment Objectives

At user 1, we want to ensure that the interference space spans no more than M − d1

dimensions. One way is to align the interference from the other users

H̄1,2V̄ 2 = H̄1,3V̄ 3 = · · · = H̄1,KV̄ K . (2.32)

To recover dk interference-free dimensions for user k, we can choose V̄ k, k 6= 1
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so that

span
(
H̄k,jV̄ j

)
∈ span

(
H̄k,1V̄ 1

)
; j 6= 1, k, (2.33)

where span(A) denotes the space spanned by the column vectors of the matrix A.

Under condition (2.32) and (2.33), all the interference are aligned at each

user. We have to verify that the desired signal subspace does not overlap with the

interference subspace, i.e., the columns of the M ×M matrix
[
H̄k,kV̄ k H̄k,jV̄ j

]
are

linearly independent for a given j 6= k. This can be proved using Assumption 2.2.1

[8].

2.2.2.2 Asymptotic Interference Alignment Scheme

Denote N = (K − 1)(K − 2)− 1, M = (n + 1)N + nN , d1 = (n + 1)N and dk = nN ,

k = 2, 3, . . . , K, where n is an arbitrary number. We further define

B =
(
H̄2,1

)−1
H̄2,3V̄ 3; (2.34)

Sk =
(
H̄1,k

)−1
H̄1,3

(
H̄2,3

)−1
H̄2,1; k = 2, 3, . . . , K; (2.35)

T
(i)
k =

(
H̄ i,1

)−1
H̄ i,kSk; i, k = 2, 3, . . . , K, i 6= k. (2.36)

Note that due to Assumption 2.2.1, H̄ i,k is full rank and thus invertible; and

T
(i)
k 6= T (l)

m with i 6= l or k 6= m. Condition (2.32) and (2.33) can be expressed as

At user 1 : V̄ k = SkB; k = 2, 3, . . . , K; (2.37)
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At user 2 :







span
(
T

(2)
3 B

)
= span

(
B
)
∈ span

(
V̄ 1

)
,

span
(
T

(2)
3 B

)
∈ span

(
V̄ 1

)
,

...

span
(
T

(2)
K B

)
∈ span

(
V̄ 1

)
,

(2.38)

At user k, k=3,4,. . . ,K :







span
(
T

(k)
2 B

)
∈ span

(
V̄ 1

)
,

...

span
(
T

(k)
k−1B

)
∈ span

(
V̄ 1

)
,

span
(
T

(k)
k+1B

)
∈ span

(
V̄ 1

)
,

...

span
(
T

(k)
K B

)
∈ span

(
V̄ 1

)
.

(2.39)

The goal is to determine V̄ 1 and B so that they satisfy the relations in (2.38)

and (2.39). Then V̄ k, k = 2, 3, . . . , K can be found using (2.37). We let w be the

M × 1 column vector w = [1, 1, . . . , 1]T . The sets of column vectors B and V̄ 1 can

be chosen to be equal to the following sets

B =

{(
∏

m,k∈{2,3,...,K},m6=l,(m,k)6=(2,3)

(
T

(m)
k

)αm,k

)

w : αm,k ∈ {0, 1, 2, . . . , n− 1}
}

,

(2.40)

V1 =

{(
∏

m,k∈{2,3,...,K},m6=l,(m,k)6=(2,3)

(
T

(m)
k

)αm,k

)

w : αm,k ∈ {0, 1, 2, . . . , n}
}

.

(2.41)

It can be shown that the above construction satisfies the IA conditions (2.37)-

(2.39) [8].
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2.2.2.3 Optimality of IA for the K-user SISO IC

In the previous sections, we have described the asymptotic IA for the K-user SISO

IC. The reason why the asymptotic IA scheme is important is that it can achieve the

maximum sum of DoF of a K-user SISO IC. We first state the following theorem

Theorem 2.2.1 [8, Theorem 1] The number of degrees of freedom for the K-user

SISO IC is upper-bounded by K
2

d1 + d2 + · · ·+ dK ≤ K

2
. (2.42)

With the construction given in the previous section, it has been shown that

the following DoF tuple is attainable [8]

(d1(n), d2(n), . . . , dK(n)) =

(
(n+ 1)N

(n+ 1)N + nN
,

nN

(n + 1)N + nN
, . . . ,

nN

(n+ 1)N + nN

)

.

(2.43)

Now by letting n → ∞, we see that each user can achieve 1
2
DoF, and d1 + d2+ · · ·+

dK = K
2
. We thus observe that the asymptotic IA scheme is asymptotically optimal

under high-SNR regime with symbol extensions.

The first drawback of the asymptotic IA scheme is that it requires a very large

number of symbol extensions to achieve the perfect IA. When the time domain is used

for IA, a non-causal knowledge of the CSI is required, which is practically difficult to

obtain. On the other hand, when the frequency domain is used for IA, this results

in an unreasonable number of sub-carriers and a correspondingly large bandwidth.

The second drawback is due to the CSI estimation and feedback, since asymptotic
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IA scheme requires the acquisition of accurate CSI to perform the calculation. The

back-haul communication thus is expected to be large. Finally, the synchronization

and cooperation between the nodes also prove to be costly and excruciating.

2.2.3 Interference Alignment without Symbol Extensions

In the previous section, we have introduced the asymptotic IA scheme assuming

that symbol extensions are available. In this section, we briefly discuss the IA-based

schemes without symbol extensions. This case arises when the channels are static

flat-fading or asymptotic IA is not realizable due to the constraints in estimation,

complexity, etc.

Assume the MIMO IC channel model as stated in (2.27) and suppose that the

number of information streams communicated by the k-th user is dk. Since only one

channel realization is considered, the time index t can be dropped and the channel is

given as

rk = UH
k rk

= UH
k Hk,kV ksk +

K∑

l=1, l 6=k

UH
k Hk,lV lsl +UH

k wk, (2.44)

where now U k ∈ CNR×dk and V k ∈ CNT×dk . The perfect IA requirements are [18]

UH
k Hk,lV l = 0dk×dl , ∀l 6= k (2.45)

rank
(
UH
k Hk,kV k

)
= dk. (2.46)

Finding the precoding and decoding matrices UH
k and V k satisfying (2.45) and

(2.46) is computationally intractable. Particularly, even the problem of checking the
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achievability of (2.45) and (2.46) with a certain DoF tuple (d1, d2, . . . , dK) is NP-

hard when NT , NR > 2 [59]. In the following, we describe three existing (heuristic)

IA-based schemes which aim to solve (2.45) and (2.46) given (d1, d2, . . . , dK).

2.2.3.1 Minimizing the Interference Leakage

The first approach to solve (2.45) and (2.46) is to minimize the interference leakage.

Here, the quality metric is the power of the leakage interference at each receiver, i.e.

the interference power remaining in the received signal after the receive interference

suppression filter is applied. The goal is to achieve the IA conditions (2.45) and (2.46)

by progressively reducing the leakage interference. The motivation for this scheme is

that when IA is realizable, the total interference leakage at each user will be zero and

we obtain perfect IA.

The interference leakage algorithm is given as follows
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Algorithm 2 The first IA-based scheme - Minimizing the interference leakage [18]

[56]

Input: Arbitrary precoding matrices V k ∈ CNT×dk , V kV
H
k = Idk×dk .

1. Compute interference covariance matrix at the receivers:

Qk =
K∑

j=1,j 6=k

PT
dj

Hk,jV jV
H
j H

H
k,j. (2.47)

2. Compute the interference suppression matrix at each receiver. The d-th column

of U k is given by:

uk,d = νd (Qk) , d = 1, . . . , dk, (2.48)

where νd (A) is the eigenvector corresponding to the d-th smallest eigenvalue of A.

3. Set the auxiliary reciprocal matrices V̄ k = U k.

4. Compute the new interference covariance matrix

Q̄j =
K∑

k=1,k 6=j

PT
dk

H̄j,kV̄ jV̄
H
j H̄

H
j,k, (2.49)

where H̄j,k = HH
k,j is the reciprocal channel matrix.

5. Compute the interference suppression matrix at each receiver. The d-th column

of Ū k is given by:

ūj,d = νd
(
Q̄j

)
, d = 1, . . . , dj, (2.50)

6. Reverse the communication direction and set V k = Ū k.

7. Repeat Step 1-6 until convergence or after a number of predefined iterations.
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2.2.3.2 Maximizing the SINR

Note that the algorithm in Section 2.2.3.1 only suppresses the interference at each

user, while ignoring the desired signal. The algorithm might perform well at high-

SNR regime, however, it is not optimal in general at intermediate SNR values. In

this section, we present an algorithm to maximize the SINRs at each user [18]. The

quality metric is the SINR for each stream of each user

SINRk,l =
uHk,lHk,kvk,lv

H
k,lH

H
k,kuk,l

uHk,lBk,luk,l

PT
dk
, (2.51)

where

Bk,l =
K∑

j=1

PT
dj

dj∑

d=1

Hk,jvk,dv
H
k,dH

H
k,j −

PT
dk

Hk,kvk,lv
H
k,lH

H
k,k + INR×NR

, (2.52)

and the unit vector that maximizes SINRk,l is given by

uk,l =
B−1
k,lHk,kvk,l

||B−1
k,lHk,kvk,l||

. (2.53)

The max-SINR algorithm is given as follows [18]
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Algorithm 3 The second IA-based scheme - Maximizing the SINR [18]

Input: Arbitrary precoding matrices V k ∈ C
NT×dk where columns of V k are linearly

independent unit vectors.

1. Compute the interference plus noise covariance matrix Bk,l for stream l at user

k as in (2.52), ∀ k ∈ {1, . . . , K}, l ∈ {1, . . . , dk}.

2. Compute the l-th column of the decoder uk,l at user k as in (2.53), ∀ k ∈

{1, . . . , K}, l ∈ {1, . . . , dk}.

3. Reverse the communication direction and use the decoder as precoder: V̄ k =

U k.

4. In the reciprocal channel, compute the interference plus noise covariance matrix

B̄k,l for stream l at user k as in (2.52), ∀ k ∈ {1, . . . , K}, l ∈ {1, . . . , dk}.

5. In the reciprocal channel, compute the l-th column of the decoder ūk,l at user k

as in (2.53), ∀ k ∈ {1, . . . , K}, l ∈ {1, . . . , dk}.

6. Reverse the communication direction and set V k = Ū k.

7. Repeat Step 1-6 until convergence or after a number of predefined iterations.
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2.2.3.3 Maximizing the Sum of DoF

Although the interference leakage and SINR are meaningful metrics to optimize for

the IC, they are not directly related to the DoF of each user. Another approach

is hence to maximize the available spatial DoF [52]. It was shown in [52] that the

conditions (2.45) and (2.46) naturally lead to a rank constrained rank minimization

(RCRM), where the rank constraints ensure that the desired signal spans all available

dimensions, while the rank minimization ensures that the interference spans as few

dimensions as possible.

Define the signal and interference matrices as

Sk = UH
k Hk,kV k ∈ C

d×d, (2.54)

Jk = UH
k

[
Hk,lV l

K
l=1,l 6=k

]
∈ C

d×(K−1)d, (2.55)

where each useful signal space spans d dimensions. Here we assume that d1 = . . . =

dK = d.

Solving (2.45) and (2.46) is equivalent to solving the following set of K parallel

RCRM problem

(P1(k)) : min.
U k,{V l}

K
l=1,l 6=k

rank(Jk)

s.t. rank(Sk) = d. (2.56)

Since it is not possible to solve in parallel the K optimization problem (P1(k)),

k = 1, . . . , K, the following RCRM is solved instead to maximize the sum of interference-
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free dimensions

(P2) : min.
{U l}

K
l=1,{V l}

K
l=1

K∑

k=1

rank(Jk)

s.t. rank(Sk) = d, ∀k. (2.57)

The problem (P2) is nonconvex and intractable. In [52], a heuristic solution

is proposed by approximating (P2) using the nuclear norm and relaxing the rank

constraints. The algorithm is given as follows
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Algorithm 4 The third IA-based scheme - Maximizing the sum of DoF [52]

Input: Arbitrary precoding matrices U k.

1. Given U k’s, solve the following convex optimization problem

(P3) : min.
{V l}

K
l=1

K∑

k=1

||Jk)||∗

s.t. Sk � 0d×d;

λmin(Sk) ≥ ǫ, ∀k,

where ||A||∗ = Tr
(√

AHA
)

is the nuclear norm of matrix A.

2. Given V k’s, solve the following convex optimization problem

(P4) : min.
{U l}

K
l=1

K∑

k=1

||Jk)||∗

s.t. Sk � 0d×d;

λmin(Sk) ≥ ǫ, ∀k.

3. Orthogonalize {U l}Kl=1 and {V l}Kl=1.

4. Repeat Step 1-3 for a predefined number of iterations.
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2.2.3.4 Numerical Results and Discussions

In this sub-section, we compare the rate performance of the three IA-based algorithms

introduced in Section 2.2.3.1, 2.2.3.2, and 2.2.3.3. The channel matrices are drawn

i.i.d. from a real Gaussian distribution with zero mean and unit variance.

In Fig. 2.5, we consider a 3-user interference channel with 2 antennas at each

node. The requested DoF for each user is d = 1. We also plot the upper-bound scaling

law, which can be obtained with asymptotic IA and symbol extensions [8]. Under this

setup, we observe that the max-SINR algorithm outperforms the other schemes when

the power is small. However, as the power becomes larger, the interference leakage

algorithm achieves a better sum-rate. Also note that the upper-bound scaling law is

not achievable in this case, since the request DoF can only be an integer.

In Fig. 2.6, we consider a 2-user interference channel with 4 antennas at each

node. Here we set the requested DoF for each user as either d = 1 or d = 2. For d = 1,

it is observed that the max-SINR and sum of DoF algorithm perform equivalently

well and provide a large rate benefit over the interference leakage scheme. For d = 2,

the same conclusion holds for high-SNR regime. However, the leakage minimization

algorithm achieves a higher sum-rate than the other (equivalent) two schemes at low-

SNR regime. Note that the upper-bound scaling law is achievable in this setup, even

without symbol extensions.

Finally we consider a 3-user interference channel with 6 antennas at each node.

The request DoF is set at d = 3. In this case, the interference leakage offers a huge rate
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Figure 2.5: Comparisons of the three IA algorithms and the upper-bound

scaling law 3
2
log2 (PT ).
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and the upper-bound scaling law 2 log2 (PT ).
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Figure 2.7: Comparisons of the three IA algorithms and the upper-bound

scaling law 9
2
log2 (PT ).

gain when compared with the max-SINR and sum of DoF schemes, especially under

high-SNR regime. It is observed that the three schemes also cannot appropriately

match with the upper-bound scaling law.

In summary, it is not possible to conclude which is the best IA-based algorithms

among the three algorithms. Under certain setups, one scheme can be better than

the others and vice versa. Furthermore, perfect IA is achievable with the IA-based

schemes in some cases, even without symbol extensions. This shows the usefulness of

the introduced algorithms, albeit they are heuristic and does not directly solve the
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IA conditions (2.45) and (2.46).
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Chapter 3

Single-Cell MISO RBF

The transmission schemes briefly described in Chapter 2 have a common requirement

of perfect and instantaneous CSI for all of the direct and cross-link channels at each

transmitter. As a consequence, these schemes are susceptible to CSI delay and esti-

mation error. Furthermore, the backhaul communication to transfer all CSI data to

all transmitting nodes is expected to be large. OBF and RBF schemes, introduced in

[72] and [64], respectively, have attracted a great deal of attention since they require

only partial CSI fedback to the BS. The fundamental idea in these schemes is to

achieve nearly interference-free downlink transmissions by exploiting the multi-user

channel diversity with opportunistic user scheduling. For single-cell case, it has been

shown that the achievable sum-rates with the RBF and optimal DPC both scale iden-

tically as the number of users in the cell approaches infinity, for any given SNR [64],

[65] (see Theorem 3.3.1 and 3.3.2).

This optimistic result shows the optimality of RBF in the regime of large
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number of users and has motivated extensive subsequent studies on, e.g., sum-rate

characterization [36], [53], quantized channel feedback [51] [60] [78], and precoder de-

sign with opportunistic scheduling [44], [80]. Opportunistic communication thus has

developed to a broad area with various constituent topics. In this chapter, we review

the key developments of OBF/RBF, summarizing some of the most important results

contributed to the field. Since virtually all the works in the literature consider the

single-cell case, we restrict this overview to the single-cell OBF/RBF. The extensions

of OBF/RBF to the multi-cell and/or MIMO case, which are the major contributions

of this thesis, will be discussed in Chapter 4 and 5.

3.1 System Model

Consider a multiple-antenna Gaussian BC with a BS having NT antennas and K

single-antenna mobile stations (MSs), K ≥ 1. We assume the channels to be flat-

fading and constant over each transmission period of interest. The BS transmits

M ≤ NT orthonormal beams and selects M from K users for transmission at each

time. The received signal of user k is given by

yk = hHk

M∑

m=1

φmsm + nk , (3.1)

where hk ∈ CM×1 is the channel vector between BS and the k-th user, and it is

assumed that all elements of hk are i.i.d. CN (0, 1); φm ∈ CM×1 and sm are the m-

th randomly generated unit-norm beamforming vector and transmitted data symbol,

respectively. It is assumed that the total sum power is PT , i.e., Tr
(
E[ssH ]

)
≤ PT ,

52



RBF FOR MULTI-CELL MIMO SYSTEMS H. D. NGUYEN

where s = [s1 , · · · , sM ]T . It is also assumed that the background noise nk is AWGN,

nk ∼ CN (0, σ2), ∀k.

The RBF scheme, introduced in [64], is as follows. In the training phase,

the BS generates M orthonormal beams, φ1, · · · ,φM and uses them to broadcast

the training signals to all K users. The total power of each BS is assumed to be

distributed equally over M beams. Each user measures the SINR values for all M

beams, which are shown in (3.2) below [64]

SINRk,m =
PT

M

∣
∣hHk φm

∣
∣
2

σ2 + PT

M

∑M
i=1,i 6=m

∣
∣hHk φi

∣
∣
2 . (3.2)

where m = 1, · · · ,M . Each user then

(F1) feeds all SINR values and the corresponding beam indexes back to the corre-

sponding BS; or

(F2) feeds the largest SINR value, i.e., SINRk,FB = maxm=1,··· ,K SINRk,m, and the

corresponding beam index FBk back to the corresponding BS.

When the number of users K is large, it is obvious that there might not enough

beams to be assigned to all users. Therefore, it is necessary to incorporate a certain

user-scheduling scheme to OBF/RBF. The following user scheduling scheme is widely

accepted due to its simpleness which leads to an easy implementation and investiga-

tion. Please refer to Section 3.6 for more discussion.

The BS schedules transmission at each time by assigning its m-th beam to the
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user with the highest SINR, i.e.,

km = arg max
k=1,··· ,K

SINRk,m. (3.3)

For the feedback scheme (F2), there is a small probability that one user may

be the strongest user for more than one beam. Therefore, a modified user scheduling

scheme is necessary. Here we introduce the scheme proposed in [34] and [79]. Specif-

ically, the BS ranks all K feed-backed beam SINRs. If SINRk,m is the largest one

among all K SINRs, then the BS selects the k-th user for the m-th beam. After that,

the BS will rank the feed-backed SINRs for the remaining beams. If now SINRl,n is

the largest one, where l 6= k and n 6= m, then the BS assigns the n-th beam to the

l-th user. This process continues until either all beams have been assigned to selected

users or there are some unrequested beams remaining. In the later case, the BS will

randomly select users for the remaining beams. The algorithm is given as follows.
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Algorithm 5 User-scheduling procedure for the feedback scheme (F2) [34] [79]

Input: The set of SINR values SS = {SINR1,FB, . . . , SINRK,FB} and the set of

corresponding beam indexes SF = {FB1, . . . , FBK}.

1. Initialize the chosen beam and user index set SCB = { ∅ }, SCU = { ∅ }.

2. Select (different) users who feedback different strongest beam indexes.

for m = 1 to M do

Select Sm ⊆ SS such that the beam indexes correspond to the SINRs in Sm are

the same FBj = m and the user index j 6∈ SCU

if (Sm 6= { ∅ }) then

Select the largest SINR value in Sm.

Add m into SCB.

Add the corresponding user index jm into SCU .

end if

end for

3. Randomly select the remaining beams with the remaining users.

for m = 1 to M do

if (m 6∈ SCB) then

Randomly select an index km from {1, . . . , K } \ SCU

Add m into SCB

Add km into SCU

end if

end for
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Then, the achievable sum rate in bits per complex dimension is given by

(F1) (with (F1) feedback scheme)

RRBF,F1 = E

[
M∑

m=1

log2 (1 + SINRkm,m)

]

=ME [log2 (1 + SINRk1,1)] , (3.4)

(F2) (with (F2) feedback scheme)

RRBF,F2

(a)≈ E

[
M∑

m=1

log2 (1 + SINRkm,m)

]

=ME [log2 (1 + SINRk1,1)] = RRBF,F1,

(3.5)

where (a) holds due to the negligibly small probability of assigning multiple

beams to one user, since an user k might be the strongest user for more than

one beam; and “=” due to the homogeneous distribution of the SINR.

The PDF and cumulative density function (CDF) of S := SINRk,m, ∀k,m can

be expressed as [64]

fS(s) =
e−s/η

(s+ 1)M

(

M − 1 +
s+ 1

η

)

. (3.6)

FS(s) = 1− e−s/η

(s+ 1)M−1
. (3.7)

where η = PT/(Mσ2) is the SNR per beam.

Remark 3.1.1 The OBF scheme is a special case of RBF. It corresponds to the case

of M = 1, i.e., the BS sends exactly one beam to communicate with the MSs.

Remark 3.1.2 The objective for introducing the feedback scheme (F2) is to get a

fair comparison with OBF, since each user in the OBF scheme also feeds back only

two scalar values to the BS. Note that Rsum,F2 ≤ Rsum,F1 and as K → ∞, Rsum,F2 →

Rsum,F1.
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3.2 Achievable Rate

3.2.1 Rate Expression for (F1) Scheme

Closed-form expressions for the sum-rate in RBF systems have been investigated in

many studies, where most of them concentrate on the rate with (F1) feedback scheme

(see (3.1)). It is expected, since the rate in this case is fairly simple (see (3.4)).

Loose approximations for (3.4) are presented in [36] and [53] using Gaussian hyper-

geometric functions. The results thus are quite complicated. However, the sum-rate

approximations in [36] and [53] can directly lead to some asymptotic results, e.g., the

sum-rate scaling law M log2 logK as K → ∞.

Recently, two accurate results for the rate expression have been reported in

the literature [50] [26]. Our contribution will be presented later in Chapter 4. The

following result is due to [26].

Lemma 3.2.1 ([26, Theorem 1]) The average sum rate of a single-cell RBF system

is given by

RRBF,F1 =
M

log 2

K−1∑

l=0

(
K − 1

l

)
(−1)l

l + 1
I
(
M(l + 1)

PT
, (M − 1)(l + 1) + 1

)

, (3.8)

where I(a, b) is defined as

I(a, b) =







(−1)b−1ab−1eaE1(a)

(b− 1)!
+

b−1∑

i=1

(i− 1)!

(b− 1)!
(−1)b−i−1ab−i−1, b ≥ 2 (3.9a)

eaE1(a), b = 1 (3.9b)

and E1(x) =
∫∞

x
e−t

t
dt is the exponential integral function.

57



CHAPTER 3: SINGLE-CELL MISO RBF

Assuming the feedback scheme (F1), (3.8) becomes a close rate approximation

for the scheme (F2), especially when the number of users K is large.

3.2.2 Rate Expression for (F2) Scheme

The exact expression of the sum rate with (F2) feedback scheme is derived in [79],

which involves a numerical integral with the SINR CDF of the first beam:

Lemma 3.2.2 ([79]) Assuming the feedback scheme (F2), the average sum rate of

the single-cell RBF is given by

RRBF,F2 =M

∫ ∞

0

log2(1 + x)f̂SINRk1,1
(x)dx, (3.10)

in which

f̂SINRk1,1
(x) =

K∑

k=1

1

M

(

1− 1

M

)k−1
K!

(K − k)!(k − 1)!
(F1(x))

K−k [1− F1(x)]
k−1 f1(x)

+

(

1− 1

M

)K
1

M − 1

M∑

m=2

f2,m(x), (3.11)

F1(x) =

∫ x

0

f1(t)dt, (3.12)

f1(x) =

M−1∑

m=0

(−1)mM !

(M −m− 1)!m!
exp

(

− (1 +m)x

η(mx− 1)

)

×

× (M + 1/η − 1 + (1/η −mM +m)x)(1−mx)M−3

(1 + x)M
,

(3.13)

f2,m(x) =

∫ ∞

0

∫ (M−m)w
m−1

0

(
1

η
+ z + w

)

fwm,βm:M ,zm

(

w, x

(
1

ρ
+ z + w

)

, z

)

dzdw.

(3.14)
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Finally, the function fwm,βm:M ,zm(w, β, z) is given in [37, (28)]

fwm,βm:M ,zm(w, β, z) =
M ![w − (m− 1)β]m−1

(L− 1)!(l − 1)!β̄M

exp
(

−w+β+z
β̄

)

(m− 2)!(M −m− 1)!
U(1− (m− 1)β)×

×
M−m∑

i=0

(
M −m

i

)

(−1)i(z − iβ)M−m−1U(z − iβ),

β > 0, w > (m− 1)β, z < (M − 1)β, (3.15)

where ρ = PT/M , U(x) is the unit step function, and β̄ = 1 due to the Rayleigh fading

channel model.

In a recent study [34], Kim et. al. also shows that the CDF of the largest

beam SINR of a user F1(x) can be expressed as

F1(x) = 1− 1

M(1 + x)M−1

min
(
M−1,⌈ 1

x
⌉−1
)

∑

r=0

(−1)r
(

M

r + 1

)

(1− rx)M−1e−
(r+1)Mx

ρ(1−rx) .

(3.16)

In Fig. 3.1, we show the sum rate performance of the feedback scheme (F1) and

(F2) with respect to different numbers of beam M and users K. The transmit power

is PT = 20 dB. Note that the simulation results and the analytical expressions are

in full agreement. We observe that the rate performance of (F1) and (F2) feedback

schemes are quite equivalent, even with a small number of users. Particularly, only

for the case of M = 4 and K = 5 that there is a noticeable difference between the

two schemes. The reason is due to the fact that K is approximately equal to M .

Thus, there is a high chance that the user assigned to a beam is chosen based on the

random selection step. We also observe that the sum-rates for the cases M = 2 are
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Figure 3.1: Comparison of numerical and analytical sum-rates with re-

spect to the number of users for PT = 20 dB and M = 2, 4.

larger than those of the case M = 4. In fact, this observation can be explained based

on our newly obtained results presented in Chapter 4.

In Fig. 3.2, we depict the sum rate performance of the feedback scheme (F1)

and (F2) with respect to different numbers of beam M and transmit power PT . The

number of users is fixed at K = 25. Again, the simulation results and the analytical

expressions are closely matched. At low-SNR regime, we notice that the setting

M = 4 gives better rate performance. However, at high-SNR regime, the setting

M = 2 outperforms M = 4. As we will see later, the DoF results, discussed in
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Figure 3.2: Comparison of numerical and analytical sum-rates with re-

spect to the transmit power for K = 25 and M = 2, 4.

Chapter 4, can provide a theoretical explanation for such an observation.

3.3 Asymptotic Analysis

Accurate expressions for the achievable sum rate, albeit important, are often too

complicated. To reveal more insights on the performance of single-cell RBF, asymp-

totic analyses have been considered in other studies. There are two main approaches,

namely, large-number-of-users and large-system analyses.
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3.3.1 Large Number of Users

The conventional asymptotic investigation of OBF/RBF is to consider the number of

users approaches infinity for a given finite SNR. Based on extreme value theory [13],

one of the most important results in opportunistic communication is proved in [64].

Strictly speaking, Theorem 3.3.1 only states for the single-cell RBF with the feedback

scheme (F2) in [64]. However, it is easy to see that the same result applies when the

scheme (F1) in Section 3.1 is considered.

Theorem 3.3.1 ([64, Theorem 1]) For fixed M ≤ NT and PT , the single-cell RBF

sum rate grows double-logarithmically with respect to the number of users, i.e.,

lim
K→∞

RRBF

M log2(1 +
PT

M
logK)

= 1. (3.17)

Furthermore, in [65], Sharif et. al. showed that NT log2(1 +
PT

NT
logK) is also

the rate scaling law of the optimal DPC scheme assuming perfect CSI as the number

of users goes to infinity, for any given user’s SNR. The result is stated below

Theorem 3.3.2 ([65, Lemma 3]) For fixed number of transmit antennas NT and

transmit power PT , the (single-cell) DPC sum-rate grows double-logarithmically with

respect to the number of users, i.e.,

lim
K→∞

RDPC

NT log2(1 +
PT

NT
logK)

= 1. (3.18)

Essentially, the result implies that the intra-cell interference in a single-cell

RBF system can be completely eliminated when the number of users is sufficiently
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large, and an “interference-free” MU broadcast system is attainable. This important

result therefore establishes the optimality of single-cell RBF and motivates further

studies on opportunistic communication. Various MIMO-BC transmission schemes

with different assumptions on the fading model, feedback scheme, user scheduling,

etc., can be shown achieving M log2(1 +
PT

NT
logK) as K → ∞, suggesting that it is

a very universal rate scaling law. For more information, please refer to, e.g., [24] [25]

[53] [68] [71] [80].

Finally, it is worth noting that the RBF sum rate grows only logarithmically

with K when the background noise is ignored [24] [71], i.e., as nk = 0, we have

lim
K→∞

RRBF

M
M−1

log2K
= 1. (3.19)

This suggests that a judicious approach is required when investigating RBF

under interference-limited channels such as multi-cell systems. Under such situation,

the background noise is of limited importance compared with the more dominant

intra-/inter-cell interference.

As an example, we compare the sum rates with the DPC and RBF schemes

employed at the BS with respect to the number of users K. The parameters are NT =

3, PT = 10 dB. For RBF system, we assume that the feedback scheme (F1) is used. We

also depict the scaling laws NT log2(1 +
PT

NT
logK) and NT

NT−1
log2K as comparisons.

The single-logarithmically scaling law fails to match the rate performance of the

RBF scheme. However, it is observed that the double-logarithmically scaling law can

capture the deceleration of the rate improvement as K → ∞. More discussions on
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Figure 3.3: Comparison of the numerical sum-rates with DPC and RBF

employed at the BS and two rate scaling laws with respect to the number

of users K for PT = 10 dB and M = 3.

the large-number-of-users analysis will be given in Chapter 4 and 5.

3.3.2 Large System

The large-system analysis, which is based on random matrix theory (RMT), is a well-

known and widely-accepted method to investigate the performance of communication

systems. A recent development of RMT is the deterministic equivalent approach,

which overcomes some limitations of traditional RMT.
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An application of the deterministic equivalent approach to single-cell RBF is

introduced in [11], in which a general MIMO-BC setup with MMSE receiver and

different fading models is considered. Assuming the numbers of transmit/receive an-

tennas and data beams to approach infinity at the same time with fixed ratios for

any given finite SNR, Couillet et. al. obtained “almost closed-form” numerical so-

lutions which provide deterministic approximations for various performance criteria.

Although these results are derived under the large-system assumption, Monte-Carlo

simulations demonstrate that they can be applied to study small-dimensional systems

with modest errors. Note that [11] is a major contribution to RMT and its appli-

cations do not limit to the RBF investigation only. However, [11] does not consider

opportunistic scheduling, which is one of the main features of RBF.

3.4 Reduced and Quantized Feedback in OBF/RBF

In practical systems, only a limited number of bits representing the quantized channel

gain/SINR can be sent from each user to the corresponding BS. Note that the feedback

schemes (F1) and (F2) in Section 3.1 require the transmission of 2MK and 2K scalar

values from K users, respectively, i.e., a linear increase with respect to the number of

users. It is thus of great interest to develop schemes which can reduce the numbers of

users and/or bits to be fed back. The idea of using only one-bit feedback is introduced

in several works, e.g., [51] [60] [78]. In this scheme, the user sends “1” when the SINR

value is above a pre-determined threshold, and “0” vice-versa. Since the performance
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of OBF/RBF (with user scheduling) only depends on the favourable channels, one

bit of feedback per user can capture almost all gain available due to the multi-user

diversity. Optimal quantization strategy for OBF systems with more than one bit

feedback is proposed in [51]. It is also worth noting the group random access-based

feedback scheme in [66] and the multi-user diversity/throughput tradeoff analysis in

[58]. The main tool to study the performance of OBF/RBF under reduced feedback

schemes is the large-number-of-users analysis.

3.5 Non-Orthogonal RBF and Grassmanian Line

Packing Problem

Denote the space of unit-norm transmit beamforming vectors in CNT×1 as O(NT , 1).

A distance function of v1, v2 ∈ O(NT , 1) can be defined to be the sine of the angle

between them [4]

d(v1, v2) = sin(v1, v2) =
√

1− |vH1 v2|2, (3.20)

which is known as the chordal distance. The problem of finding the packing of M

unit-norm vectors in CNT×1 that has the maximum minimum distance between any

pair of them is called the Grassmannian line packing problem (GLPP). The GLPP

appears in the problem of designing beamforming codebook for space-time codes (see,

e.g., [23] [45] and the reference therein).

Given that the number of transmit beams is less than or equal to the number
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of transmit antennas, i.e., M ≤ NT , any orthonormal set {φm}Mm=1 is a solution of

the GLPP. However, assuming that the BS sends M > NT beams to serve more

users simultaneously and improve the fairness of the system, finding {φm}Mm=1 is a

nontrivial GLPP. The idea of using more than NT beams in RBF is first proposed

in [85] with M = NT + 1, and further studied in [77]. The conclusions, however,

are in distinctly sharp contrast. Particularly, Zorba et. al. argues that the scaling

law M log2 logK is still true for M = NT + 1 case [85], while the results in [77]

imply that non-orthogonal beamforming matrix induces an interference-limited effect

on the sum rate, and the multi-user diversity vanishes. Since both studies are based

on approximated derivations, more rigorous investigations are necessary before any

conclusion is drawn.

3.6 User Scheduling Schemes

The user-scheduling scheme described in Section 3.1 is widely used in the litera-

ture since it is simple and easy to be investigated. Consider a fading and homoge-

neous channel, i.e., the users’ average channel gains are nearly the same while the

instantaneous gains are varied after some communication time slots. The above user-

scheduling scheme then ensures that each user is selected fairly in the long term.

The difficulty arises when the channel is heterogeneous and/or relatively sta-

tionary, i.e., unchanged for many time slots. To ensure the fairness, [72] proposed

the “proportional fair scheduling (PFS)” scheme. The idea of the PFS is to use a
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metric, which is proportional to the available data rate, and inversely proportional

to the past average throughput. In each time slot, the user with the highest metric

value is selected. That means:

• The selected user is the one with a high instantaneous data rate.

• The selected user is the one with a low past average throughput, i.e., he was

not selected frequently in the previous time slots.

The PFS provides some sense of fairness in that users frequently in the bad channel

status have low throughput which in turn tends to increase their probability of being

scheduled.

The advantages and disadvantages of the PFS are:

• Advantage(s): PFS can retain the multi-user diversity gain, while still ensures

a fairness to the system. This makes it superior to the traditional ones such as

round-robin (RR) and opportunistic schedulers as in 3.1.

• Disadvantage(s): A small problem is that PFS requires memory to keep track

of the past average throughput of each user.

It is not surprising that most of the subsequent works approach PFS from a

network layer’s perspective. In [2], PFS was shown to be unstable for finite queues in

one case. That is, if the data for each user arrives at the BS according to a data arrival

process, then all data is not transmitted in a bounded amount of time. The reason is

due to the asymmetry of the network (data) flows. However, the convergence of PFS
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algorithm for many-user cases under general conditions is proved in [39]. It implies

that PFS is stable under many situations, and the case considered in [2] is one of

few exceptions. Also, through the employment of weights, different quality of service

(QoS) can be provided for different users [3]. In [75], Westphal et al. introduced

a monitoring-based feedback algorithm to correct the unfairness of the PFS under

heterogeneous systems. Finally, Zhou et. al introduced and investigated a global

PFS for multi-cell systems [84]

3.7 Other Studies

Beam selection and beam power control algorithms for single-cell RBF are proposed

in [38] [40] [71] [73]. The objective is to improve the rate performance especially when

the number of users is not so large.

Single-cell RBF systems with heterogeneous users and diverse large-scale fading

channel effects are first investigated in [64]. Sharif et. al. observes that the system

becomes interference-limited when the number of transmit beams M is large enough,

i.e., scaling with respect to the number of users. Under this setup, the probability of

scheduling any user is asymptotically equiprobable. The problem is further studied

in [27] under the case of finite M , where an alternate scheduling policy is proposed

which ensures fairness while exploits multiuser diversity simultaneously.

The idea of employing a codebook of predetermined orthonormal beamforming

matrices is introduced in [24] [25] [36]. While [24] [25] investigated RBF when quan-
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tized, normalized channel vectors are fed back to the BS, [35] studied the codebook

design problem and the rate performance assuming that opportunistic selection is

also performed on the codebook. These problems are related to Section 3.4 and the

GLPP in Section 3.5.
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Chapter 4

Multi-Cell MISO RBF

In the previous chapter, we have summarized the most important results for single-

cell MISO RBF systems. It is obvious that RBF has become an important and active

research field since its introduction in [72]. However, it is surprising that there is

virtually no study investigating multi-cell RBF systems. A notable work is [47], in

which the sum-rate scaling law for the multi-cell system with RBF has been shown

to be similar to the single-cell result in [64], [65] as the number of per-cell users goes

to infinity, regardless of the ICI.

This chapter presents our contributions on multi-cell MISO RBF. The main

results of this chapter are summarized as follows.

• Finite-SNR Case: We first consider the single-cell setup and show a new

closed-form expression for the achievable sum-rate with RBF, based on the

known distribution of the per-beam SINR given in [64]. We then study the
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multi-cell RBF and derive the SINR distribution in presence of the ICI, which

is a non-trivial extension of the single-cell result in [64].

Based upon this new SINR distribution, we obtain a closed-form expression of

the sum-rate in the multi-cell case, and characterize the asymptotic sum-rate

scaling law as the number of users per cell goes to infinity, which is shown to

be identical to that for the single-cell case [64] without the ICI. Notice that

the same scaling law for the multi-cell RBF has been obtained in [47] based on

an approximation of the SINR distribution, while in this chapter we provide a

more rigorous proof of this result using the exact SINR distribution.

• High-SNR Case: Although the achievable rates for the multi-cell RBF have

been obtained for any given SNR with arbitrary number of users, such re-

sults do not provide any insight to the effects of the interference on the system

throughput. This motivates us to investigate the multi-cell RBF for the asymp-

totic high-SNR regime, under the assumption that the number of users per cell

scales in a given order with the per-cell SNR (a larger order indicates a higher

user density in one particular cell). Under this setup, we first consider the

single-cell case and derive the maximum DoF for the achievable sum-rate with

RBF, which is shown to be dependent on the user density and the number of

transmit antennas, and attainable with an optimal number of random beams

(data streams) employed at the transmitter. The DoF analysis thus provides a

succinct description of the interplay between the multiuser diversity and spatial
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multiplexing gains achievable by RBF.

We then seek to obtain a general characterization of the DoF region for the

multi-cell RBF, which consists of all the achievable DoF tuples for all the cells

subject to their mutual ICI. Different from the existing DoF region character-

ization based on IA [28] for the case of finite number of users, in this chapter

we address the case with an asymptotically large number of users that scales

with SNR. Our results reveal that coordination among the BSs in assigning

their respective number of data beams based on different per-cell user densities

is essential to achieve the optimal throughput tradeoffs among different cells.

Moreover, we show that the DoF region by employing the multi-cell RBF coin-

cides with the “interference-free” DoF region upper bound and thus is the exact

DoF region of a multi-cell downlink system, when the user densities in different

cells are sufficiently large. This result is in sharp contrast with existing studies

on the achievable DoF region with the full transmitter CSI obtained by schemes

such as IA [28].

The rest of the chapter is organized as follows. Section 4.1 describes the multi-

cell downlink system model and the multi-cell RBF scheme. Section 4.2 studies the

sum-rate for both single- and multi-cell RBF systems with finite SNR. Section 4.3

characterizes the achievable DoF for single-cell RBF as well as the DoF region for

multi-cell RBF at the high-SNR regime. We conclude the chapter with some final

remarks in Section 4.4.
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4.1 System Model

We consider a multi-cell downlink system consisting of C cells, each of which has a

BS with NT antennas to coordinate the transmission with Kc single-antenna mobile

stations (MSs), Kc ≥ 1 and c = 1, · · · , C. In the c-th cell, the c-th BS transmits

Mc ≤ NT orthonormal beams and selects Mc from Kc users for transmission at each

time. We assume the channels to be flat-fading and constant over each transmission

period of interest. For the ease of analysis, we also assume a “homogeneous” channel

setup, i.e., the average signal attenuation from a BS to any user of the same cell have

the same values, in which the received baseband signal of user k in the c-th cell is

given by

y
(c)
k = h

(c,c)
k

Mc∑

m=1

φ(c)
m s(c)m +

C∑

l=1, l 6=c

√
γl,ch

(l,c)
k

Ml∑

m=1

φ(l)
m s(l)m + n

(c)
k , (4.1)

where h
(l,c)
k ∈ C1×Ml is the channel vector from the l-th BS to the k-th user of the

c-th cell; it is assumed that all the elements of h
(l,c)
k are i.i.d. CN (0, 1); 0 ≤ γl,c < 1

stands for the distance-dependent signal attenuation from the l-th BS to any user

in the c-th cell, l 6= c, which is less than the assumed unit direct channel gain from

the c-th BS1; φ(c)
m ∈ CMc×1 and s

(c)
m are the m-th randomly generated beamforming

1This homogeneous channel setup is required to obtain the closed-form expressions for the achiev-

able sum-rates at finite SNRs, as will be detailed in Section 4.2. However, the DoF region analysis

for the asymptotically high-SNR regime as will be given in Section 4.3 of the chapter can be shown

to hold even without the homogeneous channel assumption, i.e., the average signal attenuation from

any BS to any user of any cell can take different values. Also note that Lemma 4.2.2 can be extended

to the case of arbitrary signal attenuation as well.
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vector of unit norm and transmitted data symbol from the c-th BS, respectively;

it is assumed that each BS has the total sum power, PT , i.e., Tr
(
E[scs

H
c ]
)
≤ PT ,

where sc = [s
(c)
1 , · · · , s(c)Mc

]T ; it is also assumed that the background noise is AWGN,

n
(c)
k ∼ CN (0, σ2), ∀k, c. In the c-th cell, the total SNR, the SNR per beam, and the

interference-to-noise ratio (INR) per beam from the l-th cell, l 6= c, are denoted as

ρ = PT/σ
2, ηc = PT/(Mcσ

2), and µl,c = γl,cPT/(Mlσ
2), respectively.

In this chapter, we consider a multi-cell RBF scheme, in which all BSs in

different cells are assumed to be able to implement the conventional single-cell RBF

similarly to that given in [64] at the same time, which is described as follows:

• In the training phase, the c-th BS generates Mc orthonormal beams, φ
(c)
1 ,

· · · ,φ(c)
Mc

, and uses them to broadcast the training signals to all users in the

c-th cell. The total power of each BS is assumed to be distributed equally over

Mc beams.

• Each user in the c-th cell measures the SINR value for each ofMc beams (shown

in (4.2) below), and feeds it back to the corresponding BS.

SINR
(c)
k,m =

PT
Mc

∣
∣
∣h

(c,c)
k φ(c)

m

∣
∣
∣

2

σ2 +
PT
Mc

Mc∑

i=1,i 6=m

∣
∣
∣h

(c,c)
k φ

(c)
i

∣
∣
∣

2

+
C∑

l=1,l 6=c

γl,c
PT
Ml

Ml∑

i=1

∣
∣
∣h

(l,c)
k φ

(l)
i

∣
∣
∣

2

=
ηc

∣
∣
∣h

(c,c)
k φ(c)

m

∣
∣
∣

2

1 + ηc

Mc∑

i=1,i 6=m

∣
∣
∣h

(c,c)
k φ

(c)
i

∣
∣
∣

2

+
C∑

l=1,l 6=c

µl,c

Ml∑

i=1

∣
∣
∣h

(l,c)
k φ

(l)
i

∣
∣
∣

2
, (4.2)

where m = 1, · · · ,Mc. Essentially, this is the multi-cell extension of the feed-

back scheme (F1) described in Section 3.1, which is for the single-cell case.
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• The c-th BS schedules transmission to a set ofMc users at each time by assigning

its m-th beam to the user with the highest SINR, i.e.,

k(c)m = arg max
k∈{1,··· ,Kc}

SINR
(c)
k,m. (4.3)

Thus, the achievable average sum-rate in bits-per-second-per-Hz (bps/Hz) of

the c-th cell is given by

R
(c)
RBF = E

[
Mc∑

m=1

log2

(

1 + SINR
(c)

k
(c)
m ,m

)
]

=McE

[

log2

(

1 + SINR
(c)

k
(c)
1 ,1

)]

. (4.4)

4.2 Achievable Rate of Multi-Cell Random Beam-

forming: Finite-SNR Analysis

In this section, we study the achievable sum-rate of a C-cell RBF system with finite

SNR. We first derive a closed-form expression of the sum-rate for the single-cell case,

then extend the result to the multi-cell case subject to ICI, and finally investigate the

asymptotic sum-rate scaling law as the number of users per cell goes to infinity.

4.2.1 Single-Cell RBF

We first consider the single-cell case, and drop the cell index c for brevity. Thus, (4.2)

and (4.4) reduce to

SINRk,m =
PT

M
|hkφm|2

σ2 + PT

M

∑M
i=1,i 6=m |hkφi|2

, (4.5)
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RRBF =ME

{

log2

(

1 + max
k∈{1,··· ,K}

SINRk,1

)]

. (4.6)

The PDF and CDF of S := SINRk,m, ∀k,m can be expressed as [64]

fS(s) =
e−s/η

(s+ 1)M

(

M − 1 +
s+ 1

η

)

, (4.7)

FS(s) = 1− e−s/η

(s+ 1)M−1
, (4.8)

where η = PT/(Mσ2) is the SNR per beam. A closed-form expression for the sum-rate

RRBF is then given in the following lemma.

Lemma 4.2.1 The average sum-rate of the single-cell RBF is given by

RRBF =
M

log 2

K∑

n=1

(−1)n
(
K

n

)[(

−n
η

)n(M−1)
en/ηEi(−n/η)
(n(M − 1))!

−
n(M−1)
∑

m=1

(

−n
η

)m−1
(n(M − 1)−m)!

(n(M − 1))!

]

, (4.9)

where Ei(x) =
∫ x

−∞
et

t
dt is the exponential integral function.

Proof 1 Please refer to Appendix B.1.

4.2.2 Multi-Cell RBF

For the single-cell RBF case, the SINR distributions given in (4.7) and (4.8) were

obtained in prior work [64]. Now consider the multi-cell RBF case. If µl,c = ηc,

∀l ∈ {1, · · · , C} \ {c}, it is easy to see that the SINR distributions take the same

forms as (4.7) and (4.8). However, if ∃l ∈ {1, · · · , C} \ {c} such that µl,c 6= ηc, then

the derivation of the SINR distributions in the multi-cell case becomes a new task due
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to the unevenly distributed ICI. Note that no closed-form expressions for the PDF

and CDF of the SINR in this general case are available in the literature, while only

approximated ones have been obtained (see, e.g., [47]). Therefore, in this subsection

we first show a lemma on the exact SINR distributions for the multi-cell RBF, and

then use them to investigate the achievable rate of this scheme.

Lemma 4.2.2 In the multi-cell RBF, the PDF and CDF of the SINR S := SINR
(c)
k,m,

∀k,m, are given by2

f
(c)
S (s) =

e−s/ηc

(s+ 1)Mc−1
C∏

l=1,l 6=c

(
µl,c
ηc
s + 1

)Ml

[

1

ηc
+
Mc − 1

s+ 1
+

C∑

l=1,l 6=c

Ml

s+ ηc
µl,c

]

, (4.10)

F
(c)
S (s) = 1− e−s/ηc

(s+ 1)Mc−1
C∏

l=1,l 6=c

(
µl,c
ηc
s+ 1

)Ml

. (4.11)

Proof 2 Please refer to Appendix B.2.

It is worth noting that Lemma 4.2.2 nicely extends the single-cell results in (4.7)

and (4.8), and clearly demonstrates the effect of ICI on the resulting SINR distribu-

tions. In Fig. 4.1, we compare the analytical and numerical SINR CDFs to confirm the

validity of Lemma 4.2.2. We consider the SINR CDF of the first cell for two RBF sys-

tems with the following parameters: (1) η1 = 30dB, M1 = 4, [µ2,1, µ3,1] = [−3, 3]dB,

[M2,M3] = [2, 4]; and (2) η1 = 20dB, M1 = 6, [µ2,1, µ3,1, µ4,1] = [−3, 2, 3]dB,

2Although Lemma 4.2.2 can be considered as a consequence of Corollary 5.2.1, some steps in its

derivation are required to obtain Theorem 5.2.2. Furthermore, the direct proof of Lemma 4.2.2, as

shown in Appendix B.2, is more concise and elementary than that of Corollary 5.2.1.
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Figure 4.1: Comparison of the analytical and numerical CDFs of the

per-cell SINR.

[M2,M3,M4] = [2, 3, 4]. It is observed that both analytical and numerical results

match closely, thus justifying our derivation.

With Lemma 4.2.2, Lemma 4.2.1 is readily generalized to the multi-cell case

in the following theorem.

Theorem 4.2.1 Denote the total sum-rate of a C-cell RBF system as
∑C

c=1R
(c)
RBF,

where the individual sum-rate of the c-th cell, R
(c)
RBF, is given by
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R
(c)
RBF =

Mc

log 2

Kc∑

n=1

(−1)n
(
Kc

n

) C∏

l=1,l 6=c

(
ηc
µl,c

)nMl

×

{
n(Mc−1)+1
∑

p=1

An,c,p
(p− 1)!

[

e
n
ηc

(

− n

ηc

)p−1

Ei

(

− n

ηc

)

−
p−1∑

m=1

(

− n

ηc

)m−1

(p− 1−m)!

]

+

C∑

l=1,l 6=c

nMl∑

q=1

An,l,q
(q − 1)!

[

e
n

µl,c

(

− n

ηc

)q−1

Ei

(

− n

µl,c

)

−
q−1
∑

m=1

(

− n

ηc

)m−1(
µl,c
ηc

)q−m

(q − 1−m)!

]}

, (4.12)

where An,c,p’s and An,l,q’s are the coefficients from the following partial fractional

decomposition:

1

(x+ 1)n(Mc−1)+1
∏C

l 6=c

(

x+ ηc
µl,c

)nMl
=

n(Mc−1)+1
∑

p=1

An,c,p
(x+ 1)p

+
C∑

l=1,l 6=c

nMl∑

q=1

An,l,q
(

x+ ηc
µl,c

)q ,

(4.13)

and given by [20, 2.102]:

An,c,p =
1

(n(Mc − 1)− p+ 1)!

dn(Mc−1)−p+1

dxn(Mc−1)−p+1






1
∏C

l 6=c

(

x+ η
µl

)nMl






∣
∣
∣
∣
∣
∣
∣
x=−1

, (4.14)

An,l,q =
1

(nMl − q)!

dnMl−q

dxnMl−q






1

(x+ 1)n(Mc−1)+1
∏C

t6=l,c

(

x+ η
µt

)nMt






∣
∣
∣
∣
∣
∣
∣
x=−ηc/µl,c

.

(4.15)

Proof 3 Please refer to Appendix B.3.

In Fig. 4.2, we show the analytical and numerical results on the RBF sum-

rate as a function of the number of users for both single-cell and two-cell systems.We

also compare the approximation obtained in [36], which is only applicable to the
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Figure 4.2: Comparison of the analytical and numerical results on the

RBF sum-rate.

single-cell system. In the single-cell case, M = NT = 3, η = 20 dB, while in the

two-cell case, K1 = K2, M1 = M2 = NT = 3, η1 = η2 = 20 dB, µ2,1 = 6 dB,

and µ1,2 = 10 dB. It is observed that the approximation [36, (17)] is only an upper

bound of the achievable sum-rate. In contrast, the sum-rate expressions in (4.9)

and (4.12) are exact. Thus, it is feasible to use Theorem 4.2.1 to characterize all

the sum-rate tradeoffs among different cells in a multi-cell RBF system, which leads

to the achievable rate region. However, such a characterization requires intensive

computations, and does not provide any useful insight. In Section 4.3, we adopt an
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alternative approach based on the DoF region to provide a more efficient as well as

insightful tradeoff analysis for the multi-cell RBF.

4.2.3 Asymptotic Sum Rate as Kc → ∞

It is worth noting that a conventional asymptotic investigation of RBF is to consider

the case when the number of users per cell approaches infinity for a given finite SNR.

Consider the single-cell RBF case withM ≤ NT transmit beams andK single-antenna

users. The scaling law of the sum-rate is shown to be M log2 logK as K → ∞ with

any fixed SNR, ρ, in [64], [65] (see Section 3.3). An attempt to extend this result to the

multi-cell RBF case has been made in [47] based on an approximation of the SINR’s

PDF (which is applicable if the SNR and INRs are all roughly equal), by showing

that the same asymptotic sum-rateMc log2 logKc for each individual cell holds as the

single-cell case. However, we note that with the exact SINR distributions in Lemma

4.2.2, a more rigorous proof can be obtained, as given in the following proposition.

Proposition 4.2.1 For fixed Mc’s and PT , c = 1, · · · , C, we have

lim
Kc→∞

R
(c)
RBF

Mc log2(ηc logKc)
= 1. (4.16)

Proof 4 Please refer to Appendix B.4.

In Fig. 4.3, we depict both the numerical and theoretical asymptotic sum-rates

for a single-cell RBF system, and the cells of a two-cell RBF system. In the single-cell

case, η = 5 dB, and M = NT = 3, while in the two-cell case, M1 = M2 = NT = 3,
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Figure 4.3: Comparison of the numerical sum-rate and the sum-rate

scaling law for RBF.

η1 = η2 = 5 dB, and
[
µ2,1, µ1,2

]
= [−10,−5] dB. We observe that the convergence to

the sum-rate scaling law Mc log2(ηc logKc) is rather slow in both cases. For example,

even with K or Kc to be 104, the convergence is still not clearly shown. Furthermore,

Proposition 4.2.1 implies that the sum-rate scaling law Mc log2(ηc logKc) holds for

any cell regardless of the ICI as Kc → ∞. As a consequence, this result implies that

each BS should apply the maximum number of transmit beams, i.e., Mc = NT , ∀c, to

maximize the per-cell throughput. Such a conclusion may be misleading in a practical

multi-cell system with non-negligible ICI. The above two main drawbacks, namely,
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slow convergence and misleading interpretation, have limited the usefulness of the

conventional sum-rate scaling law Mc log2(ηc logKc) for the multi-cell RBF. As will

be shown in the next section, the DoF region approach is able to more precisely

characterize the ICI effect on the throughput of the multi-cell RBF.

4.3 Degrees of Freedom Region in Multi-Cell Ran-

dom Beamforming: High-SNR Analysis

In this section, we investigate the performance of the multi-cell RBF in the high-SNR

regime, i.e., when the per-cell SNR ρ → ∞. In particular, we consider the approach

of the DoF region, which has been defined in Section 1.2.1.

If the multi-cell RBF is deployed, the achievable DoF region defined in (1.6) is

reduced to

Definition 4.3.1 (DoF region with RBF) The DoF region of a C-cell RBF system

is given by

DRBF =

{

(d1, d2, · · · , dC) ∈ R
C
+ : ∀(ω1, ω2, · · · , ωC) ∈ R

C
+;

C∑

c=1

ωcdc ≤ lim
ρ→∞

max
M1,...,MC∈{0,··· ,NT }

C∑

c=1

ωc
R

(c)
RBF

log2 ρ

}

. (4.17)

Certainly, DRBF ⊆ D. Note that the DoF region is, in general, applicable

for any number of users per cell, Kc. However, if it is assumed that all Kc’s are

constant with ρ → ∞, it can be shown that the DoF region for the multi-cell RBF

given in (4.17) will collapse to the null point, i.e., a zero DoF for all the cells, due to
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the intra-/inter-cell interference3. It means that for RBF systems, a large number of

users is more preferable than a large SNR value. It thus follows that for analytical

tractability, the DoF region characterization for the multi-cell RBF should have Kc

increase in a certain order with the SNR, ρ. We thus make the following assumption

for the rest of this chapter:

Assumption 4.3.1 The number of users in each cell scales with ρ in the order of

ραc , with αc ≥ 0, denoted by Kc = Θ(ραc), c = 1, . . . , C, i.e., Kc/ρ
αc → ac as ρ→ ∞,

with ac being a positive constant independent of αc.

Considering the number of per-cell users to scale polynomially with the SNR

is general as well as convenient. The linear scaling law, i.e., Kc = βcρ, with constant

βc > 0, is only a special case of Kc = Θ(ραc) with αc = 1; if Kc is a constant, then the

corresponding αc is zero. We can thus consider αc as a measure of the user density in

the c-th cell given the same coverage area for all the cells, where a larger αc indicates

a higher number of users, Kc. As will be shown later in this section, Assumption

4.3.1 enables us to obtain an efficient as well as insightful characterization of the

DoF region for the multi-cell RBF. Note that the DoF region under Assumption 4.3.1

can be considered as a generalization of the conventional DoF region analysis based

on IA [28] for the case of finite number of users, to the case of asymptotically large

number of users that scales with the SNR. For the notational convenience, we use

3A rigorous proof of this claim can be deduced from Lemma 4.3.2 and Theorem 4.3.2 later for

the special case of αc = 0, ∀c, i.e., all cells having a constant number of users.
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D(α) and DRBF (α) to denote the achievable DoF regions D and DRBF , respectively,

corresponding to Kc = Θ(ραc), c = 1,· · · ,C, and α = [α1, · · · , αC ]T .

4.3.1 Single-Cell Case

First, we investigate the DoF for the achievable sum-rate in the single-cell RBF case

without the ICI. We drop the cell index c for brevity. In the single-cell case, the DoF

region collapses to a line, bounded by 0 and d∗RBF (α), where d
∗
RBF (α) ≥ 0 denotes

the maximum DoF achievable for the RBF sum-rate.

We define the achievable DoF for single-cell RBF with a given pair of α and

M as

dRBF (α,M) = lim
ρ→∞

RRBF

log2 ρ
= lim

η→∞

RRBF

log2 η
(4.18)

since η = ρ/M . Thus, we have d∗RBF (α) = max
M∈{1,··· ,NT }

dRBF (α,M) for a given α ≥ 0.

We first characterize dRBF (α,M) in the following lemma.

Lemma 4.3.1 Assuming K = Θ(ρα), the DoF of single-cell RBF with M ≤ NT

orthogonal transmit beams is given by

dRBF (α,M) =







αM

M − 1
, 0 ≤ α ≤ M − 1, (4.19a)

M, α > M − 1. (4.19b)

Proof 5 Please refer to Appendix B.5.

Remark 4.3.1 With RBF and under the assumption K = Θ(ρα), it is interesting

to observe from Lemma 4.3.1 that the achievable DoF can be a non-negative real

number (as compared to the conventional integer DoF in the literature with finite K).
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Moreover, it is observed that for any given 0 < α < NT − 1, assigning more transmit

beams by increasingM initially improves the sum-rate DoF if M ≤ α+1; however, as

M > α+ 1, the DoF may not necessarily increase with M due to the more dominant

inter-beam/intra-cell interference. Note that the term M − 1 in the denominator of

(4.19a) is exactly the number of interfering beams to one particular data beam. Thus,

Lemma 4.3.1 provides a succinct description of the interplay between the available

multiuser diversity (specified by α with a larger α denoting a higher user density or

the number of users in a cell), the level of the intra-cell interference (specified by

M − 1), and the achievable spatial multiplexing gain or DoF, dRBF (α,M).

Next, we obtain the maximum achievable DoF for a given α by searching

over all possible values of M . We note that for any M < ⌊α⌋ + 1, dRBF (α,M) <

dRBF (α, ⌊α⌋+1), while for any M > ⌊α⌋+2, dRBF (α,M) < dRBF (α, ⌊α⌋+2). Thus

we only need to compare dRBF (α, ⌊α⌋ + 1) and dRBF (α, ⌊α⌋ + 2) in searching for

the optimal M . A detailed proof is omitted for brevity. The result is shown in the

following theorem.

Theorem 4.3.1 For the single-cell RBF with NT transmit antennas and user density

coefficient α, the maximum achievable DoF and the corresponding optimal number of

transmit beams are4

4The notations ⌊α⌋ and {α} denote the integer and fractional parts of a real number α, respec-

tively.
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d∗RBF (α) =







⌊α⌋ + 1, α ≤ NT − 1, 1 ≥ {α}(⌊α⌋+ 2),

α(⌊α⌋+2)
⌊α⌋+1

, α ≤ NT − 1, {α}(⌊α⌋+ 2) > 1,

NT , α > NT − 1.

(4.20)

M∗
RBF (α) =







⌊α⌋ + 1, α ≤ NT − 1, 1 ≥ {α}(⌊α⌋+ 2),

⌊α⌋ + 2, α ≤ NT − 1, {α}(⌊α⌋+ 2) > 1,

NT , α > NT − 1.

(4.21)

In Fig. 4.4, we use simulations to confirm Lemma 4.3.1. It is observed

that the newly obtained sum-rate scaling law, R RBF = dRBF (α,M) log2 ρ, in the

single-cell RBF case is very accurate, even for small values of SNR ρ and num-

ber of users K = ⌊ρα⌋. Compared with Fig. 4.3 for the conventional scaling law

RRBF = M log2(η logK), a much quicker convergence is observed here. The DoF

approach thus provides a more efficient way of characterizing the achievable sum-rate

for single-cell RBF. Also observe that the sum-rate for M = 2 is higher than that

for M = 4. This is because with NT = 4 and α = 1 in this example, the optimal

number of beams to achieve d∗RBF (1) = 2 is M∗
RBF (1) = 2 from (4.21). Since many

previous studies have observed that adjusting the number of beams according to the

number of users in single-cell RBF can improve the achievable sum-rate (see, e.g.,

[38]) [71] [73], our result here can be considered as a theoretical explanation for such

an observation.
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Figure 4.4: Comparison of the numerical sum-rate and the scaling law

dRBF (α,M) log2 ρ, with NT = 4, α = 1, and K = ⌊ρα⌋.
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In Fig. 4.5, we show the maximum DoF and the corresponding optimal number

of transmit beams versus the user density coefficient α with NT = 4 for single-cell

RBF, according to Theorem 4.3.1. It is observed that to maximize the achievable sum-

rate, we should only transmit more data beams when the number of users increases

beyond a certain threshold. It is also observed that the maximum DoF d∗RBF (α) = 4

with M = NT = 4 is attained when α ≥ 3 since M∗
RBF (3) = 4.

4.3.2 Multi-Cell Case

In this subsection, we extend the DoF analysis for the single-cell RBF to the more

general multi-cell RBF subject to the ICI. For convenience, we denote the achiev-

able sum-rate DoF of the c-th cell as dRBF,c(αc,m) = limρ→∞
R

(c)
RBF

log2 ρ
, where m =

[M1,· · · ,MC ]
T is a given set of numbers of transmit beams at different BSs. We then

state the following lemma on the achieve DoF of the c-th cell.

Lemma 4.3.2 In the multi-cell RBF, assuming Kc = Θ (ραc), the achievable DoF of

the c-th cell dRBF,c(αc,m), c ∈ {1, . . . , C}, for a given m is

dRBF,c(αc,m) =







αcMc
∑C

l=1Ml − 1
, 0 ≤ αc ≤

∑C
l=1Ml − 1, (4.22a)

Mc, αc >
∑C

l=1Ml − 1. (4.22b)

Proof 6 The proof uses Lemma 4.2.2 and similar arguments in the proof of Lemma

4.3.1, and is thus omitted for brevity.

Remark 4.3.2 Similar to Lemma 4.3.1 for the single-cell case, Lemma 4.3.2 reveals

the relationship among the multi-user diversity, the level of the interference, and the
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achievable DoF for multi-cell RBF. However, as compared to the single-cell case,

there are not only Mc − 1 intra-cell interfering beams, but also
∑C

l=1,l 6=cMl inter-cell

interfering beams for any data beam of the c-th cell in the multi-cell case, as observed

from the denominator in (4.22a), which results in a decrease of the achievable DoF

per cell.

Next, we obtain characterization of the DoF region defined in (4.17) for the

multi-cell RBF with any given set of per-cell user density coefficients, denoted by α

= [α1, · · · , αC ]T in the following theorem; for convenience, we denote dRBF (α,m) =

[
dRBF,1(α1,m) ,· · · , dRBF,C(αC ,m)

]T
, with dRBF,c(αc,m) given in Lemma 4.3.2.

Theorem 4.3.2 Assuming Kc = Θ (ραc) , c = 1, . . . , C, the achievable DoF region of

a C-cell RBF system is given by

DRBF (α) = conv

{

dRBF (α,m),Mc ∈ {0, · · · , NT}, c = 1, · · · , C
}

, (4.23)

where conv denotes the convex hull operation.

Theorem 4.3.2 is obtained directly using Lemma 4.3.2 and the definition of the

DoF region, for which the proof is omitted for brevity. This theorem implies that we

can obtain the DoF region of multi-cell RBF DRBF (α) by taking the convex hull over

all achievable DoF points dRBF (α,m) with all different values of m, i.e., different

BS beam number assignments.

In Fig. 4.6, we depict the DoF region of a two-cell RBF system with NT = 4,

and for different user density coefficients α1 and α2. The vertices of these regions can
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be obtained by setting appropriate numbers of beams 0 ≤ M1 ≤ 4 and 0 ≤ M2 ≤ 4,

while time-sharing between these vertices yields the entire boundary. To achieve the

maximum sum-DoF of both cells, it is observed that a rule of thumb is to transmit

more beams in the cell with a higher user density, and when α1 and α2 are both small,

even turn off the BS of the cell with the smaller user density. Since the maximum

sum-DoF does not consider the throughput fairness, the DoF region clearly shows

all the achievable sum-rate tradeoffs among different cells, by observing its (Pareto)

boundary as shown in Fig. 4.6. It is also observed that switching the two BSs to be

on/off alternately achieves the optimal DoF boundary when the numbers of users in

both cells are small, but is strictly suboptimal when the user number becomes large

(see the dashed line in Fig. 4.6).

Furthermore, consider the case without any cooperation between these two

BSs in assigning their numbers of transmit beams, i.e., both cells act selfishly by

transmitting Mc = NT beams to aim to maximize their own DoF.The resulting DoF

pairs, denoted by dRBF ([α1, α2], [4, 4]), for three sets of α are shown in Fig. 4.6

as P1, P2, and P3, respectively. It is observed that the smaller the user densities

are, the further the above non-cooperative multi-cell RBF scheme deviates from the

Pareto boundary. In general, the optimal DoF tradeoffs or the boundary DoF pairs

are achieved when both cells cooperatively assign their numbers of transmit beams

based on their respective user densities, especially when the numbers of users in both

cells are not sufficiently large. Since the information needed to determine the optimal

operating DoF point is only the individual cell user density coefficients, the DoF
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Figure 4.6: DoF region of two-cell RBF system with NT = 4.

region provides a very useful method to globally optimize the coordinated multi-cell

RBF scheme in practical systems.

4.3.3 Optimality of Multi-Cell RBF

So far, we have characterized the achievable DoF region for the multi-cell RBF scheme

that requires only partial CSI at the transmitter. One important question that re-

mains unaddressed yet is how the multi-cell RBF performs as compared to the optimal

transmission scheme (e.g., IA) for the multi-cell downlink system with the full trans-

mitter CSI, in terms of achievable DoF region. In this subsection, we attempt to
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partially answer this question by focusing on the regime given in Assumption 4.3.1,

i.e., the number of users per cell scales with a polynomial order with the SNR as the

SNR goes to infinity.

4.3.3.1 Single-Cell Case

First, we consider the single-cell case to draw some useful insights. It is well known

that the maximum sum-rate DoF for a single-cell MISO-BC with NT transmit an-

tennas and K ≥ NT single-antenna users with independent channels is NT [9], which

is achievable by the DPC scheme or even simple linear precoding schemes. How-

ever, it is not immediately clear whether such a result still holds for the case of

K = Θ(ρα) ≫ NT with α > 0, since in this case NT may be only a lower bound on

the maximum DoF. We thus have the following proposition.

Proposition 4.3.1 Assuming K = Θ(ρα) with α > 0, the maximum sum-rate DoF

of a single-cell MISO-BC with NT transmit antennas is d∗(α) = NT .

Proof 7 Please refer to Appendix B.6.

Proposition 4.3.1 confirms that the maximum DoF of the MISO-BC is still

NT , even with the asymptotically large number of users that scales with SNR, i.e.,

multiuser diversity does not yield any increment of DoF. Also, from Theorem 4.3.1,

we have for α ≥ NT − 1, d∗RBF (α) = NT . We thus have the following proposition.

Proposition 4.3.2 AssumingK = Θ(ρα), the single-cell RBF scheme is DoF-optimal

if α ≥ NT − 1.
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From the above proposition, it follows that the single-cell RBF achieves the

maximum DoF withM = NT if the number of users is sufficiently large, thanks to the

multiuser diversity effect that completely eliminates the intra-cell interference given

a sufficiently large number of users.

4.3.3.2 Multi-Cell Case

For the convenience of analysis, we use DUB(α) to denote an upper bound on the DoF

region defined in (1.6), for a given α in the multi-cell case. Clearly, under Assumption

4.3.1, it follows that DRBF (α) ⊆ DMISO(α) ⊆ DUB(α). Here DMISO(α) is the DoF

region of the C-cell MISO downlink system as described in Definition 1.2.1.

The following proposition establishes a DoF region upper bound DUB(α).

Proposition 4.3.3 Given Kc = Θ(ραc), c = 1, · · · , C, a DoF region upper bound for

a C-cell MISO downlink system is given by

DUB(α) =

{

(d1, d2, · · · dC) ∈ R
C
+ : dc ≤ NT , c = 1, · · · , C

}

. (4.24)

The above proposition can be easily shown by noting that dc ≤ NT is a direct

consequence of Proposition 4.3.1 for the single-cell case, which should also hold for

the multi-cell case by ignoring the ICI in each of the cells, i.e., an ICI-free multi-cell

downlink system is considered. Supposing αc ≥ CNT −1, c = 1, · · · , C, from Lemma

4.3.2 and Theorem 4.3.2, it easily follows that the achievable DoF region of multi-

cell RBF in this case is DRBF (α) = DUB(α). This leads to DRBF (α) ⊆ DMISO(α)

⊆ DUB(α) = DRBF (α), and thus DRBF (α) = DMISO(α), i.e., the multi-cell RBF
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achieves the exact DoF region in this regime. We thus have the following proposition.

Proposition 4.3.4 Given Kc = Θ(ραc), c = 1, · · · , C, the multi-cell RBF scheme

achieves the DoF region of a C-cell MISO downlink system, i.e., DRBF (α) = DMISO(α),

if αc ≥ CNT − 1, ∀c ∈ {1, · · · , C}.

Remark 4.3.3 The above proposition implies that the multi-cell RBF is indeed DoF-

optimal when the numbers of users in all cells are sufficiently large. Due to the over-

whelming multiuser diversity gain, RBF compensates the lack of full CSI at transmit-

ters without any compromise of DoF degradation. However, it is important to point

out that such a result should not undermine the benefits of having the more complete

CSI at transmitters in practical multi-cell systems, where more sophisticated precoding

schemes than RBF such as IA-based ones [28] can be applied to achieve substantial

throughput gains, especially when the numbers of per-cell users are not so large. Due

to the space limitation, we do not make a detailed comparison of the achievable rates

between IA and RBF for the case of finite number of users in this chapter, and will

leave this interesting study in our further work.

4.4 Conclusions

In this chapter, the achievable rates of the RBF scheme in a multi-cell setup subject

to the ICI are thoroughly investigated. Both finite-SNR and high-SNR regimes are

considered. For the finite-SNR case, we provide closed-form expressions of the achiev-

able average sum-rates for both single- and multi-cell RBF with a finite number of
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users per cell. We also derive the sum-rate scaling law in the conventional asymp-

totic regime, i.e., when the number of users goes to infinity with a fixed SNR. Since

the finite-SNR analysis has major limitations, we furthermore consider the high-SNR

regime by adopting the DoF-region approach to characterize the optimal throughput

tradeoffs among different cells in multi-cell RBF, assuming that the number of users

per cell scales in a polynomial order with the SNR as the SNR goes to infinity. We

show the closed-form expressions of the achievable DoF and the corresponding opti-

mal number of transmit beams, both as functions of the user number scaling order or

the user density, for the single-cell case. From this result, we obtain a complete char-

acterization of the DoF region for the multi-cell RBF, in which the optimal boundary

DoF point is achieved by BSs’ cooperative assignment of their numbers of transmit

beams according to individual cell’s user densities. Finally, if the numbers of users

in all cells are sufficiently large, we show that the multi-cell RBF, albeit requiring

only partial CSI at transmitters, achieve the optimal DoF region even without the

full transmitter CSI. The results presented in this chapter are useful for the optimal

design of multi-cell MISO RBF in practical cellular systems with limited channel

feedback.
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Chapter 5

Multi-Cell MIMO RBF

Receive spatial diversity is another topic which is not fully understood even in a single-

cell RBF setup. As shown in [65], RBF with and without receive diversity schemes

still achieve the same sum-rate scaling law, assuming that the number of users pre

cell goes to infinity for any given user’s SNR. Based on the conventional asymptotic

analysis, it is thus concluded that receive diversity only provides marginal gain to the

rate performance.

This chapter presents our contributions on multi-cell MIMO RBF. The main

results of this chapter are summarized as follows.

• Multi-cell MIMO RBF: We propose three MIMO RBF schemes for multi-cell

downlink systems. In these schemes, RBF is applied at each BS and either the

MMSE, MF, or AS based spatial receiver is employed at each mobile terminal

(denoted as RBF-MMSE, RBF-MF, and RBF-AS schemes, respectively). These

schemes preserve the same low-feedback requirement as that for the special case
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of single-cell OBF/RBF [64] [72], but bring in the new benefits of receive spatial

diversity with different performance-complexity trade-offs.

• SINR Distribution: By applying the tools from multivariate analysis (MVA),

we derive the exact distribution of the SINR at each multi-antenna receiver

in a multi-cell MIMO RBF system subject to both the intra- and inter-cell

interferences, assuming either the MMSE, MF, or AS based spatial diversity

technique. Note that these results are non-trivial extensions of Lemma 4.2.2 for

the MISO RBF case with only single-antenna receivers.

• DoF Region Characterization: We further investigate the multi-cell MIMO

RBF system with MMSE, MF, or AS based spatial receivers under the asymp-

totically high-SNR regime, by assuming that the number of users per cell scales

in a certain order with the SNR (a larger scaling order indicates a higher user

density in one particular cell). We first derive the achievable sum-rate DoF

under a single-cell setup without the ICI to gain useful insights and then ob-

tain a general characterization of the DoF region for the multi-cell case, which

constitutes all the achievable DoF tuples for the individual sum-rate of all the

cells subject to the additional ICI.

Our analysis reveals that significant sum-rate DoF gains can be achieved by

employing the MMSE-based spatial receiver as compared to the cases with

single-antenna receivers or with the suboptimal spatial receivers such as MF

and AS. This is in sharp contrast to the existing result (e.g., [64], [65]) that
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spatial diversity receivers only yield marginal rate gains in RBF, which is based

on the conventional asymptotic analysis in the regime of large number of users

but with fixed SNR per cell. With MMSE receivers, our result shows that a

significantly less number of users in each cell is required to achieve a given

sum-rate DoF target as compared to the cases without receiver spatial diversity

or with MF/AS receivers. Our new high-SNR DoF analysis thus provides a

more realistic characterization of the rate trade-offs in multi-cell MIMO RBF

systems.

The remainder of this chapter is organized as follows. Section 5.1 describes the

multi-cell MIMO downlink system model and the MIMO RBF scheme with MMSE,

MF, or AS based spatial receivers. Section 5.2 investigates the SINR distribution

in each receiver case based on MVA. Section 5.3 characterizes the achievable sum-

rate DoF for single-cell MIMO RBF, and then extends the result to the DoF region

characterization for multi-cell MIMO RBF. Finally, we conclude the paper in Section

5.4.

5.1 System Model

Consider a cellular system consisting of C cells and Kc MSs in the c-th cell, c =

1, · · · , C. In this chapter, we focus on the downlink transmission assuming universal

frequency reuse, i.e., all cells are assigned the same bandwidth for transmission. For

the ease of analysis, we also assume that all BSs/MSs have the same number of
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transmit/receive antennas, denoted as NT and NR, respectively. Extensions to the

case of different number of transmit/receive antennas are straightforward. Consider

time-slotted transmissions, at each time slot, the c-th BS transmits Mc orthonormal

beams and selects Mc users in the c-th cell for transmission, with Mc ≤ NT and

Mc ≤ Kc, ∀c. The received baseband signal of user k in the c-th cell is given by

y
(c)
k = H

(c,c)
k

Mc∑

m=1

φ(c)
m s(c)m +

C∑

l=1, l 6=c

√
γl,cH

(l,c)
k

Ml∑

m=1

φ(l)
m s(l)m + z

(c)
k , (5.1)

where H
(l,c)
k ∈ CNR×Ml denotes the MIMO channel matrix from the l-th BS to the k-

th user of the c-th cell, which is assumed to be i.i.d. Rayleigh fading, i.e., all elements

are i.i.d. and have the same distribution CN (0, 1); φ(c)
m ∈ C

Mc×1 and s
(c)
m are the

m-th randomly generated beamforming vector of unit norm and the corresponding

transmitted data symbol from the c-th BS, respectively; it is assumed that each

BS has an average sum power constraint, PT , i.e., Tr
(
E[scs

H
c ]
)
≤ PT , where sc =

[s
(c)
1 , · · · , s(c)Mc

]T ; γl,c < 1 stands for the (more severe) signal attenuation from the l-th

BS to any user in the c-th cell, l 6= c; and z
(c)
k ∈ CNR×1 is the receiver AWGN vector,

which consists of i.i.d. random variables each distributed as CN (0, σ2), ∀k, c. In the

c-th cell, the total SNR, the SNR per beam, and the INR per beam from the l-th

cell, l 6= c, are denoted as ρ = PT/σ
2, ηc = PT/(Mcσ

2), and µl,c = γl,cPT/(Mlσ
2),

respectively.

5.1.1 Multi-Cell RBF

With multiple receive antennas, each MS can apply spatial diversity techniques to en-

hance the performance. In this chapter, we propose the optimal MMSE -based spatial
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receiver and two suboptimal spatial receivers based on MF and AS, respectively. We

describe the multi-cell RBF scheme with MMSE, MF, and AS receivers as follows.

1. Training phase:

a) The c-th BS generates Mc orthonormal beams, φ
(c)
1 , · · · ,φ(c)

Mc
, and uses

them to broadcast the training signals to all users in the c-th cell. The

total power of the c-th BS is assumed to be distributed equally over Mc

beams.

b1) RBF-MMSE: For each of the Mc beams, user k in the c-th cell does the

following:

i. Estimate the effective channel with training from the c-th BS: h̃
(c,c)

k,m =

H
(c,c)
k φ(c)

m , 1 ≤ m ≤Mc.

ii. Use the training signal from the BSs to estimate the interference-plus-

noise covariance matrix due to the other Mc − 1 beams from the c-th

BS and all beams from the other C − 1 BSs:

W
(c)
k =

PT
Mc

H̃
(c,c)

k,−m

(

H̃
(c,c)

k,−m

)H

+

C∑

l=1,l 6=c

PTγl,c
Ml

H̃
(l,c)

k

(

H̃
(l,c)

k

)H

+ σ2I,

(5.2)

where H̃
(c,c)

k,−m = H
(c,c)
k [φ

(c)
1 , · · · , φ(c)

m−1, φ
(c)
m+1, · · · , φ(c)

Mc
], and H̃

(l,c)

k =

H
(c,c)
k [φ

(l)
1 , · · · , φ(l)

Ml
].

iii. Apply the MMSE spatial receiver, i.e., t
(c)
k,m =

√
PT

Mc

(

W
(c)
k

)−1

h̃
(c,c)

k,m ,

1 ≤ m ≤Mc, and compute the SINR corresponding to the m-th beam
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φ(c)
m , i.e.,

SINR
(MMSE,c)
k,m =

PT
Mc

(

h̃
(c,c)

k,m

)H (

W
(c)
k

)−1

h̃
(c,c)

k,m . (5.3)

iv. Send back SINR
(MMSE,c)
k,m , 1 ≤ m ≤Mc, to the c-th BS.

b2) RBF-MF: For each of the Mc beams, user k in the c-th cell does the

following:

i. Estimate the effective channel with training from the c-th BS: h̃
(c,c)

k,m =

H
(c,c)
k φ(c)

m , 1 ≤ m ≤Mc.

ii. Apply the MF spatial receiver, i.e., t
(c)
k,m = h̃

(c,c)

k,m / ||h̃(c,c)

k,m ||. The ra-

tionale is to maximize the power received from the m-th beam. The

receiver output is given by

r
(c)
k,m =

√
PT
Mc

(

t
(c)
k,m

)H

h̃
(c,c)

k,m s(c)m +

√
PT
Mc

(

t
(c)
k,m

)H

H̃
(c,c)

k,−ms
(c)
−m+

∑

l=1,l 6=c

√

PTγl,c
Ml

(

t
(c)
k,m

)H

H̃
(l,c)

k sl +
(

t
(c)
k,m

)H

z
(c)
k ,

(5.4)

where s
(c)
−m = [s

(c)
1 , · · · , s(c)m−1, s

(c)
m+1, · · · , s(c)Mc

]T and sl = [s
(l)
1 , · · · , s(c)Ml

]T .

iii. Estimate the total power of the interference given in (5.4), which can

be equivalently expressed as
(

h̃
(c,c)

k,m

)H

W
(c)
k h̃

(c,c)

k,m , in which W
(c)
k is de-

fined in (5.2); and compute the SINR corresponding to the m-th beam

φ(c)
m , which is expressed as

SINR
(MF,c)
k,m =

PT

Mc
||h̃(c,c)

k,m ||4
(

h̃
(c,c)

k,m

)H

W
(c)
k h̃

(c,c)

k,m

. (5.5)
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iv. Send back SINR
(MF,c)
k,m , 1 ≤ m ≤ Mc, to the c-th BS.

b3) RBF-AS: The received signal at the n-th receive antenna of user k in the

c-th cell is given by

y
(c)
k,n = h

(c,c)
k,n

Mc∑

m=1

φ(c)
m s(c)m +

C∑

l=1, l 6=c

√
γl,ch

(l,c)
k,n

Ml∑

m=1

φ(l)
m s(l)m + z

(c)
k,n, 1 ≤ n ≤ NR,

(5.6)

where y
(c)
k,n and z

(c)
k,n are the n-th element of y

(c)
k and z

(c)
k , respectively; h

(l,c)
k,n

∈ C1×Ml is the n-th row of H
(l,c)
k , n ∈ {1, . . . , NR}, l, c ∈ {1, . . . , C}. For

each of the Mc beams, user k does the following:

i. Estimate the SINR corresponding to the m-th beam φ(c)
m at the n-th

antenna:

SINRk,n,m =

PT

Mc

∣
∣
∣h

(c,c)
k,n φ(c)

m

∣
∣
∣

2

PT
Mc

Mc∑

i=1,i 6=m

∣
∣
∣h

(c,c)
k,n φ

(c)
i

∣
∣
∣

2

+

C∑

l=1,l 6=c

γl,c
PT
Ml

Ml∑

i=1

∣
∣
∣h

(l,c)
k,n φ

(l)
i

∣
∣
∣

2

+ σ2

.

(5.7)

ii. Select the antenna that has the largest SINR among all NR receive

antennas for the m-th beam, and obtain the SINR as

SINR
(AS,c)
k,m := max

n∈{1,··· ,NR}
SINRk,n,m. (5.8)

iii. Send back SINR
(AS,c)
k,m , 1 ≤ m ≤Mc, to the c-th BS.

2. Transmission phase: After receiving the SINR feedback from all Kc users, the c-

th BS assigns them-th beam to the user with the highest SINR for transmission,
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i.e.,

k(Rx,c)
m = arg max

k∈{1,··· ,Kc}
SINR

(Rx,c)
k,m , (5.9)

where “Rx” denotes MMSE, MF, or AS.

The achievable sum-rate in bits per second per Hz (bps/Hz) of the c-th cell by

the above RBF scheme with different spatial receivers is then expressed as

R
(c)
RBF-Rx = E

[
Mc∑

m=1

log2

(

1 + SINR
(Rx,c)

k
(Rx,c)
m ,m

)
]

(a)
= McE

[

log2

(

1 + SINR
(Rx,c)

k
(Rx,c)
1 ,1

)]

,

(5.10)

where (a) is due to the fact that all the beams in each cell have the same SINR

distribution with a given spatial receiver scheme.

5.1.2 DoF Region

In this chapter, we apply the high-SNR analysis to draw insightful comparisons on

the achievable rates of multi-cell MIMO RBF with different spatial diversity receivers.

Similar to Section 4.3, we adopt the DoF region, which is defined in Section 1.2.1, as

one key performance metric in our analysis.

With MIMO RBF schemes, the achievable DoF region in (1.6) is more specif-

ically given as follows.

Definition 5.1.1 (DoF region with RBF) The DoF region of a C-cell MIMO down-
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link system with RBF is given by

DRBF-Rx =

{

(d1, · · · , dC) ∈ R
C
+ : ∀(ω1, ω2, · · · , ωC) ∈ R

C
+;

C∑

c=1

ωcdc ≤ lim
ρ→∞

[

max
M1,...,MC∈{0,··· ,NT }

C∑

c=1

ωc
R

(c)
RBF-Rx

log2 ρ

]}

. (5.11)

where “Rx” denotes MMSE, MF or AS.

Certainly, DRBF-Rx ⊆ DMIMO regardless of MMSE, MF or AS spatial receivers

used. HereDMIMO is the DoF region of the C-cell MIMO downlink system as described

in Definition 1.2.1.

Furthermore, we assume a certain growth rate for the number of users in each

cell Kc with respect to the SNR, ρ, as ρ goes to infinity. Similar to Section 4.3, we

make the Assumption 4.3.1.

As will be seen later in this chapter, the DoF region characterization under

Assumption 4.3.1 provides new insights on the different effects of the number of per-

cell users, transmit beams, and receive antennas on the achievable rate in multi-cell

MIMO RBF. The notations DMIMO(α) and DRBF-Rx(α) will be used in the sequel

to denote the DoF regions under Assumption 4.3.1 with Kc = Θ(ραc), c = 1, · · · ,

C, and α = [α1, · · · , αC ]T . It is worth noting that our high-SNR approach is along

the same line of those recently reported in [41] [69] [79], where the authors obtain

the achievable DoF of their studied systems assuming that the number of users/links

scales in a certain polynomial order with the SNR as the SNR goes to infinity.
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5.2 SINR Distribution

To characterize the achievable rates of the proposed RBF schemes with different

spatial receivers, it is necessary to investigate the receiver SINRs given in (5.3), (5.5),

and (5.8). In this section, we derive the (exact) distribution of the SINR in each

receiver case.

5.2.1 RBF-MMSE

To obtain the SINR distribution for the RBF-MMSE scheme, we first prove a more

general result in MVA, which is given as follows.

Theorem 5.2.1 Given h ∼ CN (0p×1, Ip), X ∼ CN (0p×n, Ip ⊗ In)
1, n ≥ p ≥ 1,

where h is independent of X, and Ψ = diag(ψ1, . . ., ψn), with ψi > 0, i = 1, . . . , n,

being constants, the CDF of the random variable S := hH(XΨXH)−1h is given by

FS(s) =

∑n
i=p βis

i

∏n
i=1(1 + ψis)

, (5.12)

where βi is the coefficient of si after expanding the polynomial
∏n

j=1(1 + ψjs).

Proof 8 Please refer to Appendix A.3.2

1X is said to have a matrix-variate complex Gaussian distribution with mean matrix 0 ∈ Cp×n

and covariance matrix Ip ⊗ In, where ⊗ denotes the Kronecker product.
2Note that a similar result of Theorem 5.2.1 has been reported in [16], but via a different proof

method. Specifically, the authors in [16] applied a “top-down” approach, whereby they used a

more general result [33, Theorem 3 and (59)] to derive the explicit expression (5.12) for the case in

Theorem 5.2.1. In Appendix A.3, we propose an alternative more direct approach, which uses only

fundamental properties in MVA and thus leads to a more compact proof.

108



RBF FOR MULTI-CELL MIMO SYSTEMS H. D. NGUYEN

It is worth noting that extensions of Theorem 5.2.1 to the case of Rician-

fading and/or correlated channels can be found in subsequent studies, e.g., [32] [46]

[61], where the moment generating function and distribution of the output SINR have

been derived. These results are then applied to find the closed-form expressions of

the capacity and/or bit error rate for the investigated systems. Under such cases, the

SINR distribution in general possesses a complicated form and is often expressed in

terms of determinants of certain matrices.

Next, we observe that (5.12) can be equivalently expressed as

FS(s) = 1−
∑p−1

i=0 βis
i

∏n
i=1(1 + ψis)

. (5.13)

We are now ready to obtain the SINR distribution with RBF-MMSE, based

on Theorem 5.2.1.

Corollary 5.2.1 Given NR ≤ ∑C
l=1Ml − 1, the CDF of the random variable S :=

SINR
(MMSE,c)
k,m defined in (5.3) is given by

FS(s) = 1−
e−s/ηc

(
∑NR−1

i=0 ζis
i
)

(1 + s)Mc−1
∏∑

Mc−1
l=1,l 6=c (1 +

µl,c
ηc
s)Ml

, (5.14)

where ζi is the coefficient of si in the polynomial expansion of (1+s)Mc−1
∏∑

Mc−1
l=1,l 6=c (1+

µl,c
ηc
s)Ml.

Proof 9 Please refer to Appendix C.1.
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5.2.2 RBF-MF

The interference-plus-noise covariance matrix W
(c)
k given in (5.2) can be alternatively

expressed as

W
(c)
k =

(

H̃
(c)

k,m

)H

diag

(
PT
Mc

, · · · , PT
Mc

︸ ︷︷ ︸

Mc−1

, · · · , PTγl,c
Ml

, · · · , PTγl,c
Ml

︸ ︷︷ ︸

Ml

, · · ·
)

H̃
(c)

k,m + σ2I,

(5.15)

where H̃
(c)

k,m =
[

H̃
(c,c)

k,−m, H̃
(1,c)

k , · · · , H̃(l,c)

k , · · · , H̃(C,c)

k

]

; H̃
(c,c)

k,−m and H̃
(l,c)

k are defined

in (5.2), l, c ∈ {1, . . . , C}, l 6= c. Define

ĥ
(c)

k,m =
h̃

(c,c)

k,m
∥
∥h̃

(c,c)

k,m

∥
∥
H̃

(c)

k,m. (5.16)

Note that ĥ
(c)

k,m ∈ C(
∑C

l=1Ml−1)×1 is independent of h̃
(c,c)

k,m and all the elements of

ĥ
(c)

k,m are i.i.d. CSCG random variables each distributed as CN (0, 1). For RBF-MF,

the SINR in (5.5) is thus expressed as

SINR
(MF,c)
k,m =

||h̃(c,c)

k,m ||2
(

ĥ
(c)

k,m

)H

Gĥ
(c)

k,m + 1
ηc

, (5.17)

where G = diag

(

1, · · · , 1
︸ ︷︷ ︸

Mc−1

, · · · , µl,c
ηc
, · · · , µl,c

ηc
︸ ︷︷ ︸

Ml

, · · ·
)

, with l, c ∈ {1, . . . , C}, l 6= c.

By applying the characteristic function approach, we obtain the CDF of the

SINR with RBF-MF in the following theorem.

Theorem 5.2.2 The CDF of the random variable S := SINR
(MF,c)
k,m in (5.17) is given

by

FS(s) = 1− e−s/ηc
NR−1∑

k=0

k∑

m=0

(−1)msk

(k −m)!m!ηk−mc

dmT0(s)

dsm
, (5.18)
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where

T0(s) =
1

(1 + s)Mc−1
∏C

l=1,l 6=c (1 +
µl,c
ηc
s)Ml

. (5.19)

Proof 10 Please refer to Appendix C.2.

5.2.3 RBF-AS

First, we investigate the distribution of the SINRk,n,m given in (5.7). Note that

∣
∣
∣h

(l,c)
k,n φ

(l)
i

∣
∣
∣

2

, ∀k, n, l, c, i, are i.i.d. chi-square random variables with 2 degrees of free-

dom, denoted by χ2(2) [64]. From Corollary 5.2.1 or Theorem 5.2.2, we can easily

obtain the same distribution for SINRk,n,m and thereby SINR
(AS,c)
k,m in (5.8), as given

in the following corollary.

Corollary 5.2.2 The CDF of the random variable S := SINR
(AS,c)
k,m defined in (5.8)

is given by

FS(s) =









1− e−s/ηc

(s+ 1)Mc−1
C∏

l=1,l 6=c

(
µl,c
ηc
s+ 1

)Ml









NR

. (5.20)

In Fig. 5.1, we show the SINR CDFs of the RBF-MMSE, RBF-MF, and RBF-

AS schemes under the following setup: C = 4, η1 = 20 dB, NR = 3, M1 = 3, [µ2,1,

µ3,1, µ4,1] = [0, −3, 3] dB, and [M2, M3, M4] = [3, 2, 4] (see Section 5.1 for the imple-

mentation of these schemes). The CDFs obtained by Monte-Carlo simulations (with

104 channel realizations) are compared to our analytical results from Corollary 5.2.1,
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Figure 5.1: Comparison of the simulated and analytical CDFs of the

SINR with different spatial receiver schemes.

Theorem 5.2.2, and Corollary 5.2.2. It is observed that the simulation results follows

closely the analytical results. For comparison, we also plot the SINR CDF in the

case with NR = 1, i.e., the MISO RBF scheme that was given in Lemma 4.2.2. It is

observed that receive spatial diversity helps enhance the SINR performance substan-

tially. In particular, with RBF-MMSE, the SINR distribution is most significantly

improved. It is thus expected that RBF-MMSE should also provide the best rate

performance, as will be shown next.
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5.3 DoF Analysis

In this section, we first study the DoF for the achievable sum-rate in the single-cell

MIMO RBF case. Then, we extend the DoF analysis for the single-cell RBF to the

more general multi-cell RBF subject to the ICI. Finally, we investigate the optimality

of RBF in terms of achievable DoF region.

5.3.1 Single-Cell Case

First, we consider the single-cell case without the ICI to draw some useful insights.

For brevity, we drop the cell index c in this subsection. We define the achievable DoF

for the sum-rate in one single cell with a given pair of user density α and number of

transmit beams M as

dRBF-Rx(α,M) = lim
ρ→∞

RRBF-Rx

log2 ρ
. (5.21)

We first obtain the following lemma on the achievable DoF in one single cell.

Lemma 5.3.1 In the single-cell case, given K = Θ (ρα), the achievable DoF of RBF-

MMSE, RBF-MF, and RBF-AS schemes are given by

dRBF-MMSE(α,M) =







αM

M −NR
, 0 ≤ α ≤M −NR (5.22a)

M, α > M −NR. (5.22b)

dRBF-MF/AS(α,M) =







αM

M − 1
, 0 ≤ α ≤M − 1 (5.23a)

M, α > M − 1. (5.23b)

Proof 11 Please refer to Appendix C.3.
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Figure 5.2: Comparison of the numerical sum-rate and sum-rate scaling

law in the single-cell MIMO RBF with different spatial receivers.

In Fig. 5.2, we compare the sum-rate scaling laws dRBF-MMSE(α,M) log2 ρ and

dRBF-MF/AS(α,M) log2 ρ with the actual sum-rates achievable by RBF-MMSE, RBF-

MF, and RBF-AS schemes obtained by simulation. The system parameters are set

as M = 4, NR = 2, α = 1, and K = ⌊ρα⌋. It is observed that the numerical sum-rate

results follow quite closely the theoretical rate scaling laws, even with moderate SNR

values of ρ.

From Lemma 5.3.1, we observe an interesting interplay among the available

multi-user diversity (specified by the user density α), the level of the intra-cell inter-

ference (specified by M − 1), the receive diversity gain (specified by the number of

receive antennas NR), and the achievable spatial multiplexing gain (specified by the
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DoF dRBF (α,M)), which is elaborated as follows.

First, note that in a single-cell RBF system, transmittingM beams simultane-

ously results in M − 1 intra-cell interfering beams for each received beam. The term

M − 1 in the denominator of (5.23a) is exactly the number of interfering beams to

one particular received beam in RBF-MF/AS. However, there exist only M −NR ef-

fective interference beams in RBF-MMSE, as shown in (5.22a), since MMSE receiver

achieves an additional interference mitigation gain of NR − 1. Specifically, with the

total NR spatial DoF, the MMSE receiver effectively uses one DoF for receiving signal

and the other NR − 1 DoF for suppressing the interference. Furthermore, in terms

of achievable sum-rate DoF, the performance of either RBF-MF or RBF-AS is the

same as that of MISO RBF system without receive spatial diversity [50], and is thus

poorer as compared to RBF-MMSE with NR > 1. The DoF gain by receive spatial

diversity therefore clearly depends on the availability of the interference covariance

matrix at each MS. In the case of RBF-MMSE, the interference-plus-noise covariance

matrix W
(c)
k in (5.2) needs to be estimated at the receiver, while this operation is not

required in RBF-MF or RBF-AS.

Another interpretation of Lemma 5.3.1 is that it gives the user scaling law

with SNR required to achieve d DoF, similarly to [41] [69] [79]. Specifically, the

number of users should scale as K = Θ
(

ρd
M−NR

M

)

and Θ
(

ρd
M−1
M

)

for RBF-MMSE

and RBF-MF/AS, respectively. Thus, significantly less number of users is required in

RBF-MMSE as compared to RBF-MF/AS for achieving the same DoF. With RBF

and under the assumption K = Θ(ρα), it is also interesting to observe from Lemma
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5.3.1 that the achievable DoF can be a non-negative real number (as compared to the

conventional integer DoF in the literature with finite K). This comes from our (quite

general) assumption that α can take any arbitrary real value.

Next, we obtain the maximum achievable DoF of RBF-MMSE for a given α

by searching over all possible values of M . We note that for any M < ⌊α⌋ + NR,

dRBF (α,M) < dRBF (α, ⌊α⌋ + NR), while for any M > ⌊α⌋ + NR + 1, dRBF (α,M)

< dRBF (α, ⌊α⌋ + NR + 1). Thus we only need to compare dRBF (α, ⌊α⌋ + NR) and

dRBF (α, ⌊α⌋ + NR + 1) in searching for the optimal M . The maximum achievable

DoF of RBF-MF/AS can be obtained similarly.

Theorem 5.3.1 For a single-cell MIMO RBF system with NT transmit antennas,

NR receive antennas, and user density coefficient α, the maximum achievable DoF

and the corresponding optimal number of transmit beams with MMSE, MF, or AS

based receivers are3

d∗RBF-MMSE(α) =







⌊α⌋+NR, α ≤ NT −NR, NR ≥ {α}(⌊α⌋+NR + 1),

α(⌊α⌋+NR+1)
⌊α⌋+1

, α ≤ NT −NR, {α}(⌊α⌋+NR + 1) > NR,

NT , α > NT −NR.

(5.24)

M∗
RBF-MMSE(α) =







⌊α⌋+NR, α ≤ NT −NR, NR ≥ {α}(⌊α⌋+NR + 1),

⌊α⌋+NR + 1, α ≤ NT −NR, {α}(⌊α⌋+NR + 1) > NR,

NT , α > NT −NR.

(5.25)

3The notations ⌊α⌋ and {α} denote the integer and fractional parts of a real number α, respec-

tively.
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d∗RBF-MF/AS(α) =







⌊α⌋ + 1, α ≤ NT − 1, 1 ≥ {α}(⌊α⌋+ 2),

α(⌊α⌋+2)
⌊α⌋+1

, α ≤ NT − 1, {α}(⌊α⌋+ 2) > 1,

NT , α > NT − 1.

(5.26)

M∗
RBF-MF/AS(α) =







⌊α⌋ + 1, α ≤ NT − 1, 1 ≥ {α}(⌊α⌋+ 2),

⌊α⌋ + 2, α ≤ NT − 1, {α}(⌊α⌋+ 2) > 1,

NT , α > NT − 1.

(5.27)

In Fig. 5.3, we show the maximum DoF and the corresponding optimal num-

ber of transmit beams versus the user density coefficient α with NT = 5 and NR = 3

for each single-cell RBF scheme, according to Theorem 5.3.1. It is observed that in

general, RBF-MMSE achieves a higher maximum DoF by transmitting more data

beams as compared to RBF-MF or RBF-AS. As a result, RBF-MMSE system can

serve more users with better rate performance than RBF-MF/AS. However, the im-

provement in the achievable rate and coverage comes at the cost of higher complexity

by employing MMSE receivers.

One important question is how the RBF schemes perform as compared to the

optimal DPC-based transmission scheme assuming the full transmitter-side CSI in

single-cell MIMO BCs. In the following, we answer this question in terms of achievable

sum-rate DoF. First, we obtain an upper bound on the single-cell achievable DoF with

arbitrary transmission schemes.

Proposition 5.3.1 Assuming K = Θ(ρα) with α ≥ 0, the DoF of a single-cell MIMO
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Figure 5.3: The maximum sum-rate DoF d∗RBF-Rx(α) and optimal number of

transmit beams M∗
RBF-Rx(α) with NT = 5 and NR = 3, where “Rx” denotes

MMSE, MF, or AS.

BC with NT transmit antennas at the BS and NR receive antennas at each MS is

upper-bounded by NT as ρ→ ∞.

Proof 12 Please refer to Appendix C.4.

Proposition 5.3.1 states that the maximum DoF of the single-cell MIMO BC

is always NT , even with asymptotically large number of users that scales with the

increasing SNR. Next, applying Theorem 5.3.1 and Proposition 5.3.1 yields the fol-

lowing proposition.
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Proposition 5.3.2 Assuming K = Θ(ρα), the single-cell RBF schemes are DoF-

optimal, i.e., d∗RBF-MMSE(α) = NT and d∗RBF-MF/AS(α) = NT , if and only if

• RBF-MMSE: α ≥ NT −NR;

• RBF-MF/AS: α ≥ NT − 1.

It thus follows that the single-cell RBF schemes achieve the maximum DoF

with M = NT if the number of users per-cell is sufficiently large, thanks to the

multiuser diversity and/or spatial diversity that completely eliminates the intra-cell

interference. However, spatial diversity gain in the achievable DoF is available only

in the case of MMSE based receiver.

As an example for illustration, we compare the numerical sum-rates and the

DoF scaling law in Fig. 5.4, in which the DPC, RBF-MMSE, RBF-MF, and RBF-AS

are employed, and NT − 1 > α ≥ NT −NR. We consider two single-cell systems with

the following parameters: (a) M = NT = 3, NR = 2, α = 1, K = ⌊ρα⌋; and (b)

M = NT = 4, NR = 3, α = 1.2, K = ⌊ρα⌋. The rates and scaling law of system

(a) and (b) are denoted as the solid and dash lines, respectively. Note that in both

cases, the DPC and RBF-MMSE sum-rates follow the (same) DoF scaling law quite

closely. This example clearly demonstrates the DoF optimality of the RBF-MMSE

given that α ≥ NT − NR. Furthermore, since α < NT − 1, the RBF-MF, RBF-AS,

and consequently MISO RBF schemes are DoF sub-optimal as clearly shown in Fig.

5.4. It is important to note that the values of the SNR and the numbers of users

are only moderate in this example. This thus shows the practical usefulness of our
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Figure 5.4: Comparison of the numerical DPC, RBF-MMSE, RBF-MF,

and RBF-AS sum-rates, and the DoF scaling law with NT − 1 ≥ α ≥

NT − NR. The rates and scaling law of system (a) and (b) are denoted

as the solid and dash lines, respectively.

optimality conditions for RBF schemes given in Proposition 5.3.2.

Next, we compare our new asymptotic result to the conventional one in [64] and

[65] with finite per-cell SNR, which states that for any given M ≤ NT and NR ≥ 1,

the sum-rate achievable by single-cell RBF satisfies

lim
K→∞

RRBF-Rx

M log2 logK
= 1, (5.28)

where “Rx” denotes any of MMSE, MF, and AS.
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We observe a notable difference between the conclusions drawn from our high-

SNR analysis and the conventional finite-SNR analysis both with the number of

per-cell users increasing to infinity. In the finite-SNR case, from (5.28) it follows

that there is no asymptotic sum-rate gain by RBF-MMSE over RBF-MF or RBF-AS,

and the asymptotic sum-rate is independent of NR. This thus leads to an improper

conclusion that using only one single antenna at each receiver is sufficient to capture

the asymptotic rate of RBF. As a result, the benefit of receive spatial diversity is

neglected, which in turn severely degrades the RBF rate performance especially for

interference-limited multi-cell systems. However, with our high-SNR analysis, the ef-

fects of the number of receive antennas as well as the spatial diversity technique used

(MMSE versus MF/AS) on the DoF performance are clearly shown. This demon-

strates the advantage of our new approach for designing practical multi-cell systems

employing RBF.

5.3.2 Multi-Cell Case

In this subsection, we extend the DoF analysis for the single-cell case to the more

general multi-cell RBF. For convenience, we define the achievable sum-rate DoF of

the c-th cell as dRBF-Rx,c(αc,m) = limρ→∞
R

(c)
RBF-Rx

log2 ρ
, where m = [M1,· · · ,MC ]

T is a

given set of numbers of transmit beams at different BSs. We then state the following

result on the achieve DoF of the c-th cell.

Lemma 5.3.2 In the multi-cell case, given Kc = Θ (ραc) and m, the achievable DoF

of the c-th cell with RBF-MMSE, RBF-MF, and RBF-AS schemes are given by
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dRBF-MMSE,c(αc,m) =







αcMc
∑C

l=1Ml −NR

, 0 ≤ αc ≤
∑C

l=1Ml −NR (5.29a)

Mc, αc >
∑C

l=1Ml −NR. (5.29b)

dRBF-MF/AS,c(αc,m) =







αcMc
∑C

l=1Ml − 1
, 0 ≤ αc ≤

∑C
l=1Ml − 1 (5.30a)

Mc, αc >
∑C

l=1Ml − 1. (5.30b)

The proof of the above lemma can be obtained by similar arguments as for

Lemma 5.3.1, and is thus omitted for brevity. Compared to the single-cell case, in

the multi-cell case there are not only Mc − 1 intra-cell interfering beams, but also

∑C
l=1,l 6=cMl inter-cell interfering beams for any received beam in the c-th cell, as

observed from the denominators in (5.29a) and (5.30a), which results in a decrease

in the achievable DoF per cell.

We again compare our new asymptotic result to that obtained from the con-

ventional asymptotic analysis with finite per-cell SNR [64], [65]. We first note the

following result, which states that for any given Mc ≤ NT and NR ≥ 1, the sum-rate

achievable by the c-th cell RBF satisfies

lim
Kc→∞

R
(c)
RBF-Rx

Mc log2 logKc
= 1, (5.31)

where “Rx” denotes any of MMSE, MF, and AS. Thus (5.28) and (5.31) imply that the

rate performance of each cell with any given number of receive antennas at the users

in a multi-cell RBF system is equivalent to that of a single-cell RBF with one antenna

at each user. Such a conclusion may be misleading in a practical multi-cell system

with non-negligible ICI where receive spatial diversity can help significantly improve

the rate performance based on our new DoF analysis. Furthermore, (5.31) implies
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that even in multi-cell RBF systems, each BS should use all available orthogonal

beams for transmission, i.e., Mc = NT , ∀ c = 1, . . . , C. This conclusion can severely

degrade the rate performance of RBF systems, as illustrated in the next example.

In Fig. 5.5, we depict the (total) achievable sum-rates of two RBF-MMSE

systems with the following parameters: (a) C = 2, M1 = M2 = M ≤ NT = 4,

NR = 2, γ1,2 = γ2,1 = 0.8, and K1 = K2 = K = 200; and (b) C = 3, M1 = M2 = M3

= M ≤ NT = 4, NR = 2, γl,c = 0.8, l, c = 1, 2, 3, l 6= c, and K1 = K2 = K3 = K =

200. Thus, with ρ = [5 10 15 20] dB, we have K ≈ ⌊ρα⌋, where α = [4.6021 2.3010

1.5340 1.1505]. Consider first system (a). From (5.31), the conventional asymptotic

analysis implies that the optimal rate performance is achieved with M1 = M2 = 4.

However, given the constraint M1 = M2 = M , Lemma 5.3.2 suggests that the best

rate performance is achieved with M = 3 when ρ = 5 dB and M = 2 for the other

cases. The reason is that the discrete function αM
2M−NR

, under M ≤ 4, is maximized

at M = 3 when α = 4.6021 and M = 2 for the other values of α. A similar argument

can be applied to system (b), where the best rate performance is achieved with M =

2 when ρ = 5 dB and M = 1 for the other cases. Figs. 5.5a and 5.5b thus clearly

confirm the conclusions inferred from Lemma 5.3.2. Note that the setting M = 4

almost gives the worst rate performance in all cases.

For convenience, let dRBF-Rx(α,m) =
[
dRBF-Rx,1(α1,m), · · · , dRBF-Rx,C(αC ,m)

]T

be the DoF vector, with dRBF-Rx,c(αc,m), c = 1, . . . , C, obtained from Lemma 5.3.2.

The characterization of the DoF region for the multi-cell RBF scheme with different

receive spatial diversity techniques is then given in the following proposition.

123



CHAPTER 5: MULTI-CELL MIMO RBF

5 10 15 20
8

10

12

14

16

18

20

ρ [dB]

Su
m

−r
at

e 
[b

ps
/H

z]

 

 

 M = 1
 M = 2
 M = 3
 M = 4

(a) Two-cell

5 10 15 20
10

12

14

16

18

20

22

ρ [dB]

Su
m

−r
at

e 
[b

ps
/H

z]

 

 

 M = 1
 M = 2
 M = 3
 M = 4

(b) Three-cell

Figure 5.5: Sum-rates of RBF-MMSE systems as a function of the SNR.
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Proposition 5.3.3 Given Kc = Θ (ραc) , c = 1, . . . , C, the achievable DoF region of

a C-cell MIMO RBF system is given by

DRBF-Rx(α) = conv

{

dRBF-Rx(α,m),Mc ∈ {0, · · · , NT}, c = 1, · · · , C
}

, (5.32)

where conv denotes the convex hull operation over all DoF vectors obtained with

different values of m and “Rx” stands for MMSE, MF, or AS.

Fig. 5.6 shows the DoF region of a two-cell system employing either RBF-

MMSE or RBF-MF/AS. We assume NT = 4 and NR = 2. It is observed that when

α1 and α2 are small, the DoF region is more notably expanded by using MMSE

receiver over MF/AS receiver. We conclude that receive spatial diversity is more

beneficial when the numbers of users are relatively small. Note that to obtain dc

DoF, the number of users in the c-th cell are at least in the order of Θ
(

ρdc
∑C

l=1 Ml−NR
Mc

)

and Θ
(

ρdc
∑C

l=1 Ml−1

Mc

)

with RBF-MMSE and RBF-MF/AS, respectively (cf. Lemmas

5.3.2). Thus, significantly less number of users per cell is required in RBF-MMSE as

compared to RBF-MF/AS for achieving the same DoF.

In practice, each cell can set different numbers of transmit beams at the BS. In

general, the optimal DoF tradeoffs or the boundary DoF points are achieved when all

the MSs apply the MMSE receiver and all the BSs cooperatively assign their numbers

of transmit beams based on per-cell user densities and number of transmit/receive

antennas. However, it is worth noting that there exists an underlying tradeoff between

the achievable DoF and the receiver complexity, which determines the most desirable

operating configuration of the system in consideration.
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Figure 5.6: DoF regions of two-cell MIMO RBF with different types of

diversity receivers. The region boundaries for RBF-MMSE and RBF-

MF/AS are denoted by solid and dashed lines, respectively.

5.3.3 Optimality of Multi-Cell RBF

It can be inferred from Lemma 5.3.2 and observed from Fig. 5.6 that the DoF regions

of RBF-MMSE and RBF-MF/AS both converge to the same region if the per-cell

user densities are sufficiently large, in which all cells attain their maximum DoF NT

by setting Mc = NT , ∀c. The converged region is thus the “interference-free” DoF

region as if there was no ICI such that each cell can be treated as an independent
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single-cell system. The above result implies that the multi-cell RBF is conceivably

DoF-optimal given a sufficiently large number of users per cell, which is an extension

of Proposition 5.3.2 to the multi-cell case. In this subsection, we rigorously develop

this result. First, we present a (crude) DoF region upper bound for the C-cell MIMO

downlink system with arbitrary transmission schemes. The proof follows directly from

Proposition 5.3.1 and is thus omitted for brevity.

Proposition 5.3.4 Given Kc = Θ(ραc), c = 1, · · · , C, an upper bound of the DoF

region defined in (1.2.1) for a C-cell MIMO downlink system is

DUB(α) =

{

(d1, d2, · · · dC) ∈ R
C
+ : dc ≤ NT , c = 1, · · · , C

}

. (5.33)

The DoF optimality of multi-cell RBF schemes is then obtained in the following

proposition.

Proposition 5.3.5 Given Kc = Θ(ραc), c = 1, · · · , C, the multi-cell RBF schemes

with different receive spatial diversity techniques achieve the “interference-free” DoF

region upper bound of a C-cell MIMO downlink system, i.e., DRBF-Rx(α) = DUB(α),

if

• RBF-MMSE: αc ≥ CNT −NR, ∀c ∈ {1, · · · , C}.

• RBF-MF/AS: αc ≥ CNT − 1, ∀c ∈ {1, · · · , C}.

A direct consequence of Proposition 5.3.5 is thus DRBF-Rx(α) = DMIMO(α), i.e.,

each RBF scheme is indeed DoF-optimal when the numbers of users in all cells are

sufficiently large. Due to the dominant multi-user diversity gain, RBF compensates
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the lack of full CSI at transmitters without any DoF loss. Furthermore, to achieve

the interference-free DoF region, we infer from Proposition 5.3.5 that RBF-MMSE

requires a much less number of users per cell, with a difference of NR−1 in the scaling

order with respect to the SNR, as compared to RBF-MF or RBF-AS.

5.4 Conclusion

In this chapter, we study the achievable sum-rate in multi-cell MIMO RBF systems

for the regime of both high SNR and large number of users per cell. We propose

three RBF schemes for spatial diversity receivers with multiple antennas, namely,

RBF-MMSE, RBF-MF, and RBF-AS. The SINR distributions in the multi-cell RBF

with different types of spatial receiver are obtained in closed-form at any given finite

SNR. Based on these results, we characterize the DoF region achievable by different

multi-cell MIMO RBF schemes under the assumption that the number of users per

cell scales in a polynomial order with the SNR as the SNR goes to infinity. Our

investigation reveals significant gains by using MMSE-based spatial receiver in the

achievable sum-rate and DoF region in multi-cell RBF, which considerably differs from

the existing result based on the conventional asymptotic analysis with fixed per-cell

SNR. The results of this chapter thus provide new insights on the optimal design of

interference-limited multi-cell MIMO systems with only partial CSI at transmitters.
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Chapter 6

Conclusions and Future Works

6.1 Summary of Contributions and Insights

Single-cell RBF is an important topic which has attracted a lot of attention. There is,

however, virtually no investigation on cellular systems with RBF employed at each BS.

Furthermore, how receive spatial diversity affects the performance of RBF systems has

not been fully understood. In this thesis, we studied the multi-cell MISO and MIMO

RBF systems with different types of receiver. The aim is to characterize the interplays

among the receive spatial diversity, multi-user diversity, spatial multiplexing gain,

inter-/intra-cell interferences, and BSs collaborative transmission.

In summary, the main contributions of this thesis are as follows.

• We presented an exact analytic investigation on fundamental performance mea-

sures of multi-cell MISO and MIMO RBF systems. Particularly, we studied the

SINR and the sum-rate of the systems given a finite SNR. This was done in the
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context of probability and multivariate analysis, by leveraging newly obtained

results.

– Multi-cell MISO RBF systems: The SINR distribution at each user was

derived. Based on that, we presented an exact expression for the sum-rate

of the systems (see Section 4.2.2).

– Multi-cell MIMO RBF systems: We provided another proof of an impor-

tant theorem in multivariate analysis. Furthermore, the SINR distributions

of multi-cell MIMO RBF systems with different receive spatial diversity

techniques were obtained (see Section 5.2).

• We investigated the rate performance of multi-cell RBF schemes under the

regime of large number of users. We showed that the asymptotic rate scaling

law of a single-cell MISO RBF system still holds for multi-cell RBF even with

ICI and with or without receive spatial diversity (see Sections 4.2.3 and 5.3.1).

This suggests that the large-number-of-user asymptotic analysis is not suitable

for studying multi-cell RBF systems, where the ICI becomes a dominant factor,

and a new approach should be considered.

• We proposed a new asymptotic investigation on the rate performance of multi-

cell RBF systems under high-SNR regime. By using the notion of DoF region,

we investigated the throughput trade-offs between all the cells. This approach

effectively provides a unified view on the rate performance of multi-cell RBF

systems under different setups (see Sections 4.3 and 5.3).
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Based on these results, we have explored the performance of multi-cell RBF

systems. In summary, the key insights obtained in this thesis are as follows.

• Collaboration among the BSs in assigning their respective numbers of data

beams based on different per-cell user densities is essential to achieve the optimal

throughput trade-offs among different cells. This is in sharp contrast with the

result obtained in the regime of large number of users but fixed SNR per cell,

which suggests that transmitting all beams is the optimal solution for multi-cell

RBF systems (see Sections 4.3.2 and 5.3.2).

• The benefit of receive spatial diversity is significant for multi-cell RBF schemes.

This insight also contrasts with the existing result that spatial diversity receivers

only yield marginal sum-rate gain, which was obtained in the regime of large

number of users but fixed SNR per cell. However, we note that there exists a

trade-off between the rate/DoF performance and the complexity/delay time of

RBF systems with different receivers (see Section 5.3).

• Multi-cell RBF schemes are optimal in terms of the rate performance albeit

requiring only partial CSI at transmitters as compared to other full-CSI trans-

mission schemes, such as IA. However, this only holds when the numbers of

users in all cells are sufficiently large compared with the SNR (see Sections

4.3.3 and 5.3.3).
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CHAPTER 6: CONCLUSIONS AD FUTURE WORKS

6.2 Proposals for the Future Research

Since multi-cell RBF systems have not been investigated extensively, there are many

interesting topics which we can consider. In this section, we discuss several possible

future works.

This thesis has focused only on the rate performance of multi-cell RBF systems,

assuming perfect and analog CSI feedback. An interesting topic for future work is to

investigate the multi-cell RBF schemes with reduced and quantized feedback. It is

intuitive that more feedback bits might be necessary to capture the gain from multi-

user diversity rather than only one bit in the single-cell case. However, more rigorous

works are required before any conclusion is drawn.

The application of non-orthogonal RBF to cellular networks is also another

promising direction. The first study needs to fully characterize the performance of

non-orthogonal RBF in single-cell case. Further work might consider the problem of

designing non-orthogonal RBF in all cells so that the intra-/inter-cell interference is

kept small. The problem will essentially be related to the GLPP.

In this thesis, we mostly assume that the user is homogeneous, i.e., the large-

scale fading is the same across all users. However, a multi-cell RBF system with

heterogeneous users under diverse large-scale fading channels is a more realistic setup.

An important topic is to examine the problem of user scheduling and investigate the

rate performance with different scheduling schemes under heterogeneous multi-cell

RBF systems.
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Appendix A

Multivariate Analysis

A.1 Preliminaries

The proof of Theorem 5.2.1 requires knowledge on finite-dimensional complex random

matrices. In this section, we present a brief overview on random matrix theory. The

objective is to provide necessary preliminary results and definitions.

In this appendix as well as the subsequent Appendices A.2, A.3, we use {ai,j}i,j

to denote a matrix A having ai,j as the (i, j)-th component. O(n) denotes the set of

all orthogonal matrix with dimension n, and [dU ] is the normalized Haar invariant

probability measure on O(n), normalized to make the total measure unity [29]. etr(X)

is the short-hand notation for eTr(X).

Definition A.1.1 The real and complex multivariate gamma function Γ̃m(n) are de-

fined as
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Γm(n) =

n∏

j=1

Γ(m− j + 1) =

n∏

j=1

(m− j)!, (A.1)

Γ̃m(n) =

∫

X=X
H
≻0

etr(−X)|X|m−ndX. (A.2)

Definition A.1.2 The Vandermonde determinants of a diagonal matrix A = diag(

a1, . . ., an ) are defined as

V (A) = |{aj−1
i }i,j=1,...,n| =

∏

1≤i≤j≤n

(aj − ai), (A.3)

∆(A) = |{an−ji }i,j=1,...,n| =
∏

1≤i≤j≤n

(ai − aj), (A.4)

Clearly, ∆(A) = (−1)n(n−1)/2V (A).

Definition A.1.3 Suppose that k is a positive integer. A partition of k into p parts,

denoted as K = ( k1, k2, . . . , kp ), is a division such that
∑p

m=1 km = k, k1 ≥ . . . ≥

kp ≥ 0.

The scalar hyper-geometric functions are defined as

Fp q(a1, . . . , ap; b1, . . . , bq; x) =

∞∑

k=0

(a1)k . . . (ap)k
(b1)k . . . (bp)k

xk

k!
, (A.5)

where (a)k = a(a+1) . . . (a+ k− 1). Hyper-geometric functions of matrix arguments

are generalizations of these classical hyper-geometric functions.

Definition A.1.4 (Hyper-geometric functions of one and two matrix arguments) Let

A and B be Hermitian n × n matrices. The hyper-geometric functions of one and

146



RBF FOR MULTI-CELL MIMO SYSTEMS H. D. NGUYEN

two matrix arguments are defined as

F (n)
p q (a1, . . . , ap; b1, . . . , bq;A) =

∞∑

k=0

∑

K

(a1)K . . . (ap)K
(b1)K . . . (bp)K

C̃K(A)

k!
, (A.6)

F (n)
p q (a1, . . . , ap; b1, . . . , bq;A,B) =

∞∑

k=0

∑

K

(a1)K . . . (ap)K
(b1)K . . . (bp)K

C̃K(A)C̃K(B)

C̃K(In)k!
, (A.7)

where K = ( k1, k2, . . . , kn ) is a partition of k; (a)K =
∏n

m=1(a − m + 1)km; and

C̃K(X) is the complex zonal polynomial of a Hermitian matrix X, which takes origins

from group representation theory [29].

The following lemmas state the most useful properties for the hyper-geometric

functions

Lemma A.1.1 ([29]) (Splitting Property) Suppose that A ∈ Cn×n, A ≻ 0, and B

∈ Cn×n is a Hermitian matrix. Then we have

∫

U∈O(n)

F (n)
p q (a1, · · · , ap; b1, · · · , bq;AUBUH)[dU ] = F (n)

p q (a1, · · · , ap; b1, · · · , bq;A,B).

(A.8)

Lemma A.1.2 ([29]) (Reproductive Property) Suppose that A ∈ Cn×n, A ≻ 0, and

B, C ∈ Cn×n are Hermitian matrices. Then, for any complex number a with the real

part Re(a) > n− 1, we have

∫

X≻0
etr(−AX)|X|a−n F (n)

p q (a1, · · · , ap; b1, · · · , bq;XB,C)dX

= Γ̃n(a)|A|−a F
(n)

p+1 q (a1, · · · , ap, a; b1, · · · , bq;A−1B,C). (A.9)
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Lemma A.1.3 ([29]) (Eigenvalue Transformation) Suppose that A ∈ Cn×n, A ≻

0, is a Hermitian matrix with the joint distribution f(A). The joint PDF of the

eigenvalues λn > . . . > λ1 > 0 of A is

g(Λ) =
πn(n−1)

Γ̃n(n)
V 2(Λ)

∫

U∈O(n)

f(UΛUH)[dU ], (A.10)

where Λ = diag(λ1, . . . , λn) and UΛUH is the eigenvalue decomposition of the matrix

A.

Lemma A.1.4 ([33]) (Quadratic Distribution) Suppose that X ∼ CN (0p×n,Σ⊗Ω),

n ≥ p, and M ≻ 0. The distribution of V = XMXH is

fV (V ) =
1

Γ̃p(n)|Σ|n|MΩ|p
|V |n−p F (n)

0 0 (M−1/2Ω−1M−1/2,−Σ−1V ). (A.11)

A.2 Additional Lemmas for the Proof of Theorem

5.2.1

Next, we present two lemmas that will be used to prove Theorem 5.2.1 in Appendix

A.3.

Lemma A.2.1 Suppose that ψj 6= ψi, i 6= j ∈ {1, . . . , n}, and Ai = 1/
∏n

j 6=i(1 −

ψj/ψi). Then we have

1−
(

n∏

i=1

ψi

)
n∑

i=1

(−1)n+1Ai
ψni (1 + ψis)

=

∏n
i=1 ψis

n

∏n
i=1(1 + ψis)

. (A.12)

Proof 13 Multiplying both sides of (A.12) with
∏n

i=1(1 +ψis) and subtracting them,

we obtain a polynomial in s of degree n. However, since this polynomial has n + 1
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zeros: s ∈ {0,−1/ψ1, . . . ,−1/ψn}, it should be equal to 0. This completes the proof

of Lemma A.2.1.

Lemma A.2.2 Suppose thatΨ = diag(ψ1, . . . , ψp), ψi > 0, ψj 6= ψi, i, j ∈ {1, . . . , n},

i 6= j, and

fS(s) =
sp−1Γ̃p(p+ 1)

Γ̃p(p)Γ̃(p)
|Ψ| F (p)

1 0 (p+ 1;Ψ,−s). (A.13)

The function FS(s) =
∫ s

0
fS(x)dx is then in the form of

FS(s) =

∏n
i=1 ψis

n

∏n
i=1(1 + ψis)

. (A.14)

Proof 14 Note that F
(p)

1 0 (p+1;Ψ,−s) = lim
ǫ1,...,ǫp−2→0

F
(p)

1 0 (p+1;Ψ,−S1), where S1 =

diag(s, 0, ǫ1, . . . , ǫp−2). From [21, (4.7)], we have

F
(p)

1 0 (p+ 1;Ψ,−S1) =
| F1 0(2;−ψisj)|
p!∆(Ψ)∆(−S1)

= (−1)
p(p−1)

2
| F1 0(2;−ψisj)|
p!V (Ψ)V (S1)

, (A.15)

where | F1 0(2;−ψisj)| denotes the determinant of a matrix with (i, j)-th component

being F1 0(2;−ψisj) = 1/(1 + ψisj)
2, and [s1, . . . , sp] := [s, 0, ǫ1, . . . , ǫp−2]. Denote

| F1 0(2;−ψisj)| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
(1+ψ1s)2

1 1
(1+ψ1ǫ1)2

· · · 1
(1+ψ1ǫp−2)2

...
...

...
...

...

1
(1+ψps)2

1 1
(1+ψpǫ1)2

· · · 1
(1+ψpǫp−2)2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

:= |c0, c1, g(ǫ1), . . . , g(ǫp−2)|, (A.16)

where c0 =
[

1
(1+ψ1s)2

, . . . , 1
(1+ψps)2

]T
; c1 =

[
1, . . . , 1

]T
; and g(ǫk) =

[
1

(1+ψ1ǫk)2
,

. . . , 1
(1+ψpǫk)2

]T
, k = 1, . . . , p− 2.
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Similarly, we define determinant of the Vandermonde matrix of the matrix S1

as a function of ǫ1, . . . , ǫp−2 as follows

V (S1) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 · · · 1

s 0 ǫ1 · · · ǫp−2

...
...

...
...

...

sp−1 0 ǫp−1
1 · · · ǫp−1

p−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

:= |c2, c3,h(ǫ1), . . . ,h(ǫp−2)|, (A.17)

where c2 = 1, . . . , sp−1
]T
; c1 =

[
1, 0, . . . , 0

]T
; and h(ǫk) =

[
1, ǫk, . . . , ǫ

p−1
k

]T
,

k = 1, . . . , p− 2.

Using the L’ Hospital rule [1, 3.4.1], we then have

| F1 0(2;−ψisj)|
V (S1)

=
|c0, c1, g(ǫ1), . . . , g(ǫp−2)|
|c2, c3,h(ǫ1), . . . ,h(ǫp−2)|

=

∣
∣
∣
∣
c0, c1,

dg(x)

dx

∣
∣
∣
x=ǫ1

, . . . ,
dp−2g(x)

dxp−2

∣
∣
∣
x=ǫp−2

∣
∣
∣
∣

∣
∣
∣
∣
c2, c3,

dh(x)

dx

∣
∣
∣
x=ǫ1

, . . . ,
dp−2h(x)

dxp−2

∣
∣
∣
x=ǫp−2

∣
∣
∣
∣

. (A.18)

After some manipulations, we obtain

∣
∣
∣
∣
c0, c1,

dg(x)

dx

∣
∣
∣
x=ǫ1

, . . . ,
dp−2g(x)

dxp−2

∣
∣
∣
x=ǫp−2

∣
∣
∣
∣

ǫ1,...,ǫp−2→0−−−−−−−→

(−1)
(p−1)(p−2)

2

(
p
∏

i=1

Γ(i)

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
(1+ψ1s)2

1 ψ1 · · · ψp−2
1

...
...

...
...

...

1
(1+ψps)2

1 ψp · · · ψp−2
p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

(A.19)
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∣
∣
∣
∣
c2, c3,

dh(x)

dx

∣
∣
∣
x=ǫ1

, . . . ,
dp−2h(x)

dxp−2

∣
∣
∣
x=ǫp−2

∣
∣
∣
∣

ǫ1,...,ǫp−2→0−−−−−−−→

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 0 · · · 0

s 0 1 · · · 0

...
...

...
...

...

sp−2 0 0 · · · (p− 2)!

sp−1 0 0 · · · 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)p−1

(
p−1
∏

i=1

Γ(i)

)

sp−1.

(A.20)

Now, we are ready to derive a closed-form expression for the function FS(s).

First note that by combining (A.15), (A.18), (A.19), and (A.20), fS(s) can be ex-

pressed as

fS(s) =
1

V (Ψ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1

(1+ψ1s)2
ψ1 · · · ψp−1

1

...
...

...
...

ψp

(1+ψps)2
ψp · · · ψp−1

p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (A.21)

Hence, we have

FS(s) =

∫ s

0

fS(x)dx =
1

V (Ψ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1− 1
1+ψ1s

ψ1 · · · ψp−1
1

...
...

...
...

1− 1
1+ψps

ψp · · · ψp−1
p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1− 1

V (Ψ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
1+ψ1s

ψ1 · · · ψp−1
1

...
...

...
...

1
1+ψps

ψp · · · ψp−1
p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (A.22)
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Using the Laplace’s cofactor expansion [20, 14.15], we obtain

FS(s) = 1−
p
∑

i=1

(−1)i+1
∏

j 6=i ψj

1 + ψis

V (Ψ
−i)

V (Ψ)

= 1−
p
∑

i=1

(−1)i+1
∏

j 6=i ψj

1 + ψis

1
∏

j<i(ψi − ψj)
∏

j>i(ψj − ψi)

= 1−
(

p
∏

i=1

ψi

)
p
∑

i=1

(−1)p+1Ai
ψpi (1 + ψis)

=

∏p
i=1 ψis

p

∏p
i=1(1 + ψis)

, (A.23)

where Ai = 1/
∏p

j 6=i(1 − ψj/ψi), Ψ−i = diag(ψ1, . . . , ψi−1, ψi+1, . . . , ψp), and the last

equality is obtained from Lemma A.2.1. This completes the proof of Lemma A.2.2.

A.3 Proof of Theorem 5.2.1

Denoting V = XΨXH , the PDF of V can then be obtained from Lemma A.1.4 as

fV (V ) =
|V |n−p

Γ̃p(n)|Ψ|p
F

(n)
0 0 (Ψ−1,−V )dV . (A.24)

From Lemma A.1.4, given V , the conditional PDF of the random variable

S := hHV −1h can be expressed as

f
S|V (s|V ) =

|V |sp−1

Γ(p)
F

(p)
0 0 (V ,−s). (A.25)

From (A.24) and (A.25), we have

fS(s) =

∫

V ≻0
f
S|V (s|V )fV (V )dV

=
sp−1

Γ(p)Γ̃p(n)|Ψ|p
∫

V ≻0
|V |n+1−p F

(p)
0 0 (V ,−s) F (n)

0 0 (Ψ−1,−V )dV . (A.26)

Next, we prove Theorem 5.2.1 by induction. We first prove that Theorem 5.2.1

is true for n = p, and then given that it is true for n = m− 1 ≥ p, we show that it is

also true for n = m. Note that for convenience, we assume ψj 6= ψi, i 6= j ∈ {1, . . . , n}.
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A.3.1 The Case of n = p

From (A.26) with n = p, we first express the function fS(s) as

fS(s) =
sp−1

Γ(p)Γ̃p(p)|Ψ|p
∫

V ≻0
|V | F (p)

0 0 (V ,−s) F (p)
0 0 (Ψ−1,−V )dV

=
sp−1

Γ(p)Γ̃p(p)|Ψ|p
∫

V ≻0

∫

U∈O(p)

|V |etr(−UΨ−1UHV ) F
(p)

0 0 (V ,−s)[dU ]dV ,

(A.27)

where (A.27) follows from Lemma A.1.2. Now by applying again Lemma A.1.2, we

obtain

fS(s) =
sp−1Γ̃p(p+ 1)

Γ(p)Γ̃p(p)|Ψ|p
∫

U∈O(p)

|UΨ−1UH |−(n+1) F
(p)

1 0 (p+ 1;
(
UΨ−1UH

)−1
,−s)[dU ]

=
sp−1Γ̃p(p+ 1)

Γ(p)Γ̃p(p)
|Ψ| F (p)

1 0 (p+ 1;Ψ,−s), (A.28)

where we have used Lemma A.1.1. Combining (A.28) and Lemma A.2.2, it follows

that Theorem 5.2.1 is true for n = p.

A.3.2 The Case of n > p

Suppose that Theorem 5.2.1 is true for n = m− 1 > p. We will show in the following

that it is also true for n = m. Applying Lemma A.1.3 to (A.26) with any pair of n

and m with n = m − 1 > p, we can express the function fS(s) as in the following

form

fS(s) =

sp−1

Γ(p)Γ̃p(m)|Ψ|p
πp(p−1)

Γ̃p(p)

∫

∞>λp>...>λ1>0

V 2(Λ)|Λ|m+1−p F
(p)

0 0 (Λ,−s) F (m)
0 0 (Ψ−1,−Λ)dΛ,

(A.29)
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where Λ = diag(λ1, . . . , λp). We then find an alternative form for F
(m)

0 0 (Ψ−1,−Λ)

by using [21, (4.6)] as follows:

F
(m)

0 0 (Ψ−1,−Λ) = lim
δ1,...,δm−p−1→0

F
(m)

0 0 (Ψ−1,−Λ1)

= (−1)
m(m−1)

2

m∏

k=1

Γ(k) lim
δ1,...,δm−p−1→0

| F0 0(−ψ−1
i λj)|

V (Ψ−1)V (Λ1)
, (A.30)

where Λ1 = diag(λ1, . . . , λm) := diag(λ1, . . . , λp, 0, δ1, . . . , δm−p−1). Denote

∣
∣
∣
∣
F0 0(−

λj
ψi

)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

exp(−λ1/ψ1) · · · exp(−λp/ψ1) 1 exp(−δ1/ψ1) · · · exp(−δm−p−1/ψ1)

exp(−λ1/ψ2) · · · exp(−λp/ψ2) 1 exp(−δ1/ψ2) · · · exp(−δm−p−1/ψ2)

...
...

...
...

...
...

...

exp(−λ1/ψm) · · · exp(−λp/ψm) 1 exp(−δ1/ψm) · · · exp(−δm−p−1/ψm)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

:= |d0, . . . ,dp, g1(δ1), . . . , g1(δm−p−1)|, (A.31)

where dk−1 =
[
exp(−λk/ψ1), . . . , exp(−λk/ψm)

]T
, k = 1, . . . , p; dp =

[
1, . . . , 1

]T
;

g1(δj) =
[
exp(−δj/ψ1), . . . , exp(−δj/ψm)

]T
, j = 1, . . . , m− p− 1. Furthermore, we

denote

V (Λ1) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 · · · 1 1 1 · · · 1

λ1 · · · λp 0 δ1 · · · δm−p−1

...
...

...
...

...
...

...

λm−1
1 · · · λm−1

p 0 δm−1
1 · · · δm−1

m−p−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

:= |dp+1, . . . ,d2p+1,h1(δ1), . . . ,h1(δm−p−1)|, (A.32)

154



RBF FOR MULTI-CELL MIMO SYSTEMS H. D. NGUYEN

where dp+k =
[
1, λk, . . . , λ

m−1
k

]T
, k = 1, . . . , p; d2p+1 =

[
1, 0, . . . , 0

]T
; h1(δj) =

[
1, δj, . . . , δ

m−1
j

]T
, j = 1, . . . , m − p − 1. Using the L’ Hospital rule [1, 3.4.1], we

obtain

| F0 0(−λj
ψi
)|

V (Λ1)
=

|d0, . . . ,dp, g1(δ1), . . . , g1(δm−p−1)|
|dp+1, . . . ,d2p+1,h1(δ1), . . . ,h1(δm−p−1)|

=

∣
∣
∣
∣
d0, . . . ,dp,

dg1(x)

dx

∣
∣
∣
x=δ1

, . . . ,
dm−p−1g1(x)

dxm−p−1

∣
∣
∣
x=δm−p−1

∣
∣
∣
∣

∣
∣
∣
∣
dp+1, . . . ,d2p+1,

dh1(x)

dx

∣
∣
∣
x=δ1

, . . . ,
dm−p−1h1(x)

dxm−p−1

∣
∣
∣
x=δm−p−1

∣
∣
∣
∣

. (A.33)

Now, we consider the nominator and the denominator of (A.33). After some

manipulations, we can compute the denominator as follows

∣
∣
∣
∣
dp+1, . . . ,d2p+1,

dh1(x)

dx

∣
∣
∣
x=δ1

, . . . ,
dm−p−1h1(x)

dxm−p−1

∣
∣
∣
x=δm−p−1

∣
∣
∣
∣

δ1,...,δm−p−1→0−−−−−−−−−→

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 · · · 1 1 0 · · · 0 0

λ1 · · · λp 0 1 · · · 0 0

...
...

...
...

...
...

...
...

λm−p−2
1 · · · λm−p−2

p 0 0 · · · (m− p− 2)! 0

λm−p−1
1 · · · λm−p−1

p 0 0 · · · 0 (m− p− 1)!

λm−p
1 · · · λm−p

p 0 0 · · · 0 0

...
...

...
...

...
...

...
...

λm−1
1 · · · λm−1

p 0 0 · · · 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)(p+2)(m−p)

m−p
∏

k=1

Γ(k)|Λ|m−pV (Λ). (A.34)
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The nominator of (A.33) can be given as

∣
∣
∣
∣
d0, . . . ,dp,

dg1(x)

dx

∣
∣
∣
x=δ1

, . . . ,
dm−p−1g1(x)

dxm−p−1

∣
∣
∣
x=δm−p−1

∣
∣
∣
∣

δ1,...,δm−p−1→0−−−−−−−−−→

(−1)
(m−p)(m−p−1)

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

exp(−λ1/ψ1) · · · exp(−λp/ψ1) 1 1/ψ1 · · · 1/ψm−p−1
1

...
...

...
...

...

exp(−λ1/ψm) · · · exp(−λp/ψm) 1 1/ψm · · · 1/ψm−p−1
m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

:= (−1)
(m−p)(m−p−1)

2 T (p,m, λ1, . . . , λp, ψ1, . . . , ψm), (A.35)

where the function T (p,m, λ1, . . . , λp, ψ1, . . . , ψm) is defined for the sake of brevity.

The PDF fS(s) in (A.29) can thus be expressed as

fS(s) =
(−1)

p(p−1)
2 sp−1

Γ(p)
∏p

k=1 Γ(k)V (Ψ
−1)|Ψ|p×

×
∫

∞>λp>···>λ1>0

V (Λ)|Λ| F (p)
0 0 (Λ,−s)T (p,m, λ1, . . . , λp, ψ1, . . . , ψm)dΛ.

(A.36)

Now using the Laplace’s cofactor expansion [20, 14.15], we can rewrite T (p, m,

λ1, . . ., λp, ψ1, . . ., ψm) as

T (p,m, λ1, . . . , λp, ψ1, . . . , ψm)

=
m∑

i=1

(−1)m+i

ψm−p−1
i

T (p,m− 1, λ1, . . . , λp, ψ1, . . . , ψi−1, ψi+1, . . . , ψm). (A.37)

Therefore, we have

FS(s) =
m∑

i=1

(−1)m+i

ψm−p−1
i

V (Ψ−1
−i )|Ψ−i|p

V (Ψ−1)|Ψ|p
(−1)

p(p−1)
2 sp−1

Γ(p)
∏p

k=1 Γ(k)V (Ψ
−1
−i )|Ψ−i|p

×

×
∫ s

0

∫

∞>λp>···>λ1>0

V (Λ)|Λ| F (p)
0 0 (Λ,−x)×

× T (p,m− 1, λ1, . . . , λp, ψ1, . . . , ψi−1, ψi+1, . . . , ψm) (A.38)
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where we have used the fact that FS(s) =
∫ s

x=0
fS(x), (A.36), and (A.37 ). Now using

the inductive assumption that Theorem 5.2.1 is true for n = m − 1 ≥ p, we can

express (A.38) as follows

FS(s) =

m∑

i=1

(−1)m+i

ψm−p−1
i

V (Ψ−1
−i )|Ψ−i|p

V (Ψ−1)|Ψ|p

[ ∑m−1
k=p βk,−is

k

∏m
j=1,j 6=i(1 + ψjs)

]

=

m∏

k=1

ψk

m∑

i=1

(−1)m+1Ai
ψmi

[ ∑m−1
k=p βk,−is

k

∏m
j=1,j 6=i(1 + ψjs)

]

=
1

∏m
j=1(1 + ψjs)

m∏

k=1

ψk

m∑

i=1

(−1)m+1Ai
ψmi

[(
m−1∑

k=p

βk,−is
k

)

(1 + ψis)

]

, (A.39)

Furthermore, from Lemma A.2.1, we have

∏m
i=1(1 + ψis)

∏m
i=1(1 + ψis)

= 1 =

m∏

k=1

ψk

m∑

i=1

(−1)m+1Ai
ψmi

=

m∏

k=1

ψk

m∑

i=1

(−1)m+1Ai
ψmi

∏m
j=1,j 6=i(1 + ψjs)

∏m
j=1,j 6=i(1 + ψjs)

=
1

∏m
j=1(1 + ψjs)

m∏

k=1

ψk

m∑

i=1

(−1)m+1Ai
ψmi

[(
m−1∑

k=0

βk,−is
k

)

(1 + ψis)

]

.

(A.40)

By comparing (A.39) and (A.40), it follows that

FS(s) =

∑m
k=p βks

k

∏m
i=1(1 + ψis)

. (A.41)

Therefore, given that Theorem 5.2.1 is true for n = m− 1 ≥ p, it is also true

for n = m. By combining the results in the above two cases, the proof of Theorem

5.2.1 is thus completed.
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Appendix B

Proofs of Chapter 4

B.1 Proof of Lemma 4.2.1

It is easy to see that

E

[

log2

(

1 + max
k∈{1,··· ,K}

SINRk,1

)]

=

∫ ∞

0

log2(1 + x)KfS(x)F
K−1
S (x)dx, (B.1)

where fS(s) and FS(s) are given in (4.7) and (4.8). Therefore, the RBF sum-rate can

be obtained as follows.

RRBF =M

∫ ∞

0

log2(1 + x)KfS(x)F
K−1
S (x)dx =

M

log 2

∫ ∞

0

log(1 + x)d
(
FK
S (x)

)

=
M

log 2
FK
S (x) log(1 + x)

∣
∣
∣
∣

∞

0

− M

log 2

∫ ∞

0

1

1 + x

(

1− exp(−x/η)
(1 + x)M−1

)K

dx

=
M

log 2
lim
x→∞

(
FK
S (x)− 1

)
log(1 + x) +

M

log 2

K∑

n=1

(−1)n
(
K

n

)∫ ∞

0

exp(−nx/η)dx
(1 + x)n(M−1)+1

=
M

log 2

K∑

n=1

(−1)n
(
K

n

)

e−n/η
∫ ∞

1

exp(−ny/η)dy
yn(M−1)+1

. (B.2)
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Now by using [20, 2.324.2], (4.9) can be obtained. This completes the proof of Lemma

4.2.1.

B.2 Proof of Lemma 4.2.2

Denote X =
∣
∣
∣h

(c,c)
k φ(c)

m

∣
∣
∣

2

, and

V =

Mc∑

i=1,i 6=m

∣
∣
∣h

(c,c)
k φ

(c)
i

∣
∣
∣

2

+

Ml∑

l=1,l 6=c

µl,c
ηc

Ml∑

i=1

∣
∣
∣h

(l,c)
k φ

(l)
i

∣
∣
∣

2

. (B.3)

We note that the terms
∣
∣
∣h

(l,c)
k φ

(l)
i

∣
∣
∣

2

, ∀k, l, c, i, are independent chi-square ran-

dom variables with two degrees of freedom, denoted by χ2(2). Using the characteristic

function, we can express the PDF of V as follows.

fV (v) =
1

2π

∫ ∞

−∞

e−jωvdω

(1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

, (B.4)

where j =
√
−1. Since S = X

1/ηc+V
, the PDF of S is

f
(c)
S (s) =

∫ ∞

0

fS|V (s|v)fV (v)dv = A +B, (B.5)

in which,

A =
e−s/ηc

2πηc

∫ ∞

−∞

dω

(s+ jω) (1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

, (B.6)

B =
e−s/ηc

2π

∫ ∞

−∞

dω

(s+ jω)2 (1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

. (B.7)
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We first use the following partial fraction expansion to decompose A,

1

(s+ jω) (1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

=
A0

s+ jω
+

Ac
1− jω

+

C∑

l=1,l 6=c

Al
1− j

µl,c
ηc
ω
+ A′, (B.8)

where A′ is the sum of all terms with order greater than 1.

We then apply the Cauchy integral formula [7] to obtain

A =
e−s/ηc

2πηc

∫ ∞

−∞

[

A0

s + jω
+

Ac
1− jω

+
C∑

l=1,l 6=c

Al
1− j

µl,c
ηc
ω
+ A′

]

dω

=
e−s/ηc

2ηc

(

A0 + Ac +

C∑

l=1,l 6=c

ηc
µl,c

Al

)

. (B.9)

Now from (B.8) we note that

1 = A0(1− jω)Mc−1

C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

+ Ac(s+ jω)(1− jω)(Mc−2)+
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

+ (s+ jω)(1− jω)Mc−1

C∑

l=1,l 6=c

[

Al

(

1− j
µl,c
ηc
ω

)Ml−1 C∏

n=1,n 6=l,c

(

1− j
µn,c
ηc

ω

)Mn

]

+ A′(s+ jω) (1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

. (B.10)

where the notation (x)+ represents max(x, 0). Substituting ω = −s/j, we have

A0 =
1

(1 + s)Mc−1
∏C

l=1,l 6=c (1 +
µl,c
ηc
s)Ml

. (B.11)

Also, by observing the coefficient of ω(
∑C

l=1Ml−1), (B.10) leads to

A0 = Ac +

C∑

l=1,l 6=c

ηc
µl,c

Al. (B.12)

161



APPENDIX B

Therefore, from (B.9), we conclude

A =
e−s/ηc

ηc
A0 =

e−s/ηc

ηc(1 + s)Mc−1
∏C

l=1,l 6=c (1 +
µl,c
ηc
s)Ml

. (B.13)

By differentiating A in (B.9) with respect to s, we obtain dA
ds

= − A
ηc

− B
ηc
, i.e.,

f
(c)
S (s) = A + B = −ηc dAds . Combining this result and (B.13), (4.10) and (4.11) are

obtained. This completes the proof of Lemma 4.2.2.

B.3 Proof of Theorem 4.2.1

Using the similar derivation as in Appendix B.1, we obtain

R
(c)
RBF =

Mc

log 2

Kc∑

n=1

(−1)n
(
Kc

n

)∫ ∞

0

exp(−nx/η)dx
(1 + x)n(Mc−1)+1

∏C
l=1,l 6=c

(
µl,c
ηc
x+ 1

)nMl

=
Mc

log 2

Kc∑

n=1

(−1)n
(
Kc

n

) C∏

l=1,l 6=c

(
ηc
µl

)nMl

×

×
∫ ∞

0

exp(−nx/η)dx
(x+ 1)n(Mc−1)+1

∏C
l=1,l 6=c

(

x+ ηc
µl,c

)nMl
. (B.14)

By applying the partial fractional decomposition given in (4.13) and using [20, 2.234.2]

for each term therein, we arrive at (4.12). This completes the proof of Theorem 4.2.1.

B.4 Proof of Proposition 4.2.1

Due to the similarity between (4.8) and (4.11), the original approach in [64, Theo-

rem 1] can be applied to prove this proposition with minor modifications. For the

completeness, only a sketch proof is presented here.
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To show that R
(c)
RBF

Kc→∞−−−−→Mc log2 logKc, we first note that f
(c)
S (s) and F

(c)
S (s)

satisfy the von Mises condition for the Gumbel-type limiting distributions (see, e.g.,

[13, Theorem 10.5.2.c]). Therefore, as Kc → ∞, there exist constants aKc
and bKc

such that
[
F

(c)
S (aKc

x+ bKc
)
]Kc → exp (−e−x). The value of bKc

can be found to be1

bKc
= ηc logKc − ηc

(
C∑

l=1

Ml − 1

)

log logKc +O(log log logKc). (B.15)

Furthermore, the growth function, defined as g
(c)
S (s) =

(

1− F
(c)
S (s)

)

/f
(c)
S (s) for

s ≥ 0, is given by

g
(c)
S (s) =

1
1
ηc
+ Mc−1

s+1
+
∑C

l=1,l 6=c
Ml

s+ ηc
µl,c

. (B.16)

It is easy to verify the followings:

• lims→∞ g
(c)
S (s) = ηc > 0,

• bKc
= O(logKc) as Kc → ∞, and

• The derivative of g
(c)
S (s) satisfies

dng
(c)
S (s)

dsn

∣
∣
∣
∣
s=bKc

= O

(

1

bn+1
Kc

)

. (B.17)

Hence, by applying [64, Corollary A.1], we have

Pr

{

ηc logKc − ηc

(
C∑

l=1

Ml

)

log logKc +O(log log logKc) ≤ max
k∈{1,··· ,Kc}

SINR
(c)
k,m

≤ ηc logKc − ηc

(
C∑

l=1

Ml − 2

)

log logKc +O(log log logKc)

}

≥ 1−O

(
1

logKc

)

.

(B.18)

This completes the proof of Proposition 4.2.1.

1Let f(Kc) be a function of Kc. f(Kc) = O(log log logKc) means that f(Kc)/ log log logKc < ∞

as Kc → ∞.
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B.5 Proof of Lemma 4.3.1

For convenience, we denote the following auxiliary random variable

Rk,m = log2 (1 + SINRk,m) . (B.19)

From(4.8), the CDF of Rk,m is obtained as

FR(r) = 1− e−(2r−1)/η

2r(M−1)
.

To prove Lemma 4.3.1, we first show that

Pr

{
α

M − 1
log2 η + log2 log η ≥ max

k∈{1,··· ,K}
Rk,1 ≥ α

M − 1
log2 η − log2 log η

}

η→∞−−−→ 1, if 0 < α ≤M − 1, (B.20)

Pr

{

log2 η + log2 log η + log2 α ≥ max
k∈{1,··· ,K}

Rk,1 ≥ log2 η + log2 log η + log2 β

}

η→∞−−−→ 1, if α > M − 1, (B.21)

in which the constant β is define as β = α−M+1
2

; hence α > β > 0 when α > M − 1.

Considering (B.20), the upper-bound probability can be expressed as

Pr

{
α

M − 1
log2 η + log2 log η ≥ max

k∈{1,··· ,K}
Rk,1

}

=

[

FR

(
α

M − 1
log2 η + log2 log η

)]K

=



1−
exp

(

−η α
M−1

−1 log η
)

exp (η−1)

ηα(log η)M−1





K

.

(B.22)
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Using the asymptotic relation log(1−x) = −x+O(x2) when x is small, we get

K log



1−
exp

(

−η α
M−1

−1 log η
)

exp (η−1)

ηα(log η)M−1





= − K

ηα(log η)M−1
exp

(

−η α
M−1

−1 log η
)

exp (η−1)

+O

(
K

η2α(log η)2(M−1)
exp

(

−2η
α

M−1
−1 log η

)

exp (2η−1)

)
η→∞−−−→ 0, (B.23)

in which we have used the assumptions K = Θ(ηα), and 0 < α ≤ M − 1. As a

consequence, the upper-bound probability converges to 1 when η → ∞. To show

the convergence of the lower-bound probability in (B.20), we can utilize the same

technique described above by showing

Pr

{
α

M − 1
log2 η − log2 log η ≥ max

k∈{1,··· ,K}
Rk,1

}

=

[

FR

(
α

M − 1
log2 η − log2 log η

)]K

=



1−
exp

(

− 1
log η

η
α

M−1
−1
)

exp (η−1)(log η)M−1

ηα





K

. (B.24)

Note that

K log



1−
exp

(

− 1
log η

η
α

M−1
−1
)

exp (η−1)(log η)M−1

ηα





= −K

ηα
(log η)M−1 exp

(

− 1

log η
η

α
M−1

−1

)

exp (η−1)

+O

(
K

η2α
(log η)2(M−1) exp

(

− 2

log η
η

α
M−1

−1

)

exp (2η−1)

)
η→∞−−−→ −∞,

(B.25)

since, when η → ∞, the first term in (B.25) goes to −∞, while the second term goes

to 0. (B.24) thus converges to 0 and the lower-bound probability is confirmed. The
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proof of (B.21) follows similar arguments as the above, and is omitted for brevity.

This completes the proof of Lemma 4.3.1.

B.6 Proof of Proposition 4.3.1

According to the main text, it is sufficient to show the DoF upper bound to be NT as

follows. Note that in a single-cell MISO-BC, the DPC yields the optimal sum-rate,

denoted by RDPC. Therefore, d
∗(α) = lim

ρ→∞

RDPC

log2 ρ
. From [30, Theorem 1], we have

RDPC ≤ NTE

[

log2

[

1 + η max
k∈{1,··· ,K}

||hk||2
]]

. (B.26)

Note that η = PT/(NTσ
2) is the SNR per beam, and ||hk||2’s are i.i.d. chi-square

random variables with 2NT degrees of freedom, denoted by χ2(2NT ). Thus, if we

denote Rk = log2(1 + η||hk||2), the CDF of R = Rk is FR(r) = 1
Γ(NT )

γ
(

NT ,
2r−1
η

)

,

where Γ(·) and γ(·, ·) are the gamma and the incomplete gamma function, respectively.

The same reasoning as in the proof of Lemma 4.3.1 can be reused here to show that

Pr

{

log2 η + log2 log η + log2(α + 1) ≥ max
k∈{1,··· ,K}

Rk

}
η→∞−−−→ 1. (B.27)

This completes the proof of Proposition 4.3.1.
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Appendix C

Proofs of Chapter 5

C.1 Proof of Corollary 5.2.1

The interference-plus-noise covariance matrix W
(c)
k given in (5.2) can be written as

W
(c)
k = lim

N→∞

(

PT
Mc

H̃
(c,c)

k,−m

(

H̃
(c,c)

k,−m

)H

+
C∑

l=1,l 6=c

PTγl,c
Ml

H̃
(l,c)

k

(

H̃
(l,c)

k

)H

+
σ2

N
HNH

H
N

)

,

(C.1)

where HN ∈ CNR×N consists of i.i.d. random variables each distributed as ∼

CN (0, 1). To find the PDF of SINR
(MMSE,c)
k,m in (5.3), we apply Theorem 5.2.1 with

h := h̃
(c,c)

k,m ,

X :=
[

H̃
(c,c)

k,−m, H̃
(1,c)

k , · · · , H̃(l,c)

k , · · · , H̃(C,c)

k ,HN

]

, (C.2)
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and

Ψ := diag






1, · · · , 1
︸ ︷︷ ︸

Mc−1

, · · · , µl,c
ηc
, · · · , µl,c

ηc
︸ ︷︷ ︸

Ml

, · · · , µC,c
ηc

, · · · , µC,c
ηc

︸ ︷︷ ︸

MC

,
1

Nηc
, · · · , 1

Nηc
︸ ︷︷ ︸

N






.

(C.3)

The PDF of S := SINR
(MMSE,c)
k,m can thus be expressed as

FS(s) = 1− lim
N→∞

(
∑NR−1

i=0 θis
i
)

(

1 + s
Nηc

)N

(1 + s)Mc−1
∏∑

Mc−1
l=1,l 6=c (1 +

µl,c
ηc
s)Ml

, (C.4)

where θi is the coefficient of si in the polynomial expansion of
(

1 + s
Nηc

)N

(1 +

s)Mc−1
∏∑

Mc−1
l=1,l 6=c (1 +

µl,c
ηc
s)Ml.

Next, by letting N → ∞, in the denominator in (C.4), the term (1 + s
Nηc

)N

converges to es/ηc , while the nominator converges to
∑NR−1

i=0 ζis
i, where ζi’s are defined

in Corollary 5.2.1. We thus obtain (5.14). This completes the proof of Corollary 5.2.1.

C.2 Proof of Theorem 5.2.2

We first note that

f
(c)
S (s) =

∫ ∞

0

fS|V (s|v)fV (v)dv

=

∫ ∞

−∞

∫ ∞

0

sNR−1

2πΓ(NR)

(v + 1
ηc
)NRe−(v+ 1

ηc
)se−jωv

(1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

dvdω, (C.5)

where j =
√
−1.
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Therefore,

FS(s) =

∫ ∞

−∞

∫ ∞

0

∫ s

0

(v + 1
ηc
)NRe−jωvxNR−1e−(v+ 1

ηc
)x

2πΓ(NR) (1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

dxdvdω. (C.6)

Now by using [20, (3.351.1)], we can write (C.6) as

FS(s) = 1−
NR−1∑

k=0

e−s/ηcsk

2πk!

∫ ∞

−∞

∫ ∞

0

(v + 1
ηc
)ke−(s+jω)

(1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

dvdω (C.7)

= 1−
NR−1∑

k=0

k∑

m=0

e−s/ηcsk

(k −m)!ηk−mc

×

× 1

2π

∫ ∞

−∞

dω

(s+ jω)m+1 (1− jω)Mc−1
C∏

l=1,l 6=c

(

1− j
µl,c
ηc
ω

)Ml

︸ ︷︷ ︸

Tm(s)

,

(C.8)

where we have used the binomial expansion and the result in [20, (3.351.3)] to obtain

(C.7). From (B.6)-(B.13), we see that T0(s) can be expressed as in (5.19). It is also

easy to show that Tm(s) =
(−1)m

m!
dmT0(s)
dsm

. Combining this result, (5.19), and (C.8), we

obtain (5.18). This completes the proof of Theorem 5.2.2.

C.3 Proof of Lemma 5.3.1

C.3.1 RBF-MMSE

We first investigate the DoF with RBF-MMSE. Consider the following two cases.
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C.3.1.1 Case 1, NR ≤M − 1

Denote R
(MMSE)
k,m := log2

(

1 + SINR
(MMSE)
k,m

)

. We first show that the following two

probabilities are true

Pr

{
α

M −NR

log2 η + log2 log η ≥ max
k∈{1,··· ,K}

R
(MMSE)
k,1 ≥ α

M −NR

log2 η − log2 log η

}

η→∞−−−→ 1, if 0 < α ≤M −NR, (C.9)

Pr

{

log2 η + log2 log η + log2 α ≥ max
k∈{1,··· ,K}

R
(MMSE)
k,1 ≥ log2 η + log2 log η + log2 β1

}

η→∞−−−→ 1, if α > M −NR, (C.10)

where β1 =
α−M+NR

2
; hence, α > β1 > 0 when α > M −NR.

From Corollary 5.2.1, the CDF of the single-cell RBF-MMSE S := SINR
(MMSE)
k,1

can be expressed as

FS(s) = 1− e−s/η
∑NR−1

i=1
(M−1)!

i!(M−1−i)!
si

(1 + s)M−1

= 1− e−s/η
(

Θ

(
1

(s+ 1)M−NR

)

+O

(
1

(s+ 1)M−NR+1

))

, (C.11)

as s and/or η → ∞. Therefore, the CDF of Yk := R
(MMSE)
k,1 has the following asymp-

totic form

FYk(y) = 1− e−(2y−1)/η

(

Θ

(
1

2(M−NR)y

)

+O

(
1

2(M−NR+1)y

))

,
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as y and/or η → ∞. In (C.9), the upper-bound probability can thus be given as

Pr

{
α

M −NR
log2 η + log2 log η ≥ max

k∈{1,··· ,K}
Yk

}

=

[

FYk

(
α

M −NR
log2 η + log2 log η

)]K

=






1− exp

(

−η
α

M−NR
−1

log η +
1

η

)

×

×






Θ

(
1

ηα (log η)M−NR

)

+O






1
(

η
α

M−NR log η
)M−NR+1


















K

, (C.12)

as η → ∞. Note that when x is small, we have the following asymptotic relation

log(1− x) = −x+O(x2). We thus have

K log






1− exp

(

−η
α

M−NR
−1

log η +
1

η

)






Θ

(
1

ηα (log η)M−NR

)

+O






1
(

η
α

M−NR log η
)M−NR+1


















= −Θ

(
K

ηα(log η)M−NR

)

exp

(

−η
α

M−NR
−1

log η +
1

η

)

+O






K
(

η
α

M−NR log η
)M−NR+1




 exp

(

−η
α

M−NR
−1

log η +
1

η

)

+O

(

Θ

(
K

η2α(log η)2n

)

exp

(

−2η
α
n
−1 log η +

2

η

)

+O

(

K
(
η

α
n log η

)2(n+1)

)

exp

(

−2η
α
n
−1 log η +

2

η

))

η→∞−−−→ 0, (C.13)

since K = Θ(ηα), and 0 < α ≤ M − NR. As a consequence, the upper-bound
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probability converges to 1 when η → ∞. To prove the convergence to 1 of the

lower-bound probability in (C.12), we observe that

Pr

{
α

M −NR
log2 η − log2 log η ≥ max

k∈{1,··· ,K}
Yk

}

=

[

FYk

(
α

M −NR
log2 η − log2 log η

)]K

=

(

1− exp

(

−η
α

M−NR
−1 1

log η
+

1

η

)

×

×
(

Θ

(

(log η)M−NR

ηα

)

+O

(

(log η)M−NR+1

η
α(M−NR+1)

M−NR

)))K

. (C.14)

Note that

K log

(

1− exp

(

−η
α

M−NR
−1 1

log η
+

1

η

)

×

×
(

Θ

(

(log η)M−NR

ηα

)

+O

(

(log η)M−NR+1

η
α(M−NR+1)

M−NR

)))

= −Θ

(
K(log η)M−NR

ηα

)

exp

(

−η
α

M−NR
−1 1

log η
+

1

η

)

+O

(

K (log η)M−NR+1

η
α(M−NR+1)

M−NR

)

exp

(

−η
α

M−NR
−1 1

log η
+

1

η

)

+O

(

Θ

(
K(log η)2(M−NR)

η2α

)

exp

(

−2η
α

M−NR
−1 1

log η
+

2

η

)

+O

(

K (log η)2(M−NR+1)

η
2α(M−NR+1)

M−NR

)

exp

(

−2η
α

M−NR
−1 1

log η
+

2

η

))

η→∞−−−→ −∞, (C.15)

since, when η → ∞, the first term goes to −∞, while the second term goes to 0.

(C.14) thus converges to 0 and the lower-bound probability is confirmed. We omit

the proof of (C.10) since it follows similar arguments. With (C.9) and (C.10), the

results in (5.22a) and (5.22b) follow immediately.
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C.3.1.2 Case 2, NR ≥M

Suppose that M receive antennas are used. Then the DoF is M from Case 1 above.

Therefore, dRBF-MMSE(α,m) ≥ M . Also note that in a single-cell MIMO RBF with

M transmit beams, the BS can be considered as having M transmit antennas only.

Proposition 5.3.1 thus leads to dRBF-MMSE(α,m) ≤ M . We thus conclude that

dRBF-MMSE(α,m) =M .

C.3.2 RBF-MF/AS

To obtain the DoF of RBF-MF/AS, we first show that

Pr

{
α

M − 1
log2 η + log2 log η ≥ max

k∈{1,··· ,K}
R

(MF/AS)
k,1 ≥ α

M − 1
log2 η − log2 log η

}

η→∞−−−→ 1, if 0 < α ≤ M − 1, (C.16)

Pr

{

log2 η + log2 log η + log2 α ≥ max
k∈{1,··· ,K}

R
(MF/AS)
k,1 ≥ log2 η + log2 log η + log2 β

}

η→∞−−−→ 1, if α > M − 1, (C.17)

where β2 = α−M+1
2

; hence, α > β2 > 0 when α > M − 1. From Theorem 5.2.2, the

CDF of the single-cell RBF-MF S := SINR
(MF)
k,m is

FS(s) = 1− e−s/η
NR−1∑

k=0

k∑

m=0

sk

(k −m)!m!ηk−m

(M+m−2)!
(M−2)!

(s+ 1)M+m−1
. (C.18)

Denote Zk := R
(MF)
k,1 := log2

(

1 + SINR
(MF)
k,1

)

. The CDF of Zk is thus

FZk
(z) = 1− e−z/η

NR−1∑

k=0

k∑

m=0

(M +m− 2)!

(k −m)!m!(M − 2)!

(2z − 1)k

ηk−m2(M+m−1)z
. (C.19)
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In (C.16), the upper-bound probability can thus be given as

Pr

{
α

M − 1
log2 η + log2 log η ≥ max

k∈{1,··· ,K}
Zk

}

=

[

FZk

(
α

M − 1
log2 η + log2 log η

)]K

=

(

1− exp

(
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−1 log η +
1

η

)

×

×
(
NR−1∑
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α
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ηk−mη
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M−1 (log η)(M+m−1)
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(

1− exp
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−1 log η +
1

η
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Θ

(
1

ηα (log η)M−1

)

+O

(

1

η
αM
M−1

)))K

,

(C.20)

as η → ∞, which is quite similar to (C.12) withNR = 1 in this case. Now following the

same reasoning as in (C.13), we can prove that the upper-bound probability (C.20)

→ 1 as η → ∞. To prove the convergence of the lower-bound, we note that

Pr

{
α

M − 1
log2 η − log2 log η ≥ max

k∈{1,··· ,K}
Zk

}

=

[

FZk

(
α

M − 1
log2 η − log2 log η

)]K

=

(

1− exp

(

−η α
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−1 1

log η
+

1

η

)

×

×
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NR−1∑

k=0

k∑
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M−1 1
log η

− 1)k(log η)M+m−1

ηk−mη
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M−1

))K
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(

1− exp

(

−η α
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−1 1

log η
+

1

η

)(

Θ

(

(log η)M−1

ηα

)

+O

(

(log η)M−1

η
αM
M−1

)))K

,

(C.21)

which is quite similar to (C.14). Now following the same reasoning as in (C.15), we

can prove that (C.21) → 0 as η → ∞. Thus we confirm (C.16). The proof of (C.17)

follows similarly and is thus omitted.

On the other hand, for the case of RBF-AS, note that RBF-AS scheme consists

of two selection processes: antenna selection at each MS with NR antennas and user
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selection at the BS with K users. The rate performance of RBF-AS is therefore

equivalent to that of MISO RBF with NRK single-antenna users in the cell. Thus,

we obtain (C.16) and (C.17) for the case of RBF-AS. With (C.16) and (C.17), the

results in (5.23a) and (5.23b) follow immediately.

This thus completes the proof of Lemma 5.3.1.

C.4 Proof of Proposition 5.3.1

In a single-cell MIMO-BC, DPC yields the maximum sum-rate, denoted by RDPC.

Therefore, the single-cell DoF can be bounded as d ≤ lim
ρ→∞

RDPC

log2 ρ
. From [30, Theorem

1], we have

RDPC ≤ NTE

[

log2

[

1 + η max
k∈{1,··· ,K}

||Hk||22
]]

≤ NTE

[

log2

[

1 + η max
k∈{1,··· ,K}

Tr
(
HH

k Hk

)
]]

. (C.22)

Denote Rk := log2
[
1 + ηTr

(
HH

k Hk

)]
. Note that Tr

(
HH

k Hk

)
is distributed as

χ2(2NTNR). Similarly to (C.10) and (C.17), we can show that

Pr

{

log2 η + log2 log η + log2(α + 1) ≥ max
k∈{1,··· ,K}

Rk

}
η→∞−−−→ 1. (C.23)

Combining (C.22) and (C.23), we obtain d ≤ NT , where the equality is achieved by,

e.g., the DPC scheme. The proof of Proposition 5.3.1 is thus completed.
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