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Summary

Summary

The Type VI Secretion System cluster 1 (T6SS1) is essential for the virulence 

and  pathogenesis  of  Burkholderia  pseudomallei in  melioidosis,  a  disease 

endemic in many tropical regions. In exposed hosts, the bacterium is taken up 

by mononuclear  phagocytes  and  survives  intracellularly.  Inside  mononuclear 

phagocytes,  B. pseudomallei escapes  from  phagosomes,  initiates  actin  tail 

motility  and  induces  cellular  fusion  with  the  associated  development  of 

multinucleated giant  cell  (MNGC) formation,  a  process  mediated by T6SS1. 

Here we analyze the structure and function of a component of the T6SS1 termed 

hemolysin coregulated protein 1 (Hcp1) that is critical for T6SS1 activity. By 

employing an in-house conformational-dependent antibody, we show that Hcp1 

can  be  detected  on  the  surface  of  infected  host  cells.  Furthermore,  the 

recombinant exogenous Hcp1 can bind directly to host antigen presenting cells 

and enhance MNGC formation upon bacterial  infection.  Although Hcp1 was 

undetectable in sera of melioidosis patients, these patients had high titers of IgG 

against Hcp1. Our structural studies confirm that  B. pseudomallei  Hcp forms 

hexameric rings that stack into a tube-like assembly with an outer diameter of 

80 Å and an inner diameter of 40 Å. In comparison to related bacteria, Hcp1 of 

B. pseudomallei has a unique extended loop region (from Asp40 to Arg56) that 

potentially acts as a key contact point between adjacent hexameric rings within 

the  tube-like assembly.  When key residues  within the  loop are mutated,  the 

recombinant mutant proteins assembled into hexameric rings that failed to stack 

and they suppress B. pseudomallei induced MNGC formation. Moreover, the in  

situ  substitution of these  hcp1 residues in  B. pseudomallei abolishes MNGC 

formation and Hcp1 secretion. Taken together, these data provide structural and 

mechanistic  insights into the novel  contribution of Hcp1 in  B. pseudomallei  

immunogenicity  and  pathogenesis  apart  from  its  structural  role  in  T6SS 

secretion.
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Chapter 1. Introduction

Chapter 1.

Introduction

1.1 Melioidosis

1.1.1 A brief history of the disease and its causative agent 
Burkholderia pseudomallei

Melioidosis, also known as pseudoglanders or Whitmore’s disease, is derived 

from the Greek words melis (distemper of the asses), oeidēs (resemblance) and 

osis (a suffix indicating an abnormal condition or disease), which reflect the 

nature of this glander-like illness.1,2 It is caused by the bacterium Burkholderia  

pseudomallei (previously called Pseudomonas pseudomallei). The bacterium is 

an aerobic, Gram-negative motile bacillus found in moist soil and water, and is 

endemic to the tropical and subtropical regions. It is an opportunistic pathogen 

that is capable of producing exotoxins and surviving within phagocytic cells, 

hence latent infections are a common disease manifestation. It is closely related 

to Burkholderia mallei, its infectious counterpart that affects equine hosts.

The  disease  was  first  described  in  1912  by  the  pathologist  Captain  Alfred 

Whitmore and his assistant C. S. Krishnaswami in emaciated morphine addicts 

in Rangoon, Burma.3 Autopsies of the morphine addicts revealed consolidation 

in the lungs and abscesses in the liver, spleen, kidneys and beneath the skin. The 

disease  bore  similarities  to  glanders,  but  the  deceased  did  not  have  prior 

1
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exposure to the equine hosts. Microbiological tests showed that the causative 

bacterium was distinct from that of glanders; when cultivated on peptone agar 

and potato slopes, the bacterial colonies grew more rapidly, were motile, and did 

not elicit the Strauss reaction that was characteristic of B. mallei upon injection 

into  the  peritoneal  cavity  of  guinea  pigs.  Ambrose  Thomas  Stanton,  a 

bacteriologist,  and  William  Fletcher,  a  pathologist,  identified  this  causative 

agent as Burkholderia pseudomallei in 1917.4

Following the identification of  B. pseudomallei, the disease was recognized in 

soldiers stationed in endemic areas such as Vietnam, Sri Lanka and Indonesia.1,5 

It  particularly  affected  the  French  soldiers  that  were  stationed  in  Vietnam 

between 1948 and 1954, with over 100 cases diagnosed, and over 300 cases 

among the US troops during the Vietnam War.2,5 The majority of the cases were 

acquired via direct contact with soil and mud. However, an unusual number of 

cases among the helicopter crews suggested that inoculation could also occur 

via inhalation.6 The latent nature of the infection was also discovered as many 

soldiers  had  reoccurrence,  with  the  longest  documented  latent  period  of  29 

years.7

2



Chapter 1. Introduction

1.1.2 Current disease epidemiology

The main endemic foci of melioidosis are Southeast Asia and northern Australia.  

Northeastern  Thailand,  parts  of  Malaysia,  Singapore  and  the  'Top  End'  of 

northern Australia are currently recognized as 'highly endemic' locations where 

many cases are diagnosed each year (Figure 1).2,5,8 It is most frequently reported 

from Darwin, northern Australia, where it is the most common cause of fatal 

community-acquired  septicemic  pneumonia.9 The  Top  End  of  northern 

Australia,  which  is  the  second  northernmost  point  of  the  continent,  has  the 

highest documented average annual incidence rate of 19.6 cases per 100,000 

population between 1989 and 2003.9 The disease is also the most common cause 

of community-acquired bacteremia in northeast Thailand.10,11 Ubon Ratchathani, 

its largest province, reported a comparable average annual incidence rate of 12.7 

3

Figure 1: Global distribution of melioidosis and Burkholderia pseudomallei as of the  
year 2008.  Adapted from Dance,  1991,  Currie and Cheng,  2005 and Currie et al.,  
2008.2,5,8 Purple stars indicate reported temperate outbreaks of melioidosis: France;  
southeast Queensland, Australia; and southwest Western Australia.
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cases per 100,000 population between 1997-2006.11

Table 1: Comparative epidemiology of melioidosis in Southeast Asia and Australia.

Australia9 Thailand11 Singapore12 Pahang, 
Malaysia13

Alor Setar, 
Malaysia14

No. of cases 252 2217 693 135 145

Average annual 
incidence*

19.6 12.7 1.7 6.1 16.4

Average  mortality  rate 
(%)

19 42.6 16.2 54 34

Adapted from Hassan et.al (2010).14 *per 100,000 population per year

Several  studies  have  reported  increased  incidence  rates  within  the  highly 

endemic region. The Alor Setar region of Kedah, Malaysia, reported an average 

annual incidence rate of 16.35 per 100,000 population between 2005 and 200814 

(Table  1),  as  compared  to  the  Pahang  state,  Malaysia,  with  an  average 

annualincidence  rate  of  6.1 between 2000 and 2003.13 A study performed in 

northeast Thailand between 1987 and 1991 reported the incidence rate as 4.4 per 

100,00010 but  a  subsequent  follow-up  study  updated  the  incidence  rate  to 

12.7 per 100,000 population between 1997 and 2006.11 Although the incidence 

rate in Singapore generally decreased from 2.9 to 1.4 per 100,000 population 

between 1998 and 2007, there was an outbreak of melioidosis in the first quarter 

of 2004, with a total of 23 cases with onset of illness over a 5 week-period.12 For 

most studies, there was a positive association of the disease with severe weather 

events and rainfall, with the exception to a few study series in Thailand between 

1997-2006 (negative correlation) and Singapore (no correlation) in July 1995.15

Apart from Singapore, where melioidosis is  statutorily notifiable since 1989, 

and Australia,2 most human melioidosis cases are underreported, thus obscuring 

4
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the  true  global  distribution  and  incidence  rates  of  melioidosis.  Continuing 

efforts  at  laboratory  strengthening  and  improvement  of  global  disease 

surveillance over the last two decades show an expansion in the geographical 

boundaries of melioidosis.16 Sporadic and outbreak cases in new geographical 

regions, such as south and east Asia as well as parts of South America, Papua 

New Guinea,  the  Caribbean and Africa  were reported.8,17–21 There  is  also an 

increase in number of cases in travellers and returning military personnel.22–26

An  international  working  party  (Detection  of  Environmental  Burkholderia  

pseudomallei  Working  Party  (DEBWorP)  was  formed  in  2010 with  the  aim 

5

Figure  2: Global distribution of environmental B. pseudomallei as of the year 2013.  
'Definite' was defined by the detection of environmental B. pseudomallei using culture  
or a B. pseudomallei-specific PCR with or without evidence of melioidosis having been  
acquired in that country. 'Probable' was defined by clinical reports that indicated in-
country disease acquisition and in the absence of published literature of environmental  
sampling.  'Possible'  was defined as the detection of  environmental  B. pseudomallei  
using culture or a B. pseudomallei-specific PCR that did not distinguish between B.  
pseudomallei and the highly related Burkholderia thailandensis. (1) and (3) highlight  
the  definite  detection  of  environmental  B.  pseudomallei  in  Paris,153 and Chittering,  
Australia.151 (2) highlight the possible detection of environmental B. pseudomallei in  
Bologna, Italy.155 Adapted from Limmathurotsakul et al., 2013.17
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reviewing the literature on the detection of environmental B. pseudomallei and 

formulating a consensus guideline for environmental sampling of the bacteria.17 

The study reported that as of the year 2013, there was definite evidence for the 

presence of environmental  B. pseudomallei in 17 countries (Figure  2), which 

was defined by the detection of  B. pseudomallei  from the environment using 

culture of a specific polymerase chain reaction (PCR) for B. pseudomallei with 

or  without  evidence  of  melioidosis  having been acquired  in  that  country.  A 

comparison of the global distribution of melioidosis (Figure  1) against that of 

environmental  B.  pseudomallei  (Figure  2)  highlights  the  countries  that  have 

sporadic melioidosis cases but also have the definite presence of environmental 

B. pseudomallei such as Brazil. It is possible that the sporadic cases are merely 

the  “tip  of  the  iceberg”,5 hence  these  countries  should  consider  increasing 

surveillance  of  the  disease  and  improving  access  to  diagnostic  laboratory 

facilities. The true global distribution of environmental B. pseudomallei and the 

actual risk map of melioidosis continues to be redefined.

1.1.3 Clinical features

The clinical features of melioidosis have been reviewed in detail. In summary, 

these  include  associated  risk  factors,  mode  of  transmission,  its  clinical 

presentation, diagnosis and treatment.2,28,29

1.1.3.1 Risk factors  

Type  II  diabetes  is  by  far  the  strongest  comorbity  associated  with 
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melioidosis.11,30 Other comorbidities include chronic lung disease, chronic renal 

failure, and liver disease.29 Conditions that cause immune suppression such as 

corticosteroid therapy, thalassemia, systemic lupus erythematosus, malignancy 

and alcoholism are also implicated.29 In addition, occupational or recreational 

exposure to moist soil or surface water also increases the risk of acquiring the 

disease. People that fall into this high-risk category include rice farmers, other 

agricultural  workers,  construction  labourers,  adventure  travellers,  military 

personnel and a variety of indigenous groups.2

 

1.1.3.2 Mode of transmission  

Infection  by  B.  pseudomallei can  be  acquired  in  three  possible  ways,  i.e., 

inoculation, inhalation and ingestion.6,27,31. Of the three, inoculation by means of 

direct contact with contaminated soil and water through penetrating wounds is 

considered  the  major  mode  of  acquisition.  Extreme  weather  that  generates 

heavy rainfall and winds may cause a shift towards inhalation as the major route 

of infection.32 Ingestion as a mode of infection was observed in animals, through 

the  discovery of  an  infected  gastrohepatic  node in  pigs.33 However  a  recent 

study  in  Thailand,  which  is  the  first  evidence-based  study,  examined  the 

activities  of  daily  living associated with melioidosis,  together  with routes of 

infections.34 There is increased risk of acquiring melioidosis with working in 

rice fields, washing in water pooled in the rice field, working without protective 

clothing,  barefooted  walking,  having  an  open  wound,  direct  application  of 

herbal remedies to open wound.34 In addition, they showed that the consumption 
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of  food  contaminated  with  soil  or  dust,  and  drinking  untreated  water  also 

increased the risk of acquiring melioidosis, demonstrating for the first time that 

ingestion was also an important route of human B. pseudomallei infection.29 All 

other modes of transmission such as person-to-person transmission,35,36 neonatal 

transmission,37–40 and epizoonotic human infections41 are rarely observed.

1.1.3.3 Clinical presentation and mortality rate  

The clinical features of melioidosis reported thus far are illustrated in Figure 3. 

The disease presentation varies from asymptomatic infection and localized skin 

ulcers or abscesses without systemic illness to fatal septicaemia with lung and 

multiple  organ  abscesses.3 The  Infectious  Disease  Association  of  Thailand 

summarized 345 cases into these four categories42 1) disseminated septicaemic 

melioidosis, defined as positive blood culture and multiple organs involvement, 

2) non-disseminated septicaemic melioidosis, defined as positive blood culture 

with  one  or  no  apparent  focus  of  infection,  3) localized  melioidosis,  with  a 

single focus of infection, and 4) transient bacteremia.43,44 In all series of cohort 

studies  on  melioidosis,  pneumonia  and  bacteremia  are  the  most  common 

presentations of melioidosis and are present in about 50% of all cases.11,15,30,39,45,46 

Important clinical differences were observed from the cohort studies based in 

the Royal Darwin Hospital, Australia and Sappasithiprasong Hospital, Thailand. 

The incidence of genitourinary infection and prostate melioidosis is higher in 

Australian male patients (approximately to 20%),30 as opposed to 7% and 0.3% 

for the respective presentations in Thai male patients.31 There is an absence of 
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supparative parotitis in Australia,47–50 but this presentation accounts for 30-40% 

of pediatric melioidosis in Thailand.51 Encephalomyelitis is seen in 3% of adult 

melioidosis  presentations  in  northern  Australia30 and  in  small  numbers  of 

children in Australia and Thailand.47,52 Internal organ abscesses are common, but 

spleen and liver abscesses (74% and 46% for the respective foci) predominate 

the Thai cohort,46 whereas prostate abscesses were extremely common in the 

Darwin series, being present in 20% of the males patients.30

The  absence  of  any  risk  factors  associated  with  melioidosis  is  strongly 

predictive  of  survival.30 With  early  diagnosis,  availability  of  resources  to 

provide  appropriate  antibiotics  and  critical  care,  it  is  unlikely  for  a  healthy 

9
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person  to  die  from  melioidosis.30 In  the  cohort  studies  from  Thailand  and 

Australia, the decrease in average mortality rate (49% in 1997 to 40.5% in 2006 

in Thailand, and 30% in 1989 to 9% in 2009 in Australia) have been attributed 

to these factors.11,30 The mortality rate in Thailand is double that reported for 

patients with melioidosis in Australia, and it has been attributed to the limited 

availability of intensive care facilities.11

1.1.3.4 Diagnosis and Treatment  

Culturing the organism from any clinical sample remains as the gold standard 

for diagnosing melioidosis, but these established methods are time consuming, 

with a median time to culture positivity of 48 hours.53 A few other techniques 

have been employed in the attempt to reduce the time required for diagnosis, 

including antigen detection on specimens or on culture supernatants, antibody 

detection, molecular techniques and rapid culture techniques.54 However, few 

are sufficiently sensitive or specific for routine clinical use and only indirect  

hemagglutination, latex agglutination and immunofluorescence are currently in 

use clinically.55–59 

Therapy for melioidosis requires a  combination of  prolonged antibiotics and 

intensive care medicine to cure the infection and prevent relapse. The current 

guidelines  for  treating  melioidosis  are  based  upon  the  results  from  several 

clinical  trials.60,61 It  is  divided into two stages,  an intravenous high intensity 

phase, and an oral eradication phase to prevent recurrence.  For the intensive 
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phase,  intravenous ceftazidime or  the  carbapenem antibiotics  (imipenem and 

meropenem) are given for a minimum of 10 to 14 days.60,61 This is followed by 

the  eradication  phase  therapy,  which  consists  of  oral  administration  of  the 

antibiotics trimethoprim-sulfamethoxazole for three to six months.61 In the most 

recent study on the oral antibiotic regimen duration, 20 weeks chosen as the 

minimum duration, but the authors stated that the optimal duration remains to be  

determined.61 The treatment and management of severe clinical presentations are 

also critical in determining the outcome of the disease.60 The rate of recurrent 

infection due to  relapse  of  an unsuccessfully eradicated  infection was 5.4%, 

with a median time to relapse of 8 months from initial admission in the Darwin 

study,30 and  9.7%  with  a  median  time  time  to  relapse  of  6  months  from 

commencement  of  oral  therapy  in  the  Thailand study.62 In  both  studies,  the 

choice,  duration  of  and  compliance  with  antibiotic  therapy  were  the  most 

important determinants of relapse. 

1.2 Burkholderia pseudomallei and the role of 
the type six secretion system (T6SS)

B.  pseudomallei is  a  facultative  intracellular  bacterium  that  is  capable  of 

invading and replicating within host cells, especially phagocytes and epithelial 

cells.28,63 B. pseudomallei invasins,  which  are  yet  to  be  identified,  facilitate 

actin-dependent  internalization of the bacteria  into single  membrane primary 

endosomes.64 The activity of its Burkholderia secretion apparatus (Bsa) type III 

secretion  system  cluster  3  (T3SSBsa)  then  directs  bacterial  escape  from  the 
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primary  endosome,  but  is  otherwise  dispensable  for  subsequent  intracellular 

events.64 The bacterium has two independent motility systems, flagellar (Fla2) 

or actin based (BimA), and at least one of these two systems is required for 

intracellular motility.64 Its type six secretion system cluster 1 (T6SS1) facilitates 

subsequent cell fusion events leading to the formation of multinucleated giant 

cells (MNGCs) and eventually cell death.64

With  respect  to  pathogenic  mechanism  employed  by  the  bacterium,  the 

induction of MNGC formation in  infected phagocytic  or epithelial  cells  is  a 

feature  unique  to  B.  pseudomallei65 and  Mycobacterium  tuberculosis.66 The 

presence of granulomas and giant cells in mouse models67 and in melioidosis 

patients68 suggests the relevance of MNGC in disease pathogenesis. It is unclear 

whether MNGC formation is  induced by the pathogen to evade the immune 

system  or  as  a  protective  host  response.67 The  mechanism  for  B. 

pseudomallei- induced MNGC formation is not well  understood, but previous 

studies have suggested that the process requires an intermediate direct cell-to-

cell fusion stage.65 Specific host adhesion proteins such as integrin-associated 

protein (CD47), E-selectin (CD62E), a fusion regulatory protein (CD98) and E-

cadherin  (CD324)  were  shown  to  be  involved  in  B.  pseudomallei-induced 

MNGC formation, and CD47 and CD62E were upregulated upon infection.69 As 

aforementioned, it has been shown that MNGC formation requires a functional 

Type VI Secretion System cluster-1 (T6SS1) of B. pseudomallei.70,71 Thus, it is 

likely that the components involved in MNGC formation are found within this 

gene cluster.

12
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1.2.1 The discovery of T6SS

Hemolysin co-regulated protein (Hcp), a hallmark protein of the T6SS, was first  

identified as a protein whose in vivo expression was coordinately regulated with 

the hemolysin HlyA from Vibrio cholerae.72 The lack of a hydrophobic signal 

peptide indicated that Hcp was secreted by a novel mechanism independent of 

the general secretory Sec pathway.72 The cluster of genes that encode for this 

novel  secretory  pathway in  V. cholerae were  originally  named IAHP, IcmF-

associated homology proteins  because  one  of  its  genes,  subsequently named 

icmF, is highly homologous to IcmF from the Type IV protein secretion system 

of  Legionella  pneumophila.73 The  gene  cluster,  termed  as  imp  (impaired  in 

nitrogen  fixation)  locus  in  Rhizobium  leguminosarum,  was  important  for 

nodulation and symbiosis between the bacteria and Pisum sativa. The gene locus 

was  subsequently  found  in  several  other  animal  pathogens  such  as 

Pseudomonas  aeruginosa,  Vibrio  cholerae,  Edwardsiella  ictaluri and  was 

required for the secretion of proteins into the environment.74 

This locus also encodes for a virulence-associated secretion (VAS) system of V. 

cholerae  towards  Dictyostelium  amoebae and was predicted to be responsible 

for mediating extracellular export  of virulence factors and their  translocation 

into target eukaryotic cells.75 The authors proposed to name this gene locus as 

the type VI secretion system (T6SS) because it was a novel ensemble of genes 

that was linked to a secretion pathway of proteins without N-terminal signal 

peptides.  Its  homolog  in  Pseudomonas  aeruginosa  was  the  Hcp1  secretion 
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island  (HSI-1),  which  was  responsible  for  the  export  of  Hcp1,  a  hexameric 

protein that formed rings with a 40 Å internal diameter.76 

1.2.2 The type six secretion system (T6SS)

The T6SS appears to be the most widespread specialized secretion system, with 

putative T6SSs gene clusters predicted to exist  in 25% of all  Gram-negative 

bacteria, such  as  Escherichia  coli,  Salmonella  typhimurium,  Yersinia  pestis, 

P. aeruginosa,  V. cholerae, Aeromonas hydrophila, Edwardsiella tarda and the 

Burkholderia species.77 Comparative genomic analyses revealed that the T6SS 

gene  clusters,  which  generally  consists  of  15-20  genes,  are  in  a  specific 

conserved genetic  organization.78 In  many instance,  a  single  organism could 

possess multiple copies of the T6SS gene cluster, whose expression levels are 

distinctly  regulated  under  different  milieu.70,71,79–81 Although  it  was  initially 

discovered as a virulence factor in several pathogens, cumulative studies to date 

provide a more complete and nuanced view on the role of T6SS as an important 

mediator of antagonistic or non-antagonistic interbacterial interactions in both 

pathogenic and non-pathogenic bacteria.82,83 The unifying theme to date on the 

role of T6SS is the delivery of bacterial effectors into the target eukaryotic and 

prokaryotic cells. Hence current models of T6SS often orientate the bacterial 

T6SS secretion system from the extracellular milleu towards the membrane the 

target cells, giving the impression of the T6SS penetrating the target membrane 

from the outside inwards.
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1.2.3 Regulation of T6SS1 in B. pseudomallei

In the case of  B. pseudomallei  K96243 strain, its genome encodes six T6SS 

clusters,  designated  as  T6SS1  (BPSS1496-BPSS1511),  T6SS-2  (BPSS0515-

BPSS0533), T6SS-3 (BPSS2090-BPSS2109), T6SS-4 (BPSS1660-BPSS0185), 

T6SS-5  (BPSS0091-BPSS0117),  and  T6SS-6  (BPSL3096-BPSL3111).72  Its 

T6SS1  contributes  to  the  pathogenic  interactions  of  the  bacterium  with  the 

host.60,61,8

It was first discovered via in vivo expression technology that  B. pseudomallei 

T6SS1  was  only  expressed  when  the  bacterium  is  inside  host  cells.85 The 

expression of T6SS1 is tightly regulated by VirAG, a two-component histidine 

sensory kinase, and an AraC-type regulator BprC, an AraC regulator  located 

within  the  adjacent  T3SS3,71 which  is  also  true  for  B.  mallei,  its  equinine 

pathogenic  equivalent.70,79 In  free-living  B.  pseudomallei, the  expression  of 

T6SS1 is driven by BprC alone.71 However inside host cells, VirAG becomes 

the major regulator of all T6SS1 genes starting from hcp1.71 The tssAB operon 

remains as the exception, which remains mainly regulated by BprC (Figure 5).71 

15

Figure 4: Genetic organization of T6SS1 in B. pseudomallei (BPSS1490 to BPSS1514).  
Genes and their direction of transcription are represented by arrows. Annotation of the  
tss genes are adapted from Schell et.  al (2007). Shown in green is the bim clusters  
where bimA is required for actin tail motility. The T6SS genes are shown either in their  
corresponding colours from Figure 6 or in black. Shown in light blue are virA and G  
homologs,  the  two-component  system  that  regulates  the  T6SS  cluster.  Genes  of  
unknown function are in purple. Adapted from review by Jocelyn Wong and Yunn-Hwen  
Gan (unpublished work).
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Intracellular  host  signals  that  are  sensed  through  VirAG  to  drive  the 

transcription of T6SS1 genes have yet to be determined. It was thought that the 

source  of  these  intracellular  signals  were  derived  from  the  phagosomal 

compartment from which the bacteria escapes,79 but experiments that bypass the 

phagosomal  trafficking  suggest  that  these  signals  could  come from the  host 

cytosol instead.64 However, a model on the orientation of the T6SS1 from  B. 

pseudomallei would have to differ from current reported models of T6SS1.78,86 It 

would  originate  from  within  the  eukaryotic  host  towards  the  extracellular 

millieu, as the T6SS1 is only expressed when the bacteria is within host cytosol.

1.2.4 Structural biology of T6SS 

It  has  been  proposed  that  the  T6SS is  a  macromolecular  nanomachine  that 

facilitates the transport of bacterial proteins across both the inner (IM) and outer 

bacterial membrane (OM) in a single step (Figure 6).75,76,83,87 
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Figure 5: Promoter sites in the T6SS1 gene cluster. Bent arrows indicate promoter sites  
and  their  regulators.  Block  arrows  indicate  transcription  directions.  Adapted  from  
Chen et al., 2011.71
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Approximately  fifteen  core  genes  within  the  cluster  encode  the  T6SS  and 

studies  on  their  gene  products  suggest  that  T6SSs  are  anchored  contractile 

syringes that use a mechanism similar to the injection device of bacteriophages 

(Figure  4 and  7).77,88,89 The T6SS protein components can be divided into two 

groups:  membrane  or  membrane-associated  proteins  that  form  the  anchor 

complex  required  for  coupling  the  energy  generated  by  contraction  of  the 

17

Figure  6: The type six secretion system (T6SS) and the T4 bacteriophage tail.  The  
schematics illustrate the localization and topologies of the T6SS core proteins. The  
proteins are labelled with their gene products.  Homology between T6SS and phage  
protein sequences, and predicted subcellular localization of proteins form the basis of  
the T6SS model. T6SS proteins sharing homology with phage proteins are coloured the  
same as their T4 phage counterparts. CM, host cell membrane; OM, bacterial outer  
membrane; P, peptidoglycan; IM, bacterial inner membrane. Adapted from Records,  
2011.
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tubular sheath to protein export across the membranes, and soluble proteins that 

share a  common evolution history with subunits  forming the bacteriophage's 

injection tail.90

The basic anchor complex requires TssL, an IM protein that can be associated or 

fused with TagL (not illustrated), an IM protein that has a peptidoglycan binding 

domain, IcmF, an IM protein with a periplasmic domain that forms a complex 

with TssL, and TssJ,  a lipoprotein anchored to the OM that binds to IcmF's 

periplasmic  domain  (Figure  6).91 The  interactions  between  these  proteins 

effectively link the peptidoglycan and both membranes to provide an anchored 

housing to the contractile hypodermic portion of the T6SS apparatus.

The hypodermic device of a typical bacteriophage comprises of a baseplate and 

a contractile sheath that houses an inner noncontractile tube attached to a tail 

spike  complex  (Figure  6).  Contact  with  the  host  cell  surface  induces 

conformational  changes  to  the  baseplate  that  triggers  the  contraction  of  the 

sheath, leading to the expulsion of phage's inner tube and tail spike complex.92 

The protein TssC from the T6SS gene cluster shares high sequence homology 

with the T4 bacteriophage's baseplate protein gene product (gp) 25.88,93 

ClpV-interacting proteins TssA and TssB are structural homologs of the T4 tail 

sheath  proteins.94,95 TssA and  TssB form tubular  complexes  up  to  500  Å in 

length,  and  their  dynamic  remodelling  permits  the  reuse  of  the  injection 

machinery.  Their  disassembly is  powered by the AAA+ ClpV ATPase under 
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adenosine  triphosphate  (ATP)  consumption,  which  specifically  binds  to 

contracted TssA/B. 

TssA/B complexes have an outer diameter of 300  Å and an inner diameter of 

100  Å, which is sufficient to harbour the shaft  of the inner tube, formed by 

haemolysin co-regulated protein (Hcp). Hcp, together with the protein valine-

glycine repeat protein G (VgrG), are two structurally conserved proteins that 

form the shaft and the needle tip respectively.76,96,97 The contraction of TssA/B is 

thought to be responsible for their ejection into the extracellular milieu.96,98 The 

export  of  Hcp and VgrG orthologues represents the universal  activity  of  all 

T6SSs.99

1.2.5 The structure of VgrG and Hcp

Structural  studies  of  Hcp1 homologues  from other  bacteria  showed that  the 

Hcp1 is able to form hexameric rings with an outer diameter of 80 Å and inner 

width  of  40  Å,  and  structural  models  suggest  that  these  rings  are  able  to 

polymerize  in  a  head-to-head  or  head-to-tail  fashion  to  form  filamentous 

tubes.76,96,100 Crystal  structures  of  Hcp  from  P.  aeruginosa  and E.  tarda 

consistently highlight its remarkable structural semblance to components of a 

bacteriophage  tail.76,101,102 It  has  high  structural  homology  to  the  major  tail 

protein gpV of bacteriophage λ, or gp19 of bacteriophage T4. These tubes form 

the inner shaft of the T6SS and are proposed to serve as a conduit  for other 

canonical T6SS protein substrates to diffuse through.100
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The  sequence  and  structure  of  the  N-terminal  fragment  of  VgrG  from  the 

uropathogenic  E. coli  CFT073 was compared against the gp5-gp27 of the T4 

bacteriophage. Despite the low sequence identity (13%) between VgrG and the 

gp5-gp27 complex, the N-terminal portion of  VgrG is well superimposable on 

gp5-gp27 as a single connected polypeptide chain. Current models propose that 

the  trimeric  VgrG protein  is  harboured  at  the  tip  of  the  Hcp tube  and they 

function as the puncturing device towards target cells.96 The surface assemblies 

of  Hcp and VgrG are  mutually  dependent,  as  VgrG is  absent  in  the  culture 

supernatant of  hcp-  cells and Hcp is absent in  vgrG- cell supernatant.75,89,103,104 

One may hypothesize that Hcp assembly is triggered by VgrG recruitment to the 

apparatus,  and  the  polymerization  of  the  Hcp  tube  subsequently  pushes  the 

VgrG protein towards the external medium to puncture target cells.78,105

1.2.6 The immunobiology of Hcp to date

B. pseudomallei carries six copies of Hcp (Hcp1-Hcp6), each corresponding to 

its six T6SS clusters.  Hcp1 is  not constitutively expressed in both wild type 

B. pseudomallei and B. mallei but the overexpression of virAG regulatory genes 

would drive its expression and subsequent secretion, making it detectable in the 

supernatant.71,84 The  Δhcp1 B. pseudomallei mutants were highly attenuated in 

mice,70 confirming  the  critical  role  of  T6SS1  for  bacterial  virulence  in 

mammalian hosts. It is not known whether  B. pseudomallei  Hcp1 exerts any 

function apart from its structural role in the assembly of the T6SS needle for 

secretion of T6SS substrates. However, the function of Hcp is more extensively 
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explored  in  other  bacteria.  Hcp  has  the  ability  to  adhere  to  the  surface  of 

mammalian  cells,  and  the  functional  consequence  of  this  binding  had  been 

investigated  in  A.  hydrophila106 and  meningitis-causing  Escherichia  coli  K1 

strain RS218.107 

When  exogenously  complemented  in  the  A.  hydrophila ΔvasH  mutant,  Hcp 

reduced uptake of bacteria by macrophages, increased bacterial virulence in a 

septicaemic  mouse  infection  model.  Furthermore,  it  inhibited  production  of 

proinflammatory  cytokines  by  stimulating  release  of  immunosuppressive 

cytokines such as interleukin-10 (IL-10) and transforming growth factor-beta 

(TGF-β).106 E.coli K1 strain RS218 has two hcp-like gene designated hcp1 and 

hcp2,. The protein Hcp2 is responsible for cellular invasion and adhesion, but 

Hcp1 is the secreted effector that has the ability to cause changes to the host 

cells on its own, such as inducing actin cytoskeleton rearrangement, apoptosis 

and release of IL-6 and IL-8 in human brain microvascular endothelial cells.107 

In the context of cystic fibrosis, Hcp1 was found in the sputum of a patient 

infected  with  P.  aeruginosa actively  secreting  Hcp1  in  vitro.76 Anti-Hcp1 

response was also detected in patients chronically infected with P. aeruginosa. 

With respects to Aeromonas hydrophila SSU, circulating antibodies against Hcp 

were detected after infection in mice. These findings suggest that Hcp is highly 

immunogenic.108 In B. pseudomallei, anti-Hcp1 antibodies could be detected via 

immunoblotting from pooled patient sera.70 This means that Hcp1 protein was 

available  for  immune  processing  during  bacterial  infection.  A recent  study 
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showed that the inner ring of Hcp from P. aeruginosa interacts specifically with 

Tse2, a cognate T6SS effector, and serves as a exported chaperone and receptor 

protein to T6SS effector molecules.109

1.2.7 Aims of the project

The principle objective  of this project was to determine whether  Hcp1 from 

B. pseudomallei is able to exert any effects on host cells apart from its structural 

role in supporting T6SS substrate secretion, including its own secretion. This 

objective can be broadly summarized in the following specific aims: 

Aim I. To  generate  biochemical  tools  and  reagents  that  detect  the  

interaction of Hcp1 with host cell.

Aim II. To determine the structure of  B. pseudomallei  Hcp1 so as to  

define  the  structure-function  relationship  of  Hcp1  in  

B. pseudomallei-infected host cells.
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Chapter 2.
       
Materials and Methods

2.1 Primers and Bacterial Strains

2.1.1 List of primers

Table 2: List of primers.

Primer (PCR) Sequence (5'-3') Ta (oC)

Hcp1F CATATGCTGGCCGGAATATATC 55

Hcp1R CTCGAGTCAGCCATTCGTCCAGTT 55

Hcp1UpF CCATGATTACGAATTCGTACGTCGTCGACATGGAC
A

60

Hcp1UpR TACCCGGGGATCCTCGATGTGGATTTTCCCGTCAT 60

Hcp1DnF GAG GAT CCC CGG GTA TCA CGT TGA CGA AGG 
AAA TG

60

Hcp1DnR CCAAGCTTGCATGCCTGCAGCGATCTGCGCTTCG
ATTT

60

Hcp1Up3 GGAGCCTTTGATTTCCCCCT 60

Hcp1Dn3 GAAATCAAAGGCTCCGCGGGCGCCGCAAACTGG
AC

60

Hcp1FH GGCCAGTGCCAAGCTTGCAGATCGTCGTGTCGGA 60

Hcp1RB CGGTACCCGGGGATCCGATCAGCCATTCGTCCAG
T

60

TssCRB CGGTACCCGGGGATCCGCGCTTCAGGAAATCGTT 60

Hcp1Q46AE47AF GCGGCGGGCCTGACGCCCGCCGCCGCCGCTCGC 60

Hcp1Q46AE47AR CGTCAGGCCCGCCGCGAGCCTGGCAGGCATGTC 60

Hcp1L49AT50AF CAGGAAGGCGCGGCGCCCGCCGCCGCCGCTCGC 60

Hcp1L49AT50AR CGCCGCGCCTTCCTGGAGCCTGGCAGGCATGTC 60

Abbreviations: Ta,, annealing temperature.
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Primer (realtime PCR)

Gene 

hcp1 CACATCCTCGCCTTCAA
TCTCGAACTCTTCCATCATCT

rpoB GTTCCATCGTTCACCAAGTG
TTGCAGAAATGTGCTGAATG

2.1.2 List of plasmids and bacterial strains

Table 3: List of plasmids and strains.

Plasmid/Strain Relevant characteristic(s)a Reference

Plasmid

pET28a-hcp1 pET28a containing codon 1-169 of BPSS1498 This study

pET22b-hcp1 pET22b containing codon 1-169 of BPSS1498 This study

pK18mobsacB Conjugative, suicide vector, Kmr 110

pFRTT1 pGEM-T contains a tet cassette with FRT sites and 
tetRA genes, Apr, Tcr

111

pMLBAD Broad host range vector, Tmr 112

pUCP pUCP28T empty vector 113

pUCP-hcp1 pUCP28T containing codon 1-169 of BPSS1498 This study

pUCP-hcp1-tssC1 pUCP28T containing codon 1-169 of BPSS1498 
and codon 1-153 of BPSS1499

This study

B. pseudomallei

KHW B. pseudomallei wild type strain 114

ΔvirAG::tet B. pseudomallei, codon 56-614 of BPSS1495 and 
codon 1-233 of BPSS1494 were replaced with the 
tet cassette from pFRTT1

This study

Δhcp1::tmp B. pseudomallei, nucleotide position 335 to 446 of 
BPSS1498 was replaced with the trimethoprim 
resistance gene from pMLBAD

This study

Δhcp1 B. pseudomallei, nucleotide position 335 to 446 of 
BPSS1498 was removed

This study

Δhcp1inf B. pseudomallei, codon 1-20 of BPSS1498 joined 
to 161.

This study

KHW hcp1L49AT50A  B. pseudomallei, codon 46 and 47 of BPSS1498 
substituted with alanine.

This study

E. coli

S17-1 Donor strain for conjugation 115

aAbbreviations: Apr,  ampicillin  resistant;  Kmr,  kanamycin resistant; Tcr,  tetracycline  
resistant, Tmr, trimethoprim resistant.
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2.2 Screening for anti-Hcp1 monoclonal 
antibodies

2.2.1 Generating recombinant Hcp1 

The  B. pseudomallei  hcp1 gene (BPSS1498) was amplified using Polymerase 

Chain Reaction (PCR). The primers used were Hcp1F and Hcp1R (Table  2). 

A NdeI restriction site was introduced at the 5' end of the forward primer, and 

a XhoI restriction site at the 5' end of the reverse primer. The template DNA was 

the  genomic  DNA from  B.  pseudomallei,  strain  KHW.  The  PCR  reaction 

mixture  contained  2X GoTaq® Green  Master  Mix  (Promega,  Madison,  WI, 

USA), 0.2 mM of forward and reverse primers, 100 ng of genomic DNA and 5 

% dimethyl sulfoxide (DMSO), to a volume of 50 µL. The cycling parameters 

were 95 oC for 4 min, followed by 30 cycles at 95 oC for 1 min, 56 oC for 1 min, 

and 72 oC for 2 min and a final extension at 72 oC for 10 min. The PCR product 

was separated by 1 % agarose gel to verify the presence of a single band of the 

desired size (516 bp) and purified using DNA Clean & Concentrator  (Zymo 

Research, Irving, CA, USA). 

The purified PCR product was ligated to pGEM®-T Easy Vector (Promega). 

The ligation mixture contained 50 ng of vector, 25 ng of PCR product, 5 µL of 

the 2X ligation buffer, and 1 µL of the T4 ligase, to a final volume of 10 µL. 

The mixture was incubated at room temperature for 2 hr. 2 µL of the ligation 

product was added to 50 µL of electrocompetent  Tg1 E.coli cells (ECC) and 

electropulsed using Gene Pulser® II Electroporation System. 1 mL of LB was 
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added to the transformed cells and the cells were incubated at 37 oC for 1 hr at 

140 rpm for recovery. The recovered cells were plated on LB agar with 100 

µg/mL of  ampicillin,  40  µg/mL of  IPTG  and  40  µg/mL of  X-gal  for  the 

selection of successful transformants. A few white colonies were selected and 

cultured overnight in 5 mL LB broth with ampicillin. The plasmids from these 

clones  were  extracted  using  Wizard® Plus  SV Minipreps  DNA Purification 

System (Promega). A small-scale restriction digest was performed to verify the 

presence of the hcp1 gene insert in the plasmid. The digest reaction contained 1 

µL plasmid DNA, 2 µL of 5X buffer D (Promega), 5 units of  NdeI and  XhoI 

(Promega) each, to a final volume of 20 µL. The reaction was incubated at 37 oC 

for 3 hr. The digest was separated by 1 % agarose gel and the positive plasmids 

pGem®-T-hcp1 would give the desired bands of ~516 bp (hcp1) and ~3000 bp 

(pGEM®-T Easy vector).

A positive  pGEM®-T-hcp1  plasmid  was  digested  to  generate  the  insert  for 

ligation  into  the  protein  expression  vector  pET-28a.  The  pGEM®-T-hcp1 

plasmid digest reaction contained 5 µL of buffer D, 2 µg of plasmid, 10 units of 

NdeI and XhoI to a final volume of 50 µL. The pET-28a plasmid digest reaction 

contained 5 µL of buffer D, 1 µg of plasmid, 10 units of NdeI and XhoI and 1 

µL  of  thermosensitive  alkaline  phosphatase  (TSAP)  (Promega),  to  a  final 

volume of  50 µL as  well.  The  cut  plasmids  were purified  QIAquick® PCR 

Purification  kit  (QIAGEN)  and  eluted  with  10  µL of  nuclease-free  water. 

Ligation of the hcp1 insert to pET-28a was undertaken in a 10 µL reaction of the 

following composition: 5 µL of 2X rapid ligation buffer (Promega), 1 µL of T4 
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DNA ligase, 100 ng of vector, 50 ng of insert, to a final volume of 10 µL and 

incubated at room temperature for 3 hr. The resulting plasmid was transformed 

into  Tg1 electro-competent cells and selected on LB agar with 25 µg/mL of 

kanamycin. The success of the ligation was verified by restriction digestion, and 

the cloning of the hcp1 gene in-frame with the N- terminal 6x His-tag of pET-

28a was verified by sequencing.

The pET-28a-hcp1 plasmid was harvested and re-transformed into BL21 (DE3) 

for protein expression and purification. The glycerol stock of BL21-pET-28a-

hcp1 was cultured at 37 oC overnight in 250 mL of LB broth with 50 µg/mL of 

kanamycin. The overnight culture was subcultured in 2 L of LB broth with 50 

µg/mL of kanamycin at 37 oC for 2 hr to achieve log phase. 0.5 mM of IPTG 

was added to induce protein expression for a further 4 hr. The induced bacteria 

were pelleted at 6000 rpm for 15 min and kept frozen at -80 oC overnight. 

The  bacterial  lysis  buffer  contained  B-Per®  Bacterial  Protein  Extraction 

Reagent  (Thermo Fisher  Scientific  Inc.,  Rockford,  IL,  USA),  200 µg/mL of 

lysozyme  (Sigma-Aldrich,  St.  Louis,  MO,  USA),  25  µg  of  DNase  (Sigma-

Aldrich),  1x cOmplete  EDTA-free  protease  inhibitor  (Roche  Diagnostics 

GmbH, Mannheim, Germany), in a final volume of 40 mL. The bacterial pellet 

was thawed, resuspended in the lysis buffer and the suspension was shaken at 

room  temperature  15  min.  The  mixture  was  distributed  into  1.5  mL 

microcentrifuge tubes, centrifuged at maximum speed to remove the insoluble 

proteins and the supernatant was pooled. 
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A  3  mL  HisPurTM Cobalt  Resin  column  was  equilibrated  with  an 

equilibration/wash  buffer  of  the  following  composition:  50  mM  sodium 

phosphate  buffer,  300  mM  sodium  chloride,  10  mM  imidazole;  pH  7.4. 

The supernatant was ran through the column twice and washed with two resin-

bed volumes. Elution was done with 3 resin-bed volumes, with an elution buffer 

of  the  following  composition:  50  mM  sodium  phosphate  buffer,  300  mM 

sodium chloride,  150  mM  imidazole;  pH 7.4.  The  column was  regenerated 

according  to  manufacturer’s  instructions  for  repeated  use.  The  eluate  was 

dialyzed against 1X phosphate-buffered saline (PBS) and ran on a 12 % SDS-

PAGE gel to verify the presence of the desired protein (~18.4 kDa).

2.2.2 Immunization schedule

125 µg of Hcp1 in 500 µL of 1X PBS was emulsified with an equivalent volume 

of complete  Freund’s adjuvant  (Sigma-Aldrich).  25 µg of  emulsified protein 

was  injected  intraperitoneally  per  mouse;  6-8  weeks  old  female  Balb/c.  2 

subsequent boosts (25 µg of protein per mouse) in incomplete Freundʼs adjuvant 

were given on day 21 and day 35. The final boost (25 µg of protein per mouse) 

in 1X PBS was delivered intravenously on day 42. At day 45 the mice were 

euthanized with CO2 and spleens were aseptically removed for fusion.

2.2.3 Preparation of NS1 myeloma fusion partner and 
macrophage feeder layer

The myeloma fusion partner NS-1 was cultured for two weeks in  R10, which 

contained  10  % FBS,  1  % penicillin/streptomycin  and  1  % L-glutamine  in 
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1X RPMI. They were cultured till approximately 250 x 106 cells for fusion.

4 naïve 6-8 weeks old female Balb/c mice were euthanized with CO2 and a tiny 

incision was made to the abdominal skin. The skin was pulled back to reveal the 

intraperitoneal cavity. 10 mL of RPMI 1640 (RPMI) was injected into the cavity 

with 18 ” needle syringe,  and the media was gently withdrawn and injected 

several times to recover the intraperitoneal macrophages. This was repeated till 

20-30 mL of RPMI with macrophages was harvested. The cells were pelleted 

and resuspended per spleen in 100 mL of hypoxanthine-aminopterin-thymidine 

(HAT)  media,  which  contained  1X  HAT  (Sigma-Aldrich),  1  %  penicillin-

streptomycin (PS), 20 % fetal bovine serum (FBS) and 1 % L-glutamine in 1X 

RPMI. 100 µL of cells were pipetted into each well of a 96-well flat bottom 

tissue culture plate to give approximately 1000 cells per well. The cells were 

incubated overnight at 37 oC.

2.2.4 Pre-fusion preparation 

On the day of fusion, the feeder layers were first checked for viability. 50 x 106 

of  NS-1  were  harvested  per  fusion  in  a  round-bottomed  tube,  pelleted  and 

resuspended in 10 mL of R10. They were incubated at 37 oC until fusion. 

2.2.5 Fusion

The spleens from the immunized mice were washed once in RPMI and gently 

homogenized with the base of a rubber plunger through a 70  μm nylon mesh 
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into  50  mL falcon  tubes  in  RPMI.  The  resulting  single  cell  suspension  of 

splenocytes  was  fused  directly  with  NS1  using  the  protocol  developed  by 

Milstein  and  Kohler.116 Splenocytes  from each  spleen  were  washed  once  in 

RPMI, resuspended in 10 mL of RPMI and mixed with the prepared NS-1. The 

cell mixture was pelleted and its supernatant decanted. The pellet was gently 

agitated and 1 mL of warm polyethylene glycol (titrated until  a pink colour 

development  with  2  M  NaOH)  was  added  at  a  rate  of  1  mL/min.  It  was 

incubated at 37 oC for 1 min, and was diluted with pre-warmed RPMI at a rate 

of 1 mL/min to final volume of 4 mL. The sides of the tubes were further rinsed 

with  2  mL of  RPMI.  The  fused  cells  were  centrifuged  washed  once  and 

resuspended in 20 mL of HAT medium. They were incubated for 2 hr at 37 oC to 

allow recovery from the fusion. 80 mL of HAT medium was added to give a 

final volume of 100 mL, and 100 µL of fused cell suspension was cultured per 

well in microtitre plates for 7-14 days. 

The resulting hybridoma clones were then scored microscopically. Supernatants 

were harvested in 96-well  cell  culture plates over the next 21 days from the 

resulting hybridomas. 

2.2.6 Anti-Hcp1 hybridoma screen by indirect ELISA and FACS

MaxisorpTM plates (Thermo Fisher Scientific Inc.) were coated overnight at 4oC 

with 100 ng of Hcp1 per well.  The negative control protein in the ELISA was 

recombinant  TssM,  a  deubiquitinase  from  B. pseudomallei.  The  protein  was 

generated and purified by Isabelle Chen Gek Joo.  They were washed 4 times 
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with 0.05 % Tween 20 in PBS (PBS-T) and blocked with 5 % skim milk in PBS 

at room temperature for 1 hr. The supernatant harvested from the hybridomas 

were diluted 1:1 with the blocking buffer and added to the blocked MaxisorpTM 

plates at room temperature for 1 hr. The plates were washed 4 times and 100 µL 

of secondary antibody (goat anti-mouse antibody conjugated with house-radish 

peroxidase  (HRP),  Thermo  Fisher  Scientific  Inc.)  was  added  per  well  at  a 

dilution of 1:5000 in blocking buffer.  The wash was repeated and 50 µL of 

3,3',5,5′-tetramethylbenzidine (TMB) (Thermo Fisher Scientific Inc.) was added 

per well. 50 µL of the stop solution 1N H2SO4
 was added upon achieving the 

desired colour development and the plates were read at 450 nm (415 nm as the 

reference wavelength) using Bio-Rad Model 680 Microplate Reader (Bio-Rad 

Laboratories,  Hercules,  CA, USA). Wells  with absorbance  of optical  density 

(O.D.)  1  and  above  were  scored  as  the  hybridomas  that  yielded  anti-Hcp1 

supernatants.

Anti-Hcp1 response from the selected hybridomas was further assayed using 

Hcp1-coated U937 by flow cytometry. The harvested supernatants were first 

diluted 1:1 in the FACS buffer, which contained 1 % FBS in 1X PBS, and were 

each  distributed  into  5  mL  FACS  tubes.  The  target  cells  U937,  a 

myelomonocytic cell line, were incubated with 3 ng of Hcp1 per 0.5 x 106 cells 

at 37  oC for 1 hr, under gentle rotation in R10. The coated cells were washed 

once in 1X PBS and resuspended at a concentration of 10 x 106 per mL in the 

FACS buffer. The cells were distributed into the prepared FACs tubes at 50 µL 

per tube and incubated at 4 oC for 1 hr. The stained cells were washed once with 
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4 mL of PBS and stained with the goat-anti-mouse Alexa Fluor® 488 antibody 

(Life Technologies, Carlsbad, CA, USA) at the dilution of 1:200 in the FACS 

buffer. The cells were washed once more and fixed with 1 % paraformaldehyde 

(Sigma-Aldrich) in 1X PBS. The fixed cells were analyzed with CellQuest Pro 

Software on a BD FACSCaliburTM flow cytometer (BD Biosciences, San Jose, 

CA, USA).

2.2.7 Subcloning positive hybridomas

The selected hybridomas were progressive expanded from their 96-wells to 48-

wells, 24-wells, and finally 6-wells. They were re-assayed for their anti-Hcp1 

response,  and  those  that  remained  positive  were  subcloned  to  achieve 

monoclonality. The cells were serially diluted in HT medium, which contains all 

that was found in HAT medium minus aminopterin. The cells were diluted to 5 

cells/mL and 10 cells/mL, each 100 mL. They were distributed in 20 96-well 

cell culture flat-bottomed plates, 100 µL per well, and cultured for 7-14 days. 

Growing  colonies  were  screened  once  more  as  aforementioned  and  the 

subcloning  was  repeated  until  the  selected  hybridoma  clones  became 

monoclonal.

2.2.8 Validation of monoclonality

1 x 106 hybridoma cells were harvested and resuspended in 1X PBS. The RNA 

was extracted with High Pure RNA Isolation Kit (Roche Diagnostics GmbH), 

according to manufacturer’s instructions. The heavy and light chain sequences 
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were  amplified  using  QIAGEN® OneStep  RT-PCR kit  (QIAGEN)  with  the 

Mouse IgG-Primer Set (Merck KGaA, Darmstadt, Germany). The reaction mix 

per primer was as follows: 12.5 µL of dH2O, 5 µL of 5X OneStep buffer, 1 µL 

of dNTP, 1.25 µL of forward and reverse primer each, 1 µL of OneStep enzyme 

mix, and 3 µL of extracted RNA. The cycling parameters were 50 oC for 30 min, 

95oC for 15 min, followed by 34 cycles at 95 oC for 1 min, 50 oC or 60 oC for 1 

min (depending on the primer, according to manufacturer’s instructions), and 

72 oC for 2 min and a final extension at 72 oC for 6 min. The PCR products were 

separated by 1 % agarose gel to visualize the amplified bands of the desired size 

(500 bp) and purified using QIAquick® Gel  Extraction Kit  (QIAGEN). The 

purified PCR products were sent for DNA sequencing to determine their precise 

nucleotide sequence.

2.2.9 Specificity of anti-Hcp1 antibody

The mutants Δhcp1::tmp and ΔvirAG::tet were generated by Jocelyn Wong and 

Yahua Chen  respectively  (Table  3).  2  mL of  overnight  culture  of  wild  type 

B. pseudomallei, Δhcp1::tmp mutant and ΔvirAG:tet mutant were pelleted, lysed 

in B-Per®, and filter-sterilized. The lysates were concentrated to 200 µL using 

Vivaspin® protein concentrators with MWCO 5 kDa (Sartorius AG, Göttingen, 

Germany). 40 µg of lysate was resolved with 12.5 % SDS-PAGE, transferred 

onto a polyvinylidene fluoride (PVDF) membrane and blocked with 5 % skim 

milk in PBS-T at room temperature for 1 hr. The blot was incubated overnight at 

4 oC with 56-1 at a dilution of 1:10000 in blocking buffer. The membrane was 
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washed thrice with PBS-T, incubated at room temperature for 2 hr with a goat-

anti-mouse  secondary  antibody  conjugated  with  HRP at  1:5000  dilution  in 

blocking buffer, and the wash was repeated. All blotting steps were done with 

gentle agitation, whilst all washing steps were done with agitation at 80 rpm. 

The substrate used was Western Lightning ECL (PerkinElmer) and the blot was 

exposed for 10 s using CL-XPosure Film (Pierce).
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2.3 X-ray crystallography of Hcp1BP

The  solving  of  Hcp1BP structure  was  done  in  collaboration  with  Dr Chacko 

Jobichen  from  the  Protein  Structure  Laboratory,  Department  of  Biological 

Sciences, NUS. Cloning and generation of both the recombinant native and L-

selenomethionine (L-SeMet) incorporated- Hcp1 protein was done by the thesis 

author with Dr Jobichen, and the crystallization and resolution of the structure 

by Dr Jobichen.

2.3.1 Plasmid and strain construction

Hcp1 with a N-terminal His-tag did not yield diffraction quality crystals, hence 

hcp1  was further cloned between NdeI  and XhoI restriction sites of pET22b 

vector  with  a  C-terminal  6x  His-tag.  Site-specific  mutations  in  hcp1  were 

introduced by overlapping PCR as previously described.117 The template DNA 

was  pET28a-hcp1. For  each  mutant,  two  fragments  of  hcp1 are  amplified 

separately with the following pairs of primers: Hcp1F with Q46AE47AR and 

Hcp1R with Q46AE47AF (for Hcp1Q46AE47A), and Hcp1F with L49AT50AR and 

Hcp1R with L49AT50AF (for Hcp1L49AT50A).  The resulting two fragments per 

mutant were the template DNA for a subsequent PCR with Hcp1F and HcpR. 

Each  PCR  reaction  mixture  contained  2X  GoTaq®  Green  Master  Mix 

(Promega, Madison, WI, USA), 0.2mM of forward and reverse primers, 100 ng 

of genomic DNA and 5 % dimethyl sulfoxide (DMSO), to a volume of 50 µL. 

The new hcp1 fragments containing mismatched bases were cloned into pET22b 

between NdeI and XhoI restriction sites, in frame with the C-terminal His-tag, 
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and verified with DNA sequencing.

2.3.2 Purification, crystallization and structure determination

The plasmid was transformed into E. coli BL21 cells and grown in defined M9 

medium supplemented with 25 mg/L L-SeMet at 37°C until log phase.118
 1 L 

culture was induced with 500 μM IPTG and growth continued at 37 °C for 5 hr. 

Cells  were  then  harvested  by  centrifugation  at  6000  rpm  for  15  min  and 

re-suspended in  40  mL of  lysis  buffer  (B-Per® Bacterial  Protein  Extraction 

Reagent  (Thermo Fisher  Scientific  Inc.,  Rockford,  IL,  USA),  200 µg/mL of 

lysozyme  (Sigma-Aldrich,  St.  Louis,  MO,  USA),  25  µg  of  DNase  (Sigma-

Aldrich),  1X  cOmplete  EDTA-free  protease  inhibitor  (Roche  Diagnostics 

GmbH, Mannheim, Germany). Hcp1 was purified using B-PER 6xHis Fusion 

Protein Purification Kit (Pierce), followed by size exclusion (Superdex 75, GE 

Healthcare Life Sciences). 

Crystallization conditions  for  the protein were screened using Index Screens 

(Hampton Research) using the hanging drop vapour diffusion technique. Drops 

containing 1 μL of Hcp1 solution at 8 mg/mL and 1 μL of reservoir solution 

were equilibrated at 25 °C. The optimized crystallization condition consisted of 

0.1 M Na HEPES pH 7.5, 1.4 M tri-sodium citrate, 200 mM NaCl and 5 % 

(w/v) glycerol, with Hcp1 in 20 mM Tris-HCl (pH 7.0). Crystals selected for 

data  collection  were  flash-cooled  at  100 K  in  the  reservoir  solution 

supplemented with 25 % glycerol for cryoprotection. 
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Three homolog structures of Hcp1BP were available, but molecular replacement 

did not yield a solution to the crystal structure. Thus the structure was solved by 

single wavelength anomalous dispersion (SAD) using L-SeMet-labeled protein 

crystals  instead.119 X-ray  diffraction  data  were  collected  at  13B beamline  at 

National  Synchrotron  Radiation  Research  Centre  (NSRRC),  Taiwan,  using  a 

Quantum-315r  CCD  area  detector  (ADSC)  and  analysed  with  HKL2000.120 

Twelve  expected  12  Se  positions  were  found  using  the  program 

Phenix.autosol.121 RESOLVE was used to further improve the phases by density 

modification,122 which gave a final overall figure of merit of 0.70, and was also 

used to build over 50% of the backbone atoms of the model.122 COOT was used 

to manually built the remaining residues,123 phenix.refine was used to refine the 

model.121 An analysis using the phenix.xtriage program during the refinement 

process indicated the presence of merohedral twinning, hence refinement was 

undertaken with the twin refinement.  Refinement  was continued until  the R-

value  converged  to  0.239  (Rfree =  0.289)  for  reflections  I>σ  (I)  to  2.63  Å 

resolution (Table 5). 

2.3.3 Dynamic light scattering

Dynamic light scattering studies were undertaken on a DynaPro Light Scattering 

instrument  (Protein  Solutions,  USA)  at  different  protein  concentrations  in  a 

buffer containing 20mM Tris pH 7.0, 200mM NaCl and 5mM DTT.
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2.4 Functional studies on Hcp1 

2.4.1 Imaging endogenous Hcp1 during B. pseudomallei 
infection in vitro

12 mm glass coverslips were rinsed for 10 min with 2 N HCl, and copiously 

washed  with  dH2O.  They  were  flamed  sterilized  using  100  % ethanol,  and 

incubated with 40 µg/mL of poly-L-lysine (PLL) (Sigma-Aldrich) for 1 hr or 

overnight  at  37  oC. They were copiously washed once more with dH2O and 

allowed to dry upon sterile filter paper disks. The dried coverslips were stored in 

24-well plates (Thermo Fisher Scientific Inc.).

U937 cells were activated with 200 ng/mL of phorbol-12-myristate-13-acetate 

(PMA) in R10 and plated upon the coverslips at 0.25 x 106 per coverslip. They 

were activated for 24 hr, and were given fresh R10 without PMA and antibiotics 

for another 24 hr. They were infected with log phase wild type B. pseudomallei, 

the negative control strain Δhcp1, or KHW hcp1L49AT50A for at the MOI of 10:1. 

Kanamycin was added at a final concentration of 25 µg/mL per well 1hr after 

the infection and the infected cells were fixed with 1 % PFA after a further 

infection of 6-8 hr.

The fixed cells were washed thoroughly with 10 mM glycine in PBS. They were 

stained with a rabbit  anti-B. pseudomallei  lipopolysaccharide (LPS) antibody 

(kindly  provided  by  Ganjana  Lertmemongkolchai)  and  murine  anti-Hcp1 

antibody 56-2-2 at the dilution of 500:1, at room temperature for 1 hr. The cells 
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were  washed,  and  stained  with  4,’,6-diamino-2-phenylindole  (DAPI)  at  the 

dilution of 1000:1, goat anti-rabbit Fab conjugated with Alexa Fluor® 488 , and 

goat  anti-mouse  rabbit  Fab’  conjugated  with  Alexa  Fluor®  647  (Life 

Technologies) at the dilution of 200:1.  For colocalization studies with cholera 

toxin B (CTX), infected cells were costained in addition with CTX conjugated 

with AF555 (Invitrogen) at the dilution of 1000:1.

The cells were mounted onto clean glass slides using ProLong® Gold Antifade 

reagent  (Life Technologies), and the slides were allowed to cure overnight at 

4 oC. Images were acquired using Carl Zeiss LSM 710 MicroImaging System 

(Carl  Zeiss  AG,  Oberkochen,  Germany)  and  processed  with  Adobe® 

Photoshop® CS4, version 11.0.2 (Adobe Systems Inc., San Jose, CA, USA).

2.4.2 Anti-Hcp1 response in clinical samples

Indirect ELISA was used to  detect the anti-Hcp1 response from serum from 

confirmed B. pseudomallei patients. The samples were kindly provided by Dr. 

Direk Limmathurotsakul  from the Department  of  Tropical  Hygiene,  Mahidol 

University,  Thailand.  Control  serum samples  were  taken  with  consent  from 

Singaporean healthy donors between ages 21-45. 

The ELISA coating buffer was 100 mM bicarbonate/carbonate buffer, pH 9.5. 

MaxisorpTM plates (Thermo Fisher Scientific Inc.) were coated overnight at 4 oC 

with 4 µg of Hcp1 per well, diluted in 1X coating buffer. They were washed 4 

times with PBS-T and blocked with 5 % skim milk in PBS at room temperature 
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for 1 hr.  Patients’ and controls’ serum were diluted 1:100 with the blocking 

buffer and added to the blocked MaxisorpTM plates at room temperature for 1 hr. 

The plates were washed 4 times and 100 µL of secondary antibody (goat anti-

human antibody conjugated with HRP, Thermo Fisher Scientific Inc.) was added 

per well at a dilution of 1:5000 in blocking buffer. The wash was repeated and 

50 µL of TMB was added per well. 50 µL of the stop solution H2SO4 was added 

upon achieving the desired colour development and the plates were read at 450 

nm (415 nm as the reference wavelength). 

Human  immunoglobulin  G  (IgG)  and  immunoglobulin  M  (IgM)  (Sigma-

Aldrich)  were  coated in a  10-fold dilution series of the range 10 pg/ml-100 

µg/ml to generate either an IgG or IgM standard curve. Similarly, they were 

coated overnight at  4  oC, washed, blocked and assayed with goat anti-human 

HRP  secondary  antibody.  TMB  was  added  after  a  final  wash  for  color 

development, the reaction was stopped with H2SO4, and the plates were read at 

450 nm (415 nm as the reference wavelength). 

Data points from the standard curves and samples were plotted using GraphPad 

Prism version 5.0a for Mac OS X (Graphpad Software, La Jolla, CA, USA) and 

linear regression was applied to convert the O.D readings to concentrations in 

ng/mL.

2.4.3 Hcp1 levels in clinical samples

A microtitre Nunc® MaxiSorp plate (Thermo Fisher Scientific Inc.) was coated 
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with 1 µg of polyclonal rabbit anti-Hcp1 antibody per well in carbonate buffer,  

pH 9.5, overnight at 4 oC. Wells were washed with 0.05 % Tween 20 in PBS-T 

and  blocked  with  5  % skim milk  in  PBS-T for  1  hr  at  room temperature. 

Patients' and controls' sera were diluted 1:2 with blocking buffer and added to 

blocked plates at room temperature for 1 hr. Wells were washed and incubated 

with 2 µg monoclonal mouse anti-Hcp1 antibody (56-1) per well for 1 hr at 

room temperature.  Wells were washed once more and incubated with a goat 

anti-human secondary antibody conjugated with HRP (Thermo Fisher Scientific 

Inc.) at a dilution of 1:5000 per well in blocking buffer at room temperature for 

another hour. The wash was repeated and TMB (BD Biosciences, San Jose, CA 

USA) served as  the  substrate.  H2SO4  was added upon achieving  the  desired 

colour development and plates were read at 450 nm (415 nm as the reference 

wavelength).  A standard  curve  was  generated  by  adding  Hcp1  in  a  2-fold 

dilution series of the range coating human IgG or IgM in a 10-fold dilution 

series of the range 62.5 pg/mL - 4000 pg/mL. 

2.4.4 Affinity of Hcp1 for primary immune cells and cell lines

10 mL of blood was drawn from a healthy donor with consent. The blood was 

diluted 1:1 in PBS + 0.4 % sodium citrate and overlaid upon 10 mL of Ficoll-

PaqueTM Plus. The overlaid blood was spun at 2400 rpm, at room temperature 

for  30  min,  with  the  deceleration  brakes  set  to  0.  The  resulting  buffy  coat 

containing  peripheral  blood  mononuclear  cells  (PBMCs)  was  harvested,  and 

washed twice, first at 2000 rpm for 5 min, and second at 1500 rpm for 5min, 
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both times with brakes set to 9. 

The  PBMCs  were  incubated  either  with  160  µg  of  Hcp1  or  bovine  serum 

albumin (BSA). They were incubated in R10 for 1 hr or overnight at 37 oC. The 

cells were washed twice in 1X PBS prior to staining. The cells were split into 

aliquots of 0.5 x 106 cells, and first stained with the murine anti-Hcp1 antibody 

56-1 at 4 oC for 1 hr. They were washed once in 1X PBS and stained with the 

goat  anti-mouse  antigen  binding  fragment  (Fab’)  conjugated  with 

Alexa Fluor® 647 for another hour at 4 oC. They were washed and lastly stained 

with  a  combination  of  antibodies  directly  conjugated  with  a  fluorophore  to 

distinguish the major PBMCs populations: B cells, T cells, natural killer (NK) 

cells and monocytes. The antibody cocktail used for staining the cells are as 

listed  below  (Table  4).  The  listed  antibodies  were  mostly  from  BD 

Pharmingen® (BD Biosciences, San Jose, CA USA), with the exception of the 

eFluor® 450 anti CD3 antibody, which was from eBioscience Inc. (San Diego, 

CA, USA).

The cells  were incubated with the cocktail  at  4  oC for 1 hr, washed once in 

1X PBS  and  fixed  with  1  %  PFA.  Cells  stained  only  with  the  secondary 

antibodies were the negative control.  The fixed cells were analyzed with BD 

FACSDivaTM Software on a BD LSRFortessa cell  analyser (BD Biosciences, 

San Jose, CA, USA).
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Table 4: Antibody cocktail per condition

Cell Type CD Markers Fluorophore Volume (µL)

B cells CD19 PEa 4

CD20 FITCb 4

Monocytes CD14 PE 4

NK cells CD16 PE 4

CD56 APCc 4

T cells CD3 eFluor®450 2

CD4 PE 4

CD8 FITC 4
aphycoerythrin
bfluorescein isothiocynate
callophycocyanin

For Hcp1 affinity assays done with cell lines (RAW 264.7 and U937), 10 µg of 

Hcp1 was incubated with 0.5 x 106  cells per condition overnight at 37 oC. The 

samples  were  then  stained  with  anti-Hcp1  antibody,  fixed  in  1%  PFA and 

analysed as aforementioned. For the competition assay with mutant Hcp1s, 0.5 x 

106 U937 were incubated with or without 100 µg of Hcp1Q46AE47A overnight at 37 

oC with rotation.  Wild type Hcp1 was directly conjugated with AF488 using 

AF488  Protein  Labelling  Kit  (Invitrogen),  according  to  manufacturer's 

instructions.  The cells  were washed,  incubated  with 10 µg of  Hcp1 directly 

conjugated with AF488 for 1 hr at 37 oC with rotation, then washed once more 

and fixed with 1 % PFA. 

2.4.5 Binding of anti- human CD98 antibody to RAW 264.7 cells

Anti-human CD98 antibody (clone MEM108, Biolegend) or an isotype control 

antibody  was  incubated  with0.5  x  106 trypsinized  RAW264.7  murine 

macrophages 4 oC for 1 hr. They were washed once in 1X PBS and stained with 
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the  goat  anti-mouse  antigen  binding  fragment  (Fab’)  conjugated  with 

Alexa Fluor® 647 for another hour at 4  oC. They were washed once more in 

1X PBS , fixed with 1 % PFA and analyzed with BD FACSDivaTM Software on 

a BD LSRFortessa cell analyser (BD Biosciences, San Jose, CA, USA).

2.4.6 Generation of an in-frame Δhcp mutant

An in-frame  Δhcp  mutant  (Δhcp1inf) was generated  by removing the region 

between the 60th and the 481th nucleotide (from the 61st to the 480th nucleotides 

inclusive). The mutant was generated by Yahua Chen and the thesis author. Two 

fragments,  one  upstream and  another  downstream,  of  the  deletion  site  were 

generated. The up fragment consisted of the 1st  to 60th bases of  hcp1 and 488 

bases  upstream  of  the  start  codon  and  the  primers  used  were 

Hcp1UpF/Hcp1Up3. An EcoRI restriction site was introduced at the 5' end of 

the forward primer. The down fragment consisted of the 481th to 510th bases of 

hcp1 and 335 bases downstream of the stop codon and the primers used were 

Hcp1Dn3/Hcp1DnR. A 15 bp fragment that is complementary to Hcp1Up3 was 
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introduced at the 5' end of the forward primer Hcp1Dn3. A PstI restriction site 

was introduced at the 5' end of the reverse primer. The template DNA was the 

genomic DNA from  B. pseudomallei,  strain  KHW. The PCR reaction mixture 

contained 2X GoTaq® Green Master Mix (Promega, Madison, WI, USA), 0.2 

mM of forward and reverse primers, 100 ng of genomic DNA and 5% dimethyl 

sulfoxide (DMSO), to a volume of 50 µL. The cycling parameters were 95 oC 

for 4 min, followed by 30 cycles at 95 oC for 1 min, 56 oC for 1 min, and 72 oC 

for  2 min and a  final  extension at  72  oC for  10min.  The PCR product  was 

purified with Wizard® SV Gel and PCR Clean-up System (Promega).

The plasmid pK18 (Table 3) was cut with EcoRI and PstI, and the cut plasmid 

was gel purified. The upstream and downstream fragments were cloned into the 

cut plasmid by adding 100 ng of the cut plasmid to 50 ng of each fragments, 

plus 2 µL of 5X In-Fusion® Mix (Clontech Laboratories, Inc, CA, USA). The 

reaction  was  incubated  at  50  oC  for  15  min,  followed  by  2  min  on  ice, 

transformed into chemically competent Escherichia coli strain S17 and selected 

on 25 µg/mL kanamycin LB ( LB kanamycin) agar.

Positive  clones  carrying  pK18-Δhcp1inf were  cultured  overnight  in 

LB kanamycin media. They were conjugated with wild type B. pseudomallei by 

incubating  50  µL  of  S17- pK18-Δhcp1inf with  50  µL  of  overnight 

B. pseudomallei culture for 6 hr. The exconjugates were restreaked on 50 µg/mL 

kanamycin, 50 µg/mL gentamycin LB agar and cultured for more than 18 hr. 

The kanamycin-resistant clones were passaged thrice in salt-free LB media with 
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10%  sucrose  (SSF),  and  streaked  on  SSF  agar.  Colonies  were  picked  and 

screened for kanamycin sensitivity. Kanamycin colonies were further screened 

by colony PCR, using the primer pair Hcp1 and Hcp1DnR. A desired DNA band 

of ~500 bp was observed from positive colonies (Δhcp1inf).

2.4.7 Complementation of Δhcp1inf mutants

The  complemented  mutants  were  generated  by  Yahua  Chen  and  the  thesis 

author. The hcp1 gene or the hcp1-tssC1 gene, both with the hcp promoter, was 

cloned  in  the  pUCP28T  conjugation  plasmid  (Figure  8).  The  gene/s  were 

inserted in the reverse orientation relative to the Plac promoter. The hcp1 gene 

with its promoter was amplified with the primer pair Hcp1FH/Hcp1RB. The 

hcp1-tssC1  gene  with  the  hcp promoter  was amplified  with  the  primer  pair 

Hcp1FH/TssCB. A HindIII and a BamHI restriction sites were introduced into 

the 5' of the forward and reverse primers respectively.  The template DNA was 

the  genomic  DNA from  B.  pseudomallei,  strain  KHW.  The  PCR  reaction 

mixture  contained 2X GoTaq® Green  Master  Mix (Promega,  Madison,  WI, 

USA), 0.2 mM of forward and reverse primers, 100 ng of genomic DNA and 

5% dimethyl sulfoxide (DMSO), to a volume of 50 µL. The cycling parameters 
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were 95 oC for 4 min, followed by 30 cycles at 95 oC for 1 min, 56 oC for 1 min, 

and 72 oC for 2 min and a final extension at 72 oC for 10min. The PCR product 

was purified with Wizard® SV Gel and PCR Clean-up System (Promega).

The plasmid pUCP28T (Table 3) was cut with HindIII and BamHI, and the cut 

plasmid was gel purified. The hcp1 or hcp1-tssC1 gene fragments were cloned 

into the cut plasmid by adding 100 ng of the cut plasmid to 100 ng of each 

fragments, plus 2 µL of 5X In-Fusion® Mix (Clontech Laboratories, Inc, CA, 

USA). The reaction was incubated at 50 oC for 15 min, followed by 2 min on 

ice, transformed into StellarTM  Competent Cells (Clontech), and selected on 30 

µg/mL  trimethoprim  LB  (LB  trimethoprim)  agar.  Plasmid  DNA  from 

trimethoprim-resistant  clones  were  purified  and  transformed  into  chemically 

competent Escherichia coli strain SM10 and selected on 30 µg/mL trimethoprim 

LB agar. The empty vector pUCP28T was also transformed into SM10.

Positive SM10 clones carrying  pUCP-hcp1  or pUCP-hcp1tssC1 were cultured 

overnight in LB trimethoprim media. They were conjugated with  Δhcp1inf by 

incubating  50  µL  of  either  SM10-pUCP28T,  SM10-pUCP-hcp1  or  SM10-

pUCP-hcp1-tssC1 with  50  µL of  overnight  Δhcp1inf  culture  for  6  hr.  The 

exconjugates were restreaked on 60 µg/mL trimethoprim, 50 µg/mL gentamycin 

LB agar and cultured for more than 18 hr. The trimethoprim-resistant clones 

were restreaked on LB trimethoprim/gentamycin agar,  and further restreaked 

once a week over a period of 1 month to maintain the conjugated plasmid within 

the bacteria.
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2.4.8 hcp1 expression in infected cells by real-time PCR

0.5 x 106 RAW 264.7 cells were seeded and grown overnight in 12 well plates in 

R10 media. Cells were given fresh media prior to infection and were infected 

either with Δhcp1inf (Δhcp1inf conjugated with empty vector), Δhcp1inf +hcp1, 

Δhcp1inf +hcp1-tssC1 or wild type  B. pseudomallei  at an MOI of 10:1. The 

cells  were infected for 9 hrs,  with 250 µg/mL of  kanamycin added an hour 

post-infection. Bacterial and host cell RNA were isolated from infected cells 

with  1  mL of  PureZOL (Bio-Rad  Laboratories).  200 µL of  chloroform was 

added per sample, and centrifuged for 15 mins at 12000 rpm at 4  oC. 350 µL of 

the top fraction was collected and RNA was purified using illustra RNAspin 

Mini kit (GE Healthcare Life Sciences). 11 µL of the eluted RNA was used as 

the template for first strand cDNA synthesis using RevertAid First Strand cDNA 

Synthesis  Kit  (Thermo  Scientific).  1  µL of  cDNA was  added  to  10  µL of 

iQSYBR® Green Supermix for iCycler (Bio-Rad Laboratories) in a Bio-Rad 

iQ5 machine, 8 µL of water and 1 µL of 5mM primers. Real-time PCR primers 

are listed in Table 2. Relative RNA level of a particular gene in mutant strains 

was normalized to that of wild type using the 2-ΔΔCt method  124 with  rpoB  as 

reference gene. Results were reported as means of duplicate qPCR reactions.

2.4.9 51Cr release assay

Target U937 cells were pulsed with chromium-51 (51Cr) (PerkinElmer) for 1 hr 

at 37 oC. 1 x 106 of target cells were incubated either with 30 µg, 0.1 µg of Hcp1 

or no protein, for either 4 hr, 6 hr or overnight at 37 oC. The supernatants were 
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centrifuged, harvested and 30 µL of supernatant per condition were added into a 

LumaPlate (PerkinElmer). The plates were air dried, sealed and counted with 

TopCount® (PerkinElmer).

2.4.10 NF-κB-SEAP reporter assay

0.5 x 106  THP1-BlueTM (InvivoGen, San Diego, CA, USA) cells, which were 

stably  transfected  with  nuclear  factor-kappa-b  (NF-κB)-secreted  alkaline 

phosphatase  (SEAP)  reporter  plasmid,  were  stimulated  with  either  1  µg  of 

lipoarabinomannan  (LAM)  from  Mycobacterium  tuberculosis,  4  µg  of 

endotoxin-free  Hcp1 or  BSA as  the  negative  control  protein  for  24  hr.  The 

supernatants were harvested, and for each condition, 20 µL of supernatant was 

added  to  20  µL of  QUANTI-Blue  substrate  (InvivoGen).  The  reaction  was 

incubated for 24 hr at 37 oC, and absorbance was read at 650 nm.

2.4.11 IL-1β assay

2 x 106 J774.1 murine macrophages were stimulated with either 10 µg of Hcp1, 

BSA as the negative control protein or ATP with LPS as the positive control or 

without LPS. They were stimulated either for 4 hr or overnight at 37  oC. The 

supernatants  were  harvested,  the  cell  debris  pelleted  and  removed,  and 

concentrated with a 5,000 MWCO concentrator to 400 µL. Interleukin-1 beta 

(IL-1β) levels was measured in triplicates with the Human IL-1β ELISA MAX 

kit according to manufacturer's instructions (BioLegend, San Diego, CA, USA).
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2.4.12 MNGC assays

RAW 264.7 cells (2.5 x 105 cells per condition) were incubated with 10 µg of 

recombinant  protein  at  37  oC  overnight  with  rotation.  Cells  were  either 

unwashed  or  washed post  incubation  and plated  into  24-well  plates  in  R10 

media without antibiotics. They were infected with stationary phase wild type 

B. pseudomallei, the negative control strain Δhcp1 for MNGC formation, KHW 

hcp1L49AT50A or complemented  Δhcp1inf  mutant strains (Table  3)  at  a MOI of 

10:1.  Kanamycin  (250  µg/mL per  well)  was  added  1hr  post  infection  and 

infected cells were stained with Giemsa at specific time points (detailed in the 

results and their respective captions). For experiments on the effects of the anti-

CD98 antibody on MNGC formation, the procedure was as previously described 

with modifications.69 The isotype control or anti-CD98 antibody was added 1 hr 

post-infection  as  well.  The  degree  of  MNGC formation  (fusion  index)  was 

estimated as previously described125,126 but  with modification.  Each well  was 

divided into four distinct quadrants. Cells located in the middle of the well were 

omitted because they were too dense to enumerate. Images from each quadrant 

was taken using 10X magnification. The total number of nuclei within MNGCs 

(> 3 nuclei/cell) and the total number of cells from each quadrant was counted, 

and summated from all four quadrant. The ratio of the total number of nuclei 

within MNGCs to the total number of cells multiplied by 100 %. represents the 

fusion index for each condition.

For  MNGCs  done  with  U937  cells,  2.5  x  105 of  cells  per  condition  were 
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activated  with  20  ng/mL of  PMA for  48  hrs  to  stimulate  differentiation  to 

macrophage-like cells. They were infected with stationary phase wild type  B. 

pseudomallei at a MOI of 1:2. Kanamycin (250 µg/mL per well) was added 2 hr 

post  infection  and  infected  cells  were  stained  with  Giemsa  at  specific  time 

points. 

2.4.13 Radioimmunoprecipitating mammalian ligands of Hcp1

14 x 106 U937 cells were harvested and washed once in 1X PBS. They were 

washed once in R3, which contained 1X methionine and cysteine-free RPMI 

(Sigma-Aldrich)  with  3  %  dialysed  FBS  (Life  Technologies  Inc.),  1  % 

L-glutamine and 1 % penicillin/streptomycin. They were incubated with 1 mL 

of R3 at 37 oC for 2 hr, and 100 µL of EasyTagTM Express35S Protein Labelling 

Mix (PerkinElmer Inc.,  Waltham, MA, USA) and 40 µg of Hcp1 for another 

hour. 

The cells were washed once in 1X PBS, and lysed with 1 mL of 1 % digitonin 

(Merck KGaA) in 1X Tris-buffered saline (TBS) for 15min at 4oC. The lysate 

was transferred into a screw-cap microcentrifuge tube and was centrifuged at 

16,000 rpm for 1 min to pellet the insoluble cell debris. 50 µL of rec-Protein A-

Sepharose® 4B (SepA) conjugate (Life Technologies Inc.) was incubated with 

the supernatant for 30 min at 4  oC. The pre-cleared supernatant was split into 

two aliquots and 10 µg of the murine anti-Hcp1 antibody 56-1 or the negative 

control antibody (anti-A2-HBV antibody) was incubated overnight at 4  oC. 50 

µL of SepA was subsequently incubated 4 oC for 2 hr. 
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The aliquots were  pelleted and the resulting SepA pellets  were  washed four 

times with 0.1 % digitonin in 1X TBS. The pellets were boiled for 15 min with 

sample  loading  buffer  (0.0625  M  Tris,  pH  6.8,  10  %  glycerol,  2  %  SDS, 

bromophenol blue and 5 % β-mercaptoethanol). The pellets were centrifuged 

and the resulting supernatant was separated using a 12.5 % polyacrylamide gel 

via  sodium dodecyl  sulfate-polyacrylamide  gel  electrophoresis  (SDS-PAGE). 

The  gels  were  dried  using  Bio-Rad  Model  583  Gel  Dryer  (Bio-Rad 

Laboratories) and developed at -80  oC for 10 days using a CL-XPosure film 

(Thermo Fisher Scientific).

2.4.14 Identification of candidate ligands by mass spectrometry

The identification of candidate Hcp1 ligands was done in collaboration with Dr 

Manfred  Raida  from  Singapore  Lipidomics  Incubator  (SLING),  NUS.  The 

affinity-immunoprecipitation was done by the thesis author, and the subsequent 

identification of candidate ligands by mass spectrometry was done by Dr Raida.

2.4.14.1 Immunoprecipitation  

Immunoprecipitation was undertaken as previously described with modification. 

20 x 106  U937 cells were used but they were not radiolabelled. The resulting 

SepA pellets  containing control  or  Hcp1-specific  antibody were  washed  and 

bound proteins were solubilized using sample buffer. Solubilized proteins were 

reduced  with  tris(2-carboxyethyl)phosphine  (TCEP) and  alkylated  with 

iodoacetamide.  The  proteins  were  separated  on  4  –  12  %  linear  gradient 
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polyacrylamide gels (Life Technologies) and visualized with Coomassie blue 

staining.

2.4.14.2 Liquid chromatography/tandem mass spectrometry  

The  entire  gel  lane  per  condition  (proteins  immunoprecipitated  with  either 

control or Hcp1-specific antibody) was cut into 48 equal-sized bands and the 

bands were distributed  in  pairs  into each well  of  a  perforated 96 well  plate 

(Proxeon, Denmark). The gel bands were destained with two incubations with 

50 % ethanol in 5 mM triethylammonium bicarbonate (TEAB) buffer pH 8.5 for 

60 min at 55 ˚C each, dehydrated with 100 % ethanol for 15 min, rehydrated in 

TEAB buffer for 15 min and further dehydrated twice for 15 min with 100 % 

ethanol. Solvents were removed by centrifugation into a non-perforated 96 well 

plate for 1 min at 1,000 rpm. The dried gel pieces were treated with 20 µl 15 

ng /µL trypsin (sequential grade, Life Technologies) in TEAB buffer for 15 min 

at 0 ˚C. Residual buffer was removed by centrifugation and another 20 µL of 

TEAB buffer was added. Tryptic digestion was undertaken for 16 hr at 37 ˚C , 

and stopped by adding 10 µL of 5 % formic acid in water. The solvent was 

collected by centrifugation into a new 96 well V-shape microtitre plate, which 

was subsequently used to collect the extracted peptides generated by the tryptic 

digestion. Peptides were extracted from the gel pieces by two incubations with 

1 % formic acid in water at room temperature for 30 min, the first incubation 

with 50 % acetonitrile in 0.1 % formic acid and followed by another incubation 

for 15 min with 100 % acetonitrile. The microtitre plate containing the extracted 
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peptides  was frozen for  2 hr  at  -80 ˚C and freeze dried in  a  rotary vacuum 

evaporator. The peptides were dissolved in 10 µL 0.2 % formic acid in water, 

the  plate  sealed  with  a  plastic  foil  and the  peptides  were analysed  by mass 

spectrometry. 

Mass spectrometry was undertaken on an QTOF (AGILENT 6438) equipped 

with a nano-flow HPLC, a thermostated autosampler, a capillary loading pump 

(AGILENT  1260)  and  the  chip-system  (AGILENT)  for  separation  and 

electrospray ionisation. Peptides were loaded onto a trap–column and separated 

in a linear gradient from 8 % acetonitrile with 0.2 % formic acid in water to 35 

% acetonitrile with 0.2 % formic acid on a 150 mm x 75 µm C-18 (Reprosil pur, 

3 µm, Dr Maisch, Germany, packed by AGILENT) column in the chip format. 

The  peptides  were  measured  in  positive  ion  mode  and  4  precursors  were 

recorded per second. The 4 most intense double or triple charged ions above an 

intensity  of  1,000  counts  were  taken  for  collision-induced  dissociation  with 

nitrogen as collision gas. The fragmented precursor ions were taken for a second 

fragmentation,  then  excluded  for  15  s.  The  system  was  controlled  by 

MassHunter acquisition software version 4.0 (AGILENT).

The raw data files were transformed into mzData.xml format using MassHunter 

qualitative  software  (AGILENT).  Data  base  search  was  undertaken  using 

PEAKS software, which compares the searches using MASCOT127, X!Tandem 

and the Peaks/Spider routines  (Literature)  against  the  UniProt  database.  The 

results were combined within PEAKS and used to select candidate proteins for 
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further evaluation.

2.4.15 Biochemical validation of candidate ligands

The method used was a  combination of  aforementioned protocols.  14 x 106 

U937 cells were harvested and washed once in 1X PBS. They were incubated 

for 2 hr with Hcp1 or BSA as the negative control protein with rotation at 37 oC. 

They  were  each  lysed  with  10  mL of  the  B-Per®-based  buffer,  the  debris 

pelleted and incubated with an equilibrated 3 mL HisPurTM Cobalt Resin column 

for 90 min at room temperature with rotation. Elution was done with 3 resin-bed 

volumes  with  elution  buffer.  The  eluate  was  concentrated  with  Vivaspin® 

protein concentrators with MWCO 5000 Da (Sartorius AG) to 200 µL. 40 µg of 

protein  was  resolved  on  a  12 %  SDS-PAGE  gel,  transferred  onto  a  PVDF 

membrane, blocked, and stained with a rabbit primary antibody against CD98 

(Biolegend) or sodium-potasssium (Na,K)-ATPase (Cell Signalling) followed by 

a goat-anti-rabbit secondary antibody conjugated with HRP. Dilution factor for 

both primary and secondary antibody was 1:5000. 
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2.4.16 In situ site-directed mutagenesis of Hcp1 

The first step was to introduce a tetracycline resistance cassette (tet) at the hcp1 

site  of  mutagenesis  (Figure  9).  Two  fragments,  one  upstream  and  another 

downstream, of the mutagenesis site were generated. The up fragment consisted 

of the 1st to 20th bases of hcp1 and 488 bases upstream of the start codon and the 

primers used were Hcp1UpF/Hcp1UpR. A EcoRI and a BamHI restriction sites 

were introduced at the 5' end of the forward and reverse primer respectively. 

The down fragment consisted of the 100th to 510th bases of hcp1 and 335 bases 

downstream of the stop codon and the primers used were Hcp1DnF/Hcp1DnR. 

A BamHI and a PstI restriction sites were introduced at the 5' end of the forward 

and reverse primers respectively.  The template  DNA was the genomic DNA 

from  B. pseudomallei,  strain  KHW. The PCR reaction mixture contained 2X 

GoTaq® Green Master Mix (Promega, Madison, WI, USA), 0.2 mM of forward 

and  reverse  primers,  100  ng  of  genomic  DNA and  5%  dimethyl  sulfoxide 

(DMSO), to a volume of 50 µL. The cycling parameters were 95 oC for 4 min, 
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followed by 30 cycles at 95 oC for 1 min, 56 oC for 1 min, and 72 oC for 2 min 

and a final extension at 72  oC for 10min. The PCR product was purified with 

Wizard® SV Gel and PCR Clean-up System (Promega).

The plasmid pK18 (Table 3) was cut with EcoRI and PstI, and the cut plasmid 

was gel purified. The  hcp1  up and down fragments were cloned into the cut 

plasmid by adding 100 ng of the cut plasmid to 50 ng of hcp1 up fragment (up) 

and  50 ng of  hcp1 down fragment  (dn),  plus  2  µL of  5X In-Fusion® Mix 

(Clontech Laboratories, Inc, CA, USA). The reaction was incubated at 50 oC for 

15 min, followed by 2 min on ice, transformed into StellarTM  Competent Cells 

(Clontech),  and  selected  on  25  µg/mL kanamycin  LB plate.  Positive  clones 

carrying  the  pK18-up-dn-hcp1 plasmid  were  harvested  and  purified,  and 

digested with 10 units of BamHI and incubated with 1 µL TSAP overnight at 

37 oC. 2 mg of tet cassette containing-PFRTT1 plasmid was also digested with 

BamHI overnight at 37  oC. The digest was resolved on 1 % agarose and the 

desired tet cassette band (2 kb) was excised and gel purified. 100 ng of the cut 

pK18 vector was ligated with 96.7 ng of tet cassette fragment (3:1 molar ratio) 

by incubating the mixture overnight  with 1 unit  of T4 ligase in 1X ligation 

buffer  (to  a  reaction  volume  of  10  µL)  at  4  oC.  The  ligation  mixture  was 

transformed  in  the  chemically  competent  Escherichia  coli  strain  S17  and 

selected on LB kanamycin agar.

Positive  clones carrying pK18-up-tet-dn-hcp1  were cultured overnight  in  LB 

kanamycin media.  They were conjugated with wild type  B. pseudomallei by 
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incubating  50  µL  of  S17-pK18-up-tet-dn-hcp1 with  50  µL  of  overnight 

B. pseudomallei culture for 6 hr. The exconjugates were restreaked on 50 µg/mL 

tetracycline, 50 µg/mL gentamycin LB agar and cultured for more than 18 hr. 

The  tetracycline-resistant  clones  were  passaged  thrice  in  salt-free  LB media 

with 10% sucrose (SSF), and streaked on SSF agar. Colonies were picked and 

screened  for  tetracycline/gentamycin  sensitivity.  Tetracycline/gentamycin-

sensitive colonies were further screened by colony PCR, using the primer pair 

Hcp1F and Hcp1R. A desired DNA band of ~2.3 kb was observed from positive 

colonies (KHW up-tet-dn-hcp1).

The next step was to generate pK18 plasmids carrying  hcp1  with the desired 

mutations and conjugate them into KHW up-tet-dn-hcp1. The plasmid carrying 

double  alanine substitutions  at  amino acids  positions 46 and 47 was termed 

pK18-hcp1Q46AE47A and  the  plasmid  carrying  double  alanine  substitutions  at 

amino acids positions 49 and 50 was termed pK18-hcp1L49AT50A. The cloning and 

conjugation protocols were similar  to  the procedure described for generating 

KHW up-tet-dn-hcp1.

To generate pK18-hcp1Q46AE47A,  the genomic DNA from  B. pseudomallei  was 

amplified  with  two  primer  sets:  Hcp1F/Hcp1Q46AE47AR  and 

Hcp1Q46AE47AF/Hcp1R  (Table  2).  The  PCR  products  were  purified  and 

cloned into pK18 using the In-Fusion® kit. The In-Fusion® reaction consisted 

of 50 ng of both fragments and 100 ng of EcoRI/PstI-restricted pK18 plasmid. 

The reaction was transformed into S17 and positive clones were selected with 
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kanamycin. pK18-hcp1L49AT50A was generated using the same approach, but the 

primer sets were Hcp1F/Hcp1L49AT50AR and Hcp1L49AT50AF/Hcp1R.

Positive S17 clones carrying the double mutations were cultured overnight in 

LB  kanamycin  media  and  conjugated  to  KHW  up-tet-dn-hcp1.  The 

exconjugates  were  restreaked  onto  250  µg/mL  kanamycin,  50  µg/mL 

gentamycin LB agar, and passaged thrice in SSF media. They were streaked 

onto SSF agar, and selected for tetracycline/gentamycin sensitivity. Antibiotic-

sensitive  clones  were  verified  for  the  double  substitutions  hcp1Q46AE47A or 

hcp1L49AT50A by sequencing.
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Chapter 3.  

Generation and Characterization of 
Biochemical Tools and Reagents for 
B. pseudomallei Hcp1

3.1 Introduction

The first stage in dissecting the biology of Hcp1 is to generate antibody-based 

tools that can be used to enable a study of its biochemistry and cell biology in  

vitro. There are no antibodies for Hcp1 that are commercially available. Hence 

generating an in-house  monoclonal  antibodies  against  B. pseudomallei  Hcp1 

represents one of the vital tools required for a thorough biochemical and cellular 

analysis in vitro. 

To  make  a  new  anti-Hcp1  monoclonal  antibody  we  employed  the  classical 

methodology  developed  by  Köhler  and  Milstein,116 which  was  to  fuse 

splenocytes derived from mice hyper-immunized with recombinant Hcp1 with 

myeloma  fusion  partners  to  generate  a  large  panel  of  immortalized  B-cell 

hybridomas that were subsequently screened for anti-Hcp1 antibody production. 

The  antibodies  from the  culture  supernatants  of  candidate  hybridomas  were 

screened  using  indirect  enzyme-linked  immuno  sorbent  assay  (ELISA), 

fluorescence-activated cell sorting (FACS)-based assay and protein immunoblot, 
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which ensured that the selected monoclonal antibody would have the required 

functional versatility for a broad range of biochemical assays.

3.2 Results

3.2.1 Recombinant expression and purification of Hcp1 antigen 

The genetic and protein sequences are presented in Figure  10. The translated 

protein sequence of hcp1 predicted it as a 17-18 kDa protein. However, studies 

on Hcp from P. aeruginosa  show that  the monomers are able to self-organize 

spontaneously as hexamers and higher-ordered structures under physiological 

conditions.76,100 It  does  not  contain  a  canonical  N-terminal  signal  peptide, 

suggesting that it is secreted via a novel pathway independent of both the Sec 

system and twin-arginine translocation (Tat) pathway.128
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Figure  10:  Genetic  and  protein  sequences  of  Hcp1  from  B.  pseudomallei  strain  
K96243. The numerals represent the nucleotide position on the DNA coding strand and  
the starting amino acid residue N-formylmethionine (fM)) is highlighted in black. 
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We cloned the  hcp1  gene into a pET-28a(+) vector and expressed it  as a N-

terminal polyhistidine-tag protein in BL21(DE3) Escherichia coli. The induced 

recombinant protein Hcp1 was purified and evaluated on both native (Native-

PAGE) and sodium dodecyl sulfate polyacrylamide gel  (SDS-PAGE) (Figure 

11). The native hexamers ran as expected higher than the 100 kDa marker on the 

Native-PAGE, and denatured monomers ran higher than the 15 kDa marker on 

SDS-PAGE. 

3.2.2 Generation of murine monoclonal antibody against Hcp1

3.2.2.1 ELISA-based screening for polyclonal antibodies specific for Hcp1  

We immunized 4 to 8-weeks old Balb/c female mice with Hcp1 over the course 

of 45 days and took cheek bleeds on the 21st day to measure the anti-Hcp1 IgG 

63

Figure  11:  Native  and  denatured  Hcp1.  10  µg  of  protein  was  ran  per  lane.  The  
numerals indicate the size of the prestained marker proteins L, protein ladder, Hcp1,  
recombinant Hcp1 protein. 
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response in the immunized mice. The mice were sacrificed on the 45th day and 

their  splenocytes  fused  with  the  myeloma  cell  line  NS1  to  generate 

immortalized hybridomas that would produce anti-Hcp1 IgGs.

The resulting hybridomas were screened by ELISA for anti-Hcp1 polyclonal 

antibodies. As a check for antigen specificity, they were assayed with both Hcp1 

and recombinant TssM, the latter being another B. pseudomallei-derived antigen 

serving as the control antigen (Figure 12).

There were 960 successful fusions that had to be rapidly screened for anti-Hcp1 

positivity. Only those that showed unambiguous anti-Hcp1 responses (O.D > 1) 

were considered anti-Hcp1 positive. In addition, the chosen hybridoma would 

be subjected to several subsequent rounds of ELISA screen. As the hybridoma 

were cultured in 96-well plates and required rapid transfer into larger well for 

subculture and maintenance, a single reading was taken so that the anti-Hcp1 

64

Figure 12: Representative murine hybridoma producing polyclonal antibodies against  
Hcp1. The figure presents a representative subset of hybridoma candidates producing  
polyclonal antibodies, which were given numeric designation (i.e 39, 52 etc.) 4µg of  
antigen were coated per well. Optical density (O.D) was taken at 450nm.
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hybridomas  could  be  quickly  identified.  Of  the  960  candidate  hybridoma 

screened by ELISA, 18% were positive for anti-Hcp1 IgG (Figure 13). 

3.2.2.2 FACS-based screening for polyclonal antibody  

Previous studies have intimated that the Hcp1 protein is  able to bind to  the 

surface of mammalian cells.106 Hence, we applied a second fluorescent-activated 

cell  sorting  (FACS)-based screening approach to  the  candidates  that  showed 

anti-Hcp1 positivity by ELISA. This was to select for hybridomas that produced 

IgG with the ability to detect surface-bound Hcp1 on a myelomonocytic cell line 

U937 (Figure 14). 
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Figure  13: Overall  percentage of  hybridomas positive  for anti-Hcp1 IgG response.  
Hybridomas  giving  optical  density  (O.D)  readings  of  0.5  or  above  are  considered  
positive  hybridoma  cell  lines  producing  anti-Hcp1  antibodies.  A  total  of  960  
hybridomas were screened.
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Several  candidate  hybridoma  clones  showed  anti-Hcp1  positivity  in  the 

FACS-based screen (Figure 14). Of the representative subset presented in Figure 

14,  only  clone  56  showed  a  clear  single  log-shift  relative  to  the  secondary 

control. We selected clone 56 for several rounds of limiting dilution and screens 

(ELISA-  and  FACS-based)  to  generate  a  hybridoma cell  line  that  produced 

monoclonal antibodies against Hcp1.
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Figure  14:  Representative  murine  hybridoma  clones  producing  antibodies  against  
surface-bound Hcp1 to U937. The figure presents data from clone 56, 124 and 173  
(3 out of 192 clones), which showed anti-Hcp1 positivity by ELISA. 3 ng/mL of protein  
per 0.5 million cells were used to screen the selected clones. A goat anti-mouse Alexa  
Fluor® 488 (AF488) antibody was used to detect IgG that were bound to the coated  
Hcp1. Filled histograms represent secondary antibody controls and unfilled histograms  
represent the addition of anti-Hcp1 polyclonal supernatant (S/N).



Chapter 3. Generation and Characterization of Biochemical Tools and Reagents for B. pseudomallei 
Hcp1

3.2.2.3 Sequence of the monoclonal anti-Hcp1 antibody 56-1  

Of the several anti-Hcp1 monoclonals generated, 56-1 was chosen to be sent for 

genetic sequencing. The resulting sequences for the variable heavy (VH) and 

light  chain  (VL) were  scanned  against  the  Kabat  sequence  database 

(Figure 15).129 The closest germline sequence match to VH was VH7183.a47.76 

and to VL was 21-12 (98.3% identity for both VH and VL ) .

3.2.2.4 Specificity of 56-1  

The  Hcp1  protein  is  not  constitutively  expressed  in  the  wild  type  B. 

pseudomallei strain KHW. It is under the control of a novel regulatory cascade 

that directs the expression of the type 3 (T3SS) and type 6 secretion systems, of 
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Figure  15: Sequences of variable regions of monoclonal anti-Hcp1 murine antibody  
56-1. The complementarity determining regions (CDRs) for the variable heavy (VH)  
and light (VL) chains are demarcated.
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which  the  two-component  transcriptional  regulatory  system  VirAG  is  a 

component.71,111 The overexpression of VirAG induces the expression of Hcp1 in 

Luria  Broth  (LB)  medium.70,84 We  verified  the  specificity  of  the  anti-Hcp1 

antibody 56-1 using a protein immunoblot approach. The antibody was assayed 

using the lysate from the wild type  B. pseudomallei  strain, a  Δhcp1  deletion 

strain (Δhcp1::tmp),  and a  virAG deletion strain with constitutive tetracycline 

promoter  cassette  insertion  (ΔvirAG::tet).  Wild  type  B.  pseudomallei and 

Δhcp1::tmp  were the negative controls for Hcp1 expression. The  ΔvirAG::tet  

expresses  t6ss1 because  it  is  driven  by  the  promoter  of  the  tetracycline 

resistance cassette, hence it will also express the Hcp1 protein.

The anti-Hcp1 antibody 56-1 was only able to detect native hexameric Hcp1, 

but not the denatured monomers (Figure 16). The staining of endogenous Hcp1 

by 56-1 was highly specific because a single band was detected in the lysate 
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Figure 16: Specificity of 56-1 for native Hcp1. Lysates from wild type B. pseudomallei  
(KHW), Δhcp1::tmp and ΔvirAG::tet were resolved and immunoblotted in their native  
(Native-IB) or denatured forms (SDS-IB). The expected size of native hexameric Hcp1  
is approximately 108 kDa, and the denatured monomer 17 kDa. The loading control  
was BopE, a 25 kDa protein belonging to the T3SS.
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from ΔvirAG::tet, but not from wild type B. pseudomallei and Δhcp1::tmp.

3.3 Discussion

The monoclonal anti-Hcp1 antibody 56-1 was generated with the objective of 

making it as versatile a tool as possible that could be applied to various assays. 

Hence the polyclonal hybridomas were subjected to both ELISA- and FACS-

based screens prior to performing the limiting dilution. However, 56-1 is only 

able  to  recognize  hexameric  Hcp1  and  not  its  monomer.  Therefore,  the 

immunodominant epitopes in native Hcp1 might be conformational epitopes. To 

generate  antibodies that recognize monomeric  Hcp1, the antigen used in  the 

selection  process  might  require  denaturation  or  heat-treatment  to  disrupt  its 

spontaneous oligomerization in vitro.

In addition, 56-1 is unable to recognize fixed endogenous Hcp1 that is produced 

during an infection of U937 cells with wild type  B. pseudomallei (Figure  17). 

The infected cells were fixed in 1% paraformaldehyde (PFA) prior to staining 

with the antibody, hence the conformational epitope of 56-1 might have been 

disrupted by the fixation process. Hence the mother polyclonal stock of 56-1, 

named 56, was subjected to a second round of limiting dilution. The resulting 

clones  were  screening  using  fixed  activated-U937  cells  infected  with  B. 

pseudomallei,  and fixed cells  infected with  Δhcp1 were the negative control. 

The  resulting  sister  clone  56-2-2  was  able  to  specifically  recognize  fixed 

endogenous Hcp1 (Figure  17) and will  be further described in Section  5.2.1. 
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Hence 56-1 was used for all anti-Hcp1 antibody-based assays, except for the in  

vitro imaging of fixed endogenous Hcp1.
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Figure  17:  Screening  for  Hcp  antibodies  specific  for  fixed  endogenous  Hcp1.  
PMA-activated U937 infected with either log phase wild type bacteria B. pseudomallei  
(KHW) (Figure 17A and B) or Δhcp1 mutant (negative control) (Figure 17C and D).  
The cells were stained with anti-Hcp1 antibodies 56-2-2 (Figure 17A and C) or 56-1 
(Figure 17B and D), followed by a secondary anti-mouse IgG antibody conjugated to  
Alexa Fluor® 647 (red). Bacteria were stained for LPS (green). Mammalian cell nuclei  
were stained using DAPI (blue). Results shown are representative of two independent  
experiments. PMA (phorbol 12-myristate 13-acetate), LPS (lipopolysaccharide), DAPI  
(4’,6-diamidino-2-phenylindole). Scale bar: 20 µm.
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Chapter 4.

Structure of B. pseudomallei Hcp1

4.1 Introduction

The crystal structures of Hcp1 and Hcp3 from P. aeruginosa (Hcp1PA and Hcp3PA 

respectively) and their homolog EvpC from E. tarda have been resolved.76,101,102 

They share significant structural homology, but several loops of Hcp3 differed 

in length and conformation with the other two proteins (Figure 18).102

As Hcp assembles into a tubular structure that is essential for T6SS function, 

the elucidation of its structure could offer unique insights into the function of 

B. pseudomallei  Hcp1.  For  the  convenience  of  distinguishing  between 
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Figure 18: Cα superposition of Hcp1PA (green), Hcp3PA (magenta) and EvpC (cyan).102 
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B. pseudomallei  Hcp1 and Hcps of other bacteria, the former is abbreviated as 

Hcp1BP  in  this  chapter.  The  structural  determination  studies  were  done  in 

collaboration  with  Dr  Chacko  Jobichen  in  the  laboratory  of  Professor 

J. Sivaraman in the Department of Biological Sciences at NUS.

4.2 Results

4.2.1 Overview of the structure of B. pseudomallei Hcp1

Initially, we attempted to solve the structure of Hcp1BP by crystallizing native 

Hcp1 and solving its phase problem via molecular replacement. For the initial 

crystallization  attempts,  native  Hcp1  with  a  N-terminal  6x-polyhistidine-tag 

(His-tag) was used, but the crystals were either too small, or were not of a high 

enough diffraction  quality.  The His-tag  was switched to  the  C-terminus  and 

L-selenomethionine (L-SeMet) was incorporated into the recombinant protein, 

which gave good diffraction quality crystals. Diffraction data was obtained at 

the  resolution  of  2.6  Å  (Table  5).  The  electron  density  map,  which  is  the 

representation  of  the  crystal  structure  based  on  the  diffraction  data,  was 

constructed  by  the  summation  of  the  experimentally  determined  parameters 

(phase,  amplitude  and  frequency)  of  the  diffraction  waves  by  Fourier 

transformation.130 The electron density map was iteratively refined and fitted 

with a three-dimensional protein model of Hcp1BP (Figure 19).
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Table 5: Data collection, phasing and refinement statistics 

Data collection

Unit cell (Å): a=b=82.74, c= 64.79 

Space group: P6

Resolution range (Å): 25-2.62 (2.71-2.62)

Wavelength(Å): 0.97857

Observed reflections: 225713

Unique reflections: 7654

Completeness (%): 100 (100)

Overall (I/σI): 15.4

Redundancy: 29.5 (29.2)

R Sym: 0.115 (0.274)

Refinement and quality

Resolution range: 15-2.62

R work: 0.24

R free: 0.285

RMSD bond length (Å) 0.01

RMSD bond angles (Degree) 1.479

Average B factors                                       
Main Chain:                                                
Side Chain and waters:

29.7                                                                 
30.3

Ramachandran Plot 
Most Favoured regions (%)                 
Allowed regions (%)                      
Disallowed regions (%) 

75.53                                                           
23.37                                                                 
1.1

Statistics from the current model. a Rsym = |Ii -<I>|/ |Ii| where Ii is the intensity of the  
ith measurement, and <I> is the mean intensity for that reflection.
bRwork =  |  Fobs -  Fcalc|/ |Fobs|  where Fcalc and Fobs are the  calculated  and observed  
structure factor amplitudes, respectively.  
cRfree = as for Rwork, but for 10.0% of the total reflections chosen at random and omitted  
from refinement.

*Values in the parenthesis are the highest resolution bin values. 

Hcp1 molecule consists of residues from Gly15 to Gly169. 
Table was generated in collaboration with Dr Chacko Jobichen.
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The structure was solved using single-wavelength anomalous dispersion with 2 

Hcp1BP  molecules in an asymmetrical unit (Figure  19A). The regions between 

residues  His90 and Phe106,  and between residues  Thr124 and  Tyr140 were 

omitted from the model as they were not defined in the electron density map.  

The  Ramachandran  plot  shows  the  distribution  of  torsion  angles  (φ  for 

N-Cα bonds and ψ for C-Cα ) of a protein structure and provides an overview of 

the  favoured  (red  and  shades  of  yellow)  and unfavoured  regions  (white)  of 

torsion angle values.131 It is used to indicate the quality of the predicted three-
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Figure  19: Ribbon diagram of the two  Hcp1BP  molecules in an asymmetric unit. The  
model of one Hcp1BP molecule consists of residues Gly15 to Gly169, with omissions  
between residues His90 and Phe106, and between residues Thr124 and Tyr140. The  
two monomers of  HcpBP are  shown in green  (monomer  A)  and cyan (monomer B)  
(Figure 19A). Hcp1 monomer. The β-barrel domain is shown in yellow, the α-helix in  
red and and the extended loop in green (circled). Structural  figures were prepared  
using PyMol.156 Figure was generated in collaboration with Dr Chacko Jobichen.
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dimensional  model.  Most  of  the  residues (99 %)  in  the  model  predicted  for 

Hcp1BP laid within the favoured region of the Ramachandran plot (Figure  20), 

hence the model had good stereo-chemical parameters.
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Figure 20: Ramachandran plot of the phi-psi torsion angles of all residues in the Hcp1  
structure. Plot was generated using PROCHECK.131,154
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Each molecule of Hcp1BP mainly consists  of a β-barrel  domain,  with several 

loops mostly on one end of  the  β-barrel  (Figure  19B).  The diameter  of  the 

monomeric  β-barrel  is  approximately  9-10  Å,  consisting  of  9  anti-parallel 

β-strands. Located on one side of the β-barrel is an α-helix (Ser69 – Lys78). The 

residues Asp40 to Arg56 form an extended loop that protrudes away from the 

β-barrel (Figure 19B, dotted circle) and this loop region is well defined in the 

electron density map.

4.2.2  Structural and Sequential Comparison of Hcp1BP  and its   
 Homologs

We performed a search for topologically similar proteins within the Protein Data 

Bank  (www.pdb.org)  with  the  program  DALI.132 Significant  structural 

homology was observed between EvpC (PDB code 3EAA; rmsd = 3.3Å for 105 

Cα atoms; 23% sequence identity), Hcp1PA (PDB code 1Y12; rmsd = 3.3Å for 

105 Cα atoms; 18% sequence identity), Hcp3PA (PDB code 3HE1; rmsd = 1.7Å 

for 99 Cα atoms; 24% sequence identity), and Hcp1BP. 

76



Chapter 4. Structure of B. pseudomallei Hcp1 

The main common feature shared between these Hcp molecules is the overall 

β-barrel  architecture  (Figure  21).  However,  significant  differences  was  also 

observed through  a  superposition  of  Hcp1BP  Cα atoms with  those  belonging 

these  homologs  (EvpC,  Hcp1PA and  Hcp3PA).  The  major  extended  loop  of 

Hcp1BP  (Figure  21,  brown) between  Asp40  and  Arg56  is  shifted  by  15.6  Å 

relative to Hcp1PA  (Figure  21, green) and EvpC (Figure  21, cyan). In addition, 

several  loops  of  Hcp3PA  (Figure 21,  magenta) are  different  in  length  and 

conformation, when compared to Hcp1BP. 
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Figure  21:  Cα superposition of Hcp1BP  (brown) with its structural homologs (EvpC  
(cyan), Hcp1PA (green) and Hcp3PA (magenta)). Figure was generated in collaboration  
with Dr Chacko Jobichen.
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A protein sequence alignment was also performed using Clustal W.133 Sequence 

identity  between  these  proteins  was  low,  approximately  25%  as  previously 

mentioned.  There  are  10  conserved  amino  acids  in  the  β-barrel  domain 

(Figure 22), but with the exception to Gly48, there is no invariant residue in the 

extended loop region (Asp40-Arg56). The absence of a side chain in glycine 

allows flexibility in the polypeptide chain,  which possibly is the reason why 

Gly48 is conserved in the loop region.  The codon 46 is occupied by residues 

with charged side chains for Hcp1PA(His46), Hcp3PA(Gln46) and Hcp1BP(Gln46), 

while Leu49 is identical in both Hcp1BP and EvpC.
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Figure  22:  Protein  sequence  alignment  of  Hcp1BP with  other  known  structural  
homologs Hcp1PA, EvpC and Hcp3PA.  Key: Single letters: amino acids. Red letters in  
unfilled boxes: similar amino acid residues. White letters in filled boxes: conserved  
amino acid residues. Arrow: beta sheet. Spiral: alpha helix. Sequence alignment was  
done by Clustal W133 and the figure was prepared using ESPript.152
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4.2.3 Oligomerization of Hcp1BP 

From an asymmetric unit with two Hcp1BP molecule, hexameric rings could be 

generated by a 6-fold symmetry with 12 molecules, forming an assembly of two 

rings (Figure  23A).  The rings have an outer diameter of 80 Å and an inner 

diameter of 40 Å, which may stack to form a continuous tubule. An orientation 

of  the  hexamer  molecules  sideways  showed  an  array  of  6  extended  loops 

79

Figure 23: Hexameric ring of Hcp1BP. This ring has an outer diameter of 80 Å and an 
inner diameter of 40 Å. Top view of the hexameric ring (Figure  23A). Side view of  
hexameric ring (Figure  23B). Magnified view of the extended loop, showing critical  
amino acid residues  (Figure  23C).  Figure was generated in  collaboration  with Dr  
Chacko Jobichen.
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(Asp40  to  Arg56)  (Figure  23B).  A magnification  of  the  modeled  interface 

between the extended loops of interacting monomers revealed several contacts 

with  less  than  3.5  Å in  distance  (Figure  23C).  Most  of  them are  hydrogen 

bonding  contacts  involving  the  residues  Gln46  to  Thr50  from  interacting 

monomers of adjacent hexameric ring (Figure 24). 
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Figure 24: Putative critical inter-hexameric residues. The interface between monomer  
A (pink  and  blue)  and  monomer  B  (yellow  and  red)  are  magnified  in  the  insert.  
Residues  with  less  than 3.5  Å are labelled  (Glu47,  Gln46,  Leu49 and Thr50)  and  
representative  inter-residue  hydrogen  bonds  are  illustrated  (yellow  dotted  lines).  
Figure was generated in collaboration with Dr Chacko Jobichen.
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4.3 Discussion

The resolution of Hcp1BP's structure supports several properties of Hcp that have 

been previously reported.76,100–102 It has an overall β-barrel structure, is able to 

form hexamers, and these hexamers stack to form a continuous pore with an 

outer diameter of 80 Å and an inner diameter of 40 Å. 

However, our studies also highlighted a significant difference between Hcp1BP 

and other reported structures of related Hcps' which is its extended loop region. 

We first show through amino acid sequence alignment that the residue Gln46 or 

Leu49 located in this region are conserved between Hcp1BP and its structural 

homologues.  Apart  from  Gly48,101 this  conservation  was  not  reported  in 

previous  studies,  possibly due to  the low sequence  identity  of  Hcp between 

difference bacterial species.76,101,102 Nevertheless it was suggested in one of these 

studies that the most highly conserved residues are found on the top and bottom 

faces of the hexamer,76 which corresponds to the orientation of the extended 

loops in the Hcp1BP hexamers. More importantly, the inter-ring interactions of 

these extended loops highlight a region unique to the structure of Hcp1BP  that 

could potentially be important for its biological activity.  Thus, we mutated the 

key  residues  in  this  extended  loop  to  verify  their  effect  on  the  function  of 

Hcp1BP that will be described in Chapter 5.
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Chapter 5.

Properties and Function of 
B. pseudomallei Hcp1 

5.1 Introduction

Several  groups  have  identified  candidate  lists  of  immunoreactive 

B. pseudomallei proteins  that  are  either  predicted  to  be  surface  proteins  or 

located  in  the  bacterium's  secretome.134 However,  Hcp1  is  not  listed  as  a 

possible candidate, even though the Hcp1 from P. aeruginosa and A. hydrophila 

have  been  shown to  be  immunogenic.  Hence,  the  immunogenicity  of  B. 

pseudomallei Hcp1 remains to be verified. 

It is also not known whether B. pseudomallei Hcp1 has any function beyond its 

structural  role  in  the  assembly  of  the  T6SS  needle  for  secretion  of  T6SS 

substrates. However as mentioned in Chapter 1, the function of Hcp was more 

extensively explored in  A. hydrophila  and  E. coli. Hence the direct effect of 

B. pseudomallei  Hcp1 on host cells was investigated. Based on the structural 

information  of  Hcp1,  we  also  examined  how  the  extended  loop  region 

contributed to Hcp1 function. 
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5.2 Results

5.2.1 Endogenous Hcp1 during in vitro infection

We infected PMA-activated U937 cells with  B. pseudomallei to visualize the 

localization of endogenous Hcp1 during infection (Figure 25A), with the Δhcp1 

mutant as the background control (Figure 25B). The cells were infected for 7 hr 

at the multiplicity of infection (MOI) of 10:1. The staining for Hcp1 was not 

uniformly distributed (red) and did not readily colocalize with the wild type 

bacteria (green). It was concentrated mostly around host cell clusters (blue) and 

only colocalized with bacteria associated with host cells (yellow). In a separate 

experiment, the cell membrane was stained using cholera toxin B conjugated 

with AF588 (CTX, orange) (Figure  25C and D). The cells were infected with 

either the wild type bacteria (Figure  25C) or the  Δhcp1  mutant as a negative 

control  since the gene was disrupted and no Hcp1 protein will  be produced 

(Figure 25D). For cells infected with the wild type bacteria, the strong staining 

for Hcp1 (red) colocalized with CTX. This indicated that Hcp1 could be found 

on the surface of the host cells during infection in vitro. 

83



Chapter 5. Properties and Function of B. pseudomallei Hcp1 

5.2.2 Anti-Hcp1 IgG and IgM response in melioidosis patients

To address whether Hcp1 could be detected during infection  in  humans,  we 

examined the presence of the Hcp1 protein in sera from melioidosis patients but 

were unable to detect it  (Figure 26A). We further examined the anti-Hcp1 IgG 

and IgM response in melioidosis patients versus healthy controls by ELISA. The 

titers of anti-Hcp IgG and IgM in patients' sera were significantly higher relative 

to healthy controls' (p < 0.0001 and p = 0.006, respectively) (Figure 26B and 

26C, respectively). 
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Figure  25: Imaging endogenous Hcp during infection in vitro. PMA-activated U937  
infected with log phase wild type bacteria B. pseudomallei were stained for Hcp1 (red)  
(Figure  25A). Control image was captured using cells infected with log phase Δhcp1  
mutant (Figure  25B). Bacteria were stained for LPS (green). Mammalian cell nuclei  
were stained using DAPI (blue). Results shown are representative of two independent  
experiments. PMA (phorbol 12-myristate 13-acetate), LPS (lipopolysaccharide), DAPI  
(4’,6-diamidino-2-phenylindole). Infected U937 were also costained for cholera toxin  
B-AF555 (CTX). Colocalization of Hcp1 with CTX was observed with cells infected  
with the wild type bacteria (Figure 25C), but not with the Δhcp1 mutant (Figure 25D).  
Scale bar: 20 µm.
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Figure 26: Hcp1 levels and anti-Hcp1 antibody responses in patients’ versus controls’  
sera. Hcp1 serum levels were assayed with sandwich ELISA (Figure 26A). Results were 
expressed by absorbance measured at 450nm. IgG (Figure 26B) and IgM (Figure 26C) 
responses against  native Hcp1 were assessed by ELISA in the serum of melioidosis  
patients  or  healthy  individuals.  Results  are  expressed  as  ng/mL of  IgG  and  IgM.  
Statistics were calculated using the non-parametric, two-tailed Mann-Whitney test. IgG  
(Immunoglobulin G), IgM (Immunoglobulin M).



Chapter 5. Properties and Function of B. pseudomallei Hcp1 

5.2.3 Affinity of Hcp1 for antigen-presenting cells

We incubated Hcp1 with peripheral blood mononuclear cells and found that it 

preferentially  bound  to  the  antigen  presenting  cells,  namely  B  cells  and 

monocytes (Figure  27). Surface-bound Hcp1 was detectable after one hour of 

incubation, with maximal binding observed after 24 hours.
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Figure 27: Affinity of Hcp1 for antigen presenting cells. 10 µg of Hcp1 was incubated  
with peripheral mononuclear cells at indicated time points. They were stained either  
with (solid line) or without (dotted line) anti-Hcp1 antibody, followed by anti-mouse  
AF4647 secondary antibody. 
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5.2.4 Exogenous addition of Hcp1 enhances MNGC formation in infected 

cells

We also incubated Hcp1 with RAW 264.7 macrophage cell line and similar to a 

previous study,106 it was able to adhere to the surface of these cells (Figure 28).

To examine what  other  effects  Hcp could exert  on host  cells,  we determine 

whether addition of Hcp could induce host cell cytotoxicity as measured by 51Cr 

release and found none (Figure  29A).  Hcp1 also  did not  activate  NF-κB as 

measured in THP-1 Blue cells whereas positive control LAM did (Figure 29B). 

It was unable to induce caspase-1 activation and the release of IL-1ß, as it did 

not induce IL-1ß above that of the negative control (LPS + BSA). LPS + ATP 

served as the positive control (Figure 29C).
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Figure  28:  The  surface  binding  of  Hcp1  to  RAW 
264.7 macrophage cell line. The murine macrophage  
cells were incubated with either Hcp1-His (solid line)  
or BSA (dotted line) and cells were stained for Hcp1.  
Results shown are representative of two independent  
experiments.
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Figure  29: Functional assays on Hcp1. Hcp1 was not cytotoxic (Figure  29A). U937 
cells pulsed with chromium-51 were incubated with Hcp1 at indicated time points. Cell  
lysis  was  expressed  as  percentage  specific  cytotoxicity  (%).  Hcp1  did  not  activate  
NF-κB  (Figure  29B).  THP1-Blue  cells  were  treated  with  either  LAM,  BSA  or  
endotoxin-free  Hcp1.  The  cells  were  assayed  for  secreted  alkaline  phosphatase  
(absorbance 650 nm), which was the reporter protein for NF-κB activation, Results  
were expressed as relative light units (R.L.U). Hcp1 did not induce IL-1ß expression  
(Figure 29C). J774.1 mouse macrophages were stimulated with combinations of Hcp,  
BSA, ATP and LPS, for 30 mins or overnight. Levels of IL-1ß in the supernatant were  
measured and expressed as pg/mL. BSA, bovine serum albumin; dH2O, water control;  
LAM,  lipoarabinomannan;  LPS,  lipopolysaccharide  from  M.  tuberculosis;  O/N,  
overnight.
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B.  pseudomallei  T6SS1  is  necessary  for  the  formation  of  MNGC  during 

bacterial  infection.70,71 The criteria for MNGC formation was the presence of 

polykaryocytes, as opposed to cell aggregates. In support of the observation that 

a functional T6SS is required for MNGC formation, we observed that the Δhcp1 

deletion  mutant  lost  its  ability  to  induce  MNGC  (Figure  30A).  MNGC 

formation  induced  by  wild  type  B.  pseudomallei could  be  detected  from 

approximately 9 hr post-infection (Figure 30B). 

We  subsequently  preincubated  RAW246.7  macrophages  with  Hcp1  prior  to 

infection with  B. pseudomallei, and found an observable change in the rate of 

MNGC formation in treated cells. At the same time point of 9 hr after infection,  

the Hcp1-treated cells formed much more extensive MNGC compared to the 

untreated  controls  (Figure  30B  versus  Figure  30A).  Bovine  serum  albumin 

(BSA)-treated  cells  formed  cellular  aggregates  with  no  or  few  discernible 

multinuclei rather than MNGC (Figure 30C). This indicates that the enhancing 

effect  Hcp1  had  on  MNGC  formation  is  unique  to  Hcp1  and  not  due  to 

non-specific cellular aggregation. The fusion index for infected cells pretreated 

with  Hcp1  was  significantly  higher  compared  to  the  other  conditions 

(Figure 30D and E). 
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Figure  30: The effect of Hcp1 on MNGC formation. RAW 264.7 macrophages were  
treated with either PBS (Figure 30A), Hcp1 (Figure 30B) or BSA (Figure 30C). They  
were infected  with  overnight  culture  of  wild  type  bacteria B.  pseudomallei  (KHW)  
(Figure  30A-C) at  MOI 10:1 for 9 hours.  Fusion indices were calculated for each  
treatment from a single experiment (Figure 30D). Fusion indices on cells treated with  
Hcp1 or BSA were calculated from three independent experiments and represented as  
means with standard deviation (Figure 30E). Scale bar: 40 µm.
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5.2.5 Candidate mammalian ligands of Hcp1 

5.2.5.1 Candidate ligands of Hcp1  

This MNGC-enhancement effect might be mediated through interactions with 

specific proteins found on the mammalian cell's surface. Hence, we determined 

possible candidate ligands of Hcp1 using radioimmunoprecipitation.  We found 

several potential cell surface binding partners of Hcp1 (Figure 31). U937 cells 

pulsed with 35S-methionine in methionine/cysteine free medium were incubated 

with Hcp1 and lysed in detergent buffer. The lysate was immunoprecipitated 

with Hcp1-specific antibody and analyzed by SDS-PAGE. From the dried SDS-

PAGE gel,  several  radioactive  bands  were  detected  in  samples  treated  with 

Hcp1-specific  antibody  but  not  in  those  treated  with  an  isotype  control 

monoclonal antibody.
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Figure 31: Pulse-labeling experiments to discover candidate ligands  
of  Hcp1.  35S-methionine pulsed  U937  lysate  were  incubated  with  
anti-Hcp1  antibody  56-1  or  isotype  control.  Immunoprecipitated  
proteins were electrophoresed with SDS-PAGE, the gel was vacuum  
dried  and  autoradiography  was  done.  Equal  amount  of  protein  
(40 ng)  of  protein  was  loaded  for  each  lane.  Results  shown  are  
representative of two independent experiments.
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5.2.5.2 Analysis of immunoprecipitated protein by mass spectrometry  

Non-radioactive lysates were generated and immunoprecipitated with anti-Hcp1 

antibody or an isotype control. The immunoprecipitated proteins were submitted 

for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

360 proteins in the sample treated with Hcp1-specific antibody (56-1 + Hcp1 

(Sample I)) and 327 proteins for its duplicate (Sample II), and 209 proteins were 

identified for the control sample (Control Ab + Hcp1) (Figure 32). 93 proteins 

were found unique to the two samples treated with 56-1 and but not the control 

sample. Heat shock and cytoskeletal proteins were omitted from the list of 93, 

leaving four proteins as potential candidates (Table 6).
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Figure  32:  Comparison  of  protein  hits  from  control  sample  and  samples  
immunoprecipitated with 56-1 (anti-Hcp1 antibody). Samples were lysates generated  
from Hcp1-coated  U937 cells.  Comparison was made  using  PEAKS. 56-1 + Hcp1  
(Sample  I)  and  (Sample  II),  two  replicate  samples  immunoprecipitated  with  56-1.  
Control Ab + Hcp1, sample immunoprecipitated with isotype control antibody (Ab).
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Table 6: Protein identification using PEAKS

Protein IDa Description Unique 
peptides

b

Protein 
scorec

IPI00182757 Isoform 1 of protein KIAA1967 29 99.2

IPI00646182 ATPase, Na+/K+ transporting, alpha 1 
polypeptide

5 99.1

IPI00027493 4F2 cell-surface antigen heavy chain (CD98) 3 98.9

IPI00027430 Leukosialin (CD43) 2 84.0

aProtein ID – identification number corresponding to International Protein Index (IPI)  
database human version 3.87;  bUnique peptides – number of unique and significant  
spectra contributing to identification; cProtein score – the percentage confidence score  
reflecting the weighted sum of peptide probability scores from the protein.

5.2.5.3 Biochemical validation of candidate ligands  

CD98, a fusion regulatory protein, is one of the candidate ligands. Activating 

antibodies against CD98 were able to induce homotypic cell aggregation and 

MNGC formation of monocytes without any fusogen,135 whereas inhibitory anti-

CD98  antibodies  were  able  to  block  B.  pseudomallei-induced  MNGC 

formation.125 Hence, to further verify the identification of CD98 as a ligand for 

Hcp1, whole cells bound with either Hcp1 or BSA were lysed, affinity-purified, 

analyzed  by  SDS-PAGE  and  immunoblotted  with  a  specific  anti-CD98 

antibody.  Equal  amount  of  proteins  were  loaded  for  both  conditions 

(Figure 33A). CD98 was detected in the samples treated with Hcp1, confirming 

that this is a target receptor (Figure 33B). The experiment was repeated for the 

candidate  Na+/K+ ATPase,  one  of  the  three  other aforementioned candidate 

ligands,  but  it  were  both detected  in  samples  treated  with or  without  Hcp1, 

hence it was not verified as a specific target ligand for Hcp1 ((Figure 33C). 
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KIAA1967 (deleted in breast cancer, DBC1) is a nucleus-localized transcription 

factor136–138 and  CD43  is  ubiquitously  expressed  on  both  myeloid  and  non-

myeloid lineage immune cells.139 They are unlikely to be relevant based on the 

differential Hcp1 binding to monocytes and B cells versus T and NK cells. 

5.2.6 Anti-CD98 antibody blocks MNGC formation

A previous study on the role of host cell surface molecules on MNGC formation 

showed that antibodies against  CD98, CD47 (an integrin-associated protein), 

E-selectin (CD62E) and E-cadherin (CD324) could inhibit cell fusion.69 Human 

U937  cells  were  used  in  the  aforementioned  study.  Despite  using  the 

experimental conditions as previously described,69 we were unable to replicate 
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Figure 33: Biochemical validation of candidate mammalian ligands. U937 cells were  
incubated with either Hcp1 or BSA overnight at 37 oC. After lysis, the proteins were  
precipitated with cobalt resin and the purified eluate was concentrated. The eluate  
was  subjected  to  Coomassie  staining  or  immunoblot  analysis  for  both  conditions.  
Coomasie  staining  showed  equal  protein  loading  for  both  lanes  (Figure  33A).  
Immunoblot analysis using a rabbit polyclonal anti-CD98 antibody (Figure  33B) or 
rabbit polyclonal anti-Na+/K+ ATPase antibody (Figure 33C).  
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MNGC formation in U937 cells successfully (Figure 34).

We thus sought to replicate the experiment in murine RAW264.7 cells, but using 

the same anti-CD98 antibody used in the previous work, which is against human 

CD98 (clone MEM-108).69 Sequence alignment of the heavy chain from homo 

sapiens (Accession  No:  NP_001012680) and  mus  musculus  (Accession  no: 

AAB03769.1)  show  75 %  sequence  identity  (Figure  35)  between  the  two 

proteins. The anti-human CD98 antibody bound to RAW 264.7 cells while its 

isotype control antibody did not (Figure 36). Given that there is high sequence 

identity between the human and murine CD98s, we made the assumption that 
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Figure 34: Effect of wild type B. pseudomallei infection on PMA-activated U937 cells.  
Cells were infected for 14 – 22 hrs (Figure 34A-D) and visualized with Giemsa stain.  
Results shown are from a single experiment. Scale bar: 50µm.



Chapter 5. Properties and Function of B. pseudomallei Hcp1 

the anti-human CD98 antibody was cross-reacting with murine CD98.
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Figure 35: Protein sequence alignment of the heavy chain from CD98 (4F2) from homo  
sapiens and mus musculus. Key: Single letters: amino acids. +: similar amino acid  
residues. Single letters between sequences: conserved amino acid residues. 

Figure  36: Affinity of anti-human CD98 (clone MEM-
108)  antibody  for  RAW 264.7  macrophage  cell  line.  
The murine macrophage cells were stained with either  
anti-CD98 (solid line) or an isotype control antibody  
(dotted  line),  followed  by  an  Alexa  Fluor®  647-
conjugated  anti-mouse  secondary  antibody. Results  
shown are from a single experiment.
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RAW 264.7  cells  treated  with  wild  type  Hcp1 was  infected  with  wild  type 

B. pseudomallei for 9 and 11 hours. The infected cells were treated with either 

isotype control antibody or the anti-CD98 antibody an hour post-infection. At 

9 hours post-infection, small MNGCs could be observed in the cells treated with 

the control antibody (Figure  37A) but not in the anti-CD98 antibody treated 

cells  (Figure  37B).  Extensive  MNGC  formation  was  observed  in  the  cells 

treated with the control antibody at 11 hours post-infection (Figure 37C), but the 

cells treated with anti-CD98 antibody remained unfused (Figure 37D).
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Figure 37: Effect of anti-CD98 antibody on MNGC formation. RAW 264.7 cells treated  
with wild type Hcp1 were infected with wild type B. pseudomallei for 9 hours (Figure  
37A and B) and 11 hours (Figure 37C and D). The cells were also treated with either  
isotype control antibody (Hcp1 + Isotype Control) (Figure 37A and C) or anti-CD98 
antibody (Hcp1 + Anti-CD98) (37B and D) and visualized with Giemsa stain. Results  
shown are from a single experiment. White arrows highlight the small MNGCs.
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5.2.7 Generation of an in-frame  Δhcp1 mutant to determine how the 

structure of Hcp1 impact on T6SS function.

The expression of the T6SS1 is controlled by VirAG and BprC. Within the gene 

cluster,  hcp1 has its own upstream promoter and its stop codon overlaps with 

the start codon of the next downstream gene  tssC (Figure 7 in Materials and 

Methods). 

In  the  previous  experiments  (Section  3.2.2.4,  Figure  16,  and  Section  5.2.1, 

Figure 25), the mutants Δhcp1:tmp and Δhcp1 were used a negative control for 

anti-Hcp1 antibody specificity  where  no Hcp1 was expressed.  These  mutant 

carried  an  out-of-frame  mutation  (Table  3).  The  bacterial  numbers  in  the 

infected cells between mutant and wild type were equivalent  at  the point of 

these experiments. It is also certain that the antibody is specific for Hcp1 and 

not  other  B.  pseudomallei  proteins,  because  the  antibody  does  not  bind  to 

another  B. pseudomallei-derived protein TssM (Figure 12), and is binding to a 

single protein of the expected molecular  weight  (Figure  16).  Hence in these 

instances, the question of whether the downstream T6SS genes were affected or 

was inconsequential.

Given that addition of exogenous Hcp enhances MNGC formation in infected 

cells and infection of cells results in surface localization of endogenous Hcp, it 

may be possible that these surface-localized Hcp found in infected host cells 

serves to enhance MNGC formation during a natural infection. However  the 
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generation  of  a  Δhcp1  would  compromise  the  whole  T6SS  apparatus.  This 

results in our inability to ascribe the functional defect such as MNGC formation 

to hcp1 or to any other T6SS genes as a Δhcp1 mutant has no secretion function 

and  therefore  no  effector  function  due  to  the  structural  role  that  Hcp1 has. 

Nevertheless, as the previous Δhcp1 mutants was out of frame, we recreated an 

in-frame  Δhcp1  mutant  to  demonstrate  the  importance  of  T6SS  function  to 

MNGC formation.

An in-frame Δhcp1 mutant (Δhcp1inf) (Table 3 and Figure 7) was generated and 

complemented with the  hcp1  gene (pUCP-hcp1)  or  hcp1-tssC1  genes (pUCP-

hcp1-tssC1),  because a  deletion  of  hcp1  could  also  be a  polar  deletion that 

affects the expression of tssC. The genes hcp1 and hcp1-tssC1 were each ligated 

into the pUCP28T vector in the reverse orientation to the pLacZ promoter, so 

that the expression of the hcp1 would be controlled by its endogenous promoter. 

However, in an infection assay with RAW 264.7 cells, the expression of hcp1 in 

the complemented mutants were less than 10% of the wild type B. pseudomallei 

(Figure  38A). Hence unlike the wild type  B. pseudomallei  (Figure 38B), the 

negative  control  (Δhcp1inf  +  pUCP28T,  Figure  38C) and the  complemented 

mutants were unable to induce MNGC in RAW 264.7 cells (Figure 38D-E).
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Our inability to complement the function of the  Δhcp1inf  might be due to the 

need of a stronger promoter other than the endogenous hcp1 promoter to drive 
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Figure 38: The phenotype of the complemented Δhcp1inf mutant. RAW 264.7 cells were 
infected  with  wild type  B. pseudomallei  (KHW),  Δhcp1inf + pUCP28T  (Δhcp1inf),  
Δhcp1inf + pUCP-hcp1  (Δhcp1inf + hcp1)  and  Δhcp1inf+pUCP-hcp1-tssC1 
(Δhcp1inf+hcp1-tssC1) for 9 hrs and assayed for relative expression of hcp1 (Figure  
38A).  RAW  264.7  cells  infected  with  KHW  (Figure  38B),  Δhcp1inf  (Figure  38C),  
Δhcp1inf+hcp1 (Figure  38D) and  Δhcp1inf+hcp1-tssC1 (Figure  38E) for 9 hrs were  
assayed for MNGC formation. Scale bar: 50 µm
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hcp1  expression. Placing the  hcp1 gene  under  a strong constitutive promoter 

such  as  Plac  may  resolve  the  issue  of  low  mRNA  expression  in  the 

complemented mutants and lead to a sucessful complementation.

5.2.8 Recombinant Hcp1 double mutant proteins suppress MNGC 

formation

We  generated  two  Hcp1  mutants  Hcp1Q46AE47A and  Hcp1L49AT50A,  where  the 

former had alanine substitutions at positions 46 (glutamine, Q) and 47 (glutamic 

acid, E) and the latter at positions 49 (leucine, L) and 50 (threonine, T). These 

mutations reside within the extended loop region (Figure 23) of Hcp1.

 

We examined whether the mutant proteins retain the same cell adhesive property 

as the wild type Hcp1 by incubating them with RAW 264.7 macrophages. The 

mutant  and wild type Hcp1 showed comparable binding to the cells  (Figure 

39A), with Hcp1Q46AE47A showing slightly lower binding (yellow histogram) but 

this  difference  was  not  significant.  Preincubation  of  10-fold  more  mutant 

Hcp1Q46AE47A protein relative to wild type Hcp1 to host cells did not prevent the 

binding of wild type Hcp1 to cells (Figure 39B). Hence the mutant protein did 

not competitively inhibit the binding of wild type Hcp1 to host cells.
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The oligomerization states of wild type Hcp1 and mutant proteins Hcp1Q46AE47A 

and  Hcp1L49AT50A in  solution  were  compared  using  dynamic  light  scattering 

(DLS) (Figure 40 and Table 7). We were only able to obtain data for wild type 

Hcp1 and Hcp1Q46AE47A. DLS of concentrated wild type Hcp1 (8 mg/mL) showed 

an apparent molecular weight of 270 kDa corresponding to two hexamers of 

Hcp1 (Figure 40B and Table 7). However, the mutant Hcp1Q46AE47A at 8 mg/mL 

only showed 142 kDa, which corresponds to a hexamer (Figure 40D and Table 

7). These observations suggest that the mutated residues might be important for 

the stacking assembly of Hcp1.
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Figure  39:  Binding  properties  of  wild  type  and  mutant  Hcp1s.  The  mutants  show  
comparable binding to RAW 264.7 relative to wild type Hcp1 (Figure 39A). Cells were 
either untreated (red histogram), or treated with 100 µg of Hcp1Q46AE47A (blue solid  
histogram)  overnight,  and  subsequently  incubated  with  10  µg  of  wild  type  Hcp1  
conjugated to AF488 (Hcp1 AF488). The negative control was unlabelled cells (black  
dotted histogram).
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Figure 40: Dynamic light scattering profile for wild type Hcp1 and Hcp1Q46AE47A at 2 mg/mL (Panel A) and 8 mg/mL (Panel B). Molecular  
weights for Hcp1 were 151 kDa and 270 kDA respectively. The mutated protein Hcp1Q46AE47A at 2 mg/mL (Panel C) and 8 mg/mL (Panel D).  
Molecular  weights  for  Hcp1Q46AE47A were  120  kDa and  142  kDA respectively.  Figure  was  generated  in  collaboration  with  Dr Chacko 
Jobichen.
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Table 7: Summary of DLS results on wild type Hcp1 and Hcp1Q46AE47A 

Sample Radiusa 
(nm)

Polyd (nm)b MWc Sos 
Errord

A (Hcp1 2mg/mL) 5.08 1.15 151 4.62

B (Hcp1 8mg/mL) 6.50 2.97 270 28.6

C (Hcp1Q46AE47A 2mg/mL) 4.61 0.993 120 2.94

D (Hcp1Q46AE47A 8mg/mL) 4.95 1.31 142 7.21

aRadius  -  hydrodynamic radius  of  the  molecule.  bPolyd  -  polydispersity  parameter.  
cMW – estimated molecular weight. dSos error – value lesser than 50 indicates a good  
fit.

We assessed  the  effects  of  surface-bound  mutant  Hcp1  proteins  on  MNGC 

formation  of  infected  RAW  264.7  macrophages.  Untreated  infected  cells 

showed much more extensive MNGC (Figure 41A) relative to the cells treated 

with the mutant proteins, which developed small MNGC (Figure  41B and C). 

The fusion indices were significantly lower in those treated with mutant Hcp1 

(Figure  41G).  This  shows  that  the  mutant  proteins  do  not  enhance  MNGC 

formation and also interfere with the natural development of MNGC.
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Figure  41:  Effect  of  surface-bound mutant  Hcp1 (Hcp1Q46AE47A and Hcp1L49AT50A) on 
MNGC  formation.  The  treated  cells  were  subsequently  infected  with  wild  type  
B. pseudomallei for 9 hrs and visualized with Giemsa stain (Figure 41A-C). The double 
mutants appear to suppress MNGC formation in infected cells (Figure  41B and C)  
relative to untreated infected cells (Figure 41A). The MNGC formed for each condition  
are  outlined  (dotted  red  lines)  correspondingly  against  faded  black-and-white  
rendering  of  the  original  colour  image  (Figure  41D-F).  Fusion  indices  for  each  
treatment were calculated for the experiment shown in Figure  41A-F (Figure  41G).  
Fusion indices on untreated or treated cells were calculated from three independent  
experiments and represented as means with standard deviation (Figure  41H).  Scale  
bar: 40 µm.
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To determine whether the same point mutations present in the endogenous Hcp 

of  the  bacteria  compromise  MNGC formation,  we first  generated  a  deletion 

knockout of hcp1 in wild type B. pseudomallei, followed by knocking in a copy 

of  hcp1  with  alanines  substituted  at  either  positions  46Q  and  47E  (KHW 

hcp1Q46AE47A) or 49L and 50T (KHW hcp1L49AT50A) at the original chromosomal 

site via homologous recombination. These double substitutions are the same as 

that  found  in  Hcp1Q46AE47A and  Hcp1L49AT50A respectively.  However,  we  only 

managed to generate KHW hcp1L49AT50A. 

The double substitution mutant was unable to form MNGC at the time-points 

examined (Figure 42B and D), whereas MNGC formation was observed for the 

wild type bacteria (KHW) at both time points (Figure 42A and C). It was also 

unable to secrete Hcp1 as no Hcp1 (red) was detected on host cells (Figure 42F) 

in contrast to the wild type bacteria (Figure  42E). However, we also have to 

consider  two  possibilities  that  could  have  occurred  due  to  the  genetic 

manipulation. 1) The allelic complementation could have introduced off-target 

mutations that affected the bacteria's ability to form MNGCs. 2) The mutated 

Hcp might  also not be expressed or not to the same levels as the wild type 

protein, therefore affecting detection of the secreted protein and subsequently 

MNGC formation. To control for the first possibility, the wild type copy of hcp 

should be reintroduced into KHW hcp1L49AT50A
 by homologous recombination or 

complemented  on  a  plasmid  and  assayed  for  the  ability  to  form  MNGC. 

A restoration to the wild type phenotype would be indicative for the absence of 
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off-target mutations. For the second possibility, the expression of Hcp should be 

assayed at the protein level for both wild type bacteria and KHW hcp1L49AT50A. 
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Figure 42: Effect of in situ L49AT50T substitution on the function of Hcp1. RAW 264.7  
macrophages were infected with either overnight culture of wild type B. pseudomallei  
(KHW) or KHW hcp1L49AT50A mutant for the indicated time points and were stained for  
MNGC formation (Figure 42A-D). Results shown are representative of two independent 
experiments. Activated U937 were infected with log phase wild type B. pseudomallei or  
KHW hcp1L49AT50A mutant for 8 hr and stained for Hcp1 (red) (Figure 42E and F). The  
bacteria were stained by LPS (green). Mammalian cell nuclei were stained using DAPI  
(blue). Scale bar: 40µm (black) and 10 µm (red).
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5.3 Discussion

Hcp1 from B. pseudomallei had previously been shown to be secreted by T6SS1 

and  could  be  recognized  on  an  immunoblot  by  pooled  sera  of  melioidosis 

patients.70 We found that melioidosis patients have  a high titer  of  anti-Hcp1 

immunoglobulins, suggesting that Hcp1 from  B. pseudomallei is a significant 

target  of  the  host  humoral  response.  Since  Hcp1  could  be  detected  on  the 

surface of host cells early during in vitro infection before cell death occurs, it is 

possible that the protein is actively being secreted during infection rather than 

being released due to a passive process of host cell lysis.  Recombinant Hcp1 

from  B. pseudomallei  also binds  to  the  surface  of  host  cells.  Its  surface 

localization  and  preferential  binding  for  antigen-presenting  cells  could 

contribute to its immunogenicity. A high anti-Hcp response was also previously 

reported in cystic fibrosis  patients with chronic  P. aeruginosa  infections, but 

weak or negligible responses from patients infected with a shorter duration.76 

This means that Hcp protein is available for immune processing during bacterial 

infection.

To our knowledge, this is  the first  instance the detection and localization of 

endogenous  Hcp  has  been  imaged  during  an  infection.  The  localization  of 

endogenous Hcp within  bacterial  compartments  had  been studied  by  several 

groups,102,140,141 and  they  reported  that  Hcp  can  be  detected  in  all  bacterial 

cellular compartments (membrane, periplasmic space and cytosol) and culture 

medium. However, we did not find much colocalization between Hcp1 and the 
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bacteria during infection. The anti-Hcp1 signal colocalized with the host cell 

membrane,  hence  the  endogenous  Hcp1  detected  could  be  bound  to  the 

membrane.  In  B.  pseudomallei,  the  overexpression  of  the  two  component 

regulatory  system  VirAG  in  trans  is  necessary  for  the  detection  of  T6SS1 

secreted substrates Hcp1 and VgrG in bacterial cultures.142 This is because the 

expression of T6SS1 in free-living bacteria is very low.71 Upon bacterial entry 

into  host  cytosol,  intracellular  cytosolic  signals  activate  T6SS1  expression 

(Figure  43, point 1),71 but these endogenous signals regulating its expression 

have  not  been  reported.  However,  our  assay  circumvents  this  problem  and 

allows the tracking of T6SS1 secretion and function during an infection when 

T6SS1 is highly upregulated.71 

Cell-to-cell fusion is one of the basic biological capabilities of macrophages, as 

exemplified  by  the  physiological  example  of  osteoclast  formation.  The 

molecular  mechanism  of  macrophage  fusion  is  a  multistage  process,  which 

firstly  requires  the  macrophages  to  become fusion-competent,  move towards 

each other,  attach and bring their  membranes  within close  proximity by the 

means of cell  adhesion molecules,  finally culminating into a merging of the 

cellular membranes and reorganization of intracellular components.143,144 With 

respect  to  B.  pseudomallei-induced  MNGC  of  macrophages,  primary  or 

established cell lines, it  has been shown that this process requires cell fusion 

factors  such  as  integrin-associated  protein  (CD47),  E-selectin  (CD62E),  E-

cadherin,  and fusion regulatory protein 1 (CD98) (Figure  43,  point  3).69 We 

identified four candidate mammalian ligands of Hcp1 by mass spectrometry and 
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SLC3A2 (4F2), the heavy chain of CD98, was biochemically validated as one of 

the  ligands  of  Hcp1.  Antibodies  against  CD98  have  been  shown  to  either 

suppress  or  enhance  MNGC  formation,126,145 and  it  is  possible  that  Hcp1's 

MNGC-enhancing effect mimics the MNGC-inducing anti-CD98 antibodies.

Although Hcp1 binds to host cells, we were unable to detect any Hcp1-induced 

cellular  activation,  unlike  that  reported  in  A.  hydrophila and  E.  coli.106,107 

Surface-bound Hcp1 also does not  induce more cell  death or bacterial  entry 

upon infection. However, it hastens the formation of MNGC although it does 

not cause MNGC formation on its own. Although MNGC formation has not 

been proven to contribute to disease during an in vivo infection, the presence of 

granulomas  and  giant  cells  in  mouse  models67 and  in  melioidosis  patients68 

suggest the relevance of MNGC in disease pathogenesis. Studies have shown 

that bacterial entry into host cytosol,79,146 and the expression of T6SS164,71 are 

critical  to  MNGC formation  by B. pseudomallei. The  pre-incubation of  cells 

with Hcp1 reduced the time required for MNGC formation, and we speculate 

that the coated Hcp1 acts as a seed for the oligomerization of endogenous Hcp1 

(Figure 43, point 4). We speculate that this possible “seeding” effect could occur 

during  an  actual  infection,  whereby Hcp1 released  by intracellular  cytosolic 

bacteria binds the neighbouring uninfected host cells to prime these cells for 

subsequent cell-to-cell fusion and spread. However, Hcp1 is not the fusogenic 

factor,  for  addition  of  Hcp1  alone  is  insufficient  to  induce  fusion  (data  not 

shown). Thus, the bacterial fusogenic factor remains to be identified and it is 
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likely that a T6SS1 secreted effector is responsible. 

The mutations in the unique extended loop region of Hcp1 disrupt the stacking 

of the hexameric rings in the cell-free model, and thus likely compromise the 

formation of the tube-like structure (Figure 43, point 2). The double substitution 

bacterial mutant also did not secrete Hcp1 that was detectable on the surface of 

infected cells. We hypothesize that this could be an indication of defective tube 

assembly, with an associated impairment in the induction of MNGC. However, 

in order to support the hypothesis, additional controls have to be done to rule 

out the possibilities of off-target  mutations that affect MNGC formation and 

reduced Hcp protein expression as a result of the allelic complementation. If the 

controls affirm that the substitutions were as intended and the protein expression 

remains unaffected, we may conclude that the inability of the mutant Hcp1 to 

self-assemble as stacks led to the dramatic  suppression of MNGC formation 

during bacterial infection. This leads us to propose a model to explain the action 

of surface-bound Hcp1 in influencing MNGC formation (Figure 43). As T6SS1 

expression occurs intracellularly71,79 and MNGC is formed when the bacteria are 

in the cytosol64,71, some bacteria in the cytosol could have their T6SS1 orientated 

towards the host cell surface. During an infection, Hcp1 secreted and bound on 

the cell surface could help in tube formation or increase interaction with host 

cell surface fusion factors such as CD98. On the other hand, the mutant Hcp1 

with an altered structural configuration from the wild type protein may interact 

differently or impede interaction with host cell fusion factors to prevent cell 
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fusion. Our ability to change the structural and functional properties of Hcp with  

two amino acid changes in the loop region opens up the possibility that the 

recombinant mutant Hcp can be used as a tool to abrogate bacterial induced 

MNGC formation. This represents a novel strategy of limiting bacterial spread 

to neighbouring cells.

Thus,  the way Hcp1 is stacked into assembly units depends critically on the 

residues in the extended loop region, and directly affects its function and the 

pathogenesis  of  the  pathogen.  We  have  shown  that  Hcp1  is  not  simply  a 

structural component of T6SS1 but also functions like a T6SS effector. Hcp may 

have  evolved  additional  roles  in  facilitating  bacterial  pathogenesis,  such  as 

improving its  cell-to-cell  spread  through increased  MNGC formation in  this 

particular pathogen because of its unique ability to be secreted onto the surface 

of host cells and to promote cell fusion.

Structural analysis of the Hcp1 protein revealed an extended loop region that 

may be unique to B. pseudomallei Hcp1. This led us to select mutations in Hcp1 

to determine how structural changes could affect its function. Pre-incubation of 

mutant  Hcp1  suppressed  MNGC  formation  during  infection  with  B. 

pseudomallei,  suggesting  that  it  must  actively  interfere  with  the  function  of 

T6SS1. We show that substitution of Gln46 and Glu47 affects the stacking of 

Hcp1 hexamers, prevents the secretion of endogenous Hcp, and that CD98 is 

one of the ligands of Hcp1. Hence we speculate that Hcp1Q46AE47A interferes with 
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Hcp1 may hinder the formation of tube, and prevent the secretion of effector 

molecules  (Figure  43,  point  6).  The exogenous Hcp mutant may also fail to 

interact with the cell fusion factors (Figure 43, point 7.)
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Figure  43: A hypothetical model proposing the mechanism of surface-bound Hcp1's  
(yellow)  enhancement  and  Hcp1  mutants'  (dark  brown)  suppression  of  MNGC  
formation.  E,  extracellular  space;  CM,  host  cell  membrane;  C,  host  cytosol;  OM,  
bacterial outer membrane; PG, peptidoglycan; IM, bacterial inner membrane.
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Chapter 6.

Final Discussion and Future Directions

Melioidosis is a potentially fatal disease caused by the Gram-negative bacterium 

Burkholderia  pseudomallei.  It  is  predominantly  endemic  in  tropical  climates 

and is a public health concern.27 Its causative agent, B. pseudomallei,  has been 

classified  as  category  B  bioterrorism agent  by  the  US Centers  for  Disease 

Control and Prevention. It is a facultative intracellular bacterium that invades a 

range  of  phagocytic  and  non  phagocytic  cells,  and  resists  killing  by 

polymorphonuclear  cells.147–149 Internalized  B.  pseudomallei  are  capable  of 

vacuolar  escape  into  the  host  cytoplasm,  inducing  actin-based  motility  and 

actin-reorganization  to  form membrane protrusions.64,150 What  further  defines 

the unique pathogenesis of B. pseudomallei, is the direct cell-to-cell fusion that 

contributes to the formation of MNGC.65 MNGC formation has been identified 

as a function of the Type VI Secretion System cluster 1 (T6SS1), one of the six 

T6SSs B. pseudomallei possesses.70,71 T6SS serves a range of function in other 

Gram-negative  proteobacteria,  such  as  mediating  competitive  inter-bacterial 

interactions or cooperative inter-bacterial behaviours,80,87 but in the case of  B. 

pseudomallei, T6SS1 is critical for bacterial pathogenesis in vivo.70
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The  specific  role  of  MNGC  formation  in  the  pathogenesis  of  melioidosis 

remains to be defined. Nevertheless, granulomas in patients and chronic mouse 

infection  models  have  been  observed.67,68 Granuloma  formation  in  vivo 

following  B.  pseudomallei infection may represent  either  a  host  response to 

attempt to contain the organism, or a bacterial strategy to facilitate cell-to-cell 

spread, evade host immune responses, and persist within an infected host.

Studies  on  B. pseudomallei-induced  MNGC showed  that  T6SS1  mutants  i.e 

ΔtssA,  ΔtssB,  Δhcp1,  ΔbprC  and ΔvirAG  were  unable  to  cause  MNGC 

formation.70,71 These mutants affect T6SS1 expression, assembly and function, 

and thus highlight the critical role that T6SS1 plays in this process. 

However, very little is known about the direct interactions between the host and 

the  specific  T6SS1  bacterial  factors  that  regulate  the  process  of  MNGC 

formation. Our studies show for the first time that Hcp1, a hallmark protein of 

T6SS1  function,  is  also  an  effector  protein  that  has  the  ability  to  hasten 

B. pseudomallei-induced MNGC formation. Its immunogenic properties may be 

due in part to its ability to be secreted and to bind to the surface of antigen-

presenting cells. However, its ability to hasten MNGC formation could offset 

the  disadvantage  conferred by  its  immunogenic  nature  through reducing the 

surface-area of Hcp1's exposure to the host humoral defenses, thus shielding the 

innermost cells within the MNGC in which the bacteria are able to thrive. A 

vaccine  study  on  Hcp1  showed  that  despite  its  immunogenic  nature, 

B. pseudomallei  Hcp1 is not a suitable vaccine candidate because of the poor 
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protection  engendered  against  morbidity  and  mortality  and  its  inability  to 

prevent chronic colonization after challenge.70 However, it was suggested that 

Hcp1 is a good candidate for use as a serodiagnostic reagent for melioidosis70 

and  in  support  of  this  view,  we  have  also  found  significant  a  anti-Hcp1 

immunoglobulin response in melioidosis patients.

A recent  study demonstrated  that  B.  pseudomallei-induced  fusion  of  human 

macrophages  in vitro requires cell surface receptors which are namely CD47, 

CD62E, CD98 and CD324.69 The authors proposed that  B. pseudomallei may 

favour this process by modulating the surface expression of those receptors.69 

We discovered  that  Hcp1  binds  to  several  host  ligands,  and  supports  their 

finding of CD98 as a binding partner of Hcp1. In lieu of these findings, it is 

possible  that  the  bacterium promotes  cell  fusion  by the  combined  effect  of 

Hcp1's  direct  interaction with CD98,  as well  as  through the upregulation of 

CD98 to  promote  greater  interaction between secreted  Hcp1.  A biochemical 

validation of the two other candidate  Hcp1 ligands,  KIAA1967 (DBC1) and 

leukosialin  (CD43), could also be done to verify if  they too are involved in 

specific interactions with Hcp1.

We  sought  to  understand  the  mechanism  of  Hcp1's  role  in 

B. pseudomallei- induced MNGC formation by solving the protein structure of 

B. pseudomallei Hcp1. Structure-guided mutagenesis of the Hcp1 protein led us 

to discover the region and the precise amino acids residues that are critical for 

tube formation. The very same mutations generated mutant proteins that were 
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able  to  suppress  B. pseudomallei- induced  MNGC  formation,  and  in  situ  

mutations in the bacteria prevented the secretion of endogenous Hcp1. 

These findings were unexpected as the mutant proteins were capable of binding 

to the surface of cells. The mechanism of suppression by these surface-bound 

mutant  proteins  is  currently  under  investigation  in  our  laboratory.  Our 

preliminary finding showed that the mutant Hcp1 did not competitively inhibit 

the binding of the wild type Hcp1, hence it would be interesting to find out if 

both mutant and wild type Hcp1 interact with the same panel of host cellular 

factors.  In  addition,  imaging  Hcp1  during  an  infection  in  vitro using 

cryo-electron  microscopy  would  inform whether  Hcp1 exists  as  tubes  or  as 

hexameric  rings  at  the  cell  surface.  A subsequent  introduction  of  the  Hcp1 

mutant proteins into this experiment could show whether the mutant proteins 

perturb Hcp1's higher-ordered structure.

Hcp1's  effects  of  MNGC formation  could  also  be  further  dissected  using  a 

bacteria-free model of cell-fusion, namely the fusion of primary monocytes by 

activating anti-CD98 antibodies.98 It would elucidate whether Hcp1 on its own is 

sufficient to affect MNGC formation, or that it requires other bacterial factors 

such as the other components of T6SS1.

 

The in vivo effect of the surface-bound mutant proteins during B. pseudomallei  

infection also warrants further investigation. It would be useful to examine if 

these mutant proteins could alter the pathology of the disease or limit bacterial 
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spread.  A similar  experiment  could also be done with antibodies against  the 

aforementioned cell surface molecules CD47 and CD98. A comparison of the 

resulting data would inform if the Hcp1 mutant proteins and the anti-cell surface 

molecule antibodies exert their suppressive effects on B. pseudomallei- induced 

MNGC formation in distinctive or similar ways.

In  conclusion,  our  study uncovers  a  novel  role  for  Hcp in  B.  pseudomallei 

infection that is  disparate  from its  function as a component  of the secretion 

apparatus in T6SS, and how critical amino acids in its unique extended loop 

contributes  towards  elucidating  the  mechanism  of  B.  pseudomallei-induced 

MNGC formation. 
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