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Summary

The manufacturing industries have shifted towards a “green” paradigm due to increase

of dangerous climate change, emergence of new energy legislation and regulations, and

consumers’ growing trend in buying green products and services, where manufacturers

will compete in energy efficiencies and carbon footprints of manufactured products.

This dissertation proposes novel technologies for improving manufacturing energy

efficiencies with specific applications to manufacturing processes (MPs) and flexible

manufacturing systems (FMSs).

After a brief introduction of current energy consumption in manufacturing indus-

tries, literature review on state-of-the-art energy-efficient technologies, and motiva-

tions of this dissertation, mathematical modeling of MPs and FMSs using different

languages will be detailed.

First, a novel approach is proposed to reduce the number of required sensors in

process state tracking by identifying the operational states of MPs using useful in-

formation and features in energy data. Finite-state machines (FSMs) are used to

model MPs, and a two-stage framework for online classification of real-time energy

data in terms of MP operational states is proposed using Haar transform and em-

xiv



pirical Bayesian (EBayes) threshold for segmentation of time series of power data

and support vector machines (SVMs) for clustering of power segments into groups

according to underlying MP operational states. Based on obtained results, we design

an energy data-driven decision support system (DSS), which uses real-time energy

measurements and process operational states to make effective decisions, enabling

high-performance manufacturing.

Next, the reduction of energy consumption is studied in scheduling and opera-

tional control of FMSs. A dynamic scheduling problem which minimizes the sum of

energy cost and tardiness penalty under power consumption uncertainties is studied.

An integrated control and scheduling framework is proposed including two modules,

namely, an augmented discrete event control (ADEC) and a max-throughput-min-

energy (MTME) reactive scheduling model.

A total energy optimization problem is studied next, which aims to minimize both

productive and idle energy consumption optimally subjected to the general production

constraints, using the weighted p-timed Petri net (WTPN) models of FMSs. The

considered problem is proven to be a nonconvex mixed integer nonlinear program

(MINLP). A new reachability graph (RG)-based discrete dynamic programming (DP)

approach is proposed for generating near energy-optimal schedules within adequate

computational time.

Extending the total energy optimization problem to deal with uncertainties in

energy measurement process, a robust energy optimization problem is studied where

xv



both productive and idle powers are random variables (RVs). The robust energy-

optimal schedule is determined by searching the robust shortest path of WTPN RG

based on a novel Renyi mean-entropy (ME) criterion. It is shown that DP can be

applied with Renyi ME criterion to construct the robust shortest path efficiently.

This dissertation presents novel energy-efficient technologies to fulfill the emerging

green demands for high-performance manufacturing industries, which require manu-

factured products not only to be free of flaws but also to be environmentally sustain-

able. In addition to necessary simulations, our proposed energy-efficient technologies

are verified with energy data logged from industrial manufacturing plants, making our

contributions readily applicable for high-performance manufacturing industries.
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Chapter 1

Introduction

Improving energy efficiencies is the most important step for achieving security of

energy supply, environmental protection, and economic growth. A large portion of

global energy consumption and carbon dioxide (CO2) emissions are attributable to

manufacturing industries, especially the primary material industries such as chemicals

and petrochemicals, iron and steel, cement, paper, and aluminium. While impres-

sive improvements of energy efficiencies have already been achieved in the past two

decades, energy consumption and CO2 emissions in manufacturing industries could

be still further reduced significantly, if effective energy-efficient technologies are to be

applied.
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1.1 Background

Climate change is an emerging challenge of our time. The scientific evidence of

its occurrence, its derivation from human energy consumption, and its potentially

devastating effects accumulate [1]. Sea levels have risen by 15–20 cm, on average, over

the last century and this increase has accelerated over the last decade [2]. Oceans

are warming and becoming more acidic, while the rate of ice-sheet loss is increasing.

The Arctic provides a particularly clear illustration, with the area of ice covering the

Arctic Ocean in the summer diminishing by half over the last 30 years to a record low

level in 2012. There has also been an increase in the frequency and intensity of heat

waves, resulting in more of the world being affected by droughts, harming agricultural

production [3].

Global awareness of the phenomenon of climate change is increasing and political

action is underway to try and tackle the underlying causes, both at national and

international levels. Governments, based on the results of scientific research [4, 5],

agreed at the United Nations Framework Convention on Climate Change Conference

of the Parties in Cancun, Mexico in 2010 that the average global temperature in-

crease, compared with pre-industrial levels, must be held below 2 degrees Celsius,

and that means greenhouse-gas emissions must still be reduced significantly. This

new global climate agreement will come into effect in 2020. But although overcoming

the challenge of climate change will be a long-term endeavour, urgent actions are re-
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Figure 1.1: Delivered energy consumption by sector 1980–2040 [6].

quired, well before 2020, in order to keep open a realistic opportunity for an efficient

and effective international agreement from that date.

1.1.1 Energy Consumption of Manufacturing Industries

Global CO2 emissions from fossil-fuel combustion increased again in 2012, reach-

ing a record high of 31.6 gigatonnes, according to some preliminary estimates [7].

Furthermore, under business-as-usual assumptions, the U.S. Energy Information Ad-

ministration (EIA) projects worldwide energy consumption of primary sectors to be

constantly increased in next twenty-five years as shown in Figure 1.1, as the global
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Figure 1.2: Global energy consumption 1990–2035 [8].

recovery from the 2008–2009 worldwide economic recession continues to advance [6].

Two nations were least affected by the recession are China and India. Strong

economic growth leads China and India to more than double their combined energy

demand by 2035, accounting for one-half of the world’s energy growth as shown in

Figure 1.2. EIA projects that China and India together will consume 31% of the

world’s energy in 2035, up from 21% in 2008. China, which surpassed the United

States as the world’s largest energy consumer in 2009, is the predominant driver

of growing energy demand. By 2035, China’s projected energy consumption is 68%

higher than U.S. energy consumption. Global energy consumption grows 53% between

2008 and 2035, representing an average annual growth rate of 1.6%.
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Among major national sectors including transportation, residential, and commer-

cial, the industrial sector has been constantly responsible for the largest percentage of

energy consumption as shown in Figure 1.3. The worldwide industry makes up diverse

sub-sectors including manufacturing, agriculture, mining, and construction, etc. Of

these sub-sectors, manufacturing is the most energy-intensive. Manufacturing’s en-

ergy consumption is projected to grows from 191 quadrillion British thermal units

(BTUs) in 2008 to 288 quadrillion BTUs in 2035 with the energy demand increasing

by an average of 1.5% per year. The industrial sector experienced a significant re-

duction in energy usage in 2009 due to the global economic recession, which caused

substantial cutbacks in manufacturing outputs demand. In the long term, national

economic growth rates return to a constant increase and so does the industrial energy

consumption.

The energy consumption of Singapore is overseen and regulated by Singapore

Energy Market Authority (EMA), which is a statutory board under the Ministry of

Trade and Industry. EMA’s main goals are to ensure a reliable and secure energy

supply, promote effective competition in the energy market, and develop a dynamic

energy sector. Among major sectors in Singapore, industrial sector is the largest gas

consumer, accounting for 79.9% of total gas consumption. For electricity consump-

tion, industrial sector is also the second-largest consumer, accounting for 34% of total

electricity consumption [9].

Over the past eight years or so, Singapore industrial sector’s consumption of en-
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Figure 1.3: Annual changes in world industrial and all other end-use energy consump-

tion 2007–2011.

ergy has increased by a whopping 27% [10]. Its share of total energy consumption is

expected to rise further, especially with expansion of the energy-intensive petrochem-

ical industries. Oil refining, petrochemicals, and wafer fabrication have the highest

energy consumption. Apart from the oil refining and petrochemical subsectors for

which electricity accounts for less than half of total energy costs, most manufacturing

companies consume energy mainly in the form of electricity. For some industries,

energy constitutes a small proportion of total operating costs but their absolute total

energy costs are actually relatively high due to high production output. The energy is

consumed for space cooling purposes and to drive various MPs. There is tremendous

potential to save energy in industrial sector and increase economic competitiveness
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through improvements of energy efficiencies, but rising industrial energy efficiencies

has not proven to be easy.

As compared other developed countries, Singapore is a highly energy-intensive

country. The energy consumption per capita for selective developed countries in

2006 is reported in Figure 1.4 based on statistics from EIA and International Energy

Agency (IEA) [6, 8], where Singapore is seen to have high energy consumption per

capita according to both data sources.

7



1.1.2 Energy Saving Potentials through Energy-Efficient

Technologies

Incrementally optimizing the systems in industrial facilities’ operations is usually the

most cost-effective way to improve energy efficiencies. This entails applying best

practices and a progressive investment in equipment and technological upgrades. For

example, an intelligent energy audit technology can quickly determine what systems

within the plant use the most energy. Plant managers can then estimate the costs of

these systems, determine the payback, and make the case for capital expenditures.

U.S. has the world’s largest manufacturing economy, responsible for 18.2% of

global manufactured products. To compete more effectively in the challenging man-

ufacturing marketplace, the U.S. industrial sector continues to search for ways to

become more productive. The reduction of energy presents significant opportunities

for manufacturing industries to maximize efficiencies and productivity, cut expenses,

create jobs, reduce emissions, and enhance competitiveness [11]. Energy-efficient

technologies have always perceived as a key to energy saving capabilities [12–14].

Increased adoption of energy-efficient technologies is projected to reduce energy con-

sumption by an additional 4.7 quadrillion BTU per year, which is almost 27% of the

current energy consumption. As such, U.S. manufacturing industries aim to double

their current energy efficiencies by 2020 [15].

Singapore’s manufacturing industries had been significantly improving their en-
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ergy efficiencies over the past years, and aim to reduce the energy intensity output

by 35% as compared to 2005 levels. Energy-efficient technologies are now one of the

key focuses of the Government to meet this target [9]. To encourage more industrial

facilities to invest in energy-efficient equipment and technologies, Singapore govern-

ment provides a grant for energy-efficient technologies to companies to help offset part

of the investment cost. The grant was launched in November 2008 and is now co-

administered by the National Environment Agency and the Economic Development

Board of Singapore.

1.2 Literature Review on Energy-Efficient Tech-

nologies

Research literature is quickly adapting to this emerging green trend in green manu-

facturing industries, where novel energy-efficient methods have been frequently pro-

posed in recent years [16]. The existing energy-efficient methods can be categorized

into three main directions including [17]

1. energy policy, in which the governmental bodies set legislation, taxation, and

penalties on energy consumption;

2. energy management such as energy audits and reporting, courses and training

programs, and energy housekeeping, etc.; and

3. energy-efficient technologies, which directly improve manufacturing plants’ en-

9



ergy efficiencies.

This section is intended not to provide a broad survey of general energy-efficient re-

search and development (R&D), but to focus only on direction 3. Energy-efficient

technologies are the most technical and directive approaches for the next generation

of energy-efficient manufacturing. They involve multiple engineering disciplines, e.g.,

chemical, mechanical, control and automation, electronic, and mechatronics, etc.

Each technology is at a different point in the development or commercialization,

indeed, many of them still need further R&D to evaluate costs and performances.

In this chapter, energy-efficient technologies are reviewed according to four different

approaching levels, namely systems, process, facility, and equipment.

1.2.1 Systems Level

At the systems level, energy-efficient technologies can be facilitated through the ap-

propriate planning and scheduling of machines, tools, materials, people, and infor-

mation to produce energy-efficient workflows and resource assignments. Planning

is the procedure of selecting among different processing possibilities (for a specific

product), each of these possibilities poses different advantages and limitations, these

are, functions of both geometries and lots size of to-be-manufactured products; while

scheduling is the procedure of assigning resources for specific instances to selected pro-

cess plans, which is in fact an optimization process by which resources are allocated

among parallel and sequential jobs.
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Energy efficiencies were early adopted into computer-aided process planing

(CAPP) by Sheng and colleagues [18,19], where a feature-based multi-objective model

was proposed considering environmental metrics such as process energy, process time,

and fluid coated on chips, etc. This model was further detailed in [20] based on micro-

planning and macro-planning case studies of industrial cutting process. R&D on

energy-efficient CAPP was continued in [21] to support green manufacturing, where

optimization of energy consumption was considered as part of the planning process.

Similar approaches can also be found in [22,23]. Altogether, these researches provided

a basis for future R&D in energy-oriented and multi-objective CAPP combining both

micro/macro-decisions with mathematical rigors.

Energy consumption was just recently synthesized into the FMS scheduling.

The energy-efficient shop scheduling problems were studied by [24, 25], where multi-

objective mixed-integer programming and preference vector ant colony system were

employed for decision-making, respectively. The energy consumption reduction was

investigated through effective scheduling of machine startup and shutdown, where

machines were assumed to have Bernoulli reliability model [26]. The control strategy

for a closed-loop flow shop was designed to coordinate running of the machines and

motion of pallets to minimize energy consumption in idle machines [27]. The robotic

manufacturing systems were considered in [28], where energy optimal trajectories

were generated for a range of execution times for the individual operations based on

only a single simulation.
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1.2.2 Process Level

Manufacturing industries comprise of many distinct MPs such as grinding, milling,

injection moulding, and stamping, etc. Each process includes a unique procedure of

chemical or mechanical steps to aid in the manufacture of a product. Last decade

has witnessed an overwhelming research interest in energy-efficient MPs.

Adjustment of cutting conditions was proven capable of improving energy effi-

ciencies by numerical experiments [29]. This work was extended at the same time

by [30] and [31], where calculation of optimal cutting parameters was mathematically

proposed. Through an indirect method, a simulation-based technique was proposed

to predict cutting forces that result in minimum energy consumption [32]. The energy

consumption behavior of milling process was studied in [33]. Baker and McKenzie de-

scribed practical methods for benchmarking the energy consumption of the industrial

dryers, and suggested a number of techniques for implementing energy saving. [34].

Sun et al. studied theoretical minimum and actual specific energy consumption (SEC)

of typical MPs [35]. The results showed that typical MPs had a theoretical minimum

SEC of 6.74 Gigajoule/tonne (GJ/t) and an additional SEC of 19.32 GJ/t, which

accounted for 25.88% and 74.12% of the actual SEC, respectively. Palamutcu in-

vestigated unit electric energy consumption of cotton textile processing stages using

real-time msuring method [36]. Actual and estimated SEC values for electric energy

were calculated in the cotton textile processing stages of spinning, warping-sizing,
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weaving, wet processing and clothing manufacturing. It was found that actual energy

consumption per unit textile product is higher than the estimation of each involved

textile processing stage.

1.2.3 Facility Level

Manufacturing facilities include various utilities which support manufacturing oper-

ations such as wireless sensor networks (WSNs), air conditioners (ACs), lighting and

heating systems, and databases, etc. Of these facilities, ACs are biggest energy con-

sumers. In recent years, traditional ACs have been modified in several ways to improve

energy efficiencies. The solar-assisted ACs were frequently studied in [37–40], where

fuzzy logics were applied as controllers. Other researches on modified energy-improved

ACs include ground-assisted for direct evaporative cooling [41], split-type [42], and

domestic hot water supply [43], etc.

Besides ACs, WSNs have also been frequently investigated. Current approaches

to energy-efficient WSNs concentrate on optimal routing, planning, and forward-

ing methods. An energy-aware routing for real-time and reliable communication in

wireless industrial sensor networks was studied in [44]. A scalable offline planning

approach was discussed in [45]. A distributed topology control technique for low

interference and energy efficiency in industrial WSNs was also proposed in [46].
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1.2.4 Equipment Level

Manufacturing equipment such as machines, tools, and robots, etc., are the primary

components in manufacturing industries. The energy costs needed to operate these

equipment throughout their useful life can easily exceed the original purchasing costs.

Although, improvements in equipment design and optimization can improve the en-

ergy efficiencies, daily operations and machine maintenance play even more important

roles in reducing environmental impacts and costs. Energy efficiencies and equipment

reliability were shown to be closely correlated [47].

Mouzon and Yildirim reported several works on operational methods for sus-

tainable production planning of manufacturing equipment [48–50]. Neugebauera and

colleagues discussed the structure principles of machine tools [51], and proposed an

energy-efficient tool designs using virtual reality simulation [52]. On the other hand,

energy efficiencies were improved through product designs using a softcomputing tech-

niques [53]. Lightweight component designs were discussed comprehensively, consid-

ering direct and indirect effects of mass reduction on energy consumption [54]. A

self-optimization approach to energy-efficient equipment was also discussed in [55].

Other equipment that have been studied include press-brakes [56], injection moulding

machines [57], milling machines [58], and translatory feed axes [59], etc.

A specific equipment that has drawn much attention from researchers is industrial

motor. New optimal current control methods for energy-efficient synchronous motors
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were proposed in [60]. A novel energy-efficient single-phase induction motor with

three series-connected windings and two capacitors was studied in [61]. Concepts and

principles of energy-efficient motors were summarised in [62], and a comprehensive

comparison between induction and permanent magnet motors was given in [63].

1.3 Motivation of Dissertation

Green manufacturing, a concept rarely heard before 2008, now occupies a prominent

position in the discourse of international economic institutions. Expanding economic

activity has been accompanied by growing concerns about climate change, energy

security, and scarcity of natural resources. Although governmental regulations and

managerial policies have helped to reduce energy consumption, they are typically not

the most efficient way and do not offer enough incentives to innovate beyond end-of-

pipe solutions. As such, energy-efficient technologies have been perceived as central

for a global paradigm shift towards green manufacturing.

At the systems level, idle energy consumption was usually omitted or assumed

to be trivial in energy-efficient operational control and scheduling of FMSs. This

assumption may not be applicable in many realistic FMSs, where idle energy is ob-

served to be significant as compared to total energy consumption [64]. In addition,

most existing energy-efficient technologies for scheduling of FMSs presented in Sec-

tion 1.2.1 often deal with deterministic manufacturing environments, where energy

consumption is assumed to be deterministic and there is no uncertainty that would in-
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fluence the established schedule. Real-world manufacturing is, however, dynamic and

subjected to a wide range of uncertainties. Common sources of uncertainties in dy-

namic manufacturing environments have been classified into two categories, namely,

resource-related uncertainties such as machine breakdown, machine degradation, tool

wears, and job-related uncertainties such as rush jobs, job cancellation, stochastic

processing time [65]. In general, the FMS scheduling problem is non-deterministic

polynomial-time hard (NP-hard) in computational complexity theory, but considera-

tion of uncertainties further aggravates its complexity, which impedes the effectiveness

of a scheduling algorithm in handling uncertainties.

In addition, most existing energy-efficient technologies presented in Section 1.2

and the newly proposed technologies in this dissertation will need both energy and

state data of MPs to make energy-efficient decisions. For example, the recently pro-

posed technologies in [48,50] continually require real-time information of both energy

data and operational states (busy or idle) of involved resources. In other technolo-

gies, energy and state data of MPs are explored more thoroughly. An entire cycle

of industrial milling process was divided into nine operational states (e.g., run-up,

spindle running, chipping milling, etc.) in a generic energy optimization model [33].

An industrial plastics welding process was also dismantled into six operational states

(e.g., start-up, stand-by, waiting, and processing, etc.) used for an energy-efficient

planning methodology called EnergyBlocks [23].

Traditionally, energy monitoring and process state tracking are carried out sep-
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arately using either extraneous number of sensors or accounting exercises, which are

expensive for large-scale FMSs. To reduce the number of required sensors for energy

monitoring, theoretical estimations of energy consumption for particular industrial

processes were derived based on the processing parameters [66, 67]. Such theoretical

estimations could be precise but are computationally intensive to implement as many

process parameters must be known a priori.

1.4 Contributions and Organization

This dissertation concentrates on the study and development of energy-efficient tech-

nologies using operations research and artificial intelligence principles for the next

generation of high-performance manufacturing industries. Technically, we shall focus

on operational control and scheduling of FMSs with and without uncertainties in en-

ergy data for enhanced energy efficiencies, as well as time series analysis of energy

data for real-time intelligent energy monitoring and process state tracking.

The original contributions of this dissertation are as follow:

1. Proposes a novel approach to reduce the number of required sensors in pro-

cess state tracking by identifying the operational states of MPs by extracting

useful information and features in energy data. Finite-state machines (FSMs)

are used to model MPs, and a two-stage framework for online classification of

real-time energy data in terms of MP operational states is proposed. To justify
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our proposed framework, comparative experiments with an existing framework

are evaluated on two industrial applications, an injection moulding system

and a stamping system. Based on the obtained results, an energy data-driven

decision support system (DSS) is designed to use real-time energy measure-

ments and process operational states for effective decision-making, enabling

high-performance manufacturing.

2. Proposes an integrated control and scheduling framework, which includes two

modules: the ADEC and a novel MTME, to optimize the sum of energy cost

and tardiness penalty in FMSs under power uncertainties due to machine degra-

dation. Our proposed framework is applied to an industrial stamping system

with power consumption uncertainties formulated using three different prob-

ability distributions to verify it effectiveness as compared the related work in

current literature in terms of deviation from Pareto optimality and mean in-

terrupted time.

3. Formulates a total energy optimization problem for FMSs using WTPN and

proposes a new RG-based DP scheduling algorithm. The resulted schedules

are obtained with low deviation from global optimality and within adequate

computational time as compared to the related works in current literature.

4. Extends the deterministic total energy optimization problem with its robust

counterpart to deal with uncertainties in energy measurements. A novel ro-

bustness measure is proposed, called Renyi ME criterion, using Renyi quadratic
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entropy for searching the robust shortest path of WTPN RG. The effectiveness

of Renyi ME criterion is compared with the related works in current literature

in terms of computational complexity and deviation from global optimality.

The rest of the dissertation is organized as follow:

• Chapter 2 describes MPs and FMSs and introduces their mathematical mod-

eling languages.

• Chapter 3 proposes a novel approach to identify the operational states of MPs

by extracting useful information and features in energy data.

• Chapter 4 details the use of ADEC and MTME to minimize the sum of en-

ergy cost and tardiness penalty under power consumption uncertainties due to

machine degradation.

• Chapter 5 explores the use of WTPN and DP to optimize total energy con-

sumption in FMSs.

• Chapter 6 extends the total energy optimization problem presented Chapter 5

with its robust counterpart to deal with uncertainties in energy measurement

process and proposes the Renyi ME criterion for robustness measure.

• Chapter 7 summarises the findings and results of this dissertation, and presents

some possible future research directions.
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Chapter 2

Descriptions and Modeling of Flex-

ible Manufacturing Systems

Manufacturing is the backbone of any industrialized nation. Manufacturing staffs

work with the various manufacturing processes (MPs) including materials being pro-

cessed, tools and equipments for manufacturing different components and products,

and process planning to efficiently meet production requirements. In addition, the

operational skills of flexible manufacturing systems (FMSs) in term of scheduling ma-

chines, robots, conveyer belts, etc., and routing parts from raw materials to finished

products are also crucial. This chapter is used to introduce the basic descriptions of

MPs and FMSs and their mathematical modeling languages.

20



2.1 Descriptions

A MP is the process followed in a manufacturing plant for converting semi-finished

parts or raw materials into finished parts with application of different types of tools,

equipments, and machines. Prior to executing a MP, careful process planning is often

required [18,22]. This consists of selection of means of production (machines, cutting

tools, presses, jigs, fixtures, measuring tools, etc.), establishing the efficient sequence

of operation, determination of changes in form and dimension, or finish of the machine

tools in addition to the specification of the actions of the operator. It includes the

calculation of the machining time, as well as the required skill of the operator [20]. It

also establishes an efficient sequence of manufacturing steps for minimizing material

handling which ensures that the work will be done at the minimum cost and at

maximum productivity. Examples of MPs may include machining, casting, forging,

sheet metal forming, assembling, and heat treatment, etc.

The entire MP cycle can be often decomposed into a finite number of operational

states, which are linked to the status of machine components [33]. During the MP

cycle, the machine switches from one state to another at different instances in time.

The energy consumption of a MP is therefore given as the sum of the consumption

of individual components of the machine. This, in turn, is determined by the opera-

tional states, which define which components are active and thus consuming a certain

amount of basic power, as well as the transitions of a MP executed by the machine.
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Figure 2.1: Power consumption profile of injection moulding process using Arburg

A220 S 150–6 machine tool [68].

Example 2.1 To illustrate the state-based analyses of MPs, let us demonstrate the

injection moulding process considered in [68]. Figure 2.1 shows a typical power con-

sumption profile of Arburg A220 S 150–60 hydraulic injection moulding machine tool,

which is used for a wide variety of applications and can be individually adapted for

operation in conjunction with all familiar injection moulding techniques within a

clamping force range from 125 to 5000 kilonewton. Therein, the actual input power

at the main connection of the machine is plotted over time. As highlighted in Fig-

ure 2.1, the total energy intake for the execution of the milling operation is equal to

the integral of the power over the entire operation of the machine. Darker areas of the
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graph indicate a fast oscillation of the power drain. Several operational states can be

clearly observed during the execution of the injection moulding cycle including (A)

Switch off, (B) Warm up, (C) Idle, (D) Start up, (E) Moulding, and (F) Pump/heat.

On the other hand, a manufacturing system usually consists of resources, each

of them can perform one or more MPs, working together to produce finished parts.

In an era of intensive competition, most manufacturing systems have migrated from

conventional fixed-hardware sequential or batch production with dedicated worksta-

tions in the shop floor into an FMS. A typical FMS is characterized by the following

four major components [69]:

1. a set of machines, robots, fixtures, or work stations,

2. an automated material handling system that allows flexible part routing,

3. distributed buffer storage sites where the parts may be temporarily placed

during processing, and

4. a computer-based supervisory controller for monitoring the status of jobs and

directing part routing and machine job selections.

This section covers the descriptions of a class of FMSs with shared resources and

flexible part routes. Mathematical models for computer-based supervisory controller

of FMSs are also detailed with insights from discrete-event analyses.

The standard assumptions that define the sort of discrete-part manufacturing

systems are: (i) no preemption – Once assigned, a resource cannot be removed from
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a job until it is completed; (ii) mutual exclusion – A single resource can be used for

only one job at a time; (iii) hold while waiting – A process holds the resources already

allocated to it until it has all the resources required to perform a job; and (iv) no

resource failures.

The class of FMSs, investigated herein, has the following properties [70]: a) each

part type has a strictly defined sequence of jobs; b) each job in the system requires one

and only one resource; c) there are choice jobs (the term choice job is used when the

parts can be processed by alternative machines) and shared resources (the term shared

resource is used when the resources can perform different jobs); d) resource allocation

and part routing are flexible; and e) there are no assembly jobs. Such configuration

can be encountered in many realistic manufacturing flowlines, job shops, and material

handling systems, etc.

An FMS consists of |R| types of resources, denoted by R = {ri, i = 1, 2, . . . , |R|},

to manufacture |Π| types of parts, where |•| is a standard term to denote the cardinal-

ity of a set. Each resource can be a machine, a conveyor, a robotic arm, an automated

guided vehicle, etc. In large-scale FMSs, ri can denote a pool of similar resources.

The capacity of ri is denoted by C (ri), which indicates the maximal number of parts

that ri is able to hold simultaneously. Resources which can perform multiple jobs

are called shared resources, while resources which can perform only one job are called

non-shared resources.

The set of part types is denoted by Π = {πq, q = 1, 2, . . . , |Π|}, and ϕ (πq) is the
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number of type-πq parts to be manufactured. Each πq has a strictly defined sequence

of jobs ωq = vq1v
q
2 . . . v

q

|ωq|, where v
q
j is the jth job in ωq and |ωq| is the length of ωq.

The set of jobs is denoted by V =
{

vqj , q = 1, 2, . . . , |Π| , j = 1, 2, . . . , |ωq|
}

. In an FMS

with flexible part routing, choice jobs are ubiquitous. Therefore, V can be partitioned

into two disjoint sets, V = Vz ∪ Vnz, where Vz and Vnz denote the sets of choice and

non-choice jobs, respectively. Let R
(

vqj
)

be the set of resources which can perform vqj .

Obviously,
∣

∣R
(

vqj
)
∣

∣ > 1 if vqj ∈ Vz and
∣

∣R
(

vqj
)
∣

∣ = 1 if vqj ∈ Vnz. For each vqj ∈ Vz,

assume that vqj−1 ∈ Vnz is a routing job and ri ∈ R(vqj−1) is a resource which routes

parts. A routing resource is often a robotic arm, an automatic guided vehicle, and a

conveyor, etc. The routing resources act as some kinds of crossroads where scheduling

decisions regarding part routing are made. The role of routing resources is important

in any kind of Petri net (PN) modelling of FMSs with choice jobs, as they significantly

reduce the size of supervisory controllers [70]. For each πq, ωq is associated with two

fictitious jobs vqin and vqout, called input buffer and output buffer, which represent

the storage of raw and finished parts, respectively. vqin and vqout do not require any

resources, thus R (vqin) = R (vqout) = ∅.

In an FMS where energy consumption is concerned, energy data are often logged

and documented in some convenient forms. In this dissertation, the productive powers

to manufacture πq are archived in a |R| × |ωq| matrix Aq, where element aqij denotes

the productive power of ri to perform vqj . a
q
ij = 0 if ri cannot perform vqj . The idle

powers are archived in a |R| × 1 vector b, where element bi denotes the idle power
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Part      in 1

Part      in 2

Part      out 1

Part      out 2

Robot R1 Robot R2

Robot R3

Machine M1

Machine M2

Machine M3

Machine M4

Machine M5

Figure 2.2: An example of FMSs with two part types, eight jobs, and eight resources

including five machines and three material routing robots.

of ri. In a |R| × |ωq| matrix Dq, element dqij denotes the processing time of ri to

perform vqj . d
q
ij = 0 if ri cannot perform vqj .

{

aqij , bi, d
q
ij

}

⊆ R
+, where R

+ denotes

the set of nonnegative real numbers.

Example 2.2 An example of FMSs is shown in Figure 2.2. There are two part

types π1 and π2, a total of eight resources including five machines denoted by M1−M5

and three material routing robots denoted by R1− R3. Part π1 has a job se-

quence ω1 = v1inv
1
1v

1
2v

1
3v

1
4v

1
out, where v12 and v14 are stamping jobs, and v11 and v13

26



are routing jobs. This implies that both v12 and v14 are choice jobs. Part π2 has a job

sequence ω2 = v2inv
2
1v

2
2v

2
out, where v

2
2 is a choice stamping job, while v21 is a routing

job.

For each choice job, there is an associated routing resource which routes parts. For

instance, choice job v12 can be processed by M1 or M2, and is associated with routing

resource R1; choice job v14 can be processed by M3 or M4, and uses routing resource R2

for part routing; and choice job v22 can be processed by M2 or M5, and is routed by

routing resource R3, etc. All routing resources are non-shared. All stamping machines

are non-shared resources, except for M2. The productive power matrices Aq (kW),

the idle power vector b (kW), and the processing time matrices Dq (kW) of FMS

example can be constructed as shown in (2.1)–(2.5).

M1 M2 M3 M4 M5 R1 R2 R3

(A1)
T
=

v11

v12

v13

v14

























0 0 0 0 0 2.5 0 0

3.2 4.6 0 0 0 0 0 0

0 0 0 0 0 0 2.5 0

0 0 3.7 5.8 0 0 0 0

























,
(2.1)

M1 M2 M3 M4 M5 R1 R2 R3

(D1)
T
=

v11

v12

v13

v14

























0 0 0 0 0 3.5 0 0

2.6 5.8 0 0 0 0 0 0

0 0 0 0 0 0 3.5 0

0 0 4.2 6.1 0 0 0 0

























,
(2.2)
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M1 M2 M3M4 M5 R1R2 R3

(A2)
T
=

v21

v22









0 0 0 0 0 0 0 2.5

0 3.4 0 0 5.2 0 0 0









,
(2.3)

M1 M2 M3M4 M5 R1R2 R3

(D2)
T
=

v21

v22









0 0 0 0 0 0 0 3.5

0 2.7 0 0 3.6 0 0 0









,
(2.4)

M1 M2 M3 M4 M5 R1 R2 R3

bT =

[

2.1 1.2 1.4 1.7 1.8 0.8 0.8 0.8

]

.

(2.5)

The productive power and processing time of M2 to perform job v12 are 4.6 kW and

5.8 s, respectively, while M1 only requires 3.2 kW and 2.6 s. Similar observation can

be made for other choice jobs. The idle powers of machines are also not identical.

The differences in productive powers and processing times required to perform the

same choice job by different machines are central to the study of FMS scheduling to

be presented in Chapters 4–6.

2.2 Finite-State Machine Models of Manufactur-

ing Processes

An FSM is a mathematical model commonly used to represent discrete-event and

logicial systems [71]. An FSM is generally represented mathematically by a quintu-
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ple (ΣF , SF , sF0, δF , FF ), where:

• ΣF is the input alphabet in a finite and non-empty set of symbols;

• SF is a finite and non-empty set of states;

• sF0 is the initial state of an element in SF ;

• δF is the state-transition function δ : SF × ΣF → SF ; and

• FF is the set of final states and a (possibly empty) subset of SF .

An FSM is also represented graphically using a directed graph with states, tran-

sitions, and actions (or triggers). From the observations of the power consumption

profiles in Figure 2.1, an FSM energy consumption model in the form of diagraph can

be built as shown in Figure 2.3.

Switch off Warm up

Idle Start up

Molding

Pump/heat

Figure 2.3: FSM models of industrial injection moulding process.
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Each operation state is defined according to the functionality of the machine. The

states are linked by transitions which define the possible operation states which a ma-

chine can switch from its present state. Transitions are represented by unidirectional

arrows. Certain conditions may have to be satisfied for a transition to be activated,

e.g., the production state requires raw material to be input to the machine.

2.3 Weighted P-Timed Petri Net Models of Flex-

ible Manufacturing Systems

This section briefs the notations of PN and introduces the WTPN models of FMSs

for energy-optimal scheduling. For analysis of structural properties of PN, interested

readers are referred to [70, 72] for more details.

2.3.1 Petri Nets

A PN is a bipartite (having two sorts of nodes) digraph denoted by χ = (P, T, I, O),

where P and T are finite and disjoint sets. P is the set of places, T is the set of

transitions, I is the set of (input) arcs from places to transitions, and O is the set of

(output) arcs from transitions to places. In a PN, given a node α ∈ P ∪T (α is either

a place or a transition), define by •α , called pre-set of α, the set of nodes that have

arcs to α, and by α•, called post-set of α, the set of nodes that have arcs from α.

It is common in PN theory to represent I and O as matrices. Thus, element iij of
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the Boolean input incidence matrix I is equal to 1 if place pj is an input to transition ti.

Similarly, the output incidence matrix O is defined. Then, the PN incidence matrix

is defined as

W = O− I. (2.6)

A column vector x indexed by P , i.e.,

xT =

[

x1 x2 . . . x|P |

]

, (2.7)

is called the PN state or marking vector. A column vector u indexed by T , i.e.,

uT =

[

u1 u2 . . . u|T |

]

, (2.8)

is called the PN control or firing vector.

Definition 2.1 (Marking) Given a PN, the PN state (or marking) is the number

of tokens in each place. Given a place pj ∈ P , the state of pj is represented by an

element xi of x, denoted by xi = M (pj). Thus, x is a state vector of the individual

places. If a PN is analyzed in some domains, e.g., discrete-event domain, it is common

to add a subscript to x, i.e., xk and its elements xik denote the PN state at event k.

A PN χ with an initial marking x0 is called a marked PN, denoted by (χ,x0).

Definition 2.2 (Firing) uk denotes which transitions are fired at k, where ele-

ment uj = nj if the jth transition is fired nj times. In terms of the PN incidence

matrix, one can write the PN state equation as

xk = xk−1 +WTuk, (2.9)

31



which means a transition is said to be enabled and can be fired, if all its input places

are marked. Firing a transition once removes one token from each of its input places

and adds one token to each of its output places.

2.3.2 Weighted P-Timed Petri Nets

To improve the description ability of PNs for formulation of the total energy opti-

mization problem, the PNs are extended such that each p ∈ P is associated with a

pair {c, h} ⊆ R
+ written by p 〈c, h〉, where h denotes the minimal token sojourn time

and c is the sojourn cost per time unit. This means tokens are forced to spend at

least h time units in p, immediately after their arrival, with the incurred cost is c per

time unit.

In our modelling, the places represent resources and jobs, and the transitions

represent decisions or rules for the starting and completion of jobs, which also involve

allocation and release of resources. In particular, P = PV ∪ PR ∪ Pin ∪ Pout, with

the places in PR, PV , Pin, and Pout, representing the availability of resources, jobs

(i.e., jobs on parts carried out by the resources), input buffers, and output buffers,

respectively.

A vqj ∈ Vnz with R
(

vqj
)

= ri is represented by a place pqj 〈cqj , hqj〉 ∈ PV ,

where cqj = aqij and hqj = dqij . A vqj ∈ Vz with R
(

vqj
)

= {ri, ri′, . . .} is represented by

a set of places

{pqji 〈cqji, hqji〉 , pqji′ 〈cqji′, hqji′〉 , . . .} ⊂ PV , (2.10)
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where cqji = aqij , cqji′ = aqi′j , hqji = dqij , and hqji′ = dqi′j .

Resource places always occur off part-paths. A resource ri is represented by a

place pi 〈ci, hi〉 ∈ PR, where ci = bi and hi = 0. It is worth noting that hi is the

release time of resource ri, which is assumed to be zero in this dissertation. As

such, it is convenient to simplify pi 〈ci, hi〉 to pi 〈ci〉 for all pi ∈ PR. For input and

output buffers, places pqin ∈ Pin and pqout ∈ Pout are used to represent vqin and vqout,

respectively, which have neither minimal token sojourn time nor the sojourn cost per

time unit. Since transitions are not important in our analysis, they are simply labeled

in numerical order according to their order of appearance. Usually, index i (j, q) is

replaced with job or resource notation, e.g., pM1 stands for the place that corresponds

to resource M1.

An available resource or an ongoing job is indicated by tokens in the respective

places. It is assumed that places in Pin are always marked (i.e., there is always a part

ready to enter) and those in Pout are always empty (i.e., finished product is pulled out

immediately). The marking x : P → Z
+, with Z

+ as the set of nonnegative integers,

gives the distribution of tokens. {χ,x} denotes a marked PN. For the FMS shown in

Example 2.2, the WTPN models can be constructed as shown in Figure 2.4.

For the analyses of WTPN models of FMSs, the following definitions should be

detailed.

Definition 2.3 (Initial State) The initial state of the WTPN models of FMSs is
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p1
in

p11

〈2.5,3.5〉

p121

〈3.2,2.6〉

p122

〈4.6,5.8〉

p13

〈2.5,3.5〉

p143

〈3.7,4.2〉

p144

〈5.8,6.1〉

p1out

p2
in

p21

〈2.5,3.5〉

p222

〈3.4,2.7〉

p225

〈5.2,3.6〉

p2out

pR1 〈0.8〉

pM1 〈2.1〉

pM2 〈1.2〉

pR2 〈0.8〉

pM3 〈1.4〉

pM4 〈1.7〉

pR3 〈0.8〉

pM5 〈1.8〉

t11

t12

t13

t14

t15

t16

t17

t18

t19

t21

t22

t23

t24

t15

Fig. 1. PN structure of the stamping system.

Figure 2.4: WTPN models of FMS example.

defined by

xi0 =































C(ri) if xi =M (pi) , pi ∈ PR;

ϕ (πq) if xi =M (pqin) , p
q
in ∈ Pin; and

0 otherwise,

(2.11)

which means tokens only distribute in the input and resource places initially.

Definition 2.4 (Final State) The final state of the WTPN models of FMSs is de-
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fined as

xi|K| =































C(ri) if xi =M (pi) , pi ∈ PR;

ϕ (πq) if xi =M (pqout) , p
q
out ∈ Pout; and

0 otherwise,

(2.12)

which means tokens only distribute in the output buffer and resource places finally.

|K| denotes the total number of firing epoches.

Definition 2.5 (Split Places and Scheduling) In a PN, |•t| = |t•| = 1, ∀t ∈ T .

When p ∈ P , |p•| > 1, p is called a split place. If p ∈ PR is a split place, then p

represents a shared resource. If p ∈ PJ is a split place, then p represents a routing job

and the next job is a choice job. In an FMS with shared resources and flexible part

routes, split places are ubiquitous, which lead to simultaneous firings of their output

transitions.

Obviously, these simultaneous firings are not possible in reality, and they are

central to the study of resource allocation (for shared resources) and part routing (for

choice jobs) considered in this disseration. There are two ways to inhibit the illegal

simultaneous transition firings. One is to add additional arcs and places which are

called control places. This method was used in [70,72]. Another way is to control the

firing timing of transitions with timing constraints [73]. Herein, the latter is adopted

as it retains the brevity of the WTPN models and it is sufficient for our scheduling

purpose.
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2.4 Augmented Discrete Event Control Models of

Flexible Manufacturing Systems

The ADEC has been proposed recently [74,75], proving to be very efficient in model-

ing and controlling the large-scale discrete-event dynamics of typical manufacturing

systems. In particular, it reduces the model complexity when modelling large-scale

FMSs as compared to the traditional conjunctive supervisory tools, such as the dis-

crete event control (DEC) [16, 70], and PN [76].

Let us first consider an FMS with part type πq is characterized a job sequence ωq

properly predefined and a set of available resources R. It is convenient to describe the

production flow of πq using a finite set of linguistic IF-THEN rules denoted by Gq,

and ∪|Π|
q=1G

q = X . Each rule gqi ∈ Gq has the form:

IF (job 1 is finished AND job 2 is finished AND...)

AND (resource 1 is free AND resource 2 is free AND...)

AND (resource 3 is free OR resource 4 is free OR...)

THEN (start job 3 AND start job 4 AND...)

AND (release resource 5).

In the IF-part, the sets of preceding jobs, required resources, and part inputs needed to

activate each rule are predefined. The THEN-part of each rule specifies the consequent

jobs to be performed and the part outputs in the next dispatching epoch. As compared
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the conjunctive supervisory tools such as the DEC [16, 70] and PN [76], the ADEC

contains additional add-on disjunctive rule bases (the OR operators) in the IF-part.

The ubiquity of choice jobs has a serious impact on the conjunctive supervisory

tools. Specifically, the starting of a choice job which can be processed by p alterative

resources must be described by p conjunctive IF-THEN rules [70]. This exhibits

an incompetency, which is called the rule explosion, to model a large-scale FMSs

which possesses a large number of choice jobs. This will be expatiated further in

Section 4.3.2. In the ADEC, the rule explosion is overcome by proposing a novel

add-on disjunctive reasoning into the rule bases, where the IF-part now contains OR

operators. As such, the starting of a choice job is described by one and only one rule

regardless of the number of disjunctive resources [74, 75].

In the ADEC models, the system sets of rules G, jobs V , and resources R are

represented in a compact form using Boolean matrices and vectors. The following

Boolean vectors are defined: a job vector v, a resource vector r, and a rule vector g

that represent the sets of jobs, resources, and rules, respectively, corresponding to

their “1” elements. The set represented by a (for a be v, r, or g) is called the support

of a, denoted by supp(a); e.g., given v =

[

v1 v2 . . . vq

]T

, vj = 1 if and only

if vj ∈ supp(v).
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2.4.1 Matrices and Vectors

Let us first focus on the ADEC matrices and vectors of a single part type πq, and

then obtain the global ADEC models of FMSs with multiple part types. To map

the set of preceding jobs to the set of rules, job sequence matrix Fq
v is defined such

that element f vq
ij = 1 if the completion of job vqj is required to activate rule gqi .

Analogously, job start matrix Sq
v has element svqij = 1 such that job vqi is started

if rule gqj is activated. To map the set of conjunctive resources to the set of rules,

conjunctive resource assignment matrix Fq
r is defined such that element f rq

ij = 1 if the

availability of resource rj is required to activate rule gqi . F
q
u is the input matrix which

maps the set of input parts to the set of rules, having element fuq
ij = 1 if the presence

of input uqj is required to activate rule gqi . Output matrix Sq
y has the (i, j) element

set to “1” if output yqi is released if rule gqj is activated.

The rule set of Gq is represented by vector gq having element gqi stand for rule gqi .

If all antecedences (IF part) required for rule gqi are met, then gqi = 1 (true). vq
c is the

job completed vector having element vcqj = 1 if job vqj is completed. rqc is the resource

available vector having element rcqj = 1 if resource rj is available. uq is the input

vector having element uqj = 1 if part input uqj occurs. Entries of “1” in vectors vq
s

denote the starting jobs and in vectors yq imply that finished parts are out.

Deadlock is avoided by the ADEC using the deadlock resolution matrix Fq
ud and

vector uq
d [70, 72]. Matrix Fq

ud has as many columns as the number of jobs per-
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formed by shared resources, i.e., the number of columns of Fq
r having multiple “1s”.

Element fudq
ij = 1 if job vqj is a preceding job needed to activate rule gqi . Then,

element udqj = 1 determines the inhibition of logic state gqi (whether rule gqi can be

activated). Depending on the way one selects the conflict resolution strategy to gen-

erate vector uq
d, deadlock can be avoided. On the other hand, possible assignments

of available disjunctive resources to choice jobs are captured using the disjunctive re-

source assignment matrix Fq
rd, which has entry f rdq

ij = 1 if resource rj can accomplish

rule gqi . F
q
rd essentially captures information about which available resources can be

used for each rule, such that only one of the possible resources listed in row i of Fq
rd

is required to activate rule gqi . As such, F
q
rd maps the set of resources R to the set of

rules G.

Table 2.1: Part Type π1 of FMS Example–Rule Bases

Rule Notation Description

Rule 1 g11 IF v1in is ready AND R1 is free THEN start v11

Rule 2 g12 IF v11 is done AND (M1 is free OR M2 is free) THEN start v12

Rule 3 g13 IF v12 is done AND (R2 is free OR THEN start v13

Rule 4 g14 IF v13 is done AND (M3 is free OR M4 is free) THEN start v14

Rule 6 g15 IF v14 is done THEN release v1out

Table 2.2: Part Type π2 of FMS Example–Rule Bases

Rule Notation Description

Rule 1 g21 IF v2in is ready AND R3 is free THEN start v21

Rule 2 g22 IF v21 is done AND (M2 is free OR M5 is free) THEN start v22

Rule 3 g23 IF v22 is done THEN release v2out
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Now, let consider an FMS with several part types are prescribed, with part type πq

having its own job sequence’s ordering given by Fq
v, its required resources is given

by Fq
r and Fq

rd, etc. The global matrices Fv, Fr, and Frd, etc., of the FMS are then

given by

Fv =
























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v 0 0 0
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v 0 0

0 0
. . . 0
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|Π|
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






















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
















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
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...

F
|Π|
r






















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










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



F1
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


















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Fud =






















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F1
ud 0 0 0

0 F2
ud 0 0
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
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
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


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
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
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,

(2.13)

and similarly matrices Sv and Sy can be derived. 0 denotes a null matrix. The global

vectors g, vc, rc, and u, etc., of the FMS are given by

g =




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






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
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r1c
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|Π|
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



















, (2.14)

and similarly vectors u, ud, vs, y can be derived. It is worth noting that the job

sequences of different part types are independent, each using its own jobs, so that Fv

is block diagonal. However, all the job sequences use the same pool of resources
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available in the FMS, and so have commensurate columns of their resource assignment

matrices Fr and Frd.

For the FMS shown in Example 2.2, the ADEC models’s rule bases of part types π1

and π2 can be constructed as shown in Tables 2.1 and 2.2, respectively. The rule bases

in Tables 2.1 and 2.2 are now represented by means of ADEC matrices Fq
v, F

q
r, F

q
rd, F

q
u

as shown in (2.15)–(2.16) and (2.17)–(2.18), respectively. It is noted that the contents

of matrices Sq
r and Sq

y are omitted for brevity.
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(2.18)

2.4.2 Logical State Equation

At each dispatching epoch, the ADEC receives the vectors vc, rc, u, and ud. The

ADEC’s main function at a supervisory level is to determine which rules can be

activated, which jobs to be started, and the part outputs for which a release command

to be sent to the FMS. These functions are processed by means of two different sets

of logical equations, the former is used for checking the conditions for the activation

of rules, and the latter is used for defining the consequent controller outputs. The

updated value of the logical rule vector is computed with the following logical state

equation

gk+1 = Fv ⊗ vck ⊕ Fr ⊗ rck ⊕ Frd ⊗ rck ⊕ Fu ⊗ uk ⊕ Fud ⊗ udk, (2.19)
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where k denotes the dispatching epoch. The overbar in (2.19) denotes a vector nega-

tion. Given a natural number vector a, its negation is such that ai = 0 if ai > 0,

and ai = 1 otherwise. ⊗ and ⊕ denote the and/or multiplication and addition, re-

spectively. C = A⊗B is defined by cij = (ai1∧b1j)∨(ai2∧b2j)∨· · · , and C = A⊕B is

defined by cij = (aij ∨ bij). ∧ and ∨ are symbols for logical AND and OR operations,

respectively. gk+1 essentially provides the information of which rules can be activated

without causing a deadlock in dispatching epoch k + 1.

Denote by Vi the set of jobs that are required as immediate precursors to rule gi,

by Ri the conjunctive set of resources that are all required to fire rule gi, by Ui the set

of inputs that are all required to fire rule gi, and by Rdi the disjunctive set of additional

resources, any one of which can accomplish rule gi in addition to all the required

resources rj ∈ Ri. The properness of ADEC is ensured by Theorem 2.1 [74, 75].

Theorem 2.1 (Conjunctive and Disjunctive Rule-Bases) The ith rule (i.e.,

ith row) of (2.19) is equivalent to

gi = ∧
vj∈Vi

vj ∧ ∧
rj∈Ri

rj ∧ ∧
uj∈Ui

uj ∧
(

∨
rj∈Rdi

rj

)

, (2.20)

i.e., rule state gi is true (equal to 1) if all job vector elements vj required for rule gi

are true, all resource vector elements rj required for rule gi are available, and all input

vector elements uj required for rule gi are true, while any of the resources in Rdi is

available.
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Proof: Using matrix operations in the OR algebra, we have

gi =

(

|Vi|∨
j=1

f v
ij ∧ vj

)

∨
(

|Ri|∨
j=1

f r
ij ∧ rj

)

∨
(

|Ui|∨
j=1

fu
ij ∧ uj

)

∨
(

|Rdi
|

∨
j=1

f rd
ij ∧ rj

)

∨
(

fud
ij ∧ udj

)

.

(2.21)

Successive application of the de Morgans theorem yields

gi =

(

|Vi|∨
j=1

f v
ij ∧ vj

)

∨
(

|Ri|∨
j=1

f r
ij ∧ rj

)

∨
(

|Ui|∨
j=1

fu
ij ∧ uj

)

∨
(

|Rdi
|

∨
j=1

f rd
ij ∧ rj

)

∨
(

fud
ij ∧ udj

)

=

(

|Vi|∨
j=1

f v
ij ∧ vj

)

∧
(

|Ri|∨
j=1

f r
ij ∧ rj

)

∧
(

|Ui|∨
j=1

fu
ij ∧ uj

)

∧
(|Rdi

|
∨
j=1

f rd
ij ∧ rj

)

∧
(

fud
ij ∧ udj

)

=

(

|Vi|∧
j=1

f v
ij ∨ vj

)

∧
(

|Ri|∧
j=1

f r
ij ∨ rj

)

∧
(

|Ui|∧
j=1

fu
ij ∨ uj

)

∨
(|Rdi

|
∨
j=1

f rd
ij ∧ rj

)

∧
(

fud
ij ∨ udj

)

.

(2.22)

Now, f v
ij = 0 if task vj is not needed to fire rule xi. As such f v

ij = 1 so that for

those elements one has f v
ij ∨ vj = 1 whether the corresponding task element is true or

not. On the other hand, f v
ij = 1 if task vj is needed to fire rule gi. This makes f v

ij = 0.

One has f v
ij ∨ vj = 1 if the corresponding task element is true. A similar reasoning

applies to f r
ij, f

u
ij , and f

ud
ij . Likewise, f

rd
ij = 0 if resource rj is not able to accomplish

rule gi. As such, one has f rd
ij ∧ rj = 0 regardless whether the corresponding resource

element is true or not. Elements f rd
ij = 1 if resource rj is able to accomplish rule gi.

One now has f rd
ij ∧ rj = 1 if and only if the corresponding resource element is true.

As such, the last equation in (2.22) is equivalent to

gi = ∧
vj∈Vi

vj ∧ ∧
rj∈Ri

rj ∧ ∧
uj∈Ui

uj ∧
(

∨
rj∈Rdi

rj

)

∧ udj . (2.23)
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On the ground of the current value of gk+1, the scheduling decisions are included

by the MTME resulting in the final state vector gpk+1, which describes the set of

eventually activated rules at dispatching epoch k + 1. The computation of gpk+1
will

be presented later in Chapter 4. Based on the value of gpk+1
, the ADEC decides which

jobs to be started and which outputs to be released by means of the following output

equations

vsk+1 = Sv ⊗ gpk+1, (2.24)

yk+1 = Sy ⊗ gpk+1. (2.25)

(2.19) and (2.24)–(2.25) represent a conjunctive and disjunctive rule-based supervi-

sory control for any class of discrete event systems. It is worth noting that all matri-

ces and vectors are Boolean, making real-time computations easy even for large-scale

FMSs.

2.5 Summary

In this chapter, general descriptions and mathematical modeling languages of MPs

and FMSs were described in a rigorous manner. The FSM models of MPs were

introduced, which is conceived as a graphical abstract language that contains a finite

number of states. The FSM is in only one state at a time; the state it is in at any

given time is called the current state. It can change from one state to another when

initiated by a triggering event or condition, and the MPs often exhibit a distinct
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level of power consumption in each state. Beyond MPs, the behavior of FSMs can be

observed in many other industrial systems as well, which perform a predetermined

sequence of actions depending on a sequence of events with which they are presented.

Next, two mathematical modelling languages for FMSs, namely, the WTPN and

ADEC, were detailed and discussed. The WTPN, or PN in general, is a very sim-

ple mathematical model. It is a graphical language, yet the semantics are clear. It

provides a convenient way to analyze the structural properties of event-triggered and

concurrent systems such as reachability, liveness, boundedness, deadlock and block-

ing, etc [77]. On the other hand, a key attractiveness of the ADEC is its minimal

model complexity, portability, and ease of implementation on any platform using any

programming language, e.g., MATLAB, LabVIEW, and C, etc. [72, 78]. ADEC’s

command-and-control structure facilities industries adapting quickly to fast-evolving

and dynamic manufacturing environments and relieves much human supervisory re-

quirements by enabling efficient automation of job execution and resource allocation

online.

In the following chapter, a novel approach is proposed to reduce the number of

required sensors in process state tracking through identifying the operational states

of MPs by extracting useful information and features in energy data.
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Chapter 3

Energy Data-Driven Process State

Identification for High-Performance

Decision Support

To reduce energy consumption for high-performance manufacturing industries, contin-

ual energy monitoring and state tracking of industrial manufacturing processes (MPs)

are essential. In this chapter, we introduce a novel framework to reduce the num-

ber of required sensors in process state tracking based on finite-state machine (FSM)

models of MPs and energy data. To justify our proposed framework, comparative

experiments with an existing framework are evaluated on two industrial applications,

an injection moulding system and a stamping system.
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3.1 Background

In recent years, many energy-efficient technologies for high-performance manufactur-

ing industries have been proposed in the literature. Most of the reported techniques

require both energy data and operational states of MPs to make energy-efficient de-

cisions. In particular, several energy optimization technologies recently proposed

[50, 79, 80] require real-time information of both energy data and operational states

(busy or idle) of involved resources. In other technologies, energy and state data of

MPs are explored more thoroughly. An entire cycle of industrial milling process was

divided into nine operational states (e.g., run-up, spindle running, chipping milling,

etc.) in a generic energy optimization model [33]. An industrial plastics welding

process was also dismantled into six operational states (e.g., start-up, stand-by, wait-

ing, and processing, etc.) used for an energy-efficient planning methodology called

EnergyBlocks [23]. Other relevant energy-efficient technologies also used both energy

data and operational states includes [25, 81].

Traditional approaches to energy monitoring and process state tracking relied ei-

ther on sensors or accounting exercises, which are expensive for large-scale FMSs. To

reduce the number of required sensors for energy monitoring, theoretical estimations

of energy consumption for particular MPs were derived based on the processing pa-

rameters [66, 67]. The existing approaches could be precise but are computationally

intensive to implement because many process parameters must be known. In an op-
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posite way, the number of required sensors for process state tracking is reduced by

inferring the operational states based on energy consumption patterns using complex

event processing methods [82].

In addition, an effective energy monitoring and process state tracking is also cru-

cial to integrate with novel energy-efficient technologies in a unified decision support

system (DSS) to align the sheer amount real-time feedback energy and state data from

MPs more closely with business and production requirements in high-performance

manufacturing. In many large-scale information and realistic manufacturing systems,

data is usually logged and collected from the various sources of systems and sensors

at a fixed sampling rate in a big data matrix. This impedes the effectiveness of a DSS

in extracting useful information and features from the data matrix [16], and hence

make existing data more powerful to support the decision making of energy-efficient

technology.

In this chapter, we propose a softsensing approach for online identification of op-

erational states based on energy consumption patterns. We first use FSMs to model

MPs. FSMs consist of a finite number of states, transitions, and actions, and have

been applied to model MPs [83, 84], where they are proven to be very useful for en-

ergy audit and reporting in large-scale FMSs. To be applicable to FMSs where a

large amount of energy data exists, we propose a two-stage framework for online clas-

sification of real-time energy data into different energy consumption patterns in the

context of the FSM models of MPs. Our proposed framework uses a Haar transform
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and Ebayes threshold as well as support vector machine (SVM) for segmentation and

clustering energy data into different operational states, respectively. Our implemen-

tation results on energy data logged from industrial injection moulding and stamping

machines reveal our proposed framework’s efficiencies in process state identification

based on energy consumption patterns. Based on the obtained results, we design an

energy data-driven DSS, which uses real-time energy measurements and process oper-

ational states to make effective decisions, enabling high-performance manufacturing.

3.2 Process Identification Framework

In this section, an intelligent framework for identification of process operational states

based on time series of power data is proposed. Structurally, our proposed framework

consists of two consecutive layers. The first layer uses Haar transform and an EBayes

threshold to segregate the time series of power data into segments. The second layer

includes feature extraction and a two-stage SVM to sort the time series segments into

clusters, each cluster indicates an operational state.

3.2.1 Signal Segmentation

To segment the time series of power data, Haar transform is first used to compute the

wavelet coefficients. The computed wavelet coefficients are then passed through an

EBayes threshold level, where the cross-over coefficients indicate the change points of
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the process operational states.

Haar transform can be interpreted as a dyadic multi-rate filter bank. It uses

both scaling functions and wavelet functions, which are associated with the low-pass

filter and high-pass filter, respectively. The scaling function generates the approxima-

tion coefficients, while the wavelet function computes the detail coefficients. Wavelet

transforms are recursive, where the wavelet coefficients computed by the previous

iteration are the inputs for the subsequent iteration. A non-overlapping rectangu-

lar window is used to sample the time series, where the window width is two for

the initial iteration and is doubled at each subsequent iteration during the wavelet

decomposition.

Consider a time series of power data p = {pi : i ∈ Z
+}. Let us also denote

the wavelet approximation and detail coefficients by a = {ai : i ∈ Z
+} and d =

{di : i ∈ Z
+}, respectively. As such, the Haar transform of p is computed as fol-

lows [85]

ai =
pi + pi+1√

2
, (3.1)

di =
pi − pi+1√

2
. (3.2)

In our industrial applications, a level-five wavelet decomposition is used, as it provides

sufficient wavelet resolution to detect significant change points in the time series of

power data. Obviously, a higher-level wavelet decomposition provides better results,

but also requires more computational efforts.

In time series segmentation using wavelet transforms, selecting an appropriate
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threshold method is crucial. An unnecessarily large threshold will segregate too many

coefficients resulting in over-segmentation, and vice versa. Recently, an empirical

EBayes threshold for wavelet decomposition has been proposed in [86], which was

proven to outperform existing threshold methods for different data sets, e.g., the

modified universal threshold, the sureshrink and false discovery rate techniques, and

the block thresholdings such as neighBlock or neighCoeK [87, 88].

Consider the wavelet coefficients d inundated with noise ε which can be written

as

di = µi + εi, (3.3)

where µ is the distribution mean. As such, finding a threshold value using EBayes

includes three main steps.

• Step 1: the parameters µ are modeled as having independent prior distribu-

tions fprior each given by

fprior(µ) = (1− w)δ0(µ) + wσ(µ), (3.4)

where w, 0 < w < 1, is probabilistic variable. δ0 is the Dirac function, and σ

is a symmetric heavy-tailed density such as Laplace or Cauchy density. σ is

assumed to be a fixed unimodal symmetric density. While σ is commonly a

normal density in current literature, a heavier-tailed density is used here.

• Step 2: the probability w is estimated by defining the marginal maximum

likelihood estimator ŵ of w to be the maximizer of the marginal log-likelihood
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as follows

ŵ = argmax
w

m
∑

i=1

log {(1− w)φ (di) + wg (di)}, (3.5)

where g = σ ⋆ φ , and ⋆ denotes convolution. m denotes the length of time

series. To avoid confusion with the scaling function of the wavelet family, φ is

used to denote the standard normal density.

• Step 3: an estimation for µ is found by substituting ŵ back into (3.4) and

taking the posterior median of µ.

3.2.2 Segment Clustering

One now wishes to extract useful features from the obtained power segments. To

effectively eliminate outliers, which apparently correspond to the segments with many

sharp transitional spikes, the mean absolute deviation (MAD) is used. Consider a

time series segment p, the MAD is defined as the median of the absolute deviations

from the segment’s median as follows

MAD (p) = mediani ( |pi −medianj (pj)| ) . (3.6)

Next, the geometric median (GM) is computed to measure the central tendency of the

power segments. Our purpose is to determine the amplitude level, which is relatively

constant after removing outliers. GM is used instead of the mean, because the power

segments possibly contain abnormal nadirs at both ends. Formally, the GM of a
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power segment p is computed as follows

GM(p) = argmin
y

m
∑

i=1

‖pi − y‖2. (3.7)

To explore the dynamic characteristics of power segments, the third-order auto re-

gression (AR) features are used. A third-order AR model of a power segments p is

defined as follows

pi = ω +

n=3
∑

t=1

βtpi−t + ςi, (3.8)

where βt denotes the regression coefficients, ω is the intercept variable, and ς is a

noise parameter. βt, ω, and ς can be estimated by various step-wise least-squares

algorithms. Two algorithms, the Levinson–Durbin and Burg algorithms, are widely

used to estimate the coefficients of a AR model [89, 90]. An exact value of n for a

given power segment is not known a priori; it is desirable to reduce the computational

complexity by choosing the minimal n such that the AR model is of satisfactory

performance. In our industrial applications, n = 3 is chosen as it provides a sufficient

fit to the power segments. As a result, three AR features β1, β2, and β3 are obtained.

In summary, a total of five features has been extracted for segment clustering including

MAD, GM, β1, β2, and β3.

Once features are extracted, each power segment is now represented by a feature

vector s ∈ R
5 with element sj denotes the jth feature. To ensure the segment clus-

tering is of satisfactory accuracy, the first stage is an unsupervised SVM designated

to eliminate outliers from the set of power segments. Unsupervised SVM was first
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proposed by Schoelkopf et al. in [91] for identifying outliers in data. It contains two

classes and does not require the class labels a priori. The outlier refers to a feature

vector and can be defined as an observation which is numerically distant from the

rest of the data.

Unsupervised SVM basically separates all the data points from the origin (in

feature space) and maximizes the distance from this hyperplane to the origin. This

results in a binary function which captures regions in the input space where the

probability density of the data locates. To separate outliers by unsupervised SVM,

the binary function returns +1 for the training data and −1 for the outlier data. This

can be achieved by solving the following constrained optimization problem

min
o,b,ξi

1

2
‖o‖2 + C

U

U
∑

i=1

ξi − ρ, (3.9)

s.t.,

o · si ≥ ρ− ξi, ξi ≥ 0, ∀i = 1, . . . , U, (3.10)

where vector o and ρ determine the orientation of the hyperplane, and ξi ≤ 0 are

slack variables. U denotes the number of power segments. The constant C is an

upper bound on the fraction of outliers.

The second stage is a supervised SVM used to cluster the remaining power seg-

ments into groups, each of which indicates to an operational state. The second-stage

SVM deals with a supervised learning problem where the labels of all power segments

are available. The whole set of power segments is segregated into a “training” set
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and “validation” set–the former used to train the underlying clustering mechanism,

and the latter used to test if the trained SVMs are of satisfactory accuracy. The

SVM algorithm is a well-known classification method that has been applied to vari-

ous engineering applications [92]. Its objective is to find the separating hyperplane for

which the distance between the clusters, measured along a line perpendicular to the

hyperplane, is maximized. This can be achieved by solving the following constrained

optimization problem

min
o,b,ξi

1

2
‖o‖2 + C

U
∑

i=1

ξi, (3.11)

s.t.,

yi (o · si − b) ≥ 1− ξi, ξi ≥ 0, ∀i = 1, . . . , U, (3.12)

where vector o and b determine the orientation of the hyperplane, C denotes a positive

smoothness constant that specifies the tradeoff between margin and misclassification

error.

For a nonlinear decision surface, this optimization problem can be addressed by

the concept of using kernel function k. Their decision function has the following form

y(s) =
Ns
∑

i=1

αsik(s, si) + b, (3.13)

where k (·, ·) represents the kernel, which can be shown to compute the dot products

in associated feature spaces R
5, i.e., k (s, s′) = 〈Φ (s) ,Φ (s′)〉. The function Φ :

s ∈ R
5, s → Φ (s) maps the feature vectors into kernel space. The SVM decision
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hyperplane is determined by ψ =
∑Ns

i=1 αsiΦ(si), with Ns support vectors si and

nonvanishing coefficients αsi. In this chapter, the most common type of kernel, the

radial basis function (RBF), is used where k (s, s′) = exp
(

−γ‖s− s′‖2
)

. The RBF

kernel is often designed by tuning the kernel parameter pair (C, γ) using the cross-

validation method. It is worth noting that cross-validation method can not be used

to train the SVM in the case of unsupervised learning problem due to the lack of

segment labels. In this case, the kernel parameter pair (C, γ) is obtained by an

iterative method [93].

3.3 Industrial Applications

The performance of our proposed process identification framework is evaluated on

two industrial applications. In the first application, the energy consumption of two

industrial injection moulding machines is investigated, namely, Arburg A220 S 150–

60 and Arburg A420 S 1000–150 as depicted in Figs. 3.1 and 3.2, respectively. In

the second application, eight stamping machines denoted by M1–M8 at an industrial

stamping system are studied.

3.3.1 Experiment Setup

In both industrial applications, three-phase electrical parameters are continually mea-

sured using RUDOLFs. In our experiments, only real power is used, but other elec-
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Figure 3.1: Arburg A220 S 150–60 injection moulding machine.

Figure 3.2: Arburg A420 S 1000–150 injection moulding machine.
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Figure 3.3: A screenshot of GUI developed in LabVIEW for online energy monitoring.

tric variables such as reactive power, apparent power, and power factor, etc., are

all measured. To interface RUDOLFs with computers or handled devices, a GUI

has been developed in LabVIEW as shown in Figure 3.3 to convert serial data from

Rudolf power analyzers to real power consumption data. The sampling frequency

of RUDOLFs is set to 1 Hz. The energy consumption produced by manufacturing

seventeen injection moulding parts and ten stamping parts are logged. For each part,

numerous work-pieces are produced.
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3.3.1.1 Injection Moulding Process

Injection moulding is a typical MP for producing parts from plastic materials. Ma-

terials are fed into a heated barrel, mixed, and forced into a mold cavity, where they

are cooled and hardened to the shape of the cavity. The entire injection moulding

cycle can be segregated into six operational states:

1. Switch off : In this state, control panel, heater, and hydraulic pump are off;

2. Warm up: Machines require warm-up before it is ready to be used. In this

state, it executes a rapid motion from starting position and causes high narrow

pulses in the power consumption profile;

3. Idle: In this state, the machine is on but not in production. The power con-

sumption profile is low, but not as low as when the machine is in Switch off

mode;

4. Pump/heat : This is the preparation state when the hydraulic pump is used to

inject heating oil into the mold, and the heater is warming up the oil;

5. Start up: This state is the transition between the Idle and Moulding modes;

and

6. Moulding : In this state, workpieces are mass-produced. Moulding state typ-

ically consists of numerous injection moulding cycles. An injection moulding

cycle to produce one workpiece includes seven sub-states, i.e., mould closing,

mould filling, mould packing, part cooling, mould opening, ejection, and mould
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cleaning, as described by [94]. However, an injection moulding cycle is usually

very short (as fast as 14 seconds) in modern injection moulding machines as de-

picted in [95]. As such, it is more meaningful to identify the entire production

state instead of each sub-state, which is very short and repetitive.

The power consumption profiles reveal a number of different operation states which

are linked to the status of machine components and power consumption. During the

MP, the machine switches from one state to another at different instances in time. It

is worth noting that similar observations can be made for other types of industrial

machines in large-scale manufacturing systems as well.

3.3.1.2 Stamping Process

Stamping includes a variety of sheet-metal forming processes, e.g., punching, coining,

blanking, piercing, and bending, etc. During operation, the stamping die is placed

into a reciprocating stamping press. As the press moves up, the top die moves with

it, which allows the material to feed. When the press moves down, the die closes and

performs the stamping operation. With each stroke of the press, a completed part is

removed from the die [96].

The entire stamping cycle can be decomposed into five operational states, namely,

Switch off, Warm up, Idle, Start up, and Stamping. The energy consumption of the

first four states are relatively similar to injection moulding process. The Stamping

state specially includes many spikes. Each spike is observed every time the stamp-
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Figure 3.4: A comparative example between a normal and an abnormal power seg-

ments from Stamping state: (top) normal segment and (bottom) Abnormal segment.

ing press moves down to perform stamping operations. Among the stamping ma-

chines, M8 is oldest and has relatively different patterns in time series of power data.

Thus, all power segments extracted from M8 are labelled as Abnormal state. An il-

lustrated comparison between segments from Stamping and Abnormal states is shown

in Figure 3.4, where different patterns can be clearly observed.
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Figure 3.5: The discrete-state time series of power data of industrial processes: (top)

injection moulding and (bottom) stamping.

3.3.2 Experiment Results

In this section, the performance of our proposed framework is compared with an

existing framework reported by [97]. It is worth noting that there are two main

differences between the two frameworks. First, our proposed framework does not

include the Savitzky-Golay (SG) filter for preprocessing energy measurements and

the EBayes threshold is used instead of the universal threshold. Second, SVM is used

to cluster the power segments instead of the fuzzy c-means (FCM) algorithm.
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Examples of time series of power data of injection moulding process and stamping

process are shown in Figure 3.5, where the process operational states are clearly

distinguished. From the observations of the power consumption profiles, an FSM

energy consumption model in the form of diagraph can be built for injection moulding

and stamping process as shown in Figures 2.3 and 3.6, respectively.

Switch off Warm up

Idle Start up

Stamping

Figure 3.6: FSM models of industrial stamping process.

It can be seen that each operational state exhibits a relatively distinct level of

magnitude in the time series of power data. Both process identification frameworks

are implemented in MATLAB. The time series of power data of both data sets are

segmented as discussed. An example of the signal segmentation using our proposed

framework on a time series of power data from Arburg A220 S 150–60 is shown in

Figure 3.7. It can be seen that the time series of power data is first transformed into

wavelet coefficients. Wavelet coefficients are then filtered by an EBayes threshold (the

dashed line), where only cross-over coefficients are accentuated indicating the change
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Figure 3.7: An illustrated example of signal segmentation using the our proposed

framwork: a) time series of power data, b) wavelet coefficients with EBayes threshold

(dashed line), and c) detected change points.

points of the process operational states.

Five useful features including the MAD, GM, and three AR parameters are ex-

tracted from each power segment. The first-stage SVM is now used to detect “outlier”

power segments. For illustration, an example of detected “outlier” segments inMould-

ing state is shown in Figure 3.8. The outlier detection results is reported in Table 3.1.

The best SVM kernel parameters γ = 0.71 and γ = 0.96 are obtained for the injection

and stamping data sets, respectively.
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Figure 3.8: An example of outlier detection of Moulding state.

Table 3.1: Outlier Detection Results

Data set SVM kernel parameter γ Percentage of outlier segments

Injection 0.71 6.4%

Stamping 0.96 12.23%

3.3.2.1 Identification Results with Sufficient Training Data

We now wish to cluster the remaining power segments according to their underlying

process operational states. In this section, the clustering performance of both frame-

works are evaluated with sufficient training data, where both data sets are segregated
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into 50% for training and 50% for testing. For convenience, the operational states of

both injection moulding and stamping processes are numerically labelled in Table 3.2.

Table 3.2: Cluster Label for Injection Moulding and Stamping Operational States

Injection data set Stamping data set

Cluster label Operational state Cluster label Operational state

1 Switch off 1 Switch off

2 Warm up 2 Warm up

3 Idle 3 Idle

4 Start up 4 Start up

5 Pump/heat 5 Stamping

6 Moulding 6 Abnormal

To tune the parameter pair (C; γ) of the second-stage SVM, a coarse grid-search

is first performed using cross-validation method. Various pairs of (C; γ) values

are tested and the one with the best cross-validation accuracy is picked. An ex-

ponentially growing sequence of (C; γ) is examined, e.g., C = (2−4, 2−3, . . . , 215)

and γ = (2−14, 2−13, . . . , 25). Our results show that the best (C; γ) for injection and

stamping data sets are (25; 2−5) and (24; 2−3) with the corresponding cross-validation

rate are 84% and 79.5%, respectively. Thus, finer grid searches on the neighbor-

hood of (25; 2−5) and (24; 2−3) are conducted. Better cross-validation rates 84.699%

at (24.77; 2−4.51) and 80.300% at (24.48; 2−2.78) are obtained for injection and stamping

data sets, respectively.

The validation results using the our proposed framework for identification of the

operational states are reported in Table 3.3. For injection data set, our proposed
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Table 3.3: Number of Validated Segments with Sufficient Training Data

Injection data set Stamping data set

Cluster Correct Wrong Cluster Correct Wrong

1 72 0 1 50 0

2 36 0 2 25 0

3 106 2 3 79 1

4 73 0 4 48 0

5 30 0 5 105 2

6 150 5 6 45 3

framework classifies 467 out of 474 different segments correctly, thereby yielding an

accuracy of 98.52% in identification of the operational states. For the stamping data

set, 352 out of 358 segments are identified correctly with an accuracy of 98.32%. In

particular, it can be seen from Table 3.3 that the proposed method is able to classify

Switch off, Idle and Warm up states very accurately. This is because the energy

consumption of these two states are completely or almost flat with few fluctuations.

Minor classification errors occur for the Start up state, as its energy consumption

patterns is similar to Warm up state both having sharp increases from low levels

in time series of power data. It can also be seen that most error cases arise from

erroneous classification of the Moulding state (a prediction error of 3.22%) due to

the many different sub-states. There is also a prediction error of 6.25% in Abnormal

state, because some power segments in Switch off and Idle states of M8 are simi-

lar to other machines. The our proposed framework accurately classifies segments

from Stamping, Start up, and Warm up states of M8 as Abnormal segments. With

the same experiment setups, the existing framework yields an accuracy of 97.08%
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and 96.68% in identification of the process operational states for the injection mould-

ing and stamping data sets, respectively. It can be seen that our proposed framework

slightly outperforms in the case of sufficient training data.

3.3.2.2 Identification Results with Limited Training Data

Next, it is desired to evaluate the performance of both frameworks in the case of

limited training data. Both available data sets are segregated into 30% for training

and 70% for validation. To tune the SVM parameter pair (C; γ), the same cross-

validation method is applied. The best cross-validation rates are obtained as 89.735%

at (23.35; 2−2.57) and 83.373% at (25.58; 2−3.64) for injection and stamping data sets,

respectively. The validation results using the trained SVMs for state classification

are shown in Table 3.4.

Table 3.4: Number of Validated Segments with Limited Training Data

Injection data set Stamping data set

Cluster Correct Wrong Cluster Correct Wrong

1 101 0 1 71 0

2 48 3 2 32 3

3 144 8 3 106 7

4 103 0 4 68 0

5 40 2 5 146 8

6 208 10 6 59 9

It can be seen our proposed framework still shows a reliable performance in the

case of limited training data. In particular, it classifies 644 out of 667 different

segments of injection data set correctly, thereby yielding an accuracy of 96.55%. For
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stamping data set, 482 out of 509 segments are classified correctly yielding an accuracy

of 94.69%. Switch off and Idle states are still classified very correctly. Minor classifi-

cation errors occur for the Warm up and Start up states, as their energy consumption

patterns are similar with both having a sharp increase in energy consumptions from

low power levels. However, this can be easily resolved by checking the developed

FSM models if previous states are different but not always. According to the traver-

sal in the FSM state diagrams, identifying the errors can be simply done by creating

a “memory/buffer” to store the previous states. For example, if the previous state

is Warm up, the current state must be either Idle or Moulding, Stamping as shown

in Figures 2.3 and 3.6. If the result of the two-stage framework is not either Idle or

Production, it is detected as an error. This clearly explains the connection between

the developed FSM models and the two-stage classification framework. It can also

be seen that the classification accuracy of Moulding, Stamping, and Abnormal states

become worse but still be acceptable, where the corresponding classification errors

are 4.80%, 5.47%, and 15.25%, respectively. Most of misclassified segments of Abnor-

mal state belong to Switch off, Idle and Warm up states of stamping machine M8,

while all segments belonging to Stamping state are correctly classified. Since Switch

off, Idle and Warm up states are relatively short as compared to Stamping state, the

Abnormal state can be quickly identified. The identification results using the exist-

ing framework are of 89.33% and 88.38% accuracies for the injection moulding and

stamping data sets, respectively. It can be seen that the performance of the existing
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framework has dropped significantly in the case of limited training data.

3.3.3 Discussions with Related Works

There are several reasons for the advantages of our proposed process identification

framework as compared to the existing framework. Instead of preprocessing the raw

time series of power data, our proposed framework takes into account the noisy effects

using the EBayes threshold method. This completely avoids losing important power

features of the data distribution such as relative maxima, minima, and width, etc.,

which are potentially flattened during noise filtering or signal smoothing.

Another benefit of our proposed framework is the reduction of time delay. As

the SG filter is not causal and relies on future data, the existing framework causes

extraneous time delay for online applications. The usage of a SG filter with window

size w = wL + wR + 1 in series with a level-p Haar transform delays the wavelet

coefficients by 2p+wR samples from real-time. In the SG filter, the calculated central

sample of the fitted polynomial curve is the latest filtered sample. Without loss of

generality, let us assume that the real-time sample is currently at index pi, while the

SG window still lags behind and only covers up to sample pi−wR
. Furthermore, it

can be seen from (3.1) and (3.2) that the window size of a level-p Haar transform

is 2p, which means a wavelet coefficient can only be calculated for every 2p smoothed

samples. Therefore, the latest wavelet coefficient only represents sample pi−wR−2p.

It is also worth noting that the FCM is an unsupervised learning algorithm, where
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the SVM is of supervised learning type. One uses the FCM to cluster data which their

labels are not known a priori, however, the SVM is firstly trained with the labeled

data and then is used to classify the unlabeled data. In our industrial applications,

the segment labels as well as the number of operational states are all available. This

implies that it is more suitable to use the SVM rather than the FCM.

It also can be seen that our proposed framework is effective for imbalanced

datasets, as both injection and stamping datasets used in this chapter are relatively

imbalanced, where classes moulding and stamping dominate the datasets. For the case

of highly imbalanced datasets, the classification accuracy of our proposed framework

is expected to drop down to 80% at most.

3.4 Energy Data-Driven Decision Support System

A crucial step towards high-performance manufacturing requires a unified DSS to

align the sheer amount of real-time energy and state data of MPs logged from various

sensors more closely with state-of-the-art energy-efficient technologies [98–100]. In

this view, a manufacturing work cell can no longer work in silos within shop floors,

but rather an integral part. Sensory data need not to be consolidated manually and

locally, but must be shared and synchronized across the company, resulting in a sheer

variety and volume of data. In many large-scale information and realistic engineering

systems, data is usually logged and collected from the various sources of systems and

sensors at a fixed sampling rate in a big data matrix. This impedes the effectiveness of
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a DSS in extracting useful information and features from the data matrix for making

effective decisions [16].

3.4.1 Architecture

DSS is an information system that support decision-making processes and problem

solving activities. As a concept, DSS has been proliferated and evolved over the past

few decades [101]. With advancing information and communications technology, DSS

is nowadays widely implemented in global industries. Most existing DSS architectures

are highly specific, which focus to solve one particular problem, such as supplier

selection [102], reconfiguration product design [103], and machine selection [104], etc.

In general, there is no universally accepted taxonomy of DSS models as different

researchers propose different classifications. Herein, we follow [98] to discuss three

generic approaches to develop the DSS.

• Data-driven DSS. A data-driven DSS emphasizes access to and manipulation of

a time series logged from various sources of sensors and meters. Data analytic

and artificial intelligent techniques can be used for decision-making model.

• Knowledge-based DSS. A knowledge-based DSS provides specialized problem-

solving expertise stored as facts, rules, procedures, etc. Knowledge-driven DSS

is developed based on engineering and management expertise and experiences.

• Model-based DSS. A model-based DSS use data and parameters provided by
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Figure 3.9: Energy data-driven DSS architecture for high-performance manufacturing

industries.

users to assist decision makers in analyzing a situation. Model-driven DSS can

be built using various statistical, optimization, or simulation models in current

literature.

The developed DSS must be able for the extraction and mash-up of heterogeneous

data using artificial intelligence and data-mining principles to combine the data and

human expertise in creating new services, experiences, decisions, and maintenance
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rule-bases, etc. It must also integrate data from different sources and formats seam-

lessly using a data-aware correlation engine, making existing data more powerful for

technical and professional users with a more potent decision-making and predictive

capability. The architecture of our proposed DSS is shown in Figure 3.9.

In today’s information technology era, the amount of digital, sensory, imagery, and

audio data, etc., from various sources such as simulation systems, control systems,

inspection process, etc., is expanding at an explosive rate. As such, the proposed

DSS architecture must include a centralized and distributed monitoring network to

enable the holistic access and analysis of a large variety of data from manufacturing

shop floors at different locations. The monitoring network often comprises of various

types of meters and sensors. At the shop-floor level, the local monitoring systems

communicates via internal buses. The shop-floor monitoring systems are interfaced

to the DSS over an communication platform, which includes two bus systems, namely

data bus and fault tolerant control (FTC) bus, respectively. The key advantage

of such distributed bus network is the reduction of required bus cables and wires.

Although computer networking protocols such as Ethernet for local area networks

and transmission control protocol/internet protocol for the Internet are most suitable

for the data bus, industrial computer network protocols (e.g., Fieldbus) and vehicle

bus protocols (e.g., controller area network bus and local interconnect network bus)

can also be applied [105].

In addition, other data transmission equipments such as data acquisition systems
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and transducers may also be required. From the data bus, heterogeneous data are

aggregated, processed (if necessary), and stored. FTC bus is highly important for

our proposed DSS architecture to prevent unpredicted downtime due to machinery

failures. FTC data could be in various forms such as vibrational, acoustic, and force

data, etc., depending on specific systems and applications. Various FTC schemes in

current literature can be applied, one popular FTC scheme is the fault detection and

isolation based on analytical redundancy [106].

The next important task is to provide effective monitoring of operational states

of MPs. This task is accomplished by an intelligent process identification framework,

whose mathematical rigour was detailed in Chapter 3.2. Real-time process opera-

tional states, energy measurements, and other related data (if any) are collated and

synthesized to indicate the amount of energy consumption during specific process

operational states. This encompasses not only the amount of energy required to run

industrial machines, but would possibly include other facilities’ energy consumption

such as lighting, heating, ventilation, and air conditioning, etc., which can contribute

as much as 30% of the total energy consumption in a shop floor. A popular energy

model in the current literature to the analyze MPs and facilities is the state-based

model, where the entire process cycle is divided into a finite number of discrete oper-

ational states [23, 82]. Such energy model is based on integrated measurements over

time to determine time-based power consumption in accordance with the underlying

operational states, e.g.,, the amount of energy being consumed during Stamping state,
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versus the amount of energy being consumed when the resource is in Idle state.

3.4.2 Decision-Making Models

The obtained process operational states and energy measurements are then fed into

several useful decision-making models. In addition, other production and business

requirements such as electricity prices, raw material prices, operational expenditure

(OPEX), and capital expenditure (CAPEX), etc., may also be required. The objec-

tive of the decision-making models is to make energy efficient, cost effective, reliable

decisions for high-performance manufacturing. Life-cycle analysis is also partially

supported herein.

Table 3.5: Energy Audit for Arburg A220 S 150–60

State

Product I Product II

Ave. power Max. power Time Ave. power Max. power Time

(kW) (kW) (s) (kW) (kW) (s)

Switch off 0.2 0.21 – 0.2 0.21 –

Warm up 5.63 8 50 1.63 3.57 55

Idle 0.47 1.72 – 0.4 1.1 –

Start up 0.47 1.72 – 0.4 1.1 –

Moulding 3.95 6.34 1800 4.32 6.34 2500

Pump/heat – – – 2.85 2.93 400

The proposed decision-making models are summarised as follows.

• Energy audit and reporting. Energy audit and reporting is the inspection,

analysis, and documentation of energy consumption in the shop floors. This is

often carried out on weekly, monthly, and yearly basis. Over the past decade,
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industrial energy audit and reporting have exploded as the demand to lower

increasingly expensive energy costs and move towards a sustainable manufac-

turing. A knowledge-based approach such as expert systems and case-based

reasoning systems are most suitable for this model. Energy consumption of

each machine state can be acquired, which provides an insight of how energy

consumption is distributed among the different defined operation states which

are usually not available.

An example of energy audit for the Arburg A220 S 150–60 injection moulding

machine using the FSM models described in Table 3.5. It can be seen from

Table 3.5 that both products I and II are produced by the same amount of

workpieces. The metrics can also be used for auditing average power, maximum

power, and completion time, etc., for each operation state. Machines are also

clustered into groups of high, medium, and low energy efficiency when manufac-

turing a particular product, and are given priority in manufacturing based on

their groups. Machines clustering can also be based on various schemes, e.g.,

average power consumption of production state. An example of a machine

clustering result for the Arburg A220 S 150–60 and Arburg A420 S 1000–150

injection moulding machine is presented in Table 3.6, where the machines are

clustered into three groups with the average power consumption of production

state being high, medium, and low, respectively.

• Energy-based diagnosis and prognosis. Energy-based diagnosis and prognosis
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Table 3.6: Machine Clustering of Arburg A220 S 150–60 and Arburg A420 S 1000–150

Arburg A220 S 150–60 Arburg A420 S 1000–150

High Medium Low High Medium Low

Product I x x

Product II x x

Product III x x

Product IV x x

Product V x x

Product VI x x

aims at investigating the relationship between energy consumption and machine

faults, and hence using energy consumption as an indirect condition monitoring

for industrial machines. This model effectively prevent not only production

costs but also excessive energy consumption due to machinary faults, which are

common in today’s dynamic manufacturing environment. In current literature,

diagnosis and prognosis have been developed using knowledged-based, data-

driven, and model-based systems. However, data-driven system is a growing

research trend, especially in prognosis and remanding useful life estimation.

• Energy-based remanufacturing. Energy-based remanufacturing is the next logi-

cal step of energy-based diagnosis and prognosis, which decides to reuse, repair,

refurbishing, or recycle faulty machines in an energy-optimal and cost-effective

way. Remanufacturing is a relatively new research area. Most existing works

often considered only cost effectiveness and customer satisfaction, while en-

ergy consumption was hardly studied. As a new research area, all data-driven,

model-based, and knowledge-based systems are applicable for remanufacturing.

79



• Energy-efficient process planing and scheduling. Energy-efficient process plan-

ing and scheduling can be defined as the arrangements and operations of ma-

chines, tools, materials, people, and information to produce energy-efficient

workflows and resource assignments. This model may also include cost ef-

fectiveness as an optimization objective and find a Pareto optimal solution.

Model-based systems are often applied the process planing and scheduling.

Our proposed energy-efficient technologies in Chapters 4–6 are applicable for

this decision-making model.

• Fault tolerant control. Fault tolerant control system ensures the manufacturing

system to continue operating properly in the event of the failure of (or one or

more faults within) some machines. This model prevents production and energy

costs due to unexpected downtime due to machinery failures. Data-driven and

model-based systems are often considered in this model.

• Life-cycle analysis. Our proposed DSS can contribute as a part of whole life-

cycle analysis of the manufactured products, where energy consumption during

production cycles are logged and documented. This model supports the envi-

ronmental sustainability in manufacturing.

The decision-making models described herein provide useful suggestions towards high-

performance manufacturing. Although the proposed decision-making models are fully

computerized and autonomous, they can also be combined with engineering expertise.
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3.5 Summary

In this chapter, we proposed an intelligent framework which identifies the MP op-

erational states based on energy measurements. To justify our proposed framework,

comparative experiments with an existing framework in current literature were eval-

uated on two industrial applications, an injection moulding system and a stamping

system. The experimental results showed that our proposed framework achieved the

accuracies of 98.52% and 98.32% in the case of sufficient training data, and 96.55%

and 94.69% in the case of limited training data, respectively, which outperformed an

existing framework in current literature. Based on the obtained results, an energy

data-driven DSS was proposed, which targeted to make energy-efficient, cost-effective,

and reliable decisions for the next generation of high-performance manufacturing. In

addition, life-cycle analysis could be partially supported, as energy consumption dur-

ing the production stage of a product’s life-cycle was accurately logged and docu-

mented.

In the next chapter, we consider a dynamic scheduling problem which minimizes

the sum of energy cost and tardiness penalty under power consumption uncertainties

due to machine degradation. An integrated operational control and fast reactive

scheduling framework will be proposed to solve the problem.
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Chapter 4

Scheduling of Flexible Manufactur-

ing Systems under Power Consump-

tion Uncertainties

Motivated by the need to deal with uncertainties in energy optimization of flexible

manufacturing systems (FMSs), this chapter considers a dynamic scheduling problem

which minimizes the sum of energy cost and tardiness penalty under power con-

sumption uncertainties. An integrated control and scheduling framework is proposed

including two modules, namely, the augmented discrete event control (DEC) and the

max-throughput-min-energy (MTME) reactive scheduling model. The ADEC is in

charge of inhibiting jobs which may lead to deadlocks, and sequencing active jobs and

resources. The MTME ensures the fulfillment of the innate constraints and decides
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the local optimal schedule of active jobs and resources. Our proposed framework is

applied to the industrial stamping system presented in Chapter 3 with power con-

sumption uncertainties formulated using three different probability distributions. The

obtained schedules are compared with three dispatching rules and two rescheduling

approaches. The experiment results verify that MTME outperforms three dispatching

rules in terms of deviation from Pareto optimality and reduces interrupted time sig-

nificantly as compared to rescheduling approaches. In addition, ADEC and MTME

are programmed using the same matrix language, providing easy implementation for

industrial practitioners.

4.1 Background

A common source of uncertainties in energy optimization of FMSs is resource degra-

dation, which obviously increases the energy consumption of resources. Unlike the

uncertainties in energy measurement process to be considered later in Chapter 6,

uncertainties due to resource degradation is difficult to predict at the time an offline

schedule is executed. The FMS scheduling problem is NP-hard in computational com-

plexity theory, but consideration of uncertainties in resource degradation (dynamic

scheduling) further aggravates its complexity. The existing energy-efficient technolo-

gies for dynamic scheduling of FMSs can be classified into three categories, namely,

the reactive, the proactive, and the predictive-reactive. Each category has its own

pros and cons [65].
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Predictive-reactive scheduling is a scheduling/rescheduling process, in which the

baseline schedules are generated offline and the active schedules are revised online in

response to real-time uncertainties. The most common predictive-reactive scheduling

include completed rescheduling (CR) and partial rescheduling (PR) [107, 108]. In

theory, CR provides the optimal schedules, but these schedules are rarely achievable

in practice and require prohibitive computational time. In addition, it can result in

instability and disruption in manufacturing flows, leading to tremendous production

costs. In PR, only jobs and resources affected by the uncertainties are rescheduled. On

the other hand, the reactive scheduling is characterized by its capability of real-time

decision-making, in which no baseline schedules are generated offline, and decisions

are quickly made online using real-time information. Dispatching rules are typical

examples of reactive scheduling, in which jobs are selected by sorting them according

to some predefined criteria. Dispatching rules are still the most preferred scheduling

approaches in industry due to their ease of implementation, low computational cost,

and guarantee of schedule stability and feasibility [109–112]. The main weakness of

reactive scheduling is that they cannot globally optimize the overall performance of

generated schedules. Proactive scheduling focuses on building a predictive schedule

which minimizes the effects of real-time uncertainties [113]. Baseline schedules are

generated offline and will not be revised online. The main difficulty of these ap-

proaches is modelling of uncertainties. Computational cost is also an issue, since the

stochastic search space is usually huge.
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In this chapter, an FMS dynamic scheduling problem which minimizes the sum

of energy cost and tardiness penalty is considered under power consumption uncer-

tainties. Uncertainties in productive powers are realistic in a dynamic manufacturing

environment, as power consumption was verified to be dependent on uncertain factors

including machine conditions, tool conditions, and workloads [17]. The minimization

of energy cost and tardiness penalty is a practical problem which was considered

by [114] under static environment. Such tradeoff happens when a resource requires

shorter time but higher energy to perform a job as compared to others.

To solve the formulated dynamic scheduling problem, this chapter proposes a

matrix-based integrated control and scheduling framework for a class of FMSs de-

scribed in Chapter 2 The proposed framework can be viewed as an aggregation of

two interacting modules, the ADEC and the MTME. The ADEC has been described

in Chapter 2, proving to be very efficient in modeling and controlling the large-scale

discrete-event dynamics of typical manufacturing systems. The proposed MTME re-

sembles a reactive scheduling approach, which dispatches the imminent jobs and re-

sources quickly and online using real-time power consumption of resources. It includes

two 0–1 LP submodels, the former maximizes the production throughput and the lat-

ter minimizes the energy cost at every dispatching epoch. Both ADEC and MTME

are programmed using the same matrix language and function during operational

control as a whole, which provide easy implementation for industrial practitioners.

Our proposed framework is tested with industrial energy data logged from the
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stamping system presented earlier in Chapter 3. The schedules obtained by our pro-

posed framework are compared with three dispatching rules, CR, and PR approaches.

The experiment results with different batch sizes verify that MTME outperforms the

three dispatching rules for all test cases in terms of deviation from Pareto optimality.

The PR outperforms MTME when the batch size is small (short schedules), but the

reverse is observed when the batch size is larger than 60 parts (long schedules). In

terms of mean interrupted time, MTME achieves less than 1 s for all test cases, while

the PR and CR cause prohibitive interrupted time (instability) for the FMSs.

4.2 Dynamic Scheduling Under Power Consump-

tion Uncertainties

In this section, a mathematical model of power consumption uncertainties is presented

and the dynamic scheduling problem is formally defined.

4.2.1 Mathematical Model of Power Consumption Uncer-

tainties

A practical mathematical model of power consumption uncertainties is selected purely

for performance evaluation of MTME and the related works presented later in Sec-

tion 4.4. In practice, power consumption uncertainties due to machine degradation

may follow different kinds of mathematical models.
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Most importantly, industrial practitioners need not to model power consump-

tion uncertainties prior to using our proposed framework. As a reactive scheduling

approach, MTME does not consider the uncertainties in generating schedules, but

finding the effective ways to react to uncertainties at every dispatching epoch. With

this reactive capability, our proposed framework can be adapted to any mathemati-

cal model of power consumption uncertainties. The reactive nature of our proposed

framework also differs with predictive-reactive approaches such as CR and PR in the

sense that our framework is triggered by job completions instead of changes in energy

consumption.

The power consumption aqij(t) can be conveniently modelled by a step function,

which is often defined in literature as [115]

aqij(t) =

n
∑

k=0

θkχBk
(t), (4.1)

where n ≥ 0 is the number of times that aqij(t) increases, θk are real numbers, Bk are

intervals, and χB, is the indicator function of B defined by

χB(t) =















1 if t ∈ B,

0 if t /∈ B.

(4.2)

In this definition, the intervals Bk have the following two properties, namely, Bk ∩

Bk′ = ∅ for k 6= k′ and ∪n
i=0Bk = [0,∞). To incorporate the uncertainties
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into aqij(t), Bk is defined by

Bk =



































[0, b0) if k = 0,
[

k−1
∑

z=1

bz,
k
∑

z=1

bz

)

if k /∈ {0, n},
[

n−1
∑

z=1

bz ,∞
)

if k = n,

(4.3)

where the values of {bz , 0 ≤ z ≤ n− 1} follow a probability distribution function de-

noted by g
(

b;µq
ij ,
(

σq
ij

)2
)

with µq
ij and

(

σq
ij

)2
are the distribution mean and variance,

respectively. Three probability distributions widely used in reliability engineering and

life data analysis are investigated, namely, the Weibull, exponential, and truncated

normal distributions [113]. Obviously aqij(t) must be monotonically increasing, as

such θk = 1.05θk−1 is assumed for simplicity, i.e., aqij constantly grows by 5% every

time it increases. Lastly, it is worth noting aqij(0) = α0 always.

4.2.2 Problem Description

The FMS scheduling problem that minimizes the sum of energy cost and tardiness

penalty under power consumption uncertainties can be formulated as

min
s∈Θ

J (s) =
∑

rj∈R

∑

πq∈Π

∑

v
q
i ∈ωq

ϕ(πq)
∑

m=1

yqijma
q
ij(t)d

q
ij +

∑

πq∈Π
wqτq, (4.4)

where τq and wq denotes tardiness and penalty of time unit tardiness of πq, respec-

tively. J (s) denotes the weighted sum of energy consumption and makespan to

be minimized. yqijm are decision variables such that yqijm = 1 if job vqi on part m

(m = 1, 2, . . . , ϕ (πq)) is assigned to resource rj ; y
q
ijm = 0, otherwise. Let Θ de-
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note the set of feasible schedules. A feasible schedule s should satisfy the following

production constraints:

∑

rj∈R
yqijm = 1, (4.5)

tq(i+1)m ≥ tqim +
∑

rj∈R
yqijmd

q
ij, (4.6)

yqijm + yq
′

i′jm′ ≥ 1 +
(

θqim + θq
′

i′m′

)

, (4.7)

tqim ≥ tq
′

i′m′ +
∑

rj∈R
yq

′

i′jm′d
q′

i′j −M(1− θq
′

i′m′), (4.8)

tq
′

i′m′ ≥ tqim +
∑

rj∈R
yqijmd

q
ij −M(1 − θqim), (4.9)

τq = tq|ωq |ϕ(πq)
+
∑

rj∈R
yq|ωq|jϕ(πq)

dq|ωq|j −Dq, (4.10)

∀πq ∈ Π, ∀vqi ∈ ωq, m = 1, 2, . . . , ϕ (πq) , θ
q
im ∈ {0, 1} , (4.11)

where tqim denotes the starting time of vqi on part m, θqim is a dummy variable, M

is a large number for big M method, and Dq denotes the due date of part type πq.

(4.5) ensures that each job needs only one machine at a time. (4.6) specifies the

precedence constraints due to the order in which the jobs need to be done for each

part. (4.7)–(4.9) guarantee that each resource can process at most one job at a time

and jobs cannot be preempted once started. (4.7) functions as an indicator such that

if yqijm = yq
′

i′jm′ = 1 then (4.9) and (4.10) will work in such a way that only one of

them will hold. Finally, (4.10) defines the tardiness of each part type. It is worth

noting that though the energy cost and tardiness penalty are weighted equally in

this chapter, decision makers can adjust the weights based on the specific economic
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situations.

4.3 Fast Reactive Scheduling

At a given dispatching epoch, the ADEC determines in (2.19) which rules can be

activated without causing a deadlock. When multiple uninhibited rules are ready

to be activated and multiple disjunctive resources are available to be assigned, the

MTME must be adopted as tie-break rule to select the most effective schedules to

execute, such that the predefined performance criteria are optimized. Based on the

ADEC models of FMSs, this section develops a fast reactive scheduling model that

optimizes the throughput and energy cost of the FMS at every dispatching epoch.

Throughput is adopted here as an objective function as throughput maximization

was verified to effectively reduce the tardiness penalty of FMS [116]. For generality,

it should be noted that any kind of reactive scheduling approaches, with any kind of

optimization criteria and constraints, can be easily combined with the ADEC in such

a way to be described as follows.

4.3.1 Solution Overview

From a global viewpoint, it is convenient to view the framework architecture as an

aggregation of two interacting modules, the ADEC and the MTME, both are pro-

grammed using the same matrix language. The framework provides a complete de-
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scription of the discrete event dynamics of an FMS; and is used 1) as a means to track

active job/resource statues and sequence deadlock-free imminent jobs and outputs,

and 2) to identify the optimal schedule of jobs and resources at each distancing epoch.

As shown in Figure 4.1, its inputs are the acknowledgement messages from the

FMS sensors for resource availability and job completion (vectors vc and rc), the in-

formation about the arrival of new part inputs (vector u), and the deadlock avoidance

control (vector ud) computed by a DAP. Using these information, the logic conditions

of control rules (vector g) is computed by the ADEC.

The interaction of the ADEC and the MTME includes two phases. First, the

ADEC computes and passes the deadlock-free search space (choice sets) to the MTME

(resource set Ra and rule set Ga). Second, the MTME identifies the optimal assign-

ment of rules and resources (matrices Fsr and Fsd) that optimizes (4.4) without

violating the required production constraints. It is worth noting that the inputs to

the MTME are also real-time power consumption and processing time of resources

(matrices A(t) and D) obtained by a real-time energy monitoring network. The

framework’s outputs are vectors describing the conditions of the jobs to be start (vec-

tor vs) and the part output to be released (vector y). All the mentioned tasks of the

two modules are performed by means of matrix equations. The FMS sensors returns

acknowledgements for job completion, for the subsequent release of the resource, and

about the arrival of new part inputs.
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ADEC samples job and 

resource statuses

Any job 
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finished?
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vc and rc
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MTME obtains 

A(t) and D
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ADEC computes 
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All parts 
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are
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Yes

No

Figure 4.1: Simplified flowchart of our proposed framework. The ADEC replicates

the discrete-event dynamics of the system jobs and resources. The MTME decides

the local optimal schedule of active jobs and resources.
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4.3.2 Reduction of Model Complexity

The key benefit provided by using the ADEC is reduction of the model complexity for

implementing large-scale FMSs. If one compares our framework with the conjunctive

DEC, then usage of our framework requires less memory. It should be noted that

one dimension of all DEC (ADEC) matrices is |G| (e.g., |G| × |J | for Fv, |V | × |G|

for Sv, |G| × |R| for Fr, etc.), where |G|, |V |, and |R| are the numbers of rules, jobs,

and resources, respectively. Recall that the conjunctive DEC needs p rules to describe

the starting of a choice job, which can be performed by p different resources. This

drastically increases |G|. In our framework, a new matrix Frd (dimensions of |G|×|R|)

is included to keep |G| minimized. Since |G| ≫ |R| in large-scale FMSs, the reduction

in the model complexity can be significant.

It is also worth noting that the ADEC described in (2.19) is more general than a

PN. In fact, the first two and last two terms are equivalent to a PN, while the middle

term allows additional OR reasoning in the rule bases. To further exemplify this, let

consider the FMS recently presented in [76]. Although, this system was considered

as a place-timed PN, the timing is ignored in this dissertation.

In part type π2 of this FMS, there are three machining jobs (p22, p24, and p26), two

buffering jobs (p23 and p25), three resources (r1–r3), an input p21, and an output p27.

This part type is therefore characterized by a job sequence ω2 = {p22, p23, . . . , p26}

and a set of resources R = {r1, r2, r3}. Job p22 is not a choice job, while job p24 and
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job p26 are. Choice job p24 can be done by either resource r2 or resource r3, while

choice job p26 can be done by either resource r1 or resource r3. The PN models of

this part type is presented in Figure 4.2. It can be seen that the PN, which only

contains AND reasoning, requires p branches (each branch contains two transitions

and one place noted by dashed circles) to represent a choice job that is processed by p

disjunctive resources.

For example, consider choice job p24. The branch containing place p24 presents

the case where this choice job is processed by resource r2, while the token will flow to

the branch containing place p242 if resource r3 is assigned instead. To switch between

these branches (resource routing), controlled places are added to the PN accordingly.

Next, a PN-equivalent ADEC models of this part type is presented in Figure 4.3.

It can be seen that the ADEC only needs one branch to represent a choice job re-

gardless of the number of processable resources. The resource routing is decided

by switching corresponding resources (noted by dashed circles) not branches. This

significantly reduces the model complexity for modelling large-scale FMSs.

4.3.3 Choice Set

Prior to formulating the MTME, it is needed to identify its search space or choice set.

It can be seen that (2.19) determines the set of deadlock-free rules, denoted by Gak+1
,

which can be activated at dispatching epoch k + 1, where Ga = supp(g). Ga can

always be partitioned into two disjoint subsets Ga = Gz ∪ Gnz; where Gz denotes
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t232 t242
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Fig. 1. PN structure of the stamping system.

Figure 4.2: PN models of example part type.

Figure 4.3: PN-equivalent ADEC models of example part type.

the set of choice rules, i.e., rules which start choice jobs, and Gnz denotes the set of

nonchoice rules.

In the resource domain, denote by Rfk+1 as a set of resources which accomplish

the rule set Gak+1. A resource vector that represents Rfk+1 is calculated by

rTfk+1 = gT
k+1 ⊗ (Fr ⊕ Frd) , (4.12)

where Rf = supp (rf). In addition, denote the set of available resources by Rck+1,

where Rc = supp (rc). Let Ra = Rc ∩Rf . It can be clearly seen that the search space

of MTME, which includes all possible schedules at dispatching epoch k+1, is defined
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by a resource set Rak+1 and a rule set Gak+1.

4.3.4 Min-Throughput-Max-Energy Reactive Scheduling

To compress the scheduling decisions into convenient matrix forms, at dispatching

epoch k define Frd’s submatrix Fsdk; such that in the case of multiple entries of “1”

(choice job) in a row of Frd, submatrix Fsdk comprises at most one “1” referring to the

resource selected to process the corresponding choice job, and in the case of multiple

entries of “1” (shared resources) in a column of Frd, submatrix Fsdk comprises at

most one “1” referring to the rule selected to be fired. Analogously, define Fr’s

submatrix Fsrk; such that in the case of multiple entries of “1” in a column of Frd,

submatrix Fsrk comprises at most one “1”. As such, Fsrk and Fsdk are assembled in

the ADEC logical state equation by

gpk+1 = Fv ⊗ vck ⊕ (Fr ◦ Fsrk)⊗ rck ⊕ Fu ⊗ uk ⊕ (Frd ◦ Fsdk)⊗ rck ⊕ Fud ⊗ udk,

(4.13)

where ◦ denotes the Hadamard product (piecewise multiplication) with C = A ◦ B

is defined by cij = aij × bij . Gpk, Gp = supp (gp), presents a set of rules that include

the scheduling decisions and will be eventually activated at dispatching epoch k + 1.

The MTME at dispatching epoch k is presented as follows, where index k is

dropped in all mathematical notations for brevity, i.e., f sd
qijk is simplified to f sd

qij ,

where f sd
qijk is the element of Fsdk. The MTME comprises of two 0–1 LP submodels.

The former computes the maximum throughput achievable; and the latter, among
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solutions of the former, decides the one with least energy cost. The first submodel is

given by

max δ =
∑

πq∈Π

∑

gqj∈Ga

∑

rj∈Ra

(

f sd
qij + f sr

qij

)

, (4.14)

s.t.,

∑

rj∈Ra

f sd
qij ≤ 1, ∀gqj ∈ Gz, (4.15)

∑

gqj∈Gz

f sd
qij +

∑

gqj∈Gnz

f sr
qij ≤ 1, ∀rj ∈ Ra, (4.16)

f sd
qij , f

sr
qij ∈ {0, 1}, ∀(gqj , rj) ∈ Ga × Ra, (4.17)

where (4.14) is the cost function of throughput to be maximized. (4.15) essentially

constraints the solution to select one and only one resource for each rule of gqj ∈ Gzk,

while (4.16) avoids shared-resource conflicts (if any). (4.17) is a mapping constraint

which implies how resources and rules are indexed.

With a solution of the first submodel, it is now proceeded to express the second

submodel by

min
∑

πq∈Π

∑

gqj∈Ga

∑

rj∈Ra

aqijd
q
ij

(

f sd
qij + f sr

qij

)

, (4.18)

s.t.,

∑

πq∈Π

∑

gqj∈Ga

∑

rj∈Ra

(

f sd
qij + f sr

qij

)

= νδmax, (4.19)

(4.15)-−(4.17),
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where (4.18) is the cost function of energy cost to be minimized. (4.19) depicts the

constraint of the minimum throughput must be achieved, where c ∈ R0≤ν≤1 is a weight

parameter. As the energy cost and tardiness penalty are weighted equally in (4.4), ν =

0.5 is chosen herein. ν can be adjusted depending on how the dynamic scheduling

problem is formulated. aqij(t) are real-time productive power measurements from the

meters. Finally, f sdq
ijk and f srq

qijk denote the elements of Fq
sdk and Fq

srk, respectively.

The MTME is formulated as a standard 0-1 (binary) LP, which is classified as

NP-hard in computational complexity theory. Advanced algorithms for solving 0-1

LP include cutting-plane method, B&B, branch and cut, branch and price, etc., each

method has its own pros and cons. In this chapter, a specialized B&B algorithm

known as Balas additive algorithm is chosen as solution method, which is widely

available in commercial solvers [117]. Branching is done similarly with other B&B

algorithms by letting each decision variable take on only one of two values 0 or 1.

Bounding is done differently as compared to other B&B algorithms. Balas algorithm

does not perform look-ahead to complete the solution or its simplified counterpart.

Instead, the bounding function of Balas algorithm optimizes at the cost of the next

cheapest solution that might provide a feasible solution.

In general, B&B algorithms have exponential worst-case (W-C) complexity on the

problem size, but the average-case complexity is significantly lower. Figuring out the

average-case complexity is much more difficult than figuring out either the worst-case

or best-case because we have to identify a given probability distribution for input
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data. For example, in [118], it is assumed that p0, which is the probability that each

edge of B&B search tree has zero cost, is known a priori. Let B be the branching

factor of B&B algorithm which is the number of children at each node of B&B search

tree. Let dB be the depth of the B&B search tree. The average-case complexity was

proven to be linear in dB if Bp0 > 1 and to be exponential in dB if Bp0 < 1.

At every dispatching epoch, the MTME generates online schedules in a local

Pareto optimal way, and the global Pareto front can be calculated in certain sce-

narios. Unlike deterministic multi-objective optimization problems, whose Pareto

optimal solutions are commonly generated using evolutionary algorithm (EA) or GA

In addition, since our proposed framework functions as an online scheduler, it is

not possible to include advanced algorithms such as EA and GA, which require long

computation times and induce disruptions for the production flow of FMSs.

4.4 Industrial Application

An industrial application is carried out to verify the usability of our prosed scheduling

method. An application related to stamping system is selected for the experiment.

The energy data are monitored at a stamping company in the Republic of Singapore.

This stamping system can be characterized by the class of FMSs described in Chap-

ter 2. Each stamping part type has a predetermined sequence of jobs, with some jobs

can be processed by more than one resource, and some resources can perform more

than one job. At this stamping system, the scheduling task is primarily decided based
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on human decisions.

4.4.1 Energy Analysis of Stamping Process

In this application, input parts are raw metal sheets, while output parts are various

types of voil coil motor (VCM) yokes used in commercial hard disk drive (HDD) actu-

ators. A typical VCM comprises of a coil rotatable about a predetermined axis; a pair

of yokes opposing each other with a predetermined distance; and a permanent mag-

net between the pair of yokes. VCM yokes are used to harness the strong permanent

magnets. VCM yokes are usually manufactured massively by progressive stamping

systems. To avoid even tiny particles penetrating into HDDs, the VCM components

must be then assembled in extreme clean rooms. An example of VCM yokes is shown

in Figure 4.4. The stamping system comprises of eight stamping machines, which

are only named by M1–M1 due to confidential restrictions. Energy consumption is

continually monitored using RUDOLFs. To interface RUDOLFs with computers or

handled devices, a graphic user interface (GUI) has been developed in LabVIEW.

The stamping machines are of different working conditions as well as energy con-

sumption profiles, and their performances and efficiencies are summarised in Table 4.1.

It can be seen that there is a wide range in average stamping power, even for different

machines of the same model. This is due to a multitude of factors, e.g., tooling,

machine loading, machine degradation, machine age, etc. The entire stamping cycle

can be divided into three main states, namely, productive, idle, and off as shown Fig-
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Figure 4.4: An example of VCM yokes.

ure 4.5. In idle and off states, the power data are observed to be relatively constant.

In productive state, many spikes are generated, and each spike is observed every time

the stamping press moves down to perform stamping operations.

Table 4.1: Machine Performance and Efficiency

Machine Rated Motor Actual Average

ID tonnage rated power max load stamping power

(tonnes) (tonnes) (tonnes) (kW)

M1 200 22 168 11.96

M2 300 37 238 4.45

M3 300 37 250 7.60

M4 300 37 183 6.19

M5 300 37 176 5.37

M6 300 37 198 6.46

M7 300 37 202 7.84

M8 300 37 – 12.23
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Figure 4.5: Typical power profile of stamping process.

Using the measured power data, the productive power matricesAq, the idle power

vector b, and the processing time matrices Dq can be constructed as follows. Let Pm,

where m is the number of samples, be the power profile shown in Figure 4.5 measured

on resource ri when performing job vqj . As such, one has

aqij =
1

l3 − l2

l2
∑

m=l3

Pm, (4.20)

bi =
1

l2 − l1 + l4 − l3

(

l2
∑

m=l1

Pm +

l4
∑

m=l3

Pm

)

, (4.21)

dqij =
l3 − l2
fs

, (4.22)

where l1–l4 denote the instances that the state is changed from off to idle, idle to
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productive, productive to idle, and idle to off, respectively. fs is the sampling frequency

of RUDOLFs.

4.4.2 Augmented Discrete Event Control Models of Stamp-

ing System

From (4.20) and (4.22), the initial productive power matricesAq(0) (kW) and the pro-

cessing time matrices Dq (s) of the stamping system are obtained as shown in (4.23)–

(4.26).

M1 M2 M3 M4 M5 M6M7M8 B1 B2 B3 B4B5

(A1)
T
=

v11

v12

v13

v14

v15

v16

v17




















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


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




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0 0 0 0 0 0 0 0 2.40 0 0 0 0

0 4.32 7.45 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2.40 0 0 0

0 0 7.73 6.22 5.24 0 0 0 0 0 0 0 0
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(4.23)
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The jobs and possible resource assignments of part types π1 and π2 are reported in

Figure 5.4. The IF-THEN rule bases of π1 and π2 are reported in Tables 4.2 and 4.3,

respectively.

Table 4.2: Part Type π1–Rule Bases

Rule Notation Description

Rule 1 g11 IF v1in is ready AND M1 is free THEN start v11

Rule 2 g12 IF v11 is done AND B1 is free THEN start v12

Rule 3 g13 IF v12 is done AND (M2 is free OR M3 is free)

THEN start v13

Rule 4 g14 IF v13 is done AND B2 is free THEN start v14

Rule 5 g15 IF v14 is done AND (M3 is free OR M4 is free

OR M5 is free) THEN start v15

Rule 6 g16 IF v15 is done AND B3 is free THEN start v16

Rule 7 g17 IF v16 is done AND (M2 is free OR M4 is free)

THEN start v17

Rule 8 g18 IF v17 is done THEN release v1out

The rule bases of two part types are now represented by means of Boolean ma-

trices Fq
v, F

q
r, F

q
rd, F

q
u as shown in (4.27)–(4.29) and (4.30)–(4.32), respectively. It is
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Table 4.3: Part Type π2–Rule Bases

Rule Notation Description

Rule 1 g21 IF v2in is ready AND B4 is free THEN start v21

Rule 2 g22 IF v21 is done AND (M1 is free OR M6 is free)

THEN start v22

Rule 3 g23 IF v22 is done AND B5 is free THEN start v23

Rule 4 g24 IF v23 is done AND (M7 is free OR M8 is free)

THEN start v24

Rule 5 g25 IF v24 is done AND (M5 is free THEN start v25

Rule 6 g26 IF v25 is done THEN release v2out

noted that the contents of matrices Sq
r and Sq

y are omitted for brevity.
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M1M2M3M4M5M6M7M8B1B2B3B4B5
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Concatenating these mission matrices, the overall system’s matrix description is ob-

tained by

Fv =
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


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4.4.3 Experiment Results

In this section, we will show the test results of applying the proposed framework

and demonstrate the solution quality by comparing with the schedules obtained by

three dispatching rules, CR, and PR approaches. The considered dispatching rules

include shortest processing time first (SPT), least energy cost first (LEC), and first

come first served (FCFS) [111]. The SPT rule sequences the jobs so that the job

which takes the shortest time to process is first to be performed. The LEC rule

gives the priority to the job which has the least energy cost to be scheduled first.

The FCFS rule sequences the jobs starting with the current time period and working
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forward. In predictive-reactive approaches, the baseline schedule and the reschedules

are generated using particle swarm optimization [114]. In CR approach, a totally new

schedule is regenerated, while only the jobs and resources which are affected by the

power consumption uncertainties are rescheduled in PR approach.

Since jobs are not preemptive, the reschedules are only applied if all ongoing jobs

from the previous schedules have been completed. The rescheduling is triggered if

any aqij(t) increases. On the contrary, MTME and dispatching rules are triggered if

any job is completed and there are sets of jobs and resources to be dispatched. These

approaches are used to solve (4.4) and the obtained objective values are compared

under three probability distributions of g
(

b;µq
ij ,
(

σq
ij

)2
)

, namely, the Weibull, expo-

nential, and truncated normal distributions. The distribution mean and variance are

reported in Table 4.4.

Table 4.4: Mean and Variance of Power Consumption Uncertainties µq
ij,
(

σq
ij

)2

M1 M2 M3 M4 M5 M6 M7 M8

v11 70,140 – – – – – – –

v13 – 40,80 50,100 – – – – –

v15 – – 80,160 60,120 70,140 – – –

v17 – 50,100 – 70,140 – – – –

v22 50,100 – – – – 60,120 – –

v24 – – – – – – 80,160 90,180

v25 – – – – 70,140 – – –

Two performance metrics are of interest, which are the mean interrupted time to

the production flow and deviation from Pareto optimality. It is well known in cur-
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rent literature that CR provides the Pareto optimal solutions for dynamic scheduling

problems, but these schedules are rarely achieved in practice due to prohibitive dis-

ruptions to the FMS. As such, the deviation from Pareto optimality of a scheduling

method is computed as follows

dev =
J − JCR

JCR
× 100%, (4.34)

where JCR is the optimal cost obtained by the CR. The mean interrupted time is

computed as follows

Tmean =
1

n

n
∑

i=1

Ti, (4.35)

where Ti is the computational time to generate the ith reschedule, and n denotes the

number of reschedules. For all scheduling approaches, the results are obtained after

20 test runs. This experiment is carried on a digital computer equipped with Intel

Core i7 processor and 32 gigabyte RAM. All computations are done using MATLAB.

The deviation from Pareto optimality of the schedules generated by three dis-

patching rules, CR, PR, and MTME in the Weibull distribution, truncated normal

distribution, and exponential distribution are reported in Figures 4.6–4.8, respec-

tively, while test results of mean interrupted time are provided in Table 4.5. For

simplicity, ϕ(π1) = ϕ(π2) and w1 = w2 = 4.75 are assumed, and suitable due dates

are selected for each test cases. n = 40 is set, i.e., each power consumption will

increase for 40 times during the entire production.

In terms of deviation from Pareto optimality, MTME outperforms the three dis-

patching rules for all test cases. The PR outperforms MTME when the batch size is
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Figure 4.6: Deviation from Pareto optimality under Weibull distribution.

small (short schedules), but the reverse is observed when the batch size is larger than

60 parts (long schedules). In terms of mean interrupted time, MTME achieves less

than 1 s for all distributions and batch sizes, while the PR and CR cause prohibitive

interrupted time.

4.4.4 Scalability

In this section, the usability of our proposed MTME is verified with different sizes

of FMS, i.e., different numbers of jobs and resources. Let rewrite the MTME in a
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Figure 4.7: Deviation from Pareto optimality under truncated normal distribution.

Table 4.5: Comparison of Tmean(s) under Different Probability Distributions

Parts Exponential Weibull Truncated Normal

ϕ (π) MTME PR CR MTME PR CR MTME PR CR

20 <1 3.49 23.73 <1 5.23 27.73 <1 6.74 33.23

40 <1 12.73 47.24 <1 16.46 57.24 <1 18.93 68.83

60 <1 20.12 > 100 <1 20.85 > 100 <1 26.54 > 100

80 <1 28.89 > 100 <1 29.48 > 100 <1 31.34 > 100

100 <1 32.73 > 100 <1 37.63 > 100 <1 44.38 > 100

standard 0–1 LP model as follows.

max wT ζ, (4.36)

113



20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

No. of Parts

D
ev

 (
%

)

 

 

MTME
SPT
LEC
FCFS
PR

Figure 4.8: Deviation from Pareto optimality under exponential distribution.

s.t.,

Lζ ≤ h, (4.37)

ζi ∈ {0, 1}, ∀ζi, (4.38)

where ζ represents the vector of variables, w and h are vectors of coefficients, and L

is a matrix of coefficients. Computational results for each 0-1 submodel are reported

in Table 4.6, where λ is the number of variables, γ is the number of constraints, and σ

is the density (the ratio of the number of non-zero elements to the total number of

elements) of matrix L. Obviously, the values of λ and d depend on the numbers of
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Table 4.6: Tmean(s) of MTME with Different FMS Sizes

λ× γ σ Tmean(s)

30×5 0.2 0.039

0.4 0.054

0.6 0.065

0.8 0.147

50×2 0.2 0.112

0.4 0.091

0.6 0.130

0.8 0.609

75×5 0.2 0.197

0.4 0.394

0.6 0.630

0.8 0.775

100×5 0.2 0.240

0.4 0.679

0.6 0.589

0.8 1.535

30× 10 0.8 0.255

50× 10 0.8 1.367

75× 10 0.8 1.832

100× 10 0.8 3.712

jobs and resources in the FMS.

It can be seen that in most problem sizes, each submodel takes less than 2 s

of computational time. In addition, the ADEC and the MTME are programmed in

the same language of Boolean matrices and vectors, which allows fast deployment of

scheduling decisions. These advantages make our framework computationally efficient

even for large-scale FMSs.
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4.4.5 Discussions with Related Works

At a conceptual level, our proposed framework achieves less deviation from global

Pareto optimality as compared to the dispatching rules, as it incorporates optimiza-

tion into the reactive dispatching while still keeping computational time sufficiently

small. As compared to predictive-reactive approaches such as PR and CR, our pro-

posed framework achieves infinitesimal interruption to the FMSs as the MTME’s

problem size only depends on the currency of the FMSs instead of the batch size.

Let MTME, PR, and CR be solved using the same method such as B&B algorithm.

The interrupted time of MTME is independent on the batch size, and its problem size

(search space) is confined to a set of rules Xak+1 and a set of available resources Rak+1,

i.e., the degree of concurrency of FMSs. For PR and CR, the problem size is the (par-

tial or complete) set of unfinished jobs and resources by instance the rescheduling is

triggered, which is obviously dependent on the batch size. To compare with proactive

scheduling, our proposed framework is more convenient in the sense that industrial

practitioners need not to explicitly model the power consumption uncertainties a

priori.

In addition to tardiness penalty and energy cost, our formulation can be poten-

tially applied to other two objectives, such that there is a trade-off between them.

For example, the MTME can be used directly to minimize makespan and energy cost.

It was shown that the makespan objective is closely related to the throughput objec-
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tive [119]. Heuristics that tend to minimize the makespan in a machine environment

with a finite number of jobs also tend to maximize the throughput rate when there

is a constant flow of parts overtime.

Another potential application is minimization of throughput and flow time [120].

Ideally, an FMS should have both a high throughput and a low flow time or low wip.

Unfortunately, these objectives are conflicting and can not both be met simultane-

ously. If a high throughput is required, machines should always be busy. As from

time to time disturbances like machine failures happen, buffers between two consecu-

tive machines are required to make sure that the second machine can still continue if

the first machine fails (or vice versa). For a high throughput many lots are needed in

the manufacturing system, i.e., wip needs to be high. As a result, if a new lot starts

in the system it has a large flow time, since all lots that are currently in the system

need to be completed first.

4.5 Summary

In this chapter, an integrated control and reactive scheduling framework was pro-

posed for improving energy efficiencies in FMSs subjected to power consumption

uncertainties. Our proposed framework was rigorously justified with mathematical

formulation and its effectiveness was evaluated based on an industrial stamping sys-

tem, where the stamping parts were various types of VCM yokes used in commercial

HDD actuators. The obtained schedules were compared with three dispatching rules
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and two rescheduling approaches. The experiment results verified that MTME out-

performs three dispatching rules in terms of deviation from Pareto optimality and

reduces interrupted time significantly as compared to rescheduling approaches.

In the next chapter, we consider an optimal scheduling problem to minimize

both productive and idle energy consumption subjected to the general production

constraints.
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Chapter 5

Total Energy Optimization of Flex-

ible Manufacturing Systems Using

Dynamic Programming

Schedule optimization is crucial to reduce energy consumption of flexible manufactur-

ing systems (FMSs) with shared resources and route flexibility. Based on the weighted

p-timed Petri net (WTPN) models of FMSs, this chapter considers a scheduling prob-

lem that minimizes both productive and idle energy consumption subject to the gen-

eral production constraints. The considered problem is proven to be a non-convex

mixed integer nonlinear program (MINLP). A new reachability graph (RG)-based dis-

crete dynamic programming (DP) approach is proposed for generating near energy-

optimal schedules within adequate computational time. The non-convex MINLP

119



is sampled, and the reduced RG is constructed such that only reachable paths are

retained for energy-optimal path computation. Each scheduling subproblem is lin-

earized, and each optimal substructure is computed to store in a routing table. It

is proven that the sampling-induced error is bounded, and this upper bound can be

reduced by increasing the sampling frequency. Experiment results on an industrial

stamping system show the effectiveness of our proposed scheduling algorithm in terms

of computational complexity and deviation from optimality.

5.1 Background

FMSs are modern production facilities that possess high flexibility of resource alloca-

tion and part routing. A resource is capable of performing multiple jobs, and multiple

resources can be used to perform the same job on a part [16,121–123]. If one monitors

the energy consumption of FMSs, it is not uncommon to see that different resources

require different productive powers and processing times to perform the same job

and their idle powers are often varied from each other. This variation is due to a

multitude of factors, whether predicted or unpredicted, including the resource types,

its operating conditions, process parameters, and part types [17]. To reduce energy

consumption of FMSs, it is crucial to develop efficient scheduling algorithms that

generate energy-optimal schedules in consideration of the production constraints.

The traditional scheduling of FMSs often optimizes time-critical objectives such as

makespan [73,124,125], mean tardiness and earliness [126], and mean flowtime [127],
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etc. Owing to the current looming economic situation and rising energy prices, energy

consumption has been recently considered in the FMS scheduling problems either in

the multi-objective function or in a constraint [25, 79, 80, 114]. However, idle energy

consumption was usually omitted or assumed to be trivial by the existing works in

current literature. This assumption may not be applicable in many realistic FMSs,

where idle energy is observed to be significant as compared to total energy consump-

tion [64]. To bridge this gap, the scheduling problem herein considers both idle and

productive energy consumption in the objective function. Instead of a Pareto opti-

mal schedule of energy consumption and makespan, an energy-optimal schedule is of

interest and the required makespan is formulated as a production constraint. The

considered problem is proven to be a non-convex MINLP.

A wide range of problems arising in practical applications can be formulated as

MINLPs. Although all MINLPs are NP-hard in general, non-convex MINLPs are

much more difficult to solve than convex ones, in both theory and practice. This

is because the continuous relaxation of a non-convex MINLP is itself a global op-

timization problem, and therefore likely to be NP-hard [128]. For the general case

of non-convex MINLPs, existing solution methods in current literature are still lim-

ited. To the best of our knowledge, the branch-and-reduce (B&R) algorithm [128]

and its variants [129, 130] are the only available methods that provide exact solu-

tions of non-convex MINLPs. Its key concept is to replace each non-convex function

with a convex under-estimator, and solve the estimated problem using either linear
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programming (LP) or convex programming (CP) relaxations.

Besides, there are also proposed metaheuristic methods, which are designed to

find good, but not provably optimal, solutions quickly. For example, a metaheuristic

based on tabu search algorithm was proposed for certain non-convex MINLP instances

arising in integrated systems and process control design [131]. A particle-swarm opti-

mization (PSO) approach was presented in [132], an enhanced genetic algorithm (GA)

was studied in [133], and an extended ant-colony optimization (ACO) was considered

in [134]. Another two recent works are an integration of neighborhood search, local

branching, sequential quadratic programming, and branch-and-bound (B&B) [135],

and a large neighborhood local search method by rounding the fractional solution

from a relaxation [136].

In this chapter, the WTPN is used to model energy-efficient FMSs described

in Chapter 2. Based on the WTPN models, a non-convex scheduling problem is

formulated, where the optimization criterion is to minimize both productive and

idle energy consumption. The considered production constraints include deadlock

avoidance, job precedence, minimal part holding time, and maximal makespan. A

new RG-based discrete DP method for generating very near-optimal schedules within

adequate computational time is presented. The full RG is reduced, such that only

reachable paths are retained for energy-optimal path computation. Each subproblem

is now linearized, and the optimal substructures are computed and stored in a routing

table. It is proven that the induced error by sampling the non-convex MINLP is
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bounded, and this upper bound can be reduced by increasing the sampling frequency.

As compared to the related works, our scheduling method is especially useful for

large-scale FMSs (i.e., either the numbers of resources, jobs, or parts are large) with

high degree of flexibility.

The proposed scheduling method is tested on an industrial system at a stamping

company in the Republic of Singapore. Energy consumption from each stamping

machine is continually monitored using a Rudolf R-DPA96A digital power analyzer

(RUDOLF). RUDOLFs are interfaced with computers via LabVIEW environment.

Our proposed scheduling method is then used to generate near energy-optimal sched-

ules. Comparisons are made with the schedules generated by other related techniques

in the current literature [128,132,134]. The interested performance metrics are com-

putational time and deviation from optimality.

5.2 Problem Formulation with Mathematical Pro-

gramming

The WTPN models of FMSs was established in Section 2.3 and this section con-

tinues to formulate the total energy optimization problem with mathematical pro-

gramming. To properly formulate a scheduling problem, it is convenient to write the

problem in terms of mathematical programming, which includes a cost function to be

minimized or a utility function to be maximized, and a set of constraints, equalities
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or inequalities, to be satisfied. In a discrete-event domain, we define a finite hori-

zon k = 0, 1, . . . , K such that after K firing epochs the WTPN models will traverse

from the initial state x0 in (2.11) to the final state xK in (2.12).

The WTPN models of FMSs investigated herein have the following structural

properties, whose proofs are omitted for brevity.

1. Property 1: xK is always reachable from x0, denoted by xK ∈ Re (χ,x0).

2. Property 2: K =
|Π|
∑

q=1

ϕ (πq) (|ωq|+ 1).

3. Property 3: The WTPN models of FMSs is bounded and its RG is finite.

These properties enable us to formulate the following mathematical program with the

integer decision variables xk and uk.

5.2.1 Formulation of Constraints

In PN theory, the information of job precedences and resource assignments (defined

by the set of arcs) is included in the incidence matrix W. To satisfy these logical

constraints, xk and uk must comply with the following equations

xk = xk−1 +WTuk, k = 1, 2, . . . , K, (5.1)

xk−1 ≥ OTuk, k = 1, 2, . . . , K. (5.2)

(5.1) specifies that the evolution of xk due to uk must satisfy the logical constraints

embedded in W. (5.2) provides the condition for firing transitions such that illegal

markings of the individual places are forbidden.
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As mentioned, the scheduling decisions for the split places are made by controlling

the firing timing of their output transitions. Different firing instances are assigned to

the transitions such that only one transition is enabled at a firing epoch, i.e.,

|T |
∑

j=1

ujk = 1, k = 1, 2, . . . , K. (5.3)

To model the firing timing of transitions, we introduce the intermediate continuous

variables τk ∈ R
+, such that τk is the time instance of firing epoch k. The following

timing constraints are imposed on τk

τk < τk+1, k = 1, 2, . . . , K − 1, (5.4)

τK ≤ D, (5.5)

where D, D ∈ R
+\{0}, is a due date of production orders required by customers. D

is assumed to be sufficiently large to avoid trivial solutions.

There is a number of deadlock avoidance policies (DAPs) have been proposed in

current literature. In our application, a PN-based DAP that ensures maximal work in

progress is used [70,72,121,137]. Let C = {c} and xc0 be the set of circular waits in an

FMS and the state vector of the resources in the critical subsystem of c, respectively.

To prevent deadlocks, the following constraint must be satisfied

xck ≤ xc0 ∀c ∈ C, k = 1, 2, . . . , K − 1. (5.6)

Remark 5.1 Circular waits are ubiquitous in an FMS with shared resources, and

deadlock can occur in general if the firing of transitions are not properly taken care.
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In fact, (5.5) can eliminate such a deadlock, because a solution that causes a deadlock

has τK → ∞, which violates (5.5). However, (5.6) is still included as a deadlock

avoidance constraint to speed up the search process, as it inhibits searching deadlock

solutions wastefully.

We now wish to formulate the constraints for minimal token sojourn time in

places. For each p ∈ PJ , let τk and τ ′k denote the firing instances of an input transi-

tion t and an output transition t′, respectively. Let the firing of t and t′ be determined

by uj and uj′, respectively. A token entering p must sojourn in p for a minimal du-

ration of h. Since the input transitions and output transitions of a place can be

fired more than once if ϕ(πq) ≥ 2, the following count variables δ•pk is necessarily

formulated as

δ•pk =
k
∑

g=1

∑

tj∈•p

ujg, k = 1, 2, . . . , K, (5.7)

where δ•pk denotes the total number of times that input transitions of p has already

been fired up to k. Similarly δp•k can be defined. Obviously, 0 ≤ δ•pk, δp•k ≤ ϕ (πq).

As such, the following inequalities hold for each input and output transitions pair 〈t, t′〉

of p

ujk + uj′k′ ≤ zjk + zj′k′ + (δ•pk − δp•k′)
2, (5.8)

τk′ − τk ≥ h+ A(zjk + zj′k′ − 2), (5.9)

∀p ∈ PJ , t ∈ •p, t′ ∈ p•, k = 1, 2, . . . , K,

where zjk and zj′k′ ∈ {0, 1} are dummy variables and A is a large number for big M
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method. (5.8) functions as an indicator such that zjk = zj′k′ = 1 if ujk = uj′k′ = 1

and δ•pk = δp•k′, i.e., t and t
′ are fired for the same ordinal number at epoch k and k′,

respectively. In such a case, (5.9) is activated to ensure that τk′ − τk ≥ h. It is worth

noting that (5.8) is a nonlinear quadratic constraint due to the term (δ•pk − δp•k′)
2,

which is widely known to be convex.

5.2.2 Objective Function and Convexity Analysis

A column vector indexed by the set of places P , i.e.,

cT =

[

c1 c2 . . . c|P |

]

, (5.10)

is called the cost vector, where element ci denotes the token sojourn cost per time

unit of pi ∈ P . As such, the total energy consumption of an FMS can be formulated

as

J(xk, τk) =

K−1
∑

k=0

(τk+1 − τk) c
Txk + (D − τK) c

TxK . (5.11)

Unlike dedicated manufacturing systems where equipment are dedicated to one prod-

uct and often switched off when needed, a FMS is typically used for manufacturing

multiple part types and products, which will operate idly if certain part types are

finished before the due date [138]. This industrial practice is indicated by the second

term of (5.11) accordingly.

It can be seen that J(xk, τk) is a nonlinear mixed integer function, as it contains

the products of different decision variables, the integer variables xk and the continuous
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variables τk. In operations research, a mixed integer (linear or nonlinear) problem

is often solved using continuous relaxation of the integer variables. For a nonlinear

case, it is required to examine the convexity of the problem.

Theorem 5.1 The continuous relaxation of J(xk, τk) is a non-convex function.

Proof: From (5.11), J(xk, τk) can be written as

J(xk, τk) = (τ1 − τ0) c
Tx0 + (τ2 − τ1) c

Tx1 + . . .+ (D − τK) c
TxK

= τ1
(

c1x10 + . . .+ c|P |x|P |0
)

+ (τ2 − τ1)
(

c1x11 + . . .+ c|P |x|P |1
)

+ . . .

+ (D − τK)
(

c1x1K + . . .+ c|P |x|P |K
)

. (5.12)

First of all, it worth noting that a multivariate function f (x1, x2, . . . , xn) is not

convex if it is not convex in its sub-domain, i.e., f (x1, x2, . . . , xq) is not convex with

any q < n. We prove the non-convexity of the continuous relaxation of J(xk, τk) by

induction. It would be trivial to consider the base case of K = 1 as a job needs at

least two transitions to be fired. As such, let us consider the base case of K = 2.

At K = 2: J is written as J(xk, τk, 2). One has

J(xk, τk, 2) = τ1
(

c1x10 + . . .+ c|P |x|P |0
)

+ (τ2 − τ1)
(

c1x11 + . . .+ c|P |x|P |1
)

+ (D − τ2)
(

c1x12 + . . .+ c|P |x|P |2
)

. (5.13)

To prove that J(xk, τk, 2) is not convex, another mathematical induction is used

on |P |. It would be trivial to consider the base case of |P | = 1 as an FMS needs at

least four places. As such, let us consider the base case of |P | = 4.
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At |P | = 4: J(xk, τk, 2) is written as J(x, τk, 2, 4), and one has

J(xk, τk, 2, 4) = τ1 (c1x10 + . . .+ c4x40) + (τ2 − τ1) (c1x11 + . . .+ c4x41)

+ (D − τ2) (c1x12 + . . .+ c4x42) . (5.14)

The Hessian matrix of J(x, τ, 2, 4) has both negative and positive eigenvalues. As

such, J(x, τ, 2, 4) is not either convex or concave.

At |P | = s+1: Let us assume that J(x, τ, 2) is not convex up to J(x, τ, 2, s). We

now wish to prove that J(x, τ, 2, s+ 1) is not convex too. One has

J(xk, τk, 2, s+ 1) = J(xk, τk, 2, s) + τ1cs+1x(s+1)0

+ (τ2 − τ1) cs+1x(s+1)1 + (D − τ2) cs+1x(s+1)2

= J(xk, τk, 2, s) + F. (5.15)

J(xk, τk, 2, s+1) is convex if F is able to convexify J(xk, τk, 2, s). This is not possible

as the projection of F on the domain of J(xk, τk, 2, s) is F ∗ = 0. As such, one

has J(xk, τk, 2) is not convex.

At K = q + 1: Now, let us assume that J(xk, τk) is not convex up to J(xk, τk, q).

We now wish to prove that J(xk, τk, q + 1) is not convex too. From (5.12), one has

J(xk, τk, q + 1) = J(xk, τk, q) + (τq+1 −D)(c1x1q + . . .+ c|P |x|P |q)

+ (D − τq+1)(c1x1q+1 + . . .+ c|P |x|P |q+1)

= J(xk, τk, q) +Q. (5.16)

J(xk, τk, q+1) is convex if Q is able to convexify J(xk, τk, q). This is not possible as the

projection of Q on the domain of J(xk, τk, q) is Q
∗ = −D(c1x1q+ . . .+c|P |x|P |q), which
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is a linear function. The summation of a non-convex function with a linear function

results a non-convex function, which implies that J(xk, τk, q + 1) is not convex. As

such, the continuous relaxation of J(xk, τk) is not convex.

The cost function (5.11) and the constraints (5.1)–(5.9) form a non-convex MINLP

to be solved.

Remark 5.2 The scheduling problem considered in this chapter only includes some

general production constraints (5.1)–(5.9), which are practical in many realistic FMSs.

We acknowledge that other constraints may also be necessary, which were included by

other excellent works, e.g., maximal part holding time [73], line balancing [139], and

resource utilization [140], etc. These additional constraints can be easily included in

the formulated non-convex MINLP as well.

5.3 Energy-Optimal Path Computation Using Dy-

namic Programming

DP is a powerful mathematical technique for making a sequence of interrelated deci-

sions. Bellman formalized the term DP and used it to describe the process of solving

problems where one needs to find the best decision one after another [141]. It pro-

vides a systematic procedure for determining the optimal combination of decisions

which takes much less time than naive methods. In contrast to other optimization

techniques, such as mathematical programming, DP does not provide a standard
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mathematical formulation of the algorithm. Rather, DP requires a problem to be

ably formulated in a (forward or backward) recursive form, which is popularly known

as Bellman equation.

5.3.1 Formulation of Dynamic Programming

To formulate DP, the non-convex MINLP is sampled in discrete time at sampling

frequency fdp. Owing to constraint (5.5), we define a finite discrete-time horizon n =

0, 1, . . . , H , where H = D × fdp and xH = xK .

In timed extensions of PNs, there are two types of controls, namely, timed and

discrete. A discrete control represents the effect of firing a discrete transition, which

has been discussed so far. On the other hand, a timed control only increases the

elapsed sojourn time of each token by one and does not affect the current PN state.

Thus, the state evolution of the WTPN models is formally defined as follows.

Definition 5.1 (State Evolution of the WTPN Models)

xn =















xn−1 +WTun,

xn−1,

(5.17)

where the upper holds if un is discrete and the lower holds if un is timed.

Let U be the set of admissible controls which satisfy the set of constraints (5.1)–

(5.3) and (5.6)–(5.9). It can be seen that a timed control is always admissible. This

leads to the definition of lazy (non-urgent) behaviour in the general class of timed

PNs, which was introduced in [142, 143].
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Definition 5.2 (Lazy- and Forced-Timed Controls) A fired timed control un is

called forced, if there is no discrete control admissible at n. On the contrary, a lazy

control indicates that one may choose to “let time pass” instead of firing an admissible

discrete control.

Let us denote the timed control by u0, which is a null |T | × 1 vector. We now

wish to justify the recursive form of J(xk, τk) in (5.11). Let us denote by J∗(xn) the

optimal cost-to-go from xn to xH and by J(xn,un+1) the cost-to-go from xn to the

next stage. The following backward recursive formula can be derived.

Theorem 5.2 The Bellman recursive formula holds by

J∗(xn) = min
un+1∈U

{J(xn,un+1) + J∗(xn+1)}. (5.18)

Proof: From Definition 5.1, J(xk, τk) is approximated by

J =
1

fdp

H
∑

n=1

cTxn =
1

fdp

H
∑

n=1

cT
(

xn−1 +WTun

)

, (5.19)

where un can be either discrete or timed. We denote by u[n1,n2] the control vector

sequence within the range n1 ≤ n ≤ n2, such that u[n1,n2] = un1un1+1 . . .un2 . The

cost-to-go from x0 to xH is computed by expanding the summation in (5.19) as

J × fdp = cTx1 + cTx2 + . . .

= cTx0 + cTWTu1 + cTx1 + cTWTu2 + . . .

= 2cTx0 + 2cTWTu1 + cTWTu2 + . . . (5.20)
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As such, one can consider J as a function of the initial state x0, and the admissible

control sequence u[1,H] ∈ U . We write this as J
(

x0,u[1,H]

)

. It can be seen that the

optimal value of J , denoted by J∗, is also the function of x0, because the optimal

control vector u∗
[1,H] ∈ U is determined based on the value of x0. We write this

as J∗(x0). As such, one has

J∗(x0) = min
u[1,H]∈U

J(x0,u[1,H]). (5.21)

Similarly, cost-to-go from any state xγ , where 1 ≤ γ ≤ H , is computed by

J∗(xγ) = min
u[γ+1,H]∈U

J(xγ,u[γ+1,H]), (5.22)

One now considers an initial state xµ, where γ ≤ µ ≤ H . The optimal cost-to-go is

denoted by J∗(xµ). This implies that J
(

xγ ,u[γ+1,µ]

)

is independent of u[µ+1,H ]. As

such, (5.22) is equivalent to

J∗ (xγ) = min
u[γ+1,µ]∈U

{

J
(

xγ ,u[γ+1,µ]

)

+ min
u[µ+1,H]∈U

J
(

xµ,u[µ+1,H]

)

}

= min
u[γ+1,µ]∈U

{

J
(

xγ,u[γ+1,µ]

)

+ J∗ (xµ)
}

. (5.23)

Now let µ = γ + 1 and replace γ with index n, one has (5.23) rewritten in the form

of Bellman’s famous equation as

J∗ (xn) = min
un+1∈U

{J (xn,un+1) + J∗ (xn+1)} . (5.24)

The recursive formula (5.18) is the basis of the optimization principle which is based

on the backward direction. That is to say, in the optimal control sequence u∗
[1,H], the
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first half of the control sequence u∗
[1,g] may be of any value, and the last half of the

control sequence in relation to xg which has been produced by the first half of the

control sequence, produces the optimal control sequence u∗
[g+1,H].

5.3.2 Computation of Energy-Optimal Path

Algorithm 1 Compute energy-optimal schedule

Require: H and (χ,x0) and xH

Ensure: J∗ (x0) and routing table

1: J∗(xH) = 0 and J∗(xi
n) = ∞,∀n 6= H

2: Create nodes x1 and xH

3: for u
j
1 ∈ U \ {u0} do

4: Create nodes xj
1 = x0 +WTu

j
1

5: if ∃ j 6= j′ : xj
1 = x

j′

1 then

6: Merge x
j
1 with x

j′

1

7: end if

8: end for

9: for n = 2 → H − 1 do

10: for all xi
n do

11: for all u
j
n ∈ U do

12: Create node x
ij
n = xi

n−1 +WTu
j
n

13: end for

14: if ∃ i 6= i′ or j 6= j′ : xij
n = x

i′j′

n then

15: Merge x
ij
n with x

i′j′

n

16: end if

17: end for

18: end for

19: for all xi
H−1, !∃u

j
H ∈ U : xH = xi

H−1 +WTu
j
H do

20: Delete
(

xi
H−1

)

21: end for

22: for n = H → 1 do

23: J∗ (xi
n−1

)

= min
un∈U

{

J
(

xi
n−1,u

j
n

)

+ J∗
(

x
j
n

)}

24: u∗ (xi
n−1

)

= arg
{

J∗ (xi
n−1

)}

⊲ Update routing table

25: end for
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In PN theory, the RG is a directed graph of all possible states reachable from x0

in a net (χ,x0), denoted by Re (χ,x0). A node represents a reachable state and an

edge represents a control which drives the PN from its tail to head states.

To search for the energy-optimal path from x0 to xH , Theorem 5.2 suggests to

perform the DP algorithm on the H-stage RG, i.e., xH must be reached from x0

within H edges. DP has a node-table routing architecture in which the routing table

is stored at each hop of the route. The destination of the header flit will be checked,

and it will decide the routing direction among several possible next hops at each

stage of the route based on the table entries. The RG-based DP algorithm on WTPN

models is presented in Algorithm 1.

Algorithm 1 performs two main tasks recursively: construction of a H-stage RG

(lines 3–21) and evaluation of the energy-optimal cost-to-go from each constructed

state to the final state (lines 22–25). At stage n, all legal states xi
n were constructed

from the previous iteration. For each xi
n, Algorithm 1 finds all admissible con-

trols uj
n+1 ∈ U which result the legal states xij

n+1 at stage n + 1. To find the set

of admissible controls, the following procedures are done. Given a state xi
n and a

control vector uj
n+1, it is direct to validate whether uj

n+1 satisfies constraints (5.1)–

(5.3) and (5.6). Let uj
n+1 represent the firing of transition t′ ∈ p•. To ensure con-

straints (5.8)–(5.9) satisfied, it is required to trace back to the root (x0) of the path

containing xi
n to determine the count variables δp•n and δ•pn.

As compared to a full RG, the RG constructed by Algorithm 1 is reduced by the
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t12

t13

t14

Figure 5.1: A simple marked WTPN models example.

following reasons.

1. It can be seen that, at stage H − 1 only the paths which are able to reach xH

are of interest. This implies that there is a number of paths, which are not

able to reach xH . To avoid wasteful evaluations, these paths are pruned at

stage H − 1 using function Delete, as outlined in lines 19–21.

2. The effect of lazy behaviour of a timed PN is considered. This lazy behaviour

has a negative impact, as it creates redundant paths in the RG. As discussed,

a lazy control u0 is always admissible at any state. It will be proven in The-

orem 5.3 that the paths initiated by some lazy controls are redundant. Thus,

they are pruned, as outlined in lines 3–8.

Theorem 5.3 The reduced RG of WTPNs constructed by Algorithm 1 consists of

only but all reachable paths from x0 to xH within H edges.
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Figure 5.2: The full 3-stage RG of WTPN models example.

Proof: The proof of this theorem is obvious from the generation algorithm for the

RG, if one can prove that all paths which are initiated by some lazy timed controls,

called lazy paths, are redundant. In other words, there are always some other paths

that are equivalent to the lazy ones.

A H-stage reachable lazy path is characterized by a state sequence of the form

x0x1 · · ·xδxδ+1 . . .xH−1xH , where 0 ≤ δ ≤ H and x0 = x1 = . . . = xδ. It can be seen

that the non-lazy counterpart that has the form x0x1 · · ·xH−δxH−δ+1 . . .xH−1xH is

also reachable, where xH−δ = . . . = xH−1 = xH . It is direct to see that these two

paths are equivalent, if one notes the little-realized fact that

J (x0,u0) = J (xH ,u0) . (5.25)
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Figure 5.3: The reduced 3-stage RG of WTPN models example.

Example 5.1 For clarification, let us consider the simple marked WTPN models

of FMSs shown in Figure 5.1. There is one choice job represented by places p111

and p112. There are two resources represented by places p1 and p2, respectively.

Thus, the initial state is x0 =

[

0 0 1 1 1 0

]T

, and the final state is xH =

[

0 0 1 1 0 1

]T

, where D = 3 is given and fdp = 1 is chosen. The full 3-

stage RG is constructed in Figure 5.2. It can be seen that there are only three paths

are able to reach xH within three edges. Among these reachable paths, the lazy

path u0 → t11 → t13 is equivalent to its non-lazy counterpart t11 → t13 → u0. The

reduced 3-stage RG generated by Algorithm 1 is shown in Figure 5.3, where only two

paths are retained for computation of the energy-optimal path.

To find the energy-optimal path, it can be seen that each node involves O(|A|) ad-
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ditions and comparisons, where |A| is the largest number of nodes at one stage. Note

that the number of additions corresponds to the number of adjacent nodes, and |A|

is an upper bound, which corresponds to the configuration of a fully connected RG.

As such, the W-C complexity is O(H|A|), as compared to the exponential complex-

ity of exhaustive searches or B&B algorithm. However, in modern computers with

multi-core processors and parallel execution, |A| additions can be executed in paral-

lel. Each computational unit can simultaneously compute the new expected cost for

all neighboring nodes. Therefore, the solution time becomes the time for the updated

value to be distributed to every other node, and the computational complexity can

be reduced to O(H).

5.3.3 Error Analysis

In this subsection, we study the error induced by sampling the non-convex MINLP

problem in discrete time at sampling frequency fdp. Denote the optimal solution of

the non-convex MINLP model by pairs 〈x∗
k, τ

∗
k 〉, where x0 and xK are known a priori.

Let the optimal cost be Jopt = J(x∗
k, τ

∗
k ) and the cost obtained by DP in discrete time

be Jdp.

If ∃n : τ ∗k = n
fdp
, ∀k, i.e., all time instances τ ∗k are sampled, then 〈x∗

k, τ
∗
k 〉 is feasible

in discrete time. According to Bellman’s principle of optimality, Jdp − Jopt = 0.

Otherwise, some τ ∗k are not sampled, then ∃n : n−1
fdp

< τ ∗k <
n
fdp

. Let ∆k = n
fdp

− τ ∗k .

Obliviously, 0 ≤ ∆k ≤ 1
fdp

.
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It is worth noting the minimal token sojourn time constraint imposes on all pairs of

consecutive transitions 〈t, t′〉 from a certain part route, such that τ ∗k′−τ ∗k ≥ h if t and t′

are fired at τ ∗k and τ ∗k′ , respectively. Let us denote by τdk the discrete time instances

that x∗
k are activated. In other words, the continuous optimal solution 〈x∗

k, τ
∗
k 〉 is

mapped into a discrete solution
〈

x∗
k, τ

d
k

〉

, where τdk′ − τdk ≥ h still must hold for all

pairs 〈t, t′〉.

Theorem 5.4 The error induced by sampling the non-convex MINLP at sampling

frequency fdp is bounded by

Jdp − Jopt <
K−1
∑

k=1

1

fdp
cTx∗

k. (5.26)

The following Lemmas are needed to prove Theorem 5.4.

Lemma 5.1 τdk ≥ τ ∗k , k = 2, 3, . . . , K.

Proof: Proof by induction.

At k = 2: One has τ ∗2 − τ ∗1 ≥ h2, and it is always true that τd1 = τ ∗1 = 0. To

ensure that τd2 − τd1 ≥ h2 holds, one has τd2 ≥ τ ∗2 .

At k = s: Assume that τdk ≥ τ ∗k holds for k = 2, . . . , s− 1. We now wish to prove

that τds ≥ τ ∗s . The minimal token sojourn time constraint imposed on τ ∗s is

τ ∗s − τ ∗s′ ≥ hs, for s
′ < s. (5.27)

According to the hypothesis,

τds′ ≥ τ ∗s′. (5.28)
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From (5.27) and (5.28), τds ≥ τ ∗s must hold to ensure τds − τds′ ≥ hs.

From Lemma 5.1, the position of τdk can be investigated further.

Lemma 5.2 For each pair 〈t, t′〉 such that τ ∗k′ − τ ∗k ≥ h. Assume that τdk = τ ∗k +∆k,

one has

τdk′ =















τ ∗k′ +∆k′ if ∆k′ ≥ ∆k

τ ∗k′ +∆k′ +
1

fdp
if ∆k′ < ∆k

. (5.29)

Proof: Since τdk′ − τdk ≥ h must always hold, one has

1. ∆k′ ≥ ∆k: τ
d
k′ = τ ∗k′ +∆k′ ensures τ

d
k′ − τdk ≥ h, as

τdk′ − τdk = (τ ∗k′ − τ ∗k ) + (∆k′ −∆k) ≥ h+ 0 ≥ h, (5.30)

i.e., τ ∗k′ is sampled at the next sampling point to the right.

2. ∆k′ < ∆k: Similarly, it can be proven that not τdk′ = τ ∗k′ + ∆k′ but τdk′ =

τ ∗k′ +∆k′ +
1

fdp
ensures τdk′ −τdk ≥ h, i.e., τ ∗k′ is sampled at the next two sampling

points to the right.

The proof of Theorem 5.4 is derived as follows.

Proof: Without loss of generality, the worst error case is considered when ∆k′ <

∆k, ∀ 〈t, t′〉, and the continuous optimal solution only comprises of one part route

(unlikely).

In this case, the error is propagated serially throughout the optimal state se-
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quence. From Lemma 5.1 and 5.2, one has ∆k+1 < ∆k, ∀k and

τd2 = τ ∗2 +∆2 (5.31)

τd3 = τ ∗3 +∆3 +
1

fdp
(5.32)

τd4 = τ ∗4 +∆4 +
2

fdp
(5.33)

... (5.34)

From (5.11), the worst error induced by sampling at fdp is

J(x∗
k, τ

d
k )− Jopt =

|K|−1
∑

k=1

cTx∗
k

(

∆k+1 −∆k +
1

fdp

)

+∆1c
Tx0 −

(

∆K +
K − 2

fdp

)

cTxK

=

|K|−1
∑

k=1

cTx∗
k

(

∆k+1 −∆k +
1

fdp

)

−
(

∆K −∆1 +
K − 2

fdp

)

cTxK

<

|K|−1
∑

k=1

1

fdp
cTx∗

k. (5.35)

Since Bellman’s principle of optimality ensures that Jdp ≤ J(x∗
k, τ

d
k ), one has

Jdp − Jopt <

K−1
∑

k=1

1

fdp
cTx∗

k. (5.36)

It can be seen that a certain part route indeed consists of several pairs 〈t, t′〉.

From Lemma 5.2, if a pair 〈t, t′〉 has ∆k′ < ∆k, then τ ∗k must sampled at the next

two points to the right, which shifts the subsequent transitions’ sampling points on

all part routes which contain 〈t, t′〉 by one sampling point to the right as well. This

phenomenon is called error propagation. Theorem 5.4 suggests that the induced error

can be reduced by increasing the sampling frequency fdp. Obviously, Jdp − Jopt → 0
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if fdp → ∞. It is also worth noting that there is always a tradeoff between optimality

and computational complexity.

5.4 Industrial Application

The same industrial application presented in Chapter 4 is used to verify the prac-

ticality of considered robust problem and the feasibility of our proposed integrated

framework. Using the measured power data, the productive power matrix A(t) and

the processing time matrix D can be constructed as described in (4.20) and (4.22).

5.4.1 Weighted P-Timed Petri Net Models of Industrial

Stamping System

This stamping system is now formulated using the WTPN models. There are two

part types π1 and π2, eight stamping machines denoted by M1−M8, and five ma-

terial routing resources denoted by B1− B5. Part π1 has a job sequence ω1 =

v1inv
1
1v

1
2 . . . v

1
7v

1
out, where v11, v

1
3, v

1
5, and v17 are stamping jobs, and v12, v

1
4, and v16

are routing jobs. This implies that v13, v
1
5, and v17 are choice jobs and v11 is a non-

choice job. Likewise, part π2 has a job sequence ω2 = v2inv
2
1v

2
2 . . . v

2
5v

2
out, where v

2
5 is

a non-choice stamping job, v22 and v24 are choice stamping jobs, and hence v21 and v23

are routing jobs.

For each choice job, there is an associated routing resource which routes parts.
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For instance, choice job v13 can be processed by M2 or M3, and is associated with

routing resource B1; choice job v15 can be processed by M3, M4, or M5, and uses

routing resource B2 for part routing; and choice job v24 can be processed by M7

or M8, and is routed by routing resource B5, etc. All routing resources are non-

shared. All stamping machines are shared resources, except for M6−M8. Capacities

of all resources are one.

The layout of this stamping system is shown in Figure 5.4, where the solid and

dashed lines represent the part routes of part π1 and π2, respectively. Since energy

data of material routing resources are not available in our application, they are as-

sumed to be identical. This assumption does not affect the scheduling decisions, as all

routing resources are non-shared without routing choices. The state vectors xn and

control vectors un are arranged as described in (2.7) and (2.8). From (4.20)–(4.22),

the productive power matrices Aq (kW), the processing time matrices Dq(s), and

the idle power vector b (kW) of the stamping system can be constructed as shown

in (4.23)–(4.26) and (5.37), respectively.

M1 M2 M3 M4 M5 M6 M7 M8 B1 B2 B3 B4 B5

bT =

[

3.14 1.88 2.25 2.05 1.93 2.14 2.56 3.23 1.2 1.2 1.2 1.2 1.2

]

.

(5.37)

All FMS information is embedded in the WTPN models shown in Figure 5.5. In

reality, the required makespan D is given by customers, and it should be sufficiently

large corresponding to the number of parts ϕ(πq). For simplicity but without loss
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of generality, we let ϕ(πq) = ϕ(π), ∀πq ∈ Π, and a suitable required makespan D is

chosen for each test case.

Figure 5.4: Layout of the stamping system.

5.4.2 Experiment Results

This computational test is carried on a digital computer equipped with Intel Core i7

processor and 32 gigabyte random-access memory (RAM). This configuration is

widely available in modern computers nowadays. Our proposed scheduling method

is programmed in MATLAB. To verify its effectiveness, existing scheduling methods

are implemented for comparisons. Firstly, the B&R algorithm, which solves non-

convex optimization problems to global optimality, is implemented using BARON

software [128]. Secondly, two metaheuristic algorithms, an extended ACO [134] and

PSO [132], are also included. Two performance metrics are considered, which are

computational time and deviation from optimality. In our experiment, the deviation

145



p1
in

p11

〈10.72,4.76〉

p12

〈2.4,1〉

p132

〈4.32,3.89〉

p154

〈6.22,5.68〉

p153

p155

〈5.24,4.37〉

p16

〈2.4,1 〉

p172

〈4.86,5.21〉

p1
out

pM1 〈3.14〉

pB1 〈1.2〉

pM3 〈2.25〉
pM4 〈2.05〉

pM5 〈1.93〉

t11 t12

t13

t14

t15

t16

t17

t18

t19

t120

t121

t122

t123

t124

t125

t126

p2
in

p21

〈2.4,1〉

p226

〈6.86 ,4.30〉

p247

〈7.84,5.27〉

p248

〈12.78,5.52〉

p2
out

pB5 〈1.2〉

pB4 〈1.2〉

pM7 〈2.56〉

pM8 〈3.23〉pM6 〈2.14〉

t21

t22

t23

t24

t25

t26

t27

t28

t29

t210

pB2 〈1.2〉

pB3 〈1.2〉pM2 〈1.88〉

p133

〈7.45,3.48〉

p14

〈2.4,1〉

p153

〈7.73,4.26〉 p174

〈6.06,4.46〉

p221

〈4.68,3.73〉

p23

〈2.4,1〉

p25

〈5.64,5.29〉

ϕ(π1)

ϕ(π2)

Figure 5.5: WTPN models of the stamping system.
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Table 5.1: Performance Comparisons of B&R, PSO, ACO, and DP

Parts Mean deviation (%) Mean time (s)

ϕ (π) DP ACO PSO B&R DP ACO PSO

5 <1 3.41 3.41 7.91 2 <1 <1

10 <1 12.36 16.36 26.89 7.73 <1 <1

15 <1 18.14 21.41 56.78 15.96 <1 1.16

20 1.21 25.47 24.32 126.78 36.37 2.57 5.73

30 1.81 28.90 29.41 548.38 69.73 8.12 17.15

40 2.38 29.87 30.37 >1000 112.69 20.45 25.54

50 2.47 32.17 34.21 >1000 298.79 28.62 31.48

80 2.77 37.03 40.37 >1000 684.79 49.89 56.48

100 2.83 42.03 49.78 >1000 >1000 60.73 78.48

from optimality of a scheduling method is computed as follows

dev =
J − JB&R

JB&R
× 100%, (5.38)

where JB&R is the optimal cost obtained by the B&R algorithm. The mean deviation

and mean computational time of ACO and PSO are obtained after forty test runs.

To select the sampling frequency, fdp is tuned over a wide range of values. The

range 10
hmin

≤ fdp ≤ 20
hmin

, where hmin is the minimal processing time of all jobs, is

observed to yield satisfactory performance within adequate computational time. In

this computational test, fdp = 10 Hz is used. We set the time limit for the test as

1000 s in the DP run.

Numerical results are presented in Table 5.1, where it can be seen that our pro-

posed scheduling method achieves infinitesimal deviation from optimality as compared

to two metaheuristic algorithms. The deviations of two metaheuristic algorithms vary

in a great range, and they even grow up to more than 40% in some test cases. On the
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contrary, our proposed scheduling method keeps the deviation less than 3% for all test

cases. In terms of computational time, the B&R algorithm exceeds 1000 s from the

test case of forty parts, while our proposed scheduling method is still computationally

efficient up to the test case of one hundred parts.

5.4.3 Discussions with Related Works

As discussed in Section 5.1, our scheduling problem is more practical than the related

energy-efficient scheduling works [25, 79, 80, 114], in which idle energy consumption

is usually omitted or assumed to be trivial. However, this assumption can be a gap

from research to industry, as the idle power consumption can be significant in realistic

FMSs. An example is the industrial stamping system in Section 5.4, where the idle

power is equivalent up to 43% of the productive power for stamping machines. In

fact, it can be seen that the consideration of idle energy consumption is the main

reason which makes the scheduling problem non-convex.

To solve the general case of non-convex MINLP, our proposed method efficiently

reduces the computational time with low deviation from optimality as compared to

the B&R techniques [128–130]. Although the reduced RG of WTPN models could

be larger than the size of the B&R enumeration tree at high sampling frequencies,

the evaluation of the scheduling subproblems by our proposed method is much more

efficient. The B&R algorithm can be performed using either LP or CP relaxations

of integer variables. The evaluation of a scheduling subproblem involves three time-
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consuming procedures: before a subproblem is solved, its constraints are checked if

the domain of any variables can be reduced without losing any feasible solutions; after

a subproblem is solved, sensitivity information is used to check if the domain of any

variables can be reduced without losing any optimal solutions; and the convex under-

estimators are generated after domain reduction. On the contrary, it can be seen that

the scheduling subproblems considered by our proposed method are linearized. Each

subproblem is solved only once and the optimal substructure is stored in the routing

table, thus reducing the number of computations.

From a theoretical viewpoint, our proposed scheduling method and the B&R al-

gorithm are both applicable to all FMS scales. However, our method is especially

more useful for large-scale FMSs, i.e., |V | , |R|, and ϕ (π) are large, with high de-

gree of overlapping subproblems. This happens when the FMSs have a high degree

of flexibility and the number of choice jobs dominates the number of system jobs,

i.e., |Vz| ≫ |Vnz|.

Metaheuristic algorithms such as ACO [134], PSO [132], and GA [133] are de-

signed to find good solutions quickly, which are more suitable for online applications

where computational time is very critical. The performances of the metaheuristic al-

gorithms highly depend on the convex structure of the search space, and an optimal

solution can never be found. On the contrary, Bellman’s principle of optimality guar-

antees the solution found by our proposed scheduling method is optimal in discrete-

time space, and the deviation from optimality is indeed the bounded sampling-induced
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error. This explains why our proposed method achieves low deviation from optimality

as compared to the metaheuristic algorithms.

Beyond the energy-optimal scheduling application considered in this chapter, it is

worth noting that our proposed scheduling method can be applied to any industrial

problems that involve the costs per time unit for generality. Some realistic examples

include the labor costs in labor management and scheduling [144], the penalty costs

in scheduling aircraft landings [145], the crash costs in project management [146], the

rental fees in resource rental optimization [147], etc.

The key concern for such table-based routing mechanics like our proposed schedul-

ing method is the routing-table size, which requires allocation of RAM. However, with

recent advances in computer and data storage technologies, this is no longer a main

hindrance. Our scheduling method and B&B related algorithms both suffer the “curse

of dimensionality”, when the dimension of the state vector x is large [141]. Solving

the “curse of dimensionality” without scarification of optimality is still an open issue.

5.5 Summary

In this chapter, the energy-optimal scheduling problem for a class of FMSs described

in Chapter 2 was studied. Based on the WTPN models of FMSs, a RG-based DP

algorithm was proposed for generation of near energy-optimal schedules within ade-

quate computational time. Our proposed scheduling algorithm was rigorously justified

with mathematical formulations and derivations. The practicality of the considered
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problem and the feasibility of our proposed scheduling algorithm were verified based

on an industrial stamping system, in which the stamping parts are various types of

VCM yokes used in commercial HDD actuators. Our results showed that our pro-

posed scheduling algorithm achieved less than 3% deviation from optimality for all

test cases with significant reduction in computational time as compared to related

works in current literature.

In the next chapter, we extend the problem presented in this chapter with its

robust counterpart, where the productive and idle powers of resources are now con-

sidered as random variables.
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Chapter 6

Robust Total Energy Optimization

of Flexible Manufacturing Systems

Based on Renyi Mean-Entropy Cri-

terion

Motivated by the need to deal with uncertainties in energy-optimal scheduling of flex-

ible manufacturing systems (FMSs), this chapter considers a robust total energy op-

timization problem, where both productive and idle powers are considered as random

variables (RVs). Uncertainties in energy measurement process are realistic, which can

be induced by machine faults, sensor faults, and many other sources of disturbances.

In practical cases, the probability distribution of each RV is often unknown, while
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only a finite number of observations are attainable. Based on the available observa-

tions and weighted p-timed Petri net (WTPN) models of FMSs, a scheduling method

is developed by seeking the robust shortest path of WTPN reachability graph (RG)

based on Renyi quadratic entropy. The practicality of the considered problem and

the usability of our proposed scheduling algorithm are verified with simulations and

also with industrial energy data logged from the same stamping system presented in

Chapters 4 and 5.

It is worth noting that parametric family of Renyi entropies was introduced by

Alfred Renyi in the mid 1950s as a mathematical generalization of Shannon entropy.

Renyi wanted to find the most general class of information measure that preserved

the additivity of statistically independent systems. Renyi’s entropy was shown to be

more flexible than Shannon and includes Shannon as a special case [160].

6.1 Background

In recent literature, energy-optimal scheduling of FMSs has been frequently addressed.

For example, the energy consumption reduction was investigated through effective

scheduling of machine startup and shutdown, where machines were assumed to have

Bernoulli reliability model [26]. The control strategy for a closed-loop flow shop was

designed to coordinate running of the machines and motion of pallets to minimize

energy consumption in idle machines [27]. The robotic manufacturing systems were

considered in [28], where energy optimal trajectories were generated for a range of
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execution times for the individual operations based on only a single simulation. In

Chapter 5, the total energy optimization problem for a class of FMSs, where both

idle and productive energy consumption were minimized. The system workflows were

modelled using the WTPN models of FMSs and an effective scheduling algorithm was

developed based on finding the shortest path of WTPN RG.

Most of the existent energy-efficient technologies for scheduling of FMSs often

deal with deterministic manufacturing environments, where energy consumption is

assumed to be deterministic and there is no uncertainty that would influence the

established schedule. Real-world manufacturing is, however, dynamic and subjected

to a wide range of uncertainties. In general, common sources of uncertainties in

dynamic manufacturing environments have been classified into two categories, namely,

resource-related uncertainties such as machine breakdown, machine degradation, tool

wears, and job-related uncertainties such as rush jobs, job cancellation, stochastic

processing time [108, 148]. In particular energy measurement process, uncertainties

can be induced by machine faults, sensor faults, and other sources of disturbances [17].

Furthering the total energy optimization problem considered in Chapter 5, we con-

sider its robust counterpart with resources’ productive and idle powers are random

variables (RVs). The WTPN models were conveniently used to model energy-efficient

FMSs and finding the shortest path of WTPN RG was proven to be an effective solu-

tion for the total energy optimization problem as compared to the related algorithms

such as branch and reduce and heuristic search. As such, the solution method for the
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robust problem considered in this paper will be developed based the WTPN models

of FMSs. We now wish to solve the robust shortest path problem (RSPP) of WTPN

RG, where the edge costs are RVs. We shall first review existent models of uncertain-

ties for RSSP, and then select the finite observation model, which is most suitable for

our industrial data. We then propose a novel robustness measure, called Renyi ME

criterion, to enable computation of robust shortest path. While mean (expectation)

is the most conventional adaption from deterministic to robust optimization, which

basically gives the expected cost of a solution path, Renyi quadratic entropy is used

to quantify the uncertainties. It will be shown that entropy provides a more effective

uncertainty measure than the popularly used variance in the case of non-Gaussian

distributed RVs, and the robust shortest path in Renyi mean-entropy criterion can

be computed efficiently using Bellman’s DP [141].

Simulations are carried out to evaluate the performance of Renyi ME criterion

with related robustness measures. In the first simulation case, productive and idle

powers are drawn from a truncated Gaussian distribution, while non-Gaussian distri-

butions are used in the subsequent simulation cases. The practicality of considered

problem is verified by industrial energy data logged from the same stamping system

presented in Chapter 5. Both simulation and experiment results verify the effective-

ness of Renyi ME criterion in terms of computational complexity and mean deviation

from optimality.
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6.2 Robust Energy Optimization Based on Renyi

Mean-Entropy Criterion

This section extends the deterministic problem described in Chapter 5 with its robust

counterpart, where token sojourn costs of places {cj} (productive and idle powers) are

considered as RVs. The minimal token sojourn times of places {hj} (processing times

of jobs on resources) are assumed to be deterministic variables. We shall first review

only a part of literature on robust shortest path problem, which is most related and

applicable to our industrial application. For a broad survey of robust shortest path

problem, the readers are referred to [149] and the references therein for more details.

Then, we proceed to introduce the Renyi ME criterion as a robustness measure.

6.2.1 Brief Overview on Robust Shortest Path Problem

The robust shortest path problem, also known as reliable or stochastic shortest path

problem, aims to find the robust shortest path from a source node to a destination

node of a directed graph, where the edge costs are RVs. The study of robust shortest

path problem is crucial to deal with uncertainties in many real-world applications.

Existent works on robust shortest path problem can be categorized by a) models

of uncertainties which describe how the random edge costs are formulated and b)

robustness measures which determine how uncertainties are quantified.

156



6.2.1.1 Models of Uncertainties

In general, there are three popular models of uncertainties for robust shortest path

problem often considered in current literature, namely, the finite set of scenarios,

interval data, and finite observation models. In the finite set of scenarios model, a

scenario is associated with a unique value of each RV [150–152]. The finite set of

scenarios model is suitable for applications where the interdependence of RVs are

known a priori. On the other hand, the interval data model associates each RV with

an interval (infinite set), which represents all possible values of the corresponding RV.

It is worth noting that all combinations of values of RVs are allowed, thus making

this model suitable for applications where there is a total independence between

RVs [153–155].

In the finite observation model, each RV cj is characterized solely by a finite set of

numerical observations, denoted by C =
{

c̃lj ; l = 1, 2, . . . , N
}

, where any observation

value c̃lj is a realization value of cj [156–159]. It is worth noting that cj may have

a single Dirac-δ distribution, in which case cj is in fact a deterministic variable (a

degenerate RV). In many applications, c̃lj is the value of cj in the lth measurement,

and therefore c̃lj = c̃l
′

j with l 6= l′ is possible. In this chapter, the finite observation

model is used, as it is most suitable for our industrial application. Throughout the

chapter, all cj are assumed to be continuous RVs and their observation instances are

obtained by an independent and identically distributed (IID) sampling process.
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6.2.1.2 Robustness Measures

To the best of our knowledge, W-C analysis (min-max regret) and mean-variance

(MV) criterion are most applicable for the finite observation model.

In W-C analysis, a path is evaluated on the basis of its worst situation [149,

153, 155]. For computation of the robust shortest path on WTPN RG, the objective

function of W-C analysis is formulated by

J∗ (x0) = min
u[1,H]∈U

max
c∈C

J
(

x0,u[1,H], c
)

. (6.1)

(6.1) indicates that computation of the robust shortest path of WTPN RG is per-

formed by simply replaced each RV cj by the greatest observation. In other words,

computation of robust shortest path in W-C analysis is equivalent to computation of

a deterministic shortest path.

In theory, W-C analysis requires least computation and provides an absolute

guarantee on the lower bound of the solution value. However, it has been criticized

by many researchers for its conservatism [151, 152]. Since it exclusively relies on

the worst situation, making its solution very pessimistic, W-C value often hides the

solution values on the other situations.

MV criterion for robust shortest path problem was first proposed by [156] and

subsequently extended in [157–159], which seeks to minimize the weighted sum of

the expected cost (mean) and variance of the solution paths. While minimization

of expected cost is the most straightforward adaption from a deterministic to robust
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optimization, variance is adopted as an measure of robustness or reliability. As such,

the objective function of MV criterion is formulated by

J∗ (x0) = min
u[1,H]∈U

c∈C

{

E
[

J
(

x0,u[1,H], c
)]

+ νVar
[

J
(

x0,u[1,H], c
)]}

, (6.2)

where ν ∈ R
+ denote a weight parameter representing the importance of robustness,

and E [·] and Var [·] are standard terms to denote expected value and variance, re-

spectively. (6.2) indicates that among all admissible paths of WTPN RG, the robust

shortest path in MV criterion should minimize the weighted sum of expected energy

cost and variance. It is worth noting from (5.19) that the cost of a path J
(

x0,u[1,H], c
)

is a linear combination of RVs cj , whose expected value and variance can be computed

easily. The extreme cases ν = 0 and ν → ∞ indicate situations where one is only con-

cerned with minimization of either expected cost or variance, respectively. Although,

MV criterion requires more computational efforts to estimate the expected value and

variance of a solution path from observation data, it compensates the conservatism

of W-C analysis.

6.2.2 Renyi Mean-Entropy Criterion

In information theory, Renyi entropy is a generalized entropy that quantifies the

diversity and uncertainties of a RV. In this chapter, the concept of Renyi entropy

is applied to robust shortest path problem, resulting a novel Renyi ME criterion for

robustness measure, which minimizes the weighted sum of the expected cost and

accumulative Renyi entropy of the solution paths. The objective function of Renyi
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ME criterion is formulated by

J∗ (x0) = min
u[1,H]∈U

c∈C

{

E
[

J
(

x0,u[1,H], c
)]

+ ν

H
∑

n=1

H2 [J (xn−1,un, c)]

}

, (6.3)

where H2 [·] denotes Renyi quadratic entropy [160], which is defined by

H2 [cj ] = − log

∫ ∞

−∞
f 2
cj
(c̃j)dc̃j, (6.4)

and ν denotes a weight parameter for linear scalarization. (6.3) indicates that among

all admissible paths of WTPN RG, the robust shortest path in Renyi mean-entropy

criterion should minimize the weighted sum of expected energy cost and Renyi en-

tropy. Decision makers can adjust ν based on the specific economic situations. With

different parameter ν, different Pareto optimal solutions are produced. For simplicity

but without loss of generality, the expected energy cost and uncertainty are weighted

equally for both MV and Renyi ME criteria in all simulations and industrial applica-

tion of this paper.

Using Renyi entropy as a measure of dispersion and uncertainties compensates

a major drawback of MV criterion. It is worth noting that usage of variance or

standard deviation, which are second-order statistical central moments, relies heavily

on the Gaussianity and linearity assumptions. From a statistical viewpoint, entropy

can be interpreted as a measure of disparity of a probability distribution function

(PDF) from the uniform. On the other hand, variance measures dispersion of a

PDF from the mean. Although both entropy and variance are measures of dispersion

and uncertainties, they have quite substantial and subtle differences. The readers
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are referred to [160, 161] and the references therein for more details on comparison

between variance and entropy.

Remark 6.1 Our proposed Renyi ME criterion uses accumulative entropy instead of

absolute entropy, which is written by H2

[

J
(

x0,u[1,H], c
)]

. Our idea is to formulate a

sufficient robustness measure for scheduling purposes, such that the robust shortest

path can be computed efficiently using DP instead of exhaustive or heuristic search

algorithms.

We have the following results.

Theorem 6.1 Computation of J∗ (x0) in (6.3) has a recursive formulation which

satisfies Bellman’s principle of optimality.

Proof: Straightforward computations give

E
[

J
(

x0,u[1,H], c
)]

= E

[

1

fdp

H
∑

n=1

cTxn

]

= E

[

1

fdp

H
∑

n=1

cT
(

xn−1 +WTun

)

]

=

H
∑

n=1

E

[

1

fdp
cT
(

xn−1 +WTun

)

]

=
H
∑

n=1

E [J (xn−1,un, c)]. (6.5)

As such, (6.3) is equivalent to

J∗ (x0) = min
u[1,H]∈U

c∈C

H
∑

n=1

{E [J (xn−1,un, c)] + γH2 [J (xn−1,un, c)]}

= min
u[1,H]∈U

c∈C

H
∑

n=1

J ′ (xn−1,un, c). (6.6)
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It can be seen that (6.6) has exactly the same additive formation with (5.19), which

was proven to satisfy Bellman’s principle of optimality in Theorem 5.2. In other

words, the additivity of (6.6) and (5.19) indicate that the cost of a solution path is

the sum of the costs of its edges, where the cost-to-go (arc cost) from xn to next stage

is now defined by J ′ (xn−1,un, c).

It is worth noting that computation of robust shortest path in W-C analysis also

complies with Bellman’s principle of optimality. In current literature, the robust

shortest path problem in W-C analysis has been often solved using DP, Dijkstra’s

algorithm, Bender’s decomposition, etc. [149]. From Theorem 6.1, it is obvious that

all of these algorithms can be applied to Renyi ME criterion as well.

Remark 6.2 The robust shortest path problems, whose objective functions contain

nonlinear components such as the absolute variance Var
[

J
(

x0,u[1,H], c
)]

or absolute

entropy H2

[

J
(

x0,u[1,H], c
)]

, are widely known in current literature as non-additive

robust shortest path problems, where the cost of a solution path is not the sum of the

costs of its edges. It was proven that the non-additivity violates Bellman’s principle

of optimality, and non-additive robust shortest path problems are often solved by

B&B algorithms with Lagrangian relaxations [162, 163].

6.2.3 Non-Parametric Estimation of Edge Costs

The edge costs including E [J (xn−1,un, c)] and H2 [J (xn−1,un, c)] should be esti-

mated directly from the observations in a non-parametric way, since PDFs of RVs cj
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are not known a priori in the finite observation model.

It is worth noting that Shannon entropy was effectively used as a robustness

measure, especially in the fields of finance and economics [164–166]. In these reported

works, the PDFs or types of fuzzy membership function of RVs are known a priori,

and hence Shannon entropy of RVs can be easily computed.

On the other hand, Renyi entropy is chosen in this paper as it provides easy non-

parametric estimation and overcomes the difficulty in computing Shannon entropy di-

rectly from finite observation data. With the recent invention of information-theoretic

learning (ITL) [160], a non-parametric estimator of Renyi entropy H2 [cj ] with com-

putational complexity O (N) was proposed, where N is the number of observations of

cj. ITL provided a convenient way to estimate Renyi entropy from finite observation

data by skipping the PDF estimation. The traditional estimation of Shannon entropy

from observation data will follow the route: data → PDF estimation → entropy es-

timation. Notice that entropy is a scalar, but as an intermediate step one has to

fit the PDF of a RV, which is much more computational intensive. Using ITL, the

estimation of Renyi entropy skips the PDF curve fitting step and follows the direct

route: data → entropy estimation.

Based on the results of ITL, we now wish to estimate E [J (xn−1,un, c)] and

H2 [J (xn−1,un, c)] non-parametrically. Recall the definition of Renyi entropy given

in (6.4), the kernel (Parzen) estimate of fcj using Gaussian kernel function Gσ (·)
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given by

fcj (c̃j) ≈
1

N

N
∑

l=1

Gσ

(

c̃j − clj
)

, (6.7)

where σ is the kernel size or bandwidth parameter and

Gσ

(

c̃j − clj
)

=
1

σ
√
2π
e−

1
2σ2 (c̃j−clj)

2

. (6.8)

We have the following results.

Theorem 6.2 The following estimation holds.

E [J (xn−1,un, c)] ≈
1

N

∑

xjn 6=0

N
∑

l=1

c̃ljxjn. (6.9)

Proof: It is obvious that J (xn−1,un, c) is a multivariate function of RVs cj, since

J (xn−1,un, c) =
∑

xjn 6=0

cjxjn. (6.10)

Let us denote by fc1,...,c|P |

(

c̃1, . . . , c̃|P |
)

the joint PDF for continuous

RVs {cj, j = 1, 2, . . . , |P | : xjn 6= 0}. By definition, one has

E [J (xn−1,un, c)] =

∫

· · ·
∫ ∞

−∞
J (xn−1,un, c)fc1,...,c|P |

(

c̃1, . . . , c̃|P |
)

dc̃1 · · · dc̃|P |.

(6.11)
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Since cj are IID RVs, (6.11) is equivalent to

E [J (xn−1,un, c)] =

∫

· · ·
∫ ∞

−∞

|P |
∑

j=1

fc1 (c̃1) · · · fc|P |

(

c̃|P |
)

dc̃1 · · · dc̃|P |

=

|P |
∑

j=1

∫ ∞

−∞
c̃jxjnfcj (c̃j)dc̃j

≈
|P |
∑

j=1

∫ ∞

−∞
c̃jxjn

1

N

N
∑

l=1

Gσ

(

c̃j − clj
)

dc̃j

=
1

N

|P |
∑

j=1

N
∑

l=1

xjn

∫ ∞

−∞
c̃jGσ

(

c̃j − clj
)

dc̃j

=
1

N

∑

xjn 6=0

N
∑

l=1

c̃ljxjn. (6.12)

Theorem 6.3 The following estimation holds.

H2 [J (xn−1,un, c)] ≈ − log







∏

xjn 6=0

1

N2

N
∑

l=1

N
∑

g=1

Gσ
√
2

(

c̃gj − c̃lj
)







. (6.13)

165



Proof: From (6.4) and (6.10), one has

H2 [J (xn−1,un, c)]

= − log

∫

· · ·
∫ ∞

−∞
f 2
c1,...,c|P |

(

c̃1, . . . , c̃|P |
)

dc̃1 · · · dc̃|P |

= − log

∫

· · ·
∫ ∞

−∞
f 2
c1
(c̃1) · · · f 2

c|P |

(

c̃|P |
)

dc̃1 · · · dc̃|P |

= − log

|P |
∏

j=1

∫ ∞

−∞
f 2
cj
(c̃j)dc̃j

≈ − log

|P |
∏

j=1

∫ ∞

−∞

{

1

N

N
∑

l=1

Gσ

(

c̃j − clj
)

}2

dc̃j

= − log

|P |
∏

j=1

1

N2

∫ ∞

−∞

N
∑

l=1

N
∑

g=1

Gσ

(

c̃j − clj
)

Gσ

(

c̃j − cgj
)

dc̃j

= − log







∏

xjn 6=0

1

N2

N
∑

l=1

N
∑

g=1

Gσ
√
2

(

c̃gj − c̃lj
)







. (6.14)

The result is easily obtained by noticing a little-realized fact that the integral

of the product of two Gaussians is exactly evaluated as the value of the Gaussian

computed at the difference of the arguments and whose variance is the sum of the

variances of the two original Gaussian functions.

6.3 Simulations

In this section, simulations are carried out to evaluate Renyi ME criterion against W-

C analysis and MV criterion. Simulation results will be presented in three separate

cases. In each case, two hundred observations of each RV are drawn from an IID
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sampling process. Half of them is used to compute the robust shortest paths in

three different robustness measures, while the remaining half is used for evaluation

of the solution quality in terms of mean deviation from optimality. As such, one has

N = 100. In all simulation cases, the estimated Renyi entropy from finite observations

is used instead of the true Renyi entropy calculated from the PDFs.

6.3.1 Probability Distributions

In the first case, we shall consider the truncated normal distribution. In statistics,

a truncated distribution is a conditional distribution that results from restricting

the domain of some other probability distribution. Truncated distributions arise in

practical statistics in cases where the values of continuous RVs are bounded. In

this paper, the PDF of a normally distributed RV whose value is bounded within

an interval [0,∞] is considered, as it is obvious that power consumption can not be

negative. Its PDF is given by

fcj (c̃j) =



















1
σj

φ

(

c̃j−µj

σj

)

1−Φ

(

−µj

σj

) if 0 ≤ c̃j ≤ ∞,

0 otherwise,

(6.15)

where φ (·) is the PDF of the standard normal distribution and Φ (·) is its cumulative

distribution function. µj and σj are standard terms to denote the mean and standard

deviation, respectively.

Next, we shall consider two non-Gaussian distributions, namely, the continuous

uniform and bimodal distributions. In statistics, the continuous uniform distribution
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or rectangular distribution is a family of symmetric probability distributions such that

all intervals of the same length on the distribution’s support are equally probable.

The support of fcj (c̃j) is defined by the two parameters, u1j and u2j , which are its

minimum and maximum values. As power consumption can not be negative, we set

u1j ≥ 0. As such, the PDF of the continuous uniform distribution is defined by

fcj (c̃j) =















1
u2j

−u1j
if u1j ≤ c̃j ≤ u2j ,

0 if c̃j < u1j or c̃j > u2j ,

(6.16)

On the other hand, a bimodal distribution is a continuous probability distribution

with two different modes. In this chapter, a bimodal distribution is developed as a

linear combination of two truncated normal distributions presented in (6.15) with the

same variance but different means. Its PDF is given by

fcj (c̃j) =



















w1

1
σj

φ

(

c̃j−µ1j
σj

)

1−Φ

(

−µ1j
σj

) + w2

1
σj

φ

(

c̃j−µ2j
σj

)

1−Φ

(

−µ2j
σj

) if 0 ≤ c̃j ≤ ∞,

0 otherwise,

(6.17)

where wi are weight parameters, wi ≥ 0 and
∑

wi = 1.

6.3.2 Simulation Setup and Results

All simulation cases are carried on fully FMSs. A fully FMS is defined as having all

machining jobs are choice jobs and each machining resource can perform all machining

jobs. It is reminded that, each choice job is associated with a routing resource, which

routes parts. For simplicity, we let all routing resources be non-shared. Our purpose
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Figure 6.1: Marked WTPN models of a fully FMS.

of using fully FMSs is to maximize the number of overlapping subproblems and the

solution space. The FMS sizes for all simulation cases are reported in Table 6.1.

Example 6.1 A marked WTPN models of a fully FMS with two machining jobs

and two machining resources are given in Fig. 6.1. There are two machining jobs: v1

represented by places p11 and p12, and v3 represented by places p31 and p32. These

machining jobs are performed by two machining resources: M1 represented by place

pM1, and M2 represented by place pM2. Places p11 and p12 indicate that v1 is performed

by M1 and M2, respectively. Similarly, places p31 and p32 indicate that v3 is performed

by M1 and M2, respectively. There is one routing job v3 represented by place p2, and

a routing resource B1 represented by place pB1. Places pin and pout represents input

and output buffers, respectively.
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Table 6.1: Fully FMS Sizes for Simulation Test Cases

Test Machining jobs Machining resources No. of parts

case |Vz| |Rz| ϕ (π)

1 10 5 10

2 15 5 10

3 20 10 10

4 20 10 20

5 25 10 20

6 30 15 20

7 35 15 20

8 35 20 20

9 40 20 20

For each evaluation iteration i, let us denote by Jopt (i) the cost of the shortest

path, which is computed based on actual observations at iteration i, and by Jrobust (i)

the cost of the path selected by a robustness measure. As such, the mean deviation

from optimality of a robustness measure is given by

mean dev (%) =
1

N

N
∑

i=1

Jrobust (i)− Jopt (i)

Jopt (i)
× 100%. (6.18)

Simulation results under three distributions are reported in Figs. 6.2–6.4. The results

are consistent with our prior analyses in Section 6.2. In particular, W-C analysis

has the highest mean deviation for all three distributions due to its conservatism.

In the case of Gaussian distribution, MV criterion slightly outperforms Renyi ME

criterion. With the presence of non-Gaussian distributions, the robustness of MV

criterion decreases significantly as compared to Renyi ME criterion.
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Figure 6.2: Mean deviation of three robustness measures under Gaussian distribution.

6.4 Industrial Application

The same industrial applicaiton presented in Chapters 4 and 5 is used to verify the

practicality of considered robust problem and the feasibility of Renyi ME criterion.

However, the productive and idle powers are sampled with finite number of observa-

tions instead of being averaged.
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Figure 6.3: Mean deviation of three robustness measures under uniform distribution.

6.4.1 Robust Energy Analysis of Stamping Process

An energy profile recorded when a stamping machine ri performs a specific job vj

on multiple parts is shown in Figure 4.5. The stamping machines are of different

working conditions as well as energy consumption profiles. The entire stamping cycle

can be divided into three main states, namely, productive, idle, and off. In idle and

off states, the power data are observed to be relatively constant. As such, the idle

power bi is considered as a deterministic variable for simplicity but without loss of

generality. It is then natural to set H2 [bi] = 0, and E [bi] is set to the average idle
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Figure 6.4: Mean deviation of three robustness measures under bimodal distribution.

power.

In productive state, many spikes are generated, and each spike is observed every

time the stamping press moves down to perform stamping jobs. There is a wide

range in productive powers, even for different machines of the same model. This is

due to a multitude of factors, e.g., tooling, machine loading, machine degradation,

sensor faults, etc. Hence, we consider productive power aij as a RV. A stamping

job generally generate a triangular spike in power consumption profile, as such each

observation is calculated by the average power consumption from the rising edge to

the falling edge of a triangular spike.
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Figure 6.5: Histogram of c113 with 120 observations.

6.4.2 Results and Discussions

This computational test is carried on a digital computer equipped with Intel Core i7

processor and 32 gigabyte RAM. Computation of robust shortest path inW-C analysis

and Renyi ME criterion are carried out using DP in MATLAB, while ILOG CPLEX

v12.4 is used to compute the robust shortest path in MV criterion. CPLEX solves

the robust shortest path problem using B&B procedure using Lagrangian relaxations

as lower bounds to cut out dominated nodes.

Two performance metrics are considered, which are computational time and de-
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Table 6.2: Performance Comparisons of W-C Analysis, MV, and Renyi ME Criteria

Parts Mean dev (%) Computational time (s)

ϕ (π) W-C MV Renyi ME MV Renyi ME W-C

5 13.56 11.90 6.21 25.58 22.32 15.27

10 16.22 14.36 11.52 49.32 27.43 23.37

15 20.58 18.14 13.82 78.43 35.96 29.37

20 23.50 21.47 15.40 164.21 56.58 47.82

30 28.17 27.90 20.41 583.48 82.76 67.24

40 33.26 32.87 26.37 >1000 135.90 118.73

50 37.83 34.17 29.21 >1000 324.61 302.32

80 53.77 49.03 37.39 >1000 714.23 696.83

100 59.46 55.03 40.60 >1000 >1000 >1000

viation from optimality. In our experiment, the deviation from optimality is com-

puted as described in (6.18). For all robustness measures, computational time is

calculated as the total time required to estimate necessary quantities and to find

the shortest path. In particular, computational time of W-C analysis includes

searching for sup {C}, where sup {·} denotes supremum of a set, while computa-

tional time of MV and Renyi ME criteria includes estimation of Var
[

J
(

x0,u[1,H], c
)]

and H2 [J (xn−1,un, c)], respectively. fdp = 10 Hz is used. We set the time limit for

the test as 1000 s in Renyi ME run. The expected values of power costs are generally

in the range 0 < E [cj ] ≤ 10 (kW), while their Renyi entropy values are in the range

0 ≤ H2 [cj ] ≤ 1 (bits). To weight energy cost and uncertainty equally, ν = 10 is cho-

sen in our simulation experiments. Similarly, different values of ν can be chosen, e.g.,

ν = 20 and ν = 30 if the decision maker wants to weight uncertainty two and three

times more importantly than energy cost, respectively.
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One hundred and twenty observations are drawn for each RV from an IID sam-

pling process. Half of data is used to compute the robust shortest paths in three

different robustness measures, while the remaining is used for evaluation of the so-

lution quality in terms of mean deviation from optimality and computational time.

As such, one has N = 60. It is well-known by the famous central limit theorem

that a sufficiently large number of IID observations of a RV will be approximately

normally distributed. In practical cases, it is not always expected that a sufficiently

large number of observations is available. As such, our proposed Renyi ME criterion

is useful for cases where normal distributions are not observed. A histogram of RV

c113 is shown in Fig. 6.5, where a non-Gaussian distribution can be clearly observed.

Numerical results are presented in Table 6.2, where it can be seen that our pro-

posed Renyi ME criterion achieves least deviation from optimality as compared to

W-C analysis and MV criterion for all test cases. In terms of computational time, MV

criterion exceeds 1000 s from the test case of forty parts, while our proposed Renyi

ME criterion is still computationally efficient up to the test case of one hundred parts.

In our numerical computation, it is also observed that the Renyi ME and MV criteria

provide almost equivalent maximum deviation, and their maximum deviation can be

up to 27% more than the W-C analysis in all test cases.
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6.5 Summary

In this chapter, a robust total energy optimization problem for a class of FMSs de-

scribed in Chapter 2 was studied. Uncertainties in productive and idles powers are

included using the finite observation model. Based on WTPN models of FMSs, the

robust optimal schedule is determined by solving the robust shortest path problem of

WTPN RG. A novel Renyi ME criterion was proposed as a new robustness measure,

and the robust shortest path can be computed efficiently using DP. The effectiveness

of Renyi ME criterion was rigorously verified with mathematical formulations as well

as simulations and an industrial application at one stamping company. Our results

showed that Renyi ME criterion achieved the least deviation from optimality (less

than 41% for all experiment test cases) with significant reduction in computational

time as compared to related works in current literature.

Beyond the robust energy-optimal scheduling of FMSs presented in this chap-

ter, it is worth noting that Renyi ME criterion can be applied to solve any industrial

problems, which can be cast into the robust shortest path problem. Some realistic ex-

amples include transportation network routing [156,159], portfolio management [167],

and wireless sensor networks scheduling [168], etc.

In the next chapter, we conclude this dissertation and discuss future research

directions.
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Chapter 7

Conclusion and Future Work

The growing “green” trend for the next generation of high-performance manufac-

turing industries demands strong energy consumption reduction capabilities. This

dissertation focuses on operational control and scheduling of FMSs with and without

uncertainties in energy data for enhanced energy efficiencies, as well as time series

analysis of energy data for real-time intelligent energy monitoring. The main findings

and results presented in this dissertation are :

1. Proposing a novel approach to reduce the number of required sensors in process

state tracking through identifying the operational states of MPs by extracting

useful information and features in energy data. FSMs are used to model MPs,

and a two-stage framework for online classification of real-time energy data in

terms of MP operational states is proposed. To justify our proposed framework,

comparative experiments with an existing framework are evaluated on two in-

dustrial applications, an injection moulding system and a stamping system.
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Based on the obtained results, an energy data-driven decision support system

(DSS) is designed to use real-time energy measurements and process opera-

tional states for effective decision-making, enabling high-performance manu-

facturing.

2. Formulating a total energy optimization for FMSs using WTPN and proposes

a new RG-based DP scheduling algorithm. The resulted schedules are obtained

with low deviation from global optimality and within adequate computational

time as compared to the related works in current literature.

3. Extending the deterministic total energy optimization problem with its robust

counterpart to deal with uncertainties in energy measurements. A novel ro-

bustness measure is proposed, called Renyi ME criterion, using Renyi quadratic

entropy for searching the robust shortest path of WTPN RG. The effectiveness

of Renyi ME criterion is compared with the related works in current literature

in terms of computational complexity and deviation from global optimality.

4. Proposing an integrated control and scheduling framework, which includes two

modules: the ADEC and a novel MTME, to optimize the sum of energy cost

and tardiness penalty in FMSs under power uncertainties due to machine degra-

dation. Our proposed framework is applied to an industrial stamping system

with power consumption uncertainties formulated using three different prob-

ability distributions to verify it effectiveness as compared the related work in

current literature in terms of deviation from Pareto optimality and mean in-
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terrupted time.

Future energy-efficient technologies should be improved further to be feasible for even

more dynamic and complex manufacturing environments [169]. As such, excellent

capabilities to deal with sensor faults and failures, machine failures, and equipment

degradation, etc., will be essential. In view of the results obtained, the following

works should be emphasized in future research:

1. Energy-efficient robust scheduling of FMSs under resource failures:

Almost all existing works for FMS scheduling to date have assumed that the

allocated resources do not fail. Nevertheless, it is crucial for FMSs to have the

ability to tolerate or recover errors or failures automatically since all FMSs are

error-prone, and they are nowadays usually complex and large-scale systems

consisting of multi-cells and multi-stages of resources. To address this problem,

let us denote by λ(ri)τk the failure probability of ri at firing instance τk. It

was shown in Chapter 5 that to drive the WTPN models from state xk to

state xk+1, a transition must be fired (i.e., a job must be performed by some

resources). Let Ryk be the set of resources required to drive WTPN models of

FMSs from xk to xk+1. As such, the objective function presented in (5.11) can

be revised by

J∗(xk, τk) =







J(xk, τk)− ν

K−1
∏

k=0

∏

ri∈Ryk

(

1− λ(ri)τk
)







, (7.1)

where the newly added term can be defined by the reliability of a schedule. ν is a

weight parameter. Minimization of J∗(xk, τk) is a multi-objective optimization
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problem, where total energy consumption is minimized and the reliability of

the schedule is maximized.

2. Energy-efficient robust scheduling of FMSs with support set of RVs:

In many realistic FMSs, RVs cj cannot be sampled, and each of them is only

associated with an interval (support set) denoted by
[

cj, cj

]

, where cj and cj

denotes the minimal and maximal values of cj, respectively. Interval
[

cj , cj

]

represents all possible values of cj [153–155]. As such, the robust energy op-

timization problem considered in Chapter 6 should be extended to deal with

interval data models of uncertainties. Current literature on robust optimization

with interval data models of uncertainties often relies on W-C analysis, which

has been criticized by many researchers for its conservatism [151, 152]. Since

W-C analysis exclusively relies on the worst situation, making its solution very

pessimistic, W-C value often hides the solution values on the other situations.

3. Energy-efficient condition-based maintenance (CBM) of FMS equipment:

The machinery costs needed to operate machinery throughout its useful life

can easily exceed the original equipment cost. Although the improvement in

operational control and scheduling of FMSs can improve the energy efficiencies,

daily operations and maintenance play even more important roles in reducing

the overall environmental impact and energy cost to operate these machines.

Traditional CBM in FMSs often focuses on the reliability of a resource in

terms of its remaining useful life. Recently, the results of tests conducted by a
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Nano Satellite

Swarm Concept

Figure 7.1: The nano-satellite swarm concept.

major process industrial user showed that the energy efficiency and machinery

reliability are actually closely correlated [47].

4. Energy-efficient path-planning and scheduling of event-based nano-satellite

swarms:

Although our proposed framework was demonstrated on an FMS, it can be

applied to other flexible discrete event systems as well. A potential appli-

cation is energy-efficient path-planning for event-based nano-satellite swarms.

Nano-satellites are now commonly being used in swarm platforms to work col-

laboratively to replace the more bulkier and costly satellites. An example

of nano-satellite swarms is the orbital low frequency array (OLFAR) project,

which aims to design a low-frequency distributed radio telescope in space as
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shown in Figure 7.1 [170]. OLFAR includes nano-satellites with dimension

of 10×10×10 cm and weight 1.3 kg. For most nano-satellite systems, reduc-

tion of energy consumption is a critical issue. A satellite with lower energy

requirements requires a smaller energy source and a lighter battery pack, both

of which directly translate into weight and cost savings [171, 172].
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[59] B. Denkena, P. Hesse, and O. Gümmer, “Energy optimized jerk-decoupling

technology for translatory feed axes,” CIRP Annals-Manufacturing Technology,

vol. 58, no. 1, pp. 339–342, 2009.

[60] S. Shinnaka and T. Sagawa, “New optimal current control methods for

energy-efficient and wide speed-range operation of hybrid-field synchronous mo-

tor,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2443–

2450, 2007.

[61] X. Wang, H. Zhong, Y. Yang, and X. Mu, “Study of a novel energy efficient

single-phase induction motor with three series-connected windings and two ca-

pacitors,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 433–

440, 2010.

[62] A. Boglietti, A. Cavagnino, L. Feraris, and M. Lazzari, “Energy-efficient mo-

tors,” IEEE Industrial Electronics Magazine, vol. 2, no. 4, pp. 32–37, 2008.

193



[63] M. Melfi, S. Evon, and R. McElveen, “Induction versus permanent magnet

motors,” IEEE Industry Applications Magazine, vol. 15, no. 6, pp. 28–35, 2009.

[64] C. V. Le, C. K. Pang, and O. P. Gan, “Energy saving and monitoring technolo-

gies in manufacturing systems with industrial case studies,” in Proceedings of

the 7th IEEE Conference on Industrial Electronics and Applications, Singapore,

July 18–20 2012, pp. 1916–1921.

[65] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in manufacturing

systems,” Journal of Scheduling, vol. 12, no. 4, pp. 417–431, 2009.

[66] S. Kwon and M.-Y. Yang, “The benefits of using instantaneous energy to mon-

itor the transient state of the wire EDM process,” The International Journal

of Advanced Manufacturing Technology, vol. 27, no. 9–10, pp. 930–938, 2006.

[67] Y. Ren, B. Zhang, and Z. Zhou, “Specific energy in grinding of tungsten carbides

of various grain sizes,” CIRP Annals-Manufacturing Technology, vol. 58, no. 1,

pp. 299–302, 2009.

[68] C. V. Le, C. K. Pang, O. P. Gan, X. M. Chee, D. H. Zhang, M. Luo, H. L. Chan,

and F. L. Lewis, “Classification of energy consumption patterns for energy audit

and machine scheduling in industrial manufacturing systems,” Transactions of

the Institute of Measurement and Control, vol. 35, no. 5, pp. 583–592, 2013.

[69] J. A. Buzacott and D. D. Yao, “Flexible manufacturing systems: A review of

analytical models,” Management science, vol. 32, no. 7, pp. 890–905, 1986.

194



[70] S. Bogdan, Z. Kovacic, F. L. Lewis, and J. Mireles, Manufacturing systems con-

trol design: A matrix-based approach. Berlin, Heidelberg, Germany: Springer,

2006.

[71] J. Wang, Handbook of Finite State Based Models and Applications. Boca

Raton, FL, USA: CRC Press, Taylor and Francis Group, 2012.

[72] M. C. Zhou and M. P. Fanti, Deadlock Resolution in Computer Integrated Sys-

tems. New York, US: Marcel Dekker, 2005.

[73] C. Jung and T.-E. Lee, “An efficient mixed integer programming model based on

timed Petri nets for diverse complex cluster tool scheduling problems,” IEEE

Transactions on Semiconductor Manufacturing, vol. 25, no. 2, pp. 186–199,

2012.

[74] C. V. Le, C. K. Pang, F. Lewis, O. P. Gan, and H. L. Chan, “Intelligent dynamic

resource assignment for energy-efficiency in industrial stamping machines,” in

Proceedings of 37th Annual Conference on IEEE Industrial Electronics Society,

Melbourne, Australia, November 7–10 2011, pp. 4131–4136.

[75] C. K. Pang, G. R. Hudas, D. G. Mikulski, C. V. Le, and F. L. Lewis, “Dis-

crete event command and control of asymmetric large-scale armed forces using

network centric warfare,” Unmanned Systems, submitted.

[76] B. Huang, X.-X. Shi, and N. Xu, “Scheduling FMS with alternative routings

using Petri nets and near admissible heuristic search,” The International Jour-

nal of Advanced Manufacturing Technology, vol. 63, no. 9–12, pp. 1131–1136,

195



2012.

[77] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of

the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[78] D. A. Tacconi and F. L. Lewis, “A new matrix model for discrete event systems:

Application to simulation,” IEEE Control Systems Magazine, vol. 17, no. 5, pp.

62–71, 1997.

[79] A. Bruzzone, D. Anghinolfi, M. Paolucci, and F. Tonelli, “Energy-aware

scheduling for improving manufacturing process sustainability: A mathematical

model for flexible flow shops,” CIRP Annals-Manufacturing Technology, vol. 61,

no. 1, pp. 459–462, 2012.

[80] Y. He, F. Liu, and J. Shi, “A framework of scheduling models in machining

workshop for green manufacturing,” Journal of Advanced Manufacturing Sys-

tems, vol. 7, no. 02, pp. 319–322, 2008.

[81] S. Kara and W. Li, “Unit process energy consumption models for material

removal processes,” CIRP Annals-Manufacturing Technology, vol. 60, no. 1,

pp. 37–40, 2011.

[82] A. Vijayaraghavan and D. Dornfeld, “Automated energy monitoring of machine

tools,” CIRP Annals-Manufacturing Technology, vol. 59, no. 1, pp. 21–24, 2010.

[83] E. Endsley, E. Almeida, and D. M. Tilbury, “Modular finite state machines:

Development and application to reconfigurable manufacturing cell controller

196



generation,” Control Engineering Practice, vol. 14, no. 10, pp. 1127–1142, 2006.

[84] P. Solding, P. Thollander, and P. R. Moore, “Improved energy-efficient produc-

tion using discrete event simulation,” Journal of Simulation, vol. 3, no. 4, pp.

191–201, 2009.

[85] C. Burrus, R. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet

Transforms, A Primer. Upper Saddle River, NJ, USA: Prentice Hall, 1998.

[86] I. M. Johnstone and B. W. Silverman, “Empirical bayes selection of wavelet

thresholds,” Annals of Statistics, vol. 33, no. 4, pp. 1700–1752, 2005.

[87] A. M. Altaher and M. T. Ismail, “A comparison of some thresholding selection

methods for wavelet regression,” World Academy of Science, Engineering and

Technology, vol. 62, no. 1, pp. 119–125, 2010.

[88] P. Fryzlewicz, “Bivariate hard thresholding in wavelet function estimation,”

Statistica Sinica, vol. 17, no. 4, pp. 1457–1481, 2007.

[89] A. Neumaier and T. Schneider, “Estimation of parameters and eigenmodes

of multivariate autoregressive models,” ACM Transactions on Mathematical

Software, vol. 27, no. 1, pp. 27–57, 2001.

[90] T. Schneider and A. Neumaier, “Algorithm 808: Arfita matlab package for

the estimation of parameters and eigenmodes of multivariate autoregressive

models,” ACM Transactions on Mathematical Software, vol. 27, no. 1, pp. 58–

65, 2001.

197



[91] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,

“Estimating the support of a high-dimensional distribution,” Neural computa-

tion, vol. 13, no. 7, pp. 1443–1471, 2001.

[92] I. Steinwart and A. Christmann, Support Vector Machines (Information Science

and Statistics). Berlin, Heidelberg, Germany: Springer, 2008.

[93] L. M. Manevitz and M. Yousef, “One-class svms for document classification,”

The Journal of Machine Learning Research, vol. 2, pp. 139–154, 2002.

[94] J. Brydson, Handbook for Plastics Processors. Oxford, UK: Heinemann

Newnes, 1990.

[95] A. Thiriez and T. Gutowski, “Energy saving and monitoring technologies in

manufacturing systems with industrial case studies,” in Proceedings of the 2006

IEEE International Symposium on Electronics and the Environment, Scotts-

dale, AZ, USA, May 8–11 2006, pp. 195–200.

[96] S. Kalpakjian and S. Schmid, Manufacturing Engineering and Technology. Up-

per Saddle River, NJ, USA: Pearson Prentice Hall, 2006.

[97] X. M. Chee, C. V. Le, D. Zhang, M. Luo, and C. K. Pang, “Intelligent identifi-

cation of manufacturing operations using in-situ energy measurement in indus-

trial injection moulding machines,” in Proceedings of 37th Annual Conference

on IEEE Industrial Electronics Society, Melbourne, Australia, November 7–10

2011, pp. 4284–4289.

198



[98] H. Parsaei, T. Hanley, and S. Kolli, Manufacturing Decision Support Systems.

Berlin, Heidelberg, Germany: Springer, 1996.

[99] Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac, “Case study: An

intelligent decision support system,” IEEE Intelligent Systems, vol. 20, no. 4,

pp. 44–49, 2005.

[100] S. Liu, R. I. Young, and L. Ding, “An integrated decision support system

for global manufacturing co-ordination in the automotive industry,” Interna-

tional Journal of Computer Integrated Manufacturing, vol. 24, no. 4, pp. 285–

301, 2011.

[101] S. B. Eom, S. M. Lee, E. Kim, and C. Somarajan, “A survey of decision support

system applications (1988–1994),” Journal of the Operational Research Society,

pp. 109–120, 1998.

[102] S.-Y. Chou and Y.-H. Chang, “A decision support system for supplier selec-

tion based on a strategy-aligned fuzzy SMART approach,” Expert systems with

applications, vol. 34, no. 4, pp. 2241–2253, 2008.

[103] Y. Kristianto, A. Gunasekaran, P. Helo, and M. Sandhu, “A decision support

system for integrating manufacturing and product design into the reconfigura-

tion of the supply chain networks,” Decision Support Systems, vol. 52, no. 4,

pp. 790–801, 2012.

[104] M. T. Tabucanon, D. N. Batanov, and D. K. Verma, “Decision support system

for multicriteria machine selection for flexible manufacturing systems,” Com-

199



puters in industry, vol. 25, no. 2, pp. 131–143, 1994.

[105] D. Bradley, D. Dawson, , and N. Burd, Mechatronics: Electronics in Products

and Processes. London, UK: Chapman & Hall, 1996.

[106] C. De Silva, Control Sensors and Actuators. Upper Saddle River, NJ, USA:

Prentice Hall, 1989.

[107] S. Choi and K. Wang, “Flexible flow shop scheduling with stochastic processing

times: A decomposition-based approach,” Computers & Industrial Engineering,

vol. 63, no. 2, pp. 362–373, 2012.

[108] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling manufacturing sys-

tems: A framework of strategies, policies, and methods,” Journal of scheduling,

vol. 6, no. 1, pp. 39–62, 2003.

[109] H.-H. Ko, J. Kim, S.-S. Kim, and J.-G. Baek, “Dispatching rule for non-identical

parallel machines with sequence-dependent setups and quality restrictions,”

Computers & Industrial Engineering, vol. 59, no. 3, pp. 448–457, 2010.

[110] W. Mouelhi-Chibani and H. Pierreval, “Training a neural network to select

dispatching rules in real time,” Computers & Industrial Engineering, vol. 58,

no. 2, pp. 249–256, 2010.

[111] D. R. Sule, Production Planning and Industrial Scheduling: Examples, Case

Studies and Applications, Second Edition. Boca Raton, FL, USA: CRC Press,

Taylor and Francis Group, 2007.

200



[112] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic programming

for solving multi-objective flexible job-shop problems,” Computers & Industrial

Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[113] S.-C. Horng, S.-S. Lin, and F.-Y. Yang, “Evolutionary algorithm for stochas-

tic job shop scheduling with random processing time,” Expert Systems with

Applications, vol. 39, no. 3, pp. 3603–3610, 2012.

[114] K.-T. Fang and B. M. Lin, “Parallel-machine scheduling to minimize tardiness

penalty and power cost,” Computers & Industrial Engineering, vol. 64, no. 1,

pp. 224–234, 2013.

[115] G. K. Bachman, L. Narici, and E. Beckenstein, Fourier and wavelet analysis.

Berlin, Heidelberg, Germany: Springer, 2000.

[116] A. Prakash, N. Khilwani, M. Tiwari, and Y. Cohen, “Modified immune algo-

rithm for job selection and operation allocation problem in flexible manufac-

turing systems,” Advances in Engineering Software, vol. 39, no. 3, pp. 219–

232, 2008.

[117] I. Christou, Quantitative Methods in Supply Chain Managements. Berlin, Hei-

delberg, Germany: Springer, 2012.

[118] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms

and Complexity. Mineola, NY, USA: Dover Publications, 1998.

[119] M. Pinedo, Planning and Scheduling in Manufacturing and Services. Berlin,

201



Heidelberg, Germany: Springer, 2005.

[120] D. Armbruster and G. Karl, Decision Policies for Production Networks. Berlin,

Heidelberg, Germany: Springer, 2012.

[121] I. Sindicic, S. Bogdan, and T. Petrovic, “Resource allocation in free-choice mul-

tiple reentrant manufacturing systems based on machine-job incidence matrix,”

IEEE Transactions on Industrial Informatics, vol. 7, no. 1, pp. 105–114, 2011.

[122] P. Leitao and F. J. Restivo, “Implementation of a holonic control system in

a flexible manufacturing system,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 38, no. 5, pp. 699–709, 2008.

[123] H. Hu, M. Zhou, and Z. Li, “Supervisor optimization for deadlock resolution

in automated manufacturing systems with Petri nets,” IEEE Transactions on

Automation Science and Engineering, vol. 8, no. 4, pp. 794–804, 2011.

[124] K. Xing, L. Han, M. Zhou, and F. Wang, “Deadlock-free genetic scheduling algo-

rithm for automated manufacturing systems based on deadlock control policy,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

vol. 42, no. 3, pp. 603–615, 2012.

[125] H. R. Golmakani, J. K. Mills, and B. Benhabib, “Deadlock-free scheduling and

control of flexible manufacturing cells using automata theory,” IEEE Transac-

tions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 36,

no. 2, pp. 327–337, 2006.

202



[126] Z. Wu and M. X. Weng, “Multiagent scheduling method with earliness and

tardiness objectives in flexible job shops,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 35, no. 2, pp. 293–301, 2005.

[127] X. Cai, X. Wu, and X. Zhou, “Dynamically optimal policies for stochastic

scheduling subject to preemptive-repeat machine breakdowns,” IEEE Transac-

tions on Automation Science and Engineering, vol. 2, no. 2, pp. 158–172, 2005.

[128] M. Tawarmalani and N. V. Sahinidis, Convexification and Global Optimization

in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,

Software, and Applications. Berlin, Heidelberg, Germany: Springer, 2002.

[129] S. Lee and I. E. Grossmann, “A global optimization algorithm for noncon-

vex generalized disjunctive programming and applications to process systems,”

Computers & Chemical Engineering, vol. 25, no. 11, pp. 1675–1697, 2001.

[130] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, “Branching and
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