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Summary

Machine learning technologies are excellent for medical data analysis and

are particularly useful when applied to medical imaging, where imaging

modalities such as computed tomography (CT) or magnetic resonance

imaging (MRI) can generate large amounts of 3-D or 4-D image data

which can be costly or difficult to manually analyze. While machine learn-

ing methods have achieved some success in computer-aided diagnosis for

medicine, they can also be applied to non-diagnostic medical applications.

Machine learning can be used to support clinicians in making medical de-

cisions by analyzing medical data and focusing the clinician attention on

important or relevant items, or to simplify or automate medical tasks for

labor savings. This thesis explores the use of machine learning methods

for medical image data analysis, such that the medical data can be more

easily understood, visualized, and interacted with.

This thesis first describes an image-understanding approach using ro-

bust regression for opportunistic osteopenia screening. A new method

modeling the methodology of DXA scans was applied to extract a CT-
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based areal bone mineral density (aBMD) equivalent of dual-energy X-ray

absorptiometry (DXA) aBMD. The extracted information was then ro-

bustly correlated with DXA aBMD to obtain a calibration mapping from

CT aBMD to DXA aBMD. Experimental results showed that the method

of estimating aBMD from dCT is feasible, and that CT aBMD can be

applied to accurately diagnose bone diseases such as osteopenia.

The second contribution of this thesis expands upon the screening of

osteopenia by introducing two ensemble methods for classification and

regression. For classification of osteoporosis, an algorithm automatically

extracts a basket of grey-level and morphological features from CT scans

of the lumbar vertebrae, and uses a genetic algorithm as a meta-learner

to ensemble the outputs of several basic classifiers. The genetic algo-

rithm ensemble improves upon the classification performance across mul-

tiple operating points and diagnoses osteopenia with high accuracy. An

ensemble-based regression network was also developed to further improve

the regression of CT and DXA aBMD by incorporating multimodal fea-

tures obtained from non-CT modalities. A filtering-based metalearner

scheme was employed to build feature-wise ensembles from multimodal

medical data with a high relative dimensionality. These contributions al-

low for improved diagnostic accuracy, and increases the confidence and

transparency in algorithmic screening.
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The third contribution presented is a clustering-based method to de-

sign transfer functions for intelligent context-based visualization. Clus-

tering is applied to a 2-D low-high histogram to group voxels into sev-

eral clusters, where each cluster of voxels belong to the same object-

object interface. The clustering-based method then automatically assigns

optical properties to the each detected object boundary without exten-

sive parameter tuning, or can be used to simplify the transfer function

space into meaningful regions that are more intuitive for operators to ma-

nipulate. The visualization results obtained using the clustering-based

method approach that of existing state-of-the-art transfer function design

approaches, while requiring much less user interaction and parameter tun-

ing.

Lastly, this thesis introduces a method for multi-user biometric recog-

nition in a gesture-based surgical data access system, where palms are used

to identify users and load the specific work environments specific to each

user. Several novelties for one-class classifiers were introduced to correctly

recognize and classify palms of previously registered users, while rejecting

unknown and unregistered users. The results demonstrate that modi-

fied one-class classifier systems are useful for learning the properties of

unknown distributions and discriminating against unknown classes. The

biometric recognition system developed has potential to be deployed in
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several other data access interfaces.

The machine learning techniques presented in this work allow for the

useful information contained within large medical image datasets to be

extracted for diagnostic, exploration, or visualization purposes. These

contributions may also be useful in the analysis of other types of large

data, such as in scientific visualization or data mining.

xiv
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CHAPTER 1

Introduction

1.1 Motivation

Medical imaging is an extremely important tool in the diagnosis and detec-

tion of diseases [1]. There are several medical imaging modalities available,

varying from radiological scanning devices such as x-ray and computed to-

mography (CT) to non-radiological modalities such as magnetic resonance

imaging (MRI) and ultrasound. All of the above techniques can generate

copious amounts of medical data, especially modalities capable of three-

dimensional (3-D) or even four-dimensional (3-D + time) data capture.

Advances in medical imaging technology have also increased imaging reso-

lutions and thus the size of medical datasets. Interpretation of volumetric

datasets or dynamic/time-series datasets is extremely difficult, and hence

experienced medical personnel are required to interpret the image data,

which translates into increased time and cost in analyzing and studying

the medical data. Furthermore, different physicians may give differing

interpretations when presented with the same data (inter-observer vari-

ance), and the same physician may even propose a different result when
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presented with the same data on different occasions (intra-observer vari-

ance).

Machine learning can play an important roles in the analysis and visu-

alization of medical data. Machine learning algorithms can efficiently and

effectively handle the large volumes of medical data, thus reducing the

dependence on expert labor [1]. In particular, the increased amount of

medical data ceases to be a weakness and instead becomes an advantage

as machine learning is better able to uncover subtle and hidden relation-

ships to disease conditions with larger databases. Machine learning is

therefore especially helpful for screening applications, where computer-

aided analysis can reduce the cost of mass screening and draw the experts

attention onto more difficult clinical cases or onto image regions that may

contain malignant elements [2].

Machine learning also lends itself to automated medical image un-

derstanding, which extends upon computer-aided diagnosis. The aim of

image understanding is to build a system which can analyze images to

draw conclusions about the nature of the observed disease process and the

way in which this pathology can be overcome using various therapeutic

methods. Image understanding constructs a semantic understanding of

the underlying medical condition, therefore improving the reliability and

comprehensibility of the computed results [2, 3]. Image understanding can

2
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be used to study medical conditions for diagnosis, or even to assist in the

visualization of medical volumes [3].

It is clear that machine learning can provide the means for efficient pro-

cessing, management, and reasoning for problems in medicine and health-

care. Therefore, the objective of this thesis is to explore the ways in which

machine learning can address new issues in medicine, and to develop new

machine learning solutions for tackling these problems.

1.2 Thesis Contributions

This thesis attempts to apply and develop machine learning techniques to

handle several different problems faced in medicine.

1. How can a relationship between dual energy X-ray absorptiometry

(DXA) and CT be established such that a result from one modality

can be converted into an equivalent result in the other modality? In

the medical diagnosis of osteoporosis, the golden clinical standard is

typically established using DXA imaging. Results from other imag-

ing modalities, such as CT, are not accepted for osteoporosis diag-

nosis despite the existence of strong similarities between the imaging

modalities. In such situations, an algorithm to map the results from

CT to DXA would be useful in allowing opportunistic screening of

osteoporosis.

3
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2. How can structural and morphological features of bone be estimated

from diagnostic computed tomography, and how can the estimated

features diagnose osteopenia? Osteoporosis is diagnosed based on

the bone mineral density, but this measure does not include the

structural or morphological information that is also contained in

medical images. Additional information can be extracted from med-

ical images to improve accuracy of osteoporosis diagnosis.

3. In osteopenia screening, how can multimodal medical data be used

to predict bone mineral density, and what insights into the disease

condition can be obtained from the prediction? During medical ex-

aminations, besides medical imaging, it is not unusual for several

other tests to be conducted. The results from these other tests forms

an additional source of information that may be useful for disease

diagnosis, or for obtaining further insights into the disease condition.

4. In direct volume rendering of medical volume data, how can trans-

fer functions be automatically designed while allowing for important

structures to be visualized? The appearance of a rendered volume is

dependent on the transfer function used to assign the optical prop-

erties. Transfer function design is difficult as it requires the under-

standing of the structures in the volume, and the transfer function

domain. An automatic or semi-automatic transfer function design

4
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greatly reduces the amount of expert intervention required in medi-

cal visualization.

5. How can multiple surgeons/clinicians quickly access personalized data

and interfaces in an aseptic surgical environment? For human-

computer interaction in surgical environments, a touch-free com-

puter interface is required for asepsis. Gesture-based approaches

allow for touch-free interaction, but typical interaction interfaces

are not streamlined to cater to a wide and varied user group with

different interaction objectives. A biometric recognition system can

automatically recognize the user and immediately customize the in-

terface to match that user’s requirements, thus offering faster access

to data and functions.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides the medical context

for the subsequent chapters by introducing the condition of osteoporosis

and describing the existing clinical techniques used in its diagnosis. Then,

it describes an image-understanding approach using robust regression for

opportunistic osteopenia screening, and reports on the results and findings

after experimental evaluation.

5



Chapter 1: Introduction

Chapter 3 expands upon the screening of osteopenia by presenting

an ensemble method for osteopenia classification. The chapter also intro-

duces a genetic algorithm optimization scheme, and describes the features

designed to quantify spinal bone properties.

Chapter 4 first compares several methods of multivariate linear regres-

sion. The chapter then presents an ensemble-based regression network

that improves the regression of CT and DXA aBMD by incorporating

multimodal features obtained from non-CT modalities.

Chapter 5 is devoted to a clustering-based method to design transfer

functions for intelligent context-based visualization, where clustering is

used to detect material boundaries in order to automatically assign optical

properties to each surface.

Chapter 6 introduces a method for multi-user gesture recognition and

interaction for surgical augmented reality. The chapter also introduces a

biometric user-recognition system for a gesture-based surgical augmented

reality application that uses one-class classifiers for user identification

based on hand profiles.

Lastly, the conclusions of this thesis and the proposals for future work

are given in Chapter 7.

6



CHAPTER 2

Robust Regression for Areal Bone

Mineral Density Estimation from

Diagnostic CT Images

The aim of traditional medical image analysis is to extract useful informa-

tion from medical data, whereas the aim of medical image understanding

is to obtain insight into the medical condition itself. There is a natu-

ral overlap between these fields, as an insight that has been data-mined

can subsequently be used as a feature for future medical diagnosis. In

this chapter, we demonstrate a method for medical image understanding

by correlating two different imaging modalities to extract a relationship

between the modalities. The extracted relationship can then be used to

estimate important disease indicators from the more common imaging

modality.

The two imaging modalities studied here are DXA and diagnostic com-

puted tomography (dCT). The primary use of DXA is to measure bone

mineral density (BMD) values for the diagnosis of osteoporosis, while dCT

7
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is a more general radiological imaging tool that is used for pre-surgical

planning or general diagnosis. While DXA is the clinical gold standard

used for osteoporosis detection, dCT also contains relevant densitomet-

ric information. Our motivation is to correlate DXA images with dCT

images, such that a BMD value can be estimated from a dCT image.

Opportunistic osteoporosis screening using routine CT images allows the

physician to receive an early notification of potential bone loss and the

opportunity to prescribe measures for early treatment or management.

2.1 Related Work

Osteoporosis is a skeletal disease characterized by low bone mass and mi-

croarchitectural deterioration of bone tissue with a consequent increase

in bone fragility and susceptibility to fracture. The progression of osteo-

porosis is often gradual with few obvious symptoms before bone fracture

[4, 5]. Therefore, osteoporosis has to be detected and treated early to

avoid fragility fractures.

The main methods of diagnosing osteoporosis are the use of bone min-

eral density values measured by DXA and quantitative computed tomog-

raphy (QCT). QCT can be distinguished from dCT in that it is a dedicated

CT technique to determine BMD. QCT also requires the use of calibration,

whereas dCT may be used in the absence of calibration for diagnosis or

8
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pre-surgical planning. While dCT is performed more frequently due to the

generality of its application, bone assessments cannot currently be made

based on dCT scans as the absence of calibration phantoms means that

dCT-derived BMD values are less reliable than QCT-derived BMD values.

dCT is also often performed with the use of an intravenous contrast agent,

which further affects BMD measurements.

It has previously been shown that there is some correlation between

uncalibrated CT images and BMD [6, 7]. There are several ways to exploit

this densitometric information. QCT can be calibrated without a refer-

ence phantom by making comparisons with internal references such as the

paraspinal muscle and subcutaneous fat [8]. Link et al. [9] conducted a

study using cadaver spine samples and patient studies to replicate the cal-

ibration in absence of calibration phantoms, and then used the calibration

data to obtain BMD estimates from contrast-enhanced QCT. A different

line of investigation is to study the correlation between the CT images and

bone mechanical properties of interest [10], such as bone density, elastic

modulus [11], and bone strength [12]. Other studies have also determined

by experiment conversion factors for estimating the volumetric BMD from

non-dedicated contrast-enhanced standard MDCT images [13].

In recent years several papers have noted the possibility of screening for

bone diseases from diagnostic or routine CT scans. Habashy et al. [14] in-

9
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vestigated the estimation of bone mineral density in children based on dCT

images and suggested that phantom-less QCT of dCT provides additional

BMD information. The opportunistic screening of osteoporosis while per-

forming CT colonography has been investigated by Pickhardt et al. [15],

where the phantom-less QCT technique and a simple trabecular region-

of-interest attenuation method was applied to dCT images performed for

colonography and benchmarked against DXA reference. Several studies

[16, 17] investigated the efficacy of BMD estimation techniques that do

not require calibration phantoms; as expected, the precision of phantom-

less techniques was lower compared to phantom-based QCT densitometry,

but nonetheless promising for assessing fracture risk. It was also found

[18] that the inclusion of calibration phantoms in dCT did not significantly

affect the patient radiation dose, and hence bone loss screening may be

conducted with little additional risk or cost.

Another popular approach was to use machine learning techniques to

diagnose fractures [19] and osteoporotic diseases [20, 21] based on QCT

images. These methods are capable of achieving good detection rates,

but typically involve the use of black boxes, which makes it difficult to

evaluate their reliability and generality. More extensive clinical validation

is necessary, but artificial intelligence-based methods can be helpful in

providing one indicator of bone disease.
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While several papers have suggested the use of volumetric BMD as

measured by QCT, areal bone mineral density (aBMD) from DXA re-

mains the clinical standard for diagnosing osteoporotic diseases as it pro-

vides several advantages [22]. Biomechanical studies have shown that

mechanical strength and DXA-derived BMD are strongly correlated [23],

while prospective cohort studies have indicated a strong relationship be-

tween fracture risk and BMD measured by DXA [24]. Most importantly,

the World Health Organization (WHO) criteria for the diagnosis of osteo-

porosis and for input into the fracture risk algorithm (FRAX) are based

on reference data obtained by DXA [25]. As the body of work based on

DXA-derived aBMD (aBMDDXA) remains more well-established than that

based on volumetric BMD, it may be more feasible to determine a DXA-

equivalent aBMD score from diagnostic CTs. This estimated aBMDCT

value may be directly interpreted by a physician according to existing

diagnosis guidelines based on DXA.
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2.2 Areal Bone Mineral Density Estimation

from Diagnostic CT Images

2.2.1 Background

DXA uses two X-rays of different energies to capture a posteoanterior im-

age of the patient’s spine [26]. The absorption of each beam by bone allows

the amount of bone mineral, known as the bone mineral content (BMC),

in each vertebrae to be determined. This BMC is subsequently normalized

by the projected vertebra’s area to obtain the aBMDDXA. On the other

hand, the result of a dCT scan is a 3D image of the patient. We proposed

to use the 3D volume from dCT to compute a similar posteoanterior pro-

jection of the spine, and compute an estimated aBMDCT. Subsequently,

regression techniques are used to map aBMDCT to the actual aBMDDXA.

2.2.2 Overview

Fig. 2.1 shows the algorithm for distinguishing osteopenic bone from nor-

mal bone. The screening algorithm consists of three major steps. The

first step extracts the desired regions of interest (vertebral bodies) and

performs simple Hounsfield units (HU) correction on the extracted verte-

bral bodies. The second step estimates aBMDCT from the CT images of

12
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Figure 2.1: Overview of the three-stage aBMD prediction and osteope-
nia screening system, performing preprocessing, aBMD prediction, and
osteopenia classification tasks respectively.

the vertebral bodies by determining the area and bone mineral content

of the vertebral body. The final step converts the aBMDCT estimate to

its aBMDDXA equivalent and performs an osteopenia diagnosis using the

T-score. The entire process is automated and requires no additional user

input.
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2.2.3 Vertebral Body Segmentation and HU Correc-

tion

This module automatically segments the vertebral body from the routine

CT image and applies a HU correction on the segmented vertebral body to

control for imaging performed under different beam calibration conditions.

There are three sequential steps, of which two are segmentation steps and

the final one being a HU correction procedure. The first segmentation step

localizes the approximate position of the vertebra and performs a graph

cut to obtain the entire vertebra. The second segmentation step takes

the segmented vertebra and determines an appropriate cut to isolate the

vertebral body from the vertebral processes. Finally, we use the HU of

the adjacent paraspinal muscle to perform a correction to the HU of the

segmented vertebral body.

Vertebral Localization and Segmentation

The localization of the main vertebra section is performed by an iterative

window shifting technique which is inspired by mean shift clustering. First,

a fixed threshold based on the likely HU for bone is used to obtain an

initial segmentation of the bone regions. The centroid of the bone regions

is then taken as an initial guess C1 for the centroid of the vertebra. A
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local window centered about C1 and twice the size of a typical vertebra

is applied to the images, and the centroid of the bone regions contained

within the local window is used as the second estimate C2 for the vertebra

centroid. The local window is subsequently re-centered to C2 and used to

produce another guess C3 at the centroid. This iterative process continues

until the centroid position converges to a static value Cend. The algorithm

is summarized below:

1. A fixed threshold of HU > 400 is used to perform an initial segmen-

tation of bone.

2. The centroid of the bone areas is computed as C1.

3. A local window of twice the size of a vertebra is placed on the volume,

centered about C1.

4. The centroid of the bone areas contained within the local window is

computed as C2.

5. Repeat steps 3-4 using the latest centroid guess, until convergence

to a centroid value of Cend.

The localization procedure captures a local window centered about the

vertebra at Cend. The initial thresholding used to obtain the initial bone

classification is not sufficiently accurate to distinguish between bone tis-

sues for correlation and prediction, particularly for estimating the aBMD.
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A graph cut algorithm [27, 28] is used instead to perform a more refined

segmentation of the vertebra from the local window. Graph cut is an opti-

mization technique commonly used in computer vision to divide an image

into object and background regions. An image is represented as a graph,

and the graph cut algorithm obtains a minimum set of link cuts such that

the entire graph is divided into two disjoint sets of background or object

nodes. The result of the graph cut is a clean segmentation of the vertebra

from the surrounding tissues.

Vertebral Body Segmentation

The spinal processes (Fig. A.1) are not relevant for bone strength as the

main determinant of bone strength is the vertebral body. The segmenta-

tion of the vertebral body is therefore an important step in the algorithm.

To ensure repeatability of the vertebral body segmentation, the spinal

canal is used as an anatomical landmark for the segmentation as it can

be easily detected with high reliability. The center of the spinal canal is

taken as one control point for determining the cutoff point for the verte-

bral body segmentation, while the centroid of the vertebral region lying

above the spinal canal centroid is taken as the second control point. A line

is extended to connect the two control points and profile analysis used to

determine the position where there is an abrupt change in HU; this posi-
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tion is the boundary between the spinal canal and the vertebral body. A

line perpendicular to the line connecting the two control points is used as

the cutoff line to separate the vertebral body from the pedicles and the

spinal processes. Finally, the upper region is taken as the vertebral body,

and the lower region is taken as the spinal process. The vertebral body

segmentation algorithm is summarized as:

1. The spinal canal is located as a void in the vertebra and the centroid

of the spinal canal, Csc, is computed.

2. The centroid of the bone region lying above Csc is used as a guess

for the centroid of the vertebral body, Cvb.

3. A line Lsc-vb is extended to connect Csc and Cvb. The gray-level

profile on this line is analyzed to find a point Pcutoff where there is

a sudden change in HU.

4. A second line Lcutoff passing through Pcutoff is constructed perpen-

dicular to Lsc-vb. Lcutoff is the cutoff line for the vertebral body

segmentation.

5. All bone regions lying above Lcutoff are labeled as vertebral body,

while all bone regions lying below Lcutoff are labeled as spinal pro-

cesses.
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(a) (b)

Figure 2.2: Two examples of vertebral body segmentation, where a) also
includes the detected rib bones for context. In each image, the red outer
boundary is the extracted ROI for the vertebra, the red ”x” is the guess
for the vertebral body centroid, the blue ”o” is the centroid of the spinal
canal. The green line is the line connecting the two centroids, and the
red square and the blue lines are the detected cutoff point and cutoff line
respectively.

The control points and segmentation lines generated using this segmenta-

tion algorithm are given in Fig. 2.2.

Intensity Correction

The HU of the CT image may differ based on the properties of the beam

used to perform the CT scan. The energy spectrum of the X-ray beam af-

fects the subsequent beam hardening when the X-ray passes through inter-

nal tissue. The algorithm proposed here must adapt to different imaging

scenarios where the routine CT is obtained for diagnostic imaging pur-

poses. A HU correction is therefore performed to reduce the variance in
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HU resulting from different imaging parameters. Similar to the phantom-

less calibration method [8], the paraspinal muscles are used as an internal

reference. We assume that the paraspinal muscles have ideal HU char-

acteristics that do not vary significantly amongst patients, and thus the

differences between the observed and ideal HU for the paraspinal muscles

must largely be due to the differences in imaging parameters. Aligning

the observed and ideal HU for the paraspinal muscles can therefore also

correct the HU for the vertebrae.

The paraspinal muscles are first located by extending a local window

horizontally about the spinal processes segmented in the previous step.

The soft tissues contained within the window are assumed to consist of

fat and muscle, each of which has HUs following independent Gaussian

distributions. Expectation maximization is used to recover the model

parameters that best explains the observed fat and muscle distribution

[29]. The Gaussian mixture model is used to estimate the mode of the

muscle tissue, which is used to compute the linear correction offset. The

algorithm for the HUs intensity correction is:

1. A local window of twice the width of the vertebral body is extended

about the spinal processes. All non-bone non-air voxels are labeled

as soft tissue.

2. A Gaussian mixture model is adopted to model the soft tissues as fat
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and muscle tissues [8]. Expectation maximization is used to estimate

the means, standard deviations, and fractions of the fat and muscle

tissues.

3. The mean of the muscle tissues, µmuscle, is compared against the

standard value for muscle, +40 [30]. A correction offset

HUoffset = +40− µmuscle (2.2.1)

is then added to each voxel of the segmented vertebral body.

2.2.4 Generation of aBMDCT from Routine CT

In earlier studies [11], a strong correlation was found between the HUs of

a voxel and the bone mineral density ρ of that voxel. This relationship

was described as:

ρ = 1.112× HU + 47 kg/m3. (2.2.2)

As the volume of an individual voxel can be computed from the inter-slice

spacing and the voxel spacing, this means that the bone mineral content

of each voxel, and therefore the vertebral bone, can be estimated from the

CT scan. For a given inter-slice spacing of Sy and a voxel spacing of Sx,

the bone mineral content BMCCT can be estimated from the CT images

as

BMCCT =
∑

ρ× Sy × S2
x. (2.2.3)
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Furthermore, the area of the vertebral bone can be found by segmenting

the vertebra and taking the projection area on the posteroanterior plane.

The area of the bone, Abone is equal to a multiple of the sum of bone pixels

on the projection Apixel:

Abone = Apixel × Sy × Sx. (2.2.4)

Therefore, by dividing the estimated bone mineral content of the vertebra

by the estimated area of the vertebra, a CT equivalent of the DXA aBMD

can be obtained. The aBMD from CT, aBMDCT is calculated by

aBMDCT =
BMCCT

Abone

. (2.2.5)

This aBMDCT may be used to gauge the bone condition and to perform

a coarse diagnosis of bone diseases such as osteoporosis or osteopenia.

2.3 Robust Regression

2.3.1 Regression of aBMDDXA from aBMDCT

aBMDCT is a coarse estimator of aBMDDXA. It cannot be directly used

to replace aBMDDXA because the bone areas and bone mineral contents

used to calculate aBMD are obtained by the different radiological methods

of DXA and CT. Some calibration is necessary to perform a conversion

from aBMDCT to an aBMDDXA value. We assume that the aBMDCT and
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aBMDDXA values are related via a linear transformation of the form

aBMDCT = k1 × aBMDDXA + k2, (2.3.1)

where k1 and k2 are the scaling and offset constants respectively. This

assumption of linearity is supported by experimental data provided in the

results section. The values of the constants can be directly obtained by

linear least squares regression, but the results will be adversely affected

by the presence of large outliers due to infrequent but large errors in the

estimation of vertebral area and bone mineral content. RAndom SAmple

Consensus (RANSAC) [31] is used instead to obtain a robust estimation of

the linear transformation parameters. The RANSAC procedure randomly

selects pairs of points to construct linear models, and the available data is

fitted to the tentative model. Points lying far away are treated as outliers

and the model is only considered as a potential candidate if there are fewer

than a preset number of outliers. For a valid candidate, the inlier points

are collectively used to generate a regression fit. This process is continued

for several iterations to yield a number of potential candidate models,

which are evaluated on the basis of the standard deviation of the inlier

points from the regression fit. The model with the minimum standard

deviation is adopted as the best fitting model.

The RANSAC procedure is described as follows:

1. Two data points are randomly chosen to generate a linear model.
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2. All data points with normalized errors of less than 0.30 are consid-

ered hypothetical inliers.

3. If more than Pthreshold (0.90) of all points are hypothetical inliers, a

new linear model is estimated from all the hypothetical inliers. The

sum of absolute errors of the hypothetical inliers from the new linear

model is calculated and recorded along with the model parameters.

Otherwise, the linear model is discarded.

4. Steps 1-3 are repeated for 1000 times.

5. The valid linear model with the lowest sum of absolute errors is used

as the final regression model.

RANSAC is capable of forming outlier-free models by rejecting large

random or systematic errors. Here, RANSAC is used to assist in the

detection and rejection of large outliers. These outliers will subsequently

be examined to determine the systematic cause, if any, that justifies their

rejection.

2.3.2 Classification of Osteopenia from aBMDCT

In DXA, aBMDDXA can be directly converted to the T-score by standardiz-

ing with respect to the aBMDDXA of the reference population. The same

standardization can be performed by first converting aBMDCT into the
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estimated aBMDDXA using the discovered correlations, and subsequently

using the reference population to obtain the estimated T-score. The esti-

mated T-score is used to diagnose osteoporosis and osteopenia in the same

manner as conventional DXA T-scores, where bones with T-score of less

than -1.0 are classified as osteopenic.

The classification rule can be modified to obtain other operating points.

For example, the threshold can be increased to have a higher osteopenia

detection rate at the cost of increased number of false positives. This

trade-off is summarized in the receiver operating characteristic (ROC)

graph, which plots the true positive rate against the false positive rate.

2.4 Results and Discussion

2.4.1 Data Sets

The data sets used in our experiments consist of paired CT scans and DXA

measurements drawn from 44 male participants between 60 and 90 years

of age (66.7 ± 7.47 years). The study selected patients with no preexist-

ing medical conditions, and compression fractures and other degenerative

pathologies were also excluded after radiologist review. This source data

set was broken into 155 pairs of CT volumes and DXA measurements,

with each pair capturing one of the vertebrae in the lumbar spine (L1-
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L4). Approximately one-third (50) of the samples were osteopenic (46)

or osteoporotic (4), while the remaining samples (105) had normal bone

mineral density.

Abdominopelvic visceral adipose tissue (VAT) was determined using

a 64-slice multi-detector CT scanner (Somatom Definiton, Siemens AG,

Erlangen, Germany). Axial CT scan was performed with the subjects

supine, from the dome of the diaphragm down to the bottom of the pelvis,

using a 35 x 35 cm field of view. Non-contrast enhanced scans using

routine scan parameters of 120 kVp, 210 mAs, slice collimation 0.6 mm,

slice width 5.0 mm, pitch factor 1.4, and increment 5.0 mm were acquired.

The thin-slice raw data was reconstructed into 1 mm sections with zero-

gap intervals. No intravenous contrast agent was used in any of the CT

scans.

2.4.2 Evidence of Correlation between aBMDDXA and

HU

aBMDDXA was correlated with the mean HUs calculated from the top,

middle, and bottom slices of the volume, and using all vertebral slices

in the volume respectively. The squared correlation coefficients (r2) are

shown in Table 2.1, with the correlation coefficient (r) contained in brack-

ets.
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Table 2.1: Correlation coefficients using different slice sampling schemes.

Top, Middle, Bottom Slices Entire Volume

Mean without RANSAC 0.286 (0.535) 0.478 (0.691)

Mean with RANSAC 0.465 (0.682) 0.647 (0.804)

The raw correlation results for the method computed on the top, mid-

dle, and bottom slices without outlier rejection are poorer than the figure

(r2 = 0.44) reported in [7]; however, with RANSAC enabled, the cor-

relation coefficients agree. The four samples rejected by RANSAC were

found to be poorly segmented or to have osteophytes, and hence their

removal was justified. Table 2.1 shows that when the entire volume is

used in its computation, the mean feature correlates more strongly with

the aBMDDXA value. This improvement in the degree of correlation oc-

curs regardless of whether outlier rejection is used. The result suggests

that it is always better to include the entire volume rather than relying

on a partial selection of axial sections from the bone volume; this may be

because noise and partial volume effects are reduced through averaging

from several slices.

2.4.3 Estimating aBMDDXA from aBMDCT

Fig. 2.3 shows the Bland-Altman plot. A systematic bias of -0.0817 g/cm2

for aBMDCT was detected, while the standard deviation (SD) was 0.0908

g/cm2. The systematic bias in the aBMDCT measurement can be cor-
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rected by a linear fitting model. Fig. 2.4 plots the true aBMDDXA value

against the computed aBMDCT. The experimental relationship between

aBMDDXA and aBMDCT was found to be:

aBMDDXA = 0.866× aBMDCT + 0.194 g/cm2. (2.4.1)

The correlation coefficient r2 was 0.726 (r = 0.852). The root mean square

error was 0.0884 g/cm2, which corresponds to a coefficient of variation of

8.77%. These results show that there is a strong correlation between the

aBMDDXA value from the aBMDCT value, and that it is possible to predict

the aBMDDXA value based on the aBMDCT value.

2.4.4 Impact of Different Bone Tissues on DXA Cor-

relation

The results of the experiment are detailed in Table 2.2. Using only the

cortical or trabecular bone regions as the region of interest resulted in lower

correlation to aBMDDXA compared to the case of using both bone regions.

This conclusion is reasonable since our technique estimates aBMDDXA,

and DXA does not differentiate between cortical and trabecular bone.

Another reason for not distinguishing between the two bone tissue types

is that it is very difficult to separate trabecular and cortical bone with

high confidence due to the partial volume effect at the scan resolutions

typical for dCT. Imaging trabecular bone requires high-resolution QCT
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Figure 2.3: Bland-Altman plot of aBMDDXA and aBMDCT. aBMDCT

systematically underestimates aBMDCT.
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Figure 2.4: Regression plot of aBMDDXA vs aBMDCT. 4 of 155 samples
were rejected by RANSAC.
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Table 2.2: Correlation of aBMDDXA by computing aBMDCT from different
bone tissues.

Bone Tissue Used r2 (r)

Cortical bone 0.479 (0.692)

Trabecular bone 0.655 (0.809)

Both cortical and trabecular bone 0.726 (0.852)

and increased radiation exposure.

2.4.5 Osteopenia Classification based on T-score

At the cutoff point of T-score = -1.0, the aBMD classifier achieves an

overall accuracy of 80.1% with a true and false positive rate of 73.9% and

17.1% respectively. The aBMD classifier attains an area under curve of

0.894 on the receiver operating characteristic curve, as shown in Fig. 2.5.

The classifier performance is comparable in screening for osteopenia using

advanced machine learning techniques [21], where AUC scores of 0.896

and 0.885 were reported.

2.4.6 vBMD and aBMD for Prediction and Classifi-

cation

Table 2.3 shows the results of the comparision. While directly regress-

ing aBMDDXA from dCT is feasible and produces acceptable results, it is

inferior to our original method using of an aBMDDXA intermediate. The
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Figure 2.5: Receiver operator characteristic curve for a linear classifier
using aBMDCT.

Table 2.3: Comparison between vBMD and aBMD.

Method r2 (r) RMSE (g/cm2) AUC

vBMDCT 0.808 (0.653) 0.104 0.871

aBMDCT 0.852 (0.726) 0.0884 0.894

Difference -5.16% (-10.1%) 17.6% -2.57%

vBMDCT method has 17.6% greater aBMDDXA estimation error than the

aBMDCT method, and has a corresponding decrease in classification per-

formance by 2.57%. This difference mirrors the systematic discrepancy

between the volumetric and areal measurements from QCT and DXA. It is

more appropriate to compute aBMDCT for predicting aBMDDXA, because

there are inherent differences between volumetric and areal measurements.
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2.4.7 Discussion

Our results demonstrate that DXA-equivalent aBMD can be estimated

from the aBMDCT value derived from dCT. We have also shown that the

derived aBMD value can be applied to accurately diagnose bone diseases

such as osteopenia. These promising results suggest that the method of

estimating aBMD from dCT is feasible.

We are optimistic that the aBMD estimation method would perform

better in practice than the results reported here. The osteopenia diag-

nosis system using aBMDCT was evaluated on its ability to distinguish

between osteopenic and normal patients, whereas in clinical practice the

aim of the screening application would be to separate osteoporotic and nor-

mal patients. Osteoporotic patients have an even more significant bone

mineral loss than osteopenic patients, and osteoporosis should be easier

to detect than osteopenia. Therefore, since osteoporotic cases were un-

derrepresented in our experiments, we expect the real-world classification

performance of the screening system to be improved. At the same time, we

caution that we have not measured the precision of our technique. Since

aBMDCT approximates aBMDDXA, it can at best only attain a precision

equal to DXA (and more likely, worse than DXA). It should not be used

to monitor bone density changes across time.

Several factors may affect the reliability of the aBMD estimation and
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osteopenia detection system. First, contrast agents were not used in any of

our diagnostic CT scans and hence the effect of contrast agents cannot be

studied and controlled for. Second, the aBMDCT measure depends directly

on the bone area detected, and is thus vulnerable to the mis-segmentation

of bone and the resulting mis-estimation of bone area. However, these

two issues may be sufficiently addressed by corrective measures. For intra-

venous contrast agents, correction algorithms for contrast agents have been

reported in [14]. Mis-segmentation may be reduced by using automated

algorithms for segmentation of bone, which can reduce the inter-operator

and intra-operator variation associated with manual bone segmentation.

Using more advanced segmentation algorithms in lieu of simple automated

or semi-automated segmentation methods also increases the reliability of

the bone segmentation.

There are some limitations to this study resulting from the patient

population used. First, the study population consisted entirely of males,

which may reduce the applicability of the described methods to women.

This limitation may be especially important since women are generally

considered to be at higher risk of osteoporosis than men. Second, the age

of the participants covered only the range of 60 to 90 years, which may

reduce the reliability of aBMD estimation and the osteopenia diagnosis

system with a younger population. However, we note that several related
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studies suffer from similar age sampling limitations, the majority of which

do not include healthy adults in their sample population as the risk (and

therefore utility of screening for) bone loss is small. However, the methods

described here should be used with caution when applied to a pediatric

population, where DXA is known to be less reliable [14].

A further consideration is that the WHO definition for osteoporosis and

osteopenia using BMD T-scores is meant to be applied to postmenopausal

women. In clinical practice, due to the lack of a BMD-based definition

for osteoporosis/osteopenia in males, it is not uncommon to apply the

WHO definition to males as well [32]. This is the approach we have taken

in this thesis, but there is evidence to suggest that applying the WHO

standard to male populations underestimates osteoporosis risk and that

a revised definition involving a higher T-score threshold is more suitable

for men [32]. The classification threshold used in our algorithm can be

easily modified in light of any new findings on the best T-score threshold

for male osteoporosis diagnosis.

Our method of estimating the bone mineral content of a lumber ver-

tebra relies on the empirical HU to bone mineral density conversion for-

mula by Rho et al. [11]. Using the conversion formula assumes that the

CT imaging parameters and patient setup conditions are sufficiently simi-

lar. Beam hardening effects are also dependent on the imaging conditions
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and may further influence the formula’s reliability [33]. In practice, we

have found that the conversion formula achieves satisfactory performance

and is sufficient for this preliminary work. The regression equation from

aBMDCT to aBMDDXA implicitly accounts for these variant factors, given

the same device and imaging setups. Though each imaging device has dif-

ferent beam properties, each scanner only has to be cross-calibrated once

with respect to a DXA reference to obtain the proper regression constants

specific to the machine. In future work, the HU to bone mineral density

conversion model can be further improved to explicitly model the different

setup and beam properties for better results.

aBMDCT has an error of 8.8% when used to estimate aBMDDXA. Since

aBMDDXA has an inherent error of 5.3% [34], this additional error in-

creases the uncertainty associated with diagnosis. Therefore, aBMDCT is

best used as an opportunistic screening measure, and detected cases of

osteopenia should be confirmed using DXA.

We propose that aBMDCT be used as supplementary indicator of bone

mineral loss, in addition to the existing phantom-less QCT method. This

equips clinicians with two sets of measurements, the volumetric BMD and

the areal BMD for diagnostic use. There is also the possibility of incor-

porating other diagnostic measures into an integrated diagnostic suite for

bone disease diagnosis; machine learning algorithms can subsequently be
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applied to the basket of diagnostic variables to mine the disease relations.

An improved prediction model for diagnosis can also be built based on

the set of additional features [35]. Further investigations (described in the

next chapter) indicate that the aBMDDXA estimation can be improved by

selectively including multimodal features obtained from blood and hor-

mone measurements.

2.5 Summary

In this chapter, we have introduced a new method of screening for low

bone mass which can be applied with little additional cost to existing dCT

setups. By modeling the DXA test for BMD and applying the model to

dCT images, we obtained a aBMDCT value that is analogous to aBMDDXA.

The aBMDCT was then correlated with aBMDDXA using a robust regres-

sion technique to obtain a aBMDCT-to-aBMDDXA mapping. There was a

high correlation between aBMD computed from dCT and the true DXA-

derived aBMD value. The results suggest that DXA-equivalent aBMD

can be reliably estimated based on aBMD computed from dCT, and that

aBMDDXA can be used in an opportunistic screening system for osteope-

nia; the technique thus offers the potential to have significant preventative

value in the early treatment and management of osteoporosis.
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CHAPTER 3

Ensembles for Classification in

Osteopenia Screening

In the previous chapter, we have described a scheme for modeling an

aBMDCT from CT images by applying a robust regression algorithm to

correlate DXA and CT images. However, while aBMDCT incorporates

densitometric information, it does not consider the structural and mor-

phological properties of bone when performing an osteopenia diagnosis.

Instead of relying on expert knowledge to make a disease diagnosis, ma-

chine learning can be applied to develop a black-box model of osteporosis

and osteopenia. The advantage of machine learning is that it can incor-

porate features and modalities that are difficult to quantify, such as the

structural and morphological properties of bone.

This chapter presents a genetic algorithm (GA) to evolve a weighted

decision ensemble for the diagnosis of osteopenia. The weighted decision

ensemble uses a novel combiner function that is able to exploit classifiers

that are discriminative towards specific classes. In addition, a GA scheme

is used to optimize the weights of the decision ensemble such that the final
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ensemble has the greatest accuracy and class separation. These contribu-

tions allow for a more accurate diagnosis of osteopenia from CT scans of

lumbar vertebrae.

3.1 Related Work

The robustness and accuracy of classification can be improved by combin-

ing multiple feature sets or classification methods into ensembles. Ensem-

bles can be broadly divided into feature and decision level ensembles [36].

In decision level ensembles, the outputs of many different classifiers are ag-

gregated to generate a final output. The ensemble methods implemented

in this thesis are examples of decision level ensembles.

The most common method of creating a classifier ensemble is to com-

bine the outputs of the individual classifiers by some form of weighted

voting scheme. The most popular weighting scheme is the majority vote,

also known as plurality vote [37]. In majority voting each classifier in the

ensemble is equally important, and the ensemble decision is the mode of all

the individual classifier decisions. A simple extension of majority voting is

weighted majority voting, where each classifier may contribute a different

number of votes [38]. Heuristics are often used to choose the weightings. In

accuracy-based weighting, the ensemble weights are assigned based on the

accuracy performance of the underlying classifiers, thereby allowing more
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accurate classifiers to have a larger influence on the ensemble outcome than

less accurate classifiers [39]. A related idea is variance-based weighting,

where the ensemble weights are inversely proportional to the variance of

the underlying classifiers [40]. Therefore, variance-based weighting gives

more emphasis to classifiers with a higher prediction confidence (low vari-

ance). A similar approach, variance-optimized bagging (vogging), opti-

mizes a linear combination of the base-classifiers such that the ensemble

variance is minimized while keeping accuracy above a predetermined value

[41]. Statistical methods and information theory have also been applied

to weight assignment schemes. Bayes rule can be used to assign weights

in a weighted voting scheme, where the weight is the posterior probability

of a classifier given the training set [40, 42]. In entropy weighting, each

classifier is assigned a weight that is inversely proportional to the entropy

of its classification vector, where classifiers that are particularly discrimi-

native of specific classes have lower entropy and hence higher weightings

[43, 44]. Another scheme uses the Dempster-Shafer theory of evidence to

combine binary weighted decision trees [45]. Finally, density-based weight-

ing is used in combination with feature-level ensembles and the weights

are assigned to each classifier based on the sampling probabilities [40, 43].

A weakness with weighted voting schemes is that the base classifiers are

assumed to be equally specific to all classes. Thus weighted voting ensem-
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bles may be unable to take advantage of classifiers that have high precision

for specific classes. The proposed weighted decision ensemble addresses

this weakness by allowing for classifiers to contribute different weights de-

pending on the classifier output. Another weakness with weighted voting

schemes is the assumption that the component classifiers are largely inde-

pendent. Weighted voting schemes tend to employ all available classifiers

and to emphasize classifiers that are individually good. However, the base

classifiers may be highly correlated and better classification performance

may be achieved using a large subset rather than a full subset of classifiers

[46]. Furthermore, an ensemble of individually poor classifiers that col-

lectively have complementary information may outperform an ensemble

made of individually good classifiers that are mutually dependent. Hence,

optimization schemes that search for good weightings are able to yield

better ensembles. GAs are known as general purpose optimizers and are

suitable for this task.

Recently, Mehmood et al. used GA to optimize a weighted majority

ensemble consisting of five types of classifiers for solving gender recogni-

tion problems [38]. Majid et al. used genetic programming to evolve a

composite of support vector machine (SVM) classifiers, each with different

kernel functions [47]. Zhou et al. introduced GASEN (Genetic Algorithm

based Selective ENsemble) [46] and GASEN-b(it) [48] which use GA to
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select participating neural networks for the ensemble. Aside from clas-

sifier selection, GAs have also been used to choose good feature sets for

ensembles. Miller et al. used a GA to choose a binary subset of features

[49] while Pei et al. used a GA to choose a weighted subset of features

[50]. Lastly, both feature and decision level fusion occur in the GAECM

method, where a GA was used to simultaneously select the feature sets

and to optimize the classifier vote weightings in a classifier ensemble [51].

3.2 Ensemble Classification

We hypothesize that advanced machine learning techniques could be used

to obtain a good classification of normal and pathological bone from nor-

mal CT images, and introduce a new technique for the classification of

osteopenia from routine CT images. The Evolved Weighted Voting En-

semble (EWVE) and Evolved Weighted Decision Ensemble (EWDE) are

proposed to achieve better classification performance on the osteopenia de-

tection problem over multiple operating points. EWVE comprises three

separate components (Fig. 3.1): the EWVE module, the base classifiers

in the ensemble, and the features describing the input CT data. The os-

teopenia diagnosis system works by taking in a routine CT volume as the

input. The feature extraction module transforms the 3-D CT volume into

a set of features that are relevant for osteopenia diagnosis. The extracted
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dCT images

Feature extraction

Osteopenia diagnosis result

Operating 
point

Classification with evolved 
weighted ensemble 

Classification with basic 
classifiers 

Figure 3.1: Flowchart of osteopenia screening algorithm.

features are then presented to a set of 18 basic classifiers that have been

previously trained. The classifiers each return a binary result indicating

whether osteopenia is detected; this is concatenated into an 18-bit pattern

which is then passed to the EWVE module. The EWVE module, like the

basic classifiers, has also been previously trained. The EWVE module

determines the final diagnosis result by weighting the decisions of the 18

basic classifiers. The specificity of the screening system can be modified

according to the clinician’s preference by adjusting the operating point of

the EWVE module.
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3.2.1 Ensemble of Classifiers

In this work, two classifiers are applied to ensemble the classifier outputs.

In addition, a genetic algorithm based ensemble method is also employed

to ensemble the classifier outputs. By training classifiers on the ensemble

outputs, each basic classifier acts as a binary feature transform. The four

ensemble variants are described below:

The Nearest Neighbor Ensemble (NNE) is constructed by applying

the nearest neighbor classifier onto the outputs of the 18 base classifiers.

The binary classification outputs from the 18 base classifiers are concate-

nated to form an 18-bit pattern. The class label of an unseen test sample

is assigned by first applying the 18 basic classifiers to generate the 18-bit

test pattern. The Euclidean distance between the test pattern and the ref-

erence 18-bit patterns is used to find the nearest matching pattern, whose

label is then applied to the test sample.

The Random Forest Ensemble (RFE) is constructed by applying

the random forest algorithm onto the outputs of the 18 base classifiers.

Random forest is a state-of-the-art classifier system that ensembles many

bootstrapped decision trees. As with the nearest neighbor ensemble, the

random forest ensemble is trained on the outputs of the 18 base classifiers

instead of the feature data. An unseen test sample is first converted to

an 18-bit pattern which is subsequently classified with a random forest
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classifier previously trained on the set of 18-bit patterns.

The Evolved Weighted Voting Ensemble (EWVE) is an extension

of the most majority vote, also known as plurality vote [32]. In major-

ity voting each classifier in the ensemble is equally important, and the

ensemble decision is the mode of all the individual classifier decisions.

The EWVE uses weighted majority voting, where each classifier may con-

tribute a different number of votes [42]. The ensemble decision can be

determined by a weighted vote, where the weights assigned to each classi-

fier are assigned according to a GA. The ensemble decision is represented

mathematically as:

class(x) = argmax(
∑
k

skwkg(yk(x), ci)− b), (3.2.1)

where sk is a binary switch indicating whether the corresponding classifier

participates in the voting, wk is the weight assigned to the k−th classifier’s

decision, b is a biasing threshold to set the operating point of the system,

and g(y, c) is an indicator function representing the kth classifier’s output,

defined as:

g(yk(x), c) =


1, if y = c.

0, otherwise.

(3.2.2)

The Evolved Weighted Decision Ensemble (EWDE) is proposed

to further generalize the ensembler function. In the new combiner func-

tion, each classifier has a weight for each decision that it might generate.
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For a binary classification problem each classifier has two weights. If a

classifier returns a result of 1, it contributes the first weight towards the

first decision, and nothing towards the second decision. If a classifier re-

turns the result 2, nothing is contributed towards the first decision while

the second weight is contributed towards the second decision. The ensem-

ble decision is the decision with the greatest total sum. This combiner

function can be expressed as follows:

class(x) = arg max
ci∈dom(y)

(
∑
k

skh(yk(x), ci, k)), (3.2.3)

where h(y, c, k) is an indicator function with a weight wk,c for each com-

bination of base classifier and classes:

h(y, c, k) =


wk,c y = c

0 y 6= c

. (3.2.4)

This combiner function allows classifiers to be more specific and discrimi-

nating towards particular classes and is helpful if the base classifiers have

high precision. The weighted decision ensemble can also be easily modified

for multi-class problems by appropriately changing the number of weights

and decision units to match the number of target classes.

3.2.2 GA Ensemble Optimization

The weights of the Evolved Weighted Voting Ensemble are generated by

using a genetic algorithm optimization technique. Choosing the weights
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for ensemble systems can be regarded as an optimization task. GAs are

known as general purpose optimizers and are suitable for this task. How-

ever, traditional GA optimization methods have not addressed how classi-

fier performance can be maintained or optimized across multiple operating

points. Our GA approach uses a new evaluation measure that better ad-

dresses this problem. The evaluation function,

fitness = accuracy + k × geometricMean, (3.2.5)

comprises of two terms, accuracy and the geometric mean, scaled by the

weighting parameter k = 2. Accuracy itself is not a good measure of clas-

sifier performance because it does not discriminate between true positives

and true negatives. A high accuracy can be obtained simply by assigning

all samples to the majority class, which is not useful for medical applica-

tions since this means that diseases and symptoms are not detected. The

geometric mean is a better measure for problems with class imbalance as

it takes a high value only when detection rates for both classes are high.

The geometric mean is computed from the true positive rate (TPR) and

the true negative rate (TNR) by

geometricMean =
√

TPR× TNR. (3.2.6)

The ensemble weights are optimized using an approach partly inspired

by Xu and He [66]. Each solution is represented as an 18 gene chromo-

some. For an EWVE, each gene comprises of a binary bit S and a real
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Figure 3.2: A chromosome of an EWVE with 3 component classifiers.

Figure 3.3: A chromosome of an EWDE with 3 classifiers.

number W, representing respectively whether the corresponding classifier

is used and the weight assigned to that classifier. A prototype chromo-

some with 3 component classifiers is shown in Fig. 3.2. For an EWDE,

each gene comprises of a binary bit and 2 real numbers, where the binary

bit indicates whether the corresponding classifier is used and the two real

numbers represent the weights assigned for each class decision for that

classifier, as shown in Fig. 3.3.

A pool of 250 chromosomes was used. For each generation, the top 50

chromosomes are retained and crossover (pc = 0.70) populates each chro-

mosome in the child pool by selecting random pairs of parents from the top
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50 chromosomes and randomly replacing genes with a random weighted

average of the corresponding parents’ genes. Next, mutation (pm = 0.03)

modifies the solutions by randomly replacement with a random real value.

Elitism preserves the top 5 individuals of the parent generation. Evolu-

tion ends when the best performance has not improved over the last 50

generations. The GA optimization scheme is illustrated in Fig. 3.4.

3.2.3 Basic Classifiers

Six different basic classifiers, each employed on each set of features, were

used in our experiments. Each basic classifier was then separately trained

on each of the three feature sets to yield eighteen different classifiers. The

basic classifiers are:

1. K-nearest neighbor classifier

2. Naive Bayesian classifier, assuming a Gaussian data distribution

3. Naive Bayesian classifier, using kernel density estimation

4. Bayesian discriminant function, where each class shares the same

covariance matrix

5. Support vector machine, with experimentally chosen polynomial ker-

nel function K(x1, x2) = (1 + xT1 x2)2 and soft margin penalty of 1.1
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Training data (18-bit 
patterns)

Optimization

Initialize random initial 
population (250 members)

Evaluate individuals using fitness 
functions

Select top 50 individuals

Generate 245 individuals by random 
pairing and crossover (pc = 0.70)

Randomly replace (pm = 0.05) genes 
with random real values

Child pool (250 members)

Copy top 5 individuals

Optimal set of ensemble weights

Improved in 50 
gens?

No

Yes

Figure 3.4: Flowchart of GA optimization.
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6. Decision tree classifier, using Gini’s diversity index as splitting cri-

teria and cost complexity pruning

3.2.4 Feature Sets

The features employed are designed to be relevant to the bone mineral

density and bone morphology. The distribution of gray levels is impor-

tant because the CT gray levels are directly related to the bone mineral

density (denser bone appears as brighter voxels in CT scans). Morpholog-

ical features are also relevant in characterizing the mechanical properties

of bone. These related features are used to distinguish between different

classes of bone.

The first set of features is the grey level histogram features. The gray

level distribution is quantized into a few histogram bins, with each bin

containing the percentage of object voxels that fall into the bin range and

each bin being mapped to a single feature dimension. The relevant range

of bone gray levels is divided into 9 bins, each covering an approximately

equal range of gray values. This set of features attempts to represent the

gray level distributions of the CT volumes.

The second set of features is the mean of threshold features. The gray

level distribution is divided into a number of overlapping threshold ranges.

Each threshold range selects a different set of object voxels specific to that
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range of gray values. For each range of gray values, the mean gray level

of the object voxels within that range is computed and represented as a

feature. This set of features attempts to represent the statistics within

the various gray level ranges in the CT volumes.

The third set of features is the morphological features. The average

cross-section of the bone slices is first obtained by overlaying slices and

thresholding. From the average cross-section, the area, height, and width

of the cross-section are estimated while the perimeter of the cross-section

and the minor-axis length are computed after applying morphological op-

erations. Other morphological quantities were also explored but found to

be non-relevant using feature selection algorithms [43, 47, 56] and hence

excluded. These morphological features attempt to represent the size and

shape of the bones being examined.

3.3 Results and Discussion

3.3.1 Experiment Methodology

The data sets employed in our experiments are drawn from a larger set

consisting of CT volumes and matching DXA images and scores described

in Section 2.4.1. Two smaller data sets are drawn non-exclusively from

this source set, and each drawn data set is broken into two separate classes.
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The first data set will be referred to as the TS-A (T-score A) data set,

while the second data set will be referred to as the TS-B (T-score B) data

set.

For the TS-A data set, the samples are drawn from the original data set

based on the DXA-derived T-scores of the individual lumbar vertebrae. T-

scores are related to the risk of bone fracture, and osteoporosis (T–score <

−2.5) and osteopenia (−2.5 < T–score < −1.0) are defined based on the

T-score. Thus, a T-score of less than -1 standard deviation (SD) above

reference was designated the lower threshold and a T-score of greater than

0 SD was designated the upper threshold. The samples are labeled as two

classes correspondingly, an at-risk class (for samples with T-score below

-1 SD) and a not-at-risk class (for samples above 0 SD). There are 103

samples in the TS-A data set, with 50 at-risk samples and 53 not-at-risk

samples.

For the TS-B data set, the samples are also drawn from the original

data set based on the T-scores of the individual lumbar vertebrae. The

samples were divided into classes with T-scores of less than -1 SD and

greater than -1 SD, which correspond to an at-risk class (T–score < −1.0)

and a not-at-risk class (T–score > −1.0) respectively. The TS-B data set

is more difficult than the TS-A data set because the separation between the

two classes is smaller, and it is hard to distinguish between the boundary
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cases. There are 155 samples in the TS-B data set, with 50 at-risk samples

and 105 not-at-risk samples.

Leave-one-out cross-validation (LOOCV) is employed to obtain the

classification accuracy for each combination of features and classifiers [52].

LOOCV is performed by repeatedly training the classifier system on all-

but-one of the available samples, then testing the trained classifier on

the unseen sample. LOOCV ensures that each classifier is trained on the

maximal number of training samples while using all available data for

testing.

For the evaluation of the classifier ensembles, since GA is used to evolve

the ensembles, it is too costly to employ LOOCV. Instead, 10-fold cross-

validation is performed ten times for each ensemble. For each run the

data set is broken into ten mutually exclusive subsets of equal size. The

ensemble is tested on each subset while being trained on the union of all

other subsets. To reduce the computational cost, the base classifiers are

each run only once in a LOOCV fashion, and the classifier results stored

in memory. Therefore, the combiner functions of the evolved ensembles

operate only on the precomputed classifier results and it is not necessary

to run new instances of the base classifiers.

Lastly, the effectiveness of the separation term in the GA evaluation

functions was also investigated by conducting another set of trials with the
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separation term disabled (setting k2 = 0). For all experiments hypothe-

sis testing (t-test) was used to compare the evolved ensembles and the

individual classifiers, as well as between the proposed weighted decision

ensemble and other existing ensemble systems. All t-tests conducted were

one-tailed at the 5% level of significance.

3.3.2 Results

Tables 3.1 and 3.2 show the classification accuracies of each individual

classifier method on the various feature sets, and also the classification

accuracies of the ensemble systems. For the TS-A data set, a high classi-

fication accuracy (>85%) was obtained for the best individual classifiers.

However, all of the evolved ensemble classifiers significantly outperformed

even the best individual classifiers, improving the classification accuracy

by between 1.5% to 2.5%. For the TS-B data set, due to the increased

difficulty of the data set, the best individual classifiers were only able

to obtain a good classification accuracy (>75%). Only ensembles with

more complex decision functions, such as the evolved weighted vote and

evolved weighted decision ensembles, were able to significantly improve on

the classification accuracy. On the TS-B data set the proposed evolved

weighted decision ensemble gave the best classification result (83.48%) and

was statistically better than all individual and ensemble classifiers.
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Table 3.1: Classification accuracy on TS-A dataset

Classification Method Feature Set Accuracy

k-NN

Hist 86.41%

MoR 87.38%

Morpho 78.64%

Näıve Bayes (Gaussian)

Hist 80.58%

MoR 83.50%

Morpho 81.55%

Näıve Bayes (KDE)

Hist 89.32%

MoR 85.43%

Morpho 80.58%

Bayesian Discriminant Function

Hist 78.64%

MoR 80.58%

Morpho 78.64%

SVM

Hist 83.50%

MoR 87.38%

Morpho 83.50%

Decision Tree Classifier

Hist 87.38%

MoR 85.44%

Morpho 85.44%

Majority Vote of All Classifiers 88.35%

Evolved Majority Vote Ensemble (EMV) 91.84%

Evolved Weighted Vote Ensemble (EWV) 91.07%

Evolved Weighted Decision Ensemble (EWD) 91.65%

The results show that the proposed evolved weighted decision ensemble

significantly improves on the performance of the best individual classifiers

for both data sets. The proposed ensemble is significantly better than all

individual and ensemble classifiers on the TS-B data set. This validates
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the effectiveness of the new combiner function in the weighted decision

ensemble. Thus, the experimental results clearly demonstrate that the

evolved weighted decision ensemble is the most suitable ensemble and

classification method among all the methods studied here.

Table 3.3 shows the effect of the separation term on the classifica-

tion accuracies of the evolved ensembles. Enabling the separation term

generally improves the ensemble accuracy by between 0.5% to 2%. This

improvement is statistically significant for the evolved weighted decision

ensemble, and for the evolved weighted vote ensemble on the TS-B data

set. This result demonstrates that including a separation term in the GA

evaluation function is helpful as it allows the GA to discriminate between

chromosomes that have the same accuracy but different class separations.

3.3.3 Discussion

All evolved classifier ensembles have statistically similar classification per-

formances on the less difficult TS-A dataset, while the weighted decision

ensemble significantly outperforms the other ensembles by about 2% on

the more difficult TS-B dataset. The main difference between these en-

sembles is the combiner function, where the proposed method uses the

most complex weighting scheme. This result suggests that the combiner

model used in the evolved weighted decision ensemble is more general and
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Table 3.2: Classification accuracy on TS-B dataset

Classification Method Feature Set Accuracy

k-NN

Hist 81.29%

MoR 72.26%

Morpho 77.42%

Näıve Bayes (Gaussian)

Hist 71.61%

MoR 72.26%

Morpho 73.55%

Näıve Bayes (KDE)

Hist 76.77%

MoR 74.19%

Morpho 78.06%

Bayesian Discriminant Function

Hist 78.06%

MoR 72.90%

Morpho 76.13%

SVM

Hist 71.61%

MoR 69.68%

Morpho 60.65%

Decision Tree Classifier

Hist 77.42%

MoR 75.48%

Morpho 74.84%

Majority Vote of All Classifiers 76.12%

Evolved Majority Vote Ensemble (EMV) 81.23%

Evolved Weighted Vote Ensemble (EWV) 81.68%

Evolved Weighted Decision Ensemble (EWD) 83.48%

thus potentially more powerful, but improvements in accuracy are only

visible in more difficult problems where simpler models are insufficient.

Furthermore, it may also imply that the evolved weighted decision ensem-

ble requires comparatively more training samples to be fully trained. This
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Table 3.3: Accuracy with and without separation term

Ensemble W/O Separation Term W/ Separation Term

TS-A TS-B TS-A TS-B

EMV 91.36% 80.58% 91.84% 81.23%

EWV 91.46% 79.74% 91.07% 81.68%

EWD 90.78% 81.35% 91.65% 83.48%

hypothesis agrees with the experimental results on the separation term,

where the separation term was found to have a statistically significant

effect only for the more complex data sets and ensemble models.

To further investigate the merits of the evolved weighted decision en-

semble, we also studied the ensemble weights of the final evolved weighted

decision ensembles. Two observations were made based on the ensemble

weights of the most highly evolved individuals. First, some active classi-

fiers (classifiers selected for the decision ensemble) had class weights that

were about equal while other active classifiers had class weights that were

polarized. This observation demonstrates that the weighted decision en-

sembles incorporate both classifiers that are non-specific (classifiers with

approximately equal class weights) and highly specific (polarized class

weights). The second observation was that some of the active classifiers

in the ensemble were those with poorer classification performance, which

agrees with the theory that individually poor classifiers can provide a lot

of complementary information in an ensemble.
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The most costly step in the proposed algorithm is the training of the

ensembles using GA, while the actual classification time is minimal as the

classification step is computationally simple. For the proposed application

of medical diagnosis, the computational cost of the training algorithm is

usually not a major concern because the training of classifiers is performed

prior to deployment of the diagnosis system. However, GA has a computa-

tional complexity of O(mnp), where m is the chromosome length, n is the

number of generations, and p is the size of the population pool. As a large

number of evaluations have to be performed, GA is a costly method to op-

timize the classification algorithms and may not be suitable for problems

with large data. This motivates the work in Chapter 4, which proposes

less computationally expensive algorithms.

3.4 Summary

In this chapter, a decision ensemble was introduced to combine the out-

puts of multiple basic classifiers previously trained on a set of derived grey

level and morphological features. The evolved weighted decision ensem-

ble assigns a different voting weight to each classifier and output class,

thus allowing the ensemble to incorporate classifiers that have high class

specificity. A GA then optimizes the weights of the decision ensemble.

The evolved weighted decision ensemble attained an accuracy of 91.65%

59



Chapter 3: Classifier Ensembles for Osteopenia Screening

and 83.5% over the two data sets used and was significantly better than

the best individual classifiers. The evolved weighted decision ensemble

was also statistically better than other ensemble systems over the difficult

data set. The results demonstrate that it is possible to identify patients at

risk of low bone mass from routine CT scans with good accuracy by using

advanced machine learning algorithms to model the disease condition.
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CHAPTER 4

Ensembles for Regression in Os-

teopenia Screening

In clinical studies, besides the main modalities being studied, other med-

ical measurements are often taken. For a radiological study, it is common

to also take blood and hormone measurements for control purposes. These

multimodal data are often left unstudied as they are not the focus of the

investigation. However, there may be hidden relationships between the

disease symptoms and these multimodal data. Although it is likely that

any hidden relationships are weaker than the primary modality, there is

potential for the primary relationship to be improved by exploiting the

hidden information contained in multimodal data. In this chapter, we

use blood, hormone, and physical measurements to improve the aBMD

estimated from dCT. It is not feasible to solve the problem by directly

applying multivariate regression, as the additional multimodal features

are less informative. The increased ratio of features to training cases also

introduces the problem of high relative dimensionality, which may lead to

overfitting.
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In this chapter, we study how ensemble regression methods can be

applied to solve a regression problem on a multimodal medical dataset

with high relative dimensionality. Based on insights obtained by using

several feature selection and data transformation techniques with linear

regression, an ensemble regression method using filtering is proposed. The

filtering-based ensemble technique chooses a set of regressors from several

candidate regressors such that the component regressors are diverse and

uncorrelated. The proposed method generates the best results on the

multimodal medical data and can be used to mine informative features.

4.1 Related Work

In clinical practice, DXA is a dedicated imaging modality that generates

an aBMD score by which osteoporosis and osteopenia can be diagnosed

[25]. To facilitate opportunistic bone screening, recent studies [9, 53] have

tried to estimate an DXA-equivalent aBMD score using other imaging

modalities that are commonly used in surgical planning or diagnosis. dCT

is a promising modality for opportunistic screening as it is performed fre-

quently and contains densitometric information correlated to BMD [6, 7].

However, while it is feasible to use dCT scans to estimate DXA-equivalent

aBMD, several factors inherent to dCT imaging, such as beam hardening

[33], can adversely affect the reliability of the estimation results. Radi-

62



Chapter 4: Regression Ensembles for Osteopenia Screening

ological modalities may also require machine-wise calibration to account

for differences in beam and source properties. One way to increase the

robustness of aBMD estimation is to incorporate additional features to

the prediction model [35]. These additional features can be diagnostic

factors [54] that are unrelated and independent of dCT, or describe other

aspects, such as the topological, morphological, and mechanical proper-

ties [55], of the dCT information. In this work, we generate two additional

sets of features to improve the aBMD estimation. The first set of addi-

tional features describe the HU distributions and morphological features

of the bone, and is drawn from dCT data. For the second set of features,

we exploit the physical, blood, and hormone data that was also recorded

during the clinical experiments. This second set of features provides a

multimodal dataset that is independent of dCT, and may be helpful in

increasing the robustness of the regression.

Machine learning is a popular approach for computer-aided diagnosis,

and was previously used to diagnose fractures [19] and osteoporotic dis-

eases [20, 21] based on QCT images. These methods are capable of achiev-

ing good detection rates, but typically involve the use of black boxes, which

makes it difficult to evaluate their reliability and generality without more

extensive clinical validation. Also, most classification algorithms return

only an outcome value, or a bias value at best, which makes it difficult
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to estimate the severity of the diagnosed condition. Therefore, in this

work, rather than focusing on the classification outcome of osteoporosis,

we are interested in the aBMD value, from which the risk of osteoporosis

is known based on previous studies [25].

One recurring problem with constructing diagnosis systems for medical

applications is the lack of training data [56], which occurs because of the

cost of acquiring patient data and the low prevalence rates of diseases [57,

58]. This lack of training data results in an undersampling of the problem

space which tends to lead to poor classification performance [59, 60]. The

problem is further compounded by the imbalanced nature of the class

samples; typically the number of positive class instances (diseased cases)

is much less than the number of negative class instances (normal cases) [61,

62]. Lastly, clinical data may have missing or incomplete features. These

problems impair the performance of machine learning methods, but some

ensemble techniques have been found to be robust to high dimensionality

[63], high class imbalance [64], or missing features [65]. Ensemble methods

are also known to improve the accuracy over single learners, and have been

previously studied for use in medical diagnosis [66]. Ensemble methods

work by combining the contributions of several weak component learners,

which reduces the variance of errors.
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4.2 Ensemble Regression

Ensemble methods can be applied to regression problems to obtain better

robustness and accuracy. In this section, we describe the bootstrap ag-

gregating method before introducing a feature-wise modification which is

more helpful for datasets with high relative dimensionality. Building upon

the bootstrap aggregating approach, the use of metalearners for improv-

ing ensemble performance is discussed. We review two basic metalearner

ensembling schemes before presenting our correlation-based filtering tech-

nique for metalearner ensembling. The new technique is designed to form

ensembles that are both diverse and robust.

Let the DXA-derived aBMD values be denoted as the target variable

matrix Y . The data matrix X is then obtained by feature-wise concate-

nation of the dCT-derived aBMD values, the dCT-derived HU features,

and the additional multimodal features from blood and physical measure-

ments. The regression problem is defined as regressing the target Y based

on the data X such that unknown future samples can be predicted.

4.2.1 Bootstrap Aggregating.

Bootstrap aggregating [67], also known as bagging, may be capable of

overcoming the high dimensionality of the data relative to the number of
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training samples. Bagging can improve classification/regression accuracy

and stability, and any learning model may be used with bagging. In this

work, several linear regression models are bagged to form a regression

ensemble.

In bagging, the ensemble is composed of several component classifiers,

each of which is trained on a different subset of the training data, and

the ensemble decision is obtained by taking an average of the individual

ensemble regressors. The subsets are randomly drawn with resampling

from the training set, and the subsets are traditionally drawn in a case-

wise fashion. In case-wise bagging, each ensemble component is trained

on a different resampled training set. The resampled training sets are

formed by randomly drawing training cases with resampling. To reduce

large instabilities in the regression and to better constrain the regression,

the resampled training sets are resampled to contain more cases than there

are features. For an input training set consisting of n data and target

pairs {xi, yi}, where i = 1 : n, the case-wise bagging algorithm for a k-

component ensemble with a case over-sampling factor of sc is described in

Algorithm 1.

While case-wise bagging is frequently used, we propose the use of

feature-wise bagging as an alternative approach for bagging. Feature-

wise bagging trains each ensemble component on a different subset of
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Algorithm 1 Case-wise Bagging

1: procedure CB Train(X, Y, k, sc)
2: for j = 1 : k do
3: Sj ← {∅}
4: while numel(Sj) < (sc × n) do
5: randNo← rand(1 : n)
6: Stemp ← {xrandNo, yrandNo}
7: Sj ← {Sj, Stemp}
8: end while
9: Rj(x) = LR(Sj) . Linear regression of Sj
10: end for
11: return R
12: end procedure
13:

14: procedure CB Test(R, xtest)
15: return

∑
j Rj(xtest)/k

16: end procedure

training features, and the subset of training features are formed by ran-

domly selecting features for inclusion. This reduces the dimensionality of

the data relative to the number of available training cases, and is better

suited for datasets with a high relative dimensionality. For an input train-

ing set consisting of n d-dimensional data and target pairs {xi, yi}, where

i = 1 : n and xi = {xi,1, xi,2, ..., xi,d}, the feature-wise bagging algorithm

for a k-component ensemble with a feature sampling factor of sf is given

by:

67



Chapter 4: Regression Ensembles for Osteopenia Screening

Algorithm 2 Feature-wise Bagging

1: procedure FB Train(X, Y, k, sf )
2: for j = 1 : k do
3: dim← {1, 2, ..., d}
4: while numel(dim) > (sf × d) do
5: randNo = rand(1 : numel(dim))
6: dim(randNo)← {∅}
7: end while
8: Sj ← {xdim, y}
9: Rj(x) = LR(Sj) . Linear regression of Sj
10: end for
11: return R
12: end procedure
13:

14: procedure FB Test(R, xtest)
15: return

∑
j Rj(xtest)/k

16: end procedure

Bootstrap aggregating may dampen large instabilities in the regression

when the resampled training sets are resampled to contain more cases

than there are features, or when the resampled subsets contain small data

dimensionality relative to the number of available training cases.

4.2.2 Metalearner Ensembles

Instead of taking the average of the component regressors, the ensemble

components can also be combined by using a metalearner. A metalearner

is typically a machine-learner that is capable of learning the properties

of the model and assigning the appropriate weightings to the component

regressors. The metalearner uses the outputs of the component regressors

on the training data as the inputs, and takes the target aBMDs as the

68



Chapter 4: Regression Ensembles for Osteopenia Screening

Generate Component Regressors

Multimodal data Draw data subset using random sub-
sampling

Generate component regressor on 
drawn subset

K component 
regressors

Metalearner

Repeat until k 
regressors

Regression Ensemble

Figure 4.1: Overview of the generation of a metalearner regression ensem-

ble.

desired outputs. The metalearner then learns the model most capable of

matching the regressor outputs to the target. Metalearners may be con-

sidered as a separate classification or regression problem on the regressor

outputs. The metalearner training process is given in Fig. 4.1. A few

metalearner candidates are explored here:

Regression weighted metalearner. The regressor outputs are mapped

to the target output by a regularized regression. Each regressor is assigned

a weight, and the ensemble decision is the weighted sum of the regressor

outputs. The weighting is assigned to a higher level regressor based on

the errors committed by each component error on the training set. For
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a set of k candidate component regressors {R1(x), R2(x), ..., Rk(x)}, the

ensembling algorithm is given in Algorithm 3.

Algorithm 3 Regression Weighted Metalearner

1: procedure RWM Train(X, Y,R)
2: for i = 1 : k do
3: pi ← Ri(X)
4: end for
5: P ← {p1, p2, ..., pk}
6: W ← LR(P, Y ) . Linear regression of P on Y
7: return W
8: end procedure
9:

10: procedure RWM Test(R,W, xtest)
11: R(xtest)← {R1(xtest, R2(xtest), ..., Rk(xtest)}
12: return WR(xtest)
13: end procedure

Multi-layer perceptron metalearner. A perceptron network is

trained on the regressor outputs to match the aBMDDXA. For a set of k

candidate component regressors {R1(x), R2(x), ..., Rk(x)}, the ensembling

algorithm is given by Algorithm 4.

Correlation-based filtering. We propose a simple technique for con-

structing diverse and robust regression ensembles. The outputs of each

component regressor are compared to outputs of each other component

regressor, and the sum of the correlation coefficients is computed. The

component regressors that generate the least correlated outputs are se-

lected to ensure diversity in the ensemble. The ensemble result is the mean

of the component regressor outputs. For a set of k candidate component
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Algorithm 4 Multi-layer Perceptron Metalearner

1: procedure MLPM Train(X, Y,R)
2: for i = 1 : k do
3: pi ← Ri(X)
4: end for
5: P ← {p1, p2, ..., pk}
6: Nnet(P )← Nnettrain(P, Y ) . train neural network for P on Y
7: return Nnet
8: end procedure
9:

10: procedure MLPM Test(R,NNet(P ), xtest)
11: R(xtest)← {R1(xtest, R2(xtest), ..., Rk(xtest)}
12: return Nnet(R(xtest))
13: end procedure

regressors {R1(x), R2(x), ..., Rk(x)} where l components are chosen, the

ensembling algorithm is given by Algorithm 5.

Algorithm 5 Correlation-based Filtering

1: procedure CF Train(X, Y,R, l)
2: for i = 1 : k do
3: pi ← Ri(X)
4: end for
5: P ← {p1, p2, ..., pk}
6: C ← Filter(X, Y, P, l) . C contains the chosen regressor indices
7: RC(x)← {RC(1)(x), RC(2)(x), ..., RC(l)(x)}
8: return Rc(x)
9: end procedure
10:

11: procedure CF Test(RC(x), xtest)
12: return RC(xtest)
13: end procedure

The correlation-based filtering method can be performed with several

different filtering schemes. We propose three different strategies for filter-

ing component regressors. These strategies are aimed at building ensem-

bles with high diversity.
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Strategies for Filtering Component Regressors

Standard deviation ranking assigns a score to each component re-

gressor based on the standard deviation of each regressor’s training set

prediction error. The standard deviation of prediction error determines

the stability and consistency of a component regressor, and good regres-

sors have low error standard deviation. For the training set targets Y and

the component regressor predictions P , the l regressors are selected using

the following algorithm:

Algorithm 6 Standard Deviation Ranking

1: procedure SD Filter(X, Y, P, l)
2: for i = 1 : k do
3: si ← stdev(Y − Pi) . Standard deviation of prediction errors
4: end for
5: s← {s1, s2, ..., sk}
6: C = argmin(s, l) . Indices of l lowest items in s
7: return C
8: end procedure

Stepwise partial correlation iteratively selects component regres-

sors based on the partial correlation factor of each regressor’s predictions.

Partial correlation measures the correlation between two variables after

controlling for a given set of variables, and is more useful if several vari-

ables are inter-related. Let ρAB·C denote the partial correlation coefficient

between variables A and B while controlling for variable C, and let the

training set targets be Y and the component regressor predictions be P .
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The stepwise partial correlation is described in Algorithm 7.

Algorithm 7 Stepwise Partial Correlation

1: procedure PC Filter(X, Y, P, l)
2: NC ← {1, 2, ..., k} . Not chosen ensemble elements
3: C ← {∅} . Chosen ensemble elements
4: temp← argmax(corr(Y, P )) . Index of regressor whose

predictions are most correlated to Y
5: C ← temp
6: NC ← temp /∈ NC . Delete temp from NC
7: for i = 1 : l do
8: for j = 1 : numel(NC) do
9: Update ρPNC(j)Y ·PC

10: end for
11: temp← argmax(ρPNCY ·PC

)
12: C ← {C, temp}
13: NC ← temp /∈ NC . Delete temp from NC
14: end for
15: return C
16: end procedure

This method of constructing the ensemble selects the most informative

regressors while controling for the effect of previously selected regressors.

Stepwise least correlation iteratively selects the component regres-

sor whose predictions are the least correlated with all the remaining re-

gressor predictions, in order to build ensembles comprising of diverse re-

gressors. For the component regressor predictions P = {p1, p2, ..., pk}, the

filtering algorithm is described by Algorithm 8.
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Algorithm 8 Stepwise Least Correlation

1: procedure LC Filter(X, Y, P, l)
2: C ← {∅}
3: for u = 1 : k do
4: for v = 2 : k do
5: ru,v = corr(Pu, Pv)
6: end for
7: su =

∑
v ru,v

8: end for
9: for i = 1 : l do
10: temp← argmin(s)
11: C ← {C, temp}
12: for u = 1 : k do
13: su ← su − ru,temp . Update scores
14: end for
15: stemp ← max(s) . Set dummy value
16: end for
17: return C
18: end procedure

4.2.3 Time Complexity Analysis

The time complexity of the proposed metalearner ensembles and filtering-

based strategies can be expressed in terms on the number of component

regressors L, the number of training samples N , and the number of data

features C. The time complexity of simple regression is dominated by

matrix multiplication, O(C2N). The time complexity of the proposed

metalearner ensembles can be derived as:

1. O(LC2N +N2L) for the regression weighted metalearner

2. O(LC2N+L) for correlation-based filtering using standard deviation
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3. O(LC2N + L3) for correlation-based filtering using stepwise partial

correlation

4. O(LC2N + L2) for correlation-based filtering using stepwise least

correlation

For the multi-layer perceptron metalearner, the time complexity is a non-

linear function of the neural network configuration (number of nodes, net-

work structure, activation function); generally, the multi-layer perceptron

is slower than the metalearner algorithms above.

4.3 Experiments

4.3.1 Data

Our experiment data set consists of paired CT scans and DXA measure-

ments. Patients with preexisting medical conditions were excluded from

the study, while compression fractures and other degenerative pathologies

were also excluded after a radiologist’s review. The data set was divided

into 155 pairs of CT volumes and DXA measurements, with each pair con-

taining one of the vertebrae in the lumbar spine (L1-L4). Approximately

two-thirds (100) of the samples had normal bone mineral density, while

the remaining samples were osteopenic (46) or osteoporotic (4). The de-

tector and scanner parameters for the study were previously described in
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Section 2.4.1.

Three distinct feature sets were obtained, of which two were derived

from information contained within the CT scans. The final feature set

consists of physical and blood tests that were taken during the study as

controls.

1. aBMDCT. The aBMDCT is a good approximation of the actual

aBMDDXA value. aBMDCT is estimated based on CT scans of the

lumbar spine using the method presented in Chapter 2.

2. CT image features. These features are derived from the CT scans,

and include histogram features and morphological features. The

features are described in Section 3.2.4.

3. Physical and blood measurements. This feature set consists of

physical and blood tests that were taken during the study as con-

trols. Although physical and blood measurements are not expected

to have strong predictive capability on the bone state, the additional

information provided may be helpful in improving regression results.

For the regression task, the target output variable was the DXA mea-

surements. For classification, aBMDDXA was converted into age-calibrated

T-score values and categorized into normal, and osteopenic and osteo-

porotic bone. The positive class was the osteopenic and osteoporotic cases.
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10-fold cross-validation was performed 20 times each. Regression per-

formance was measured by the root-mean-square error (RMSE). The re-

gressed aBMD values were then used to diagnose osteopenia. Area under

the receiver operating characteristic curve (AUROC) was used as the eval-

uation metric for classification.

4.3.2 Experiments

The following five experiments were conducted:

1. Full linear regression based on aBMD, CT features, and

multimodal data. The three sets of data features were concate-

nated in various combinations, and linear least squares was used to

regress the data to aBMDDXA. The prediction and classification per-

formance was measured. This experiment is performed to determine

if combining the multimodal feature sets improves the regression and

classification performance, and to see which combinations are most

promising.

2. Feature selection and data transformation on combined mul-

timodal data. The three sets of data features are combined into

a single large multimodal data set for subsequent experiments. The

combined dataset was subjected to several linear regression schemes

(described in Appendix C). Feature selection and data transforma-
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tion schemes were also tested here. This experiment studies whether

feature selection or data transformation strategies are sufficient to

improve regression performance.

3. Ensembles by bootstrap aggregating. Using the combined mul-

timodal data set, bootstrap aggregating is applied. A random for-

est algorithm is used for comparison. This experiment compares

case-wise bagging with feature-wise bagging to determine the most

appropriate ensembling approach.

4. Ensemble metalearners. The three metalearner algorithms de-

scribed in Section 4.2.2 are trained based on the outputs of the

component regressors on the training data. Regression adaboost is

used as a benchmark for comparison. The RMSE and AUROC are

recorded to determine the most suitable metalearner for ensemble

regression.

5. Most significant features. The regressor ensembles are used to

determine the most helpful features. The selected regressors in the

ensemble are averaged to form a single regression equation. From

the composite regression equation, the features corresponding to the

regression components with the highest magnitudes are recorded as

the most significant features. The most significant features for each
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Table 4.1: Regression on different combinations of multimodal features

CT aBMD Physical RMSE AUROC

x x x 0.0684 0.935

x x 0.0836 0.918

x x 0.0806 0.933

x x 0.0675 0.934

x 0.0900 0.903

x 0.0979 0.871

x 0.1066 0.873

fold and trial are accumulated to calculate the probability of a fea-

ture being a most significant feature in a regression ensemble. This

provides insight into the most relevant and important features for

aBMD regression.

4.4 Results and Discussion

In this section, we present our experimental results for the linear regression

and ensemble regression methods.

4.4.1 Linear Regression on Different Combinations

of Multimodal Features

Multivariate linear regression (Appendix C) was applied to various com-

binations of the three feature sets, and the results are presented in Table
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Table 4.2: Evaluation of linear regression methods

Method RMSE AUROC

Linear least squares 0.0684 0.935

Linear least squares (Tikhonv regularization) 0.0664 0.944

Linear least squares (discard minor components) 0.0631 0.945

Principal feature analysis 0.0617 0.931

Principal components regression 0.0648 0.937

Partial least squares regression 0.0649 0.937

4.1. Comparing the individual sets of features, the CT features provide the

best regression and classification performance, while the basket of physical

and blood measurements provides the least information for the aBMDDXA

estimation. aBMDCT was the single best feature. The results show that

including additional features for regression significantly improves the es-

timation of aBMDDXA, even when the dimensionality of the combined

multimodal data approaches the number of samples.

4.4.2 Simple Feature Selection on Combined Multi-

modal Data

Table 4.2 presents the results of the regression and feature selection

schemes. Principal feature analysis was found to produce the best re-

gression result, but at the same time it had degraded classification perfor-

mance. Simple feature selection by discarding the features with the small-

est contributions was competitive with regression methods that transform
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Table 4.3: Evaluation of ensemble methods

Ensemble method Parameters Regressors RMSE AUROC

Random forest - 50 0.0683 0.926

Random forest - 500 0.0666 0.931

Case-wise bagging 300% samping 10 0.0700 0.935

Case-wise bagging 300% samping 25 0.0694 0.934

Case-wise bagging 300% samping 50 0.0692 0.934

Feature-wise bagging 50% features 10 0.0608 0.944

Feature-wise bagging 50% features 25 0.0601 0.945

Feature-wise bagging 50% features 50 0.0599 0.944

Case+Feature-wise bagging 50% features,

300% sampling 25 0.0605 0.940

the data without performing feature selection.

4.4.3 Ensembles by Bootstrap Aggregating

Several ensemble methods were applied to the combined multimodal dataset,

and the results are shown in Table 4.3. Feature-wise bagging was found

to greatly improve the regression of aBMDDXA, while case-wise bagging

was ineffective. Changing the number of component regressors does not

improve case-wise bagging over regularized linear least squares. Using

both feature-wise and case-wise bagging was better than regularized lin-

ear least squares, but the results were still inferior to using feature-wise

bagging alone.
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Table 4.4: Evaluation of ensemble metalearning algorithms

Metalearner Parameters Regressors RMSE AUROC

Feature-wise bagging 50% features 25 0.0599 0.944

Adaboost 50 iterations - 0.0700 0.937

Regression weighted - 20 0.0627 0.941

MLP 1 layer, 10 nodes 10 0.0628 0.944

MLP 1 layer, 20 nodes 10 0.0625 0.944

MLP 1 layer, 50 nodes 10 0.0606 0.947

MLP 1 layer, 10 nodes 25 0.0628 0.943

MLP 1 layer, 20 nodes 25 0.0642 0.943

Standard deviation c=10 25 0.0595 0.948

Partial correlation c=10 25 0.0596 0.946

Stepwise least correlation c=10 25 0.0590 0.946

4.4.4 Ensemble Metalearners

Table 4.4 presents the results of metalearner ensembles on the combined

multimodal dataset. All the metalearner regression ensembles outper-

formed regularized linear least squares. The best regression result was

obtained by the stepwise least correlation method, where an improve-

ment of 11.3% and 1.50% RMSE over regularized linear least squares

and feature-wise bagging respectively was observed. There was only a

marginal improvement in AUROC, as the classification error was already

low. Adaboost using regression trees performed poorly, producing results

that were worse than linear least squares.
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4.4.5 Most Significant Features

The most significant features in each regression ensemble were collected

and to estimate the probability of a feature being a most significant fea-

ture. Table 4.5 lists the top features identified as most significant features.

The column “correlation” indicates the sign that is most often assigned to

the regression weight for that significant feature, and thus can be used to

determine if the feature is positively or negatively linked with the target

variable.
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4.4.6 Discussion

The results in Sec. 4.4.1 show that there is significant redundancy between

the features in the combined multimodal dataset; for example, adding the

aBMD feature to the CT and physical measurements does not improve

RMSE. This suggests that several features are not helpful, and removing

some features may improve overall regression performance. Removing

spurious features also helps to reduce the data dimensionality and prevents

overfitting. In Sec. 4.4.2, discarding features with the lowest contributions

is more effective than data transformation methods that do not discard

any features. This suggests that the main source of noise is not noisy

samples, but spurious features.

Case-wise bagging was found to be ineffective in Sec. 4.4.3, whereas

feature-wise bagging improved the regression performance. Apart from

the possibility that spurious features are more significant than noisy sam-

ples in this multimodal dataset, another explanation involves the diversity

and stability of the component regressors. Case-wise bagging is typically

performed using unstable classifiers/regressors where minor changes in the

training subset result in significant changes in the classification/regression,

hence the ensemble be relatively diverse. In our case, the component re-

gressor was a linear regression, which is a highly stable regressor. As

suggested in [68], feature-wise bagging is more suitable for stable classi-
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fiers/regressors, and can be used to generate diverse ensembles.

The benchmark random forest algorithm was also outperformed by reg-

ularized least squares, implying that tree-based regression methods are not

suitable for the problem which is better modeled by linear methods. Sim-

ilarly, adaboost using regression trees was inferior to linear least squares,

reinforcing the conclusion that regression trees are unsuitable for the mul-

tivariate regression problem. Tree-based methods may be overfitting the

dataset due to the high relative dimensionality.

In general, reducing the regression error also reduces the classification

error. This relation can be seen by correlating the RMSE and AUROC;

a correlation coefficient of r = -0.930 was found. However, this does not

imply that reducing the RMSE always improves the classification perfor-

mance. A few algorithms were able to achieve comparable or superior

classification performance while having larger regression error. This dif-

ference could lie in the regions where the regression algorithms are optimal

over. For example, it is possible to improve the regression error by train-

ing on extreme samples, but this results in very little improvement in

classification error as these samples are far from the decision boundary

and are unlikely to be misclassified in the first place. One possible way to

overcome this issue is to build an additional regressor on the region near

the decision boundary. Reducing the regression error on this restricted
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region should be more effective in reducing the classification error. How-

ever, doing so may result in fewer training samples for the regression and

training, which may have a negative impact on performance. It is possible

to simply use a weighted linear least squares procedure, where the cen-

tral samples are given more weight than extreme samples. The modified

regression equation for such a weighted least squares procedure, given a

diagonal sample weight matrix W , is

K = (XTWX)−1XTWY. (4.4.1)

The sample weight matrix can be assigned based on a number of ad-hoc

strategies. One method is to use the regression ensemble to produce an

initial prediction, and to use the second set of regression constants if the

prediction falls within a certain distance of the decision boundary.

One of the limitations of supervised learning is their black box man-

ner of operation. The method of using regression ensembles for feature

filtering presents a simplified list of significant features to clinicians, thus

explaining the rationale behind the ensemble decision and helps to build

expert knowledge. The most significant features selected (Sec. 4.4.5)

may indicate a hidden relationship between the features and osteopenia.

Among the selected CT features, the percentage of voxels belonging to

lower density bone (from 600 to 1000 HU) and the mean HU of the non-

soft tissue regions was found to be important in determining BMD. The
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area and minor axis length of the lumbar vertebra was also found to be

relevant features, but had a negative impact on BMD. For the hormonal

measurements, insulin-like growth factor 1 (IGF-1) and serum type 1 N-

terminal procollagen (P1NP) were useful. No physical measurement was

found to be a significant feature, which means that the height, weight and

body mass index are not useful in determining osteopenia. In medical

literature, P1NP is a biochemical marker that reflects osteoblast activity

and is linked to increased rates of bone turnover [69]. P1NP was nega-

tively related to BMD, supporting the literature. There is some evidence

to suggest that IGF-1 concentration is reduced in osteoporotic patients

[70, 71], which agrees with our results. Interestingly, aBMDCT, which

is the single feature with the highest correlation to aBMDDXA, was only

ranked 34 (out of 143) in the list of most significant features. This could

mean that significant redundancies are present between aBMD feature and

other features; aBMD could be strongly correlated with other features.

4.5 Summary

We have described a filtering-based ensemble method for performing mul-

tivariate regression on multimodal medical data. Several feature-wise data

subsets are randomly selected to form a set of candidate regressors. The

regression predictions of each candidate regressor are then compared to
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the outputs of each other candidate regressor to select a set of candidate

regressors that are least correlated and most diverse. The chosen regres-

sors are combined into an ensemble regressor to generate an ensemble

regression prediction. The proposed method generates the best results on

the multimodal medical data, increasing the accuracy and robustness of

regression. The filtering approach can also be used to identify potential

relationships between features and the target variable by analyzing the

frequency at which a feature is selected in the component regressors.

89



CHAPTER 5

Clustering for Transfer Func-

tion Design in Medical Image

Visualization

In medical image visualization, image understanding can be used to ex-

tract the underlying structures contained within volumetric data so that

the extracted structures can be individually displayed or highlighted. Clus-

tering is a class of unsupervised learning techniques that is used to identify

and group similar elements, and is particularly useful if the properties and

distributions of the data are unknown. In this chapter, a non-parametric

clustering technique is applied to extract the material boundaries within

volumetric data so that each distinct boundary can be visualized.

Volume rendering is a powerful tool for displaying 3-D medical data,

as it provides a spatial perspective that is absent in 2-D slice views. In

volume rendering, transfer functions (TF) are often used to assign optical

properties to various voxel data properties. While a good TF can reveal

important structures in the data, the process is not trivial for complex
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volumes composed of several materials and structures. Furthermore, it is

not possible to entirely automate the process of TF design as the desired

visualization result is dependent on the user’s visualization objectives.

Clustering is useful for TF design in volume rendering, as clustering can

be used to extract the underlying structures in volumetric data and to

present the extracted structure for automatic or user-assisted TF design.

The method presented in this chapter applies a non-parametric cluster-

ing technique on LH space [72] to organize the voxels into several groups,

each representing a material boundary in volumetric data. Each material

boundary can then be assigned visual properties using an automated TF

design module, and occlusions within the volume are reduced by a data-

driven post-processing step that considers the spatial distributions of each

boundary. Manual manipulation of the visualization results can be easily

achieved by modifying the clustering parameter, or by editing the cluster

boundaries in LH space. The proposed innovations significantly reduce

the time and effort required to obtain good TFs for volume rendering and

enable visualizations with quality approaching that of existing methods

to be automatically generated.
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5.1 Related Work

TFs are mapping functions that assign various optical properties such as

opacity and color to voxels depending on the voxel properties. Typically, a

voxel’s value and gradient magnitude are used in 2-D transfer functions for

visualizing structures within volumes. Kindlmann et al. [73] used the first

derivative (i.e., gradient) as an attribute to generate multi-dimensional

TFs. In the 2-D TF domain, which incorporates the intensity and gradient

magnitude, material boundaries can be interpreted as arches. Thus, they

can be selected and visualized by manipulating certain TF widgets to ap-

proximate the arches. However, these arches often overlap, which prevents

proper isolation of a material from others. One possible approach to over-

come this drawback is to include the second directional derivative along

with the gradient direction [74, 75]. Nevertheless, these methods cannot

fully solve the blur effect in the intensity-derivative histogram which is

caused by noise. Lum et al. [76] used the two intensity values on both

sides of the border to set up a TF with the assumption that the width of

the border represented by the distance between these two sample positions

varies with the amount of blur in the volume. Šereda et al. [72] proposed

another method to represent boundaries by searching for low and high

intensity values in both the negative and positive gradient directions of

92



Chapter 5: Clustering for Transfer Function Design

the voxels in a boundary. The representation of those low and high val-

ues in a 2-D plane is called the LH histogram. An important advantage

of LH histograms over the 2D intensity-gradient magnitude TF is that

boundaries appear as blobs rather than arches. Blobs are easier to param-

eterize for clustering and are less likely to overlap in complicated datasets

than arches; thus LH histograms allow for boundaries to be more easily

separated either manually or automatically through clustering. Another

advantage is that LH histograms have greater robustness to noise, bias

and partial volume effects than intensity-gradient magnitude histograms.

Recently, a semi-automatic generation of LH TFs using a fast generation

of LH values has been introduced by Praßni et al. [77].

Apart from finding new TF feature domains, much work has also been

put into developing clustering or segmentation algorithms to separate dif-

ferent regions in the TF domain. Tzeng et al. [78] presented a method to

create TFs based on material classes extracted from the spatial domain

using the ISODATA technique. Šereda et al. [79] applied hierarchical

clustering to LH space to group voxels based on their LH values. Ma-

ciejewski et al. [80] used non-parametric kernel density estimation to ex-

tract patterns from intensity-gradient-magnitude feature space and guide

the generation of TFs. Wang et al. [81] modeled the intensity-gradient-

magnitude transfer function space as a Gaussian mixture, and designed
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the TF by taking each Gaussian component as a separate structure. Cheuk

et al. [82] introduced a hierarchical volume exploration scheme based on

a normalized-cut segmentation of the TF domain. Finally, Wang et al.

[83] adopted Morse theory to automatically decompose the feature space

into a set of valley cells for TF assignment. In our work, we apply mean-

shift clustering in LH space to identify the unique material boundaries

for further visualization. Our method is non-parametric and robust, and

allows the visualization results to be easily modified by manipulating the

clustering variable.

5.2 Automatic Transfer Function Design us-

ing Mean-shift Clustering

Our method considers volumetric data that consists of multiple bound-

aries, each of which is represented by a cluster in the LH histogram.

These clusters are automatically extracted using mean-shift clustering.

Then, the visual parameters of color and opacity are assigned to the vox-

els in each cluster. A bounding polygon based interaction widget allows

for further manual modification of the TF. Fig. 5.1 presents an overview

of our method.
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Figure 5.1: Overview of the method. Dotted rectangles represent optional
processes for the semi-automatic mode.
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5.2.1 Pre-processing

The gradient vector and LH values corresponding to each voxel are first

computed in a pre-processing step. To calculate the voxel gradients, a

second-degree polynomial function is used to approximate the local neigh-

borhood density function [84]; the voxel gradients can then be obtained by

solving for the coefficients of the polynomial function with an error mini-

mization strategy. The advantages of this approximation method are: (1)

the difference between the pixel spacing and the spacing between slices can

be accounted for; (2) no computationally expensive interpolation method

is needed to estimate the gradient vector of an arbitrary sampling point

between voxels; and (3) this method is robust to noise since it does not

interpolate the curve passing through all the given data points.

The lower (L) intensity and higher (H) intensity values of each voxel

can be determined by tracking the boundary path using gradient integra-

tion along both gradient directions. Heun’s method, which is a modified

Euler’s method, is applied to integrate the gradient field:

ui+1 = ui +
1

2
d (∇f (ui) +∇f (ui + d∇f (ui))) , (5.2.1)

where ui and ui+1 are positions of the current and the next sampling

voxels, respectively, ∇f denotes normalized gradient vector when tracking

H or L, and d is the step size of the integration. A step size of one

96



Chapter 5: Clustering for Transfer Function Design

voxel was experimentally found to be a good balance between accuracy

and computation speed. The integration is halted upon reaching a local

extremum or an inflexion point. To emphasize voxels on the boundary

of two materials, each pair [L, H] is weighted by a factor w when being

accumulated to create the LH histogram. The weight w is determined

from

w = 1− |dL − dH |
dL + dH

, (5.2.2)

where dL and dH are the accumulated distances along the boundary path

from the current voxel to the sampling voxels corresponding to L and H,

respectively. The approximation-based interpolation method reduces the

effect of noise in the LH histogram, and thus improves the resulting visual

quality.

An LH histogram is represented as an image of N × N pixels, where

N = 512 as a compromise between the memory requirements and the

visual quality. The histogram image is constructed by determining the

correct bin for each [L, H] pair, scaling the sum of all corresponding weight

factors taking the logarithm, and then mapping the resulting value to a

color band, e.g. the cold-to-hot spectrum (Fig. 5.2). At the end of this pre-

processing step, all the gradient vectors, the LH values, and the histogram

image are stored in an intermediate data file for further processing.
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Figure 5.2: Cold-to-hot color ramp.

5.2.2 Mean Shift Clustering in LH Space

Mean shift clustering is a non-parametric feature-space analysis technique

that seeks the modes of the given sample space. Compared with other

clustering methods, mean shift clustering does not assume any specific

structure or distribution of the data, and the number of clusters does not

need to be known a priori. Mean shift clustering is more robust for general

data, and hence is suitable for our application where the number and

properties of structures in volumetric data is unknown. Also, mean shift

clustering relies only on the bandwidth parameter Bw which correlates

to the sensitivity of the clustering process, and thus is intuitive for the

user to tune. From our experiments, a good Bw lies between 3%-12% of

the maximum LH value, maxLH = max(maxL, maxH). We apply mean

shift clustering on the LH space to divide the LH histogram into multiple

clusters. The procedure of mean shift clustering is summarized in the

following algorithm:
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1. Set the window bandwidth Bw.

2. For a point in the LH histogram, find all points that have LH values

within the bandwidth Bw.

3. Find the mean µn of the set of neighboring points, with each point

weighted by its voxel frequency.

4. Shift the window center to the new mean, and continue steps 2-

4 until convergence. A cluster is deemed to have converged if the

distance between successive means is less than ρBw where ρ is a

threshold which is preset as 0.001 in our experiments.

5. Repeat steps 2-4 for each point in the LH histogram.

6. Points that converge to the same modes (the converged cluster mean)

are grouped as a single cluster, and clusters that have modes within

Bw/2 of each other are also grouped as one cluster.

In our implementation of mean shift clustering, mean shift clustering

is computed over discrete values in the LH histogram rather than over

all the points in the volume. Since all voxels can only have discrete LH

values, and since the LH histogram is relatively sparse, this speeds up the

clustering operation and reduces the memory requirements. The resulting

operation will be equivalent to an unmodified mean-shift clustering as

long as each LH point is weighted by its voxel frequency (the number of
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occurrences of a particular LH value in the voxel volume) during the mean

computation step.

5.2.3 Cluster-based Region Growing

The results of the mean shift clustering are sufficient for simple datasets,

but for the more complicated datasets that are typical of medical imaging

applications, additional information is needed to have a sufficient image

quality. After mean shift clustering, each cluster is further passed through

a region growing algorithm. The region growing algorithm is a means of

incorporating spatial information to improve the visualization results.

In earlier work by Huang and Ma [85] on using region growing for vol-

ume visualization, a number of prior information and parameters, such as

the initial seed points and the weighting factors for the cost function, must

be provided to the region growing algorithm. In our approach, manual

tuning of the region growing parameters is not necessary as the parame-

ters and seed points will be assigned automatically based on the clusters

obtained earlier during mean shift clustering. For each cluster previously

extracted after mean shift clustering (and after manual user adjustment),

the cluster voxels are used as the initial seed points. The standard devi-

ation of the LH values of the cluster voxels are used to set the similarity

tolerance of the region growing algorithm.
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After each cluster has been passed through the region growing algo-

rithm, the separate volumes must be merged into a single volume. If there

are voxels belonging to more than one cluster, we simply merge all over-

lapping clusters. In future work, other criteria may be added to restrict

merging to only cases where there is significant overlap between clusters.

The algorithm for region growing enhancement is given below:

1. For each convex hull Hi obtained earlier, obtain the set of voxels Vi

that have LH values lying within Hi.

2. For each cluster i, use the set of voxels Vi as the initial seeds for the

region growing. The parameter τi is used as the LH tolerance.

(a) Add each voxel in Vi to the output volume Oi.

(b) For each voxel in Oi, add neighboring voxels to Oi only if they

do not already belong to Oi and have LH values within τi of

the seed voxel.

(c) Repeat step 2b until no more voxels can be added to Oi.

3. For each pair of enhanced output volumes Oa and Ob, merge them

if they overlap.
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5.2.4 Assignment of Visual Parameters for TF De-

sign

Our strategy to assign visual parameters to a cluster is based on the

size of the region in the volume described by the cluster and the relative

distance between that region and its neighbors. The size of the region

Ri corresponding to the cluster Ci is coarsely estimated by the standard

deviation σi of the positions of all the voxels vj =
(
vjx, v

j
y, v

j
z

)
∈ Ri

σi =

√
1

Ni

∑
vj∈Ri

|vj − µi|2, (5.2.3)

where Ni is the number of voxels in Ri, and µi is the mean of the positions

of all voxels in Ri:

µi =
1

Ni

∑
vj∈Ri

vj. (5.2.4)

The distance between two regions Ri and Rj is defined as the Euclidean

distance between the two corresponding mean values:

D (Ri, Rj) =

√(
µix − µ

j
x

)2
+
(
µiy − µ

j
y

)2
+
(
µiz − µ

j
z

)2
(5.2.5)

A region Ri occludes region Rj if
σi > σj

σi > kdD (Ri, Rj)

, (5.2.6)
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where kd ≥ 1 is a pre-defined value. The opacity αi assigned to region Ri

is calculated by

αi =
α∗i

ks (Si + 1)
, (5.2.7)

where ks is an adjustable factor, Si is the number of regions occluded

by Ri, and α∗i is the value corresponding to σi in the linear mapping of[
min
j
σj,max

j
σj

]
to a predefined opacity range [αmin, αmax]:

α∗i =
max
j
σj − σi

max
j
σj −min

j
σj

(αmax − αmin) + αmin (5.2.8)

Since smaller structures are more likely to be occluded than larger struc-

tures, this method of opacity assignment renders large structures more

transparent than small structures. For the enhancement of voxels near

boundaries, the voxel opacity αiv corresponding to a voxel v in the region

Ri is individually modulated by the ratio of its gradient magnitude and

the maximum gradient magnitude of all the voxels in the region:

αiv = αi
‖∇v‖

max
u∈Ri

‖∇u‖
. (5.2.9)

The color parameter is difficult to assign as the materials have true

colors that cannot be discerned from the CT/MRI volumes; assigning

appropriate colors thus requires external knowledge. In our method, the

color of each region can be assigned according to the ratio between the size

of the region and the maximum size of all the regions, mapped onto a cold-

to-hot spectrum. This operation will map small regions to hot colors, and
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large regions to cooler colors. Alternatively, since the number of regions

is relatively small in most cases, we can use a pre-defined color array for

this mapping. In addition, the color civ of the individual voxel v in the

region Ri is scaled by the ratio of its intensity value fv and the maximum

intensity of all voxels in the region:

civ = ci
fv

max
u∈Ri

fu
. (5.2.10)

For a better rendering result, this scaling is only applied to the brightness

value of the corresponding color in the HSV color space.

5.2.5 Cluster Bounding Polygons for Manual Inter-

action

While mean shift clustering automatically assigns labels to each voxel

in the volume, no automatic method can simultaneously satisfy the re-

quirements of all users since different users have different visualization re-

quirements and regions of interest. Minor adjustments made by the user

will improve the quality and relevance of the visualization. To facilitate

easy modification of the automatically extracted clusters, the voxel cluster

labels are used to generate a set of cluster-bounding polygons. The advan-

tage of cluster polygons is that they are easy to manipulate and modify

via polygon and vertex operations. Entire clusters or individual vertices

can thus be edited on the LH histogram. By creating or manipulating
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the control points (vertices) of a control polygon, the user encapsulates

a region on the histogram and can thus select, remove, change the shape

of, and assign optical properties to the region. Based on the properties

of all polygons, a 2-D TF is generated and transferred to the renderer to

produce the final image. Optionally, the user can apply a post-processing

step using region growing to enhance the visualization result.

Ideally, each cluster polygon should only contain all voxels assigned

to that cluster, but this requires computing concave bounding polygons

which is computationally expensive. We simplify the computation by as-

suming that the bounding polygons are convex polygons, which can be

computed in Ω(n log(n)) time by fast convex hull algorithms such as An-

drew’s monotone chain algorithm [86]. To resolve overlaps between bound-

ing polygons, collision detection is performed for each pair of polygons.

For each overlap, there are two intersections. A dividing line is drawn

between the two intersections and each partitioned area is assigned to

the cluster it is nearest to. This disambiguation scheme is illustrated in

Fig. 5.3.

Finally, the regions along the main diagonal of the LH histogram be-

long to voxels lying within the same material, i.e. material not lying on

the material interfaces [72]. These clusters are unimportant for visualiza-

tion and can be discarded or rendered with a low opacity value. After
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Figure 5.3: Two examples of the overlap disambiguation scheme.

the cluster bounding polygons are generated, a check is rendered to detect

and discard such clusters. All polygons with at least one vertex within a

diagonal window of the main diagonal of the LH histogram are treated as

clusters of non-boundary material. The diagonal window is experimentally

defined to have a width of 2% of the range of LH values. The procedure

for computing the cluster bounding polygons is demonstrated in Fig. 5.4

and summarized in the following algorithm:

1. For each cluster Ci obtained from the mean shift algorithm, obtain

the set of points Pi and compute a convex hull Hi containing all the

points in Pi.

2. Construct a convex polygon Hdiag using the following 6 coordinates:

[0, 0], [0, 0.01×maxH ], [0.99×maxL,maxH ], [maxL,maxH ], [maxL, 0.99×maxH ],

[0.01×maxL,maxH ], where maxL and maxH are the maximum val-

ues in the LH histogram. For each convex hull Hi, if any vertex in

Hi lies in Hdiag, the cluster Ci is treated as a non-boundary cluster
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Non-boundary clusters

Figure 5.4: Demonstration of non-boundary cluster removal on the Tooth
dataset.

and is removed or rendered with low opacity.

3. For each pair of remaining convex hulls Ha and Hb, compute the

intersection, if any, between each combination of hull segments. If

there are intersections denote them as Ia and Ib. Add both Ia and

Ib to both hulls Ha and Hb, and remove all hull points interior to

the line segment created by Ha and Hb.

5.3 Results and Discussion

Four 16-bit CT volumes were used in our experiments: the Tooth (256×

256 × 161), Feet (256 × 256 × 125), Head (128 × 256 × 156), and Pig
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(256 × 256 × 128) datasets. The computing platform was a 2.66 GHz

Intel i5-750 system equipped with 4 GB RAM and a NVIDIA Quadro

FX 3800 graphics card. The times required to compute the pre-processed

data were 151s, 213s, 200s, and 205s, respectively. Using a GPU-based

renderer employing ray marching through a 3-D texture and setting the

display window resolution to 512 × 512 pixels, a real-time frame rate was

achieved for all the four datasets. In our experiments, the value of kd was

set to 1.

Fig. 5.5 shows the result of applying our method in automatic mode to

the Tooth data set. The bandwidth Bw was chosen as 7% of maxLH , and

the total time for clustering was 157ms. The clustering result generated

by the mean shift clustering algorithm (Fig. 5.5(b)) closely resembles the

optimal manual LH clustering from a previous work [72]. Hence, the mean

shift algorithm is capable of quickly generating clusters of similar quality

to semi-automatic methods. The clustering speed is also sufficiently fast

to allow the user to interact with the bandwidth parameter and receive the

updated visualization results on the fly. When operating in the automatic

mode, non-boundary clusters (clusters along the main diagonal of the LH

histogram) are rendered with a low opacity. Occluding regions are also

assigned lower opacity values to ensure that smaller and interior structures

are visible. These steps ensure that separate regions within the volume
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are visible and distinct in the resulting visualization (Fig. 5.5(c)).

Fig. 5.6 shows the same volume rendered in the semi-automatic mode.

The semi-automatic mode allows user to modify the TFs generated previ-

ously in the automatic mode. This TF modification is performed on the

polygonal approximations of the clusters. In Fig. 5.6(a) the opacity of the

cylinder was set to 0 and the pulp-dentine boundaries were set to the same

color. This pulp-dentine boundary was separated into two disjoint clusters

on the LH histogram because of the thin object effect [72]. After manu-

ally adjusting the color and opacities for the two clusters, the rendering

result was improved (Fig. 5.6(b)). However, some discontinuities in the

pulp boundary still existed. These discontinuities cannot be resolved by

clustering on the LH space, or similar methods that rely solely on the LH

histogram for classification. Our algorithm includes a region growing step

to address these issues. Fig. 5.6(c) shows the result after region growing

was performed. The discontinuity in the pulp has been filled by the region

growing algorithm to yield a single continuous boundary.

For the Feet dataset (Fig. 5.7), the automatic mode with Bw as 7% of

maxLH was employed to generate the initial clusters for the LH histogram

(Fig. 5.7(a)) and initial rendering (Fig. 5.7(b)). The clustering opera-

tion took 3578ms to complete. The opacities of the skin and base plate

were edited in the semi-automatic mode to obtain the final visualization
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(Fig. 5.7(c)), which clearly showed the bones within the feet.

For the Head dataset (Fig. 5.8), we used our algorithm in the automatic

mode and varied ks to examine its effect on the visualization. Bw was set

to 6% of maxLH and the clustering operation was completed in 4594ms.

In Figs. 5.8(b) and 5.8(c), the TF assignment algorithm was run with

ks set to ks = 0.1 and ks = 0.3, respectively. The results confirm that

by increasing ks, occluded internal regions can be selectively revealed.

This demonstrates that our algorithm is capable of automatically assigning

colors to distinct regions within volumes, and also capable of automatically

assigning the opacities of each region such that all regions are visible and

not occluded.

For the Pig dataset (Fig. 5.9) which we acquired from a surgical plan-

ning experiment, finding a suitable TF is difficult due to the complexity

and number of structures within the volume. It is difficult for the user to

properly select any clusters from the LH histogram. Mean shift clustering

(Bw = 4% maxLH) alleviates this problem by producing an initial set of

clusters (Fig. 5.9(a)) which can be quickly modified to achieve the desired

visualization. Due to the complexity of the volume, clustering took more

time to complete (7500ms). The results from the automatic mode (Fig.

5.9(b), 5.9(c)) show that the regions of the volume that could be impor-

tant for surgical planning, such as the bones, blood vessels, and surgical
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(a) (b) (c)

Figure 5.5: Automatic TF design for rendering the Tooth dataset: (a) The
LH histogram; (b) Generated clusters; (c) Rendered image from clusters.

markers, are clearly visible. Hence, our automatic method is suitable for

medical visualization, particularly for surgical planning tasks, where good

visualization with clear indication of the regions of interest is important.

The visualization results show that our automatic method is capa-

ble of assigning the visual properties of color and opacity to obtain good

renderings. Comparing with Šereda’s method that uses hierarchical clus-

tering [79], our method does not need to generate initial clusters which

may strongly affect the rendering results. Furthermore, the user is not

required to adjust the cluster colors or opacities as these are determined

automatically by our algorithm.
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(a) (b) (c)

Figure 5.6: Semi-automatic TF design for rendering the Tooth dataset:
(a) New TF based on approximated polygons; (b) Rendered image; (c)
Rendered image using region growing.

(a) (b) (c)

Figure 5.7: Volume rendering of the Feet dataset: (a) Clusters; (b) Ren-
dered image with ks = 0.3; (c) Rendered image with ks = 0.3 then decrease
the opacity of the skin and set zero-opacity for the back plate.
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(a) (b) (c)

Figure 5.8: Volume rendering of the VisMaleHead dataset: (a) Clusters;
(b) Rendered image with ks = 0.1; (c) Rendered image with ks = 0.3.

(a) (b)

(c)

Figure 5.9: Volume rendering of the Pig dataset: (a) LH histogram (upper)
and clusters (lower); (b) and (c) Rendered images using automatic mode.
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5.4 Summary

We have developed a system for the automatic generation of TF for med-

ical volume visualization. Mean shift clustering identifies clusters in the

LH domain that correspond to material boundaries, and also generates

the seed information for a region growing algorithm to improve clusters

by incorporating spatial constraints. An automatic TF design module

then assigns color and opacity to each cluster based on the relative sizes

and distances between clusters. The proposed system automatically gen-

erates good visualizations while preserving a high degree of freedom for the

user to adjust the rendering results. The visualizations generated by the

proposed automated method are comparable to existing state-of-the-art

approaches.
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CHAPTER 6

One-class Classifiers for Biomet-

ric Recognition in a Surgical Data

Access Application

There is much interest in touch-free computer interfaces for remote com-

puter interaction. Remote computer interaction may be motivated by

several different reasons, such as interaction from a distance (for mak-

ing presentations), a need for an unencumbered ‘desk-free’ interface (for

games), or sterility requirements (for surgical applications). In particular,

sterility requirements for surgical settings motivate research into touch-

free computer input and interaction. Gesture-based approaches are popu-

lar for remotely inputting one of several pre-determined commands, or to

translate gestures into more traditional mouse plus cursor commands to

interact with existing computer interfaces.

For surgical augmented reality with multiple users, context-selection

offers the possibility of interaction that is more efficient. Instead of offering

only a single mode of interaction, several work-contexts can be defined and
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applied to each identified unique user . This functionality can be exploited

in several novel ways for augmented reality in a surgical environment.

First, different gesture-profiles can be loaded for each user, allowing the

same gesture to carry out different actions when performed by different

users. This is useful for reducing the number of gestures operators have to

memorize, and can help to limit the gesture set to the simplest and most

consistently-recognized set of gestures. Another way of employing user-

specific context selection is to project different interfaces or data for each

user. For example, surgical assistants may be assigned different roles for

an operation, such as manipulation of the ablation system or maintaining

of patient homeostasis, and the projected AR system can intelligently

switch interfaces depending on the current user. In this way, context-

selection can greatly improve the efficiency of human-robot interaction in

the surgical setting.

This chapter describes a method for multi-user biometric recognition

in a gesture-based surgical data access system. A Kinect sensor is used

to capture depth images of a user’s palm, and biometric features are then

extracted from the palm depth images. Based on the palm-based biomet-

rics, users are identified and the specific work environments specific to

each user are loaded, allowing users to quickly access data and interfaces

unique to their work scope. For the biometric recognition task, we pro-
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pose a one-class classifier based on the nearest neighbor distance (NN-d).

A one-class classifier system is applied to correctly recognize and classify

palms of previously registered users, while rejecting unknown and unregis-

tered users. The results demonstrate that one-class classifier systems are

useful for learning the properties of unknown distributions, and can be

used for simple biometric recognition in the gesture-based surgical data

access system.

6.1 Related Work

Palm-based biometric recognition is typically performed using scanners or

CCD cameras as the input sensor; such recognition devices require phys-

ical contact with the sensing device for the palm images to be acquired,

and are not suitable for a non-touch surgical setting. Non-contact bio-

metric verification is more hygienic, and has the potential to be used in

settings other than surgery. Ong et al. [87] introduced a webcam-based

system for touch-less palm print recognition from low-resolution hand im-

ages. Their method applies hand tracking to extract a square palm print

ROI; the local binary pattern texture descriptor is then used to describe

the distinctive texture information contained in the palm region, and the

resulting features applied to train a probabilistic neural network. Ong’s

method can be considered to adopt the statistical approach to biometric
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verification, where palm print features are not explicitly designed using

expert knowledge (i.e., to detect and track explicit ridges and structures),

but instead extracted automatically using machine learning techniques.

Other methods that follow the statistical approach may use principal

components analysis [88], Fisher’s linear discriminant [89], or indepen-

dent components analysis [90] to perform subspace analysis to extract a

descriptive representation of the distinctive palm features. The advantage

of statistical over structural approaches is that structural features may

be unreliable and structural matching computationally expensive, while

statistical features are robust if given sufficient training samples and have

low computation cost for classification.

The main weakness of appearance-based biometric verification ap-

proaches is that in a surgical setting, appearance features are non-usable.

Surgical gloves and stains acquired during the operation obscure hand

textural features. Surgical environments have strong lighting which may

result in large lighting variations for image capture, further reducing recog-

nition accuracy [91]; under harsh lighting and geometric conditions, the

extracted hand edges may be unstable and do not capture internal struc-

ture [92]. Lastly, the distance between the hand and sensor impedes accu-

rate capture of hand texture details [87], or requires costly high resolution

cameras [93]. These disadvantages are not present in a geometry-based
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hand recognition system [91, 94]. Geometric features possess the impor-

tant qualities of being time-invariable, difficult to counterfeit, and are

unique to the individual, and hence are good biometric features [94]. Fur-

thermore, the usage of gloves does not seriously impair geometric features.

Instead of using RGB cameras for acquiring geometric features, we

choose Microsoft Kinect as the sensing device. The Kinect is commodity

hardware that has a built-in depth camera capable of capturing depth

images; this depth information can be used to control for changes in the

distance between the hand and the imaging sensor. A depth-based image

plane realignment also allows some variation in hand orientation and pose.

These advantages allow a depth-based geometric approach to be applied

in a more general setting with fewer constraints on the hand position and

pose.

Biometric verification consists of two main tasks; the first is to rec-

ognize a registered user, and the second is to reject unregistered users.

Conventional classification algorithms learn a decision boundary between

a target class and other classes and excel in dealing with the first prob-

lem, but are unable to reject samples from unknown classes that are absent

during training [95]. Therefore, conventional classification algorithms are

unsuitable for biometric verification as they are not designed to detect

novel outliers.
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The detection of unknown users can be considered a novelty detection

task [96]. Approaches to novelty detection typically involve modeling the

data distribution from known samples and using a distance or similarity

measure to detect abnormalities. Broadly, novelty detection methods may

belong to two major classes, parametric or non-parametric. Parametric

approaches model the data based on assumed statistical distributions or

properties and apply the constructed model to determine the probability

of a sample being an unknown outlier, while non-parametric approaches

make no assumptions on the data distribution. Amongst the simplest of

parametric approaches is to model the data as a Gaussian distribution

and to reject outliers by the number of standard deviations away from

the class mean [97], or to use box-plot summaries to identify atypical

samples [98]. More advanced methods apply more complex data model-

ing techniques such as Gaussian mixture modeling [99]. Unfortunately,

parametric methods require a priori knowledge and may not be suitable

for real-world problems with unknown data distribution, where the data

may have multiple discontinuous modalities that are not Gaussian [100].

Non-parametric methods may use Parzen density estimation [101, 102] to

obtain a non-parametric density estimate, or apply K-NN technique to

estimate the width of the local density.

Related to novelty detection is one-class classification. Unlike con-
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ventional classification, one-class classifiers assume that only training in-

stances of the object class are available; therefore, one-class classifiers fo-

cus on constructing a parsimonious class model with a minimal chance of

accepting outliers [103]. Like novelty detection, density estimation meth-

ods such as Gaussian mixture modeling and Parzen density estimation are

often used to model the distribution of the class samples. Besides den-

sity estimation, Vapnik [104] has argued for the more direct solution of

constructing a data boundary without explicitly modeling the data den-

sity. Boundary-based methods include the K-centers method, and the

nearest neighbor distances (NN-d) method. K-centers involves the fitting

of several hyper-spheres of equal radii to the training data such that the

maximum distance of all minimum distances between the hypersphere cen-

ters and training samples is minimized; the hyperspheres thus enclose the

data density and can be used as a decision boundary for outlier rejection

[105]. Instead of fixing a distance radius, the NN-d method adaptively

determines a local radius about each sample point by comparing the dis-

tance of a test point to its nearest neighbor in the training data with the

distance from the nearest neighbor to its nearest neighbor [95]. Thus,

NN-d produces a tight boundary in densely sampled regions where the

confidence of classification is higher, and a looser boundary in sparsely

sampled regions where there is less confidence of the true boundary. In
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our work, we propose a modified NN-d method to improve the trade-off

between outlier rejection and sample classification. In addition, we pro-

pose the use of NN-d in a two-stage method to allow any classifier to be

used in a biometric recognition capacity.

6.2 A System for Biometric Recognition

The biometric verification interface consists of two components, a feature

extraction module that produces a set of feature descriptors from the depth

map of a palm, and a classification module to recognize the presented

palm. In this section, we describe the image preprocessing and feature

extraction elements of the biometric recognition system.

6.2.1 Finger Segmentation from Palm Depth Images

The dimensions of the palm and fingers provides a physical invariant that

can be applied for biometric recognition tasks, but it is generally not

possible to reconstruct the physical dimensions of the palm and fingers

from only a 2D projection such as a color image. However, the additional

depth information from the Kinect depth sensor allows for the local scale

to be estimated. From Fig. 6.1, a line of length L at depth D appears

to be of the same length as a line of length 2L at depth 2D. Similarly,

a pixel of depth D represents an area of only a quarter that of a pixel at
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Figure 6.1: Scale variation with depth.

depth 2D.

A palm is represented by a set of feature descriptors for each finger in

the palm. The fingers are first segmented from the palm using a variant

of the valley-peaks extraction [87, 106] algorithm in order to define a

polygonal ROI about each finger, as shown in Fig. 6.2. The valley-peaks

finger segmentation algorithm determines the finger tips and finger webs,

which lie at the maximum and minimum distances to the palm center, and

constructs a bounding polygon about each finger. The finger segmentation

algorithm (also shown in Fig. 6.3) is as follows:

1. Apply thresholding to obtain the set of edge pixels, Pedge ∈ pedge.

2. Compute the central point, pcentral = argmax(min(|pedge − pcentral|)),

which maximizes the distance from itself to the closest edge pixel.

3. Compute the distance di,j from each edge pixel pi to every other

edge pixel pj. Also compute the distance di,c from each edge pixel

pi to the central point pcentral.
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Figure 6.2: Segmented polygonal ROIs for fingers, where ‘+’ indicates the
peak points, ‘⊕’ indicates the valley points, and ‘o’ represents the central
point.

4. Using a neighborhood radius r, determine the valley points Pvalley ∈

pvalley, where a point pi is a valley point if di,c < dj,c for j ∈ di,j < r.

5. Using a neighborhood radius r, determine the peak points Ppeak ∈

ppeak, where a point pi is a peak point if di,c > dj,c for j ∈ di,j < r.

6. Sort both Pvalley and Ppeak according to the angle from pcentral.

7. A bounding polygon for each finger is constructed from a quintuple

comprising of successive pairs of valley points, a peak point, and the

midpoints between successive pairs of peak points.
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Figure 6.3: Finger segmentation algorithm, where pedge is indicated by the
red edges, and the points pcentral, pi, and pj are indicated accordingly.

6.2.2 Palm Feature Descriptors

Each finger is extracted using the polygonal ROI, and a set of 18 descrip-

tors F1 − F18 are computed for each finger from its depth image; these

finger descriptors are concatenated to form a 90-dimensional descriptor

for each palm. The descriptors F10 − F18 measure the dimensions (area

and lengths) of each finger and phalanx segment (Fig. 6.4), while descrip-

tors F1 − F9 represent the same quantities multiplied by a scaling factor

S computed on the finger or phalanx segment. The scaling factor S for a

region is the mean of the depth D of each pixel in the region:

S = D̄. (6.2.1)
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The inclusion of the scaling factor controls for the effect of apparent size

variations resulting from objects at different depths.

The scaled descriptors F1 − F9 are given below:

1. The scale-adjusted area of the finger, F1 = Σ(D2).

2. The scale-adjusted major axis length, F2 = LmajSfinger.

3. The scale-adjusted minor axis length, F3 = LminSfinger.

4. The scale-adjusted average width of each third of the finger, F4 =

Ws1,aveSs1, F5 = Ws2,aveSs2, F6 = Ws3,aveSs3.

5. The scale-adjusted maximum width of each third of the finger, F7 =

Ws1,maxSs1, F8 = Ws2,maxSs2, F9 = Ws3,maxSs3.

Lastly, each feature is standardized to zero-mean and unit-variance.

6.3 Nearest Neighbor Distances for Biomet-

ric Recognition

Biometric recognition uses classifiers to match presented palms to their

preregistered feature representations stored in the database. Based on the

user identity, the appropriate data and interface settings and preferences

unique to that user can be loaded. In the case of an unregistered user, for
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Figure 6.4: Finger and phalange lengths used in feature descriptors. The
average and maximum widths of the third finger segment (Ws3,ave and
Ws3,max respectively) are indicated.

example a guest surgeon or another member of the surgical staff, a default

interface with fewer access privileges can instead be loaded.

For biometric recognition with only known users, any classifier can be

applied to the palm features described earlier. However, if unknown users

are present, novelty detection schemes are needed to identify these guest

users. In this section, we describe three innovations for novelty detection

using NN-d.

NN-d is a boundary method which estimates the class boundary for

each individual class based on the local density [95] , and is suitable for

outlier rejection. In NN-d, the distance dNN1(x) from a sample x to its

nearest neighbor NN1(x) in the training set is compared with the distance

from the nearest neighbor NN1(x) to its nearest neighbor NN1(NN1(x)).

127



Chapter 6: One-class Classifiers for Biometric Recognition

The NN-d decision rule for determining if a new sample x belongs to a

class i is 
Accept if dNN1,i

(x) <= dNN1,i
(dNN1,i

(x))

Reject if dNN1,i
(x) > dNN1,i

(dNN1,i
(x))

. (6.3.1)

Intuitively, if x is as close or closer to a class sample than other items of

the same class, it is likely to be a class inlier. Also, if the local density

about a training point is dense, then the estimated boundary about the

point is tight, and outliers are less likely to be accepted; conversely, a

sparse local density results in a loose estimated boundary with a higher

probability of accepting out-of-class samples.

6.3.1 Large Margin Nearest Neighbor Distances

In k-NN and in NN-d, the distance metric used is typically not optimized

for classification. Large margin methods compute a space reprojection

that attempts to maximize the separation between different classes by

minimizing the number of impostors (nearest neighbors that belong to

different classes) for all data samples in the training set [107]. Under

the large margin reprojection, the distance between classes is increased,

thus reducing the classification error. A large margin reprojection also

reduces the impact of spurious feature dimensions. Large margin nearest

neighbors is computed using semi-definite programming, which can be
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computationally expensive.

Large margin reprojection can be applied to NN-d as a preprocessing

method. We use the large margin method described by Weinberger et

al. [108] to compute a projection matrix M on the training data. The

distance between points xi and xj under large margins reprojection is thus

d(xi, xj) = (xi − xj)TM(xi − xj). (6.3.2)

6.3.2 Class Specific Radius Optimization

One weakness of NN-d is that parts of the feature space within the target

distribution may be incorrectly rejected [95]. Consider a data set drawn

from a uniform distribution; under a LOOCV evaluation scheme, only

samples which are mutual nearest neighbors can be correctly identified

as in-class members. In particular, for data which is poorly sampled and

where sampled objects are tightly bunched together, the NN-d is likely to

give poor results.

Instead of using the distance from the closest training sample to its

nearest neighbor, we add a fixed distance r to that distance to increase

the size of the class boundary. This distance radius is computed for each

training class, and serves as a heuristic to control for the regularity of

sampling present in each class. The distance radius ri for the i-th class Ci
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is computed from all training samples from Ci via

ri = max
x∈Ci

(dNN2,i
(x)− dNN1,i

(x)), (6.3.3)

where dNN1,i
(x) and dNN2,i

(x) denote the distance from a sample x to its

first and second nearest neighbors in Ci. If a class is regularly sampled,

then dNN1,i
(x) and dNN2,i

(x) should be very close, thus reducing ri, whereas

ri is larger if the class is irregularly sampled. Therefore, ri is a class-

wise smoothing parameter to reduce the impact of sample bunching. The

modified decision rule for determining if a new sample y belongs to a class

i is 
Accept if dNN1,i

(y) <= dNN1,i
(dNN1,i

(y)) + ri

Reject if dNN1,i
(y) > dNN1,i

(dNN1,i
(y)) + ri

. (6.3.4)

Under the new decision rule, the decison boundary about each training

sample is a combination of both an adaptive distance based on the local

density and a fixed radius for smoothing.

6.3.3 A Two-stage Method for Adapting Classifiers

for Outlier Rejection in Multi-class Problems

In order to use conventional classifiers for biometric verification, we pro-

pose a two-stage method using NN-d as a outlier filter. Under the two-

stage model (Fig. 6.5), the training data is used to train both a NN-d

classifier and a conventional classifier. When presented with new samples,
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NN-d performs the novelty detection task while the conventional classi-

fier sorts all samples accepted as inliers into the trained class labels. No

additional modifications are required for either NN-d or the conventional

classifier. For best results, the NN-d can be a modified NN-d scheme

incorporating both large margins method and the class-specific radius op-

timization.

Palm feature 
descriptors

Detect outliers using NN-d 

Label samples using 
conventional classifier

Class labels

Is outlier?

Outliers

No

Yes

Figure 6.5: Two-stage model for outlier rejection using conventional clas-
sifiers.

6.4 Results and Discussion

6.4.1 Experiment Methodology

The data sets employed in our experiments were collected using a data

collection interface. Both palms of each user are recorded at varying dis-

tances (60 to 200 cm) with the fingers spread out at different extents. User
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palms were captured with frontal angle variation of ±15◦. Two sets of ex-

periments were conducted; the first set of experiments was to validate the

biometric recognition system for bare and gloved palms, while the second

set of experiments was to evaluate the biometric verification and novelty

detection performance.

Two experiments were conducted to evaluate and determine the most

appropriate classifiers for the biometric recognition system on bare and

gloved palms. In the first experiment, volunteers were instructed to present

their bare palms to the data capture system; this task mimics the tradi-

tional biometric palm recognition task. In the second experiment, volun-

teers were instructed to wear surgical gloves and present the gloved palms

to the data capture system; this task mimics aseptic environments where

operators are required to wear surgical gloves to preserve sterility. In total,

1602 bare palm samples were collected from eight users for the first ex-

periment; as the left and right palms have different dimensions, this forms

a total of 16 different ungloved palms labels. For the second experiment,

858 gloved palm samples were collected from six users, resulting in a total

of 12 different gloved palm labels.

A further two experiments were conducted to evaluate the biometric

verification and novelty detection performance. In the first evaluation

task, the classifiers are trained on the training set with all class labels
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represented, and the trained classifier is used to assign class labels to the

test set; this task mimics the case where all users are registered. In the

second evaluation task, the training set excludes all cases of one class, and

the trained classifier is tested on the complete testing set. Test samples

from the unseen class are to be identified as outliers, and not assigned

to one of the seen classes; this task mimics the more general biometric

verification task, where unregistered users may gain access to the system

and should not be wrongly verified. In total, 723 bare palm samples

were collected from three users; as the left and right palms have different

dimensions, this forms a total of six possible palms labels.

Leave-one-out cross-validation (LOOCV) is employed to obtain the

classification accuracy for each combination of features and classifiers [52].

LOOCV is performed by repeatedly training the classifier system on all-

but-one of the available samples, then testing the trained classifier on

the unseen sample. LOOCV ensures that each classifier is trained on the

maximal number of training samples while using all available data for

testing. The evaluation metrics used are accuracy and macro-averaged

F-measure. The macro-averaged F-measure is a generalization of the F-

score for multi-class problems [109], and it reflects a classifier’s precision

and recall performance. The F-measure value ranges from (0, 1), where

a larger value corresponds to a higher classification quality. While accu-
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racy is dominated by the classifier’s performance on common classes, the

macro-averaged F-measure assigns equal weight to all classes regardless

of the class frequency, and thus is influenced more strongly by infrequent

categories. The macro-averaged F-measure can be computed by:

Fi =
2πiρi
πi + ρi

, F (macro-averaged) =

∑
Fi

M
, (6.4.1)

where M is the total number of classes, and πi and ρi are defined respec-

tively as:

πi =
TPi

TPi + FPi

(6.4.2)

ρi =
TPi

TPi + FNi

, (6.4.3)

where TPi is the number of true positives, FPi the number of false posi-

tives, and FNi the number of false negatives for class i.

6.4.2 Benchmarking against Conventional Classifiers

To benchmark the performance of the proposed novelty detection methods

against conventional classifiers, we apply a simple outlier rejection scheme

to the conventional classifiers. For a given conventional classifier trained

on the training set X, the training samples x are passed into the classifier

to obtain the posterior probability p(L|x) for each class label L. Let the

class labels with the highest and second highest posterior probabilities be

denoted by L1 and L2 respectively. A quotient qx = L1

L2
is computed for
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all training samples in X. Subsequently, put qx into the group qcorrect or

qwrong based on whether the training sample x was correctly labeled by

the classifier.

The quotient q is an indicator of the relative confidence of a class label

compared to the next most probable label. If a sample is a class inlier,

q should be high for some label L; if a sample does not belong to any

trained label, then q would be low. Choosing a threshold qτ for q would

allow some out-of-class samples to be detected. qτ is chosen by minimizing

the cost C of misclassification on the training set, where C is the sum of

the number of items in qcorrect and qwrong that are smaller and larger than

qτ respectively.

6.4.3 Results: Bare Palms and Gloved Palms

Table 6.1 shows the evaluation results using different classifiers to recog-

nize bare palms and gloved palms. Bare palms were well recognized with

most classifiers, and the best results were obtained with large margin

K-nearest neighbors. For gloved palm recognition, biometric recognition

accuracy is comparatively degraded, but a classification accuracy of 95%

is still possible.
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Table 6.1: Evaluation of classification methods on bare and gloved palms

Bare Palms Gloved Palms

Classifier Accuracy Macro-F Accuracy Macro-F

3-NN 0.9148 0.9086 0.8924 0.8759

Bayesian 0.8285 0.8180 0.7114 0.7180

Linear discriminant 0.9479 0.9420 0.9416 0.9334

Decision tree classifier 0.6823 0.6601 0.7011 0.6868

Random forest 0.9229 0.9171 0.8947 0.8820

SVM (SVMlight) 0.9139 0.9093 0.8811 0.8613

SVM (LIBSVM) 0.9433 0.9388 0.9098 0.9037

ELM 0.8845 0.8785 0.8345 0.6188

Random Subspace (K-NN) 0.9323 0.9280 0.9049 0.8887

Large margin NN 0.9656 0.9615 0.9569 0.9535

BOOSTMETRIC 0.9406 0.9355 0.9233 0.9152

6.4.4 Results: All Users Registered

Table 6.2 shows the evaluation results for the biometric task when all

users are registered. The results for one-class classifiers are not included

here, as they revert to a k-nearest neighbor classifier if outlier rejection is

not used. Most classification algorithms are able to achieve an acceptable

(≥ 90%) classification accuracy, with the exception of decision tree clas-

sifiers. The best results were obtained using linear discriminant analysis

and large margin K-nearest neighbors, suggesting that some form of space

reprojection is needed to improve classification results.

136



Chapter 6: One-class Classifiers for Biometric Recognition

Table 6.2: Evaluation of classification methods, all users known.

Classifier Accuracy Macro-F measure

Naive Bayes classifier 0.9281 0.9300

Linear discriminant analysis 0.9834 0.9824

Decision tree classifier 0.8465 0.8418

Random forest 0.9710 0.9718

Radial basis function SVM 0.9800 0.9808

K-nearest neighbors classifier 0.9710 0.9723

Random subspace K-nearest neighbors 0.9723 0.9735

Large margin K-nearest neighbors 0.9862 0.9860

6.4.5 Results: Some Users Unregistered

Table 6.3 shows the evaluation results for the biometric task when some

users are unknown. The novelty detection performance of the classifiers

can be observed from the outlier and inlier recall rates, which are com-

puted by the total fraction of unregistered and registered users correctly

detected. Meanwhile, the inlier accuracy is the fraction of accepted inliers

that have been correctly assigned to the right users, and it estimates the

traditional classification performance of the registered user palms.

As expected, the biometric recognition task with unregistered users

is more difficult, and there is a significant decrease in the classification

performance. NN-d and its variants clearly outperform most conventional

classifiers; of the conventional classifiers, only random forest was able to

have a comparable outlier and inlier recall rate. The use of large mar-
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gin reprojection in large margin nearest neighbors and large margin NN-d

improves the inlier recall rate and the overall accuracy. The class-specific

radius in NN-d improves the overall classification accuracy with a small

tradeoff in outlier detection. An increase in the overall accuracy over the

conventional classifiers is also seen using the two-stage model for conven-

tional classifiers, primarily due to better outlier detection.
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6.4.6 Discussion

The results demonstrate the usefulness of the innovations introduced in

this thesis in improving the outlier detection rate as well as the overall

classification accuracy.

For the recognition of gloved palms, the best accuracy achieved by

our system was 95.7%, which represents a slight reduction in accuracy

compared with the recognition of bare palms (96.5%). This degradation

could be due to an imperfect surgical glove fit, resulting in small air pockets

at the fingertips of the gloves, increasing the apparent length of those

fingers. Nonetheless, the recognition accuracy is still high and is sufficient

to demonstrate the viability of biometric recognition without appearance

features.

In novelty detection, the performance of different methods can be inter-

preted in the context of the type I (rejected inliers) and type II (accepted

outliers) errors. Finding a good trade-off between type I and type II er-

rors is key in achieving a good overall accuracy. In general, the modified

conventional classifiers have low outlier recall rates, which impacts their

overall classification accuracy.

Large margin reprojection improves the classification accuracy for near-

est neighbors, as seen in the increase in accuracy in Table 6.2. For the

evaluation task with unregistered users, the class-labeling of inliers is also
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improved using the large margin variants of K-NN and NN-d. Therefore,

large margin methods can successfully reproject the input space for supe-

rior classification. For biometric recognition with unregistered users, the

effect of large margin methods is less straightforward. The primary effect

of a large margin projection is to improve the recall on the trained sam-

ples, which improves both the inlier recall rates as well as the inlier clas-

sification accuracy; these improvements were observed for both K-nearest

neighbors and NN-d using large margins. Compared with the unmodified

K-nearest neighbors algorithm, large margin K-NN offers better outlier

detection without compromising on inlier recall. However, outlier recall

was degraded using NN-d classifier using large margins, although over-

all classification accuracy was still better. This is the result of a drastic

trade-off between outlier and inlier recall.

To a smaller extent, this trade-off was also seen in the class-specific

radius optimization, which had a modest improvement and degradation

in inlier recall and outlier recall respectively. This result is expected, as

the class-specific radius increases the decision boundary to improve the

inlier acceptance rate at the cost of accepting outliers. However, both

modifications of the NN-d resulted in improved overall classification per-

formance, which means that the trade-off between accepting inliers and

rejecting outliers was ultimately advantageous. Combining both the large
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margin method and the class-specific radius yields the best results overall,

and there were improvements in outlier detection performance.

The two-stage model uses the large margin with class-specific radius

NN-d as an outlier filter, and thus the recall rates are identical and differ-

ences in the overall classification rate are attributable to correct labeling

of inlier samples. As the linear discriminant and SVM classifiers were

marginally outperformed by large margin K-nearest neighbors in the reg-

istered users task, the overall classification accuracy obtained using the

two-stage model is still slightly inferior to NN-d, but nonetheless vastly

superior to the original conventional classifiers.

The results demonstrate a promising option for biometric recognition

using Kinect depth images, and the biometric recognition rate approaches

that of state-of-the-art approaches with more constraints on hand pose or

using more sensitive imaging sensors. However, our system is calibrated

for a smaller base of registered users and is more suitable for biometric

recognition rather than dedicated biometric verification. For the dynamic

scenario with the possibility of unknown users, the unknown user rejection

rate of 75.1% offers a good chance of detecting unknown guest users in

practical settings with few non-registered users.

Lastly, to further validate the innovations introduced in this paper for

novelty detection, we conducted additional experiments on other datasets.
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As these datasets are not related to the problem of biometric recognition,

the results to these additional experiments are contained in Appendix D.

6.5 Summary

In this chapter, biometric recognition was proposed for user identifica-

tion to perform context-selection in a surgical computer interface. Depth

information from Kinect is used to construct scale-invariant features for

the classification of users. For the detection of unregistered users, large

margin NN-d is proposed to increase the class separation and the classifi-

cation accuracy. In addition, a class-specific radius is proposed to modify

the classifier decision boundaries to obtain a better trade-off between inlier

acceptance and outlier rejection. The one-class classifier system is able to

correctly recognize and classify palms of previously registered users while

rejecting unknown and unregistered users, demonstrating that novelties

introduced are useful for learning the properties of unknown distributions.

The biometric recognition results were comparable to state-of-the-art ap-

proaches and are promising for detecting unregistered users.
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Conclusion and Future Work

Computational intelligence and machine learning continue to play increas-

ingly important roles in medical analysis and visualization. This disser-

tation has introduced several novel computational intelligence approaches

to address problems in medicine.

In Chapter 3, we described an ensemble-based method for diagnosing

osteopenia. The weighted decision ensemble exploits classifiers that are

discriminative towards specific classes by using a novel combiner function.

The weights of the decision ensemble are optimized using a GA scheme,

ensuring that the final ensemble has the greatest accuracy and class sepa-

ration. These contributions allow for a more robust and accurate diagnosis

of osteopenia from CT scans of lumbar vertebrae.

In Chapters 2 and 4, regression was used to predict a patient’s BMD

from dCT images. A filtering-based ensemble technique is applied to solve

a regression problem on a multimodal medical dataset with high relative

dimensionality. By choosing a set of regressors from several candidate

regressors such that the component regressors are diverse and uncorre-

lated, the regression ensemble reduces the influence of spurious features
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and noisy data samples. Compared with simple multivariate regression,

the ensemble regression approach is more powerful and robust, and yields

better results on multimodal medical datasets.

In Chapter 5, mean shift clustering was applied to detect and group

voxels with similar properties in the LH domain; each cluster was repre-

sentative of a structure or material boundary. The extracted boundaries

were subsequently improved using a region growing algorithm to smooth

the boundaries. Lastly, TFs were automatically designed to reduce oc-

clusions by considering the relative sizes and distances between clusters.

Because mean shift clustering is non-parametric, clusters corresponding to

material boundaries can be identified automatically with little parameter

tuning. The proposed system therefore allows visualizations comparable

to state-of-the art approaches to be generated while reducing the amount

of manual labor required.

In Chapter 6, users were identified using biometric recognition based

on depth images of the palm captured using Microsoft Kinect, and the

user identities were used to customize the work-interfaces specific to each

user. When no unregistered users were expected, good accuracies (≥ 95%)

were attained by standard classification algorithms, with the best algo-

rithms achieving a recognition rate comparable to state-of-the-art biomet-

ric recognition algorithms. For detecting unregistered users, one-class clas-
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sifiers such as NN-d obtained better outlier detection rates and overall clas-

sification accuracy. By projecting the data using a large margins method

for NN-d and adding a cluster-specific radius to the decision boundary,

the modified NN-d algorithm offered the best trade-off between outlier

rejection and classification accuracy.

7.1 Future Work

In this section, we propose several areas where the thesis work can be

expanded upon.

7.1.1 Classifier Design for Osteopenia Diagnosis

While classification is capable of diagnosing a disease condition, the black-

box nature of most classifiers means that it is usually not possible to

describe the rationale behind a machine diagnosis. Even rule-based clas-

sifier systems, such as decision trees, generate complex rules which are

difficult for a human to understand. This impacts the confidence of the

medical community in any black-box machine learning diagnosis system,

and makes it difficult for any machine learning diagnosis system to be

adopted. Furthermore, it is difficult to extract any useful insight into the

disease condition based on the black-box. However, it is possible to pro-

cess the classifier ensemble in Chapter 3 such that the ensemble decision
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is more comprehensible to an expert user. Fundamentally, the classifier

ensemble is a combination of several basic classifiers trained on different

features modes, which different weights assigned to each classifier based on

its importance and relevance. We can organize the ensemble by grouping

the basic classifiers according to the features they are trained on. Then,

when a diagnosis is made, the net contribution of each set of feature clas-

sifiers can be calculated and presented. Thus, the ensemble decision is

augmented with the feature-wise breakdown behind the decision, allowing

the clinician to determine which disease symptoms are most prominent.

7.1.2 Bone Mineral Density Prediction

A problem common to regression techniques for prediction is the tendency

for large errors when predicting extreme or outlier values. This problem

arises because small errors in the estimation of the slope accumulate to

large errors when the data point is far from the training space. While these

errors may not be important for medical diagnosis, as outlier points are

far away from the decision boundary and their class labels are unaffected

by large absolute errors, this issue should not be neglected. One concern

is that in multivariate data, the influence of large outliers in one or a

few feature dimensions may result in large overall regression errors. We

propose a simple modification to our ensemble regression scheme to reduce
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the impact of large outliers in some feature dimensions. The detection of

outliers is simple, as they lie outside the typical range of values for a

given feature. For a given feature dimension with an outlier, we cap that

feature’s contribution to a known maximum/minimum; the cap value can

be determined by analyzing the range of feature values seen in the training

data. This modification ensures that ensemble regression occurs entirely

in the operating range that it has been trained on, and reduces the impact

of outliers.

7.1.3 Automated Transfer Function Design

The clustering-based transfer function design method is general and can be

applied to complex volumetric datasets from different sources. However,

to obtain better visualization results, we can specialize to focus on medical

datasets. By including domain knowledge, such as the typical voxel in-

tensities of well-defined tissues like bone, instances of spurious clusters or

mis-merged clusters can be reduced. Domain knowledge can be built using

insights from domain experts, or by using machine learning to extract the

properties of recurring anatomical structures in medical volumes.

Computational intelligence can also be applied to obtain more precise

cluster segmentations, thus improve the sharpness and crispness of ma-

terial and structure boundaries in medical visualizations. A voxel-wise
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classification on the material boundaries can be performed by comparing

each boundary voxel to the labels of neighboring voxels. Compared to the

region-growing heuristic used in subsection 5.2.3, the machine learning

approach should yield crisper edges. However, a large corpus of labeled

medical volumes and visualizations is required for a machine learning ap-

proach to be viable.

7.1.4 Biometric Recognition

To increase the reliability of palm biometric recognition, the information

from multiple sequential frames can be combined to allow for the palm

identity to be refined across multiple frames; this reduces the impact of

sensor errors or motion-induced artifacts, but also introduces a time delay

depending on the number of frames used. The simplest implementation

of this idea is to classify each individual frame and to take the majority

label. Another possibility is to build a palm image by registering across

the sequential frames, and to perform classification on this refined palm

image.

The user palm recognition system can also be extended to allow for

a fast-registration mode where a new user can be quickly granted access

to the system. The advantage of one-class classifiers is that the training

of each class is independent of all other classes; thus, the addition of new
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users does not require all the classifier decision boundaries to be recom-

puted. However, if large margins NN-d is used, then the large margins

projection becomes increasingly unsuitable as more new users are added;

a new projection matrix will need to be recomputed to include the newly

registered users.

In a broader context, the novelty detection algorithms could be ap-

plied to detect atypical samples in medical screening without necessarily

training on a specific disease condition. This can reduce the requirement

for diseased cases in medical studies, as diseased cases are typically much

rarer than healthy cases.
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APPENDIX A

Vertebral Anatomy

Fig. A.1 presents a 2-D view of a typical lumbar vertebra. The vertebral

body is the main weight-bearing structure of the vertebra. The vertebral

body can be segmented based on nearby anatomical landmarks, such as

the spinal canal which houses the spinal cord.

Figure A.1: A lumbar vertebra, with spinal processes and vertebral body
labeled.
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APPENDIX B

Dual-energy X-ray Absorptiom-

etry

Dual-energy X-ray absorptiometry (DXA, also known as DEXA) is the

most prevalent technology for bone density measurement, and is primar-

ily used in the diagnosis and following of osteoporosis in the spine and hip.

DXA provides a measurement of the bone mineral density (BMD) which

provides an indicator to the bone strength and fracture risk. DXA oper-

ates by radiating two X-ray beams with different energy levels at skeletal

sites; because the two X-ray beams possess different energies, they are

attenuated at different rates by bone [26]. After subtracting the contribu-

tion of soft tissue absorption, the mineral content contained within each

bone can be determined based on the absorption rates of each beam by

bone. This BMC is subsequently normalized by the projected bone’s area

to obtain the aBMD.

As DXA is the most widely-studied bone measurement technology, it

is used in the WHO’s definition for osteoporosis [25]. The aBMD mea-

surement from DXA is compared to a reference population to generate a
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score for diagnosis. For osteoporosis screening, the T-score is used, where

the reference population is a healthy 30-year-old white female (WHO rec-

ommendation) or a healthy 30-year-old of the same ethnicity and sex (US

standard). Three conditions are defined based on the T-score, where a

T-score of -1.0 represents an aBMD that is one standard deviation below

the mean for the reference population:

1. Normal, with normal risk of fracture, defined as a T-score of -1.0

or higher.

2. Osteopenia, with low bone mass and considered a precursor to

osteoporosis, defined as a T-score of between -1.0 and -2.5.

3. Osteoporosis, with increased risk of fracture, defined as a T-score

of -2.5 or lower.

The T-score definition of osteoporosis is typically applied for osteo-

porosis screening in post-menopausal women and men of over age 50. For

other patient groups where osteoporosis is normally infrequent, such as

premenopausal women, men below 50, and children, the Z-score is applied

instead to screen for severe osteoporosis. The Z-score is calculated against

a matched reference population of the same age, sex, and ethnicity. A low

Z-score (-1.5) can be an indicator of metabolic bone disease and justify for

further evaluation for osteoporosis [26]. However, because different refer-
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ence populations have different fracture risks, the Z-score may provide a

misleading picture of the actual fracture risk.
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APPENDIX C

Linear Regression Methods

In this appendix, we discuss the theory and methods for linear regression,

as well as feature selection and data transformation techniques that can

improve regression performance on large datasets.

The objective is to relate the multimodal data matrix X with the

aBMD from CT, Y , through a set of linear constants k. It is also desired

to perform feature selection on the data, such that only f × s features

are used. This feature selection method is known as the filter method,

where the subset of chosen features is selected as a pre-processing step

independent of the chosen classifiers.

C.1 Linear Least Squares Regression

The simplest way to relate the target variable Y and the data matrix X

is to use linear least squares. A set of constants k is assumed to relate the

two variables, with some residual error e.

Y = Xk + e. (C.1.1)

To recover the least squares solution, the sum of squared errors is
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minimized using the pseudoinverse,

k = (XTX)−1XTY. (C.1.2)

To reduce the impact of noise on the regression constants, Tikhonov reg-

ularization is used. A regularization term λ, with an experimentally-

determined value of 0.5, is included in the pseudoinverse,

k = (XTX + λI)−1XTY. (C.1.3)

The linear regression solution typically involves all features of X, not

all of which are useful for determining Y . Some features of X can be dis-

carded to increase the robustness of the regression on unknown data. The

components of k with the smallest magnitudes contribute the least to the

regression, and discarding them does not have a large impact on the final

result. Let Xfs be the data matrix X where all columns corresponding to

the features with the fs smallest absolute components in k are set to zero.

Then, to compensate for the removed features, a new set of constants kllsfs

is computed

kllsfs = (XT
fsXfs + λI)−1XT

fsY. (C.1.4)
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C.2 Principal Components Regression

In principal components regression (PCR), principal components analysis

is first used to obtain a set of principal components, P , for the data.

The principal components describe the maximum variation possible that

describes the original data matrix X. If the singular value decomposition

of X is

X = WΣV T , (C.2.1)

where the m×m matrix W is the matrix of eigenvectors of the covariance

matrix XXT , the matrix Σ is an m× n rectangular diagonal matrix with

nonnegative real numbers on the diagonal, and the n× n matrix V is the

matrix of eigenvectors of XTX, then the PCA transformation of X is given

by

XPCA = V ΣT . (C.2.2)

In PCR, the principal components with the largest eigenvalues are used

to form a regression to the target variable. Assuming that the matrix

formed by retaining the fs columns in XPCA corresponding to the largest

eigenvalues in W is XPCR, then the linear regression components kPCR are

kPCR = Wfs(X
T
PCRXPCR + λI)−1XT

PCRY. (C.2.3)
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C.3 Principal Feature Analysis

Principal feature analysis (PFA) [110] is an algorithm based on PCR. How-

ever, the principal components created by PCR span over the entire set of

features in the original data, hence it is not a feature selection technique.

PFA imposes a feature selection condition during the construction of the

principal components to restrict the number of features used.

For PFA, the principal components V and eigenvalues of the X are first

computed. Construct the vectors W by taking the rows of V ; therefore

W should contain as many vectors as there are dimensions in X. |W | is

clustered using k-means with q clusters, where q is chosen depending on

the amount of data variability to be retained. For each cluster, the vector

W closest to the cluster mean is computed, and the corresponding feature

is chosen as a principal feature. There are therefore q principal features.

Lastly, linear regression is performed on the set of principal features.

C.4 Partial Least Squares Regression

Partial least squares regression (PLS) is a method that has recently been

used for computer vision[111]. PLS attempts to decompose X into a set

of latent variables that are highly correlated with Y , and to then regress

Y based on the latent variables.
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X = TP T + E1. (C.4.1)

Y = UqT + e2. (C.4.2)

T and U are the matrices containing the extracted latent vectors, while P

and q represent the loadings. E1 and e2 are the residual errors. T and U

are then constructed using iterative PLS algorithm, where

[cov(ti, ui)]
2 = max

|wi|=1
[cov(Xwi, y)]2. (C.4.3)

Since the latent vectors are orthogonal and uncorrelated, there are at most

rank(X) latent vectors.
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APPENDIX D

Additional Experiments for NN-

d Validation

To validate the modified NN-d algorithms, we perform additional exper-

iments on different test datasets from the UCI Machine Learning Repos-

itory [112]. The datasets chosen had a similar number of classes to our

earlier experiments.

Table D.1: Test datasets used

Name Samples Classes Features

pendigits [113] 10992 10 16

segmentation [114] 2100 7 19

Statlog [115] 6435 7 36

The results show that the proposed NN-d classifiers also improve the

overall accuracy on other datasets. In particular, the two-stage model

achieves the best results for the Statlog dataset (Table D.4), demonstrat-

ing that a combination of a NN-d outlier filter and a conventional classifi-

cation algorithm can outperform either component by itself. These results

agree with our earlier findings on the biometric recognition problem.
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