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Summary

Liner shipping operation level decision problem, speed and bunkering manage-

ment particularly, has been an area that only attracted scarce research attention

albeit its significant impact on the profitability of liner companies. The reason

is twofold. One is that the shipping industry in general, partly due to its long

history, was conservative, fragmented and less willing to adopt changes. It was

also largely out of public’s sight. “Out of sight, out of mind”, researchers’ minds

as well. The other is that uncertainties involved in the operation level render

both the modeling and solving extremely difficult. The mission of this thesis

is therefore to fill in this gap and study the operational speed and bunkering

management from the liners’ perspective.

The first and foremost motivation for this work is the observed fact that in

recent years the bunker prices have been increasing and fluctuating dramatically.

While the bunker cost takes up more and more percentages of the total opera-

tional costs, shipping companies are relentlessly seeking efficient ways to reduce

it. One practice that has gradually gained popularity is slow steaming. However,

simply slowing down the vessels is not the final answer as they operate under

the “stochastic” environment. Bunker prices change everyday and they differ

significantly in different ports. Bunker consumption under the same speed for

the same distance also depends on weather and sea conditions. Therefore, the

first part of this work studies how to dynamically determine the vessel speed and

refueling decisions considering the bunker prices and consumption uncertainties.

The stochastic nature of the bunker prices is represented by a scenario tree struc-

ture. As the model is a large-scale mixed integer programming model, we adopt

a modified rolling horizon method to tackle it. Numerical results based on two

real liner services with size differences show that our framework provides a lower
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0. Summary

overall cost and more reliable schedule compared with the stationary model of a

related work.

For liner shipping practitioners, it would be highly appealing if there were

a simple, yet effective, strategy that guides timely operational decision making

on a daily basis. Second part of this work expounds on this issue. We adopt a

dynamic (s, S) policy which has been effectively used in inventory management to

solve a liner shipping refueling and vessel speed determination problem under both

bunker prices and consumption uncertainties. Such a policy allows a more flexible

operational bunkering plan; the decision of whether to bunker or not depends on

the actual bunker prices as well as the realized ship bunker inventory at every port.

In addition, different from the first study where bunker consumption uncertainty

is tackled by chance constraints, here we randomly generate a random sample

of consumption scenarios and use sample average approximation (SAA) method

to handle it. Due to the large size of our stochastic mixed-integer programming

model, we propose two variants of the progressive hedging algorithm (PHA) to

solve it. Numerical results show that our solving approach is efficient and the

(s, S) policy model has the potential to be implemented in the real practice easily

and help liners save large amounts of operational costs.

Last part of this work is to coordinate the management of bunker fuel purchas-

ing for all the service routes under the same network. We study the bunker fuel

purchasing problem for a whole liner shipping network or even multiple networks

under a novel cooperation scheme between liner shipping companies and bunker

suppliers. More specifically, bunker suppliers at certain ports offer liner ship-

ping companies some price discounts according to their fleet’s weekly or monthly

bunker consumption. Under this situation, the bunkering decision of individ-

ual shipping routes are no longer independent, and shipping companies need to

play the role as the overall decision making center and determine the bunker-

ing plan for all service routes in the shipping network. The resulting model is

a very large size mixed integer non-liner programming model which cannot be

solved efficiently by the state-of-the-art commercial solvers. However, the prob-

lem structure allows us to handle it with a heuristic algorithm based on column

generation. In addition, we also devise another two straightforward and effective

greedy heuristic algorithms. According to our numerical experiments, our model

viii



0. Summary

could help significantly reduce the bunker cost for liner shippers and our heuristic

algorithms consistently provide high quality near-optimal solutions.
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Chapter 1

Introduction

This thesis contributes to the dynamic speed and bunkering decision support

for liner shipping under stochastic environment. In the first two sections of this

chapter, we briefly introduce the characteristics of the liner shipping industry and

the background of its current business environment. Subsequently, in Section 1.3,

we will provide an overview of the research that has been dedicated to this area

and highlight the gaps that exist and those of which we are attempting to bridge.

The objective and scope of this thesis will be provided in Section 1.4.

1.1 Liner shipping industry

For any reader who may not be familiar with the liner shipping, feel free to think

of it as the public bus service that almost everybody has at least experienced

once or twice. The two of them share an important similarity: regardless of

the demand, whether it be cargos or passengers, both have a predetermined and

published schedule and a fixed sequence of ports or bus stops to call. This is

because the determination of ship or bus routes is usually a mid-term planning

problem for companies, which remains unchanged for at least a certain period

of time. Other similarities include the network coverage of the service area by

a fleet of homogeneous or heterogeneous vessels or buses and the necessity of

service reliability. In maritime transport, there are three basic types of shipping

operation; besides liner shipping, another two are tramp shipping and industrial

1



1. Introduction

shipping. To complete our previous analogy of maritime and public transport,

tramp shipping is like taxis which provide more flexible services and industrial

shipping is comparable to self-owned vehicles. Amongst these three, there is no

doubt that liner shipping has become the most prevalent and important type of

maritime shipping service.

Since the 1970s, containerization has gained its fast and tremendous popular-

ity in the international maritime transportation due to its high efficiency and low

cost of handling. Most of the vessels owned by ship liners are container ships, the

size of which is denominated in how many TEUs (TEU stands for Twenty-foot

Equivalent Unit and is the volume of a 20-foot-long intermodal container). Ac-

cording to Wikipedia [2013], the title of ”the world’s largest container ship 2012”

was given to Marco Polo, which is operated by the French shipping firm CMA

CGM and has a capacity of 16, 020 TEU. However, the crown will soon be given

up to a 18, 000 mega container ship which is under building by a Korean dock for

Maersk. The general trend is that more and more of those mega containers are

going to be built and go into service.

Liner shipping has long been regarded as the world’s economy engine either

for its direct economical contribution or for its role as the facilitator of interna-

tional trades. According to Worldshipping [2012], in 2007, liner shipping industry

contributed a direct GDP of about US$ 183.3 billion and transported about 60%

of the value of total global trade. Major international liners provide extensive

coverage of almost every single port over the globe on a timely basis. As of

31st October 2010, there were approximately 400 liner services and 4800 con-

tainer ships in operation (Marisec [2012]). From an environmental point of view,

shipping is considered to be a more carbon-efficient mode of transportation than

others, airline or rail industry for instance. Container ships mainly use bunker

fuels, which are distillates from the crude oil refinery process, as its energy source.

In a report done by Imo [2008], shipping industry was claimed to be accountable

for only 2.7% of the global CO2 emissions in year 2007. As a lot of technolo-

gies have been invented to improve the engine efficiency of ships and with more

and more international regulations on green house gas emissions from shipping

operators, the shipping industry will remain a relatively ”green” transportation

modality for a long time.

2



1. Introduction

1.2 Business environment

Despite what we mentioned above, for most of the liner shipping companies,

the current market conditions are tough indeed. The trend of increasing bunker

prices has threatened the liner shipping companies’ accounting bottom line and

the oversupply of containers accumulated for the past few years makes the com-

petition especially fierce. Ronen [2010] stated if bunker fuel prices reach around

500 US$/ton, fuel cost constitutes about 75% the total operating cost of a large

containership. Therefore, it is not surprising that when the current bunker prices

hover around 650 US$/ton, some shipping liners have complained that the cost of

bunkers has formed a ”lion share” of its operating costs. According to Shipand-

bunker [2012], Japanese shipping line Nippon Yusen Kabushiki Kaisha (NYK)

experienced an average bunker price of 642.01 US$/ton in the first six months

of 2011 and in the second half of the year, it jumped to 690.43 US$/ton. The

year 2012 had still not been easy for shipping liners. Figure 1.1 shows the bunker

prices (380 CST grade) at four major bunkering ports around the world from

August to September 2012 (prices data are unavailable on weekends).
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Figure 1.1: IFO380 prices at four major bunkering ports around the world from
August to September, 2012 (Data source: http://shipandbunker.com)

To survive, companies need to identify ways to reduce the operating costs. For

example, when the oil prices hit $145 a barrel in 2008, Maersk, the world’s biggest
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liner shipping company, spearheaded the strategy of slow steaming. Now over 200

shipping companies have reduced their vessel speeds, especially in those long-haul

loops like Asia to Europe and North America. Empirical estimation has shown

that when the vessel speed is reduced by 20%, it could reduce the fuel consumption

by 50% (Ronen [1982]). Although ship liners have to add one or two more vessels

in certain routes to keep a weekly service, which results in an immediate increase

of the capital cost as well as the administration and labor costs, the savings

from fuel cost has the potential to outweigh those cost increases (Ronen [2011]).

Besides, the environmental benefits of less greenhouse gas emission from slow

steaming are also significant. Maersk [2010] announced that on average they had

successfully reduced the carbon dioxide emission by 14% per vessel during 2008.

Another reason is that slow steaming partially mitigates the industry wide over

capacity problem, as more ships and containers are deployed in order to keep a

weekly service under lower sailing speeds. However, there is a trade-off between

sailing speed and service level. Thus, an optimization approach of determining the

vessel speeds in the operational level, instead of decisions based on experience, is

essential when we are talking about thousands of ships and liner service networks.

Besides increasing rapidly, bunker prices also manifest high volatility. It is a

well-observed phenomenon that the crude oil prices fluctuate significantly on a

daily basis. As a by-product of the crude oil, bunker prices fluctuate no lesser in

the spot market. Figure 1.2 below shows the monthly fluctuation of the bunker

prices (380 CST grade) at several major ports and that of the crude oil prices

from September 2002 to September 2009. Based on this figure, we can roughly

say that there is a high correlation of the bunker prices and the crude oil prices

and most of the time, the bunker prices are even more volatile than the crude

oil prices. Last but not least, bunker prices at different ports around the world

usually have significant differences. For example, on 3 September 2008, bunker

fuel prices (380 CST) in Singapore were 677.5 US$/ton. On the same day, bunker

prices in Rotterdam were 619 US$/ton and 650 US$/ton in Houston.

The characteristic of the liner shipping is that it usually has a fixed number

of port-calls in a cyclical route with a published schedule. While slow steaming

would be the general trend when bunker prices are high, high fluctuation and

regional differences of the bunker prices complicate the situation because simply
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  Figure 1.2: Fluctuation of bunker fuel (380 CST) prices at major bunkering

ports and world crude oil prices (2002-2009) (Data source: Bloomberg 2009 and
www.test.org/doe/)

reducing the vessel speed may miss out the opportunity of reaching the next

port when bunker prices there are low. Thus, how to dynamically determine the

vessel speed and bunkering decisions with timely updated information has huge

cost reduction potential.

1.3 Research background

Compared with the uncertainty of bunker prices, the influence of the bunker con-

sumption variation is less significant to the overall planning. However, it cannot

be neglected either. Wind force and direction, sea condition, engine efficiency

and other factors could change the total bunker consumption even when the ship

sails under the same speed and for the same distance. To the best knowledge

of authors, there is no published result that considers the bunker consumption

uncertainty.

The fluctuation of bunker prices and the uncertainty of bunker consumption

can impact the profitability of liner shippers significantly; however most of the

previous related works did not tackle the uncertain nature of this problem suffi-
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ciently. On the one hand, maritime industry has received relatively less research

attention compared to rail or airline industry. On the other hand, when uncer-

tainties come into the picture, the model usually becomes very difficult to solve

due to the large size of the problem.

One of the pioneering works in determining the optimal vessel speed was done

by Ronen [1982]. It studied the trade-off between the fuel savings from slow

steaming and the loss of revenue from the extension of voyage. It approximated

the daily bunker consumption as a third power of the ship speed and derived

the optimal speed for ships under different operating scenarios, namely, income

generating leg, positioning leg and mixed leg. Bunker prices were assumed to

be constant, the price difference across different ports was not considered and

bunker consumption rate was a deterministic function of vessel speed. These

three assumptions were largely retained by most of the subsequent works.

Until very recently, there have been works trying to provide more realistic

models by relaxing these assumptions, however only partially (Besbes and Savin

[2009], Oh and Karimi [2010] and Yao et al. [2012]). Yao et al. [2012] was consid-

ered to be the first work which explicitly took into account the bunker price differ-

ence across different ports. It brought up the intuitive idea of optimal bunkering:

by bunkering enough fuel under fuel tank capacity limit at those ports with low

prices, a large amount of bunkering cost can be reduced. However, as a planning

level problem, no uncertainty was tackled in it.

1.4 Objective and scope

As indicated in the previous section, there are several research gaps in the area

of liner shipping, which can be summarized as follows:

• While the fluctuation or uncertainty of the bunker prices is a matter of

reality and hugely impacts the profitability of liner shippers, it has not

been sufficiently addressed. The effect of bunker consumption uncertainty

cannot be neglected neither. To the best knowledge of authors, there is no

existing study which has seriously considered it based on actual data.

• Limited studies on the liner shipping operation level decision support are

6



1. Introduction

available. Examples include how to adjust the vessel speed in the whole voy-

age, which port to bunker, and how much to bunker based on the available

real-time information.

• We found no study devoted to the bunkering management of ships for mul-

tiple service routes. Due to the presence of bunker price contract or bunker

price discount, a bunkering management plan covering more than one liner

service can be beneficial.

The main purpose of this thesis is to apply the stochastic optimization tech-

niques to the liner shipping operation level decision support. The specific goals

of this thesis are to:

• Study the uncertainties of bunker prices and bunker consumption and in-

corporate these two into our mathematical models.

• Propose a model that help to dynamically determine the ship speed and

the bunkering decision with all the timely updated information.

• Introduce an effective (s, S) refueling policy which can provide flexible

bunkering decision support

• Identify the advantage of considering the bunkering management for one or

multiple service networks of a liner company.

The significance of this study lies in the fact that it contributes to the prac-

tice of operational decision making in the liner shipping industry as well as the

methodology of operations research (OR).

• High and fluctuating bunker prices in recent years have posed an unprece-

dented challenge for the profitability of the liner industry as a whole. With

the consideration of bunker price fluctuation and the regional price differ-

ence, our dynamic models can be implemented by liner operators to sig-

nificantly reduce their operational costs. In addition, the bunkering man-

agement plan for liner networks proposed in this thesis can be conveniently

adopted by liner practitioners as a handy decision support tool. Besides,

the cooperation scheme between liners and bunker suppliers studied in our

work could shed light on the future research of bunker price contracts.
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• As all the optimization models involved in our work are extremely large in

scale, we have devised three state-of-the-art methodologies to tackle them.

First, we propose a modified rolling horizon approach. Unlike the standard

rolling horizon approach which solves a problem with a shorter horizon

than the original problem, our non-standard approach still solves the prob-

lem with the whole study horizon. However, we assign a higher level of

fidelity for the nearer periods than the later ones. The validity of this

non-standard variant is due to our problem nature and the diminishing

tail-end effect. Second, by taking advantage of the concepts of “integer

convergence” and “variable fixing”, we have successfully designed two vari-

ants of the progressive hedging algorithm which are capable of dealing with

large scale mixed-integer programming problems. Last, a column genera-

tion heuristic is implemented in one of our problems where the presence of

integer variables prevents the successful application of the classic column

generation method. These solving approaches tailored to tackle our large-

scale mixed-integer programming problems can be readily applied to other

difficult optimization problems.

To simplify the problem and maintain the focus of our work, we have made

the following assumptions: first, the service routes and schedules are fixed as

the determination of them is more of a tactical level problem. Second, bunker

purchasing only happens in the spot market. We do not consider the bunker

price contracts as the specific terms and conditions between bunker suppliers and

shipping liners vary significantly and are largely kept confidential.

1.5 Organization

This thesis consists of 6 chapters. Previous research papers will be reviewed in

chapter 2. First, we will go through different levels (namely the strategic level,

planning level and operation level) of decision problems in the liner industry. The

determination of the level is based on the time horizon of the decision. Despite

this difference, the nature of these problems are similar and therefore deserve a

discussion of them all even though the focus of this work is on the operation level,
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real-time bunkering and speed decisions more specifically.

In chapter 3, we study the problem of dynamic bunkering ports selection and

ship speed determination for a single vessel in one service route. While previ-

ous deterministic works focused more on the planning level of this problem, we

aim at providing operational decision support by incorporating two major ran-

dom factors into our model. Namely, the ship bunker consumption rate and the

bunker prices at each port. Based on the real-world data obtained, we establish

that the noise of daily bunker consumption follows a normal distribution with

zero mean and constant coefficient of variation. For the stochastic nature of the

bunker prices, we model it through the scenario tree which is widely used in finan-

cial engineering area to depict the randomness of the financial product returns.

While solving a whole large dynamic problem is computationally challenging, we

propose a solution method that can help to significantly reduce the computer

memory requirement and solving time. This method is a combination of scenario

tree generation scheme and a non-standard rolling horizon approach. Another

advantage about this solving method is that as much new information as pos-

sible is used and previous forecasting errors can be easily corrected during the

whole study horizon. Numerical examples based on real-world data showing the

advantages of our dynamic model over the stationary model will be presented.

In chapter 4, we deal with the problem of devising a dynamic bunkering pol-

icy of the (s, S) form which is similar in essence to the one used in the inventory

management literature with the consideration of bunker prices and consumption

uncertainties. Vessel speed during each leg is still the decision to be made while

here we adopt the discrete speed choices for the reasons that we will provide later

in the main context. To better incorporate the uncertain bunker consumption

into our model, sample average approximation method is used, which randomly

generate a random sample of consumption scenarios to feed into the model. As

the final model turns out to be a very large scale mixed-integer programming

problem, we tackle it with two variations of the progressive hedging algorithm.

Numerical results demonstrating the effectiveness of the sample average approx-

imation method and the progressive hedging algorithm will be shown. More

importantly, through extensive experiments, we will also showcase the benefits of

our dynamic policy model itself.
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In chapter 5, we pursue a different approach to help liner shippers reduce the

operational cost while facing the high and volatile bunker prices. That is to coor-

dinate the management of bunker fuel purchasing for all the service routes under

the same network. Bunker suppliers at certain ports offer liner shipping com-

panies some price discounts according to their fleet’s weekly or monthly bunker

consumption. Under this situation, the bunkering decision of individual ship-

ping routes are no longer independent, and shipping companies need to play the

role as the overall decision making center and determine the bunkering plan for

all service routes in the shipping network. With this regard, this chapter ded-

icates special efforts to the new decision problem, as is referred to as strategic

bunkering and speed management in this work, and design an optimal bunker

purchasing and speed control plan for a liner shipping company under the co-

operation bunkering scheme. As our model is a very large-scale mixed integer

non-liner programming model which cannot be solved efficiently by the state-

of-the-art commercial solvers, we propose a column generation heuristic (CGH)

algorithm and two greedy heuristic algorithms to solve it. Numerical studies

based on comprehensive liner networks will be conducted.

The final chapter, Chapter 6, summarizes this thesis and discusses several

directions for future research.
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Chapter 2

Literature review

In this chapter, we will present a survey of literature on liner shipping planning

problems in the first section with the emphasis on speed and bunkering determi-

nation problem. In the second section, works in other areas that are pertinent

to our study will be briefly introduced. The last section will be given to a dis-

cussion of several solving approaches that will be used to solve our large scale

mixed-integer programming problems. This is the most common difficulty we will

encounter in solving a liner shipping speed and bunkering determination problem

when either the size of the problem becomes large or when uncertainties come

into the picture.

2.1 Liner shipping planning problems

Typically, there are three levels of planning in the liner shipping industry, namely

the strategic, tactical, and operational planning. As in Christiansen et al. [2007],

strategic planning problems are usually long term decision problems (e.g. 2 years)

which consist of market and trade selection, ship design, network and transporta-

tion system design, fleet size and mix decisions (type, size, and number of vessels),

and port/terminal location, size, and design. The tactical problems considers

medium term decisions (e.g. 6 months) and covers adjustments to fleet size and

mix, fleet deployment (assignment of specific vessels to trade routes), ship rout-

ing and scheduling, inventory ship routing, berth scheduling, crane scheduling,
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container yard management, container stowage planning, ship management, and

distribution of empty containers. Operational planning deals with short term

decisions (e.g. less than 1 month) which includes cruising speed selection, ship

loading, bunkering, and environmental routing. Previous research efforts were

largely put on the first two levels of planning problems, while operational plan-

ning received relatively less attention.

2.1.1 Strategic planning–network design

One important category of problem in the strategic level is the network work

design problem. It is the very first decision shipping liners need to make be-

fore carrying out the business. Gelareh et al. [2010] addressed a hub-and-spoke

network design problem with a newcomer liner service provider and one existing

dominating operator. Their mixed integer linear programming model allowed the

case of multiple stops along the hub-level network and direct spoke-spoke con-

nections. Due to the large problem size, they devised an accelerated Lagrangian

method together with a primal heuristic to derive the bounds which they showed

through numerical examples to be quite efficient. Gelareh and Pisinger [2011]

presented a model for network design and fleet deployment simultaneously. In

order to solve the mixed-integer linear programming, they proposed a primal

decomposition approach. One limitation in their work was that the model was

designed for a single region and therefore one hub line was considered. Rein-

hardt and Pisinger [2012] combined the network design with fleet assignment and

modeled it as a mixed integer programming problem. Realistic factors like cost

of transhipment and a heterogenous fleet were taken into account. Finally, they

used a branch and bound algorithm to tackle the problem and computational

results on a real scale case were reported. Shintani et al. [2007] combined the

study of two problems, liner shipping network design and empty container repo-

sitioning (ECR), that had been mostly analyzed separately. They formulated a

two-stage model with the first stage to decide the sequence of calling ports and

the second stage to evaluate the profit of container management with ECR. Their

genetic algorithm-based heuristic was tested on a real container service and com-

pared with the brute force method on the same problem. The genetic algorithm
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was shown to be effective and also the inclusion of ECR proves to be beneficial.

Meng and Wang [2011] studied a liner shipping network design and ECR problem

with combined hub-and-spoke and multi-port-calling operations. Dong and Song

[2009] considered a joint fleet sizing and ECR problem with the assumption of

zero inland transport time. A simulation model was developed and tackled by

a combination of genetic algorithms and evolutionary strategy. Later Dong and

Song [2012] extended the previous problem to case where inland transport time

is stochastic.

2.1.2 Strategic planning–port selection

Port selection is closely related to network design as it decides which ports should

be included in the service networks and which ports should not. Slack [1985]

explored the factors that influenced ocean liners’ choice of ports. Their study

showed that price and service were the top two priorities contributing to a port’s

attractiveness while port infrastructures played a relatively less important role.

Murphy et al. [1992] looked at the port competitiveness problem from a multi-

participants perspective, larger or smaller liners, international water carriers and

ports and international freight forwarders for instance. They showed through

both univariate and multivariate analyses that, in terms of port competitive-

ness factors, different participants had varied evaluations. Guy and Urli [2006]

studied the port selection problem based on a multi-criteria analysis (quality of

infrastructures, cost and service). Their analysis were then applied on the port

competitiveness comparison between New York and Montreal and suggested liners

should bypass Montreal and call New York unless extensive hinterland coverage

would be established in Montreal. Wiegmans et al. [2008] revisited this port and

terminal selection problem with the focus on identifying key factors for deep-sea

container shippers, some of which were largely neglected by previous research, for

example, feeder connectivity and environmental issues. Another interesting find-

ing, practically reasonable, was that the decision making was actually different

across different type of carriers, trades and ports.
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2.1.3 Tactical planning–fleet deployment problem

Decision of fleet deployment is carried out after the service networks are deter-

mined. Lane et al. [1987] provided a dynamic model to decide a cost efficient way

of deploying fleets on pre-defined trade routes with known demand for each ship-

ping service. Before this, there had been a scarcity of research work on general

applicable analytical models for liner shipping for the reasons mentioned in their

paper. One limitation when it came to the solution approach of its model was

that since only a subset of the feasible voyage options were chosen, there was no

guarantee that an global optimal solution could be reached. Perakis and Jaramillo

[1991] and Jaramillo and Perakis [1991] used linear programming to solve a fleet

deployment problem (FDP) which was to assign an existing available fleet of ves-

sels to a given set of service routes. Details for estimating the operating costs of

liner vessels on different routes were also given. Because of the non-linearity of

the vessel speed, it was determined independently before solving the LP model.

A real world case study was conducted in their papers. Later Powell and Perkins

[1997] extended those two works by formulating the FDP as an IP model. The

objective was to minimize the total operating and layup costs for a fleet of liner

ships on several different routes. Cho and Perakis [1996] suggested two optimiza-

tion models (one profit maximization model and one cost minimization model)

for the optimal fleet size and design of liner shipping. Before solving the problem

as a Linear Programming model, a set of candidate routes were generated a priori

for different ships. Fagerholt [1999] studied the problem of optimal determination

of fleet size and mix as well as routing policy for the liner ships. A three phase so-

lution method was proposed and efficiently implemented on a network of 19 ships

and 40 ports. One of the limitations was that the feasible routes have a route

time no longer than one week. In addition, both aforementioned works did not

consider transhipment. Xinlian et al. [2000] presented an algorithm which used

a combination of the linear programming and dynamic programming techniques

to improve the solution to linear model of a long-term FDP for liner shippers.

Gelareh and Meng [2010] modeled a short-term FDP as a mixed integer nonlinear

programming problem. The optimal vessel speeds for different type of vessels and

routes were obtained indirectly by their realistic optimal travel times. The model
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was then linearized and solved by CPLEX.

2.1.4 Tactical planning–ship scheduling

Ship scheduling is another important tactical level decision. A good schedule

immediately translates into an attractive service. It also interacts with fleet de-

ployment as the ship scheduling determines how many ships are needed for each

route. In addition, the choice of ship sailing speeds is also a direct result of

published schedules. Boffey et al. [1979] developed both an interactive computer

program and an optimization model based on heuristics for the scheduling of con-

tainer ships on the North Atlantic. Even though the interactive program was not

very sophisticated as it asked for a lot of direct human control, it was a quite real-

istic representation of the real world ship scheduling problem. Rana and Vickson

[1988] studied a problem of optimal routing of chartered container ships. More

specifically, to study whether a container should be chartered or not. Benders’

partitioning method and a dynamic programming scheme were used together to

achieve an effective solving of the Non-linear integer programming model. Rana

and Vickson [1991] presented a model for routing multiple ships. The decisions

to make were the optimal sequence of port calls, the frequency of service and the

amount of cargo transported between any pair of ports for each ship. To handle

the mix-integer programming, they used Lagrangian Relaxation to decompose the

problem as well as the network. Ronen [1993] did a very thorough summarization

of works on the ship scheduling and related problems for the past decade before

that review paper. In lieu of the set partitioning method which had been largely

adopted in solving ship scheduling problems, Brønmo et al. [2007] proposed a

multi-start local search heuristic. This heuristic combined an initial random gen-

eration of large amount of solutions with either a quick or extended local search

that was designed to improve the best incumbent solution so far. Numerical

studied presented in that paper demonstrated the consistent good performance

for real-world-size ship scheduling problems. Agarwal and Ergun [2008] modeled

the simultaneous ship-scheduling and cargo-routing as a mixed-integer program.

Realistic constraints like weekly frequency and transhipment were incorporated.

An optimal decision simultaneously decides the optimal choice of service routes,
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cargo to deliver, and the delivering paths. As for the solving approaches, they

used three different algorithms: a greedy heuristic, column generation and Ben-

ders decomposition, all of which, as claimed, could reach within 1% to 1.5% of

optimality. A recent review on ship scheduling and routing was done by Chris-

tiansen et al. [2012], who claimed that the volume of research on this area almost

doubles every decade. Also the scope of the research had been widened and more

specialized problems had been addressed.

2.1.5 Operational planning–operational scheduling and en-

vironment routing

In the previous section, we discussed about ship scheduling as a tactical planning

problem. However, under certainty circumstance (significant demand uncertainty

of cargo delivery for example), it can be operational too. In addition, even though

many of the ship schedules are determined on the tactical level, they rarely follow

them on the actual day of sailing because of the change of weather conditions, port

congestion and mechanical problems. Ronen [1986] studied the ship scheduling

problem of a fleet of non-homogeneous ships (different sizes and cost functions)

to deliver a set of cargo to several destinations. Three solution algorithms were

proposed and their results are compared with industry practice, which showed

that substantial cost reduction could be achieved by operational scheduling.

Due to the unpredictable nature of the sea environment, vessels may need to

deviate from their pre-scheduled routes on the actual day of sailing. Environment

routing helps shippers avoid the negative influence of unpredictable environment

as much as possible or even take advantage of it.

Papadakis and Perakis [1990] studied a vessel minimal time routing problem

between an origin and destination pair with stationary or time dependent seas.

The decisions to make were the route as well as the power setting of the vessel

based on the knowledge of wave which was a function of location. Variational

calculus and optimal control theory were used respectively for stationary and

time dependent case. Two major extensions of the previous work were made in

Perakis and Papadakis [1989]. Firstly, time-dependent routing, which allows the

sea condition at any point to change over time, was considered. Secondly, instead
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of a single origin and destination pair, they considered multiple legs with known

leg length. Their solving approach was based on a combination of first variation

considerations with global boundary conditions. Lo et al. [1991] studied the value

of knowing the ocean current information in strategic routing by calculating the

fuel consumption difference with or without using this information. They claimed

that, for US only, more than $10 million of fuel cost could be saved by taking

advantage of the ocean currents. With the development of more sophisticated

technologies which can predict the ocean current information more accurately,

the cost reduction potential can be ever higher.

2.1.6 Operational planning–liner ship bunkering and speed

determination

Even though the ship speed determination problem, as we claimed, is a relatively

new research area, there were some early works touching on this topic which dated

back as early as 1970s, Avi-Itzhak [1974], Jun [1975] and Ryder and Chappell

[1979] for instance. However, we think that the first work that gave this topic a

serious discussion was done by Ronen [1982]. There were some very interesting

points discussed that laid the foundation for future research. Firstly, there is a

trade-off between bunker fuel saving by reducing the ship speed and the loss of

revenue associated with slow steaming. Secondly, by estimation, a third power

relationship exists between the bunker consumption and ship speed. This means

if the ship speed is reduced by 20%, around 50% of bunker consumption can be

saved. Lastly, voyages of ships mostly consists of incoming generating leg, po-

sition leg and mixed leg. Optimal speeds for ships under those three different

operating scenarios were derived. Perakis and Papadakis [1987a] studied the cost

minimization problem that a fixed amount of cargo needs to be delivered within

a specific period of time between one loading port and one unloading port by a

fleet of ships under fixed contract prices. Total fleet operating costs were min-

imized by choosing the optimal full load and ballast vessel speeds. It modeled

the all-purpose fuel (fuel that includes propulsion fuel and all that used during

ship operation) rate as a quadratic function of the power of a vessel, which in re-

turn was expressed in a power function of the ship speed. In a subsequent study,
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Perakis and Papadakis [1987b] extended the problem with multiple loading and

unloading ports. Benford [1981] studied a problem of transporting a given quan-

tity of commodity between two specific ports and proposed a simple algorithm to

maximize the profit by selecting the ships and their respective sea speeds.

Notteboom and Vernimmen [2009] studied how liner shipping, facing high

bunker fuel prices, had adapted their liner service schedules. In this study, the

authors provided real-world data about the relationship between the fuel con-

sumption per day and the ship speed for different size of container ships. From

the data shown, we can see that the fuel consumption rate against speed for dif-

ferent sizes of ships is actually different although the authors did not look into

the details of this issue. Ronen [2011] investigated into the trade-off between slow

steaming and adding additional vessels in a container route. The objective was

to minimize the annual operating cost of the route by deciding the optimal vessel

speed and number of ships to deploy. Yao et al. [2012] studied the bunker fuel

purchasing and vessel speed determination problem for an individual shipping

route at the planning level. For a particular shipping route, the bunkering plan-

ning translated into selecting the bunkering ports along its shipping route as well

as determining the bunkering amount at these ports, so that the total bunker

purchasing cost was minimized. Their study facilitates the bunkering decision

for individual service route with the underlying assumption that each route op-

erates independently. On the relationship between the bunker consumption rate

and the ship speed, they separated its analysis by the different sizes of ships.

In addition, instead of assuming a single third power relationship, they added a

constant coefficient in the regression model, which they proved to be non-trivial

by numerical experiments. Wang and Meng [2012] presented a sailing speed opti-

mization problem for a liner ship network with the consideration of transhipment

and container routing. In all of those above studies, bunker prices were either

assumed to be constant or not explicitly considered.

Oh and Karimi [2010] presented a mixed-integer liner programming model

that optimized the operation of a multiparcel tanker under uncertain bunker

prices. However, only a small number of independent price scenarios were gener-

ated before solving the model. Therefore, it was a stationary model in essence.

For two types of vessel, “liners” and “trampers”, Besbes and Savin [2009] con-
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structed a dynamic profit maximization problem and derived the optimal re-

fueling policies. In the liner scenario, the problem reduced to a refueling cost

minimization problem subject to random bunker fuel prices and limited vessel

fuel capacity. However, vessel sailing speed was given in the problem formula-

tion and bunker consumption uncertainty was not considered. They modeled the

bunker prices as a sum of three parts: spot crude oil prices with a global price

adjustment factor, local supply correction factor for the bunker prices and geo-

graphical adjustments due to some other factors. The spot crude oil prices were

forecasted using a AR(1) mean-reverting process and the local supply correction

factor is described as a two states Markovian process. Sheng et al. [2013] studied

an operational level bunkering and vessel speed determination problem consid-

ering the bunker prices and consumption uncertainty. Bunker price uncertainty

was modeled by a scenario tree structure and the standard deviation of bunker

consumption during each leg was shown through statistical analysis based on ac-

tual data to be a constant percentage of mean consumption. Numerical studies

in the work demonstrated the benefit of considering uncertainties.

2.2 Related works

We found that the research in the inventory management area is very relevant to

our work. As the ship sails along, it consumes bunker fuel which is similar to the

product demand for a manufacturing plant. We mentioned that the bunker fuel

consumption is stochastic in nature, so is product demand. Bunker fuel inventory

is similar to product inventory. Most of the time, a ship can only refuel when

it reaches a port, therefore it is a ”periodic review system”. Other concepts like

prices, inventory holding costs, capacity etc. apply to both situations.

2.2.1 Capacitated lot-sizing problem

Either in the real practice or in the research literature of production planning,

capacitated lot sizing is a very important class of problems. In general, the target

of production planning is to satisfy all the product demand with minimum cost

for a certain period of time. If there are resource constraints, as in most of the
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real situations, it becomes a capacitated lot sizing problems (CLSP). The main

challenge in CLSP is to solve it to optimality when the problem size is big.

Florian et al. [1980] analyzed the computational complexity for a class of

production planning problems with know demand. Unless some assumptions

regarding to the cost function are made, CLSP is NP-hard. As in Bitran and

Yanasse [1982], who studied the algorithm complexity for both single-item and

multi-item CLSP with a particular cost structure. It assumed the continuous

components of the production as well as a liner holding cost. This rendered the

objective function to be concave and the resulting CLSP polynomial solvable.

When it came to the multi-item case, CLSP became NP-hard even with similar

conditions like in the single-item case. Or if setup times were incorporated, Maes

et al. [1991] stated that it was even NP-hard to find a feasible solution. Karimi

et al. [2003] did a thorough review of literature on CLSP models and solution

approaches before 2003. It classified all the approaches into three main categories,

namely exact methods, specialized heurisitcs and mathematical programming-

based heuristics. Due to the complexity of CLSP, mathematical programming-

based heuristics are the most promising area of exploration, which in turn includes

heuristics based on relaxation, branch and bound, set partitioning and column

generation, and some other approaches.

Understandably, stochastic capacitated lot sizing problem (SCLSP) is even

more challenging to solve as introducing uncertainties further increases the prob-

lem size. Haugen et al. [2001] used progressive hedging algorithm (PHA) as a

meta-heuristic to solve the SCLSP. Even though we feel more numerical experi-

ments could have been done in that work to demonstrate the effectiveness of the

proposed solution method, the idea of implementing PHA in SCLSP was very in-

teresting. Tarim and Kingsman [2004] studied the multi-period single-item CLSP

with stochastic demands under the “static–dynamic uncertainty” strategy. A two

stage solution heuristic was proposed with the first stage determining the replen-

ishment periods and the second stage making adjustments of orders according to

the realized demands. The accuracy of the heuristic was tested under the case of

zero unit purchase/production cost. Buschkühl et al. [2010] presented a compre-

hensive review of CLSP models as well as solution approaches for the past four

decades.
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2.2.2 (s, S) replenishment policy

Another stream of research in the inventory management which caught our atten-

tion is replenishment policy problems. The (s, S) policy, because of its simplicity,

has been widely adopted as a good approximation of the optimal policy under

general conditions. (Arrow et al. [1951] and Veinott and Wagner [1965]). Here s

is the re-order point. When the inventory level is less than or equal to s, an order

is triggered, which increases the inventory level up to S. Some other researchers

(Karlin [1960], Scarf [1993], Zheng and Federgruen [1991] etc.) have established

that, under mild assumptions, this (s, S) replenishment policy is indeed optimal.

Many solution methods to find the optimal policy parameters have been pro-

posed. Ehrhardt [1979] presented a power approximation for computing the (s, S)

policy. Under the assumptions of single item, periodic review with a set-up cost,

linear holding and shortage costs, fixed replenishment lead time, and backlogging

of unfilled demand, this approximation was able to achieve good results with

robustness. Zheng and Federgruen [1991] devised an efficient algorithm to com-

pute the (s, S) policy for a single-item inventory system by taking advantage of

some newly found properties of the cost function c(s, S). A key condition for

this algorithm to work is a quasi-convex cost rate. In addition, the deterministic

lead time assumption ensured that orders arrived in the same sequence as they

were placed. Bashyam and Fu [1998] relaxed this assumption by considering a

periodic review (s, S) problem with random lead time. A simulation optimiza-

tion algorithm based on the feasible directions approach was proposed to solve the

problem. Numerical case studies demonstrating the effectiveness of this algorithm

were provided.

All previous works do not explicitly consider the product price changes in

their models. However, price fluctuations are very common in reality; Prices of

source materials and end products keep changing. One setting of optimal (s, S)

under current prices may not be good for a different price. In Kalymon [1971], a

single-item multi-period inventory problem was studied where the future purchase

prices for the item was modeled by a markovian stochastic process and convex

holding and shortage costs and a set-up cost for ordering were assumed. It showed

that a policy of the form (si(p), Si(p)) was optimal based on the aforementioned
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assumptions in the finite horizon case. Here, p is the realized item prices at

current time. The idea of a (s, S) policy for our bunkering decision came from

this work.

2.3 Solution methods

2.3.1 Scenario reduction algorithms

In our models which will be discussed later, we use a scenario tree to model

the uncertainty of bunker prices. One of the very first problems associated with

a scenario tree formulation is the huge scenario size when either the number of

nodes at each stage or the number of stages becomes big. Therefore, a very natural

idea is to reduce the tree size while ensuring that the final optimal solutions and

optimal objective value do not change too much. Dupačová et al. [2003] studied

the problem of optimal scenario reduction for a convex stochastic programming

problem with a discrete initial probability distribution. The purpose was to find

a subset with pre-specified cardinality and a probability measure of the initial

scenarios. This subset was also closest to the initial distribution in terms of some

canonical probability metric. They argued that Fortet-Mourier type probability

metrics could well serve the purpose based on the stability analysis. They also

provided two algorithms, a forward reduction algorithm and a backward reduction

algorithm, with numerical experiments. In Heitsch and Römisch [2003], two

improved versions of the forward reduction algorithm and the backward reduction

algorithm were introduced.

Based on the stability analysis results for multistage stochastic programs in

Heitsch et al. [2006] (the distance of optimal values of original and approximate

models can be bounded by the filtration distance of the underlying stochastic

processes), Heitsch and Römisch [2009] extended the previous work to the case

of multistage stochastic programs. An efficient algorithm was provided.

One thing we need to mention here is that we have not directly implemented

the scenario reduction algorithms in our problems, instead we use one of them as

a benchmark to show the efficiency of our own solving method. The comparison

will be provided in the Appendix A.
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2.3.2 Sample average approximation approach

Another uncertainty in our problem we need to handle is the bunker consumption.

As we will show in our analysis based on actual data in Chapter 3, the bunker

consumption rate has a mean which is a function of the ship speed and a noise

which follows a zero mean normal distribution with standard deviation a constant

percentage of the mean consumption rate. However, solving the model which in-

corporates a continuously distributed stochastic variable will be extremely hard.

One promising direction which has been intensively studied by Operations Re-

search (OR) researchers is the sampling method, which can be further divided

into internal sampling and external sampling. While internal sampling adds newly

generated samples to the already generated old group of samples, external sam-

pling works by generating independent samples at each iteration. We will use the

external sampling in our work. Instead of directly inputting the continuous dis-

tribution into the model and obtaining the expected objective function, a certain

number of scenarios based on the initial distribution is sampled and the sample

average estimate of the objective function is derived, in the hope that this approx-

imation provides acceptable results with significantly reduced solving difficulty

by avoiding the multiple integrations (A formal presentation of this concept can

be found in Rubinstein and Shapiro [1990]).

The aforementioned method is usually referred to as sample average approx-

imation (SAA). From both theoretical and practical perspective, convergence

property of this method is of great interest. Shapiro [1996] studied the conver-

gence rate of the SAA for stochastic linear problem and stated that in smooth

cases (under independent and identically distributed (iid) sampling) with some

mild regularity conditions, the SAA estimators is asymptotically equivalent to

stochastic approximation estimators implemented with optimal step sizes. Driven

by the need to apply SAA to a wider range of stochastic optimization problems,

convergence analysis of SAA with non-iid sampling were also extensively studied

(Balaji and Xu [2008], Shapiro and Xu [2007] and Xu and Meng [2007]). For

example, Xu and Meng [2007] discussed the convergence of Karush-Kuhn-Tucker

points as well as the exponential convergence of global minimizers of SAA prob-

lems for a class of stochastic programs with non-smooth equality constraints.
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2.3.3 Progressive hedging algorithm

Decomposition algorithms have been widely applied in solving multi-stage stochas-

tic programming problems. Basically, they belong to two major categories,

namely the primal decomposition which breaks the original problem down in

terms of stages and the dual decomposition which works on subproblems of indi-

vidual scenarios. PHA falls into the latter category.

It is based on the idea that after relaxing a relatively small number of side

constraints, many complex stochastic programming problems can be viewed as

a group of easy-to-solve subproblems which can then be solved individually. In

the next step, penalties of the violations of these side constraints are put in

the objective function of each individual problem. Coefficients of those penalty

terms are updated step by step. Algorithm stops until a predetermined accuracy

or solving time limit is reached.

Rockafellar and Wets [1991] was one of the first several works that discussed

PHA. It brought up the idea of scenario analysis where the uncertainty about

future is modeled by a number of deterministic subproblems. By studying the

similarities and trends of the optimal solutions of individual sub-problems, there is

hope that a “well-hedged” overall solution which performs well under all scenarios

can be found. It also proved that in the case of convex problem, PHA converges

to the global optimal and if it converges in the non-convex case, it achieves a

local optimum. Unfortunately, our problems are mixed-integer (a large num-

ber of binary variables indeed) in nature and therefore hinder a straightforward

application of PHA.

In the case of multi-stage stochastic problems with 0−1 variables, Løkketangen

and Woodruff [1996] suggested a combination of PHA with tabu search as a so-

lution technique. Tabu search was used to find the solutions for the induced

quadratic 0 − 1 mixed-integer sub-problems. They also introduced a very inter-

esting idea called integer convergence, which means all the integer variables have

converged before the full convergence of other variables. Haugen et al. [2001]

applied the PHA as a meta-heuristic to their stochastic lot-sizing problem. What

brought our attention to this work was their application of the integer conver-

gence concept in their PHA. The main cornerstone of our PHA framework is also
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based on this integer convergence. When it comes to the actual implementa-

tion, Watson and Woodruff [2011] pointed out that there are several directions

(computing effective penalty values, accelerating convergence, termination crite-

ria and detecting cyclic behavior) that have the potential to significant improve

the performance of PHA.

2.3.4 Column generation

Column generation is an efficient solving approach when dealing with problems

with a huge number of variables. It is based on the observation in the Simplex

method that, in the optimal solution, most of the variables will be non-basic

and assume a value of zero. Therefore, a very natural idea is to only consider

a subset of the total variables when solving the problem and bring in new basic

variables when necessary. Column generation achieves this end by first separating

the original problem into a master problem and a set of sub-problems. In the

master problem, only a subset of the original variables are included and those

sub-problems are used to identify new variables based on the dual information

from the master problem. Algorithm works in an iterative way until no new

variable is eligible for entering into the master problem.

Column generation method was initially proposed by [Gilmore and Gomory,

1961]. Due to its ability to deal with problems with a huge number of variables

([Lübbecke and Desrosiers, 2005]), column generation method has been widely

used in vehicle routing and other logistics planning problems. [Ahn et al., 2012]

devised heuristics based on column generation for a generalized location routing

problem with profits. [Mufalli et al., 2012] studied an aerial vehicle routing prob-

lem in military reconnaissance missions using heuristics augmented by column

generation approach. Numerical experiments showed that column generation

could improve the heuristic solutions while it only marginally increased the so-

lution time. [Jin et al., 2013] investigated a train network design optimization

problem using a column generation based hierarchical solving approach. [Parragh

and Schmid, 2012] applied column generation and large neighborhood search to

study a Dial-a-ride problem. Column generation is also applied in areas like

scheduling and network optimization: for instance, aircrew scheduling ([Vance
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et al., 1997]), wireless network routing scheduling ([El-Najjar et al., 2009]) and

telecommunication network optimization ([Santos et al., 2010]).
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Chapter 3

Dynamic determination of vessel

speed and selection of bunkering

ports for liner shipping under

stochastic environment

We have shown in Chapter 1 that in recent years the bunker prices have been

increasing and fluctuating dramatically. While the bunker cost takes up more and

more percentages of the total operational cost, shipping companies are relentlessly

seeking for ways to reduce it. One practice that has gradually obtained popularity

is slow steaming. However, the characteristic of the liner shipping is that it

usually has a fixed number of port-calls in a cyclical route with a published

schedule. While slow steaming would be the general trend when bunker prices are

high, high fluctuation and regional differences of the bunker prices complicate the

situation because simply reducing the vessel speed may miss out the opportunity

of reaching the next port when bunker prices there are low. In addition, bunker

consumption under the same speed for the same distance also varies depends on

weather and sea conditions.

From the literature review in Chapter 2, we see that bunker prices and con-

sumption uncertainties in this problem have not been sufficiently tackled. Thus

this study is devoted to the dynamic determination of the vessel speed from the
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current port to the next one and the bunkering amount in the current port consid-

ering the uncertain bunker prices and bunker consumption. This is an operational

problem when, on the planning level, ships’ deployment, scheduling and routing

have been decided. Also due to the service nature of the liner shipping, inter-

action between ships of the same service route and interaction between different

service routes, if no transhipment is considered, is very low. Therefore, we only

need to consider a single vessel in one service route because of the operational

independence of ships and routes.

3.1 Problem description

In this study, we consider the operational level decision making for a single liner

ship in one cyclical route (start from one port, travel through all other ports at

least once and go back to the original port) with fixed number of port calls and

time windows. Time window states the ship arrival and departure times at each

port. Two uncertain factors considered in our work are the bunker fuel prices and

the bunker fuel consumption rate. A more detailed discussion on how to capture

the randomness of these two parts would be given later in this section.

Two key decisions to be made are where and how much to bunker. In the

real practice, prior to the arrival of the next port, ship owners would ask the

bunker suppliers for quotations, based on which, bunkering decision is made.

Once determined, the quotations will rarely change until the ship reaches the

port. Therefore, we can conveniently assume that bunkering only happen when

a ship reaches one port. Bunkering decision depends on the bunker prices at

each port which are usually different across those ports due to local supply–

demand factors. The evolution of the bunker prices at each port can be modeled

as a discrete-time Markovian process which describes all the possible states and

transition matrix between those states. Without loss of generality, we assume

that port calls are on a weekly basis and hence we only need to describe the

bunker prices evolution on a weekly basis. While this is a drawback of our work,

rolling horizon approach can help to mitigate this problem. This is so because

we can always update the bunker price scenario tree based on timely real world

situations.
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Aside from bunkering, another important decision is the ship speed between

each leg, which has been commonly assumed to be constant during each leg.

How to reach each one port within the scheduled arriving time and save bunker

consumption as much as possible through slow steaming is a question faced by

most of the practitioners. Traditionally, ships are designed to sail at high speed.

Speed that utilizes lower than 40% of engine load is considered to be damaging

to engines according to the recommendation of ship manufacturers. However, a

recent experiment done by Maersk [2010], on its own fleet of 110 ships, showed

that it is possible for vessels to slow down if necessary.

In our problem, the objective is to minimize the total operational cost in one

service loop. The costs considered here are the bunker cost and inventory holding

cost. Bunker cost mainly consists of two parts, fixed bunkering cost incurred each

time a bunkering takes place and variable cost that depends on the bunkering

amount and bunker prices at the time being. Inventory holding cost can be

interpreted as a combination of the capital committed in the bunker purchase

which could otherwise generate profits through some investment activities and

a loss of revenue due to less capacity to carry revenue-generating cargo. As a

simplification, we assume that the inventory carrying cost per metric ton (pmt) is

constant. Because our study horizon is one service loop which is finite, inevitably,

there would be bunker fuel left in the ship fuel tank at the end of voyage. For

this amount of bunker fuel left, we deduct it from the total cost based on the

bunker prices at the time being.

3.1.1 Model for bunker prices

To model the evolution of the bunker prices, we use the percentage changes in

each leg of the voyage, but the difficulty is that the percentage change can take

any continuous value within a reasonable range. Incorporating a random variable

with continuous distribution into an optimization model would make solving the

model extremely hard, if not impossible.

Therefore, we discretize the bunker price percentage changes and assume they

follow a Markovian process, which means current bunker prices only depend on

previous period price percentage changes. At first, we determine an interval
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within which the bunker price percentage changes between two subsequent pe-

riods can take place and then we divide this interval into several smaller sub-

intervals. Transition matrix depicting the transition among those sub-intervals

is constructed. In the end, one discrete point value is chosen to represent each

sub-interval. We can either choose the mean of the sub-interval or generate it by

random sampling.

For example, if we denote P i
t and θit as the bunker prices and bunker price

percentage changes at port i and time period t, and P i
0 as the baseline bunker

prices at port i and time 0, then bunker prices at each port and time period t

are based on baseline bunker prices as well as all the percentage changes during

previous periods. For example, P i
1 = P i

0 × θi1 and P i
k = P i

k−1 × θik. As mentioned,

we approximate the port-by-port bunker price change evolution by the weekly

bunker price change evolution.

3.1.2 Model for bunker consumption rate

In Yao et al. [2012], they assumed that the daily bunker consumption rate could

be expressed as F = k1 ·V 3 +k2, within which, F is the daily bunker consumption

(tons/day), k1 and k2 are two constants (can be different for different vessel sizes),

and V is the ship speed (knots/hour). Due to the reasons we mentioned earlier, a

noise term is added to depict the uncertainty of bunker consumption. This means

F = k1 · V 3 + k2 + ε(V )

Based on the data we obtained from a real liner company, we found that

the noise ε is a function of the ship speed and the noise term follows a normal

distribution with zero mean and constant coefficient of variation under different

ship speeds. Table 3.1 below shows the results of our analysis.

We have grouped the original data according to the different speed intervals.

Notice we have different intervals for different sizes of ships. This is simply

because larger ships usually sail under a greater speed. However, this would

not be an issue here because for ships of each size category, Table 3.1 shows

that the coefficient of variation is approximately constant. This means that the

standard deviation of the bunker consumption within a specific period of time is
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Table 3.1: Analysis of daily bunker consumption rate

Ship size (TEU) K1 K2 CV for different speed intervals

speed interval 12.5 ∼ 13.5 13.5 ∼ 14.5 14.5 ∼ 15.5
0− 1000 0.004476 6.17

CV 0.34 0.39 0.3

speed interval 12.5 ∼ 13.5 13.5 ∼ 14.5 14.5 ∼ 15.5
1000− 2000 0.004595 16.42

CV 0.21 0.24 0.21

speed interval 12.5 ∼ 13.5 13.5 ∼ 14.5 14.5 ∼ 15.5
2000− 3000 0.004501 29.28

CV 0.13 0.15 0.10

speed interval 17.5 ∼ 18.5 18.5 ∼ 19.5 19.5 ∼ 20.5
3000− 4000 0.006754 37.23

CV 0.09 0.09 0.075

speed interval 18.5 ∼ 19.5 19.5 ∼ 20.5 20.5 ∼ 21.5
4000− 5000 0.006732 55.84

CV 0.068 0.08 0.08

speed interval 17.5 ∼ 18.5 18.5 ∼ 19.5 19.5 ∼ 20.5
5000− 6000 0.007297 71.4

CV 0.07 0.07 0.08

proportional to the mean consumption. Considering that wind and sea current

are two of the main factors for the bunker consumption uncertainty and the fact

that their influence increases with ship speed would not surprise us with such

a conclusion. Also, for different sizes of ships, we state that the coefficient of

variation actually decreases with ship size. The intuitive explanation is that

bigger ships are usually equipped with more powerful engines, and thus wind and

sea current impose relatively less influence on them.

In our dynamic model, we will use chance constraints to control the probability

of a ship running out of bunker before reaching the next port to be less than one

fixed percentage value (e.g. 0.99%).

3.2 Modeling

As discussed, we model the evolution of the bunker prices by a Markovian process.

In the financial engineering area, researchers use scenario tree models to for-

mulate their problems in which the returns of financial products possess stochastic

nature. Mulvey et al. [1997] reviewed the application of multi-stage stochastic op-

timization on asset/liability management. When it came to the tradeoff between

realism and computational tractability, they listed several essential characteris-
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tics that a mathematical model for investment problem should possess to render

useful application. One possible way that they claimed to be effective in covering

all of those characteristics was a scenario tree model. Considering the similar

nature of those financial products with bunker prices, here we use the scenario

tree to model the randomness of bunker prices.
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Figure 3.1: A simple example of scenario tree

Bunker price uncertainty in the future times is modeled by a discrete stochastic

process ξ that is defined on a probability space of (Ω,F,P) with

ξ = {ξt := θit}t∈T.

θit denotes the bunker prices percentage change at time period t and port

i. To make our multi-stage stochastic optimization problems computationally

tractable, following assumptions on the property of (Ω,F,P) are made: first,

Ω is finite and Ω = {wr}r∈R with R = {1, ...,R}; F is the power set of Ω;

P({w}) = pr with r ∈ R. Second, {Ft}t∈T is the filtration induced by ξ with

Ft ⊆ F as the σ-algebra generated by ξt. At the beginning of every service loop,

the most recent bunker price changes are known. This means ξ1 is deterministic

and F1 = {∅,Ω}. For the future bunker price changes, we only know the discrete

probability distribution. Bunkering and speed decisions at any stage do not

depend on future realization of bunker price changes, but on the probability

specification (Ω,F,P). This is a non-anticipative constraint commonly used in
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many multi-stage stochastic optimization problems. When it comes to the end of

the studying horizon, all the random information is realized and Ft = F. A series

of realizations (ξr1, ..., ξ
r
T ) over the entire study horizon consist of a scenario. All

the scenarios are combined into a scenario tree representation. Figure 4.1 above

shows an example of a scenario tree.

3.2.1 Assumptions

Now, we summarize all the assumptions made in our paper:

1. Bunkering and ship speed decisions are made when ship reaches one port.

2. We consider one ship in one service route with time windows. Port time

(time one ship spends on entering, unloading and loading cargo, idling and

exiting) at each port is deterministic and known.

3. Relationship between the ship speed and the bunker consumption is estab-

lished in Section 3.1.2.

4. Bunker prices at different ports are not necessarily the same. In addition,

bunker price changes follow a discrete-time Markovian process.

5. Bunkering cost includes the fixed cost which is constant over time by as-

sumption and the variable cost. Bunker inventory cost pmt is assumed to

be constant and independent of bunker prices. Bunker left at the end of

one service loop is refunded.

3.2.2 Notations

Following notations are used to express our dynamic stochastic problem:

R total number of price scenarios;

Πr the probability that price scenario r happens;

n number of port of calls;

di,j distance between port i and port j(nautical miles);

t total cycle time (h);

ti port time(time one ship spends on entering, unloading and loading cargo,

idling and exiting) at port i (h);
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ei earliest arrival time at port i;

li latest arrival time at port i;

Ci bunker fuel consumption when the ship is at port i;

w bunker fuel capacity for a single ship;

vmin minimum ship sailing speed (nautical miles/h);

vmax maximum ship sailing speed (nautical miles/h);

P r
i bunker price for port i under scenario r;

f fixed bunkering cost;

γ coefficient to control the service level;

h inventory holding cost pmt for bunker;

η coefficient of variation for daily bunker consumption rate

The following decision variables are defined:

V r
i,j ship speed between port i and j under scenario r;

Sri bunker fuel-up-to level for the ship at port i under scenario r;

Br
i bunkering decision variable. =1 if bunkering at port i under scenario r;

=0, otherwise;

Dependent variables:

Iri bunker fuel inventory when the ship reaches port i under price scenario

r;

F
r

i,j mean of daily bunker consumption rate for a ship travels from port i to

j under price scenario r;

δri,i+1 standard deviation of bunker fuel consumption between port i and i+ 1

under price scenario r;

Dr
i standard deviation of ship bunker inventory when ship reaches port i

under price scenario r;

Ari ship arrival time at port i under scenario r;

3.2.3 Mathematical model

The major difference between our model and the one in Yao et al. [2012] is

that ours can provide dynamic decision making. We included two uncertainties,

which render our model more realistic, but make the solving extremely difficult.

We will discuss the solving issues in the next section. There are some other minor
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modeling differences. For example, as our focus is on the operational level, we

study the optimization problem for a finite horizon, while the model in Yao et al.

[2012] is an infinite horizon problem. Compared with their model, we also add

one variable which is the fixed bunkering cost and delete the maximum bunkering

times constraint in their model. We believe that in this way our model is more

general and better conforms to the reality.

We present a mathematical model to describe our problem.

min
R∑
r=1

Πr ·
( n∑
i=1

[(Sri − Iri )P r
i + f ·Br

i + (Sri − Cr
i ) · h]− Irn+1 · P r

n+1

)
Ir1 = 0, Dr

1 = 0 ∀r ∈ R (3.1)

Iri = Sri−1 − Cr
i−1 − F

r

i−1,i · di−1,i/24 · V r
i−1,i ∀r ∈ R, i ∈ 2, 3, ..., n+ 1 (3.2)

Sri − Iri ≤ Br
i · w ∀r ∈ R, i ∈ 1, 2, ..., n (3.3)

Sri ≤ w ∀r ∈ R, i ∈ 1, 2, ..., n (3.4)

δri−1,i + (1−Br
i−1) ·Dr

i−1 = Dr
i ∀r ∈ R, i ∈ 2, 3, ..., n+ 1 (3.5)

F
r

i,i+1 = k1(V r
i,i+1)3 + k2 ∀r ∈ R, i ∈ 1, 2, ..., n (3.6)

δri−1,i = η × F r

i−1,i · di−1,i/24 · V r
i−1,i ∀r ∈ R, i ∈ 2, 3, ..., n+ 1 (3.7)

Iri ≥ γ ×Dr
i ∀r ∈ R, i ∈ 2, 3, ..., n+ 1 (3.8)

vmin ≤ V r
i,i+1 ≤ vmax ∀r ∈ R, i ∈ 1, 2, ..., n (3.9)

Ari + ti + di,i+1/V
r
i,i+1 = Ari+1 ∀r ∈ R, i ∈ 1, 2, ..., n (3.10)

ei ≤ Ari ≤ li ∀r ∈ R, i ∈ 1, 2, ..., n (3.11)

Arn+1 = t ∀r ∈ R (3.12)

Br
i = 0 or 1 ∀r ∈ R, i ∈ 1, 2, ..., n (3.13)

V r
i,i+1 = V r′

i,i+1 ∀(r, r′) ∈ R identical past to i+ 1, i ∈ 1, 2, ..., n (3.14)

Sri = Sr
′

i ∀(r, r′) ∈ R identical past to i ∈ 1, 2, ..., n (3.15)

Br
i = Br′

i ∀(r, r′) ∈ R identical past to i ∈ 1, 2, ..., n (3.16)

Fn,n+1 = Fn,1, dn,n+1 = dn,1, V
r
n,n+1 = V r

n,1 ∀r ∈ R (3.17)

The objective function is to minimize the expected total cost, which includes the

fixed and variable bunkering cost and inventory holding cost. Bunker inventory
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left at the end of one service loop or beginning of a new loop is dealt as if we

can sell it in the market at the prices of that time being. Constraint (3.1) sets

the initial ship bunker inventory and standard deviation of it at zero. Constraint

(3.2) is a flow conservation constraint. Constraints (3.3) and (3.4) ensure that

the maximum bunkering amount and bunker-up-to level is less than the fuel tank

capacity. Constraint (3.5) states that if the ship bunkered at the previous port,

then standard deviation of the ship bunker inventory at current port is equal to

the standard deviation of bunker consumption from previous port to the current

port. Otherwise the standard deviation of ship bunker inventory at previous port

should also be added. This is because, as discussed, standard deviation of bunker

consumption is proportional to the total bunker consumption. Constraints (3.6)

and (3.7) express the mean daily consumption rate at a certain speed and stand

deviation of bunker consumption between ports i and i+1. Constraint (3.8) is the

deterministic equivalent for chance constraint P{Iri ≥ Dr
i } ≥ γ∗, which ensures

that the probability of bunker inventory being greater than a certain amount is

greater than a pre-specified value. Constraint (3.9) is simply to limit the ship

speed within a reasonable range, while constraints (3.10) to (3.12) are about time

window constraints and put additional restraints on the allowable sailing speed

choice. Constraint (3.13) is a binary constraint. Constraints (3.14) to (3.16)

are non-anticipative constraints which ensure that scenarios that share the same

history up to port i should take the same action.

3.3 Solution method

There are two potential challenges in solving our problem. The first one is the

non-linearity constraints related to the ship speed. We deal with this by following

the method used in Yao et al. [2012], which applied a piece wise linear function

to approximate the non-linear terms.

Another challenge is that when a scenario tree procedure is used to model the

stochastic parameters in a multi-stage stochastic problem, solving the problem

is usually difficult because of the large problem size. For example, in a case

where there are 15 ports and for each period (ship reaches a new port) there are

four price scenarios, the total number of scenarios in a scenario tree construction
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would be 416 (because the ship needs to sail back to the first port after visiting

all other ports).

Mulvey et al. [1997] reviewed several different solution algorithms for multi-

period stochastic problem with discrete-time decisions. Their focus was on medium

size of problems: problems with 1,000–3,000 scenarios and nonlinear objective

functions. Direct solvers like OBI, MINOS, GRG, CPLEX, LOQO, etc., and

decomposition algorithms like L-shaped proposal, progressive hedging algorithm

and diagonal quadratic approximation were mentioned. Another possible way is

to look at how to trim down the tree size. Growe-Kuska et al. [2003] proposed

scenario reduction algorithms which select a subset of the initial scenarios and

assign new probability to the remaining ones. Also the tree construction algo-

rithms help to reduce the number of nodes through modifying the tree structure

and bundling similar scenarios. Other interesting works in scenario reduction are

Dupačová et al. [2003], Heitsch and Römisch [2003] and Heitsch and Römisch

[2009].

In this work, however, because the problem size could be extremely large

when the number of ports involved becomes large, all those direct solvers are not

able to solve the problem. Also considering our problem nature, instead of trying

decomposition algorithms or scenario reduction algorithms, we propose to use a

slightly different method of generating scenario tree and combine it with a mod-

ified rolling horizon approach to solve a liner shipping operational level problem.

The rationale behind this combination is first, bunker price forecasting which cov-

ers a long period of time, if not impossible, suffers greatly in terms of forecasting

quality. Instead of making one-time forecast only at the very beginning for the

whole horizon, constantly updating the forecast and resolving the optimization

problem are beneficial; second, this successfully circumvents the trouble of solving

a large-scale stochastic optimization problem.

3.3.1 A modified rolling horizon solving scheme

The essence of the standard rolling horizon planning scheme is that a problem

with the study horizon shorter than the original one (to reduce the problem

size) is solved and the first period decision is implemented. With newly avail-
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able information, the problem is updated and resolved. Still the decision is only

acted on for the imminent period. This process goes on and on until the end of

the study horizon. For example, Baker [1977] implemented the standard rolling

horizon approach in a production planning problem and numerical results in his

work showed that rolling horizon approach produced results that were well within

10% of optimality and if the model construction was well tailored for specific cir-

cumstance, the optimality gap could be further reduced within 1%. In addition,

he mentioned two key reasons (“uncertain information about the future” and

“limited information about the future”) that legitimized the use of finite-horizon

model for the purpose of decision making in infinite-horizon system.

In our case, we will use a non-standard rolling horizon approach. Unlike

the standard one which solves a problem with a shorter horizon than the original

problem, our non-standard approach still solves the problem with the whole study

horizon. However, we assign a higher level of fidelity for the nearer periods than

the later ones by modifying the way we generate the scenario tree. For the first

few number of periods (could be 1, 2 or any number of periods depending on

the problem), all the price change alternatives are generated as shown in Figure

3.1, while a relatively small number of realizations (also problem specific) are

randomly generated for all the remaining periods till the end. Therefore, an

example of our modified version of scenario tree would look like Figure 3.2, in

which scenarios for periods after i + 2 are randomly generated for each parent

node. The validity of this non-standard variant is due to our problem nature and

the diminishing tail-end effect. We will further show the suitability of using this

non-standard solving horizon approach through our first numerical example.

The modified rolling horizon solving procedure tailored for our problem is

given below:

1. When the ship reaches the port i(i = 1, 2..., n), generate the price scenario

tree which looks ahead ni1 periods and randomly generate ni2 scenarios for

all the remaining periods and each parent node. The choices of ni1 and ni2

are problem specific.

2. Solve the dynamic optimization problem and get the optimal bunkering and

speed decisions for the ship at port i.
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Figure 3.2: Modified scenario tree with randomly generated siblings

3. When the ship reaches the port i+ 1, generate the price scenario tree again

based on newly available information.

4. Repeat steps 2 and 3 until the ship reaches the destination port.

3.4 Case study

Here, we implement our model in two real-world service routes, Malaysia Ser-

vice (MAS) and Asia-Europe Express (AEX), offered by a real liner. The MAS

route consists of three port-of-calls; therefore, direct solving of the whole dynamic

problem is possible and we will use this example to illustrate the effectiveness of

our modified rolling horizon solving approach by testing its optimality gap. AEX

route has 15 port-of-calls. We use the modified rolling horizon approach to solve

it and compare the results provided by the stationary model in Yao et al. [2012].

However, we have modified their model to make a fair comparison. The main

modification is about the ending bunker inventory. In their stationary model,

because it is an infinite horizon problem, bunker inventory at the end of one ser-

vice loop is the starting inventory of the next loop. However, in our comparison,

we only consider one service loop; thus the ending bunker inventory in the sta-

tionary model will be refunded as in our dynamic model. Also, we have removed

the maximum bunkering times constrain in the stationary model and redesigned
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the bunker cost to include fixed bunkering cost instead. Modified version of the

stationary model will be presented in the Appendix.

We run all our numerical studies with CPLEX-11.2 on a 3 GHz Dual Core

PC with 4 GB of RAM. Stationary model in Yao et al. [2012] can be solved by

CPLEX in seconds.

3.4.1 Parameter setting for bunker price changes

Our model has no problem accommodating the case where every port has a

different parameter setting for their bunker price scenario trees; in our numerical

study here, for ease of illustration, we assume that the bunker price percentage

changes for all the ports at each period will be the same .

One of the most commonly used methods in generating scenarios for continu-

ous distribution function is the Discretization technique. For a general introduc-

tion and application of this method, please refer to Kotsiantis and Kanellopoulos

[2006] and Dougherty et al. [1995]. For example, based on the bunker prices in

Singapore from August 7, 2002 to September 3, 2009, we discretize the weekly

bunker price changes into four intervals with equal probability and Table 3.2

below lists the mean values of each interval. Since we model the evolution of

bunker prices as an one-stage Markovian process, we also derive the conditional

transition matrix among those intervals in Table 3.3. However, problems associ-

ated with the Discretization method in deriving bunker price percentage change

scenarios based on historical data are that periods of highly volatile prices would

be evened out by mild ones and it assumes that history will repeat. Our numeri-

cal experiments show that under this setting of bunker price percentage changes,

dynamic model only has marginal benefits than the stationary model. Consider-

ing our work is more relevant in times when bunker prices are highly fluctuating

(September 2008, for example, IFO380 averaged slightly over $600 pmt in Singa-

pore, however, it dropped to average $410 in October), we construct three cases

of weekly bunker price percentage changes as shown in Tables 3.4–3.9, which are

more volatile.
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Table 3.2: Weekly bunker price change
alternatives: historical case

Scenario value Probability value

C1 -5.7% P (C1) 0.25
C2 -0.75% P (C2) 0.25
C3 1.5% P (C3) 0.25
C4 6.5% P (C4) 0.25

Table 3.3: Transition matrix of the
weekly bunker price changes: historical
case

Scenario C1 C2 C3 C4

C1 29% 22% 20% 29%
C2 24% 28% 23% 25%
C3 20% 24% 32% 24%
C4 27% 23% 25% 25%

Table 3.4: Weekly bunker price change
alternatives: Case 1

Scenario value Probability value

C1 -10% P (C1) 0.25
C2 -5.0% P (C2) 0.25
C3 5.0% P (C3) 0.25
C4 10% P (C4) 0.25

Table 3.5: Transition matrix of the
weekly bunker price changes: Case 1

Scenario C1 C2 C3 C4

C1 40 % 30 % 20 % 10 %
C2 30 % 40 % 20 % 10 %
C3 10 % 20 % 40 % 30 %
C4 10 % 20 % 30 % 40 %

Table 3.6: Weekly bunker price change
alternatives: Case 2

Scenario value Probability value

C1 -15.0 % P (C1) 0.25
C2 -7.50 % P (C2) 0.25
C3 7.50 % P (C3) 0.25
C4 15.0 % P (C4) 0.25

Table 3.7: Transition matrix of the
weekly bunker price changes: Case 2

Scenario C1 C2 C3 C4

C1 40 % 30 % 20 % 10 %
C2 30 % 40 % 20 % 10 %
C3 10 % 20 % 40 % 30 %
C4 10 % 20 % 30 % 40 %

Table 3.8: Weekly bunker price change
alternatives: Case 3

Scenario value Probability value

C1 -20.0 % P (C1) 0.25
C2 -10.0 % P (C2) 0.25
C3 10.0 % P (C3) 0.25
C4 20.0 % P (C4) 0.25

Table 3.9: Transition matrix of the
weekly bunker price changes: Case 3

Scenario C1 C2 C3 C4

C1 40 % 30 % 20 % 10 %
C2 30 % 40 % 20 % 10 %
C3 10 % 20 % 40 % 30 %
C4 10 % 20 % 30 % 40 %

3.4.2 MAS service route

3.4.2.1 Parameter Setting

Parameters for the MAS route is provided in Table 3.10:
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Table 3.10: Parameters for MAS service
Parameter Value

Number of port of calls 3
Service frequency Weekly
Ship size 3,000TEU
Total cycle time 168 h
Ship speed interval 8–15 knots
Mean bunker consumption rate F = 0.006743V 3 + 37.23
Fixed bunkering cost pmt 1, 000
Inventory holding cost pmt 50
Coefficient of variation of bunker consumption rate 0.09

3.4.2.2 Numerical results

With 3 ports, there are altogether 256 scenarios, so we can solve the whole dy-

namic problem with CPLEX. One scenario means a series of price percentage

change realizations from the start till the end of the route. For example, if bunker

prices increase θi% (i = 1, 2, 3) when the ship reaches port i (θi can be less than

0 which means it is actually a decrease of prices), and in the end when the ship

sails back to port 1, bunker prices increase another θ0%. Hence, we denote this

scenario as [θ1%, θ2%, θ3%, θ0%].

We obtain the speed and refueling decisions given by the stationary model,

direct solving of the dynamic model and dynamic model solved by the modified

rolling horizon approach, respectively, under all three cases of bunker price per-

centage changes. Comparison of the results from direct solving of the dynamic

model and dynamic model solved by the modified rolling horizon approach is to

test the effectiveness of the modified rolling horizon approach. For the modified

rolling horizon approach, we look ahead one period for which we generate all four

possible alternatives and for the remaining three periods (it is not two because,

as mentioned, the ship needs to sail back to the first port), three bunker price

change realizations are generated for each parent node. All those three bunker

price change realizations belong to the same parent node should share the same

decision. For the modified rolling horizon approach, it is based on which specific

scenario happens to solve the problem. All 256 scenarios will be solved by our

modified rolling horizon approach.
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Under Case 1 of the bunker price changes setting, the optimal expected av-

erage cost of those 256 scenarios solved by the stationary model is $123, 637, the

optimal expected average cost solved by the direct solving of the dynamic model

is $117, 194 and the optimal expected average cost solved by the modified rolling

horizon approach is $118, 779. The failure rate (probability that a ship will run

out of fuel before finishing the voyage) in these three models is controlled at the

same level by setting the service level coefficients. We see that the optimality

gap between the rolling horizon approach and the direct dynamic solving is only

about 1.3%. In terms of performance, direct solving of dynamic model is better

than the dynamic model solved by the modified rolling horizon approach, which

is better than the stationary approach. The cost saving of using the modified

rolling horizon approach compared with the stationary model is 3.9%.

Under Case 2 of the bunker price changes setting, the optimal expected av-

erage cost of those 256 scenarios solved by the stationary model is $122, 739, the

optimal expected average cost solved by the direct solving of the dynamic model

is $113, 422 and the optimal expected average cost solved by the modified rolling

horizon approach is $116, 637. The failure rate in these three models is controlled

at the same level by setting the service level coefficients. The optimality gap

between the modified rolling horizon approach and the direct dynamic solving is

only about 2.8%. The cost saving of using the modified rolling horizon approach

compared with the stationary model is 5.0%

Under Case 3 of the bunker price changes setting, the optimal expected av-

erage cost of those 256 scenarios solved by the stationary model is $118, 878, the

optimal expected average cost solved by the direct solving of the dynamic model

is $95, 580 and the optimal expected average cost solved by the modified rolling

horizon approach is $100, 502. The failure rate in these three models is controlled

at the same level by setting the service level coefficients. The optimality gap

between the modified rolling horizon approach and the direct dynamic solving is

only about 4.9%. The cost saving of using the modified rolling horizon approach

compared with the stationary model is 15.5%

Table 3.11 and 3.12 below summarize the results so far for three different

solving methods under three different cases of bunker price percentage changes.

R denotes the modified rolling horizon solving approach, D denotes the direct
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dynamic solving approach and S denotes the solving of stationary model.

Table 3.11: Comparison between the modified rolling horizon approach and direct
dynamic solving approach

Methods Case 1 Case 2 Case 3

D $117, 194 $113, 422 $95, 580
R $118, 779 $116, 637 $100, 502

R−D
R

(%) 1.3 2.8 4.9

Table 3.12: Comparison between the modified rolling horizon approach and the
solving of stationary model

Methods Case 1 Case 2 Case 3

R $118, 779 $116, 637 $100, 502
S $123, 637 $122, 739 $118, 878

S−R
S

(%) 3.9 5.0 15.5

The above results show that the modified rolling horizon approach performs

quite well compared with the direct solving of the dynamic model, though the

optimality gap tends to be bigger when bunker prices become more volatile. Also,

as price fluctuations increase, the cost saving of using the dynamic model, either

solved directly or by the modified rolling horizon approach, increases as well.

Next we look into details of the optimal speed and refueling decisions given

by the modified rolling horizon approach and the direct solving of the dynamic

model. We take Case 3 setting of the bunker price percentage changes for ex-

ample. Table 3.13 below lists numerical results from both solving approaches

under some illustrative scenarios. For some scenarios, our experiments show that

the dynamic approach and the modified rolling horizon approach give the same

or similar optimal solutions, scenarios 1–3 in Table 3.13, for example. We also

find that, for both approaches, if there is a bunker prices increase when the ship

reaches the port 2, it will bunker more. The bigger the increase, the more it

bunkers. We can see this from the comparison between scenario 1 with scenario

2 for example. There is a 10% prices increase in stage 2 at scenario 2 and −20%
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Table 3.13: Comparison of the direct solving of dynamic model and the modified
rolling horizon approach

Speed (knot/h): Bunkering Amount (ton): Optimal

Scenarios
Port 1–Port 2–Port 3 Port 1–Port 2–Port 3 Cost:

R:8.75–7.17–7.83 R:48.89–39.36–87.99 R:74, 800
1, [−10%,−20%,−10%, 10%]

D:8.75–7.17–7.83 D:48.89–39.36–87.99 D:74, 800

R:8.75–6.09–8.59 R:48.89–46.27–80.81 R:76, 854
2, [−20%, 10%,−10%,−20%]

D:8.75–6.88–8.00 D:48.89–40.98–86.24 D:76, 139

R:8.75–7.17–7.83 R:48.89–46.27–1992.2 R:46, 729
3, [−20%, 10%, 10%, 20%]

D:8.75–6.88–8.00 D:48.89–40.98–1993.0 D:46, 762

R:8.75–5.78–8.90 R:48.89–48.80–78.38 R:91, 564
4, [−10%, 20%,−20%, 10%]

D:8.75–6.69–8.13 D:48.89–134.38–0 D:103, 841

R:8.75–5.78–8.91 R:48.89–1992.9–0 R:705, 837
5, [10%, 20%,−20%, 10%]

D:8.75–6.69–8.13 D:48.89–134.35–0 D:124, 408

R:8.75–6.69–8.13 R:48.89–1992.9–47.8 R:294, 238
6, [10%, 20%, 20%,−10%]

D:8.75–6.69–8.13 D:48.89–134.35–1990.58 D:474, 717

decrease in scenario 1. Bunkering amount of the modified rolling horizon ap-

proach at port 2 in scenario 2 is 46.27 and it is 39.39 in scenario 1. Bunkering

amount of the direct solving approach at port 2 in scenario 2 is 40.98 and it is

39.36 in scenario 1. Comparison between scenario 3 with scenario 4 shows the

same conclusion. This is because there are altogether only three ports in one

service loop. Port 2 is relatively more important in the overall planning for the

whole loop. When it spots a increase of bunker prices, it tends to bunker more

at port 2.

One more finding is that when scenarios [10%, 20%, x%, x%], [20%, 10%, x%, x%]

or [20%, 20%, x%, x%] (x denotes either −20,−20,10 or 20) happen, the modified

rolling horizon approach will bunker up to the maximum capacity at port 2 while

the direct solving approach never does this. This means the modified rolling hori-

zon approach is tend to be myopic compared with the direct solving approach

because if in later stages, bunker prices actually decrease, then the modified

rolling horizon approach results in much higher cost than the direct solving, as

shown in scenario 5. However, if in later stages, bunker prices actually increase,

as shown in scenario 6, the modified rolling horizon approach will outperform the

direct solving approach (when all scenarios are considered, and on the expected
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average sense, the direct dynamic solving will still be better). In this sense, we can

also say that direct solving approach is conservative compared with the modified

rolling horizon approach.

Overall, we can say that the modified rolling horizon approach provides a quite

good solving scheme for our dynamic programming problem. With this example

in mind, we could have the confidence to implement our rolling horizon approach

in a larger problem where direct solving of the dynamic model is practically

impossible due to the computer memory restraint or extremely long solving time.

Another example we are going to show belongs to this category.

3.4.3 AEX service route

AEX service route consists of 15 ports which means there are altogether 416

scenarios and the parameter setting is given below. It is the same with that in

Yao et al. [2012] for the purpose of fair comparison. In this example, we are

going to solve the problem using the modified rolling horizon approach and then

compare the results with the stationary model. Besides the three cases of bunker

price percentage changes just given, we want to see another special case 0 of

bunker prices uncertainty as represented by Tables 3.14 and 3.15. We set all four

bunker price percentage changes to be 0. The purpose is to test the benefit of

introducing bunker consumption uncertainty by controlling the bunker prices to

be constant. In addition, we will study the effect of ship size difference on the

overall operational decisions.

Table 3.14: Weekly bunker price change
alternatives: Case 0

Scenario value Probability value

C1 0 % P (C1) 0.25
C2 0 % P (C2) 0.25
C3 0 % P (C3) 0.25
C4 0 % P (C4) 0.25

Table 3.15: Transition matrix of the
weekly bunker price changes: Case 0

Scenario C1 C2 C3 C4

C1 40 % 30 % 20 % 10 %
C2 30 % 40 % 20 % 10 %
C3 10 % 20 % 40 % 30 %
C4 10 % 20 % 30 % 40 %
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3.4.3.1 Parameter setting

Parameters for the AEX route is provided below in Table 3.16:

Table 3.16: Parameters for AEX service
Parameter Value

Number of port of calls 15
Service frequency Weekly
Ship size 6,000TEU
Total cycle time 1512 h
Ship speed interval 14–24 knots
Mean bunker consumption rate F = 0.007297V 3 + 71.4
Fixed bunkering cost pmt 1, 000
Inventory holding cost pmt 50
Coefficient of variation of bunker consumption rate 0.07

3.4.3.2 Comparison between the dynamic model solved by the modi-

fied rolling horizon approach and the stationary model

Failure rate in both models is controlled to be 0.01. In the modified rolling horizon

method of this example, we look ahead 3 periods which we fully generate all the

alternatives for them and for the remaining 13 periods, 8 price realizations are

generated. In our comparison, 40 price scenarios have been generated.

Under Case 1 of the bunker price changes setting, average cost for the dynamic

model solved by the modified rolling horizon approach is $3.66× 106 and average

cost for the stationary model is $3.84 × 106 which is about 4.9% of cost saving.

Under Case 2 of the bunker price changes setting, average cost for the dynamic

model solved by the modified rolling horizon approach is $3.79× 106 and average

cost for the stationary model is $4.07 × 106 which is about 7.4% of cost saving.

Under Case 3 of the bunker price changes setting, average cost for the dynamic

model solved by the modified rolling horizon approach is $3.82× 106 and average

cost for the stationary model is $4.30× 106 which is about 12.6% of cost saving.

From Case 1 to Case 3, as the bunker prices become more volatile, the cost

saving of the dynamic model solved by modified rolling horizon approach com-

pared with the stationary model increases from 4.9% to 12.6%. Considering the
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huge amount of operational costs for a liner shipping company, this means a

significant total cost reduction. Also this result does not surprise us because dy-

namic model should become more superior to stationary model when prices are

more fluctuating.

Under Case 0 of the bunker price changes setting, the cost saving is 4.6%.

This is the cost saving by introducing bunker consumption uncertainty solely.

Therefore, we can see, under Case 1 of bunker price changes setting, the benefit

of introducing stochastic bunker prices is only about 0.3%. However, under Cases

2 and 3, this increases to (7.4−4.6) = 2.8% and (12.6−4.6) = 8.0%. This finding

conforms with our intuition that the more volatile the bunker prices, the more

benefits of considering the stochastic bunker prices.

Table 3.17 below summarizes the results so far for AEX service example.

Table 3.17: Comparison between the modified rolling horizon approach and the
solving of stationary model

Methods Case 0 Case 1 Case 2 Case 3

R $3.51× 106 $3.66× 106 $3.79× 106 $3.82× 106

S $3.68× 106 $3.84× 106 $4.07× 106 $4.30× 106

R−S
S

(%) 4.6 4.9 7.4 12.6

Bunker inventory holding cost per ton in our problem is assumed to be con-

stant and independent of the bunker prices. Thus we want to see how sensitive

the result is to this parameter. In this AEX route example, bunker prices of all

the ports at the initial stage are set around $460 pmt with minimum $456 and

maximum $471. Our previous results are based on bunker inventory holding cost

being $50 pmt. In our subsequent analysis, we want to see what will happen if

we vary this parameter.

Take Case 1 of the bunker price changes setting for example, our numerical

results show that when bunker inventory cost is $100 pmt, dynamic model solved

by the modified rolling horizon approach has 8.56% of cost saving to the stationary

model, compared with 4.9% if bunker inventory cost is $50 pmt. When inventory

cost is $150 pmt, this cost saving increases to 13.4%. Or if we set inventory

cost to be $25 pmt, the cost saving is 3.48%. This means generally when bunker

48



3. Dynamic determination of vessel speed and selection of bunkering
ports for liner shipping under stochastic environment

inventory cost pmt increases, the dynamic model becomes even more superior to

the stationary approach.

In addition, we can expect that the benefit of introducing bunker consumption

uncertainty (Case 0 of the bunker price changes setting) increases with bunker

inventory holding cost. If we set the bunker inventory holding cost to be $25 pmt,

the cost saving is 2.56%. If it is $100 pmt, the cost saving is 8.53%, and if it is

$150 pmt, the cost saving increases to 11.2%.

Therefore, the benefits of introducing these two uncertainties increase with

the volatility of the bunker prices and the bunker inventory holding cost.

3.4.3.3 Effect of the ship size difference on the overall operational

planning

In the end, we want to discuss the effect of using a different size of ship. For

instance, what if the 3000-TEU ship is used here in this AEX route. All other

parameters for the AEX service route remain the same, except for these related

to the ship size. Based on the bunker prices scenarios generated in previous

analysis under Case 1 setting of the percentage changes, and under $50 pmt

of the bunker inventory holding cost, the average cost for the dynamic model

solved by the modified rolling horizon approach is $2.65 × 106 and the average

cost for the stationary model is $2.82 × 106 which is about 6.0% of cost saving

(4.9% for a 5000-TEU ship). The average costs are lower compared with the case

when a 5000-TEU ship is used, because we can see from the bunker consumption

rates in Table 3.10 and 3.16 that smaller ships burn less bunker sailing under

the same speed and distance. Also the dynamic model performs even better

than the stationary model when one smaller ship is used. This is largely due to

the fact that smaller ships have a higher coefficient of variation of the bunker

consumption rate. However, we notice that the average cost (dynamic model

solved by the modified rolling horizon approach) per TEU for the 3000-TEU ship

is 8.84× 102 and that for the 5000-TEU ship is 7.32× 102. This means, cost per

TEU wise, bigger ships are more efficient.

Next, we want to see the effect of ship size difference on the bunkering and

refueling decisions. In the stationary model, we find that the bunkering ports
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selection and bunkering amount will be different. However, speed choice is the

same because there are no bunker prices and consumption uncertainties. In the

dynamic model solved by the modified rolling horizon approach, both bunkering

and speed decisions can differ when different sizes of ships are deployed. For ex-

ample, under scenario [5 %,10 %,10 %,-5 %,-10 %,10 %,5 %,5 %,5 %,10 %,10 %,-5

%,-5 %,-5 %,-5 %,-10 %] (randomly selected one), the modified rolling horizon

approach suggests to bunker at port 12 when a 5000-TEU ship is used, and not

to bunker there if it is a 3000-TEU ship. Bunkering amount at every port are

significantly different too. As for the ship speed, Figure 3.3 shows that during

some legs, different sailing speeds are suggested for these two sizes of ships, al-

though the difference is not very significant. However, under some scenarios, the

difference can be larger as shown in Figure 3.4 under scenario [-5 %,5 %,-5 %,-5

%,5 %,-5 %,10 %,5 %,10 %,-5 %,5 %,-5 %,-5 %,-5 %,5 %,5 %].

To conclude, we think ship size differences impose significant effect on the

overall operational planning for the liner shipping companies.
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Figure 3.3: Optimal speed decisions given by the modified rolling horizon ap-
proach 1
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Figure 3.4: Optimal speed decisions given by the modified rolling horizon ap-
proach 2

3.5 Summary

This chapter studies the problem of dynamic bunkering port selection and ship

speed determination for a single vessel in one service route. While previous de-

terministic works focus more on the planning level of this problem, we aim at

providing operational decision support by incorporating two major random fac-

tors into our model. Namely, the ship bunker consumption rate and the bunker

prices at each port. Based on the bunker consumption model in Yao et al. [2012],

we further established that the noise of daily bunker consumption follows a nor-

mal distribution with zero mean and constant coefficient of variation. For the

stochastic nature of the bunker prices, we have modeled it through the scenario

tree which is widely used in financial engineering area to depict the randomness

of the financial product returns. While solving a whole large dynamic problem

is computational challenging, we proposed a solving method that could help to

significantly reduce the computer memory requirement and solving time. This

method is a combination of scenario tree generation scheme and a non-standard

rolling horizon approach. Another advantage about this solving method is that

as much new information as possible is used and previous forecasting errors could
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be easily corrected during the whole study horizon. Our numerical examples

based on real-world data have shown that the dynamic model improves signifi-

cantly in terms of overall cost and service level (or failure rate) compared with the

stationary model. With the reasonable solving time, we think our model could

be implemented by liner shipping companies to give operational level decision

support in order to lower the overall operation cost and provide more reliable

service.

Some possible future research directions are first, we have noticed that though

the number of scenarios would be very huge with just a few number of ports, many

of them share the same optimal decision. This is a phenomenon determined by

our problem nature. In our problem, time window determines the ship speed

range during each leg, which determines the bunker consumption. In the end,

how much bunker consumed determines how much needs to be bunkered. Also, a

change of optimal decision in our problem usually means a change of bunkering

ports. However, a change of bunkering ports would not happen unless bunker

prices at one port become significantly attractive considering the bunker inventory

holding cost. Therefore, the optimal decision is not very sensitive to the bunker

price changes and we could look for ways to group those scenarios which give the

same, or close, optimal solution. Second, in our current work, no structured policy

is followed. The bunkering decision and speed selection could always change

along with external factors. As a future research, we want to propose a (s, S)

policy like that in the inventory management problem. When the ship bunker

inventory drops below s, we bunker fuel up to the level of S. Careful readers will

find our problem has a lot of similarities with inventory management problem.

Bunker inventory is equivalent to product inventory, and bunker consumption

is equivalent to product demand, running out of fuel before finishing a voyage

leg is equivalent to an inventory being out of stock. Also, for the bunker fuel

consumption, instead of using chance constraints, we could also use the sample

average approximation method to model the uncertainty of bunker consumption.

Last but not least, soft time windows associated with penalty cost and inventory

holding cost depending on bunker price could be introduced into our model to

render it more realistic.
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Chapter 4

(s, S) policy model for liner

shipping refueling and sailing

speed optimization problem

Based on the current intense business environment of high volatile bunker prices,

fierce market competition, large fleet of ships in operation to name a few, it would

be highly appealing for liner shipping practitioners if there were a simple, yet

effective, strategy that guides timely operational decision making on a daily basis.

This work expounds on this issue. We adopt the (s, S) policy which has been

effectively used in inventory management to solve a liner shipping refueling and

vessel speed determination problem under both bunker prices and consumption

uncertainties.

We found that our problem nature is very similar with that of the inventory

management. Bunker fuel in our case is the “product”; Bunker consumption

within each leg is the “product demand” during each period; And inventory

holding costs are similar in both cases. In the inventory management literature,

many researchers ([Scarf, 1993], [Karlin, 1960], [Zheng and Federgruen, 1991] etc.)

have established that, under mild assumptions, a simple (s, S) replenishment

policy is optimal. Here s is the re-order point. When the inventory level is

less than or equal to s, an order is triggered, which increases the inventory level

up to S. In [Kalymon, 1971], a single-item multi-period inventory problem was
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studied where the future purchase prices for the item was modeled by a markovian

stochastic process and convex holding and shortage costs and a set-up cost for

ordering were assumed. It showed that a policy of the form (si(p), Si(p)) was

optimal based on the aforementioned assumptions in the finite horizon case. Here,

p is the realized item prices at the current time. Thus, very naturally, we want

to implement a similar (si(p), Si(p)) policy in our bunkering decision to provide a

contingent bunkering plan, the execution of which depends on the actual bunker

prices and consumption realizations. What is different is that in our problem, p

means the historical realized bunker prices up till the current time. At each port,

there is a bunker re-order point si(p) associated with it. If bunker inventory is

below this critical point, a bunkering decision takes place and bunker inventory is

increased to the bunker up to level Si(p). This allows a more flexible operational

bunkering plan; the decision of whether to bunker or not depends on the actual

bunker price realizations as well as the ship bunker inventory at every port.

However, what further complicates our problem is that our policy parame-

ters are a combination of discrete and continuous variables, which make solving

approaches based on dynamic programming practically impossible. Moreover,

we need to make the vessel speed decision for each leg. This poses yet another

additional challenge in our problem. Hence, special effort has been dedicated to

devise an effective solving scheme which will be discussed later.

4.1 Problem description

Liner service network and schedule are determined in advance before the actual

customer demand is realized, which is different from that of tanker service. Start-

ing from one port, ships travel through all the ports in the network (sometimes

one port may be visited more than once) and return back to the starting port.

Due to this nature, the study of liner service is more focused on cost minimiza-

tion rather than profit maximization. Also, fleet mix and deployment problem

is a tactical level decision, thus we assume the number of ships deployed in each

service is known and we can conveniently study one ship for our operation level

problem.

Denote L as the set of all port calls. L1 is the first port-of-call and Li is the
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ith port-of-call. Li and Lj (i 6= j ) may represent the same port. Assume that in

the published schedule, there is a time window associated with each port-of-call.

It is preferable that a ship could reach within the time window, otherwise, a lump

sum penalty cost or a cost proportional to the duration of violation is incurred

which represents the cost of the surcharge by port operators, compensations to

customers, loss of goodwill and so on. When the ship reaches one port, based

on the current bunker inventory and all the available information for the bunker

prices, a refueling decision is made. In our model, we adopt a (si(p), Si(p))

refueling policy which tells the ship to bunker up to Si(p) at port i if the bunker

inventory is less than si(p) and not bunker if otherwise. As mentioned, p means

the historical realized bunker prices up till the current time.

Aside from the refueling decision, we need to decide the ship’s speed for the

next leg simultaneously. As mentioned, slow sailing speed saves fuel and thus re-

duces cost. However, violating the time window constraints incurs a cost. There-

fore, there is a trade off between low sailing speed and high schedule reliability

which we need to balance. Ship speed also determines the bunker consumption

within each leg. In [Sheng et al., 2013], it is empirically shown that the daily

bunker consumption rate under a certain speed has a mean F̄ = k1 ∗ V 3 + k2,

where k1 and k2 are two constants and V denotes the sailing speed, and noise

which follows a zero mean normal distribution with standard deviation a constant

percentage of F̄ . Due to this consumption uncertainty, a good refueling policy

should avoid these scenarios that a ship runs out of bunker in between two ports

as much as possible. Note that the bunkering policy and the speed decision only

depend on the bunker prices but not the bunker consumption. In our model,

“backlogging” of fuel is allowed, however, a high penalty cost (for example, pay

for a fast emergency refueling) will be charged or for the amount of shortage, fuel

will be bunkered at a premium price.

As the bunker consumption rate is a cubic function of the ship speed, either

a non-linear programming problem or a problem with a large amount of integer

variables, if we use a piece wise linear approximation, needs to be solved. One

nice way to circumvent this problem, which also conforms to real practice, is to

discretize the ship speed into a small set of choices. For instance, [Oh and Karimi,

2010] and [Gelareh and Meng, 2010] used this discretized sailing speed in their
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problems respectively. We denote V i,i+1 as the set of discretized feasible sailing

speeds (nautical miles/h) between port i to i+1. There are Gi,i+1 possible choices

in set V i,i+1.

As for modeling uncertain bunker prices, we learnt that the scenario tree

structure has been widely applied in the financing industry to model the uncertain

returns of various financial products. Taking into account the similarity between

the nature of bunker fuel and those financial products, we also use a scenario

tree structure as shown in Figure 4.1 to model the evolution of bunker prices.

However, a serious problem associated with this approach is the huge problem

size. If a large amount of integer variables are associated with each decision

stage as in our case, then it becomes even more computationally challenging

to solve the problem. Here we propose a method which takes advantage of an

effective combination of progressive hedging algorithm ([Rockafellar and Wets,

1991], [Løkketangen and Woodruff, 1996] and [Watson and Woodruff, 2011]) and

rolling horizon approach. Implementation details will be discussed in Section 4.3.

In the end, the objective is to minimize the total cost in a single service loop,

which consists of fixed and variable bunkering cost, bunker inventory holding

cost, penalties for violating the time window and minimum bunker inventory

constraints. Fixed bunkering cost is assumed to be constant across all ports and

variable bunkering cost is dependent on the bunker prices and bunkering amount.

Bunker inventory holding cost per metric ton (pmt) is also assumed to be constant

across ports and depends on the bunker inventory when a ship leaves one port.

For the fuel left at the end of service loop, we assume that we can sell it at the

bunker prices of that time period and deduct the revenue from the total cost.

4.2 Modeling

4.2.1 Sample average approximation

As discussed, the bunker consumption between each leg has a mean F̄ = k1 ∗
V 3 + k2 and noise which follows a zero mean normal distribution with standard

deviation a constant percentage of F̄ . However, solving the model which incorpo-

rates a continuously distributed stochastic variable will be extremely hard if not
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Figure 4.1: A simple example of scenario tree

impossible. Therefore, following the basic idea of sample average approximation

(SAA) method, we randomly generate a random sample of consumption scenarios

to feed into our model and run several replications with different samples to reach

a candidate solution. As the fluctuation of the bunker prices and uncertainty of

the bunker consumptions are independent, common consumption scenarios are

generated for different price scenarios. One thing we need to mention is that

because the mean bunker consumption is determined by the vessel speed, gener-

ating consumption scenarios thus means generating different scenarios of noise of

the mean consumption. Our numerical studies show that the optimality gap of

SAA method in our problem is rather small. For a general introduction of the

SAA method, please refer to [Kleywegt et al., 2002].

4.2.2 Scenario tree for bunker prices uncertainty

When we use the scenario tree to model the uncertainty of bunker prices, con-

straints which enforce non-anticipativity or implementability must be added to

conform to the reality that decisions are made before the realizations of future

prices, of which we only know their probability distributions and, if two scenarios

are indistinguishable up to time T , their corresponding decisions before T should

be the same. Section 4.2.4 summarizes and defines all the notations that are

going to be used. Section 4.2.5 presents our mathematical model.
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4.2.3 Assumptions

Here, we summarize the two important assumptions made in our paper:

1. The bunkering policy and the speed decision depend only on the bunker

prices but not the consumption.

2. Common consumption noise scenarios are generated for different price sce-

narios.

4.2.4 Notations

Following notations are used to express our dynamic stochastic problem:

R total number of bunker price scenarios;

Πr the probability that price scenario r happens;

K total number of bunker consumption scenarios generated;

P r
i bunker prices for port i under price scenario r;

n total number of port of calls;

di,i+1 distance between port i and i+ 1 (nautical miles);

ti total port time at port i (hours);

ei earliest arrival time (EAT) at port i;

li latest arrival time (LAT) at port i;

Ci bunker fuel consumption when the ship is at port i;

W bunker fuel capacity for a single ship;

V i,i+1 The set of discretized feasible sailing speeds (nautical miles/hour) be-

tween port i to i+ 1;

Gi,i+1 set of all possible choices in V i,i+1.

τ1 denotes the penalty for violating the bunker inventory constraint

τ2 denotes the penalty for violating the time window constraint

Xr
i,1 amount of time that the ship reaches port i earlier than schedule; = 0

otherwise;

Xr
i,2 amount of time that the ship reaches port i later than schedule; = 0

otherwise;

Y k,r
i indicator variable.= 1 if bunker inventory when ship reaches port i is less

than a certain amount; = 0 otherwise;
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f fixed bunkering cost;

h inventory holding cost for bunker;

η coefficient of variation for daily bunker consumption rate

M is a big positive number;

θki normal random number with mean 1 and standard deviation η during leg

i and scenario k;

ε is a very small positive number;

The following decision variables are defined:

Zg,r
i,i+1 indicator variable.= 1 if sailing speed vgi,i+1(vgi,i+1 ∈ V i,i+1, g ∈ Gi,i+1) is

chosen under price scenario r; = 0 otherwise;

Sri bunker fuel-up-to level for the ship at port i under price scenario r;

sri bunker ordering point for the ship at port i under price scenario r;

Dependent variables:

Bk,r
i bunkering decision variable. = 1 if bunkering at port i under bunker

consumption scenario k, = 0, otherwise;

Ik,ri,1 bunker fuel inventory when the ship reaches port i under bunker con-

sumption scenario k and price scenario r ;

Ik,ri,2 bunker fuel inventory when the ship departs port i under bunker con-

sumption scenario k and price scenario r ;

F̄ g
i,i+1 average bunker consumption per nautical mile when the sailing speed is

vgi,i+1, and F̄ g
i,i+1 = (k1 · (vgi,i+1)3 + k2)/(24× vgi,i+1);

Ari ship arrival time at port i under price scenario r;

4.2.5 Model

To reiterate, one of the outputs of this model, bunkering policy parameters

(sri , S
r
i ), allows a more flexible operational bunkering plan; the decision of whether

to bunker or not depends on the bunker price realization as well as the actual

bunker inventory at every port. To put it simply: for each price scenario realiza-

tion, our work provides a contingent bunkering plan, the execution of which also

depends on the actual consumption.

Mathematical model for our problem with a consumption scenario sample size

K:
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min
K∑
k=1

1

K

R∑
r=1

Πr
( n∑
i=1

[(Ik,ri,2 − I
k,r
i,1 + Ci)P

r
i +Bk,r

i f + Ik,ri,2 h+ τ1 Y
k,r
i + τ2(Xr

i,1

+Xr
i,2)]− Ik,rn+1,1 P

r
n+1

)
Ik,r1,1 = 0 ∀k ∈ K, ∀r ∈ R (4.1)

Ik,ri,2 ≤ Sri − Ci + (1−Bk,r
i ) ·M ∀k ∈ K, ∀r ∈ R, i ∈ 1, 2, ..n (4.2)

Ik,ri,2 ≥ Sri − Ci − (1−Bk,r
i ) ·M ∀k ∈ K, ∀r ∈ R, i ∈ 1, 2, ..n (4.3)

Ik,ri,2 ≤ Ik,ri,1 − Ci +Bk,r
i ·M ∀k ∈ K, , ∀r ∈ R, i ∈ 1, 2, ..n (4.4)

Ik,ri,2 ≥ Ik,ri,1 − Ci −B
k,r
i ·M ∀k ∈ K, ∀r ∈ R, i ∈ 1, 2, ..n (4.5)

Ik,ri+1,1 = Ik,ri,2 −
Gi,i+1∑
g=1

F̄ g
i,i+1 · Z

g,r
i,i+1 · di,i+1 × εki ∀k ∈ K, ∀r ∈ R, i ∈ 1, 2, ..n (4.6)

Gi,i+1∑
g=1

Zg,r
i,i+1 = 1 ∀r ∈ R, i ∈ 1, 2, , ..n (4.7)

0 < W ·Bk,r
i + (Ik,ri,1 − sri ) ≤ W ∀k ∈ K, ∀r ∈ R, i ∈ 2, 3, ..n+ 1 (4.8)

sri ≤ Sri ∀r ∈ R, i ∈ 1, 2, , ..n (4.9)

Sri ≤ w ∀r ∈ R, i ∈ 1, 2, , ..n (4.10)

Ik,ri,1 +M · Y k,r
i ≥ 0 ∀k ∈ K, ∀r ∈ R, i ∈ 2, 3, ..n+ 1 (4.11)

Ari + ti +

Gi,i+1∑
g=1

Zg,r
i,i+1 · di,i+1/v

g
i,i+1 = Ari+1 ∀r ∈ R, i ∈ 1, 2, , ..n (4.12)

ei ≤ Ari +Xr
i,1 ∀r ∈ R, i ∈ 1, 2, , ..n+ 1 (4.13)

Ari −Xr
i,2 ≤ li ∀r ∈ R, i ∈ 1, 2, , ..n+ 1 (4.14)

Zg,r
i,i+1 = Zg,r′

i,i+1 ∀(r, r′) ∈ R, indistinguishable up to i, i ∈ 1, 2, , ..n (4.15)

Sri = Sr
′

i ∀(r, r′) ∈ R, indistinguishable up to i, i ∈ 1, 2, , ..n (4.16)

sri = sr
′

i ∀(r, r′) ∈ R, indistinguishable up to i, i ∈ 1, 2, , ..n (4.17)

Bk,r
i = 0 or 1 ∀r ∈ R, i ∈ 1, 2, , ..n (4.18)

Y k,r
i = 0 or 1 ∀k ∈ K, r ∈ R, i ∈ 1, 2, , ..n+ 1 (4.19)

Zg,r
i,i+1 = 0 or 1 ∀g ∈ Gi,i+1, r ∈ R, i ∈ 1, 2, , ..n (4.20)

Xr
i,1 ≥ 0, Xr

i,2 ≥ 0 ∀r ∈ R, ∀i ∈ 1, 2, , ..n+ 1 (4.21)
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Ik,ri,2 ≥ 0 ∀r ∈ R, ∀k ∈ K, ∀i ∈ 1, 2, , ..n (4.22)

Sri ≥ 0∀r ∈ R, ∀i ∈ 1, 2, , ..n (4.23)

Gn,n+1 = Gn,1, dn,n+1 = dn,1, Z
g,r
n,n+1 = Zg,r

n,1 (4.24)

The objective function is to minimize the expected total cost, which includes

fixed and variable bunkering costs, bunker inventory holding cost and penalty

costs for violating the bunker inventory and time window constraints. Bunker

left at the end of one service loop or the beginning of a new loop is deducted

as though it could be sold in the spot market. Constraint (4.1) sets initial ship

bunker inventory at zero under different bunker consumption and price scenarios,

however this can be problem specific. Constraints (4.2) to (4.5) state that if ship

bunkers fuel at port i, then bunker inventory when it departs the port is bunker

up to level minus the bunker consumption at port i, otherwise it is equal to the

bunker inventory when the ship reaches port i minus the bunker consumption in

port i. Constraint (4.6) is flow conservation constraint. Constraint (4.7) ensures

that only one sailing speed is chosen. Constraint (4.8) ensures that a bunkering

decision is made when and only when the bunker inventory is less than or equal

to the re-order point. Constraint (4.9) sets the bunker-up-to level higher than

the re-order point. Constraint (4.10) puts a upper limit on bunker-up-to level

which is the maximum fuel capacity. Constraint (4.11) is related to the objective

function. When the bunker inventory drops to zero before finishing one voyage

leg, a penalty cost is paid. Constraints (4.12) to (4.14) are about soft time

windows. If a ship reaches port i earlier than EAT or later than LAT, then a

penalty is incurred. Constraints (4.15) to (4.17) are non-anticipative constraints.

In the end, constraints (4.18) to (4.23) are binary and non-negative constraints.

4.3 Solution method and numerical examples

In terms of solving the model, the biggest challenge was posed by the large number

of integer variables. Speed choice decision is associated with every price scenario

and every stage; bunkering decision is further associated with every consumption

scenario. This causes the number of integer variables to grow out of control
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very easily. In the following sections 4.3.1 and 4.3.2, we will present our solution

methodologies.

4.3.1 Progressive hedging algorithm

Decomposition algorithms are commonly used when the size of the problem on

hand is too large to be solved directly. Basically, decomposition algorithms for

multi-stage stochastic programming belong to two major categories, namely the

primal decomposition which breaks the original problem down in terms of stages

and the dual decomposition which works on subproblems of individual scenarios.

PHA falls into the latter category. In the case of convex problem, PHA converges

to the global optimal and if it converges in the non-convex case, it achieves a

local optimum. As our problem is a mixed-integer programming problem, it is

non-convex and therefore we cannot ensure that a global optimal solution can be

reached.

The idea of PHA is that by relaxing constraints which force implementability,

the problem can be solved much more easily according to individual scenarios. In

our problem, we will relax the implementability constraints (4.15) to (4.17) which

are related to bunker price scenarios. The remaining problem is decomposable

according to different price scenarios. For example, for price scenario r, ∀r ∈ R,

the objective function for the sub-problem is:

min
K∑
k=1

1

K

( n∑
i=1

[(Ik,ri,2 −I
k,r
i,1 +Ci)P

r
i +Bk,r

i f+Ik,ri,2 h+τ1 Y
k,r
i +τ2(Xr

i,1+Xr
i,2)]−Ik,rn+1,1 P

r
n+1

)
Subject to those constraints in (4.1)-(4.14) and (4.18)-(4.24) that are related to

price scenario r.

The above sub-problem can be solved easily with all the bunker consumption

scenarios. For example, we can obtain optimal reorder points sri and order-up-

to levels Sri , ∀i ∈ n, for individual scenario sub-problem r, ∀r ∈ R. However,

optimal solutions for individual scenarios are not very meaningful since we cannot

know exactly which scenario will happen in the future, but only its probability

distribution. Therefore we need a way to construct an implementable solution

from those individual scenario solutions. One straightforward method is to take
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the weighted average of them. Suppose s̄
Ar,i

i , ∀i ∈ n, (Ar,i is the set of scenarios

who share the same history with scenario r till port i), is an implementable

solution obtained by this way. The issue here is that s̄
Ar,i

i , ∀i ∈ n, may not

be feasible for the original problem or they are still far from the real optimal

solutions, or both.

Therefore, in the next iteration of PHA, it will solve these scenario subprob-

lems again with additional augmented Lagrangian penalty terms in the objective

functions. For the reorder point sri , ∀i ∈ n and ∀r ∈ R, these two penalty terms

are: wri×(sri−s̄
Ar,i

i ) and
ρri
2
×(sri−s̄

Ar,i

i )2. They penalize the violation of individual

re-order point sri to the implementable solution s̄
Ar,i

i . wri and ρri are two penalty

coefficients which get updated in each iteration. Penalty terms for other decision

variables are added in the same fashion. Such a PHA iteration terminates until

a good enough solution is obtained or the total running time is reached. For a

more detailed discussion on PHA, interested readers could refer to the seminal

work done by [Rockafellar and Wets, 1991].

However, the implementation of the aforementioned classical PHA for our

problem is not very straightforward and our preliminary numerical runs based on

it did not produce satisfactory results. This is due to our problem nature which

is related to constraint (4.8): 0 < W · Bk,r
i + (Ik,ri,1 − sri ) ≤ W . Since there are

altogether K consumption scenarios for each price scenario and at each period,

there are K discrete Ik,ri,1 values (∀k ∈ K). Assume that we sort them from the

smallest to the largest. When sri takes the value in between two bunker inventory

levels, Ik1,ri,1 and Ik2,ri,1 (k1, k2 ∈ K and suppose Ik1,ri,1 < Ik2,ri,1 ) for example, the

objective value of our model does not change when sri takes value in the range

[Ik1,ri,1 , Ik2,ri,1 ). When sri further increases to the value of Ik2,ri,1 , there will be a sudden

change of the objective function value because Bk2,r
i changes from 0 to 1. Figure

4.2 is a more detailed illustration of the aforementioned phenomenon, in which

optsri is the optimal re-order point for price scenario r at port i and obj is the

objective value of the scenario subproblem corresponding to price scenario r.

This discontinuity does not pose any problem—the minimum is achieved in

the range [Ik∗i,1, I
kj
i,1)–until the second iteration of PHA and penalty terms we

just described come into the picture. With the additional penalty terms in the

objective function, one possible situation looks like Figure 4.3. Clearly, we can
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see that the minimum does not exist in this case. Therefore, we remark that

if the aforementioned progressive hedging algorithm is adopted in our problem,

minimum does not exist at certain iteration of the algorithm. This renders the

inability of PHA to solve our problem satisfactorily.

Recent advancement in PHA was made by taking advantage of the concept

of “integer convergence” ([Løkketangen and Woodruff, 1996] and [Haugen et al.,

2001]). They claimed that integer variables usually take less time to converge

than other continuous variables and once these integer variables converge, the

original problem can be solved in the deterministic extensive form with known

integer variables. However, the aforementioned problem of the nonexistence of

minimum still exists and even though we can partially circumvent it by adding one

more constraint: |sri − I
k,r
i,1 | ≥ ε,∀r ∈ R, ∀k ∈ K, where ε is a very small number

(this is to ensure that sri does not take any one of the values of bunker inventory

level), the choice of a good ε poses another problem. Moreover, our preliminary

experiments showed that the performance of the PHA with integer convergence

was still not very satisfactory. Algorithm terminated prematurely with very large

optimality gap compared to the direct solving by CPLEX (for smaller model sizes,

CPLEX can solve the problem to optimality). This can be explained as so. First,

under best situation, PHA only guarantees a local optimal solution in the non-

convex case, and second, when so many different decision variables, continuous

and binary, come into the original objective function as well as the penalty terms,

the solution quality is very vulnerable to the inappropriate choice of any one of
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the following sets of parameters during each iteration: implementable solutions

for all the scenario sub-problems and two types of penalty coefficients in the PHA

procedure.

While the previous analysis helps us understand the reasons why the typical

PHA or PHA with integer convergence does not perform well, it also leads us to

the direction of improvement. Our approach is to only penalize the violation of

the binary dependent decision variable B, governing whether to bunker at each

port under different price and consumption scenarios, from an implementable

solution in each PHA iteration. In this way, we overcome the problem of the

nonexistence of minimum. Also, we can still use the “integer converge” concept;

when all the Bs converge across all scenarios and stages, we fix them and go back

to solve the original whole problem. In our numerical testings, we have recognized

that B poses the greatest computational challenge. Even if we know the values

of all the sri and Sri (∀r ∈ R, i ∈ 1, 2, ..., n), when the number of consumption

scenario increases, CPLEX still cannot solve our problem. However, when all the

values of the Bs are given, the problem can be solved in a matter of seconds.

For a start, we would like to slightly modify our original problem by adding

one term, ε× sri , in the objective function. Therefore, the new objective function

is:

min
K∑
k=1

1
K

R∑
r=1

Πr
( n∑
i=1

[(Ik,ri,2 −I
k,r
i,1 +Ci)P

r
i +Bk,r

i f+Ik,ri,2 h+τ1 Y
k,r
i +τ2(Xr

i,1 +Xr
i,2)+

ε× sri ]− I
k,r
n+1,1 P

r
n+1

)
The rationale of doing so is that by approximating the original problem, we

have the following proposition for the new modified problem. In addition, we will

state in the proof that the approximation error is limited by ε×
R∑
r=1

n∑
i=1

sri .

Proposition 4.3.1 In the new problem, reorder point sri will only take one of

these discrete values: −∞ and bunker inventory levels Ik,ri,1 , ∀k ∈ K.

Proof 4.3.2 This proposition is rather intuitive. Only three different bunkering

situations will happen: (1), no bunkering is needed for every consumption sce-

nario. (2), bunkering is needed for certain consumption scenarios. (3), bunkering

is needed for every consumption scenario.
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Figure 4.4: Figure illustration of Proposition 4.3.1 (a)

If, for the ease of illustration, we re-order all the bunker inventory levels from

the smallest to the largest and re-index them from 1 to K, together with −∞. we

can arrange them all in the Y-axis as shown in Figure 4.4. In the original model,

as we have analyzed, the objective value would not change when the re-order point

varies in the range [I1,r
i,1 , Ik,ri,1 ) for example. However, after we add the term ε× sri

in the objective function, the re-order point will be forced to choose I1,r
i,1 as this is a

minimization problem and the difference of the objective values for both models is

ε×
R∑
r=1

n∑
i=1

sri . When we choose ε to be sufficiently small, the difference is negligible.

(1), (2) and (3) in Figure 4.4 correspond to the three different bunkering sit-

uations we just mentioned. This completes our proof.

Proposition 4.3.1 helps significantly reduce the searching space of our opti-

mization problem and allows us to determine sri based on the values of Bk,r
i,1 ,

∀k ∈ K, as shown in Figure 4.5. This was not true before because sri could vary

within a certain range.

After relaxing constraints (4.15) to (4.17) in our model, it can be separated

into sub-problems. Denote P
(0)
r , ∀r ∈ R, as the individual sub-problem for price

scenario r at iteration 0. By solving these sub-problems, we have Bk,r
i,1 for each

price scenario r and consumption scenario k. We then check how many of those
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Figure 4.5: Figure illustration of Proposition 4.3.1 (b)

Bs have converged and for those which have not converged, calculate the weighted

average of these individual solutions based on the probability of each price sce-

nario and obtain an implementable solution for the next iteration. We use Π(A)

to denote the sum of Π(r) over all r for scenarios emanating from node A. There-

fore, B̄k,r
i,1 =

∑
r∈A

Π(r)Bk,r
i,1 /Π(A). Unconverged Bs produce a fractional weighted

average B̄k,r
i,1 , so we need to apply a consistent way of rounding it to an integer

value. This is the first iteration of our PHA.

At the second iteration, we will solve sub-problems P
(1)
r , ∀r ∈ R, which is dif-

ferent from P
(0)
r by adding two additional penalty terms in the objective function.

They are:
K∑
k=1

1

K

n∑
i=1

wk,rB,iB
k,r
i,1 ,

and
K∑
k=1

1

K

n∑
i=1

ρk,rB,i(B
k,r
i,1 − B̄

k,r
i,1 )2,

where B̄k,r
i,1 is from the first iteration. For typesetting convenience, we use Ωr to

denote the constraints (4.1) to (4.14) and (4.18) to (4.23) for scenario r. Similarly,

P (1) breaks down into individual sub-problems P
(1)
r . Each of them is a quadratic

67



4. (s, S) policy model for liner shipping refueling and sailing speed
optimization problem

mixed-integer programming problem and by solving all of them, we obtain an

updated implementable solution. Repeating the aforementioned steps for P (q)

until all of the Bs converge. Following the most widely used way to update all

the w and ρ, w
(q+1),k,r
B,i ← w

(q),k,r
B,i +ρ

(q),k,r
B,i (B

(q),k,r
i,1 −B̄(q),k,r

i,1 ) and ρ
(q+1),k,r
B,i ← αρ

(q),k,r
B,i

where α > 1 is a chosen constant.

A formal description of the PHA-WLB is given below.

PHA-WLB procedure:

1: input: an instance, all the related parameters

2: output: the best feasible solution Best

3: q ← 0;

4: for ∀r ∈ R, i ∈ n
5: set w

(0),k,r
B,i = 0 and solve all the sub-problems P

(0)
r ;

6: end for

7: Calculate the reference points B̄
(0),k,r
i,1 ;

5: repeat progressive hedging iteration

8: q ← q + 1;

4: for ∀r ∈ R, i ∈ n
5: Update w

(q),k,r
B,i , ρ

(q),k,r
B,i accordingly and Solve sub-problems P

(q+1)
r ;

6: end for

7: Calculate the reference points B̄
(q+1),k,r
i ;

18: until all the Bk,s
i,1 converge

19: Solve the original problem with all the known Bs and return Best;

We have one more variant of the above algorithm. That is, for those Bs

which have already converged in one iteration, we fix them in the next iteration

of the PHA. While in the previous version, there is no such fixing scheme as

in the typical progressive hedging algorithm. We name the first version of our

algorithm as PHA-Without Locking B (PHA-WLB) and the second version as

PHA-Locking B (PHA-LB). A figure illustration of the difference between these

two is shown in Figure 4.6.
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Figure 4.6: Flowchart representations of PHA-WLB and PHA-LB

4.3.2 Rolling horizon solving approach

When the problem size increases exponentially with the number of ports involved,

even PHA cannot solve the problem within reasonable time. This is because, for

one, PHA needs to solve price scenario sub-problems individually at each iteration

and, for another, the size of individual sub-problem also keeps increasing. The

modified rolling horizon approach we devised in our last work [Sheng et al., 2013]

can well handle this kind of situation. We also made a detailed comparison of

our modified rolling horizon approach with the scenario reduction algorithms

mentioned in [Dupačová et al., 2003], [Heitsch and Römisch, 2003] and [Heitsch

and Römisch, 2009]. Interested readers are suggested to refer to the Appendix B.

The essence of the standard rolling horizon planning scheme is: A problem

with the study horizon shorter than the original one (to reduce the problem size)

is solved and the first period decision is implemented. With newly available
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information, the problem is updated and resolved. Again, the decision is taken

on the current period only. This process goes on and on until the end of the

study horizon. Figure 4.7 below illustrates the solving procedure of the standard

rolling horizon solving approach.

Solving of the 
model with a 

shorter horizon 

Implement the 
first period 

decision 

Newly 
available 

information 

End of 
study 

horizon? 

Re-solving a 
similar 
model 

Implement the 
imminent 
decision 

Solving 
ends 

No 

Yes 

Figure 4.7: Diagram for the rolling horizon solving approach

Unlike the standard one which solves a problem with a shorter horizon than

the original problem, our non-standard approach still solves the problem with

the whole study horizon. However, we assign a higher level of fidelity for the

nearer periods than the later ones by modifying the way we generate the scenario

tree. For the first few number of periods (could be 1,2 or any number of periods

depending on the problem), all the bunker price change alternatives are generated

as shown in Figure 4.1, while a relatively small number of price realizations (also

problem specific) are randomly generated for all the remaining periods till the

end. Therefore, an example of our modified version of scenario tree would look

like Figure 4.8, in which price scenarios for periods after i + 2 are randomly

generated for each parent node. The validity of this non-standard variant is due

to our problem nature and the diminishing tail-end effect.
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Figure 4.8: Modified scenario tree with randomly generated siblings

4.4 Numerical examples

4.4.1 Parameter setting

In this study, we will apply our model based on two actual liner services, namely

the Malaysia Service (MAS) and the Asia-Europe Express (AEX), offered by a

liner shipping company headquartered in Singapore. The MAS route consists of

3 port-of-calls, while the AEX route has 15 port-of-calls. Some key parameters

of these two services are provided in table 4.1 and 4.2. For the MAS service

with a relatively small number of consumption scenarios, CPLEX can solve it to

optimality within reasonable time. We also use our PHA-WLB and PHA-LB to

solve it so that the efficiency of these two variants of PHA can be tested.

We model the bunker prices evolution by a one-stage Markovian process with

the percentage change in each period given by the scenario tree, of which the

parameter setting is shown in Table 4.3 and 4.4. Without loss of generality, we

assume that port calls are on a weekly basis and hence we only need to describe

the bunker prices evolution on a weekly basis. One price scenario means a series

of realizations of price percentage change in each port from the start to the end

of voyage. Bunker prices at any port and time is calculated by the baseline prices

as well as all the percentage changes during previous periods. For example, if

we denote δit as the bunker prices percentage change at port i and time period
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Table 4.1: Parameters for MAS service
Parameter Value

Number of port of calls 3
Service frequency weekly
Ship size 3,000TEU
Ship speed choices 6, 7, 8, 9, 10 knots
Mean bunker consumption rate F = 0.006743V 3 + 37.23
Coefficient of variation of bunker consumption rate 0.09
Fixed bunkering cost pmt 1000
Inventory holding cost pmt 50
Hourly penalty for violating time windows 1, 000
Penalty for bunker inventory below a minimum level 100, 000

Table 4.2: Parameters for AEX service
Parameter Value

Number of port of calls 15
Service frequency weekly
Ship size 6, 000TEU
Ship speed choices 18, 19, 20, 21, 22 knots
Mean bunker consumption rate F = 0.007297V 3 + 71.4
Coefficient of variation of bunker consumption rate 0.07
Fixed bunkering cost 1, 000
Inventory holding cost pmt 50
Hourly penalty for violating time windows 1, 000
Penalty for bunker inventory below a minimum level 1, 000, 000

t. There are baseline bunker prices P 0
i at each port i at time 0. Then, for all i,

P 1
i = P 0

i × δ1
i and P j

i = P j−1
i × δji .

Table 4.3: Weekly Price Change Alter-
natives

Scenario value Probability value

C1 -10% P (C1) 0.25
C2 -5.0% P (C2) 0.25
C3 5.0% P (C3) 0.25
C4 10% P (C4) 0.25

Table 4.4: Transition Probability be-
tween Alternatives

Scenario C1 C2 C3 C4

C1 40% 30% 20% 10%
C2 30% 40% 20% 10%
C3 10% 20% 40% 30%
C4 10% 20% 30% 40%

Care should be given when generating the scenarios for bunker consumption
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because the noise of it follows a zero mean normal distribution with standard

deviation a constant percentage of the mean consumption. Therefore, it is pos-

sible that numbers with very large absolute values will be generated. Based on

the data we obtained, bunker consumption deviating from more than 20% of the

mean consumption almost never happens. This prompts us to use a truncated

normal distribution when generating consumption scenarios. In our defense, if

the weather and/or sea conditions go so bad that significantly more than 20% of

the mean consumption would be used, the ship should not sail on that day at

all due to safety reasons. In the following numerical experiments, noise of the

bunker consumption follows a normal distribution truncated at ±20%

Our problem is solved by CPLEX-12.4 running on a 3 GHz Dual Core PC

with 4 GB of RAM.

4.4.2 Numerical results for MAS service

4.4.2.1 Performance of PHA-WLB and PHA-LB

When it comes to the evaluation of the performance of a heuristic algorithm, the

rate of convergence and the solution quality are the two most important criteria.

In our numerical experiments, both variants of PHA converge very fast. They are

able to achieve full convergence within 20 iterations for almost all of our trials.

PHA-LB converges slightly faster than PHA-WLB due to the locking mechanism.

For example, Figure 4.9 is taken from one of our numerical runs and shows the

proportion of convergence along with the number of algorithm iterations for both

versions.

With regards to the solving time, when the number of consumption scenarios

increases, our algorithms save a lot of time compared to the direct solving by

CPLEX. Figure 4.10 is a comparison of the solving time among the CPLEX

direct solving, PHA-WLB and PHA-LB. When there is only a small number

of scenarios, direct solving uses less time because both variants of PHA need

to solve a large number of price scenario sub-problems during each iteration.

However, as more and more consumption scenarios are involved, the time savings

by applying PHA increases exponentially. Compared to PHA-WLB, PHA-LB

solves significantly faster.
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Average convergence proportion against iteration number 

In terms of running time, PHA-LB is much more efficient as the converged B’s are locked 
progressively by iterations, reducing the number of free decision variables and accelerating 
the solving speed. Typically, a full run of PHA-LB spends less than half of the time required 
by PHA-WLB (when P1 has from 500 to 2000 B’s). 

In terms of closing the optimality gaps, results from PHA-WLB and PHA-LB are compared 
with reference to the optimal values from direct solving. There is no significant difference 
between them in this respect. Both of them are able to reasonably approach (below 2%) the 
global optimum given by direct solving. 

Number of consumption scenarios 
(N) used 3 5 7 9 11 16 

Optimal value from direct solving 118387 113136 114274 116780 118295 N.A.* 

WLB - Optimal value 120457 114944 116107 118595 120316 120582 

WLB - Optimal gap 1.749% 1.598% 1.604% 1.554% 1.708% N.A. 

LB - Optimal value 120457 114976 116107 118595 120316 120582 

LB - Optimal gap 1.749% 1.626% 1.604% 1.554% 1.708% N.A. 
*Unable to find the optimal value in one hour. 

It is also worth mentioning that compared to PHA-based methods, the time taken to directly 
solve P1 increases much faster with respect to N. When sample size is below 7, direct solving 
of P1 has superior efficiency and can guarantee that the optimal solution is found. However, 
as the author will explain in some later sections, a relatively large sample size N is necessary 
in order to find the optimal solution to the real problem P0, whose fuel consumption rate 
follows a continuous distribution. 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 5 10 15 20

PHA-WLB PHA-LB
Iterations 

Figure 4.9: Convergence for both PHA-WLB and PHA-LB
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Figure 4.10: Solving time comparison between direct solving, PHA-WLB and
PHA-LB

In terms of the the solution quality, results from PHA-WLB and PHA-LB are

compared with the optimal values from direct solving by CPLEX with different

numbers of consumption scenarios as shown in Table 4.5. For each fixed number

of scenarios, we randomly generate new samples and re-run the test for 30 times

and obtain the average. We can see that both algorithms are able to obtain

results that are within 2% of the optimal values obtained by CLPEX and there

is no significant difference between them in this respect.
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Table 4.5: Optimality gap of PHA-WLB and PHA-LB
Number of consumption scenarios 3 5 7 9 11 16

Optimal value from direct solving 118, 387 117, 543 117, 665 117, 675 118, 788 N.A.∗

PHA-WLB optimal value 120, 457 119, 736 119, 807 119, 805 119, 982 120.110

PHA-WLB optimality gap 1.75% 1.87% 1.82% 1.81% 1.86% N.A.

PHA-LB optimal value 120, 457 119, 750 119, 822 119, 810 119, 997 120.130

PHA-LB optimality gap 1.75% 1.88% 1.83% 1.81% 1.88% N.A.
∗ Unable to solve within one hour

All in all, the above analysis regarding our two versions of progressive hedging

algorithm shows that they work fairly well in our problem. They are able to

efficiently solve instances of our problem with large sizes. This gives us the

confidence to implement them in our later case studies where even larger size

problems come into the picture.

4.4.2.2 Sensitivity of the SAA method to K

In our model, K denotes the total number of bunker consumption scenarios gen-

erated. We name our original model as pTRUE when K → ∞, and pSAA if K is

another pre-specified relatively small number. Based on the SAA method of de-

riving lower and upper bounds of our optimization model discussed in [Kleywegt

et al., 2002], we obtain the estimated optimality gap from using the SAA method,

which is given below in Table 4.6 (number of consumption scenarios generated

for each price scenario to evaluate the solution: 100, 000. Those scenarios are

generated based on a truncated normal distribution with truncations at ±20%;

replication number: 50). We can only evaluate up to K = 11 as true optimal

solution cannot be obtained with larger K by CPLEX.

Table 4.6: Optimality gap of SAA
Number of consumption scenarios 3 7 11

Optimality gap 24.04% 9.2% 3.9%

Based on Table 4.6, we can see that even when K = 11, which is rather small,

the optimality gap of 3.9% is quite tolerable already. When our two variants

of PHA are used, we can solve instances of problem with much larger K, say

K = 30. In this case, the optimality gap of using SAA will be further reduced.
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Even though the use of our PHA will slightly impair the solution quality a little

bit (Table 4.5), authors believe that such a solution scheme, SAA plus PHA, is

suitable for our specific problem on hand. Therefore, what we have achieved so

far is a solving scheme that can handle small to medium size of our problem

which is a (s, S) dynamic policy model that provides operation level bunkering

and vessel speed determination decision support. What we are going to do next

is to showcase the value of this dynamic policy model itself.

4.4.2.3 Performance of our dynamic (s, S) refueling policy model

Our refueling policy model is dynamic in the sense that policy parameters and

ship speed depend on bunker price realizations. One natural question is that

what is the advantage by taking the uncertainty of bunker prices into account.

Put it in another way, if it is a stationary model that the policy parameters (s, S)

and ship speed only depend on port location, how much additional cost will

incur. The comparison is done in two ways: first, we generate 50 random sets of

consumption scenarios; each set consists of K consumption scenarios. We then

compare the expected costs of the dynamic and stationary policy models for each

consumption scenario set. Second, from the solutions of those 50 replications,

we choose the candidate solution which provides the lowest evaluation cost under

100, 000 randomly generated consumption scenarios. Candidate solutions from

the dynamic and the stationary policy model are to be compared.

Different values of K will be tested too. When K becomes too large (K ≥ 11)

and CPLEX can not solve the dynamic policy model directly, we will use our

PHA to solve it. Stationary policy model is much easier to be solved, therefore,

in the comparisons below, we use all its true optimal solutions.

The comparison between the dynamic and the stationary policy models in

terms of individual replication for k = 7 is shown in Figures 4.11. Comparison

results for other values of k are summarized in Table 4.7.

The comparison between the dynamic and the stationary policy models in

terms of SAA solutions is shown in Table 4.8.

The above analysis has clearly demonstrated the advantage by considering

the bunker prices uncertainty and adopting a dynamic policy. The cost reduction
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Figure 4.11: Comparison between dynamic and stationary policy models (K=7)

Table 4.7: Comparison between dynamic and stationary policy models in terms
of individual replication

Number of consumption scenarios 7 11 15∗ 25∗

Average cost reduction 4.5% 4.6% 3.3%∗ 3.7%∗
∗ PHA is used

Table 4.8: Cost reduction of the dynamic policy model over the stationary policy
model

Number of consumption scenarios 7 11 15∗ 25∗

Average cost reduction 3.5% 3.9% 4.3%∗ 4.3%∗
∗ PHA is used

of the dynamic policy model over the stationary one is approximately 4%, which

can be rather attractive for liner companies. During times when the bunker

prices are more volatile, this cost saving is even higher. In the next section, we

will implement this dynamic policy model on a much larger service network and

showcase its superiority.
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4.4.3 Numerical results for AEX service

Due to the large size of this service route, our modified rolling horizon approach

will be used. We look ahead 2 ports and each of them has four possible price

change alternatives as shown in Table 4.3. For the remaining 13 ports, 8 price

realizations are generated. Therefore the total number of price scenarios is S =

42× 8. For each price scenario, 25 common consumption scenarios are generated.

To obtain a SAA solution at each stage, 50 independent replications are run and

each replication is evaluated under 100, 000 randomly generated consumption

scenarios. When the ship reaches one port, the bunkering and speed decisions

are made based on the actual price and consumption realization. In this sense,

while our model is an offline optimization tool which precomputes the policy for

every possible scenario, the implementation of the rolling horizon approach turns

it into an online one as well. This helps to circumvent the limitation of an offline

optimization model whose size increases exponentially with the study horizon.

In this example, our dynamic policy model will be compared with a case where

the bunker reorder point is determined by an ad hoc way as in the inventory

management: reorder point is set to be the sum of the demand during lead time

plus a safety inventory. In the context of our problem, the bunker reorder point

at one port is set to cover the total mean consumption until the ship reaches the

next port plus the safety inventory. This means that instead of determining the

reorder point dynamically based on the bunker consumption scenarios as we did

before, reorder point can be calculated as: si =
∑Gi,i+1

g=1 F̄ g
i,i+1 ·Z

g,r
i,i+1 ·di,i+1+safety

inventory. This safety inventory can be conveniently set as a fixed percentage of

the mean consumption. We use ρ to denote this fixed percentage. Therefore,

si =
∑Gi,i+1

g=1 F̄ g
i,i+1 · Z

g,r
i,i+1 · di,i+1 × (1 + ρ). We name this new variation of our

model as model-ρ. Even though it is much easier to be solved than the original

dynamic policy model, it is still out of the capability of CPLEX. Hence we will

use the same modified rolling horizon approach to solve it.

To evaluate both our dynamic policy model and model-ρ, we randomly gen-

erate 30 price scenarios and 30 consumption scenarios. This results in a total

number of 900 different combinations. The average costs of both models under

those 900 scenario combinations are obtained.

78



4. (s, S) policy model for liner shipping refueling and sailing speed
optimization problem

Different values of ρ has be chosen as this is a key parameter which determines

the trade-off between bunker inventory holding cost and penalty cost for violating

the positive bunker inventory constraint. In the Figure 4.12 below, these small

diamonds on the black line depict the average costs with varying ρ values from

0.10, 0.12, 0.14 to 0.30. We notice that there is a fast decrease of the average cost

from ρ = 0.10 to ρ = 0.20. This is because that the real consumption scenarios are

generated based on a truncated normal distribution with truncations at ±20%,

when ρ ≤ 0.2, the chance of “running out of bunker” decreases rapidly with

increasing ρ. As ρ increases from 0.20 to 0.30 , there will be no penalty cost for

“running out of bunker”. However, the inventory holding cost keeps increasing.

This explains the general almost linearly increasing trend after γ = 0.20. This

trend of increasing cost is rather mild because we set the penalty cost for violating

the bunker inventory constrain much larger than the bunker inventory cost pmt.
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Figure 4.12: Average cost of the model-ρ (ρ = 1.0, 1.2, ..., 3.0)

In terms of bunkering decision, we note that the optimal solution of model-ρ

is always a feasible solution for our dynamic policy model. This is reflected by

our numerical experiments: the average cost for our dynamic policy model under

those 900 scenario combinations is 5.68 × 106 and the average cost for model-

ρ (when ρ = 0.20) is 5.95 × 106. This is approximately 4.8% of cost reduction.

Since model-ρ under ρ = 0.20 does not incur penalty cost for violating the bunker
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inventory constraint, this cost reduction is mainly from wiser bunkering decisions

by determining the bunker reorder point in a more strategic way. In addition,

this will also result in a reduction of the overall bunker inventory holding cost.

For the model-ρ, when ρ is poorly chosen, say 0.16, the average cost increases

another 3.7%, while our dynamic policy model does not suffer from this problem.

This is another advantage of our dynamic policy model and, for this, it is more

practically useful for liner companies to implement it in the real business.

4.5 Summary

In this work, we study a (s, S) optimal refueling policy and speed determination

problem for liner shipping faced with tough market conditions. Two major un-

certainties we tackled here are bunker prices and bunker consumption. The first

and foremost contribution of this current work lies in the introduction of the re-

fueling policy. As mentioned, bunkering policy allows a more flexible operational

bunkering plan; the decision of whether to bunker or not depends on the bunker

price realization as well as the actual bunker consumption during the previous

leg.

In terms of modeling and solving the model, the biggest challenge was posed by

the large number of integer variables. Similar to [Sheng et al., 2013], the uncertain

bunker prices are formulated as a one-stage Markovian process using a scenario

tree structure. For the bunker consumption uncertainty, instead of dealing with

it with chance constraints, we used the random generation of scenarios and the

SAA to circumvent the difficulty of incorporating a continuous distribution and

calculating the expectation. However, speed choice decision is associated with

every price scenario and every stage; bunkering decision is further associated

with every consumption scenario. This causes the number of integer variables

to grow out of control. Hence the second major contribution of our work is the

introduction of two variants of the progressive hedging algorithm to solve the

aforementioned large-scale mixed-integer problem. The efficiency of these two

algorithms have been clearly demonstrated through our numerical studies.

Finally, with extensive numerical experiments, we have shown that the pro-

posed (s, S) refueling policy model is a practical, useful and applicable model
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with high cost saving potential.

Some possible future research directions are: first, instead of modeling the

possible bunker price changes by discrete percentage values, we can use an in-

terval to represent one scenario in the scenario tree. For example, the interval

[−10%,−5%) can be one scenario and [−5%, 0%) can be another. The benefit of

this new scheme is of course a more accurate representation of the uncertainty of

bunker prices. However, the potential drawback would be the even huger prob-

lem size. Therefore, our second possible future research direction is to revisit

the scenario reduction algorithm discussed by [Dupačová et al., 2003], [Heitsch

and Römisch, 2003] and [Heitsch and Römisch, 2009]. Originally, when we use

discrete values to represent one scenario, the problem associated with the sce-

nario reduction algorithm is that once one scenario is deleted in the tree, optimal

solution to the reduced tree does not tell us how to act when that deleted sce-

nario happens in the reality. With the interval representation of scenarios, we,

however, can solve this problem by simply combining scenarios. For instance,

scenario [−10%,−5%) and [−5%, 0%) can be combined into [−10%, 0%) during

a certain stage. When either −7.8% or −1.8% happens, the same action is taken

at that stage according to the optimal solution of the reduced tree. Hence, it can

also be called a scenario combination algorithm.

Last but not least, bunkering and speed management problem for liner ship-

ping can be extended from a single service route to a whole or multiple networks.
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Chapter 5

Strategic bunkering and speed

management in liner shipping

networks

Remember that bunkering decisions for each service are not actually indepen-

dent under common market conditions, we have identified another direction for

bunkering cost reduction. That is to coordinate the management of bunker fuel

purchasing for all the service routes under the same network. Figure 5.1 show-

cases the rationale behind this idea. There are two shipping routes and four

ports. The market bunker prices of the four ports are the same, denoted as p0.

Assume that the port SG offers a bunker discount of 10% for ordering quantity

large than 1000 ton. The optimal bunker amounts for the two shipping routes

with and without the bunker discount are shown in the figure. It can be easily

verified that the total bunker purchasing cost without discount is 2000p0 while

the cost with discount reduces to 1900p0. More importantly, with the presence

of this discount, bunkering decisions are no longer the same.

This is, to the best knowledge of authors, a problem that has yet to be studied

in the liner shipping area so far. Refueling management problem in the airline in-

dustry has also been restricted to a single aircraft or a single route mostly. Stroup

and Wollmer [1992] looked into the minimum cost refueling problem for an airline

flight schedule under prices, station and supplier constraints. Even though the
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Figure 5.1: An illustrative example with two shipping routes

case of multiple aircrafts was discussed, because of the assumption of operational

independence, each aircraft’s refueling policy was optimized individually. Zouein

et al. [2002] analyzed a optimal aircraft refueling problem based on a multiple

period capacitated inventory model. The objective was to minimize the fuel cost

along a predetermined route for a single plane.

In the railroad industry, only very recently, we found some works that con-

sider the optimal refueling problem for a whole network. Nourbakhsh and Ouyang

[2010] studied an optimal refueling problem for locomotive fleets in railroad net-

works which was formulated as a mix-integer linear programming model. In order

to use the facility of a fixed station and refuel under a regular price, a flat contract

fee must be paid. Otherwise railroad companies have to resort to emergency re-

fueling which is more expensive. Kumar and Bierlaire [2011] and Nag and Murty

[2012] revisited the locomotive refueling problem with slight modeling assumption

difference from Nourbakhsh and Ouyang [2010].

One significant difference in the shipping industry is that shipping companies

can always purchase fuel from local suppliers based on the spot market prices

without committing to any contracts. Even though there are also several dif-

ferent types of bunker price contracts exist in the market1, the specific terms

1For example, according to the website of one leading international bunker supplier (BP
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and conditions of these contracts are confidential and may vary between differ-

ent participants, and hence hinder a general discussion of the efficiency of those

contracts. Therefore, in this paper, we study the bunker fuel purchasing problem

for a whole liner shipping network under a novel cooperation scheme between

liner shipping companies and bunker suppliers without considering the option of

bunker price contracts. More specifically, bunker suppliers at certain ports offer

liner shipping companies some price discounts according to their fleet’s weekly or

monthly bunker consumption. We believe that this kind of cooperation can be

beneficial to both parties: shipping companies may jointly organize the bunkering

plans of all fleets instead of individual vessels so as to take advantage of the price

discounts and thus lower the overall bunkering cost, while bunker suppliers could

attract more customers and therefore increase the revenue by offering this sort

of ”loyalty benefits”. Under this situation, the bunkering decision of individual

shipping routes are no longer independent, and shipping companies need to play

the role as the overall decision making center and determine the bunkering plan

for all service routes in the shipping network. With this regard, this study ded-

icates special efforts to the new decision problem, as is referred to as strategic

bunkering and speed management in this paper, and design an optimal bunker

purchasing and speed control plan for a liner shipping company under the co-

operation bunkering scheme. As our model is a very large scale mixed integer

non-liner programming model which cannot be solved efficiently by the state-of-

the-art commercial solvers, we propose a column generation heuristic (CGH) to

solve a linearized version of our model. The CGH reformulates the MIP model as

a master problem and a set of sub-problems; each sub-problem considers bunker-

ing and speed decisions for a single route.

5.1 Problem description

A liner network consists of several service routes, each of which in turn includes

a predetermined order of port-calls. Denote the shipping network as a graph

[2013]), it offers following forms of bunker price contracts: Basic Physical Fuel Contract, Fixed
Price Physical, Capped Price Physical, Participation, Swap, Cap, Collar, Reseller Hedge and
The Fuel Contract with Min and Max Price.

84



5. Strategic bunkering and speed management in liner shipping
networks

G(N,A) where N represents the set of ports and A is the set of service legs

connecting two ports. The network contains a number of service routes, denoted

as set R. Each route is operated by a fleet of vessels. Vessels for the same

route are usually the same type for operational and administrative convenience.

However, authors note that our model will not rely on this restriction.

Time windows are associated with every port-call. They state the ship arrival

and departure times at each port. In this current work, we assume that the

realized schedule cannot violate the time windows. This is equivalent to put a

constraint on one of our decision variables, the ship speed v. As for the bunker

consumption within each leg, in Sheng et al. [2013], it is empirically shown that

the daily bunker consumption rate under a certain speed has a mean F̄ = k1 ∗
v3 + k2, where k1 and k2 are two constants, and noise which follows a zero mean

normal distribution with standard deviation a constant percentage of F̄ . A chance

constraint formulation will be used to control the probability of one ship running

out of fuel during each leg to be less than one pre-defined value.

The key decision to make here is the bunkering decision for all the ships in

the network: where and how much to bunker. This is largely determined by the

bunker prices. We assume that each port i ∈ N is associated with basic bunker

prices p0
i and a set of incremental quantity discount offers Ωi; Each quantity

discount offer w ∈ Ωi is characterized by two parameters {piw, qiw}. For example,

if the weekly total bunkering amount qi exceeds qiw, the bunker prices will be

piw. Note that we treat the basic bunker price option as a special case {pi0, qi0}
and include it in the discount offer set Ωi. Obviously, we have pi0 = p0

i and

qi0 = 0. For any two different discount offers w1 and w2, it is reasonable to have

piw1 < piw2 if qiw1 > qiw2 .

In the end, the objective is to minimize the total costs for all the ships in

one or multiple networks. The costs considered here are the bunker cost and

inventory holding cost. Bunker cost mainly consists of two parts, fixed bunkering

cost incurred each time a bunkering takes place and variable cost that depends

on the bunkering amount and bunker purchase prices. As a simplification, we

assume that the inventory carrying cost per metric ton (pmt) is constant. Ship

bunker inventory at the beginning of one service route is equal to the ending

inventory of the same route.
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5.2 Model formulation

5.2.1 Assumptions

Now, we state all the other assumptions made in our paper:

1. Port time (time one ship spends on entering, unloading and loading cargo,

idling and exiting) and bunker consumption at each port is deterministic

and known.

2. As a planning level problem, bunker price fluctuation is not considered.

5.2.2 A mixed integer non-linear program

We further denote the following notations:

θrij = 1 if port i is the jth visiting port on route r; = 0 otherwise;

nr the total number of ports visited by route r;

fi fixed bunkering cost at port i;

arj bunker consumption at the jth port on route r;

drj nautical distance at the jth leg on route r;

h inventory holding cost per metric ton (pmt);

trj port time (time one ship spends on entering, unloading and loading cargo,

idling and exiting) at the jth leg on route r;

erj earliest arrival time at the jth leg on route r;

lrj latest arrival time at the jth leg on route r;

Qr bunker fuel capacity for the ships deployed on route r;

ηr CV of daily bunker consumption rate for the ships deployed on route r;

βr service level coefficient;

the following decision variables are defined:

xrj binary variable; = 1 route r bunkers at its jth port; = 0 otherwise;

yrj the bunkering amount of route r at its jth port;

ziw binary variable; = 1 if price discount w ∈ Ωi is utilized at port i ∈ N ;

= 0 otherwise;

vrj vessel speed at the jth leg on route r;
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following are dependent variables:

crj mean bunker consumption at the jth leg on route r;

urj bunker inventory level when the ship reaches the jth port on route r;

Trj ship arrival time at the jth port on route r;

scrj standard deviation of the bunker consumption at the jth leg on route r;

surj standard deviation of the bunker inventory when the ship reaches at the

jth port on route r;

Mathematical model to describe our problem:

∑
r∈R

∑
i∈N

nr∑
j=1

θrijfixrj +
∑
i∈N

∑
ω∈Ωi

∑
r∈R

nr∑
j=1

piwθrijziwyrj +
∑
r∈R

nr∑
j=1

h(urj + yrj − arj)

yrj ≤ Qrxrj ∀r ∈ R, ∀j = 1, ..., nj (5.1)

urj + yrj ≤ Qr ∀r ∈ R, ∀j = 1, ..., nj (5.2)

urj ≥ β
′

rsurj ∀r ∈ R, ∀j = 1, ..., nj + 1 (5.3)

urj + yrj − arj − crj = ur(j+1) ∀r ∈ R, ∀j = 1, ..., nj (5.4)

urnj
= ur1 ∀r ∈ R (5.5)∑

w∈Ωi

ziw = 1 ∀i ∈ N (5.6)(∑
r∈R

nr∑
j=1

θrijyrj − qiw

)
ziw ≥ 0 ∀i ∈ N, ∀j = 1, ..., nj + 1,∀w ∈ Ωi (5.7)

Trj + trj +
drj
vrj

= Tr(j+1) ∀r ∈ R, ∀j = 1, ..., nj (5.8)

erj ≤ Trj ≤ lrj ∀r ∈ R, ∀j = 1, ..., nj + 1 (5.9)

vminr ≤ vrj ≤ vmaxr ∀r ∈ R, ∀j = 1, ..., nj (5.10)

crj =
(
k1rv

3
rj + k2r

) drj
24vrj

∀r ∈ R, ∀j = 1, · · · , nj (5.11)

scrj = ηrcrj ∀r ∈ R, ∀j = 1, · · · , nj (5.12)

surj(1− xrj) + scrj = sur(j+1) ∀r ∈ R, ∀j = 1, · · · , nj (5.13)

xrj ∈ {0, 1} ∀r ∈ R, ∀j = 1, · · · , nj (5.14)
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yrj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj (5.15)

ziw ∈ {0, 1} ∀i ∈ N,∀w ∈ Ωi (5.16)

vrj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj (5.17)

crj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj (5.18)

urj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj + 1 (5.19)

Trj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj + 1 (5.20)

scrj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj (5.21)

surj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj + 1 (5.22)

The first and the second terms in the objective function are fixed and variable

bunkering costs. θrij in them is a known parameter which matches port index

i to the location index j in each route r. It is equal to = 1 if port i is the jth

visiting port on route r; = 0 otherwise. The third part of the objective function

is the bunker inventory holding cost. Constraint 5.1 states that only those ports

with bunker decisions are allowed to purchase bunker. Constraint 5.2 is the

bunker capacity restriction. Constraint 5.3 is the deterministic equivalent for

chance constraint P{urj ≥ 0} ≥ βr, which ensures that the probability of bunker

inventory being greater than a certain amount is greater than a pre-specified

value. Constraints 5.4 and 5.5 are flow conservation constraints. Constraint 5.6

means that exactly one price is utilized at each port. Constraint 5.7 expresses the

minimum bunker purchase requirement to enjoy price discounts. Constraints 5.8

to 5.9 are time window constraints, while constraint 5.10 is simply to limit the

ship speed within a reasonable range. Constraints 5.11 and 5.12 express the mean

daily consumption rate at a certain speed (k1r and k2r are two constants) and the

stand deviation of bunker consumption during each leg as a constant percentage

of the mean consumption. Constraint 5.13 states that if the ship bunkered at the

previous port, then standard deviation of the ship bunker inventory at current

port is equal to the standard deviation of bunker consumption from previous port

to the current port. Otherwise the standard deviation of ship bunker inventory

at previous port should also be added. This is because, as discussed, standard

deviation of bunker consumption is proportional to the total bunker consumption.
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Constraints 5.14 to 5.22 simply clarify the domain of decision variables.

5.2.3 Model linearization

Note that quadratic terms are involved in the objective function, constraints (5.7)

and (5.13). Additional auxiliary decision variables are introduced to linearize the

model:

• ϕiw: ≥ 0, equals
∑
r∈R

nr∑
j=1

θrijyrjziw,∀i ∈ N,∀w ∈ Ωi

• φrj: ≥ 0, equals surjxrj, ∀r ∈ R, ∀j = 1, · · · , nj

The related additional constraints are defined as follows:

ϕiw ≤
∑
r∈R

nr∑
j=1

θrijyrj ∀i ∈ N,∀w ∈ Ωi (5.23)

ϕiw ≤Mziw, ∀i ∈ N ∀w ∈ Ωi (5.24)

ϕiw ≥
∑
r∈R

nr∑
j=1

θrijyrj +M(ziw − 1) ∀i ∈ N,∀w ∈ Ωi (5.25)

ϕiw ≥ 0 ∀i ∈ N ∀w ∈ Ω (5.26)

φrj ≤ surj ∀r ∈ R, ∀j = 1, · · · , nj (5.27)

φrj ≤Mxrj ∀r ∈ R, ∀j = 1, · · · , nj (5.28)

φrj ≥ surj +M (xrj − 1) ∀r ∈ R, ∀j = 1, · · · , nj (5.29)

φrj ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj (5.30)

where M is a sufficiently large constant. Constraints (5.23) to (5.26) mean that

if ziw = 0, then ϕiw = 0, or if ziw = 1, then ϕiw =
∑

r∈R
∑nr

j=1 θrijyrj. Similarly,

constraints (5.27) to (5.30) mean that if xrj = 0, then φrj = 0, or if xrj = 1,

then φrj = surj. With the additionally defined decision variables, the objective

function, constraints (5.7) and (5.13) can be expressed as follows:∑
i∈N

∑
ω∈Ωi

piwϕiw (5.31)

ϕiw − qiwziw ≥ 0 ∀i ∈ N, ∀w ∈ Ωi (5.32)

89



5. Strategic bunkering and speed management in liner shipping
networks

surj − φrj + scrj = sur(j+1) ∀r ∈ R, ∀j = 1, · · · , nj (5.33)

The non-linear problem also comes from the terms related with speed decision

variable vrj in constraints (5.8) and (5.11). We use the piecewise linear approx-

imation technique to replace the non-linear terms. Firstly, we get s̄ fixed points

vrs by discretizing the feasible interval [vminr , vmaxr ] into s̄ − 1 segments. Then,

......

1

vrj
=

s̄∑
s=1

1

vrs
λrjs ∀r ∈ R, ∀j = 1, · · · , nj (5.34)

v2
rj =

s̄∑
s=1

v2
rsλrjs ∀r ∈ R, ∀j = 1, · · · , nj (5.35)

λrj1 ≤ πrj1 ∀r ∈ r,∀j = 1, · · · , nj (5.36)

λrjs ≤ πrj(s−1) + πrjs ∀r ∈ r,∀j = 1, · · · , nj,∀s = 2, · · · , s̄− 1 (5.37)

λrjs̄ ≤ πrj(s̄−1) ∀r ∈ r,∀j = 1, · · · , nj (5.38)

s̄∑
s=1

λrjs = 1 ∀r ∈ R, ∀j = 1, · · · , nj (5.39)

s̄−1∑
s=1

πrjs = 1 ∀r ∈ R, ∀j = 1, · · · , nj (5.40)

λrjs ≥ 0 ∀r ∈ R, ∀j = 1, · · · , nj,∀s = 1, · · · , s̄ (5.41)

πrjs ∈ {0, 1} ∀r ∈ R, ∀j = 1, · · · , nj,∀s = 1, · · · , s̄− 1 (5.42)

Then, Constraints (5.8), (5.10) and (5.11) can be updated as:

Trj + trj + drj

s̄∑
s=1

1

vrs
λrjs = Tr(j+1) ∀r ∈ R, ∀j = 1, ..., nj (5.43)

1

vmaxr

≤
s̄∑
s=1

1

vrs
λrjs ≤

1

vminr

∀r ∈ R, ∀j = 1, ..., nj (5.44)
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crj =

(
k1r

s̄∑
s=1

v2
rsλrjs + k2r

s̄∑
s=1

1

vrs
λrjs

)
drj
24

∀r ∈ R, ∀j = 1, · · · , nj

(5.45)

Therefore, the strategic bunkering and speed management problem can be

formulated as a mixed integer linear program as follows:

[P] min
∑
r∈R

∑
i∈N

nr∑
j=1

θrijfixrj +
∑
i∈N

∑
ω∈Ωi

piwϕiw +
∑
r∈R

nr∑
j=1

h(urj + yrj − arj)

(5.46)

s.t. (5.1)− (5.6), (5.9), (5.12), (5.14)− (5.16), (5.18)− (5.30), (5.32), (5.33) and

(5.36)− (5.45)

5.3 Solution methods

Our preliminary numerical experiments show that when the total number of ports

increases or under certain settings of bunker price discounts, commercial opti-

mization softwares like CPLEX cannot solve our problem (large optimality gap

after long hours of solving). Therefore, this section is devoted to the development

of efficient solution methods that can handle instances of our problem with large

size. More specifically, we will devise a column generation heuristic (CGH) and

two greedy heuristic algorithms. Results from these three heuristic algorithms

can be compared with each other. We will present our two greedy algorithms

first, followed by a detailed discussion of the CGH.

5.3.1 Greedy algorithms

The basic idea of greedy algorithm-1 is to start with the optimal solution when

no price discount option is available. We then identify those ports where bunker

price discounts can already be enjoyed by the liner (the total bunker purchase

amount at that port in the previous optimal solution has exceeded the threshold
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level). Next step is to find those ports where the total bunkering amount is “very

close” to the requirement of being entitled to a discount and observe the cost

reduction if such a discount be enjoyed with the minimum purchase being met.

A formal description of greedy algorithm-1 is given below:

1: input: an instance, heuristic parameters

2: output: the best feasible solution Best

3: Best ← optimal solution without price discount option;

4: identify those ports where qi ≥ qiw, ∀w ∈ Ωi ;

5: fix the values of ziw = 1 for those ports and update Best;

6: repeat greedy heuristic search procedure

7: for all the discount options

8: for those ports where qi is within (qi(W−1), qiW )

9: find the port where (qiW − qi) is the smallest;

10: evaluate the optimal cost if the qi is forced to be qiW ;

11: If there is a reduction of total cost

12: fix ziW = 1, update best and delete port i from the future search;

13: else

14: delete port i from the future search;

15: end for

16: W = W − 1;

17: end for

18: until the stopping condition is met

19: Return Best;

W corresponds to the option with the highest discount

Our problem is computationally challenging when the number of price dis-

count options at each port (cardinality of Ωi, ∀i ∈ N , in constraint (5.7) of our

original model) is large. We assume that discount options wi1 , wi2 ,...,wik ∈ Ωi

with wi1 < wi2 <, ..., < wik are available at port i in the original model. The

idea of greedy algorithm-2 is to start by solving the problem with only the first

few price discounts available at each port. For example, begin with only wi1 and

wi2 , ∀i ∈ N , available at each port. The next step is to increase, one port at a
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time, the number of bunker price discounts by one (until the original number of

price discounts), solve our problem with the current available discounts at each

port and choose the setting which provides the lowest optimal cost. Subsequently

start with this setting and continue the search by increasing again, one port at a

time, the number of bunker price discounts by one (until the original number of

price discounts) and choose the next setting which provides the lowest optimal

cost. It works in a way that is similar to a tree structure. Figure 5.2 illustrates

this idea:

(2, 2,…, 2) 

(3, 2,…, 2) (2, 3,…, 2) (2, 2,…, 3) (2, 2,…3,…, 2) … … 

(3, 2,…3,…, 2) (2, 3,…3,…, 2) (2, 2,…4,…, 2) (2, 2,…3,…, 3) … … 

(3, 3,…3,…, 2) (2, 4,…3,…, 2) (2, 3,…4,…, 2) (2, 3,…3,…, 3) … … (2, 3,…3,…3,…, 2) … 

Figure 5.2: Tree structure of the greedy algorithm-2

(2, 2, ..., 2) means that there are only the first two discount options available

at each port and (3, 2, ..., 2) means that there are the first three discount options

available at port 1 and all other ports have the first two discount options. The

setting which is enclosed in a square is the one which provides the current best

solution. This tree structure search goes on until it reaches the bottom and no

more different settings can be explored or a user-specified time period has passed.

Under either situation, we will be able to obtain a best-so-far solution. A formal

description of greedy algorithm-2 is given below:

1: input: an instance, heuristic parameters;

2: output: the best feasible solution Best;
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3: Best ← optimal solution with wi1 and wi2 available at each port;

4: do

5: for each port

6: if the number of discount options at this port is less than the

original number

7: increase the number of discount options by one;

8: end if

9: solve the problem with available discount options at each port;

10: end for

11: find the setting related to the lowest optimal cost in step 9, which

serves as the starting point for the next search;

12: while the termination conditions are not met

13: Best ← the best available solution obtained so far;

14: Return Best;

5.3.2 Column generation heuristic

We noticed that without the price discount options at each port, our strategic

bunkering and speed management can be decomposed into each route individ-

ually. This means that without constraint (5.7), our original problem can be

decomposed into individual service routes, which is a very useful structure that

we can take advantage of. The typical column generation method is not very

suitable here due to the presence of integer variables. However, its general frame-

work of dividing the original problem into a restricted master problem and some

sub-problems is still relevant. Therefore, we devise a column generation heuristic

to solve our strategic bunkering and speed management problem.

We first introduce the restricted master problem, based on which, we discuss

how to extract useful information from the solving of it and use the information

in route sub-problems to generate new columns. Each column corresponds to a

bunkering plan of a shipping route with aggregated information of bunkering and

speed decisions of that route.
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5.3.2.1 Restricted master problem for column generation

The decision in the master problem is to choose which bunkering plan is used for

each route. Mathematically, we define decision variable δrg be 1 if bunkering plan

g ∈ Gr is adopted by route r ∈ R; and 0 otherwise, where Gr is a set of feasible

bunkering plans of route r. Another decision variable in the master problem

is ziw which governs the utilization of price discount option at each port. The

corresponding parameters for each bunkering plan g ∈ Gr are further defined as

follows:

• c1
rg: total fixed bunkering cost along route r if plan g is adopted;

• c2
rg: inventory holding cost of route r if plan g is adopted;

• qrgj: bunkering amount at the jth port along route r if plan g is adopted;

• Qi: total bunkering amount at port i;

Then, the restricted master problem could be formulated as follows:

[RMP] min
∑
r∈R

∑
g∈Gr

(
c1
rg + c2

rg

)
δrg +

∑
i∈N

∑
w∈Ωi

piwziwQi (5.47)∑
g∈Gr

δrg = 1 ∀r ∈ R (5.48)

∑
r∈R

∑
g∈Gr

nr∑
j=1

θrijqrgjδrg = Qi ∀i ∈ N,∀r ∈ R, ∀g ∈ Gr,∀j ∈ nr (5.49)∑
w∈Ωi

ziw = 1 ∀i ∈ N (5.50)

(Qi − qiw) ziw ≥ 0 ∀i ∈ N,∀w ∈ Ωi (5.51)

δrg ∈ {0, 1} ∀r ∈ R, ∀g ∈ Gr (5.52)

The first part in the objective function is the sum of the fixed bunkering cost

and bunker inventory holding cost for all the routes and the second part is the

variable bunkering cost based on bunker price discounts. Constraint (5.48) en-

sures that one and only one column (bunkering plan) is chosen for each route.
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Constraint (5.49) expresses the relationship between qrgj and Qi. qrgj is a given

parameter obtained from route sub-problems and θrij, as mentioned, is a 0 − 1

mapping parameter between route and port indexes. Constraints (5.50) and

(5.51) determine exactly which bunker price discount can be enjoyed at a cer-

tain port. Constraint (5.51) would be linearized in the same way as we did to

constraint (5.7).

5.3.2.2 Sub-problems for column generation

The purpose of route sub-problems is to provide promising new columns to the

master problem. New columns can be generated by simply changing the bunker

prices at some or all of the ports. To make sure that those new columns are

promising indeed, we need to make use of the information from the master prob-

lem. In the sub-problems we define ki as the bunker prices at port i. It is a

given parameter and here we assign the bunker prices at each port in the [RMP]

(after obtaining the discount information) to ki, ∀i ∈ N . The rationale is that

if a certain price discount is enjoyed at one port, by adjusting the bunker prices

accordingly in the sub-problems, there is a higher chance that a more promising

column can be obtained. This approach can be too rigid sometimes. Therefore,

we can slightly and randomly perturb ki to generate more columns. For example,

we can uniformly generate one value in the range of [(1 − b%)ki, (1 + b%)ki ],

where b is a given constant small number.

The route sub-problems are to find, for each shipping routes, new bunkering

plans. The decision variables of the pricing sub-problems include binary bunker-

ing decision variable xrj, bunkering amount yrj and ship speed vrj. All other

parameters and variables defined in our original model remain unchanged unless

otherwise stated. Therefore, the parameters of the restricted master problem

could be expressed as:

c1
r =

∑
i∈N

nr∑
j=1

θrijfixrj ∀r ∈ R (5.53)

c2
r =

nr∑
j=1

h(urj + yrj − arj) ∀r ∈ R (5.54)
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qrj = yrj ∀r ∈ R, ∀j = 1, · · · , nr (5.55)

The total cost of a bunkering plan for shipping route r is:

c̃r = c1
r + c2

r +
∑
i∈N

nr∑
j=1

kiθrijyrj (5.56)

For route r ∈ R, the route sub-problem could be formulated as:

min c̃r (5.57)

yrj ≤ Qrxrj ∀j = 1, ..., nj (5.58)

urj + yrj ≤ Qr ∀j = 1, ..., nj (5.59)

urj ≥ β
′

rsurj ∀j = 1, ..., nj + 1 (5.60)

urj + yrj − arj − crj = ur(j+1) ∀j = 1, ..., nj (5.61)

urnj
= ur1 (5.62)

Trj + trj +
drj
vrj

= Tr(j+1) ∀j = 1, ..., nj (5.63)

erj ≤ Trj ≤ lrj ∀j = 1, ..., nj + 1 (5.64)

vminr ≤ vrj ≤ vmaxr ∀j = 1, ..., nj (5.65)

crj =
(
k1rv

3
rj + k2r

) drj
24vrj

∀j = 1, · · · , nj (5.66)

scrj = ηrcrj ∀j = 1, · · · , nj (5.67)

surj(1− xrj) + scrj = sur(j+1) ∀j = 1, · · · , nj (5.68)

xrj ∈ {0, 1} ∀j = 1, · · · , nj (5.69)

yrj ≥ 0 ∀j = 1, · · · , nj (5.70)

ziw ∈ {0, 1} ∀i ∈ N, ∀w ∈ Ωi (5.71)

vrj ≥ 0 ∀j = 1, · · · , nj (5.72)

crj ≥ 0 ∀j = 1, · · · , nj (5.73)

urj ≥ 0 ∀j = 1, · · · , nj + 1 (5.74)

Trj ≥ 0 ∀j = 1, · · · , nj + 1 (5.75)
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scrj ≥ 0 ∀j = 1, · · · , nj (5.76)

surj ≥ 0 ∀j = 1, · · · , nj + 1 (5.77)

The linearization of the sub-problems is similar to that of the original formulation

[P] and is not presented here for the sake of brevity.

5.3.2.3 Column generation procedure

The column generation heuristic procedure for the strategic bunkering and speed

management problem is summarized as following: initial columns for a certain

route are obtained by randomly generating some sets of bunker prices ki for each

port on the route and solving this route sub-problem. The aforementioned two

greedy algorithms can also be used to generate initial columns. When all the

initial columns for every route are obtained, solve the restricted master problem

with these columns and obtain the optimal solution. As a by-product, we also

get the bunker prices at every port after discount and assign those prices to ki,

∀i ∈ N for the next iteration of route sub-problems. A solution from each sub-

problem will serve as a new column to be input into the master problem (as

mentioned, to get more columns, randomly and slightly perturb some values of

ki in the objective function (5.56) and solve the route sub-problem). Repeat the

aforementioned procedures until there is no further improvement of the overall

cost after several consecutive repetitions. A formal description of the CGH is

given below:

1: input: an instance, heuristic parameters;

2: output: the best feasible solution Best;

3: obtain the initial columns for each route;

4: repeat heuristic algorithm

5: solve the master problem and update values of ki;

6: solve route sub-problems with given values of ki;

7: solutions from sub-problems become new columns in the master

problem;

8: if more columns need to be generated
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9: randomly and slightly perturb some values of ki in the objective

function (5.56);

10: until the stopping condition is met

11: Best ← optimal solution from solving the master problem;

12: Return Best;

5.4 Case studies

We have identified 3 important real liner service networks (a total coverage of

55 service routes and 117 ports) provided by an ocean liner headquartered in

Singapore. These 3 liner networks are Intra-Asia, Asia-North America and Asia-

Europe which include almost all of the important ports around the world. In our

first case study, we apply our model on one of the smallest network within these

3, the size of which allows the model to be solved directly by CPLEX most of

the time. However, under certain parameter settings, CPLEX cannot solve the

problem with a satisfying result within reasonable time. Therefore, CHG and

the two greedy heuristic algorithms we just described will be implemented and

tested their efficiency on the smaller example. In the second case study, to fully

demonstrate the advantage of our model by jointly considering the bunkering

decisions for all the service routes, our model will be applied on all 3 service

networks. Under this case, CPLEX can no longer solve the problem while the

heuristic algorithms can obtain good quality near-optimal solutions efficiently.

All parameters related to service routes and schedules are readily available on

the company website. Port-to-port distance was not given, so we collected the

data from some external internet sources (Ports [2012], Searates [2012], Portworld

[2012] and Sea-distances [2012]). Those collected distances may bear a certain

degree of error and not represent the real distances; however this by no means

influences the final comparison between our model and the model which considers

every single route individually, so long as both models use the same inputs. Due

to the space constraint, we are not going to present all of those parameters.

As for the bunker prices at each port, we used their monthly average prices

in November, 2012. For the available discount options, which are also the key
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parameters in this work, we will resort to reasonable assumptions and a sensitivity

analysis. For simplicity but without the loss of generality, we first assume that

all ports have the same available bunker price discount options. The case of each

port having different options can be easily adopted. Secondly, we assume that

this discount option is on a weekly basis which means that when the weekly total

purchase at a certain port reaches a predetermined amount, the discount can

be enjoyed. Finally, Table 5.4 below provides a base case of the price discount

options, upon which we will conduct further sensitivity analysis.

Table 5.4: Bunker price discount options I

Amount ≥ 0 ≥ 3, 000 ≥ 5, 000

Discount 0% 3% 5%

Two different sizes of vessels are assumed to be deployed in our case studies

as shown in Table 5.5. They differ in terms of capacity, allowable sailing speed

range, mean bunker consumption rate and its coefficient of variation (CV). As

a real practice, vessels with bigger capacity usually perform deep sea shipping

or intercontinental shipping while smaller vessels operate in short sea shipping.

There is a combination of both types of liner business in our considered service

networks. In the end, for the other remaining required inputs for our model, we

assign convenient values to them as they are incidental to the final outputs and

comparison.

Table 5.5: Parameters related to two types of vessel
Parameter Type I Type II

Ship size 3000TEU 6000TEU
Ship speed interval 5–25 knots 5–35 knots
Mean bunker consumption rate F = 0.006743V 3 + 37.23 F = 0.007297V 3 + 71.4
CV of bunker consumption rate 0.09 0.07

We ran all our numerical studies with CPLEX-12.5 on a 3GHz Dual Core PC

with 4 GB of RAM.
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5.4.1 Asia-Europe service

There are 6 service routes and altogether 32 port-of-calls in this service network

as shown in Table 5.6 and Figure 5.3. We have highlighted those ports which

have been shared by more than 3 routes for the reason that they are more likely

to be chosen as strategic bunkering locations than other ports.

Table 5.6: Asia-Europe service

Services: Asia Europe Loop 1, 4, 5, 6, 7 and EUM
Ports: Rotterdam, Hamburg, Southampton, Le Havre, Singapore,

Hong Kong, Kobe, Nagoya, Tokyo, Shimiza, Cai Mep, Jed-
dah, Yantian, Ningbo, Shanghai,Thamesport, Gwangyang, Busan,
Shekou, Antwerp, Jebel Ali, Kaohsiung, Xiamen, Colombo, Salalah,
Qing dao, Genoa, Fos, Barcelona, Valencia, Damietta, Yangshan

Le Havre 

Southampton 

Hamburg 

Rotterdam 

Singapore 

Hong Kong 

Kobe 

Nagoya 
Shimiza 

Tokyo 

Cai Mep 

Jeddah 
Yantian 

Ningbo 

Shanghai 

Thamesport 

Gwangyang 

Busan 

Shekou 

Antwerp 
 

Jebel Ali 
Kaohsiung 

Xiamen 

Colombo 

Salalah 

Qingdao 

Genoa 
Fos 

Barcelona 
Valencia 

Damietta 
Yangshan 

Figure 5.3: Port distribution of the Asia-Europe service

Our numerical study starts from the base case where no bunker discount

option is available. CPLEX can solve the problem to optimality within seconds
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and the optimal cost is $2.36×107. Next we consider the case that the bunkering

decisions are made independently for each individual service route as in Yao et al.

[2012] and the discount options as shown in Table 5.4 are available, CPLEX can

also quickly solve the problem to optimality and the optimal cost is $2.34× 107.

When our model is implemented, the optimal cost is $2.32× 107. This translates

into 0.9% of cost saving when we consider the bunkering decision for the whole

network, instead of individual routes.

Those ports in our model where discount options are actually utilized are:

Rotterdam (≥ 3, 000), Salalah (≥ 3, 000), Jeddah (≥ 3, 000) and Singapore (≥
5, 000). Table 5.7 shows the total bunkering amount at these four ports without

the discount options, with each route optimized individually and in our model.

Table 5.7: Bunkering amount comparison between different scenarios

Ports: Rotterdam Salalah Jeddah Singapore
Without discount 3, 848 2, 653 4, 159 9, 759
Individual route 3, 821 2, 652 4, 151 9, 612
Our model 3, 709 3, 000 4, 150 9, 598

Under current parameter settings, 3 out of the 4 ports actually ”automati-

cally” enjoy the price discounts as their original weekly total bunkering amount

is greater than 3, 000 tons or 5, 000 tons. At port Salalah, the bunkering amount

increases from 2, 653 tons weekly, when there is no bunker price discount, to 3, 000

tons in our model to enjoy the 3% price discount. As a result, bunkering amounts

at the other three ports (also holds true to most of the other 28 ports) slightly

decrease. There are three reasons for this. Firstly, these 3 ports already enjoy

the price discounts. Secondly, for port Rotterdam and Jeddah, only significant

increase of the bunkering amount can entitle them to enjoy a higher discount.

Lastly, total bunker consumption for all the service routes is the same with or

without the price discounts. Another observation is that the optimal solution

in the case when each route is optimized individually is closer to the optimal

solution in our model, compared to the case when no discount option is available.

This would be helpful when we implement our column generation heuristic.

Let us see what is the impact if we raise the bar to enjoy price discounts, say

a minimum 5, 000 tons instead of 3, 000 tons for 3% discount and a minimum
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10, 000 tons instead of 5, 000 tons for 5% discount (Table 5.8).

Table 5.8: Bunker price discount options II

Amount ≥ 0 ≥ 5, 000 ≥ 10, 000

Discount 0% 3% 5%

With the presence of discount options, the optimal cost when each route is

considered individually is $2.35× 107 and the optimal cost of our model slightly

increases to $2.33 × 107. The cost savings marginally decrease from 0.9%. The

increase of optimal cost in our model is rather intuitive since it is more difficult

to entitle for discounts. And under this situation, only Singapore utilizes the

discount option. Total bunkering amount at Singapore increases from 9, 759 to

10, 000. In the case when each route is optimized individually, no bunker price

discount is enjoyed.

Understandably, if bunker suppliers at every port agree to offer higher dis-

counts at lower minimum purchases, the benefit of overall bunkering management

for a whole network will be more significant and bunker discount options at more

ports will be strategically chosen. However, CPLEX fails to solve the problem to

optimality (more than 20% of the optimality gap after 2 hours of solving) due to

insufficient computer memory under discount option setting as shown in Table

5.9. This is because CPLEX uses a branch-and-bound technique to solve MIPs

and as more bunker discount options have the potential to be used, the search

space becomes much larger. Understandably, if the network size increases and

more ports get involved, CPLEX will still fail to solve our problem. Therefore,

we will have to resort to our heuristic algorithms.

Table 5.9: Bunker price discount options III

Amount ≥ 0 ≥ 2, 000 ≥ 4, 000

Discount 0% 5% 10%

We tested our heuristic algorithms on the previous numerical experiment that

CPLEX failed to solve. The best available costs for all three of our heuristic
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algorithms are $2.24× 107. Compared to the case where no price discount option

is available, the cost saving is 6.8% and compared to the case that each route is

optimized individually with discount options, the cost saving is 1.3%. Regard-

ing the solving time and solution quality, our heuristic algorithms outperform

CPLEX: Table 5.10 compares the solving time and estimated optimality gap be-

tween three heuristic algorithms and CPLEX. Estimated optimality gaps of our

heuristic algorithms are obtained by deriving a lower bound for the optimal cost

in our model. When (2000, 5%) and (4000, 10%) are replaced with a single dis-

count option (2000, 10%), the optimal objective value is $2.20×107, which serves

as a lower bound and is 1.8% lesser than the cost for our heuristic algorithms.

Table 5.10: Solving time comparison between heuristic algorithms and CPLEX
Method Greedy algorithm-1 Greedy algorithm-2 CGH CPLEX

Estimated optimality gap 1.8% 1.8% 1.8% ≥ 20%
Solving time (mins) ≤ 1 ≈ 20 ≈ 10 ≥ 120

Another different angle to demonstrate the efficiency of our heuristic algo-

rithms is to compare them with CPLEX on a problem whose size allows CPLEX

to solve it to optimality.

Under both discount option settings I and II, greedy algorithm-2 obtained

the exact true optimal solutions as the direct solving by CPLEX. CGH obtained

solutions with negligible difference (optimality gap is less than 0.05%) from the

true optimal solutions. Regarding the solving time, CGH is much faster than

greedy algorithm-2 as similar to the case in Table 5.10. While under the discount

option setting I, greedy algorithm-1 obtained a high quality near-optimal solution:

(1) the optimality gap is 0.13%; (2) exactly the same bunker discount options

at all ports are used; (3) only bunkering amounts at some individual ports are

slightly different. Under the discount option setting II, the optimality gap is

0.8%, which is still within 1%.

From the previous experiments, we gain the confidence that our proposed

heuristic algorithms suit the specific problem on hand and when the network size

becomes even larger, they can be implemented to obtain satisfactory results.
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5.4.2 Intra-Asia service

Intra-Asia is a much larger service network which consists of 55 routes and 117

ports worldwide. Figure 5.4 shows the degree of port sharing among those 55

routes. For example, we can see that there are 24 ports shared by more than 4

routes, 8 ports shared by more than 7 routes and 1 port shared by more than 32

routes. The solving of our problem by CPLEX directly with such a large size is

practically impossible, and hence must also rely on our heuristic algorithms. For

the numerical experiments of this larger network, we will use the discount option

setting II which is the most restrictive amongst these above three. The rationale

is that since more ports are shared by many routes, it is more appropriate to use a

setting with a higher purchase requirement from the numerical experiment’s point

of view, even though the opposite is always more appealing to liner companies in

the real world. In addition, we will also test one more discount setting with four

options as shown in Table 5.11.
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Figure 5.4: Degree of port sharing among 55 routes

Table 5.11: Bunker price discount options IV

Amount ≥ 0 ≥ 3, 000 ≥ 5, 000 ≥ 12, 000

Discount 0% 3% 4% 5%

Under discount setting II, we start from the base case where no bunker dis-

count option is available. CPLEX can solve the problem to optimality within
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seconds and the optimal cost is $9.42× 107. If each route is considered indepen-

dently with the available discount options, the total optimal cost is $9.38× 107.

In our model, greedy algorithm-1 provides a solution with a cost of $9.28× 107.

This is 1.1% of cost saving by planning the bunkering decisions for the whole net-

work instead of individual routes. 10 out of 117 ports are where price discount

options are actually utilized. Greedy algorithm-2 and CGH also provide solutions

with the same cost of $9.28× 107. Compared to greedy algorithm-1, there is one

more port where price discount option is actually utilized in greedy algorithm-2

and CGH. Regarding the solving time, it takes approximately 2 mins for greedy

algorithm-1, 90 mins for greedy algorithm-2 and 20 mins for CGH to solve the

problem. The results are summarized in Table 5.12 and 5.13.

Table 5.12: Cost comparison under different scenarios

Scenarios: Without discount Individual route Our model
Cost $9.42× 107 $9.38× 107 $9.28× 107

Table 5.13: Comparison between heuristic algorithms

Method Greedy algorithm-1 Greedy algorithm-2 CGH

Cost $9.28× 107 $9.28× 107 $9.28× 107

Solving time (mins) ≈ 2 ≈ 90 ≈ 20

A lower bound of the optimal cost is $9.23×107, which is obtained by replacing

(5000, 3%) and (10000, 5%) with a single discount option (5000, 5%). Therefore,

our heuristic algorithms provide a result that is 0.5% higher than the lower bound.

We have shown that our heuristic algorithms perform very well and by planning

the bunkering decision for a whole network, instead of single routes, there is a

significant cost reduction potential (1.1% or $1.0 × 106 in absolute value under

the current parameter setting).

Under discount setting IV, CGH demonstrates its superiority over the other

two greedy algorithms. Due to the even larger problem size under this setting,

greedy algorithm-2’s solving time is significantly increased. After 2 hours of

solving, we terminated the algorithm with a solution that provides a cost 1.2%

106



5. Strategic bunkering and speed management in liner shipping
networks

higher than that of CGH ($9.30× 107 and $9.19× 107 respectively). Comparing

greedy algorithm-1 to CGH, the cost of the solution from greedy algorithm-1 is

0.5% higher than that of CGH ($9.24 × 107 and $9.19 × 107 respectively). This

is because greedy algorithm-1 determines the highest price discount option first

and then works on lower discount options, this myopic nature causes some ports

to use the discount options of (12000, 5%) and (5000, 4%) which are not used in

the solution of CGH. Although the cost difference of 0.5% is not very significant

because our model is quite robust and numerically stable to its parameters, the

advantage of CGH regarding solution quality has been clearly demonstrated. The

results are summarized in Table 5.14. Optimal cost when each route is considered

individually with bunker discount options is $9.30 × 107. This shows that 1.2%

of cost reduction has been achieved under the discount setting IV.

Table 5.14: Comparison between heuristic algorithms

Method Greedy algorithm-1 Greedy algorithm-2 CGH

Cost $9.24× 107 $9.30× 107 $9.19× 107

Solving time (mins) ≈ 5 120 ≈ 35

All in all, authors recommend the use of greedy algorithm-1 and CGH when

liner companies want to implement our strategic bunkering management model

in the real practice. In light of the fact that greedy algorithm-1 solves faster than

CGH and CGH can provide solutions of higher quality, they can work together

with greedy algorithm-1 providing initial columns for CGH to obtain high quality

near-optimal solutions in a timely fashion.

5.5 Summary

In this work, we study the bunker fuel purchasing problem for a whole liner ship-

ping network under a novel cooperation scheme between liner shipping companies

and bunker suppliers. More specifically, bunker suppliers at certain ports offer

liner shipping companies some price discounts according to their fleet’s weekly or

monthly bunker consumption. Under this situation, the bunkering decision of in-

dividual shipping routes are no longer independent, and shipping companies play
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the role as the overall decision making center and determine the bunkering plan

for all service routes in the shipping network. As shown in our numerical studies,

the bunker cost reduction by this strategic bunkering management is significant.

Considering the millions of dollars of bunker cost involved for even a medium

size liner company, our model has the potential to be implemented in practice

and help save a large amount of operational cost. Besides, our model can de-

cide the optimal sailing speeds for each leg in each service route and help further

reduce the cost while maintaining the required service level and reliability. As

our model is a very large size mixed integer non-liner programming model which

cannot be solved efficiently by the state-of-the-art commercial solvers, we pro-

pose one column generation heuristic and two greedy heuristic algorithms which

take advantage of our problem structure to solve it. Through extensive numerical

experiments, we have shown that CGH is the most versatile of the three heuristic

algorithms. The advantage of greedy algorithm-1 is its fast solving time. There-

fore, in the real practice, we think both can work together with greedy algorithm-1

providing initial columns for CGH to obtain high quality near-optimal solutions

in a timely fashion.

Some possible future research directions are: Firstly, the incorporation of

bunker price contracts can be considered. For example, one type of bunker price

contract works in this way: bunker supplier agrees to offer a fixed amount of

fuel with a pre-determined price regardless of the future market conditions. If

the liner wants to buy more than the fixed amount, it has to pay the prevailing

spot market prices. And if the liner cannot fulfill the amount in the contract, it

has to pay a damage charge. Authors note that our current model can accom-

modate this type of contract with only marginal modification of notations and

formulations. However, the solving would be even more difficult as such a con-

tract can be regarded as a more restricted form of cooperation scheme from the

liners’ perspective. Therefore, the second future research direction is to modify

our column generation heuristic or devise some new efficient solution algorithms

for this type of network strategic bunkering management problem. Last but not

least, the inclusion of bunker suppliers as well in a game-theory framework can

be a very interesting arena for future exploration.
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Chapter 6

Conclusions and future research

This thesis contributes to the liner shipping operation level speed and bunkering

management decision support. In this chapter, we summarize the main results of

our work. Limitations and possible future research will also be discussed.

6.1 Summary of results

Chapter 3 studied the problem of dynamic bunkering port selection and ship

speed determination for a single vessel in one service route. While previous de-

terministic works focused more on the planning level of this problem, we aimed at

providing operational decision support by incorporating two major random fac-

tors into our model. Namely, the ship bunker consumption rate and the bunker

prices at each port. Based on the bunker consumption model in Yao et al. [2012],

we further established that the noise of daily bunker consumption follows a nor-

mal distribution with zero mean and constant coefficient of variation. For the

stochastic nature of the bunker prices, we modeled it through the scenario tree.

While solving a whole large dynamic problem was computational challenging, we

proposed a solving method that could help to significantly reduce the computer

memory requirement and solving time. This method is a combination of scenario

tree generation scheme and a non-standard rolling horizon approach. Another

advantage about this solving method is that as much new information as possible

is used and previous forecasting errors could be easily corrected during the whole

study horizon. Our numerical examples based on real-world data have shown that
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the dynamic model improves significantly in terms of overall cost and service level

(or failure rate) compared with the stationary model. With the reasonable solv-

ing time, we think our model could be implemented by liner shipping companies

to give operational level decision support in order to lower the overall operation

cost and provide more reliable service.

In chapter 4, we incorporated a dynamic (s, S) bunkering policy into the previ-

ous problem. Bunkering policy allows a more flexible operational bunkering plan;

the decision of whether to bunker or not depends on the bunker price realization

as well as the actual bunker consumption during the previous leg. In terms of

modeling and solving the model, the biggest challenge was posed by the large

number of integer variables. The uncertain bunker prices were formulated as a

one-stage Markovian process using a scenario tree structure. For the bunker con-

sumption uncertainty, instead of dealing with it with chance constraints, we used

the random generation of scenarios and the SAA to circumvent the difficulty of in-

corporating a continuous distribution and calculating the expectation. However,

speed choice decision was associated with every price scenario and every stage;

bunkering decision was further associated with every consumption scenario. This

caused the number of integer variables to grow out of control. Hence the second

major contribution of our work is the introduction of two variants of the pro-

gressive hedging algorithm to solve the aforementioned large-scale mixed-integer

problem. The efficiency of these two algorithms have been clearly demonstrated

through our numerical studies. We have also shown that the proposed (s, S) re-

fueling policy model is a practical, useful and applicable model with high cost

saving potential.

Chapter 5 analyzed the bunker fuel purchasing problem for a whole liner ship-

ping network under a novel cooperation scheme between liner shipping companies

and bunker suppliers. More specifically, bunker suppliers at certain ports offer

liner shipping companies some price discounts according to their fleet’s weekly

or monthly bunker consumption. Under this situation, the bunkering decision

of individual shipping routes are no longer independent, and shipping companies

play the role as the overall decision making center and determine the bunkering

plan for all service routes in the shipping network. As shown in our numerical

studies, the bunkering cost reduction by this strategic bunkering management is

110



6. Conclusions and future research

significant. Considering the millions of dollars of bunker cost involved for even a

medium size liner company, our model has the potential to be implemented in the

real world and help save a large amount of operational cost. Besides, our model

can decide the optimal sailing speeds for each leg in each service route and help

further reduce the cost while maintaining the required service level and reliabil-

ity. As our model is a very large size mixed integer non-liner programming model

which cannot be solved efficiently by the state-of-the-art commercial solvers, we

proposed one column generation heuristic and two greedy heuristic algorithms

which take advantage of our problem structure to successfully solve it.

6.2 Future research

Authors concede that several limitations are existing in our current work. It can

be improved and extended in several directions:

Firstly, instead of modeling the possible bunker price changes by discrete

percentage values as in chapter 3 and 4, we can use an interval to represent

one scenario in the scenario tree. For example, the interval [−10%,−5%) can

be one scenario and [−5%, 0%) can be another. The benefit of this new scheme

is of course a more accurate representation of the uncertainty of bunker prices.

However, the potential drawback would be the even huger problem size.

Therefore, our second possible future research direction is to revisit the sce-

nario reduction algorithm discussed by Dupačová et al. [2003], Heitsch and Römisch

[2003] and Heitsch and Römisch [2009]. Originally, when we use discrete values

to represent one scenario, the problem associated with the scenario reduction al-

gorithm is that once one scenario is deleted in the tree, optimal solution to the

reduced tree does not tell us how to act when that deleted scenario happens in

the reality. However, with the interval representation of scenarios, we can solve

this problem by simply combining scenarios. For instance, scenario [−10%,−5%)

and [−5%, 0%) can be combined into [−10%, 0%) during a certain stage. When

either −7.8% or −1.8% happens, the same action is taken at that stage according

to the optimal solution of the reduced tree. Hence, it can also be called a scenario

combination algorithm.
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Thirdly, the incorporation of bunker price contracts in the model of chapter 5

can be considered. For example, one type of bunker price contract works in this

way: bunker supplier agrees to offer a fixed amount of fuel with a pre-determined

price regardless of the future market conditions. If the liner wants to buy more

than the fixed amount, it has to pay the prevailing spot market prices. And if

the liner cannot fulfill the amount in the contract, it has to pay a damage charge.

Authors note that our current model can accommodate this type of contract

with only marginal modification of notations and formulations. However, the

solving would be even more difficult as such a contract can be regarded as a more

restricted form of cooperation scheme from the liners’ perspective. Therefore,

another future research direction is to modify our column generation heuristic or

devise some new efficient solution algorithms for this type of network strategic

bunkering management problem.

Last but not least, the inclusion of bunker suppliers as well in a game-theory

framework can be a very interesting arena for future exploration.
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Following notations are used to express model.1:

n number of port of calls;

di,j distance between port i and port j(nautical miles);

t total cycle time(hours);

ti port time(time one ship spends on entering, unloading and loading

cargo, idling and exiting) at port i(hours);

ei earliest arrival time at port i;

li latest arrival time at port i;

Ci bunker fuel consumption when the ship is at port i;

w bunker fuel capacity for a single ship;

vmin minimum ship sailing speed (nautical miles/hour);

vmax maximum ship sailing speed (nautical miles/hour);

k1, k2 bunker fuel consumption coefficients;

Pi bunker price for port i;

f fixed bunkering cost;

h inventory holding cost pmt for bunker;

γ coefficient to control the service level;

Decision Variables:
Vi,j ship speed between port i and j;

Si bunker fuel-up-to level for the ship at port i;

Bi bunkering decision variable. = 1 if bunkering at port i; = 0, otherwise;

Ii bunker fuel inventory when the ship reaches port i;

Dependent Variables:
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Fi,j daily bunker consumption rate for a ship travels from port i to j;

Ai ship arrival time at port i;

min
n∑
i=1

[(Si − Ii)Pi + f ·Bi + (Si − Ci) · h]− P1 · In+1

I1 = 0 (1)

Ii = Ri−1 − ai−1 − Fi−1,i · di−1,i/24 · Vi−1,i i ∈ 2, 3, ..., n+ 1 (2)

Ri − Ii ≤ Bi · w i ∈ 1, 2, ..., n (3)

Ri ≤ w i ∈ 1, 2, ..., n (4)

Ii ≥ γ · w i ∈ 1, 2, ..., n (5)

Fi,i+1 = k1(Vi,i+1)3 + k2 i ∈ 1, 2, ..., n (6)

vmin ≤ Vi,i+1 ≤ vmax i ∈ 1, 2, ..., n (7)

Ai + ti + di,i+1/Vi,i+1 = Ai+1 i ∈ 1, 2, ..., n (8)

ei ≤ Ai ≤ li i ∈ 1, 2, ..., n (9)

An+1 = t (10)

Bi = 0 or 1 i ∈ 1, 2, ..., n (11)

Fn,n+1 = Fn,1, dn,n+1 = dn,1, Vn,n+1 = Vn,1 (12)

The objective function is to minimize the expected total cost, which includes

the fixed and variable bunkering cost and inventory holding cost. Bunker left at

the end of the service loop is refunded. Constraint 1 sets the initial inventory to

be 0. Constraint 2 is a flow conservation constraint. Constraints 3 and 4 ensure

that the maximum bunkering amount and bunker-up-to level are less than the

bunker fuel capacity. Constraint 5 controls the minimum bunker inventory to be

a fixed percentage of the total bunker capacity. Constraint 6 expresses the daily

consumption rate at a certain speed between port i and i + 1. Constraint 7 is

simply to limit the ship speed within a reasonable range, while constraint 8 to 10

are about time window constraints. Constraint 11 is a binary constraint.
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We applied the fast forward selection algorithm in Heitsch and Römisch [2003]

to reduce the bunker price scenario tree size in our first case study, MAX service

route, and compared the result with that of our modified rolling horizon approach.

As mentioned, the size of the MAX service route allows us to solve the whole

dynamic model by CPLEX directly, so we can easily derive the optimality gap

of the scenario reduction method and our modified rolling horizon approach,

respectively.

Table 1 shows the optimality gap of the scenario reduction method under

different parameter settings. There are altogether 256 price scenarios initially and

we still look at 3 different cases of bunker price fluctuation.“Number of scenarios”

means the total number of scenarios retained after reduction and these percentage

numbers in the table denote the optimality gap between the scenario reduction

method and the direct solving of the dynamic model.

Table 1: Optimality gap of the scenario reduction method

Number of scenarios 10 30 60 90 100 200

Case 1 32.31% 29.29% 17.70% 10.19% 2.56% < 0.1%
Case 2 93.17% 32.91% 26.55% 18.40% 13.15% < 0.1%
Case 3 91.41% 53.81% 29.97% 17.52% 13.20% < 0.1%

Table 2 shows the optimality gap of our modified rolling horizon approach

under three different cases of bunker price percentage change. Table 3 is a com-

parison of the solving time between these two methods under case 1.

Comparing the results in Tables 1, 2 and 3, we can see that the modified
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Table 2: Optimality of the modified rolling horizon approach

Methods Case 1 Case 2 Case 3

D $117, 194 $113, 422 $95, 580
R $118, 779 $116, 637 $100, 502

R−D
R

(%) 1.3 2.8 4.9

Table 3: Solving time comparison of these two methods

Methods/Case 1 60 100 200

Reduction 35s 65s 139s
Rolling horizon 5.6s 5.6s 5.6s

rolling horizon approach is a good approach to be used for our problem. Under

all three cases, the modified rolling horizon approach is better than the scenario

reduction method when the scenario reduction method retains less than 100 sce-

narios. Moreover, the solving time for the modified rolling horizon approach

remains unchanged while the solving time for the scenario reduction method in-

creases considerably with the number of scenarios. And under all these 3 cases,

the optimality gap of our modified rolling horizon approach is under 5%, which

is encouraging.

When it comes to our second case study where there are a total of 416 price

scenarios, the implementation of the scenario reduction method becomes even

harder. As CPLEX can only solve the problem with less than 500 price scenarios,

this means only 5 out of 414 scenarios is retained. Not only will the scenario

reduction algorithm take a long time to reduce the scenarios, but the optimality

gap of the reduced tree might be big based on our study of the small size problem.

In summary, we feel that the scenario reduction technique might not work well

in our problem. However, having said so, we still feel that there is a potential

in this method to be applied to this type of the problem, but this will need an

in-depth research work. As for our proposed method, it can be viewed as a special

type of scenario reduction technique in the sense that all the branches in the near

future are enumerated, but the branches far away from the decision point are not
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enumerated fully and so we have a reduction in scenarios. Moreover, by forcing

it to solve at every decision point, we are able to obtain decisions using the most

updated information.
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