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Summary

With rapid advances in medical imaging technology, the use of

computer tomography (CT) and magnetic resonance (MR) image

data for orthodontic treatment and maxillofacial surgery has be-

come increasingly common. Fan beam CT (traditional CT) and

cone beam CT (CBCT) are two commonly used types of CT. In con-

trast with fan beam CT, CBCT can produce volumetric images with

higher spatial resolution and lower radiation exposure to patients.

But the trade-off is that CBCT is usually more noisy than fan beam

CT. Both CT imaging modalities permit clinicians to study hard

tissues like mandible, maxilla and teeth. In contrast with radiation-

based CT, magnetic resonance imaging (MRI) presents substantial

health advantages to the patient. MR imaging has no ionizing radi-

ation and provides visualization of internal soft and hard tissues. In

dentistry, CBCT is usually used to study the bone structures while

MRI is used to study the muscles.

The main focus of the thesis is to present approaches for segmenting

the human mandibular body from MR images and segmenting the

human anterior teeth from CBCT images. Both of the segmenta-

tion approaches allow clinicians to study the oral and maxillofacial

x
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images with 3D data taken from imaging modalities with little or

noionizing radiation.

An approach for segmenting the human mandibular body from MRI

was firstly presented. The segmentation of mandibular body in MRI

is difficult due to the partial volume effects, missing of some bone

structures and the mixture of bone with air in MR images. A two-

stage rule-constrained seedless region growing approach was pre-

sented to segment the mandibular body in MRI. The proposed ap-

proach was implemented and the segmentation results were com-

pared with other algorithms and the ground truth. The proposed

method showed the best results in most scenarios. The precision of

reconstruction of mandibular shape from MRI was studied by com-

paring with the 3D mandibular shape obtained from CT images.

An approach for segmenting the anterior tooth segmentation from

CBCT was then presented. The most challenging part of tooth seg-

mentation is to segment the root of the tooth. The new level set algo-

rithm is able to detect the contour of the tooth root from CBCT with

three novelties: (1) a more accurate estimation of intensity distribu-

tions of the tooth root is used; (2) a more robust shape prior is used

to add a more reasonable shape constraint on the contour evolution;

and (3) the thickness of tooth dentine wall is used as a new con-

straint to avoid leakage problem. The proposed approach was im-

plemented and the segmentation results were compared with other

algorithms and the ground truth. The proposed method showed the

xi
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best results in most scenarios. After segmenting the teeth, a 3D in-

teractive tooth movement and collision detection system was then

built to help the clinicians to address impacted canine cases.
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Chapter 1

Introduction

1.1 Motivation

The oral (mouth) and maxillofacial (jaws and face) regions refer to the soft and

hard anatomical tissues of the mouth, jaws, face and skull (Eder et al., 2003).

The hard tissues consist of jaw bones such as the maxilla, the mandible, and the

teeth; the soft tissues consist of four muscles used for chewing: the masseter

muscle, the medial pterygoid muscle, the lateral pterygoid muscle and the tem-

poralis muscle (Fig. 1.1). The muscles control the movement of the mandible

and the teeth for mastication (chewing). Thus the malfunction of either the mus-

cles moving the mandible or the teeth might lead to problems in the mastication

process. The aim of jaw surgery is to correct any jaw and facial deformity so

that a functional balance between the hard and soft tissues of the mouth, jaws

and muscles is established.

1



1.1 Motivation

Figure 1.1: Soft and hard tissues in oral and maxillofacial region (modified from
Eder et al. (2003); Liebgott (2011)).

Traditional pre-surgical planning for oral and maxillofacial surgeries is per-

formed using profile tracings and plastic models. Profile tracings are intrinsi-

cally 2D and do not permit clinicians to visualize the muscles. Plastic models

are 3D but only permit clinicians to visualize the surface of the crown of the

tooth. In recent years, however, the availability of more powerful medical imag-

ing machines has brought the diagnostic oral and maxillofacial imaging from

the era of 2D to 3D. The application of 3D imaging like computed tomography

(CT) and magnetic resonance imaging (MRI) of the oral and maxillofacial re-

gions has become more common. Fan beam CT (traditional CT) and cone beam

CT (CBCT) are two commonly used types of CT. In contrast with fan beam CT,

CBCT can produce volumetric images with higher resolution and lower radia-
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1.1 Motivation

tion exposure to patients (Scarfe et al., 2006). But the trade-off is that CBCT is

usually noisier than fan beam CT. Both of them permit clinicians to study hard

tissues like the mandible, the maxilla and the teeth. In contrast with X-ray based

CT, magnetic resonance imaging (MRI) presents substantial health advantages

to the patient. MR imaging has no ionizing radiation and provides visualization

of the internal anatomy of soft tissues and hard tissues (Hashemi et al., 2010).

Within the limitation of current imaging technologies, the hard tissues of oral

and maxillofacial images can be obtained using fan beam CT, CBCT and MRI.

The soft tissues can be obtained using MRI.

With the increasing image spatial resolution and number of images taken

per diagnostic scan, the use of computer algorithms and systems to process and

analyze the images are in demand. The delineation of regions of interest using

automated computer algorithms is a key fundamental step in fulfilling further

computer aided radiological tasks. These computer algorithms, also known as

medical image segmentation algorithms, are of importance in various medical

imaging applications like diagnosis and treatment planning by providing 3-D

visualization and 3-D measurement of the patient.

Unfortunately, the segmentation of medical images is a challenging task and

there is no universal method which works for all kinds of anatomical structures.

The segmentation method may fail at the same anatomical structure if the im-

ages of the structure are obtained by using a different modality or even using the

same modality but in different imaging machines.

In the following sections of this chapter, previous studies of the segmenta-

tion of multi-modal oral and maxillofacial images are first provided. This is

followed by the motivation of the thesis on the problems of mandibular body

3



1.2 Previous work

Table 1.1: Status of studies on segmentation of multi-modal oral and maxillofacial
images.

MRI CBCT Fan beam CT

Muscles X NA NA
Mandible × X X
Maxilla × X X
Teeth × × X

X: Semi-automated and automated segmentation methods have been
proposed to segment the given anatomy in this modality
NA: Not applicable
×: Segmentation methods have not been proposed to segment the given
anatomy in this modality

segmentation in MRI and anterior teeth segmentation in CBCT. The objectives

and outline of this thesis are presented, followed by the contributions of the

thesis.

1.2 Previous work

In this section, previous work on the state-of-art segmentation problems of both

soft and hard tissues in oral and maxillofacial images will be briefly introduced.

The segmentation methods of multi-modal oral and maxillofacial images can be

classified based on the imaging modality. The current status of segmentation

methods for multi-modal oral and maxillofacial images is shown in Table 1.1.

The segmentation approaches for muscles from MRI and those for hard tis-

sues from CT in oral and maxillofacial regions have been reported in the liter-

ature. No research has been reported on the segmentation of muscles tissues in

oral and maxillofacial regions from CT. In general, while some of the problems

have been successfully solved, the problems of hard tissue segmentation in MRI

4



1.2 Previous work

and tooth segmentation in CBCT remain unsolved. Segmentation algorithms

reported in the literature for different structures will be briefly reviewed in the

following subsections.

1.2.1 Bone segmentation from traditional CT

Several investigative approaches for the segmentation of the jaws (the mandible

and the maxilla) and the teeth from traditional CT have been reported in the

literature. The reported approaches are listed as follows:

(1) Segmentation of mandible from traditional CT:

• “An automatic segmentation and reconstruction of mandibular structures

from CT-data” (Barandiaran et al., 2009). This method is based on au-

tomatic multiple thresholding followed by a region-growing algorithm to

extract the object of interest. However, the paper failed to carry out a

statistical comparison study and thus the proposed method cannot be con-

sidered reliable.

• “Automatic segmentation of jaw tissues in CT using active appearance

models and semi-automatic landmarking” (Rueda et al., 2006). This method

is based on a 2D active appearance model (AAM). The model is con-

structed from manual segmentation of 215 images. The authors reported

a mean error of 1.63mm for the cortical bone and 2.90mm for the trabec-

ular bone.

(2) Segmentation of maxilla from traditional CT:

• “Automatic bone and tooth detection for CT-based dental implant plan-

ning” (Nguyen et al., 2012). This method is similar to the segmentation

5



1.2 Previous work

method proposed by Kainmueller et al. (2009). The authors build a statis-

tical shape model (SSM) for maxilla from 43 manually segmented CT and

CBCT datasets. The details of the segmentation algorithm are presented

in Nguyen (2012). They achieve a segmentation accuracy of 0.5±0.5mm

for the maxillary bone surface distance between the adapted SSM and the

ground truth.

(3) Segmentation of teeth from traditional CT:

• “Automated segmentation of teeth in multi-slice CT images” (Keyhanine-

jad et al., 2006). This method is based on the level set method. They

firstly obtain the head mask, then hard tissues are separated from other

tissues by a level set technique. The teeth are then segmented from other

hard tissues using the distinct intensity of teeth.

• “Individual tooth segmentation from CT images using level set method

with shape and intensity prior” (Gao & Chae, 2010). This method is also

based on the level set method. This method generates a shape prior with

intensity and boundary features and integrates the three terms into one

energy functional to be minimized. They use the framework to segment

the crowns and roots of individual teeth. The segmented crown and root

are finally merged to render the shape of the tooth. Their segmentation

approach works well for CT images.

1.2.2 Bone segmentation from CBCT

(1) Segmentation of mandible from CBCT:

6
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• “Automatic Segmentation of Mandibles in Low-Dose CT-Data” (Lamecker

et al., 2006). The method is based on segmenting the mandible using an

active shape model (ASM), which is constructed from 13 manually seg-

mented individual mandible shapes. A training data set is first manually

decomposed into 8 patches, and then an automatic method is used to find

the surface correspondences needed to build an ASM. The segmentation

is eventually achieved by two phases of matching.

• “Fully automatic shape constrained mandible segmentation from cone-

beam CT data” (Gollmer & Buzug, 2012). The method is based on the

statistical shape model (SSM). In contrast to previous approaches, the

method was fully automated in terms of both the establishment of statisti-

cal shape model and the segmentation itself. The segmentation accuracy is

similar to that of previous SSM based mandible segmentation approaches

whereas the size of their training sample is 3.5 times smaller.

(2) Segmentation of maxilla from CBCT:

• “3D segmentation of maxilla in cone-beam computed tomography imag-

ing using base invariant wavelet active shape model on customized two-

manifold topology” (Chang et al., 2013). The method is based on wavelet

density model (WDM) to segment the outer surface of the anterior wall of

maxilla. Nineteen CBCT datasets are used to conduct two experiments.

This mode-based segmentation approach is validated and compared with

3 different segmentation approaches. The results show that the perfor-

mance of the proposed segmentation approach is better than those of the

other approaches. Their results have a 0.25±0.2 mm surface error from
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the ground truth.

1.2.3 Muscle segmentation from MRI

The problems of segmentation of muscles within oral and maxillofacial region

in MRI have been systematically studied (Ng et al., 2006b, 2007a,b, 2008, 2009,

2010). Ng (2008) used an improved watershed segmentation algorithm which

implements a post-segmentation merging step, based on both intensity and spa-

tial criteria, to reduce the number of partitions significantly. The segmentation

accuracy was improved by preprocessing with K-means clustering before ap-

plying the improved watershed algorithm. They explored the use of the gradient

vector flow (GVF) snake (Xu & Prince, 1998) to segment the masticatory mus-

cles from 2D MR images. Finally they reported the methods that incorporate

information from patient specific models by matching distributions of the pixel

intensity values to segment the human masticatory muscles from MRI.

These segmentation approaches provide the engineering solutions for au-

tomated segmentation of the muscles in MRI, which are intended to free the

clinicians from tedious and time-consuming work on manual segmentation of

the soft tissues.

1.2.4 Remaining segmentation problems

We have seen that the hard tissues can be segmented from both traditional fan

beam CT or the more noisy low-dose CBCT except for one remaining segmen-

tation case, namely tooth segmentation in CBCT. The soft tissues in MRI have

already been addressed. However, no one has reported automated segmenta-
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tion of hard tissues in MRI. The remaining problems in multi-modal oral and

maxillofacial images are the main concerns of this thesis.

1.3 This Thesis

This section presents the objectives and the outline of the thesis and states its

contributions.

1.3.1 Objectives and outline of the thesis

1.3.1.1 Objectives

The objectives of the study are:

• To develop an automated method to extract the human mandible body

shape from magnetic resonance (MR) images of the head.

• To determine the validity of magnetic resonance imaging (MRI) as a non-

ionising imaging modality for generating a realistic shape of the mandible

and to evaluate the precision of the mandibular shape.

• To develop an improved level set method to extract the shapes of anterior

teeth from CBCT images of the head.

• To develop a 3D interactive tooth movement and collision detection sys-

tem to assist the clinicians in treatment planning.

1.3.1.2 Outline of the thesis

The thesis consists of seven chapters, including this introductory chapter.
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• In chapter 2, we present medical concepts and commonly used segmenta-

tion techniques with which the thesis is related.

• In chapter 3, we present a two-stage rule-constrained seedless region grow-

ing approach for mandibular body segmentation in MRI.

• In chapter 4, we present a precision study of the reconstruction of mandibu-

lar shape from magnetic resonance imaging.

• In chapter 5, we present a segmentation algorithm of anterior teeth in cone

beam computed tomography images using the level set method.

• In chapter 6, we present a 3D interactive tooth movement and collision

detection system.

• Finally, in Chapter 7, we conclude the thesis with the achievements and

recommendations for future work.

1.3.2 Thesis contributions

The main contributions of this thesis are the segmentation algorithms for mandible

from MRI and teeth from CBCT, both of which are located in the oral and max-

illofacial area. These segmentation approaches allow clinicians to study the oral

and maxillofacial images with 3D data in modalities that present no or relatively

lower radiation to the patients. The two segmentation algorithms are followed

by two medical studies. The significant contributions of this thesis are given as

follows:

• The proposed two-stage rule-constrained seedless region growing approach
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for mandibular body segmentation in MRI can address the leakage prob-

lem in mandible segmentation from MRI (Chapter 3). With the proposed

automated segmentation approach, the shape of the mandibular body can

be obtained without making the patient undergo another round of CT

scanning. This will decrease the radiation dosage exposed to the patient.

The segmented mandible can be integrated with the segmented muscles to

build a complete skeletal muscle system to better analyze the masticatory

system for specific patients.

• A precision study of the reconstruction of the mandibular shape from mag-

netic resonance imaging is described in Chapter 4. The study shows that

the shape of the mandibular body generated from MRI are as accurate as

those generated from CT. However, the anatomical areas at the coronoid

processes and condylar heads generated from MRI are less precise when

compared with those generated from CT imaging.

• The level-set based segmentation algorithm can segment the anterior teeth

in CBCT images (Chapter 5). The proposed method is better than previ-

ous methods in its capability to define the root boundary. Previous meth-

ods work only for fan beam CT data, while the proposed method offers a

solution for tooth segmentation in the lower-radiation imaging CBCT.

• Finally, a 3D interactive tooth movement and collision detection system

is built to assist the clinicians find feasible solutions for patient specific

impacted canine cases (Chapter 6).
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Chapter 2

Preliminaries

This chapter presents relevant anatomical concepts, medical imaging techniques

and reviews related segmentation methods. In Section 2.1, we describe the

anatomies of the mandible and teeth, which are the regions of interest of this

thesis. We discuss image modalities used in medical applications in Section 2.2.

Finally, we give a review of the related segmentation methods in Section 2.3.

2.1 Mandible and teeth

2.1.1 Overview

In this thesis, we focus on analyzing tooth and mandible segmentation algo-

rithms. Thus we will describe these two regions in detail.
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2.1 Mandible and teeth

2.1.2 Mandible

The human mandible (also known as the lower jaw), is the strongest and largest

facial bone and serves to hold the lower teeth (Fig. 2.1). The components of the

mandible are:

• The body of the mandible is the horizontal part on each side.

• The alveolar margin is upper portion of the mandibular body.

• The ramus is the ascending part of the mandible at each side.

• The angle of the mandible is at the junction of the lower border of the

ramus with the posterior border.

• The condyle is a rounded knob by means of which the mandible can make

all its movements.

• The coronoid process is a sharp projection at the top of each ramus and in

front of the condyle.

Figure 2.1: Mandible and its components (from Wikimedia Commons).
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2.1.3 Tooth

Human teeth are white hard structures embedded in the jaws (maxilla and mandible)

and are covered by gums. The function of the teeth are cutting and crushing food

in preparation for swallowing and digestion. Teeth are made of various tissues

of different hardness and density.

Humans usually have 32 permanent teeth, which are classified as incisors,

canines, premolars and molars (Fig. 2.2).

Figure 2.2: Permanent teeth of right half of lower dental arch, seen from above
(from Wikimedia Commons).

The tooth can be separated into two regions: the crown and the root. The area

that lies above the cementoenamel junction (the “neck” of the tooth) is called

the crown. It is made of dentin with a pulp chamber inside (Cate, 1998). The

area below the cementoenamel junction and covered with cementum is called

the root. Similar to the crown, the root is also composed with dentin and pulp.

The different parts of a tooth are described as follows (Fig. 2.3):
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2.1 Mandible and teeth

Figure 2.3: Section of a human tooth (from www.studiodentaire.com).

• Enamel, made of calcium phosphate, is the hardest substance of the tooth

body. Its thickness varies over the surface of the tooth body.

• Dentin is softer than enamel, it decays more rapidly and is vulnerable to

cavities if not treated properly.

• Periodontal ligaments (PDL) are a group of tissue fibers which attach a

tooth to the alveolar bone (Fig. 2.3).

• Covering the root of the tooth, cementum is a substance like bones (Cate,

1998). It is softer than either enamel or dentin. It functions as a medium

by which the PDL attaches to the tooth for stabilization.

• Pulp is the soft, living central structure of teeth. It consists of blood ves-

sels and nerves (Cate, 1998).
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2.2 Medical imaging modalities

2.2 Medical imaging modalities

This section introduces the medical imaging modalities used in this thesis.

2.2.1 Computed tomography

In 1972, Hounsfield publicly introduced the first clinical CT scanner and de-

scribed its design in 1973 (Hounsfield, 1973). Since then, X-ray computed to-

mography (CT), which uses computer-processed X-rays to generate “slices” of

region of interest (ROI), becomes one of the commonly used medical imaging

modalities. The 3D CT has several advantages over traditional 2D x-ray images:

(1) CT eliminates blurring resulting from the superimposition of structures out-

side the region of interest; (2) due to the high-contrast resolution of CT, differ-

ences between tissues which have different physical density (mass density) can

be easily distinguished (Mull, 1984; Phillips & Lannutti, 1997); (3) unlike con-

ventional X-ray radiography which projects 3D body structure onto a 2D image,

CT generates several slices of 2D images, with about 1mm slice thickness, of

the body. CT images can be viewed in the axial (horizontal), coronal, or sagittal

planes, depending on the diagnostic demand. However, the resolution of CT is

not as good as that of conventional x-ray images.

Computed tomographic scanning is used in several medical applications

such as the detection of cancers , injured or dead tissues, blood clots and cysts.

CT can be divided into two types, fan beam and cone beam, based on geometries

of acquisition X-ray beam (Scarfe et al., 2006) (Fig. 2.4).

16



2.2 Medical imaging modalities

Figure 2.4: Different X-ray beam projection schemes. (a) fan-beam CT; (b) cone-
beam CT (from Scarfe et al. (2006)).

The first-generation of fan beam CT gantries employ a scanning mecha-

nism, also known as “traverse and index”. A narrow pencil beam from a col-

limated source traverses the slice linearly to obtain a projection. The frame

is then rotated to obtain more such projections. Since the first-generation of

CT gantries, it has undergone 6 generations of refinements until the seventh-

generation gantries, which are known as multi-slice CT (MSCT). In contrast

with the scheme of single row detectors, multiple detectors are placed close

to each other so that could simultaneously collect data from multiple slices

(Fig. 2.5). The advantages of MSCT are a much shorter imaging acquisition

time and improved 3D rendering quality with decreased helical artifacts.
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2.2 Medical imaging modalities

Figure 2.5: Difference between single detector CT and multiple detector CT (from
Goldman (2008)).

In contrast with fan-beam CT, cone-beam CT (CBCT) scanners use 2D

digital arrays to provide an area detector which is combined with a 3D beam

(Fig. 2.4b). The scheme of cone-beam CT involves a single 360◦ scan in which

a x-ray source and a detector move around the patients head at the same time.

During the scanning, the patients head is stabilized with a head holder (Fig. 2.6).

Computing algorithms such as filtered backprojection or iterative reconstruction

methods are applied to these acquired projections to generate 3D volumetric im-

ages, which can be displayed in axial, sagittal and coronal planes.
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2.2 Medical imaging modalities

Figure 2.6: Cone-beam computed tomography system. A phantom is stabilized
with a head holder (from U.S. Food and Drug Administration website).

Compared with traditional fan-beam CT, CBCT is more suitable for imaging

the oral and maxillofacial region. It provides high-quality images of contrasted

structures and is very useful for evaluating hard tissues (Sukovic, 2003; Ziegler

et al., 2002). Similar to conventional CT, limitations exist in the use of CBCT

for imaging soft tissues. The application of CBCT in clinical practice shows

present advantages for oral and maxillofacial imaging over conventional CT:

• Imaging resolution: The volumetric data set consists of a 3D collection of

smaller cubic elements, also known as voxels. A voxel (volumetric pixel)

is a volumetric element in a regular grid in 3D space. Although conven-

tional CT images can be as small as 0.625mm square in a given plane,

the thickness between slices is usually 1∼2mm. Unlike the anisotropic

resolution of conventional CT, all CBCT scanners provide spatial reso-

lution that are isotropic (equal in 3 orthogonal planes). This provides
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sub-millimetre resolution result (even exceeding the resolution of most

MSCT) ranging from 0.4mm to 0.125mm.

• Scan time: Because CBCT can acquire all image projections in a single

rotation, scan time is usually around 1 minute, which is comparable with

those of conventional CT systems. Faster scanning time can reduce mo-

tion artifacts.

• Field of view (FOV): The FOV of most CBCT scanners can be adjusted

to small regions of interest for specific diagnostic tasks. They are also

capable of scanning the whole craniofacial complex.

• Radiation dose reduction: Research publications indicate that, compared

with fan-beam CT, CBCT is able to reduce the effective dose of radiation

significantly by as much as 98% (Cohnen et al., 2002; Dula et al., 1996;

Heiland et al., 2004; Ludlow et al., 2003; Mah et al., 2003; Ngan et al.,

2003; Scaf et al., 1997; Schulze et al., 2004). The effective dose of ra-

diation has been reduced to that of a periapical dentition survey, which

is 4-15 times that of a panoramic radiograph (Danforth & Clark, 2000;

Gibbs, 2000; Ngan et al., 2003; White, 1992).

• Reduced image artifact: Thanks to improved artifact suppression algo-

rithms and more imaging details, published reports have shown that CBCT

images can introduce a low level of imaging artifacts, especially in recon-

structions of the teeth and jaws (Cohnen et al., 2002; Scarfe et al., 2006).

20



2.2 Medical imaging modalities

2.2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a medical imaging modality which uses

magnetic field and radio waves to image internal structures inside the body.

Unlike CT, MRI has no ionising radiation. Compared with CT, it has more

imaging contrast for soft tissues like brains and muscles. It can detect diseased

tissues like tumors.

In MRI, tissues can be differentiated on the basis of spin-lattice relaxation

time (T1) and spin-spin relaxation time (T2). In physics, spin-lattice relaxation

denotes the mechanism by which the longitudinal component of the magnetic

moment comes into thermodynamic equilibrium with its surroundings (the “lat-

tice”). The signal decay process is characterized by the time constant spin-lattice

relaxation time (also known as T1). Similarly, spin-spin relaxation denotes the

mechanism by which the transverse component of the magnetic moment comes

into the equilibrium value of zero. The signal decay process is characterized by

the time constant spin-spin relaxation time (Hashemi et al., 2010). The imaging

differences between these two types of MRI settings are illustrated in Fig. 2.7.

Figure 2.7: Comparison between T1-weighted MRI and T2-weighted MRI.
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2.3 Review of related segmentation methods

Medical image segmentation, which plays an important role in medical imaging

applications, is one of the most fundamental and challenging problems in med-

ical image analysis. It uses automated or semi-automated methods to partition

anatomical structures out from their surrounding environments. We will review

existing segmentation methods with an emphasis on discussing the advantages

and disadvantages of using these approaches to solve medical imaging prob-

lems. We will also discuss the application of image segmentation methods for

different imaging modalities and the corresponding difficulties.

2.3.1 Overview

Diagnostic imaging is frequently used in medical applications. MRI, CT and

other medical imaging techniques provide various ways to map the anatomy of

human organs or other interior structures. With the increasing resolution and

number of patient images, the use of computer algorithms to process and ana-

lyze them are in demand. The delineation of regions of interest using automated

computer algorithms is a key fundamental step in fulfilling further radiological

tasks. These computer algorithms, also known as medical image segmenta-

tion algorithms, are of importance in various medical imaging applications like

diagnosis and treatment planning (Khoo et al., 1997; Taylor, 1995), computer-

assisted surgery (Grimson et al., 1997; Jolesz et al., 2001), anatomical struc-

ture study (Farag et al., 2005), biological processes simulation (Prastawa et al.,

2009), pathology localization (El-Baz et al., 2006) and tracking the progress of

diseases (Gra; Greenspan et al., 2006).
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However, segmentation of medical images is a challenging task due to the

following reasons:

• Regions within the target anatomical structures usually have inhomoge-

neous intensities because they might be consist of various tissues.

• The surrounding background may also have inhomogeneous intensities

One typical example (human mandibular body on an MRI) is shown in

Fig. 2.8: the mandibular body is difficult to segment because of inhomo-

geneous intensity distributions both within and outside it.

• Segmentation becomes more challenging when medical images are low

contrast and noisy: e.g., tooth boundaries on a typical CBCT image in

Fig. 2.8 are difficult to delineate even manually by a well trained dentist.

Figure 2.8: Segmentation difficulties: image inhomogeneity, low contrast and
noise (Left image is a human mandibular body on an MRI; right image is a hu-
man tooth on a CBCT).
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Many segmentation approaches have been developed and reported in the

literature to overcome these challenges. Segmentation algorithms vary widely

with demands of specific applications and imaging modalities. For instance,

the segmentation of the mandibular body has different requirements from the

segmentation of the tooth. Each imaging modality has specific characteristics

which directly influence the performance of segmentation algorithms. Other

common imaging artifacts like inhomogeneity, noise, partial volume effects also

raise more challenges to the segmentation algorithms. Generally, no universal

segmentation method works for all kinds of medical images, and various ap-

proaches with different segmentation accuracy, computing speed, and degree of

complexity have been applied for different medical problems. General methods

can be used in a variety of images. However, special methods designed accord-

ing to specific medical demand usually perform better by taking advantage of

prior knowledge like anatomical features.

2.3.2 Related segmentation approaches

Many reviews on image segmentation can be found in the literature, e.g. (Freix-

enet et al., 2002; Haralick & Shapiro, 1985; Pal & Pal, 1993; Wirjadi, 2007).

Specific surveys on medical image segmentation have already been reported

(Bezdek et al., 1993; Ma et al., 2010; Pham et al., 1997; Sharma & Aggarwal,

2010; Suetens et al., 1993). In this subsection, segmentation methods in med-

ical image segmentation with which the thesis is related will be described. We

will give the definition, provide the scheme, and describe the advantages and

disadvantages for each related approach. Each algorithm is separately intro-
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duced, but many algorithms combine different methods to solve medical image

segmentation problem in a proper manner.

We will review several types of segmentation methods: (1) rule-based seg-

mentation, (2) segmentation by pattern classification models, (3) segmentation

with active contour models, (4) active shape/appearance models. Rule-based

segmentation includes two renowned segmentation approaches: (1a) threshold-

ing and (1b) region growing (1c) watershed. Segmentation by pattern classi-

fication models covers two frequently used methods: (2a) classifiers and (2b)

clustering.

Many segmentation algorithms can be formulated as an optimization prob-

lem where specific cost or energy functions defined by images features are min-

imized over certain regions of interest. Several approaches have been proposed

to optimize the best segmentation. Global optimization approaches such as dy-

namic programming, annealing algorithm, or genetic algorithms are frequently

used to solve such problems.

2.3.2.1 Gray Level thresholding

Gray level thresholding is one of the simplest and most frequently used ap-

proaches for medical image segmentation. The thresholding aims to find a value,

called the “threshold”, based on global intensity distributions. Local thresh-

olding methods are also called adaptive thresholding (Chow & Kaneko, 1972;

Zhang et al., 2010). Thresholding is called bilevel thresholding when the image

is required to partition into just the object (white) and the background (black).

It is called multithresholding when the image is required to partition into more

than two regions (Cao et al., 2002; Jiang & Mojon, 2003; Papamarkos et al.,
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2000; Sahoo et al., 1988). If the region of interest has a distinct intensity level

range, the histogram of the image will be bimodal with a obvious valley. Then

the threshold can be easily selected as the bottom of the valley. However, the

situation for most medical images are far from this simple and it is not trivial to

select proper threshold. Various approaches have been proposed for such prob-

lems (Kittler & Illingworth, 1986; Nakagawa & Rosenfeld, 1979; Otsu, 1979;

Pal & Pal, 1991; Perez & Gonzalez, 1987). Thresholding can be used as an ini-

tial step to obtain a rough shape of the region of interest. Its accuracy is limited

when the image has noisy quality, uneven background or poor illumination. It

will be difficult to find an effective threshold from the histograms of such im-

ages. This leads to the proposals of adaptive thresholding which takes advantage

of information of connectivity and local intensities (C. Lee & Unser, 1998; Jiang

& Mojon, 2003; Yanowitz & Bruckstein, 1989; Zhang et al., 2010).

2.3.2.2 Region growing

The philosophy of the region growing approach (Adams & Bischof, 1994; Fabi-

jaska, 2009; Kim et al., 2006; Park & Lee, 2009; Sonka et al., 1996) is that all

pixels belonging to the region of interest are similar in terms of some prede-

fined criteria. The main difference between various proposed region growing

approaches lies in specifying the homogeneity criteria to guide the initial region

to approach its final target region of interest (ROI). One of the most frequently

used region growing criteria is that a pixel belongs to the ROI if its gray value

is within a predefined range of the mean value of the ROI.

More advanced region growing techniques using both gray value homogene-

ity and shape prior are proposed (Modayur et al., 1997). The philosophy behind
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the method is to design the decision function using the region size adaptively:

At early steps, the region have only small number of pixels, pixels are added as

long as their gray value variances are within a homogeneity threshold. When the

size of the ROI reaches a threshold, more pixels are added if their gray values

are close to the mean gray value of the ROI. In the growing process, a weighting

function depending on the size of the ROI is used to determine when the deci-

sion function switches from gray value variance mode to mean gray value mode

(Modayur et al., 1997).

The previously described region growing methods consider one connected

region at a time. In contrast with them, the seeded region growing (SRG) ap-

proach was proposed to segment the image with disjoint subregions (Fan et al.,

2005). Given a set of seeds (S1, S2, ..., Sn), in each step of SRG, pixels are

added into one of the n seed sets. These seeds are gradually replaced by the

centroids of these new generated subregions. The pixels lie in different regions

are labeled with different symbols. The labeled pixels are named the “allocated

pixels”, and the unlabeled are named the “unallocated pixels”. The unallocated

pixels are added into different subregions according to some distance measures,

such as the difference of the pixel’s gray value to a subregions mean gray value.

The SRG approach suffers from problems like seed generation and pixel label-

ing (Fan et al., 2001; Mehnert & Jackway, 1997).

The unseeded region growing is a type of region growing without initial-

ization of any seed point (Lin et al., 2001). Initially, there is only one region

containing just one randomly selected pixel. A pixel is added to a found region

if it is within a threshold under a distance measure and the measure should be the

minimum among all the found regions. If the pixel belongs to non of the exist-
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ing regions, a new region will be generated. As the iteration number increases,

the number of new generated regions will increase.

Region growing can be used either alone or with other image processing

methods, especially for the segmentation of structures like brains, tumors and

lesions (Gibbs et al., 1996; Park & Lee, 2009; Pohlman et al., 1996). Segmen-

tation using region growing techniques may have holes or disconnected regions

due to noise. Partial volume effects can cause “leakage” problem to connected

regions which should be separated.

2.3.2.3 Watershed

The watershed algorithm is a rule-based technique which is widely used to seg-

ment medical images (Roerdink & Meijster, 2000; Vincent & Soille, 1991). It is

usually used to divide the image into distinct regions even when the contrast is

poor. In the watershed algorithm, the image is treated as a 3D chart, where each

pixel in the image denotes the plane coordinates, and the height of each pixel

on the plane is given by its corresponding intensity level. The algorithm starts

by “pouring water” (increase threshold value) in the chart from the lowest basin

to the highest peak. In the process, some peaks separating the catchment basins

are detected. These peaks, which are the boundaries of neighboring catchment

basins, are termed as the “watershed”, and the catchment basins detected in the

segmentation process are the boundaries of the targeted partitions. The segmen-

tation process of the watershed algorithm is illustrated in Fig. 2.9.
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Figure 2.9: Flooding process in the watershed algorithm: (a) “pour water” in the
chart; (b) a dam can be built when a local peak is detected; (c) more dams are built;
(d) all the dams are built when all peaks are detected.

Despite its advantages, the watershed algorithm has some obvious short-

comings, such as over-segmentation and sensitivity to false edges. More specif-

ically, watershed segmentation often leads to a large number of partitions, and

such over-segmentation seriously reduces its effectiveness. Furthermore, the

watershed technique is vulnerable to false edges due to noisy points and local

variations of the image.

Numerous approaches have been proposed to improve the watershed tech-

nique for medical image segmentation. Tek & Aras (2004) proposed a three-

layer basin filling watershed algorithm, which combines breadth-first basin fill-

ing and depth-first basin filling to improve the segmentation results. Ng (2008)

used an improved watershed segmentation algorithm which implements a post-

segmentation merging step, based on both intensity and spatial criteria, to reduce

the number of partitions significantly.
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Watershed algorithms have been applied in medical applications such as seg-

mentation of masticatory muscles from MR images (Ng, 2008), lesion segmen-

tation (Alush et al., 2010) and lung lobe segmentation (Ukil & Reinhardt, 2009).

2.3.2.4 Classifiers

The problem of classification is actually inter-linked with the problem of seg-

mentation (Bezdek et al., 1993; Chyzhyk et al., in press; Roy et al., 2012;

Schalkoff, 1992). Notify that we can assign a label of tissue to any pixel in

a medical image, where the labels are selected in advance according to the med-

ical applications. In the case of tooth segmentation, the classes could be tooth,

alveolar bone, and other tissues. A feature space can be derived from such train-

ing data sets to segment the image into a set of regions. The feature space can

be any function of the original or smoothed image. The most frequently used

features are the intensity values, shapes and textures.

There are numerous classifier models available to train the samples. One of

the simplest pattern recognition techniques, the k-nearest neighbor (k-NN) al-

gorithm classifies objects using the closest distance training samples in a feature

space (Duda et al., 2000). The distance can be a function of the image features

such as the pixel intensity.

Parzen windows classification is another nonparametric classifier (Babich &

Camps, 1996). Given a kernel function, the Parzen windows classification can

approximate the probability density function (PDF) of a training set through a

linear combination of predefined kernels centered at the pixel intensities.

With respect to parametric classifiers, the maximum likelihood (ML) classi-

fier is one of the most commonly-used models (Cam & Lucien, 1990; Rahmati

30



2.3 Review of related segmentation methods

et al., 2012). The classifier groups each pixel using its probability of belonging

to a particular class. It assumes that the PDF of pixel intensities are indepen-

dent and follows the Gaussian distribution for each class. The parameters of the

Gaussian models, such as the mean and the covariance matrix, can be estimated

with expectation-maximization (EM) techniques. Although it is more compu-

tationally efficient than methods like k-NN, ML may not work in cases where

there are huge overlaps between the Gaussian PDF for different classes. ML

will cause many misclassifications for the segmentation task. Thus even a few

noises can change influence the performance of the ML classification.

To overcome these problems, spatial information must be used. The Markov

random field (MRF) can be used to address such issue. It assumes that prob-

ability of any class label depends only on the local neighboring or nearby pix-

els. Such local correlations can be used to model various image properties (Li,

1995). It can model the phenomena in medical imaging that most pixels have

the same labels as their nearby pixels. MRFs are usually used to model the PDF

of different tissues in medical images and correct the bias field occurring in MR

brain images (Joshi et al., 1997).

MRF is seldom used alone but often with other algorithms such as the K-

means clustering and level set (Held et al., 1997; Rajapakse et al., 1997; Shah-

varan et al., 2012). The disadvantages of using MRF models are: (1) It’s difficult

to select proper parameters for the spatial interactions; (2) They usually ask for

intensive computations to run the algorithms.

Classifiers can be used to segment medical structures that have quantifiable

features. The labeled training sets can help the segmentation algorithms to rec-

ognize the interested structures in new data sets. However, the labeling pro-
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cesses are usually obtained by manual segmentations which are both tedious

and time consuming.

2.3.2.5 Clustering

As a unsupervised method, segmentation using clustering works in a similar

way as classifiers except without predetermined classification labels. The basic

idea is to develop all labels directly using the available images and features. K-

means (Chen et al., 1998; Ng et al., 2006a) and fuzzy c-means (Chuang et al.,

2006; Mohamed et al., 1999) are two frequently used clustering techniques for

image segmentation. K-means clustering partitions pixels in the image into k

clusters in which each pixel is labeled as one cluster with closest mean intensity

via an iterative refinement for the mean intensity of each cluster. The fuzzy c-

means method is similar to but more general than the K-means method. In fuzzy

c-means clustering, each pixel can belong to more than one cluster and have a

partition matrix to describe the degree to which a pixel belongs to which cluster

(Bezdek et al., 1993).

Clustering algorithms require an initialization of segmentation parameters

which influence the performance of the segmentation. They are sensitive to

intensity inhomogeneities because they usually ignore the spatial information in

the images. Segmentation based on clustering techniques is more robust if the

Markov random field is incorporated.

2.3.2.6 Active contour models and level set methods

Active contour models, also known as snakes, are model-based techniques for

delineating an object outline using closed parametric contours which deform
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via a combination of internal and external forces (Kass et al., 1988). Firstly, a

closed contour must be initialized close enough to the desired boundary. Then

the contour can evolve towards the target object outline by means of energy

minimization. In this framework, the active contour can be modeled as an energy

minimization determined by both internal and external energy. The internal

energy is minimized when the curve approaches a shape similar to the target

object. The external energy is minimized when the regularized gradient near the

contour reaches a peak value.

Mathematically, the snake model in Kass et al. (1988) can be characterized

by the following functional:

Jsnake(C) = λ1

∫ 1

0

|Cs(s)|2ds+ λ2

∫ 1

0

|Css(s)|2ds

−λ3

∫ 1

0

|∇u0(C(s))|2ds
(2.1)

where λ1, λ2, λ3 are positive weighting parameters, C(s) the parameterized

curve representing the active contour, Cs(s) the first order derivative of C(s),

Css(s) the second order derivative of C(s), |∇u0| the edge detector, usually

defined as a positive and decreasing function g(|∇u0|) dependent on the gradient

of the image. A typical example of such a function is

g(|∇u0|) =
1

1 + |∇uG|2
(2.2)

where uG = Gσ ∗ u0, the convolution of the image with the Gaussian kernel of

standard deviation σ, is a smoothed version of u0.

The first-order and second order term controlled by λ1 and λ2 respectively,
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serve as the internal energy which controls the smoothness of the active con-

tour, while the third term serves as the external energy to attract the contour to

approach the object in the image. The optimization of the contour evolution can

be solved by the calculus of variations (Weinstock, 1952). Given a 2D function

of the image u(x, y) : Ω ∈ R2 → R and an energy functional J ,

J(u) =

∫∫
Ω

f

(
u,

∂u

∂x
,
∂u

∂y
,
∂u2

∂x2
,
∂u2

∂y2

)
dxdy (2.3)

where Ω is the set of all pixels in the image, f : R2 → R is designed according to

different segmentation problems. Usually the optimal segmentation is obtained

when J(u) is minimized. The Euler-Lagrange equation, which is the condition

for the minimization problem, is given by:

∂f

∂u
− d

dx

(
∂f

∂ux

)
− d

dy

(
∂f

∂uy

)
+

d2

dx2

(
∂f

∂uxx

)
+

d2

dy2

(
∂f

∂uyy

)
= 0 (2.4)

The the left hand side of the above Euler-Lagrange equation is
∂J

∂u
, which is the

Gateaux derivative (first variation) of the functional J .

The gradient flow of the function u with respect to step time t is defined as
∂u

∂t
. The iterative solution of the minimization problem is given by the relation-

ship between the Gateaux derivative and the gradient flow:

∂u

∂t
= −∂J

∂u
(2.5)

The active contour can also be implemented in other ways. One alternative

is the GVF active contour (Paragios et al., 2004; Xu & Prince, 1998), where
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the snake is implemented using a new kind of external field, the gradient vec-

tor flow (GVF). GVF snakes converge to the object’s boundary concavities and

initialization of the contour is not required to be close to the boundary.

The second alternative is called the balloon snake (Cohen, 1991). In this

model, the contour moves like a balloon. It modifies the external forces de-

scribed by the traditional snake and introduces a new force to push the contour

such that it moves like a balloon.

The third alternative is the diffusion snake (Cremers et al., 2002) which is a

modification of the Mumford-Shah functional. In this model, the segmentation

is obtained by maximizing both the intensity homogeneity in different regions

and the similarity between the contour and a set of shape priors.

The final one is the geometric active contour (Caselles et al., 1997). Such

models can be implemented using level sets (Gao & Chae, 2010; Li et al.,

2005; Osher & Sethian, 1988; Tsai et al., 2003) and are extensively used in

medical image segmentation. In the level set method, the active contour C is

represented implicitly via a signed distance function (SDF) (Fig. 2.10) ϕ by

C(t) = {(x, y) ∈ Ω|ϕ(t, x, y) = 0}. SDF is used in the level set framework

to avoid “steep and flat gradients as well as rapidly changing features” as much

as possible (Osher & Fedkiw, 2002). In this thesis, we define that ϕ is negative

inside the contour and positive outside the contour.
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2.3 Review of related segmentation methods

Figure 2.10: Different types of representation for contours: The left image shows
the original image of a maxillary anterior tooth, the red contour segment the tooth
out from the background; The middle image shows the binary image of the seg-
mented tooth; The right image shows the SDF of the contour of the tooth

Since the SDF is used to represent the contour in level set method, it is nu-

merically necessary to keep the evolving function close to it. A new variational

level set method is proposed by Li et al. (2005) to evolve the SDF ϕ without

re-initialization. The energy functional of Li’s method is given as follows:

JLi(ϕ) = λ1

∫
Ω

1

2
(|∇ϕ| − 1)2dxdy+λ2

∫
Ω

gδ(ϕ)|∇ϕ|dxdy+λ3

∫
Ω

gH(−ϕ)dxdy

(2.6)

where λ1 > 0, λ2 > 0, λ3 are weight coefficients, ∇ is the gradient operator, Ω

is the domain of the 2D image, δ is the univariate Dirac function, and H is the

Heaviside function

H(z) =


1, if z ≥ 0

0, if z < 0

(2.7)

δ(z) =
d

dz
H(z) (2.8)

In practice, smoothed versions of both Dirac function and Heaviside function
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are used:

Hε(z) =


1, if z > ε

0, if z < −ε

1

2

[
1 +

z

ε
+

1

π
sin
(πz

ε

)]
, if |z| ≤ ε

(2.9)

δε(z) =


0, if |z| > ε

1

2ε

[
1 + cos

(πz
ε

)]
, if |z| ≤ ε

(2.10)

We use the smoothed Dirac function and the smoothed Heaviside function with

ε = 1.5 for all our experiments in the thesis.

There are two advantages to use the active contour for medical image seg-

mentation: (1) It is self-adapting to search for the minimal energy state; (2) the

evolution of the contour can be controlled using self-designed external forces ac-

cording to different medical applications. One of the disadvantages of the active

contour method is the selection of a stable parameter value. The performance of

the active contour may be sensitive to initialization of the contour.

2.3.2.7 Active shape/appearance models

Active shape models (ASM) are statistical shape models (SSM) of the shapes

of objects that evolve iteratively to approach the targeted object in the image. It

works as follows: (1) Search the neighbors of each point for a better position

(usually near the edges of the image) for that point; and (2) update the model

parameters to better fit to these new positions.

ASM has been widely applied in medical image segmentation problems,
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e.g., the segmentation of heart ventricles (Cootes et al., 1995), mandibles from

low-dose CT data (Lamecker et al., 2006) and maxilla from cone-beam com-

puted tomography (Chang et al., 2013).

However, one obvious disadvantage of ASM is that it only uses shape fea-

tures of the ROI. The Active Appearance Model (AAM) is a more generalized

version of ASM, which uses all the information (such as grey-level appearance

and texture) in the region of interest (ROI) rather than just the shape information.

AAM has also been widely applied in medical segmentation problems, e.g.,

the segmentation of the knee from MRI (Cootes et al., 1998), vertebral mor-

phometry (Roberts et al., 2003) and liver (Beichel et al., 2001).

However, AAM shows some disadvantages in some practical applications.

These disadvantages are mainly: (1) the tedious training process to build the

statistical models of the objects, (2) failure to work in real-time systems, and (3)

the lack of robustness under some circumstances.
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Chapter 3

Mandibular body segmentation

from magnetic resonance imaging

In this chapter, we present a two-stage rule-constrained seedless region growing

approach for mandibular body segmentation in MRI. The proposed approach

can solve one subproblem of bone segmentation in MRI as we described in

Section 2.2.2. The details of the algorithm will be presented in the following

sections.

3.1 Introduction

Magnetic resonance imaging (MRI) presents substantial health advantages to

the patient, compared to multi-slice computed tomography (MSCT) and dental

cone-beam computed tomography (CBCT) for dental and maxillo-facial imag-

ing prescriptions. MRI has no ionizing radiation and provides visualization of

internal soft tissue anatomy (such as muscles and cartilaginous joints) with a
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high degree of clarity and detail that computed tomography does not possess.

While MR imaging is not usually indicated for imaging of skeletal hard tissues,

the value and usefulness of MR imaging can be enhanced with methods to de-

fine the bone shadows from the MR image field of view. This dimension of MR

imaging is of particular importance in (1) children with the congenital defect of

cleft lip and palate who require serial imaging of the internal facial structures to

monitor developmental changes following early surgical reparative procedures,

and (2) in the assessment of the pharyngeal airway and muscles of adults di-

agnosed with obstructive sleep apnea (OSA). While dental CBCT offers high

quality images of the facial skeleton, it does so at the expense of the health of

children; cumulative radiation exposures from serial CBCT prescriptions in chil-

dren with cleft anomalies pose significant risks of developing stochastic effects.

From the MR images of the neuromuscular pharyngeal anatomy of patients with

OSA, computer-based methods which help visualize the size and shape of the

mandible and the maxilla enable the treating clinician to prescribe appropriate

strategies to manage the medical condition without the addition of ionizing ra-

diation.

The segmentation of the shape of bones from MRI is a challenging engi-

neering proposition due to several factors. Firstly, the partial volume effect and

movement by the patient during MR imaging may result in poor image quality.

Secondly, missing bone structures and the mixture of bone with air often exist

in MR images. Fig. 3.1 shows the differences between an MSCT and MR image

for the body of the mandible. Two types of bone tissue exist in the mandibular

body: the trabecular bone (TB) and the cortical bone (CB) (Fig. 3.2). In MR

images, the trabecular bones are seen as connected to soft tissues external to the
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Figure 3.1: Image of the mandible from the same subject: CT (left), T1-Weighted
MRI (right).

mandible where the cortical bones are missing or at regions where the cortical

bones are unclear.

3.1.1 Bone segmentation in MRI

A number of MRI segmentation techniques to derive the shape of bones have

been reported (Dokldal et al., 2003; Park & Lee, 2009; Sadananthan et al., 2010;

Schmid et al., 2011; Shan et al., 2002; Smith, 2002; Zhang et al., 2001). Ri-

fai et al. (2000) used a deformable model to segment the skull in MRI vol-

umes. Zoroofi et al. (2001) applied a histogram-based thresholding method,

3D-morphological operations, oblique data reconstruction and ellipse fitting to

segment a region of non-vital bone from the femoral head in MRI. Dogdas et al.

(2005) combined thresholding and a series of mathematical morphological op-

erations to generate models of the skull, the scalp, and the brain. Lorigo et al.
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Figure 3.2: TB and CB are on a typical MRI slice: (a) raw mri image in axial view;
(b) the red region is TB and the green region is CB.

(1998) proposed a texture-based geodesic active contour method to segment the

knee in clinical MRI. Bourgeat et al. (2007a) used features extracted from the

phase of the MRI to improve bone segmentation which is typically done us-

ing magnitude features. More recently, Schmid et al. (2011) proposed a robust

multi-resolution statistical shape model algorithm with an adapted initialization

to address the segmentation of MRI bone images. However, no study on the

segmentation of the mandible from MR images has been reported.

3.1.2 Region growing and medical image segmentation

The seeded region growing (SRG) method was introduced by Adams & Bischof

(1994) who used a rough multilevel thresholding technique to merge different

anatomical regions in a CT image of a human head into three different classes

- bone, soft tissue and air. Unfortunately, 2D or 3D region growing methods

applied alone cannot lead to an accurate segmentation of a complete region of

interest (ROI) from CT or MRI images. These methods are prone to cause

“leakage” where the surrounding area has similar intensity values with the ROI
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(Fabijaska, 2009; Park & Lee, 2009). To overcome this problem of “leakage”,

knowledge of human anatomy or technical rules are used as constraints on the

iterative process or as stopping criteria of region growing (Fabijaska, 2009; Kim

et al., 2006; Park & Lee, 2009; Sonka et al., 1996). Kim et al. (2006) pro-

posed an automatic navigation path generation based on a two-stage adaptive

region-growing for virtual angioscopy. They used 2D region growing to select

a small ROI followed by applying a 3D growing technique to obtain a larger

refined region under some predefined criteria. Park & Lee (2009) constrained

region growing by using general knowledge of brain anatomy. Using a range of

thresholds instead of a specific threshold, their method has been shown to detect

more details of the brain than the basic region growing algorithm. In adopting

the method of Park and co-workers to the facial region, this study aims to derive

the shape of the body of the human mandible from magnetic resonance (MR)

images of the head using an automated three-dimensional (3D) method of image

segmentation.

3.2 Materials and Methods

3.2.1 Materials

Approval for the MR imaging of adult volunteers was given by the National

Healthcare Group Domain Specific Review Board. The subsequent image pro-

cessing and modeling of the MR images were approved by the National Uni-

versity of Singapore Institutional Biosafety Committee. All persons gave their

informed consent prior to their inclusion in the study.
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Twelve magnetic resonance image data sets were obtained using a 1.5 Tesla

Siemens MR scanner with a T1 fast low angle shot (FLASH) imaging sequence

(1mm thickness, 512×352 matrix with a resolution of 0.4883mm×0.4883mm,

240mm FOV, TR=9.93ms, TE= 4.86ms).

3.2.2 Method

A two-stage rule-constrained region growing approach is applied to the MR im-

age data sets to determine the shape of the body of the mandible. The sequence

starts with 3D seedless region growing for the purpose of detecting a large por-

tion of the trabecular bone1 (TB) regions of the mandible after an initial thresh-

old. This stage is followed by a rule-constrained 2D segmentation of each MR

axial slice to merge the remaining portions of the TB regions previously un-

detected at lower intensity levels. The preceding two steps were repeated with

different thresholds to detect the cortical bone2 (CB) regions. The pen-ultimate

step involved the merging of TB and CB regions to further define the shape of

the body of the mandible. A series of morphological processes rounds up this

approach to complete the definition of the mandibular body.

3.2.2.1 Detecting TB regions

TB regions in a single axial MR slice are difficult to segment in 2D slices be-

cause (1) they are interspersed with the CB regions; (2) the intensity levels vary

too substantially to be detected using the single threshold and adaptive threshold

techniques; (3) they appear to be connected to regions external to the body of

1 Trabecular bone (also called cancellous or spongy bone) fills the interior of the bone.
2 Cortical bone is the hard outer layer of bones composed of compact bone tissue.
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Figure 3.3: TB segmentation difficulties: (a) original image (b) binary image after
a low intensity thresholding, TB is connected with the outside regions (c) binary
image after a high intensity thresholding, TB is separated into too many small parts
(d) binary image after proper initial thresholding.

the mandible in areas where the CB is missing. Thus a proper threshold has to

be selected to detect the raw unconnected TB regions. A low initial threshold

might cause the TB to connect with regions external to the mandible, while a

high threshold might result in the TB regions splitting into too many fragmented

parts (Fig. 3.3). The method on how to find the proper threshold is described in

Section. 3.2.2.3.
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3.2.2.2 Connecting raw TB regions

Although the binary images obtained after initial thresholding are still frag-

mented in 2D slices, they are actually connected in 3D. Fig. 3.4 shows how

TB regions are connected with each other in consecutive slices. More impor-

tantly, we do not have to select a seed point manually. Instead we can use the

anatomical information that the raw mandibular body TB obtained after the ini-

tial threshold is the second largest connected 3D region in the image. The 3D

model of the connected largest region and TB region is shown in Fig. 3.5.

Figure 3.4: A sample to show connections between consecutive slices: (a) TB
in the 12th slice (b) TB in the 13th slice (c) intersection between the two slices
(d) points exist only in the 12th slice (e) points exist only in the 13th slice (f) TB
intersection times in different slices (the colorbar shows how many times each point
in slices intersects with the corresponding point in its neighboring slices).
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Figure 3.5: 3D model of the connected components after initial threshold: (a) The
largest connected component in 3D (b) The second largest connected component
(TB) in 3D.

3.2.2.3 Refining TB region

Since only a fraction of TB regions are segmented from the MR axial slices

from regions with relatively high image thresholding intensities, the next step

is to detect other TB regions in each slice with lower intensities. As it is easier

for the TB region to “leak out” in 3D compared to 2D, the 3D region growing

method is not used here to evolve the TB region. Instead, the method proposed

by Park & Lee (2009) is adopted to merge the remaining TB regions in each

slice. It initially divides each slice into two regions: region ROI (RR), region of

non-ROI (RN ) by the initial threshold. To avoid the connection between the two

regions, the algorithm introduces an additional region named “undetermined

region” (RU ) to serve as a “fire wall” between the ROI and the outside regions.

The initial undetermined region is set to null. Throughout the region growing

process, there will be three regions: RR, RN and RU . The next step is to evolve

the three regions with the following steps:

• Select a upper bound Tu and lower bound Tl for the intensity range. De-
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crease the intensity from Tu one by one until Tl. Each time when the

intensity decrease one unit, additional points will appear in each slice.

The algorithm will assign the new added points into the three regions by

the voxel assignment rules (VAR).

• Assign some of these components of RU to RR or RN according to the

component assignment rules (CAR).

We will use the following notation in the descriptions of VAR and CAR:

• t is the threshold value in each iteration.

• RR(t) is the ROI region when the threshold is t; RN(t) is the region of

non-ROI when the threshold is t; RU(t) is the undetermined region when

the threshold is t.

• P (t) is the ensemble of all the new points appear in the slice due to the

decreasing of the threshold from t + 1 to t and p is one element of this

ensemble.

• qc is one connected component that belongs to region RU(t)

VAR are rules given by the following conditions:

1. If p is connected to RN(t) with 4-connectivity, we assign it to RN(t).

2. If condition 1 does not hold, and if p is connected to RR(t), then we assign

it to RR(t).

3. If neither of condition 1 nor 2 holds, then we assign it to RU(t).

CAR are rules given as the following conditions:
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1. If qc is connected to RN(t), then we assign it to RN(t).

2. If condition 1 does not hold, and if qc is connected to RR(t), then we

assign it to RR(t).

3. If neither condition 1 nor 2 holds, then it still belongs to RU(t).

Figure 3.6: Detect TB by decreasing the threshold from t = 0.45 × MI to t =
0.45 × MI − 100: (a) RR(t); (b) RN (t); (c) RU (t). (1) threshold value t =
0.45×MI. (2) t = 0.45×MI−20. (3) t = 0.45×MI−40. (4) t = 0.45×MI−60.
(5) t = 0.45× MI − 80. (6) t = 0.45× MI − 100.

For TB segmentation, the upper bound threshold Tu was not set as a fixed

value at the beginning. Instead we set a possible range for Tu from 0.4×MI to

0.6×MI, where MI is the maximum intensity of the data set. The value of Tu

was determined by selecting a best performance threshold empirically, with Tl

fixed at Tl = Tu − 100. The region growing procedure for one slice is shown in
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Figure 3.6. Using the rule-constrained 2D region growing method, we gradually

detect more details of the TB regions lying at relatively lower intensity levels.

3.2.2.4 Segment CB of the mandibular body

Similar to the above procedures of TB segmentation, we use the following steps

to segment CB of the mandibular body:

1. Detect raw CB regions in different slices.

2. Connect raw CB regions in different slices.

3. Refine CB regions with 2D rule-constrained region growing.

CB regions can be easily segmented from the background because their intensity

levels are much lower than those of TB regions and the external soft tissues. Fi-

nally the segmentation of CB regions will not encounter the “leak out” problem.

For CB segmentation, the thresholds are fixed at Tu = 180, Tl = Tu − 100.

3.2.2.5 Combine TB and CB regions

After determining the TB and CB regions, morphological dilation is applied to

the TB region to ensure the connection between TB and CB. The structuring

element applied here is the 5-connected neighborhood structuring element. A

hole-filling algorithm is then used to fill the holes in each axial slice.

3.2.3 Validation

The manual segmentation of each mandibular body performed by a clinician

serves as the ground truth. The accuracy is validated by comparing automatic
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segmentation results with manual segmentation results. The Jaccard and the

Dice indexes are used to assess the agreement between automatic and manual

segmentation approaches. These two metrics are defined by:

Jaccard : J(V1, V2) =
|V1

∩
V2|

|V1

∪
V2|

, (3.1)

Dice : D(V1, V2) =
2|V1

∩
V2|

|V1|+ |V2|
. (3.2)

where V1 represents the voxel set of automatic segmentation results and V2 rep-

resents the voxel set of the ground truth.

There are 21 candidate pairs of Tu and Tl. Accordingly, each MR image

data set consists of 21 candidate combinations of TB and CB regions. The

best performance candidate pairs will be selected by choosing the pair with the

highest Jaccard or Dice index value.

The mean surface distances (MSD) are calculated to assess the qualities of

3D models obtained by different algorithms. A second time manual segmen-

tation is applied to show the variability of the manual segmentation using the

Jaccard and Dice indexes compared with the first time manual segmentation.

3.3 Experiments and Results

The performance results were investigated when Tu = α × MI, where α is a

coefficient that ranges from 0.4 to 0.6 with a step of 0.01. Tl is fixed as Tl =

Tu − 100 (Table 3.1 and Table 3.2). As discussed in subsection 3.2.2.1, if Tu is

too small, the segmented image suffers from the “leak out” (LO) problem, while
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if Tu is too large, the segmented image will be fragmented and suffers from the

“not connected” (NC) problem. The proper values of Tu should be selected

to avoid LO and NC. We can easily find the proper range of Tu, by setting a

threshold, say 0.8, on the Jaccard index (JI). If the value of JI is smaller than

0.8, the threshold will lead to either the LO or NC problem. The proper range

of Tu usually lies in the middle of the interval [0.4,0.6]. Then if Tu is less than

the range of proper thersholding it is labeled by LO or else it is labeled by NC.

The best performance Tu can be found in Table 3.1 by checking which value

of C has the largest JI.

3.3.1 Comparison study

The proposed method is compared with the conventional region growing (CRG)

method. The parameters selected for TB are given as follows: the initial thresh-

old Tu is fixed at Tu = α×MI for the proposed method; in the CRG method, the

single threshold t is fixed at t = α×MI, where α is selected from α in Table 3.1

with the largest JI.

The proposed method is then compared with a user-guided 3D level set

method installed in ITK-SNAP 2.2 (Yushkevich et al., 2006). Initially, man-

ually selected 3D bubbles are placed in several TB regions. The active contours

then evolve depending on the edge and region information. Finally, the evolu-

tion process stops when a proper shape of the mandibular body is obtained. The

level set method may cause a “leak out” problem in segmentation as shown in

Fig. 3.7.
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Table 3.1: Jaccard index (JI) of segmentation results on 12 data sets with variable Tu.

Parameters selection for TB: Tu = α× MI1 with Tl = Tu − 100

Dataset1 2 3 4 5 6 7 8 9 10 11 12

α
0.400 LO2 LO LO LO LO LO LO LO LO LO LO LO
0.410 LO LO LO LO LO LO LO LO LO LO LO LO
0.420 LO LO LO LO LO LO 0.948 LO 0.926 LO LO LO
0.430 0.961 LO LO LO LO LO 0.951 LO 0.927 LO LO 0.913
0.440 0.960 0.958 LO 0.959 0.975 LO 0.949 LO 0.927 LO 0.932 0.909
0.450 0.959 0.956 0.966 0.953 0.974 0.978 0.950 0.976 0.927 0.975 0.960 0.903
0.460 0.959 0.952 0.966 0.952 0.974 0.978 0.951 0.975 0.926 0.974 0.960 0.895
0.470 0.957 0.949 NC 0.949 0.973 0.977 0.948 0.974 0.925 0.974 0.961 0.885
0.480 0.955 0.940 NC 0.951 0.970 0.974 0.946 0.974 0.923 0.973 0.957 0.864
0.490 0.953 0.930 NC 0.955 NC 0.971 0.945 0.971 0.922 0.972 0.956 NC
0.500 0.950 0.918 NC NC NC 0.970 0.940 0.968 0.920 0.972 0.950 NC
0.510 0.941 0.906 NC NC NC 0.966 0.938 0.965 0.917 0.971 0.948 NC
0.520 0.936 NC NC NC NC 0.958 0.936 0.961 0.912 0.970 0.943 NC
0.530 NC3 NC NC NC NC 0.956 0.935 0.959 NC 0.968 0.935 NC
0.540 NC NC NC NC NC NC 0.929 0.951 NC 0.967 0.932 NC
0.550 NC NC NC NC NC NC 0.926 0.932 NC 0.967 NC NC
0.560 NC NC NC NC NC NC 0.922 NC NC 0.964 NC NC
0.570 NC NC NC NC NC NC 0.918 NC NC 0.963 NC NC
0.580 NC NC NC NC NC NC NC NC NC 0.962 NC NC
0.590 NC NC NC NC NC NC NC NC NC 0.961 NC NC
0.600 NC NC NC NC NC NC NC NC NC 0.957 NC NC

1 MI : Maximum intensity of the image data
2 LO: Leak out
3 NC: Not connected
4 The largest JI of each dataset is boxed. Using the corresponding C value, the optimal value of
Tu can be calculated.
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3.3 Experiments and Results

Table 3.2: Dice index of segmentation results on 12 data sets with variable Tu.

Parameters selection for TB: Tu = α× MI1 with Tl = Tu − 100

Dataset1 2 3 4 5 6 7 8 9 10 11 12

α
0.400 LO2 LO LO LO LO LO LO LO LO LO LO LO
0.410 LO LO LO LO LO LO LO LO LO LO LO LO
0.420 LO LO LO LO LO LO 0.973 LO 0.962 LO LO LO
0.430 0.980 LO LO LO LO LO 0.975 LO 0.962 LO LO 0.955
0.440 0.979 0.977 LO 0.979 0.987 LO 0.974 LO 0.962 LO 0.965 0.952
0.450 0.979 0.977 0.983 0.976 0.987 0.989 0.974 0.988 0.962 0.987 0.980 0.949
0.460 0.979 0.976 0.983 0.975 0.987 0.989 0.975 0.988 0.962 0.987 0.979 0.945
0.470 0.978 0.974 NC 0.974 0.986 0.988 0.973 0.987 0.961 0.987 0.980 0.939
0.480 0.977 0.969 NC 0.975 0.985 0.987 0.972 0.987 0.960 0.986 0.978 0.927
0.490 0.976 0.964 NC 0.977 NC 0.985 0.972 0.985 0.959 0.986 0.977 NC
0.500 0.974 0.957 NC NC NC 0.985 0.969 0.984 0.959 0.986 0.974 NC
0.510 0.970 0.951 NC NC NC 0.983 0.968 0.982 0.957 0.985 0.973 NC
0.520 0.967 NC NC NC NC 0.979 0.967 0.98 0.954 0.985 0.971 NC
0.530 NC3 NC NC NC NC 0.978 0.966 0.979 NC 0.984 0.966 NC
0.540 NC NC NC NC NC NC 0.963 0.975 NC 0.983 0.965 NC
0.550 NC NC NC NC NC NC 0.961 0.965 NC 0.983 NC NC
0.560 NC NC NC NC NC NC 0.959 NC NC 0.982 NC NC
0.570 NC NC NC NC NC NC 0.957 NC NC 0.981 NC NC
0.580 NC NC NC NC NC NC NC NC NC 0.981 NC NC
0.590 NC NC NC NC NC NC NC NC NC 0.98 NC NC
0.600 NC NC NC NC NC NC NC NC NC 0.978 NC NC

1 MI : Maximum intensity of the image data
2 LO: Leak out
3 NC: Not connected
4 The largest DI of each dataset is boxed.
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3.3 Experiments and Results

Figure 3.7: Leak out problems in 3D level set method. a(1)-a(4) are shown in the
axial view. a(1): initial regions defined manually; a(2): evolved regions after 100
iterations; a(3): evolved regions after 200 iterations; a(4): evolved regions after
300 iterations; b(1)-b(4) are the segmented 3D shapes at corresponding iterations
(shown in front view).

55
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3.3.2 Results

The algorithm was tested on a desktop computer with an Intel(R) Core (TM)

2 Duo CPU 2.65 GHz and 2.72 GB memory. The program is implemented in

Matlab 7.11.0 (R2010b) installed in Microsoft Windows XP Professional. The

average time consumed for one experiment is 128 seconds with 99 seconds spent

on segmentation of TB, 26 seconds lapsed for segmentation of CB and 3 seconds

lapsed for the combination of TB and CB.

The examples of final segmentation results of the proposed method are pro-

vided in Fig. 3.8 (axial view). The 3D segmentation results of the proposed

method, CRG and 3D level set are shown in Fig. 3.9

The comparison results between the proposed method, CRG and 3D level

set are shown in Table 3.3. The mean accuracy of the second time manual

segmentation is 0.998±0.002 (0.998 is the mean value and 0.002 is the standard

deviation) for Jaccard index (JI), 0.999 ± 0.001 for Dice index (DI). The large

JI and DI means the variability of the manual segmentation is very small, and

can be considered to be reliable. The mean accuracy of the proposed method is

0.958±0.020 for JI, 0.979±0.011 for DI, 0.204±0.127mm for MSD. The mean

accuracy of CRG is 0.782±0.080 for JI, 0.876±0.053 for DI, 0.417±0.073mm

for MSD. The mean accuracy of the 3D level set method is 0.874±0.0.051 for JI,

0.645 ± 0.306 for DI, 0.645±0.306mm for MSD. The proposed method shows

an improvement in accuracy over the CRG and 3D level set methods.
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3.3 Experiments and Results

Figure 3.8: Segmentation results of the proposed method: The green lines are the
ground truth; the red lines are automatic segmentation results; yellow lines are the
intersections between the ground truth and automatic segmentation results.
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3.4 Discussion

Figure 3.9: 3D segmentation results of the different methods: (a) manual segmen-
tation (ground truth); (b) segmentation result of the proposed method; (c) segmen-
tation result of CRG; (d) segmentation result of 3D level set

3.4 Discussion

3.4.1 Analysis of experimental design

The proposed two-stage rule constrained seedless region growing approach is

different from the method introduced by Park & Lee (2009). Segmentation of

brain MR images requires the ROI to be already connected in 2D after initial

thresholding. In contrast, mandibular body segmentation of the TB regions in

the mandibular body commonly leaves the TB regions separated in each slice af-

ter an initial thresholding. Thus Park & Lee (2009)’s method cannot be directly

used in mandibular body segmentation because it is not feasible to manually

select the seed point in each MR axial slice. Hence, using the knowledge of

the spatial location of TB, the segmented TB regions become the second largest
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3.4 Discussion

connected component after initial thresholding.

A simple single threshold method is vulnerable to either over-segmentation

or under-segmentation. In the mandibular body segmentation from MRI, both

situations may happen due to the anatomical features of the mandibular body

and the image quality of bone tissues from the MRI. Park’s brain segmentation

experiments fixed both the Tu and Tl values. However, in mandibular body seg-

mentation, a fixed selection of Tu value may cause either an over-segmentation

problem or an under-segmentation problem. Hence, to find the best Tu value,

the present study sets a fixed range of testing values and selected the best per-

formance value as the final threshold selection. The selection of Tl is much less

important and we set it as a function of Tu instead.

3.4.2 Comparison of current and previously published results

The reason why the accuracy of CRG is lower is that it can only find a relative

smaller portion of the TB region. The 3D level set easily causes the leak-out

problem because it does not work well when TB has similar intensity values as

the surrounding regions. This similarity causes the detected active contour to

expand beyond the TB region and develop into a big bubble.

3.4.3 Clinical significance

The ability to derive an accurate shape of the body of the mandible from the

non-ionising radiation imaging modality of MRI presents to clinicians a value-

added visualization option of viewing both the hard and soft tissues in one visual

environment. Spatial relationships between the soft tissue muscles (masticatory

60



3.5 Conclusion

and pharyngeal muscles) and the mandibular body can be determined efficiently

without the need for additional volumetric imaging with CBCT to obtain skeletal

information when high definition skeletal information is unnecessary. Patients

who have undergone MR imaging but do not require CT imaging of the face

stand to benefit from this approach without the need for x-ray radiation from

CBCT or MSCT imaging. While the two-stage rule-constrained seedless region

growing approach generated realistic shapes of the mandibular body, additional

work is needed to generate the shapes of the thinner ascending mandibular ra-

mus with its coronoid process and the condylar anatomy from MR imaging.

The three-dimensional shape of the mandibular body obtained from MR

imaging is a first step to understanding the three-dimensional spatial relation-

ship of the position and morphology of the mandible to the morphology and

dimension of the airway. When applied to the study of patients with OSA who

will need mandibular advancement methods to manage the OSA, MR imaging

at the pre-treatment, in-treatment, and post-treatment phases provide the visual

and dimensional information of the mandibular body and airway for analyses

which could form the basis for treatment-specific effectiveness. This application

eliminates the associated risks of radiation in children and adults with OSA.

3.5 Conclusion

This chapter presents a two-stage rule-constrained seedless region growing im-

age processing approach for segmentation of the body of the mandible. The

proposed framework starts with an initial thresholding, followed by a 3D seed-

less region growing algorithm to detect a large portion of the TB regions of the

61



3.5 Conclusion

mandible. This stage is followed with a rule-constrained 2D segmentation of

each MR axial slice to merge the remaining portions of the TB regions with

lower intensity levels. The two-stage approach was replicated to detect the CB

regions of the mandibular body. The TB and CB regions detected from the pre-

ceding steps were merged and subjected to a series of morphological processes

for completion of the mandibular body region definition. The experimental re-

sults have demonstrated that our method is able to prevent the leakage problem

and is more accurate than the conventional region growing method and the level

set method.
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Chapter 4

A pilot study on the accuracy of

reconstruction of mandibular shape

The results from experimental work carried out in Chapter 3 hypothesised that

the mandible segmented from MRI accurately represented the anatomic shape

of the subjects mandible. However, this hypothesis has not been validated be-

fore in the literature. In this chapter, we test the underlying hypothesis that the

3D anatomic model of the mandible reconstructed from in vivo magnetic reso-

nance (MR) images was comparable to that obtained from CT imaging, which is

commonly regarded as the reference standard for bone and hard tissue imaging.

The details of this experimental study are presented in the following sections.

4.1 Introduction

For a more comprehensive study of the human mastication apparatus, an accu-

rate three-dimensional (3D) representation of both the muscles and the mandible
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4.1 Introduction

has to be reconstructed from medical images. In practice, the shapes of the mus-

cles are usually obtained from magnetic resonance imaging (MRI), while the

shape of the mandible is usually obtained from computed tomography (CT). The

use of multi-slice spiral computed tomography (MSCT) to obtain images of the

jaws exposes patients to high amounts of ionizing radiation that pose a height-

ened risk of developing cancers (Loubele et al., 2009; Rice et al., 2007). In

recent years, diagnostic cone beam computed tomography (CBCT) has gained

popularity in dentistry for 3D imaging of facial bones due to its high spatial

resolution for the bone tissues and subjecting patients to a relatively lower ra-

diation exposure than MSCT (Kapila et al., 2011; Loubele et al., 2009; Scarfe

et al., 2006). However, CBCT still exposes patients to radiation (Palomo et al.,

2008), with children bearing a greater burden of these effects as they are likely

to have repeated CBCT images taken during the course of treatment from child-

hood through adulthood. Ionizing radiation exposure to the facial structures

poses risk of tissue damage to radio-sensitive tissues such as the thyroid gland,

the salivary glands, the mucosal lining of the oral and naso-maxllary complex,

the eye and the brain (ICRP, 2007).

In contrast with computed tomography, MRI employs no ionizing radiation

to image soft and hard tissues (Burstein & Gray, 2003; Farina et al., 2009).

Diagnostic utility is dependent on the accuracy of MR imaging in representing

anatomic structures (Burstein & Gray, 2003). In developing models that could

accurately represent the anatomic structures, the technique of segmentation is

critical to defining key anatomic structures in clinical images. While the accu-

racy of segmentation and 3D reconstruction for bone has been assessed exten-

sively for CBCT and MSCT (Maret et al., 2010), few studies on anatomic seg-
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4.2 Materials and Methods

mentation have been carried out on MR images to derive hard-tissue anatomic

models (Bourgeat et al., 2007b; Schmid et al., 2011). Currently, computed to-

mography (CT) (CT as CBCT or MSCT) scanners can produce higher resolution

and better quality images for hard tissue compared to MRI scanners. However,

we hypothesize that the 3D anatomic model of the mandible reconstructed from

a living human’s MRI data is comparable with that obtained from CT data.

In this investigation, the quality of 3D mandible models generated from

MRI data was compared with the models generated from the corresponding CT

data. The volumetric differences of the two models were measured using the CT

model as the reference standard and the 3D surface differences were calculated

and visualized for assessment of 3D reconstruction results. The bone dimen-

sion calculations were carried out for the body of the mandible at corresponding

sites, which were automatically generated after a rigid registration of MRI and

CT data sets.

4.2 Materials and Methods

4.2.1 Image data acquisition

Computed tomography (CT) scanning and magnetic resonance imaging (MRI)

of the mandible were carried out on three healthy adult male volunteers aged 30

years, 47 years, and 25 years, with the data sets numbered 1 to 3, respectively

(Table 4.1). All experimental procedures were approved by the Institutional

Review Board of National University of Singapore. The raw image data were

stored in DICOM format.
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4.2 Materials and Methods

Table 4.1: Imaging devices and protocols of data acquisition in this study.

Data Set 1 Device Spatial Resolution Dimension
(mm)

MSCT SOMATOM Sensation, 0.467× 0.467× 1 512× 512× 188
Siemens, Germany

MRI MAGNETOM Symphony 1.5T, 0.488× 0.488× 1 352× 512× 160
Siemens, Germany

Data Set 2
CBCT 3D eXam 2nd Generation, 0.3× 0.3× 0.3 768× 768× 576

KaVo, Germany
MRI Signa HDx 1.5T, 1× 0.7× 1 256× 248× 256

General Electric, USA

Data Set 3
CBCT Pax-Reve3D, 0.25× 0.25× 0.25 592× 592× 600

Vatech, Korea
MRI Signa HDx 1.5T, 1× 0.7× 1 256× 248× 256

General Electric, USA

4.2.2 Image data format, segmentation, 3D registration and

3D reconstruction

The mandibles were segmented from the CT and MRI raw images data sets

using a user-guided 3D active contour segmentation method implemented in

ITK-SNAP (Yushkevich et al., 2006) (Fig. 4.1).

After segmentation, pairs of the segmented mandibular images were ex-

ported in GIPL format for further comparison analyses. The surface point clouds

of the paired segmented mandibular images were exported in STL format. The

three pairs of point clouds were co-registered using the iterative closest point

(ICP) algorithm1 in Matlab (Zhang, 1994) (Fig. 4.2). The transformation ma-
1Iterative closest point is a general algorithm used to minimize the overall distance between
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4.2 Materials and Methods

Figure 4.1: Segmentation result in CT and MRI. The top image is the segmentation
result in CT and the bottom image is the segmentation result in MRI.
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4.2 Materials and Methods

Figure 4.2: Registration result. The white points are the surface points of the
mandibular model obtained from CT, and the green points are the co-registered
surface points of the mandibular model obtained from MRI.

trix of the registration is used to transform the volumetric MR image into a new

realigned matrix using the MedINRIA software (Fig. 4.3). The co-registered

mandibular image data sets were then exported in GIPL format for further anal-

yses.

4.2.3 Reliability of the segmentation

To test the intra-operator reliability of the segmentation, 3 data sets were re-

segmented after an interval of 5 days and compared with former segmentation

two point clouds.
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Figure 4.3: Realigned pairs of volumetric images before and after registration. The
upper image shows the pairs of segmented images before registration. The lower
image shows the pairs of segmented images after registration.
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results, using Pearson correlation coefficient. The inter-operator reliability was

also checked with 3 sets using Pearson correlation coefficient. Two operators

were trained to use ITK-SNAP to segment before any operation was performed.

4.2.4 Volumetric calculation, volumetric similarity measure-

ment, 3D surface difference calibration and visualiza-

tion

The volumes of the co-registered mandibular images were calculated by multi-

plying the total number of voxels within the mandibular image volume and the

voxel size. To determine if the volume of the mandibular model generated from

MRI is similar to that obtained from CT scanning, the Dice index was used to as-

sess the two-dimensional agreement of the paired volumes slice by slice (Dice,

1945). In Chapter 2, we have introduced the Dice index, which we restate here

for convenience:

Dice index : D(V1, V2) =
2|V1

∩
V2|

|V1 + V2|
(4.1)

where V1 and V2 represent the voxel set of the segmented mandibular image ob-

tained from two different imaging modalities. This index measures the amount

of overlap between the paired volumes, followed by a calculation of the dis-

tances between a large number of surface points of MRI models and the corre-

sponding points of CT model. Using the 3D visualization toolbox in Matlab, a

3D color map was used to visualize these distances.
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4.2 Materials and Methods

4.2.5 Determination of bucco-lingual thickness of mandibu-

lar bone shape

The bucco-lingual thickness of the shape of the body of the mandible, viewed

in the axial plane, was carried out by calculating the distance of automatic gen-

erated points on paired slices. The automatic calculation procedures (a to f) are

shown in Fig. 4.4, and the steps are described as follows:

• The shape of the mandible (Fig. 4.4b) was segmented from the CT image

(Fig. 4.4a).

• Morphological functions in the Matlab software were used to find the one

pixel thick skeleton of the binary mask of the segmented mandibular im-

age.

• 2D connectivity analysis was applied to automatically remove the short

branches in the skeleton (Fig. 4.4c) to obtain the representative curve of

the mandibular shape (Fig. 4.4d).

• Equidistant points from the representative curve were sampled, and an

orthogonal line of the curve was found at each sampling point. The in-

tersections of the orthogonal line and the boundary of the binary mask

were the two border points of the mandible surface. The distance between

each pair of border points was calculated to determine the bucco-lingual

thickness of the mandibular shape (Fig. 4.4e).

• The sampling points obtained in previous step were used to find the corre-

sponding border points in the binary mask of same slice in the MR image

of the mandible.
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Figure 4.4: Procedures for determining the bucco-lingual thickness of the
mandibular bone shape: (a) Original CT image; (b) Segmented binary image of
the mandibular body; (c) Morphological skeleton of the mandible in (b); (d) Rep-
resentative curve of the mandibular body; (e) Group pairs of border points along the
representative curve; (f) Corresponding border points in segmented binary image
from MRI.

4.3 Experiments and Results

The intra-operator reliability of segmentation was very high, with Pearson cor-

relation coefficient of 0.986 and 0.998 for MRI and CT, respectively. The inter-

operator reliability of segmentation was also very high, with Pearson correlation

coefficient of 0.982 and 0.992 for MRI and CT.

The volumetric calculations were carried out between the paired models.

The volume differences between MRI models and CT models were -807.1mm3
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(-0.91%), -3997.9mm3 (-5.07%), and -2451.1mm3 (-3.06%) for the three data

sets respectively (Table 4.2). The Dice indexes of the paired models of data set

1 and data set 2 were 0.927 and 0.923. The Dice index of the third data set was

higher than 0.841.

Surface point distances between MRI and CT were measured and shown in

the second part of Table 4.2, the mean surface distances of the three data sets

were all less than 1mm. The surface distance is presented at the colormap (in

mm) in Fig. 4.5. In Fig. 4.5, most surface points of the MRI mandible were

less than 1mm away from those of the CT mandible. But the surface points of

the coronoid process and the temporomandibular joint (TMJ) of the mandible in

MRI models were not close to those in CT models.

The bone thickness of the mandibular body was measured for the paired

models. The thickness difference of the three data sets were 0.458± 0.324mm,

−0.664± 0.116mm and −0.762± 0.440mm respectively.

4.4 Discussion

This study was carried out to assess the quality of a reconstructed mandible

obtained from MRI data compared with CBCT and MSCT data, which are re-

garded as the reference standard due to the higher resolution and better imaging

of hard tissues. Since there is no way to obtain an absolute standard reference

to assess the in vivo hard tissue imaging quality with MRI scanners, the images

obtained from the MSCT and CBCT scanners were chosen as the clinically es-

tablished ground-truth in this study.

Since the mandibular shape is complex, the similarity between the mandibu-
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Table 4.2: Measurement difference between the MRI model and the CT model.

Volumetric Measurements

No. MRI Volume CT Volume Dice
(mm3) (mm3)

1 88139.7 88946.8 0.927
2 74804.1 78802.0 0.923
3 65427.6 67878.7 0.841

Surface Difference Calibration

No. NSP1 Surf Dis2 (mm) pvalue
Mean± SD3

1 37476 0.642± 0.378 <0.001
2 55898 0.626 ±0.361 <0.001
3 74581 0.861 ±0.777 <0.001

Bucco-lingual Thickness

No. NVS4 MRI BT5 (mm) CT BT (mm) p value

1 663 13.384±3.530 12.926±3.205 0.002
2 1572 13.581±3.445 14.245±3.562 <0.001
3 984 17.360±4.406 18.121±3.966 <0.001

1 NSP : number of surface points .
2 Surf Dis: surface distance .
3 SD: standard deviation
4 NVS: number of valid sites
5 BT: bucco-lingual thickness
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4.4 Discussion

Figure 4.6: Image quality differences between MSCT and MRI data. The red
circles are the regions of interest. (a)-(d) shows coronoid process in MSCT in
transverse view, coronal view, sagittal view from left side, sagittal view from right
side respectively; (e)-(h) shows coronoid process in the corresponding paired MRI.
(i)-(l) shows TMJ in MSCT in transverse view, coronal view, sagittal view from
left side, sagittal view from right side); (m)-(p) shows TMJ in in the corresponding
paired MRI.
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lar models obtained from MRI and CT was measured using different metrics.

The volumetric measurements were carried out to assess the volumetric simi-

larity between the mandibular models obtained from MRI and CT implicitly.

Objects with different shapes may have very similar volumes. Accordingly, the

volumetric measurement would not be convincing enough to reveal the similar-

ity between the two models. Thus, the Dice indexes of the paired models were

used to reveal the similarity of the co-registered models more explicitly. Then

the surface distances between the co-registered models were calculated and vi-

sualized to reveal the surface similarity of the co-registered models. Finally,

the accuracy of the mandibular body was assessed through the bucco-lingual

thickness measurements.

Studies comparing the accuracy of hard-tissue shadows generated from MRI

presented a contrasting approach to the problem. Clinically-driven studies, util-

ising human cadavers or phantom heads, relied on comparative linear measure-

ments of the generated images and the physical object to assess the accuracy

of MR imaging. However, linear measurements are prone to landmark-based

inter-operator and intra-operator errors (Ludlow et al., 2007). In contrast, stud-

ies that assume the fidelity of MR imaging examined the accuracy of algorithms

used for image segmentation and registration. Hence, the value proposition in

our in-vivo study is that the reliability of MRI-generated hard-tissue shadows of

the mandible is examined against CT imaging using automated algorithms that

have been proven to be accurate.

The volume differences between MRI models and CT models were -807.1mm3

(-0.91%), -3997.9mm3 (-5.07%), and -2451.1mm3 (-3.06%) for the three data

sets respectively (Table 4.2). This result showed the calculated volume differ-
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ences between the paired models are small. The Dice indexes of the paired

models of data set 1 and data set 2 were 0.927 and 0.923. The Dice index of

the third data set was higher than 0.841. The high Dice index values showed

the paired models were aligned accurately. The average surface distance be-

tween the mandible generated from MRI scanners and that generated from CT

scanners were less than 1 mm. Since the experiments were carried out on the

whole mandible which is a large and complex object, the accuracy of match be-

tween the image data is likely to vary across the entire body of the mandible.

According to Figure 4.5, all the sites in MRI mandible were very close to those

of MSCT or CBCT mandible except the two areas: coronoid process and TMJ

of the mandible.

The Dice indexes of the paired models of data set 1 and data set 2 were

higher than that of the third data set. This difference may be due to image

resolution difference between MRI and CT data of data set 3 is slightly larger

than the other two sets (Table 4.1). Another possible reason may be due to the

shape differences between the three volunteers’ mandibles. If the volume ratio

between the area with larger errors, say the coronoid process and TMJ, and the

area with smaller errors, say the mandible body, is larger, the Dice index may

be lower.

With respect to the the anatomic part of the mandible located at the coronoid

process, the larger difference between the MRI generated bone shadow and that

of the CT bone shape is due to the thinness of the coronoid process, which

is near the limit of the spatial resolution of MRI scanners used in this study.

The other reason for the poor imaging quality for this part is its similar intensity

level compared with nearby soft tissues, which is due to the partial volume effect
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(Figure 4.6, (a)-(h)). The third reason is the patient movement effect. The above

three reasons make it difficult to capture the coronoid process of the mandible

by MRI scanners. From this study, the MRI quality for the coronoid process of

the mandible is currently not reliable.

Regarding the TMJ, in Figure 4.6, (i)-(p), the overall shape of the TMJ was

well captured in MRI, but the area near the condyle was more than 1 mm away

from the CT model. The boundary of the condyle was partially missing in MRI.

That is because this area is always a mixture of bone tissue, soft tissue and air,

and the partial volume effect makes it difficult to define the boundary of TMJ.

Another reason is the patient movement effects during the long imaging process,

which typically lasts more than five minutes. The segmentation difficulty of the

TMJ is also influenced by the spatial resolution of MR imaging used in this

study.

Segmentation accuracy of the study is very high (the value of the Pearson

correlation coefficients are greater than 0.98 for both the interclass correlation

and the intraclass correlation), which means the segmentation results are reli-

able. The influences of registration algorithm, image resolution and field of

view (FOV), which are potential factors of biases, are not investigated in this

study.

It is difficult to obtain clinically indicated paired CT and MRI data from the

same patient as clinicians usually prescribe only one imaging modality for di-

agnostic evaluation of oral and facial conditions. This study was based on three

pairs of datasets, which were taken with different MSCT, CBCT and MRI scan-

ners with different imaging parameters (resolution, field of view). In recognition

of the different image datasets, this study did not aim to give an accuracy com-
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parison between different scanners; instead it served to show the applicability

and utility of magnetic resonance imaging for bone tissues. On the basis that

the overall surface distance between MRI and CT models were acceptable, MRI

may be applicable for a common clinical application in orthodontics as in the

assessment of mandibular position changes in younger patients on growth modi-

fication of the facial jaw bones, since anatomic information within the jaw bones

is not required for diagnostic and simulatory treatment effects. As MRI poses

no risk of ionizing radiation exposure to children and younger patients, its use

as the default imaging modality for these patients requiring pre- and post growth

modification treatment imaging investigations becomes a value proposition. The

value proposition of MR imaging comes into a sharp focus where the muscles of

mastication such as the masseters, the medial pterygoids, the lateral pterygoids,

and the temporalis muscles can be easily segmented (Ng et al., 2006b) to gen-

erate the anatomic models of these muscles together with the mandibular shape

for these young patients from a diagnostic and treatment evaluation perspective

without subjecting these patients to any form of ionizing radiation.

With more paired image data sets from one pair of MRI and CT scanners

under same imaging parameters, it is logical to assume that the models of the

mandibular jaw bone generated from MRI data can be more appropriately com-

pared to those from CT data. In conclusion, this study showed that 3D mandible

model generated from MRI data was similar with those from CT data in terms

of volumetric calculations, surface points distance and bone dimension. Certain

anatomic regions of the mandible such as the coronoid process and the temporo-

mandibular joint of the mandible in MRI data was less reliable compared with

identical regions defined in the CT data.
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Chapter 5

Segmentation of anterior teeth in

CBCT

In this chapter, we present a level-set based approach for the segmentation of

anterior teeth in CBCT images. The proposed approach can solve another sub-

problem of bone segmentation in the oral and maxillofacial region as we de-

scribed in Chapter 1. The details of the algorithm are presented in the following

sections.

5.1 Introduction

5.1.1 Motivation

The roots of teeth in the mouth are invisible to the naked eye since roots are

buried within the jaw bones. Traditional dental x-rays provide a 2D uni-planar

view of these roots. Unfortunately, these 2D views do not give the accurate spa-

tial orientation of these roots in relation to neighbouring structures. When teeth
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need to be moved in individuals who require orthodontic treatment to correct

malaligned teeth, the accurate representation of the roots of teeth is critically

important to ensure that teeth can be moved through bone and parked into pre-

determined positions within the jaw bone before treatment commences. Hence,

accurate image segmentation of the 3D images of the jaw bones and tooth roots

plays an important role in aiding clinical decision making through simulation

of tooth movement. The use of multi-slice computed tomography (MSCT) to

obtain 3D images of the jaws and teeth exposes patients to high amounts of

ionizing radiation that pose a heightened risk of developing cancers (Brenner

et al., 2001; Longstreth et al., 2004; Memon et al., 2010). In recent years, den-

tal CBCT has gained popularity in dentistry for 3D imaging of facial bones due

to its high resolution for bone tissues and relatively lower radiation exposure

(Schulze et al., 2004). However, tooth segmentation in CBCT is more chal-

lenging than that in CT because the image is noisier (Fig. 5.1), and the image

contrast between the tooth root and the alveolar bone in CBCT is lower. The

tooth boundary is too ambiguous to be exactly defined especially at the root. In

clinical studies, tooth segmentation is usually performed manually by trained

dentists, which is a very time consuming and tedious process. The availability

of automatic or semiautomatic tooth segmentation methods will greatly assist

the clinician in this task. The aim of this study was to develop a more accurate

and robust framework to semi-automatically define contours of the roots for the

six front teeth (also known as anterior teeth) in CBCT images and evaluate its

accuracy against other methods and manual segmentation.
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Figure 5.1: Image quality comparison between traditional MSCT and CBCT.

5.1.2 Related work

Several image segmentation algorithms have been proposed to segment objects

from CT images. An adaptive thresholding method has been proposed by Heo

& Chae (2004) to segment the tooth. However, due to the nonhomogeneous in-

tensity distribution inside each tooth, as well as the surrounding alveolar bones,

thresholding usually leads to under segmentation or over segmentation prob-

lems.

Conventional active contour methods for medical image segmentation are ei-

ther edge-based or region-based. Both methods have serious limitations. Edge-

based segmentation approaches, like the active contour (Xu & Prince, 1998), use

local edge information to evolve the contour to the edges. These methods fail at

boundaries where the edges between the ROI and the background are not clear.

Region based segmentation (Chan & Vese, 2001), which uses different intensity

distributions of ROI and background to separate each other, fails in areas where
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the region inside the ROI has similar intensity levels to those of the background.

Therefore, neither edge-based nor region-based methods are suitable for tooth

segmentation in CBCT.

Hybrid segmentation methods (Chen & Metaxas, 2005) can overcome the

limitations of the above methods by combining the intensity distribution and the

edge information into one energy functional for optimization. However, without

the aid of shape priors, such a method still fails to avoid the “shrinking” and

“leaking” problems in areas where the ROI and the background have similar

intensity distributions. 2D or 3D shape priors (Tsai et al., 2003) have been

developed for segmentation, but these methods are not suitable for shapes with

large variations such as human teeth. Building such shape priors requires large

training sets and tedious training processes.

A recent tooth segmentation method using level set with shape and intensity

prior has been proposed by Gao & Chae (2010). They propose to segment the

crown and the root separately with two level-set based algorithms. This method

generates a shape prior with intensity and boundary features and combines the

three terms into one energy functional to be minimized. Although their method

can segment the tooth crown in CBCT, it fails to segment the tooth root due to

the following reasons. First, its calculation of intensity distribution is not accu-

rate because the area inside the tooth contour actually consists of two different

regions (the tooth dentine and the tooth pulp) and the area outside the tooth con-

tour also consists of two different regions (the jaw bone and other soft tissues).

Second, its shape prior is not robust. Third, it does not have any energy term to

prevent leakage or shrinking problems during the segmentation process.
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5.1.3 Our approach

To address the problems in the segmentation of tooth roots in CBCT images,

we propose to segment the tooth root in two steps: (1) segment the tooth pulp

first instead of segmenting the tooth root directly and (2) segment the tooth den-

tine using the segmented tooth pulp to obtain a more accurate intensity density

function of the tooth dentine and build a leakage-preventing energy term. The

proposed method is novel in three aspects: we propose a more accurate intensity

model, a new shape prior, and a new tooth dentine wall thickness constraint for

preventing shrinking and leakage.

5.1.4 Chapter organization

Following the introduction, Section 5.2 describes the acquisition of CBCT tooth

images and the proposed algorithm. Section 5.3 presents the experiments and

results, followed by the discussion in Section 5.4 and the conclusion in Sec-

tion 5.5.

5.2 Materials and Methods

5.2.1 Materials

CBCT image data sets are obtained using a Kavo 3D eXam 2nd Generation

CBCT scanner with a 0.2mm×0.2mm×0.2mm spatial resolution (400×400 ma-

trix per slice of image, with the number of slices ranging from 213 to 256). Ten

CBCT image data sets are used in our study. Forty-five teeth from the ten pa-
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tients are used for the final test, with thirty are incisors and fifteen canines1.

5.2.2 Methods

5.2.2.1 Crown segmentation

Segmentation of tooth crown is much less challenging than segmentation of

tooth root, and crown segmentation has been well solved by Gao & Chae (2010).

In this study, we use their algorithm to segment the crown from the adjacent

teeth in CBCT images. We will not present the implementation of the coupled

level set for crown segmentation, as the reader may easily refer to the article.

5.2.2.2 Root segmentation

Given a CBCT tooth image, our aim is to develop a semiautomated method that

can define a contour separating the image into two groups: the tooth root and

the background. The method consists of two phases: image preprocessing and

contour initialization, and tooth dentine contour evolution. The evolution of the

tooth dentine contour is designed with five objectives:

• Penalizing energy: the contour is penalized with a signed distance func-

tion (SDF).

• Region energy (intensity distribution energy): we assume that the inten-

sity distributions inside and outside the tooth follow different models. We

propose a more accurate way to estimate the intensity distribution of the

dentine.
1Some images cover only half the maxilla or mandible of the patient and thus not all the

teeth of the patients are used in the study.
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• Edge energy: An external energy is defined to move the curve towards

prominent edges of the object.

• Shape prior energy: we do not directly use the SDF of the final contour

in the previous slice, which is used in Gao & Chae (2010) to serve as

our shape prior. Instead, we assign larger weights to pixels with positive

curvature and smaller weights to those with negative curvature.

• Dentine wall thickness energy: we use the interaction between the tooth

pulp contour and the tooth dentine contour to prevent shrinking and leak-

age.

5.2.2.3 Image preprocessing

The original CBCT images are first normalized to the intensity range from 0 to

255, followed by a filtering with a rotationally symmetric Gaussian filter of size

15× 15 with standard deviation 1.5 to suppress noise (Fig. 5.2).

5.2.2.4 Level set definition and initialization

In the proposed level set method, the tooth (tooth pulp and tooth dentine) con-

tour C is represented by the zero value of a level set function

C(t) = {(x, y) ∈ Ω|ϕ(t, x, y) = 0} (5.1)

where Ω is the set of pixels in the image, and ϕ is the SDF from the tooth

contour. In this paper, all the SDFs are defined as negative inside the contour
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Figure 5.2: Original image and smoothed image.

and positive outside the contour. The region of the tooth is defined as

Ω = {(x, y) ∈ Ω : ϕ(x, y) ≤ 0} (5.2)

The tooth dentine contour initialization process is the same as that defined in

Gao (2010). Observing from the tooth anatomy (Fig. 5.3), we find that the crown

touches neighboring teeth, while the root touches the surrounding alveolar bone.

For convenience, three typical slices are to be determined: S1, S2 and S3. S1 is

the slice where the area of tooth crown is maximal in the axial plane. S3 is the

slice where the jaw bone starts to appear. S2 lies midway between S1 and S3,

and is selected as the initial slice of the tooth root segmentation.

The initial slice can be easily segmented with the traditional level set frame-

work described in Li et al. (2005), because the tooth does not touch the adjacent

tooth or the jaw bone. As described in Gao & Chae (2010), we only need to seg-

ment one single slice of the image set. For any slice other than this initial slice,
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Figure 5.3: Illustration on how to select the initial slice.

the shape prior and intensity distribution energy functionals can be derived from

the final evolution contour of the previous slice, because the ROI boundaries in

the consecutive two slices are very similar to each other. The procedure of the

tooth segmentation in adjacent images is illustrated in Fig. 5.4.

5.2.2.5 Energy functionals

We can combine the five objectives into one functional J(C) with five energy

terms as follows:

JR(C) = λ1J1(C) + λ2J2(C) + λ3J3(C)

+λ4J4(C) + λ5J5(C)

(5.3)

where JR(C) is the total energy term to segment the tooth root, J1(C) the pe-

nalizing energy term, J2(C) region energy term, J3(C) the edge energy term,
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Figure 5.4: Illustration on how the active contour works to segment two consecu-
tive slices.

J4(C) the shape prior energy term, J5(C) the dentine wall thickness energy

term, and λi the weight for the ith energy term. Compared with Eq. (2) in Gao

& Chae (2010), our energy functional has a new term J5(C) ,a more accurate

way to calculate the intensity distribution in J2(C) and a more accurate repre-

sentation of shape prior in J4(C). According to Eq. (5.1), the energy function

can be rewritten as

J(ϕ) = λ1J1(ϕ) + λ2J2(ϕ) + λ3J3(ϕ)

+λ4J4(ϕ) + λ5J5(ϕ)

(5.4)

We describe the details of each term now.

(1) Penalizing energy: The definition of the penalizing term is the same as
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Eq. (2) in Li et al. (2005), which is

J1(ϕ) =

∫
Ω

1

2
(|∇ϕ| − 1)2dxdy (5.5)

where ∇ is the gradient operator. This term penalizes the deviation of ϕ from a

SDF during evolution.

(2) Region energy: The final goal is to separate the region Ω of the image

into two regions, the object region Ω1 and the background region Ω2 by one

contour C. The region-based model usually separates these two regions using

intensity distribution differences. The framework for the region-based term is

similar to that described in Pluempitiwiriyawej et al. (2005). Assume a pixel

with intensity value u1 = {uxy : (x, y) ∈ Ω} belongs to the object, which has

an intensity distribution with a statistical model M1, and a pixel with intensity

value u2 = {uxy : (x, y) ∈ Ω} belonging to the object, which has an intensity

distribution with a statistical model M2. The contour can approach an optimal

curve by maximizing the likelihood function

J0(C) = p(u|C,M1,M2) (5.6)

where p(u|C,M1,M2) is the joint probability density function (PDF) for inten-

sities u given the contour C and the two models. Suppose the two models are

statistically independent, Eq. (5.6) can be rewritten as

J0(C) = p1(u1|C)p2(u2|C) (5.7)

where p1 and p2 are the PDFs related with M1 and M2. Taking the negative log,
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Eq. (5.6) becomes

J0(C) = −ln(p1(u1|C))− ln(p2(u2|C)) (5.8)

Assuming the intensity distributions within each region are statistically indepen-

dent and the contour C is the zero level of the SDF ϕ, then Eq. (5.8) becomes

J2(ϕ) =

∫
Ω1

−ln(p1(u(x, y)|Ω1)dxdy +

∫
Ω2

−ln(p2(u(x, y)|Ω2)dxdy

=

∫
ϕ≤0

−ln(p1(u(x, y)|Ω1)dxdy +

∫
ϕ>0

−ln(p2(u(x, y)|Ω2)dxdy

=

∫
Ω

−ln(p1(u(x, y)|Ω1)H(−ϕ)dxdy

+

∫
Ω

−ln(p2(u(x, y)|Ω2) (1−H(−ϕ)) dxdy

(5.9)

The only difficulty left is to obtain an accurate PDF for intensities within each

region. Generally, the image can be separated into two regions: the tooth root

and the background. In Gao & Chae (2010), they only use a single histogram

for each region to calculate the tooth root and the background. In actual fact, the

region within the tooth root (Ω1) can be separated into two subgroups: the dark

region tooth pulp Ωp and the bright region tooth dentine Ωd. The background

Ω2 also contains two different clusters: the dark region (Ωs) which are the soft

tissues and the bright region (Ωa) which is the jaw bone (alveolar bone). We

illustrate the differences between the proposed model and that used in Gao &

Chae (2010) in Fig. 5.5.

To obtain an intensity model that can represent the tooth pulp and the tooth
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Figure 5.5: Illustration of the differences between the proposed model and that
used in Gao & Chae (2010): (a) and (b) are Gao & Chae (2010)’s model, while
(c) and (d) are our model. (a) The region within the box defined with blue line
is divided into two different regions: the tooth root and the background; (b) The
simplified model of the tooth root and the background; (c) The region within the
box defined with blue line is divided into four different regions: (1) the tooth pulp
which lies in the red contour, (2)the tooth dentine which lies between the red and
green contour, (3) the other soft tissues which lie in the yellow contours, and (4)
the jaw bone which lie in the region within the blue contour excluding the above
three regions; (d) The simplified model of the tooth root and the background: the
black arrows show the thickness of the tooth dentine wall.

93



5.2 Materials and Methods

dentine, we divide Ω1 into two subregions:

Ωp = {(x, y)|u(x, y) < t1}

Ωd = {(x, y)|u(x, y) ≥ t1}
(5.10)

where t1 is a threshold partitions the tooth regions into two clusters. Its value can

be obtained using K-means clustering (Hartigan & Wong, 1979) by choosing the

maximum and minimum intensity values within the tooth region as the initial

cluster centroid positions.

Then, the PDF of tooth region p1 can be rewritten as:

p1(u(x, y)|Ω1) =


p(u(x, y)|Ωp) if u(x, y) < t1

p(u(x, y)|Ωd) if u(x, y) ≥ t1

(5.11)

If the active contour works effectively, it will always evolve outside the tooth

dentine Ωd. Thus we can exclude the PDF of the tooth pulp Ωp and use only Ωd

to represent the tooth. Eq. (5.11) can be rewritten as

p1(u(x, y)|Ω1) = p(u(x, y)|Ωd) (5.12)

where p(u(x, y)|Ωd) can be estimated using the histogram of the tooth dentine

(the region between the green contour and the red contour shown in Fig. 5.5).

The main difference between our method and that of Gao & Chae (2010) is

that we estimate and exclude the tooth pulp region and use the tooth dentine to

represent the tooth. As shown in Fig. 5.6, the new PDFs of the tooth and the

background have much less overlap compared with the PDFs estimated in Gao

& Chae (2010).
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Figure 5.6: Intensity probability distribution estimated from histograms of the
tooth and background intensities of Gao’s method and the proposed method: The
left image shows the probability distribution in Gao & Chae (2010); The right im-
age shows the probability distribution of the proposed method. P1 is the probability
distribution of the tooth, P2 is the probability distribution of the background

Similarly, the background Ω2 also contains two different clusters: the dark

region (Ωs) contains soft tissue and air while the bright region (Ωa) contains

alveolar bone. We divide Ω2 into two subregions:

Ωs = {(x, y)|u(x, y) < t2}

Ωa = {(x, y)|u(x, y) ≥ t2}
(5.13)

where t2 is a threshold partitions the background regions into two clusters. Its

value can be obtained using K-means clustering (Hartigan & Wong, 1979) by

choosing the maximum and minimum intensity values within the background

region as the initial cluster centroid positions. Since the region outside the tooth

is large, the histogram of the background is only computed in a 5-pixel wide

band outside the tooth contour. The width of the band is actually flexible as

long as it does not touch the tooth dentine of neighboring teeth. The PDF of the
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tooth region p1 can be rewritten as

p2(u(x, y)|Ω2) =


p(u(x, y)|Ωs) if u(x, y) < t2

p(u(x, y)|Ωa) if u(x, y) ≥ t2

(5.14)

where p(u(x, y)|Ωs) and p(u(x, y)|Ωa) can be estimated using the histogram of

the background.

(3) Edge energy: The edge-based term forces the contour C to approach the

edges in the image. This is realized by minimizing the following functional:

J3(ϕ) =

∫
C

gds (5.15)

where ds represents the Euclidean arc length of C. Note that ϕ is the SDF of C,

we have

J3(ϕ) =

∫
Ω

gδ(ϕ)|∇ϕ|dxdy (5.16)

where g is a positive and decreasing function serving as an edge detector, δ is the

smoothed Dirac function (introduced in Section 2.3.2.6), and ∇ is the gradient

operator. We use Eq. (9) in Gao & Chae (2010) as our edge indicator function

g =


1, if −∇ϕ · ∇uG ≤ 0

1

1 + |∇uG|2
, if −∇ϕ · ∇uG > 0

(5.17)

where uG = Gσ ∗ u0, the convolution of the image u0 with the Gaussian kernel

of standard deviation σ (fixed at 1.5), is the smoothed image. Note that g is

calculated only once for each image slice in the segmentation process.

(4) Shape prior energy: The shape prior term is added into the functional by
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forcing the evolving contour C to approach the final segmentation contour C0

of the previous slice:

J4(C) =

∫
C

ϕ2
0(x, y)ds (5.18)

where ϕ0 is the SDF of the segmented tooth region of previous slice. Note that

ϕ is the SDF of C, we have

J4(ϕ) =

∫
Ω

ϕ2
0(x, y)δ(ϕ)|∇ϕ|ds (5.19)

Gao & Chae (2010) gives equal weights to all the pixels on the shape prior.

However, we notice that pixels with negative curvature C0− are less likely to be

a portion of the tooth contour compared to those with positive curvatures C0+,

where

C0+ = {(x, y) : (x, y) ∈ C0 and κ > 0}

C0− = {(x, y) : (x, y) ∈ C0 and κ ≤ 0}
(5.20)

In the above equation, κ = ∇
(

∇ϕ0(x,y)
|ϕ0(x,y)|

)
is the curvature of the contour, and

ϕ0(x, y) is the SDF of the contour C0. Since we have more confidence in a

contour with positive curvature, we can assign larger weights to pixels with

positive curvature and smaller weights to those with negative curvature. So we

modify ϕ0(x, y) to give ϕ̂0(x, y):

ϕ̂0(x, y) =


ϕ0(x, y) if κ > 0

ωϕ0(x, y) if κ ≤ 0

(5.21)

97



5.2 Materials and Methods

where 0 < ω < 1. We have the fourth term in the energy functional:

J4(ϕ) =

∫
Ω

ϕ̂2
0δ(ϕ)|∇ϕ|dxdy (5.22)

(5) Dentine wall thickness energy: The tooth dentine wall is the area be-

tween the boundaries of the tooth pulp and the tooth (Fig. 5.5)). We observe

that the active contour C is easy to shrink in regions where the dentine wall is

thin. Because the contour of the tooth pulp Cp is easy to segment, the tooth

pulp contour is used to refine the tooth contour by controlling the tooth dentine

thickness where the dentine wall is thin.

Define D((x, y), Cp) as the distance between a point (which is located on

C) and the curve Cp, and D(C,Cp) as the collection of all such distances of

points on C. D(C(x, y), Cp) can then be divided into two groups Dthick(x, y)

and Dthin(x, y) using K-means clustering. Davg denotes the average value of

Dthin(x, y). This enables us to define

ϕt(x, y) = ϕp(x, y)−Davg (5.23)

where ϕp(x, y) is the SDF of the contour of the tooth pulp Cp, ϕt(x, y) is the

SDF of the shape which is a enlarged version of the tooth pulp. Based on the

definition of ϕp(x, y), we have the fifth term in the energy functional:

J5(ϕ) =

∫
Ω

ϕt(H(ϕt)−H(ϕ))dxdy (5.24)

where H is the smoothed Heaviside function (introduced in Section 2.3.2.6).

Fig. 5.7 illustrates the effectiveness of the new term to overcome the “over-
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Figure 5.7: Comparison between (a) without tooth dentine thickness constraint and
(b) with the constraint. The red line represents the current evolving tooth contour,
and the green line represents the tooth dentine thickness constraint.

shrinking” problem.

(5) Overall energy functional: Replacing Eq. (5.5), Eq. (5.9), Eq. (5.16),

Eq. (5.22), and Eq. (5.24) in Eq. (5.4), we have the proposed energy functional

J(ϕ) = λ1

∫
Ω

1

2
(|∇ϕ| − 1)2dxdy

+ λ2

(∫
Ω

−ln(p1)H(−ϕ)dxdy +

∫
Ω

−ln(p2) (1−H(−ϕ)) dxdy

)
+ λ3

∫
Ω

gδ(ϕ)|∇ϕ|dxdy

+ λ4

∫
Ω

ϕ̂2
0δ(ϕ)|∇ϕ|dxdy

+ λ5

∫
Ω

ϕt(H(ϕt)−H(ϕ))dxdy

(5.25)
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5.2.2.6 Energy functionals minimization

To minimize the energy functional J(ϕ), ϕ has to be updated as follows (derived

in Appendix A):

∂ϕ

∂t
= λ1

[
∆ϕ− div(

∇ϕ

|∇ϕ|
)

]
+ λ2δ(ϕ) ln

(
p2
p1

)
+δ(ϕ)

(
div

(
(λ3g + λ4ϕ̂

2
0)

∇ϕ

|∇ϕ|

))
+ λ5δ(ϕ)ϕt

(5.26)

where p1 and p2 are given in Eq. (5.12) and Eq. (5.14), g is given in Eq. (5.17),

ϕ̂ is given in Eq. (5.21), ϕt is given in Eq. (5.23), and λ1, λ2, λ3, λ4, λ5 are

weighting coefficients that have to be tuned. Because the shape prior is close to

the real tooth contour, 25 rounds of iterations were enough for segmenting tooth

contours.

Since the area of the initial contour of the tooth is the largest one in the entire

tooth in the axial plane and the area of the tooth tends to decrease gradually from

the initial slice to the root tip, the active contour should shrink rather than expand

during the contour evolution process. Similar to Eq. (11) in Gao & Chae (2010),

we use the following equation to replace λ2:

λ2 =


λs if log

(
p2
p1

)
> 0

λe if log

(
p2
p1

)
≤ 0

(5.27)

where λs and λe represent the shrinking coefficient and the expanding coeffi-

cient, respectively. These two parameters drive the contour as follows:

• if p2 ≥ p1, which means the pixel is more likely to lie in the background,

then it should shrink and move inward to the object;
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• if p2 < p1, which means the pixel is more likely to lie in the object, then

it should expand and move outward to the background.

Note that neither p1 nor p2 should be 0; when computing these two terms, a

small value is added. To make the contour shrink more than expand, the value

of λs should be set larger than λe.

5.2.2.7 Parameter analysis

An adult human usually has thirty-two teeth, with sixteen teeth in the maxilla,

sixteen teeth in the mandible. The sixteen teeth in either jaw are symmetrically

located in both half of the dental arch. Thus the shape of eight teeth in either

side can represent all the other twenty-four teeth. The eight teeth can be further

classified into: incisors, canines, premolars and molars. Both the incisors and

the canines are classified as anterior teeth. These three teeth usually have only

one root. The topological similarity of these anterior teeth in both jaws enable

us to set the same parameters for all the anterior teeth. Empirically, we found

that the six parameters can be set as: λ1 = 1, λs = 0.1, λe = 0.05 λ3 = 0.8,

λ4 = 0.2, λ5 = 0.1. Note that all patient data are acquired with the same CBCT

scanner using the same resolution but with different field of views. Thus there

is no need to tune the weighting coefficients for different patients.

5.2.2.8 Validation

(1) Qualitative validation: We first qualitatively compared the segmentation per-

formance of the proposed method against the manual segmentation and two

other segmentation methods: the variational formulation method in Li et al.
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(2005), and the level set method proposed in Gao & Chae (2010).

(2) Quantitative Validation: The manual segmentations of tooth root performed

by a clinician serves as the ground truth. A second manual segmentation of

tooth root performed by another clinician is applied to show the variability of

the manual segmentation using Jaccard and Dice index values compared with

the first time manual segmentation. The accuracy of different approaches are

calculated by comparing the automatic segmentation results with the manual

segmentation results. The Jaccard (Jaccard, 1912) and the Dice (Dice, 1945)

similarities are used to assess the agreement between automatic and manual

segmentation approaches. These two metrics are defined by:

Jaccard : J(V1, V2) =
|V1

∩
V2|

|V1

∪
V2|

, (5.28)

Dice : D(V1, V2) =
2|V1

∩
V2|

|V1|+ |V2|
. (5.29)

where V1 represents the voxel set of automatic segmentation results and V2 rep-

resents the voxel set of the ground truth.

Besides the overlapping measures through the Jaccard and Dice indexes, the

mean surface distance (MSD) is also calculated to assess the qualities of 3D

models obtained by different algorithms.

5.3 Experiments and Results

Since the proposed method aims to improve the segmentation accuracy for the

tooth root in CBCT, we only carried out comparison studies on the segmentation

performances for this region of the tooth.
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(1) Qualitative comparison: We first compared the segmentation performance

of the proposed method with manual segmentation and two other segmentation

methods: the variational formulation method in Li et al. (2005), and the level

set method proposed in Gao & Chae (2010). Fig. 5.8 shows the results.

Compared with manual segmentation (Fig. 5.8(d)), even though the initial

contours are the same, different methods yield different results. More specif-

ically, the variational formulation method fails at places where information at

the edge and intensity distribution are not able to drive the contour to the desired

place. The level set method with shape and intensity prior fails by shrinking into

the tooth pulp region. Compared with the previous two methods, our method is

more accurate. The examples of final segmentation results in different slices of

the proposed method are provided in Fig. 5.9 (axial view). The 3D tooth models

reconstructed from segmented tooth root slices are shown in Fig. 5.10. Note that

the crowns are segmented using the coupled level set method proposed by Gao

& Chae (2010), and the roots are segmented using the proposed method.

(2) Quantitative validation: The algorithm was tested on a desktop computer

with a Intel(R) Core (TM) 2 Duo CPU 2.65 GHz and 2.72 GB memory. The

program was implemented in Matlab 7.11.0 (R2010b) installed in Microsoft

Windows XP Professional. The average time consumed per tooth is 336 sec-

onds. The quantitative performance comparison results between the proposed

method, Gao’s method and Li’s method are shown in Table 5.1 and Fig. 5.11.

The mean accuracy of the second time manual segmentation is 0.998 ± 0.002

(0.998 is the mean value and 0.002 is the standard deviation) for Jaccard index

(JI), 0.999 ± 0.001 for Dice index (DI). The large JI and DI means variability

of the manual segmentation is very small. The manual segmentation results are
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Figure 5.8: Comparison between the different segmentation methods: (a) varia-
tional formulation method, (b) level set method with shape and intensity prior, (c)
our segmentation framework, (d) manual segmentation.
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Figure 5.9: Tooth root segmentation result of the proposed method: Images (a)-(l)
are the segmentation result selected from the initial slice to the root tip. The green
lines are the ground truth; the red lines are automatic segmentation results; yellow
lines are the intersections between the ground truth and automatic segmentation
results.
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Figure 5.10: 3D segmentation results of the proposed method: (a) shows three
maxillary anterior teeth segmented from a patient; (b) shows three mandibular an-
terior teeth segmented from another patient; (c) and (d) show the smoothed version
of (a) and (b) respectively
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reliable. The mean accuracy of the proposed method is 0.964 ± 0.011 for JI,

0.981± 0.008 for DI, 0.113± 0.057 mm for MSD. The mean accuracy of Gao’s

method is 0.884±0.019 for JI, 0.938±0.011 for DI, 0.229±0.030 mm for MSD.

The mean accuracy of Li’s method is 0.787±0.079 for JI, 0.879±0.053 for DI,

0.319 ± 0.061 mm for MSD. The proposed method shows an improvement in

accuracy over Gao’s and Li’s level set methods.

5.4 Discussion

5.4.1 Analysis of the functional design

The proposed level set approach is could be used for segmentation of anterior

teeth in CBCT. The functionals in Gao & Chae (2010) and Li et al. (2005)

and new functionals were integrated to improve its segmentation performance.

The proposed method has several advantages over other methods. First, a more

accurate estimation of intensity distributions inside and outside the tooth is used

to drive the contour to approach a more accurate tooth region. Secondly, a

more robust shape prior is used to add a more reasonable shape constraint to

the contour evolution. Thirdly, the thickness of the tooth dentine wall is used

as a new constraint to avoid the leakage problem in the segmentation process.

One limitation of this method is that the shape prior provided in the first slice is

obtained manually.
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5.4 Discussion

Figure 5.11: Performance comparison between different methods: top image
shows results in terms of the Jaccard index; bottom image shows results in terms
of the Dice index
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5.4.2 Clinical significance

The ability to visualize the exact spatial orientation of the roots of teeth within

the dental arch is an important diagnostic advantage. This advantage is lever-

aged for teeth which are not visible in the mouth but are buried within the jaw

bone. The clinical decision to move a buried tooth into its rightful place within

the dental arch or to surgically excise it depends on the clear representation of

the positions of the buried tooth and the neighbouring structures. For example,

the accurate segmentation of the root of a buried tooth such as a buried upper

canine and the neighbouring teeth structures provides orthodontists a clear three-

dimensional anatomic map for simulating trajectories and pathways for moving

the buried canine into the dental arch. Should the simulations show that the

pathways are blocked by neighbouring structures, the surgical option becomes

a clinically viable approach to remove the buried canine.

5.4.3 Limitation of the study

Our proposed tooth segmentation is designed for anterior teeth which usually

have one single root. For posterior teeth like the premolars or the molars which

have multiple roots, segmentation difficulty increases because the topology of

the tooth changes when the tooth roots split into different branches. In Gao

& Chae (2010), they have to manually select the slice where the tooth splits

into multiple branches and decrease the weights on shape prior to allow larger

movement of the contour to approach the tooth shape. The parameters in their

algorithm have to be manually setup again which is not convenient. Thus both

Gao’s method and our proposed method suffer from this problem. In future
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research, an automatic detection technique could be added into the segmentation

algorithm to detect where the topology of tooth shape changes.

5.5 Conclusion

This chapter presents a new level set algorithm to detect the contour of the an-

terior tooth. We segment the tooth pulp first to obtain a more accurate intensity

density function of the tooth dentine. The proposed method also integrates the

functionals of existing level set methods (Gao & Chae, 2010; Li et al., 2005)

with a dual intensity model for the background, a new shape prior, and a new

tooth dentine wall thickness constraint for preventing shrinking and leakage.

The experimental results show that the proposed method is more accurate than

Gao’s method and Li’s method for the region of tooth root.
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Chapter 6

A 3D interactive tooth movement

and collision detection system

In last chapter we presented an approach for anterior teeth segmentation from

CBCT images. In this chapter, we present a 3D interactive tooth movement

and collision detection system built on the segmented anterior teeth to assist

the simulation of tooth movement for clinical cases with impacted upper canine

teeth. The details of the system and the case study will be presented in the

following sections.

6.1 Introduction

An impacted tooth is a tooth which is blocked so that it is unable to function

properly. The maxillary canine is the second most commonly impacted tooth.

However, impacted canines are critical to the support of the corners of the up-

per lip and important in guiding how the upper and lower teeth come together.
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Hence, impacted maxillary canine teeth require dental treatment to disimpact

the tooth. To move, extract or leave the impacted canine is not a trivial decision

for the orthodontist especially when the impacted canine is near to the neighbor-

ing teeth. Cone beam CT images are often taken for patients who are diagnosed

with impacted canines. Although the raw 3D image can provide the clinicians a

rough position of the impacted canine, it is usually difficult for them to carry out

a realistic visualisation of the tooth movement needed. Thus, despite the avail-

ability of 3D CBCT images, visualising the trajectory for moving the impacted

canine into the mouth is difficult without a simulation system that takes into

account the structures adjacent to the impacted canine that could obstruct the

path of the impacted canine. The motivation is to build a 3D interactive tooth

movement and collision detection system. The system can help the clinicians

to make orthodontic treatment plans for specific patient especially in impacted

canine cases.

6.2 Materials and Methods

6.2.1 Image Data Acquisition

CBCT scanning of the anterior teeth in maxilla were carried out on an anony-

mous adult female patient. The CBCT image data set was obtained using a

Kavo 3D eXam 2nd Generation CBCT scanner with a 0.2mm×0.2mm×0.2mm

spatial resolution. The raw image data were stored in DICOM format.
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6.2.2 Image Data Format, Segmentation, and 3D surface gen-

eration

The level-set-based anterior teeth segmentation presented in Chapter 5 was ap-

plied to the CBCT raw image. The total six teeth, including the impacted

canine, are segmented. The maxilla was segmented semi-automatically using

ITK-SNAP. After segmentation, the triangular surface mesh of the segmented

volumetric image was generated using the “isosurface” function in Matlab. The

“isosurface” function creates a surface mesh represented by a structure “FV”

which contains the faces “FV.faces” and vertices “FV.vertices” of the isosur-

face. The surface mesh were exported to an STL file for further analyses.

6.2.3 Coordinate system

The 3D CBCT image of the patient can be displayed in a mode called multi-

planar reformatting (MPR) which refers to the reconstruction of the image in

the coronal and sagittal planes in conjunction with the original axial data set. In

the 3D CBCT image, each voxel is assigned a world coordinate relative to the

origin which is located in the left upper corner of the first slice in axial plane.

The X axis of the system orientate from right of the head to the left, the Y axis

from anterior to posterior, the Z axis from inferior to superior (Fig. 6.1).

6.2.4 Camera position and orientation in Matlab

A figure can be viewed in different scenes interactively by using the camera

toolbar in Matlab. We will present several key terminologies: (1) The principal

axis defines the direction pointing upward on the screen. In Matlab, the principal
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Figure 6.1: The orientation of the CBCT image: the X axis of the system points
from right of the head to the left, the Y axis from anterior to posterior, the Z axis
from inferior to superior (The six orientations of the head are labeled by six capital
letters: A (Anterior), P (Posterior), L (Left), R (Right), S (Superior), I (Inferior).)

115



6.2 Materials and Methods

axis is typically aligned with the positive Z axis. (2) The camera target defines

the point the camera is aiming at. By default, Matlab defines the centroid of

the plot box as the camera target. (3) The camera position defines where the

camera views the figure. Given the camera position and the camera target, we

can calculate the camera direction:

camDir = camPos− camTgt (6.1)

where camDir is the camera position, camPos is the camera target and camTgt

is the camera target. We can then build an orthogonal frame based on the view-

ing direction and the up vector (the “view frame”) as follows:

zAxis =
camDir

|camDir|

upAxis =
camUpV ect

|camUpV ect|

xAxis = upAxis× zAxis

yAxis = zAxis× xAxis

(6.2)

where camUpV ect and upAxis are in the same direction as the principal axis

of the camera and both are vectors, and “×” denotes the cross product between

two matrices. The view rotation matrix can be obtained by combining the three

axial vectors xAxis, yAxis and zAxis into a view rotation matrix:

rot =


xAxis

yAxis

zAxis

 (6.3)
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where rot denotes the view rotation matrix.

6.2.5 Point selection with mouse

The tooth movement has two major modes: translation and rotation (which con-

sists of rotation around the long axis of the object body, tipping and torquing).

In the translation mode, the point obtained by mouse is directly used as the se-

lected point. In the rotation mode, the point selected by the mouse can not be

used directly. The selected point and all the vertices of the object should be

transformed into the viewing frame.

rotatedPointCloud = V · rot

rotatedPointFront = point · rot
(6.4)

where V , a n × 3 matrix, denotes the XYZ positions of the point clouds of the

object, point is the position of the point selected by mouse, rotatedPointCloud

and rotatedPointFront denotes the transformed positions of the point cloud

and the selected point respectively, and “·” denotes dot product (scalar product)

between two matrices.

Finally, the Z coordinate in this frame is ignored. The X and Y coordinates of

all the object points are compared with the mouse click location and the closest

point is selected.

6.2.6 Long axis and rotation point of the tooth

The four modes of tooth movement are illustrated in Fig. 6.2. All the four modes

of tooth movement are related by a rotation axis, the long axis of the tooth. The

117



6.2 Materials and Methods

Figure 6.2: Four modes of orthodontic tooth movement.

long axis is an imaginary line that extends through the center of the tooth around

which the substance of the tooth is most symmetrically distributed (Fig. 6.3).

In the rotation mode, the tooth is turned around its long axis. In the transla-

tion mode, the tooth is pushed by a collection of evenly distributed forces on the

same direction so that the vertices of the tooth are moved by a same distance. In

the tipping mode, a force is applied to the crown of the tooth, and the crown is

moved more than the root around a center of resistance which is located about

1/4 of the whole tooth length (1/3 of root length) from the root apex (Fig. 6.4).

In the torquing mode, a force is applied to the root of the tooth, and the root is

moved more than its crown around a center of resistance which is located about

1/4 of the whole tooth length from the tooth cusp (Fig. 6.4). To calculate the

center of resistance for the tipping and torquing mode, we have to determine the

two intersection points on the tooth surface (the tooth root apex and the tooth
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Figure 6.3: Long axis of a tooth.

crown cusp) through which the long axis passes. The two points can be calcu-

lated by obtaining the nearest point to the long axis of the vertices at both ends.

The two centers of resistance are located 1/4 of the whole tooth length from the

root apex and the tooth cusp.

The direction of the long axis can be calculated applying principal com-

ponent analysis (PCA) (Jolliffe, 2005) to the vertices of the tooth. Consider a

dataset X with n samples, each sample is an m-dimensional vector:

X =


x(1)

...

x(n)

 where x(i) = [x1(i) . . . xm(i)] (6.5)

The covariance matrix Cov is obtained by the following equation

Cov =
1

n− 1
(X −X)T · (X −X) (6.6)
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Figure 6.4: The long axis of tooth and rotation points. The left image shows the
long axis (in green) and the rotation point (in red) in the mode of tipping; The right
image shows the long axis (in green) and the rotation point (in red) in the mode of
torquing

where X is the mean of value of X . The m×m matrix Cov may have at most

m pairs of eigenvectors and eigenvalues if Eq. (6.7) is satisfied:

Cov · V = V · Λ (6.7)

where V is an m ×m matrix constructed by the m eigenvectors of Cov in the

columns, Λ is an m × m diagonal matrix constructed by the m eigenvalues

of Cov in the diagonal entries. The eigenvector corresponding to the maximal

eigenvalue of the m eigenvalues gives the first principal component. The first

principal component gives the direction in which the variation of the data is

maximized.

In this study, the coordinates of the tooth surface points are in 3D space,
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and thus m equals to 3. n is the total number of the surface points of the tooth.

Using PCA, we compute the eigenvectors and eigenvalues of the dataset, and

the eigenvector corresponding to the maximal eigenvalue gives the first principal

component. The direction of the long axis of the tooth should be the direction

that accounts for the largest proportion of the distance variation. Thus the first

principal component calculated using PCA gives the direction of the long axis.

According to its definition, the long axis should go through the center of

the tooth, which is approximately the mean coordinate of the surface points.

The long axis can then be fixed by the direction calculated using PCA and the

position of the tooth center. After fixing the long axis, the two rotation points

in the mode of tip and the mode of torque can be calculated along the long axis

(Fig. 6.4).

6.2.7 Collision detection

In the simulation of the movement of an impacted canine, we want to know

whether the moving tooth contacts a neighboring tooth. If it does, then the im-

pacted tooth is stuck and can’t be moved further in this direction, which is a

common situation in clinical practice. Collision detection is a technique to find

the existence of contact between pairs of objects in simulation (Ericson, 2004).

We use the “coldetect” function implementing the V-COLLIDE collision detec-

tion algorithm distributed by Kochenderfer (Hudson et al., 1997). V-COLLIDE

is a collision detection library designed to operate on triangulated meshes. A

three-phase hierarchical architecture is used by V-COLLIDE: an initial n-body

test to detect possible contacting pairs of objects, oriented bounding box trees
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Figure 6.5: Occlusal plane: (a) Sagittal view; (b) Axial view

(OBBTree) (Gottschalk et al., 1996) are used to detect possible contacting pairs

of triangles, and a final test to detect the overlapping of pairs of triangles.

6.2.8 Validation

We evaluated the result of the tooth movement by the average distance (AD)

between the dental cusps and the maxillary dental arch line. The AD of the pre

and planned treatment were calculated and compared.

6.2.8.1 Calculation of AD

Before the calculation of the AD, we have to generate the occlusal plane (OP),

which separates the upper and lower jaw. A rectangular marker was bitten by

the patient as shown in Fig. 6.5 (a). The OP is the plane which passes through

the middle of the marker. The X axis of the OP points from the right of the

head to the left, the Y axis from anterior to posterior, and the origin of the OP is

determined after we find out the maxillary dental arch line (Fig. 6.5 (b)).
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The maxillary dental arch line is calculated as follows. We select an axial

slice where the image includes most part of maxillary teeth, which is located

above the OP. To obtain the maxillary dental arch line, we have to define a

region of maxillary dental arch, which covers the maxillary teeth in the slice

(Fig. 6.6 (a)). Morphological functions in the Matlab software are used to find

the one pixel thick skeleton of the binary mask of the region of maxillary dental

arch (Fig. 6.6 (b)). 2D connectivity analysis is then applied to automatically

remove the short branches in the skeleton to obtain the representative maxillary

dental arch line (Fig. 6.6 (c)). The upper left point of the maxillary dental arch

line is set as the origin of the OP (Fig. 6.6 (d)).

To obtain the cusps of the maxillary teeth, we move the OP upward. The

cusps could be easily identified as the points where the plane touches each tooth.

The detected cusps of the teeth are then projected back onto the OP. Finally, the

distances between the projected cusps and the maxillary dental arch line are

calculated.

6.3 Experiment and results

6.3.1 The system

The 3D interactive tooth movement and collision detection system has three

major functions:

• Collision detector “COLDETECT version 1.0”;

• Interactive object movement function “objmove.m”;

• Graphical user interface (GUI) function “toothmove.m”.
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Figure 6.6: Steps to find the maxillary dental arch line. (a) define a region of
maxillary dental arch; (b) skeletonize the region; (c) remove the short branches; (d)
set the origin of the OP
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The final GUI and four modes of tooth movement are shown in Fig. 6.7.

The user can use the mouse to control the movement of the impacted canine.

In the system, the user can select one of the four modes to translate or rotate

the tooth. The collision detector detects whether the impacted canine come into

contact with any of the four anterior teeth. When collision happens, the flag

of the detector will turn from the value “0” to “1” and warn the user that the

impacted canine can’t be moved any further.

6.3.2 A case study

The segmented teeth and the maxilla are shown in Fig. 6.8. An extra canine

is stuck behind the anterior teeth of the patient. We will show how to use the

3D interactive system to find a path for the impacted canine movement. Other

solutions for this impacted canine cases are: to remove the impacted canine or

leave it in its original position, both of which will not be discussed in this thesis.

The sequence of actions is:

• The lateral incisor and the canine are removed to create space for the

impacted canine movement (Fig. 6.9).

• Find the desired position for the impacted canine (Fig. 6.10).

• Move the impacted tooth gradually into the desired position with the in-

teractive system. The interval steps are shown in Fig. 6.11.
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Figure 6.7: GUI of the system and four modes of tooth movement.
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Figure 6.8: The segmented teeth and the maxilla. The anterior teeth are shown in
blue and the impacted canine is shown in green. The maxilla is shown as a relative
transparent grey body.

Figure 6.9: The lateral incisor and the canine are removed.

Figure 6.10: The desired position for the impacted canine.
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Figure 6.11: Tooth movement process. F(1)-F(6) shows the front view of the
movement process; L(1)-L(6) shows the left view of the movement process.
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Figure 6.12: Result of the planned treatment (bottom view). (a) pre treatment; (b)
planned treatment. The red line is the maxillary dental arch line.

6.3.3 Tooth movement results

In the treatment plan given above, the maxillary lateral incisor, the impacted

canine and the impacted canine are involved. Thus we first calculate the av-

erage distance between the projected cusps of the first two removed teeth and

the maxillary dental arch line. The distance between the projected cusp of the

moved impacted canine and the maxillary dental arch line is also calculated.

The distances between the projected cusps of the first two removed teeth and

the maxillary dental arch line are 0.849mm and 4.968mm giving an average dis-

tance 2.908mm. The distance between the projected cusp of the moved impacted

canine and the maxillary dental arch line is 1.414mm. The moved impacted ca-

nine is fitted better to the maxillary dental arch line than the two removed teeth

(Fig. 6.12).
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6.4 Discussion and conclusion

A 3D interactive tooth movement and collision detection system was built to

provide clinicians a realistic anatomic simulation system to plan the trajectory

for moving the impacted canine into the mouth. The system can also be used to

educate dentistry students by showing a 3D environment of the impacted canine

movement case. In contrast with raw CBCT images, the system offers the user a

360 degree view of the 3D environment. The four modes of tooth movement can

well simulate the orthodontic tooth movement in practice. The system can be

used for any specific patient as long as his teeth can be segmented from CBCT

images.
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude the thesis with an overview of achievements and

suggestions for future work.

7.1 Overview

We have presented a region-growing based method for hard-tissue segmenta-

tion from MR images and a level-set based method for hard-tissue segmentation

from CBCT images in this thesis. The region-growing based method is chosen

to segment the mandible from MR images because it regards the mandibular

shape as a set of connected sub-regions and segments these multiple regions

from the surrounding tissue. Region-growing based methods are more suitable

than level-set based methods for segmentation problems where the ROI has mul-

tiple regions. The level-set based method is chosen to segment the anterior teeth

from CBCT images because it is more suitable than the region growing method

for segmentation problems where the ROI is a single region. The level-set based

method can be combined easily with the shape prior of the ROI, which could in-

crease the accuracy of the segmentation. Such shape priors play a vital role in
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the tooth segmentation problem from CBCT images.

The rule-constrained seedless region growing framework should also be ap-

plicable for other hard tissue segmentation from MR images where the ROI to

be segmented is relatively large but fragmented into several sub-regions. The

improved level-set-based method should also be applicable for other image seg-

mentation problems where the ROI to be segmented has relatively weak edges

but whose shape does not change much in consecutive slices.

7.1.1 Segmentation of mandibular body

We have presented a two-stage rule-constrained seedless region growing image

processing approach for segmentation of the body of the mandible. The se-

quence starts with a 3D seedless region growing for the purpose of detecting a

large portion of the trabecular bone (TB) regions of the mandible after an initial

threshold. This stage is followed by a rule-constrained 2D segmentation of each

MR axial slice to merge the remaining portions of the TB regions previously un-

detected at lower intensity levels. The preceding two steps were repeated with

different thresholds to detect the cortical bone (CB) regions. The penultimate

step involved the merging of TB and CB regions to further define the shape

of the body of the mandible. A series of morphological processes rounds up

this approach to complete the definition of the mandibular body. It is the first

research report on mandible segmentation in MR images.

Within the limitation of the study, this method is also more accurate than

the conventional region growing (CRG) method and 3D level set. The reason

why the accuracy of CRG is lower is that it can only find a relatively small
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portion of the TB region. With 3D level set, leak-out problem easily occurs

because the method can’t deal well with TB having similar intensity values with

the surrounding regions. This similarity causes the detected active contour to

expand beyond the TB region and develop into a big bubble.

We have presented steps to determine the validity of magnetic resonance

imaging (MRI) as a non-ionising imaging modality for generating a realistic

shape of the mandible and to evaluate the precision of the mandibular shape.

Three adult male subjects underwent CT scanning and MRI. A semi-automated

image processing method was applied to segment the CT and MR images, from

which the segmented paired images were co-registered with the ICP method.

The similarity of paired co-registered mandibular models was assessed by vol-

umetric measurements, 3D surface distance measurements, the Dice coefficient

for agreement of paired volumes, and bucco-lingual “bone shape” thickness

measurements. The Wilcoxon signed-rank test was applied to the comparative

measurements. A realistic shape of the mandibular body, ramus and sympmphy-

seal region has been generated from the MR images. However, anatomical areas

at the coronoid processes and condylar heads generated from the MRI were less

precise when compared with those generated from CT imaging.

7.1.2 Segmentation of anterior teeth

We have presented an improved level-set-based method to extract the shapes

of anterior teeth from CBCT images. A contour initialization technique was

applied followed by a new level set algorithm to detect the contour of the tooth.

The presented method has three novelties: 1) a more accurate estimation of
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intensity distributions of the tooth root is used; 2) a more robust shape prior is

used to add a more reasonable shape constraint on the contour evolution; and 3)

the thickness of tooth dentine wall is used as a new constraint to avoid leakage.

The experimental results show that the proposed method is more accurate than

Gao’s method and Li’s method for the region of tooth root.

The segmented anterior teeth can be directly used for a 3D interactive tooth

movement and collision detection system to assist the clinicians to make treat-

ment planning. The system can also be used to educate dentistry students by

showing a 3D environment of the impacted canine movement case. In con-

trast with raw CBCT images, the system offers the user 360 degree view of

the 3D environment. The four modes of tooth movement can simulate well the

orthodontic tooth movement in practice.

7.2 Future Work

The pilot study of reconstruction of mandibular shape from magnetic resonance

imaging is carried out on only three pairs of image data sets. The difficulties

of data acquisition lie in: (1) The study is carried out on living patients, thus

it will be costly to collect enough data. (2) The study is carried out on both

CBCT scanner and MRI scanner. The former modality will expose the patients

to high radiation, and the latter one will take almost five minutes to acquire the

data. If the above difficulties can be solved, the experiment results will be more

convincing.

Our proposed tooth segmentation is designed for the anterior teeth which

have single roots. For posterior teeth like the premolar or the molar which usu-
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ally has multiple teeth, segmentation difficulty will increase because the topol-

ogy of the tooth will change when the tooth root splits into different branches.

Gao’s method can be applied to posterior teeth. However, they have to manually

select the slice where the topology of the tooth changes. And the parameters

have to be setup again manually.

The Gao’s method and our proposed method both use segmentation result of

previous slice as the shape prior of the next slice. This may introduce accumu-

lated error and decrease the segmentation accuracy. A more reliable shape prior

should be found to ensure the segmentation consistency.

In Chapter 6, we built a 3D interactive tooth movement and collision detec-

tion system. The final target of the project is to develop an automated or semi-

automated path planning algorithm for patient specific tooth movement cases.

Before the system is built, several engineering problems have to be solved:

• The outer boundary of the maxilla shape has to be accurately defined. The

3D surface of the maxilla is the solution space for the tooth movement.

The movement is not allowed if any part of the tooth touches the boundary

of the maxilla.

• A path planning algorithm for a 3D object should be developed. The

algorithm should consider the constraint of the solution space based on

the shape of the patient specific maxilla.

• The final challenge of the project lies in that the tooth can’t be moved as

a free body. Thus when the tooth is moved in different mode, a different

constraint should be added into the path planning algorithm.
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Appendix A: minimization of the

proposed energy functional

In Chapter 5, we need to minimize the overall energy functional in Eq. 5.25,

which we restate here for convenience

J(ϕ) = λ1

∫
Ω

1

2
(|∇ϕ| − 1)2dxdy

+ λ2

(∫
Ω

−ln(p1)H(−ϕ)dxdy +

∫
Ω

−ln(p2) (1−H(−ϕ)) dxdy

)
+ λ3

∫
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gδ(ϕ)|∇ϕ|dxdy
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ϕ̂2
0δ(ϕ)|∇ϕ|dxdy
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Ω
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(1)
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1

2
λ1(|∇ϕ| − 1)2, F2 = λ3gδ(ϕ)|∇ϕ| + λ4ϕ̂

2
0δ(ϕ)|∇ϕ|, F3 =

λ2 [−ln(p1)H(−ϕ)− ln(p2)(1−H(−ϕ))] + λ5ϕt(H(ϕt) − H(ϕ)). Apply the

Euler-Lagrange equation 2.4 to J(ϕ), we get
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∂F3

∂ϕ
= λ2 [ln(p1)δ(ϕ)− ln(p2)δ(ϕ)]− λ5ϕtδ(ϕ)

= −λ2δ(ϕ)ln
(

p2
p1
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(5)

Thus, the Euler-Lagrange equation becomes
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According to Eq. 2.5, we have
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