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Summary 

 

Being one of the most common infectious diseases, dental caries is a 

transmissible bacterial infection caused by acids from bacterial metabolism which 

accumulate on enamel surface and dissolve the enamel hydroxyapatite crystals. 

Streptococcus mutans is one of the important cariogenic bacteria with high 

acidogenicity and acid tolerance. The traditional preventive therapies, like fluoride 

and chlorhexidine, have limitations and potential side effects. Probiotic treatments 

have demonstrated some promising effects in caries prevention. However, the exact 

mechanisms remain unclear.  

 

Yakult® is a popular sweet probiotic drink containing live Lactobacillus casei 

Shirota strain. Its beneficial effects on gastrointestinal diseases, allergy, and immune 

system have been reported. However, there is no study reporting the effect of Yakult® 

or the probiotic bacteria L. casei Shirota on S. mutans.  

 

In this study, the inhibitory effects of Yakult® and L. casei Shirota on S. mutans 

biofilm formation and acidogenicity were evaluated, as well as the potential 

mechanisms. The major findings are summarized as follows: 

 

(1) Yakult® and L. casei Shirota decreased S. mutans biofilm formation on the 

tooth surface with the reduced biofilm acidogenicity and lesion depth in enamel 
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demineralization.  

(2) Although there is no bactericidal effects, L. casei Shirota significantly 

decreased S. mutans extracellular polysaccharide (EPS) production, biofilm formation 

and acidogenicity by suppressing gtfB, gtfC and ldh expression in S. mutans.  

(3) L. casei Shirota cell free culture supernatant (CFCS) inhibited the growth of S. 

mutans. The inhibitory compounds were heat stable and active in an acidic 

environment. 

 

This study has deepened the understanding of cariostatic/probiotic effect of 

Yakult® and L. casei Shirota, and may facilitate the clinical application of this 

non-fluoride “sweet” therapy to prevent caries formation, particularly in children. 
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Chapter 1: 

Literature Review 

 

1.1 Dental caries  

 

1.1.1 Caries and its prevalence 

 

Dental caries is one of the most common and costly diseases in the world. 

It is a chronic diet-related infection, with bacterial metabolic by-products 

inflicting damage to the dental structures. Although caries is not a 

life-threatening condition, it has an important role in the manifestation of tooth 

pain and loss, leading to a decrease in the quality of life (Petersen, 2003). In 

many developing countries, access to oral health services is limited and teeth 

are often left untreated or are extracted because of pain or discomfort. 

Moreover, oral health presents a close association with the individual’s general 

health, and may be a risk factor for systemic diseases, such as cardiovascular 

disease and diabetes (Petersen, 2003). 

 

According to the World Health Organization (WHO), dental caries 

affected 60% to 90% of school going children as well as the majority of adults 

(Petersen, 2003). Caries is the most prevalent oral disease in most 

industrialized countries. In 2010, it was reported that oral diseases affected 3.9 
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billion people globally, and caries in permanent teeth was the most prevalent 

(average prevalence of 35% for all ages combined) (Marcenes et al., 2013). 

The prevalence of dental caries in USA during 1999-2002 was 41% among 

children aged 2-11 years, and 86.8% for 20-39 years old adults 

(Beltrán-Aguilar ED, 2005). The prevalence in Singapore was 48.9% for 5-6 

years old children as reported in 2008 (Gao XL, 2009) and 96.6% for 20-65 

years old adults in 1996 (Loh T, 1996). Dental caries has historically been 

considered the most important global oral health burden (Petersen, 2003). 

These epidemiologic data indicate the importance and urgent need for 

effective caries prevention and control. 

 

1.1.2 Tooth structure and hydroxyapatite dissolution 

 

1.1.2.1 Composition and structure of dental hard tissues 

 

The dental hard tissues consist of enamel, dentin and cementum (Fig. 1.1). 

Enamel is the outer layer of the tooth, covering dentin and pulp cavity. It is 

composed of 96% wt% of mineral and 4% of water and organic material. The 

enamel mineral consists mainly of calcium, phosphate and hydroxyl ions in a 

stoichiometric ratio Ca10(PO4)6(OH)2 which actually is the formula of the 

mineral “hydroxyapatite (HA)” (Weatherell, 1975). The underlying dentine 

consists of more organic components than enamel, including type I collagen 
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and non-collagenous proteins (Smith et al., 2012). Cementum is a calcified 

substance covering the root of a tooth. The organic matrix of human 

cementum consists mainly of type I collagen and type III collagen (Bosshardt 

and Selvig, 1997).  

 

 

Fig. 1.1. A schematic picture of the tooth structure 

 

 

1.1.2.2 Enamel hydroxyapatite dissolution in early caries 

 

Early enamel caries is observed clinically as a white spot caused by acids 

from bacterial metabolism in dental plaque.  

 

A reaction occurs back and forth between precipitation and dissolution 
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when hydroxyapatite (HA) contacts with water (Borggreven et al., 1986; 

Dawes, 2003). A very small amount of HA dissolves, with calcium, phosphate 

and hydroxyl ions released. The releasing continues until the water is saturated, 

with equal rates of dissolution and mineral precipitation. Saliva and plaque 

fluid contain calcium, phosphate and hydroxyl ions; therefore, only when the 

pH is reduced to less than the critical pH, usually 5.5, enamel dissolution 

occurs. The critical pH is lower when more calcium and phosphate are present 

in saliva or plaque fluid, as the ion levels may vary among different 

individuals.   

 

The solubility of enamel increases in acid. On one hand, when [H+] 

increases in an acid solution, [OH-] is removed to form water. On the other 

hand, the lower the pH, the lower is the concentration of PO4
3- in saliva or 

plaque fluid. The inorganic phosphate can be present in other forms, like 

H3PO4, H2PO4
– and HPO4

2–, with various proportions depending on the pH 

value. As the concentrations of both OH- and PO4
3-  reduces, the amount of 

calcium also reduces to keep the saliva and plaque fluid saturated (Dawes, 

2003). This is the process of enamel HA dissolution in acid.  

 

1.1.3 Dental plaque 

 

1.1.3.1 Dental plaque formation 
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Dental caries is the result of demineralization of the enamel due to acid 

production from the fermentation of dietary carbohydrates by cariogenic 

bacteria species in dental plaque (van Houte, 1994). Dental plaque is a 

structurally and functionally organized biofilm formed on tooth surface. It is a 

diverse community of bacteria, embedded in an extracellular slime layer 

(Marsh, 2004) . When the bacteria attach to a surface and to each other, they 

cluster together to form sessile, mushroom-shaped biofilm attached to the 

surface with a narrow base (JS, 2003).  

 

Distinct stages in plaque formation include:  

 

(1) The acquired pellicle formation. The acquired enamel pellicle (AEP) 

is a thin film that forms on tooth surfaces when exposed to the oral 

environment. The AEP is composed predominantly of salivary proteins, and 

also of non-salivary-derived proteins, carbohydrates, and lipids (Siqueira et al., 

2012). The salivary proteins, such as α-amylase, carbonic anhydrase 6, and 

cystatin S which present a great affinity to hydroxyapatite initiate the pellicle 

formation process via electrostatic interactions (Hay, 1973). Thereafter, the 

salivary proteins aggregate saliva to AEP by means of protein-protein 

interactions, for example neutrophil defensin 1 and lysozyme. The salivary 

glycoproteins (e.g. those containing sialic acid, phosphate, or sulfate), 
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immunoglobulins (IgA, IgG, IgM) and enzymes as well as blood 

group-reactive substances have also been detected in pellicles (Houte, 1982). 

The pellicle thickness increases from 100 to 1,000 nm within 30 to 90 minutes, 

depending on its location within the oral cavity (Hannig, 1999). AEP is 

involved in the lubrication of tooth surfaces, and also plays an important role 

in the regulation of mineral homeostasis, host defense and microbial 

colonization via the selectivity for bacterial adherence (Hannig and Joiner, 

2006; Lendenmann et al., 2000). 

 

(2) Bacteria adherence to tooth surface (attachment). The members of the 

mutans group of streptococci, such as Streptococcus mitis, Streptococcus 

sanguinis and Streptococcus oralis are considered to be the first colonizers in 

dental plaque (Li et al., 2004). Actinomyces are also found in early stages of 

dental plaque formation (Li et al., 2004). 

 

It has been suggested that plaque formation consisted of two processes 

that involved separate mechanisms (Busscher et al., 1986; Cowan et al., 1986). 

The first step is reversible by macroscopic surface properties, involving 

lower-affinity association between cell and pellicle. In this phase, the initial 

loose association of bacteria with surfaces results from attraction by van der 

Waal’s forces. As the organisms come closer to the surface, they are repelled 

by the negative electrostatic charges possessed by most natural surfaces and by 
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most bacteria. The second step involves irreversible attachment by 

microscopic and molecular interactions. In the phase of loose association, the 

bacteria are frequently located approximately 10 nm from the surface. It is 

believed that the adhesins on the filamentous appendages of the bacteria can 

bridge this space to form hydrogen, hydrophobic, or other types of bonds 

(Gibbons, 1984). Bacterial adhesins possess lectin-like or hydrophobic 

properties, and they are frequently present in filamentous surface appendages, 

such as pili or fimbriae (Gibbons, 1984). The adhesins bind to complementary 

components on host tissues. 

 

H.J. Busscher and A.H. Weerkamp proposed the hypothesis on the 

mechanism of bacterial adhesion to solid substrata (Fig. 2.2) (Busscher and 

Weerkamp, 1987). Specific interactions are defined as the interactions which 

occur over extremely short distances allowing specific ionic, hydrogen and 

chemical bonds. Non-specific interactions are defined as interactions due to 

overall surface properties as charge or surface free energy. 

 



 9

 

Fig. 1.2. Schematic representation of interactions involved in bacterial 
adhesion to solid substrata. Adapted with kind permission from John Wiley & 
Sons, Inc. (Busscher and Weerkamp, 1987). 

 

When separation distances are more than 50 nm, only attractive Van der 

Waals forces operate. When at separation distances between 10-20 nm, 

interactions occur due to electrostatic repulsion. In this state, adhesion is 

reversible, but adhesion changes gradually to less reversible or essentially 

irreversible. Due to the role of hydrophobicity and hydrophobic surface 

component, water films between the interacting surfaces are removed at the 

end, which enables specific short-range interactions to occur. When separation 

distances are less than 1.5 nm, at this extremely short distance the energy 

barrier has been overcome and specific interactions occur, leading to an 

irreversible bonding.  

 

(3) Co-adhesion of late colonizers to early colonizers.  



 10

This stage also involves specific adhesin-receptor interactions (often 

involving lectins) among bacteria leading to an increase in the diversity of the 

plaque. The unusual morphological structures, such as corn-cobs and rosettes 

are formed in this stage (Kolenbrander, 2000). This increased bacteria density 

on the tooth surface results in adhesive interactions between different types of 

bacteria, leading to the enhancing or inhibitory effects of bacteria upon each 

other (Houte, 1982). 

 

(4) Multiplication and biofilm formation. Bacterial cell division leads to 

confluent growth. The complex extracellular matrix made up of soluble and 

insoluble glucans, fructans and heteropolymers is formed. Eventually, a 

three-dimensional spatially and functionally organized biofilm is constructed. 

The biofilm structure is biologically active and retains nutrients, water and key 

enzymes (Allison, 2003). Studies suggested that the extracellular glucan 

enhances the accumulation of bacteria in dental plaque (Houte, 1982). 

 

(5) Detachment. Bacteria can respond to environmental changes and 

detach from surfaces. For example, some enzymes may hydrolyze the 

fimbria-associated adhesins that anchor cells to the surface (Cavedon and 

London, 1993). An endogenous enzyme, termed surface protein-releasing 

enzyme, was reported to be responsible for the detachment of Streptococcus 

mutans biofilm (Lee et al., 1996).  
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1.1.3.2 Dental plaque structure and components 

 

Dental plaque has an open architecture with channels traversing 

throughout the biofilm to the tooth surface (Auschill et al., 2001; Wood et al., 

2000). Bacterial vitality varies in the biofilm, with the most viable bacteria 

present in the central part of plaque, and lining the voids and channels 

(Auschill et al., 2001). The open architecture combined with the synthesis of a 

matrix comprised of a diverse range of exopolymers, creates a complex 

environment in dental plaque. Uneven patterns of penetration of radiolabelled 

fluoride, sucrose and phosphate in plaque have been reported (Robinson et al., 

1997). The gradients (nutrients, pH, oxygen) develop are critical to microbial 

growth; the gradients in pH are also responsible for enamel demineralization. 

Considerable heterogeneity in pH has been demonstrated over relatively short 

distances (Vroom et al., 1999). The heterogenic environment enables 

micro-organisms to co-exist in plaque biofilms. This may explain how 

organisms with opposing metabolic requirements grow at the same site (Marsh, 

2004).  

 

Dental plaque is a diverse community of micro-organisms, embedded in 

an extracellular matrix of polymers. Molecular studies using 16S rRNA 

amplification have demonstrated the diversity of the resident oral microflora, 
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both in health and disease (Marsh, 2004; 2005). It is estimated that less than 

50% of bacteria cells in dental plaque can be cultured in the laboratory (Wade, 

2002). There are still a lot of unculturable bacteria as the in vitro culture 

condition may not allow these bacteria grow. The composition of dental 

plaque also varies on different anatomical surfaces, such as fissures, 

approximal and smooth surfaces, gingival crevice (Bowden et al., 1975; 

Theilade et al., 1982).  

 

In dental plaque, 10–20% dry weight is made up of glucan while 

approximately 1-2% comprise of fructan. These proportions vary depending in 

part on the duration since the last food intake. Dental plaque also harbors 

approximately 40% dry weight protein (mostly derived from bacteria and 

saliva). Dental plaque in situ contains approximately 80% water. Variable 

amounts of lipid, Ca, P, Mg and F are also detected in dental plaque (Bowen and 

Koo, 2011).  

 

The matrix of polysaccharide appears to increase following exposure to 

sucrose. The primary sources of extracellular polysaccharide (EPS) in dental 

plaque are products from the interaction of glucosyltransferases (Gtfs) and 

fructosyltransferases (Ftfs) with sucrose and starch hydrolysates (Vacca-Smith 

et al., 1996). 

 



 13

1.1.4 Hypotheses explaining the role of plaque bacteria in caries etiology  

 

Once the dental plaque is established, the resident microflora is relatively 

stable over time (microbial homeostasis) (Marsh, 2004). The resident 

microflora plays an important role in the development of the physiology of the 

host, and reduces the chance of infection by acting as a barrier to colonization 

by exogenous species (‘colonization resistance’) (Marsh, 2004). However, 

homeostasis can break down if there is a substantial change to the habitat that 

disrupts this normal balance and drives selection of components of the 

microflora (Marsh et al., 2011). 

 

In 1890, Miller proposed the “chemico-parasitic” theory that oral 

microorganisms can break down dietary carbohydrates to acids which dissolve 

hydroxyapatite and release free calcium and phosphates (Miller, 1890). After 

that, three hypotheses have been proposed: Specific plaque hypothesis, 

non-specific plaque hypothesis and ecological hypothesis.  

 

1.1.4.1 Specific plaque hypothesis and non-specific plaque hypothesis 

 

The specific plaque hypothesis was proposed by Walter J. Loesche in 

1979 (Loesche, 1979). This hypothesis states that only a few of the many 

species found in dental plaque biofilm were actively involved in etiology of 
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caries. The evidence at the time strongly implicated mutans streptococci (MS) 

as the main etiological agent. Over time, as more studies identified that caries 

lesions developed in the absence of mutans streptococci, an alternative view 

on the role of plaque in caries lesion development was introduced. The 

nonspecific plaque hypothesis proposed that disease was the outcome of the 

overall activity of the total plaque microflora (as opposed to specific species).  

 

1.1.4.2 Ecological hypothesis 

 

Recently, an extended caries ecological hypothesis explains the relationship 

between the composition of dental plaque and caries process (Marsh, 1994). In 

this hypothesis, dental plaque is a dynamic microbial ecosystem in which 

non-mutans streptococci and Actinomyces are the key players for maintaining 

dynamic stability. The ecological hypothesis proposes that dental caries is the 

consequence of an imbalance in the resident microflora due to ecological 

pressure. Possible ecological pressures for caries include a sugar-rich diet, 

conditions of low pH, or low saliva flow (Marsh, 2006). In healthy situation, 

the potentially cariogenic bacteria may be found naturally in dental plaque, but 

present as a small proportion in the total microflora of dental plaque. With a 

conventional diet, non-MS and Actinomyces are clinically insignificant. These 

bacteria can produce acids from carbohydrate foods. However, the temporary 

decreased pH is easily returned to neutral level by homeostatic mechanisms in 
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the plaque (Marsh, 1999). This is a natural pH cycle, which occurs numerous 

times daily. The processes of de- and re-mineralization are in equilibrium. If 

the balance is broken down, for example the frequency of fermentable 

carbohydrate intake increases, the plaque spends more time below the critical 

pH (5.5) for enamel demineralization. The low pH environment favors the 

proliferation of non-MS and Actinomyces, leading to a microbial shift to a more 

acidogenic microflora. Once the acidic environment has been established, the 

proportion of aciduric bacteria such as MS and lactobacilli increase and act 

actively, sustaining an environment characterized by “net mineral loss”. Hence, 

high proportions of MS and/or other aciduric bacteria may be considered 

biomarkers of rapid caries development (Chhour et al., 2005; Nyvad and Kilian, 

1990). The ecological hypothesis highlights the critical role played by the 

changes of the oral environment in caries as shown in Fig. 1.3. 

 

 
Fig. 1.3. Schematic representation of the relationship between the microbial 
composition of dental plaque in health and disease. Cariogenic bacteria (blue) 
present in low numbers in plaque. Under some major ecological pressure the 
pathogens out compete non-cariogenic (grey) and achieve the levels needed 
for disease to occur. Possible ecological pressures for caries include a 
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sugar-rich diet, conditions of low pH, or low saliva flow. Adapted with kind 
permission from BioMed Central (open access) (Marsh, 2006). 

 

1.2  Mutans streptococci and Streptococcus mutans 

 

1.2.1 Mutans streptococci (MS) 

 

Mutans streptococci (MS) refer to mutans group of streptococci. Mutans 

group includes Streptococcus mutans, Streptococcus rattus, Streptococcus 

cricetus, Streptococcus sobrinus, Streptococcus downei and Streptococcus 

macacae (Kawamura et al., 1995). A phylogenetic tree for 34 species of the 

genus Streptococcus is shown in Fig. 1.4.  

 

 

Fig. 1.4. Phylogenetic relationships among 34 Streptococcus species. 
Distances were calculated by the neighbor-joining (NJ) method. S. 
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pleomorphus was located far from other species, so its distance is indicated 
with an ellipsis; its true distance from the junction was 0.16944. Adapted with 
kind permission from Society for General Microbiology (Kawamura et al., 
1995). 

 

Mutans streptococci (MS) have been identified as the major pathogens 

for dental caries due to their strong acidogenic and aciduric potentials 

(Takahashi and Nyvad, 2011). They are frequently isolated from caries lesions, 

and are able to produce intra- and extracellular polysaccharides that facilitate 

microbial adherence on teeth (Hamada and Slade, 1980). The central role of 

MS in the initial stage of dental enamel caries has been studied, revealing a 

strong positive statistical association of mutans streptococci with inception or 

incidence of carious lesions (Tanzer et al., 2001).  A systematic review in 

2006 summarized that presence of mutans streptococci, both in plaque or 

saliva of young caries-free children, was associated with a considerable 

increase in caries risk (Thenisch et al., 2006). Another systematic review in 

2010 also concluded that mutans streptococci levels are a strong risk indicator 

for early childhood caries (ECC) (Parisotto et al., 2010).  

 

However, MS are neither a unique causative agent for white spot lesions, 

nor a main determinant of the acidogenicity of plaque. It was found that 

non-MS were dominant in the dental plaque at both of the healthy sites and 

white spot lesions, while MS were present at low and similar levels in plaque 

of healthy and white spot sites. However, the acidogenicity of plaque was 
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significantly greater at white spot lesions than at clinically healthy sites 

(Sansone et al., 1993). It was suggested that acidogenic and aciduric bacteria 

other than MS, including “low-pH’ non-MS and Actinomyces were responsible 

for the initiation of caries (Sansone et al., 1993; van Houte, 1994; van Houte et 

al., 1996). In the ecological hypothesis, non-MS and Actinomyces are the key 

players for maintaining dynamic stability. 

 

1.2.2 Prevalence and taxonomy of Streptococcus mutans 

 

Streptococcus mutans was first described by J Kilian Clarke (Clarke, 

1924). In 1924 Clarke isolated the organisms from human carious lesions and 

named them S. mutans, as they were more oval than round on Gram stain and 

thus appeared to be a mutant form of a Streptococcus (Clarke, 1924). Maclean 

(1927) confirmed Clarke’s observation, and Onisi and Nucolls (1958) also 

reported micro-organisms from the deeper part of the lesion which resembled 

S. mutans (Edwardsson, 1968). In the 1960s, different Streptococcus species 

were isolated from carious lesion (Carlsson, 1968; Edwardsson, 1968; 

Guggenheim, 1968) and caused a transmissible infection in rodent models 

(Fitzgerald and Keyes, 1960; Keyes, 1968).  

     

S. mutans is a member of MS group which also includes S. rattus, S. 

cricetus, S. sobrinus, S. downei, S. macacae. In 1970, 70 mutans streptococci 
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were characterized into five serotypes (a-e) (Bratthall, 1970). After that, three 

serotypes (f, g, h) were identified. In 2004, some non-c/e/f S. mutans strains 

were detected and named as a novel serotype k. Serotype k stains can generate 

antisera which are reactive with the antigens extracted from serotype c/e/f 

(Nakano et al., 2004). Serotype k was recently designated as the ninth serotype 

of mutans streptococci. S. mutans (serotype c, e and f) was detected in human 

(Beighton et al., 1981; Perch et al., 1974). 

 

1.2.3 Virulence factors of S. mutans 

 

Among the acidogenic and aciduric species, S. mutans is commonly 

found in the human oral cavity and significantly contribute to dental caries 

(Hudson and Curtiss, 1990). It is a strong acid producer which creates an 

acidic environment, thus increasing the risk for caries. It can also adhere to 

enamel salivary pellicle and to other plaque bacteria. S. mutans is able to form 

extracellular polysaccharides (EPS) and intracellular polysaccharides (IPS) in 

the presence of sucrose, which is an important factor for S. mutans biofilm 

formation (Forssten et al., 2010). 

 

1.2.3.1 Adherence 

 

The adhesion of S. mutans in dental plaque is achieved via two ways: 
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sucrose-independent and sucrose-dependent adhesion. The attachment of S. 

mutans to tooth surface may be initiated via sucrose-independent adhesion to 

salivary components within the acquired enamel pellicle, while the 

colonization establishment may be mediated primarily via sucrose-dependent 

adhesion (Banas, 2004).  

 

(1) Sucrose-independent adhesion 

 

Sucrose-independent adhesion of S. mutans is thought to be profoundly 

associated with the cell surface protein antigen I/II (PAc, also known as 

adhesive P1, encoded by spaP) binding to the salivary glycoproteins (Koga et 

al., 1990), which is required for the initial attachment of S. mutans to the 

saliva-coated tooth surface. The interaction of PAc with fluid phase salivary 

agglutinin mediates aggregation of S. mutans, whereas adsorption of salivary 

agglutinin to solid surfaces provides a site for initial adhesion of the organism 

(Ahn et al., 2008).  PAc is composed of several domains, including an 

N-terminal signal sequence, an alanine-rich repeat region (A-region), a 

proline-rich repeat region (P-region), and an anchor region. A-region has a 

strong relationship with adhesion to tooth surfaces, while the P-region has a 

high affinity for PAc (Matsumoto-Nakano et al., 2008). 

 

LytR is a homologue of a regulator of autolysin activity in Bacillus 
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subtilis (Lazarevic et al., 1992). It was demonstrated that LytR played an 

important role in sucrose-independent attachment to polystyrene surfaces in S. 

mutans (Wen and Burne, 2002; Yoshida and Kuramitsu, 2002).  

 

Another surface-associated protein, wall-associated protein A (WapA), is 

a well-studied human vaccine candidate (Russell et al., 1995; Russell and 

Johnson, 1987); however, the function of this protein remains controversial. 

Douglas & Russell reported that antibodies to this antigen do not interfere with 

sucrose induced aggregation (Douglas and Russell, 1982). Harrington and 

Russell also found that the wapA mutant S. mutans had no effect on 

sucrose-dependent adherence to surface (Harrington and Russell, 1993). 

However, Qian and Dao reported that the wapA mutant S. mutans strain GS-5 

resulted in a significant decrease in sucrose-dependent adherence to surfaces 

(Qian and Dao, 1993). Zhu et al. suggested that WapA was involved in 

sucrose-independent cell–cell aggregation and biofilm formation (Zhu et al., 

2006). 

 

(2) Sucrose-dependent adhesion 

 

Compared with sucrose-independent adhesion, the mechanism of 

sucrose-dependent biofilm formation is well understood. S. mutans synthesizes 

glucan from sucrose, which is one of the most important virulence of S. 
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mutans (Hamada and Slade, 1979). Glucan formation allows the bacteria to 

firmly attach to the tooth surface (Kuramitsu, 1993; Yamashita et al., 1993) 

and form a biofilm. The ability of glucan to facilitate adhesion of S. mutans 

may be due to hydrogen bonding of the glucan polymers to both the salivary 

pellicle and the bacteria (Rolla, 1998). Moreover, the diffusion of acid 

produced by the acidogenic bacteria from fermentable carbohydrate in the 

dental plaque is retarded by the gelatinous glucan, as an insoluble matrix for 

plaque. It eventually leads to enamel demineralization. The central role of 

glucans in sucrose-dependent adhesion has been confirmed in the research on 

dental plaque development and the etiology of dental caries (Loesche, 1986; 

Yamashita et al., 1993). 

 

Glucan synthesis is mediated via the enzymic activity of three 

glucosyltransferases (GtfB, GtfC and GtfD). GtfB synthesizes mainly 

water-insoluble glucans (85%) with alpha-1,3-linkages (also called mutan); 

GtfC produces a mixture of soluble (with mostly alpha-1,6-linkages) and 

insoluble glucans; GtfD forms water-soluble glucans (70%) with 

alpha-1,6-glycosidic linkages that resembles dextran (Bowen and Koo, 2011). 

Both types of polymers contribute to sucrose-dependent colonization and 

caries, but the water-insoluble glucan may be more important for smooth 

surface caries (Banas, 2004). 
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Gtf binds to pellicles. Active Gtf was detected on HA disks within 1 minute 

of placing them in mouth. Sucrose rinsing enhances the amount of Gtf detected, 

possible due to the adherence of Gtf to glucan formed in situ (Scheie et al., 1987; 

Vacca Smith and Bowen, 2000). Gtf adsorbs to saliva-coated HA (sHA) disks 

(Steinberg, 1996; Venkitaraman et al., 1995), but poorly binds to uncoated HA 

and loses much of its activity (Schilling and Bowen, 1988; Vacca-Smith and 

Bowen, 1998).  Although all the three Gtfs can bind to sHA, their affinity 

differ greatly (Vacca-Smith and Bowen, 1998). GtfC has the greatest affinity 

for sHA, while GtfD displays lowest affinity.  

 

Gtfs also have the ability to bind to many oral bacteria, including those that 

do not synthesize Gtfs (Hamada et al., 1978; McCabe and Donkersloot, 1977; 

Vacca-Smith and Bowen, 1998). Furthermore, the enzyme retains its activity 

when adsorbed to bacteria, thereby converting non-Gtf producers into glucan 

formers (Vacca-Smith and Bowen, 1998).  

 

The simultaneous synthesis of glucans by surface-adsorbed Gtfs is essential 

for the establishment of a biofilm matrix. GtfCs secreted by S. mutans are 

incorporated into pellicle. GtfBs are adsorbed on bacterial surfaces of both S. 

mutans and other microorganisms that do not produce Gtfs (e.g. Actinomyces 

spp.). Surface-adsorbed GtfB and GtfC utilize sucrose to synthesize insoluble 

and soluble glucans. The soluble glucans formed by GtfD serve as primers for 
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GtfB enhancing the overall synthesis of exopolysaccharides. The glucan 

molecules provide binding sites on surfaces for S. mutans (and other 

microorganisms) mediating bacterial clustering and adherence to the tooth 

enamel. Furthermore, other bacteria adsorbed Gtf also become glucan 

producers, binding to tooth and microbial surfaces by the same mechanisms. 

This model could explain the rapid formation and accumulation of highly 

cohesive-adherent plaque in the presence of sucrose, as shown in Fig. 1.5 

(Bowen and Koo, 2011).  

 

 

 
Fig. 1.5. Model of Gtf-glucan-mediated bacterial adherence. Adapted from 
Bowen and Koo, 2011 (open access) (Bowen and Koo, 2011). 

 

Another group of proteins called glucan-binding proteins (i.e. GbpA, -B, 

-C and -D) also play important roles in subsequent cell–cell aggregation and 

biofilm development (Douglas and Russell, 1982; Shah and Russell, 2004; 
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Smith and Taubman, 1996). 

 

Besides the proteins and enzymes that contribute to sucrose-dependent 

adhesion, other proteins are also involved in the metabolism of sucrose, 

glucans or carbohydrates, and these are considered as the potential virulence 

factors, such as fructosyltransferase (Ftf), fructanase (FruA), extracellular 

dextranase (DexA), and proteins responsible for intracellular polysaccharide 

accumulation (Dlt1-4) (Banas, 2004). Ftf catalyzes the synthesis of fructans 

and perhaps work as an energy reserve. FruA may break down fructans for 

energy use. DexA perhaps contributes to glucan synthesis or the breakdown of 

glucans. Dlt1-4 accumulates the intracellular polysaccharide and works as 

energy reserve (Banas, 2004).  

 

1.2.3.2 Acidogenicity 

 

S. mutans can produce lactate, formate, acetate, and ethanol via a 

complete glycolytic pathway. The amounts of these fermentation products 

depend on the growth conditions, but lactate is the major product when 

glucose is abundant. Deficient lactate dehydrogenase (LDH) strain showed 

reduced cariogenicity and the absence of LDH is lethal for S. mutans (Banas, 

2004). 
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It is generally thought that the acidogenicity of S. mutans contributes to 

ecological changes in the dental plaque, which favors more acidogenic and 

acid-tolerate species colonization. This cariogenic flora will reduce plaque pH 

to lower levels, and the recovery to a neutral pH will be prolonged (Banas, 

2004). Sustained plaque pH below the critical pH 5.5 is crucial for the 

demineralization of enamel and the development of dental caries (Barron et al., 

2003). The critical pH refers to the pH value at which a solution is just 

saturated with respect to the mineral. If the pH of the solution is less than the 

critical pH, the solution is unsaturated. Hence, the mineral will tend to dissolve 

until the solution becomes saturated (Dawes, 2003). 

 

Stephan Curve was first described in 1944 by RM Stephan (R.M., 1944). 

He observed a quantitative difference in the intensity and duration of the 

acidity produced by carbohydrates after sucrose challenge on the teeth of both 

caries-free and caries-active individuals. The plotted dental plaque pH was 

named as Stephan curve which displays the pH change after 10% glucose rinse 

(Fig. 1.6). Before the application of glucose, the pH values of most areas were 

around neutrality. After glucose rinse, the pH value dramatically drops within 

the first few minutes. This drop in pH was greatest and lasted for the longest 

time in the caries-active cases. The pH gradually recovered to the neutrality 

after that.  
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Fig. 1.6. Stephan curve of dental plaque before and after sucrose rinse. 

 

Three features highlighting the acidogenicity of dental plaque are the 

lowest pH reached, recovery time, and area under the curve (AUC) which 

represents the degree of demineralization occurred (Preston and Edgar, 2005). 

Lowest pH refers to the minimum pH attained after sugar rinsing; recovery 

time refers to the time below the critical pH; and AUC refers to the curve area 

below the critical pH of 5.5. The characteristics of Stephan curve can be used 

to assess the cariogenicity of different food or drinks and the acidogenic 

properties of dental plaque (Imfeld T, 1980; Preston and Edgar, 2005). In 1985, 

the assessment methods for the relationship between foods and dental caries 

were discussed among the cariologists. Plaque pH modeling has been 

proposed (Preston and Edgar, 2005). Furthermore, it was suggested that the 

frequency of acidogenic episodes may be more important in caries progression, 

than the acidogenicity of plaque that develops during sugar exposure (Dong et 



 28

al., 1999).  

 

The acidogenicity of biofilm is associated with the age of biofilm. Imfeld 

T investigated the intraplaque acid formation in vivo (Imfeld T, 1980). They 

reported that the rate and amount of acid formation increased with the age of 

the biofilm both in adolescent or old adult by comparing 2, 3, 4, 5, and 

6-day-old biofilms. 

 

1.2.3.3 Acid tolerance 

 

Another capacity of S. mutans besides acidogenicity is aciduricity, also 

named acid tolerance. S. mutans can grow even at the low pH 4.4. An 

F1F0-ATPase proton pump primarily mediates the acid tolerance of S. mutans, 

with adaptation of changes in gene and protein expression, which is called acid 

tolerance response (ATR) (Banas, 2004). The ATR is induced under acidic 

conditions and active between pH 5-5.5. Studies showed that more than sixty 

proteins were involved in this response. Many of them appeared within the 

first 30 minutes after acid shock, whereas full induction occurred after 90-120 

minutes (Lemme et al., 2010).  

 

The low pH would induce a higher survival rate of S. mutans cells in 

biofilm. McNeill K et al. found that S. mutans biofilms were highly resistant 
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to acid killing and the percentage of live cells (averaged 43.4% from 1d to 7d) 

was much higher than the planktonic and dispersed cells in the biofilm 

(0.0002-0.2% survivors) (McNeill and Hamilton, 2003). 

 

The synthesis of water-insoluble glucan and the formation of biofilm may 

aid the acid-tolerance of S. mutans. S. mutans grew better in biofilm than in 

planktonic culture under acid stress (McNeill and Hamilton, 2003). The speed 

of acid diffusion through S. mutans cells concentrate was related to the 

quantity of water-insoluble glucan produced by S. mutans (Hata and Mayanagi, 

2003). The diffusion of hydronium ions was fastest in wild type S. mutans 

grown in sucrose, compared with wild type bacteria grown in glucose and 

mutants deficient in gtfB, gtfC, gtfD and fructosyltransferase. Glucan is able to 

increase the porosity of the cell masses causing a quick drop in pH, reaching 

harmful levels, and a delayed recovery of pH (Van Houte et al., 1989). 

 

In conclusion, the major virulence factors of S. mutans are the ability to 

utilize sucrose to promote adhesion and accumulation, the acidogenicity, and 

acid tolerance.  

 

1.3 Lactobacillus 

 

Genus Lactobacillus plays an important role in human and animal 
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gastrointestinal tract as well as in the production and spoilage of many foods, 

feeds and beverages. Presently, there are more than 80 species described 

(Badet and Thebaud, 2008). Some of them have been found in the oral cavity. 

 

1.3.1 Lactobacillus in saliva 

 

Lactobacilli are absent in the oral cavity of newborns. They appear during 

the first year of life. It was observed that this species was present in 50% of 

newborns during their first year (McCarthy et al., 1965). The rate of salivary 

lactobacilli varied in children among different studies from 40% to 100% 

(Carlsson et al., 1975; Klock and Krasse, 1977; Kohler et al., 1984). In older 

subjects, the lactobacilli rate tends to increase (Fure, 2003; Percival et al., 

1991). Most of the studies were only quantitative.  

 

Many studies have been carried out to investigate the link between 

salivary lactobacilli and caries. Some have shown a strong correlation between 

lactobacilli counts and root caries (Beighton et al., 1991; Emilson et al., 1988; 

Ravald et al., 1986; Van Houte et al., 1990). Studies of Sullivan et al. and 

Motisuki et al. suggested that the presence of streptococci and lactobacilli in 

dental plaque was not a better indicator of carious activity than their counts in 

saliva (Motisuki et al., 2005; Sullivan et al., 1996). A low level of salivary 

Lactobacillus counts seems to indicate a low carious activity (Bowden, 1997; 
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Kingman et al., 1988; Schroder and Edwardsson, 1987). The identified 

lactobacilli species in saliva is listed in Table 1.1. 

 

Table 1.1: Species of lactobacilli identified in saliva  

Lactobacilli identified References 
L. rhamnosus Tennpaisan and Dahlen (Teanpaisan and Dahlen, 

2006) 
Koll-Klais et al. (Koll-Klais et al., 2004) 
Nacy (Nancy and Dorignac, 1992) 

L. casei Tennpaisan and Dahlen (Teanpaisan and Dahlen, 
2006) 
Smith et al. (Smith et al., 2001) 
Botha (Botha, 1993) 
Nacy (Nancy and Dorignac, 1992) 

L. plantarum Tennpaisan and Dahlen (Teanpaisan and Dahlen, 
2006) 
Botha (Botha, 1993) 
Koll-Klais et al. (Koll-Klais et al., 2004) 
Nacy (Nancy and Dorignac, 1992) 

L. acidophilus Tennpaisan and Dahlen (Teanpaisan and Dahlen, 
2006) 
Smith et al. (Smith et al., 2001) 
Botha (Botha, 1993) 
Koll-Klais et al. (Koll-Klais et al., 2004) 
Nacy (Nancy and Dorignac, 1992) 

L. fermentum Tennpaisan and Dahlen (Teanpaisan and Dahlen, 
2006) 
Smith et al. (Smith et al., 2001) 
Koll-Klais et al. (Koll-Klais et al., 2004) 
Nacy (Nancy and Dorignac, 1992) 

L. salivarius Tennpaisan and Dahlen (Teanpaisan and Dahlen, 
2006) 
Smith et al. (Smith et al., 2001) 
Koll-Klais et al. (Koll-Klais et al., 2004) 
Botha (Botha, 1993) 
Nacy (Nancy and Dorignac, 1992) 

L. brevis Smith et al. (Smith et al., 2001) 
Botha (Botha, 1993) 

L. delbrueckii Smith et al. (Smith et al., 2001) 
Koll-Klais et al. (Koll-Klais et al., 2004) 
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Nacy (Nancy and Dorignac, 1992) 
L. gasseri Botha (Botha, 1993) 

Koll-Klais et al. (Koll-Klais et al., 2004) 
L. paracasei Koll-Klais et al. (Koll-Klais et al., 2004) 

L. oris Koll-Klais et al. (Koll-Klais et al., 2004) 
L. crispatus Koll-Klais et al. (Koll-Klais et al., 2004) 

 

1.3.2 Lactobacillus in dental plaque 

 

Lactobacilli have been reported less detectable in dental plaque than in 

saliva (Hintao et al., 2007; Motisuki et al., 2005; Nancy and Dorignac, 1992). 

Table 1.2 shows the species of lactobacilli identified in dental plaque.  

 

Table 1.2: Species of lactobacilli identified in dental plaque 

Lactobacilli identified References 
L. rhamnosus Carlsson et al. (Carlsson et al., 1975) 

Nancy et al. (Nancy and Dorignac, 1992) 
Ahumada et al. (M. C. Ahumada, 1999) 
Botha et al. (Botha et al., 1998) 

L. casei Carlsson et al. (Carlsson et al., 1975) 
Meiers and Schachtele (Meiers and Schachtele, 
1984) 
Milnes and Bowden (Milnes and Bowden, 1985) 
Nancy et al. (Nancy and Dorignac, 1992) 
Ahumada et al. (M. C. Ahumada, 1999) 
Botha et al. (Botha et al., 1998) 

L. plantarum Meiers and Schachtele (Meiers and Schachtele, 
1984) 
Milnes and Bowden (Milnes and Bowden, 1985) 
Nancy et al. (Nancy and Dorignac, 1992) 
Ahumada et al. (M. C. Ahumada, 1999) 
Botha et al. (Botha et al., 1998) 

L. acidophilus Carlsson et al. (Carlsson et al., 1975) 
Meiers and Schachtele (Meiers and Schachtele, 
1984) 
Milnes and Bowden (Milnes and Bowden, 1985) 
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Nancy et al. (Nancy and Dorignac, 1992) 
Botha et al. (Botha et al., 1998) 

L. fermentum Carlsson et al. (Carlsson et al., 1975) 
Milnes and Bowden (Milnes and Bowden, 1985) 
Nancy et al. (Nancy and Dorignac, 1992) 
Ahumada et al. (M. C. Ahumada, 1999) 
Botha et al. (Botha et al., 1998) 

L. salivarius Milnes and Bowden (Milnes and Bowden, 1985) 
Nancy et al. (Nancy and Dorignac, 1992) 
Botha et al. (Botha et al., 1998) 
Schüpbach et al. (Schupbach et al., 1996) 

L. paracasei Ahumada et al. (M. C. Ahumada, 1999) 
L. brevis Milnes and Bowden (Milnes and Bowden, 1985) 

Botha et al. (Botha et al., 1998) 
L. confusus Botha et al. (Botha et al., 1998) 

L. delbrueckii Nacy (Nancy and Dorignac, 1992) 
L. gasseri Botha et al. (Botha et al., 1998) 

 

Beighton et al. found in 3-4 years old children, lactobacilli were isolated 

from dental plaque in 54% of children with caries and in 7% of children 

without caries (Beighton et al., 2004). Matee et al. compared the number of 

lactobacilli isolated from dental plaque of children with rampant caries and 

without caries. They found that the streptococci and lactobacilli counts were 

100-fold higher in caries group in comparison to the non-caries group (Matee 

et al., 1992).  

 

1.3.3 Lactobacillus and caries 

 

Lactobacilli are capable of producing acids, growing and surviving in 

acidic environment. These bacteria have a fermentative metabolism via two 

ways. Some species use homolactic fermentation and produce only lactic acid; 
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some species use heterolactic fermentation and produce lactic acid, CO2, 

acetic acid or ethanol. Both result in an acidification of the environment 

(Badet and Thebaud, 2008).  

 

The association between lactobacilli and caries was reported by Goadby 

in 1899, according to Owen (Owen, 1949). However, it was not until the late 

1950s that experimental evidence clearly established the fundamental role of 

these bacteria in dental caries and in pulp and periapical disease (Hemmens et 

al., 1946). Nowadays, studies demonstrated that a wide range of Lactobacillus 

species were isolated from carious lesions, especially in root caries and deep 

dentinal caries (Ayna et al., 2003; Beighton and Lynch, 1995; Brown et al., 

1986; Callaway et al., 2013; Preza et al., 2008). However, there is no evidence 

for a uniquely oral species of Lactobacillus that has evolved to exploit the oral 

cavity as a habitat, in the way that some streptococci have done. They are now 

considered secondary invaders rather than initiators of the caries process 

(Tanzer et al., 2001). 

 

Nevertheless, lactobacilli are prevalent in fermented foods, especially 

probiotic foods which are beneficial for intestinal health. Hence, our oral 

cavity is constantly exposed to Lactobacillus species. Many in vitro studies 

have demonstrated that probiotic lactobacilli had inhibitory effects on the 

growth of mutans streptococci (Hasslof et al., 2010; Ishihara et al., 1985; 
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Meurman et al., 1995; Silva et al., 1987; Simark-Mattsson et al., 2007; 

Sookkhee et al., 2001). Clinical trials also suggested the salivary mutans 

streptococci counts decreased after the consumption of probiotic products 

(Twetman and Keller, 2012). Some currently successful probiotic 

Lactobacillus strains are originally isolated from human body (Saarela et al., 

2000). It was suggested that a probiotic strain could function better in a similar 

environment to where it was originally isolated from, e.g. human GI-tract 

(Saarela et al., 2000). Furthermore, some studies have been isolating probiotic 

Lactobacillus strain from oral cavity (Maldonado et al., 2012; Yang et al., 

2013). 

 

Hence, the different roles that different oral Lactobacillus species play in 

oral cavity need to be further investigated.  

 

1.4 Preventive therapies for caries 

 

1.4.1 Fluoride 

 

In the last five decades, the most widely used agent for dental caries 

prevention is fluoride. Since the early findings of the protective effects of 

fluoride present in drinking water upon caries incidence and prevalence over 70 

years ago, intensive research has been conducted to determine the benefits, 
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safety, as well as the delivery ways (Pessan et al., 2011). Now fluoride is 

recognized as the main factor responsible for the decreasing prevalence in 

caries, which is observed worldwide (Bratthall et al., 1996). The mechanisms 

include inhibition of demineralization, enhancement of remineralization, and 

antimicrobial effect. However, high concentration of fluoride is toxic and 

causes fluorosis (Ismail and Hasson, 2008). Fluorosis is characterized by 

dental mottling and skeletal manifestations such as crippling deformities, 

osteoporosis, and osteosclerosis (Barbier et al., 2010). The presence of 

fluoride-resistant strain of S. mutans may also limit the long term clinical 

effect of fluoride (Hoelscher and Hudson, 1996).  

 

1.4.2 Non-fluoride therapies 

 

Chlorhexidine 

It is generally accepted that chlorhexidine (CHX) digluconate is an 

antiplaque and anti-gingivitis agent (Matthijs and Adriaens, 2002). 

Chlorhexidine inhibits the growth of mutans streptococci which are associated 

with the development of caries lesions (Marsh, 1993; Twetman, 2004), but its 

use as anti-caries agent remains controversial in clinical studies (Twetman, 

2004; Zhang et al., 2006). The main clinical problem with the use of 

chlorhexidine is the difficulty of suppressing S. mutans for a long time 

(Autio-Gold, 2008). Chlorhexidine also has shown side effects, such as a 
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yellow-brown staining of the teeth with a mouthrinse, and an altered taste 

sensation (Fardal and Turnbull, 1986; Flotra, 1973). 

 

Xylitol 

Xylitol is a five-carbon sugar alcohol (polyol), having the same 

sweetening property as sucrose (Mickenautsch and Yengopal, 2012).  Xylitol 

is believed to have an ‘active’ anti-cariogenic property, as it can resist 

fermentation by bacteria into acids, and it can also inhibit growth, metabolism, 

as well as polysaccharide production of mutans streptococci. A systemic 

review concluded that the addition of xylitol to existing fluoride regimes was 

beneficial in the prevention of caries. However, the evidence contains a high 

risk of bias and may be limited by confounder effects (Mickenautsch and 

Yengopal, 2012). In addition, xylitol-based caries prevention has been claimed 

to be expensive (Soderling, 2009). 

 

Ozone Technology 

The antimicrobial ability of ozone gas (O3) is well known (Burleson et al., 

1975; Dyas et al., 1983). However, the evidence to support the use of ozone 

gas to prevent caries and to enhance remineralization of enamel is limited. A 

systematic review concluded that although laboratory studies have shown 

antimicrobial effects of ozone application, a strong level of efficacy has not 

been achieved in in vivo studies (Rickard et al., 2004). 
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Laser 

Laboratory studies have shown that laser can be used to modify the 

chemical composition of tooth enamel to render it less soluble and more 

resistant to demineralization (Hsu et al., 2008; Vlacic et al., 2007; Walsh, 1997a; 

b). However, there are no reports as yet of in vivo studies testing the efficacy of 

these lasers in preventing caries or reducing caries progression. 

 

Caries Vaccine 

Salivary IgA antibodies have shown inhibitory effects against MS, by 

interfering with sucrose-independent and sucrose-dependent attachment, and 

accumulation on tooth surface, as well as possible inhibition on their metabolic 

activities (Russell et al., 1999). Strategies of mucosal vaccination have been 

developed to induce high levels of salivary antibodies that can achieve 

anti-caries effect, such as polyclonal and monoclonal antibodies to AgI/II 

(PAc), GTFs, glucan-binding proteins, GbpA, GbpB and GbpC, and 

Serotype-specific polysaccharide antigens (Koga et al., 2002). Studies have 

demonstrated the feasibility of inducing protective immunity against mutans 

streptococci and the subsequent development of dental caries in many animal 

models, and furthermore, decreased MS colonization in oral cavity was also 

achieved in few human studies (Koga et al., 2002; Russell et al., 1999; Russell 

et al., 2004). The main potential adverse effect of immunization is the possible 
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cross-reaction of the antibodies with normal tissues (Koga et al., 2002).  

 

Replacement Therapy 

Replacement therapy involves the use of a harmless effector strain which 

can colonize in the host’s microflora to outcompete the growth of a particular 

pathogen (Anusavice, 2005). S. mutans strain BCS3-L1 is a genetically 

modified strain designed for use in replacement therapy to prevent dental 

caries. It has reduced acidogenic potential due to its low LDH activity 

(Hillman et al., 2000). However, there are questions which require further 

research considerations with regards to the effector strain (Anusavice, 2005). 

These issues include its genetic stability, any potential significant selective 

advantage in colonization in vivo, and possibility to control its spread within 

the population. Further clinical trials need to be carried out to determine the 

potential benefits and side effects of this therapy. 

 

Probiotics 

Probiotic bacteria are used to treat and prevent a broad range of human 

disease or conditions, like diarrhea, allergic reactions and gastroenteritis. 

Probiotics have been shown to be potentially useful in childhood respiratory 

infection, dental caries, against nasal pathogens and arthritis (Goldin and 

Gorbach, 2008). Their use in caries prevention relates to the attempts at the 

replacement or displacement of cariogenic bacteria in the oral cavity. 
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1.5 Probiotics: a promising preventive therapy 

 

1.5.1 What are probiotics? 

 

Probiotics have a long history. The earliest records indicate that humans 

took ‘soured milks’ as long as 2000 years ago. However, the real nutritional 

values were first researched seriously by Metchnikoff. In 1907, Ilya 

Mechnikow, a Nobel laureate, found that lactic acid bacteria were responsible 

for the long life spans of Bulgarian peasants, who consumed large quantities of 

yogurt containing lactic acid bacteria (Twetman and Stecksen-Blicks, 2008). 

The beneficial effects of probiotics have been of interest since then.  

 

The antibacterial activity associated with cultures of lactobacilli has 

already been reported for Lactobacillus acidophilus, Lactobacillus lactis, and 

Lactobacillus helveticus more than 50 years ago (Vincent et al., 1959). The 

antagonism between intestinal lactobacilli and certain enteric bacteria 

responsible for post-irradiation infections in the rodents have been reported 

(Vincent et al., 1959). In in vitro experiments, definite inhibition of growth of 

Staphylococcus aureus and Pseudomonas aeruginosa was observed when 

these organisms were streaked on liver veal agar plates grown with lactobacilli 

isolated from rat intestine (Vincent et al., 1955). Vincent et al. extracted the 
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crude lactocidin which was active in the presence of serum, showing a broad 

antibacterial spectrum (Vincent et al., 1959). 

 

In 1965 Lilley and Stillwell first introduced the term probiotic. The word 

is derived from the Greek and means for life to describe substances secreted by 

one microorganism to stimulate the growth of another, as an antonym to the 

term antibiotic (Lilly and Stillwell, 1965). An expert panel commissioned by 

Food and Agriculture Organization of the United Nations (FAO) and the 

World Health Organization (WHO) defined probiotics as “live 

microorganisms which when administered in adequate amounts confer a health 

benefit on the host” (Reid et al., 2003). Hull identified the first probiotic 

species Lactobacillus acidophilus in 1984, and Later in 1991, Holcombh 

identified Bifidobacterium bifidum, as stated in Saraf’ review (Saraf et al., 

2010). The most important source of probiotics is the bacteria in yogurt and 

fermented milk products. The majority of probiotic bacteria belong to the 

genera Lactobacillus, Bifidobacterium, Propionibacterium and Streptococcus. 

It was stated by the FAO and WHO in 2001 that there is adequate scientific 

evidence to indicate that there is potential for probiotic foods to provide health 

benefits and that specific strains are safe for human use (FAO, 2001). The 

criteria for considering certain product should be: non toxic and non 

pathogenic preparation; beneficial effects; withstand gastrointestinal juice; 

good shelf life; replace and reinstate the intestinal microflora (Saraf et al., 
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2010). 

 

1.5.2 Effects of probiotic on human general health 

 

Diarrhea 

Numerous clinical trials have been done to demonstrate the effects of 

probiotics on diarrhea, with most of them being carried out in infants or 

children (Allen et al., 2010; Bernaola Aponte et al., 2010). Several systemic 

reviews have reached the same conclusion that a beneficial effect of probiotics 

was consistent across the different diarrhea outcomes (Allen et al., 2010; 

Gawronska et al., 2007; Szajewska and Mrukowicz, 2001; Van Niel et al., 

2002). A number of studies reported the ability of probiotics to reduce the 

frequently observed intestinal adverse effects and diarrhea associated with the 

clinical use of antibiotics (Hempel et al., 2012; Johnston et al., 2007; Johnston 

et al., 2011). However, a recent randomized clinical trial, with around 3000 

old patients recruited, identified that a multi-strain preparation of lactobacilli 

and bifidobacteria was not effective in prevention of antibiotic associated 

diarrhea or Clostridium difficile diarrhea (Allen et al., 2013). 

 

Allergic reactions 

Several studies have demonstrated the modification of allergic reactions 

with Lactobacillus strain GG (Isolauri et al., 2000; Kalliomaki et al., 2001; 
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Kalliomaki et al., 2003; Majamaa and Isolauri, 1997; Rautava et al., 2002). 

Another study reported that the infants with atopic eczema given probiotic 

supplemented formulas (Lactobacillus GG or Bifidobacterium animalis Bb12) 

also showed a significant improvement in the skin condition 2 months later 

(Isolauri et al., 2000). 

 

Other infections 

Some studies suggested that probiotics treatment could reduce 

Helicobacter pylori infections (Canducci et al., 2000; Felley et al., 2001). 

Probiotics also showed beneficial effect on gastro-intestinal infections (Biller 

et al., 1995; Gorbach et al., 1987; Reid and Burton, 2002), urogenital 

infections (Reid and Bruce, 2003), upper respiratory tract infections (Hao et al., 

2011), surgical infections (Gan et al., 2002; Rayes et al., 2002), inflammatory 

bowel disease (Brigidi et al., 2001; Venturi et al., 1999), as well as bacterial 

vaginosis in women (Reid and Bocking, 2003).  

 

Immune system 

Dietary consumption of Bifidobacterium lactis HN019 and L. rhamnosus 

HN001 in randomized, placebo-controlled human studies showed measurable 

enhancement of immune parameters in the elderly (Arunachalam et al., 2000; 

Sheih et al., 2001). Probiotic lactobacilli were also found to differentially 

stimulate interleukin-12 and tumour necrosis factor-α (TNF-α) production in 
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dendritic cell (Christensen et al., 2002). The increases in the proportion of total, 

helper (CD4+) and activated (CD25+) T lymphocytes and natural killer cells 

in blood were reported for the elderly volunteers (63 ± 84 years) who took a 

milk supplemented with B. lactis HNO 19 for 3 weeks (Gill et al., 2001). 

Long-term studies are needed to see if these changes translate into clinical 

benefit.  

 

Cancer 

In vitro studies with L. rhamnosus GG and bifidobacteria and an in vivo 

study with L. rhamnosus GG, LC-705 and a Propionibacterium species 

showed a decrease in availability of carcinogenic aflatoxin in the lumen 

(El-Nezami et al., 2000; Oatley et al., 2000). Definitive clinical conclusions 

require efficacy studies in humans. 

 

B. R. Goldin and S. L. Gorbach summarized the present and future 

clinical applications of probiotics in Table 1.1 (Goldin and Gorbach, 2008). 

 

Table 1.3 Present and future clinical applications of probiotics 

Applications with strong evidence 
  Gastroenteritis 

Acute 
Antibiotic associated 

Applications with substantial evidence of efficacy 
  Allergic reactions, specifically atopic dermatitis 
Applications that have shown promise 
  Childhood respiratory infection 
  Dental caries 
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  Nasal pathogens 
  Relapsing Clostridium dificile-induced gastroenteritis (prevention) 
  Inflammatory bowel disease 
Potential future applications 
  Rheumatoid arthritis 
  Irritable bowel syndrome 
  Cancer (prevention) 
  Ethanol-induced liver disease 
  Diabetes 
  Graft-versus-host disease 

Adapted with kind permission from Oxford University Press (Goldin and 
Gorbach, 2008). 

 

1.5.3 Effects of probiotic strains on oral health 

 

1.5.3.1 Inhibitory effects on growth of oral pathogenic bacteria 

 

The studies for the interaction between lactobacilli and oral bacteria 

started in 1980’s. K Ishihara et al. tested the inhibition effect of heated 

water-soluble extracts of Lactobacillus fermentum and Lactobacillus 

salivarius which were isolated from healthy humans feces on 16 strains of 

Streptococcus mutans (serotypes from a to g) (Ishihara et al., 1985). The 

extracts slowed down or even completely inhibited the growth of S. mutans 

with higher Lactobacillus extracts concentration. M Silva et al. also 

investigated the antimicrobial substance from a human Lactobacillus strain 

isolated from healthy person stool specimens (Silva et al., 1987). The findings 

showed that the strain GG was inhibitory against strains of E. coli, 
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Streptococcus, Pseudomonas, Salmonella, Bacteroides fragilis, Clostridium 

and Bifidobacterium.  

 

Meurman JH et al. demonstrated that Lactobacillus GG inhibitory 

substance extract suppressed the growth of Streptococcus sobrinus without 

interfering with the cellular ultrastructure (Meurman et al., 1995). Supernatant 

of lactic acid bacteria isolated from healthy oral cavities of Thai volunteers 

inhibited the growth of oral pathogenic bacteria, such as S. mutans, Staph. 

aureus, P. gingivalis, C. albicans (Sookkhee et al., 2001). A recent study 

showed that some lactobacilli strains from human saliva had inhibitory effects 

on the growth of S. mutans and S. sobrinus, including clinical isolates and 

reference strains (Simark-Mattsson et al., 2007). Lactobacilli isolated from 

saliva and plaque from children and adolescents with or without caries lesions 

were reported significantly inhibiting the growth of both test strains of mutans 

streptococci and the subject’s autologous mutans streptococci in vitro 

(Simark-Mattsson et al., 2007). This effect was more pronounced in caries-free 

subjects. Eight strains of commercial probiotics lactobacilli from fruit drinks, 

yogurt, chewing gum or fermented milk also demonstrated the suppression on 

oral mutans streptococci and candida (Hasslof et al., 2010).  

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Meurman%20JH%22%5BAuthor%5D�
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1.5.3.2 Clinical trials of probiotics and dental caries 

 

Clinical studies have been carried out to determine whether probiotics are 

able to prevent or decrease caries. More than twenty studies describing human 

interventions by probiotic bacteria with caries-related microbiological 

endpoints in saliva were reported. All utilized parallel arms with intervention 

and a placebo/control, or a crossover design. A variety of vehicles and modes 

of delivery for administration of lactobacilli and/or bifidobacteria was used, 

including milk, straw, tablet, chewing gum, yogurt, ice cream, powder, 

lozenges and drops. The probiotic treatment duration varied from 10 days to 

nearly 2 years. The participants include different age groups, involving 1 

month babies, 1-6 years preschool and 6-12 years school old children, 12-17 

years old adolescents, 18-35 years old adults and 58-84 years old people. The 

clinical trials focus on probiotic strains L. rhamnosus GG, L. reuteri, L. 

rhamnosus LB21, L. paracasei and Bifidobacterium. Statistically significant 

reductions of mutans streptococci in saliva were reported in most of these 

studies. Some studies also reported the reduction of yeast in oral cavity. 

However, unchanged mutans streptococci and increased or unchanged salivary 

counts of lactobacilli were also reported in a few studies. Table 1.4 

summarizes the controlled clinical studies to date in the oral cavity with 

lactobacilli-derived probiotics. 
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Table 1.4 Summary of clinical studies in the oral cavity with probiotics 

First author 
Sample size, 
age, design 

Vehicle, 
time 

Strains Oral outcome 

Nase(Nase et 
al., 2001) 

594, 1-6, 
RCT 

Milk, 
7 months 

L. rhamnosus 
GG 

Salivary MS 
decreased  

Ahola(Ahola et 
al., 2002) 

74, 18-35, 
RCT 

Cheese, 
3 weeks 

L. rhamnosus 
GG 

Salivary MS 
and yeast 
decreased  

Nikawa(Nikaw
a et al., 2004) 

40, 20, 
RCT 

Yoghurt, 
2 weeks 

L. reuteri  
Salivary MS 

decreased 

Montalto(Mont
alto et al., 

2004) 

35, 24-33,  
RCT 

Liquid 
and 

Capsules, 
45 days 

L. sporogens, L. 
bifidum, L. 
bulgaricus, 
L. termophilus, 
L. acidophilus, 

L. casei, L. 
rhamnosus 

Salivary MS 
no difference 

Çaglar(Caglar 
et al., 2005) 

21, 21-24 
crossover 

Yogurt, 
2 weeks 

Bifidobacteria 
Salivary MS 

decreased 

Çaglar(Caglar 
et al., 2006) 

120, 21-24, 
RCT 

Straw, 
tablet, 

3 weeks 
L. reutei 

Salivary MS 
decreased 

Çaglar(Caglar 
et al., 2007) 

80, 21-24 
RCT 

Chewing 
gum, 

3 weeks 
L. reuteri 

Salivary MS 
decreased 

Çaglar(Caglar 
et al., 2008b) 

24, 20 
crossover 

Ice cream,
20 days 

Bifidobacterium
Salivary MS 

decreased 

Çaglar(Caglar 
et al., 2008a) 

20, 20 
RCT 

Lozenge, 
10 days 

L. reuteri 
 

Salivary MS 
decreased 

Cildir(Cildir et 
al., 2009) 

24, 12-16 
Crossover 

Yogurt, 
4 weeks 

Bifidobacterium 
Salivary MS 

decreased 

Stecksén-Blick
s(Stecksen-Blic
ks et al., 2009)

248, 1-5, 
RCT 

Milk, 
21 months

L. rhamnosus 
LB21 

Relatively low 
levels of MS, 

but not 
significant 
difference 

Lexner(Lexner 
et al., 2010) 

18, 13-17, 
RCT 

Milk, 
2 weeks 

L. rhamnosus 
LB21 

Salivary MS 
no difference 

Jindal(Jindal et 
al., 2011) 

150, 7-14, 
RCT 

Powder, 
14 days 

L. rhamnosus 
and 

Salivary MS 
decreased 
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Bifidobacterium

Singh(Singh et 
al., 2011) 

40, 12–14, 
Crossover 

Ice cream,
10 days 

Bifidobacterium
and   

L. acidophilus 

Salivary MS 
decreased 

Ferrazzano(Fer
razzano et al., 

2011) 

84, 12-18, 
RCT 

Yogurt, 
2 weeks 

L. bulgaricus 
and  

S. thermophilus

Salivary MS 
decreased 

Chuang(Chuan
g et al., 2011) 

78, 20-26, 
RCT 

Tablets, 
2 weeks 

L. paracasei  
Salivary SM 

decreased 
Aminabadi(Am
inabadi et al., 

2011) 

105, 6-12, 
RCT 

Yogurt, 
5 weeks 

L. rhamnosus 
GG 

Salivary SM 
no difference 

Petersson(Peter
sson et al., 

2011) 

160, 58-84, 
RCT 

Milk, 
15 months

L. rhamnosus 
LB21 

Salivary MS 
no difference 

Cildir(Cildir et 
al., 2012) 

19, 4-12, 
Crossover 

Drops, 
25 days 

L. reuteri  
Salivary MS 
no difference 

Keller(Keller et 
al., 2012) 

62, 19–35, 
RCT 

Lozenge, 
6 weeks 

L. reuteri  
Salivary MS 
no difference 

Glavina(Glavin
a et al., 2012) 

25, 6-10, 
Crossover 

Yoghurt, 
14 days 

L. rhamnosus 
GG 

Salivary MS 
decreased 

Taipale(Taipal
e et al., 2012) 

106, 1 month,
RCT 

Tablets, 
23 months

Bifidobacterium 
Salivary MS 
no difference 

Juneja(Juneja 
and Kakade, 

2012) 

40, 12-15, 
RCT 

Milk, 
3 weeks 

L. rhamnosus 
Salivary MS 

decreased 

Marttinen(Mart
tinen et al., 

2012a) 

13, 25.3, 
Crossover 

Tablets, 
2 weeks 

L. reuteri  
Salivary MS 
no difference 

MS: mutans streptococci; SM: Streptococcus mutans; RCT: randomized 
controlled trial; crossover = randomized crossover trial. 

 

There are 4 randomized controlled trials with caries as primary endpoint 

have been reported.  

 

A randomized, double-blind, placebo-controlled intervention study was 

designed to examine whether milk containing Lactobacillus rhamnosus GG 

(LGG) has an effect on caries and the risk of caries in children, when 
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compared with normal milk (Nase et al., 2001). After 7 months consumption, 

less dental caries in the LGG group and lower mutans streptococcus counts 

were found. LGG reduced the risk of caries significantly, particularly in the 3- 

to 4-year-old children.  

 

Stecksén-Blicks et al. investigated the effect of 21 months consumption 

of milk supplemented with probiotic lactobacilli and fluoride on dental caries 

in preschool children (Stecksén-Blicks et al., 2009). It was concluded that 

daily consumption of probiotic milk and fluoride reduced caries with a 

prevented fraction of 75% (caries increment prevented in the intervention 

group compared to the control group), which was higher than expected from 

previous trials with fluoridated milk (Yeung et al., 2005). However, in this 

study the levels of mutans streptococci (MS) and lactobacilli were relatively 

low, without significant difference among groups. This finding may be a result 

of the modified sampling technique different with tablets consumption, in 

which no chewing preceded the collection.  

 

Another study by Petersson focused on the effects of probiotic milk and 

fluoride on root caries in the elderly (Petersson et al., 2011). The findings 

displayed beneficial effects (root caries reversal) in all experimental groups 

which consumed supplemented milk (Fluoride or/and L. rhamnosus LB21) for 

15 months. The intervention suggested that probiotic treatment might be a 
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proper adjunct to fluoride in preventing and controlling the caries process. No 

severe adverse or side-effects were reported from any of the clinical trials.  

 

The recently published study is the follow-up of the previous RCT with 

106 infants involved receiving Bifidobacterium animalis subsp. lactis BB-12, 

xylitol or sorbitol tablets from the age of 1–2 months to 2 years. The previous 

study suggested that MS colonization percentages of the children at the age of 

2 years were rather low, and the early administration of BB-12 did not result in 

permanent oral colonization of this probiotic or significantly affect MS 

colonization in the children (Taipale et al., 2012). The current study continued 

data collection using clinical examinations and questionnaires at the age of 4. 

The results showed that administration of BB-12 in infancy does not seem to 

increase or decrease the occurrence of caries by 4 years of age in a low-caries 

population (Taipale et al., 2013).  

 

Although the trials have apparent limitations and the mechanisms of 

action were not explained clearly, the link to general health and the possible 

caries prevention benefit are too interesting to be ignored. 

 

1.5.4 Mechanisms  

 

1.5.4.1 Antibacterial activity 
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The mechanisms underlying the antibacterial activity of probiotic 

Lactobacillus strains appears to be multi-factorial. Probiotic bacteria produce a 

variety of substances including organic acids, hydrogen peroxide and 

bacteriocins. pH also plays an important role in the inhibitory effect. In 

addition, blocking of adhesion sites, co-aggregation and stimulation of 

immunity also have been proposed as the mechanisms (Fig. 1.7).   

 

 

Fig. 1.7. Mechanisms of antibacterial effects of Lactobacillus 

 

(1) Organic acids 

 

Lactobacilli produce lactic acid and some other organic acids, which are 

known to have antimicrobial activity (Taniguchi et al., 1998). A study showed 

that the inhibition on growth and sporulation of Bacillus cereus were strongly 
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related to the initial rate of lactic acid production (Rossland et al., 2005). The 

strains that produced lactic acid fastest inhibited B. cereus best. The authors 

suggested that the contribution from other antimicrobial metabolites 

(bacteriocins, hydrogen peroxide and ethanol) seemed to be only secondary. 

Alakomi et al. showed that the lactic acid acted as a permeabilizer of the outer 

membrane of gram-negative pathogens, thus increasing their susceptibility to 

antimicrobial molecules by allowing these molecules to penetrate the bacteria 

(Alakomi et al., 2000). Cadieux PA et al. supported lactic acid playing a major 

role in uropathogenic inhibition by lactobacilli (Cadieux et al., 2009). They 

observed no growth in concentrations above 30 mM lactic acid and an almost 

70% growth reduction in as little as 10 mM, since previous report showed 24 

hour cultures of L. rhamnosus GR-1 and L. reuteri RC-14 produced 

approximately 45 and 35 mM lactic acid, respectively (Fayol-Messaoudi et al., 

2005) . Lin WH et al. also agreed with the above findings (Lin et al., 2009b). 

They found that Lactobacillus strains LGG and R1 showed stronger 

bactericidal activity against both the type strain and clinical isolates of 

Helicobacter pylori. The concentrations of lactic acid and acetic acid of these 

2 strains were also higher than the other LAB strains studied in this report. 

Hence, lactic acid and acetic acid were believed to contribute to the 

antibacterial activity (Lin et al., 2009b). 

 

However, some Lactobacillus strain with fairly weak acid production, 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cadieux%20PA%22%5BAuthor%5D�
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such as L. reuteri ATCC 55730, also proved to be effective against both 

mutans streptococci and candida. This indicates that other inhibitory 

substances may be involved (Hasslof et al., 2010). Meurman JH et al. 

observed that the inhibition obtained by the Lactobacillus extract on S. 

sobrinus was stronger than that found with plain lactic acid in the growth 

medium controls (Meurman et al., 1995). This finding also supports the 

hypothesis that although lactic acid alone does inhibit bacterial growth, the 

Lactobacillus extract contains other substances with even stronger action. 

Sookkhee S suggested that the antimicrobial activity could be partly due to 

organic acids, because the antimicrobial effect was more active at acidic pH 

than at alkali pH (Sookkhee et al., 2001). After adjusting the supernatant fluids 

from these cultures to pH 7.0, there was a slight reduction (10-20%) of the 

antimicrobial activity. This indicated that organic acids were not the only 

antimicrobial substances. Fayol-Messaoudi D et al. provided evidence that the 

killing effect of probiotic Lactobacillus strains against S. enterica serovar 

Typhimurium resulted mainly from the strain-specific non-lactic acid 

molecules present in their cell free culture supernatant (CFCS) 

(Fayol-Messaoudi et al., 2005). However, they also suggested that the higher 

antibacterial activity of probiotic Lactobacillus strains that produced L-lactic 

acid could be related in part to the greater proportion of L-lactate in the CFCS 

than in strains producing D,L-lactic acid. Hence, the antibacterial activity of 

probiotic Lactobacillus strains that leads to the killing of bacterial pathogens 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sookkhee%20S%22%5BAuthor%5D�


 55

may be due to a synergistic action of lactic acid and the secreted non-lactic 

acid molecules. 

 

(2) Hydrogen peroxide 

 

Hydrogen peroxide has been reported to be responsible for the inhibitory 

activity of streptococci (Tano et al., 2003a). It was shown in Sookkhee S’s 

study that the antimicrobial activity of the oral isolates was reduced after 

treatment with catalase, and their growing colonies demonstrated a blue 

pigment around the colonies on the medium supplemented with 

tetramethylbenzidine and horseradish peroxidase (Sookkhee et al., 2001). 

These results suggested that the isolates could produce hydrogen peroxide 

which is another type of antimicrobial substance. Pridmore RD et al. also 

demonstrated the ability of Lactobacillus johnsonii NCC 533 as well as eight 

different L. johnsonii strains and L. gasseri to produce H2O2 when resting cells 

were incubated in the presence of oxygen (Pridmore et al., 2008). The culture 

supernatant containing NCC 533-produced H2O2 was effective in killing 

Salmonella enterica serovar Typhimurium SL1344 in vitro. 

 

(3) Bacteriocin 

 

Sookkhee S et al. suggested a significant reduction in inhibitory activity 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sookkhee%20S%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sookkhee%20S%22%5BAuthor%5D�
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after treatment with trypsin and pepsin (Sookkhee et al., 2001). They proved 

that the additional type of antimicrobial substances were bacteriocins, which 

are proteinaceous antimicrobial agents. de Carvalho AA et al. partially purified 

the inhibitory substance of Lactobacillus isolate from Italian sakami (de 

Carvalho et al., 2006). They found the inhibitory substance maintained activity 

when treated with catalase or incubated with trypsin, while it showed much 

less inhibitory activity when treated with proteinase K and papain. The activity 

was maintained at temperatures up to 100℃, but decreased if the crude extract 

was autoclaved. Furthermore, the activity in the culture supernatants was not 

significantly affected by various pH values (2.0-10.0). The antagonistic 

activity of isolate PD 6.9 was suggested to be due to bacteriocin production. 

Abo-Amer AE tested 63 strains of Lactobacillus acidophilus isolated from 

Egyptian home-made cheese (Abo-Amer, 2007). He found only 8 strains 

demonstrated inhibitory activity against spoilage microorganisms and 

pathogens. Lactobacillus acidophilus AA11 produced higher antimicrobial 

activity with a wide range of inhibition. The inhibitory substance was 

identified as a bacteriocin, designated acidocin AA11. In Awaisheh and 

Ibrahim’s report, cell-free neutral supernatant of human lactic acid bacteria 

(LAB) isolates had the highest antibacterial activity against different 

pathogenic strains, followed by RTE-VPMP (ready-to-eat vacuum-packaged 

meat products) LAB isolates, and fermented vegetables isolate (Awaisheh and 

Ibrahim, 2009). Antibacterial activity of neutral supernatant is a strong 
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confirmation of bacteriocin presence and production, since all sources of 

antibacterial effects of extracted supernatants other than bacteriocins (i.e., 

H2O2, lactic acid) were eliminated. The bacteriocin was sensitive to proteolytic 

enzymes and retained full activity at 100℃, could be extracted from the 

culture supernatant fluids with n-butanol. The 12% SDS-PAGE analysis of 

40% ammonium sulphate precipitated agent showed two peptides with 

molecular weights of ~ 36kDa and ~ 29kDa. 

 

Lin PP et al. presented the opposite results. They investigated the 

inhibitory effect of LAB-CFCS towards EAggEC strains (Lin et al., 2009a). 

The treatment with different enzymes did not affect the antagonistic activity. 

This result suggested that the antimicrobial compounds might not have 

proteinaceous nature. This finding contradicts with the other reports, which 

may be due to the different Lactobacillus strains they studied.  

 

(4) Blocking of adhesion sites  

 

Pioneering studies by Reid and co-workers have demonstrated that 

selected Lactobacillus strains of urovaginal origin have adhesive properties so 

that they could inhibit the colonization of uropathogens with uroepithelial cells 

(Bruce and Reid, 1988; Chan et al., 1985; Reid et al., 1985; Reid et al., 1987). 

The same mechanism of action has subsequently been proposed (Conway et 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lin%20PP%22%5BAuthor%5D�
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al., 1987). However, this property is strain specific. Tuomola and Salminen 

found that the four most adhesive strains tested to the Caco-2 cell line were L. 

casei (Fyos), L. johnsonii La1, L. rhamnosus LC-705 and L. casei rhamnosus 

GG (Tuomola and Salminen, 1998). Heat-killed L. acidophilus LB bacteria 

were also found to adhere as efficiently as the live strain to both 

undifferentiated and differentiated human intestinal epithelial Caco-2 cells. A 

study reported that several species of Bifidobacterium spp. produced a 

proteinaceous molecule or molecules(s) with a molecular weight around or 

over 100 000 Da and a neutral isoelectric point, which enabled the competitive 

binding to gangliotetraosylceramide (asialo-GM1 or GA1), a common 

bacterium-binding structure (Fujiwara et al., 1997).  

 

Although it is believed that the maximum probiotic effect is achieved if 

the organisms adhere to intestinal mucosal cells, it is unclear that exogenously 

administered probiotics really do this in human bodies. They may pass through 

into the faeces without having adhered or multiplied. A few studies have been 

conducted to investigate the persistence of probiotic strains in the gut and their 

colonization. L. casei rhamnosus strain GG could adhere in vivo to the colonic 

epithelia of most people after consumption of probiotic LGG product (Alander 

et al., 1997; Alander et al., 1999). Similarly, L. johnsonii strain La1 and L. 

casei strain Shirota ingested by adult patients were able to survive intestinal 

transit (Donnet-Hughes et al., 1999). 
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(5) Co-aggregation 

 

A novel, specific co-aggregation was found between L. paracasei or L. 

rhamnosus and mutans streptococci in vitro (Lang et al., 2010). The 

co-aggregation by these specific lactobacilli was characterized as heat stable 

and protease-resistant, and lectin-independent. It was operational over a wide 

pH range, unaffected by whole saliva, but calcium dependent. Twetman et al. 

proved that the probiotic strains they tested showed co-aggregation abilities 

with the oral pathogens (Twetman et al., 2009). The co-aggregation was strain 

specific and dependent on time. S. mutans GS-5 exhibited a significantly 

higher ability to co-aggregate with all the probiotic strains than the other 

mutans streptococci and E. coli in their study.  The results demonstrated 

different abilities of lactobacilli-derived probiotic bacteria to co-aggregate 

with selected oral streptococci. Another study also demonstrated that some 

commercially available probiotic Lactobacillus strains (L. plantarum, L. 

paracasei, L. rhamnosus GG, L. reuteri and L. acidophilus) had an ability to 

co-aggregate with the MS strains isolated from human oral cavity (Keller et al., 

2011).  

 

Hence, it is speculated that the co-aggregation between lactobacilli and 

mutans streptococci blocks the binding of mutans streptococci to exposed 



 60

teeth or plaque biofilm, so that caries risk is reduced by the clearance of 

planktonic mutans streptococci from the mouth by swallowing (Lang et al., 

2010). 

 

(6) Stimulation of immunity 

 

Probiotic bacteria affect the intestinal luminal environment, epithelial and 

mucosal barrier function, and the mucosal immune system. They display their 

effects on numerous cell types involved in the innate and adaptive immune 

responses, such as epithelial cells, dendritic cells, monocytes/macrophages, B 

cells, T cells and NK cells (Hart et al., 2004; Kaila et al., 1992; Lammers et al., 

2002; Miettinen et al., 1998; Takeda et al., 2006). Some studies have shown 

that probiotics can induce regulatory cytokine IL-10 and suppress 

proinflammatory cytokines, such as TNF, in the mucosa of patients with 

ulcerative colitis and pouchitis (Borruel et al., 2002; Pathmakanthan et al., 

2004; Ulisse et al., 2001).  

 

Not all Lactobacillus and Bifidobacterium species are equally beneficial; 

each may have individual mechanisms of action that are dependent on host 

characteristics. Different bacteria may have dominant effects in different 

genetic backgrounds and in diseases that vary in their pathogenesis. 
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1.5.4.2 Effects on biofilm formation and acidogenicity of oral bacteria 

 

(1) Biofilm formation 

 

Zezhang T Wen et al.(Wen et al., 2010) reported that biofilm formation 

by S. mutans was significantly decreased when grown with Streptococcus 

sanguinis, but was modestly increased when co-cultivated with Lactobacillus 

casei, compared to mono-species biofilm. Real Time Polymerase Chain 

Reaction (PCR) analysis showed that the expression of spaP, gtfB and gbpB 

decreased significantly when S. mutans was co-cultivated with L. casei.  

 

It was reported that oral bacterium S11 isolated from human saliva 

showed 99.5% similarity with Lactobacillus fermentum. This strain and its 

culture supernatant significantly inhibited the formation of the insoluble 

glucan produced by S. mutans Ingbritt without inhibiting the multiplication of 

S. mutans Ingbritt. The adherence onto cuvette walls was also inhibited 

(Chung et al., 2004).  

 

Eva M. Söderling et al. found all of the probiotic lactobacilli that tested 

inhibited the biofilm formation of the clinical isolates of mutans streptococci 

(Söderling et al., 2011a). The biofilm formation of the reference strains of MS 

was also inhibited by the lactobacilli, but L. plantarum and L. reuteri PTA 
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5289 showed a weaker inhibition in comparison to L. reuteri SD2112 and L. 

rhamnosus GG. The antimicrobial activity against S. mutans was 

pH-dependent as the supernatant with higher pH showed less inhibitory 

effects.   

 

(2) Acid production 

 

Keller and Twetman found that in the presence of L. reuteri, dental plaque 

produced less lactic acid in comparison to L. plantarum and the blank control 

(Keller and Twetman, 2012a). However, in their clinical study, no significant 

difference in lactic acid concentration was found between groups with and 

without probiotic lactobacilli tablets taken for 2 weeks.  

 

Marttinen et al. investigated thirteen volunteers who used tablets 

containing L. rhamnosus GG or a combination of L. reuteri SD2112 and PTA 

5289 for 2 weeks (Marttinen et al., 2012a). All the subjects had good oral 

hygiene with low DMFT (decayed, missing, filled teeth) score. They found 

there was no difference of the lactic acid production and MS levels in plaque 

suspension between the baseline and the end of probiotic treatment period.  
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1.5.5 Safety of lactobacilli used as probiotic agents 

 

Lactobacillus species are generally considered to be nonpathogenic since 

they have a long history of safe use in food. Although some lactobacilli might 

cause endocarditis in immunosuppressed patients, none of these infections 

were related to lactobacilli used in probiotic food products (Alvarez-Olmos 

and Oberhelman, 2001). However, it is not clear if the pathogenic 

Lactobacillus strains isolated from patients with endocarditis are indigenous or 

ingested strains (Sipsas et al., 2002). Lactobacillus species are also a rare 

cause of liver abscesses (Rautio et al., 1999). Both endocarditis and liver 

abscess due to Lactobacillus species are extremely rare conditions. A study 

reported no relation between Lactobacillus strains isolated from patients with 

bacteremia and strains used in the food industry (Saxelin et al., 1996). It was 

suggested that for some immunocompromised patients and patients with 

intestinal bleeding, probiotic ingestion may or may not have beneficial results 

(Reid, 2002). 

 

1.5.6 Cariogenicity of probiotic Lactobacillus 

 

Probiotic lactobacilli and bifidobacteria are considered to be 

non-pathogenic and studies have demonstrated the potential beneficial effect 

of probiotic bacteria on oral health. However, some species of lactobacilli are 



 64

thought to be associated with the development of dental caries as they are also 

acidogenic bacteria.  

 

A study examined the cariogenicity of the probiotic bacterium 

Lactobacillus salivarius in rats (Matsumoto et al., 2005). The rats were 

infected with L. salivarius and/or Streptococcus mutans. The results showed 

that L. salivarius became established in the oral cavity of rats and induced 

significant level of dental caries. The caries scores of rats infected with both S. 

mutans and L. salivarius were significantly higher than those infected with 

either L. salivarius or S. mutans alone. It was concluded that L. salivarius 

possesses an inherent cariogenic activity following adherence to the tooth 

surface. Another study investigated L. reuteri strains ATCC PTA 5289 and 

ATCC 55730. The authors found strain ATCC PTA 5289 adhered on 

saliva-coated hydroxyapatite and formed detectable biofilm, but strain ATCC 

55730 was poor in both adhesion and biofilm formation (Jalasvuori et al., 

2012). The amount of dissolved calcium from hydroxyapatite correlated with 

bacterial growth rate and the final pH of the growth medium. It was concluded 

that probiotic lactobacilli are likely to differ in their behaviour and cariogenic 

potential. The possible cariogenicity of probiotic lactobacilli should be further 

investigated. 
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1.6 Yakult® and Lactobacillus casei Shirota 

 

1.6.1 Invention of Yakult® 

 

Yakult® is a probiotic milk-like product made by fermenting a mixture of 

skimmed milk with a special strain of bacterium Lactobacillus casei Shirota. It 

was created by Japanese scientist Minoru Shirota (Sako, 2010). In 1930 he 

succeeded in culturing a strain of lactic acid bacteria which benefited human 

health in suppressing harmful bacteria within the intestines. This rod-shaped 

gram positive bacterium was named Lactobacillus casei strain Shirota. Shirota 

then began working together with supporters to make a drink incorporating the 

strain. This led to the development of Yakult®. It was first sold in Japan in 

1935 and presently popular in 31 countries with daily consumption by 6 

million people globally (Yakult, 2012). 

 

Standard Yakult® contains (Yakult-Australia): 

(1) Sugar (sucrose, dextrose) to balance sourness with sweetness.  

(2) Skimmed milk powder 

(3) Natural flavours 

(4) Live Lactobacillus casei Shirota strain, 6.5 billion per 65 ml bottle 

(concentration of 108 cfu/ml) 

(5) Water 
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1.6.2 Effects of L. casei Shirota on general health 

 

1.6.2.1 In vitro and in vivo studies 

 

(1) Immune modulation 

 

Lactobacillus casei Shirota (LcS) was reported that it enhanced the gene 

expression involving defense/immune functions and lipid metabolism (Shima 

et al., 2008).  Daily intake of Lactobacillus casei strain Shirota provided a 

positive effect on NK-cell activity (Matsuzaki et al., 2005; Takeda and 

Okumura, 2007). The involvement of induced interleukin (IL)-12 may be 

responsible for the enhanced NK cell activity (Takeda et al., 2006). 

Administration of LcS has also been shown to induce the production of several 

cytokines, such as Interferon-γ (IFN-γ), IL-1β and TNF-α (Matsuzaki, 1998). 

A recent study demonstrated that LcS activated cytotoxic lymphocytes 

preferentially in both the innate and specific immune systems, which 

suggested that LcS could potentiate the destruction of infected cells in the 

body (Dong et al., 2010).  

 

Sabine Wagnerberger et al. also used a mouse model and found the 

dietary intake of LcS protects against the onset of fructose-induced 
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non-alcoholic fatty liver disease through mechanisms involving an attenuation 

of the Toll-like receptor-4-signalling cascade in the liver (Wagnerberger et al., 

2013). A report in 1998 suggested that the oral administration of LcS was able 

to modify the humoral and cellular immune responses to type II collagen, and 

these modifications could result in the reduction of the development of type II 

collagen-induced arthritis in DBA/l mice (Kato et al., 1998). A study explored 

the immunomodulatory effects of probiotics on allergen-specific allergic 

reactions in an allergy mouse model (Lim et al., 2009). The authors found the 

oral administration of heat-killed LcS could effectively down regulate the 

pre-existing Th-2 allergic responses and pulmonary inflammatory responses, 

and therefore possibly treat the allergic respiratory diseases. 

 

(2) Anti-infectious effects  

 

LcS has demonstrated anti-infectious activity against multi-drug resistant 

Salmonella enterica serovar Typhimurium DT104 (DT104) (Asahara et al., 

2011), while the heat-killed LcS was not protective against the infection, 

suggesting that the metabolic activity of lactobacilli is important. LcS 

inhibited Helicobacter pylori growth in an in vitro study (Cats et al., 2003). 

Further more, Sgouras et al. using a mouse model displayed a significant 

reduction in the levels of H. pylori colonization in the antrum and body 

mucosa in vivo in the LcS treated group (Sgouras et al., 2004). This reduction 
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was accompanied by a significant decline in the associated chronic and active 

gastric mucosal inflammation. 

 

Waard et al. carried out a study investigating the effect of viable 

Lactobacillus casei Shirota on enteric pathogen Listeria monocytogenes in 

Wistar rats (de Waard et al., 2002). Orally administered LcS was able to 

enhance host resistance against oral L. monocytogenes infection. In the 

gastrointestinal tract, as well as in the spleen and liver, L. monocytogenes 

numbers were reduced. It was concluded that the enhancement of this 

anti-Listeria activity might be partially due to the increased cell-mediated 

immunity.  

 

(3) Anti-carcinogenic effects 

 

A study demonstrated intrapleural administration of LcS into 

tumour-bearing mice has been shown to effectively inhibit the growth of 

tumour cells in the thoracic cavity and to significantly prolong survival time 

(Matsuzaki, 1998). It was also reported that LcS inoculated into mice induced 

protection against T. spiralis adult worms and an increase in the production of 

IgA anti-T. spiralis (Martinez-Gomez et al., 2009). 
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1.6.2.2 Clinical trials 

 

Yakult® has been used as probiotic therapy for gastrointestinal diseases, 

such as constipation, frequent defecation and diarrhea.  

 

Several clinical trials have evaluated the efficacy and safety of using L. 

casei Shirota for the treatment of constipation. Most of these studies 

demonstrated that consumption of LcS milk reduced the incidence of hard or 

lumpy stools, or showed a beneficial effect on gastrointestinal symptoms of 

patients with chronic constipation (Koebnick et al., 2003; Sakai et al., 2011). 

One study controversially found that L. casei strain Shirota did not alleviate 

constipation severity or stool frequency, consistency, and quantity when 

compared with control (Mazlyn et al., 2013). The function of L. casei Shirota 

improving irregular defecation frequency and stool quality and increasing the 

intrinsic bifidobacteria in healthy individuals with soft stool has also been 

demonstrated (Matsumoto et al., 2010). Take together, LcS is a probiotic strain 

that has intestine-conditioning activity in people who tend to get constipated, 

as well as those with diarrhea-like symptoms.  

 

LcS has also been evaluated for beneficial effect on acute diarrhea. A 

double-blind, randomized and controlled field trial involving 3758 children 

aged 1–5 years was conducted in India to evaluate the effect of probiotic drink 
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(contain L. casei Shirota) on acute diarrhea (Sur et al., 2011). The level of 

diarrhea protective efficacy for the probiotic drink was 14%, compared with 

nutrient drink.  

 

Volunteers treated with LcS showed a significant reduction in levels of 

antigen induced IL-5, IL-6 and IFN-γ production compared with volunteers 

supplemented with placebo. Meanwhile, levels of specific IgG increased and 

IgE decreased in the probiotic group. These data showed that probiotic 

supplementation modulated immune responses in allergic rhinitis (Ivory et al., 

2008). 

 

A recent clinical trial showed that daily consumption of a fermented milk 

drink containing LcS had no statistically or clinically significant effect on the 

protection against respiratory symptoms (Van Puyenbroeck et al., 2012), 

although it was suggested in animal study that the oral administration of L. 

casei Shirota could effectively reduce the allergen-specific allergic reactions, 

and possibly treat the allergic respiratory diseases (Lim et al., 2009).  

 

1.6.3 Effects of L. casei Shirota on oral health 

 

Lactobacillus casei Shirota (LcS) is a well researched probiotic strain, 

widely used as a dietary supplement for reduction of functional and infectious 
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gut diseases. However, its potential benefits on oral health have not been 

sufficiently investigated. 

 

The lactobacilli species are related to dental caries progression and highly 

identified in deep caries dentin (Maltz et al., 2002). As LcS also has 

acidogenic and aciduric features, LM Lima et al. compared the adhesion of 

two probiotics microorganisms (Lactobacillus casei Shirota and Lactobacillus 

acidophilus) to an artificial dentin caries after 48 hours culture (Lima et al., 

2005). It was found that the amount of L. acidophilus in the artificial caries 

dentin was significantly more than that of L. casei Shirota. The authors 

suggested that further investigations must be carried out to identify the 

cariogenic potential of L. casei Shirota, since Yakult® is a sweetish drink with 

a low pH that favors caries development. 

 

Lodi C.S. et al. carried out a study on plaque pH and tooth 

demineralization using Yakult® (Lodi et al., 2010). Ten volunteers wore 

devices containing bovine dental enamel blocks. The appliances were treated 

with Yakult®, another fermented milk Batavito® or 20% sucrose solution for 5 

minutes 8 times every day. The results showed that the ionic concentration (F, 

Ca and P) in the biofilm in Batavito® group was significantly higher than 

Yakult® and 20% sucrose groups, with no difference between the latter two. 

The two fermented milk groups did not differ significantly but had smaller 
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mineral loss than control group. All treatments decreased the pH of dental 

biofilm and promoted enamel demineralization. The acidogenicity results were 

different with the studies on other probiotic species. Keller and Twetman 

found that in the presence of L. reuteri, dental plaque produced less lactic acid 

compared with the blank control (Keller and Twetman, 2012a). Marttinen et al. 

found no difference in the lactic acid production in plaque suspension before 

and after L. reuteri tablet intake (Marttinen et al., 2012a). Further studies need 

to be carried out to evaluate the effects of different probiotic strains on 

acidogenicity of dental plaque and tooth demineralization.  

  

A. Haukioja et al. investigated the binding of 17 Lactobacillus (including 

LcS) and 7 Bifidobacterium strains to hydroxyapatite and microtitre wells 

coated with human saliva and human buccal epithelial cells (Haukioja et al., 

2006). They found a large variation in binding to saliva-coated surfaces and 

buccal epithelial cells, but all the Lactobacillus and Bifidobacterium strains 

survived in saliva for the 24 hours tested. LcS showed low binding to 

saliva-coated microtiter wells, but high binding to saliva-coated hydroxyapatite 

beads.  

 

There is no concrete evidence of the effect of L. casei Shirota on oral 

bacteria and caries risk so far. A recent study in our research group 

(unpublished data) showed the beneficial effect of Yakult on dental plaque. 
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Fifteen volunteers consumed the fermented milk Yakult® 100ml every day for 

1 week. Before and after the period, the dental plaque resting pH and Stephan 

curve were recorded and plotted. S. mutans counts in the dental plaque before 

and after the 1-week consumption were also analyzed. The results showed that 

the Stephan curve changed significantly, which demonstrated that the 

acidogenicity of dental plaque decreased after Yakult consumption. 

Furthermore, S. mutans counts in dental plaque reduced after probiotic 

treatment. The result indicated that Yakult® could have potential cariostatic 

effect and the probiotic milk treatment might decrease caries risk.  

 

1.7 Research Gaps 

 

Most of the current therapies for caries prevention have limitations and/or 

side effects. Probiotic therapy may offer a promising alternative as different 

probiotic species have demonstrated potential cariostatic effects. However, to 

the best of our knowledge, no study has been conducted to investigate the 

effects of the widely consumed probiotic milk Yakult® and the strain L. casei 

Shirota on oral pathogenic bacterium Streptococcus mutans. Furthermore, the 

exact mechanisms of the cariostatic effects of probiotic strains remain unclear. 
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1.8 Aim of this study 

     

This study was designed to investigate the effects of the fermented 

probiotic milk Yakult® and the probiotic strain Lactobacillus casei Shirota on 

oral cariogenic bacterium Streptococcus mutans, and the possible mechanisms 

involved. It may shed the light on the clinical application of this non-fluoride 

high-compliance “sweet” therapy (probiotic drink) to prevent caries formation, 

particularly in children. 

  

1.9 Objectives of this study 

 

(1) To investigate the effects of Yakult® on S. mutans biofilm formation 

and acidogenicity. 

(2) To investigate the effects of L. casei Shirota on S. mutans biofilm 

formation, acidogenicity and the lesion depth of enamel deminrealization 

underneath biofilm.  

(3) To investigate the effects of L. casei Shirota on S. mutans growth, 

EPS production, biofilm structure and virulence genes expression in biofilm.  

(4) To investigate the effects of the supernatant of L. casei Shirota on 

growth of S. mutans and to characterize the inhibitory compounds.  
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Chapter 2:  

Materials and Methods 

 

PART 1: Effects of Yakult® on S. mutans biofilm 

 

In this part, the biofilm-on-tooth (BOT) model was built in order to 

investigate the effects of Yakult® on Streptococcus mutans biofilm formation 

and acidogenicity. The biofilms were distributed into three groups to be treated 

with Yakult®, acidic milk and acidic PBS, seperately. Confocal laser scanning 

microscope (CLSM) and micro-touch method were used to evaluate the 

biofilm thickness and acidogenicity.  

 

2.1.1 Tooth sample preparation 

 

Six extracted human third molars (approved by National University of 

Singapore – Institutional Review Board: 07-275) were collected. These teeth 

were observed under stereomicroscope (Olympus SZ-CTV, Japan) to ensure 

there was no caries or demineralization. The teeth were stored in 0.1% thymol 

at 4℃ before use. Eighteen blocks with intact enamel surface were cut from 

the crowns of the teeth by a micromotor handpiece (NSK Volvere Vmax, 

Japan). Each block was 2 mm thick. These specimens were sterilized by 

autoclaving at 121℃ and 15psi for 15 minutes (min), and then dried overnight. 
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The blocks were applied with red nail varnish twice, leaving a 3 mm x 3 mm 

exposed enamel surface window and air-dried overnight. 

 

2.1.2 Bacteria culture and biofilm-on-tooth (BOT) model  

 

S. mutans ATCC 25175 (purchased from the American Type Culture 

Collection) was grown to the mid-exponential phase in Brain Heart Infusion 

(BHI) (Biomed, US) broth. The bacteria were collected by centrifugation at 

8000 rpm for 10 min at 4℃ and washed with PBS twice, then suspended in 

BHIS (BHI supplemented with 1% sucrose) in a 24-well culture plate at a final 

concentration of 1x108 cfu/ml (2 ml in each well).  

 

Fresh simulated human saliva was collected from 10 healthy volunteers 

who had abstained from food within 8 hour (h). The collected saliva was 

sterilized through 0.22 μm-pore-size Millex GS filter units 

(Millipore, Billerica, Massachusetts, USA), and stored at -20℃ prior to use.  

 

The BOT model was modified according to Arnold WH (Arnold et al., 

2001; Arnold et al., 2006). The tooth blocks were incubated in the above 

thawed human saliva at 37℃ for 1 h for coating with the acquired pellicle. 

After incubation, the blocks were put into above S. mutans culture in a 24-well 

plate and cultured in 5% CO2 atmosphere at 37℃ for 24 h (Fig. 2.1).  
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Fig. 2.1. Tooth blocks incubated with S. mutans in BHIS in a 24-well plate. 

 

2.1.3 Experimental treatments 

 

The pH of Yakult® (Yakult Singapore Pte. Ltd., Singapore) was measured 

using pH meter (model 370, Orion Research, Inc, USA). Commercial fresh 

milk (Meiji fresh milk, Singapore) and sterilized phosphate-buffered saline 

(PBS) were adjusted to the measured pH of Yakult® by adding sterilized 5M 

lactic acid. Yakult®, acidic milk and acidic PBS were stored in 4℃.   

 

The tooth blocks were randomly distributed to three groups (named as 

Yakult, milk and PBS groups) with six blocks in each group after 24 h culture. 

They were removed from the 24-well plate, immersed in 2 ml Yakult®, acidic 

milk or acidic PBS respectively, and incubated at 37℃ for 30 min. After 

incubation, the tooth blocks were gently rinsed with sterilized distilled water 

for 5 seconds, and put back into the previous 24-well plate in which broth was 
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refreshed. The plate was continuously cultured in the CO2 incubator at 37℃. 

The above treatments were repeated once every day. The biofilm was cultured 

for 7 days (d).   

 

2.1.4 Biofilm morphology and acidogenicity 

 

After the 7-day treatment, the tooth blocks were taken out from S. mutans 

culture.  The pH of tooth-biofilm interface was measured using the 

micro-touch method (Fig. 2.2 & Fig. 2.3). A microelectrode Beetrode 

(NMPH3, World Precision Instruments Inc., Sarasota, Florida, USA) with a 

100 μm sensing tip was connected to a pH meter (model 370, Orion Research, 

Inc, USA). Readings were obtained from three random sites in each biofilm 

sample. 

 

 
Fig. 2.2. Micro-pH meter set up. The Beetrode and reference electrode were 
connected to the pH meter via the Bee-cal offset device. 
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(a) 

 
(b) 

Fig. 2.3. Biofilm pH measurement using micro-touch method. (a) Biofilm 
pH was measured using a microelectrode (Beetrode) connected to a pH 
meter equipped with a reference electrode. (b) The Beetrode tip was 
inserted into the biofilm, reaching to the tooth surface-biofilm interface.  

 

2.1.5 Biofilm thickness 

 

Live and Dead dye were prepared following the instruction of the 

Live/Dead BacLight Bacterial Viability Kit (Invitrogen, Eugene, Oregon, 

USA), gently dropped on biofilm surface and incubated in dark for 15 minutes. 
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After incubation, the biofilm was observed under inverted confocal laser 

scanning microscope (CLSM) (Olympus FluoView FV1000, Japan). Images 

were acquired with UPLAPO 20x NA: 0.70 objective lens. Filters were set to 

488 nm for SYTO 9 to detect live cells and 543nm for PI to detect dead cells. 

The Z dimension was set as 2μm/slice. Each biofilm was scanned at the area 

not closed to the edge of the field. As the tooth surface was curved, the area 

selected to be scanned was in the center of the visible field. The biofilm 

thickness was calculated according to the slice number in Z stack.  

 

The experiment design is shown in Fig. 2.4. 

 
Fig. 2.4. Experimental flow chart of the effects of Yakult® on S. mutans 
biofilm. 
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2.1.6 Statistical analysis 

 

Data were analyzed by using ANOVA with Tukey post hoc test (SPSS 20). 

The significance level was set as 0.05. 

 

PART 2: Effects of L. casei Shirota on S. mutans biofilm 

 

L. casei Shirota is the probiotic bacteria in Yakult. In order to evaluate the 

effects of L. casei Shirota on S. mutans biofilm formation and acidogenicity, 

biofilm-on-tooth (BOT) model and Stephan curve in vitro model were 

employed. The tooth demineralization underneath biofilm was also measured 

under polarized light microscope (PLM) to evaluate the relationship between 

acids formed on tooth surface and tooth demineralization.    

 

2.2.1 Stephan curve in vitro model 

 

2.2.1.1 Tooth preparation  

 

Tooth blocks were prepared and coated with stimulated human saliva 

using aforementioned methods. 
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2.2.1.2 Bacteria culture and biofilm formation 

 

S. mutans ATCC 25175 cells in mid-exponential phase were collected as 

described in 2.1.2. The cell suspension was cultured in 6 ml BHIS in a 6-well 

culture plate with inoculation of 1x108 cfu/ml. The saliva-coated tooth blocks 

were incubated in above S. mutans culture at 37℃ at 5% CO2 for 7 days. Fresh 

BHIS was replaced everyday. 

 

2.2.1.3 Stephan curve plotting 

 

After 7 days of incubation, the pH value of tooth-biofilm interface was 

recorded by the aforementioned micro-touch method. The tooth blocks were 

then immersed in the artificial saliva (20 mmol/l KCl, 10 mmol/l NaH2PO4, 

0.3 mmol/l CaCl2, 0.03 mmol/l MgCl2) (Lagerlof et al., 1984) until the biofilm 

pH was neutralized as in oral cavity. The artificial saliva used here was to 

mimic the buffering system in human saliva and was easy to prepare. The 

buffering capacity of artificial saliva was similar to stimulated human saliva as 

tested in our pilot study. The tooth blocks were immersed in 10% sucrose for 1 

min. The pH of tooth-biofilm interface was measured every 2 min until it 

reached the lowest pH. The blocks were then re-immersed in the artificial 

saliva and the pH was recorded untill it was neutralized. To prevent biofilm 

from drying, the samples were kept in a humidity chamber before pH 
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measurement. After the time and duration for pH measurement were optimized, 

artificial Stephan curve was plotted. 

 

2.2.1.4 Statistical analysis 

 

The experiment was repeated twice in tripliate. Data were analyzed using 

2-sample t-test (SPSS 20.0) after the Levene’s test confirming the 

homogeneity of variance. The statistical significance was set as P < 0.05. 

 

2.2.2 Effects of L. casei Shirota on S. mutans biofilm and enamel 

demineralization 

 

2.2.2.1 Bacteria culture 

 

 L. casei Shirota YC-13 used in this study was isolated from a commercial 

probiotic drink Yakult® (Yakult Singapore Pte. Ltd., Singapore) using De Man, 

Rogosa, Sharpe (MRS) agar (Becton, Dickinson and Company, Sparks, 

Maryland, USA). Its identification was confirmed by strain specific primers 

(Fujimoto et al., 2008). S. mutans ATCC 25175 (SM) and L. casei Shirota 

(LcS) were cultured overnight in BHI and MRS broth individually. The cells 

were grown to the mid-exponential phase, followed by centrifuge with 

8000rpm for 10 min at 4℃. The pellets was washed twice with PBS, and 
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suspended in cold PBS prior to use. 

 

2.2.2.2 Tooth blocks preparation and biofilm culture 

 

The tooth blocks were prepared as aforementioned and incubated in 

human saliva for 1h at 37℃. The blocks were randomly distributed into two 

groups (n=4): SM group and SM-LcS group. In SM group, the blocks were 

cultured with 1x108 cfu/ml S. mutans in 6 ml BHIS in a 6-well plate. In 

SM-LcS group, the blocks were cultured with S. mutans and L. casei Shirota 

(both 1x108 cfu/ml). The tooth blocks were incubated at 37℃ at 5% CO2 for 7 

days. Fresh BHIS was replaced everyday. 

 

2.2.2.3 Biofilm morphology and acidogenicity 

 

After 7 days of incubation, the biofilm morphology was observed under 

the stereomicroscope. Three pH readings of tooth-biofilm interface of each 

sample were recorded using the micro-touch method, as well as the pH of the 

spent culture and the biofilm formed on the bottom of the 6-well plates. 

Artificial Stephan curves were plotted to enumerate the lowest pH and the 

recovery time, together with the area under curve (AUC) (area below the 

critical pH 5.5) using Image-pro software (Image Pro International, InC, 

USA). 
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2.2.2.4 Lesion depth 

 

The tooth samples were sectioned using the hard tissue microtome (Series 

1000 Deluxe, Scientific Fabrications, USA) after the removal of the biofilm 

and varnish. The lesion image was captured under polarized light microscope 

(PLM) (Olympus BX51, Japan). Three representative enamel lesions with 200 

µm width in each image were selected to calculate the average lesion area by 

using Image-pro. The average lesion depth was calculated by the lesion area 

divided by 200 µm.  

 

2.2.2.5 Statistical analysis 

 

The experiments were repeated once with similar results. Data were 

analyzed using 2-sample t-test (SPSS 20.0) after the Levene’s test confirming 

the homogeneity of variance. The statistical significance was set as P < 0.05. 

 

2.2.3 Effects of other bacteria on S. mutans biofilm 

 

In order to further evaluate the effects of probiotic strains on SM biofilm, 

and to exclude the nutrition depletion in co-culture, S. sanguinis, one of the 

first colonizers in oral cavity, and a commonly used probiotic strain L. 
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rhamnosus GG were harbored as controls.  

 

2.2.3.1 Bacteria culture 

 

S. mutans (SM), S. sanguinis ATCC 10556 (SS) (purchased from the 

American Type Culture Collection), L. casei Shirota (LcS) and L. rhamnosus 

GG (LGG) (donated by Professor Meurman JH, Faculty of Dental Medicine, 

University of Helsinki) at mid-exponential phase were collected, washed and 

suspended in cold PBS prior to use. 

 

2.2.3.2 Tooth preparation and biofilm culture 

 

The enamel blocks with a 3 mm x 3 mm window were prepared and 

coated with stimulated human saliva as aforementioned. The blocks were 

randomly distributed into SM mono-culture, SM-SS, SM-LcS and SM-LGG 

co-culture groups (n = 3). For SM group, the blocks were cultured with S. 

mutans of 1x108 cfu/ml in 6 ml BHIS in a 6-well plate. For SM-SS, SM-LcS, 

SM-LGG group, the blocks were cultured in the same inoculation of S. mutans 

and S. sanguinis, L. casei Shirota or L. rhamnosus GG, respectively. The 

blocks were cultured at 37℃ at 5% CO2 for 7 days. Fresh BHIS was replaced 

everyday. 
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2.2.3.3 Biofilm morphology and acidogenicity 

 

After 7 days of incubation, the biofilm formed on tooth surface was 

observed under the stereomicroscope. Three random pH readings of 

tooth-biofilm interface were recorded. The artificial Stephan curves were 

plotted as described above.  

 

2.2.3.4 Statistical analysis 

  

Data were analyzed by using ANOVA with Tukey post hoc test (SPSS 20). 

The significance level was set as 0.05. 

 

PART 3: Modes of action of L. casei Shirota on S. mutans  

 

To understand the action of L. casei Shirota (LcS) in SM-LcS co-culture, 

the growth of SM and LcS in both biofilm and liquid culture, as well as 

biofilm structure and EPS production, were investigated in this part. In stead 

of using BOT model, we cultured biofilms on cover slip and 6-well plate to 

exclude the bias of variation of tooth size. The dynamic changes of biofilm 

during 1-7 days culture were analyzed under confocal laser scanning 

microscope (CLSM), including SM and LcS biovolumes, biofilm thickness 

and acidogenicity. 
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2.3.1 Effects of L. casei Shirota in biofilm culture within 24 h 

 

2.3.1.1 Biofilm culture 

 

S. mutans (SM) and L. casei Shirota (LcS) cells at mid-exponential were 

collected and cultured with 6 ml BHIS in a 6-well plate in three groups (SM 

mono-culture group, LcS mono-culture group, and SM-LcS co-culture group, 

n = 3). The inoculation of S. mutans and L. casei Shirota was 1x108 cfu/ml. To 

avoid the bias of bacteria counting on tooth surface with size variation, 

biofilms were cultured on a piece of sterilized cover slip in the well. Bacteria 

counting were facilitated as the biofilms were easily removed from the glass 

surface (Hyde et al., 1997). The biofilms were cultured at 5% CO2 at 37℃ for 

7 days. Fresh BHIS was replaced everyday. 

 

2.3.1.2 Bacteria counting 

 

The biofilms on the cover slip were washed with PBS twice to remove 

the unattached bacteria. The biofilms were then scraped from the cover slip, 

and suspended in 15 ml PBS. The suspension was serially diluted and cultured 

on the selective agar plates. Mitis salivarius (MS) agar (Becton, Dickinson and 

Company) and MRS agar were used for S. mutans and L. casei Shirota culture 
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respectively. Colony forming units for S. mutans and L. casei Shirota in 

mono-culture and co-culture biofilms were determined. Data were presented 

as mean ± SD of 3 independent experiments performed in triplicate.  

 

2.3.1.3 Biofilm structure under SEM 

 

SM and SM-LcS 24 h biofilms were fixed in 2.5% glutaraldehyde (GA) 

overnight at 4℃. The biofilms were washed in PBS for 10 min with two 

changes. After fixing in 1% Osmium tetroxide (OSO4, pH 7.4) for 2 h, the 

biofilms were washed in PBS and dehydrated through an ascending ethanol 

series (50%, 75%, 95% and absolute). The biofilms were coated with a thin 

layer of gold and sent to the scanning electronic microscope (SEM) (Philips 

XL30 FEG, FEI Company, Holland) for observation.   

 

2.3.1.4 Quantification of EPS 

 

The 24 h biofilms were incubated with 10 mg/ml flourescein 

isothiocyanate-concanavalin A (FITC-conA) (Sigma-Aldrich, St. Louis, 

Missouri, USA) at room temperature for 15 min. After incubation, they were 

rinsed with dH2O, and stored at -20℃ prior to the CLSM examination. Images 

were acquired using the inverted CLSM with UPLAPO 20x NA: 0.70 

objective lens. Filters were set to 488 nm for FITC to detect EPS. The EPS 
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production was determined by bioImage_L v2.1 software (Luis E. Chávez de 

Paz, Sweden). 

 

2.3.1.5 Statistical analysis 

 

Data were analyzed using 2-sample t-test (SPSS 20.0) after the Levene’s 

test confirming the homogeneity of variance. The statistical significance was 

set as P < 0.05. 

 

2.3.2 Effects of L. casei Shirota in liquid culture within 24h 

 

2.3.2.1 Bacteria culture 

 

Mid-exponential phase S. mutans (SM) and L. casei Shirota (LcS) cells 

were collected using aforementioned method. SM mono-culture and SM-LcS 

co-culture were incubated in 6 ml BHIS in a polypropylene centrifuge tube at 

37℃ in 5% CO2 for 24 h respectively. The same inoculation of 1x108 cfu/ml as 

that in above biofilm culture part (2.3.1) was used, in order to investigate the 

action of planktonic LcS in comparison with that in biofilm. 

 

2.3.2.2 Bacteria counting 
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During the incubation, 0.1ml culture in both groups was taken out at 0h, 

4h, 6h, 8h and 24h. After serial dilution, it was spread on the selective MS and 

MRS agar plates. The agar plates were cultured at 37℃ for 2 days.  

 

2.3.2.3 Statistical analysis 

 

Data were presented as mean ± SD of two independent experiments in 

triplicate and analyzed by 2 samples t test (SPSS 20). 

 

2.3.3 Dynamic changes in biofilm  

 

To observe the dynamic changes of SM and LcS in mono-culture and 

co-culture biofilms during days 1-7, FISH technique was applied and the 

biofilms were observed under CLSM. However, since the stimulated 

auto-fluorescence of enamel surface interfered with the fluorescence signal of 

biofilms in the pilot study, we chose not to use the BOT model. As SM biofilm 

could not grow more than 3 days on glass surface, a discovery made in our 

pilot study, we finally employed biofilm on 6-well plate model. The effects of 

LcS on SM biofilm was achieved using this model.  

 

2.3.3.1 Effects of LcS on 6-well plate model 
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Biofilm culture  

Mid-exponential phase of SM, S. sanguinis (SS), LcS and L. rhamnosus 

GG (LGG) were collected. SM mono-culture biofilm and SM-LcS, SM-SS, 

SM-LGG co-culture biofilms were cultured for 7 days. For SM group, S. 

mutans was cultured in 6ml BHIS with inoculation of 1x108 cfu/ml in the 

6-well plate. For SM-SS, SM-LcS, SM-LGG group, the inoculation of SM and 

SS, LcS and LGG were identical to that of the SM group. Fresh BHIS was 

replaced everyday.  

 

Morphology observation and acidogenicity measurement 

After 7 days of incubation, the spent culture was taken out from the 

wells and the biofilm morphology was observed. The pH of the spent culture 

and the biofilm was measured using the micro-touch method.  

 

Biofilm thickness 

The bottoms of the 6-well plate covered with biofilm were cut with the 

biofilm intact. LIVE/DEAD dye (Invitrogen, Eugene, Oregon, USA) was 

applied on biofilm surface before incubation in dark for 15 min. The biofilms 

were observed under inverted confocal laser scanning microscope (CLSM) 

(Olympus) as described in 2.1.5. The biofilm thickness was calculated 

according to the slice number in Z stack. 

 



 94

Statistical analysis 

Data were analyzed by using ANOVA with Tukey post hoc test (SPSS 20). 

The significance level was set as 0.05. 

 

2.3.3.2 Dynamic Changes in biofilm assessed by fluorescence in situ 

hybridisation (FISH) 

 

Biofilm culture 

SM and SM-LcS biofilms were cultured in 6-well plates as described 

above. In total, seven 6-well plates were prepared with each one composed of 

SM group and SM-LcS group (n = 3). After 1 day, one plate was taken out 

from the incubator and named as Day 1 (D1) biofilm. D2-7 biofilms were 

collected accordingly.  

 

Morphology observation and acidogenicity assessment 

The D1-D7 biofilm were observed after the spent culture was removed 

from the well. The pH of biofilm and spent culture was measured. The 

experiment was repeated once. Data were shown as mean ± SD of the two 

independent experiments performed in triplicate.  

 

Sample fix and pretreatment 

The biofilms were gently rinsed with ice cold PBS twice, then fixed with 
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4% PFA (Paraformaldehyde) at 4℃ overnight. After washing with PBS, the 

well bottoms covered with biofilm were cut from the plate with the biofilm 

intact. The biofilm cells were permeabilized with lysozyme solution 

(Sigma-Aldrich, St. Louis, Missouri, USA; 70,000 U/ml, 100 mM Tris-HCl, 

pH 7.5) for 15 min at 37℃. The biofilms were then dehydrated with 50%, 

80% and 96% ethanol for 3 min and left to dry at room temperature. 

  

Hybridization 

The synthesized oligonuleotide probes were purchased from Integrated 

DNA technologies, Singapore. The SM probe was MUT590 

(5’-Cy5-ACTCCAGACTTTCCTGAC-3’), and the LcS probe was Lcas467 

(5’-56-FAM-CCGTCACGCCGACAACAG-3’) (Quevedo et al., 2011). FISH 

was performed using a modification of the methods described in previous 

studies (Frojd et al., 2011; Klug et al., 2011; Marttinen et al., 2012b; Quevedo 

et al., 2011; Thurnheer et al., 2001). Briefly, cells on each well were exposed 

to 20 μl hybridization buffer containing 0.9 M NaCl, 20 mM Tris–HCl buffer, 

pH 7.5, with 0.01% sodium dodecyl sulfate (SDS) and 30% formamide, with 5 

ng/μl MUT590 and 15 ng/μl Lcas467. The biofilms were put in a 6-well plate, 

covered with a piece of paper-towel wet with 2 ml of hybridization buffer to 

equilibrate humidity before the plate was capped. After that, the 6-well plate 

was incubated at 46℃ for 2 h. After hybridization the biofilms were washed 

twice in washing buffer (280 mM NaCl, 5 mM EDTA, 20 mM Tris–HCl 
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buffer, pH 7.5, with 0.01% SDS) and incubated in washing buffer at 48℃ for 

15 min. The hybridization and washing were carried out in dark. The biofilms 

were washed in dH2O, and stored in -20℃ prior to observation under CLSM.   

 

Bacteria detection under CLSM  

The biofilms were laid on the cover slip with the surface against the glass. 

Images were acquired using the inverted CLSM with PLAPO 60xWLSM NA: 

1.00 objective lens. Filters were set to 488 nm for FAM to detect L. casei 

Shirota and 633 nm for Cy5 to detect S. mutans. The Z dimension was set as 1 

μm/slice. The bacteria biovolumes were determined by bioImage_L v2.1.  

 

Statistical analysis 

Data were analyzed using 2-sample t-test (SPSS 20.0). The statistical 

significance was set as P < 0.05. 

 

2.3.4 Gene Expression Analysis using Quantitative Reverse 

Transcription-Polymerase Chain Reaction (qRT-PCR) 

 

Total RNAs from the SM and SM-LcS biofilms (days 1-4) were extracted 

using the Hybrid RTM RNA extraction kit (GeneAll, Seoul, Korea). RNAs 

were treated with DNase I (Promega, Wisconsin, USA) prior to reverse 

transcription according to the manufacturer’s protocol. cDNAs were 
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synthesised using the iScript reverse transcription supermix (Bio-Rad, 

Hercules, California, USA). The resulting cDNAs were subjected to qRT-PCR 

using the SYBR Green PCR kit (Qiagen, Hilden, North Rhine-Westphalia, 

Germany). The primers used were gtfB (forward: 

5’-AGCAATGCAGCCAATCTACAAAT-3’; reverse: 

5’-ACGAACTTTGCCGTTATTGTCA-3’), gtfC (forward: 

5’-AAAGCAACGGATACAGGGGA-3’; reverse: 

5’-CTCTGTCATTGGTGTAGCGC-3’), ldh (forward: 

5’-CTTCCTCGTTGCTGCTAACC-3’; reverse: 

5’-TGGCATGAGACCATACTGCA-3’), and 16S rRNA (forward: 5’- 

CCTACGGGAGGCAGCAGTAG-3’; reverse: 

5’-CAACAGAGCTTTACGATCCGAAA-3’). The expression of the 

respective mRNAs was normalised to the relative abundance of the 

housekeeping gene 16S rRNA (Livak and Schmittgen, 2001).   

 

After performing Levene’s test to confirm the homogeneity of variance, 

data were analysed using a 2-sample t-test (SPSS 20.0) and analysis of 

variance (ANOVA) with Tukey’s post-hoc test. Statistical significance was set 

at p < 0.05. 
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PART 4: Effects of L. casei Shirota supernatant on S. mutans 

 

Yakult® is fermented probiotic milk which contains a suspension of live L. 

casei Shirota in a sugary skimmed milk-based medium. In addition to the 

investigation of the action of L. casei Shirota, it was important to evaluate the 

effects of its supernatant on S. mutans.  

 

2.4.1 L. casei Shirota growth kinetics 

 

L. casei Shirota overnight culture was adjusted to optical density (OD) 

0.05 at 600 nm in MRS and started to culture for 72 h. A volume of 100 μl L. 

casei Shirota culture was taken at different time points within 72 h. After serial 

dilution and plating on MRS agar plate, colonies forming units (cfu) was 

counted. The OD value of L. casei Shirota culture was measured, as well as 

the pH value of L. casei Shirota supernatant.  

 

2.4.2 Inhibition assay 

 

 Overnight cultured L. casei Shirota was grown for 12, 24, 30, 36, 48 and 

54 hours in MRS broth at 5% CO2 at 37℃. The cell free culture supernatant 

(CFCS) were obtained by centrifugation at 6,000 rpm for 30 min at 4℃. CFCS 

were sterilized through 0.22 µm-pore-size Millex GS filter units. L. casei 
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Shirota CFCS (2 ml) was mixed with 10 ml of S. mutans in BHI (0.4x108 

cfu/ml) at 37℃, and incubated for 8 h. MRS (pH was adjusted to that of the 

stationary phase of CFCS using 1 M HCl) was used as a control. The OD 

value at 600 nm was measured every 2 h by a spectrophotometer (UV-1700, 

Shimadzu, Japan). Data were expressed as mean ± SD of three independent 

experiments. 

 

2.4.3 Characterization of the inhibitory compounds 

 

pH sensitivity 

L. casei Shirota CFCS (pH 3.7) (2 ml) collected at 30 h time point was 

mixed with 10 ml of S. mutans in BHI (0.4x108 cfu/ml). The neutralized CFCS 

which was adjusted to 7.0 by 1M NaOH was also mixed with above S. mutans. 

Two groups of MRS (pH 3.7 and pH 7.0) were served as the controls. All the 

four groups were incubated at 37℃ for 12 h in a 5% CO2 incubator. A volume 

of 0.1 ml culture was collected every 2 h and cultured on the BHI agar plates 

after serial dilution. S. mutans colony forming unit was counted. Data were 

shown as mean ± SD of three independent experiments. 

 

Heat sensitivity 

L. casei Shirota CFCS at 30 h was autoclave-sterilized. Fresh CFCS and 

autoclaved CFCS, both 2 ml, were mixed into 10 ml of S. mutans culture 
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(0.4x108 cfu/ml) respectively. The growth of S. mutans with fresh CFCS or 

autoclaved CFCS was assessed every 2 h by measuring optical density over a 

10 hour duration. MRS (pH was adjusted to 3.7 with 1M HCl) was served as 

the control group. Data were shown as mean ± SD of two independent 

triplicate experiments. 

 

Stability 

L. casei Shirota CFCS at 30 h was stored at 4℃ for 3 months. Fresh 

CFCS and stored CFCS were added into S. mutans culture using the method 

described above. MRS (pH 3.7) was used as the control group. The optical 

density was measured every 2 h. Data were shown as mean ± SD of two 

independent triplicate experiments. 

 

2.4.4 Antimicrobial activity of L. casei Shirota CFCS crude extract  

 

L. casei Shirota CFCS was collected after centrifugation (4000 rpm, 30 

min), extracted with equal volume of ethyl acetate. The crude extract 

(hydrophobic phase) was dried using a rotary evaporator, then dissolved in 

methanol (200 fold concentrated). MRS broth was also extracted using the 

same method. The inhibition effect of L. casei Shirota CFCS crude extract was 

determined by agar well diffusion test. Agar wells (5 mm diameter) made in 

BHI plates were inoculated with 100 μl of S. mutans (0.4x108cfu/ml). A 
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volume of 5 μl CFCS crude extract, MRS crude extract and Ampicillin (200 

mg/l) were dropped into the wells. The agar plates were incubated at 37℃ for 

24 h.  

 

2.4.5 Statistical analysis 

 

Data were processed with SPSS20 and subjected to One-way ANOVA 

and Tukey post hoc test. The level of significance was set at P < 0.05. 
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Chapter 3:  

Results 

 

PART 1: Effects of Yakult® on S. mutans biofilm 

 

3.1.1 Biofilm morphology 

 

The 7-day-old biofilm in the Yakult group was thinner with a smooth 

surface, while in the milk and PBS group, the biofilm was obviously thick 

with a rough surface (Fig. 3.1).  

 

 

Fig. 3.1. Images of 7-day-old S. mutans biofilms on tooth surfaces after daily 
treatment with Yakult, PBS or milk.  
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3.1.2 Tooth-biofilm interface pH 

 

The pH of Yakult was 3.7. The milk and PBS were adjusted to pH 3.7 by 

adding lactic acid before treatment. After treatment, the tooth-biofilm interface 

pH in the Yakult, milk and PBS groups were measured as shown in Table 3.1. 

The pH in the Yakult group was 4.62 ± 0.04, significantly higher than those in 

the milk and PBS group, which was 4.45 ± 0.04 and 4.47 ± 0.03 respectively 

(both P < 0.001), while there was no significant difference between the milk 

and PBS group (P > 0.05). Biofilm acid production (concentration of [H+]) in 

the Yakult group was significantly less than that in the milk and PBS group by 

33.52% and 29.62% respectively. 

 

Table 3.1 Tooth-biofilm interface pH (Mean ± SD) in Yakult, milk and PBS 
groups                  

Groups (n = 6) 
Measurement 

Yakult Milk PBS 
Tooth-biofilm interface 

pH 
4.62 ± 0.04a 4.45 ± 0.04b 4.47 ± 0.03b 

[H+] in biofilm  
(1 x10-5mol/L) 

2.40 ± 0.19a 3.61 ± 0.37b 3.41 ± 0.28b 

Different letters indicate statistically significant difference for each 
measurement (P < 0.001). The experiment was repeated once with similar 
results. 

 

3.1.3 Biofilm thickness 

 

Biofilm thickness of the Yakult group was 32.67 μm, significantly thinner 

than milk group (52.67 μm) and PBS group (54.67 μm) (both P < 0.05) as 
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shown in Table 3.2. The biofilm in the Yakult group was 47.63% and 50.85% 

thinner than those in the milk and PBS groups respectively. 

 

Table 3.2 Biofilm thickness (μm) (mean ± SD) in Yakult, milk and PBS groups                 
Groups (n = 6) 

Measurement 
Yakult Milk PBS 

Biofilm thickness 29.33 ± 8.07a 56.00 ± 15.90b 59.67 ± 22.03b 
Different letters indicate statistically significant difference (P < 0.05). The 
experiment was repeated once with similar results. 

 

 

PART2: Effects of L. casei Shirota on S. mutans biofilm 

 

3.2.1 Stephan curve model of S. mutans biofilm 

 

The 7-day-old biofilms were taken out from the plate and neutralized in 

the artificial saliva to mimic the situation in oral cavity. After 30 min, the pH 

was stable at about 6-7 (Fig. 3.2). The pH value gradually dropped after 1 min 

of 10% sucrose rinse until it reached the lowest point and remained stable 

between 20-30 min (Fig. 3.3). When the biofilm was re-immersed in the 

artificial saliva, the pH increased and eventually stabilized at neutral pH (Fig. 

3.4). Hence, the typical artificial Stephan curve was plotted (Fig. 3.5). 
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Fig. 3.2. Recovery of the tooth-biofilm interface pH in artificial saliva. The pH 
was neutralized and stabilized at 6-7 after 30 minutes (n=3). The experiment 
was repeated twice with similar results. 

 

 

 
Fig. 3.3. Decrease in tooth-biofilm interface pH after 1-min of 10% sucrose 
rinse. The pH reached to a lowest point and was stable between 20-30min 
(n=3). The experiment was repeated twice with similar results. 
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Fig. 3.4. Recovery of tooth-biofilm interface pH in artificial saliva after 
sucrose challenge. The pH was recovered and reached stabilization at neutral 
pH within 10 minutes (n=3). The experiment was repeated twice with similar 
results. 

 

 
Fig. 3.5. Artificial Stephan curve of 7-day-old S. mutans biofilm. The 
tooth-biofilm interface pH dropped gradually to the lowest point after sucrose 
rinse at 20 min, and dramatically increased to the neutral pH within 10 min 
when re-immersed in artificial saliva. The experiment was repeated once with 
similar result (n=3). 
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3.2.2 Effects of L. casei Shirota on S. mutans biofilm and enamel 

demineralization  

 

3.2.2.1 Biofilm morphology 

 

As shown in Fig. 3.6, biofilms in the SM group on the tooth blocks were 

thick with rough surfaces, while biofilms in the SM-LcS group were thinner 

with smooth surfaces. 

 

 

Fig. 3.6. SM and SM-LcS biofilms on tooth surface after 7 days culture. SM 
mono-culture biofilms displaying rough surfaces were thicker than the smooth 
SM-LcS co-culture biofilms.  

 

3.2.2.2 Biofilm acidogenicity 

 

The tooth-biofilm pH of 7-day-old SM biofilm and SM-LcS biofilm were 

listed in Table 3.3. The pH of SM biofilm was 4.25 ± 0.03, significantly lower 
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than that of SM-LcS biofilm which was 4.73 ± 0.04 (P < 0.001). Significant 

differences were also found between the spent culture of the SM and SM-LcS 

groups (P < 0.001), and between the pH of the biofilm formed on the bottom 

of the 6-well plates in the two groups (P = 0.001). The acid production 

(concentration of [H+]) accumulated on the tooth surface dramatically 

decreased by 66.66% when L. casei Shirota was added into S. mutans biofilm.  

 

Table 3.3 pH values of tooth-biofilm interface, spent culture and  
biofilms formed on plates (mean ± SD) 

Groups (n = 4) 
Measurements 

SM SM-LcS 
P 

Tooth-biofilm interface pH 4.25 ± 0.03 4.73 ± 0.04 < 0.001 
[H+] in biofilm on tooth 
surface (1 x10-5 mol/L) 

5.64 ± 0.44 1.88 ± 0.16 < 0.001 

Spent culture pH 4.34 ± 0.04 4.75 ± 0.01 < 0.001 
pH of biofilm on the 6-well 

plate 
4.10 ± 0.10 4.39 ± 0.08 0.001 

 

3.2.2.3 Stephan curves  

 

The tooth-biofilm interface pH of the SM and SM-LcS biofilms increased 

to 6.62 ± 0.11 and 6.59 ± 0.14 respectively when neutralized in artificial saliva. 

After sucrose rinsing, the pH value gradually dropped and reached the lowest 

point after 20 minutes. The lowest pH was 4.90 ± 0.10 in the SM group, lower 

than the 5.46 ± 0.19 in the SM-LcS group (P = 0.002). The pH returned back 

to 6.32 ± 0.03 and 6.95 ± 0.22 in the SM and SM-LcS group respectively after 

immersion in the artificial saliva for 9 min. The biofilm pH changes from day 
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1 to 7 during culture and the Stephan curves were plotted as shown in Fig. 3.7. 

The recovery time in the SM-LcS group (1.75 ± 2.02 min) was 86% shorter 

than that in the SM group (12.75 ± 1.55 min) (P < 0.001). The AUC in the 

SM-LcS group was significantly lower than that in the SM biofilm by 94.25% 

(P = 0.012) (Table 3.4).  

 

 
Fig. 3.7. Comparison of biofilm pH changes and Stephan curves of SM and 
SM-LcS biofilms. On Day 1 (D1), the tooth samples were incubated in media 
with same neutral pH. The biofilm pH dropped to below 5 on Day 7 (D7), and 
recovered back to neutral in artificial saliva. After 1 min sucrose rinsing, the 
Stephan curves were plotted. The pink area under pH 5.5 indicates the area 
under curve (AUC) of the SM-LcS biofilm. The total area of blue and pink 
under pH 5.5 indicates the AUC of the SM biofilm. The experiment was 
repeated once with similar results (n = 4). 
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Table 3.4 Comparison of the features of Stephan curves between SM and 
SM-LcS biofilms (mean ± SD) 

Groups (n = 4) 
Outcome 

SM SM-LcS 
P 

Lowest pH 4.90 ± 0.10 5.46 ± 0.19 0.002 
Recovery time 

(min) 
12.75 ± 1.55 1.75 ± 2.02 < 0.001 

AUC 22417.25 ± 8159.95 1289.00 ± 1750.32 0.012 
The experiment was repeated once with similar results. 

 

3.2.2.4 Lesion depth 

 

The lesion was formed underneath biofilm due to the acid production 

accumulated on the tooth surface. There was no obvious lesion underneath the 

varnish as shown in Fig. 3.8. The lesion appeared as a dark layer under the 

enamel surface. Fig. 3.9 showed the lesion boxes selected for the calculation 

of lesion depth. The enamel lesion was 83.11 ± 10.91μm deep in the SM-LcS 

group, significantly less than that in the SM group which was 128.25 ± 

3.65μm (P = 0.002) (Fig. 3.10, table 3.5). The lesion reduction was 35.20%.  

 

 
Fig. 3.8. Tooth section with enamel lesion observed under PLM. The teeth 
were sectioned (120 μm thick) after the removal of biofilm and varnish. The 
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lesion appeared as a dark layer underneath the exposed enamel surface, while 
no lesion underneath the varnished enamel surface.  

 

 

Fig. 3.9. Representative boxes selected in the enamel lesion of the tooth 
section. The boxes were 200 µm in width.  

 

 

 

Fig. 3.10. Enamel lesions under the SM biofilm (a) and the SM-LcS biofilm 
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(b). The lesion appeared as a dark layer on the tooth surface. The lesion under 
the SM biofilm was significantly deeper than that under the SM-LcS biofilm 
(P = 0.002). 

 

 

Table 3.5 Enamel lesion depth underneath the SM and SM-LcS biofilms (mean 
± SD) 

Groups (n = 4) 
Outcome 

SM SM-LcS 

Percentage 
of lesion 
reduction 

(%) * 

P 

Lesion 
depth (μm) 

128.25 ± 3.65 83.11 ± 10.91 35.20% 0.002** 

* Percentage of lesion reduction was expressed as the ratio of the difference to 
the value of SM group. 
** Homogeneity of variance was confirmed by the Levene’s test 
(P>0.05) 
The experiment was repeated once with similar results. 

 

 

3.2.3 Effects of other bacteria on the acidogenicity of S. mutans biofilm 

 

3.2.3.1 Biofilm morphology 

 

As shown in Fig. 3.11, the biofilms in the SM and SM-SS groups were 

thicker than those in the SM-LcS and SM-LGG groups. SM and SM-SS 

biofilms displayed rough surfaces, while SM-LcS and SM-LGG biofilms 

showed smooth surfaces.  
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Fig. 3.11. SM, SM-SS, SM-LcS, SM-LGG biofilms formed on the tooth 
surface after 7 days culture.  

 

3.2.3.2 Acidogenicity 

 

    The tooth-biofilm pH values of the four groups of biofilms and the lowest 

pH values after sucrose rinse are shown in Table 3.6. The tooth-biofilm 

interface pH in the SM and SM-SS groups were significantly lower than those 

in the SM-LcS and SM-LGG groups. The pH value of the SM biofilm was not 
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statistically different from that of the SM-SS biofilm (P > 0.05). Similarly, the 

pH value of the SM-LcS biofilm was also not different from that of the 

SM-LGG biofilm (P > 0.05). 

 

Table 3.6 Tooth-biofilm interface pH and the lowest pH after sucrose rinse 
 in different co-culture biofilms  

Groups (n = 3) Outcome 
(mean ± SD) SM SM-SS SM-LcS SM-LGG 
Tooth-biofilm 
interface pH  

4.48 ± 0.02a 4.45 ± 0.04a 4.83 ± 0.05b 4.58 ± 0.04b 

Lowest pH 5.32 ± 0.18a 5.42 ± 0.01a 5.87 ± 0.03b 5.77 ± 0.22b 
Different letters indicate statistically significant difference for each outcome 

(P < 0.01) 

 

The Stephan curves of the four groups of biofilms are shown in Fig. 3.12. 

The Stephan curve of the SM biofilm was similar to that of the SM-SS biofilm. 

The SM-LcS and SM-LGG biofilms also had the similar curve shape. The 

lowest pH of the SM and SM-SS groups were 5.32 ± 0.18 and 5.42 ± 0.01 

respectively, while the SM-LcS and SM-LGG groups had significantly higher 

lowest pH values of 5.87 ± 0.03 and 5.77 ± 0.22 respectively. The SM-LcS 

and SM-LGG biofilm pH did not drop below 5.5 after 1 min of sucrose rinsing; 

hence it was not meaningful to calculate the recovery time and AUC. 

Nevertheless, the SM-LcS and SM-LGG biofilms showed the decreased 

acidogenicity than the SM and SM-SS biofilms. 
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Fig. 3.12. Stephan curves of the 7-day-old SM, SM-SS, SM-LcS and SM-LGG 
biofilms. The experiment was repeated once with similar results (n = 3). 

 

 

PART 3: Modes of action of L. casei Shirota on S. mutans 

 

3.3.1 Effects of L. casei Shirota on S. mutans biofilm within 24 h 

 

3.3.1.1 Bacteria counting 

 

S. mutans and L. casei Shirota counts (cfu/ml) in the 24h SM 

mono-culture and SM-LcS co-culture biofilms are shown in Fig. 3.13. S. 

mutans counts in the co-culture showed an increasing trend compared to those 

in the mono-culture biofilm, but the difference was not significant (P = 0.371). 

L. casei Shirota hardly formed mono-culture LcS biofilm. Its counts in the 

co-culture biofilm was significantly greater than that in the mono-culture LcS 
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biofilm (P = 0.001).  

 

 
Fig. 3.13. S. mutans and L. casei Shirota counts in the mono-culture and 
co-culture biofilms. (a) S. mutans counts in SM and SM-LcS biofilms. (b) L. 
casei Shirota counts in LcS and SM-LcS biofilms. The experiment was 
performed 3 times in triplicate (**P < 0.01). 

  

3.3.1.2 Biofilm structure under SEM 

 

As shown in Fig. 3.14, the SM biofilm was firm with more extracellular 

matrix in the biofilm, while the SM-LcS biofilm displayed less extracellular 

matrix. 

 

 
Fig. 3.14. SEM images of the 24h SM and SM-LcS biofilm. Images were 
obtained at a 1,000 x magnification.  
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3.3.1.3 EPS production 

 

The SM biofilm contained more EPS matrix than the SM-LcS biofilm. 

EPS clustered to form microcolonies in the SM biofilm, while the formation of 

microcolonies was impaired in the SM-LcS biofilm, with sparse and scattered 

EPS (Fig. 3.15a). The quantification of the biovolume of the stained EPS using 

a CLSM indicated that the EPS production in the SM-LcS biofilm was 

significantly lower than that in the SM biofilm (P = 0.037) (Fig. 3.15b). 

 

 

 

Fig. 3.15. EPS in the 24 h SM and SM-LcS biofilms. (a) EPS in the biofilms 
were stained with FITC-conA (green). (b) Staining EPS biovolume was 
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quantified (n=9) (*P < 0.05). 

 

3.3.2 Effect of L. casei Shirota on S. mutans liquid culture within 24 h 

 

In order to investigate if L. casei Shirota acted differently in liquid culture 

in comparison to biofilm culture, SM and LcS were co-cultured in a centrifuge 

tube, which prevented biofilm formation, with the same inoculation as in 

previous biofilm culture. As shown in Fig. 3.16, there was no difference of S. 

mutans cfu between the SM mono-culture and SM-LcS co-culture during 0 – 

24 h (all P > 0.05).   

 

 
Fig. 3.16. S. mutans growth in the SM and SM-LcS liquid culture within 24 h. 
Data were expressed as the mean ± SD (log cfu/ml) of two independent 
experiments in triplicate. 
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3.3.3 Dynamic changes in biofilms  

 

3.3.3.1 Effects of LcS on 6-well plate model 

 

The biofilms in the SM and SM-SS groups showed rough surfaces, while 

the SM-LcS and SM-LGG biofilms were smooth as shown in Fig. 3.17.  

 
Fig. 3.17. SM mono-culture biofilm and SM-SS, SM-LcS, SM-LGG 
co-culture biofilms on the 6-well plates.    

 

The pH values of the four groups of biofilms are shown in Table 3.7. 

SM-LcS and SM-LGG biofilms presented significantly higher pH values than 

SM and SM-SS biofilms. No difference was found between the SM and 

SM-SS groups, and between the SM-LcS and SM-LGG groups (both P > 

0.05).  

 

Table 3.7 Biofilm pH in the SM, SM-SS, SM-LcS and SM-LGG groups  
(mean ± SD) 

Groups (n = 3) 
Measurement 

SM SM-SS SM-LCS SM-LGG 

Biofilm pH 4.251 ± 0.037a 4.210 ± 0.047a 4.429 ± 0.020b 4.413 ± 0.034b 

Different letters indicate statistically significant difference (P < 0.01) 
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    SM and SM-SS biofilms were thicker than the SM-LcS and SM-LGG 

biofilms. The thickness is shown in Fig. 3.18. 

 

 

 
Fig. 3.18. Biofilm thickness in the SM, SM-SS, SM-LcS and SM-LGG groups 
(n = 3) (*P < 0.05).  

 

 

3.3.3.2 Dynamic changes in biofilms assessed by fluorescence in situ 

hybridisation (FISH) 

 

3.3.3.2.1 Acidogenicity 

The pH values of the biofilms and their changes over a 7 day period are 

shown in Fig. 3.19. The pH of the SM biofilm was higher than that of the 

SM-LcS biofilm after 1 day culture, but the difference was not significant (P > 

0.05). The pH of the D2 SM biofilm continuously increased while the D2 

SM-LcS biofilm pH was the same as that of the D1 biofilm (P < 0.05). 
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However, at D3 and onwards, the SM biofilm pH was lower than that of the 

SM-LcS biofilm (all P < 0.05).  

 

 

Fig. 3.19. Dynamic changes of pH in SM and SM-LcS biofilms from days 1 to 
7. Data were mean ± SD of two independent experiments in triplicate. * P < 
0.05; ** P < 0.01 when SM-LcS was compared to SM. 

 

3.3.3.2.2 Biovolumes of S. mutans and L. casei Shirota 

S. mutans was detected by the specific probe MUT590 which showed red 

color. L. casei Shirota was labeled by Lcas467 showing green color. Fig. 3.20 

showed the D1 and D7 SM and SM-LcS biofilm 3D structure under CLSM.  
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Fig. 3.20. D1 and D7 SM and SM-LcS biofilms under CLSM (Z projectional 
view). S. mutans was labeled by Cy5 showing the red color, and L. casei 
Shirota was labeled by FAM showing green light.  

 

The biovolume change of S. mutans during 1-7 day culture is shown in 

Table 3.8 and Fig. 3.21. On the first day, S. mutans in the SM-LcS co-culture 

biofilm was a little more than that in the SM mono-culture biofilm, but the 

difference was not significant (P = 0.414). However, S. mutans in the D2 

SM-LcS biofilm was significantly greater than that in the D2 SM biofilm (P = 

0.039). From D3, S. mutans in the mono-culture SM biofilm gradually 

increased while that in the co-culture SM-LcS biofilm remained at a similar 
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level to that in the first two days. 

 

Table 3.8 S. mutans biovolume in the D1-7 SM and SM-LcS biofilms (n=6) 
S. mutans biovolume (μm3) 

Days 
SM biofilm SM-LcS biofilm 

P 

1 746 ± 358 1515 ± 1418 0.414 
2 757 ± 305 2152 ± 740 0.039 
3 2633 ± 463 2037 ± 781 0.348 
4 5040 ± 2382 1379 ± 1103 0.145 
5 6136 ± 3288 1127 ± 567 0.135 
6 11120 ± 4339 789 ± 491 0.052 
7 12121 ± 3672 2685 ± 1718 0.006 

 

 
Fig. 3.21. Dynamic changes of S. mutans and L. casei Shirota biovolumes in 
biofilms. SM-mo: SM in SM mono-culture biofilm; SM-co: SM in SM-LcS 
co-culture biofilm; LcS-co: LcS in SM-LcS co-culture biofilm (n=6). * P < 0.05, 
** P < 0.01 when SM-co was compared to SM-mo. 

 

3.3.4 Gene expression analysis using qRT-PCR 

 

The expression of gtfB, gtfC, and ldh in SM significantly decreased in the 

presence of LcS on D1, D3, and D4 (all P < 0.05) (Fig. 3.22). However, the 
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changes in the expression of gtfB, gtfC, and ldh on D2 did not reach statistical 

significance (all P > 0.05). 

 

 

Fig. 3.22. Effects of LcS on the expression of gtfB, gtfC and ldh in SM in 
biofilm. Gene expression was determined by qRT-PCR in days 1-4 SM and 
SM-LcS biofilms. Expression of the respective mRNAs was normalized to the 
relative abundance of the housekeeping gene 16S rRNA. The experiment was 
performed twice in triplicate. Data were expressed as mean ± SD (* P < 0.05, ** 
P < 0.01).  

 

 

PART4: Antimicrobial effect of L. casei Shirota supernatant 

 

3.4.1 L. casei Shirota growth kinetics 

 

As shown in Fig. 3.23 (a), the exponential phase of L. casei Shirota 
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growth curve was from the 4th hour to the 24th hour, and the stationary phase 

was from the 24th hour to the 48th hour. Cells death was after the 48 h culture. 

Fig. 3.23 (b) is the optical density curve of L. casei Shirota culture, which was 

in accordance with the growth curve in Fig. 3.23(a). The pH values of L. casei 

Shirota CFCS at the different time points are shown in Fig. 3.24. The pH of 

CFCS at 12 h (the exponential phase) was 4.3, and it remained at 3.7 when the 

cells grew to the stationary phase (after 24h).  

 

 

Fig. 3.23. Growth curve of L. casei Shirota. (a) L. casei Shirota cfu in 0- 72 
hours culture. (b) L. casei Shirota OD values in 0-50 h culture. Data were 
shown as mean ± SD of two independent experiments performed in triplicate. 
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Fig. 3.24. pH curve of L. casei Shirota culture. Data were shown as mean ± 
SD of three independent experiments in triplicate. 

 

3.4.2 Inhibition assay 

 

L. casei Shirota CFCS at different growth phase (12 h, 24 h, 30 h, 36 h, 

48 h, and 54 h) were collected and cultured with S. mutans. As pH at 12 h 

CFCS was 4.3, and pH at 24 – 54 h CFCS were 3.7, MRS was adjusted to pH 

3.7 with 1 M HCl (named MRS-HCl), served as a control. Fig. 3.25 illustrated 

that the 12 h CFCS did not show inhibitory effect on S. mutans growth, 

compared with the control MRS-HCl group (P > 0.05). However, CFCS after 

the stationary phase (24 h, 30 h, 36 h, 48 h and 54 h CFCS) significantly 

inhibited the growth of S. mutans (all P < 0.01). Meanwhile, there was no 

difference among the above CFCS groups after stationary phase (P > 0.05).  
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Fig. 3.25. Antimicrobial effect of L. casei Shirota CFCS. L. casei Shirota 
CFCS collected at different time points was cultured with S. mutans for 8 
hours. Data were shown as mean ± SD of three independent experiments. 

 

 

3.4.3 Characterization of the inhibitory compounds  

 

pH sensitivity   

Acidic L. casei Shirota CFCS significantly inhibited the growth of S. 

mutans, while neutralized CFCS did not (Fig. 3.26). No significant difference 

was found among MRS 3.7 (pH was adjusted to 3.7 with 1 M HCl), MRS 7 

and CFCS 7 (pH was adjusted to 7 with 1 M NaOH) groups (all P>0.05).  
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Fig. 3.26. Effect of pH on the antimicrobial activity of L. casei Shirota CFCS. 
Data were shown at mean ± SD of three independent experiments in triplicate. 
(** P < 0.01) 

 

 

Heat resistance 

The pH of the autoclaved L. casei Shirota CFCS was 3.7, same as that of 

the fresh CFCS. We found that both autoclaved CFCS and fresh CFCS 

significantly inhibited the growth of S. mutans in comparison to the control 

MRS-HCl group (all P < 0.01) (Fig. 3.27). Moreover, no difference was found 

between autoclaved CFCS and fresh CFCS (P > 0.05). This result indicated 

that the antimicrobial effect of L. casei Shirota CFCS was heat resistant.  
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Fig. 3.27 Effect of heat on the antimicrobial activity of L. casei Shirota CFCS. 
Data were shown as mean ± SD of two independent experiments performed in 
triplicate (** both P < 0.01 when compared to MRS-HCl). 

 

 

Stability 

It is shown in Fig. 3.28 that there was no significant difference between 

stored L. casei Shirota CFCS (3 months) and fresh CFCS (P > 0.05). Both of 

them exhibited the inhibitory effect on S. mutans growth (P < 0.01).  

 
Fig. 3.28. Stability of the antimicrobial activity of L. casei Shirota CFCS. Data 
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were shown as mean ± SD of two independent experiments performed in 
triplicate (** P < 0.01 when compared to MRS-HCl). 

 

 

3.4.4 Antimicrobial activity of L. casei Shirota CFCS crude extract 

 

L. casei Shirota CFCS crude extract showed inhibition zone (19.5 ± 1.32 

mm) on S. mutans BHI agar plate while MRS crude extract did not show any 

effect (Fig. 3.29).   

 

   
Fig. 3.29. Agar inhibition test for L. casei Shirota CFCS crude extract. 
Inhibition zones were found around CFCS crude extract and Ampicillin 
(Amp).  
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Chapter 4:  

Discussion and Conclusions 

 

4.1 Discussion 

 

4.1.1 S. mutans biofilm-on-tooth (BOT) model 

 

S. mutans is one of the most cariogenic bacteria in oral cavity due to its 

high acidogenicity, acid tolerance and its ability to utilize sucrose to form 

biofilm. Hence, it is important to investigate the effects of probiotic milk on S. 

mutans biofilm. In our study, S. mutans biofilm-on-tooth (BOT) model was 

developed. S. mutans biofilm was cultured on tooth surface which was coated 

with human saliva. Our model was further built on that of Arnold WH’s study 

(Arnold et al., 2001; Arnold et al., 2006) except the changes of the size and 

shape of tooth blocks. The BOT model was validated in this study, showing 

the difference of biofilm formation and acidogenicity upon different treatments. 

Therefore, this model is sufficiently sensitive to evaluate the anti-cariostatic 

effect of Yakult® in terms of inhibition on S. mutans biofilm.  

 

4.1.2 Probiotic drink and the cariostatic effect 

 

Different types of milk have been studied for their effects on biofilm 
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formation, composition, acidogenicity, acid tolerance and tooth 

demineralization, including infant formula and fluoride milk. An in situ study 

was conducted with 11 volunteers wearing palatal appliance containing human 

enamel slab treated with different types of formulas (milk-based and soy-based) 

8 times everyday (de Mazer Papa et al., 2010). The results showed that the 

infant formula induced the enamel mineral loss with decreased biofilm pH, 

especially when added with sucrose. The fermentation of the carbohydrates 

present in the formula resulted in acid production that decreased biofilm pH, 

which led to tooth demineralization. Fluoride milk has demonstrated 

anti-caries effect by increasing the biofilm pH (Pratten et al., 2000), decreasing 

acid tolerance (Neilands et al., 2012) of biofilm, and reducing Streptococcus 

mutans count in biofilm (Pratten et al., 2000). Fluoride milk also inhibited the 

demineralization formed by S. sobrinus biofilm on tooth surface (Arnold et al., 

2006). Taken together, milk as a common nutrient may increase the bacteria 

metabolism and the subsequent demineralization, but milk supplemented with 

fluoride exhibits anti-caries effect.  

 

Probiotic milk is the milk supplemented with the probiotic strains. There 

are more than 20 clinical trials demonstrating that consumption of probiotic 

products, including probiotic milk or yogurt and others, decreased the mutans 

streptococci in dental plaque and saliva, as summarized in literature review. 

The study of probiotics on acid production of dental plaque is limited. Keller 



 135

and Twetman found that in the presence of L. reuteri dental plaque produced 

less lactic acid compared with that in presence of L. plantarum and the blank 

control, thus this effect was species dependent (Keller and Twetman, 2012a). 

However, in their clinical study, there was no significant difference in lactic 

acid concentration between the groups with and without probiotic lactobacilli 

tablets treatment for 2 weeks. Marttinen et al. investigated 13 volunteers who 

consumed probiotic tablets for 2 weeks, also found no difference on acid 

production in plaque between the experimental and control groups (Marttinen 

et al., 2012a).  From the above two studies, the short term probiotic treatment 

did not appear to affect acidogenicity of dental plaque.  

 

In Part 1 of this study, the S. mutans biofilm was treated with Yakult® for 

30 minutes every day to mimic the duration of effective contact with the oral 

cavity during and after drinking. The biofilm acidogenicity in the Yakult group 

decreased, displaying a higher resting pH value, which suggested the possible 

cariostatic effect of this probiotic drink (Table 3.1). The more pronounced 

effect revealed in in vitro studies compared to those in the clinical trials could 

be due to the complex dental plaque microflora and the oral environment. The 

interesting phenomenon observed in this study was the effect on biofilm 

formation. S. mutans biofilm in the PBS group was significantly thicker (51%) 

than that in the Yakult group (Table 3.2). The decreased acidogenicity was 

related to the decreased biofilm thickness which suggested the less bacteria 
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counts in the biofilm.  

 

Probiotic Lactobacillus strains produce lactic acid, which leads to the low 

pH of probiotic drinks. In this study, the fresh milk and PBS were adjusted to 

3.7 (the same pH of Yakult®) by adding lactic acid. Hence, the inhibitory effect 

of Yakult® may not be due to its low pH alone to suppress S. mutans growth. 

The difference between the Yakult group and acidic milk group also suggested 

that the cariostatic effect of Yakult® could not be due to the main nutrient in 

the probiotic milk, but largely caused by the probiotic strain L. casei Shirota. 

To date, there is no study reported the potential effects of L. casei Shirota on S. 

mutans. Our study suggested the cariostatic effect of Yakult® on S. mutans 

may possibly be due to the probiotic strain L. casei Shirota.   

 

4.1.3 Artificial Stephan curve in BOT model 

 

In Part 1 of this study, it was demonstrated that the treatment of probiotic 

milk Yakult® could inhibit S. mutans biofilm formation and decrease biofilm 

acidogenicity possibly due to the probiotic strain L. casei Shirota. In order to 

verify the speculation, the effect of L. casei Shirota on the biofilm 

acidogenicity of S. mutans was evaluated in Part 2. The classic Stephan curve 

profiling the pH of dental plaque in response to sugar is often used to assess 

the acidogenicity of dental plaque (Imfeld T, 1980; Preston and Edgar, 2005). 
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As aforementioned, the in vitro BOT model was used in this part.  

 

The characteristic Stephan curve has been of interest for nearly 70 years 

(R.M., 1944). However, there are only a few studies reporting the in vitro 

Stephan curve model so far (Lagerlöf et al., 1984; Macpherson et al., 1991; 

Macpherson and Dawes, 1991). These studies had investigated the salivary 

buffering capacity in artificial plaque after the sucrose rinse, using an 

apparatus in which artificial saliva flowed over the plaque. In our study the 

artificial Stephan curve was plotted on BOT model to observe the pH lowering 

potential and trend. To prevent the biofilm drying in air, the tooth sample 

covered with biofilm was kept in a humidity chamber before pH 

measurements. The findings showed that it is feasible to profile the “artificial 

Stephan curve” of 7-day-old biofilm using the aforementioned methodology. 

In our model, the Stephan curve is composed of a slow pH decreasing phase 

and a fast increasing phase before reaching the neutral. Although it is different 

from the classic Stephan curve which has a fast decreasing and a slow 

increasing phase (R.M., 1944), this special characteristic of our BOT model 

makes it easy to quantify the acidogenicity of different biofilms.      

 

4.1.4 Acidogenicity of dental plaque and caries formation 

 

The acidogenicity of dental plaque is critical for caries development. 
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Some studies have demonstrated that the initial pH of plaque from the “white 

spot” areas was lower than that from the “sound surface” after a sucrose rinse 

(Lagerlöf et al., 1985; Lingström et al., 2000; Sansone et al., 1993; Van Houte 

et al., 1991). Furthermore, the plaque pH was found to be significantly 

different between high caries risk subjects and low caries risk subjects (Cagetti 

et al., 2011; Lingström et al., 2000). The relationship between acidogenic 

potential of human dental plaque and its microbial composition remains a 

complex issue. It is indicated that increasing cariogenicity is usually 

accompanied with significant changes in the plaque microbial composition 

favoring highly acidogenic and aciduic bacteria, especially the predominance 

of mutans streptococci (MS) and lactobacilli (Marsh, 2006). However, 

Fejerskov et al. reported that there was no difference in the pH response after 

sucrose rinse on sound surfaces of caries active and inactive Kenya children, 

but significant differences in the Stephan curves between active occlusal caries 

lesions and sound occlusal surfaces were found (Fejerskov et al., 1992). Some 

studies reported no difference in the plaque pH responses (Stephan curve) 

between sound and carious root surfaces (Aamdal-Scheie et al., 1996), or no 

differences between caries active and inactive subjects (Sansone et al., 1993). 

These seemingly controversial data may be due to the way plaque pH was 

measured and how caries active individuals were defined. As every tooth of 

the same individual may exhibit different caries risk, a high caries risk patient 

may have a low risk tooth and/or site-specific biofilm, such as the lower 
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anterior incisors. In this study, we found that the pH of the SM-LcS biofilm 

was higher than that of the SM biofilm (Table 3.3). Moreover, the Stephan 

curve of SM-LcS biofilm was significant different with that of SM biofilm 

(Fig. 3.7). Not only the lowest pH, but the recovery time and area under curve, 

suggested the decreased acidogenicity of SM-LcS biofilm in comparison with 

SM biofilm (Table 3.4). Subsequently, the enamel lesion under the SM-LcS 

biofilm was significantly less than that under the SM biofilm (Table 3.5). The 

results further substantiate the association between biofilm acidogenicity and 

enamel lesion development.     

 

4.1.5 Lactobacillus and oral pathogenic bacteria 

 

Some studies have shown the inhibitory effect of lactobacilli against S. 

mutans, S. sobrinus and candida (Hasslof et al., 2010; Simark-Mattsson et al., 

2009; Sookkhee et al., 2001). This inhibitory effect could be due to a variety of 

antibacterial substances produced by Lactobacillus strains, including organic 

acids (e.g. lactic acid) (Taniguchi et al., 1998), hydrogen peroxide (Sookkhee 

et al., 2001; Tano et al., 2003b) and bacteriocins (de Carvalho et al., 2006; 

Sookkhee et al., 2001). Furthermore, it was reported that L. rhamnosus GG, L. 

reuteri and L. plantarum greatly inhibited S. mutans biofilm formation in vitro, 

probably through the decreased adhesion or viable counts of S. mutans 

(Söderling et al., 2011b). A few clinical studies have illustrated that MS counts 
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decreased in saliva and caries risk decreased after consumption of 

lactobacilli-derived probiotics, as reported in a review (Twetman and Keller, 

2012). However, one conceivable risk of probiotic lactobacilli application to 

oral health is caries development, which may be promoted by lactic acids 

produced by lactobacilli. Only a few studies have investigated the acid 

production in biofilm by probiotic treatment. Interestingly, Keller et al. found 

that in the presence of L. reuteri dental plaque produced less lactic acid 

compared with that in the presence of L. plantarum and the blank control, and 

thus this effect was species dependent (Keller and Twetman, 2012b). However, 

in their clinical study, no significant difference in lactic acid concentration 

between groups with and without consumption of probiotic lactobacilli tablets, 

supporting the findings of Marttinen’s (Marttinen et al., 2012a). Marttinen et 

al. reported there was no difference of the lactic acid production and MS 

levels in plaque suspension at the baseline and the end of probiotic tablet 

taking period. In their study, all the subjects had good oral hygiene with low 

DMFT (decayed, missing, filled teeth) score. The caries risk level of the 

subjects may account for the above conflicting observations between 

laboratory and clinical results.   

 

It is quite interesting that the current successful probiotic lactobacilli are 

originally isolated from human body (Saarela et al., 2000). It was suggested 

that a probiotic strain could function better in a similar environment to where 
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it was originally isolated from, e.g. human GI-tract (Saarela et al., 2000). 

However, the association between oral lactobacilli and caries was reported, 

especially in root caries and deep dentinal caries (Ayna et al., 2003; Beighton 

and Lynch, 1995; Brown et al., 1986; Callaway et al., 2013; Preza et al., 2008). 

They are now considered secondary invaders rather than initiators of the caries 

process (Tanzer et al., 2001). The contradiction of probiotic effect and 

cariogenic effect of lactobacilli highlights the need for more research to 

evaluate the different roles of different oral Lactobacillus species play in oral 

cavity. 

 

4.1.6 Effects of L. casei Shirota on S. mutans biofilm formation and 

acidogenicity 

 

 L. casei Shirota is a special Lactobacillus strain isolated from Yakult®, a 

sweet acidic probiotic milk. It has been demonstrated the anti-infectious 

activities, such as preventing diarrhea, protecting intestinal epithelial and 

immune cells from virus infection, and modulating immune response (Ivory et 

al., 2008; Sur et al., 2011). However, only a few studies have reported the 

interaction of Yakult® or L. casei Shirota with oral bacteria or caries so far. 

One study compared the effect of Yakult® and 20% sucrose solution treatment 

on enamel demineralization. Less mineral loss was found in the Yakult group, 

although both of the two treatments reduced biofilm pH (Lodi et al., 2010). 
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The other study revealed that L. casei Shirota had some but low colonizing 

potential on artificial carious dentin surface (Lima et al., 2005). These studies 

suggested the possible cariogenic potential of Yakult® and L. casei Shirota. 

However, in our study (Part 2), although S. mutans and L. casei Shirota are 

both acid-producing bacteria, the co-culture biofilm counter-intuitively 

exhibited a higher resting pH and less acidogenicity than those of the S. 

mutans mono-culture biofilm (Table 3.3). These results are in line with 

Keller’s findings, and demonstrated the cariostatic effect of the specific 

probiotic bacteria. The pH of spent culture and the biofilm formed on the 

bottom of 6-well plate also showed significant difference between the SM and 

SM-LcS groups (Table 3.3), supporting the inhibitory effect of LcS on SM 

biofilm acid production. As L. casei Shirota can barely form biofilm on the 

tooth surface, it is impossible to establish the 7d LcS mono-culture group as 

the control. However, the comparison of SM biofilm with SM-SS and 

SM-LGG biofilms verified the cariostatic effect of probiotic strains. S. 

sanguinis is one of the first colonizers in oral cavity, so the co-culture of S. 

mutans and S. sanguinis was used as a control. We also used LGG as another 

control as L. rhamnosus GG is a widely used probiotic strain. The cariostatic 

effect of LGG has been demonstrated in several clinical trials, showing the 

decreased salivary mutans streptococci and less caries prevalence (Ahola et al., 

2002; Glavina et al., 2012; Nase et al., 2001). Our results (Fig. 3.11 & Table 

3.6) revealed that both the SM and SM-SS biofilms formed thicker biofilm and 
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displayed higher acidogenicity than SM-LcS and SM-LGG biofilms. Hence, it 

is concluded that the inhibitory effect of L. casei Shirota may not be due to the 

decreased nutrient for co-culturing, but the special cariostatic effect of 

probiotic strains. The significant difference in acid production of S. mutans 

biofilm with and without L. casei Shirota has shed light on the cariostatic 

mechanisms of the probiotic drink. In conclusion, L. casei Shirota is promising 

in reducing the acidogenicity of S. mutans biofilm, and thus inhibiting enamel 

demineralization.  

 

4.1.7 Effects of L. casei Shirota on S. mutans growth within 24 hours 

 

In order to investigate the effect of L. casei Shirota on S. mutans 

adherence, S. mutans and L. casei Shirota colonies forming units (cfu) in 24h 

mono-culture and co-culture biofilm were evaluated in Part 3. The results 

showed that S. mutans increased a little when L. casei Shirota was co-cultured 

in the biofilm, but the difference was not significant (Fig. 3.13a). L. casei 

Shirota did not inhibit S. mutans growth in biofilm. On the contrary, L. casei 

Shirota counts significantly increased in the co-culture biofilm than in the L. 

casei Shirota mono-culture biofilm (Fig. 3.13b). L. casei Shirota hardly form 

biofilm, but S. mutans produces GTFs which can bind to other microorganisms 

(Hamada et al., 1978; McCabe and Donkersloot, 1977; Vacca-Smith and 

Bowen, 1998). Thus L. casei Shirota also became “glucans producer”, which 
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enhanced its adherence into biofilm. These findings are in accordance with our 

observation for S. mutans counts in D1 biofilm using FISH technique (Table 

3.8 & Fig. 3.21). The same finding was also found in the liquid co-culture, 

showing no difference of S. mutans counts when cultured with L. casei Shirota 

within 24 h (Fig. 3.16). Taken the results together, L. casei Shirota can not 

inhibit S. mutans growth both in biofilm and liquid culture within the first 24 

hours.  

 

4.1.8 Effects of L. casei Shirota on S. mutans EPS production  

 

Although S. mutans counts in the 24 h SM-LcS co-culture did not change 

significantly in comparison to SM mono-culture, the biofilm structure 

appeared differently under SEM. The density of extracellular matrix appeared 

less than that in the mono-culture biofilm (Fig. 3.14). The finding was 

confirmed by the EPS analysis using the EPS-staining dye (FITC-conA) which 

can specifically detect mannose and glucose. EPS clustered to form 

microcolonies in the SM biofilm, while the formation of microcolonies was 

impaired in the SM-LcS biofilm, with sparse and scattered EPS (Fig. 3.15a). 

The quantification of the biovolume of the stained EPS indicated that the EPS 

production in the SM-LcS biofilm was significantly lower than that in the SM 

biofilm (Fig. 3.15b). This result is attributable to the decreased expression of 

gtfB and gtfC in SM due to the presence of LcS in co-culture (Fig. 3.22). A 
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previous study investigating a dual species biofilm also reported that the 

expression of gtfB was significantly decreased when S. mutans UA159 was 

co-cultured with L. casei 4646 (Wen et al., 2010), 

 

EPS is composed of mostly glucans synthesized by microbial 

glucosyltransferases (Gtfs) (Paes Leme et al., 2006). It was reported by J. Xiao 

and H. Koo that EPS were closely associated with microcolonies throughout 

the biofilm development process (Xiao and Koo, 2010). They found EPS were 

detected between saliva-coated hydroxyapatite (sHA) surface and 

microcolonies, within, surrounding and covering the microcolonies, and also 

bridging microcolonies. The presence of EPS is essential for the initial 

formation and in maintaining the three-dimensional structure of the biofilm. H. 

Koo et al. reported that the S. mutans strains with defective gtfB gene or the 

gtfB and gtfC genes hardly form microcolonies on sHA surfaces (Koo et al., 

2010). GtfCs secreted by S. mutans are incorporated into pellicle. GtfBs are 

adsorbed on bacterial surfaces of both S. mutans and other microorganisms that 

do not produce Gtfs (e.g. Actinomyces spp.). Surface-adsorbed GtfB and GtfC 

utilize sucrose to synthesize insoluble and soluble glucans. GtfB synthesizes 

insoluble alpha-1,3-linkages, allowing vertical growth of the microcolonies 

and contributes to the increasing biofilm thickness (Koo et al., 2010).  

 

In our study, the 24 h EPS in the SM-LcS biofilm was significantly less 
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than that in the SM biofilm. The decreased EPS production may be one of the 

important roles of L. casei Shirota on S. mutans biofilm growth during 7 days 

culture as it affected S. mutans microcolonies formation and biofilm 

architecture. However, although EPS production in the 24 h SM-LcS biofilm 

was decreased, the S. mutans counts did not significantly change within 24 

hours, in comparison to the SM mono-culture biofilm. Our findings are similar 

with Chung’s study (Chung et al., 2004). Chung et al. reported L. fermentum 

and its culture supernatant significantly inhibited the formation of the 

insoluble glucan produced by S. mutans Ingbritt without inhibiting the 

multiplication of S. mutans Ingbritt.  

 

4.1.9 FISH technique in biofilm analysis 

 

To further investigate the effect of L. casei Shirota on S. mutans biofilm 

after 24 hour, the dynamic change from D1 to D7 was observed using 

fluorescence in situ hybridization (FISH) technique. Instead of using BOT 

model, we used biofilm on 6-well plate model because the auto-fluorescence 

of enamel surface was detected under CLSM in the pilot study, which 

interfered the fluorescence signals of SM and LcS probes. With this model, the 

dynamic change of S. mutans biofilm acidogenicity and formation during days 

1-7 in the presence of L. casei Shirota was observed, as well as S. mutans and 

L. casei Shirota biovolumes.  
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FISH technique offers qualitative and quantitative monitoring of single 

cells by binding oligonucleotide probes to their complementary target 

sequences (Manz, 1999). FISH in combination with CLSM and digital image 

analysis became an important approach for identification and localization of 

microorganisms (Manz, 1999). The primary structure of 16S and 23S rRNA 

are highly conserved and the sequences are usually selected as target 

ribosomes (Korber et al., 1999). Synthetic oligonucleotides probes can be 

labeled directly at the 5' end with different fluorochromes. The most widely 

distributed fluorochromes include fluorescein isothiocyanate (FITC) and 

tetramethylrhodamine isothiocyanate (TRITC), other rhodamine stains, the 

blue fluorescing aminomethylcoumarin (AMCA), and, more recently, cyanine 

dyes (Cy Dye) (Manz, 1999). Enzyme-labeled oligonucleotides and 

Hapten-labeled oligonucleotides can also be used, but they are limited by the 

larger molecular size of the antihapten-antibody or the 

oligonucleotide-enzyme conjugate, which might be restricted to penetrate 

biofilm matrices and cell walls of certain target cells (Manz, 1999). Compared 

with immunofluorescence, FISH is an inexpensive, precise and 

straightforward labeling technique. The selection and production of the 

oligonucleotide probes is faster and much cheaper than the generation and 

production of monoclonal antibodies. Moreover, the finding of genera specific 

rRNA target sequences for probe production is fairly simple, while the 
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production of genera-specific antibodies is difficult as antibodies tend to target 

the level with structure of more restricted expression (Thurnheer et al., 2001). 

In our study, the probes were designed according to the previous studies on 

oral biofilm. These studies employed FISH and CLSM technique to identify 

different bacteria in dental plaque (Klug et al., 2011; Quevedo et al., 2011; 

Thurnheer et al., 2001), to detect and enumerate the oral bacteria with the 

effect of different treatments (Marttinen et al., 2012b). In our study, S. mutans 

and L. casei Shirota labeled with Cy5 and FAM respectively were successfully 

identified in the CLSM images.  

 

4.1.10 Dynamic changes during days 1-7 biofilm culture 

 

As shown in Table 3.8 and Fig. 3.21, SM growth was not inhibited by the 

presence of LcS on day 1. Thus, the total number of acid-producing bacteria in 

co-culture was higher than that in mono-culture. Nevertheless, the acid 

production in the co-culture biofilm did not increase significantly on day 1 

(Fig. 3.19). This result could be due to the decrease in the expression of ldh, 

which is the gene encoding a lactate dehydrogenase associated with 

acidogenicity, in SM during co-culture (Fig. 3.22). On day 2, the LcS numbers 

increased significantly compared with those on day 1, and the biofilm of SM 

in co-culture proliferated more rapidly than that in mono-culture (Fig. 3.19). 

As Gtfs bind not only to SM but also to other bacterial surfaces (Bowen and 
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Koo, 2011), the above phenomenon may be due to the increasing amounts of 

Gtfs, which bind to the surfaces of both SM and LcS, thereby providing 

further bacterial attachment sites during biofilm formation. With increasing 

numbers of two acid-producing bacteria on day 2, the pH of the co-culture 

biofilm significantly decreased compared with the pH of the mono-culture 

biofilm (Fig. 3.19). Although gtfB, gtfC, and ldh expressions decreased in the 

presence of LcS at most of the time points examined, on day 2, the expression 

of these genes was not significantly reduced (Fig. 3.22). Low pH has been 

reported to induce the expression of gtfB, gtfC, and ldh in SM (Li and Burne, 

2001). The low pH in the co-culture biofilm on day 2 may have masked the 

inhibitory effects of LcS on these genes, resulting in the lack of significant 

changes. As EPS also functions as a barrier that limits acid diffusion in 

biofilms (Koo et al., 2013), the decreased EPS production may cause easy and 

rapid diffusion of acid from the co-culture biofilms. Thus, due to the decreased 

EPS production and ldh expression, the SM-LcS biofilm exhibited a higher pH 

than the SM biofilm on days 3-7 (Fig. 3.19).  

 

Our results showed that the presence of the acid producing bacteria LcS 

in the SM biofilm did not lower the biofilm pH in co-culture. In contrast, the 

increase in pH was likely due to the inhibitory effects of LcS on gtfB, gtfC, 

and ldh expression and subsequent biofilm formation of SM. These results 

provide a mechanistic explanation for the results obtained by Keller and 
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Twetman, who showed that dental plaque produced less lactic acid when 

cultured with L. reuteri in vitro (Keller and Twetman, 2012a). Based on all the 

aforementioned data, it is clear that LcS exhibits cariostatic properties that 

may be different from those of other probiotic strains with bactericidal effects 

on mutans streptococci (e.g., L. paracasei and L. reuteri) (Hasslof et al., 

2010). 

 

4.1.11 Inhibitory effect of L. casei Shirota supernatant 

 

Yakult® is fermented probiotic milk which contains live L. casei Shirota 

and its supernatant. In addition to investigate the action of L. casei Shirota, it 

was important to evaluate the effects of its supernatant on S. mutans. 

 

Studies have proven that probiotic Lactobacillus strains had inhibitory 

effect on the growth of oral bacteria, such as S. mutans, S. sobrinus, Staph. 

aureus, P. gingivalis, and C. albicans (Hasslof et al., 2010; Simark-Mattsson et 

al., 2007; Sookkhee et al., 2001). Although in our study L. casei Shirota did 

not inhibit S. mutans growth in both liquid culture and biofilm culture within 

24 hours, it was of interest to examine whether L. casei Shirota supernatant 

also had the antibacterial effect. Our results (Part 4) evaluated the inhibitory 

effect of LcS cell free culture supernatant (CFCS) collected at different growth 

phases. The 12 h CFCS did not show inhibitory effect on S. mutans growth, in 
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comparison with the control MRS-HCl group. However, CFCS after the 

stationary phase (24 h, 30 h, 36 h, 48 h and 54 h CFCS) significantly inhibited 

the growth of S. mutans (Fig. 3.25). These results suggested that the 

antimicrobial compounds in LcS CFCS were mainly produced in the 

stationary phase or later.  

 

4.1.12 Inhibitory compounds produced by L. casei Shirota 

 

A variety of substances including organic acids, hydrogen peroxide and 

bacteriocins produced by lactobacilli have been reported effective against 

pathogenic bacteria. This study characterized the inhibitory compounds in L. 

casei Shirota CFCS.  

 

Our study showed that the antimicrobial activity of L. casei Shirota CFCS 

was more active at the acidic pH than at the neutralized pH. The result proved 

that acid played an important role in this effect, which was in agreement with 

the following reports. Cadieux PA et al. investigated the inhibitory effect of 

Lactobacillus spent cell-free supernatant on uropathogenic strains of E. coli 

growth, and reported that the effect was pH-dependent, as neutralized spent 

cell-free supernatant caused no change (Cadieux et al., 2009). Lin WH also 

observed the lost of the inhibitory activity of Lactobacillus strain GG spent 

cell-free supernatant or strain R1 spent cell-free supernatant against H. pylori 
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when the supernatant was neutralized (Lin et al., 2009b). Lin PP reported that 

the pH-neutralized LAB-CFCS (L. salivarius MM1, L. acidophilus RY2, and 

L. paracasei En4) did not inhibit the growth of enteroaggregative E. coli 

(EAggEC) strains (Lin et al., 2009a). However, S. sookkhee’s study showed 

that there was a slight reduction (10-20%) of the antimicrobial activity after 

neutralizing the supernatant of lactobacilli which were isolated from oral 

cavity (Sookkhee et al., 2001). The results of the different studies converged to 

show that the antibacterial activity was pH-dependent and active in an acid pH, 

although there was no agreement whether the effect of the neutralized 

lactobacilli supernatant was completely abolished. The disagreement may be 

due to the different Lactobacillus strains used in their studies and other 

potential confounders.    

 

A large number of bacteriocins have been isolated and characterized from 

lactic acid bacteria. For example, the lantibiotic nisin is produced by different 

Lactococcus lactis spp (Savadogo et al., 2009). These bacteriocins are of small 

size, proteinaceous antibacterial compounds. Three defined classes of 

bacteriocins have been established: the lantibiotics; the small heat stable 

non-lantibiotics; large heat labile bacteriocins (Savadogo et al., 2009). Some 

bacteriocins from lactobacilli were also identified(Jimenez-Diaz et al., 1993). 

The investigators suggested that the antimicrobial activity of the Lactobacillus 

strain they studied was caused by a heat-stable proteinaceous substance which 
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could be new bacteriocins (Abo-Amer, 2007; de Carvalho et al., 2006). Our 

findings indicated the antimicrobial substance from L. casei Shirota CFCS was 

heat stable, suggesting that the antimicrobial compounds might not be the heat 

liable bacteriocin.  

 

L. casei Shirota CFCS crude extract showed the inhibition zone on S. 

mutans agar plate in our study, while MRS crude extract did not. This result 

confirmed that L. casei Shirota CFCS crude extract contained the inhibitory 

substance which was active in the low pH environment as the CFCS crude 

extract was acidic while MRS crude extract was neutral. The inhibitory 

substance extracted from hydrophobic phase of the supernatant contributes for 

the further purification of the inhibitory compounds.  

 

Our results revealed that the cell free supernatant of L. casei Shirota 

strongly inhibited the growth of oral pathogenic bacteria S. mutans. This result 

supports the promising cariostatic effect of probiotic drink (e.g. Yakult®). The 

active compounds were proven active in the acidic environment and exhibited 

heat stable and storage stable properties. However, the inhibitory compounds 

may need to be further purified and studied.   

 

4.1.13 Limitations 
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This in vitro study has investigated the effects of Yakult® and L. casei 

Shirota on S. mutans biofilm formation and acidogenicity, as well as the 

potential mechanisms invovled. However, dental plaque is a complex 

microbial community established through continuous dynamic interaction 

between several hundreds of species and the host factors, including salivary 

pH, concentration of peroxidases, enamel surface energy, and individual diets. 

The findings in this study, focusing only on S. mutans, may not be able to 

forecast the possible effects of L. casei Shirota on multi-species biofilm in the 

mouth, and related mechanisms beyond the scope of this study (e.g. quorum 

sensing). Secondly, the sustainability and/or continuous development of 

probiotic effect after the consumption of probiotic drinks remain largely 

unknown. 

 

4.1.14 Future work 

 

Currently, our team are compiling and analyzing the results from three 

clinical studies investigating the short-term effects of Yakult® consumption on 

dental plaque, including one study employing a next generation sequencing 

platform to characterize the oral microbiome before, and after Yakult® 

consumption.  

The investigation of cariostatic mechanisms of L. casei Shirota at the 

molecular level is on-going, together with the further analysis and 
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identification of the inhibitory compounds. 

The synergetic effect of the probiotic drink with fluoride and laser may 

also be further evaluated, as laser has been employed to alter the surface 

energy and affect the adhesion force of first colonizers. 

 

4.2 Conclusions 

 

This study revealed the cariostatic effect of the probiotic drink Yakult® on 

S. mutans and the possible mechanisms. The probiotic strain L. casei Shirota 

inhibits the virulence gene expression and thus reduces biofilm formation and 

acidogenicity in SM in vitro. The inhibitory compounds produced by L. casei 

Shirota may also contribute to the cariostatic effect. Therefore, the clinical 

cariostatic effects of Yakult® and L. casei Shirota warrant further study. This 

study provided the understanding of cariostatic effect of probiotics and shed 

the light on the clinical application of this non-fluoride high-compliance 

“sweet” therapy (probiotic drink) to prevent the caries formation, particularly 

in children. 
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