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SUMMARY 

 

Oil and gas will continue to be the major sources of energy for the near future, and 

drilling of wells in new, marginal, and mature fields is a growing activity. In fact, 

optimal well placement is critical to the success of exploration and production of oil 

and gas. That should be efficiently linked with other field development planning 

activities, especially with optimal design of surface network facilities. These facilities 

provide the ultimate connection of the new well to the transfer pipeline or jetties.  

However, the physical complexities of multiphase flow in the reservoirs and well 

strings, numerous combinations of well locations and allocations to surface gathering 

manifolds and processing centers, as well as complicated interaction between the 

elements of this network, make this integrated reservoir study a very complex problem. 

Model-based optimization methods offer powerful tools for tackling some of these 

challenges. Therefore, this PhD study focuses on the application of advanced 

mathematical programming technique in addressing well placement and a number of 

related issues to well-drillings within integrated field development scope.  

This study started with a detailed expository survey of available literature on well 

placement. It described and evaluated the different approaches for formulating and 

solving this problem, and identified the main challenges and important research gaps 

in the current techniques. To our knowledge, this was the first and most extensive 

survey of systematic methodologies for optimal well placement. Using the findings of 

this survey and through industrial consultation, three main problems related to well-

drillings in an oil field was chosen to be addressed via mathematical programming 

framework, namely (1) placement problem (the optimal sites for well drillings and 
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infrastructure installations), (2) allocation problem (the optimal connection between 

wells, manifolds and surface centers) and finally (3) ordering / timing problem 

(optimal planning of the drillings and installations). 

The first work was targeted at the placement problem for well-drillings in single 

rectangular oil reservoirs and included both modeling and algorithm design. Most of 

the available literature on optimal well placement has employed numerical simulators 

in a black box manner linked to an external search engine. In the first study, we 

formulated the contents of that box inside a mixed integer nonlinear programming 

model (MINLP) for optimal well placement. We provided a unified model that 

integrated the subsurface and wells in an upstream production project. It linked the 

production plan with the aforementioned elements, and economics and market. This 

resulted in a complex spatiotemporal mixed integer nonlinear model, for whose 

solution we modified and augmented an existing outer approximation algorithm. The 

model solution provided the optimal number of new producers, their locations, and 

optimal production plan over a given planning horizon. To our knowledge, this was the 

first contribution in optimal well placement studies that used mathematical 

programming in a real dynamic sense by honoring the constituent partial differential 

equations. 

The multi-reservoir oil field development planning which includes both placement and 

allocation problem was studied in the next chapter. This study involved decisions 

regarding well-drillings, infrastructure placement, and allocation of different elements 

of the surface network infrastructure. It extended and strengthened the previous work 

by extensively including the surface elements of an oil field and also by deploying a 

more detailed economic analysis. Moreover, it went beyond single rectangular 

reservoirs and studied sub-surface dynamics in irregular shaped multi-reservoirs oil 
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fields. The resulting dynamic and non-convex MINLP model provided the number and 

location for drilling new wells and/or installing new infrastructure (gathering 

manifolds and surface separation /processing centers), optimal well-to-manifold/center 

and manifold-to-center allocation, as well as throughputs and pressure settings at 

various points of the production/injection network. Furthermore, few limitations of the 

solution algorithm (that was developed for the first work) were effectively addressed.  

In the final work, the placement, allocation and timing/ordering problems were 

addressed together. The MINLP model developed in the second study was extended in 

order to include the time domain into the design variables (binaries). To solve this 

model, a solution algorithms was suggested. First, the placement and allocation 

problems (i.e to locate the new wells and other infrastructure) were solved, and then 

the timing/ordering problem for the fixed solution from the first part was addressed. 
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CHAPTER 1 INTRODUCTION 

 

Oil and gas are not only the most widely used energy sources, but they are the 

precursors to most petrochemical products [1]. Although the world crude oil 

production in 2008 was only 72.03     , some projections [2] indicate that the oil 

demand would rise from 85.6      in 2008 to 105.6      in 2030. According to the 

predictions of OPEC, the recent global reserves-to-production (R/P) ratio (including 

both existing and anticipated reserves) is nearly 84 years. It means that crude oil and 

natural gas liquids (NGLs) can be sustainably produced only for another 84 years at 

the current production level [3]. Clearly, the age of easy oil production is coming to an 

end [4], and it is becoming more and more critical to optimize the recovery of the 

remaining oil resources. 

The first step in exploiting a given hydrocarbon field is obviously well drilling. It is 

important not only for new fields, but also for mature and marginal fields. As 

hydrocarbon prices climb higher, the recovery from both marginal and mature fields 

[5] is becoming more important. Drilling is an important key to that. As Figure 1-1 

shows, the increasing oil price over the last decade has generally motivated oil and gas 

exploration and production companies to increase their drilling activities worldwide 

[6]. More drilling rigs are employed to extend the wells to deeper targets. As onshore 

reservoirs are depleting, offshore drilling is increasing significantly to exploit new and 

potentially huge fields such as in Brazil’s Pre-salt offshore Santos Basin [7]. Thus, in 

spite of the possible environmental risks especially in offshore ventures, well drilling 

is still an activity that is critical to the energy needs of the world.  
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Figure 1-1: Profiles of OPEC oil basket price (monthly) and active drilling rigs worldwide. 

Production drilling activities are inevitably preceded and proceeded by series of 

significantly expensive and technically complicated activities. Amongst all these 

activities, well placement appears to be a critical step with permanent impact, because 

a well is our only connection to the subsurface energy treasure. Once drilled, this 

connection is irreversible. Due to this unique role in the return of the investment in the 

exploitation projects, well placement should be efficiently planned. To this end, this 

PhD dissertation mainly focuses on optimal well placement and issues related to that. 

Specially, this study targets (a) assessing available techniques and approaches for 

optimal well placement in order to understand their strengths and weaknesses as a 

foundation for a detailed mathematical study, (b) attempting to propose a shift of 

paradigm in addressing optimal well placement, (c) preparing a decision support tool 

for well and infrastructure placement and installation studies and finally (d) 

highlighting possible future research frontiers based on the current study and the 

industrial need in this area. 
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The aim of the current chapter is to provide a general overview of different elements 

involved in oil and gas production in order to pave the path for modeling this process 

in an optimization framework. In the next sections of this chapter a brief introduction 

to oil reservoirs and fields are provided, and then the wells in general and well 

placement in particular are discussed. After that the problem of well placement is 

defined. Next, flow dynamics for this problem is described to further clarify the 

challenges which are then discussed. Finally, the research objectives and the structure 

of this dissertation are presented. 

1.1 Oil reservoirs and fields 

Figure 1-2 represents an oil reservoir under injection. Oil, gas and water are trapped in 

this porous formation where a group of production and injection wells work together to 

produce the hydrocarbon content of the reservoir.  

 

Figure 1-2 : An oil reservoir under injection drive mechanism
5
. 

                                                 

5 From http://snf-oil.com/ with permission.  

http://snf-oil.com/
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As Figure 1-3 shows, a collection of reservoirs form a field and the field production is 

directed to a shared surface processing network. The surface network includes 

wellheads, manifolds (headers) that collect/mix the oil/gas flows from the wellheads, 

processing centers that receive the commingled flows from the manifolds, a maze of 

valves and flow-lines that interconnect the wellheads, manifolds, and processing 

centers, and finally long pipelines that supply the fluids to the market after 

pressurization. The multiphase flow relations that govern the fluid flow in different 

parts of this system are concisely discusses in Chapter 3. 

 

Figure 1-3 : A multi-reservoir field with surface network [8]. 

In brief, there are three main elements involved in upstream production: (a) sub-

surface element (reservoir/ field), (b) wells and (c) surface network. Wells link the 

subsurface elements with the surface network to begin and continue the production. 

Before beginning the production, a potential oil/gas reservoir undergoes several steps  

to evaluate those three elements [9] (Figure 1-4). The subsurface evaluation is very 

extensive. A lengthy pre-development (exploration and appraisal) phase is required, 

before the well drilling begins in a reservoir. This phase involves seismic studies, wild-

cat drilling, core sampling, well-testing, and well-logging to gather petro-physical and 

geological data to enable basic understanding of the static and dynamic characteristics 
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of a reservoir. This understanding and resulting numerical models play a critical role in 

well-drilling decisions and the eventual long-term exploitation of the reservoir.  

 

Figure 1-4 : Typical scenario of reservoir life. 

1.2 Wells 

Wells are drilled using different types of drilling rigs. They are drilled either to 

produce gas/oil, or to inject a driving fluid such as water and CO2. The fluid injection 

helps sweep the zones that are not drained from oil/gas. A well can be of two types: 

conventional or unconventional. The former are vertical or slightly deviated (up to 

60
o
), whereas the latter are horizontal, highly deviated, or multi-lateral [10] (Refer to 

reference [11] for a complete discussion on nonconventional wells). Although 

horizontal wells are more expensive than vertical wells, they are more promising for 

production [12], because they can intersect natural fractures, produce from different 

layers of thin and/or tight reservoirs and in some cases hinder water/gas coning [see 

13] . They can improve net present value (NPV) and/or total revenue by accelerating 

production and/or reducing the number of required wells. However, the industry does 

not always prefer horizontal wells. For instance, vertical wells are preferred to 

horizontal wells in a high-permeability reservoir with an active aquifer. This is because 

the latter can cause early water breakthrough and high water-cut as water coning is 

Exploration 

(0-10 yrs) 

Appraisal 

(1-5 yrs) 

Abandonment 

(1-2 yrs) 

Development 

(1-5 yrs) 
Production 

(3-30 yrs) 
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very likely to happen, which is propagated by high contact area of horizontal wells in 

these types of the reservoirs.  

Well location determines the recoverable volume over time [14]. The geology and 

heterogeneity of the reservoir, physical properties of the rocks and fluids, well type, 

driving mechanism, surface facilities, economics, production timeframe [15-17], etc. 

are the key factors that dictate the type and location of a well. The actual cost of 

drilling a well depends on many factors including its type and location. These [18] are 

the lengths of main bore, lateral drilling, and completion, number of junction milling, 

bit costs, rotating time, round-trip time, footage per bit, angle of inclination, rig type 

and location (offshore / onshore), etc. [19, 20]. Offshore wells are more expensive and 

they need offshore production facilities or a subsea well tied back to either an onshore 

or offshore facility [21]. Van Den Heever et al. [22] and Bitterncourt [23] have 

discussed the various economic parameters in the assessment of a hydrocarbon field 

development.  

1.3 Well placement 

In practice, the industry uses a variety of data, tools, and heuristics to select well 

locations. They include the various numerical models and understanding developed in 

the pre-development phase. For fields with ongoing production, past production 

history is a key information. Much of the experience in well drilling has been 

formalized into several heuristics such as placing injector-wells from flank to crest in 

water/gas-drive reservoirs with dome shaped structures, keeping the well trajectory as 

far as possible from gas and water. This is usually done by drilling in high-

permeability zones for the fields with uniform pressure and saturation at early 

production time and at a later stage using field saturation as a major guide to avoid 

high water-cut or gas-oil ratio [24]. The engineering team applies these heuristics to 
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define a variety of development scenarios and examines them by extensive 

simulations. Such an ad-hoc procedure is inherently myopic and carries shortcomings. 

First, it is not possible to identify and examine all potential scenarios manually. 

Second, while heuristics are useful and important, they are by nature specific, fallible, 

and carry no guarantees. Indeed, studies have challenged some of them, for example 

uniform well spacing and uniform patterns such as five, seven or nine-spot and 

staggered line drive drilling are very well known heuristics [25]. However, recently 

several studies [26, 27] have shown that non-uniform well spacing is superior. This 

supports the need for the optimization process in non-uniform well spacing, which is 

more complex than the uniform one. Therefore, there has been much recent interest in 

a systematic approach to evaluate and optimize different feasible drilling scenarios 

[28-30]. 

Systematic optimization methods have the best potential for a holistic and rigorous 

approach. In contrast to heuristics, most optimization approaches keep the entire set of 

scenarios in view, while searching for the best. However, they do not enumerate all 

scenarios exhaustively [31]. During their search, they change all variables 

simultaneously and not one at a time or in some pre-determined manner. This strategy 

usually leads to a better solution compared to that from a myopic, piece-meal, and 

manual search based on only heuristics [32]. This has motivated the application of 

optimization at different stages of the petroleum production industry such as field 

development, production planning, etc. [33-38].  

1.4 Well Placement Problem Statement 

An oil or gas field consists of one or more reservoirs. The description of a 

reservoir/field and its production plan requires a variety of information: 
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 Geological data such as the dimensions, porosity, and permeability of the 

formation from seismic studies or history matching. 

 PVT data such as the fluid volume formation factor and fluid properties 

(viscosity, density, and compressibility) from core samples or previous production 

history. 

 Existing wells (if any), their functionality (producer vs. injector), type 

(conventional vs. unconventional) and locations. 

 Current state (i.e. pressure and saturation profiles) of the reservoir and the next 

projects production horizon. 

 Economic data such as drilling costs, injection costs, discount rate, and oil 

revenue forecasts, etc. 

 The future plan for enhanced oil recovery (EOR) process which could be 

suggested even from the early age production of the oil reservoir using any EOR 

screening software[39]. This would help to come up with the best scenario needed for 

better oil sweep efficiency during the proposed EOR agent injection. 

Given the above information regarding a reservoir exploitation project, the primary 

concern for well placement is to determine the number, types, and spatial locations of 

well-drillings that will optimize some performance measures. For each well, its 

inclination (horizontal or vertical), trajectory, perforation length, and throughput 

(production or injection) rate must also be determined. It is insisted that the latter 

should be specifically considered. In addition, the oil company must decide the number 

and locations of well/production platforms and allocations of wells to different 

platforms. These decisions must consider multiple factors and policies such as 

acceptable bottom hole pressure (BHP) or tubing head pressure (THP), well spacing, 

and distance to surface facilities. 
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In a strict sense, well placement is a dynamic rather than a static problem as defined 

above. Every drilling must occur at some time and that time is also an optimization 

decision. In the early life of a reservoir, most or all wells would naturally be 

production wells. However, as the time progresses, one may decide to either convert 

some of these to be injector wells [40], or drill one or more injectors to inject some 

driving fluid to help drain the reservoir. Thus, these functionality 

switches/initialization, their spatial coordinates, and their timings are also key 

optimization decisions. 

Each chapter of this dissertation will provide a very clear and specific problem 

definition that is addressed from the above domain.  

1.5 Research objectives 

The goal of this PhD study is to develop an advanced decision support methodology 

for integrated reservoir management. In the core of that, this research targets optimal 

well placement, and a variety of other field development decisions related to the well 

placement. That includes decisions related to well-drillings and infrastructure 

(manifold and processing center) installation, their allocation, and planning the order 

and time of drilling/installing each. Integrated reservoir management requires 

understanding, evaluating and incorporating different elements of both sub-surface and 

surface sections in a unified model. Such a unified surface-subsurface approach is very 

crucial for well placement activities. However, the available literatures have either 

focused on subsurface (usually from petroleum engineering discipline) or on surface 

problems (usually from chemical engineering and operation research disciplines). They 

are extensively analyzed in the next chapter. The current study tries to bridge this gap 

between the subsurface and surface studies to an applicable extent from computational 

point of view. Therefore, the specific objectives of this study are (a) to comprehend the 
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strengths and limitations of the available strategies in order to address some of their 

weaknesses, utilize their positive features, and possibly to extend them (b) to build a 

model based on accurate governing equations of multiphase flow in porous media to 

guarantee the accuracy of the final solution, and verify that by comparing with 

industrial standard reservoir simulators, (c) to prepare a holistic model that examines 

the flow from the reservoir, through the wells and into the manifolds and the 

separation centers, (d) complete the former by efficiently modeling the well and 

infrastructure placement, allocation and timing to build a specialized integrated field 

management model (e) propose and extend an advanced mathematical solution 

strategy for this specialized model, and finally to (f) highlight possible future research 

frontiers based on the current study and the industrial need for this problem. 

1.6 Outline of Thesis 

This thesis consists of seven chapters. After a brief introduction in Chapter 1, the 

second chapter presents a detailed literature review on existing techniques and 

approaches to model and solve well placement problem. This chapter also identifies 

the main challenges and important research gaps in the current techniques. To our 

knowledge, Chapter 2 is the first and currently the most extensive survey of systematic 

methodologies for optimal well placement. 

Chapter 3 lays the modeling foundations for the next chapters. This chapter discusses 

the modeling approach used for representing the multiphase flow inside the porous 

media of the reservoir. Moreover, it describes the steps taken to prepare the multiphase 

flow pressure drop equations for the wells, flow lines and pipes. 

Using the multiphase flow model developed in the previous chapter, Chapter 4 

provides a modeling and algorithm design study. Most of the available literature on 

optimal well placement has employed numerical simulators in a black box manner 
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linked to an external search engine. However, in Chapter 4, the content of that box is 

formulated inside a mixed integer nonlinear programming model for optimal well 

placement in one rectangular reservoir. It provides a unified model that integrates the 

subsurface, and (to some extend) wells and surface levels of an upstream production 

project. It links the production plan with the aforementioned elements, and economics 

and market. This results in a complex spatiotemporal mixed integer nonlinear model, 

for whose solution, the second important part of this chapter is prepared. An existing 

outer approximation algorithm is modified and augmented. The model solution 

provides the optimal number of new producers, their locations, and optimal production 

plan over a given planning horizon. To the best of our knowledge, this is the first 

contribution that uses mathematical programming in a real dynamic sense by honoring 

the constituent partial differential equations. 

Chapter 5 extends the previous single-rectangular-reservoir study in Chapter 4, and 

addresses well placement / surface network design and production/injection planning 

in a field with multiple irregular-shaped reservoirs supplying to a shared surface 

production-network facility. This chapter focuses more on the surface infrastructure by 

maintaining strong link to the subsurface environment. As a result, in addition to well 

placement, Chapter 5 addresses infrastructure placement and allocation problem. Here 

the dynamic, economic, and operational inter-dependencies of the entire field and its 

reservoirs are considered through a novel deterministic model. It holistically includes 

the entire field financial considerations and market demand, dynamic and structural 

constraints in a surface network of well-manifold-separators, and provides drilling 

/network design decisions on a long term horizon and detailed production/injection 

plan on several short horizons (integrated into the main long horizon). Finally, this 
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chapter suggests an adaptive procedure to increase the accuracy of a relaxation used in 

Chapter 4. 

Apart from well and infrastructure placement and allocation problems in the field 

design, a vital task in upstream development activities is to optimally determine the 

order of drilling and infrastructure installation in the field. Therefore, Chapter 6 

modifies the MINLP model developed in Chapter 5 to tackle this problem. In this 

chapter a solution strategy is suggested and tested. It employs two successive MINLPs 

to solve placement/allocation and then ordering problems.   

Finally, the conclusions of this study are presented in Chapter 7 where potential future 

research areas based on that are summarized through a list of recommendations.  
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CHAPTER 2 TECHNIQUES AND APPROACHES – 

LITERATURE SURVEY 6 

 

2.1 Introduction 

Well placement problem can be studied from different perspectives. The reservoir and 

drilling engineers address related issues such as well trajectory optimization, locating 

the right drilling point, integrating surface and subsurface facilities, etc. As an 

example, Ayodele [41] briefly addressed well trajectory optimization. Recently, 

Nasrabadi et al. [42] have published a brief literature survey on well placement with 

focus on gas/gas condensate reservoirs. However, a comprehensive review or analysis 

focusing on systematic optimization does not exist in the literature to our knowledge. 

This chapter aims to fill this gap. It concentrates on the subsurface and deterministic 

well placement problem. 

In the remaining of this chapter, we start with a concise description of the fluid 

dynamics in the oil reservoir and wells, and that is followed by presenting challenges 

towards well placement studies. Then we use that understanding to present / compare / 

contrast the three approaches commonly used in the literature to address well 

placement problem. Next, we briefly discuss uncertainty handling and available 

computational tools. Lastly, we identify current gaps in the literature and highlight the 

open opportunities for future research. 

                                                 

6 Tavallali., Karimi, Teo, Ayatollahi and Baxendale (2013). Optimal Well Placement - An Expository 

Survey of Techniques and Approaches. Optimization and Analytics in the Oil and Gas Industry, In-

print. 
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2.2 Flow dynamics 

An oil reservoir is a complex multi-phase (water, oil, gas, and solid) system whose 

dynamic behavior can be described by coupled spatiotemporal differential equations. 

For a 2-phase (oil-water) reservoir, these are [43]: 

 
 

  
[ 

  

  
]      [

   

    
        

 

  
    ]    (1) 

where, K is the absolute permeability tensor,   is the porosity,    is the viscosity of 

phase   (    for oil and     for water),    is the density,    is the formation 

volume factor,     is the relative permeability,    is the saturation,    is the pressure, 

and    is the flow from (+ve for out,  ve for in) the reservoir. Interested reader is 

suggested to refer to reference [43] for the case of three phase (water/oil/gas) flow. The 

relative permeability is a function of saturation, and for mathematical analysis and 

modeling, relative permeability is usually defined by Corey’s equation [25] for each 

phase: 
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where,     and     are the residual oil and water saturations respectively,    
  and    

  

are the end-point relative permeabilities for oil and water respectively,   and   are the 

exponents in Corey’s correlation.  

The saturation and pressures of water and oil phases are related to each other through 

following equations:  

          (4) 

                    (5) 
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where    is the capillary pressure. In the remaining of this section the phase index   is 

dropped for brevity.  

At least three pressure types are critical in determining the flow rate   in Eqn. (1). 

These are (1) the reservoir pressure ( ), (2) pressure at the well bottom called the 

bottom hole pressure (   ) and (3) pressure before the choke valve near the surface 

called the tubing head pressure (   ). Then the flow rate   at the well bore can be 

defined using the following well production equation (IPR or Inflow Performance 

Relation): 

         ⁄           (6) 

where,   is the connection transmissibility factor for wells (see Eqn. 76.5 of [44]) and 

the BHP is determined by the Vertical Flow Performance (VFP) curve: 

                    (7) 

where,    is the frictional pressure drop through the well tubing and    is the pressure 

drop due to acceleration,   is the well depth, and   is the density of the well output. In 

practice, the choke valve controls well production and fixes    , which is measured 

continually in the field. For a given well string and completion type [45], total flow, 

water to oil ratio, (gas to oil ratio), and inlet/outlet pressure determine the pressure 

drops in Eqn. (7).  

The initial saturation and pressure distribution provides the initial condition; 

additionally, a combination of no flow boundary conditions, water influx rate from 

aquifer and bottom hole pressure forms the boundary conditions of the above set of 

equations. While Eqs. (1)-(7) constitute a rigorous reservoir and well model, they 

cannot be solved analytically. Sophisticated commercial simulators such as ECLIPSE 

[44], CMG [46], etc. exist for solving these accurately. 
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2.3 Challenges 

Amongst many challenges in addressing well placement problem, few are mentioned 

here: 

 The large number of decision variables such as the potential well positions, their 

types, their allocation to different gathering points, and drilling schedules make the 

optimal well placement a highly combinatorial optimization problem with considerable 

computational challenges. The solution of Eqs. (1)-(7) normally requires discretization 

in both spatial and temporal domains [43]. Depending on the geological formation, up 

to 10
6
 cells or more grids may be required with at least two unknowns (say   and   in 

a 2-phase black oil model) associated with each grid. The simulation over the 

production life of a reservoir may take hours to days of computation time [47]. 

Optimizing well placements may require hundreds of reservoir simulations under 

varying conditions, and hence can be computationally prohibitive. 

 Apart from these considerable number of design variables and combinations, a 

production project is characterized through a numerous number of system parameter 

including geological, operational, petro-physical, geometric and economic data. 

Working with all these data in an integrated manner and ensuring that the design 

parameters do not conflict each other is not a trivial task. Probably, that explains why 

the modern reservoir simulators such as ECLIPSE [44], are equipped with pre-

processing, simulation and post-processing tool boxes to reduce this workload.  

 Fluid properties such as relative permeability and fluid mobility are nonlinear 

functions of saturation and pressure. Sharp changes in field permeability often result in 

stiff ODEs, which increase the simulation time even further. Consequently, the 

resulting optimization problem is not only highly nonlinear; it possesses complex 

trade-offs, and substantial non-convexity. As an example, consider the use of water 
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injection. On the one hand, water acts as the driving fluid and helps to maintain 

pressure in the reservoir. On the other hand, after it breaks through, it starts to play a 

negative role by increasing the surface processing load downstream and acting as an 

energy sink. 

 Most numerical simulators discretize the continuous differential Eqs. (1)-(7). 

Embedding this discretized model inside an optimization algorithm makes it 

challenging to use the well-established continuous optimization solvers for well 

placement, as the well locations are no longer continuous. 

 Many known and unknown uncertainties naturally exist in a real-world system 

such as a complex multiphase reservoir[48]. For example, the huge dimensions limit 

our knowledge, as we cannot sample the entire reservoir to determine various 

geological properties. This leads to substantial amount of computational efforts, since 

most approaches address uncertainties through simulations under many alternative 

scenarios. 

2.4 Optimization Modeling and Algorithm 

Let vector   represent the continuous variables (e.g. BHP, THP, pressure and 

saturation),   represent the integer variables (e.g. location indices and number of 

wells), and   the model parameters (e.g. geological realization, production time 

horizon, and techno-economic data). The majority of variables in   are technically or 

physically bounded. For example, the maximum curvature of a well is limited by the 

current technology; the BHP of an injector must not exceed the formation’s fracturing 

pressure; and the BHP/THP of a producer must be sufficient to lift the produced fluids 

to the surface.  
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 All production scenarios should satisfy the various physical, hydrodynamic, 

operational, and market constraints. These constraints, listed below, can be represented 

as nonlinear equalities          and inequalities        : 

 Appropriate constitutive and conservation relations for the reservoir, well 

strings and pipes, such as inflow performance relations, vertical flow 

performance relations, pressure drop for multiphase flow, and heat and mass 

balance equations.  

 Preventing intersection of wells, specifying drilling path and following the 

perforation policies. Well perforation in inactive grids of the reservoir is not 

permitted; however, non-perforated well segments can cross these inactive 

grids. Finally, perforated segments must logically remain in the lease 

boundaries of the reservoir. 

 Maximum/minimum injection/production rates of the field or wells.  

 Limits on techno-economically acceptable water-oil ratio (WOR), gas-oil ratio 

(GOR) and water-cut. 

 Minimum well-to-well and well-to-platform spacing 

 Maximum or minimum number of wells to be drilled and platforms to be 

installed  

 Production demand, and field processing capacity  

Due to the nonlinear and PDE nature of continuity equations, these relations are one of 

the most important constraints amongst others in a well placement model. Indeed, the 

major role of different commercial and in-house software packages is to solve these 

coupled PDE equations, while, internally adhering to the constraints and bounds, and 

reacting to their violation based on pre-defined polices. They rigorously simulate the 
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production scenario for a given specific well configuration. We will later discuss 

available reservoir simulator packages and their role in optimization algorithms. 

The optimal well placement problem attempts to optimize a techno-economical 

measure such as total drilling costs, production profit, recovery factory, sweep 

efficiency or remaining oil in place, simultaneous maximum pressure and temperature 

support in geothermal water re-injection operations[49], cumulative production and 

estimated ultimate recovery [50], while satisfying the mentioned operational and 

techno-economic constraints. This techno-economical measure is represented by 

        . From literature, the most widely used measure has been NPV. However, for 

companies with restricted production based on their quotas (such as national oil 

companies in the OPEC countries), ultimate recovery may be more relevant [51].  

Given the above definitions, the optimal well placement optimization problem can be 

stated as Model (O) below: 

Model (O) 

              

Subject to    

 

[
 
 
 

          
          

                    

                      

  (8) 

Although the well locations should be continuous in principle, discretization of Eqn. (1

) makes them discrete variables. Depending on how the potential well locations and 

their structures are represented, model (O) can be either a mixed integer or a 

continuous (i.e.   is an empty set) optimization problem. The optimization 

approaches invariably exploit the unique features of O. Three approaches are 

commonly used, namely (a) evolutionary and direct search, (b) mathematical 

programming, and (c) gradient-based methods. For each, we introduce how the well 
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location is modeled and the well placement problem is formulated and solved. We use 

the following notation for the remainder of the paper. 

   = Number of potential wells  

   = [                                                      ] 

 (        ) = Location of site   in the Cartesian coordinates. 

2.4.1 Evolutionary and Direct Search Methods  

As Figure 2-1 depicts, the simulation-optimization method [52] drives the search 

procedure by using a search engine on top of a simulator. The search engine assesses 

the previous solutions to propose a new solution, which the simulator then evaluates. 

These two elements are usually augmented with different local search methods and 

proxy models. Typically, these algorithms are ideally meant for unconstrained 

optimization problems and cannot deal with external constraints without using some 

penalty terms in the objective function. The first challenge in using these methods is 

the appropriate representation of the solution vectors that may involve discrete 

decisions such as well locations of single or multiple patterned wells. The second 

challenge is to fine-tune the algorithms to obtain fast solutions and reliable 

performance.  

 

Figure 2-1: The simulation-optimization framework. 
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2.4.1.1 Parameterization of Decision Variables 

To illustrate how integer and continuous variables are used to model well location and 

configuration, first consider a single deviated, multi-lateral well. Any conventional and 

vertical well can be geometrically defined as a special case of a nonconventional and 

deviated well. Figure 2-2 depicts the general trajectory of a linear multilateral well. 

Such a well usually consists of one main trunk and multiple laterals. We first model 

the main trunk, and then extend it to include the laterals. Finally, we discuss group 

well-modeling. 

 

Figure 2-2: Geometrical representation of wells. 

The figure is modified from Yeten et al. [53]. 

 

Although there have been attempts to consider curved trajectories [54] for the trunk, 

the majority of contributions has assumed linear orientation. Such a linear trunk can be 

represented by the relative position of its heel and toe, which are the highest 

[      
    

    
  ] and the lowest [      

    
    

  ] points on the main trunk, 

respectively. Logically, these two points can be represented in two ways: (a) using the 

point-based notation i.e. (        ) or (b) using the location of one point and (semi) 

cylindrical information of the trunk (            ). Here,      is the trunk length,      is its 

projected depth, and    is its projected angle in the    plane with either   or   axis. To 
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choose between the two approaches, compare the below constraints on the maximum 

well length (  
   ): 

 √   
    

       
    

       
    

      
              (9) 

        
               (10) 

Eqn. (9) uses the point-based format and it is a nonlinear inequality. However, Eqn. 

(10) uses the trunk length and it is a straightforward linear constraint (or a bound). The 

same holds for the angular limits on the deviated wells. Furthermore, while the three 

variables of    
    

    
   are discrete, those in (            ) are continuous. Therefore, 

specifying the well position using the heel location and trunk information has more 

advantages. 

Heel and toes can be represented via different combinations of angles and projections 

on   ,    and    planes, such as using both horizontal and vertical angles and one 

length variable. However, due to the usually small ratio of horizontal to vertical grids 

in simulators, the deviation angle in the vertical plane (  ) can become very small. 

Hence, it is better to use only one horizontal angle (   or   ) combined with two 

length properties. Clearly, the trunk part is modeled with six variables. As an example, 

Yeten et al. [53] used [    
    

    
                    ] and Farshi [54] used 

[   
    

    
                   ] where superscript   refers to the middle point on the 

trunk.  

Having defined the main trunk position in space, we can now cover the laterals. The 

laterals are connected to the trunk at the junction points. The location of each junction 

(  ) between toe and heel can be shown by a variable   (     ) such that: 

                            (11) 

Therefore, each lateral can be represented by four variables: [                   ].  
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Vector parameterization can be used to extend the above definition to consider the well 

type (injector or producer) and state of each well (close/open or drilled/undrilled) using 

a binary variable. As an example, if at most two new wells are to be drilled, the 

solution vector can be defined as                                         . Here, 

   and    are binaries (     , if an injector, else a producer and     , if the well is 

open, else closed). Therefore, the constraint on the maximum number of wells (and 

hence the optimal number of wells) can be implicitly addressed by defining a fixed 

size solution vector along with a set of binaries. Moreover, since numerical simulators 

use grid-grid connections, the above linear representation makes the deviated wells 

into a staircase like structure. Correct well indexing can reduce this approximation 

error [55].  

The above approach models wells individually. Now, consider a pattern well 

configuration, such as linear drive or seven spot, where more than one well is used in a 

predetermined configuration. Using the above formulation for each well in a placement 

problem can lead to an intractable model. Therefore, an alternative formulation is 

required, which models the configuration rather than single wells. Ozdogan et al. [56] 

investigated the linear drive pattern by using three variables for each line of wells. As  

shows, these variables are (1) uni-directional, normalized average distance from a 

reservoir boundary ( ̅), (2) uniform well-to-well spacing ( ) and (3) reference distance 

showing the distance of the first well from a specific boundary (  ). They used 

separated zones to investigate producers versus injectors. 
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Recently, Onwunalu and Durlofsky [57] used a combination of integer and continuous 

variables to model each closed well-pattern by a polygon. As Figure 2-4 depicts, there 

is a well at the center point (   ). The well spacing variables (   ) relate other wells to 

this center point. 

 

Figure 2-4 : Closed well patterns represented by a general polygon.  

The figure is from the work of Onwunalu and Durlofsky [57]. 

 

An integer variable   selects the pattern (e.g. seven-spot, nine-spots, etc.). To capture 

any alteration to the standard form of these polygons, they define a set of operators    

[rotational, scaling, shearing, and switching]. At most two continuous mapping 

variables (           ) determine the degree of rotation, factor of scaling, shearing 

and switching of the pattern around a reference well   
   

 in the   and   directions. 

That defines the transformation operator as        
   

             . The reference 

well may change after each transformation. Finally, the order of   potential pattern 

        

    

  

  

    

  

  

        

     

 ̅      

  

 ̅      

 

 ̅      

   

Figure 2-3 : Variables for modelling a linear 

pattern of wells.  

The figure is adapted from Ozdogan et al. [56] . 
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transformations are selected by integer variables   , (         ). Therefore, a 

model can be represented by: 

 [             ⏟        
pattern parameters

             ⏟        
operator sequences

             ⏟        
pattern operators

]  (12) 

By using integer variables, the model of Onwunalu and Durlofsky [57] accommodates 

a wide range of patterns in contrast to that of Ozdogan et al. [56] discussed earlier. 

However, none of these models considers the presence of previous wells in the field. 

All above approaches represent the well information via vector parameterization. 

Having defined the various approaches for modeling the well location and structure, 

we now discuss the algorithms that use them. 

2.4.1.2 Solution Algorithms 

Evolutionary methods usually adopt the same general idea: generate many samples 

randomly from different zones of a feasible region, evaluate them and use the best 

samples to generate the next batch of sampling points. In every iteration of the search 

procedure, there are three major steps: (1) solution generation, (2) feasibility check of 

solutions generated, and (3) objective value evaluation using dynamic reservoir 

simulation of feasible solutions. Figure 2-5 illustrates these three steps. In step two, the 

geometrical constraints such as minimum well-to-well distance are typically verified 

before the reservoir simulator in step three is used to check if operational constraints 

are satisfied and evaluate the quality of the solution.  

Such an approach is a black box search - a search without exploiting the physics and 

characteristics of the problem; the simulator acts as a black box and provides the 

objective value when given a solution vector. Hence, a key strength of this approach is 

that it is compatible with different types of simulators. It also falls under the family of 

gradient free methods. This is an essential characteristic of this approach due to the 
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discretized nature of the model. (See References [58, 59] for a review on gradient free 

methods in reservoir engineering.). Consequently, the range of input variables 

(different well locations, types and functionality, etc.) can be specified without 

consideration for linearity, nonlinearity or convexity via solution vector 

parameterization.  

Early attempts using evolutionary methods for well placement [23, 27, 60] showed 

promising results, but also revealed deficiencies. Mainly, large computational effort 

and generation of infeasible well configurations are the common problems. After the 

early work of Beckner and Song [27], many latter contributions have tried to address 

these shortcomings.  To do so, all three stages of evolutionary methods have been 

targeted for modifications. We describe the proposed modifications in each category 

here: 

  

Figure 2-5: The flow diagram of simulation-optimization approach.  

Subscript    refers to screened and repaired feasible solutions. 

Solution 
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2.4.1.2.1 Stage 1: Generating Solutions  

The objective of solution generation is to generate promising solution vectors in the 

unexplored search space, while avoiding infeasible vectors. From our observations, 

researchers have developed four different strategies.  

The first strategy adds extra information to the information extracted from the main 

random search. Bittencourt [23] proposed a hybrid genetic algorithm (HGA) approach 

that generates new solution vectors using GA and partly the polytope search. Polytope 

search is a simplex based search strategy and generates candidates far away from the 

worst well site evaluated in previous iterations. The idea of HGA is used in most 

subsequent contributions. Bangerth et al. [61] used a Simultaneous Perturbation 

Stochastic Approximation (SPSA) approach to estimate the gradient information. 

Under SPSA, the directional gradient along a randomly chosen vector is estimated by 

means of the simulator. In that sense, it can be called a direct search technique that 

adds more information to the random search.  

The second strategy lies in refining the search region. Evolutionary methods sample 

several solutions which can span a large part of the objective surface, but when no 

rigorous mathematical termination criterion is used, the final solution can often be 

improved by a neighbouring solution. To avoid this problem, Güyagüler et al.[62], 

Yeten et al. [53] and Ciaurri et al. [59] added a local search to the evolutionary 

method. The local search is equivalent to perturbing a portion of the wells in their 

neighbourhood. Güyagüler et al.[62] called it local mutation, while Yeten et al. [53] 

and Ciaurri et al. [59] described it as a heuristic adaptation of the Hooke-Jeeves pattern 

search. All of them reported improvement in the final solution. Similarly, dynamic 

search parameter tuning, as in Afshari et al.[63], can perform global search initially 

and be converted to a local search in later iterations. 
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Evolutionary methods often generate solution vectors from previous generations using 

a multivariate normal distribution. The third strategy, the Covariance Matrix 

Adaptation- Evolutionary Strategy, attempts to improve the search performance by 

modifying the covariance matrix of this mutation distribution. It is proposed by 

Ding[64] and later used by Bouzarkouna et al. [65, 66]. 

Yeten et al [53] reported that for a specific case study, almost 30% of solution vectors 

generated in majority of generations were infeasible. As the number of wells increases 

or the well configuration becomes more complicated, this figure can increase 

drastically. To get around this problem, there have been increasing interests to shift 

from discrete binary genetic algorithm (bGA), the dominant search algorithm during 

the last decade which suffers from the problem of infeasible solution generation, to 

another strategy of continuous evolutionary methods in recent years. In this strategy, 

the well locations are expressed in continuous space, and a simple function maps these 

values into integer space for introducing to reservoir simulator. Farshi [54] and 

Abukhamsin [51] studied continuous GA (cGA). Bukhamsin et al.[67] compared the 

performance of cGA and bGA and reported that while both have comparable 

performance, cGA solutions cluster around the average. Moreover, they reported 

stepwise behavior for bGA in contrast to gradual behavior of cGA. Hence, cGA can be 

more stable as a result. In another study, Onwunalu and Durlofsky [68] use particle 

swarm optimization (PSO), another evolutionary optimization algorithm that works in 

continuous space. They tried to minimize the number of infeasible solutions by forcing 

the velocity parameter of infeasible solutions to zero. This is to prevent more infeasible 

solutions in the next iteration. In their computational studies, PSO outperformed GA 

on average.  
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 Although useful, such strategies at the solution generation stage cannot 

completely prevent the infeasibility. Therefore an infeasibility screening step is 

required to prevent such infeasible solutions.  

2.4.1.2.2 Stage 2: Screening for Infeasibility  

In the well location problem, the most troublesome constraints for the evolutionary 

methods are: 

 Minimum well-to-well and subsequently avoiding intersection of wells 

 Well-to-surface facility distance 

 Preventing completion in inactive cells and placing producers in aquifer zone 

[60] 

 Placing all wells inside the reservoir (feasible region) 

The solutions generated in Stage 1 may be infeasible, i.e. may violate the above 

constraints. Stage 2 detects such solutions, but discarding them may not be the best 

decision. Instead, researchers have tried to recover feasible solutions from them. 

Penalizing the infeasibility is commonly used in evolutionary methods [53, 63, 64], 

however, one should do that cautiously. To discuss that, consider a well that is 

completely located in the inactive grids. Though not a feasible producer, it can be a 

promising injector, especially if it is near the boundary of a sealed reservoir. Moreover, 

the vicinity of this infeasible location can be a promising drilling site, which can be 

found by a local search. However, penalizing this infeasible solution too high can 

cause the algorithm to ignore this region [62]. Therefore, Güyagüler et al. [62] suggest 

assigning 90% of the objective value of closest feasible location to these infeasible 

sites.  

Numerous ways can be used to find a neighboring feasible solution from an infeasible 

one. Where variables are supposed to be integral, such as the definition of well 



Chapter 2 Techniques and Approaches – Literature Survey 

 

30 

 

locations in the simulator, values can be rounded up or down to the closest integer to 

recover feasibility. For another example, suppose wells are to be located inside the 

reservoir, wells currently outside can be projected onto the nearest reservoir 

boundaries [68, 69]. Emerick et al. [70] used a rather different approach. They allow 

the infeasible solution to interact with a reference feasible population through 

crossover to produce feasible individuals. The resulted solution can update the 

reference population if it is promising.  

2.4.1.2.3 Stage 3: Evaluating the Objective  

The most basic deterministic well placement problem with simultaneous well drilling 

already requires extensive simulations. By including the considerations for drilling 

sequence [27, 71] and uncertainties [72-74], and the computational load increases 

significantly. Therefore, most studies concentrate on reducing this computational cost 

by: (a) search space reduction, (b) surrogate modeling, and (c) changing the 

computational platforms.  

(a) Search space can be reduced by screening and model/algorithm modification. 

Screening omits non-promising well locations: Beckner and Song [27] used a 

predetermined list of potential locations and a variation of the "travelling salesman" 

problem to handle the order of drilling problem. Santellani et al. [75] used maximum 

water saturation, minimum completion layers and well distancing as criteria to screen 

the well locations before simulation. Johnson and Rogers [76] restricted the number of 

new wells in Pompano offshore field (in Gulf of Mexico) to 25 sites and searched for 

their optimal locations. In each instance, prescreening was essential to limit the 

computation power required. However, with more powerful computing hardware and 

algorithms, prescreening requirements may be relaxed. For example, by studying the 

same Pompano field in Johnson and Rogers [76] but bypassing the prescreening stage, 
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Güyagüler et al. [62] found better solutions (at least for mono-well placement 

problem), proving that pre-selection may cause a better optimum to be omitted from 

the search.  

Additionally, model can be approximated by a problem with fewer number of 

variables, as in Onwunalu and Durlofsky[57, 59] and Ozdogan et al. [56]. A trivial 

example is modeling the order of drilling   wells using vector of (   ) binaries[71] , 

so in a 3-well problem, drilling order of (1,2,3) and (1,3,2) can be represented by (1,1) 

and (1,2) with one fewer variable.  

(b) Surrogate modeling aims to replace the expensive evaluation of the objective 

function          with an inexpensive approximation, thereby saving computational 

effort. This approach has also been called proxy models, meta-models, meta-heuristics 

models etc. in the literature. Such a surrogate model can be constructed using 

systematic design of experiments where maximum information about a response 

surface are extracted with minimal simulation effort by choosing evaluation points 

carefully [77, 78]. Surrogate models can be used to rapidly evaluate and pre-rank 

alternative scenarios, so that the fewer actual simulator calls are required [5]. However, 

it is important that the surrogate model is accurate enough: regular update during 

optimization progress is often required. Common proxy modeling approaches used in 

well placement problems include: Kriging [62, 72, 74, 79-81], neural network[5, 53, 

62, 76, 82], neuro-fuzzy [83], clustering[84, 85] and quality map and regression [5, 86-

93]. Recently, there is a growing interest in using reduced order modeling [94-98] in 

reservoir control. However, to the best of our knowledge, this concept has not been 

used directly well placement yet. For a detailed accuracy assessment of these proxies, 

refer to references [62, 99].  
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(c)  The last approach tries to evaluate          more quickly by parallelization 

[58, 100] using multi-processor simulation, grid and distributed computing [101]. 

Significant gains have been reported [61, 70, 71]. Afshari et al.[63] also suggested the 

use of streamline simulators, rather than finite difference simulators. Of course, the 

limitation of streamline simulators from the viewpoint of reservoir engineering should 

be considered beforehand.  

2.4.2 Mathematical Programming 

The optimal well placement problem can be modeled as a mathematical programming 

problem, and may be solved using the wealth of theory, techniques and algorithms 

developed for the same. In fact, mathematical programming has been already used for 

several real (especially combinatorial) problems such as refinery blending, planning 

and scheduling [102-106], pharmaceutical enterprises [107, 108], bio desulfurization 

[109], heat and work exchange networks [110-115], and offshore infrastructure 

planning and scheduling [116]. 

Most research has been on the surface level of field development, rather than the 

subsurface well placement that requires experience and expertise in dynamic, multi-

phase, subsurface reservoir modeling. Thus, problems such as economic analysis and 

determination of number, type and size of production and gathering platforms as well 

as location-allocation of these platforms and wells have received more attention [22, 

117-123]. These studies are further reviewed in Chapter 5 and this chapter focuses on 

the subsurface problem subject to the surface constraints.  
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2.4.2.1 Models with Discrete Variables 

Binary variables are a natural choice to model options for well location, segment, and 

perforation. For instance, we can define the following binary variable (  ) to model 

well placement at a grid  . 

   {
 if a well is drilled at location  
 otherwise

 

Then, one can use this binary variable to regulate production from that grid [124] or 

enforce a minimum well-to-well distance[125] as follows:  

         
      (13) 

         (       )             (14) 

where,   
    is the maximum possible production at cell  ,     is distance between 

cells   and  , and      is the minimum allowable well-to-well distance.   
    can be 

estimated from absolute open flow rate, available surface processing capacity, and 

projected demand. 

Several works have addressed the well placement problem, but the focus of most has 

been surface [126] rather than subsurface details. In general, the modeling of 

subsurface flows determines the linear or nonlinear nature of O. If  ,   and   are linear 

(nonlinear), then O becomes an MILP (MINLP). The first reported models use 

different forms of linear relations and static data to reflect the dynamics of the 

subsurface flows, thus they are MILPs. In their pioneering work, Rosenwald and 

Green [124] reported an MILP by defining something called influence function. This 

function describes how the reservoir pressure at cell   and time   is affected by unit 

production at site  , and it is computed by running extensive reservoir simulations. 

Using this function, they related the reservoir pressures at various sites as a linear 

function [127] of various production rates up to and including time  . They called this 

the superposition method, which essentially approximated the real nonlinear reservoir 
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dynamics in terms of linear functions. Using the same method, Haugland et al. [128] 

employed a linear and simplified well production equation to determine well 

placement and scheduling, platform capacity, and production plan concurrently. Later, 

Iyer et al. [116] used a piecewise linear approximation of reservoir pressure and GOR 

versus cumulative oil production to describe the reservoir response to production. 

However, they made several excessive simplifying assumptions such as homogenous 

fluid mixture at the same pressure in each reservoir, constant productivity index 

throughout the planning horizon, well productions being independent, and linear 

pressure drops versus flow rates in pipes. In spite of these, their contribution is 

important because their MILP model includes many complex operational 

considerations including well selection in different reservoirs and different fields, 

drilling schedule, platform installation and sizing, production planning, and even the 

availability of drilling rig.  

 In contrast to the above work that considers the reservoir as dynamic, some 

researchers have assumed it as static and defined various metrics to approximate the 

properties of wells at sites. Dogru [129] formulated the offshore well platform and 

drilling location-allocation problem by defining a productivity index for each potential 

well site and using oil-in-place data to indicate production quality. Vasantharajan and 

Cullick [125] defined a static metric, which describes the connected hydrocarbon pore 

volume at a site inversely weighted by tortuosity. Ierapetritou et al. [130] used some 

available data on the quality of various sites, which considers the geological 

information and static state of the reservoir at each site. Their model assumes vertical 

wells, but allows multiple geo-objects with multiple layers in the reservoir, and a well 

to have a perforation in each layer. They used one binary variable to model the 

existence of a well at a site, and others to locate perforations in various layers at each 
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site. They allowed the quality to vary with layer, and imposed a minimum well-to-well 

distance for well sites or even perforations. These are important considerations in 

practice, and hence their MILP model is of significant interest. Cullick et al. [131] 

further extended the work of Ierapetritou et al. [130] to deviated wells using a 

sequential heuristic approach. Their model considers well spacing, bending angle, and 

total well length in a 3D domain. In contrast to Ierapetritou et al. [130] who used two 

binary variables, Cullick et al. [131] used one binary variable for each site, and one 

continuous variable for each layer at each site. 

Among the surface-directed works, the work of Van Den Heever and Grossmann [132] 

is notable. They extended the MILP model of Iyer et al. [116] by fitting an exponential 

function to describe reservoir pressure versus cumulative oil flow rate, and quadratic 

functions to describe the cumulative gas productions and GOR versus cumulative oil 

flow rates. Their MINLP model employs generalized disjunctive programming. 

2.4.2.2 Algorithms 

The above binary-based modeling approaches lead to MILP and MINLP models, 

where branch and bound techniques are primarily used along with continuous LP/NLP 

solvers. They can guarantee successive improvement in the objective function. 

However, because of the details captured, the resulting MIP models tend to be 

sizeable. To reduce the computation time, researchers have tried several strategies. 

One is to pre-process reservoir data to remove inferior well candidates based on 

attributes such as net pay, permeability, productivity index, oil-in-place map before 

executing the optimization algorithm [125, 130]. We have discussed similar approach 

and its deficiencies in section 2.4.1.2.1. 

The second is to use heuristic or decomposition procedures, which may give 

suboptimal solutions. For instance, Iyer et al. [116] proposed a sequential 
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decomposition algorithm to obtain an upper bound for their maximization model. They 

aggregated wells in each reservoir and time steps, and employed a piecewise linear 

approximation for the reservoir. They computed the lower bound using disaggregation 

and relaxing the declining profile constraint. Their MILP model requires a huge 

number of binary variables due to their piecewise linearization, which Van Den Heever 

and Grossmann [132] avoided by directly using nonlinear correlations. Since the 

resulting MINLP is non-convex, they employed convex envelopes instead of 

linearizations in the master problem of their outer approximation algorithm. Finally to 

obtain a tighter bound, they proposed a dynamic programming strategy to derive an 

effective aggregation scheme at every iteration.  

The work of Ierapetritou et al. [130] is an example of how a MILP model can be 

decomposed to reduce the search space. To find the best well configurations, 

Ierapetritou et al. [130] used iterative ranking of candidates, cut-off criterion, and 

feasibility tests in both the decomposed and the full decision space. In a similar study, 

Cullick et al. [131] proposed a two-stage MILP algorithm to reduce the number of 

candidates and refine the search space for deviated wells. Their algorithm first locates 

vertical wells by using definitions of quality and geo-objects. In the second stage, it 

uses the solution from the first stage to check for 3D completion and design deviated 

trajectory using ideas from graph theory. 

2.4.3 Gradient-based Methods 

Recent developments in adjoint gradient calculation method [133] bring about more 

efficient gradient evaluation and optimization. Consequently, continuous well location 

models have been developed to exploit the techniques and to overcome the 

shortcomings of mixed integer modeling.  
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2.4.3.1 Models with Continuous Variables 

 These models use one or more continuous variables to model well locations. 

They use the idea of pseudo-well completely or to some extent. A pseudo-well is a 

well with negligible (or no) flow rate and its presence does not affect the reservoir’s 

performance. Both models are compatible with reservoir simulators; a simple function 

can be defined to map these decision variables to the discrete location indices before 

introducing the proposed solution to the simulator.  

2.4.3.1.1 State-based Well Models 

The key decision variables in these models are the flow rate and/or the pressure 

difference at the well [134]. Therefore, we refer to this approach as state-based models. 

Flow rate is used more frequently. In this case, all feasible locations are represented by 

pseudo wells, which together produce/inject a fixed total field flow rate; a zero flow 

rate for a pseudo well location means that this candidate is not selected.  

A shortcoming of this method is its efficiency in addressing the optimal number of 

wells. Therefore, Wang et al. [135] and Zhang et al.[136] added the following 

fractional approximation to the objective function to minimize the well number and 

simultaneously avoid using binary variables: 

   (   )   ∑ (
    

      
)        (15) 

where     is the well drilling cost,      is well flow rate at location   and   is a small 

enough number. When the flow rate is zero (non-zero), the drilling cost is eliminated 

(considered). A similar approach in water treatment context is taken by Cunha [137]. 

However, as pointed out by Murray and Edgar [127] and Forouzanfar et al.[138], this 

approach can lead to numerical difficulties because the derivative (gradient) of the 



Chapter 2 Techniques and Approaches – Literature Survey 

 

38 

 

objective function is insensitive to variations in flow rate. To address this problem, 

Forouzanfar et al. [138] proposed the following approach: 

The derivative-based algorithms solve the well placement problem iteratively. Let us 

show each iteration by  . Therefore     
  is the flow rate of phase   at location   and at 

iteration  . The value of     
    is already known at iteration  , but not that of     

 . 

Therefore, to have a sensitive function to variation in the flow rate, Forouzanfar et al.  

defined    as: 

   (    
 )   ∑ (

    
 

    
   )

 

 
             

      (16) 

Only, the differentiation of the above term is used in the algorithm. In other cases, 

       
   is set to        if     

     , otherwise it is zero. At every iteration, the flow 

rate is assumed to be constant for the entire time horizon  . However, this assumption 

can limit the scope of this approach.  

2.4.3.1.2 Ring-based Well Models 

Dirac delta function          is generally used to represent the well term after 

discretizing Eqn.(1): 

                          (17) 

where 

          {
                   
 otherwise

;  (18) 

In the ring-based models, the non-differentiable Dirac delta function, is approximated 

using a continuous function to recover differentiability. A chain of pseudo wells 

surrounding each real well is usually employed for this approximation. Therefore, we 

refer to this approach as ring-based well modeling. Under this, the derivative of the 

objective function with respect to the spatial variables is computable if the ring is 

directly defined as a spatial function. Moreover, it is notable that the ring-based models 



Chapter 2 Techniques and Approaches – Literature Survey 

 

39 

 

offer a more realistic solution. Although the state-based models share the assumption 

that the well flow rates stay constant over the entire time horizon   (which may not be 

true), the chain-based models do not require such an assumption. 

In an early work, Virnovsky and Kleppe [17] used an unknown function       as a 

control variable to approximate the production of a horizontal well ( ) over an active 

zone of      . The horizontal locations of these wells were predetermined and 

their vertical locations were to be calculated. The vertical production spectrum of each 

well was represented using piece-wise constant function      . Each piece of this 

piece-wise constant function served similar to a pseudo well. The vertical location of 

these pseudo wells determined the objective value. They finally suggested the heuristic 

approach of setting the vertical position of the main well at the center of mass for these 

production densities (i.e. pseudo wells):  

    
∫           

 
 

∫         
 
 

 (19) 

Such an approach is equivalent to representing a well with several pseudo wells.  

More recently, Zandvliet et al. [139] improved upon the idea. By approximating the 

Dirac delta function with a ring of pseudo wells around the main well. Ayda-Zade and 

Bagirov [140] and later Sarma and Chen [141] further extend the idea by placing a 

series of rings and using a 2D bivariate Gaussian function: 

      
 

       ( 
 

   
                 )                  (20) 

where   is a parameter that determines the accuracy of the approximation. This 

approach approximates the well term with a flow distribution with the main well 

located at the peak point (i.e. at      ). Clearly, equation (20) is differentiable with 

respect to location, and gradient-based optimization algorithms can be easily used. 
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2.4.3.2 Algorithms 

Gradient estimation by finite differences is usually costly, because      reservoir 

simulations are required for a 2D  -well location problem [139]. Direct gradient 

evaluation is also limited to cases with shortcut and proxy models [142, 143] due to the 

complexity of the dynamic equations. Therefore, gradient-based approaches were 

seldom investigated until the development of adjoint gradient evaluation techniques 

[133]. 

The adjoint technique has its roots in optimal control theory [144], which transforms a 

constrained problem into an unconstrained problem. Adjoint technique efficiently 

computes the gradient in two steps:  

(1) A forward reservoir simulation is performed to evaluate the objective value 

and the state, output, and control variables for a given set of decision variables 

and input parameters. This typically involves decomposing the discretized 

simulation model into smaller problems along the temporal domain and solving 

them sequentially. 

(2) A backward simulation is done to compute the Lagrangian multipliers for the 

complete problem, which are used to obtain the gradient. 

The survey paper by Jansen [133] provides detailed discussions on adjoint gradient 

calculations and its theory.  

To exploit the computational efficiency of adjoint gradient calculation, most recent 

researches in this category have utilized the optimal control framework, the essence of 

which is to find the best control policy that would guide a dynamic system from its 

initial to its final state. This matches the requirements for typical well placement 

problems, where the dynamic system is associated with a list of dynamic and static 

control variables. For example, Ayda-Zade and Bagirov [140] formulated in-fill 
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drilling as a parametric problem for optimal control of distributed systems with 

concentrated sources, where the parameters and control actions are well location and 

well flow rates respectively. Ebadat et al.[143] also formulated the well placement 

problem as a tracking control problem and included seasonal changes in the market 

demand.  

Wang et al. [135] developed a state-based water injector model by assigning injectors 

to each well-free grid ( ) and covering all      potential points. The total field injection 

rate in their method is constant (  ): 

 ∑       
    

    

   
  (20) 

The injection rates       
  are constant throughout the production horizon  . They are 

modified via steepest ascent algorithm in each iteration ( ). Inefficient wells are 

rejected by: (a) incorporating drilling cost into the objective function as in Eqn. (16) 

and (b) employing the following line search: 

       
          

      
    

   (21) 

where    
           

  is the search direction,   is the objective function to be 

maximized and     
             

   is the step size.        
  is defined as: 

       
  {

       
     

       
   

          
      

       
   

 (22) 

However, this algorithm is inefficient because step (b) results in rejection of only one 

injector at every iteration.  

Zhang et al. [136] try to overcome this difficulty by iterating between the line search 

and an extra gradient projection step. The projection step makes sure that after the line 

search shuts an injector, the active bounds and the projected search direction (   ) are 

updated so that all linear constraints (total injection) and bounds on well flow rates are 

satisfied at every iteration. The maximum number of wells to be screened per iteration 
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specifies the number of inner iterations between these two steps. Together, these two 

steps reduce the number of injectors before proceeding to the next major iteration. 

Finally, a forward simulation checks the quality of the solution. This approach can 

explore the optimal number of wells at a convergence rate faster than the method in 

Wang et al. [135]. More recently, Forouzanfar et al. [138] tried to strengthen this 

approach by providing heuristics to approximate the value of    and by imposing 

explicit bounds (with respect to the simulator) on the bottom hole pressure.  

Zandvliet et al. [139] used the ring-based approach. The pseudo wells produce/inject at 

a very small fraction of the main well in the center of the ring. The gradient 

information based on these flow rates determines the direction for shifting the central 

wells. The number of wells can be reduced if two potential wells merge into a same 

cell. The exit criterion is based on oscillation between two well configurations. 

Clearly, these are heuristics and cannot guarantee an improving direction, therefore the 

optimality. Although Zandvliet et al. [139] considered only vertical wells, Vlemmix et 

al. [145] attempted to locate the trajectory of a deviated well with the same idea. They 

assigned side-tracks to the main trajectory, acting with small flow rates. Similar to the 

previous work, the gradient-based on these flow rates helps shifting each segment of 

the well and forming a new trajectory. The updated trajectory is subject to the 

constraint on the dog leg severity (i.e. degrees of inclination, and/or azimuth per 100 ft 

or 30 m of well length [146]). Therefore, they heuristically modify the trajectory, in 

case it is necessary. 

Although both above studies [139, 145] have used ring-based models, their objective 

functions are not directly dependent on explicit and continuous well location terms. In 

contrast, the method of Sarma and Chen [141] represent the well locations by 

continuous variables instead of integer variables, hence the objective function directly 
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depends on well locations. The geometrical index of each pseudo-well on the ring is a 

fraction of the index of the central well. The scaling factor is computed based on the 

well-to-pseudo well distance using the bivariate Gaussian function. Since, the pseudo-

wells are distributed everywhere, there is no limit on the search directions and the step 

size. In contrast, the search direction and the step size in the work of Zandvliet et al. 

[139] are limited to the eight surrounding directions and to one grid per iteration, 

respectively.  

Gradient-based methods are famous for monotonically improving the objective 

function and offering local solutions. However, it is notable that these may not be the 

same here. A part of algorithms that employ the ring-based models [139, 145, 147], 

cannot guarantee monotonic improvement. Moreover, the final solution strongly 

depends on the initial guess and is either local solution or a good solution. This method 

is faster than the evolutionary and direct search approach. However, it demands more 

data from the reservoir simulator. If the simulator does not provide the adjoint 

information, this method requires sophisticated preparations and programming.  

2.5 Tools 

Perhaps reservoir simulator software packages are the most common tool-boxes of the 

majority of above well placement techniques. These simulators have provided the 

required data for the optimization algorithms, either directly or through proxies. They 

also take care of different operational constraints such as maximum water injection 

flow-rates. Furthermore, they are the main tool of validating the optimization results. 

Some of the most famous packages include CMG[46], ECLIPSE[44], VIP, 

KAPPA[148], BOSS [149], 3DSL [89], Chevron Texaco’s CHEARS [55]. We briefly 

comment on the software packages that are more accessible to academia. 
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Three main industrial and numerical software packages are CMG[46] , ECLIPSE[44] 

and VIP [150]. In the academic sector, Stanford University has also developed GPRS 

(Stanford’s General Purpose Research Simulator) that is both black oil and 

compositional simulators. Here we discuss the first two simulators (CMG and 

ECLIPSE) which have been actively used in academic researches worldwide. Both 

simulators have three phase black oil packages (IMEX/CMG and E100/ECLIPSE), full 

compositional reservoir simulators (GEM/CMG and E300/ECLIPSE) and optimization 

modules (CMOST/CMG and PlanOpt/ECLIPSE). Therefore, both can cover a diverse 

range of upstream operations and analysis. CMG uses CMOST to perform the 

sensitivity analysis, history matching, uncertainty assessment and optimization [46]. It 

uses particle swarm optimization, random search and brute force search. On the other 

hand, optimization tool-box of ECLIPSE uses adjoint gradient and line search method 

(steepest descent and conjugate gradient). The adjoint gradient option is available for 

E300. The reservoir model linked with this optimizer should be fully implicit. The 

“PlanOpt” toolbox of ECLIPSE finds the optimal vertical well location using 

predefined screening criteria and simulation [44].  

Both CMG and ECLIPSE can be connected to other geological, downstream, 

uncertainty assessment and economical software packages for detailed and integrated 

field development studies. PETREL, Roxar RMS, JOA JewelSuite, Earth vision and 

MEPO are some of the geological software packages. PipeSim, GAP and FORGAS, 

are downstream software. EnABLE by ROXAR is statistical uncertainty analysis and 

assisted history matching tool that can be used for examining multiple development 

scenarios. COUGAR is another reservoir’s uncertainty analysis software, which 

produces response surfaces by using the experiment design techniques [151]. Finally, 
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PEEP is an economic package. Connecting these packages enable us to do an 

integrated study of the field [152].  

On the optimization side, very few contributions have used general-purpose 

optimization packages to solve the well placement problem as a mathematical and 

technical problem. GAMS [153] is the most important such software. It solves 

optimization problems by mathematical programming algorithms. To solve the MILP 

and MINLP models, a user need access to MILP and NLP solvers (and MINLP). 

CPLEX package, available in GAMS, is already used to address the MILP well 

placement problem [154, 155]. The current state-of-art MILP solver is GUROBI, 

which has also shown signs of good performance in this problem[156]. Similarly, we 

have successfully experienced solving very large size NLP problems with IPOPT[157] 

in an acceptable time. The solution of GAMS to nonlinear programming problems 

(NLP) is more accurate with less iterations compared to other packages that use finite 

difference methods. Using these powerful tools, a user can implement any variation of 

different decomposition methods and heuristics in GAMS. The interested reader is 

advised to refer [155, 158] for a general discussion on available algorithms and 

computer codes for MINLP. Since GAMS can interface with MATLAB through 

gdxmrw tool box [157], it can also interface with previously mentioned reservoir 

simulators, and geological and economical software packages to exchange data.  

2.6 Uncertainty 

Changes in oil basket price of OPEC from 12.28 $ in 1998 to 94.45 $ in 2008 and even 

higher afterwards clearly shows the uncertainty in the market and risk of economic 

investment in oil development projects [159]. Additionally, the inherently limited, 

expensive, and difficult nature of reservoir sampling and analyses introduce significant 

uncertainty in data. In fact, an exact description is nearly impossible at the beginning 
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of the field life and may be achieved only after the reservoir has been fully depleted. 

Even then, significant uncertainties [26] may exist. While the uncertainty can be 

reduced by drilling appraisal wells [160] at the beginning and using the production 

data of drilled wells later for history matching, the fact remains that it is difficult to 

fully understand and accurately model / describe a reservoir. Thus, a typical well 

placement problem has many uncertain parameters, especially in the geological 

realizations. However, because the nominal problem without uncertainties is already 

difficult to handle, very few results have been reported to handle such uncertainties 

using mathematical programming [161, 162]. To the best of our knowledge, there is 

also no reported work using gradient related methods. Nevertheless, recent advances in 

general robust optimization techniques [163, 164] mean that if the nominal problem 

without uncertainties can be handled, then the uncertainties can be handled with some 

more effort. 

Comparatively, there has been more work on handling uncertainties using the 

evolutionary and direct searches. This is usually done by simulating production of a 

well configuration on all (or most of) probable geological realizations to evaluate the 

expected value of the corresponding objective function. A risk aversion parameter can 

also be used to reflect the perspective of the decision maker [53]. Güyagüler and Horne 

[72] took such an approach using the utility framework. However, such approaches are 

computationally cumbersome [165] and are intractable as the number of required 

simulations becomes too large. Consequently, only small size reservoirs can be 

handled. 

Different researchers have tried to balance between reliable uncertainty handling and 

reducing computational load. Ozdogan and Horne [74], included time-dependent 
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uncertainties (or pseudo-history), and Morales et al.[73] applied probabilities of 

success.   

More recently Wang et al. [166] considered a retrospective optimization framework. 

That starts with one possible realization, and adds more scenarios in the optimization 

process. Therefore, all possible realizations are considered as the procedure converges 

to the optimum. Cluster-based sampling can also be employed after characterizing all 

possible realizations based on their static and (updated) dynamic attributes. This 

approach can reduce the number of required simulations.  

Because the subject of uncertainties is not within the main scope of this paper, we have 

included only a short introduction. A brief discussion can be found in reference[42]. 

2.7 Discussion and Research Opportunities 

Table 2-1 provides a concise summary of the present survey. It compares the three 

different methods discussed earlier. For simplicity, we refer to these methods as (1) 

parameterized well models solved by evolutionary (and direct search) methods, (2) 

MILP and MINLP models solved by mathematical programming, and finally (3) 

continuous models solved by gradient-based search techniques.  

As Table 2-1 shows, the first set of methods is not affected by non-convexity and 

nonlinearity, provided that enough computational resources are available. Moreover, 

considering the simplicity of vector parameterization and the availability of reservoir 

simulators and general global optimization toolboxes, their implementation is 

straightforward. Therefore, they are very versatile, and they have attracted most 

publications on well placement. While their key disadvantage is their huge 

computational cost, they can at least give some solution from the effort for large 

problems. The other important key disadvantage is their inability to implicitly honor 



Chapter 2 Techniques and Approaches – Literature Survey 

 

48 

 

the geometrical and logical constraints such as feasible well configuration, which can 

add to computational cost. 

 

Table 2-1: Characteristics of algorithms used to address well placement problem. 

Algorithm 
Evolutionary and  

Direct Search 

Mathematical  

Programming 

Gradient-based 

Search 

Well representation 
Mixed vector  

parameterization 
Mixed integer Continuous variables 

Examples of algorithms GA, PSO, SA
a
, HS

b
 Branch and bound Steepest descent 

Parallel Computing Compatible Possible 
Useful for multi-start 

strategy 

Number of Simulations High Low Low 

Successive improvement in 

objective 
No guarantee Yes In principle, yes 

Gradient information Not required Required Required 

Stopping criteria Heuristic 
Theoretical and/or 

Heuristic  

Theoretical and/or 

Heuristic 

Suitability for large 

problems 
Good Fair Good 

Uncertainty Work exists 
No work for 

subsurface issues 
No work so far 

Handling of geometrical 

constraints 
Weak: Externally Strong: Internally Weak: Externally 

Intermediate infeasible 

solutions 
High Least/Impossible Low 

Simplicity of 

implementation 
Easy Difficult Average 

a 
Simulated Annealing [27]  

b
 Harmony Search [63]  

 

The second set of methods is the first approach for well placement that appeared in the 

literature [124]. However, they are not currently common in field applications. From 

the viewpoint of a petroleum engineering team, their main deficiency is the 

approximations used by the early contributions in modeling the nonlinear subsurface 

flows. They are problem-specific and they can be complex. Cullick et al. [167] argue 

this to be the main reason why application of the second method is limited in practice. 

However, with the progress of computational tools and advanced algorithms, ability to 

handle geometrical and logical constraints, and advanced and efficient search 
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algorithms, mathematical programming is attracting more attention and application in 

many fields. Thus, they hold much promise for well placement as well. 

The third set of methods represents the most recent approach. The idea of state-based 

modeling is similar to the role of Eqn. (13) in MILP and MINLP models, where 

unpromising pseudo wells are rejected by pushing their flow rate to zero. However, the 

assumption of constant flow rate of each well for the entire planning horizon   in the 

state-based models limits their applicability. On the other hand, using the Dirac delta 

function in ring-based well models seems promising. However, none of these ideas are 

adequately tested for complicated multilateral and deviated wells. The only known 

contribution is the initial study by Vlemmix et al. [145]. In contrast to well models in 

the first two methods, both state and ring-based models are differentiable. Therefore, 

the gradient-based algorithms that solve them are much faster than the first two sets of 

methods. The use of reservoir simulator allows them to take care of the nonlinearity 

and complex trade-off with no loss of fidelity. However, they are local optimizers, and 

the quality of the final solution strongly depends on the initialization step. Finally, they 

require special explicit handling of logical and geometrical constraints.  

In the view of these comments, we identify the below opportunities for further 

computational research on well placement: 

1) It is vital to evaluate the existing academic studies by assessing the technical 

constraints in more details and removing simplifying assumptions. For instance, 

consider perforation location on multilateral wells. The available literature simply 

assumes that the laterals are completely perforated, which may not be realistic. 

Additionally, any vertical or horizontal well can be perforated at different segments 

to connect small trapped zones of hydrocarbon. Ierapetritou et al. [130] 

investigated vertical wells penetrating different geo-objects. In case of a 



Chapter 2 Techniques and Approaches – Literature Survey 

 

50 

 

sandwiched pay zone between gas and water zones [168], the majority of studies 

has focused only on linear trajectory and horizontal location of the main trunk. 

However, wells in reality may be drilled in a snake shape. Therefore, the design 

and configuration of complex wells in non-uniform formations remains an open 

research area. That will give a strong boost to the field application of academic 

research. 

2) Perhaps, the biggest practical challenge is to address the uncertainty in model 

parameters and data. At this time, few contributions except those using 

evolutionary methods have included uncertainty in the context of subsurface 

issues. While considering uncertainty with evolutionary methods is 

computationally expensive; their suitability for parallel computing offers much 

promise.  

3) Deriving better and simpler analytical approximations (e.g. reduced order models 

[94-98]) for the hydrodynamic equations governing the reservoir behavior in 

unsteady state mode is a key area of research [169]. This is already being done in 

other multi-physics fields such as fuel cell modeling [170, 171]. It can certainly 

make the gradient-based and mathematical programming methods much more 

powerful. 

4) Consideration of critical and practical aspects such as uncertainty and risk 

assessment, design and configuration of complex wells, determination of drilling 

sequence [5, 27, 56, 116], allocation of well-to-surface facilities, and economic 

analyses is certainly essential and needs much attention. However, that will 

undoubtedly complicate and enlarge optimization models [172] , so the 

development of novel algorithms and efficient solution approaches for well 

placement will be must. 
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5) To better serve the needs of the industry, it is necessary to develop a user friendly 

and integrated analyzer [70] that would provide a variety of solver options 

available in the literature. No comparative study exists on the available toolboxes 

for well placement in commercial software packages such as PlanOpt in ECLIPSE, 

and their comparison with academic methods. Such a study will be very useful. 

6) The hydrocarbon fields are getting older and oil price is rising. Consequently, EOR 

methods are becoming more important (Refer [173] for a review on mature fields 

and to [174, 175] for EOR processes). There is a need to consider the specific 

demands and impact of EOR processes. To this end, the models and methods need 

to go beyond just water injection scenarios to fluid injections. Furthermore, one 

needs to develop methods for determining EOR injection sites, selecting the EOR 

agent types and scheduling their injection [168, 176-179].  

7) HSE (Health, Safety, and the Environment) has always been a real concern for 

drilling activities. Incidents such as Piper Alpha disaster in 1988 [180] and oil spill 

in Gulf of Mexico in 2010 [181] have highlighted their importance even further. It 

is important to define more holistic merits of comparison for different well drilling 

scenarios to accommodate all concerns regarding long-term environmental and 

techno-economic issues such as drilling safety, drilling rig abandonment, and well 

commissioning; especially for offshore fields and infrastructures. 

8) The methodologies for addressing well placement have much wider applications to 

other fields such as underground water well placement [182, 183], windmill 

placement, and fin placement in heating/cooling problems.  

2.8 Selected methodology and research focus 

Well placement problem involves numerous logical, structural, operational and 

economic constraints. From above discussion, it is clear that evolutionary methods and 
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gradient based searches are unconstrained optimization approaches and handling 

discrete constraints remains computationally costly for them. They produce many 

infeasible configurations, which deteriorates their performance [59], and require 

external intervention to recover from infeasibility [70]. However, mathematical 

programming is a constrained optimization approach and therefore can efficiently 

handle such constraints. Moreover, this approach is flexible and versatile; it can embed 

the reservoir physics inside the optimization model to benefit from its mathematical 

structure. This allows one to include the production/injection profiles along with the 

location decisions in the model and improve computational speed. The improvements 

of computational software and hardware have significantly extended flexibilities of 

mathematical programming studies. The changes in the trend of such studies from 

LPs/MILPs to MINLPs can confirm that. Thus, mathematical programming approach 

is chosen as the main methodology of this research. For achieving the best 

performance, some of the limitations, shortcomings and gaps of current studies based 

on this technique should be addressed. In particular, the following topics are addressed 

in this dissertation: 

1) The strategy should go beyond the black box approaches, and employ a rigorous 

subsurface fluid flow model. So that the final solution is accurate and comparable 

with the solution from industrial standard reservoir simulators. That is addressed in 

Chapter 3 and tested in Chapter 4. 

2) This rigorous subsurface model should be embodied in a novel holistic model that 

integrates both subsurface and surface elements to address well and infrastructure 

placement, installation and allocation as well as production planning. That is 

presented in Chapter 4 and Chapter 5 . 
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3) The above integrated model should be extended to optimally determine, the time 

and order of drillings and installations. That is tackled in Chapter 5. 

4) An efficient and flexible algorithm should be tailored to effectively solve each of 

these integrated models. Chapters 4,5 and 6 discuss that. 

2.9 Summary 

Wells demand significant investment in any hydrocarbon production plan and may 

constitute up to 60% or more of the capital expenditure (CAPEX). This high financial 

burden has motivated a range of operational research studies on optimal well 

placement. In parallel, the recent advances in high performance computers have given 

the engineers more sophisticated analysis tools. Despite all these advances and 

interests, there is a lack of detailed review of existing important contributions on the 

specific problem of well placement. By providing a comprehensive literature survey, 

this article has made a significant contribution. 

Nonlinear PDEs, problem size, and model uncertainty are the three main challenges in 

the well placement problem. In this chapter, our focus was largely on the first two 

challenges. We did not address uncertainty and risk assessment in detail. Three 

approaches have been commonly used to solve optimal well placement problems, of 

which evolutionary and direct search are the most popular and simplest. These features 

have allowed them to address all three challenges reasonably well, although with 

possibly high computational effort. They are the best at handling nonlinearity, non-

convexity, and large problems. They have been the focus of most publications in this 

field. The gradient-based search approaches are new and novel with very limited work. 

They need to be further investigated, tested, and improved. With the progress in 

computing hardware and general-purpose optimization tools, mathematical 

programming methods offer the most promise due to their versatility and theoretical 
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foundations. Although they were the first to be used on this problem, their application 

has lagged behind in practice and much work is needed. They offer versatility in 

formulating complex problems with a variety of real physical constraints, but cannot 

solve truly large problems. Their application has also been limited due to their 

complexity, and the representation by the early works of multiphase flow in the 

reservoir needs much to be desired. Clearly, finding an analytical solution for or an 

accurate approximation to the main conservation equations can significantly reduce the 

computational cost in all three methods. 

The future work on this problem will be directed on offshore drilling, infill drilling for 

both EOR and routine production, complex well design, and uncertainty handling. The 

current industrial situation points to a shift from on-shore to offshore well placement. 

Although the exploration sector has been very successful during the past few years, the 

chance of exploring new fields is decreasing. Hence, the focus is shifting to complex 

well designs and in-fill drilling for both production and EOR purposes considering 

surface facility and processing constraints. 

Our survey and discussion are clearly not exhaustive; they are probably the first to 

focus on systematic optimization techniques covering most aspects of this problem. 

Lots of algorithmic, computational, modeling and data gathering challenges remain 

unaddressed as described in our discussion section. Considering the major challenge of 

energy facing the world, these require attention from both the research and industrial 

community. Extensive interaction between the two will be essential for attaining 

fruitful results and tools. 

From the above study, mathematical programming was chosen as the main framework 

for the current study. The research focus and gaps were also discussed. 
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CHAPTER 3 MODELS FOR FLUID FLOW 7 

 

3.1 Introduction 

Statistical methods, decline curve analysis, material balance, multiplication method of partial 

efficiencies, stream tube model and numerical modeling are the main methods for simulating, 

forecasting and analyzing the oil and gas recovery processes. Refer to [184] and [25] for 

discussion on each method. As can be seen in Table 3-1 [184] numerical modeling offers the 

most versatile option. In contrast to others, numerical models are capable of studying the 

effects of the following factors on the process recovery: well distance, heterogeneity, 

production rate, conning, gravitational flow, cross flow, and most importantly enhanced 

oil/gas recovery technologies. These factors can have substantial effects on the final decisions 

for well placement and reservoir development. Commercial reservoir simulators are the main 

tools that utilize these functionalities. The researchers and the engineering teams usually use 

them in a black box manner, and the contents of this box remain intact, hidden and untouched. 

However, opening this black box and embedding its governing spatiotemporal equations 

inside an optimization model enables the researchers to provide quicker and better guidance to 

the optimization engine. The powerful and versatile technique of mathematical programming 

offers significant potential and promise for this. The first step is preparing a rigorous model 

for this purpose; hence we discretize the governing spatio-temporal relations introduced in the 

last chapter, i.e.  eqs. (1)-(7) of Chapter 2. 

                                                 

7 Tavallali, and Karimi (2011). Optimal well placement using dynamic mathematical programming. Presented in 

73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011 - Incorporating SPE 

EUROPEC 2011, Austria - Vienna. 
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Table 3-1 : Methods of Determination of Recovery Process [184] 

 Methods of Calculation 

Parameter 

Statistical 

Methods 

Decline Curve 

Analysis 

Material 

Balance 

Multiplication method of 

Partial Efficiencies 

Stream Tube 

Model 

Numerical 

Modelling 

Recovery factor + - + + + + 

Resources + + + + + + 

Production over time - + + + + + 

Displacement mechanism - - + - - +? 

Effect of distance of the wells - +? -  - + 

Effect of heterogeneity - - - +? +? + 

Effect of  production rate - - + - - + 

Conning - - - - - + 

Effect of gravitational flow (cross flow) - - +? +? - + 

EOR and EGR technologies - - +? +? +? + 

 Explanation: (+) Can be determined 

  (-) Cannot be determined 

  (+?) Can be determined approximately 

 Refer to [184] for discussion on each method.
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This chapter is organized as follows. First, our approach for building a spatio-temporal 

discrete model (based on the governing PDE equations of multiphase fluid flow inside the 

reservoir) is presented. Then, pressure drop due to fluid flow (specifically multiphase flow) 

inside the wells, flow lines and pipes are discussed and the data generation scheme for 

building empirical models for these pressure drops are explained.  

3.2 Model for reservoir dynamics 

In this study, we address two dimensional, under-saturated reservoirs with oil and water (and 

negligible capillary pressure). Many practical problems can be modeled using 2D fluid flow 

equations. Some practical examples include: thin reservoirs of large areal extent, reservoirs 

with narrow or approximately uniform pay zone, cross sectional problems, well testing 

models for single wells. In such cases the 2D modeling offers very good approximations for 

3D models, provided that the variation of thickness is not large [43]. Moreover, 2D models 

can provide the foundations for studying 3D problems.  

As it was discussed in the previous chapter, a set of coupled spatiotemporal differential 

equations [43] represent the dynamic behavior of two phase fluid flow inside the reservoir. 

Equation (1) of Chapter 2  shows this dynamic behavior and different reservoir simulators 

such as ECLIPSE [44], CMG [46], etc. solve that accurately. As discussed earlier, previous 

studies based on evolutionary and gradient-based techniques have employed these simulators 

as black box models. In contrary, in our approach based on mathematical programming, we 

capture the detailed dynamics of the reservoir via analytical algebraic equations in our 

optimization formulation.  

To the above end, we can convert Eq. (1) of Chapter 2 into a set of algebraic equations using 

backward finite difference approximation in a Cartesian system. Here we assume that (a) the 

reservoir is a horizontal 2D plane and therefore there is no flow in  -direction, (b) capillary 

pressure is negligible (c) both water and oil phases are compressible.  
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Consider eqs (4) and (5) of Chapter 2. Negligible capillary pressure results in same oil and 

water pressure i.e.      ; additionally the water saturation is         . We can replace 

these two equations in Eq. (1) to (3) of chapter 2 and their variables change to oil pressure and 

water saturation. In the remaining of this thesis we refer to them as   and   respectively. 

Considering the above descriptions we discretize Eq. (1) to (3) of Chapter 2 along both spatial 

and temporal dimensions for a single rectangular reservoir; we discretize the  -dimension into 

  elements of lengths    ,          ;  -dimension into   elements of lengths    ,   

       ; and the planning horizon   into   intervals of arbitrary lengths    ,          . 

All elements and intervals have arbitrary lengths. This decomposes the entire reservoir into 

(     ) grids. Instead of dealing with two independent indices (  and  ), it is customary to 

order the grids into a single array of   grids (         ) with volumes   , where 

            for                      . For a fully interior (i.e. not on any 

boundary of the 2D reservoir) grid  , grid (   ) proceeds and (   ) follows grid   in the 

 -direction; while (   ) proceeds and (   ) follows grid   in the  -direction. 

If   
  and   

  denote the pressure and water saturation respectively in grid   during interval  , 

then the following equations [43] represent the implicit discretized version of eq. 1 to 3 of 

Chapter 2 using backward finite difference approximation: 
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  is the well flow rate,       

  and       
  are the variable accumulation multipliers (see 

sections 3.2.1),     
  is the phase mobility,      
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weighted mobilities, which are taken as those of the neighbouring cells with higher pressures, 

(  
  ,   

 
  are the transmissibility in the  -direction and  -direction respectively (see section 

3.2.2); they are defined in the following sections. In the above equation, IX and IY are two 

subsets of the temporal domain, and are defined as: 

   {                                    ;     {                                    

A bracketed term that does not satisfy its validity condition (e.g.     ) is omitted from Eq. 

(1). This equation uses the simultaneous solution method [43]. The initial conditions are 

provided through the initial pressure and saturation maps; no-flow boundary conditions are 

used for cells at the boundary and the borehole flow or pressure settings determine the 

boundary condition for the well hosting cell. 

The first two terms in Eq. (1) are accumulation terms and the last four terms are convective 

flows along the four faces of grid  . The following two sections describe various equations 

and relations that define these terms: 

3.2.1 The variable accumulation multipliers 

Accumulation multipliers are defined [43] as:  
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   (  
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  (7) 

where,   is the porosity,   refers to differentiation,    is the capillary pressure,    and    are 

the inverse of the formation volume factor of phase water and oil phases (i.e.         and 

       ). The pressure dependencies of    and   are modeled using Eq. (3.157) of [185] 

and Eq. (2.41) of [43] respectively:  

    
  

   

    
       

  
 (8) 
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    (9) 

   
            

    
   (10) 

where,   ,   , and     respectively are the viscosibility, compressibility, and formation 

volume factor (  ) at reference pressure   
  for water,    is the rock compressibility, and    

is the porosity at the reservoir reference pressure   
 . Using (a) quadratic regression for 

  
      

  term (based on   
 ) and subsequent differentiation with respect to pressure in order to 

approximate the second parenthesis in Eq. 4, (b) linear regression for 5, (c) substituting Eqs. 8 

and 9 into 6 and 7, and (d) ignoring the negligible terms [43] and   
 , we get: 

       
       

             
         (11) 

       
   (        
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  (13) 

       
    

              
         

      
        

  (14) 

where,      ,      ,      , and       are regression parameters. The above four terms are 

directly embedded in Eqn. (1). 

3.2.2 The convective flow terms 

We use the following definitions of transmissibility. They are similar to the definition of 

technical manual of ECLIPSE [44], which are slightly different from those used by Aziz and 

Settari [43].  

   
      

  (
   

    
 

     

      
)        (15) 
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)        (16) 

where      and      are the permeabilities in the   and  -directions respectively,   is a 

coefficient,     and     are the residual oil and water saturations respectively,    
  and    

  

are the end-point relative permeabilities for oil and water respectively,   and   are the 
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exponents in Corey’s correlation,    is the water viscosity,    
  is the formation volume 

factor for water at reference pressure   , and finally               are regression parameters 

for the product (     ) of the viscosity and formation volume factor of oil. 

 In order to well-represent the direction of convective flow in equation 1 of Chapter 2, 

we assume and use the upstream-weighting of the mobility (Aziz and Settari, 1979). To model 

the convective flow between two adjacent cells, this approach chooses the mobility term of 

the higher pressure cell. Therefore using the pressure map at time       and defined these 

upstream weighted mobilies using following eqs. (17)-(20): 
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             (20) 

This necessitates that we solve the above equations sequentially one-period at a time. Thus, 

while solving for period  , the weights will be set based on the solution for period    . Eqs. 

(2) and (3) show the pressure and saturation dependencies of the multiphase flow. These 

dependencies are captured by Corey’s correlation for saturation [25], and regression based 

correlations for pressure (of oil phase). 

 In the next chapter, we will describe an adaptive stability check for the above 

discretization approach and verify the accuracy of the discretization by comparing its solution 

with ECLIPSE [44] as an industrial standard reservoir simulator. 
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3.3 Models for flow in pipes 

The relationship between flow rate into the well and flowing pressure are shown through the 

Inflow Performance Relationship (IPR): 

     
         

    
      

    (21) 

Here,    is the connection transmissibility factor for wells (see eq. 76.5 of [44]), and     
  is 

the bottom hole pressure of the well drilled at cell  . For an injector well at grid  , the 

procedure is similar except for one key difference arising due to the direction of flow. 

Moreover, in the absence of cross flow at an injector, it is a standard practice to combine 

water mobility with oil’s relative permeability and viscosity [44]. This is for example to 

prevent injection blockage, when   
      [186]. Therefore, it is customary to add a term 

     
  for an injector and we introduce that as: 
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where,      and      are regression parameters for oil viscosity.  

The pressure-flow relation of the flow from the bottom hole to the top side of tubing are 

modeled via following Vertical Flow Performance (VFP) relationship: 

     
      

    
        

     
     

   (24) 

    
  is the pressure of the same well string before the choke valve and near the surface,    

  

is the frictional pressure drop through the well tubing and    
  is the pressure drop due to 

acceleration,    
  is the pressure drop through the valves,    is the well depth, and   

  is the 

density of the fluid. Preparing the VFP eqn for single phase flow (e.g. water injector) is 

straight forward; however, that is very complicated for multiphase flow happening at the 

producer wells. That requires special attention. 
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Pressure drop in a multiphase flow is a complex function of liquid flow rate (or oil flow rate), 

water-oil ratio (or water flow rate), gas-oil ratio (or gas flow rate) and absolute pressure 

levels. Several models exist for capturing these dependencies. Homogenous flow models 

ignore flow pattern and are the simplest. Homogenous models that consider phase slip are 

called drift flux models [187-189]. Empirical methods such as those of Beggs and Brills [190] 

and Mukherjee and Brill [191], and the mechanistic model of Petalas and Aziz model [192], 

predict flow patterns and consider phase slip.Accurate predictions for pressure drops involve 

highly complex and nonlinear expressions. Moreover, in majority of cases, these models are 

discontinuous. Brill [193] provides an excellent monograph on this topic.  In this study, we 

represented above pressure drop functions via empirical and regression models, which are 

regressed from the data generated by the VFPi package of ECLIPSE [194].  

The following section describes the data generation proceadure using VFPi. 

3.3.1 Pressure drop data 

VFPi software [194] was used to generate the pressure drop data for numerous pipe lengths 

and fluid flow regimes. This software works as a characterization and pre-processing tool for 

ECLIPSE [44] and VIP [150] reservoir simulators and is equipped with several multiphase 

flow correlations, and mechanistic models. Following tasks are performed to ensure the 

accuracy of the generated data before doing the regression: 

1) Consider the upward flow with inlet pressure of BHP and outlet pressure of THP. Figure 

3-1 is generated with VFPi software and shows the BHP variations with flow rate for two 

fixed THPs. In order to increase the upward flow rate under a fixed THP, normally BHP 

should increase. However, as Figure 3-1 depicts, in some low flow rates, an unstable zone 

is created where the reverse happens. As can be seen, the BHP vs. liquid flow rate forms a 

J-shaped function in which the sections with negative (positive) derivative indicates the 

instability (stability) and the production should be in the stable zone. Usually more 
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number of data points should be employed to model the unstable region. VFPi provides a 

convenient tool for identifying this zone before generating the regression data. 

 

Figure 3-1: Well performance analysis for identifying the unstable zone and the operating conditions of a 

producer well. 

 

2) Additionally, the operating point (  
      

 ) of a well is where the VFP curve of Eqn. (7) 

intersects with the IPR curve of Eqn. (21). That is also shown in Figure 3-1. If these two 

curves do not intersect for a nominal condition, their corresponding well might not be a 

good candidate and that can be used as a pre-screening criterion. 

3) The choked flow conditions and negative values in the pressure traverses should be 

identified and screened after the pressure drop calculations. VFPi tags these conditions by 

assigning  1E10 values to the final BHP/THP pressure report.  

4) Pressure drop calculations should be specific to each pipe according to its length and 

properties; hence numerous number of VFP calculations for a well placement study 

should be done. To reduce the simulation load, a representative range of pipe lengths 

(         ) is divided into    elements of lengths     ,            , such that 
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                        . Then    number of VFP calculations are 

performed with pipe lengths of    . The final regression function for a well length of    is 

done using the data related to    element. 

5) VFPi package works under two modes of interactive and batch modes. The former 

requires the interactive user input, whereas the latter employs the command script files 

(CMD) to perform a series of tasks without any interruption. CMDs can be loaded with 

instruction for performing numerous VFP calculations in a generic form. That is specially 

an important task for the studies in Chapter 5 and 6. CMD files included the following 

tasks and information for each individual wells: (a) description of pipe geometry (b) 

instructions and inputs for performing VFP calculation, and finally (c) instructions for 

labelling the generated VFP curve and saving it into a VFP text file. After playback of this 

CMD file, individualized VFP tables for each string is automatically generated. A 

MATLAB code is prepared to read the text files and gather the required data for 

regression. The final empirical models are represented in each chapter. 

For all above calculation we used Aziz and Petalas [192] mechanistic model and loose 

emulsion to generate the data. The regressions are done using nlinfit function of MATLAB. 

3.4 Summary 

In this Chapter we prepared a spatiotemporal, discrete and dynamic model to rigorously 

consider the reservoir dynamics in the MINLP models that will be developed in the next three 

chapters. Furthermore, the fluid flow (and the pressure traverse) from the reservoir into the 

well, and up to the tubing head was discussed. The procedure for building an accurate 

regressed vertical flow performance relationship was also described. 
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CHAPTER 4 OPTIMAL PRODUCER WELL 

PLACEMENT AND PRODUCTION PLANNING IN 

AN OIL RESERVOIR 8 

 

4.1 Introduction 

The continuous depletion of oil reserves and rise in global oil demand have created a 

challenge for the oil exploration and production (E&P) industry. In 2011, the global oil 

production and demand were           and           respectively [195]. OPEC  estimates 

the demand to be            in 2035 [195]. To meet this demand, the oil companies are 

expanding [6] their drilling activities (see Figure 4-1). However, drilling oil wells is highly 

expensive and uncertain, and involves potential environmental hazards and economic risks. 

For instance, a vertical onshore (offshore) well can cost        (      ) on an average 

and a horizontal one can cost            (       ). Even after such expense, there is no 

guarantee that a well will be productive. In 2010, 56 of 227 exploration wells and 5 of 726 

development wells of Shell Company [196] turned out to be dry holes. BP’s recent drilling 

blowout and resulting oil spill in the Gulf of Mexico keeps attracting news even now and BP 

has so far spent [197] more than     in compensation. With such high financial and 

environmental stakes and significant uncertainty, there exist clear incentive and much recent 

interest to increase the overall economic efficiency and success rate of the hydrocarbon  

                                                 

8 Tavallali, Karimi, Teo, Baxendale and Ayatollahi (2013). "Optimal Producer Well Placement and Production 

Planning in an Oil Reservoir." Computers & Chemical Engineering 55: 109-125. 
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recovery processes by using systematic optimization approaches to obtain the best drilling and 

production scenarios. 

 

Figure 4-1: Total upstream (exploration and development) expenditure of oil majors and number of active 

drilling rigs worldwide. 

 

Typically, the industrial approach for selecting of drilling sites involves two stages, which 

employs a variety of data bases, computational tools, and engineering heuristics. In the first 

stage, the engineering team defines a variety of development scenarios. In the second, it 

evaluates those scenarios via extensive simulations and develops various field 

production/injection profiles. Although intuitive and useful, such a sequential procedure is 

inherently empirical, ad-hoc, and myopic, and has shortcomings. Much scope and benefits 

exist for the application of advanced optimization methods. A systematic model-based 

approach that simultaneously considers the drilling decisions along with the 

production/injection profiles over the planning horizon can yield significant returns in terms 

of economics, success, and recovery. 

 An integrated strategy for optimal well placement would encompass at least five 

elements in one single optimization model: (a) subsurface physics, (b) well geometry and 



Chapter 4 Optimal Producer Well Placement and Production Planning in an Oil Reservoir 

 

68 

 

dynamics, (c) surface facilities, (d) production/injection profiles, and (e) market and 

economics. Formulating and solving such an optimization model is a tremendous challenge.  

First, the myriad of decisions such as potential well locations, types, functionalities 

(producer/injector) [53], trajectories and inclinations [41], drilling schedules [27], and flow 

distributions [35, 58, 179] make this a highly combinatorial optimization problem . Second, 

the physics of multi-phase flow in the reservoir is highly nonlinear and spatiotemporal, which 

makes the optimization problem large, complex, and nonconvex. Guaranteeing the best 

solution becomes a huge challenge. Last, the inevitable discretization of the governing 

continuity equations renders the problem non-differentiable in the spatial domain and limits 

the application of derivative-based optimization algorithms. 

 As it was extensively discusses in Chapter 2, three main approaches for optimal well 

placement are studied in the existing literature: (a) mathematical programming (b) 

evolutionary and direct search [53, 63, 66, 68, 81, 198], (c) gradient-based search [139, 141, 

145, 199]. Biegler  and Grossmann [158], and Grossmann and Biegler [200] present an 

excellent overview of these methods, while our detailed literature survey [201] and Nasrabadi 

et al. [42] specifically discuss their applications to well placement. While mathematical 

programming has been the first reported approach [124], the other two approaches (call them 

search methods) have received much more attention. The two methods usually search for 

better well locations [62, 135], and then use commercial reservoir simulators in a black box 

manner to evaluate the performance of these locations. Thus, in a sense, they parallel the 

conventional industrial approach. The simulator acts as a mere function evaluator that 

numerically solves the system of governing equations for a given set of heuristic control 

policies. The optimizer then uses the black box to determine a feasible production/injection 

plan. To obtain a near optimal solution, the optimizer must evaluate many such plans and 

simulate many scenarios. This can easily become computationally expensive for the 
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evolutionary and direct search methods due to the dynamic nature of the reservoir and time-

dependent decisions regarding entire production/injection profiles. While the gradient-based 

methods [133] used in the work of Forouzanfar et al. [138], Li and Jafarpour [202], Wang et 

al. [135], and Zhang et al. [136], have the potential to fare better, they all assume constant 

well/field production rates over the planning horizon. This makes it difficult for them to 

handle dynamic events (e.g. water breakthrough) and infeasible pre-fixed production profiles. 

 While the aforementioned searches are basically unconstrained optimization methods, 

mathematical programming is a constrained optimization technique. It can embed the 

reservoir physics inside its model and benefit from its structure. In another word, this allows 

one to include the production/injection profiles along with the location decisions in the model 

and potentially improve computational speed. This combination is a promising technique; 

instead of using heuristics to set the flow rates (as is done in the numerical simulators), an 

optimization model (equipped with flow equations) can use optimization principles to plan the 

production, and hence can achieve a better solution. In fact, mathematical programming has 

been successfully used in a variety of industries and applications such as energy systems [203, 

204], petroleum refining and blending [104-106], pharmaceutical enterprises[205, 206], 

chemical process design and integration [110-112, 114, 115], chemical logistics [207, 208], 

and others. It offers several advantages over other methods.  

Most previous mathematical programming work on well placement and production planning 

has focused on the surface issues and related problems such as numbers, types, capacities, 

locations, and allocations of wells and platforms [22, 117-123, 126]. Those that have included 

the subsurface issues have usually empirically approximated the reservoir response to various 

production scenarios. These approximations being largely linear have resulted in mixed 

integer linear programs (MILPs). Rosenwald and Green [124] developed an MILP model by 

using influence function and superposition to approximate the flow dynamics. While the 
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former is an approximation derived from several reservoir simulations, the latter relates 

pressure drop at each well to production rate (see [127]). Using the same approach, Haugland 

et al. [128] studied well placement and scheduling, platform capacity, and production 

planning. Later, Iyer [116] used piecewise linear approximations of reservoir pressure and 

gas-oil-ratio (GOR) versus cumulative oil production to describe the subsurface dynamics. 

They also included the well and surface elements in their MILP model. Although 

comprehensive, their model uses several simplifying assumptions such as linear pressure drop 

vs. flow relation for pipes, constant productivity index for each well throughout the planning 

horizon, non-interacting and independent wells, uniform fluid pressure and composition 

throughout the reservoir. These assumptions can affect production estimates significantly. On 

the other hand, their work also addresses several important issues: well selection in reservoirs 

belonging to multiple fields, well drilling and platform installation scheduling considering the 

drilling rig availability, and finally platform sizing and production planning. Among the 

surface-directed studies, Van Den Heever and Grossmann [132] extended the MILP model of 

Iyer et al. [116] by fitting an exponential function to describe reservoir pressure vs. 

cumulative oil flow, and quadratic functions to describe cumulative gas production and GOR 

vs. cumulative oil flow. In contrast to these works that have used dynamic approximations, 

several others have used static approximations. Dogru [129] employed productivity index and 

oil-in-place data to formulate the offshore well platform and drilling location-allocation 

problem. Vasantharajan and Cullick [125] used connected hydrocarbon pore volume in a 

specified drainage area, inversely weighted by tortuosity, to define another static metric. 

Ierapetritou et al. [130] used a similar approach. Their MILP model allows multiple geo-

objects and layers with perforated wells spanning multiple layers. Later, Cullick et al. [131] 

extended this approach and included deviated wells based on a sequential heuristic. 
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 Most of the above optimization models are large; hence several solution approaches 

have also been used or developed in the literature. These include heuristic or decomposition 

procedures [116, 130-132] and pre-processing steps (e.g. reservoir data [125, 130]).  

 In spite of its potential and versatility, the application of mathematical programming in 

practice has been limited due to several reasons. One is the complexity in their model 

formulations and executions. Another is the lack of their awareness in the industry. 

Furthermore, their various approximations of the nonlinear multiphase flow dynamics have 

been largely problem-specific and far less accurate than rigorous numerical simulations. 

Significant advances in computing hardware and the solvers and tools for mathematical 

programming enable us to go beyond approximating the subsurface multi-phase flow. This is 

one of the main objectives of this work. In addition, we relate the subsurface flow to the flow 

inside the well tubing and consider the surface and economic constraints to obtain a very 

detailed and comprehensive model for the upstream drilling and production activities. Their 

foundations are discussed in the previous chapters and they are applied and extended here. 

 In this chapter, we consider the deterministic problem of optimally locating the drilling 

sites for new/infill producers and deciding the optimal production and injection plans for all 

active wells. We first state and define the scope of our well placement and production 

planning problem. Then, we describe our modeling approach and devise a solution algorithm, 

as the commercial solvers fail to solve the formulated problem. We then present two case 

studies to demonstrate the effectiveness of our proposed approach, and conclude with a 

concise discussion. 

4.2 Problem Statement 

Consider a typical oil reservoir with existing producer and injector wells as shown in Figure 

4-2. It is desired to increase its production by infill-drilling some new producer wells. The 

problem can be stated as follows: 
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Figure 4-2: An oil reservoir with producer and injector wells. 

Given: 

1. Geological information such as dimensions, porosity, and permeability about the formation 

from seismic studies or history matching. 

2. Pressure-Volume-Temperature (PVT) related information such as formation volume factor 

and fluid properties (viscosity, density, compressibility) from core samples or previous 

production data. 

3. Existing wells (if any), their types (producer vs. injector), and locations. 

4. Current pressure and saturation profiles in the reservoir at time zero. 

5. Minimum allowable well-to-well distance. 

6. Operational data such as water-cut limits, maximum injection pressure, minimum 

production pressure, and capacity expansion plans for surface facilities. 

7. Production horizon of   years. 

8. Relevant economic data such as demand curve, drilling budget and costs, injection costs, 

discount rate, oil revenue forecasts, etc. 

Obtain: 
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1. Number and locations of new producer wells.  

2. Production and injection profiles for all wells. 

Aiming to maximize the net present value (NPV) of oil production over the planning 

horizon. 

Assuming: 

1. Reservoir is a horizontal 2D plane and all wells are/will be vertical wells. 

2. Capillary pressure in the reservoir is negligible. 

3. Main driving mechanism is water-drive injection. 

4. Water phase is incompressible, but not the oil phase. 

Following policies: 

1. Respect minimum well-to-well distance. 

2. Open all new wells to production simultaneously. 

3. Shut in a well that hits its water-cut limit. 

4.3 Formulation 

In the previous chapter we developed a spatiotemporal discrete model. Here, we use the same 

discretization approach and model. Then   cells has arbitrary lengths     (         ) in the 

 -direction and   cells of arbitrary lengths     (         ) in the  -direction and each cell 

in the reservoir is named by a single index,            . Following sets are also 

defined: 

    {                                    ;   

    {                                    ; 

here,    eliminates the reservoir’s border cells in the  -direction, and    eliminates them in 

the  -direction. Also we discretize the planning horizon   into   time periods of arbitrary 

lengths     (         ).  
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4.3.1 Well placement decision 

We first model the well placement decisions. To decide the locations of additional producers, 

we give the opportunity of being a well to all grids in the reservoir. Therefore, we define: 

    {
                           
          

 

    {                                    

    {                                     

We set            for all wells that already exist. 

 In practice, minimum well-to-well distance is a key consideration. Locating multiple 

wells in a small area can potentially cause a depleted pressure sink which would limit a well's 

production. It would also encourage the water to flow to that area due to the lower pressure. 

This would prevent the full sweeping of the reservoir and reduce overall oil recovery. 

Typically, the industry practice is to have at most one well per certain area. This serves as a 

heuristic but practical guide to spread out wells. It helps distribute the pressure field and avoid 

water breaking into the wells. In terms of grid elements, the industry prefers to have a 

distance of at least one, and preferably three, grid elements between adjacent wells. In this 

work, we assume a minimum well-to-well distance of one grid element. To ensure it, we first 

set     , if a grid   is adjacent to any existing producer or injector well. Then, for all others 

grids (       ,     ), we use the following constraints. 

                (1) 

                (2) 

                        (3) 

                      (4) 

 The budget (   ) available for drilling obviously limits the number of wells. If     is 

the cost of drilling a new well at location  , then the total drilling cost (      ) is given 

by, 
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   ∑              (5) 

4.3.2 Reservoir Dynamics 

The mass balances for the two fluids are defined using the discrete spatiotemporal model 

developed in the previous chapter:  
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Here,    
  and    

  are pressure and saturation at cell   and the end of time period  ,        
  and 

      
  are the variable accumulation multipliers,    

  and    
 

 are transmissibilities in   and  -

directions,         
 ,         

 ,         
  and         

  are upstream weighted mobilities, which 

are taken as those of the neighbouring cells with higher pressures,     
  is the phase flow from 

(+ve for out,  ve for in) the reservoir. The variable accumulation multipliers, 

transmissibilities, and upstream weight mobility terms are as in eqs. 2-14, 17-20 of Chapter 3. 

     
  and      

  are the water and oil mobilities defined as: 
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here,    
  and    

  are the end-point relative permeabilities of oil and water,     and     are 

the residual oil and water saturations respectively,   and   are the exponents in Corey’s 

correlation,               are regression parameters for the product (     ) of the viscosity 
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and formation volume factor of oil,    
  is the formation volume factor for water at reference 

pressure   , finally    is the water viscosity. 

4.3.3 Flow Balances 

To relate the binary well placement variables to the dynamic state of the reservoir, we define 

  
  as the total (oil plus water) flow and     

  as the oil flow from a well at grid  . Clearly, the 

oil flow from a well cannot exceed the total flow, so: 

     
     

        (10) 

Note that we are not using water flow as a separate variable, as the difference between the 

total and oil flows gives us the water flow. 

 Now, if a grid does not host a well, then both the oil and total flows must be zero. 

   
                      (11) 

     
              (12) 

where,     is the initial processing capacity of the reservoir at time zero,     is the planned 

incremental expansion in the capacity of surface processing facilities during period  , and    

is the total oil demand during period  .  

The total liquid and oil productions (           and water injection (    ) are:  

      ∑   
 

         (13) 

      ∑     
 

          (14) 

      ∑   
 

         (15) 

Clearly,           and      cannot exceed their processing/injection capacities. Thus, we 

have               ,                       , and            

       ), where     (   ) is the initial production (injection) capacity, and     (   ) is 

the planned incremental capacity expansion for production (injection) during period  . 
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4.3.4 Well flow terms 

For a given tubing, the frictional pressure drop across the tubing will depend on factors such 

as length and diameter of the tubing, total flow rate from the well, fluid density, and fluid 

viscosity. We used VFPi package [45] to generate pressure drop data for ranges of liquid flow 

rates and water cuts but fixed THP and GOR (Gas Oil Ratio) as required by VFPi. GOR is 

constant due to the assumption of undersaturated reservoir. We used the loose-emulsion 

option in VFPi and included all three forms (hydrostatic, frictional, and acceleration) of 

pressure drop. Then, we fitted the following empirical correlation for the BHP: 
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where,   ,   ,   ,   ,   ,   ,   ,   ,   ,     and     are regression parameters for a specific 

well string and reservoir fluid properties. Eq. 16 captures the relative importance of   
  and 

    
  and their interaction on the pressure drop across the tubing. This equation is an empirical 

equation that captures the string fluid dynamics well and ensures that zero flow condition 

does not create infeasibilities. We developed it mainly by trial and error, and better 

expressions could also be possible. Using IPR and VFP equations (defined in Chapter 3) and 

Eq. (16), we can bound the output oil flow from the well as follows. 

  
          

      
   (  

  [     
     

     (    
    )

  
       

    
     ⁄  

    
         

     ])       (17) 

Eq. (17) will prevent an unrealistic full drainage of the reservoir system down to the 

atmospheric pressure. In case of low reservoir pressure, the bracketed term on the right hand 

side can become negative. That can cause infeasibility, since   
   . Therefore, we define an 

intermediate free variable (  
 ) and use the below constraints (    

      
   ): 
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Here   is a small (     ) scalar. Eq. 19 is a smooth approximation for        
     with a 

maximum error of   at   
   . The approximation error reduces to zero as   

  goes to 

infinity [209]. When the reservoir pressure is low,   
  becomes negative, and   

   . 

Otherwise,   
    

  . Thus, Eqs. 18 and 19 effectively provide a tight upper-bound on   
  for 

active wells. The optimizer will force these two inequalities into equalities for active wells.  

To ensure the correct proportion of oil and water flows from the well, we use IPR equation 

(Eq. 21 Chapter 3) to derive the below constraint: 

     
    

      
  (    

      
 )        (20) 

The above can be written as two separate inequalities: 

     
    

      
  (    

      
 )        (21) 

     
    

      
  (    

      
 )        (22) 

Eqs. 21 and 22 provide a tighter relation between   
  and   

 . From Eq. 19,   
        

      

and from Eqs. 21 and 22,   
    

    
 . We will further comment on these equations later. 

 For injectors, we define     
  as the maximum possible tubing head pressure for a 

water injector at grid  . Similar to the production wells, we fit another regression model for 

    
    

   at     
  based on the data from the VFPi software package. Moreover, we use an 

equivalent of Eq. (22) of Chapter 3  (     
      

   
̅̅ ̅    

 ⁄ ) to formulate the following 

equation that governs the flow in the injectors: 

   
    (    

      
   

̅̅ ̅    
 ⁄ ) (  
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 ])       (23) 
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where,   
 ,   

  and   
  are regression parameters for a specific well string and water properties 

and   
̅̅ ̅  is the average oil formation volume factor. We could also consider 

  
        

  (  
  [  

   
  

   
   

    
 ]), where     

  is an upper bound on     
   

 In practice, the industry uses water cut limit (   ) as a measure for continued well 

production to avoid excessive water production. While it is possible to use such a criterion in 

this model as well, given the proper quantitative incentive for oil production and disincentive 

for water production, the optimizer will have the innate ability to decide when to shut in a 

well. This is true for both existing and new producers. Thus, although not necessary in 

principle, we do use water cut (   
      

    
 ) to monitor wells dynamically in our work as 

follows. 

     
           

        (24) 

Any well that violates this constraint at any time will be shut in (  
   ).  

4.3.5 Well Placement Objective 

We maximize NPV (Net Present Value) as the well placement objective. It comprises four 

parts: drilling costs, oil selling profit, water production costs, and water injection costs. 

Max NPV = ∑ [                      ]
   

     
  

    

       (25) 

where,    is the [oil revenue - oil production cost] ($ per unit flow),     is water production 

and disposal cost ($ per unit flow),     is the water injection cost ($ per unit flow), and   is 

the annual discount factor. 

 Combination of Eq. 11 with any of Eqs. 10, 21 and 24  can take the role of Eq. 12 to set 

    
    for rejected grids (    ). Therefore, in order to reduce the number of equations 

while fulfilling the requirements of our model, we drop Eq. 12 from our model.  
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 This completes our model (G). It involves Eqs.(1)-(11), (13)-(15), (18)-(19), (21)-(25) 

with variable bounds:         ,       
      

 ,      
    ,       

     , 

                ,                       ,                  , 

         
 ,        

 , and      
   . It is a nonconvex, dynamic, mixed integer nonlinear 

programming (MINLP) model. Its nonlinear programming (NLP) part optimizes the dynamic 

production and injection profiles. During our formulation of G, we preferred inequalities over 

equalities. For instance, we converted several equalities into inequalities (including Eqs. 18-

19 and 21-22 for active wells) and relied on the objective function to force them to be 

equalities. By solving G, we obtain the optimal number and locations of wells, and the 

optimum production and injection profiles. From these, we can compute the water flow rate 

(  
      

 ) and also     
  and     

  at each well  . 

 G integrates the elements and effects of wells, subsurface and surface facilities, 

production economics, and market demand. Such an integrated approach is more general and 

complex, but completely different from using several specialized software packages in 

piecemeal manner. The piecemeal approach is straightforward, but it is limited in scope and 

bounded by the requirements of the packages. 

4.4 Solution Strategy 

G is a huge model with spatiotemporal decisions. For a sample reservoir with     ,     , 

              and        , G has nearly          equations (mostly nonlinear and 

partly endogenous) with 995 binary and 1048501 continuous variables. This size along with 

the endogenous equations and highly complex nonlinear equations make it virtually 

impossible to solve G using existing solvers such as BARON and DICOPT. In some practical 

cases, the number of grids ( ) can even reach     [95], which would mean a much larger G. 

Thus, although current optimization solvers have a lot to offer, we need a specialized solution 
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algorithm. Since the NLP subproblem in G is complex and nonconvex, we decided to modify 

the outer-approximation algorithm with equality relaxation and augmented penalty 

(OA/ER/AP algorithm) proposed by Grossmann and coworkers [210-213]. It is suited for 

MINLPs with complex nonconvex NLP subproblems, as it does not rely on the convexity 

assumption (which matches our problem). It has been used in several applications [214] and it 

exists in DICOPT [215]. The interested reader may refer [213] and [155] for its detailed 

mathematical description. However, to keep this paper self-sufficient, we give next a brief 

description of the algorithm in its original form, before we proceed to modify to suit our 

present problem. 

4.4.1 OA/ER/AP Algorithm 

The algorithm [213] addresses the following MINLP, where f, g and h are continuously 

differentiable functions.  

MINLP: 

            

          

[
 
 
 
 

        
        
       

                      

                       

 (26) 

  is the vector of continuous variables (e.g. saturations, pressures, and flows in the present 

problem),   is the vector of binary variables (e.g. existence of well), and 

                   are the vectors or matrices of fixed parameters (e.g. geological 

realization, production time horizon, economic coefficients, and so on). In the present 

problem,    represents drilling costs,        represents gross profit from oil production, 

       represents the constitutive and conservation equations,        represents the 

various physical and operational constraints such as water-cut limits, total field 
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production/injection, and         represents other linear constraints. For the sake of 

simplicity, we drop   from  ,  , and  . 

 The algorithm (Figure 4-3) decomposes the above MINLP into (1) an NLP primal 

subproblem and (2) an MILP master subproblem. At each iteration  , it first solves the NLP 

primal problem, and then the MILP master problem. The NLP subproblem at iteration (   ) 

is obtained by fixing the binary variables in the MINLP at their values (  ) in the solution of 

the MILP subproblem at iteration   as follows [213] : 

           

          

[
 
 
 

       
      

        

                      

  (27) 

The master MILP at iteration   is then obtained by linearizing the nonlinear constraints in the 

MINLP at the optimal solution of the primal NLP in that iteration as follows [213]. 

         ∑       
 
      ∑       

 
      ∑       

 
     

Subject to

[
 
 
 
 
 
 
 
 

                            

                                        

                          

 

       
                      

                       

∑        
 ∑        

                             

              ]
 
 
 
 
 
 
 
 

        
 (28) 

where,   is an unrestricted continuous variable defined by         ;   ,   , and    are 

slack variables; and   ,   , and    are penalty parameters; and       . Viswanathan and 

Grossmann [213] suggested       
   ,        , and        , where   

 ,   , and    are 

the Lagrange multipliers [216] for         ,       , and        respectively. 

 When solving the MILP subproblem, it adds an integer cut to eliminate the integer 

solution from the master MILP of the previous iteration. Furthermore, it adds the 

linearizations of the primal NLP from iteration    to   to improve the outer-approximation. 
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The algorithm repeats until the objective value increases or the master MILP is infeasible 

[155, 213]. In the present problem, the master MILP will identify promising well positions, 

while the primal NLP will evaluate the qualities of proposed locations by optimizing the 

production/injection profiles.  

In this work, we made several significant modifications to the above general algorithm to suit 

the present problem. 

 

Figure 4-3 : The original OA/ER/AP algorithm. 
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4.4.2 Modifications to the OA/ER/AP Algorithm 

Let us call GM (GP) as the master (primal) subproblem of G. Our modifications involve (a) 

solution strategy for GP, (b) reformulation of GM, and (c) termination criteria for the 

algorithm. 

(a) Solution strategy for GP: GP in its current form involves the flow related terms 

(  
      

  and   
 ) even for well-free grids as in Eq. 25. It also considers all periods together. 

These along with the upstream weighting of mobility make the formulation endogenous. GP 

in its present form is large and virtually impossible to solve using existing solvers. Therefore, 

we employ two strategies to simplify GP. 

 We know that   
  and     

  are zero for well free grids and shut-in wells, and their   
  

value is not important for GP. Therefore, we define a set       (    ) = 

{           had an active producer well during     , and use it specifically for   , and not 

GM. We define an active well as the one producing or on stand-by, but not shut-in. With that, 

we set           
    and               

    and remove them from GP. This restricts the 

domains of Eqs. 10-11, 13-15, 18-19, 21-22 and 24 to       ), and reduces the size of GP 

considerably by eliminating several constraints and variables (including              
 ). After 

solving reduced GP, we later compute              
  by assuming that Eq. 18 is an equality 

constraint for use in GM. 

 The above simplification of GP is not sufficient, so we decompose GP further into 

smaller problems (   ) along the temporal domain by discretizing each period   into    

intervals (        ∑    ). Then, instead of solving GP for the entire planning horizon, we 

solve     for each interval separately in the sequence         ∑    . Then, we use only 

the optimal solution of     at the end of each period  , which is     with   ∑        , for 

linearization in GM. For solving each    , we use the solution of         as the initial 

solution and also to provide required initial conditions. This allows us to make the 
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formulation exogenous, and update AW sequentially. For example, for formulating and 

solving    , we use the optimal solution of     to (1) determine AW(2), (2) estimate the 

flow directions from Eqs.(17)-(20) of Chapter 2., (3) fix (  
    

  , and (4) initialize the 

remaining variables. Figure 4-4 depicts this stage by an orange dashed rectangle. We call this 

sequential solution (SS).  

(b) MILP Reformulation: Here, our main goal is to exploit the special characteristics of the 

mass balance equations to develop appropriate linearizations for use in GM. 

 As well locations change from iteration to iteration, the fluid flow directions will also 

change. The new directions may be different from the previous ones, and this can create 

problems with the use of upstream weighting for mobility. This may invalidate mass balance 

linearizations and increase the values of the slack variables corresponding to the mass balance 

equations in GM. Moreover, the mass balances are dense, as the convective flow terms 

involve many variables. Therefore, to simplify the linear expansions of mass balances, we 

first define a new variable (    
 ) to represent the net convective flow from a central grid   to 

its adjacent grids. The convective flow is a directional flow term, i.e. the flow from grid   to 

  is negative of that from grid   to  . Therefore, summing the net convective flows over grids 

must give us zero [44]: 

 ∑     
       (29) 

Then, we replace the four individual convective flow terms (which depend on   
 ,     

 ,     
 , 

    
 ,     

 ,      
 ,      

 ,      
 , and      

 ) with one net convective flow term, namely     
 , 

in the linear expansions of Eqs. 35 and 36. With this, the mass balance reduces to: 
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Figure 4-4 : Our modified OA/ER/AP algorithm. 
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where,   is the accumulation function defined in Appendix A. 

 We then limit     
  by     
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Here        and       are the absolute pressure gradients along the x and y directions at 

iteration  ,     is a user specified pressure gradient.  

 Note that we have not removed the convective flow terms entirely, rather we replaced 

them by defining a net convective flow in the MILP approximation step and imposed an 

overall mass balance constraint to maintain some accuracy in our approximation. This 

approach definitely has its pros and cons. On the one hand, the convective flow terms are 

clearly important, but on the other hand, we need to solve GM in an acceptable time. While it 

is indeed an approximation at the MILP stage that determines the well locations, it does not 

impact the actual flows because they are done at the NLP stage. The only thing that it can do 

is compromise the quality of well placements. However, by making sure that we improve 

NPV at each iteration, hopefully we can reduce the impact of this approximation. That calls 

for the next point to work on the termination criterion. 

 We call the resulting master subproblem as GM’. Figure 4-4 depicts this stage by a 

purple dashed rectangle. 
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(c) Termination: We observed that the termination criteria of increased objective or infeasible 

    caused premature termination and inferior solutions for our problem. Therefore, to 

continue algorithmic progress, we perform a 2-step local search, whenever the objective 

increases or     is infeasible. For this search, we rank the new well locations in the solution 

from the previous iteration in the decreasing order of their total production amounts over the 

horizon. We then fix all new wells except the least productive new well. This gives us a 

reduced master subproblem     . 

 As step 1 of our 2-step local search, we solve      to see if any new wells beyond the 

ones fixed will improve the current solution. If      gives an integer solution, then we get the 

corresponding production profiles and compute the NPV by solving     for that solution. If 

the NPV increases, then we use it as the incumbent for the next iteration in the OA/ER/AP 

algorithm. 

 If      is unsuccessful in giving a better solution, then we execute step 2 of our local 

search. We perform a partial enumerative search in the neighborhood of the least productive 

new well to get a better location. For this, we examine the eight grids adjacent to the least 

productive well as possible locations, and solve     for each to get eight new solutions and 

their NPVs. Note that the locations of the other better wells are already fixed as in     . 

However, unlike step 1, this second step of our search cannot add new wells. If this step 2 

finds a better solution, then we use it as the incumbent for the next iteration of the OA/ER/AP 

algorithm. 

 If the 2-step local search fails to find a better solution, then we terminate the algorithm. 

Note that during this local search, we do not revisit solutions that are already examined. As 

we show later, the local search helps the algorithm continue its progress. The red dashed 

rectangle in Figure 4-4 represents this 2-step local search. 
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 The original OA/ER/AP algorithm or our algorithm along with its above modifications 

cannot guarantee a globally best solution for this complex MINLP. However, the same is true 

for any other evolutionary or gradient-based algorithm [69]. According to Yeten [55], even in 

the case of evolutionary techniques (widely known as global optimization methods), the 

global solution can theoretically be achieved only by using either infinite generations or large 

population sizes, both of which are intractable. 

4.4.3 Remarks 

Recall that we deliberately replaced the equality of Eq. 20 by two inequalities of Eqs. 21 and 

22. While this does increase the numbers of constraints and variables, it has certain crucial 

advantages. To better appreciate them, consider the linear expansion of Eq. 20 needed for the 

MILP approximation. Since the derivative of Eq. 20 with respect to     
  is zero at   

   , its  

linear expansion loses the mobility variables at non-producing grids, which is the majority. 

However, Eq. 22 allows such derivatives to remain nonzero for non-producing grids with 

  
    and thus partially retains the effect of the mobility terms. 

 The other issue is the stability of     solutions. Although not very often, we do face 

situations when we cannot solve a    . In such cases, we first try another NLP solver. If that 

does not help, then we divide the interval into a few (6 and then 10, if necessary) smaller 

subintervals, and solve these subintervals one at a time. Once we complete that interval by 

solving all the subintervals, we revert to our normal procedure for the next interval. 

Furthermore, since saturation is a particularly sensitive variable, we monitor its changes. If 

       
    

     exceeds some acceptable pre-fixed       at any interval, then we reduce 

the length of that interval and solve     again. 

 In spite of its success, our algorithm does have some shortcomings. First, our 

decomposition of the primal NLP into sequential sub-NLPs along the time domain is a clear 

limitation, as it modifies the objective function. Instead of maximizing the sum of interval 
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NPVs over time, it takes the sum of the maximum NPVs at each interval. While this can 

obviously lead to suboptimal solutions [217]; we can justify it due to the complexity of our 

model. Second, it is possible and desirable to guarantee smooth production curve [116] by 

limiting the changes in the variable values at successive iterations. Although we have not 

done this fully in our study, limiting saturation changes does help smoothen results in general. 

Last, our master MILP subproblem still poses a challenge for larger problems.  

We now use two synthetic reservoirs of different sizes to demonstrate the accuracy and 

performance of our optimization model and algorithm. 

4.5 Case Studies 

Each case study involves a synthetic 2D reservoir, for which the oil production for a horizon 

of 2180 days is to be planned. We assume that each reservoir has some existing active 

injectors and producers that began operation 380 days ago, when the pressure and saturation 

maps in the reservoir were uniform. We assume that the horizon consists of the first period of 

20 days (with intervals of 5 days) and the remaining periods of 360 days (with intervals of 10 

days) for both cases studies. Table 4-1 shows the various petro-economical, geometrical, 

operational and economical parameters used for both reservoirs. We assume the fluid 

properties to be identical for the reservoirs. 

 For comparison, we define a base case for each reservoir, where no new wells are 

drilled, but the existing wells continue the production. We eliminate the base case solution by 

using a simple integer cut (Eq. 28). Example 1 is mainly to illustrate the progress and 

performance of the algorithm at each iteration. It also explains the optimal production plan 

and compares     with   . Example 2 studies the optimal production plans and reservoir 

dynamics for a larger problem and compares its accuracy with ECLIPSE as a commercial 

reservoir simulator.  
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 We used GAMS 23.7.3 to implement our model and algorithm. The computations were 

done on a Dell Precision T7500 with two Intel® Xeon® X5690 CPUs (3.47 GHz and 3.46 

GHz) and 192 GB of RAM. For the master subproblems, we mainly used CPLEX 12.2.0.2 

and if CPLEX could not solve the MILP we would switch to GUROBI 4.5.1. For the primal 

subproblems, we used CONOPTD 0.1 except in (rare) cases of failure, where we used iPOPT 

and SNOPT. Please see Appendix B for the list of solver settings and Appendix C for 

implementation issues. Since our algorithm cannot guarantee a globally best solution, we 

solved each case study with ten initial guesses on wells and locations. Here, we report only 

the run that gave the best solution for each case study. 

4.5.1 Example 1 

A                   isotropic pay zone initially has four producers and nine 

injectors. It is discretized into       (     and     ) grids. Figure 4-5a shows the well 

locations and the reservoir’s current oil-in-place (OIP) map, which is after 380 days of 

production. P1-P4 denote the four existing producers and I1-I9 denote the four existing 

injectors. Figure 4-6 shows the statistical variations in porosity and permeability.    40 are 

available for drilling and each new well-drilling costs    5. Thus, at most eight new wells 

can be drilled. The base case scenario with no new wells has an NPV of    588.7. 

 Our algorithm yields one new producer well with an NPV of    631.6 and drilling 

expense of    5. Figure 4-5b depicts the final OIP and the new well location where PN1 

denotes the new producer.  

 Figure 4-7 and Figure 4-8 show the progress of our algorithm. Figure 4-7 shows 

sequentially the NPVs for solutions (S0-S38) generated during our algorithm. The number in 

each bar gives the number of new wells and Figure 4-8 shows well locations at iterations 0, 3, 

and 8. Each vertical dashed line in Figure 4-7 marks the end of a major iteration of the 

algorithm. S0 corresponds to the base case with an NPV of     588.7 and zero new wells. 
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To initialize our algorithm, we fix eight new wells (Figure 4-8a) at (6,21), (6,37),  (11,8), (11, 

32), (14,4), (15,21), (16,37), and (17,13)  and solve     to obtain S1 in Figure 4-7. The 

linearizations of S0 form     for the first iteration, whose solution identifies one new well in 

S1. Since S1 has a slightly higher NPV than S0, we use this as the incumbent solution for the 

first major iteration of our algorithm. The linearizations of S1 and S2 form     for the 

second iteration, whose solution identifies S3 with another one new well and slightly higher 

NPV to shape the current incumbent solution. After the third iteration, the NPV increases 

again (S4) (Figure 4-8b), however, the forth iteration initially gives us S5 in Figure 4-7 with a 

worse NPV. The original OA/ER/AP algorithm would have terminated here. But, our 

algorithm retracts back to S4 (Figure 4-8b) and initiates the 2-step local search. It removes the 

least productive (in this example, the only) new well at (2, 31) and fixes the remaining four 

(in this example, the old) producer wells. Then, the solution of the reduced master subproblem 

     identifies another new well at (11, 31) that yields S6 in Figure 4-7 with better NPV than 

that of S4. In the next iteration, both     and      fail (S7 and S8 respectively) and hence, 

our algorithm now executes a neighborhood search around (11, 31), probing the unvisited 

grids ((10, 32) and (11, 32) were previously visited). It solves     with the six wells located 

at (10, 30), or (10, 31), or (11, 30), or (12, 30), or (12, 31), or (12, 32), S9-S14 in Figure 4-7 

represent these solutions. Of these, S12 has the best NPV, which is even better than that of 

S6. This ends iteration 5, and allows our algorithm to proceed further to iteration 6 by using 

S12 as the incumbent solution. In Figure 4-7, each filled circle shows the best solution after 

each iteration, the unfilled bars denote the solutions during the local searches and each 

vertical dashed line marks the end of a major iteration of the algorithm. The similar switches 

between     and the two step local search are repeated in the next iterations until the 

termination criterion is met at S37 and the algorithm suggests S30 (Figure 4-8c) as the best 

solution.  
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 As discussed above, the addition of our local search to the OA/ER/AP algorithm was 

very useful. Such an approach has been used with other optimization methods. For instance, 

Ciaurri et al. [59], Güyagüler et al. [62], and Yeten et al. [53] all added a local search to their 

evolutionary search engines. Their local search involved perturbing wells in the neighborhood 

of a solution. Güyagüler et al. [62] called it local mutation, while Yeten et al. [53] and Ciaurri 

et al. [59] described it as a heuristic adaptation of the Hook-Jeeves pattern search. All of them 

reported improvement in the final solution. However, in contrast to these three previous 

works, our local search has a unique feature that it allows the addition/deletion of wells 

through      (as we partially saw in this example (S6)). For instance, it may remove one well 

and instead add more number of wells in other places. 

 Let us now examine the final solution S30. The algorithm has located the new producer 

well in the zone with both high initial OIP and good geological connection to the injectors. 

Moreover, the optimizer has reacted efficiently to the changes during the production horizon. 

Figure 4-9 clearly illustrates that. After the water breakthrough at about 900 d, the total oil 

production drops slightly for the first time. However the optimizer increases the liquid 

production and simultaneously pumps more water into the reservoir; that can finally fulfills 

the oil demand after another 230 days. In the second event of oil production drop, the 

reservoir condition changes and it may not be feasible to fulfill the required production 

demand with the same previous approach. Hence, the optimizer reacts differently by fully 

supporting the injection and simultaneously reducing the total production, probably to provide 

sufficient pressure support. Indications of success can be seen slightly before the end of 

production horizon. We will comment on individual well throughputs and changes in the 

reservoir state variables in the next example. 

 We also compared the effect of our MILP reformulation (i.e. using     instead of GM) 

on the performance of our algorithm. With GM, the algorithm took almost 27 h of clock time 
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for one major iteration when we had to stop. The final NPV was    617.8 .However, with 

   , we needed only 21 h  and 9 iterations to solve the problem with a final NPV of 

   631.6. This shows the utility of our MILP reformulation. 

 

Figure 4-5: Oil-in-place (OIP) (m3) for Example 2 at (a) t = 0 d, (b) t = 2180 d.  

Pentagrams, triangles and circles represent the old injectors, old producers, and new producers respectively. 

(a) 

(b) 
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Figure 4-6: Variations in (a) reference porosity and (b) permeability for Example 1. 

 

(a) 

(b) 
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Figure 4-7: The progress of NPV and number of new wells for Example 1 during our algorithm.  

Each filled circle shows the best solution after each iteration, the unfilled bars denote the solutions during the local searches and each vertical dashed line marks the end of a 

major iteration of the algorithm.
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Figure 4-8: The NPV and the relative locations of new producer wells (a) initially, (b) after iteration 3, 

and (c) after final iteration for Example 1.  

Pentagrams, triangles and circles represent the old injectors, old producers, and new producers 

respectively.  

(a) 

(b) 

(c) 
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Figure 4-9: Total flow profile in the reservoir of Example 1. 

Total water production (    ), total water injection (    ), total liquid (oil+water) production 

(    ), total oil production (    ), oil demand (  ), total liquid production capacity (     ), total 

water injection capacity (     ). 
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4.5.2 Example 2 

A                     anisotropic pay zone has been in production with 

three producers (P1-P3) and five injectors (I1-I5) for the past 380 days. It is discretized 

to       (     and     ) grids and Figure 4-10a shows its current OIP map. 

Figure 4-11 shows the statistical variations of its porosity and permeability. These 

geological data are obtained from upscaling SPE10 [218] into dimensions of    

     . We used the data of the 12
th

 layer that has higher average permeability 

compared to Example 1.    55 are available for new drilling activities. The drilling 

cost is      per well, so the team can drill up to 11 new producers. The base case 

with no new wells has an NPV of    580.7. 

 We used different number of wells (up to 11) and locations as the initial guesses. 

Amongst all, the test with three initial well locations at (13, 40), (18, 30) and (20,14) 

achieved the highest NPV of    701.7, almost 22% higher than the base case. Our 

algorithm suggested three new wells in the vicinity of the initial well locations and 

needed nearly 12 h of CPU time. Figure 4-10b shows these new producer wells (P1-

P3) on the final OIP map. In the remaining part we first check the accuracy of our     

solution for production/injection of these wells and then discuss the production plan 

profiles to better understand the interactions between the producers and injectors in the 

reservoir based on     solution. 

 In order to assess the accuracy of our discretized model and     solutions, we 

can compare the production/injection profiles obtained from our optimizer with those 

from ECLIPSE. However, ECLIPSE is a simulation package and not an optimization 

package. Hence, it needs appropriate controls derived from optimization. The     

solutions give us the desired well injection rates, actual liquid (oil plus water) 

production rates, and pressure and oil/water mobilities in grids. We substitute these in 
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IPR equation (Eqs. (21) of Chapter 3) to compute     
 . Now, we use these     

  as 

control bounds inside ECLIPSE to restrict the bottom hole pressures in active 

injector/producer wells. With these, ECLIPSE gives the liquid/oil production and 

water injection profiles for the entire planning horizon, which we can then compare 

with our model predictions. Figure 4-12 shows that the profiles obtained from our 

model (the dashed lines) and ECLIPSE (the solid lines) match very well. The oil in 

place values are expected to match automatically based on these profiles. The THP 

values at the producer/injector are also within their specified ranges of         

       and               . 

 Now, consider the optimal (individual) well flow rates from Figure 4-12. The 

production and injection rates are affected between 790 d and 1580 d (zone 1) and 

1580 d to 1970 d (zone 2) marked by the dash lines. In the first time zone, water 

breakthrough occurs at P3 (Figure 4-12b), which triggers a series of changes in other 

wells. First, I2 and I4, the two nearest injectors to P3, reduce their water injections to 

slow down excessive water production at P3. However, this weakens the pressure 

support in that part of the reservoir. To compensate for the loss of oil production at P3, 

I1 (the farthest injector from P3) increases water injection to expand the waterfront and 

thus push oil to increase production at P1 and PN1. Meanwhile, the waterfronts from 

I4 and I3 slowly approach PN3 and PN2 respectively (Figure 4-12-b). This transition 

in the first time zone is well captured in Figure 4-13, showing the changes in pressure 

and oil saturation between 790 d and 1580 d. The pressure field changes due to the 

injectors (and specifically I1 in the northwest) are clearly visible in Figure 4-13a and 

Figure 4-13b. The saturation map shows that the waterfront breaks through via P3 at 

790 d, and it is very close to PN2 and PN3 (Figure 4-13b) at 1580 d. 
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 In the second time zone, PN2 undergoes a water breakthrough at 1850 d, PN3 

does the same at 1970 d (Figure 4-12-b). In both instances the optimizer reduces their 

liquid production to control the water production (Figure 4-12-a). These two along 

with the earlier breakthrough at P3 reduce the total oil production considerably (Figure 

4-12-c). Additionally, I4 goes through a series of on-off injections in its attempts to 

strike a balance between supplying the driving fluid and avoiding high water cuts at 

PN3 and P3. However, P1, P2, and PN1 sustain their productions, as they are not too 

far from or near the injectors. Despite these responses, the reservoir is unable to 

compensate for the considerable loss in oil production. This situation can be addressed 

by sequencing the drilling and well-opening operations properly along with the 

optimal placement of injectors and producers. However, this is beyond the scope of 

this work. 

In brief, the optimizer increased water injections at some places to ensure pressure 

support and increase oil production, while it decreased injections at other places to 

avoid excessive water production. In the event of water breakthrough, it also decreased 

production to contain water in the reservoir. 
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Table 4-1:  Parameters for Examples 1 and 2.  

Parameter Value  Parameter Value 

   at 245 bar 0.38 cP         0.37 x10
-6

 

   
  at 245 bar 1.0                 0.23 x10

-3
 

   at 245 bar 1.0 x10
-5

 bar
 -1

         0.18 x10
-6

 

    and     0.2         0.23 x10
-3

 

   
  and    

  0.875 , 0.3         0.802 

  and   2.5 , 2.9    
*
  2.7x10

-3
 

  
̅̅ ̅  1.1749      0.5 

     96%      1.6805 

Well Length 2600        -7.093 

Wellbore diameter 4.5         0.5 

          94.1, 79.6, 5.56         0.3610 

       0.3      -62.181 

     250 bar      0.0791 

   0.1      -0.0226 

    100 $/STB       0.1716 

     1 $/STB       277.55 

     1.5 $/STB    
 **

  -2.63x10
-4

 

  
   30    ⁄     

   9.2 x10
-3

 

     
   313.3 

 The regressions data are for  

 *     
  =10 bar; 1    

    450      

 **     
 =50 bar; 1    

    450      
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Figure 4-10: Oil-in-place (OIP) (m3) for Example 2 at (a) t = 0 d, (b) t = 2180 d. 

(a) 

(b) 
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Figure 4-11: Statistical distributions of reference porosity and log-permeability 

(log(mD)) for Example 2.   
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(a) (b)  



Chapter 4 Optimal Producer Well Placement and Production Planning in an Oil Reservoir 

106 

 

Figure 4-12: Production and injection profiles – Accuracy comparison 

of     with ECLIPSE as a commercial simulator for Example 2. 

 

 (a) total (oil plus water) flows, (b) water flows (injection and production) and (c) the 

oil production. The solutions from     and ECLIPSE are shown with dashed and solid 

lines respectively.  
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(a) 790 d (b) 1850 d 

 

 

 

Figure 4-13: Pressure and 

saturation field of Example 2 at (a) 

790 d and (b) 1580 d. 

 

The top and bottom rows show the 

oil saturation (also waterfront) and 

pressure fields respectively. The 

data are captured from our     

solution. 
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4.6 Summary 

In this chapter, we presented an integrated and practically useful model for oil well placement 

and production planning in a petroleum reservoir, and proposed an effective solution 

algorithm for the same. The major contribution of our work is that we considered subsurface 

flow dynamics much more rigorously than any other previous study. Most studies thus far on 

mathematical programming neglected or grossly approximated this dynamics. In fact, none of 

them, to our knowledge, considered optimal production plan using such a detailed 

spatiotemporal model. Thus, this is the first contribution to integrate most of the critical 

elements of upstream production and spatiotemporal subsurface dynamics in a multiperiod 

mathematical programming approach. Furthermore, in contrast to most previous work, our 

approach does not require pre-fixing wells and locations or production/injection rate patterns. 

 We also successfully tailored and modified the OA/ER/AP algorithm to improve its 

success in solving this large and complex problem and improving its performance. Our 

modifications of the primal NLP and master MILP subproblems along with a 2-step local 

search before termination were critical in ensuring progress and good solutions for the two 

illustrative examples. 

 While much further work is needed to address the size and complexity of this important 

problem, we have taken the first step in rigorously applying the powerful and versatile 

technique of mathematical programming and addressing some of the challenges associated 

with the industry-scale well placement problem.  
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4.7 Appendices 

Appendix A: Solver settings in GAMS 

We used an infeasibility tolerance of 10
-4

 in GAMS for both the NLP and MILP solvers. 

Other settings for specific solvers are as follows: 

A. GUROBI :  feasibilitytol=0.0001; optimalitytol=0.0001; solvefixed=0; threads=2 

B. CONOPT: RVHESS=1000000; LFSTAL=200;  

C. CPLEX: advind=0; relaxfixedinfeas=1; solvefinal=0; startalg=2; threads=2 

D. IPOPT: mumps_mem_percent=20000;  

Appendix B: Some implementation details for our algorithm 

In order to avoid the unstable region of the vertical flow performance relation while solving 

   , we shut producing wells with   
    

 , where   
  is a low flow rate. This is only done for 

wells with nonzero cumulative production to avoid killing a well (on stand-by) which has not 

yet started the production. Similarly, we shut highly water flooded producers with      
  

         . In both cases we remove the shut well from       set. 

Instead of using             in                                          of Eq. 

28, we define     as  

     {
      

        
  

and we set                                 .  

For the MILP master subproblem     (Eq. 38), we used       . In other words, we used 

the linearizations from the last and current iterations only.  

To solve    , we need the terms at each period   in the mass balance equation 30. For this, 

we need information such as pressure and saturation and their derivatives from period (   ). 

Because, we solve the NLP primal subproblem in terms of intervals rather than periods, it is 
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not clear what values we should use for these terms. In this work, we used a very rough 

approximation as follows. Let   ∑         denote the last interval in period  . Then, for the 

pressure, saturation, and their derivatives at (   ), we use from their values at (   ). Thus, 

we write Eq. 30 as: 

       
    

      (       
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CHAPTER 5 WELL AND INFRASTRUCTURE 

PLACEMENT, ALLOCATION AND PRODUCTION 

PLANNING IN MULTI-RESERVOIR OIL FIELDS 

WITH SURFACE FACILITY NETWORKS 9,10 

 

5.1 Introduction 

The world population has increased from almost     billion in 1990 to about     billion in 

2012. The global energy demand has thus been constantly increasing [219]. With the advent 

of new drilling technologies such as horizontal drilling and hydraulic fracturing and 

discoveries of shale gas [220], fossil fuels such as oil and gas will continue to be the major 

energy resources for the world. Thus, it is critical to exploit these limited resources (both 

existing and new) in a wise, efficient, and cost-effective manner.  

A large oil and gas field has three main elements: (1) the porous subsurface formation, (2) the 

well strings that bring the oil from the subsurface to the surface, and (3) the surface network 

that gathers and processes oil from the various wells. Cost-effective production of oil requires 

optimal drilling and operating of wells and optimal integration of the three field elements. 

Well-drilling is expensive and poses a considerable financial risk. Up to 60% or more of the 

                                                 

9 Tavallali, Karimi, Baxendale, Halim and Teo (2013). Well and Infrastructure Placement, Allocation and 

Production Planning in Multi-Reservoir Oil Fields With Surface Facility Networks. Journal of Industrial & 

Engineering Chemistry Research – Under review 
10 Tavallali, A Halim, Karimi and Teo (2013). Producer Well Placement for Integrated Multi-Reservoir Oil 

Fields. 2013 AICHE Annual Meeting. San Francisco, CA - USA. 
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capital expenditure (CAPEX) on an exploitation project might be due to well drilling and 

associated activities alone. Yet, once a well is drilled and operated successfully, it can provide 

huge revenue, and return the initial investment. Therefore, optimal well placement is a critical 

step that must consider the integration of the subsurface and surface elements. 

 

Figure 5-1: A schematic diagram of sub-surface and surface components of a hydrocarbon field. 

The thick black and blue lines represent the production and injection wells respectively, r1, r2, r3 and r4 are four 

reservoirs (with possibly different production mechanism) in this field.  
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5.1.1 Oil fields & production challenges 

Figure 1-1 shows a schematic for a multi-reservoir field with surface facility network. The 

surface network includes wellheads, manifolds (headers) that collect/mix the oil/gas flows 

from the wellheads, processing centers that receive the commingled flows from the manifolds, 

a maze of valves and flow-lines that interconnect the wellheads, manifolds, and processing 

centers, and finally long pipelines that supply the fluids to the market after pressurization. 

 In addition to the local subsurface pressure inside the reservoir, the production rate from 

a well depends on the various pressure levels in the surface network. In this regard, the 

bottom hole pressure (BHP) at the bore hole in the well and the tubing head pressure (THP) at 

the well head are critical [221]. Since the wells may share manifolds, and the manifolds may 

share processing centers, the production variations at wells connected to the same flow path 

can alter the productions at other wells. Thus, when new producer wells are drilled to 

increase/sustain the production rates, and connected to the surface network, the conditions of 

the surface network may change drastically. These changes may even necessitate changes in 

the design and operation of the entire surface network. Therefore, it is crucial to consider both 

subsurface and surface conditions and their dynamic variations for optimal well drilling and 

placement. 

 Well placement in a single reservoir [221] is already a complex and difficult problem. 

In practice, fields often have multiple reservoirs that share common surface infrastructure and 

production facilities. These facilities, as described earlier, strongly interlink the operations of 

these reservoirs. Since each reservoir can no longer be studied separately, the well placement 

and production planning becomes even more challenging for various reasons. Firstly, each 

reservoir may have different geological characteristics and production mechanism. While one 

reservoir might be producing via a secondary or tertiary mechanism, another might be using 

the primary mechanism. Treating these separate reservoirs as one aggregated reservoir with 
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several inactive portions is very inefficient [44]. Secondly, the surface settings would depend 

on the conditions of the connected wells from multiple reservoirs. Clearly, addressing well 

placement jointly with the design and planning of surface facilities at the field level - rather 

than the individual reservoir levels - is of paramount importance, and poses special 

challenges. Lastly, the complex multiphase flow regimes in the subsurface, wells, and surface 

network add even more complexities, and make integrated reservoir management even more 

challenging. 

5.1.2 Literature review 

Upstream production in oil and gas industry involves long-term planning over several years. 

Long-term horizon problems include the capital investment assessments for infrastructure 

design and well placement activities on a time span, whereas shorter horizon problems 

include the operation planning problems with operational cost/revenue such as well 

production planning, gas lift studies, flow routing from wells to manifolds and they are 

subject to surface network facilities on a daily / weekly basis. In an oil field, the reservoir 

engineers handle the subsurface issues, and production engineers handle the surface tasks. 

Well drilling decisions are amongst the long term horizon problems, and production planning 

subject to surface facility network is very close to (and even can be absolutely within) the 

domains of short horizon planning. However, an ideal design must integrally consider both 

horizons [222]. In the following we briefly discuss some of the studies on long term planning 

(for well placement, and production planning subject to surface network) and the short term 

planning (daily production planning, surface routing, etc.). 

Well placement is an important instance of long term planning problems. In the literature, 

there are numerous studies addressing well placement with only focusing on the reservoir 

itself without almost any connections to the dynamics of the surface network facilities. 

Evolutionary and direct search techniques [53, 63, 66, 68, 81, 198, 223, 224] have attracted 
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the majority of such studies followed by few gradient based optimization approaches [139, 

141, 145, 199]. In fact, most of these studies even do not consider optimal production 

planning when subsurface media is segregated from surface network. The production 

planning is left to the reservoir simulator which uses a set of useful heuristics for simulating 

the production life subject to limited production/injection rates or bounded BHP/THP. 

However, this trend is changing and more and more studies pay attention to the well 

placement jointly with production planning [225, 226], yet we have not observed any solid 

studies in this category that considers the dynamic effects of surface network. It is possible to 

extend these works from reservoir to field level; however the surface network should be 

included. In fact ECLIPSE reservoir simulator offers reservoir coupling and network option 

which uses master-slave heuristic. In a rather different approach, few other contributions 

using mathematical programming have employed reservoir’s static data as a well screening 

tool [125, 129, 130], and naturally cannot reflect the dynamics of the problem.  

 In contrast to the above category, there are studies that have addressed well placement 

and production planning (and some) subject to the surface network facility [116] on long term 

horizon. They are mainly within mathematical programming framework and are multi-period 

mixed integer (non) linear programming models (MILP / MINLP). In general they address 

upstream infrastructure planning with decisions and plans regarding well drillings, capacity 

determination, platform installations, well-to-platform allocation and production profile. 

These studies have not considered fluid injection (which is a usual field activity) and 

moreover they have grossly approximated the subsurface flow which may not be applicable 

for well placement studies [184]. In such cases, there is no meaningful distinction between 

single reservoir and multi-reservoir (field) subsurface models. Some of these empirical 

approximations include influence function and superposition [124, 128], piecewise linear 

[116] and nonlinear approximations [132] of reservoir pressure and gas-oil-ratio (GOR) 
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versus cumulative oil production. Additionally, in different cases the multiphase flow in the 

surface flow-lines is coarsely approximated by linear pressure drop vs. flow [116, 120]. 

Despite these simplifications the above contributions are important as they address a broad 

range of surface design applications. 

 The aforementioned two categories cover the long term planning. When short-term 

scheduling on a scale of days or weeks is studied, there is usually no capital cost involved, 

reservoir dynamics is ignored and the studies focus on surface operation, production planning 

and flow-lines routing. Apart from other methods [47, 217, 227], mathematical programming 

has contributed several studies to this field. Usually, these models integrate the multiphase 

flow from wellbore into well tubing, thorough well string, choke valves, manifolds and flow 

lines, and finally into separation unit. If flow routing is addressed the model becomes 

MILP/MINLP. Since the reservoir dynamics is not included, two key elements in comparing 

these contributions are (a) the way they tackled the multiphase flow in the flow-lines (b) the 

algorithm used for optimization. Kosmidis et al. [228] developed an MINLP model for the 

production planning and flow routing in fields subject to gas lift on a daily basis, and solved 

the model by an outer approximation algorithm. They applied piecewise linear approximation 

to approximate the well and flow line momentum balances and calculated the pressure drop of 

choke valves in a post-processing step. In contrast, Barragán-Hernández [229] studied the 

integrated surface production planning for a fixed topology on a daily basis. They compiled a 

detailed set of equations to model the flow in the well and surface network. Later, Gunnerud 

and Foss [230] developed an MILP model for the production planning and surface routing of 

an offshore multiphase field for a short period. They used piecewise linearization to 

approximate the pressure drops and applied two decomposition methods (Lagrange relaxation 

and Dantzig-Wolfe) to solve the model. In another study, Gunnerud et al. [231] modeled the 

surface routing and production planning in a multiphase field for a short period using an 
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MILP frame. The also used piecewise linearization to approximate the pressure drop 

equations and also largely approximated the pressure effect at the inlet. Finally, they 

decomposed the main MILP into smaller problems and applied so-called column generation 

in branch & price framework to solve those sub-problems. Similarly, Codas et al. [232] 

studied the short term planning of the flow routing and production in an oil and gas field. 

They approximated the (multi-phase flow) pressure drop in pipes by (multidimensional) 

piecewise linearization technique. They considered both multiphase and one phase (gas) flow 

pressure drops. For generating the initial pressure drop data, they assumed a nominal pressure 

at the pipeline outlet based on prevailing conditions and later assessed that by an error 

analysis. They allowed at most one outlet from each manifold and stressed the need for 

considering multiple outlets (that would complicate the formulation).  To overcome some of 

the complexities of their MILP problem, they applied branching priories, reduced the size of 

piecewise-linear approximations and excluded the infeasible flows by valid inequalities. This 

work provides a good industrial overview of the surface studies.  Yet, few of their 

assumptions are questionable. Mainly, they artificially impose positive drawdown pressure at 

wells. However, it is obvious that some of the wells lose their production capability when the 

well cannot provide enough support to push the flow upward.  

 In brief, optimal well placement, facility design and production planning subject to 

surface network facilities are complex mixed horizon planning and design problems. Most of 

the available studies either have not used rigorous multiphase flow reservoir models, or have 

not included the surface facility network effects. Moreover, in most cases, this problem is 

either not addressed at the field wide level, or it is addressed by significant compromise on 

governing equations. The industry has already identified the importance of such integrated 

studies and software packages such as AVOCET by Schlumberger [233] are working in that 

direction. The complexity and curse of dimensionality is a big obstacle to that. In the previous 
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chapter, we addressed joint well placement and production planning in a single reservoir with 

a rectangular shape, and focused on rigorous reservoir model and (multiphase) well flow up to 

the well head. Although we did not consider the surface network dynamics, this problem was 

already a challenging dynamic optimization problem requiring a spatiotemporal and dynamic 

nonconvex MINLP model. The complexity of the model motivated us to modify an outer 

approximation algorithm to solve our model. That work provides a good platform for our 

current study.  

 The aim of this work is to extend our previous single-rectangular-reservoir study [221] 

to address well placement / surface network design and production/injection planning in a 

field with multiple irregular-shaped reservoirs supplying to a shared surface production-

network facility. We simultaneously address all the dynamic, economic, and operational inter-

dependencies of the entire field and its reservoirs. Our deterministic model holistically 

includes the entire field financial considerations and market demand, dynamic and structural 

constraints in a surface network of well-manifold-separators, and provides drilling /network 

design decisions on a long term horizon and detailed production/injection plan on several 

short horizons (integrated into the main long horizon). The remaining of this article is 

organized as follows to achieve these goals. First, we define and describe the scope of our 

problem. After that, we discuss our modeling approach and concisely describe some 

important remark on the solution strategy. Then, to assess our approach we present a case 

study and conclude with a discussion. 

5.2 Problem Statement 

It is desired to initiate or increase oil production from a multi-reservoir hydrocarbon field 

(Figure 3-1) by drilling new/infill vertical producer wells and installing the required surface 

network (manifolds, processing centers, valves, flow-lines, etc.). If the field is already 

producing, then it may have some existing wells, manifolds, and processing centers. In this 
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case, the surface network may need changes to accommodate new wells and production. The 

well placement problem is then as follows: 

Given: 

 Geological information for each reservoir such as location, dimensions from seismic 

studies or history matching, porosity, and permeability. 

 Pressure and saturation profiles in each reservoir at time zero. 

 Pressure-Volume-Temperature (PVT) related information such as viscosity, density, 

compressibility, surface tension, and formation volume factor (from core samples or 

previous production data) for each reservoir. 

 Existing wells (if any), their locations, types (producer vs. injector), diameters, lengths, 

tubing roughness, etc. 

 Potential/existing manifolds, their locations, capacities, maximum numbers of connections, 

and existing/potential well-to-manifold and manifold-to-separation center allocations. 

 Operational data such as the required inlet pressures at the separation centers, separation-

center capacity for each phase, water-cut limits, and incremental capacity expansion plans 

for surface facilities. 

 Field production horizon of   years. 

 Relevant economic data such as drilling budget and costs, manifold installation cost, costs 

per well-to-manifold and manifold-to-center connections, injection costs, oil/gas revenue 

forecasts, discount rate, demand curve, etc. 

Obtain: 

 Number and locations of new producer wells (and hence the reservoirs to be exploited) and 

their production profiles 

 Number and location of manifolds and processing centers 
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 Potential well-to-manifold, well-to-surface-center, and manifold-to-surface-center 

allocations 

 Throughput profiles for all producer/injector wells, flow-lines, manifolds, and processing 

centers 

 Dynamic pressure profiles along the network at processing centers, manifolds, wellheads, 

well bore holes (and corresponding valve settings) 

 Dynamic pressure and saturation profiles for each reservoir  

Aiming to maximize the net present value (NPV) of oil/gas production over the planning 

horizon. 

Assuming: 

 The reservoirs are horizontal and planar. They may overlap, but they are disconnected. 

Field surface elevation may vary from point to point. 

 Wells are vertical, and can pass through multiple reservoirs, but can be perforated to access 

only one reservoir. 

 A wellhead may be connected to one or more manifolds/centers. 

 The manifold capacities remain constant over time. 

 Each well (existing or potential) is pre-allocated to some manifolds/centers (existing or 

potential) based on some criteria such as distance, from which the best allocations will be 

selected. This can be relaxed but will increase computation time. [116] 

 Capillary pressure in the reservoir is negligible and the reservoir is under-saturated (i.e. its 

pressure exceeds bubble point pressure).  

 All phases (oil, water, and gas) are compressible. The driving mechanisms in the field can 

be water-drive injection and/or primary expansion. Each reservoir might have different 

pressure and saturation distribution; however all have the same fluid. 

 Existing well-to-manifold and manifold-to-center connections continue to exist. 
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Following: 

 All new wells, manifolds and surface centers begin operations simultaneously at time zero. 

 A well that hits its water-cut limit is shut in. 

 Each well must be beyond some minimum distance from all other wells. 

Allowing: 

 Reservoirs may have arbitrary and irregular shapes. 

 Processing center capacities may vary with time. 

 Existing manifolds and centers can make/receive new connections. 

 Processing centers can receive fluids from wells directly or manifolds. 

 Central water processing units supply water to injector wells directly or via shared 

manifolds. 

5.3 Formulation 

Let   (         ) denote the number of reservoirs,   (         ) denote the number 

of processing centers (existing/potential), and   (         ) denote the number of 

manifolds (existing/potential). Of these, we assume that the first    manifolds (      ) 

and first    processing centers (       ) already exist. Following the discretization 

approach that was presented in Chapter 3, we discretize the spatial coordinates. To this end, 

we use the field’s geological map to define the tightest possible rectangle around each  . 

Then, we discretize each rectangle   by defining    cells of arbitrary lengths      (   

        ) in the  -direction and    cells of arbitrary lengths      (          ) in the  -

direction. Then, we name each cell in a reservoir by a single index,             , and 

define three sets for each reservoir as follows: 

     {           belongs to reservoir    

     {                      and       



Chapter 5: Well And Infrastructure Placement, Allocation And Production Planning In Multi-

Reservoir Oil Fields With Surface Facility Networks 

122 

 

     {                        and       

    excludes from the subscribing rectangle the cells that do not belong to reservoir  ,     

excludes the reservoir’s border cells in the  -direction, and     excludes them in the  -

direction. 

 A typical water-drive reservoir will have two types of wells. The ones producing fluids 

from the reservoirs are called producer wells, and the others that inject water into the 

reservoirs are called injector wells. 

     {                                         

     {                                        

     {                                                           

              {                                                    

Similarly, it will have two types of manifolds and processing centers. The ones associated 

with processing oil/gas are called production manifolds or oil production centers, and the ones 

associated with treating and injecting water are called injector manifolds and water treatment 

centers. To differentiate among these different types of manifolds and centers, we define: 

    {                                                  

    {                                                      

Thus, if     , then   is an injector manifold, and if     , then   is a water treatment 

center. 

Lastly, to manage well-manifold, well-center, and manifold-well connections, we define: 

     {                                 an be           to             

       ,       

     {                                 an be           to center    

       ,       

    {    manifold          an be           to center    
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       ,       

 Unless stated otherwise, all variables and constraints involving index   (defined later), 

 ,  , and   are to be written for all their valid values, i.e.      ,      ,      , 

     . 

5.3.1 Drilling and infrastructure design decisions 

We define the following binary variables. 

   {
                         
          

 

   {
                           
          

 

    {
                                                 
          

       

      {
                                                                       
          

 

       ,       

      {
                                                                    
          

 

       ,       

     {
                                               
          

      

If any facility or connection from the above already exists, then we set its binary to 1. Thus, 

     and installation cost zero for       ,      and installation cost zero for 

      ,       and drilling cost zero for      ⋃   , and       and drilling 

cost infinity for              . Similarly, if a well (   ) is already connected to 

manifold  , then         and installation cost zero.  

 For preventing wells (injectors or producers) from being adjacent, we set following 

constraints: 

                      (1) 
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                     (2) 

                               (3) 

                             (4) 

They are suitable for clique cuts in CPLEX. So we add those constraints too. Based on above 

constraints, we exclude the cells adjacent to the existing injector and producer wells from 

   , and fix their     to zero  as discussed earlier. 

 Suppose that a well       can have at most      
  manifold/center connections, a 

manifold   can have at most    
  well connections and at most    

  center connections, 

and a center   can have at most     
  well/manifold connections. Similarly, if a well, 

manifold or center should exist, then it must have at least one connection. Then, we have, 

     
     ∑           

 ∑           
          ,       (5) 

   
    ∑ ∑                 

 
             (6)  

   
    ∑         

          (7) 

    
    ∑           

 ∑ ∑                 
 
              (8) 

5.3.2 Reservoir Dynamics 

Here we use the same generic partial differential equation that was introduced in Chapter 2 to 

model the reservoir dynamics, namely: 

 
 

  
[ 

  

  
]      [

   

    
        

 

  
    ]    (9) 

where,   is the porosity,    is the formation volume factor of phase   (    for oil and 

    for water),    is the saturation,    is the pressure, and    is the flow from (+ve for out, 

 ve for in) the reservoir,     is the relative permeability,    is the viscosity,    is the density 

and K is the absolute permeability tensor. It is important to note that all flow rates in eq. 1 are 

at the processing center (versus in situ) conditions. The formation volume factors (   and   ) 
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map back the center flows to flows at the reservoir conditions. Discretizing the planning 

horizon   into   intervals of arbitrary lengths     (         ) and employing backward 

finite difference approximation for the derivatives, we obtain, 

          {       
      

     
            

      
     

    }          

   (10) 

(

{        
        

 [   
         

 ]}
         

 {        
    

 [   
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          {       
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{        
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 {        
    

 [   
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{        
         

 
[   
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 {        
    

 
[   

          
 ]}

     

)      

where,      ,    
  and    

  are saturation and pressure at the end of interval  ,    
  and    

  

are the initial saturation and pressure at time zero,        
  and       

  are the variable 

accumulation multipliers,    
  and    

 
 are transmissibilities in   and  -directions,         

 , 

        
 ,         

  and         
  are upstream weighted mobilities, which are taken as those of 

the neighboring cells with higher pressures. Outcoming flow is positive, and ingoing flow is 

negative. The transmissibilities, upstream weight mobility terms, and variable accumulation 

multipliers are introduced in Chapter 3.      
  and      

  are the oil and water mobilities 

defined as: 

      
     

 (
     

       

             
)
 

            
           (12) 

      
     

 (
   

       

             
)
 

          
                   (13) 

where,    
  and    

  are the end-point relative permeabilities of oil and water,     and     are 

the residual oil and water saturations respectively,   and   are the exponents in Corey’s 

correlation,               are regression parameters for the product (     ) of the viscosity 
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and formation volume factor of oil,    is the water compressibility factor,    
  is the 

formation volume factor for water at reference pressure   , finally    is the water viscosity. 

5.3.3 Flow Balances 

Non-existent wells, manifolds, and centers cannot send/receive any flows at any time. If    
  

and    
 
 are the total fluid flows through manifold   and processing center   during interval 

 , then we have, 

       
      

              (14) 

    
     

      (15) 

    
     

      (16) 

where,        for       and   otherwise, and    
   

,    
   

, and    
   

 are reasonable 

upper bounds. Similar constraints apply for the various connections. 

       
        

                     (17) 

         
         

                  (18) 

       
        

                     (19) 

         
         

                   (20) 

      
     

              (21) 

        
       

        (22) 

where,       
  and         

  are the total and oil flows through the connection between 

well   and manifold  ,       
  and         

  are the total and oil flows through the 

connection between well   and center  , and       
  and        

  are the total and oil flow 

through the connection between manifold   and center  . Note that we do not write eqs. (18), 

(20), and (22) for injector wells, as their oil flows are zero. 

 We demand that a new well, manifold, or center be installed, only if it handles/produces 

some minimum amount (     
     

 , and    
 ) of flow over the horizon: 



Chapter 5: Well And Infrastructure Placement, Allocation And Production Planning In Multi-

Reservoir Oil Fields With Surface Facility Networks 

127 

 

 ∑      
    

       
           (23) 

 ∑    
    

     
             (24) 

 ∑    
    

     
             (25) 

where,      
  is the oil flow through well (   ). 

 As per our earlier assumption, a well should be shut in, if its water cut exceeds certain 

minimum. We used this constraint explicitly in the pervious chapter. In this chapter, we 

handle it implicitly in our solution algorithm, as discussed later. Therefore, we do not write 

the water cut constraints for the production wells. However, another analogous constraint is of 

relevance to this work. This relates to the maximum water cut that a separation center can 

handle. Again, we handle it implicitly in our algorithm, and do not write it explicitly in our 

formulation. 

 The flow balances at wellheads, manifold inlets, manifold outlets, and processing center 

inlets give us: 

      
  ∑       

 
     

 ∑       
 

     
       (26) 

     
  ∑         

 
     

 ∑         
 

     
           (27) 

   
  ∑ ∑       

 
           

 
    ∑      

 
    

 (28) 

     
  ∑ ∑         

 
                 

 
    ∑        

 
    

       (29) 

   
  ∑      

 
      

 ∑ ∑       
 

           
 
    (30) 

     
  ∑        

 
      

 ∑ ∑         
 

                 
 
          (31) 

where,      
  and      

  are the oil flows through manifold   and center  . 

 The field production/injection rates are: 

     ∑    
 

      (32) 

    
  ∑      

 
        (33) 

    
  ∑    

 
     (34) 
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where,     and    
  are field liquid and oil production rates, and    

  is the field water 

injection rate. 

 Finally, careful bounding of various flows is essential. Let   
  and   

  be the maximum 

liquid flow that manifold   and center   are designed to handle.   
  is time-invariant but not 

  
  , so the manifolds would need to be overdesigned to accommodate potential surface 

capacity expansions later in the horizon. If    
    

 denotes the maximum flow (or an 

approximation to open flow) possible at each well, and    denotes the projected oil demand 

in interval  , then the bounds on various variables are: 

    
       (   

          ∑   
 

     
 ∑   

  
          

  ∑   
  

     
)       (35) 

      
     [      

   ]            (36) 

       
       [   

       
  ∑    

   
    

]             (37) 
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   ]             (38) 

       
       [   

        
   ]              (39) 

         
     [         

   ]              (40) 

    
       [  

  ∑    
   

    
 ∑ ∑      
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     [      
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     [        

   ]       (44) 
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   ∑      
   

    
  ∑ ∑    
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Here,    
    

 is the maximum possible flow (open flow condition) during   for a well at cell 

(   ), and is defined later. 

5.3.4 Pressure Balances 

Let      
  be the pressure at the well-bore of cell (   ),      

  be the pressure at its 

wellhead,    
  be the pressure at manifold  , and    

  be the pressure at center  . Figure 3-1 

shows the different pressures and pressure drops.    
  enables the flow downstream of center 

 . While it may be taken as fixed [227], we allow it to be time-dependent. If     
  (     ) 

denotes the total pressure drop through well tubing,      
  (     ,      ) denotes that 

between well (   ) and manifold  ,       
  (     ,      ) denotes that between well 

(   ) and center  , and      
  (    ) denotes that between manifold   and center  , then 

we have, 

      
                   

      
              (50) 

      
       

      
          (51) 

      
                  

       
             ,       (52) 

    
       

       
         ,       (53) 

      
                  

       
             ,       (54) 

    
       

       
         ,       (55) 

    
                 

      
        ,      (56) 

    
     

      
        ,      (57) 

where,     ,    , are     big-M parameters. 

 Pressure drop in a multiphase flow is a complex function of liquid flow rate (or oil flow 

rate), water-oil ratio (or water flow rate), gas-oil ratio (or gas flow rate) and absolute pressure 

levels. Several models exist for capturing these dependencies. Homogenous flow models 

ignore flow pattern and are the simplest. Homogenous models that consider phase slip are 
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called drift flux models [187-189]. Empirical methods such as those of Beggs and Brills [190] 

and Mukherjee and Brill [191], and the mechanistic model of Petalas and Aziz model [192], 

predict flow patterns and consider phase slip. Accurate predictions for pressure drops involve 

highly complex and nonlinear expressions. Brill [193] provides an excellent monograph on 

this topic. In this work, we represent     
 ,      

 ,      
 , and     

  via empirical correlations 

given in Appendix A, which are regressed from the data generated by the VFPi package of 

Eclipse [194]. 

 In addition, we impose reasonable lower bounds on the various pressures to avoid 

reverse flows. These lower bounds (     
 ,       

 ,       
 ,      

 ,     
 ,      

 ,     
 , 

and      
 ) are not pre-assigned constants, but analytical functions (see Appendix B) of fluid 

properties and flow variables, which are regressed from the data generated by the VFPi 

package of Eclipse [194]. 
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           ,       (60) 

      
       

         (61) 

    
      

        ,      (62) 

    
       

        ,       (63) 

    
      

       ,      (64) 

    
       

        ,       (65) 

Since      
  at an injector must not exceed fracture pressure (    ), we use      

       

for      . 

5.3.5 Well Flow Rates 

The well flow rate depends on the differential between the internal reservoir and bottom hole 

pressures as follows. 
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     (     

       
 )    

       
         (66) 

where,      is the connection transmissibility factor for wells, which includes geological 

information (see eq. 76.5 of [44]). For injectors, the usual practice [221] in reservoir 

simulators is to use      
       

   
̅̅ ̅    

 ⁄ , where   
̅̅ ̅ is the average oil formation volume 

factor. That is also used for all equations related to injector wells in this section. 

 As pointed out in the previous chapter, Eqn. (66) has a serious flaw when cross flow is 

not allowed, because Eqn. (66) is not valid for        
       

    . The correct way to 

write is, 

       
             (     

       
 )    

       
            (67) 

We used a smooth approximation [209] for the above max function to eliminate the flaw. In 

this work, we propose a more efficient formalism for this approximation. We define    
  as an 

unrestricted (in sign) variable: 

    
            

       
           (68) 

Then, we replace eq. 66 by, 

       
     

 (     
       

 )        (69) 

       
     (     

       
 ) (   

  √   
  

   )       (70) 

where   is a small (     ) scalar. Thus,       
     

 (     
       

 ) for    
   , and 

   
       (     

       
 ) for    

   . 

 Then, the oil flow from a producer well, given by      
     

       
  (     

       
 ), 

can be computed as, 

      
          

 (   
  √   

  
   )       (71) 

      
 (     

       
 )     

       
         (72) 

Since    
     

 (     
       

 ) for    
   , Eqn. (72) can be changed to 
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         (73) 

In this way, both    
  and      

  are properly bounded and the inequalities are guaranteed to be 

tight constraints. 

5.3.6 Objective function 

The main objective is to maximize NPV (Net present value). To obtain NPV, we first 

compute the total capital expenditure, which includes the costs of drilling wells and installing 

manifolds, centers, and their flow lines. 

       ∑       ∑       ∑ ∑           ∑ ∑         
         

 
    

 ∑ ∑ [∑                   
 ∑                   

]     
 
     (74) 

where,     is the cost of drilling per unit vertical depth for a well at cell (   ),    shows the 

cost of installing center  ,    is the cost for installing manifold  ,      ($ per unit length) is 

the unit-length cost for well-to-center piping,      is the unit-length cost of well-to-manifold 

piping,     is the unit-length cost of manifold-to-center piping,     is the vertical depth of a 

well at cell (   ),      is the length of well-to-center pipeline,     is the length of manifold-

to-center pipeline, and      is length of well-to-manifold pipeline. We assume that all 

CAPEX occurs at time zero, or before the start of interval 1. However, since the budget for 

fixed costs may be limited, we impose             . Furthermore, we ignore the 

depreciation for existing infrastructure. 

 The total revenue is from the sale of oil and gas: 

          
      (75) 

where,    is the oil price ($ per unit volume). 

 The operating expense includes the costs of water production/injection and oil/gas 

production/processing. 

     (     
             

         
 )    (76) 
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where,    is the unit cost of oil/gas production,     is the unit cost of water production and 

disposal, and     is unit cost of water injection. Assuming    as the annual rate of 

depreciation for interval  , we get the taxable income and taxes for interval   as, 

                      (77) 

Then, we obtain the actual cash flow (   ) during interval   as: 

                    (78) 

where,    is the tax rate during interval  . Then, our objective is: 

         ∑ [              ⁄⁄ ]        (79) 

where,    is the annual discount factor. 

 This completes our model   which includes Eqs (1)-(8), (10)-(65), (68)-(25). Model E 

is a nonconvex, spatiotemporal MINLP. 

5.4 Solution Strategy 

We modify slightly the OA-ER-AP algorithm developed in our previous chapter. It 

decomposes MINLP E into a master MILP for design and a primal NLP for operational 

decisions. The master MILP at iteration   provides the binary variables, which are fixed in the 

primal NLP to obtain continuous variables. The NLP involves multiple periods, and each 

period has multiple intervals. We solve a series of NLPs sequentially, one for each interval. 

The NLP solutions at the ends of periods provide the linearization points to form the next 

master problem. This finishes iteration  . The combination of binary variables that underlie 

the solutions at iteration   is prohibited from subsequent iterations by a suitable integer-cut. 

 The sequential approach described above for solving the primal NLP poses a problem 

in that it is not possible to ensure Eqs. (23) to (25). This is because they require the 

knowledge of the full throughput profile, which is only possible at the master problem. 

Hence, we relax eqs. (23) to (25) in the primal problem, but use them fully in the master 
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problem. Note that the lack of access to the entire production plan, while making decisions at 

an intermediate interval, is also a limitation for the numerical reservoir simulators. But, the 

difference is that the reservoir simulators solve a series of different sets of nonlinear 

equations, while our approach solves a sequence of constrained NLP problems. As a result, 

while our method gives a series of local optimum solutions; the simulators can at best provide 

a sequence of good feasible solutions to the NLP problem. 

 When the master problem fails to improve the best available solution, we initiate a 2-

stage local search around the location of the least productive new producer (LPNW) in that 

solution. The first stage fixes all the active binaries except (               ) for LPNW and 

(       ) or    of manifold/center which is only connected LPNW. It then solves a reduced 

master problem to locate new wells and/or reject the LPNW. If the first stage of local search 

fails to improve the objective function, the second stage is activated which removes LPNW 

and probes its neighborhood for a better location of another well. In order to avoid infeasible 

configurations, we only consider locations that can be connected to the same manifold/center 

that LPNW was connected to. Other policies are also possible for the neighborhood probing. 

 The decisions on drilling, manifold, and center installations are clearly interconnected. 

However, they follow a natural hierarchy of center, manifold, and then well. We use this 

priority for branching in the MILP solution. The order of priorities is   
 ,   

 ,      
 ,    

 , and 

(      
       

 ). Moreover, we define the integer cut only for the triplet of 

(                ), which ensures that all six sets of binary variables are screened properly. 

It is because, the triplet represents the connections and a connection is only established, if the 

corresponding infrastructure is installed. In another word, screening the connections is 

subsumes the screening of units as well. 

5.4.1 Adaptive Mass Balance Approximation in MILP Master 

In our previous algorithm, we had tested two approaches for linearizing the convective flow 
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terms in the master MILP. In the first, we linearized all individual flow terms at each cell 

separately. In the second, we defined a net convective flow term (     
 ) for each phase   as 

follows. 
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 (80) 

Then, we replaced all individual flow terms by this net flow, and defined the mass balance by: 
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 ∑ ∑     
 

     
 
       (82) 

While the use of net flow term saved computational effort considerably compared to keeping 

the individual flow terms, it involved a loss of invaluable flow information in the subsurface 

cell-to-cell network. In this work, we devise an adaptive approach that combines the benefits 

of both methods by using a mix of both. 

 We begin by using the second approach. As iterations proceed, we begin mixing the 

two approaches. To see this, consider the NLP solution at iteration  . We first sort the 

absolute net convective flow terms (|     
   |  at    

    in the decreasing order at each period 

for each phase. Then, we identify a flow value (     
   

) that corresponds to           

          percentile of sorted  |     
   | . Conceptually, the locations with |     

   |       
   

 

show higher convection activity compared to the cells with |     
   |       

   
. We use this 

distinction to screen the cells by defining 

       
                 (|     

   |       
   )       

    . For these cells, we use both net and 

individual convective flow terms in the master problem; eqs (81) and (82) employ the net 
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flows, and the following uses the individual convective flow terms for        
   

 at iteration  : 
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  (83) 

As the iterations progress,      
   

 decreases, and more cells employ detailed linearization.  

Thus, the MILP linearizations are more relaxed and flexible in the earlier iterations; and they 

become tighter and more accurate in the later iterations. We call this new strategy adaptive 

linear approximation of the mass balance. 

 Irrespective of the linearization approach, proper scaling of the master problem is 

important. This is because numerous slack variables exist in this spatio-temporal model, and 

their cumulative values (with their multipliers) can sum up to very large values, which may 

cause numerical difficulties, if not managed properly for each individual problem. 

5.5 Case Study 

We consider a synthetic 2D field with two reservoirs (    on the left and     on the right 

in Figure 5-2a) at different depths. The geological data are extracted and adapted from an up-

scaled version of SPE10 [218] benchmark example (layer 12th). The two reservoirs are 

discretized using       and       cells. The field has been producing for 750 days 

already. Figure 5-2a the initial oil in place at time zero for both reservoirs and the locations of 
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existing wells and infrastructure. The field has five injector wells (I1-I5), four oil producer 

wells (P1-P4), two production manifolds (PM1-PM2), two injection manifolds (IM1-IM2), 

one production center, and one injection center. The two potential manifold locations (NM1-

NM2) are at (11, 12) and (7, 29) in    . The new wells can be directly connected to the 

production center, or they can be connected to any of the four manifolds (PM1, PM2, NM1, 

or NM2). Table 2-1 presents some of the geometrical and financial parameters for this 

example. 

Table 5-1:  Parameters for field development case study. 

Parameter Value Parameter Value 

     2.2E3           8E2   

    5E5        2600   

    5E4        2100   

     ,      6E2             94.1, 79.6, 5.56    

 

It is desired to plan the next 1460 days of production by locating new production wells and/or 

manifolds, and determining the best well-to-manifold/center and manifold-to-center 

connections. We define a base case scenario as the one in which no new drillings or 

installations occur and the field continues its production using the available infrastructure and 

wells. We optimize its production plan by solving a primal problem. Using this example, we 

(1) test our optimal well placement methodology, (2) compare the two linear approximations 

used in the master problem, and (3) analyze the dynamic features of various solutions.  

 We implemented our methodology in GAMS 23.8.2 platform and used CONOPT 

3.15D and GUROBI as the main NLP and MILP solvers respectively. We employed 

SNOPT/iPOPT and CPLEX 12.4.0.0 in the rare cases of solver failure. Appendix C lists the 

solver settings. All computations were performed on a Dell Precision T5500 with two Intel®  
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Figure 5-2: Surface network and oil-in-place (OIP) (m3) for at (a) t = 0 d, (b) t = 1460 d.  

Pentagrams, triangles and circles represent the old injectors, old producers, and new producers respectively. 

Also the red and white diamonds show the production and injection manifolds, and the white rectangle is the surface center.

(a) t=0 days (b) t=1460 days 

      

x

y

 

 

22

44

0 15 30

0

1000

2000

3000

4000

5000

6000

7000

8000

I1

I2

I3

I5

IM2

PM2

CP
CI

PM1

IM1

NM1

 I4

P1

NM2

PN1

P2

P3

P4

x

y

 

 

22

44

0 15 30

1000

2000

3000

4000

5000

6000

7000

8000

I2

I3

I5

I1

CP
CI

PM2

PM1

IM2

IM1

NM1

PN1

NM2

P3

 I4

P4

P2



Chapter 5 Well and Infrastructure Placement, Allocation and Production Planning in 

Multi-Reservoir Oil Fields with Surface Facility Networks 

 

139 

 

Xeon® X5650 CPUs (2.67 GHz and 2.66 GHz) and 48 GB of RAM. While we have 

already verified and validated with ECLIPSE [221] our subsurface model 

implementation in the previous study, this work is even further extension. 

First, we tried to compare the two approaches for linearization, namely the one 

involving the net convective flow term alone, and the other involving a mix of 

individual and net terms. We call the former normal, and the latter adaptive. Then, to 

compare these two approaches, we consider five arbitrary initial location/allocation 

scenarios. Table 5-2 shows the final NPV values from and solution times for the two 

approaches for each scenario. There seems no clear choice in terms of NPV, as each 

approach outperforms the other in two of the five scenarios. However, on an average, 

the adaptive method has higher NPVs and lower solution times. Clearly, more scenario 

tests are needed to draw more reliable conclusion. Based on this limited testing, it 

seems that the adaptive approach has the potential to be better. For the remainder of 

this section, we restrict ourselves to scenario A (the highest NPV) and use the adaptive 

approach. 

Table 5-2:  Final solutions using the normal and adaptive approximations (MM$). 

Scenario 

Approximation Type in Master Formulation 

Normal Adaptive 

NPV (MM$) Time (min) NPV (MM$) Time (min) 

A 345.65 392 347.97 320 

B 341.42 364 328.53 139 

C 342.15 154 328.68 146 

D 289.20 155 322.12 165 

E 342.80 104 342.80 101 

Average 332.24 233.8 334.02 174.2 

 

 For scenario A, the initial location/allocations are as follows. NM2 is selected 

with connections to wells at (2, 36) and (3, 28) in    . The well at (11, 18) in     
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is connected to PM2. The base case, namely maintaining the field as is without any 

new wells/manifolds, has NPV =    271. The best solution (Figure 5-2b) from our 

algorithm has NPV =    347.97, which is almost 28% higher. This required 320 

min, 5 major iterations, and 20 primal problems. In Figure 5-2b, pentagrams represent 

old injectors, triangles represent old producers, circles represent new producers, red 

diamonds represent production manifolds, white diamonds represent injection 

manifolds, and the white rectangle represents the production cum injection center. The 

best solution suggests drilling a new well (PN1) at the lower Eastern zone (1, 29) of 

reservoir 1, installing both new manifolds (NM1-NM2), and making five new well-to-

manifold connections of PN1-PM1, P3-NM1, P1-NM2, P2-NM2 and PN1-NM2. It 

provides a wealth of interesting information and observations on the operations of field 

and surface network. We now discuss a few of these. 

 Consider the field production curves first. Figure 5-3 compares the curves for 

the base case with those of the best solution. OPR denotes the oil production rate, 

WPR represents the water flow rate, subscript B refers to the base case solution, and 

subscript S refers to the best solution. The base case solution has higher water 

production, lower oil production, and unfulfilled oil demand for the majority of the 

planning horizon. In contrast, the decisions from our methodology reduce and control 

water production, increase oil production, and meet the demand for more than 1200 

days of the 1460-day horizon.  
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Figure 5-3 Oil demand curve, and the total oil and water production profiles of the field. 

FOP and FWP are the total oil and water production rates respectively. The subscript B refers to the 

base case scenario and subscript S refers to the optimal scenario obtained from our methodology. 

 

 Now, consider the production rates of individual wells. Figure 5-4 shows water 

productions from active wells. Three water breakthroughs happen, the first at P3 (~ 

400 days), the second at PN1 (~ 1200 days), and the third at P1 (~ 1400 days). Our 

optimizer reacted beautifully to these events. We describe these first at the manifold 

level, and then at the well levels. As Figure 5-5 depicts, at the first water breakthrough 

at P3, the optimizer regulated the flows through the manifolds based on their 

connections with this water-flooded well. It reduced the total flows through PM1 and 

NM1 manifolds, and simultaneously initiated/increased flows through PM2/NM2. 

Note that the former two manifolds are connected to P3, but not the latter ones. Thus, 

water production is reduced. 

 For further discussion, consider Figure 5-6 and Figure 5-7 .They show the 

flows to/from various wells and manifolds, and the wellhead THPs. In these figures, 

the colour codes refer to the wells, and the line patterns to the manifolds. For instance, 
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the solid blue line denotes the flow from P1 to PM1, the solid red line denotes the flow 

from P3 to PM1, and the dashed red line denotes the flow from P3 to NM1. P4 is 

inactive for the entire production horizon. As can be seen from Figure 5-2a, P4 is 

located near the waterfront supported by I5 even at the beginning of the project, so its 

production would lead to very early water breakthrough. At the first breakthrough, 

when the optimizer reduces the flows through P3-PM1 and P3-NM1 (Figure 5-6a), it 

temporarily attempts to compensate production losses by increasing the flows through 

P1-PM1, P1-NM2, PN1-PM1, and PN1-NM2 (Figure 5-6a and Figure 5-6b). However, 

this turns out to be insufficient. Therefore, it opens P2 along with P2-PM2 and P2-

NM2 connections to support the production (Figure 5-6c), which works very well. 

Once this occurs at t = 460 days, and P2 is working strongly, the optimizer cuts the 

flows through PN1-PM1 for about 40 days as seen in Figure 5-6b. As seen from Figure 

5-7, all wells experience significant variations in their THPs due to these events. 

Furthermore, as P3 production declines, the production load is shifted largely to 

reservoir 1. 
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Figure 5-4: Water production profiles for the best solution. 

 

 

Figure 5-5: Total flow rate at the gathering manifolds. 
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Figure 5-6: Total flow rates between wellheads and gathering manifolds.  
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Figure 5-7: THP profiles at wellheads in the best solution. 
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Therefore, we removed P3-CP from the solution. Clearly, the primal stage here 

modifies the suggested solution from the master stage. On the other hand, it may also 

suggest that P3-CP could be influential, if for example we had not assumed the 

simultaneous opening of all connections. 

5.6 Summary 

In this chapter, we extended the study in Chapter 3 and 4. We mainly developed a 

holistic and integrated model for location-allocation problem of well-drilling and 

infrastructure installation in a multi-reservoir oil field with a shared surface processing 

network.  Here we combined the sub-surface, well and surface elements of a 

production project and generalized the sub-surface model to consider irregular-shaped 

reservoirs. That led to a detailed non-convex, dynamic, multi-period MINLP model.   

This work aids decision-making for (a) number and locations of new producer wells 

(hence the eligible reservoirs for new drilling), new manifolds and processing centers 

(b) the well-to-manifold/center and manifold-to-center connections (c) 

production/injection planning for each well, (c) pressure settings at various valves, 

manifolds, and separation centers over time, and (d) the spatiotemporal profiles of 

pressure and saturation (hence the oil in place and water front maps) in each reservoir. 

By allowing irregular shaped reservoirs, this work expands the realism and application 

of our work [234].  

Finally, we tackled a number of limitations of the modified OA algorithm (developed 

in Chapter 4.) to improve its performance.  
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5.7 Appendix 

Pressure drop equations 
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Where   is the matrix regression parameters. If the pressure drop is not significant it 

can be ignored. A sensitivity analysis can help for this purpose (specially for 

determining the critical length, beyond which the pressure drop should be considered 

[235]). 
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CHAPTER 6 PLACEMENT AND PLANNING THE 

DRILLINGS AND INFRASTRUCTURE 

INSTALLATIONS IN OIL FIELDS 

 

 

6.1 Introduction 

Well drilling is an important step towards fulfilling the demand of energy market, and it is a 

critical activity in oil and gas exploitation projects due to its considerable costs and risks. 

Well drilling determines the amount of accessible hydrocarbon deposit in the subsurface 

formation, and hence to a great extent it dictates the profitability of the exploitation project. 

Therefore, drilling has continued to be a major task in oil and gas fields. Some statistics 

suggests that the average active drilling rigs in 2002 was about 1829 rigs and it has almost 

doubled to 3518 rigs in 2012 [236]. According to International Association of Drilling 

Contractors (IADC) nearly 572.334 million man-hours work was spent in drilling, and that 

only reflects almost 74% of  (and not the entire) worldwide oil and gas well drilling rig-fleets 

[237]. Such a huge and expensive workload should be efficiently planned priory by 

determining the best drilling and installation strategy. Such strategy involves many important 

techno-economic decisions, including (and not limited to) instructions for locating the best 

drilling and installation sites, their numbers and times of installations, the best production 

network structure and processing capacities. These decisions should consider numerous 

subsurface and surface factors and conditions as well as the market and economy constraints.  
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6.1.1 Background 

Figure 5-1 shows a general multi-reservoir oil field. Each field consists of number of 

reservoirs with sub-surface fluids (oil, gas and water) deposited in these porous media. The 

production from the subsurface formation is sent to the shared surface production network via 

different producer wells. This surface production network is consisted of different manifolds 

which receive the production and transfer that to the surface treatment units. Multiphase flow 

happens in considerable portion of the entire system. The fluid is pushed by the reservoir 

pressure support and traverses the bottom hole pressure (in the well bore), the tubing head 

pressure (at the wellhead), the manifold pressure and surface center pressure; different valves 

regulate the flow along this path. Similarly, there is an injection network sending back the 

water as the driving fluid. The field cannot continue the operation with the same production 

level forever, let alone meeting an increasing oil demand. Therefore, new strategies should be 

implemented and new wells should be drilled and connected to the surface network at the 

right time.  

Well drillings are subject to drilling-rig availability. Moving a rig to a new location involves 

several steps such as preparation for moving, transition to a new location, and re-installation. 

These steps are followed by other activities to prepare a new well, including installation of the 

blowout preventer (BOP), drilling into the reservoir, casing and cementing, and perforation. 

These tasks are time consuming and considerably expensive. Therefore, these well 

preparation activities are preceded by careful studies of subsurface and surface conditions, 

and are proceeded by connecting the new wells to the surface production network. Once a 

new well is opened for production not only the surface conditions, but also the subsurface 

dynamics get affected. Since this system is spatio-temporally dynamic, any drilling activity is 

subject to time and location decisions for drilling. If the well is drilled too early, besides the 

economic drawbacks in terms of time value of the money, it might reduce the efficiency of 
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water flooding by scattering the waterfront and creating unnecessary pressure sinks. On the 

other hand, if it is drilled too late, the producer well might not receive enough pressure 

support. It is essential to notice that there are complicated interactions between all these 

elements (wells, manifolds, surface centers and the rest of the network) and wells are not the 

only players and the rest of surface network also should be modified accordingly at the right 

time. Decisions for installing new manifolds or processing centers and determining the 

processing capacities are dependent on the well placement and drilling planning, if done 

correctly, the production decline can be postponed. Therefore, it is vital to critically study the 

order of drilling and infrastructure installations.  

6.1.2 Literature Review 

The central part of the aforementioned field development problem remains to be the well 

placement studies, and that is completed by considering the surface infrastructure planning. 

The majority of well placement researches (implicitly) assume that all the wells are opened 

for production at the beginning of production horizon [53, 62, 63, 74, 139]. The previous 

chapters [201, 221] provide detailed literature survey on this category. Therefore, here we 

only review the well placement studies that also address the order of drilling. Haugland et al. 

[128] studied the well placement, drilling and production planning, and platform capacity 

design by using a linear simplified form of well production equation and superposition 

method. They reported high computational cost for the problem of determining order of 

drilling, and suggested utilizing the model structure and reformulation, rather than using 

commercial solvers directly. In another study, Beckner and Song [27] used a predetermined 

list of potential locations and a variation of the "travelling salesman" problem to address the 

order of drilling problem. Later, Iyer et al. [116] performed a land mark study. They 

developed an MILP model to address the well selection, the well drilling and platform 

installation timing considering the drilling rig availability, platform sizing and production 
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planning. They used piecewise linear approximation of reservoir pressure and GOR versus 

cumulative oil production to consider the reservoir response to the production. However, 

these approximations do not depend on the number of wells and their locations. Iyer et al. 

[116]  did not consider any injection operation and employed a set of simplifying 

assumptions, such as constant productivity index for each well throughout planning horizon, 

independent production of wells from each other, and linear pressure drop based on the flow 

rate in pipes. Most of these assumptions can cause either overestimation or underestimation of 

the production performance. They applied a sequential decomposition algorithm to suggest an 

upper bound for the proposed maximization model via aggregation of the wells in each 

reservoir and time steps, as well as relaxation of the piecewise linear expansion. In the reverse 

procedure they calculated the lower bound by disaggregation and relaxing the proposed 

declining profile constraint and finally they reduced the sharp changes in the suggested 

profile. Later, their MILP model is extended in several studies. Van Den Heever and 

Grossmann [132] extended that by fitting an exponential function to describe reservoir 

pressure versus cumulative oil flow rate, and other quadratic functions to describe the 

cumulative gas productions and GOR versus cumulative oil flow rates. Their MINLP model 

employs generalized disjunctive programming. Additionally, Aseeri et al. [238] extended the 

deterministic model of Iyer et al. [116] into a stochastic model which caused even more 

serious issues with the dimensionality. Therefore, they used a sampling average algorithm to 

overcome this problem. Oil price and productivity index were considered as stochastic 

parameters. Cavalho and Pinto [123] studied the platform location-allocation problem as well 

as drilling and connection timing and well flow rate assignment using a multi-period MILP 

model. They used the algorithm suggested by Iyer et al. [116] to solve this MILP problem. 

The well-platform assignments are addressed in the master problem and the timing for fixed 

assignment is determined in the sub-problems. They assume linear decline in pressure with 
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the oil removal to define the maximum flow rate from each well (open flow rate productivity 

index × pressure).  

In another study, Barnes et al. [126] suggested an MILP followed by an MINLP to address 

design and operation of oil and gas. The MILP registers the design decisions (location and 

capacity of platforms as well as drilling centers), and the MINLP determines the well 

operation variables. Similar to Iyer et al. [116] they assumed independent production of wells 

in a reservoir based on their productivity index. Therefore, the nonlinear interactions between 

the wells are not considered and the subsurface dynamic is grossly approximated. In the next 

study, Gupta and Grossmann [239] developed a nonconvex MINLP model for a deterministic 

multi-field problem and later reformulated that into a MILP model. Their 3-phase model 

addresses the decisions for production planning, well drilling planning, floating production 

storage and offloading (FPSO)-field connection, surface unit installation and expansion 

planning. Similar to the previous works of Grossmann and co-workers, they employ 

regression models to capture the field’s dynamic. These regression models include maximum 

oil flow rate, WOR and GOR versus fractional oil recovery. Although this is an extensive, 

detailed, and important work, it also has limiting assumptions such as identical well 

performance in each reservoir.  

Apart from optimization studies and on the simulation path, ECLIPSE reservoir simulator 

[44] provides an option of “drilling queue” which gets activated when the production target is 

not met. This queue is a list of pre-defined wells which can be deployed either sequentially or 

based on a priority. Güyagüler [71] in his PhD thesis suggests solving an ordering problem for 

this queue whenever the queue is called. He puts this problem into the travelling sales person 

framework and solves it with genetic algorithm after some modifications. He also reports high 

computational cost, yet the connection to the surface network and required changes in the 

surface is not addressed. 
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A similar problem to well placement and drilling planning is the rig scheduling, that is 

allocating rigs to different wells for a specific service, and determining the service sequence 

and movement route for rigs. Specifically work-over rig scheduling (WRS) problem falls 

under this category and it is to ensure that the right rig is moved to a right well at a right time, 

through a right path [240]. Ribeiro et al. [241] provides a concise review on different 

algorithms used to solve WRS. Additionally, they solved a model of WRS by enhancing 

simulated annealing with neighbourhood local search based on re-ordering wells, re-allocating 

and swapping well moves. They also provided comparison with CPLEX, dynamic assembly 

heuristic, greedy randomized adaptive search procedure, scatter search, bubble swap and 

genetic algorithm. Their method beats CPLEX, however for other methods, a general 

conclusion in terms of solution time and objective value may not be clear. Bassi et al. [240] 

studied the drilling rig scheduling to find good (not necessarily optimum) set of solutions and 

consider the mobilization/demobilization, travelling and uncertain service time in their model. 

They used constructive heuristics and greedy randomized adaptive search procedure in 

simulation optimization framework to solve the problem and as a result they penalized the 

constraint violation in their objective function. Finally, Duhamel et al. [242] focused on 

mathematical formulation of scheduling the work-over rigs which consists of allocating rigs 

to wells and rig movement routing. They modified and proposed three mixed integer linear 

models: scheduled-based formulation, open vehicle routing approach and an extended model. 

For the last one they employed a heuristics and column generation method. 

Finally, in the last two chapters ([221] and [243]), we addressed joint well placement and 

production planning in a single reservoir with a rectangular shape, and focused on rigorous 

reservoir model and (multiphase) well flow up to the well head [221], and then extended that 

to multi-reservoir oil fields with irregular shapes and completed the connection to surface 

network by addressing the surface infrastructure installation and allocation problem. We 
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formulated these dynamic optimization problems within a spatiotemporal and dynamic 

nonconvex MINLP model and modified an outer approximation algorithm to solve that. In 

both of these studies, we assumed that all the wells are opened to production at time zero.  

Despite of numerous findings from above studies, there are still several important gaps and 

from the above literature survey, they are briefly as follows:  

1) In majority, the subsurface dynamics and sometimes the multiphase flow to the surface are 

either ignored or grossly approximated; hence in such studies the prediction of water/oil front 

is not accurate.  

2) In cases where the subsurface dynamic is accurate (using simulation-optimization) the 

order of drilling is not addressed, or the interactions between the subsurface and surface 

network are not considered.  

3) Some of the studies use a predetermined list of potential locations/connections and then try 

to determine the order of drillings/installations. However the processes of preparing this list 

are either based on limited heuristics [27, 44] (if any), or based on very general 

approximations [126]. Both of which can cause significant departure from an optimal (or very 

good) solutions.  

In light of above points, in this study we extend our previous studies to address well and 

infrastructure placement, allocation, and timing as well as planning the capacity of the surface 

centers which equip this study with significant novelty. We consider the drilling rig 

availability, yet we do not address the rig routing and scheduling problem in details. With the 

elements provided here, those problems can also be studied within the same framework after 

required modifications. In the remaining of this chapter, we initially define the problem and 

then discuss our model. Then we introduce our solution strategy and after that we evaluate its 

performance with a case study. Finally, we conclude with a concise discussion. 
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6.2 Problem Definition 

We would like to boost the oil and gas production in a multi-reservoir oil field (Figure 5-1), 

by (some or all of the) following tasks: (1) drilling new vertical producer wells, (2) installing 

new manifolds/processing centers, with appropriate new connections, (3) regulating all 

throughputs during the planning horizon, (4) incremental capacity expansion of the surface 

centers. For brevity, we refer to the vertical wells, manifolds, and processing centers as 

“elements” and each element can be attached to several flow-lines and valves. We consider 

“drilling” as a special form of “installation”; hence, in the remaining of this article, the term 

“element installation” can refer to well-drillings or infrastructure installations. If the field is 

already producing, we need to modify the surface network to respond to the new installations 

and production plan. That requires determining the optimal element-to-element location-

allocation, as well as time and the order of these installations and modifications. Therefore the 

problem can be defined as follows: 

Let us consider a field with water injection and/or primary expansion driving mechanisms in 

each reservoir. Its reservoir might have different saturation and pressure distribution with 

compressible fluid phases (oil, water, and gas). Any wellhead in this field can be connected to 

one or more manifolds/centers. Moreover, processing centers can receive fluids from wells 

directly or via manifolds; similarly central water processing units supply water to injector 

wells directly or via shared manifolds.  

The status of this oil field, the oil market requirements, and the future financial projections be 

deterministically explained through various groups of data: (1) geological, petro-physical and 

dynamic data (including permeability, porosity, field structure, as well as compressibility 

factors, viscosity, and also initial saturation and pressure map), (2) structural data (such as 

surface connections and each well’s diameter, length and roughness), (3) the operational data 

and their limits (minimum / maximum manifold or bottom hole pressure, inlet pressures at the 
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separation centers, maximum water-cut, the processing capacities of the manifolds and 

centers, oil demand and production horizon of   years), and (4) the economic data (such as 

fluid production/injection and various drilling and installation expenses). These data are 

usually provided through multi-disciplinary studies; let these data be given. 

We would like to maximize the net present value (NPV) of the oil/gas exploitation project 

over the planning horizon by determining: 

1. Number, locations, time and order of installing new elements (with required flow-lines 

and valves) and their throughputs.  

2. New surface connection allocations (well-to-manifold, well-to-surface-center, and 

manifold-to-surface-center), time and order of connecting them. 

3. The capacity and incremental capacity expansion of each center and the field. 

4. Dynamic pressure profiles along the network at processing centers, manifolds, 

wellheads, well bore holes, and corresponding valve settings  

5. Dynamic pressure and saturation profiles (waterfront location) for each reservoir  

The above decisions determine the reservoirs to be exploited and each reservoir’s share in the 

total production. For that, we use the following assumptions: 

1. The required time for installation activities for each element is not longer than each 

time period. Moreover, the manifold capacities remain constant over time; however, 

processing center capacities may vary with time as more separators can be installed. 

2. Field surface elevation may vary from point to point, however the reservoirs are 

horizontal and planar, and may have arbitrary and irregular shapes. They may overlap, 

but they are disconnected. Wells are vertical, and can pass through multiple reservoirs, 

but can be perforated to access only one reservoir.  

3. Capillary pressure in the reservoir is negligible and the reservoir is under-saturated 

(i.e. its pressure exceeds bubble point pressure). All reservoirs have the same fluid. 
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4. Each well (existing or potential) is pre-allocated to some manifolds/centers (existing 

or potential) based on some criteria such as distance, from which the best allocations 

will be selected. This can be relaxed but will increase computation time [116]. 

Existing manifolds and centers can make/receive new connections. 

Our solution follows three policies: (1) a well that hits its water-cut limit is shut in and is not 

opened again. (2) Each well must be located beyond some minimum distance from all other 

wells. (3) Unlike our previous study we allow rejecting or delaying the production through 

existing well-to-manifold and manifold-to-center connections. 

6.3 Modeling 

We extend and modify the study in the previous chapter [243] to expand its applicability for 

addressing the capacity design and ordering / timing problem. Here, we provide the complete 

set of equations with very concise descriptions of the common features to keep the paper self-

sufficient and focus on the new aspects of our study. We define our model ET as follows: 

Let us use   (         ) to present the number of reservoirs,   (         ) to refer to 

the number of processing centers (existing/potential), and   (         ) to show the 

number of manifolds (existing/potential). Of these, we assume that the first    processing 

centers (      ) and first    manifolds (      ) already exist. We discretize the 

spatial coordinates following the previous chapters to model each reservoir   bounded in the 

tightest possible rectangle. Each rectangle is discretized by defining    cells of arbitrary 

lengths      (          ) in the  -direction and    cells of arbitrary lengths      (  

        ) in the  -direction. Then, each cell in a reservoir can be indexed by an integer as 

            . These sets help defining other subsets as follows: 

Interior points:     {                                   

Geometry:     {                               
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     {                        and       

Potential allocations:     {                                                             

       ,       

     {                                                            

       ,       

    {                                                 

       ,       

Existing and candidate wells: 

     {                                         

     {                                        

     {                                                           

              {                                                    

Finally, discretizing the planning horizon   into   periods of arbitrary lengths     (  

       ) determines the planning time periods. Unless stated otherwise, all variables and 

constraints involving index  ,  ,  , and   are to be written for all their valid values, i.e. 

     ,      ,      ,      . 

Based on the discretization approach used in previous chapters, variables are defined at the 

end of each time period; e.g.    
  and    

  are saturation and pressure at the end of interval  . 

Then the initial point of the first time period is indexed by   , so    
  and    

  are the initial 

saturation and pressure at time zero. 

Logical constraints: Each installation is an important point in time and happens only once; 

after which the status of the installed element changes to “ready  or explo tat on”. Hence we 

define following two sets of design variables:  

The first set is used to monitor the installation period. Since the production through a new 

element is only possible after its installation, new elements can be installed /connected at any 
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time period except the last one (     ). These binary variables show the drilling and 

installation (one-time) events: 

   
  {

                                                
          

  

   
  {

                                                   
          

  

     
  {

 
                                       

                        

          

      

    
  {

 
                                             

                       

          

       

      
  {

 
                                               

                                      
          

       ,       

      
  {

 
                                                      

                                   
          

      ,       

The second set is utilized to flag the continuous availability for production. Since there is no 

production at     they are defined over      : 

    
  {

                                        
          

  

    
  {

                                           
          

  

      
  {

 
                                                  

                            

          

      

     
  {

 
                                    

                           

          

       

       
  {

 
                                                       

                                           
          

      ,       
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  {

 
                                                       

                                        
          

      ,       

The above two sets are tightly related to each other. That is (      ,      ):    

    
  ∑   

  

      (1) 

    
  ∑   

  

       (2) 

      
  ∑     

  

           (3) 

     
  ∑    

  

           (4) 

       
  ∑      

  

           ,       (5) 

       
  ∑      

  

           ,       (6) 

Each installation happens only once and after that the connections are not removed; both of 

which are satisfied through Eqs. (1) to (6). Since these equations are written in a cumulative 

manner, they guarantee that no off-on-off behavior will happen for selected solutions, 

additionally as can be seen later this also to increase the sparsity of the model. 

Figure 6-1 represents the idea of defining the above two sets. As an example, consider a well 

candidate which is selected to be drilled by the end of time period   . With the above 

definitions     
    for      and     

    for     , also    
    for      and    

    

for     .  

 

Figure 6-1: Schematic representation of the binary and continuous design variables for drilling scheduling. 

The shaded and white slots represent 1 and 0 values respectively. 

The second set can also be represented as bounded continuous variables. We tested both and 

preferred the binary definitions. The first set of binary variables for installations is mainly 
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defined as one-time-activating variables for modelling the installation cost (which is paid only 

once), whereas the other set is defined to model the operational costs/revenues effectively. 

Therefore, if any element of the infrastructure already exists, its installation binary at     

and its production binary variables at       are fixed at 1 and its installation cost is 

rendered as zero.  

The above definitions enable us to establish proper constraints for maximum possible drillings 

at each time step (     is the number of available drilling rigs) (Eqn. (7)), minimum number 

of producer wells to continue the production (at least one) (Eqn. (8)), minimum/maximum 

number of connections as well as simultaneous drilling / installation and connection (Eqs. (9-

12) ): 

 ∑ ∑    
 

           
 
             (7) 

 ∑ ∑     
   

           
 
       (8) 

      
     

  ∑       
 

     
 ∑       

 
     

     
       ,     (9) 

    
    

  ∑ ∑       
 

           
 
       

      (10)

  

    
    

  ∑      
 

    
    

      (11) 

     
   

  ∑      
 

      
 ∑ ∑       

 
            

 
       

       (12) 

Furthermore,  following previous chapters,  two wells are prevented to be drilled in two 

adjacent cells (   ): 

     
          

            (13) 

     
           

           (14) 

     
             

                  (15) 

     
             

                (16) 

Notice that the clique cuts can be added due to the structure of above set of equations. 
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Reservoir Dynamics 

The spatio-temporal discretization of the governing PDE of the flow inside the reservoir 

provides the below dynamic set of equations: 

          {       
      

     
            

      
     

    }          

   (17) 

(

{        
        

 [   
         

 ]}
         

 {        
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And phase mobilites are defined as:  

      
     

 (
     

       

             
)
 

            
           (19) 

      
     

 (
   

       

             
)
 

          
                   (20) 

Flow Balances and Capacity Planning 

Installation and flow: A new element can only be productive after it is selected and after that 

its throughput is bounded (Eqs. (21)-(26)),. Furthermore, oil flow rate cannot exceed total 

liquid flow rates (Eqs. (27)-(29)) . 

       
      

       
         (21) 

    
     

      
  (22) 

    
     

      
  (23) 

      
     

        
        (24) 

       
        

         
              (25) 

       
        

         
              (26) 

        
       

        (27) 
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                  (28) 

         
         

                   (29) 

Oil flow rate of different elements of the injection line is set to zero. 

Minimum flow: The total production from a selected element should be economically 

acceptable: 

 ∑      
    

       
     

               (30) 

 ∑    
    

     
    

      (31) 

 ∑    
    

     
    

       (32) 

Flow Balances: The flow balances should be satisfied at every point in the field. 

       
  ∑       

 
     

 ∑       
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  ∑         

 
     

 ∑         
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  ∑ ∑       

 
           

 
    ∑      
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  ∑      

 
      

 ∑ ∑       
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  ∑        

 
      

 ∑ ∑         
 

                 
 
         (38) 

     ∑    
 

      (39) 

    
  ∑      

 
       (40) 

    
  ∑    

 
     (41) 

Center capacity  

This capacity (  
  ) can be expanded incrementally (   

  ). The    
   capacity expansion 

happens at   and is only available to the surface facility at    . Furthermore the incremental 

capacity expansion is limited and depends on the available capacity at each period; and these 

expansions increase the field capacity. Obviously the new capacities control the maximum 

field fluid flow : 
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          (42) 

    
        

          (43) 

      ∑   
  

      (44) 

    
   ∑   

  
     (45) 

    
    

     (46) 

           (47) 

    
     

    (48) 

  
   is the initial center capacity and     is the maximum possible expansion fraction from 

each available capacity. 

Bounds on flow variables: All above flow variables should be properly bounded with 

available information: 
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   ]       (60) 

                   ∑    
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(      

        )        (64) 

where,        for       and   otherwise. 

Voidage Displacement 

The injected water should replace the produced liquid to maintain the reservoir pressure.  

   
̅̅ ̅   

    
̅̅ ̅̅    

    (65) 

Pressure traverses 

Pressure Balances: These equations monitor the automatic pressure variation across the 

production network, from well bore, to the well head, manifolds and finally the centers.  

      
         

            
      

              (66) 

      
       

      
          (67) 

      
           

         
       

             ,       (68) 

    
       

       
         ,       (69) 

      
           

         
       

             ,       (70) 

    
       

       
         ,       (71) 

    
          

         
      

        ,      (72) 

    
     

      
        ,      (73) 

Minimum Pressures: 
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            ,       (75) 
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           ,       (76) 

      
       

         (77) 

    
      

        ,      (78) 

    
       

        ,       (79) 

    
      

       ,      (80) 

    
       

        ,       (81) 

Well Flow Rates 

These flexible constraints ensure feasible response to the low (high) reservoir pressure for 

supporting (receiving) the flows at producer (injector) wells and preventing the flow as 

required.  

    
            

       
           (82) 

       
     

 (     
       

 )        (83) 

       
     (     

       
 ) (   
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   )       (84) 
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   )       (85) 

    
       

       
         (86) 

where   is a small (     ) scalar.  Moreover, for injectors we use      
       

   
̅̅ ̅    

 ⁄ , 

where   
̅̅ ̅ is the average oil formation volume factor and that is discussed in [221]. 

Objective function: 

Capital expenditures: 

       ∑   
     ∑   

     ∑ ∑    
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In the last time period no installation/drilling activities are permitted, hence we set 

          . 

Total capital expenditures:  ∑       
                    (88) 

Where          is the maximum available budget. 

Total revenue:          
      (89) 

Operating expense:     (     
        

        
 )    (90) 

Taxable income:               ∑       
        (91) 

Actual cash flow:                                     (92) 

with              . 

Objective function based on Net Present Value:  

         ∑                    ⁄
    (93) 

Since we have allowed initial drilling/installation and expansion, we add    days to the time 

exponent of NPV definition to take into account the fact that the investments and costs starts 

few months before the actual production, during which we do not consider any production. 

That completes definition of our model ET. This model rigorously includes the subsurface 

dynamics and the multiphase flow to the surface, the interactions between the subsurface and 

surface network and the economic parameters. Additionally it is to address the order of 

installations. Hence, ET is addressing the first two gaps in the literature which was 

highlighted earlier. 

 

6.4 Solution Strategy 

6.4.1 Overview 

Model ET is a nonconvex, dynamic, multi-period and spatio-temporally discrete MINLP 

model, and hence that is a complex model which is computationally expensive to solve. 
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Consider an example problem with    , |          ,    ,     and      . 

Assuming that each cell can be potentially connected to all manifolds/centers, there are more 

than         and         binary and continuous variables respectively. In addition to this 

dimensionality, the significant possible combinations, the nonlinearity of the system and the 

presence of endogenous equations make this problem a huge combinatorial and complicated 

problem. It is almost impossible (at least now) to use the standard MINLP solvers for such 

models. Hence, designing a specific algorithm for solving model ET is currently unavoidable. 

In light of above difficulties, we propose decomposing ET into (a) a production network 

design problem and (b) a network design and installation planning problem. The former 

supplies the latter with a list of potential element locations, element-to-element allocations 

and incremental production expansion plan. Since this potential list is prepared via solving an 

optimal design and location-allocation problem in a systematic manner, it is not limited to 

heuristics and very general approximations. Consequently, this approach can overcome the 

third shortcoming of the previous literatures to some good extent.  

Let model   be the production network design problem formed by fixing (  
 ,   

 ,     
 ,    

 , 

     
 ,      

 ) binaries to zero at (   ), removing Eqs. (1) to (6) and (8), replacing all (   
 , 

   
 ,      

 ,     
 ,       

 ,       
 ) binaries with the respective binaries (  

 ,   
 ,     

 ,    
 , 

     
 ,      

 ), and finally reducing the time domain of Eqs. (8) to (16) to    . Therefore 

the only binary variables in model E are (  
 ,   

 ,     
 ,    

 ,      
 ,      

 ) and its solution 

helps forming the network design and installation planning problem. Let us refer to the 

second model as model RET.  

Model RET is similar to model ET with the more restricted search domain. The active binary 

solutions of model E reduce the search space by limiting the sets of potential manifolds/ 

centers,   ,         ,    , and     to subsets of their original definitions. The elements of 

these sets corresponding to inactive binaries from solution to model E – i.e. (  
 ,   

 ,     
 , 
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 ,      

 ,      
 ) equal to zero – are removed from the solution space. Therefore, now the 

problem changes to a network design and installation planning problem.  

Both models E and RET are also nonconvex, dynamic, multi-period and spatio-temporally 

discrete MINLP. We have previously modified an outer approximation algorithm to solve 

such MINLPs [221, 243]. Here we modify this algorithm separately for models E and RET. 

6.4.2 Solving Model E 

Model E is similar to our recent model [243] for element location-allocation and production 

planning in multi-reservoir oil fields with surface facility networks. The algorithm that we 

previously tailored is based on the outer approximation and equality relaxation and 

augmented penalty (OA/ER/AP) algorithm (of Grossman and co-workers [213]). OA/ER/AP 

decomposes an MINLP into a primal (NLP) stage and a master (MILP) stage, and solves the 

MINLP through successive iterations. Refer to [213]  for the detailed formulation of the 

master problem.  

We equipped OA/ER/AP with sequential solution of sub-NLPs, and a two-stage local search. 

Let the primal and master problems in the  -th major iteration be     and     respectively. 

We solve     using a sequential solution approach; it discretizes each period   into    

intervals (        ∑    ) and solves several    
  by marching into the time domain. After 

each time interval        
    

     is checked to ensure solution stability. The initial 

solutions and required initial conditions for    
  are based on the solution of      

 .  In each 

major iteration, the primal stage provides the linearization points (at the end of each period  ) 

for the master problem (     ), and the master problem in turn prepares the binary solutions 

for the primal problem. Integer-cuts ensure that the same solution is not revisited. If the 

algorithm cannot improve the solution or the master problem becomes infeasible, it is directed 

to a two-stage search step, where (1) a reduced master MILP (      ) problem is formed by 

fixing the binary solution for all active wells except the least productive well with lowest 
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initial oil in place (IOIP); it is solved to prepare a new primal problem. If this cannot improve 

the solution (2) a local neighborhood search is performed by probing the adjacent locations to 

the location of the least productive well while maintaining the other well locations. The 

capacity expansion plan in the latter case is borrowed from the current incumbent solution. 

The two-stage search is shown in a green box in Figure 6-2. Finally, the algorithm is 

terminated if these two stages are unsuccessful. It is notable that the local search increases the 

number of possible primal problems in each iteration; therefore instead of  -index we used  -

index to refer to the number of primal problems and we have    . Interested reader is 

referred to [221] for more information; Figure 3 of this reference represents our previous 

algorithm schematically. 

Our studies ([243] and [221]) assured us that the two-stage local search has significant role in 

improving the solutions. Additionally, Huang and Karimi [244] also applied the similar 

methodology and reported the same. Hence, here we investigated the chance of increasing the 

role of the local search. To do so, we focused on the capacity expansion planning feature of 

model E which is its most important difference with our previous model [243]. We fix all 

binary variables of model      , and turn this MILP model into a LP model and call that 

model      . That provides us with another local search stage which updates the incremental 

capacity expansion plan.       is used to update the initial guesses/values of the capacity plan 

(a) after the first primal problem and (b) after the successful neighborhood probing search. It 

is obvious that       is not required to be solved for the primal problems that follow       or 

       models and end with improved the NPVs. They are shown in red boxes in Figure 6-4. 

That changes our previous two-stage local search into a three-stage local search.  

 Finally, after termination, the above algorithm prepares the binary design variables and the 

incremental capacity expansion plans to be transferred to model RET. 
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Figure 6-2: The structure of the three-stage MINLP algorithm. 

The diamond boxes refer to logical check boxes, dashed and solid lines in order represent failed and passed 

criteria checks. The criteria are feasible MILP solution and improved NPV for master and primal problems 

respectively. 
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6.4.3 Solving Model RET 

Let the primal and master problems for RET at k-th iteration be       and        

respectively. Since the drilling rig availability constraint (Eqn. 8) was relaxed in model E, its 

solution can be infeasible for model RET, hence for       and       . Therefore, we 

identify the most productive new producer well with the greatest IOIP value and use this well 

with its connections to initialize the model RET. The next steps are similar to the algorithm 

described for solving model E. However there are two main differences: 

1) Adaptive time discritization: We usually use large time steps in model       to strike 

a balance between accuracy and solvability. However, potentially model RET (and 

hence       ) has more restricted search domain and therefore we can reduce the 

step size of each time period for stressing the time effect on installation planning. 

Therefore, we increase the number of periods from   to    with            and 

accordingly we decrease the number of intervals in each period to    . However we 

ensure maintaining the same interval step sizes for     and       to keep the time 

impact on the primal NPV formulation intact. Figure 6-3 represents and compares the 

time discritization for the master and primal problems of E and RET; the points with 

an arrow show the linearization points passed from the primal to the master 

formulations. This procedure can be potentially iterated however we just used the first 

round. 

2) Neighborhood probing: Here, we employ the similar idea of the neighborhood 

probing. Instead of location perturbation of the worst new producer well with the 

lowest IOIP, we probe the adjacent time steps of its drilling time. Its well-to-manifold 

and/or well-to-center connections (and consequently the appropriate manifolds and 

center, if required) are perturbed accordingly. 
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Figure 6-3: Time discritization structure for master and primal formulation of model E and ERT. 

 

The final solution of RET determines the time, order and location of installing new elements, 

decides the various element-to-element connections and plans the incremental surface center 

capacity expansion. 

6.5 Case Study 

In order to test the above two-stage MINLP methodology, we use the field development 

problem introduced in the previous chapter and modify that based on model ET. Then we can 

test our solution strategy for drilling and installation planning. Therefore, Figure 5-2a shows 

the field under study with the initial surface facility network. There are minor changes to the 

parameters used, though.  

Let each time period be 100 days. We again provide five different wells and infrastructure 

configurations as the initial guess to the model and solve each of them. The best solution 

progresses to the highest NPV of           which is 73% higher than its base case and 

suggests drilling 6 new wells (PN1-PN6), establishing 8 new connections and installing two 
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new manifolds (NM1-NM2). It took 90 minutes with 3 major iterations and 6 primal 

problems to reach to the final solution. The timing part of the solution had a prime role in 

improving the final NPV. Figure 6-4 depicts the location of these new wells and manifold. 

The next figure, Figure 6-5, represents the order of opening the wells, installing the manifolds 

and connecting the connections. 

It is informative to inspect the response of wells and field flow rates to the new installations. 

Figure 6-6 represents the field oil production (FOP), water injection (FIW) and field liquid 

production curves and the black arrows depicts the time of new drillings. Furthermore, Figure 

6-7 depicts the flow rates enetring each manifold As can be seen from these figures, once each 

new well is opened for production the water injection rate decreased and oil production rate 

increased. That is the major trend during the production horizon, except for the last two time 

periods where the reservoir is in general not able to return to a high production level. 

 

Figure 6-4 The final positions of the wells and surface manifolds on the final oil in place map (  ). 
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Figure 6-5 The order of opening the new wells 

The numbers in each ellipsoid refer to the time period of installation. Each period is 100 days. The background 

map is the final oil in place. 

 

 

Figure 6-6 Field flow rates  
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Figure 6-7: Well-manifold flow rates.
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6.6 Summary 

To our knowledge, work-over rig scheduling (WRS) has received more attention in the open 

literature comparing to well placement and drilling planning. It can be due to the fact that 

usually there are so many wells operating in a field, and in some point of time they need the 

work-over operation. Yet, there are usually very few work-over rigs available and that 

motivates optimally scheduling and routing these work-over rigs. Therefore there is a strong 

momentum from industry for WRS study. From computational perspective, in typical WRS 

problems, the target wells are limited to the existing wells in the field. However in mixed well 

placement and drilling scheduling problem, the search space for well placement is 

substantially larger than the first case. That provides the idea behind this chapter. We 

basically solved the location / allocation / timing problem in two stages. In the first stage we 

obtained the optimal location / allocations through the model we developed in the previous 

work. In the second stage we solved the drilling and installation timing problem. Although 

sub-optimal, that could provide improvement in the financial objective value. 
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATIONS 

 

7.1 Conclusions 

This PhD study addressed optimal oil field development planning and mainly focused on well 

placement decisions. In particular, three central problems were addressed: (1) placement 

problem (the optimal sites for well drillings and infrastructure installations), (2) allocation 

problem (the optimal connection between wells, manifolds and surface centers) and finally (3) 

ordering / timing problem (optimal planning of the drillings and installations). Throughput 

planning based on the rigorous subsurface model was the mutual part embedded in all those. 

These problems were formulated as mixed integer nonlinear programming (MINLP) based 

models, and they were non-convex, dynamic and discrete. The major contributions of this 

thesis are as follows: 

The extensive literature survey in Chapter 2 indicated that the model-based optimal well 

placement studies lacked (a) rigorous sub-surface fluid flow model, and (b) a holistic 

approach that would integrate subsurface, wells and surface dynamics and their features. 

Moreover, it suggested that the potential power of mathematical programming method had not 

been fully utilized to address well placement problems. This survey showed that the important 

limitation of previous mathematical programming studies was the gross approximations of 

subsurface multiphase flow dynamics, whereas these studies are practically rich in addressing 

surface issues.  These findings motivated us to employ mathematical programming technique 

in the current study. 
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After this thorough literature survey, we developed a rigorous, spatiotemporal discrete model 

to represent the subsurface dynamics in Chapter 3 and verified that in Chapter 4 by comparing 

its performance with an industry standard reservoir simulator. We embodied this subsurface 

model into an MINLP frame, and integrated the subsurface and well dynamics to address well 

placement and production planning problems in a single rectangular reservoir. The key 

contribution of this modeling part is that we considered subsurface flow dynamics much more 

rigorously than any other previous study. This is, to our knowledge, the first contribution to 

integrate most of the critical elements of the upstream production and spatiotemporal 

subsurface dynamics in a multi-period mathematical programming approach to address well 

placement. Furthermore, to solve this holistic model, we modified and extended an outer 

approximation algorithm (of Grossmann and coworkers [211-214, 245]) and empowered that 

by (a) a sequential solution strategy for the primal problem, (b) master problem reformulation, 

and (c) a two stages local search. Our model clearly considered the nonlinear interaction 

between all the wells, and the sequential solution strategy could optimally plan the various 

throughputs of all these wells at each time period. Although the sequential solution strategy 

appeared locally efficient, it lacked a global behavior. Our tests showed that the master 

reformulation considerably reduced the solution time, and the two stages local search had 

significant impacts on the solution.  In contrast to most previous work, our approach did not 

require pre-fixing wells and locations or production/injection rate patterns. 

In the second study in Chapter 5, we further generalized the approach developed in Chapter 4. 

Instead of a single rectangular reservoir, we modeled multiple irregular-shaped reservoirs of 

an oil field connected to a shared surface network facility. Then we used that to address both 

placement and allocation problems in Chapter 5. Additionally, further modifications to the 

algorithm developed in the previous chapter improved its  performance.  
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The third study in Chapter 6 tackled the timing and ordering problem for well-drillings and 

infrastructure placement. Two solution algorithms were suggested and their efficiency was 

tested. It was shown that using an optimal plan for drilling new wells and installing new 

infrastructures can delay the production decline; and hence that can significantly affect the 

profitability of the project. 

While much further work is needed to address the size and complexity of this important 

problem, we have taken the first step in rigorously applying the powerful and versatile 

technique of mathematical programming and addressing some of the challenges associated 

with the industry-scale well placement problem.  

 

7.2 Recommendations 

Chapter 2 provided an insight into possible future researches in the optimal well placement 

field. In addition to those, the following studies are recommended to extend the current PhD 

research: 

Production planning study: The current study can certainly be improved by studying the 

production planning in more details. Currently the sequential solution approach shows a 

myopic behavior. At each time step, the optimizer can only see the reservoir response within 

the same time step, and that can potentially affect the future response of the reservoir. Some 

of the researchers [47] have used gradient based technique (such as adjoint based gradient), 

and evolutionary methods [217] to optimally plan the production. We had some initial 

attempts [246] to use adjoint information for this purpose, however as different researchers 

has identified [133], there are complexities in using adjoint based gradient calculation with 

models with nonlinear inequalities involving control and state variables. Any improvement on 

production planning can certainly help to improve the overall solution.  
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Surface network study: Compressors are used after separators to pressurize the processed 

gas [120]. The compressor performance can be integrated with the current model. Moreover, 

it was assumed that all reservoirs have similar fluids with same properties [116]. This 

assumption should be attacked in order to better generalize the current approach. However, 

that complicates the mixings at the manifolds and separators.  

Drilling planning: Another possible way of solving the drilling planning problem that was 

presented in Chapter 6, might be to start again with the MINLP formulation for placement 

problem in the  th iteration of the outer approximation algorithm (   
 ). However, instead of 

solving a detailed MINLP problem (   
 ) for the planning problem, we may use the flow rate 

profile from solution of     
  in the  -th iteration to determine the time and order of 

drilling/installing the new wells/ infrastructure. Therefore, in addition to the binary solution, 

we should extract the throughput profiles from     
 . However, we may not interpret a zero 

flow rate at the later stages as a stopping flag. After this 

   
         

          
            

            
     

  and    
         

          
            

        and 

      
       can be updated and then introduced to     

   . We did not test this thoroughly; 

therefore we just present that as a recommendation here.  

In addition to the above, planning the drilling rig movement [116] and its path selection could 

potentially be mixed with our model. 

Well type selection: A natural extension of this study is to include injection well placement 

into the model. If the potential locations of injector and producer wells are exclusively 

separated, it is easier to update the model. However, if a potential site can be producer, 

injector or a normal cell, more preparations are required. We have done some initial study on 

the former [247] however that requires a more detailed analysis. 

Three dimensional model and nonconventional wells: Since in this study, the general form 

of equations showing multiphase flow in porous media is used, the present model is 
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extendable to three dimensions. However, special tactics should be employed to tackle to 

dimensionality problem. 

Point wise representation of wells was used in this study. As discussed in Chapter 2, Yeten 

[55] has translated the well type into the number of junction points on the main wellbore. An 

integer variable showing the junction is zero for mono-bore wells and nonzero for multilateral 

wells. Each mono-bore well can be represented by pointing to its heel and toe positions. In the 

case of multi-lateral wells, the conjunction and toe points of laterals should be added to the 

specifications of the main trunk. A similar formulation might be imbedded in our model; 

however, the definition of productivity index should be updated to account for the 

nonconventional wells and the nonconventional well will be represented in a staircase.  

Uncertainty modeling: Uncertainty assessment is the important element that closes the loop 

of optimal well placement and stochastic approaches are the vehicle for that. Stochastic 

models are built on the foundation of deterministic models. This study has provided such 

platform.  

Other applications: The novel methodology developed here can be potentially applied to 

similar problems from different application domains, particularly dynamic problems which 

include some types of location/allocation decisions. As an example, the work in Chapter 4 can 

be modified to potentially study wind mill placement. Additionally, the same methodology 

developed in Chapter 5 might be applicable to Coal Bed Methane (CBM) developments to 

tackle related placement and allocations issues. In these developments thousands of wells are 

drilled and they are connected to very complex network facilities. They are too complex to 

use the conventional approaches in oil and gas developments. Both above examples can be 

formulated in the frame work of the sixth chapter to study the timing of installations.  
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