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Summary 

Brain circulation has attracted renewed interest as an active signalling milieu 

that regulates brain development, homeostasis, and disease. The vertebrate 

brain ventricular system is a series of connected cavities which are filled with 

cerebrospinal fluid (CSF) and surrounded by neuroepithelium. CSF serves as a 

fluid envelop that protects the central nervous system. Due to its immediate 

contact with neural stem cells in the developing and adult brain, it also plays 

an essential role in regulating neuronal functioning. While the gross anatomy 

of ventricular system and CSF hydrodynamics are well documented, the 

molecular mechanisms underlying their development are poorly understood.  

Identification of novel molecular regulators of brain circulation will help to 

uncover more details of this important process. In this study, a zebrafish 

forward genetic screen was carried out using Tol2 transposon-mediated gene-

breaking insertional mutagenesis strategy. Among all the mutants generated, a 

kcng4b mutant, which lacks voltage-gated potassium channel Kv6.4b silent 

subunit function, displayed developmental defects in embryonic brain 

ventricles, including neuroepithelial cells delamination, ventricle dilation and 

thus hydrocephalus. Functional analyses of the mutant provide the first in vivo 

evidence that the silent Kv6.4b subunits, play an essential role in regulating 

embryonic brain lumen inflation by modulating neuroepithelial cell 

proliferation and maintaining neuroepithelium integrity, presumably through 

the formation of Kv2.1/Kv6.4b heterotetramers at the embryonic brain 

ventricular zone. These results provide a functional basis for the modulation of 
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Kv2.1 by silent Kv6.4b subunits during vertebrate embryonic brain ventricle 

morphogenesis. 
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1.1 The brain ventricular system  

The vertebrate brain has a complex three-dimensional structure. One highly 

conserved aspect of brain structure is the ventricular system, a series of 

connected cavities lying deep within the brain, filled with cerebrospinal fluid 

(CSF). The brain ventricles and the CSF they contain, together with the 

surrounding neuroepithelium and associated structures, form the brain 

ventricular system (Lowery and Sive, 2009). In the adult human brain, there 

are four connected ventricles: two lateral ventricles within the cerebrum, a 

third ventricle within the diencephalon, and a fourth ventricle lying between 

the cerebellum and pons (Figure 1.1). The lateral ventricles are connected to 

the third ventricle, which is linked to the fourth ventricle via the cerebral 

aqueduct. In turn, the fourth ventricle joins to the spinal cord canal and the 

subarachnoid space that envelops the brain. The adult human brain contains 

about 140 ml of CSF, of which approximately 20 ml is within the ventricles 

and the remainder is surrounding the brain (Brown et al., 2004). 

1.2 The choroid plexues and CSF production 

It is generally believed that adult CSF is produced mainly by the choroid 

plexuses, highly vascular structures located within the ventricles (Figure 1.1), 

although some CSF may be produced by ependyma, cells lining the ventricles. 

CSF secretion in adults varies between 400 ml to 600 ml per day. The choroid 

plexuses consist of granular meningeal protrusions into the ventricular lumen, 

the epithelial surface of which is continuous with the ependyma. They 

comprise a tuft of capillaries. Choroidal cells present microvilli at their apical 

pole and are interconnected by tight junctions with a variable distribution 



3 

 

 

F
ig

u
re

 1
.1

. 
T

h
e 

ad
u

lt
 b

ra
in

 v
en

tr
ic

u
la

r 
sy

st
em

. 
C

ar
to

on
 r

ep
re

se
nt

at
io

n 
of

 a
du

lt
 h

um
an

 b
ra

in
 v

en
tr

ic
le

s.
 B

lu
e 

re
pr

es
en

ts
 

br
ai

n 
ti

ss
ue

 a
nd

 y
el

lo
w

 s
ho

w
s 

br
ai

n 
ve

nt
ri

cl
es

. 
C

ho
ro

id
 p

le
xu

se
s 

ar
e 

in
 r

ed
, 

bl
ue

 a
rr

ow
s 

de
si

gn
at

e 
di

re
ct

io
n 

of
 C

S
F

 f
lo

w
. 

L
V

, l
at

er
al

 v
en

tr
ic

le
, 3

V
, t

hi
rd

 v
en

tr
ic

le
, 4

V
, f

ou
rt

h 
ve

nt
ri

cl
e 

(L
ow

er
y 

an
d 

S
iv

e,
 2

00
9)

. 

 



4 

 

according to the site on the ventricular wall (Brodbelt and Stoodley, 2007; 

Sakka et al., 2011).  

1.3 The brain circulation and CSF hydrodynamics 

1.3.1 The classical hypothesis based on choroid plexuses 

The brain circulation or CSF circulation is a dynamic phenomenon (Figure 

1.2). Classical model of brain circulation suggests that CSF circulates 

according to a unidirectional and rostrocaudal flow inside the ventricular 

cavities and a multidirectional flow in subarachnoid spaces with the exchange 

of various substances between the CSF and interstitial compartments. CSF 

produced by the choroid plexuses in the lateral ventricles travels through 

interventricular foramina to the third ventricle, and then the fourth ventricle 

via the cerebral aqueduct and finally to the subarachnoid spaces via the 

median aperture (foramen of Magendie) of the fourth ventricle (Redzic et al., 

2005; Sakka et al., 2011). CSF flow is generated by the systolic pulse wave 

and rapid respiratory waves. Subcommissural organ (SCO) synthesizes SCO-

spondin, which aggregates to form Reissner fibre that guide the CSF 

circulation through the cerebral aqueduct. In human the SCO disappears 

during postnatal development. Abnormality of the SCO could explain certain 

forms of congenital hydrocephalus. 

CSF is reabsorbed and drained into arachnoid villi (AV), finger-like 

endothelium-lined protrusions of the arachnoid outer layer through the dura 

mater in the lumen of venous sinuses (Figure 1.3). In humans, arachnoid villi 

in lumbosacral nerve roots increase CSF absorption in response to gravity 
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Figure 1.3. CSF absorption in relation to cranial arachnoid granulations. 
Arachnoid granulations are endothelium-lined finger-like meningeal protrusions 
into the cranial venous sinuses through the dura mater (a). They have a valve-like 
function. When cerebrospinal fluid pressure increases, arachnoid villi develop, 
thereby increasing their surface of exchange and cerebrospinal fluid absorption 
(Sakka et al., 2011) (Modified). 
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when body is in the upright position, and the absorbed CSF then enters the 

lymphatic system (Brodbelt and Stoodley, 2007; Sakka et al., 2011).  

1.3.2 The new hypothesis based on CNS blood capillaries 

Until now, the traditional model of CSF circulation has been accepted 

worldwide for nearly a hundred years, and is widely used in textbooks and is 

constantly referenced or cited as a matter of fact in most of the prestigious 

journals. However, this classical model has been challenged recently by 

experimental evidence gathered due to a renewed interest in CSF and brain 

development.  

The new experiments all point to a new working hypothesis. CSF is constantly 

produced and absorbed in the whole CSF system as a consequence of filtration 

and reabsorption of water volume through the capillary walls into the 

surrounding brain tissue. CP are not the main source of CSF production. The 

CSF exchange between the entire CSF system and the surrounding tissue 

depends on physiological conditions that predominate within those 

compartments (Oreskovic and Klarica, 2010).  

Formulation of the new hypothesis is mainly due to the fact that there is 

increasing amount of new experimental evidence challenging the classical 

hypothesis. First, removal of the CP from both lateral ventricles in human or 

monkeys results in no significant changes in the volume of CSF secretion nor 

in CSF composition. Even after a total choroid plexectomy the CSF is secreted 

at the rate of approximately 1 L per day. For many years treatment of 

hydrocephalus by choroid plexectomy remained the most popular form of 



8 

 

surgical procedure for infantile hydrocephalus in the United States. However, 

over decades it became clear that bilateral extirpation and/or cauterization of 

the CP invariably failed to benefit the patients. Because of universally poor 

results, choroid plexectomy was abandoned by neurosurgeons as a treatment 

for hydrocephalus, and today it is an operation of historic interest only and has 

no place in the treatment of hydrocephalus (Oreskovic and Klarica, 2010). 

Second, when the aqueduct of Sylvius is subjected to complete blockage, 

neither increase of CSF pressure nor ventricle dilation is observed in cats 

(Klarica et al., 2009). Third, under normal CSF pressure, 3H-water is rapidly 

reabsorbed into periventricular capillaries and is not delivered to subarachnoid 

spaces, suggesting that CSF bulk water is absorbed into brain ventricles itself 

(Bulat et al., 2008). Taken together, these experiments cannot be explained by 

and are clearly contradictory to the classical hypothesis according to which 

CSF is primarily produced in the CP, and then flows from the ventricles to the 

subarachnoid spaces, and is mainly reabsorbed into AV. 

Thus, the new hypothesis is that CSF is produced and reabsorbed throughout 

the entire CSF-interstitial fluid (ISF) functional unit. ISF, the fluid in the 

cerebral parenchyma and CSF, the fluid in subarachnoid spaces, constitute a 

functional unit. The volumes are regulated through an osmotic gradient and 

hydrostatic pressure formed by the capillaries at one side and CSF-IF unit at 

the other side. Cerebral capillaries form the blood–brain barrier (BBB) and are 

characterized by endothelial cells with tight intercellular junctions. In fact, the 

endothelium of CNS capillaries contains Na-H antiporters (for transfer of 

substances across cellular membrane) and high NaKATPase activity (Figure 

1.4).  On the other hand, a diverse varieties of ion channels
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Figure 1.4. New hypothesis of CSF hydrodynamics based on capillary 
endothelium. (A). Schematic representation of CSF secretion. Inset shows the 
proposed Na+–K+ pump placed on the apical (CSF-facing) membrane. 
Aquaporin channels exist on the apical and basolateral membrane (Oreskovic and 
Klarica, 2010). (B) Cross section of a CNS capillary and its perivascular 
astrocytic endfeet (Chikly and Quaghebeur, 2013). 
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residing on the apical and basal-lateral membrane of ependyma cells lining the 

brain ventricles are being characterized (Brown et al., 2004). In addition, 

intravascularly injected FITC-conjugated FGF2 passes into the embryonic 

CSF in chick (Martin et al., 2006), suggesting a rapid fluid exchange between 

blood circulation and CSF. These results seem to support CSF production by 

capillary endothelium. 

1.4 The embryonic ventricular system  

Although it seems that emerging experimental evidences are more in favor of 

CSF production by capillary endothelium, transforming a classical model that 

has been established for a hundred years into a new model requires more 

conclusive studies. In humans, brain ventricles inflate several weeks prior to 

CP formation. In zebrafish, the ventricles begin inflating at 19 hpf (Lowery 

and Sive, 2005) but the CP is not formed until approximately 48 hpf (Bill et al., 

2008; Garcia-Lecea et al., 2008). Similarly, all venous sinuses do not exist in 

rats until 20 days after birth. The arachnoid villi (AV) do not appear to exist 

before birth in humans (Sakka et al., 2011). They start developing at the time 

of birth and increase in number with age. Therefore, it is imperative that a 

mechanism exists to produce embryonic CSF (eCSF) for brain ventricle 

inflation and reabsorb eCSF for clearance. Whether the mechanisms regulating 

CSF hydrodynamics are conserved between embryos and adults remains to be 

elucidated. However, understanding eCSF hydrodynamics would definitely 

shed light on the understanding of the complexity of CSF circulation in adult 

brain. 
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The vertebrate embryonic brain originates from a columnar epithelium that 

comprises the neural plate. In humans, the neural plate develops early in the 

fourth week after fertilization, and later that week, completes the neurulation 

to form the neural tube (Figure 1.5, B). In zebrafish, this process happens 

during early somitogenesis. The neural plate converges and forms the neural 

keel, eventually fusing at the dorsal midline to form the neural rod (Figure 1.5, 

C). The fundamental mechanisms of neurulation appear to be largely 

conserved among vertebrates. Subsequently, the anterior portion of the tube 

becomes the brain and the posterior becomes the spinal cord. Towards the end 

of neurulation, a series of stereotypical constrictions, bends, and expansions 

occur to subdivide into the primary lumenized embryonic ‘brain vesicles’, 

forming the future forebrain, midbrain and hindbrain (Figure 1.5, A). 

After lumen formation, the cavities of brain vesicles are filled with eCSF. 

Following early brain ventricle shaping and initial inflation, the ventricles 

undergo massive expansion. In zebrafish, this process happens between 17-24 

hpf, a critical ‘window period’ for the initial brain ventricle inflation, 

neuroepithelial morphogenesis and ventricle expansion (Lowery et al., 2009). 

In mammals and chicks, spinal cord occlusion transiently seals off the brain 

ventricular space directly preceding this expansion period, which may then 

allow intraluminal pressure to promote ventricle enlargement (Desmond and 

Schoenwolf, 1985). It is not known whether this process also occurs in bony 

fish.  

In terms of individual ventricle, live imaging studies suggest that the hindbrain 

ventricle of zebrafish does not open in an anterior-to-posterior sequence
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Figure 1.5. Neuroepithelial morphogenesis during brain ventricle 
development. (A).  Schematic showing zebrafish neuroepithelium as it opens 
into the brain ventricles. After neurulation, the zebrafish neuroepithelium is a 
closed neural tube (i) connected by apical actin junctions and surrounded by a 
basement membrane (i,iii). As the brain ventricles open, the neuroepithelium 
bends in locations of apical constriction (white asterisks) and basal constriction at 
MHB (ii,iii). (B).  Schematic depicting stages of neurulation in mammals, 
beginning with the columnar epithelium of the neural plate (i). Neurulation and 
hinge-point formation occur concurrently (ii), resulting in an open neural tube 
with hinge-points already formed. The lumen remains open and expands after 
neurulation is complete (iii). (C).  Schematic depicting stages of neurulation in 
zebrafish, beginning with the columnar neural plate (i). Neurulation progresses 
through a ‘‘neural keel’’ stage (ii) and ends with a closed neural tube (iii). 
Subsequently, the neural tube opens and forms hinge-points to shape the 
ventricles (iv) (Lowery and Sive, 2009).  
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(Gutzman and Sive, 2010). Rather, opening occurs in a stereotypical sequence 

along the hindbrain, with initial openings between rhombomeres, and later 

coalescence of these openings into the hindbrain ventricle lumen. This 

mechanism of lumen opening is also observed in the zebrafish gut (Bagnat et 

al., 2007), where initial opening of multiple small lumens coalesce to form a 

single gut lumen. Thus, the strategy utilized during the brain ventricle lumen 

opening could be used to generate lumen in other tissues as well.  

1.5 The embryonic CSF  

1.5.1 eCSF is produced by neuroepithelial cells 

Unlike a theory of the adult CSF hydrodynamics that is still in debate, there is 

no doubt that the neuroepithelium secretes the initial embryonic CSF (eCSF) 

to inflate the ventricle. The neuroepithelium directs the correct positioning of 

ventricles and later morphogenesis that shapes the brain. Importantly, it also 

directs the secretion of eCSF into the ventricular lumen resulting in inflation 

of the brain ventricles (Figure 1.6). 

Only recently, a critical role of eCSF has been established for regulating 

survival and proliferation of neuroepithelial cells. The eCSF is in direct 

contact with the neuroepithelium, a pseudostratified cell layer comprising 

proliferating pluripotent neural stem cells (NSC) and primary progenitor cells. 

Neuroepithelial cells are radially elongated and contact both the apical 

(ventricular) and basal (pial) surfaces. They divide at the ventricular surface, 

forming a ventricular zone (VZ), but pull their nucleus towards the pial 

surface during interphase, a process called interkinetic nuclear migration (INM) 

(Merkle and Alvarez-Buylla, 2006). Symmetrical division of NSC at the VZ 
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Figure 1.6. eCSF formation and function during brain ventricle inflation. 
Cartoon depicting eCSF secretion and function. Inset: dorsal view of embryonic 
brain, after initial lumen inflation, with enlarged area (hindbrain) boxed. Ion 
pumps and proteoglycan secretion are thought to form an osmotic gradient 
regulating fluid flow. Signaling and growth factors are also secreted. Both fluid 
pressure and growth factors stimulate cell proliferation and gene expression 
within the surrounding neuroepithelium. Not drawn to scale. PG: proteoglycans. 
Circular cells at ventricular surface are mitotic cells (Lowery and Sive, 2009).  
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establishes the pool of stem cells during the initial phases. Later, NSC divide 

either asymmetrically, generating a stem cell that remains in the VZ and a 

daughter cell that migrates radially outward or much more seldom 

symmetrically to form two NSC. The accumulation of daughter cells thickens 

the developing brain and radially stretches the neuroepithelial cells. This 

process has been well studied in mammals (Farkas and Huttner, 2008) and 

shown to be conserved in zebrafish (Alexandre et al., 2010; Leung et al., 

2011).  

It has been demonstrated in zebrafish that formation of eCSF requires the 

NaKATPase ion pump activity. Zebrafish snakehead mutant that lacks 

NaKATPase activity fails to inflate the brain ventricle, probably due to lack of 

osmotic gradient formed by this pump to generate fluid movement into the 

lumen (Chang et al., 2012; Lowery and Sive, 2005). Earlier studies in chick 

indicated that fluid movement into the brain ventricles could be also regulated 

by proteoglycans secreted by the neuroepithelium (Gato et al., 1993). 

1.5.2 Roles of eCSF in brain ventricle development 

eCSF is necessary for normal neuronal development, as drainage of eCSF 

results in reduced cell proliferation and increased cell apoptosis in the 

developing chick brain (Desmond and Jacobson, 1977). It has been suggested 

that one of the possible ways that eCSF increases neuroepithelial cell 

proliferation is by generating intraluminal pressure on the embryonic 

ventricular surface (Desmond et al., 2005), although the mechanism remains 

elusive. 
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Factors contained in the eCSF are also critical for regulating neuroepithelial 

proliferation. It has been suggested that composition of eCSF changes during 

development and between ventricles. Protein composition differs substantially 

between adult CSF and eCSF. eCSF is found to be protein-rich. It contains 

approximately 200 different proteins, including signalling and growth factors, 

extracellular matrix (ECM) proteins, transport and carrier proteins, enzymes 

and proteases (Parada et al., 2005; Zappaterra et al., 2007). To name a few, 

fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), sonic 

hedgehog (Shh), retinoic acid (RA), bone morphogenic proteins (BMPs), Wnts 

and others are all found in eCSF (Martin et al., 2006; Zappaterra and Lehtinen, 

2012). These factors are shown to have a role in promoting neuroepithelial 

growth, as isolated chick and rat embryonic brain cells are not able to replicate 

or undergo neurogenesis in defined medium, unless eCSF is added back to 

culture (Gato et al., 2005).  

In fact, it seems likely that eCSF fluid serves as a route for trafficking of 

ligands or signalling molecules between the apical membrane of neural 

progenitors cells. In the early neural tube, GFP-tagged Shh is found in small 

vesicles enriched, within the apical cell cortex, at the basal body (Chamberlain 

et al., 2008). Also, the primary cilium of neural progenitor cells appears to be 

a novel site for the budding of extracellular membrane vesicles carrying the 

somatic stem cell marker prominin-1 (CD133) into the ventricular fluid 

(Dubreuil et al., 2007). Electron microscopy analyses of floor plate (FP) cells 

of chick embryos revealed exosome-like particles attached to the apical 

surface of ventricles with a tendency to stick with a cilia (Bachy et al., 2008). 

Therefore, membrane budding and vesicle trafficking could be of critical 
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importance for cell cycle regulations and signal transductions en route eCSF 

across the apical membrane of neuroepithelium. 

1.6 Transposon mediated insertional mutagenesis screen  

While the gross anatomical development of the ventricles is well documented, 

the molecular mechanisms underlying this development remain poorly 

understood. Moreover, the long debates over CSF hydrodynamics, classical 

hypothesis and the new capillary endothelium hypothesis, are striving for the 

identification of key regulatory molecules and their functional mechanism that 

could greatly advance our understanding of CSF physiology and many other 

aspects of normal brain activities. 

1.6.1 Overview of zebrafish forward genetic screens and brain 
morphology mutants 

Forward genetic screens are important tools for identification of novel 

molecular regulators and understanding key gene pathways controlling 

development. In zebrafish, current established forward genetic tools include 

radiation mutagenesis, N-ethyl-N-nitrosourea (ENU)-based chemical 

mutagenesis and insertional mutagenesis using virus- and transposon-based 

vectors. Multiple large-scale chemical mutagenesis screens using ENU have 

successfully produced and characterized an impressive collection of zebrafish 

mutants that affect various biological processes. In spite of the high efficiency 

in generation of point mutations, the major limitation in this approach is the 

identification of genes whose mutations are responsible for the particular 

phenotype.  



19 

 

An alternative approach is insertional mutagenesis, in which an exogenous 

DNA serves as a mutagen and also functions as a molecular tag for identifying 

the gene whose disruption causes the phenotype. Insertion of DNA into most 

locations on a vertebrate genome has little or no effect on any gene or gene 

product, as exons tend to encode only 1% to 2% of most vertebrate genomes. 

However, insertion in the exon causes mutations, by direct disruption of the 

coding sequences of a protein (Figure 1.7, A). Also, insertion of exotic 

sequences usually leads to destabilization of the transcript through nonsense 

mediated mRNA decay.  

A large scale insertional mutagenesis screen in zebrafish using pseudotyped 

retrovirus (Figure 1.7, B) has been carried out and generated a library of 

mutations (the Hopkins Library) that have been molecularly characterized, due 

to its insertional nature. Nearly 30% of the insertions are found to be in exons, 

whereas 70% of mutagenic insertions are in introns. For reasons that are not 

clear, these insertions usually result in the reduction or complete abrogation of 

endogenous RNA expression (Amsterdam et al., 2011).  

Until today, mutants isolated from these large scale screens are still being 

annotated, characterized and classified. Lowery et al. (2009) have performed 

detailed phenotypic characterization of 16 zebrafish brain mutants and 

classified them into four categories: (1) midline separation defects (2)  reduced 

ventricle size (3) midbrain-hindbrain boundary abnormalities (4) absence of 

brain ventricle lumen inflation. Analysis of these brain morphology mutants 

has allowed the definition of several steps and corresponding gene functions 

required for brain morphogenesis. Unfortunately, only one mutant from
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categories (2) and (4) have the molecular lesion responsible for the mutant 

phenotype identified. The snakehead mutant displays an absence of brain 

ventricle inflation, due to a mutation in the NaKATPase activity, encoded by 

atp1a1a.1 gene. The rest brain ventricle mutants are still waiting for their 

molecular identities to be established. 

1.6.2 The transposon mediated insertional mutagenesis approach 

To search for novel regulators of brain circulation, a forward genetic screen 

for mutants with efficient disruption of gene function that could ease the 

identification of the molecular nature for the mutation is desirable. Recently, 

transposon-mediated gene trapping methods developed for zebrafish 

demonstrated a great potential for efficient disruption of tagged genes 

(Sivasubbu et al., 2007).  Traditionally gene trapping can be divided into a 5’- 

gene trap and 3’- gene trap. A 5’- gene trap vectors typically contain a splice 

acceptor immediately upstream of a reporter used for ES cell selection (such 

as βgeo) (Figure 1.7, C). Integration of the gene trap vector in a promoter, 

exon, or intron of transcriptionally active loci can generate a fusion transcript 

between the upstream coding sequence and the reporter. With a high 

efficiency splice acceptor and poly(A) signal serving as an artificial 3’ 

terminal exon, this trap can disrupt the expression of the trapped locus by 

inducing truncation of the ‘hijacked’ transcript.  Limitation of this method 

includes the requirement for an endogenous expression of the tagged gene. 

Furthermore,  because the insertion can occur in any one of the three reading 

frames, only one-third of the loci that are in the correct reading frame will be 
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identified by reporter (βgeo in this case), hence reducing the efficiency of 

identifying a trapped gene. 

Recently, a combined 5’-3’ gene trap, named ‘gene-breaking’ transposon 

(GBT) vector, was developed to trap genes in zebrafish (Sivasubbu et al., 2007; 

Sivasubbu et al., 2006). This GBT vector uses the dual module, including a 5’ 

transcriptional terminator cassette to mutate the gene in concert with 3’ gene 

trapping as an alternative strategy to select for intragenic vector integrations 

(Figure 1.7, D). The ability of GBT vector to mutate genes upon intronic 

insertion is almost exclusively due to the 5’ transcriptional termination 

cassette, a function that is independent of the 3’ gene trapping mechanism. 

Furthermore, GBT-mediated trapping does not depend on the expression status 

or relative abundance of the endogenous transcript. Therefore, nearly all genes 

should be available for mutagenesis using this approach, which is a key 

advantage GBT-mediated gene traps. Combining the efficient insertion rate of 

Tol2 transposon (Parinov et al., 2004), this Tol2-GBT insertional mutagenesis 

system offers great potential for screening of novel regulators of brain 

circulation in zebrafish. 

In this work, the Tol2-GBT-mediated forward genetic screen was carried out. 

From 61 founder families, 130 insertion sites have been successfully mapped. 

Out of them, 32 insertions were found to be located in the intronic sequences 

with correct cis-orientation as tagged genes, hence potentially mutagenic. An 

additional four insertions were found in exons of genes. Morphological 

screening for brain defects in the mutant library indicated that Kv6.4b, a 

voltage-gated potassium channel subunit, encoded by kcng4b gene, is a novel 
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regulator of embryonic brain ventricle lumen inflation, as mutant embryos 

with Tol2-GBT insertion in kcng4b locus displayed cell delamination from 

brain ventricular surface and hydrocephalus. This is the first demonstration 

that Kv6.4b activity is essential for eCSF volume regulation. Thus, the Kv6.4b 

mutant was selected for further functional characterization. 

1.7 Voltage-gated potassium channels (Kv) 

1.7.1 The principle subunits 

Voltage-gated potassium (Kv) channels are K+ selective transmembrane 

proteins that allow diffusion of potassium ions across the plasma membrane 

along electrochemical gradient. These proteins serve a wide range of functions 

in both excitable and nonexcitable cells, including regulation of the resting 

membrane potential and control of the shape, duration, and frequency of 

action potentials (Bocksteins and Snyders, 2012; Pongs, 1999; Vacher et al., 

2008).  

A fully assembled Kv channel is a tetramer of the principle α subunits, 

arranged around a central aqueous pore (Figure 1.8, A). Each α subunit 

consists of six transmembrane segments (S1–S6) and a cytoplasmic NH2- and 

COOH-terminus (Figure 1.8, B). The S5 and S6 segments of each α subunit 

form the central pore with the pore loop (P), the region that contains the 

signature GYG sequence for potassium selectivity localized between both 

segments. The first four transmembrane domains S1–S4 comprise the voltage-

sensing domain (VSD) that detects changes in the transmembrane potential, 

leading to opening or closure of the channel. Within the VSD, S4 contains 

positively charged residues and is therefore considered to be a major part of 
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voltage sensor. This domain detects a change in voltage across the membrane 

and its movement causes a conformational change in the channel, thereby 

opening or closing the channel. The NH2-terminus of Kv1–Kv4 subunits 

contains the tetramerization domain T1, which facilitates the assembly of α 

subunits into functional channels (Bocksteins et al., 2009b). In addition, the 

T1 domain restricts formation of homo- and heterotetramers by preventing 

tetramerization between incompatible subunits (i.e. subunits from different 

Kv1–Kv4 subfamilies). When four compatible T1 domains assemble, they 

arrange into the same four-fold symmetry as the transmembrane segments, 

forming a “hanging gondola” structure. 

1.7.2 The auxiliary subunits 

Native Kv channel complexes also contain a variety of auxiliary (both 

cytoplasmic and transmembrane) subunits (Figure 1.8, C) that are stable 

components of the channel complex. These subunits profoundly influence the 

functional properties of associated principal α subunits, and act as 

determinants of expression and localization of a channel (Vacher et al., 2008). 

For example, the bulk of Kv1 channel complexes in mammalian brains have 

associated Kvβ subunits. Four Kvβ subunit genes exist in the human genome.  

Inclusion of the Kvβ1.1 subunit in Kv channel complexes containing Kv1.1 or 

Kv1.2 dramatically alters the channel gating properties, converting the 

channels from sustained or delayed-rectifier type, to rapidly inactivating, or A 

type. In addition, another auxiliary subunit, KChIP, increases the surface 

density of the channel and slows the inactivation gating and speed of the 

recovery kinetics from inactivation when co-expressed with Kv4 channels. 
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Also, a transmembrane dipeptidyl-peptidase-like protein (DPPX) has been 

reported as an accessory subunit of native mammalian brain Kv4 channel 

complexes. Co-expression of different combinations of DPPX, KChIPs, and 

Kv4 subunits gives rise to A-type currents whose diverse biophysical 

properties match very closely the distinct properties of native somatodendritic 

A-type currents in different mammalian neurons (Vacher et al., 2008). 

1.7.3 The silent subunits 

Members of the Kv1–Kv4 subfamilies assemble into functional channels with 

a homotetrameric configuration. The functional diversity within these 

subfamilies is increased by forming heterotetramers with subunits of the Kv5, 

Kv6, Kv8, and Kv9 subfamilies. These latter Kv subfamilies are designated 

silent subunits because they fail to function as functional channels in a 

homotetrameric configuration and are retained in the endoplasmic reticulum 

(ER) (Ottschytsch et al., 2002; Ottschytsch et al., 2005). This retention is 

relieved by the selective co-assembly with members of the Kv2 subfamily in 

which the silent Kv subunits modulate the Kv2 currents by reducing the 

current amplitude, altering the inactivation and deactivation kinetics and 

shifting the voltage dependence of inactivation toward more hyperpolarized 

potentials.  

Kv6.4 belongs to the Kv6 subfamily of silent subunits. Unlike the well studied 

Kv1-Kv4 subfamilies that are able to form homotetramers, the silent subunits 

are less studied. However, their essential regulatory functions as modifiers of 

Kv1-4 subunits are gradually being uncovered. First cloned by Ottschytsch et 

al. (2002) from a human cDNA library, Kv6.4 is not capable of forming 
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functional homotetrameric channels. However, it can heterotetramerize with 

Kv2.1 principle subunits to form functional Kv2.1/Kv6.4 channel complexes 

when co-expressed in cultured cells. They presumably form in a 3:1 

stoichiometry, as deduced from Kv2.1/Kv9.3 channel complexes 

(Kerschensteiner et al., 2005). Kv6.4 exerts several changes in the biophysical 

properties of Kv2.1 in Kv2.1/Kv6.4 channel complexes: a decrease in the 

current density (Bocksteins et al., 2009b) and a hyperpolarizing shift in the 

voltage-dependence of inactivation by ~40 mV, but without any significant 

effects on voltage-dependence of channel activation (Ottschytsch et al., 2005). 

Recently, gating current recordings from mammalian cells expressing Kv6.4 

and/or Kv2.1 demonstrated that the gating charge movement of Kv2.1/Kv6.4 

heterotetrameric channels displayed an extra component around the 

physiological K+ equilibrium potential, characterized by a second sigmoidal 

relationship of the voltage-dependence of gating charge movement 

(Bocksteins et al., 2012). This provides a mechanistic basis for the modulation 

of Kv2.1 channel inactivation gating kinetics by silent Kv6.4 subunits. 

 In this work, a forward genetic screen using transposon-mediated mutagenesis 

screen generated a Kv6.4b mutant, which displayed developmental defects in 

embryonic brain ventricle. Functional analysis provides the first in vivo 

evidence that Kv6.4b plays an essential role in regulating embryonic brain 

lumen inflation by modulating neuroepithelial cell proliferation and 

maintaining neuroepithelium integrity, presumably through the formation of 

Kv2.1/Kv6.4 heterotetramers in the ventricular zone of zebrafish embryonic 

brain.
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2.1 Zebrafish husbandry and embryos handling 

Wild-type zebrafish (AB strain), transgenic lines including Tg (Fli: EGFP) and 

Tg (Gata1: DsRed) were obtained from the Zebrafish International Resource 

Centre (ZIRC). The fish were kept in IMCB zebrafish facility in closed 

circulating water systems (Aquatic Habitats, USA and Aquarien-Bau Schwarz, 

Germany) maintained at 28.5°C, under a 14-h light/10-h dark cycle. Pair-wise 

crosses were set in the evening by placing fish in breeding tanks, which 

consist of a plastic box with a wire-mesh bottom inserted into a 1-litre 

transparent plastic tank. Male and female fish were separated by a removable 

plastic divider to control the time of spawning. The divider was removed the 

next morning to allow the fish to mate. Eggs would fall through the wire mesh 

insert and were retrieved by emptying the water in the tanks through a plastic 

sieve, after which they were immediately rinsed with tap water and transferred 

to a 90mm Petri dish containing egg water. They were then kept in an 

incubator maintained at 28.5°C until the desired stage. Embryos were staged 

according to Kimmel et al. (1995) and times of development were expressed 

as hours post fertilization (hpf) at 28.5°C. 

2.2 Plasmid constructs and morpholinos 

The pX vector, containing the full GBT mutagenesis cassette flanked by 

miniTol2 sequences, was kindly provided by Dr. Stephen Ekker (Sivasubbu et 

al., 2006). All cDNA sequences of kcng4a, kcng4b, and kcnb1 were obtained 

using Expand Long reverse transcriptase kit (Roche Diagnostics, Germany) 

using RNA isolated from wild type zebrafish embryos (AB strain) as template. 

RNA was isolated from pooled embryos at 24 hpf using the RNeasy kit 
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(Qiagen, the Netherlands). Typically about 100 embryos were snap-frozen in 

liquid nitrogen and homogenized in 350μl of buffer RLT. The rest of the 

protocol was performed in accordance with the manufacturer’s guidelines.  

Full length kcng4b was cloned into pTNT vector (Promega) using primer pair 

5’-CCG CTCGAG GCCACC ATGCCCATCATCAGCAATG-3’ and 5’-TGC 

TCTAGA TCAGATATCTTTGCAACATGC-3’ with XhoI/Xba resctriction 

sites (underlined). Full length kcnb1 was cloned into pCS2+ vector using 

primer pair 5’-CGC GGATCC GCCACC ATGGAGAAACCCTCGGCA-3’ 

and 5’-CCG CTCGAG TCAAAGGCCCTTATCAAAAG-3’ with 

BamHI/XhoI restriction sites (underlined). All PCRs were performed using 

Turbo pfu high fidelity polymerase (Stratagene) with standard protocols. Full 

length kcng4a cDNA was cloned into pGEM-T vector (Promega) by Dr Igor 

Kondrychyn (unpublished). The pEGFP-hKv6.4 plasmid, containing full 

length human kcng4 sequence tagged by EGFP at the C terminus, was kindly 

provided by Dr. Elke Bocksteins (Bocksteins et al., 2009b). All mRNA used 

for injection was in vitro transcribed using plasmid of interest linearized at the 

3’ end with respective restriction enzyme as template. 5’ capped RNA was 

synthesized with the mMessage T7/SP6 kit (Ambion, USA). The typical 

reaction volume was 20 μl; containing 1 μg of DNA linearized at the 3’ end of 

the insert for sense RNA, 2 μl 10X Reaction Buffer, 10 μl 2X NTP/Cap, 2 μl 

Enzyme Mix and nuclease-free water. The reaction was incubated at 37°C for 

2 hours followed by addition of 1 μl of RNase-free DNase I. The tube was 

then incubated for another 15 minutes at 37°C, after which the RNA was 

cleaned up using the RNeasy Mini kit. 
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Transient knockdown of kcng4b gene expression was performed using splice 

site blocking morpholino (5’-TGCATTCGCCCTGTAAAAGAACAAA-3’) 

targeting kcng4b intron 2 exon 3 (I2E3) junctions. Standard control 

morpholino with antisense sequence 5’-

CCTCTTACCTCAGTTACAATTTATA-3’ was used as negative control. 

Morpholinos were designed by and purchased from GeneTools (USA).  MOs 

were resuspended from lyophilized powder, and then diluted to 1 mM stock 

with water and stored at room temperature. The MOs were then diluted to the 

appropriate concentrations and injected into one-cell staged zebrafish embryos. 

2.3 TAIL-PCR method for mapping of GBT insertion sites 

Specific primers and arbitrary primers 

TAIL-PCR was performed according to Liu and Whittier (1995) with 

modifications (Parinov et al., 2004). Only phenol/chloroform purified genomic 

DNA was used for TAIL-PCR. A set of three nested Tol2 transposon-specific 

primers, designed for both the 5’ and 3’ ends of the transposon including: 

SP5-1: 5’-ACTGGGCATCAGCGCAATTCAATTG-3’;  

SP5-2: 5’-GACTGTAAATAAAATTGTAAGGAG-3’;  

SP5-3: 5’-TTGATTTTTAATTGTACTCAAG-3’;  

SP3-1: 5’-CTCAAGTACAATTTTAATGGAGTAC-3’;  

SP3-2: 5’-ACTCAAGTAAGATTCTAGCCAGA-3’;  

SP3-3: 5’-CCTAAGTACTTGTACTTTCACTTG-3’;  

and following set of arbitrary (AD) primers:  
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AD-3: 5’-WGTGNAGNANCANAGA-3’;  

AD-5: 5’-WCAGNTGWTNGTNCTG-3’;  

AD-6: 5’-STTGNTASTNCTNTGC-3’;  

AD-11: 5’-NCASGAWAGNCSWCAA-3’.  

were used. All primers used in TAIL-PCR were HPLC purified. The following 

primers mixtures (containing 2 μM specific primer and 20 μM AD primer) 

were prepared:  

(1) for primary PCR: SP5-1/AD-3, SP5-1/AD-5, SP5-1/AD-6, SP5-1/AD-11, 

SP3-1/AD-3, SP3-1/AD-5, SP3-1/AD-6 and SP3-1/AD-11;  

(2) for secondary PCR: SP5-2/AD-3, SP5-2/AD-5, SP5-2/AD-6, SP5-2/AD-11, 

SP3-2/AD-3, SP3-2/AD-5, SP3-2/AD-6 and SP3-2/AD-11;  

(3) for tertiary PCR: SP5-3/AD-3, SP-3/AD-5, SP5-3/AD-6, SP5-3/AD-11, 

SP3-3/AD-3, SP3-3/AD-5, SP3-3/AD-6 and SP3-3/AD-11.  

Nested PCR conditions 

Primary PCR (8 separate reactions for each primers mix) reaction was set up 

with 10x PCR buffer – 2 μl, 10 μM dNTP - 0.4 μl, Primers mix (for primary 

PCR) – 5 μl, DNA – 2 μl Taq polymerase (5U/μl) – 0.3 μl, Water – 10.3 μl. 

PCR cyclings were performed with  a thermocylcer (PTC 200, MJ Research) 

using conditions as follow: first denaturation: 94°C, 2 min, 5 cycles of (1) 

94°C, 30 sec; (2) 62°C, 1 min; (3) 72°C, 2.5 min; then (1) 94°C, 30 sec (2) 

25°C 3 min (3) Ramp: 0.30/sec to 72°C (4) 72°C, 2.5 min; then 15 cycles: (1) 

94°C, 10 sec; (2) 61°C, 1 min; (3) 72°C, 2.5 min; (4) 94°C, 10 sec; (5) 61°C, 1 



35 

 

min; (6) 72°C, 2.5 min; (7) 94°C, 10 sec; (8) 44°C, 1 min; (9) 72°C, 2.5 min, 

followed by final elongation: 72°C, 5 min. After that, 2 μl of the primary 

reaction was diluted in 20 μl of water and 2 μl of the diluted the mixture was 

used for the secondary PCR.  

Secondary PCR (8 separate reactions for each primers mix) reaction was set 

up with 10x PCR buffer – 2 μl, 10 μM dNTP - 0.4 μl, Primers mix (for 

secondary PCR) – 5 μl, DNA (diluted from primary PCR) – 2 μl, Taq 

polymerase (5U/μl) – 0.3 μl, Water – 10.3 μl. PCR cyclings were performed 

using conditions as follow: 15 cycles of (1) 94°C, 10 sec; (2) 61°C, 1 min; (3) 

72°C, 2.5 min; (4) 94°C, 10 sec; (5) 61°C, 1 min; (6) 72°C, 2.5 min; (7) 94°C, 

10 sec; (8) 44°C, 1 min; (9) ramping 1.50/sec to 72°C; (10) 72°C, 2.5 min, 

followed by final elongation: 72°C, 5 min. After that, 2 μl of the primary 

reaction was diluted in 20 μl of water and 2 μl of the diluted mixture was used 

for the tertiary PCR. The rest of the secondary PCR products were kept at 4°C 

for the final electrophoresis. 

Tertiary PCR (8 separate reactions for each primers mix) reaction was set up 

with 10x PCR buffer – 2 μl, 10 μM dNTP - 0.4 μl, Primers mix (for tertiary 

PCR) – 5 μl, DNA (diluted from secondary PCR) – 2 μl, Taq polymerase 

(5U/μl) – 0.3 μl, Water – 10.3 μl. PCR cyclings were performed using 

conditions as follow: 30 cycles of (1) 94°C, 15 sec; (2) 44°C, 1 min; (3) 

ramping 1.50/sec to 72°C; (4) 72°C, 2.5 min, followed by a final elongation: 

72°C, 5 min. 

Gel electrophoresis separation and sequencing 
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After all the nested PCR reactions were complete, 18 μl of the secondary and 

20 μl of tertiary PCR products were loaded on 1% agarose gel. The secondary 

and tertiary products obtained with the same combination of SP/AD primers 

were loaded sequentially side by side for ease of comparison (for example, 

SP5-2/AD3—SP5-3/AD3 then SP5-2/AD6—SP5-3/AD6 and so on).  The 

tertiary product typically displayed a shift by 51 bp for 5’ flanking fragment 

and 30 bp for 3’ flanking fragments. Normally, a tertiary product was typically 

amplified in higher quantities. However, as four different AD primers in 

combination with only one specific primer (either from the 5’ or 3’ end) were 

used, the final gel picture was usually complex and sizes of fragments 

amplified from the different SP/AD combinations differed substantially. 

Therefore, all products from the “band shift” (either secondary or tertiary) plus 

well-amplified tertiary products (even if there is no amplification after 

secondary reaction) were cut and subjected to purification. 

PCR products were purified using PCR purification kit (Qiagen, the 

Netherlands) and eluted in 50 μl of EB buffer (10 mM Tris-HCl, pH 8.5). 

Products were sequenced directly by using 11 μl for the sequencing reaction 

plus 8 μl of BigDye and 1 μl of sequencing primer. Primers for sequencing of 

secondary and tertiary PCR products included: 

5’-end sequencing primer, 5’-CCCCAAAATAATACTTAAGTACAG-3’ 

(for the fragments amplified using the combination of SP5/AD primers) 

3’-end sequencing primer, 5’-GTACTTGTACTTTCACTTGAG-3’ 
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(for the fragments amplified using the combination of SP3/AD primers). 

Sequences were then mapped by BLAT programme (Ensembl) with zebrafish 

genome sequences to determine the insertion sites. 

2.4 Whole-mount in situ hybridization 

Embryo fixation and treatment 

Embryos of desired stages were dechorionated manually using a pair of 26 

gauge hypodermic needles and fixed overnight at room temperature. Briefly, 

staged embryos were chilled on ice for 5 mins to straighten their body and 

fixed in 4% PFA (paraformaldehyde) /PBS (0.8% NaCl; 0.02% KCl; 0.0144% 

Na2HPO4; 0.024% KH2PO4, pH 7.4) for 12 to 24 hrs at room temperature. 

Embryos younger than 15 hpf were fixed before dechorionation and the 

chorion was removed afterwards. Embryos older than 16 hpf were 

dechorionated before fixation. After fixation, the embryos were washed in 

PBST (0.1% Tween-20 in PBS) three times for 5 mins each on a rotator 

followed by treatment with 10 μg/ml of proteinase K (Roche Diagnostics, 

Germany) in PBST at room temperature. Embryos were then washed in PBST 

three times for 5 mins each. Embryos were then transferred to pre-

hybridization buffer (50% formamide; 5X SSC; 50 μg/ml heparin; 500 μg/ml 

torula RNA; 0.1% Tween-20; pH 6.0) and pre-hybridized at 68°C for 4-16 

hours. After prehybridization, embryos were either stored temporarily at -20°C 

or used immediately for hybridization. 

Preparing of anti-sense DIG probes 

Around 10μg of plasmid DNA was linearized at the 5’ end of the gene of 

interest by digestion with an appropriate restriction enzyme at 37°C for 2 hrs. 
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1μg of linearized DNA was used to synthesize the DIG probe. The reaction 

was performed at 37°C for 2 hrs in a total volume of 20 μl containing 1μg of 

linearized DNA, 2 μl of 10X transcription buffer (Ambion, USA), 2 μl of DIG 

RNA labelling mix (Roche Diagnostics, Germany), 1 μl of RNase inhibitor 

(40U/ μl) (Promega, USA), 2 μl of T7/SP6 enzeyme (Roche Diagnostics, 

Germany). Following this reaction, 1 μl of RNase-free DNase I (Ambion, 

USA) was used to digest the DNA template at 37°C for 15 mins.  

To clean-up the synthesized DIG probe, RNAeasy mini kit (Qiagen, the 

Netherlands) was used. Briefly, the reaction volumne was adjusted to a 

volume of 100 μl with RNAse-free water. 10 μl of β-mercaptoethanol was 

added to 1 ml of RLT buffer. This was followed by the addition of 350 μl of 

the RLT buffer to the diluted RNA sample that was subsequently mixed with 

250 μl of 96-100% ethanol. This whole volume was then transferred to an 

RNeasy mini spin column that had been inserted into a collection tube. The 

spin column and collection tube was spun at 10000 rpm for 15 sec. 500 μl of 

RPE buffer was pipetted into the spin column and spun at 10000 rpm for 15 

sec. Flow through was discarded and replaced with another 500 μl of RPE 

buffer. The column was spun at 10000 rpm for another 2 min. The RNAeasy 

column was then removed and placed onto a new 1.5 ml Eppendorf tube and 

30-50 μl of RNase-free water was added into the RNeasy column and allowed 

to stand for 1 min. DIG-labeled RNA probe was then eluted out by micro-

centrifuging the column at 10000 rpm for 1 min. The RNA probe was either 

stored at -80°C or used immediately. 

Hybridization  



39 

 

Around 2-4 μl of DIG-labelled riboprobe was diluted in 200 μl of pre-

hybridization buffer. The probe was denatured by heating at 68°C for 5 min 

followed by 2 min on ice. The denatured probe was then added to pre-

hybridized embryos and hybridization was allowed to occur in a circulating 

water bath at 68°C overnight. This was followed by extensive post-

hybridization washes in (1) 50% formamide in 2X SSCT for 2 x 30 min, (2) 

2X SSCT for 15 min, and (3) 0.2X SSCT for 2 x 30 min. All washes were 

carried out at 68°C. Embryos were then rinsed in maleic acid buffer (MAB) at 

room temperature and incubated in 10% blocking solution (Roche) in MAB 

for 1 hour at room temperature.  

Colour development 

This was followed by incubation in anti-DIG antibody conjugated to alkaline 

phosphatase (1:5000 in blocking solution) overnight at 4°C or 4 hours at room 

temperature. Subsequently, embryos were washed with MAB for 4 x 20 min 

each followed by rinses of 3 x 5 min each in freshly prepared detection buffer 

(100 mM Tris pH9.5, 5 mM MgCl2, 100 mM NaCl). Finally, the signal was 

detected with the chromogenic substrates by adding NBT (NitroBlue 

Tetrazolium) (Sigma); 4.5μl of a 50mg/ml stock in 70% dimethyl formamide 

and BCIP (5-bromo-4-chloro-3-indolyl phosphate) (Sigma); 3.5μl of a 

50mg/ml stock in DMF) in 1 ml of detection buffer. The staining reaction was 

allowed to proceed in the dark at room temperature for 30 min to one hour, 

and the progress of staining was monitored from time to time under a 

dissecting microscope. For control and mutant embryos, the staining 

procedures were initiated and stopped at the same time. The reaction was 
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stopped by removal of the staining solution followed by washes in PBST 2 x 

10 min each. The stain was fixed in 4% PFA/PBS for 20 min at room 

temperature, after which embryos were stored in a solution of 50% glycerol in 

PBS. 

2.5 BODIPY-FITC labelling of embryonic brain ventricles 

Bodipy ceramide FITC-conjugated (Invitrogen, USA) was dissolved in DMSO 

to a stock concentration of 5 mmol/l. Embryos were soaked in 50 nmol/l 

bodipy ceramide solution in egg water overnight in the dark at 28.5°C. The 

embryos were then washed, dechorionated and placed in wells in 1% agarose 

for confocal microscopy. Confocal imaging was performed using a Zeiss 

LSM700 laser-scanning microscope, using standard confocal imaging 

techniques. 

2.6 Alkaline phosphatase staining of zebrafish vessels 

Zebrafish embryos were treated with PTU to prevent melanization starting 

after 24 hpf by adding PTU to embryo growth medium. Embryos were fixed at 

72‐96 hpf in 1.5mL centrifuge tube with 1mL 4% PFA in PBS at room 

temperature for 30 minutes. After disposal of PFA, 1mL 50% MetOH/PBST 

were added and incubated for 5 minutes. After that, liquid was removed and 

1ml of 100% MetOH was added into the tube, followed by incubation for 5 

minutes. After that, liquid was replaced with 1mL chilled acetone and 

incubated for 30 minutes at -20°C. The liquid was then discarded, and 

embryos were washed with 100% PBST 2 X 5 minutes each followed by 3X 5 

minutes in detection buffer detection buffer (100 mM Tris pH9.5, 50 mM Mg 

Cl2, 20 mM NaCl, 0.1% Tween20). Colours were developed by adding 
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substrates containing NBT (NitroBlue Tetrazolium) (Sigma); 4.5μl of a 

50mg/ml stock in 70% dimethyl formamide and BCIP (5-bromo-4-chloro-3-

indolyl phosphate) (Sigma); 3.5μl of a 50mg/ml stock in DMF) in 1 ml of 

detection buffer.  Staining was allowed to happen by careful monitoring in 15-

30 minutes in tubes protected from light (cover with aluminum foil or place in 

drawer), After staining was complete, embryos were washed with 3 X 5 mins 

with PBST, and post fixed with 4% PFA for 30mins. After washing with 

PBST, embryos were transfer to 50% glycerol for 5 minutes, then to 87% 

glycerol for storage and imaging. 

2.7 Cryosectioning of zebrafish embryos 

Fixed embryos were embedded in molten 1.5% Bacto-agar (Difco, USA) 

containing 5% sucrose in detached caps of 1.5 ml Eppendorf tubes. The 

embryos were oriented before the agar solidified. The solidified agar blocks 

were removed from the caps and trimmed according to the desired plane of 

section. They were then transferred to 30% sucrose solution and incubated at 

4°C overnight for cryoprotection. Individual blocks were mounted onto 

chucks, pre-chilled at -20°C, coated with frozen OCT compound (Leica, 

Germany). The agar block was then covered with a drop of OCT and frozen 

by submerging only the stem of the chuck in liquid nitrogen. The frozen 

assembly was allowed to equilibrate in a cryostat (Leica, Germany) for an 

hour before sectioning at -25°C. Normally, 12μm sections were cut and 

mounted on poly-L-lysine coated slides (Menzel-Gläser, Germany). The slides 

were dried on a hot plate set at 42°C for 30 min to an hour. These were either 
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temporarily stored at -80°C in slide boxes or processed for 

immunohistochemistry immediately.  

2.8 Immunohistochemistry on sections 

All incubations and washes were performed in a humid chamber to prevent 

evaporation. To perform immunohistochemistry on sections, a circle was 

drawn around the cryosections on the slides with a PAP pen (DAKO, 

Denmark). Sections were rehydrated with PBST 3 x 10 min and blocked for 1 

hour with blocking reagent (Roche Diagnostics, Germany). The sections were 

then incubated with primary antibody overnight at 4°C, followed by washes 

with PBST 4 x 15 min and incubation for 2 hours at room temperature or 4°C 

overnight with Alexa Fluor-conjugated secondary antibody. Sections were 

washed again in PBST 4 x 15 min and mounted immediately for photography 

in VectaShield (Vector Labs, USA) after sealing with nail polish.  

2.9 Whole mount immunohistochemistry  

Fresh embryos were collected at appropriate stages and were fixed with 4% 

PFA/PBS overnight at RT. 5X PTU was added to prevent pigmentation for 

later stage embryos. The next morning, the embryos were washed in PBST 

thrice for 5 mins each and replaced with 100% methanol for storage at -20°C. 

Embryos were rehydrated in a stepwise fashion of decreasing MeOH 

concentration in 1X PBST (75%, 50%, 25% MeOH/1X PBST). To improve 

antigen retrieval by antibody, embryos were equilibrated in 150 mM Tris-HCl, 

pH 9.0 for 5 mins and heat treated at 70°C for 15 mins in a water bath. 

Embryos were washed with dH20 twice for 5 mins each and treated with ice 

cold acetone at -20°C for 20 mins to improve permeability. Acetone was 
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washed away by rinsing six times with 1X PBST for 5 mins each and replaced 

with blocking reagent (Roche Diagnostics, Germany) for at least an hour. 

Primary antibodies were added at appropriate working dilutions in PBDT (1X 

PBS, 1% BSA, 1% DMSO, 0.5% Triton-X100, ddH2O) and incubated 

overnight in 4°C. After which, the primary antibodies were removed and 

washed with 1X PBST for 4 times at 20 mins each. Embryos were re-blocked 

with the same blocking reagent for another hour at room temperature. Alexa 

Fluor-conjugated secondary antibodies were added. Secondary detection was 

allowed to occur for at least 2 hours to overnight in 4°C. After that, the 

antibodies were removed and the same washing steps followed. To preserve 

staining, embryos were kept in 50% glycerol/50% PBST or Vectashield 

mounting medium (Vector Labs, USA) at 4°C until subjected to confocal 

microscopy analysis.  

Primary antibodies used:  anti-phosphohistone H3 (PH3, mouse antibody, 

Millipore, USA), anti-αPKC (rabbit antibody, Santa Cruz, USA). Secondary 

antibodies used: AlexaFluor-488 or AlexaFluor-555 (Invitrogen). All primary 

antibodies were used at a dilution of 1:200. All secondary antibodies were 

used at a dilution of 1:500. Staining with AlexFluor-555-conjugated Phalloidin 

and DAPI were performed at a dilution of 1:500 in PBST and by incubating 

with embryos for 15mins at room temperature, followed by washing with 

PBST for three times.  

For cell proliferation quantification, PH3-labeled cells in each z-series of the 

midbrain-hindbrain boundary and hindbrain regions were counted and 

averaged. Average z-series areas of the regions were measured using ImageJ 
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software, and by determining the approximate area occupied by each cell, total 

cell number and the percentage of labeled cells in each region were calculated. 

2.10 Embryo mounting and imaging using bright-field microscopy 

For imaging live embryos under a upright dissecting microscope (Olympus, 

Japan), embryos were anesthetized with tricaine and transferred to 3% methyl 

cellulose on a concaved glass slide and conveniently orientated by 

manipulating embryos by dissection needles under a dissection microscope. 

For flat specimen, the yolk of the selected embryo was removed completely 

with needles. The de-yolked embryo was then placed onto a slide with a small 

drop of 3% methyl cellulose and adjusted to a proper orientation by a needle. 

Excess liquid was removed with tissue paper. Digital images were taken using 

a camera mounted to an AX-70 microscope (Olympus, Japan) with iSolution 

lite ver. 7.8 imaging software supplied by the MicroOptics and processed 

using ImageJ software. 

2.11 Fluorescent and Confocal Microscopy   

Fluorescent expression in live transgenic embryos was visualized and 

documented using an Olympus SXZ16 or a Leica MZ FLIII stereomicroscope 

equipped for UV epifluorescence light source (ebq100, Leica). For confocal 

imaging, embryos were anesthetized and live-mounted in 2% low melting 

agarose in Mat-Tek confocal dish for inverted configuration of the confocal 

system. Embryos in agarose were covered with 1X egg water supplemented 

with PTU and tricaine and maintained at 28°C using the fitted thermostat 

chamber. Confocal images were acquired using Zeiss LSM700 scanning 

confocal systems (Carl Zeiss Inc., Germany) using lasers at appropriate 
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wavelengths and bandpass filters. Z-stacks images were taken at desired 

intervals using a 10X Plan-Neofluar 0.3 objective and 63X water immersion 

objective. All images were collected using the ZEN 2009 lite version (Carl 

Zeiss Inc., Germany) software, and processed using ImageJ software.
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Chapter 3. Results
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3.1 Tol2-mediated gene-breaking transposon (GBT) cassette  

To search for novel regulators of brain circulation, we took an unbiased 

approach by conducting a forward genetic screen. A Tol2-mediated ‘gene-

breaking’ mutagenesis strategy was chosen due to its reported high efficiency 

in integration into zebrafish genome and strong gene ‘termination’ effect once 

integrated (Sivasubbu et al., 2006). The ‘gene-breaking’ transposon (GBT) 

mutagenesis cassette (Figure 3.1), kindly provided by Dr. Stephen Ekker, 

combines both protein trap and 3’-exon trap features. The protein trap contains 

an efficient carp β-actin exon1/intron1 splice acceptor (SA) and a strong 

polyA terminator ensuring disruption of transcripts upon integration into 

intronic sequences irrespective of the reading frame of the trapped gene. The 

3’-exon trap consists of the carp β-actin promoter driving the ubiquitous 

expression of GFP followed by a carp β-actin exon1/intron1 splice donor (SD) 

sequences. This ensures ubiquitous expression of GFP ORF as a fluorescent 

marker for identification once the cassette is integrated regardless of 

expression status of the trapped gene. The whole cassette was flanked by mini-

Tol2 sequences, which allows for efficient integration in genome once co-

injected with Tol2 transposase mRNA into zebrafish one-cell stage embryos 

(Parinov et al., 2004). Therefore, the GBT-based forward genetic screen used 

in this study theoretically allows unbiased search for all candidate gene 

responsible for regulating brain circulation.  

3.2 Statistics and summary of the insertional forward genetic screen  

The GBT-mediated forward genetic screen was conducted in a standard way 

(Figure 3.2). As summarized in Table 1, the GBT cassette on a plasmid and
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Tol2 transposase mRNA were injected into 4347 one-cell staged zebrafish 

embryos and 697 of them showed mosaic GFP expression by 24 hpf. These 

embryos were selected and raised to grow into adults. When they reached 

adulthood, 350 were mated to wild type AB fish to screen for stable F1 

generations. Among them, 61 founders that had germ-line integration were 

identified. This number indicated a founder rate of 17.4%, which was 

reasonable in a forward screen setup. Among all founders used to establish F1 

families, a germline transmission rate ranging from 5% to 62% was observed, 

consistent with previous reports on the mosaic nature of cassette integration in 

the germline (Parinov et al., 2004; Sivasubbu et al., 2006; Urasaki et al., 2006). 

Due to this reason, unless otherwise stated, two fish from each subfamily were 

randomly chosen for mapping of GBT integration sites by TAIL-PCR method. 

This strategy allows maximizing the chance of mapping all possible 

integration sites while minimizing wasting effort in mapping of repeated 

insertion sites within the same F1 subfamily. 

 All sequence mapping was conducted by BLAT against Ensemble zebrafish 

genome assembly. Upon the first round of ‘raw’ mapping, 130 insertion sites 

were identified (Appendix, Table 1). Among them, 71 insertions were found to 

be within transcribed regions. Also, 32 insertions were located in intronic 

sequences with GBT cassette having the correct cis-orientation with respect to 

the tagged gene (Table 2). These were selected as potential candidate mutants 

for in-cross to screen for recessive mutant phenotype. Four insertions in the 

exons were also identified. As insertion of the large GBT cassette into the 

exon causes direct disruption of coding sequences, these four insertions are 

mutagenic (Table 2). Although majority of the F1 fish that had been mapped
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by TAIL-PCR had one or two insertions, some had more than two. A 

maximum number of five insertions in a single F1 fish was observed in this 

screen (Appendix, Table 1). 

As illustrated in Figure 3.2, F1 fish that had insertion sites mapped by TAIL-

PCR were out-crossed to establish respective F2 subfamilies. This step helped 

to further segregate mutants with multiple insertions and also increased the 

heterozygote F2 population to be in-crossed to screen for mutant phenotype. 

Since sequence information mapped by TAIL-PCR was available, specific 

primers pairs were used for genotyping of individual adult F2 fish before their 

incross.  Only carriers of insertions in correct cis-orientation with respect to 

the tagged gene and were able to segregate into single copy of insertion were 

in-crossed. Insertions tagging genes encoding metabolic enzymes were 

excluded from the screen. 

Mutant phenotype screen was carried from day 1 to day 5 by looking for 

obvious morphological defects under a bright-field dissecting microscope. At 

least three in-crosses were made for each specific tagged gene to confirm the 

phenotype.  Mutants that displayed interesting phenotype were further studied 

by transferring to appropriate transgenic background for analyzing specific 

structures or in situ hybridization for expression of certain morphological 

markers. 
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3.3 Examples of insertional mutants identified in the screen 

3.3.1 GB44: pax6b mutant provides proof-of-concept evidence that 
insertional of Tol2- GBT cassette disrupts gene function  

As a proof-of-concept that the insertional cassette causes mutations, we first 

looked at GB44 with insertion in the pax6b locus (Figure 3.3, A). Pax6 is a 

well-conserved transcription factor that plays key role in the development of 

eye, brain and pancreas in vertebrates. Pax6 has two DNA-binding domains, a 

paired domain and homeobox domain, and also a transactivation domain at the 

C-terminus. At least two ENU-mediated zebrafish pax6b mutant alleles are 

available. The sunrise (sri) mutant, harboring a missense mutant in the 

homeobox domain, displays a microphthalmia (small eye) phenotype with 

abnormal lens and cornea. The mutant displays a normal number of α and β 

pancreatic cells. Adult sri mutants are viable and fertile (Kleinjan et al., 2008). 

On the other hand, analyses of phenotype of a novel pax6b null mutant, 

pax6bSA0086, demonstrated that in absence of Pax6b function embryos lost 

almost all β cells and the number of δ cells was strongly reduced and the 

number of ε cells significant increased in confirmation of a key role of pax6b 

in pancreatic endocrine cell differentiation (Verbruggen et al., 2010). 

In this study, the GBT cassette was inserted in the intronic sequence of pax6b 

between exon 10 and exon 11. Based upon predication of the protein trap and 

3’-exon trap function, this insertion should result in truncation of the C-

terminal part of the transactivation domain. In addition, the carp β-actin 

promoter should drive ubiquitous GFP expression as a marker for 

identification of mutagenic insertion (Figure 3.3, B).  
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GB44 homozygotes displayed a phenotype of microphthalmia (small eye) at 6 

dpf (Figure 3.4, A, B). The number of embryos with phenotype followed 

mendelian distribution. Transverse section at the eye of 3 dpf larva with DAPI 

staining of the nuclei showed that pax6b mutant embryos had smaller lens, 

malformation of retinal layer and excessive cells at the ciliary marginal zone 

(CMZ) as compared to wild-type controls (Figure 3.4, C, D). Interestingly, the 

GFP expression pattern in pax6b mutant embryo was distinct from other GBT 

insertional lines in this screen, where GFP expression looked ubiquitous 

similar to actin expression. In contrast, in the GB44 line GFP expression was 

much higher in the eye and brain (Figure 3.4, E) in a pattern resembling native 

pax6b expression (Kleinjan et al., 2008). Two possible explanations exist for 

this phenomenon. Firstly, there could be some embedded pax6b enhancer 

sequences within the region nearby of the cassette such that during DNA and 

chromatin folding it enhanced the GFP expression through cis-activation of 

the carp β-actin promoter in the cassette. Alternatively, since the GFP 

transcript still retained the 3’-UTR sequence of native pax6b (Figure 3.3, B), it 

could be under regulation of certain regulatory elements driving expression of 

pax6b. Numbers of insulin-producing β-cells were also reduced in pax6b 

mutant embryos as shown by in situ hybridization of insulin transcripts 

(Figure 3.4, F, G).  

In conclusion, these analyses of the phenotype of Tol2-GBT pax6b mutant are 

in concert with that of previously reported pax6b mutant alleles, thus 

providing proof-of-concept evidence that the Tol2-GBT cassette once 

integrated in correct cis-orientation into the zebrafish genome truncates the 

transcript and disrupts gene function. 
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3.3.2 GB26: ildr2 mutant embryos develop pericardial edema 

GB26 line had insertion in the immunoglobulin-like domain containing 

receptor 2 (ildr2) locus (Figure 3.5, A). GBT cassette insertion was mapped in 

between exons 2/3, which could result in truncation of a large part of the C-

terminal part of the protein (Figure 3.5, B).  

Homozygous ildr2 embryos showed no obvious heart defect at 1 dpf, such as 

initial heart looping and pumping (data not shown). However, mutant embryos 

developed severe pericardial edema at 2 dpf (Figure 3.6, A, B), although 

pumping of both atrium and ventricle continued. From all inter-crosses made 

so far, around 25% of progenies from heterozygous parents showed a 

phenotype in blood circulation, implying 100% phenotypic penetrance. 

To better characterize the circulation defects, the mutant allele was transferred 

into Tg(Gata1a:DsRed) transgenic background, in which erythrocytes (red 

blood cells) were marked by DsRed fluorescent protein. By confocal imaging, 

it was shown that the majority of erythrocytes were stuck at the pericardial 

region of the ildr2 mutant embryos at 2 dpf; very few erythrocytes were 

circulating (Figure 3.6, C-F).  

Interestingly, the pericardial edema seemed to be reduced from 3 dpf onwards, 

indicating that the function of ildr2 is essential within a developmental ‘time 

window’ around 2 dpf. Although a function of ildr2 has been less studied in 

zebrafish so far, Watanabe et al. (2013) reported that ildr2 levels were reduced 

in diabetes susceptible DBA mice. Livers in ildr2 knockdown mice were 

steatotic, with increased hepatic and circulating triglycerides and total
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cholesterol. Increased circulating VLDL, without reduction in triglyceride 

clearance suggested an effect of reduced hepatic ILDR2 on hepatic cholesterol 

clearance. In animals that overexpress ildr2, hepatic triglyceride and total 

cholesterol levels were reduced. Higashi et al. (2013) showed that two LSR-

related proteins, immunoglobulin-like domain-containing receptor (ILDR) 1 

and ILDR2, are also localized at tricellular contacts (TCs) and recruit 

tricellulin, although the barrier function of ildr2 is much weaker as compared 

to ildr1. In human, mutation in a related gene, ILDR1, causes a familial 

deafness, DFNB42 (Borck et al., 2011). The authors provided evidence that 

mutant proteins were defected in recruiting tricellulin, suggesting tricellulin 

recruitment to tight junction is required for hearing. Whether ildr2 has 

conserved function in zebrafish in regulating lipid metabolism or whether it is 

involved in tight junctions to provide tissue barrier function is still unknown, 

and the exact mechanism of how ildr2 functions during zebrafish development 

remains to be elucidated. The ildr2 insertional mutant allele generated in this 

screen thus provides a useful tool for further characterization.  

3.3.3 GB43: lsr mutant: lipolysis stimulated lipoprotein receptor  

Another interesting mutant that came out from this screen is GB43 that carries 

an insertion linked with lsr. This insertion is in an exon (Table 2), therefore 

directly disrupting the coding sequence of the gene. lsr encodes the lipolysis 

stimulated lipoprotein receptor. lsr was identified as a paralogue of ildr2 

(Dokmanovic-Chouinard et al., 2008), and both are homologues of human 

ILDR2. Therefore, two paralogues genes were identified together in one single 

insertional screen.  
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It has been reported that lsr expression was observed by in situ hybridization 

in the pancreas of zebrafish larvae at 48 and 72 hpf. Also, injection of 

morpholino against lsr caused a general delay in endodermal development and 

disruption of β-cell development, evidenced by a scattered β-cell phenotype. 

Injection of ildr2 morpholino produced a less severe phenotype in terms of β-

cell disruption， but also with endodermal development delay (Dokmanovic-

Chouinard et al., 2008). The authors concluded that both paralogues might 

play an important role in endodermal development in zebrafish with specific 

effects on embryonic β-cells.  

Although when crossed to homozygosis,  GB43:lsr mutants showed no 

obvious morphological phenotype under bright-field microscope (data not 

shown), further characterization with molecular markers might reveal 

interesting phenotypes especially when combining the studies with analyses of 

its paralogue, the GB26:ildr2 mutant. 

3.3.4 GB8: pard3b mutant embryos displayed pigment formation defects 

The GB8 line has an insertion in the pard3b (par-3 partitioning defective 3 

homolog B) locus in Chr.9. Like many other zebrafish genes, there are two 

paralogues of pard3b in zebrafish, the other located in Chr.1. Neither has been 

studied so far. In situ hybridization revealed that pard3b (Chr.9) is expressed 

exclusively in the pronephric duct of zebrafish embryos (Dr. Igor Kondrychyn, 

unpublished). 

GB8: pard3b mutant displayed pigment formation defects as early as 

pigmentation started to develop at 1 dpf. When wild-type zebrafish started to 
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show visible pigment formation at eyes, head and trunk skin, no pigment 

formation could be observed in pard3b mutant embryos (Figure 3.7, A, A’). In 

mutants, pigment started to appear progressively later from 2-6 dpf, although 

both the intensity of the pigment and distribution of pigment cells were much 

reduced as compared to wild type embryos. For example, the dorsal stripe 

started to appear in the mutant at 2 dpf, but the lateral strip parallel to the 

horizontal myoseptum and the ventral stripe appeared at a much later stage 

(Figure 3.7, B-H). At higher magnification, melanophores were visible with no 

obvious cell shape defects (data not shown). Yellow pigment forming 

xanthophores were present in the mutant.  

Similar to other zebrafish mutants with pigment formation defects, pard3b 

mutants were able to develop to term and were sexually fertile. Adult pard3b 

homozygote fish displayed phenotype typical of melanin formation defects as 

evidenced by its red retina and lack of black stripes. However, unlike nacre 

mutant (Lister et al., 1999), which had a complete lack of melanocytes due to 

mutation in the mitfa gene, pard3b mutant phenotype was milder. It had 

visible pale-coloured stripes interspersed by the yellow stripes of 

xanthophores. This was also consistent with the embryonic phenotype 

evidence by reduced but not complete lack of melanin formation. 

In zebrafish, embryonic pigment pattern is formed by cells derived from 

neural crest cells that migrate along specific pathways to their final position in 

the embryo (Moreira and Deutsch, 2005). This process is generally completed 

by 6 dpf. During the larva-to-adult metamorphosis occurring from the second 

to the fourth week, larval pigment pattern is generally replaced by the adult 
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pigment pattern. Our analyses revealed that pard3b regulates pigment 

formation in both embryonic and adult stages, although the exact mechanism 

of how pard3b regulates pigment formation in zebrafish remains to be 

elucidated. In this regard, detailed characterization of pigment pattern in 

mutant embryos and adults are required. The homozygote viable pard3b 

mutant thus provides an excellent model for such studies. 

3.3.5 GB21 mutant: heart and brain ventricle defects 

GB21 mutant has two insertional sites mapped by TAIL-PCR (Appendix, 

Table 1). However, several other difficult to read sequences generated that 

were not helpful to map the insertion by BLAT are therefore not shown. The 

exact insertional site could not be confirmed by using specific primer pairs due 

to repetitive false positive results. Other possible insertion site(s) may exist as 

well. To confirm the identity of insertion sites additional out-crosses and 

detailed mapping are necessary. 

Although mapping is incomplete, GB21 mutant displayed an interesting 

phenotype. No obvious morphological defects were observed before 24 hpf. 

However, starting from ~26 hpf onward, mutant embryos showed small heart 

and highly underinflated brain ventricle, with obvious midline separation 

defects in the fourth ventricle. Embryonic tail curved dorsally (Figure 3.8, A, 

A’). At day 2, mutant embryos displayed eyes with spotty retinal pigmented 

epithelium (RPE) and yolk dented by pericardial edema (Figure 3.8, B, B’). 

Shorter head and heart defects were observed at day 3 (Figure 3.8, C, C’). 

GB21 mutant displayed phenotype similar to has (heart and soul) mutant, 

which had a mutation in pkci (protein kinase C, iota) (Horne-Badovinac et al., 
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2001). The initial heart circulation-independent brain ventricle inflation, 

occurring at 17-21 hpf (Lowery et al., 2009),  was not affected in GB21 

mutant.  However, later brain ventricle expansion, which is heart circulation 

dependent, was affected in GB21 mutant. Indeed, the zebrafish heart and soul 

(has) is required tissue-autonomously within the myocardium for normal heart 

morphogenesis (Rohr et al., 2006). Thus, it could be hypothesized that the 

brain ventricle phenotype observed in GB21 mutant might be a consequence 

of heart developmental defects.  Due to this reason and its unresolved insertion 

site, this mutant was not selected for further characterization in this study, 

although it is definitely an interesting mutant for future studies. 

3.4  Functional characterization of kcng4b mutant 

3.4.1 GB4: mutant has insertion in the kcng4b locus  

The GB4 line has insertion in the kcng4b locus of Chr.7 (Figure 3.9, A). The 

GB cassette was mapped with correct cis-orientation between E2 and E3 of 

kcng4b, the only two coding exons of the kcng4b gene, which encodes a 

protein that consists of 535 amino acid (aa) residues. Based on the design and 

mechanism of function of the GBT cassette (Figure 3.1), the insertion should 

cause truncation of the protein resulting in a polypeptide of only the N-

terminal half (containing only coding exon 2) of 249 aa residues. Based on 

Kcng4b protein domain structure, a peptide with the first 249 aa residues of 

Kcng4b comprise the T1 domain and S1 domain, whereas lacks S2-S6 as well 

as the pore domain. This truncated peptide thus could not form a functional 

silent subunit. As the stop codon of GFP ORF still exists in the GFP and exon 

3’-fusion transcript, the rest of the protein will not be encoded (Figure 3.9, B). 
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Reverse transcription polymerase chain reaction (RT-PCR) was performed to 

check the full-length transcripts in kcng4b heterozygote and homozygote 

embryos. As expected, full length kcng4b transcripts were decreased in 

heterozygote and almost absent in homozygote embryos (Figure 3.9, C), 

although trace amount of full length transcript was still detectable. This 

phenomenon was consistent with previous reports that GBT cassette would 

generally lead to a 95% knockdown effect of gene it inserted in (Sivasubbu et 

al., 2006), which usually is sufficient for loss of function.  

3.4.2 Loss of kcng4b function caused embryonic brain ventricle defects 

kcng4b mutant embryos displayed no obvious morphological defects at 

blastula and gastrula stages. However, mutant embryos displayed cells 

delaminating from the brain ventricular surface (ventricular zone) and 

aggregating inside the ventricle lumen around 20-24 hpf (Figure 3.10, A-D). 

At around 32 hpf, mutant embryos started to show a hydrocephalus phenotype, 

and developed an inflated brain ventricle around 48 hpf (Figure 3.10, E and F). 

In severely affected mutants, dents in the yolk close to the heart and short yolk 

extension were observed (Figure 3.10, F’), implying that apart from brain 

ventricles, kcng4b might have specific functions in circulation and endodermal 

development. No obvious brain necrosis was observed in mutant embryos 

until 24 hpf, indicating that the brain ventricular phenotype was not a result of 

cell death in the brain by apoptosis. As kcng4b developmental function was 

not analyzed and the mutant embryos showed brain circulation defects, which 

met the target for this screen, this mutant was selected for further functional 

characterization.
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To verify whether the observed phenotype was indeed due to a loss of kcng4b 

function, we injected different doses of kcng4b splice site blocking 

morpholino (MO) into one-cell stage embryos. This morpholino targets the 

splice site of intron 2 and exon 3 (Figure 3.11, A) and causes a defect of 

splicing resulting in a transcript that retains the intron 2 sequence (Figure 3.11, 

B), which causes a truncation of the Kcng4b. In fact the protein truncation 

effect of this morpholino mimicked that of GB cassette insertion as both 

mutant and morphant will have only exon 2 sequences processed. The RT-

PCR results confirmed that full-length kcng4 transcripts were decreased in a 

dose-dependent manner in morphants (Figure 3.11, B).  

As expected, kcng4b morphants displayed a phenotype that mimicked that of 

kcng4b mutants. At 24 hpf, an aggregation of cells delaminated from the 

ventricular zone was observed in forebrain lumen of morphant injected with a 

dose of 0.15 pmol of MO or higher (Figure 3.11, C). Morphants injected with 

0.45 pmol of MO displayed dented yolks, short yolk extensions, and ventrally 

curved tails similar to that in severely affected mutants (Figure 3.10, F’). 

Consistently, the hydrocephalus phenotype could be observed around 48 hpf. 

Morphants that received a high dose of MO displayed severely inflated brain 

ventricles (Figure 3.11, C). Thus, a transient loss of Kcng4b function caused 

by MO injection confirmed that the brain ventricle defects observed were due 

to a loss of kcng4b function in the mutant.  

3.4.3 Two paralogues of kcng4 with distinct tissue specific expressions 

Kcng4 encodes a potassium voltage-gated channel, subfamily G, member 4, or 

Kv6.4 in short. It has been demonstrated in cell culture experiments that in 
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order to form a functional voltage-gated potassium channel (Kv), four α 

subunits are needed to form tetramers (Vacher et al., 2008). Like all Kv α 

subunits, Kv6.4 contains an N-terminal T1 domain, and six transmembrane 

domains (S1-S6) (Ottschytsch et al., 2002), so it may form heterotetramers 

with electrically active α subunits such as those encoded by Kcnb1 

(Bocksteins et al., 2009b).  

Due to partial genome duplication of bony fish, many genes have two copies, 

or two paralogues, in zebrafish. Not surprisingly, two paralogues of kcng4 

exist in the zebrafish genome. The insertional mutant isolated in this screen 

has an insertion in kcng4b of Chr.7 (Ensembl Gene ENSDARG00000051892), 

which encodes a protein of 535 amino acid (aa) residues. The other paralogue, 

kcng4a was found to be located in Chr.18 (Ensembl Gene 

ENSDARG00000062967) with a protein size of 538 aa residues. Both 

paralogues have very similar exon/intron structures, with a non-coding exon 1 

and two exons 2 and 3 each encoding roughly half of the protein.  

3.4.4 Expression of kcng4a in sensory cells 

To determine whether the two kcng4 paralogues of zebrafish have conserved 

domain structure, a multiple sequence alignment was performed between 

kcng4 sequences of human, mouse, chicken, frog and zebrafish. It turned out 

that Kcng4 has a highly conserved domain structure among vertebrates. The 

two zebrafish paralogue, kcng4a and kcng4b, has highly conserved T1 domain 

and S1-S6 domains (Figure 3.12). In addition, the most essential S4 domain 

working as a voltage sensor and the pore domain for K+ selectivity had 100% 
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identity among all vertebrate sequences aligned here, implying a conserved 

function of Kv6.4 between zebrafish and other vertebrates. 

To differentiate the embryonic specific roles of kcng4a and kcng4b, both 

genes were cloned from cDNA of pooled wild type zebrafish embryos, and in 

situ hybridisation was performed to determine their respective expression 

pattern. Surprisingly, although they share a very similar domain structure, the 

two paralogues had a very distinct expression pattern during embryonic 

development. 

kcng4a transcripts were detected in the sensory cells of cranial ganglia, 

including the trigeminal ganglion (TG) (Figure 3.13, B), Rohon-Beard (RB) 

cells in the spinal cord, and on the lens surface (Figure 3.13, B). Around 30 

and 48 hpf, transcripts of kcng4a were detected bilaterally at the dorsal part of 

the spinal cord and also in characteristic positions in the hindbrain typical for 

RB cells (Figure 3.13, A, C, D). In zebrafish, RB cells are primary sensory 

neurons present in the embryonic spinal cord during embryonic and early 

larval stages, which respond to mechanosensory stimulation. A RB neuron has 

a cell body, two central axons and a peripheral dendrite. One central axon 

projects rostrally to the hindbrain and another caudally within the spinal cord, 

whereas the peripheral axon extends dorsolaterally from the spinal cord, runs 

through segmental myotomes and innervates skin, where free nerve endings 

are formed (Bernhardt et al., 1990). During ~2-4 dpf, RB cells undergo 

programmed cell death, which is caused by sodium-current mediated electrical 

activity (Svoboda et al., 2001). It has been reported that an inhibitor of 

voltage-gated sodium channel or knockdown of an α subunit of voltage-gated 
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Figure 3.13. Expression of kcng4a in sensory cells. kcng4a transcripts were 
detected in the sensory cells of cranial ganglia, including the trigeminal ganglion 
(tg) and Rohon-Beard (RB) cells in the spinal cord and on the lens surface (l). A, 
B, D. – 30 hpf, C. – 48 hpf. The position of B, D (blowups of A) is marked on A 
by boxes. C’- blowup of the area of spinal cord of embryo shown in C. 
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sodium channels (Nav1.6a) decreased the RB cell death (Pineda et al., 2006). 

Recently, it has been reported that knockdown of atp1a3a, the α3 subunit of 

NaKATPase ion pump, caused depolarization of RB neurons in zebrafish, 

suggesting impaired neuronal excitability. This was further supported by 

observing altered response to tactile stimuli and reduced mobility in those 

embryos (Doganli et al., 2013). Thus, it is not difficult to hypothesize that 

kcng4a, encoding the Kv6.4a subunit of Kv channel, might also have similar 

function in controlling electrical activity in RB neurons. A reverse genetic 

approach, either by injection of MO against kcng4a or generation of targeted 

kcng4a mutant, could be taken to verify kcng4a function in future 

investigations.  

3.4.5 Expression of kcng4b in the ventricular zone of the embryonic 
brain 

In contrast to kcng4a, kcng4b transcripts were found to be mainly expressed at 

24 hpf in the brain ventricular zone. In situ hybridization with an antisense 

RNA probe showed that kcng4b mRNA was expressed in neuroepithelial cells 

lining the lumen of forebrain, midbrain and hindbrain ventricles as well as the 

central canal of the spinal cord (Figure 3.14, A, B). These areas together form 

the ventricular zone of neural tube (Merkle and Alvarez-Buylla, 2006). When 

embryonic neurogenesis progressed to 30 and 48 hpf, expression of kcng4b in 

the ventricular zone remained and expression in other tissues started to appear. 

These included the ear vesicles, eye lens and CMZ, some ventral tissues of the 

brain, and intersegmental vessels (ISV) of the trunk (Figure 3.14, C-G). The 

expression pattern of kcng4b in neuroepithelial cells at the 
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ventricular zone provided an explanation for delamination of cells from the 

ventricle and hydrocephalus observed in kcng4b mutants. 

The drastically different expression pattern of kcng4a and kcng4b implied that 

during evolution each paralogue adopted its own tissue-specific role. As 

mammals (mouse and human) have only one Kcng4, it remains to be 

elucidated whether the combined function of both paralogues are conserved 

during embryogenesis of mice or human. 

To further analyze the expression of kcng4b during embryonic development, 

the RT-PCR amplification of full-length kcng4b transcripts was performed 

with a time-course study on RNA isolated from different embryonic stages 

(Figure 3.14, H). This excluded a maternal role of kcng4b as no transcripts 

could be detected before mid-blastula transition (MBT). Also, no expression 

was detected throughout blastula, gastrula and early segmentation except that 

transient expression of kcng4b was observed around 8-9 hpf although the 

specific site of this expression was not identified. An abundant expression was 

only detected around 24 hpf. Since mutant embryos displayed brain 

ventricular defects, a more detailed RT-PCR amplification was performed 

from 19-24 hpf. Transcripts of kcng4b started to appear at 21 hpf and were 

continuously detected later on (Figure 3.14, I).  During this period the timing 

of kcng4b expression coincides with the ‘window period’ when an inflation of 

embryonic brain ventricle is happening (Lowery and Sive, 2005). This implies 

a functional role of Kcng4b in regulating development of the brain ventricle.  

Expression pattern of kcng4b in adult tissue was also examined by RT-PCR. 

However, no expression of this gene was detected in all the adult tissues 
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examined, including brain, heart, muscle, liver, kidney, pancreas and intestine 

(Figure 3.14, J). Taken together, the tissue-specific pattern of kcng4b 

expression in the ventricular zone and its timing suggested that kcng4b 

functions during early development of brain ventricular system.  

3.4.6 kcng4b controls inflation of brain ventricles 

As knockdown of kcng4b caused hydrocephalus, we wonder whether 

overexpression of this Kv channel subunit would have the opposite effect. 

Zebrafish embryos injected with in vitro synthesized kcng4b mRNA at one-

cell stage did not display obvious growth delay in terms of overall morphology 

when compared to stage-matched wild type control embryos (Figure 3.15, A, 

A’). However, injected embryos displayed absence of brain ventricles from the 

time that embryonic brain lumen expansion started, i.e. 17 hpf onwards. 

To visualize the brain lumen in detail, FITC conjugated BODIPY was used to 

label extracellular and lumen spaces. The two time points, 21 hpf and 24 hpf, 

were taken to monitor initial brain inflation and subsequent lumen expansion. 

When opening of hindbrain ventricle could be clearly observed in wild type 

control embryos at 21 hpf, embryos injected with kcng4b mRNA still display 

fully sealed neuroepithelia (Figure 3.15, B and C). By 24 hpf, an opened 

midbrain optocoele lumen and further expanded hindbrain ventricle could be 

clearly seen in wild type control embryos (Figure 3.15, D). At this stage some 

more affected embryos injected with kcng4b mRNA still displayed completely 

sealed neuroepithelia (Figure 3.15, E), whereas mildly affected embryos, 

slightly inflate hindbrain ventricles but midbrain optocoele remains fully 

sealed (Figure 3.15, F). Interestingly, albeit brain ventricles were absent, 
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midbrain-hindbrain boundary constriction (MHBC) was present in severely 

affected embryos. In addition, the apical constriction started to form in mildly 

affected embryos (Figure 3.15, E and F). This suggested that the early primary 

patterning of neurogenesis and subsequent shaping of the neuroepithelium 

were not affected by kcng4b mRNA overexpression. 

During neurogenesis in mammals, the nucleus of a dividing neuroepithelial 

cell migrates to the brain ventricular zone prior to mitosis (Merkle and 

Alvarez-Buylla, 2006). Similarly in zebrafish neuroepithelia, apical migration 

of nuclei during G2 was demonstrated as a prerequisite for all cell cycle 

progression (Leung et al., 2011). Gutzman and Sive (2010) observed that in 

zebrafish neuroepithelium these dividing cells temporarily adopt a rounded 

cell shape instead of the normal columnar shape of neuroepithelial cells. 

Under higher magnification, the neuroepithelial cell shape could be visualized 

with BODIPY labelling. Rounded cells could be found in close proximity to 

the midbrain and hindbrain lumen in wild type embryos (Figure 3.15, G), 

particularly abundant in the midbrain where the lumen was about to inflate. In 

contrast, only a few round-shaped cells were observed in the hindbrain 

neuroepithelium of kcng4b mRNA injected embryo, where a small lumen 

started to form. This phenomenon was even more manifested in the midbrain 

(Figure 3.15, H), which could be due to the lack of intraluminal pressure and 

fluid flow required for neuroepithelia proliferation (Lowery and Sive, 2009).  

No significant difference was observed in somite number between wild type 

embryos and  stage-matched embryos injected with kcng4b mRNA at the two 

time points, when ventricular lumen size was assessed (Figure 3.15, I). Also, 
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no obvious differences were observed by other morphological parameters used 

to stage zebrafish embryos (data not shown). Thus, the underinflated brain 

ventricle phenotype was not due to general developmental delay. Since kcng4b 

mutant displayed hydrocephalus (i.e. excessive inflation of brain ventricles), 

whereas overexpression of kcng4b mRNA leads to insufficient ventricle 

inflation, hence kcng4b functions to modulate brain ventricle inflation during 

embryonic neurogenesis. 

To test whether the regulatory function of kcng4b on brain ventricle inflation 

could be performed by Kcng4 genes of mammals, C-terminal EGFP-tagged 

human kcng4 (hkcng4) mRNA was synthesized in vitro and injected into one-

cell staged zebrafish embryos. Expression of EGFP-tagged hKCNG4 protein 

could be detected at sphere stage and it seems to be localized to one side. At 

shield stage and later epiboly stage expression continued relatively uniformly 

(Figure 3.16, A-D). By 24 hpf, embryos failed to develop brain ventricles 

(Figure 3.16, E and F), i.e. a phenotype same as the one caused by injection of 

zebrafish kcng4b mRNA. This suggested an evolutionarily conserved function 

of hKCNG4 in regulating embryonic brain ventricle inflation. Again, the 

absence of brain ventricle in hKCNG mRNA injected embryos was not due to 

general developmental delay, as staged by the lens diameter (Figure 3.16, E 

and F). However, the percentage of embryos displaying absence of brain 

ventricle was much lower compared to the efficiency of zebrafish kcng4b 

(Figure 3.16, G). This could be due to different codon preferences between 

mammals and teleosts and/or EGFP tag at the C-terminus of the human protein 

or some functional divergence between human and zebrafish genes. 
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3.4.7 Functional antagonism of kcnb1 and kcng4b during ventricle 
inflation 

The failure to inflate the ventricle in embryos injected with kcng4b mRNA 

was very similar to that in the zebrafish snakehead mutant. The snakehead 

neural tube undergoes normal ventricle morphogenesis but the ventricles do 

not inflate. It has been reported that snakehead has a mutation in the 

NaKATPase gene atp1a1a.1, and the lack of ventricle might probably be due 

to impaired ion transport (Lowery and Sive, 2005). This implies that kcng4b, 

encoding a Kv channel silent α subunit, might have a function similar to that 

of NaKATPase in regulating ion transport into the embryonic ventricle lumen. 

It is necessary to note that although with all of the hallmarks of a voltage-

gated K channel subunit, Kv6.4 subunits did not produce K currents in 

mammalian cells (Ottschytsch et al., 2002). When expressed alone these 

subunits were retained in the endoplasmic reticulum. Electrophysiology 

experiments using patch-clamp assays have demonstrated that Kv6.4, as an 

electrically silent potassium channel α subunit, must form a heterotetramer 

with another α subunit, Kv2.1, in order to form functional Kv channels to be 

present on the plasma membrane (Ottschytsch et al., 2005).  

Kv2.1 is encoded by the kcnb1 gene. To determine whether Kv2.1 is indeed 

involved in embryonic lumen formation, kcnb1 was cloned and its expression 

pattern during embryogenesis was examined by RNA in situ hybridization. 

Expression pattern of kcnb1 is similar to that of kcng4b  with transcripts of 

kcnb1 mainly found at the brain ventricular zone, i.e. neuroepithelial cells 

lining the lumen of forebrain, midbrain and hindbrain throughout the three 

developmental stages examined (Figure 3.17). This is similar to expression 
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Figure 3.17. Similar expression pattern between  kcnb1 and kcng4b. A-G., 
Expression pattern of kcnb1 during embryonic development. Transcripts of kcnb1 
were mainly detected in the ventricular zone and  at the ear vesicles, lens, ventral 
part of the brain, intersegmental vessels (ISV) and weakly at somites intersomitic 
vessels (ISV). G-L. Comparison of expression patterns of kcng4b and kcnb1 at 72 
hpf. G-J. dorsal view, composite images of two optic planes; G, H. dorsal planes; 
I, J. ventral planes. K, L. lateral view after removal of eyes. Abbreviation: c. 
cerebellum, ht. hypothalamus, l. lens, ot. optic tectum, IIId. dorsal III-rd ventricle, 
IIIv , ventral III-rd ventricle, IV. IV-th ventricle. 
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pattern of kcng4b (Figure 3.14). Also similar to kcng4b, transcripts of kcnb1 

were found to be present at the ear vesicles, lens, ventral part of the brain, and 

weakly at somites. The expression patterns of two genes were also similar at 

72 hpf (Figure 3.17, G-L). Given the fact that kcng4a displayed drastically 

different expression in sensory cells, it could be hypothesized that kcng4b, not 

kcng4a, is the regulatory subunit controlling kcnb1 function during ventricle 

inflation in zebrafish brain. 

Kv2.1 belongs to Kv2 subfamily of voltage-gated potassium channels. Kv2.1 

is the principle Kv channel underlying the delayed-rectifier (IDR) currents in 

most mammalian brain neurons. Specifically, IDR currents are important in 

regulating somatodendritic excitability in hippocampal and cortical pyramidal 

neurons (Misonou et al., 2005). Kv2.1 was found to be ubiquitously expressed 

in almost all adult tissues in human (Ottschytsch et al., 2002), whereas the 

more location specific regulatory subunit, Kv6.4, was thought to diversify the 

function of Kv2.1 in specific tissues (Bocksteins and Snyders, 2012). 

An alignment of multiple Kcnb1 genes, including zebrafish, human, mouse, 

chicken and frog revealed high homology among all these genes. In particular, 

the ~300 amino acid core domains comprising the S1-S6 transmembrane 

domain and pore loop regions were almost identical (Figure 3.18). As core 

domains form the major voltage-sensing apparatus (S4) and the ion-selective 

pore (pore loop), a function of Kv2.1 could be highly conserved among all 

vertebrates. 

To determine the functional role of Kv2.1 during embryogenesis, in vitro 

transcribed kcnb1 mRNA was injected into one-cell stage zebrafish embryos. 
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Overexpression of kcnb1 mRNA phenotypically mimicked the kcng4b loss-of-

function mutant with cells delaminating from the ventricular zone were found 

inside the brain lumen (Figure 3.19, A, B) at 24 hpf. This suggested opposing 

roles of Kv2.1 and Kv6.4 during embryonic brain ventricle development, since 

increased amount of Kv2.1 led to same effect as a decrease in Kv6.4. Taken 

together, it could therefore be postulated that the silent subunit, Kv6.4b, 

functions to regulate Kv2.1 function during lumen formation, probably 

through formation of Kv6.4b/Kv2.1 heterotetramers that modulate the IDR 

currents density and membrane potential of Kv2.1 homotetramers. 

3.4.8 Inhibitory role of kcng4b on neuroepithelial proliferation 

BODIPY labelling of brain ventricles revealed a reduction in a number of 

rounded (dividing) neuroepithelial cells in embryos injected with kcng4b 

mRNA (Figure 3.15, G and H). To confirm that, immunostaning of phospho-

histone-3 (PH3) positive mitotic cells were performed on these embryos. PH3 

staining demonstrated that dividing neuroepithelial cells were located mainly 

in the brain ventricular zone in embryos injected with kcng4b mRNA similar 

to wild type controls (Figure 3.20, A). However, the number of mitotic cells 

was reduced almost by half (Figure 3.20, B). Therefore, overexpression of 

kcng4b mRNA caused a reduction in proliferation of neuroepithelial cells. 

To test whether depletion of kcng4b function would have the opposite effect, 

PH3 staining was performed on kcng4b mutant embryos at two developmental 

stages – 24 hpf and 48 hpf. As expected, an excessive cell proliferation was 

detected in the mutant neuroepithelium. The average number of PH3-positive 

cells in kcng4b mutant neuroepithelium increased around 2.5 folds at 24 hpf 
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Figure 3.19. Overexpression of kcnb1 mRNA phenotypically mimicked the 
kcng4b loss-of-function mutant. Embryos injected with kcnb1 mRNA displayed 
cells delaminating from the ventricular zone inside the brain lumen (arrowed). A. 
Wild type control embryos at 24 hpf. B. kcnb1 mRNA injected embryos at 24 
hpf. A.B. lateral view. A’.B’. lateral view of forbrain (magnified). A’’.B’’. frontal 
view. 
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Figure 3.20. Overexpression of kcng4b inhibits neuroepithelial cell 
proliferation. A. Dorsal view of embryos midbrain and hindbrain ventricles 
stained with anti-phosphohistone H3 antibody (green) and DAPI (blue) to reveal 
cells in M-phase of cell cycle and cell nuclei. B. Comparative analysis of cell in 
M-phase in control vs. kcng4b mRNA injected embryos. 
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(Figure 3.21, E). As neurogenesis progressed, the number of neuroepithelial 

cells undergoing mitosis was reduced at 48 hpf  in wild type embryos (Figure 

3.21, A and C). However, the neuroepithelium of kcng4b mutant embryos still 

demonstrated a hyper-proliferative state at 48 hpf (Figure 3.21, G). Majority of 

the PH3-positive mitotic cells were still found to be located near the lumen in 

mutant embryos, indicating that the mechanism driving neural stem cells to 

migrate to the ventricular zone before cell division (including interkinetic 

nuclear migration) was probably not affected.  

3.4.9 Apical cells in neural epithelia of kcng4b mutant embryos were lost 

The main phenotype of kcng4b mutant was delamination of neuroepithelial 

cells into the brain ventricular lumen (Figure 3.10, A-D). Neuroepithelial cells 

facing the ventricle lumen are highly polarized cells with their apical end 

contacting the eCSF at the ventricular lumen and basal end contacting the 

basement membrane. To check whether apical/basal polarity was still 

maintained in the kcng4b mutant neuroepithelium, anti-αPKC immunostaining 

was performed on histology sections of mutant embryos at 24 hpf. Instead of a 

smooth apical lining αPKC observed in wild type embryo, mutant embryo 

displayed disrupted apical surface, especially in the forebrain region where in 

addition some delaminated ventricular cells were observed (Figure 3.22, A and 

B). At the midbrain and hindbrain region, apical staining of αPKC displayed a 

dispatched and distorted morphology of the ventricular lining unlike that in 

control embryos (Figure 22, C-F). 

Phalloidin binds to F-actin, another cell surface localized apical marker of 

neuroepithelium. To further characterize the neuroepithelia at later stages, 
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phalloidin staining was performed on histology sections of midbrain and 

hindbrain region at 48 hpf. As neurogenesis progresses further into day two, 

cell population of the embryonic brain increases dramatically. Ventricular 

lumen space is much narrowed at 48 hpf. However, in the hydrocephalic 

kcng4b mutant, lumen size was greatly increased. Similar to αPKC staining, 

phalloidin staining displayed a smooth apical surface lining the ventricular 

lumen surface of diencephalon, mesencephalon and hindbrain at 48 hpf in wild 

type control embryos (Figure 23, A and C). Phalloidin staining displayed a 

punctuate, distorted, discontinuous line in the neuroepithelia lining the 

ventricular surface of kcng4b mutant embryo. Albeit increases of mitosis, the 

amount of neuronal tissues was smaller than that in wild type controls (Figure 

23, B and D). In addition, delaminated cells were observed in the ventricular 

lumen (Figure 23 B’’). Thus, localization of apical proteins was distorted in 

the neuroepithelial cells facing the brain ventricles of kcng4b mutant in 

indication that cell polarity was affected. Previously, polarization of cell 

membrane was suggested to play a role in water transport thereby mediating 

the flow of water between glial cells and the cavities filled with CSF and the 

intravascular space and several proteins, including but not limited to N- and E-

cadherins, Numb and Numb-like, p120-catenin, N-CAM and Stabilin2 are 

involved in regulation of cell adhesion and polarity in these processes (Nielsen 

et al., 1997; Vajda et al., 2004). In addition, the clearance of K+ from areas of 

high neuronal activity is associated with a concomitant water flux (Badaut et 

al., 2002). Thus, the modulation of Kv2.1 activity by Kv6.4 may play a role in 

regulation of cell polarity, which abnormality may affect ventricle inflation.
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Figure 3.23. Apical/basal polarity is affected in neuroepithelial cells of kcng4b 
mutant embryos at 48 hpf. A, B. midbrain (cross section near the eyes). C, D .  
hindbrain (cross section around otic vesicles) A, C. controls, B, D. kcng4b mutant 
embryos. Immunostaining by phalloidin (Red), counterstained with DAPI. 
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3.4.10 Angiogenesis of ISV vessels displayed defects in kcng4b mutant 
embryos  

Apart from its prominent expression in the ventricular zone of early 

embryonic brain, kcng4b was also expressed in the intersegmental vessels 

(ISV) of 48 hpf zebrafish embryos (Figure 3.14, G). However, no expression 

was detected in the major axial blood vessels, the dorsal aorta (DA) and 

peripheral cardinal vein (PCV). A similar expression pattern was observed for 

kcnb1 at ISVs (Figure 3.17, F), but an expression domain of kcnb1 was 

broader than that of kcng4b, including somites (Figure 3.17, E).  Beginning at 

approximately 20 hpf, ISV sprout bilaterally from the DA. The sprout then 

migrates towards the dorsal-lateral aspect of the neural tube, where the leading 

cell branches anteriorly and posteriorly to form the dorsal longitudinal 

anastomotic vessels (DLAV) (Childs et al., 2002).  The expression pattern in 

these tissues suggested a functional role of Kv6.4b during ISVs development. 

To confirm this, an alkaline phosphatase (AP) staining of blood vessels was 

performed. In wild type control embryos, ISVs could be found along somite 

boundaries (Figure 3.24, A). In contrast, in mutant embryos a reduced number 

of primary ISVs was observed.  Mutant embryos also displayed extremely thin 

ISVs probably due to lack of lumen space within the ISVs (Figure 24, B). 

Similar defects of the ISVs network was observed in kcng4b morphant 

embryos, where gaps or shorter ISVs were observed (Figure 24, C).  

To look at the ISVs in more detail, kcng4b morphants were generated in a Tg 

(Fli: EGFP) and Tg (Gata1: DsRed) double transgenic background, so that 

both blood vessels and circulating red blood cells (RBCs) could be visualized. 
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Consistent with AP staining results, confocal imaging of the morphant 

embryos demonstrated shorter and disorganized ISV vessels (Figure 3.24, D 

and E). Morphant ISV sprouting was either incomplete, with only the dorsally 

located tip cell present, or the leading cell failed reaching the dorsal branching 

point, preventing the formation of DLAV. Importantly, unlike the healthy 

lumenized ISVs observed in control embryos, the majority of the ISVs in 

kcng4b morphants were thin and lacking blood flow, evidenced by the lack of 

circulating RBCs in these vessels (Figure 3.24, E). However, general 

morphology and blood flow of major axial blood vessels including DA and 

PCV were not affected in kcng4b depleted embryos, indicating an ISV specific 

role of kcng4b during embryonic vessel development. 

Previous studies have demonstrated that K+ current was modulated by cellular 

redox potential in pulmonary and ear artery smooth muscle cells of the rabbit 

(Park et al., 1997). Moreno-Dominguez et al. (2009) have shown that the silent 

channel Kv6.3 regulates smooth muscle cell excitability by regulating Kv2 

currents. Taking into account the similar expression patterns of kcng4b and 

kcnb1 in the ISV, it could be hypothesized that Kv6.4b might have a function 

in regulating ISV sprouting and angiogenesis similar to that in brain ventricles, 

i.e. in formation of a lumen. Thus, an antagonism between Kv6.4 and Kv2.1 

could be a common feature of lumen formation in development of brain 

ventricles and angiogenesis.  
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Chapter 4. Discussion
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4.1 Efficiency of Tol2-mediated GBT insertional mutagenesis screen 

In this study, a forward genetic screen using Tol2 transposon-mediated 

insertional mutagenesis strategy, first described by Sivasubbu et al. (2006), 

was performed to search for novel genes that regulate embryonic brain 

circulation. We observed that 16% of embryos (n = 697/4347) display mosaic 

GFP expression suggesting successful integration of the GBT cassette into 

their genome. When these potential mosaic embryos grew into adults, 61 

founder fish have been identified from screening of 350 adult fish (Table 1). 

This gives a transgenesis rate of 17% (n = 61/350), which is slightly higher 

than the 8% transgenesis rate (n = 15/171) previously reported (Sivasubbu et 

al., 2006). Due to the mosaic nature of the founder fish germline, we estimate 

the presence of 1.49 insertion sites per F1 fish (n = 130/87). In individual 

founders the number of insertion sites varies from 1 to a maximum of 5. We 

find the efficiency of transposon integration falls into a similar range of Tol2-

transposon-based screens reported previously (Nagayoshi et al., 2008; Parinov 

et al., 2004; Sivasubbu et al., 2006). Thus, we conclude that Tol2-mediated 

GBT integrates efficiently into zebrafish genome.  

We find that 54% (n = 71/130) of insertion sites are located within transcribed 

regions, roughly in the same range (35% - 43%) of previous Tol2-based 

screens (Nagayoshi et al., 2008; Parinov et al., 2004). 32 insertions are located 

in introns with GBT cassette in the same orientation as the direction of the 

respective gene. Strictly speaking, only insertions with the correct cis-

orientation cause effective disruption of the gene function according to the 

‘splice-in splice-out’ working mechanism based on which the cassette was 
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designed, although prior experience of the pseudoretroviral screen (the 

Hopkins insertional library) suggests that insertion of any foreign sequences 

into intron, especially the first intron, could greatly reduce the tagged gene 

expression (Sivasubbu et al., 2007). In addition, we also find insertions in 

exons of four genes, directly disrupting the coding sequences. Considering the 

screen was performed by only one person, the GBT insertional mutagenesis is 

rather efficient. 

4.2 GBT cassette modifications for improved efficiency and 
functionality 

The last few years have seen great improvement of Tol2-insertional cassette 

that increases both the efficiency and functionality. Efficiency of an 

insertional mutagenesis cassette not only relies on the efficient integration into 

the transcribed region but also an ability to disrupt the gene function. In the 

case of GBT, this solely depends on the poly (A) terminator sequences used. 

We observe, in the case of kcng4b mutant, great reduction of presence of full-

length wild type sequences in homozygous mutants. However, traces of wild 

type transcripts are still detectable (Figure 3.9, C).  This observation is in 

accordance with previous reports that GBT generally causes a 96%-98% 

knockdown effect (Sivasubbu et al., 2006). Although this is usually sufficient 

for analysing a loss of function phenotype, presence of traces of wild type 

transcripts might lead to a generally weak allele. To circumvent this, Clark et 

al. (2011 ) came up with a new GBT cassette, named RP2. They replaced the 

original poly (A) terminator with a strong poly (A) terminator signal together 

with border elements of the ocean pout antifreeze gene. This strong terminator 
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increases the terminating efficiency to such extent that nearly all tested lines 

display a 99% knockdown of native transcripts. 

In addition, loxP sites have been added to sequences flanking the GBT 

cassette, so that when Cre recombinase is introduced in trans, either by 

crossing with Cre recombinase-expressing transgenic lines or simply injection 

of Cre mRNA, mutant phenotype could be easily rescued (Petzold et al., 2009). 

This addition allows a quick confirmation on the specificity of mutant 

phenotype, without a need of mRNA injection rescue traditionally performed 

that can only rescue early developmental defects, not to mention the tedious 

titration and adverse effects. 

The GBT cassette used in this study contains the β-actin promoter driving the 

ubiquitous expression of GFP that allows identification of GBT insertion 

regardless of the expression status of the tagged gene. However, no 

information on the expression pattern of the tagged gene could be obtained. 

The traditional protein trap cassette, harbouring a splice acceptor (SA) and an 

AUG-less fluorescent protein could efficiently mark the expression domain of 

tagged gene, if the AUG-less fluorescent protein is fused in-frame with gene 

(Asakawa et al., 2008; Sivasubbu et al., 2007). Therefore, the GBT-RP2 

cassette has been designed by adding an AUG-less monomeric RFP after the 

SA sequences such that the expression domain of the tagged gene will be 

marked by RPF, if the fusion of RFP is in frame with upstream exon 

sequences (Clark et al., 2011). An advantage of this approach is obvious. An 

expression pattern could be easily monitored by RFP fluorescence at different 

developmental stages in vivo, a feature suitable for high-throughput screen. 
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Such additional feature diversifies the function of RP2 cassette into both 

expression and mutagenic studies. There are some drawbacks inevitably. For 

instance, theoretically only 1/3 of fish will have expression domain marked by 

RFP due to the requirement of an in-frame fusion. In addition, about a quarter 

of the 350 RP2 insertional lines have RFP expression in the kidney tubules, 

white blood cells or developing bone regardless of the native expression 

pattern of the tagged gene, possibly due to retention of RFP in these organs 

(Clark et al., 2011). Another disadvantage is that RFP expression, either 

specific or nonspecific, might interfere with fluorescence-based analysis when 

the mutant allele is transferred into other transgenic background (enhancer 

lines or reporter lines) for further analysis.  

4.3 A few thoughts on improving the screen strategy 

The Tol2 transposon mediates efficient cargo integration. The by-product of 

this is multiple copies of insertion in a single fish genome. Usually, this could 

be easily segregated, for example, two insertions could be segregated into 

single insertions by crossing with wild type fish. However, this defers the 

analysis for additional three months (for zebrafish to grow from embryos to 

fertile adults), not to mention about additional effort required for genotyping 

fish in order to confirm identity of individual carriers. Those founders with 

three, four or even five insertions where multiple out-crosses are required and 

some insertions will be lost during this process due to a lack of manpower, 

fish mishandling, death or difficulties in genotyping. In fact, fish lines with 

three insertions or more were not analysed in this study solely for these 
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reasons. Some of them were subsequently lost. As genetic screens are costly 

and labour-intensity, such loss results in tremendous waste of effort. 

To prevent this, we support the idea that sperm cryoprotection, a protocol that 

has been established and improved recently (Carmichael et al., 2009), which 

should be performed for all male F0 founder fish in order to preserve all 

possible insertion sites. By doing this, multiple insertions could be preserved 

‘indefinitely’ and could be recovered whenever wanted. Desired insertion sites 

could be subsequently sorted out by out-crosses. Another advantage of this 

method is that all insertion sites could be mapped in one-go using the sperm 

DNA, instead of sampling of F1 fish to determine the insertion sites. Due to the 

mosaic nature of F0 germline, insertion sites mapped by sampling of F1 fish 

could not represent all possible insertions in the founder germline. In fact, 

based on the mechanism of chromosome segregation, F1 fish from the same 

founder usually share some of the same insertion sites (Appendix, Table 1). 

Mapping individual F1 fish is not cost effective due to duplication efforts 

involved. Therefore, insertion site mapping based on founder sperm offers 

improved efficiency and allows sperm preservation at the same time as it 

prevents the loss of precious insertions. 

Mapping of the insertion sites is a tedious and labour-intensive process.  Most 

of the Tol2-mediated insertional screens use TAIL-PCR and/or inverse PCR 

(iPCR) to amplify flanking sequences of insertion sites, followed by BLAST 

alignment with zebrafish genome reference sequences to map individual 

insertion sites manually (Kondrychyn et al., 2009; Parinov et al., 2004; 

Sivasubbu et al., 2006). Here, TAIL-PCR was employed to map all the 
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insertion sites in our screen. However, due to the limitation of using 

degenerate primers not all flanking sequences are amplified. Therefore, not all 

insertions are detected. The unmapped insertions are subsequently lost during 

outcrosses as only known insertions are pursued in the genotyping with 

specific primer pairs. Unfortunately, insertions mapped by TAIL-PCR only 

constitute a portion of all insertions that actually exist as demonstrated by 

whole genome sequencing using next generation sequencing (NGS) methods 

(Dr. Karuna Sampath, Ac/Ds transposon-mediated insertional screen, 

unpublished). As a cost of whole genome sequencing has become much more 

affordable recently and taking into account the cost of manpower and reagents 

used in manual mapping, whole genome sequences using NGS method is 

highly recommended for future screens, especially large scale insertional 

screens involving multiple insertion sites. 

Ever since the first two reports (Doyon et al., 2008; Meng et al., 2008) 

demonstrating that zinc finger nuclease (ZFN) can cause heritable gene 

mutation in zebrafish through repair of double stranded DNA break (DSB) by 

non-homologous end joining (NHEJ) and homology directed repair (HDR), 

the last five years have seen tremendous breakthrough in zebrafish reverse 

genetics as targeted genome editing finally becomes achievable. Targeting 

nucleases, including ZFN and transcription activator-like effector nuclease 

(TALEN), provide high efficiency in inducing locus-specific DNA breaks in 

somatic and germline tissue (Bedell et al., 2012). Recently, the CRISPR-Cas 

system, using guide RNA to direct site-specific DNA cleavage by the Cas 

endonuclease, has been shown to work as efficiently as ZFN or TALEN 

(Hwang et al., 2013). The system is considerably simpler and easier to 



115 

 

construct, and therefore should be amenable for automation and high-

throughput use. Moreover, recent studies also demonstrate that a combination 

of two targeting nuclease further improves an efficiency of targeted deletions 

in zebrafish and allows deletion of large genomic fragments (Lim et al., 2013; 

Ma et al., 2013). Concurrently, annotation of the zebrafish genome has 

improved greatly (Zv9, Ensembl) with improved mapping of ESTs and 

difficult regions, which allows genome-wide precise design of targeted editing. 

When making a mutant in zebrafish becomes of such an ease, do we still need 

forward genetic screen? One undeniable advantage of forward genetic screen 

is that it allows isolation of mutants of novel genes that has not been 

characterized before. On the other hand, the simplicity of CRISPR-Cas system 

coupled with systematic in silico design of targeted sequences probably would 

bring zebrafish genetic screen into a new era. 

4.4 Novel roles of Kv6.4/Kv2.1 in embryonic brain development 

First cloned by Ottschytsch et al. (2002) from human cDNA library, Kv6.4 has 

been shown to have strong expression in the brain and low expression in liver, 

small intestine and colon in human when RT-PCR and cDNA libraries of 

different human tissues were used. However, the exact tissue localization was 

not demonstrated. The initial study suggested that Kv6.4 belongs to 

electrically ‘silent’ voltage-gated potassium (KvS) channel α subunits that do 

not form homotetramers but form heteroteramers with Kv2.1 subunits. This 

generates a functional Kv2.1/Kv6.4 channel complex in which the Kv6.4 

subunit modulates the Kv2 current (Ottschytsch et al., 2002). Unlike the 

spatially restricted Kv6.4, Kv2.1 has ubiquitous expression that could be 
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detected in almost all human tissues. Therefore, it seems that Kv2.1 subfamily 

uses interaction with the ‘silent’ subunit to diversify its function. Here, our 

results by in situ hybridization demonstrated a tissue-specific expression of 

this gene seem to support this diversification. The two zebrafish paralogues of 

kcng4 (kcng4a and kcng4b) both have distinct tissue expression patterns. We 

find that transcripts of kcng4a localize to sensory cells (Figure 3.13) whereas 

kcng4b and kcnb1 localize mainly to embryonic brain ventricular zone, and 

some other tissues later on (Figure 3.14 and Figure 3.17). As Kv6.4 forms 

obligatory heterotetramer in order to form functional Kv channels and to 

conduct current, kcng4b presumably regulates kcnb1 whereas kcng4a may 

regulate some other Kv subunit from Kv1-Kv4 subfamilies that is expressed in 

sensory cells.  

So far, little is known about the function of Kv6.4 in vivo. The only piece of 

evidence came from a biophysical characterization of whole cell voltage-gated 

K+ current (IK(V)) in isolated urinary bladder smooth muscle (UBSM) cells. It 

demonstrated for the first time that in a native whole cell an efficient K+ 

efflux takes place due to formation of  heterotetramer channels that consist of 

Kv2.1 and Kv5.1 and/or Kv6 (Kv6.1-Kv6.3) subunits (Thorneloe and Nelson, 

2003). This stresses the importance of heterotetramer configuration in a native 

physiological context.  

Our analyses of an insertional kcng4b mutant demonstrated for the first time 

the in vivo function of Kv6.4b in regulating embryonic brain ventricle inflation 

during zebrafish embryonic development. Loss of Kv6.4b results in 

neuroepithelial cell delamination, ventricle dilation and hydrocephalus in 



117 

 

zebrafish embryos (Figure 3.10), indicating a regulatory role of Kv6.4b in 

modulation of Kv2.1 subunits. We also show that overexpression of Kv2.1 

results in a similar phenotype as that caused by a loss of Kv6.4b function 

(Figure 3.15). This suggests an antagonizing function of Kv6.4b and Kv2.1 

during regulation of brain ventricle formation. Based on their similar 

expression patterns in the brain ventricular zone, we propose that Kv6.4b 

regulates zebrafish embryonic brain ventricle formation by forming 

Kv2.1/K6.4b heterotetramer.  

4.5 Mechanisms of regulation by Kv6.4/Kv2.1 heterotetramer 

How does the ‘silent’ Kv6.4 subunit modulate Kv2.1 function? First, like most 

KvS subunits, Kv6 exerts a reduction of Kv2 current density when co-

expressed in a heterologous system. For example, it has been demonstrated 

that the Kv6.1 subunit reduces Kv2 current density (Bocksteins et al., 2009a). 

This reduction is probably due to ER retention of the Kv2/Kv6 heterotetramer 

compared to Kv2 homotetramer (Ottschytsch et al., 2005). Second, 

Kv2.1/Kv6.4 heterotetramers have altered biophysical properties.  In general, 

the co-expression with KvS subunits induces a shift in the voltage-dependency 

of activation that can be both in a hyperpolarized and depolarized direction 

(Bocksteins and Snyders, 2012). In contrast, the voltage dependence of 

inactivation is mostly shifted towards hyperpolarization. In addition, many 

KvS subunits slow the activation kinetics as well as the inactivation and 

deactivation kinetics. Therefore, the silent KvS subunits act as functional 

modifiers of the Kv2 channels. Specifically, the voltage-dependency of Kv6.4 

appears to correspond to a strong (-40 mV) hyperpolarization shift in the 
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voltage-dependence of steady state inactivation of Kv6.4/Kv2.1 

heterotetrameric channels, as compared to Kv2.1 homotetramer channels. It 

has been suggested that if the 3:1 stoichiometry proposed for Kv2.1/Kv9.3 

(Kerschensteiner et al., 2005) also applies to Kv2.1/Kv6.4 heterotetramer, a 

single Kv6.4 subunit is sufficient to initiate channel inactivation (Bocksteins et 

al., 2012). Therefore, we propose that Kv6.4b modulates Kv2.1 function in 

zebrafish embryonic brain neuroepithelium by forming Kv6.4b/Kv2.1 

heterotetramers, which display decreased current density and 

hyperpolarization shift in the voltage-dependence that causes efficient 

inactivation of channel conductance. 

Interestingly, our data demonstrate that transcripts of kcng4a are only detected 

in the sensory cells of cranial ganglia (Figure 3.13), but no kcnb1 transcripts 

were detected in these regions at 30 hpf (Figure 3.17). As a specific and 

obligatory silent subunit, Kv6.4a must form heterotetramer with functional 

subunits from Kv1-Kv4 subfamily in order to exert its regulatory function. So 

far, only Kv6.4/Kv2.1 heterologous assembly has been reported by 

overexpression studies in cultured cells (Bocksteins and Snyders, 2012; 

Ottschytsch et al., 2002). As only one Kv2.1 has been annotated so far and its 

distinct tissue expression pattern already excludes the possibility of a 

Kv6.4a/Kv2.1 configuration, search for a functional subunit that can form 

heterotetramer with Kv6.4a in sensory cells will be of interest for future 

studies. This would definitely advance our understanding of the modulatory 

roles of Kv6.4 that diversify the function of Kv channels in different tissues. 
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4.6 Ion transport in brain ventricle inflation 

A key process in brain ventricle formation is secretion of embryonic CSF 

(eCSF) into the ventricular lumen. Due to its inaccessible nature, eCSF 

production and embryonic ventricles formation are little studied in mammals. 

However, studies analysing ion transport in the neuroepithelial cells lining the 

adult choroid plexuses provide valuable insights. These cells secrete CSF by a 

process involving transport of ions including  Na+, K+, Cl- and HCO3- into 

the ventricles of the brain (Brown et al., 2004). The NaKATPase is a 

heterodimer normally consisting of two polypeptides, one α and one β subunit. 

The α subunit mediates the transport of three Na+ out of the cell and two K+ 

into the cell at the expense of a single molecule of ATP, and is thought to be 

the major pump for Na+ secretion into the CSF.  Immunostaining studies 

demonstrated that the α subunit of NaKATPase was found to be localized 

exclusively at the apical brush border of rat and mouse choroid plexus (Ernst 

et al., 1986; Masuzawa et al., 1984). Inhibition of the pump by the inhibitor, 

ouabain, has been shown to reduce the CSF secretion and the movement of 

Na+ into the CSF. Similar function exists in zebrafish embryonic brain. The 

snakehead mutant, which lacks NaKATPase activity, fails to inflate the brain 

ventricles (Lowery and Sive, 2005). In addition, intracellular Na+ 

concentrations were increased in NaKATPase knockdown zebrafish embryos 

and embryos treated by the pump inhibitor, ouabain (Chang et al., 2012). 

Therefore, it is likely that embryonic brain ventricles inflate by an osmotic 

gradient formed as a result of membrane potential difference, under control of 

NaKATPase and other pumps and channels.  
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Among them, Kv channels are thought to provide a major route for K+ efflux 

into CSF of the ventricle lumen. In adult mammalian brain, studies by Zeuthen 

and Wright (1981) indicated that more than 90% of K+ leaves bullfrog 

epithelial cells via K+ channels in the apical membrane of choroid plexus. 

Speake et al. (2004) has also showed that Kv1.1 and Kv1.3 channel proteins 

are present in the rat choroid plexus and the two Kv channels contribute to the 

delayed-rectifying K+ conductance in choroid plexus epithelial cells. In 

postnatal mice, GFAP-expressing neural progenitor cells (NPC) in the 

subventricular zone (SVZ) display delayed-rectifying K+ currents, presumably 

generated by Kv3.1, which contribute to K+ transport, buffering, and maintain 

hyperpolarized resting potentials (Liu et al., 2006). Moreover, in cultured 

embryonic neural progenitor cells (eNPC) derived from the embryonic rat 

(E15) SVZ, Kv2.1 and Kv4.3 are shown to be expressed in these progenitor 

cells and associated with the delayed-rectifier and A-type currents, 

respectively, implying an early expression of Kv channel in eNPC (Smith et 

al., 2008).   

Our results push the timeline one step earlier and demonstrate that Kv2.1 and 

Kv6.4b are expressed in pluripotent neural stem cells (NSC) of the ventricular 

zone lining the ventricles of embryonic brain (Figure 3.14, 3.17). By analysis 

of a hydrocephalus kcng4b mutant, we provide the first in vivo evidence that 

Kv6.4b function is required for regulating brain ventricle inflation (Figure 

3.10). Through overexpression by mRNA injection, we also show that gain-of-

function of Kv6.4b leads to an absence of ventricle inflation in embryonic 

brain (Figure 3.15, 3.16). Therefore, our data supports an essential role of 

Kv6.4b in modulating Kv2.1 function during brain ventricle inflation. 
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4.7  Ion channels and neuroepithelial cell proliferation and cell death 

We observed decreased neuroepithelial cell proliferation in embryos with 

overexpression of kcng4b mRNA (Figure 3.15, H; 3.20). These embryos also 

displayed an absence of brain ventricle phenotype. Conversely, loss of kcng4b 

activity leads to hyper-proliferative neuroepithelium and mutant embryos 

developed hydrocephalus (over-inflated brain ventricle) (Figure 3.21). Such 

correlation between ventricle size and a rate of neural cell proliferation seems 

consistent with previous literature: the bigger the ventricle, the greater the 

amount of subsequent cell proliferation (Lowery and Sive, 2009). Desmond 

and Jacobson (1977) demonstrates that drainage of eCSF leads to reduced cell 

proliferation and increased apoptosis in the developing chick brain, suggesting 

eCSF is necessary for neuroepithelia proliferation. Indeed, a 50-fold increase 

in intraluminal pressure has been measured during chick brain ventricle 

expansion, and artificial increase of pressure by saline injection increases 

neuroepithelial mitoses (Desmond et al., 2005). This suggests that the 

intraluminal pressure exerted on the ventricular wall by eCSF fluid could drive 

the surrounding neuroepithelial to undergo proliferation, and this could 

possibly explain the increased mitotic cells observed in the hydrocephalic 

kcng4b mutant brain (Figure 3.21, D). Although the mechanism by which fluid 

pressure affects brain development is not fully understood, it has effects on 

other organs. For example, blood flow modifies the morphology of atrium and 

ventricular lumens in the zebrafish heart (Berdougo et al., 2003). In zebrafish 

intestine, electrochemical gradient generated by NaKATPase produces 

asymmetric ion distribution required for luminal fluid accumulation that 
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eventually leads to an expansion of multiple small lumens and provide the 

force for their final coalescence into a single lumen (Bagnat et al., 2007). 

However, we also observed an increase in a number of mitotic cells in the 

neuroepithelium of kcng4b mutant at 24 hpf (Figure 3.21, A and B). At this 

stage, the ventricle inflation phenotype is not fully manifested yet, hence 

ventricle size in kcng4b mutant and wild type embryos is approximately the 

same (Figure 3.10, C and D).  This observation suggests that apart from the 

external fluid pressure an intrinsic mechanism probably exists, which is 

responsible for the over-proliferation observed in the neuroepithelium of 

kcng4b mutant.  

Cell proliferation is a crucial function strictly controlled by a number of 

independent mechanisms. One of them is ion channel activity. It is generally 

believed that cells require K+ to proliferate (Wonderlin and Strobl, 1996). Kv 

channels have been reported to be involved in the proliferation of varieties of 

cell types, including tumour cells. Overexpression of the Kv channels and 

related channel activity could trigger neoplastic process. Lan et al. (2005) has 

demonstrated the existence of IDR current (typically generated by Kv channels) 

in gastric cancer cells and downregulation of Kv1.5 by RNA interference 

(RNAi) or treatment of these cells with Kv inhibitors significantly reduced 

their proliferation and tumorigenicity. Studies by Suzuki and Takimoto (2004) 

demonstrate an existence of Kv2.1 and the silent regulator subunit Kv9.3 in 

cervical adenocarcinoma cell lines, and treatment with specific Kv2.1 blockers 

suppresses growth of these cells. Similarly, down regulation of Kv1.1 or 

Nav1.5 using the same approach suppresses gastric epithelial cell proliferation 
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(Wu et al., 2006). Furthermore, etraethylammonium (TEA) mediated blockage 

of Kv, presumably Kv3.1, inhibited proliferation of dissociated neurosphere-

derived NPCs from the forebrain SVZ of adult mice (Yasuda et al., 2008). 

These findings indicate the existence of a diverse repertoire of Kv ion 

channels that modulate cell proliferation.   

Although the mechanism by which ion channels control cell proliferation is 

not fully understood, there is some experimental evidence that allow 

formulation of some ideas. It is now believed that membrane 

hyperpolarization is required for cell cycle progression from G0/G1 to G1 and 

to S phases (Pardo, 2004; Wonderlin and Strobl, 1996). Cell cycle-dependent 

changes in IDR have been observed with parallel alteration of mRNA levels of 

Kv1.2 and Kv2.1 (responsible for IDR) in rat mesenchymal stem cells (MSC) 

(Deng et al., 2007). In addition, pharmacological blockage of or RNAi-

mediated knockdown of Kv2.1 inhibits cell proliferation. As blockage of IDR 

results in a depolarization of membrane potential in rat MSC, the inhibition of 

cell proliferation is likely caused by interference with cell cycle progression.  

This possibly explains an increase in mitotic cells observed in the embryonic 

brain of kcng4b mutant zebrafish (Figure 3.21, B and D). Loss of kcng4b 

function removes the inhibitory function of Kv6.4b on Kv2.1 resulting in 

increase of Kv2.1 homotetramers in the progenitor cells of the ventricular zone. 

These homotetramers form functional Kv2.1 channels, which results in 

increased IDR current density and hyperpolarization of the membrane potential 

hence increased cell proliferation. Moreover, the hyperpolarized membrane 

potential also causes opening of aquaporin water channels present on the 
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apical membrane and formation of osmotic gradient, generating more fluid 

accumulation inside the brain ventricle. Acting in a way of positive feedback 

loop, the building-up of fluid pressure results in brain ventricle dilation, 

causing hydrocephalus. This increases further a mitogenic index in the 

neuroepithelia (Figure 3.21, D).  

Conversely, an overexpression of Kv6.4b artificially increases Kv2.1/Kv6.4b 

heterotetramer formation in the neuroepithelia, thereby decreases the number 

of Kv2.1 homotetramers. This presumably blocks/inactivates the normal 

Kv2.1 channel clustering at the surface and alters the membrane potential of 

neuroepithelia cells towards depolarization. As hyperpolarized membrane 

potential is required for both cell cycle progression and aquaporin-mediated 

fluid flow, upon depolarization of the cell membrane embryos display 

decreased mitotic index (Figure 3.20, A) and underinflated brain ventricle 

(Figure 3.15, A-H).  Therefore, our data supports a role of K+ in modulating 

cell proliferation, and provides the first in vivo evidence that modulation of K+ 

by a silent Kv6.4b subunit is essential for embryonic neuroepithelium 

proliferation and ventricle inflation in zebrafish.  

Apart from cell proliferation, there is increasing evidence that K+ channels are 

involved in regulating cell apoptosis, as excessive K+ efflux has been shown 

to be a prerequisite for neurons to undergo apoptosis, and modification of 

Kv2.1 regulates neuronal survival/death dynamics. Ca+/calcineurin-dependent 

dephosphorylation of Kv2.1 results in lateral dispersion of Kv2.1 channel 

clusters and a ~20 mV hyperpolarization shift in the voltage dependence of 

channel activation (Misonou et al., 2004). This enhances channel opening with 
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minimal depolarization, limiting firing frequency and increasing the refractory 

period duration, thereby providing neuroprotection during the early phase of 

hyperexcitable assaults (Mohapatra et al., 2009). In contrast, phosphorylation 

of Kv2.1 by p38 mitogen-activated protein kinase increases current density 

and K+ efflux, resulting in induction of neuronal apoptosis (Pal et al., 2003). 

Recent studies by Wu et al. (2013) also demonstrated that Kv2.1 oxidation-

mediated apoptosis of mammalian cells is a result of defective endocytosis of 

Kv2.1 oligomers. Since our data support a regulatory role of Kv6.4b on Kv2.1 

in embryonic brain ventricular zone, whether it will have a similar function in 

regulating early embryonic brain apoptosis could be of interest for further 

studies. 

4.8 Ion channels and neuroepithelium integrity 

Formation of brain ventricles requires both production of CSF and its retention 

in the ventricle. The latter is accomplished by a barrier function provided by 

the neuroepithelial cells lining the ventricles. As kcng4b transcripts have been 

detected mainly in these cells at the ‘window period’ when brain ventricles 

start to inflate (Figure 3.14, D and I), we checked apical polarity marked by 

αPKC at 24 hpf and the apical junction complex using phalloidin (F-actin) at 

48 hpf. 

In wild type embryos, apical membrane of neuroepithelial cells marked by 

αPKC at the ventricular zone forms a continuous and smooth apical band 

lining the ventricles of forebrain, midbrain and hindbrain, respectively (Figure 

3.22, A, C and E). Loss of kcng4b led to discontinuous and scattered apical 

membrane, with non-polarized cells present throughout the ventricular zone of 
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all three brain ventricles (Figure 3.22, B, D and F). Notably, in the forebrain 

ventricle of kcng4b mutant, where delaminated cells could be observed clearly, 

non-polarized cells (without αPKC staining) are observed, presumably due to 

over proliferation and loss of polarity. Similarly, apical junctions, marked by 

phalloidin, become discontinuous and scattered in kcng4b mutant at 48 hpf 

(Figure 3.23), suggesting that a loss of polarity in neuroepithelial cells of 

kcng4b mutant is irreversible and non-recoverable. These data suggest that 

kcng4b is required for the formation of a polarized and continuous 

neuroepithelium important for brain ventricle development, and loss of kcng4b 

leads to absence of a polarized and continuous neuroepithelium. 

The loss of polarized and continuous neuroepithelium phenotype displayed by 

kcng4b mutant is reminiscent of that described in previous studies by Chang et 

al. (2012) where discontinuous and non-polarized cells were observed in 

zebrafish embryos deficient in NaKATPase (atp1a1) function. An apical 

membrane and apical junction complex are scattered and patchy in these 

embryos. This is possibly due to a lack of downstream activation of RhoA, a 

small GTPase, as injection of RhoA mRNA restores a continuous 

neuroepithelium in these embryos, although brain ventricle is still absent 

(Chang et al., 2012).  This data also suggest that formation of cohesive 

neuroepithelium and brain ventricle inflation could be due to two discrete 

mechanisms although the same protein/protein complex might have roles in 

both events. It is possible that the novel kcng4b channel subunit might have a 

similar role in the formation of a cohesive neuroepithelium in zebrafish, apart 

from its regulatory role in embryonic brain ventricle inflation. 
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How does a Kv channel silent subunit Kv6.4b modulate neuroepithelium 

polarity? Is it a consequence of altered neuroepithelial cell proliferation or a 

discrete event? Although the mechanism is not fully understood, we could 

gain some insights from the analyses of NaKATPase-deficient embryos. 

NaKATPase is a well-known ion pump for modulating membrane potential in 

neurons and is essential for generating action potential.  It has been proposed 

that depolarization of the cell leads to RhoA activation. In cultured cells, 

depolarization of epithelial cells has been shown to activate the 

Ras/MEK/ERK pathway (Waheed et al., 2010), by promoting GEF activity 

and increasing RhoA-GTP level. It has been proposed that NaKATPase is 

involved in the regulation of RhoA mediated actin polymerization. The active 

actin polymerization may then provide the necessary force to mobilize the 

tight junction strands at the apical-lateral region in order to establish 

functional tight junctions (Rajasekaran and Rajasekaran, 2003).  It has also 

been proposed that RhoA regulates paracellular permeability in the zebrafish 

neuroepithelium (Chang et al., 2012). In addition, loss of Claudin5a, a barrier 

claudin and a component of a tight junction complex responsible for 

paracellular ion transport and selectivity also leads to brain ventricle inflation 

and neuroepithelial permeability defects in zebrafish (Zhang et al., 2010).  

Interestingly, a loss of Claudin5a does not affect cell polarity and tissue 

integrity of the neuroepithelium. Therefore, Claudin5a may act downstream of 

cell polarity regulation and provide a cerebral barrier function in sealing the 

neuroepithelial tight junction for the initial fluid accumulation and brain 

inflation.  
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Whether similar mechanism may underlie kcng4b-mediated control of 

neuroepithelium polarity remains to be elucidated. To check this, injection of 

RhoA mRNA to restore neuroepithelium apical/basal polarity could be a good 

approach to begin with. Also, a neuroepithelium permeability assay may be 

conducted on kcng4b mutant embryos to check the barrier function of the 

neuroepithelium is affected due to loss of polarity. These future studies would 

definitely help to shed light on a mechanism of interaction between ion 

channels, cell polarity and tight junction complex in the embryonic 

neuroepithelium. 

4.9 Conclusion 

In this study, a forward genetic screen using Tol2 transposon mediated 

insertional mutagenesis strategy was carried out aiming to search for novel 

molecular regulators of brain circulation. Among 130 insertion sites that were 

successfully mapped, 32 insertions were found to be located in intronic 

sequences with correct cis-orientation with the tagged gene, thus being 

potentially mutagenic. In addition, four insertions were in exons of genes, 

causing direct disruption of coding sequences. 

A kcng4b mutant, which lacks voltage-gated potassium channel Kv6.4b silent 

subunit function, displayed developmental defects in embryonic brain 

ventricles, including neuroepithelial cells delamination, ventricle dilation and 

thus hydrocephalus. Functional analyses of the kcng4b mutant demonstrated 

for the first time that the silent Kv6.4b subunits play an essential role in 

regulating embryonic brain lumen inflation by modulating neuroepithelial cell 

proliferation and maintaining neuroepithelium integrity, presumably through 
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the formation of Kv2.1/Kv6.4b heterotetramers at the embryonic brain 

ventricular zone. Therefore, we propose that the silent Kv6.4b subunits 

function by modulating Kv2.1 function during vertebrate embryonic brain 

morphogenesis
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