
SECRET SHARING APPROACH FOR
SECURING CLOUD-BASED IMAGE

PROCESSING

MANORANJAN MOHANTY

A THESIS SUBMITTED FOR

THE DEGREE OF

DOCTORATE OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2013

SECRET SHARING APPROACH FOR
SECURING CLOUD-BASED IMAGE

PROCESSING

MANORANJAN MOHANTY

A THESIS SUBMITTED FOR

THE DEGREE OF

DOCTORATE OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

Under the Supervision of

ASSOCIATE PROFESSOR WEI TSANG OOI

2013

Declaration

I hereby declare that this thesis is my original work and that it has been written by me in its

entirety. I have duly acknowledged all the sources of information consulted for the thesis.

This thesis has also not been submitted for any degree in any university previously.

Manoranjan Mohanty

DEDICATED TO MY MOTHER, BHARATI MOHANTY

i

Acknowledgement

First and foremost, I would like to thank my supervisor, Professor Wei Tsang Ooi for giving me

the skills to think logically and practically, write efficiently, and communicate clearly. These three

skills have been crucial elements in the realization of this thesis. Having embarked upon this PhD

with unrefined research skill and technical communication abilities, Professor Ooi’s guidance has

helped me to hone my skills and complete this work in timely manner. I would also like to express

my gratitude to him for sending me on two internships: one at the National Institute of Informatics

in Japan and other at the University of Winnipeg in Canada.

I take this opportunity to express my profound gratitude to Professor Pradeep K. Atrey at the

University of Winnipeg for being my internship advisor in Canada, and for being a key collaborate

of my project. Professor Atrey has helped shape my understanding of the security and privacy issues

in cloud-based systems, and has spent a great deal of time discussing different approaches to solving

these issues. I would also like to extend my sincere gratitude to him and his family for the help that

they extended during my stay in Canada.

I sincerely thank Professor Helmut Prendinger, my internship advisor at the National Institute of

Informatics in Japan for giving me the opportunity to work on the OpenPDA project. The develop-

ment skills that I acquired from my work on this project were utilized in implementing my research

findings.

My sincere thanks go to Professor Mohan Kankanhalli and Professor Roger Zimmermann for

their time spent evaluating my work and my thesis. Their comments have been invaluable in the

development and improvement of this work.

While this thesis could not have been a reality without the assistance of my National University

ii

of Singapore (NUS) instructors, I would never have found myself at NUS without teaching of my

past educators. I would therefore like to thank all of the educators in my past who have supported

me and shared with me their invaluable knowledge over the years. Teachers such as Nayak-Sir

(Mr. Abhimanyu Nayak who taught me in my secondary school) provided me with the mentorship

and encouragement to guide me on my path of learning. I would also like to extend my thanks

to Professor K K Bharadwaj, Professor Sonajharia Minz, Professor R K Agarwal, Professor D P

Vidyarthi, Doctor D K Lobiyal, and Mr. Sushil Kumar of JNU, and Mr. Debashish Rath for their

recommendations during my PhD applications.

A thesis is not only a technical document, but also an amalgamation of the skills and lessons

learned throughout one’s education. The life of a PhD student is not an easy one, and I would like to

extend my gratitude to those who have supported me, and those who have challenged me. The latter

helped to prepare me for the challenge ahead, and the former provided me the with the support I

needed to surmount the obstacles that I’ve encountered along the way. While naming all of the indi-

viduals who provided me with unconditional moral and/or technical support during my PhD studies

is difficult, I will like to name a few. In no particular order, I would like to extend my gratitude to

Atala Panda, Manoranjan Patnaik, Sushant Swain, Asnika Das, Bibekananda Mishra, Deven Balani,

Asit Sahoo, Shreyas Behera, Ajay Sinha, Pushkar Kaushik, Rameshwar Pratap Yadav, Deependra

Singh Chauhan, Amit Chouhan, Akash Mishra, Ranjit Rajak, Uma Shanker, Upakul Barkakaty,

Priyank Singh, Anil Gupta, Vinay Bharadwaj, Shreelatha Rakesh, Shital Mishra, Sucheendr Ku-

mar, Sudipta Chattopadhyay, Sriganesh Srihari, Wang Hui, Zhao Zhenwei, Girisha De Silva, Shant

Sagar, Le Duy Khanh, Rajiv Ratn Shah, Mukesh Prasad, and Neeraj Singh Chauhan.

Finally, I would like to thank my family: my parents, siblings, cousins, uncles and aunts, and all

other relatives for their support and guidance. On the same note, I would like to thank Doctor Bijay

Patnaik of Sudarshan Mahavidyalaya for his guidance and genuine caring for me. Doctor Patnaik

has been my role model and my mentor. I would also like to extend my sincere thanks to Doctor

Bipin Senapati of Raipur Village for his moral and financial support to my studies.

iii

Abstract

Cloud-based imaging, which is being increasingly used to store and process volume data/images,

presents security and privacy challenges. Although these challenges have been addressed for cloud-

based storage, to the best of our knowledge, they are still a concern for cloud-based volume data/image

processing, such as image scaling/cropping and volume ray-casting. In this thesis, we address

this concern for cloud-based image scaling/cropping and cloud-based volume ray-casting by using

Shamir’s (k, n) secret sharing and its variant (l, k, n) ramp secret sharing, which are homomorphic

to addition and scalar multiplication operations, to hide volume data/images in datacenters.

Firstly, we address the incompatibility issue of the floating point operations of a volume data/image

processing algorithm with the modular prime operation of Shamir’s secret sharing either by con-

verting the floating point operations to fixed point operations or by excluding the modular prime

operation from secret sharing. Our analysis shows that the former technique can degrade the image

quality and the latter can degrade security.

Then, we integrate secret sharing with image scaling/cropping, pre-classification volume ray-

casting, and post-classification volume ray-casting, and propose three cloud-based frameworks. The

frameworks have been designed with the philosophy that a server secret shares volume data/image

and distributes the shares (i.e., hidden data/images) among n datacenters; a datacenter, upon request

from a user, processes the hidden volume data/image, and sends the processed volume data/image

(which is also hidden) to the user; and the user recovers the secret processed volume data/image

from k hidden processed volume data/images. Experiments and analyses show that our frameworks

can provide data confidentiality, data integrity, and data availability; and can incur low computation

cost to the user.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 5

1.3 Technical Challenges . 7

1.4 Summary of Contribution . 7

1.4.1 Choosing a cryptosystem . 8

1.4.2 Addressing incompatibility of Shamir’s secret sharing with modular prime

operation . 8

1.4.3 Proposed frameworks . 9

1.5 Organization of the Thesis . 10

2 Background and Related Work 12

2.1 Cloud-based Imaging . 12

2.1.1 Cloud-based data/image storage . 12

2.1.2 Cloud-based data/image processing . 13

2.2 Cryptosystems Applied on Image . 13

2.2.1 Visual cryptography . 14

2.2.2 Blakley’s secret sharing, and its application in sharing an image 15

2.2.3 Secret sharing methods based on the Chinese Reminder Theorem, and their

application in sharing an image . 16

2.2.4 Shamir’s secret sharing, and its application in sharing an image 17

CONTENTS v

2.3 Cryptosystems Applied on Volume data . 21

2.4 Computation in Hidden Domain . 21

2.5 Secure Multi-Party Computation . 23

2.6 Volume Data Rendering and 2D Image Scaling 24

2.6.1 Image scaling . 24

2.6.2 Volume data rendering . 25

2.7 Chapter Summary . 30

3 Using Floating Point Numbers in Shamir’s Secret Sharing 31

3.1 Exclusion of the Modular Prime Operation . 32

3.1.1 Security analysis of the modified Shamir’s secret sharing 32

3.2 Modifying a Floating Point Number to a Fixed Point Number 34

3.2.1 Error analysis . 35

3.3 Chapter Summary . 36

4 Secure Cloud-based Image Scaling/Cropping 37

4.1 A New Secret Image Sharing Scheme . 38

4.1.1 Supporting bilinear scaling . 39

4.2 Scaling/Cropping an Image in Hidden Domain . 40

4.2.1 Shadow image preparation . 41

4.2.2 Shadow image scaling/cropping . 43

4.2.3 Secret image recovery . 44

4.3 Results and Analyses . 46

4.3.1 Security analysis . 48

4.3.2 Performance analysis . 52

4.4 Chapter Summary . 53

5 Secure Cloud-based Pre-classification Volume Ray-casting 54

5.1 Pre-classification Volume Ray-casting with Fixed Point Operations 55

5.1.1 Modifying interpolation . 55

CONTENTS vi

5.1.2 Modifying composition . 58

5.2 Cloud-Based Secure Rendering . 65

5.2.1 Architecture . 65

5.2.2 SR-MPVR . 65

5.2.3 SR-MSSS . 72

5.2.4 SR-RSS . 74

5.3 Results and Analyses . 79

5.3.1 Security analysis . 86

5.3.2 Privacy analysis . 88

5.3.3 Performance analysis . 89

5.4 Chapter Summary . 92

6 Secure Cloud-based Post-classification Volume Ray-casting 94

6.1 Post-Classification Volume Ray-Casting . 95

6.2 Our Framework . 96

6.2.1 Architecture . 96

6.2.2 Workflow . 97

6.3 Results and Analysis . 109

6.3.1 Security analyses . 113

6.3.2 Privacy analysis . 115

6.3.3 Performance analysis . 115

6.4 Chapter Summary . 116

7 Conclusion and Future Work 118

7.1 Improvement of the Proposed Frameworks . 120

7.1.1 Secure scaling/cropping of a compressed images 120

7.1.2 Hiding the shape of an object in secure pre-classification ray-casting 121

7.1.3 Using Phong shading in post-classification ray-casting 122

7.2 Secure Video Scaling/Cropping . 122

7.3 Secure Surface Rendering . 123

vii

List of Figures

1.1 Digital imaging pipeline. 1

1.2 Server-side rendering. 2

1.3 Cloud-based image visualization . 3

1.4 Secure cloud-based image visualization . 4

2.1 Weakness of existing image secret sharing . 21

4.1 Architecture of secure cloud-based image scaling/cropping framework 41

4.2 Workflow of secure cloud-based image scaling/cropping framework 42

4.3 Application of (3, 4, 5) randomized ramp secret sharing on images. 47

4.4 Secure cloud-based scaling of Histo, Lena, Band, and Singa images. 49

4.5 Secure cloud-based cropping of Histo, Lena, Band, and Singa images. 50

4.6 Zooming and panning operations in secure image scaling/cropping framework . . . 51

4.7 Tampering detection in secure image scaling/cropping framework 52

5.1 Architecture of secure cloud-based pre-classification volume ray-casting. 66

5.2 Workflow of secure cloud-based pre-classification volume ray-casting. 67

5.3 Single view rendering by SR-MPVR . 80

5.4 Single view rendering by SR-MSSS . 81

5.5 Single view rendering by SR-RSS . 82

5.6 Multiple view rendering by SR-MPVR . 83

5.7 Multiple view rendering by SR-MSSS . 84

5.8 Multiple view rendering by SR-RSS . 85

LIST OF FIGURES viii

5.9 Tampering detection in secure post-classification volume ray-casting 88

5.10 Data overhead vs image quality in secure pre-classification volume ray-casting . . 91

6.1 Architecture of secure cloud-based post-classification volume ray-casting 97

6.2 Workflow of secure cloud-based post-classification volume ray-casting 98

6.3 Rendered image in Interpolator . 110

6.4 Rendered image in Compositor . 111

6.5 Rendered image in Compositor from multiple view points 112

6.6 Tampering detection in secure post-classification volume ray-casting 114

ix

List of Symbols

Symbol Meaning

ai Polynomial in the secret sharing function

b Number of bits required to represent a pixel

c Total number of sample points

d Rounding bits

f Rounding bits

g Rounding bits

k Minimum number of shares required to construct a secret

l Number of secrets in ramp secret sharing

n Total number of shares created from a secret

p Share number

q Prime number

q′ Prime number

s A sample point in V

sp A sample point in Vp

ti(x) Lagrange basis function

xi ith share number

v A data voxel in V

vp A data voxel in Vp

Ai Opacity of ith voxel or ith sample point

LIST OF SYMBOLS x

A Composited opacity along a ray

C
↑
i Classified color of ith data voxel

Ci Shaded color of ith voxel or ith sample point

C Composited color of a pixel

C ′ Scaled composited color

Di Interpolation factor of ith voxel or ith sample point

F (x) Secret sharing polynomial for Shamir’s secret sharing

F ′(x) Secret sharing polynomial for modified Shamir’s secret sharing

Gi Gradient of ith data voxel or ith sample point

L(x) Lagrange interpolated polynomial

L′(x) Lagrange interpolated polynomial without the modular prime op-

eration

(S, T) (x, y) coordinate of a pixel in the image space

PID(S,T) Proxy for the coordinate (S, T)

N(s) Set of eight neighbouring voxels of sample point s

Ni Normal of ith data voxel or ith sample point

Oi Variable used in composition

Pi Scalar value of ith data voxel or ith sample point

V Given volume data

Vi ith share of V

Xi,p pth share of a variable Xi

X
(d)
i Fixed point representation of a variable Xi obtained by first

rounding off Xi by d decimal places and then multiplying 10d

by the rounded off value

X ′s Scaled interpolated value of X for a sample point s

Yi Addition of ambient reflection coefficient and diffuse reflection

coefficient of ith voxel or ith sample point

LIST OF SYMBOLS xi

Zi Specular coefficient of ith voxel or ith sample point

εx,y Roundoff error due to rounding off x by y decimal places

εXs Error in interpolation of X value for the sample point s

ε
C
↑
s

Error in the classified color

εAs Error in the classified opacity

εC Error in color composition

εA Error in opacity composition

εC,max Upper bound of εC

εC,min Lower bound of εC

εC,eff Difference in the color value of a pixel due to roundoff error εC

αp Secret sharing variable for Vp

1

Chapter 1

Introduction

1.1 Motivation

Digital imaging is being increasingly used in a variety areas of daily life such as medicine [1, 2],

personal photography, teaching and learning [3], etc. In this technique, a pipeline of five main steps

(shown in Figure 1.1): data capturing, data preprocessing (which removes unnecessary details,

such as noise, from captured data), data-to-image conversion, image processing (such as scaling

and cropping), and image display, are followed to produce an image from an object, and display the

image to a user.

With advances in telecommunication, remote digital imaging techniques, such as teleradiology

or telepathology, have become popular. In these techniques, the intermediatory imaging steps, such

as data preprocessing, data-to-image conversion, and image processing, are performed by the server.

Data Capture Data-to-image
Conversion

Data
Preprocessing

Image Display Image
Processing

Figure 1.1: Digital imaging pipeline.

CHAPTER 1. INTRODUCTION 2

Capturing and
Preprocessing

Data-to-image
Conversion

Image Display

Client Server

Network

Figure 1.2: Server-side rendering.

For example, in the case of 2D image visualization, a server typically converts data to an image, as

the required operations are implicit in a data capturing device. Similarly, in the case of 3D image

visualization, server-side data rendering (shown in Figure 1.2), which both captures and renders

data at the server end, is often used [4, 5, 6]. Furthermore, in an image streaming framework, image

processing is also performed at the server end.

With the increase in the size of an image and the requirement of managing multiple users, it is no

longer feasible for an organization, such as a hospital, to store and process large data/images. For

example, storing and processing huge whole slide images, each having a size in the scale of tens of

GBs in uncompressed form [7], presents a scalability issue. Therefore, organizations are relying on

third party cloud datacenters for the storage, processing, sharing, and management of data/images.

In addition to being more scalable, such cloud-based imaging solutions are more economical, offer

better computing resources, and can produce lower visualization latency by storing/processing the

data/image in a datacenter closer to the user.

Three important data/image processing schemes are image scaling/cropping for 2D image visu-

alization, and pre-classification volume ray-casting and post-classification volume ray-casting for

3D image visualization. Downloading a large image, such as a whole slide image to users may not

be always feasible. Users may want to preview a scaled down version of the image before deciding

whether to download the image. Further, users may just want view a particular region of interest in

the image, in which case, a cropped region should be downloaded. These two operations, scaling

and cropping, can be combined to support zooming and panning, two natural user interactions to

The voxel grid figure has been obtained from http://johnrichie.com/V2/richie/isosurface/volume.html

CHAPTER 1. INTRODUCTION 3

Image Capture

Server Client

Network

Image Storage
and Processing

Network
Network

Image Display
Datacenter

(a) 2D image visualization

Capturing and
Preprocessing

Server

Image Display

Client

Network
 Data-to-image

Conversion

Datacenter

Network

(b) 3D image visualization

Figure 1.3: Cloud-based image visualization

explore large images. On the other hand, the volume rendering schemes produce an image from

the physical properties of an object. Among the volume rendering schemes, volume ray-casting

algorithms are popular since they render better quality image than other rendering schemes [8].

Figure 1.3 shows the cloud-based image scaling/cropping and cloud-based volume ray-casting

scenarios. As shown in the figure, in the case of 2D image visualization, a datacenter scales/crops

an image [9]), and in the case of 3D image visualization, a datacenter renders a 3D image from a

3D volumetric data [10, 11, 12].

Although third-party cloud-based volume data/image storage and processing has many advan-

tages, the security of the volume data/image and the privacy of the owner of the volume data/image

are two main concerns [13, 14]. For example, in the case of medical imaging, an adversary can

access a datacenter that stores medical volume data/images of patients and misuse the information

in several ways. Firstly, for economical benefits, the adversary may illegally sell the disease infor-

mation of patients to other interested parties such as insurance companies (confidentiality issue).

Secondly, a medical image can be tampered to provide misleading information to doctors (integrity

issue). Thirdly, for publicity, both the health information and the name of the admitting hospital of a

prominent person can be disclosed to unauthorized individuals (privacy issue). Due to these poten-

CHAPTER 1. INTRODUCTION 4

Scanned Image in Server Image in Datacenter Image Received by
User

Hidden Image in Server
Processed Image in

Datacenter
Image Recovered by

User

(a) Secure cloud-based 2D image visualization

Scanned 3D data in Server Data in Datacenter Image Received by User

Hidden Data in Server Rendered Image in
Datacenter

Image Recovered by
User

(b) Secure cloud-based 3D image visualization

Figure 1.4: Our objective for 2D/3D image visualization

CHAPTER 1. INTRODUCTION 5

tial threats, laws, such as the HIPPA act in USA, the PIPED act in Canada, and the Data Protection

Act in European countries, have been enacted to protect the data/images of citizens.

A common approach to addressing the security and privacy issues is the use of cryptographic

techniques to hide important information of volume data/images from the datacenters. Although

this solution is available for cloud-based volume data/image archives [15, 16], such a solution does

not exist for cloud-based image scaling/cropping or cloud-based volume ray-casting.

1.2 Problem Statement

This thesis focuses on performing image scaling/cropping and volume ray-casting operations in

hidden domain.

We assume that (i) the server, which owns the secret data/image, and outsources storage/processing

to n datacenters is secured (no adversary can access the server); (ii) a datacenter is honest (honestly

performs requested operations), but can be curious (can try to know content of data/image); (iii) no

more than k − 1 (where, k ≤ n) datacenters can communicate with each other; and (iv) the client

is secured. Furthermore, we also assume that an adversary cannot access the communication links,

storage devices, or processing devices of k or more datacenters at any point of time.

Our objective is to hide the volume data/image S from a datacenter using a cryptosystem H(·),

and allow operationR(·) on the hidden volume data/imageH(S) such that: (i) the datacenter cannot

know application-specific confidential information of the secret volume data/image S or the secret

processed volume data/image R(S) from the hidden volume data/image H(S) or the hidden pro-

cessed volume data/image R(H(S)), (ii) a client can recover R(S) from at least k R(H(S))’s, (iii)

a client can detect tampering onH(S) orR(H(S)) when n ≥ k, and (iv) a client will able to recover

a R(S) even if n− k datacenters cannot participate. We mainly focus on three commonly used vol-

ume data/image processing schemes: image scaling/cropping, pre-classification volume ray-casting

algorithm, and post-classification volume ray-casting. We illustrate the objective in Figure 1.4,

which shows that: (i) the server hides volume data/image before sending it to the datacenters, (ii)

a datacenter renders hidden volume data to produce noise-like rendered image, or scales/crops a

hidden image to produce a noise-like scaled/cropped image, and (iii) the user recovers the secret

CHAPTER 1. INTRODUCTION 6

image from the noise-like rendered or scaled/cropped images.

Note that our approach can introduce overhead as it performs extra operations by requiring a

server to hide the volume data/image, and a client to recover the hidden image. One of our objectives

is to lessen this overhead. Furthermore, we also want to provide information theoretical security to

protect the volume data/image from an adversary having unlimited computational capability. In

summary, we aim to find solutions keeping the following points in mind.

(i) Confidentiality: Neither the original volume data/image nor the processed volume data/image

should disclose any information to a datacenter.

(ii) Integrity: Tampering with volume data or images in a datacenter should be detected by the

user.

(iii) Availability: A user should be able to obtain the requested volume data/images even if some

datacenters are unable to function.

(iv) Privacy: The privacy of a person associated with the volume data/image (for example, a

patient in the case of medical imaging) should be preserved.

(v) Computational efficiency: The computational overhead in processing volume data/images

should be minimized. The computation cost in recovering secret volume data/images should

be suitable for visualization latency, and the computations should be supported by the user’s

computing device.

(vi) Bandwidth efficiency: The data overhead in transmitting hidden volume data/images from a

datacenter to a user should be minimal and suitable to the Web.

(vii) High quality image: Any degradation in image quality should be minimal.

Fulfilling all the above requirements may be difficult as it is very likely for there to be a tradeoff

between them. For example, it may be difficult to provide both high security and low overhead

together. One of our goals is to study the tradeoffs carefully and propose application-specific solu-

tions.

CHAPTER 1. INTRODUCTION 7

1.3 Technical Challenges

Volume data/images can be hidden from a datacenter by applying a cryptosystem, such as a data en-

cryption technique [16] or secret sharing [17], at the server end. The applied cryptosystem, however,

should be homomorphic to the mathematical operations performed on the volume data/images to en-

sure that the required secret image can be recovered from the processed hidden volume data/images.

In other words, if the cryptosystem hides a secret volume data/image S with an operation H(·), a

datacenter performs the R(·) operation on the hidden volume data/image H(S), and a user recov-

ers the processed secret image from the processed hidden volume data/image R(H(S)) with an

operation H−1(·), then the condition

R(S) ≈ H−1(R(H(S)))

must hold.

Finding a cryptosystem that is homomorphic to the operations performed by a datacenter is a

concern. Available fully homomorphic cryptosystems have impractical overheads [18, 19], and

available somewhat homomorphic cryptosystems are only homomorphic to certain imaging opera-

tions [20].

Furthermore, any selected cryptosystem operates on a finite field GF(q) [21], and is therefore

incompatible with the floating point operations of a volume data/image processing algorithm. For

example, even if Shamir’s secret sharing is homomorphic to addition and scalar multiplication [22],

we cannot use it to secure the polynomial interpolation used in most imaging techniques, since it

requires modular prime operations. This incompatibility issue is another concern.

1.4 Summary of Contribution

Our work first addresses the technical challenges discussed above, and then applies the solutions

to design a cloud-based image scaling/cropping framework and two cloud-based volume render-

ing frameworks. These frameworks can hide application-specific confidential information from

a datacenter, detect tampering on volume data/image, and operate even when certain number of

CHAPTER 1. INTRODUCTION 8

datacenters do not participate. For simplicity, we call our image scaling/cropping framework as

secure cloud-based image scaling/cropping framework, the volume rendering framework using

pre-classification volume ray-casting as secure cloud-based pre-classification volume ray-casting

framework, and the volume rendering framework using post-classification volume ray-casting as

secure cloud-based post-classification volume ray-casting framework in the rest of this thesis.

1.4.1 Choosing a cryptosystem

Since one of our objectives is to lessen the overheads of our frameworks, we choose to use a some-

what homomorphic cryptosystem over a fully homomorphic cryptosystem. There are two main

types of somewhat homomorphic cryptosystems: (i) secret sharing-based schemes, and (ii) public

key encryption-based schemes. The encryption-based schemes assume that an adversary does not

posses enough computational power to decrypt a publicly available encrypted message in reason-

able time period. Therefore, these schemes are conditionally secured as it can be possible for the

adversary to get required computation power. The secret sharing based schemes, on the other hand,

do not assume about the computational power of the adversary. These schemes hide a secret by not

disclosing enough information about the secret to the adversary. Therefore, secret sharing schemes

provide better confidentiality than encryption-based schemes. Secret sharing schemes are typically

used to store highly important information such as cryptographic keys [23] [24], military data [25]

etc. Furthermore, without using an additional trick, secret sharing schemes can simultaneously pro-

vide data confidentiality, data integrity, and data availability. Therefore, we short-list secret sharing

schemes for our framework. Among the secret sharing schemes, Shamir’s secret sharing is more

efficient than other secret sharing schemes such as Blakley’s secret sharing and Chinese Reminder

Theorem-based secret sharing schemes. Therefore, we choose Shamir’s secret sharing for our work.

1.4.2 Addressing incompatibility of Shamir’s secret sharing with modular prime op-

eration

We address the incompatibility issue of Shamir’s secret sharing with a volume data/image process-

ing algorithm in two ways. First, similar to the parallel work of Finamore [26], we exclude the

modular prime operation from Shamir’s secret sharing [27]. This approach, however, can degrade

CHAPTER 1. INTRODUCTION 9

security as the modified secret sharing no longer works in GF(q). Second, based on Catrina et al.’s

proposal [28], we modify the floating point operations of a volume data/image processing algo-

rithm to fixed point operations by modifying a floating point number to a fixed point number. This

technique, however, rounds off a floating point number, and therefore introduces round-off error.

1.4.3 Proposed frameworks

Our secure cloud-based image scaling/cropping framework [29] allows a datacenter to scale or

crop a hidden image such that the secret scaled/cropped image is recoverable from the hidden

scaled/cropped images. The core idea behind this framework is to use a (3, k, n) ramp secret image

sharing based on Shamir’s secret sharing [30], which is homomorphic to the addition and scalar

multiplication operations [22] used in the integer version of the bilinear scaling operation, to share

an image at the server side. To support image cropping without sending unwanted data to the user,

we preserve the pixel positions of the secret image in the shadow image; and to support bilinear

scaling, we do not use an additional non-homomorphic cryptosystem such as AES or watermarking

in conjunction with ramp secret sharing. To remove the correlation among pixels in a shadow im-

age, we use at least one random number in a secret sharing polynomial. The shared images (also

called shadow images), are then transmitted to the datacenters. Upon request from a user, a datacen-

ter scales/crops its shadow image, and sends the scaled/cropped image to the user. The user, upon

receiving at least k scaled/cropped shadow images, recovers the secret scaled/cropped image.

Our secure pre-classification volume ray-casting framework [27] [31] hides the color of volume

data from datacenters, and renders a color-hidden image from color-hidden data. The user, upon

receiving at least k hidden rendered images, recovers the secret rendered image. As Shamir’s secret

sharing is non-homomorphic to multiplication operations, this scheme, however, cannot hide the

opacities from the rendered images – therefore, disclosing the shape of the object. In this work,

we address the incompatibility issue of volume ray-casting with Shamir’s secret sharing by both

modifying secret sharing and modifying volume ray-casting. We call the former approach Secure

Rendering by Modification of Shamir’s Secret Sharing (SR-MSSS), and the latter approach Secure

Rendering by Modification of Pre-classification Volume Ray-casting (SR-MPVR). Both these tech-

niques, by creating three different color shares for the red, green, and blue color components, and

CHAPTER 1. INTRODUCTION 10

by representing the share of a color component by a floating point number or by a large integer,

however, incur high data overhead to the user. For applications requiring minimal overhead at the

cost of high security, we propose a third technique called Secure Rendering by Ramp Secret Sharing

(SR-RSS) that improves upon SR-MSSS by first replacing modified Shamir’s secret sharing with a

modified (3, 4, 5) ramp secret sharing to create only one share for red, green, and blue colors, and

then restricting the value of a share (which is a floating point number) to a smaller number and

representing the restricted value with an integer.

Finally, assuming that Gouard Shading is used in ray-casting, we propose our secure cloud-based

rendering framework [32] that not only uses the popular post-classification volume ray-casting to

render volume data but also hides both the color and shape of an object from a datacenter. The

core idea is to distribute the ray-casting tasks among two groups of datacenters such that even

though rendering operations other than addition and scalar multiplication are not hidden, none of the

groups can know the volume data and rendered image. To hide the parts of the volume data/image

that are added and scalar multiplied, we use Shamir’s secret sharing. In this framework, a server

first performs the pre ray-projection operations of post-classification volume ray-casting, and then

creates n shares of the scalar values and n shares of the outputs of the pre ray-projection operations

(such as gradients and Phong illumination factors) using Shamir’s (k, n) secret sharing. The shared

information is then sent to the first group of datacenters called the Interpolator. According to

a user’s request, the Interpolator first interpolates the shared scalars, shared gradients, and shared

Phong illumination factors; and then, by hiding the pixel positions, outsources the remaining volume

ray-casting operations, such as classification, shading, and composition, to the second group of

datacenters called the Compositor. After completing ray-casting, the Compositor transmits the

hidden image to the client, who recovers the secret image by recovering the secret pixel coordinates

and the secret colors of the pixels.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we review previous works related

to ours and provide an overview of the techniques that we use in our work. Chapter 3 addresses

CHAPTER 1. INTRODUCTION 11

the incompatibility of Shamir’s secret sharing with floating point operations. Chapter 4 discusses

secure cloud-based image scaling/cropping framework. Chapter 5 discusses secure cloud-based

pre-classification volume ray-casting framework, and Chapter 6 discusses secure cloud-based post-

classification volume ray-casting framework. Chapter 7 concludes the work and proposes future

direction for further research

12

Chapter 2

Background and Related Work

In this chapter, we first review the research works related to cloud-based imaging, cryptographic

imaging, computation on hidden domain, and secure multi-party computation, and then provide an

overview of image scaling and volume data rendering algorithms.

2.1 Cloud-based Imaging

Recently, cloud-based imaging, due to its promise of better services such as low cost, high scala-

bility, availability, disaster recoverability etc., has drawn the attention of both academic researchers

and enterprises. The main application of this technique has been in the field of medical imag-

ing [10, 11, 12, 13, 33, 34, 35, 36, 36], where a datacenter is being used to store and process the

data/images of a patient. In the following sections, we provide a brief overview of cloud-based

medical imaging techniques.

2.1.1 Cloud-based data/image storage

To efficiently and cost effectively store medical images, researchers and enterprises are proposing

to move the entire picture archiving and communication system (PACS) of a hospital to cloud dat-

acenters [13, 33, 34, 35, 36]. For example, using Microsoft Windows Azure, Teng et al. proposed

a cloud-based PACS system that uses a DICOM sever to handle store/query/retreive requests, a DI-

COM image indexer to parse the metadata and store them in a SQL Azure database, and a web

CHAPTER 2. BACKGROUND AND RELATED WORK 13

UI to allow searching and viewing of archived images [33]. Similarly, enterprises such as AT&T,

Accenture, FreedomPACS, SCImage etc. are offering cloud-based PACS systems.

Parallelly, the security and privacy issues of cloud-based image storage [13, 14, 37, 38] have also

been addressed in two possible scenarios: when a single datacenter is used, and when multiple data-

centers are used. In the case of the use of a single datacenter, public key encryption techniques,

such as watermarking, or chaos-based encryption, have been applied to protect the data/image

[15, 17, 39, 40]; and in the case of the use of multiple datacenters, a secret sharing scheme has

been used to distribute the secrecy among more than one datacenter [17]. For a complete list of ex-

isting cryptographic cloud storage systems, the reader can refer to AlZain et al.’s work [17], which

concludes that the secret sharing based cloud storage systems are more secure than the encryption

based systems.

2.1.2 Cloud-based data/image processing

Similar to cloud-based data/image storage, cloud-based data/image processing is also a growing

trend. Researchers and enterprises are actively proposing cloud-based volume data rendering frame-

works [10, 11, 12, 34] to render volume data. For example, using Azure cloud, Dorn et al. [11]

proposed an adaptive data rendering framework that, according to requirements, performs volume

ray-casting either in a cloud datacenter or at the client. By echoing the concerns of scalability

in server-side rendering and resource availability in client-side rendering, Vazhenin proposed yet

another cloud-based rendering framework [12]. Similarly, enterprises such as Sinha system [10],

KDDI Inc. [41], etc. have started offering cloud-based volume data rendering frameworks to hospi-

tals.

To the best of our knowledge, research on the security and privacy issues in cloud-based volume

data/image processing, however, is a little explored area.

2.2 Cryptosystems Applied on Image

In this section, we review existing cryptographic imaging techniques to find their ability to meet our

objective. In the next section, we survey existing volume data hiding techniques.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

So far, watermarking techniques [42, 43, 44], chaos-based encryption [45, 46], and visual secret

sharing schemes [47, 48] have been used to protect an image. Among these techniques, water-

marking [44] and chaos-based encryption (which uses permutation for the chaos) cannot support

arbitrary cropping of an image. Therefore, we exclude them from further study. Visual secret shar-

ing, which secret shares an image among n participants either by visual cryptography [48] or by the

application of threshold secret sharing schemes, however, can support cropping by hiding the color

of each pixel independently.

In the following, we review existing visual cryptography and threshold secret sharing based im-

age hiding schemes. Since three threshold secret sharing schemes, Shamir’s secret sharing [30],

Chinese remainder theorem-based secret sharing [49, 50], and Blakley secret sharing [23], are pop-

ular, we summarize each of them.

2.2.1 Visual cryptography

Visual cryptography, which was first proposed by Naor and Shamir [48], secret shares a binary

image by using two boolean matrices, one for a white pixel and other for a black pixel. A row

in a matrix acts as a share. The matrices are designed in such a way that the hamming weight of

OR-ed k rows (i.e., bitwise OR of k rows) of the black-pixel-matrix is more than a threshold, and

the hamming weight of OR-ed k rows of the white-pixel-matrix is less than the threshold. Since the

threshold determines the transparency of a pixel in the secret image, one can know a secret color by

knowing k or more rows of a matrix. The hamming weight of the vector obtained by OR-ing less

than k rows of the black-pixel-matrix, however, is the same as the hamming weight of the vector

obtained by OR-ing less than k rows of the white-pixel-matrix. Therefore, no information about a

secret color can be found from less than k rows.

Visual cryptography is very easy to implement, and can even reconstruct an image without re-

quiring a computer. Due to the use of binary matrices, visual cryptography, however, cannot support

the scaling of shadow images, since the addition of color shares, as required by the scaling opera-

tion, can produce undefined interpolated values. For example, in (2, 2) visual cryptography, if we

distribute a white pixel over two rows: {(1, 1), (1, 1)} and a black pixel over two rows: {(1, 0),

(0, 1)}, then the addition of the color of the two pixels will produce undefined shares: (10, 1) and

CHAPTER 2. BACKGROUND AND RELATED WORK 15

(1, 10). Furthermore, the quality of the recovered image in visual cryptography is also a concern as

it approximates the secret image. Therefore, even though visual cryptography has been extended to

color images [51], we choose to exclude it from our work.

2.2.2 Blakley’s secret sharing, and its application in sharing an image

Blakley’s (k, n) secret sharing exploits a common geometric property that the intersection point of

any (k − 1)-degree non-parallel hyperplanes can be found only when k or more hyperplanes are

known. Therefore, if the secret(s) is/are hidden as the coordinate(s) of the intersection point, then

at least k hyperplanes, each of which can serve as a share, are required to know the secret. In the

following, we provide a brief overview of the share distribution step and the secret reconstruction

step.

Share distribution

Given k integers (x1, x2, . . . , xk), one or more of which are the secret, the jth hyperplane for all

1 ≤ j ≤ n, is defined as
∑k

i=1 xiaij = bj , where each aij is a random number. Each jth hyperplane

then serves as the jth share.

Secret reconstruction

Given the equations of any k hyperplanes, the coordinates of the intersection point of the hyper-

planes (and hence the secret) are found by solving k equations:
∑k

i=1 xiaij = bj , where 1 ≤ j ≤ k.

Using k colors as k coordinates of the intersecting points, researchers such as Tso [52] and

Bozkurt et al. [53] have proposed secret image sharing schemes based on Blakley’s scheme. Unlike

other secret image sharing schemes, secret image sharing based on Blakley’s scheme, however, is

not popular as Blakley’s scheme is not space efficient. In Blakley’s scheme, a participant must

store the aij’s and the bj independently. Therefore, we will exclude this scheme from our future

discussion.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

2.2.3 Secret sharing methods based on the Chinese Reminder Theorem, and their

application in sharing an image

To understand Chinese reminder theorem-based secret sharing, let us first understand how the Chi-

nese reminder theorem works.

The Chinese reminder theorem states that for a set of pairwise relatively prime moduli (q1, q2, . . . , qn),

there exists a unique integer x for any given n residues (r1, r2, . . . , rn) such that the congruences

x = r1 mod q1

x = r2 mod q2

...

x = rn mod qn

are satisfied. Thus, to find the value of x, first, the products of qi’s are calculated as q =
∏n

i=1 qi;

second, for each i, the multiplicative inverse of qi, denoted as Ii, is calculated as Ii = (q
qi

)−1 mod

qi; and finally, x is calculated as x =
∑n

i=1 ri ×
q
qi
× Ii.

Using the Chinese reminder theorem, there are two main secret sharing schemes: Mignotte’s

scheme [49] and Asumuth Bloom’s scheme [50]. Based on these two versions of secret sharing,

there are two corresponding secret image sharing schemes.

Mignotte’s secret sharing scheme

Mignotte’s (k, n) secret sharing scheme uses a special sequence of moduli q1, q2, . . . qn called

Mignotte’s sequence that satisfies the condition q1 < q2 < · · · < qn, and the condition
∏k−2

i=0 qn−i <∏k
i=1 qi. The secret S, which satisfies the condition

∏k−2
i=0 qn−i < S <

∏k
i=1 qi, is then shared by

the equation Si = S mod qi, where Si is the ith share for all 1 ≤ i ≤ n. Given any k shares,

the secret S is reconstructed using the Chinese reminder theorem on k equations: x = Si mod qi,

where 1 ≤ i ≤ n.

Using Mignotte’s scheme, Jian and Chen [54] proposed a secret image sharing scheme that first

XOR-ed the color of each pixel with a random number to break the spatial coherence, and then ap-

CHAPTER 2. BACKGROUND AND RELATED WORK 17

plied Mignotte’s scheme on the XOR-ed color value. To reconstruct a secret, this scheme, therefore

requires the random seed (to obtain the number that was XOR-ed with the secret) that was used

during share creation phase. Furthermore, this scheme is not a perfectly secure scheme [55]. In

other words, this scheme can disclose some information about the secret to a group of less than k

participants. Therefore, we do not consider this scheme for our frameworks.

Asumuth Bloom’s secret sharing scheme

Similar to Mignotte’s, Asmuth and Bloom’s (k, n) secret sharing also uses a special sequence of

moduli q0, q2, . . . , qn, called the Asmuth Bloom sequence, that satisfies the condition q0
∏k−2

i=0 qn−i <∏k
i=1 qi. Given a secret S ∈ Zq0 , the shares of S are then obtained by the equation Si = (S +

α.q0) mod qi (for all 1 ≤ i ≤ n), where α is a random number satisfying S + α.q0 ≤ q1q2 . . . qk.

Given any k shares S1, S2, . . . , Sk, the secret S is obtained by applying the Chinese reminder

theorem on k sets of equations: x = Si mod qi, for each 1 ≤ i ≤ n.

Based on Asmuth and Bloom’s scheme, Ulutas et al. [56] proposed an image sharing scheme that

broke the spatial coherence of an image by using different values of α to share the color values of

different pixels. Although this scheme does not need random seeds and is perfectly secured, it is

infrequently used as it is difficult to implement.

2.2.4 Shamir’s secret sharing, and its application in sharing an image

Shamir’s (k, n) (where, k ≤ n) secret sharing is based on mathematical interpolation. To hide a

secret, this scheme uses a (k − 1)-degree polynomial whose zero-th degree coefficient is the secret.

Using this polynomial, n shares of the secret are created by assigning n different values to the

variable in the polynomial. Each share is then sent to a participant. When the shares of at least k

participants are known, the polynomial is reconstructed by Lagrange interpolation, and the secret is

found. In the following, we provide a mathematical overview of the share distribution and secret

reconstruction steps. Next, we review some properties of Shamir’s secret sharing.

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Share distribution

Given a prime number q and a secret a0 ∈ Z (where, a0 < q), this step first creates the secret

sharing polynomial

F (x) =
(
a0 +

k−1∑
i=1

aix
i
)

mod q,

where ai < q is a random number in GF(q). Using this polynomial, any pth (where, 0 < p < q)

share of a0 is then found by

F (p) =
(
a0 +

k−1∑
i=1

aip
i
)

mod q.

Secret reconstruction

Given k distinct share numbers {x0, x1, . . . xk−1} and shares {y0, y1, . . . yk−1} such that

yi = F (xi),

this step first finds the Lagrange interpolation polynomial L(x) by

L(x) =
k−1∑
i=0

yiti(x) mod q,

where

ti(x) =

k−1∏
j=0,j 6=i

x− xj
xi − xj

is called the Lagrange basis function. By the Unisolvence theorem, L(x) = F (x). Thus, the secret

a0 can be obtained by setting x = 0 in L(x).

Theorem 1. (Unisolvence Theorem) Given k points {(x0, y0),

(x1, y1), . . . , (xk−1, yk−1)} in GF(q) with mutually different xi, there exists a unique polynomial

L(x) ∈ GF (q)[x] of at most k − 1 degree such that L(xi) = yi, 0 ≤ i ≤ k − 1.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Properties

Shamir’s secret sharing is homomorphic to addition and scalar multiplication [22] – the two basic

operations required in image processing. In other words, multiple secrets can be combined by direct

addition and/or scalar multiplication on their shares. For example, if the participants are holding

shares of a set of secrets S = {S1, S2, ..., Sj}, then without communicating amongst themselves,

they can compute the shares of the secret
∑j

i=1 IiSi, where Ii is an integer.

Similar to Blakley’s scheme and Asumuth Bloom’s scheme, Shamir’s scheme is perfectly secured

(i.e., any combination of less than k shares disclose zero information about the secret). Mignotte’s

scheme is not perfectly secured. Similar to Asumuth Bloom’s scheme, Shamir’s scheme is an ideal

secret sharing scheme, since the size of a share can be restricted to be equal to the size of the secret.

Blakley’s scheme is not an ideal secret sharing scheme. With comparison to Asumuth Bloom’s

scheme, Shamir’s scheme requires less number of operations in secret reconstruction phase. There-

fore, we use Shamir’s secret sharing in our frameworks.

Shamir’s secret sharing has also been used to securely multiply or divide a fixed number of

shares [28, 57]. Typically, the division is performed as multiplication using the Newton Raphson

method or Goldschmidt’s scheme. Since our framework cannot fix the number of multiplications

beforehand, we, however, do not use these schemes.

To protect a secret, Shamir’s (k, n) secret sharing, requires disk space of n times the size of a

share (as a share’s size is equal to the secret’s size).

To decrease the high storage requirement, a variant of Shamir’s secret sharing called ramp secret

sharing (or multi-secret sharing) is used [58, 59]. Ramp secret sharing uses l secrets as l coefficients

in a secret sharing polynomial, and therefore decreases the size requirement by 1
l times. Thus, ramp

secret sharing is typically used in secret image sharing. Ramp secret sharing, however, is not a

perfectly secure scheme [58, 59], and it provides a tradeoff between the size and the security: the

higher the value of l, the smaller the size of the resulting shares and the lower the level of security,

and vice-versa.

Shamir’s secret sharing, however, uses the modular prime operation, and therefore can neither

share a floating point number nor perform floating point operations on the shares.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

This issue can be addressed by either of two approaches: by omitting the modular prime operation

from Shamir’s secret sharing, or by representing a floating point number as a fixed point number

(e.g., by first rounding off the floating point number by d decimal places, and then multiplying 10d

by it). The former approach is parallelly proposed by ourselves [27] and Finamore [26], and the

latter is proposed by Catrina et al [28]. The use of any of these scheme, however, introduces a

tradeoff as the exclusion of the modular prime operation from secret sharing weakens the security,

and the fixed point representation of a floating point number introduces round-off error.

Alternatively, Chor et al. proposed a secret sharing scheme that can share a floating point num-

ber [60] without producing any side-effects. The main idea of this scheme is to share a secret

S ∈ R, where Smin ≤ S ≤ Smax, to n shares S1, S2, . . . , Sn in such a way that for each

1 ≤ i ≤ n − 1, each Si ∈ R is randomly chosen from the interval [Smin, Smax], and Sn sat-

isfies
∑n

i=1 Si = S (mod Smax). This scheme, however, is non-homomorphic to floating point

additions and scalar multiplications.

Secret image sharing based on Shamir’s scheme

Secret image sharing based on Shamir’s secret sharing is a thoroughly studied area [47, 61, 62, 63,

64, 65, 66, 67]. However, existing works assume that a participant (a shadow image holder) does

not process the stored shadow image, and therefore focus on two main issues: how to decrease the

size and how to increase the security of a shadow image. To decrease the size of a shadow image,

(k, k, n) ramp secret sharing [58], which uses k color values {C0, C1, . . . , Ck−1} as secrets in a

k − 1 degree Shamir’s secret sharing polynomial F (x) as

F (x) =
k−1∑
i=0

Cix
i mod q

(where q is a prime number), has been proposed [47, 61, 62, 63, 64]. The use of a (k, k, n) ramp

secret sharing technique, however, can disclose the spatial coherence of the secret image in a shadow

image (as shown in Figure 2.1), as a number of F (x)’s defined from a set of coherent color values

can produce similar results [61]. Therefore, researchers have proposed to couple (k, k, n) ramp

secret sharing with permutation [47], chaotic map [62], stenography [63] and matrix projection [61]

CHAPTER 2. BACKGROUND AND RELATED WORK 21

(a) (b) (c) (d)

Figure 2.1: Shadow images created by the (3, 3, 5) ramp secret sharing technique that uses the R,
G, B values of a pixel in F (x): (a) is the secret image; and (b), (c), (d) are the 1st, 2nd, 3rd shadow
images, respectively. As F (x) maps the R, G, B values to only one value, which is the color of a
pixel of the shadow image, the shadow images are gray colored.

etc. to increase the security of the shadow image. The integration of these techniques with secret

sharing, however, can destroy the homomorphic property of secret sharing (for example, when

matrix projection or stenography are used) or randomize the pixel positions of the secret image (for

example, when permutation or chaotic map are used). To hide the spatial coherence without using

an additional technique, Alharthi and Atrey [64] recently proposed to use different share numbers to

share the colors of different pixels. Similar to the other methods, the resulting secret sharing scheme

is no longer homomorphic.

2.3 Cryptosystems Applied on Volume data

Research in hiding volume data is not as widespread as the hiding of images. So far, non-homomorphic

digital watermarking techniques based on 3D-DWT and 3D-DCT [68], and the secret sharing tech-

nique [69] have been mainly proposed to hide volume data. However, even if we can use other

cryptographic techniques such as AES, DES, ElGamal cryptosystem etc., unlike secret sharing,

none of them are unconditionally secure, homomorphic to addition and scalar multiplication, and

result in less computational overhead simultaneously [20].

2.4 Computation in Hidden Domain

Evolution in cloud computing has made computation in hidden domain a necessity highly desirable.

Ideally, this requirement can be met when outsourced data/images are protected by a cryptosystem

CHAPTER 2. BACKGROUND AND RELATED WORK 22

that is homomorphic to the performed computations. For example, in theory, Gentry’s lattice-based

fully homomorphic scheme [70] can secure any cloud-based computation. However, this scheme

is far from being used in practice as it’s implementation is inefficient [18, 19, 71], and it cannot

guarantee the correctness of computations [71]. As a result, researchers are proposing application-

specific solutions.

Processing in hidden domain mainly can be divided into two groups: schemes using secure multi-

party computation, and schemes those do not use secure multi-party computation.

The secure multi-party computation-based schemes distributes the processing among a number

of participants in such a way that none of the participant can know more information than it requires.

Using this method, Li et al. studied how to search encrypted cloud data [72, 73, 74], Wang et al.

proposed a scheme to securely outsource linear programming to cloud datacenters [75], and various

other researchers studied the feasibility of securing cloud-based e-voting, data mining, auctions

etc [76, 77, 78, 79].

The non-secure multi-party-based schemes typically use somewhat homomorphic cryptosystems

to secure operations that are homomorphic to the used cryptosystem. For example, Erkin et al. used

two semantically secure additively homomorphic public-key encryption schemes: Paillier cryp-

tosystem and DGK cryptosystem, to perform face recognition in hidden domain [80]. Their scheme

involves two parties: Alice and Bob, where Alice owns a face image and Bob owns an image

database. Both Alice and Bob want to run a face recognition algorithm to determine whether Alice’s

face image matches with any image in the Bob’s database without disclosing information to one an-

other. This scheme, however, is less suitable for third-party outsourcing since Bob, the third-party

service provider, must interact with Alice, the server, during the execution of non-homomorphic

operations. This shortcoming, however, can be avoided by exploiting the property of a specific

algorithm, and by using simple data hiding techniques, such as obfuscation, in addition to a some-

what homomorphic cryptosystems. For example, Ayday et al. proposed a distributed architecture

that uses Paillier cryptosystem and obfuscation to distribute the processing of genomic data among

a number of participants such that none of the participant can get enough information to identify the

owner of data [81]. Their solution, however, is similar to secure multi-party computation.

As our work is based on secure multi-party computation, we will review it in the next section.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

Readers interested in other schemes, and willing to get a list of applications that are using hidden

domain processing, are referred to a recent tutorial by Lagendijk et al. [82].

2.5 Secure Multi-Party Computation

In the early eighties, Yao first introduced the concept of secure multi-party computation by introduc-

ing the Millionaire Problem [83], which recognized the richest millionaire among two millionaires

without disclosing the wealth of either of the millionaires. This work, although only limited to the

comparison operation, introduced the concept of secure multiparty computation: the problem of

distributing the computation of a function among n participants such that none of the participants

can get more information than their input and the output of the computation. In a follow up work,

Yao proposed a grabbled circuit-based generalized two-party secure computation protocol [84] that

served as the basis for numerous further research [85, 86, 87, 88, 89, 90, 91, 92]. This research can

be classified into two main categories [89]: secret sharing-based schemes and binary circuit-based

schemes.

The secret sharing-based schemes distribute the secret among a number of participants, and allow

simple arithmetic operations such as addition and scalar multiplication on the hidden data. These

schemes are mainly used in secure e-voting [85], threshold signature [86], data mining [87] etc.

This approach has also been successfully applied to securely auction farmers’ bids in the Danish

sugar beet industry [88].

On the other hand, the binary circuit-based approaches [84, 91], which are so far of interest to

theorists, work on the principle of first representing any function as a binary circuit (a collection of

logical gates), and then securely computing the binary circuit. To understand how the computation

of a binary circuit is secured, let us take the example of Yao’s grabbled construction for a single

gate. Assume that one input of a gate is held by Participant A, and another is held by Participant B.

Yao’s construction hides the input of Participant B from Participant A by not disclosing Participant

B’s input to Participant A, and hides the input of Participant A from Participant B by encrypting Par-

ticipant A’s input. The output is also double encrypted using the input-keys (i.e., the cryptographic

keys which replace the actual inputs) of both Participant A and Participant B as public keys. In this

CHAPTER 2. BACKGROUND AND RELATED WORK 24

construction, Participant A first finds cryptographic keys for all four possible inputs of the gate, and

then uses these keys to double encrypt the real outputs. The encrypted outputs and the encrypted

inputs are then permuted to hide the input order, and the permuted table is sent to Participant B with

the input key of Participant A. Finally, Participant B decrypts the output using their input-key and

Participant A’s input-key.

Binary circuit-based schemes, however, are inefficient for arithmetic operations as they are per-

formed in the binary domain. These schemes, can however, efficiently perform the comparison

operations as required in secure online auctioning, verification of the correctness of outsourced

computations, etc. Therefore, researchers have recently started to propose practical binary circuit-

based secure multiparty computation schemes [90, 93, 89].

However, to the best of our knowledge, secure multi-party computation has not yet been applied

for image scaling/cropping or scientific visualization. In this thesis, we are the first to study the

feasibility of using Shamir’s secret sharing-based secure multiparty computation for image scal-

ing/cropping and for volume ray-casting, and are among a handful of researchers to propose practi-

cal secure cloud-based multiparty frameworks.

2.6 Volume Data Rendering and 2D Image Scaling

In this section, we will review image scaling and volume data rendering techniques since we use

them in our work.

2.6.1 Image scaling

An image is typically scaled by bilinear or bicubic interpolation. As our work uses bilinear interpo-

lation, we summarize it below.

Bilinear interpolation

Given the color values {C0, C1, C2, C3} of any four pixels and two scaling factors 0 ≤ h ≤ 1 and

0 ≤ w ≤ 1 along the height and width of the image, bilinear interpolation finds the interpolated

CHAPTER 2. BACKGROUND AND RELATED WORK 25

color C by

C =

3∑
i=0

CiDi, (2.1)

where D0 = (1− w)(1− h), D1 = (1− w)h, D2 = w(1− h), and D3 = wh. We call Di the ith

interpolating factor.

2.6.2 Volume data rendering

Volume rendering, or 3D data rendering, renders 3D image either from a 3D volumetric data or from

a set of 2D images. Depending on the input, existing 3D rendering algorithms are classified into two

main categories: direct volume rendering, which inputs volume; and surface rendering, which inputs

a 2D image set. This thesis focuses on direct volume rendering as this technique produces better

quality images [94]. Among the direct volume rendering techniques, such as volume ray-casting,

splatting, and shear wrapping, volume ray-casting is commonly used [8].

The main idea behind volume ray-casting is to project rays from each pixel of the image space on

a 3D object, and find the color and opacity along each ray by mapping the physical properties of the

object to optical properties (i.e., color and opacity). This idea is executed in a number of indepen-

dent rendering components such as: gradient and normal estimation, classification, shading, ray-

projection, sampling, interpolation, and composition. These components are typically arranged in

two different pipelines: the pre-classification volume ray-casting pipeline and the post-classification

volume ray-casting pipeline [95] [96].

Pre-classification volume ray-casting

Pre-classification volume ray-casting renders given volume data V = {vi,j,k|vi,j,k is the ijkth

data voxel} in the pipeline: gradient and normal estimation, classification, shading, ray-projection,

sampling, interpolation, and composition.

Gradient and Normal Estimation: Given the scalar value Pvi,j,k of vi,j,k, this step finds the gradi-

ent Gvi,j,k = (Gx
vi,j,k

, Gy
vi,j,k , G

z
vi,j,k

) and the normal Nvi,j,k of vi,j,k by

CHAPTER 2. BACKGROUND AND RELATED WORK 26

Gx
vi,j,k

=
Pvi+1,j,k

− Pvi−1,j,k

2

Gy
vi,j,k

=
Pvi,j+1,k

− Pvi,j−1,k

2

Gz
vi,j,k

=
Pvi,j,k+1

− Pvi,j,k−1

2

and

Nvi,j,k =
Gvi,j,k

|Gvi,j,k |

respectively.

Classification: This step finds the color C
↑
v and the opacity Av of a data voxel v ∈ V from a

given look-up table indexed by Pv.

Shading: Given the ambient coefficient ka, diffuse coefficient kd, specular coefficient ks, specular

shininess n, light direction L, and reflected light direction R, this step finds the shaded color of v as

Cv = C
↑
vYv + Zv

where

Yv = ka + kdMAX(NvL, 0)

and

Zv = ksMAX
(
(NvR)n, 0)

are called Phong illumination factors.

Ray Projection: In this step, rays from the pixels of the image space are projected on V .

Sampling: This step samples a projected ray at c sample points s1, s2, ..., sc.

CHAPTER 2. BACKGROUND AND RELATED WORK 27

Interpolation: This step computes the color Cs and the opacity As of a sample point s by inter-

polating the colors and the opacities of N(s), eight neighbouring voxels of s. Mathematically, Cs

and As are defined as

Cs =
∑

v∈N(s)

CvDv, (2.2)

and

As =
∑

v∈N(s)

AvDv, (2.3)

where Cv ∈ N and Av ∈ R are the color and opacity of v, and Dv ∈ R is the interpolating factor of

v. The interpolating factor Dv is calculated from the xyz-coordinate of s and the xyz-coordinates

of the voxels v ∈ N(s).

We know that Cv satisfies

0 ≤ Cv ≤ 255, (2.4)

and Dv satisfies

0 ≤ Dv ≤ 1, (2.5a)∑
v∈N(s)

Dv = 1. (2.5b)

Thus, by putting Inequality 2.4 and Inequality 2.5 in Equation 2.2, we conclude

0 ≤ Cs ≤ 255. (2.6)

Similarly, Av is defined as

0 ≤ Av ≤ 1. (2.7)

Therefore, by putting Inequality 2.5 and Inequality 2.7 in Equation 2.3, we conclude

0 ≤ As ≤ 1. (2.8)

CHAPTER 2. BACKGROUND AND RELATED WORK 28

Composition: In this step, the colors and opacities of the sample points along a ray are accumu-

lated to produce the composited color and the composited opacity. Mathematically, the composited

color C and the composited opacity A of the sample points s1, s2, ..., sc are defined as

C =
c∑

i=1

CsiOi (2.9)

and

A =

c∑
i=1

Oi, (2.10)

where Oi is defined as

Oi = Asi

c∏
j=i+1

(
1−Asj

)
. (2.11)

By putting Inequality 2.8 in Equation 2.11, Oi ∈ R satisfies

0 ≤ Oi ≤ 1. (2.12)

Furthermore, we know that A ≤ 1. Therefore, by Equation 2.10, Oi also satisfies

c∑
i=1

Oi ≤ 1. (2.13)

Now, by putting Inequality 2.6, Inequality 2.12, and Inequality 2.13 in Equation 2.9, we conclude

0 ≤ C ≤ 255. (2.14)

Furthermore, by Inequality 2.9 and Inequality 2.12, composite color C satisfies C ∈ R. We,

however, know that the color of a pixel is a whole number. Therefore, the composite C is truncated

to obtain the final color.

Post-classification volume ray-casting

Post-classification volume ray-casting renders a volume V in a pipeline: gradient and normal es-

timation, ray-projection, sampling, interpolation, classification, shading, and composition. When

CHAPTER 2. BACKGROUND AND RELATED WORK 29

Gouard shading is used, the Phong illumination factors, however, are calculated before the pro-

jection of the rays. We use Gouard shading. Thus, we will discuss post-classification volume

ray-casting with Gouard shading.

Gradient and Normal Estimation: Similar to pre-classification, this step calculates the gradient

Gv and the normal Nv of a voxel v ∈ V .

Calculation of Illumination Factors: Similar to pre-classification, this step calculates the Phong

illumination factors Yv and Zv of v.

Ray Projection: In this step, rays from each pixel of the image spaces are projected on V .

Sampling: In this step, a projected ray is sampled at c sample points s1, s2, ..., sc.

Interpolation: In this step, the scalar value and gradient of a sample point s are calculated by

interpolating the scalar values and gradients of the eight neighbouring voxels of s. Mathematically,

the interpolated scalar value Ps (the same as for the interpolated gradient Gs) is calculated as

Ps =
∑

v∈N(s)

PvDv, (2.15)

where Pv ∈ N is the scalar value of v and Dv ∈ R is the interpolating factor of v.

Classification: In this step, the classified color C
↑
s and the classified opacity As of s are found

from the given look-up tables by using Ps and Gs as indices.

Shading: In this step, the shaded color Cs of s is found from the classified color C
↑
s by

Cs = C
↑
sYs + Zs (2.16)

where

Ys =
∑

v∈N (s)

YvDv

CHAPTER 2. BACKGROUND AND RELATED WORK 30

and

Zs =
∑

v∈N (s)

ZvDv.

Composition: Similar to the composition step of pre-classification volume ray-casting, this step

computes the color C and opacity A along a ray by accumulating the colors and opacities of all c

sample points.

2.7 Chapter Summary

In this chapter, we first discussed about the growing demand for practical secure cloud-based

data/image processing systems, and the inability of exiting homomorphic cryptosystems to meet the

requirement. Then, we argued that secure multi-party computation can be an alternative to homo-

morphic schemes to securely process data/image at a datacenter. To find the best suited secure multi-

party computation scheme for our requirement, we reviewed the grabbled circuit method, Bakley’s

secret sharing method, Chinese Reminder Theorem-based secret sharing method, and Shamir’s se-

cret sharing method in detail, and chosen Shamir’s secret sharing-based secure multi-part computa-

tion method. Finally, we provided a brief overview of three commonly used data/image processing

algorithms: bilinear image scaling, pre-classification volume ray-casting, and post-classification

volume ray-casting, which are considered in the thesis.

31

Chapter 3

Using Floating Point Numbers in

Shamir’s Secret Sharing

Shamir’s Secret Sharing operates in a finite field by performing modular prime operations. Typi-

cally, an image processing algorithm, such as image scaling/cropping and volume ray-casting, per-

forms floating point numbers. Since floating point numbers are incompatible with modular prime

operations, Shamir’s secret sharing cannot be used in conjunction with an image processing algo-

rithm.

To address the incompatibility of Shamir’s secret sharing with a floating point number, in this

chapter, we discuss two approaches: the exclusion of the modular prime operation from secret

sharing, and the conversion of a floating point number to a fixed point number. The former approach

is parallelly proposed by us [27] and Finamore [26], and the later approach is proposed by Catrina

et al. [28]. However, due to the exclusion of modular prime operation from secret sharing, there can

be loss in security; and due to rounding a floating point number to convert it to an integer, there can

be rounding error. We study the effect of removing modular prime operation from Shamir’s secret

sharing, and analyzes the rounding error in the later approach.

CHAPTER 3. USING FLOATING POINT NUMBERS IN SHAMIR’S SECRET SHARING 32

3.1 Exclusion of the Modular Prime Operation

Similar to the work of Finamore [26], we exclude the modular prime operation from Shamir’s

secret sharing to make it compatible with floating point operations. The modified secret sharing

polynomial is defined as

F ′(x) = a0 +

k−1∑
i=0

aix
i,

and the modified Lagrange interpolation formula is defined as

L′(x) =
k−1∑
i=0

F ′(xi)ti(x).

We use this modified secret sharing for our SR-MSSS and SR-RSS schemes of secure pre-

classification framework (Chapter 5).

Due to the exclusion of the modular prime operation, a cryptosystem, however, no longer works

in a finite field. Therefore, the modified cryptosystem can lose security. In the following, we discuss

the security loss.

3.1.1 Security analysis of the modified Shamir’s secret sharing

To analyze the security of the modified secret sharing method, one must first understand how

Shamir’s (k, n) secret sharing hides a secret.

To hide a secret, Shamir’s secret sharing exploits the condition that to know a (k − 1)-degree

polynomial F ′(x), the knowledge of at least k F ′(xi)’s is required. The uncertainty in finding the

polynomial from less than k F ′(xi)’s varies with the number of F ′(xi)’s. The higher the number

of known F ′(xi)’s, the less uncertainty there is. For example, suppose that we are given a share

F ′(xi) = 9 for a share number xi = 1, and are told that F ′(x) is a second degree polynomial.

Then, we can find the equation
∑2

i=0 ai1
i = 9, which is satisfied by 55 sets of (a0, a1, a2). Thus,

a0 can take 55 possible values with the knowledge of xi = 1 and F ′(1) = 9. Now, suppose that

we know another share F ′(xi) = 22 for the share number xi = 2. From this knowledge, we get

another equation
∑2

i=0 ai2
i = 22. In anticipation of knowing the coefficients ai’s, we now subtract

two known equations, and get a new equation a1 + 3a2 = 13. This resultant equation is satisfied by

CHAPTER 3. USING FLOATING POINT NUMBERS IN SHAMIR’S SECRET SHARING 33

five possible pairs of (a1, a2), and for these values of (a1, a2), there exists a maximum of five a0’s

satisfying any F ′(x). Thus, the secret can now take 5 possible values. To counter this fluctuation

in range of possible values, Shamir’s secret sharing uses the modular prime operation. By not using

modular prime operation, we remove this security shield.

However, even without the modular prime operation, there exists uncertainty to knowing a secret

in the modified secret sharing scheme. To obtain a relationship between this uncertainty with the

knowledge of the value of k, the value of share number xi, and the value of share F ′(xi), we provide

the following formulas.

Let us start with k = 2, i.e., from a first degree polynomial F ′(x) = a0 + a1x, and assume that

one F ′(xi) is known. Clearly, for each value of a0, there exists only one a1xi that can satisfy the

equation F ′(xi) = a0 + a1xi. Therefore, if we can obtain possible values of a1 (note that xi is

already known), then we can obtain the number of possible values of a0. We, however, know that

both a0 and a1 are positive integers satisfying 0 ≤ a0 ≤ F ′(xi) and 0 ≤ a1xi ≤ F ′(xi). Thus,

a1 can only take values from the range [0, F ′(xi)
xi

]. As a result, the secret a0 can take bF
′(xi)
xi
c + 1

possible values.

Similarly, we can obtain the possible values of the secret from k = 3 and the knowledge of one

F ′(xi) as

T =

bF
′(xi)
x2
i

c∑
a=0

(
bF
′(xi)− ax2i

xi
c+ 1

)
. (3.1)

With an increase in the value of k > 3, the value of T increases as the combination of k − 1

coefficients that satisfy a k− 2 degree polynomial F ′,k−2(x, S) is also part of the combination of k

coefficients that satisfy the k − 1 degree polynomial F ′,k−2(x, S) + ak−1x
k−1.

Hence, the number of choices to know the secret can be sufficiently large. For example, even in

the extreme case of k = 2, xi = 1, and F ′(xi) = 1, the value of T is two: equal to the number of

choices in the case of Shamir’s original secret sharing.

Now let us consider the case when l number (where 1 < l < k) of F ′(xi)’s are known. In

this case, one can get a polynomial of k − l degree by solving the F ′(xi)’s. Based on the above

arguments, the resultant polynomial involves some degree of uncertainty. The degree of uncertainty,

however, increases with an increase in the value of l.

CHAPTER 3. USING FLOATING POINT NUMBERS IN SHAMIR’S SECRET SHARING 34

The uncertainty of knowing F ′(x) from the knowledge of F ′(xi) and xi is higher when the value

of F ′(xi) is higher for a fixed xi or when the value of xi is lower for a fixed F ′(xi). Therefore, we

recommend using a smaller xi and a higher ai.

However, by not using a modular prime operation, the modified secret sharing may be prone to

side-channel attacks. This thesis leaves the investigation of a side channel attack on the modified

secret sharing as an open problem.

3.2 Modifying a Floating Point Number to a Fixed Point Number

In this approach, we propose to address the incompatibility issue of Shamir’s secret sharing with

a floating point number by converting the floating point numbers to fixed point numbers. A float

a0 can be converted to a fixed point number by first rounding a0 by d decimal places, and then

multiplying bn (where, b ∈ N) to the rounded off value. In this thesis, we choose b = 10. Catrina et

al. [28] proposed a similar scheme by choosing b = 2.

In other words, to convert a floating point number a0 to a fixed point number a(d)0 , we first round-

off a0 by using Definition 1, and then multiply 10d by Round(a0, d).

Definition 1. IfR = I.N1N2N3 . . . Nd . . . , is a floating point number, where 0 ≤ I ≤ 9, 0 ≤ Ni ≤

9, and d ∈ N, then the value of Round(R, d) is defined as

Round(R, d) =

I.N1N2N3 . . . Nd, if Nd+1 < 5

I.N1N2N3 . . . (Nd + 1), if Nd+1 > 5

I.N1N2N3 . . . Nd, if Nd+1 = 5, Nd is an even number, and for each

t > d+ 1, Nt = 0

I.N1N2N3 . . . (Nd + 1), if Nd+1 = 5, Nd is an odd number, and for each

t > d+ 1, Nt = 0

I.N1N2N3 . . . (Nd + 1), if Nd+1 = 5 and there exists at least one t > d+ 1

such that Nt > 0

.

CHAPTER 3. USING FLOATING POINT NUMBERS IN SHAMIR’S SECRET SHARING 35

Thus, a(d)0 is defined as

a
(d)
0 = (a0 + εd)× 10d,

where εd is the round-off error. This error is analyzed in the next section.

We use this scheme for our secure image scaling/cropping framework (Chapter 4), SR-MPVR

scheme of secure pre-classification framework (Chapter 5), and secure post-classification frame-

work (Chapter 6).

3.2.1 Error analysis

Proposition 1. If εd is the error resulting from rounding off a given floating point number by d

decimal places, then the lower bound of εd, which is −0.5 × 10−d, is obtained when: (i) the value

of the dth decimal place digit of the floating point number is an even number, (ii) the value of the

(d+1)th decimal place digit of the floating point number is five, and (iii) the value of each (d+ t)th

(where, t > 1) decimal place digit of the floating point number is zero.

Proposition 2. If εd is the error resulting from rounding off a given floating point number by d

decimal places, then the upper bound of εd, which is 0.5 × 10−d, is obtained when: (i) the value

of the dth decimal place digit of the floating point number is an odd number, (ii) the value of the

(d+1)th decimal place digit of the floating point number is five, and (iii) the value of each (d+ t)th

(where, t > 1) decimal place digit of the floating point number is zero.

Claim 1. If K is scalar and R is a floating point number, then the error due to K × Round(R, d)

is bounded by ±0.5K × 10−d.

Claim 2. If R1 and R2 are two floating point numbers, then the error due to Round(R1, d) +

Round(R2, f) is bounded by ±(0.5× 10−d + 0.5× 10−f).

Corollary 1. If Ki and Ri are the ith scalar and ith floating point number respectively, then the

error due to
∑c

i=1Ki ×Round(Ri, d) is bounded by ±0.5×
(∑c

i=1Ki

)
× 10−d

Proof. Proven by Claim 1 and Claim 2.

CHAPTER 3. USING FLOATING POINT NUMBERS IN SHAMIR’S SECRET SHARING 36

3.3 Chapter Summary

In this chapter, we discussed two methods to address the incompatibility of the floating point op-

eration of a data/image processing algorithm with the modular prime operation of Shamir’s secret

sharing. The first method removes the modular prime operation from secret sharing, and the second

method converts a floating point number to a fixed point number by first rounding off the floating

point number by d decimal places and then multiplying 10d to the rounded off value. We showed

that the exclusion of modular prime operation from secret sharing can weaken the security of secret

sharing, and the rounding off a float to a fixed point number can involve rounding error.

37

Chapter 4

Secure Cloud-based Image

Scaling/Cropping

In this chapter, we propose the secure cloud-based image scaling/cropping framework that hides

important images at datacenters, but allows image scaling and cropping on noise-like hidden images

such that the processed secret image can be recovered from the processed hidden images. This

requirement has arisen from the trend of servers such as hospitals wanting to outsource the storage

and the processing of images to third-party datacenters without disclosing the content of images.

A naive solution to our requirement would be for the server to create multiple secret images

at different resolutions (to support scaling), and to divide each secret image into independently

decodable tiles (to support cropping). Each tile could then be hidden by applying a cryptosystem,

and the hidden tiles could be sent to datacenters. When users request a region of an image at

a particular scale, each datacenter could send the hidden tiles that overlap with the region at the

nearest resolution to the user. Such a solution, however, could cause additional data to be sent to the

user.

Therefore, we decided to directly scale and crop a hidden image. We assumed that scaling is

performed by bilinear interpolation. Thus, we required a cryptosystem that is homomorphic to

addition and scalar multiplication. Hence, we used Shamir’s (k, n) secret sharing. The main idea

of our scheme is to secret share an image at the server side and send n noise-like shadow images to

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 38

n datacenters, allow the datacenters to perform image scaling and cropping operations on shadow

images, and recover the processed secret image from k processed shadow images. As discussed

in Section 2.2.4, existing secret image sharing schemes, however, cannot fulfill our requirement as

they destroy the homomorphic property of Shamir’s secret sharing. Therefore, we propose a new

secret image sharing scheme.

4.1 A New Secret Image Sharing Scheme

To allow scaling on shadow images, we need to keep the homomorphic property of secret sharing,

and to allow cropping without sending extra bits of data, we need to keep the pixel position of secret

image intact in the shadow image. Therefore, unlike existing works, we cannot use an additional

cryptosystem in conjunction with secret sharing. As a result, as shown in Figure 2.1, information

about the image can be leaked. Such information loss occurs due to the fact that existing secret

image sharing schemes cannot break the spatial coherence of an image.

We observed that the spatial coherence in a shadow image can be broken if correlation among the

adjacent pixels of the secret image can be destroyed. The inter-pixel correlation can be destroyed

if the results of the secret sharing polynomials of neighboring pixels can be different. Existing

secret image sharing schemes do not fulfill this requirement as they use the colors of pixels as all

the coefficients in a secret sharing polynomial. We propose to use at least one random number as a

coefficient in our secret sharing polynomial.

Furthermore, we also observe that to facilitate dynamic cropping, the pixel positions of the secret

image must be kept unchanged in a shadow image. Therefore, we do not use the color values of one

pixel in the secret sharing polynomial of another pixel. As a result, we are left with three choices (as

the color of a pixel is represented by three components: red (R), green (G), and blue (B)): the use of

one color component, the use of two color components, or the use of three color components in the

definition of a secret sharing polynomial. These options, which are different cases of ramp secret

sharing, provide tradeoffs between the security and the size of the shadow image: the first being

most secure (as it uses only one secret in the secret sharing polynomial [58]) but resulting in the

largest shadow image size (as it creates three different shares per pixel by using three secret sharing

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 39

polynomials) and the last being the least secure but resulting the smallest size. We choose the last

option and design the randomized ramp secret image sharing method by defining a polynomial F (x)

of a (3, k, n) (where, 4 ≤ k ≤ n) ramp secret sharing technique as

F (x) = (R+Gx+Bx2 +

k−1∑
i=3

aix
i) mod q,

where, each ai is a random number satisfying 1 ≤ ai < q for at least one i and 0 ≤ ai < q for other

i’s. As shown in Figure 4.3, randomized ramp secret image sharing produces noise-like shadow

images.

Note that although randomized ramp secret image sharing is designed for color images, it can be

adjusted for gray images by using the gray color as the only secret in F (x).

4.1.1 Supporting bilinear scaling

Recall that although bilinear interpolation performs addition and scalar multiplication operations

that are supported by Shamir’s secret sharing homomorphism [22], it involves floating point oper-

ations, which are incompatible with the modular prime operation of Shamir’s secret sharing. To

make bilinear interpolation compatible with the modular prime operation, we therefore convert its

floating point operations to fixed point operations by converting its floating point operands to fixed

point operands. As discussed in Section 2.6.1, an interpolating factor Di is the only floating point

number in the bilinear interpolation. Therefore, we represent Di by a fixed point number

D
(d)
i = (Di + εDi,d)× 10d, (4.1)

where εDi,d is the round-off error.

By replacing each Di with D(d)
i in Equation 2.1, we find the scaled color C ′s of a pixel s as

C ′s =

3∑
i=0

CiD
(d)
i

=
3∑

i=0

Ci(Di + εDi,d)× 10d (by Equation 4.1)

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 40

=
(3∑

i=0

CiDi +

3∑
i=0

CiεDi,d

)
× 10d

= (Cs + εCs)× 10d, (by Equation 2.1) (4.2)

where Cs is the scaled color by conventional bilinear scaling, and

εCs =

3∑
i=0

CiεDi,d

is the scaling error.

Given that the color of each pixel Ci satisfies 0 ≤ Ci ≤ 255, by using Corollary 1, εCs can be

calculated to be −510 × 10−d ≤ εCs ≤ 510 × 10−d. Furthermore, we know that the scaled color

Cs also satisfies 0 ≤ C ≤ 255. Therefore we can conclude that C ′s satisfies

(255− 510× 10−d)× 10d ≤ C ′s ≤ (255 + 510× 10−d)× 10d. (4.3)

Note that by rounding off the interpolating factors by d decimal places, we restrict the maximum

number of scaled images to 10d − 1. However, as the maximum number of decimal places that

an interpolating factor can take is restricted in a computer, one can choose d to be large enough

to cover all possible scaled images. Therefore, we can claim that the proposed modified bilinear

interpolation provides a sufficiently large number of scaled images.

4.2 Scaling/Cropping an Image in Hidden Domain

We now describe how we will use the new secret image sharing scheme in scaling/cropping an

image in hidden domain. Figure 4.1 shows the three components of our framework: the image

source (which is the server), n datacenters, and the user. This framework has been designed with

the assumptions that: (i) the image source and the user are trusted entities, (ii) the datacenters do

not communicate confidential information among themselves, and (iii) an adversary cannot access

more that k − 1 datacenters.

As shown in Figure 4.2, a typical workflow of storing and recovering an image can be divided

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 41

Shadow Image

Preparation

Shadow Image

Preparation

S
e

c
re

t

 Shadow 1

Shadow 2

Shadow n

Secret Image

Recovery

Scaled/C
ro

pped

Shadow Im
age n

Scaled/Cropped

Shadow Image k

Scaled/Cropped

Shadow Image 2

Scaled/C
ropped

Shadow
 Im

age 1

Image Source

User

Scaling and Cropping

DC 2

DC 1

DC n

Image Display

Figure 4.1: Secure cloud-based image scaling/cropping.

into four steps: (i) shadow image preparation, (ii) image scale/crop request, (iii) shadow image

scaling/cropping, and (iv) secret image recovery.

4.2.1 Shadow image preparation

In the first step, the server creates n shadow images by applying our secret image sharing technique

on the secret image. Thus, it computes Fi(x) for each pixel i of the secret image for n different

values of x.

To define a Fi(x), we need to pick a prime number q that is greater than the reconstructed secret.

In our case, the reconstructed secret, which can be C ′s (when the shared color values are interpo-

lated), has the maximum value of (255+510×10−d)×10d (by Equation 4.3). Therefore, the server

must choose q greater than (255 + 510× 10−d)× 10d. Furthermore, the shares of the color values

that are added together must belong to one GF(q). As the server has no prior knowledge of which

of the shared colors will be added, it can use one q for all the polynomials. In finding the value of

q, the server also needs to fix the value of d in this step.

Using q, the server defines a secret sharing polynomial Fi(x) for its ith pixel as

Fi(x) =
(
Ri +Gix+Bix

2 + αi,x

)
mod q, (4.4)

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 42

𝐶𝑠, 𝑝
′

𝐶𝑖, 𝑝 pth Shadow Image

𝐶𝑖, 𝑝 𝐶𝑖+1, 𝑝

𝐶𝑖+3, 𝑝 𝐶𝑖+2, 𝑝

Secret Image pth Shadow Image

𝐶𝑖, 𝑝

𝑤ℎ𝑒𝑟𝑒, 𝑄𝑖 = (𝑅𝑖 , Gi, Bi)

𝑄𝑖 𝑄𝑖+1

𝑄𝑖+2 𝑄𝑖+3

𝐶𝑖+1, 𝑝

𝐶𝑖+3, 𝑝 𝐶𝑖+2, 𝑝

(a)

𝐶𝑠, 𝑝
′

𝐶𝑖, 𝑝 pth Shadow Image

𝐶𝑖, 𝑝 𝐶𝑖+1, 𝑝

𝐶𝑖+3, 𝑝 𝐶𝑖+2, 𝑝

Secret Image pth Shadow Image

𝐶𝑖, 𝑝

𝑤ℎ𝑒𝑟𝑒, 𝑄𝑖 = (𝑅𝑖 , Gi, Bi)

𝑄𝑖 𝑄𝑖+1

𝑄𝑖+2 𝑄𝑖+3

𝐶𝑖+1, 𝑝

𝐶𝑖+3, 𝑝 𝐶𝑖+2, 𝑝

(b)

𝐶𝑠, 1
′

𝐶𝑠, 2
′

𝐶𝑠, 𝑘
′

𝑤ℎ𝑒𝑟𝑒, 𝑄𝑠
′ = (𝑅𝑠 + 𝜖𝑅,𝑠,

Gs + 𝜖𝐺,𝑠, Bs + 𝜖𝐵,𝑠)

Scaled Secret
Image

k S
ca

le
d

 S
h

a
d

o
w

 Im
a

g
e

s

𝑄𝑠
′

(c)

𝐶𝑖, 1

𝐶𝑖, 2

𝐶𝑖, 𝑘

𝑄𝑖

Cropped Secret
Image

k C
ro

p
p
e

d
 S

h
a

d
o

w
 Im

a
g
e

s

(d)

Figure 4.2: Workflow of secure cloud-based image scaling/cropping framework: (a) shadow image
preparation, (b) scaling/cropping of pth shadow image, (c) recovery of secret scaled image, (d)
recovery of secret cropped image.

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 43

where Ri, Gi, and Bi are the colors of the pixel, αi,x =
∑k−1

j=3 ai,jx
j , and ai,j are randomly chosen

integers. Using this polynomial, the pth share of all three colors can be found by

Ci,p = Fi(p) =
(
Ri +Gip+Bip

2 + αi,p

)
mod q, (4.5)

where αi,p =
∑k−1

j=3 ai,jp
j . The pth (for all 1 ≤ p ≤ n) shadow image is then constructed with

Ci,p as the color value of its ith pixel. This shadow image is sent to the pth datacenter. As shown in

Figure 4.3, a shadow image is a noise-like image, and therefore, it does not disclose any information

about the secret image to the datacenter.

4.2.2 Shadow image scaling/cropping

When a user requests to view an image, it will supply the datacenters with three parameters, scaling

factors w and h (note that in practice w = h), and a rectangular region of interest I . Upon request,

each datacenter scales a shadow image using modified bilinear interpolation and crops the shadow

image by selecting the color values of only the pixels that are part of the requested region I (as

shown in Figure 4.2b). As cropping is equivalent to the existing cropping technique, we will not

discuss it further. For scaling, we will only discuss the scaling of the pth shadow image that is

performed by the pth datacenter as the scaling of one shadow image is equivalent to the scaling of

another.

To scale its shadow image, the pth datacenter first computes D(d)
j , the integer representative

of the jth interpolating factor Dj , from the scaling factors h and w, and the round-off parameter

d. Then, depending on the value of h and w, the datacenter iteratively selects the color values

{Ci,p, Ci+1,p, Ci+2,p, Ci+3,p} of four pixels and interpolates them. Therefore, by Equation 4.2, the

interpolated color C ′s,p of the sth pixel of the scaled image can be derived as

C ′s,p =
3∑

j=0

Ci+j,pD
(d)
j

=
3∑

j=0

(
(Ri+j +Gi+jp+Bi+jp

2 + αi+j,p) mod q
)
D

(d)
j (by Equation 4.5)

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 44

≡
(3∑

j=0

(Ri+j +Gi+jp+Bi+jp
2 + αi+j,p)D

(d)
j

)
mod q

≡
(3∑

j=0

Ri+jD
(d)
j +

3∑
j=0

Gi+jpD
(d)
j +

3∑
j=0

Bi+jp
2D

(d)
j +

3∑
j=0

αi+j,pD
(d)
j

)
mod q

≡
(3∑

j=0

Ri+jD
(d)
j +

3∑
j=0

Gi+jpD
(d)
j +

3∑
j=0

Bi+jp
2D

(d)
j +

3∑
j=0

k−1∑
l=3

ai+j,lp
lD

(d)
j

)
mod q

(
Substituting αi,p =

k−1∑
j=3

ai,jp
j
)

≡
((3∑

j=0

Ri+j(Dj + εDj ,d) +

3∑
j=0

Gi+jp(Dj + εDj ,d) +

3∑
j=0

Bi+jp
2(Dj + εDj ,d)

+

3∑
j=0

k−1∑
r=3

ai+j,rp
r(Dj + εDj ,d)

)
× 10d

)
mod q (4.6)

(
Substituting D(d)

j = (Dj + εDj ,d)× 10d
)

≡
((3∑

j=0

(Ri+jDj +Ri+jεDj ,d) +

3∑
j=0

(Gi+jDj +Gi+jεDj ,d)p+

3∑
j=0

(Bi+jDj (4.7)

+ εBi+jDj ,d)p2 +

3∑
j=0

k−1∑
r=3

ai+j,rp
r(Dj + εDj ,d)

)
× 10d

)
mod q

≡
(
(R′s +G′sp+B′sp

2 +

k−1∑
r=3

Krp
r)× 10d

)
mod q (by Equation 4.2), (4.8)

where R′s = (Rs + εRs), G′s = (Gs + εGs), and B′s = (Bs + εBs) are the interpolated red, green,

and blue color values; Rs,Gs, andBs are the red, green, and blue values of s when the interpolation

is performed by conventional bilinear interpolation; εRs , εGs , and εBs are the scaling errors of Rs,

Gs, and Bs; and Kr =
∑3

j=0,(εDj ,d + εj)ai+j,r

)
is a constant for all the shares.

The resulting scaled and cropped shadow image is then sent to the user.

4.2.3 Secret image recovery

As shown in Figure 4.2c and Figure 4.2d, in this step, the user recovers the scaled/cropped secret

image from any k scaled/cropped shadow images by reconstructing the color of a pixel of the secret

image from the colors of the pixels of the shadow images. The reconstruction depends on the type

of operation (i,e., scaling or cropping) performed on a shadow image. The color of a pixel of a

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 45

scaled image is recovered from the colors of the scaled shadow images given by Equation 4.6 (i.e.,

C ′s,p’s), and the color of a pixel of a cropped image is recovered from the cropped shadow images

given in Equation 4.5 (i.e., Ci,p’s).

To reconstruct the color of the sth pixel in the scaled secret image, Lagrange interpolation is first

applied on the color values of the sth pixel of k scaled shadow images to find the polynomial

L(x) =

k−1∑
i=0

C ′s,xi
ti(x) mod q

=
k−1∑
i=0

(((
R′s +G′sxi +B′sx

2
i +

k−1∑
r=3

Krx
r
i

)
× 10d

)
mod q

)
ti(x) mod q (4.9)

(by Equation 4.6)

=
k−1∑
i=0

((
R′s +G′sxi +B′sx

2
i +

k−1∑
r=3

Krx
r
i

)
× 10d

)
ti(x) mod q,

where xi is the ith share number and ti(x) is the Lagrange basis function. By the Unisolvence

theorem,

L(x) =
((
R′s +G′sx+B′sx

2 +

k−1∑
r=3

Krx
r
)
× 10d

)
mod q.

Thus, we can obtain R′s, G′s, and B′s by first dividing L(x) by 10d, and then solving the polynomial

L(x)
10d

. Direct formulas to obtain R′s, G′s, and B′s are

R′s =

∑k−1
i=0

∑k−1
j=0,j 6=i

∑k−1
r=j+1,r 6=i xjxr∏3

j=0,j 6=i(xi−xj)
C ′s,xi

10d
,

G′s = −

∑k−1
i=0

∑k−1
j=0,j 6=i xj∏k−1

j=0,j 6=i(xi−xj)
C ′s,xi

10d
,

and

B′s =

∑k−1
i=0

1∏k−1
j=0,j 6=i(xi−xj)

C ′s,xi

10d
.

As the magnitude of each of the scaling errors εRs , εGs , and εBs is bound by ±51 × 101−d (by

Equation 4.3), for a sufficiently large d, obtained red R′s, green G′s, and blue B′s colors are close to

Rs, Gs, and Bs, respectively.

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 46

Table 4.1: Data Sets

Name Dimension Size
Histo 2756× 3663 28.9 MB
Drom 3000× 4000 34.4 MB
Lena 512× 512 768 KB
Singa 2110× 1000 6.1 MB

Alternatively, the color value of the sth pixel in the cropped secret image is obtained by first

finding the Lagrange interpolated polynomial

L(x) =
k−1∑
i=0

Cs,xiti(x) mod q

=

k−1∑
i=0

(
Rs +Gsxi +Bsx

2
i +

k−1∑
j=3

ajx
j
i

)
ti(x) mod q (by Equation 4.5)

= (Rs +Gsx+Bsx
2 +

k−1∑
j=3

ajx
j) mod q (by the Unisolvence Theorem)

from the color values of the sth pixel of k cropped shadow images; and then solving L(x) to obtain

Rs, Gs, and Bs. Unlike image scaling, no division by 10d is required as the color value of a pixel

of a shadow image was not multiplied by 10d during image cropping.

4.3 Results and Analyses

We first implemented the proposed secret image sharing scheme and modified bilinear scaling using

C as the programming language and on the Ubuntu platform. We used k = 4 and n = 5 for our

ramp secret sharing, and d = 2 in modified-bilinear interpolation. We tested this experimental

setup with four color (i.e., RGB) images: a histopathological image called Histo, a military band

image called Band, the popular Lena image, and a Singapore city image called Singa. The details

of these images are provided in Table 4.1. Furthermore, we implemented our cloud-based image

scaling/cropping framework by simulating the server, datacenters, and the client in a PC powered by

an Intel Core 2 Quad 2.83 Ghz processor and 4 GB of RAM. The simulation uses PHP to implement

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 47

(a) Secret Histo (b) Secret Lena (c) Secret Band (d) Secret Singa

(e) First Share of Histo (f) First Share of Lena (g) First Share of Band (h) Fifth Share of Singa

(i) Second Share of Histo (j) Second Share of Lena (k) Second Share of Band (l) Second Share of Singa

(m) Third Share of Histo (n) Third Share of Lena (o) Fourth Share of Band (p) Third Share of Singa

(q) Fourth Share of Histo (r) Fifth Share of Lena (s) Fifth Share of Band (t) Fourth Share of Singa

(u) Recovered Histo (v) Recovered Lena (w) Recovered Band (x) Recovered Singa

Figure 4.3: Application of (3, 4, 5) randomized ramp secret sharing on images.

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 48

the datacenters, the Apache Web Server to host the datacenters, and Windows WPF to implement

the client. The client-datacenter communication is facilitated by the HTTP protocol. We tested this

simulation with the military band image.

Figure 4.3 shows the results of our secret image sharing scheme. As can be verified from this

figure, the shadow images are noise-like images. Therefore, they do not perceptually disclose any

information of the secret image to datacenters. Figure 4.4 demonstrates scaling on shadow images,

and Figure 4.6 demonstrates cropping on shadow images. As can be verified from the figures,

any scaled/cropped shadow images are noise-like, but with the knowledge of at least four of them,

the secret scaled/cropped image can be recovered. Figure 4.6 shows the zooming and panning

operations in our secure image scaling/cropping framework.

4.3.1 Security analysis

To support the claim that the proposed framework ensures data confidentiality and data integrity,

we analyze it in this section.

Confidentiality

In addition to being perceptually secure, which can be verified from Figure 4.3, Figure 4.4, and

Figure 4.5, our scheme is perfectly secure in a group of at most (k − 3) datacenters as we use 3

secrets and k−3 random numbers in ramp secret sharing [59]. Therefore, an adversary, irrespective

of his/her computational power, cannot obtain any information about the secret image by accessing

at most (k − 3) datacenters. Furthermore, even if the adversary is able to access (k − 2) or (k − 1)

datacenters, he/she can only get 1
3 or 2

3 of the secret information as our secret sharing is a (3, k, n)

ramp secret sharing scheme [58, 59]. Although leakage of this information can decrease the number

of possible values that a color component can take from 256 to 256
3 or 2×256

3 respectively, it cannot

change the search space of the color component from 0 − 255 [58]. Therefore, the randomness in

finding the secret image is less affected, and, as shown in the figures, the recovered image from

k − 1 or k − 2 shadow images is a noise-like image.

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 49

(a) Required Scaled Image (b) Scaled Shadow Image (c) Recovered Scaled Image

(d) Required Scaled Image (e) Scaled Shadow Image (f) Recovered Scaled Image

(g) Required Scaled Image (h) Scaled Shadow Image (i) Recovered Scaled Image

(j) Required Scaled Image (k) Scaled Shadow Image (l) Recovered Scaled Image

Figure 4.4: Secure cloud-based scaling of Histo, Lena, Band, and Singa images.

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 50

(a) Required Cropped Image (b) Cropped Shadow Image (c) Recovered Cropped Image

(d) Required Cropped Image (e) Cropped Shadow Image (f) Recovered Cropped Image

(g) Required Cropped Image (h) Cropped Shadow Image (i) Recovered Cropped Image

(j) Required Cropped Image (k) Cropped Shadow Image (l) Recovered Cropped Image

Figure 4.5: Secure cloud-based cropping of Histo, Lena, Band, and Singa images.

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 51

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Zooming and panning operations in secure image scaling/cropping framework

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 52

(a) (b) (c) (d)

Figure 4.7: ((a), (b))- two recovered images when a shadow image of Histo is tampered; ((c), (d)) -
two recovered images when two shadow images of Histo are tampered.

Integrity

By inheriting the property of secret sharing that uses the condition k < n, the proposed scheme also

ensures data integrity by detecting any tampering with the shadow images and stopping a user from

using a tampered image. The k < n condition provides
(
n
k

)
number of ways to recover the secret

image from n shadow images. Therefore, a user can recover the same secret image using two or

many ways yielding two or more recovered images. If one or more shadow images used in finding

the recovered images are tampered with, then the recovered images will be dissimilar to each other

and to the secret image (as shown in Figure 4.7). Therefore, by comparing the recovered images,

the user can detect tampering with the shadow images and discard all the recovered images. Note

that the user need to compare at most
(
n−1
k

)
+ 1 recovered images to detect tempering.

Availability

By inheriting the property of secret sharing, our framework also ensures data availability as the

client is able to reconstruct the secret image even if at most n− k number of datacenters are unable

to participate.

4.3.2 Performance analysis

In this section, we analyze our framework’s data overhead in transmitting the shadow images to the

user and computational overhead in recovering the secret image. These costs affect the latency of

accessing and interacting with the stored images. We are less concerned with the computational

cost of preparing the shadow images since it can be done offline.

CHAPTER 4. SECURE CLOUD-BASED IMAGE SCALING/CROPPING 53

In our scheme, a user requires the scaled/cropped shadow images of at least k datacenters to

recover the scaled/cropped secret image. Therefore, if b bits are needed to represent a color value of

a pixel of the shadow image, a total of bk bits are required to reconstruct the color value of a pixel

of the secret image. As a result, the data overhead of our scheme is bk−24
24 times more than that of

the conventional image streaming. The value of b, however, is equal to the number of bits required

to represent the prime number q that is greater than (255 + 51× 101−d)× 10d as b ∈ GF(q). As a

result, for a typical case of d = 2 and k = 4, the data overhead of our scheme can be calculated to

be one and half times more than that of the conventional streaming – such significant data overhead

is the main weakness.

The computational overhead in recovering a secret image is dependent on the computation cost

w of the Lagrange interpolation that reconstructs a secret color value of a pixel, and the dimensions

of the secret image. Our C implementation on a PC with an Intel Core 2 Quad 2.83 Ghz processor

and 4GB of RAM recovers the secret image from the first, second, third, and fourth shadow yields

w = 0.3 µs: due to which, approximately 78.65 ms are required to recover a secret image of

512× 512 dimension.

4.4 Chapter Summary

In this chapter, we first proposed a new (3, k, n) secret image sharing scheme that both preserves

the homomorphic property of Shamir’s secret sharing and the pixel positions of the secret image

in a shadow image, to allow scaling and cropping operations on the shadow image. We then used

this secret image sharing scheme to design a secure cloud-based image scaling/cropping framework

that stores a shadow image in a datacenter, allows the datacenter to perform image scaling/cropping

operations on its shadow image, and allows a user to recover the secret scaled/cropped image from k

scaled/cropped shadow images. We showed that our scheme can also detect tampering of a shadow

image, and can withstand the breakdown of certain number of datacenters.

54

Chapter 5

Secure Cloud-based Pre-classification

Volume Ray-casting

In this chapter, we discuss our secure cloud-based pre-classification volume ray-casting framework

that uses Shamir’s secret sharing to hide the color information of 3D volumetric data from the

datacenters.

The core idea of the proposed scheme is to use Shamir’s secret sharing to hide the color informa-

tion of volume data from cloud datacenters. Upon a user’s request, the datacenters can then render

color-hidden images, which can be used by the user to recover the secret rendered image. However,

the incompatibility of the floating point operations of volume ray-casting with secret sharing is an

issue.

Since we pre-compute pre ray-projection rendering components, such as gradient/normal esti-

mation, classification, and shading, we are not concerned about their floating point operations. We

are also less concerned about floating point operations associated with opacity interpolation and

composition as we do not hide opacities. We are only concerned about the floating point operations

of color interpolation and composition.

As discussed in Chapter 3, we can address the incompatibility of color interpolation and composi-

tion with floating point numbers by two approaches: either (i) exclude the modular prime operation

from Shamir’s secret sharing, or (ii) convert the floating point operation of color interpolation and

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 55

composition to fixed point operations. We use both these approaches. Using the former approach,

we propose SR-MPVR (Secure Rendering by Modification of Shamir’s Secret Sharing), and using

the latter approach, we design SR-MSSS (Secure Rendering by Modification of Pre-classification

Volume Ray-casting). As both these techniques incur high data overhead, we propose a third tech-

nique called SR-RSS (Secure Rendering by Ramp Secret Sharing), which improves upon SR-MSSS

by first replacing modified Shamir’s secret sharing with a modified (3, 4, 5) ramp secret sharing, and

then restricting the value of a share (which is a floating point number) to a smaller number and rep-

resenting the restricted value with an integer.

In the following sections, we first modify pre-classification volume ray-casting to perform only

fixed point operations, and then explain our secure cloud-based volume rendering framework using

SR-MPVR, SR-MSSS, and SR-RSS in detail.

5.1 Pre-classification Volume Ray-casting with Fixed Point Operations

To make Shamir’s secret sharing compatible with pre-classification volume ray casting, we perform

the arithmetic operations involved over a finite field, in the integer domain, instead of floating point.

In this section, we outline the steps that required this change and analyze the numerical precision

required to bound the error in the resulting rendered color to within one.

5.1.1 Modifying interpolation

The interpolation of the colors, which is given in Equation 2.2, adds N(s) multiplied values, where

each multiplication is between an integer Cv and a float Dv. Therefore, to convert the interpolation

to a fixed point operation, we replace Dv with a fixed point number D(d)
v obtained by first rounding

off Dv by d decimal places and then multiplying 10d by the rounded off value. Mathematically,

D
(d)
v is written as

D(d)
v =

(
Dv + εDv ,d

)
× 10d, (5.1)

where εDv ,d is the round-off error.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 56

By replacing Dv with D(d)
v in Equation 2.2, we obtain the scaled interpolated color as

C ′s =
∑

v∈N(s)

CvD
(d)
v (5.2)

=
∑

v∈N(s)

Cv

(
Dv + εDv ,d

)
× 10d (by Equation 5.1)

=
∑

v∈N(s)

(
CvDv + CvεDv ,d

)
× 10d

=
(∑

v∈N(s)

CvDv +
∑

v∈N(s)

CvεDv ,d

)
× 10d

=
(
Cs +

∑
v∈N(s)

CvεDv ,d

)
× 10d (by Equation 2.2)

=
(
Cs + εCs

)
× 10d, (5.3)

where εCs =
∑

v∈N(s)CvεDv ,d is the error resulting from the interpolation step. This error satisfies

the following result.

Lemma 1. If εCs =
∑

v∈N(s)CvεDv ,d denotes the error in the interpolation of colors, then εCs is

bounded by the lower bound

εCs,min = −1020× 10−d

and the upper bound

εCs,max =

89.25, if d = 1

1020× 10−d, if d > 1

.

Proof. It is given that εCs =
∑

v∈N(s)CvεDv ,d, where Cv is the color of a data voxel v, εDv ,d is

the error in rounding off Dv by d decimal paces, and N(s) is the number of neighbouring data

voxels of the sample point s. By Inequality 2.4, Cv satisfies 0 ≤ Cv ≤ 255; and by Proposition 1

and Proposition 2, εDv ,d satisfies −0.5 × 10−d ≤ εDv ,d ≤ 0.5 × 10−d. Therefore in an ideal

case, the lower bound εCs,min and the upper bound εCs,max of εCs can be obtained by setting(
Cv = 255, εDv ,d = −0.5 × 10−d

)
and

(
Cv = 255, εDv ,d = 0.5 × 10−d

)
respectively. However,

as discussed below, for d = 1, we cannot choose εDv ,d = 0.5× 10−d for all eight neighboring data

voxels N(s) of s.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 57

By Proposition 2, the error εDv ,d = 0.5 × 10−d is obtained when the dth digit of Dv is an odd

number, the (d + 1)th digit is five, and for all t > 1, the (d + t)th digit is zero. For d = 1, the

lowest possible value ofDv that can satisfy this condition is 0.15. By Equation 2.5, the sum of eight

Dv’s corresponding to each v ∈ N(s), however, must be equal to one. Thus, even if we choose

Dv = 0.15, we can get a maximum of six Dv’s that can result in εDv ,d = 0.5× 10−d. The rounding

errors of the remaining two Dv’s, whose sum must be 1− 0.15× 6 = 0.10, are −δ and +δ, where

0.001 ≤ δ ≤ 0.049.

However, for d > 1, we can get eight Dv’s resulting in εDv ,d = 0.5 × 10−d, as each of them

can satisfy Proposition 2. For d ≥ 2, one set of such Dv’s can contain seven r1’s, where r1 =

0.00 . . . 0(d− 1 times)15, and one r2, where r2 = 0.99 . . . 9(d− 2 times)895.

Alternatively, for d ≥ 1, we can also get eight Dv’s resulting in εDv ,d = −0.5 × 10−d, as each

of them can satisfy Proposition 1. For d ≥ 1, one set of such Dv’s can contain seven r1, where

r1 = 0.00 . . . 0(d times)5, and one r2, where r2 = 0.99 . . . 9(d− 1 times)65.

To obtain εCs,min, we set Cv = 255, εDv ,d = −0.5× 10−d, and N(s) = 8 in the formula of εCs ,

and get

εCs,min =

8∑
i=1

255× (−0.5× 10−d)

= −1020× 10−d.

To obtain εCs,max, we, however, consider two cases: d = 1 and d > 1. For d = 1, we choose

Cv = 255 for all six data voxels that result in round-off error εDv ,d = 0.5 × 10−d, and for the

data voxels that result in round-off error εDv ,d = +δ. To neutralize the negative round-off error

εDv ,d = −δ of the remaining data voxel, we choose its color as Cv = 0. Furthermore, to maximize

εCs,max, we choose the value of δ as 0.049, which can be assumed to be 0.05 with a negligible error.

Therefore, for d = 1, we can obtain εCs,max as

εCs,max =
(6∑
i=1

255× (5× 10−(1+1))
)

+
(
255× 0.5

)
+
(
0× 0.5

)
= 89.25.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 58

For d > 1, we set Cv = 255, εDv ,d = 0.5× 10−d, and N(s) = 8 in the formula of εCs , and obtain

εCs,max as

εCs,max =
8∑

i=1

255× (0.5× 10−d)

= 1020× 10−d.

As a result, we can write εCs,max as

εCs,max =

89.25, if d = 1

1020× 10−d, if d > 1.

5.1.2 Modifying composition

The composition of color, as given in Equation 2.9, adds c multiplied values, where each mul-

tiplication is between two floating point numbers, Csi and Oi. Thus, to convert composition to

integer-only operation, we replace Csi with C ′si (written in Equation 5.3), and Oi by a fixed point

number

O
(f)
i =

(
Oi + εOi,f

)
× 10f , (5.4)

where εOi,f is the rounding error due to rounding off Oi to f decimal places.

By putting C ′s in the place of Cs and O(f)
i in the place of Oi in Equation 2.9, we obtain scaled

composite color C ′ as

C ′ =
c∑

i=1

C ′siO
(f)
i (5.5)

=

c∑
i=1

(
Csi + εCsi

)
O

(f)
i × 10d (by Equation 5.3)

=
c∑

i=1

(
Csi + εCsi

)(
Oi + εOi,f

)
× 10d+f (by Equation 5.4)

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 59

=

c∑
i=1

(
CsiOi + εCsi

Oi + CsiεOi,f + εCsi
εOi,f

)
× 10d+f

=
(c∑

i=1

CsiOi +
c∑

i=1

(
εCsi

Oi + CsiεOi,f + εCsi
εOi,f

))
× 10d+f

=
(
C +

c∑
i=1

(
εCsi

Oi + CsiεOi,f + εCsi
εOi,f

))
× 10d+f (by Equation 2.9)

= (C + εC)× 10d+f , (5.6)

where εC =
∑c

i=1

(
εCsi

Oi+CsiεOi,f +εCsi
εOi,f

)
is the round-off error resulted in the composition

step. This error’s lower bound and upper bound are calculated by Theorem 2.

Remark 1. The color C ′ is scaled up by 10d+f in the rendering stage. Therefore, it must be scaled

down by 10d+f after rendering.

Theorem 2. If εC =
∑c

i=1

(
εCsi

Oi + CsiεOi,f + εCsi
εOi,f

)
is the total round-off error resulting

from the composition step, then εC is bounded by the lower bound

εC,min =

εC,min,1, if c ≥ 1
0.5×10−f

max(εC,min,2,−255), if c < 1
0.5×10−f and c is divisible by 4

max(εC,min,3,−255), if c < 1
0.5×10−f and c is divisible by 2 but not divisible by 4

max(εC,min,4,−255), if c < 1
0.5×10−f and c is not divisible by 2

,

where

εC,min,1 = −255,

εC,min,2 =
(
510c× 10−(f+d)

)
−
(
127.5c× 10−f

)
−
(
1020× 10−d

)
,

εC,min,3 =
(
510(c− 2)× 10−(f+d)

)
−
(
127.5(c− 2)× 10−f

)
−
(
1020× 10−d

)
,

εC,min,4 =
(
510(c− 1)× 10−(f+d)

)
−
(
127.5(c− 1)× 10−f

)
−
(
1020× 10−d

)
;

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 60

and the upper bound

εC,max =

(127.5×min(
Oc

i

0.5×10−f , c)× 10−f) + 89.25Oc
i

+ (446.2×min(
Oc

i

0.5×10−f , c)× 10−(f+d)), if d = 1

(127.5×min(
Oc

i

0.5×10−f , c)× 10−f) + (1020Oc
i × 10−d)

+ (510×min(
Oc

i

0.5×10−f , c)× 10−(f+d)), if d > 1,

where Oc
i satisfies the condition 255Oc

i + εC,max = 255.

Proof. It is given that εC =
∑c

i=1

(
εCsi

Oi + CsiεOi,f + εCsi
εOi,f

)
, where Csi is the interpolated

color of a sample point, εCsi
is the round-off error in color interpolation, and εOi,f is the error

in rounding off Oi. Of the four variables used in the formulation, Csi and εCsi
are free from the

number of sample points c, but Oi and εOi,f are dependent on the value of c since Oi must satisfy∑c
i=1Oi ≤ 1. Furthermore, we know that Csi and εCsi

satisfy the conditions 0 ≤ Csi ≤ 255 (by

Inequality 2.6) and εCsi ,min ≤ εCsi
≤ εCsi ,max (by Lemma 1) respectively. Thus, the lower bound

of εC , denoted by εC,min, can be found when Csi = 255 and εCsi
= εCsi ,min; and the upper bound

of εC , denoted by εC,max, can be found when Csi = 255 and εCsi
= εCsi ,max. As a result, the

formula to obtain the lower bound of εC , εC,min, can be written as

εC,min = εCs,min

c∑
i=1

Oi + 255
c∑

i=1

εOi,f + εCs,min

c∑
i=1

εOi,f

= εCs,minO
c
i + 255

c∑
i=1

εOi,f + εCs,min

c∑
i=1

εOi,f , (5.6)

and the formula to obtain the upper bound of εC , εC,max, can be written as

εC,max = εCs,max

c∑
i=1

Oi + 255

c∑
i=1

εOi,f + εCs,max

c∑
i=1

εOi,f

= εCs,maxO
c
i + 255

c∑
i=1

εOi,f + εCs,max

c∑
i=1

εOi,f , (5.7)

where Oc
i =

∑c
i=1Oi.

As Oc
i > 0 and εOi,f < 0, to obtain the value of εC,min, we have to maximize the value of Oc

i

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 61

and minimize the value of
∑c

i=1 εOi,f . By Inequality 2.12, we know that Oc
i ≤ 1; therefore, we

can choose Oc
i = 1. In an ideal case, the minimum value of

∑c
i=1 εOi,f is obtained when each

εOi,f = −0.5 × 10−f . As discussed below, we cannot, however, choose εOi,f = −0.5 × 10−f for

all Oi’s, as they must be selected such that the condition Oc
i = 1 is satisfied.

Let us first find the value of each εOi,f when the number of sample points c satisfies c ≥ 1
0.5×10−f .

For c > 1
0.5×10−f , we can get c number of Oi’s such that each Oi is less than 1

0.5×10−f . When

rounded off by f decimal places, each of these Oi will result in a round-off error εOi,f = −Oi. As

a result,
∑c

i=1 εOi,f = −1. Similarly, for c = 1
0.5×10−f , we can get c number of Oi’s such that

the f th digit of each Oi is 0, the (f + 1)th digit is five, and for all t > 1, the (f + t)th digit is 0.

Therefore, by Proposition 1, each Oi will result in a round-off error εOi,f = −0.5×10−f : resulting∑c
i=1 εOi,f = −1.

Now let us find the value of each Oi when c < 1
0.5×10−f . In this case, we can choose c − 1

number of Oi’s such that the f th digit of each Oi is an even number, the (f + 1)th digit is five, and

for all t > 1, the (f + t)th digit is 0. Therefore, by Proposition 1, each Oi among c − 1 Oi’s can

result in a round-off error εOi,f = −0.5× 10−f . The round-off error of the remaining Oi, however,

depends on the divisibility of c with four. Firstly, if c is divisible by four, then the f th digit of the

remaining Oi is an even number, (f + 1)th digit is five, and for all t > 1, (f + t)th digit is zero.

Therefore, by Proposition 1, εOi,f of the remaining Oi is εOi,f = −0.5 × 10−f . Secondly, if c is

divisible by two but not divisible by four, then the f th digit of the remaining Oi is an odd number,

the (f + 1)th digit is five, and for all t > 1, the (f + t)th digit is zero. Therefore, by Proposition 2,

εOi,f of the remaining Oi is εOi,f = 0.5× 10−f . Finally, if c is an odd number, then the (f + 1)th

digit of each Oi is 0 and for all t ≥ 1, the (f + t)th digit is 0; resulting εOi,f = 0.

Now, putting these values of εOi,f andOi in the equation of εC,min, we can derive εC,min for four

different values of c as follows.

For c ≥ 1
0.5×10−f , we can set Oc

i = 1 and
∑c

i=1 εOi,f = −1 in Equation 5.6, and obtain εC,min

as

εC,min,1 = εCs,min − 255− εCs,min

= −255.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 62

For c < 1
0.5×10−f and c divisible by four, we can set Oc

i = 1, εCs,min = −1020 × 10d, and

εOi,f = −0.5× 10−f in Equation 5.6; and obtain εC,min as

εC,min,2 =
(
− 1020× 10−d × 1

)
+
(
255×

c∑
i=1

−0.5× 10−f
)

+
(
− 1020× 10−d

c∑
i=1

−0.5× 10−f
)

= 510c× 10−(f+d) − 127.5c× 10−f − 1020× 10−d.

For c < 1
0.5×10−f and c divisible by two but not divisible by four, we can set Oc

i = 1, εCs,min =

−1020 × 10−d, εOi,f = −0.5 × 10−f for c − 1 sample points, and εOi,f = 0.5 × 10−f for the

remaining sample point in Equation 5.6, and obtain εC,min as

εC,min,3 =
(
− 1020× 10−d × 1

)
+
(
255×

c−2∑
i=1

−0.5× 10−f
)

+
(
− 1020× 10−d

c−2∑
i=1

−0.5× 10−f
)

= 510(c− 2)× 10−(f+d) − 127.5(c− 2)× 10−f − 1020× 10−d.

Finally, for c < 1
0.5×10−f and c being an odd number, we can set Oc

i = 1, εCs,min = −1020 ×

10−d, and εOi,f = −0.5× 10−f for c− 1 sample points in Equation 5.6, and obtain εC,min as

εC,min,4 =
(
− 1020× 10−d × 1

)
+
(
255×

c−1∑
i=1

−0.5× 10−f
)

+
(
− 1020× 10−d

c−1∑
i=1

−0.5× 10−f
)

= 510(c− 1)× 10−(f+d) − 127.5(c− 1)× 10−f − 1020× 10−d.

The obtained value of εC,min cannot be less than −255 as both the condition 0 ≤ C ≤ 255 and

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 63

the condition 0 ≤ C + εC,min ≤ 255 must be satisfied. Therefore, we can write εC,min as

εC,min =

εC,min,1, if c ≥ 1
0.5×10−f

max(εC,min,2,−255), if c < 1
0.5×10−f and c is divisible by 4

max(εC,min,3,−255), if c < 1
0.5×10−f and c is divisible by 2 but not divisible by 4

max(εC,min,4,−255), if c < 1
0.5×10−f and c is not divisible by 2

.

Now let us derive the upper bound εC,max.

We know that Oc
i > 0 and that εOi,f can be a positive number, therefore the upper bound εC,max,

which is written in Equation 5.7, is a positive number. As a result, the obtained color C + εC,max

can be greater than the actual color C. By Inequality 2.14, both C + εC,max and C, however, must

satisfy the conditions C+ εC,max ≤ 255 (as 0 ≤ C+ ε ≤ 255) and 0 ≤ C ≤ 255, respectively. The

condition C < 255 is satisfied when Csi < 255 for at least one sample point orOi’s satisfyOc
i < 1.

Obtaining εC,max by considering the former case is tedious as it will affect the error analysis in the

interpolation step. Therefore, we will consider the latter required condition: Oc
i < 1 that satisfies

H = 255Oc
i + εC,max = 255. In other words, to find εC,max, we have to choose Oi’s such that H

is satisfied and
∑c

i=1 εOi,f is maximized.

The maximum value of
∑c

i=1 εOi,f is obtained when the Oi’s are chosen in such a way that most

Oi’s have round-off error εOi,f = 0.5 × 10−f . Ideally, εOi,f = 0.5 × 10−f is obtained when

Proposition 2 is satisfied. Finding a fixed number of Oi’s that can satisfy Proposition 2, however, is

difficult as we do not know the upper bound ofOc
i in advance. Therefore, we consider the alternative

case of Oi = 5× 10−f+1 + δ that can result in round-off error εOi,f = 0.5× 10−f with δ ≈ 0. In

this case, the number of Oi’s having a round-off error εOi,f = 0.5 × 10−f , however, is dependent

on the number of sample points c and the value of Oc
i as discussed below.

For c ≥ Oc
i

0.5×10−f , the maximum number of Oi’s that can yield a round-off error 0.5 × 10−f is

approximately Oc
i

0.5×10−f , as each Oi must be equal to 0.5 × 10−f + δ. For c < Oc
i , c number of

Oi’s, however, can result εOi,f = 0.5× 10−f .

Therefore, by setting Cs = 255, and the error εOi,f = 0.5× 10−f for min(
Oc

i

0.5×10−f , c) times in

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 64

Equation 5.7, we can obtain εC,max as

εC,max =

(127.5×min(
Oc

i

0.5×10−f , c)× 10−f) + 89.25Oc
i

+ (446.2×min(
Oc

i

0.5×10−f , c)× 10−(f+d)), if d = 1

(127.5×min(
Oc

i

0.5×10−f , c)× 10−f) + (1020Oc
i × 10−d)

+ (510×min(
Oc

i

0.5×10−f , c)× 10−(f+d)), if d > 1,

where Oc
i satisfies the equation 255Oc

i + εC,max = 255.

Due to the error in composition, C ′ satisfies

C ′ ≤ (C + εC,max)× 10d+f

≤ (255 + εC,max)× 10d+f (by Inequality 2.14). (5.8)

We know that the color of a pixel is a natural number obtained by truncating the fractional part

of the composited color. Therefore, a round-off error εC , which cannot change the integral part of

C, does not change the rendered color, and hence the error is not effective. Thus, we claim the

following.

Claim 3. If εC is the round-off error in the composition of colors, then the effective round-off error

εC,eff is obtained by

εC,eff = bC + εc − bCc,

where C is the composited color by conventional pre-classification volume ray-casting.

Corollary 2. If c, the number of sample points along a ray, satisfies c ≤ 7× 10t, where t ∈ N and

t > 1, then for d ≥ 4 and f ≥ t+ 3, the effective rounding error εC,eff is bounded by ±1.

Proof. By Claim 3, the rounding error εC,eff is bounded by ±1 when εC,min and εC,max satisfy

conditions −1 < εC,min < 0 and 0 < εC,max < 1 respectively. Therefore, we will analyze the

conditions to find the value of d and f that satisfies εC,min > −1 and εC,max < 1.

We can write εC,max as εC,max = a1 + a2 + a3, where a1 = 127.5c× 10−f , a2 = 1020× 10−d,

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 65

and a3 = 510c × 10−(f+d). Thus, to obtain εC,max < 1, each of a1, a2, and a3 must be less than

one.

By choosing d ≥ 4, we get a2 ≤ 0.102, and for this value of d, a1 ≤ 0.8925 when c ≤ 7 × 10t

and f ≥ t+ 3. For these values of d and f , we get a3 ≤ 0.000357. Thus, for d ≥ 4 and f ≥ t+ 3,

εC,max can satisfy εC,max < 1.

Similarly, we can write the equation of εC,min as εC,min = −a1− a2 + a3. For the above chosen

value of a1, a2, and a3, εC,min > −1.

Hence, we conclude that for c ≤ 7× 10t, d ≥ 4, and f ≥ t+ 3, εC,eff is bounded by ±1

5.2 Cloud-Based Secure Rendering

Using the above modified ray-casting operations, we can now describe how secret sharing is done.

We first present our secure cloud-based rendering framework using standard Shamir’s secret sharing

and the modified ray-casting operations (SR-MPVR). Then, we describe SR-MSSS, which uses a

weakened version of Shamir’s secret sharing and standard ray-casting operations. Finally, a more

efficient version that uses ramp secret sharing (SR-RSS) is presented.

5.2.1 Architecture

The architecture of our framework consists of three components: the server (e.g., a hospital) that

hosts the secret data, n cloud datacenters, and the client (e.g., doctor) who intends to access the

secret image (Figure 5.1). We assume that: (i) the server and the client are trusted entities, (ii)

the datacenters do not share or exchange the confidential data/image with each other, and (iii) the

datacenters and the client are connected to each other via a two-way high speed network.

5.2.2 SR-MPVR

As shown in Figure 5.2, the workflow of the proposed framework can be divided into four steps: (i)

data preparation, (ii) ray-projection, (iii) post ray-projection rendering, and (iv) image recovery.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 66

Datacenter
1

Datacenter
2

Datacenter
n

Image
Recovery

Image
Display

Client

Post Ray-projection
Rendering

Data
Capturing

Data
Preparation

Share 1

Share 2

Share n

Server

Secret

Figure 5.1: Architecture of secure cloud-based pre-classification volume ray-casting.

Data Preparation

The data preparation step creates n shares of the secret volume V . As we only hide the color

information, the hidden volumes, V1, V2, ... maintain the shape and order of the voxels of V ; only

the color information is modified. To achieve this, the server first finds the color and the opacity

of each data voxel v of a given volume V by performing gradient estimation, classification, and

shading operations; and then creates n shares of V by secret sharing the color Cv of v to n shares

and copying the opacity Av of v n times.

To create shares of Cv, we first choose a prime number q that is greater than the value of the

maximum reconstructed secret (255+εC,max)×10d+f (which is derived in Equation 5.8), and then

define a secret sharing polynomial

F (x) =
(
Cv +

k−1∑
i=1

aix
i
)

mod q.

Note that we use one q to share all the Cv’s as they must belong to one GF(q) in order to be added

together in the future. In finding the value of q, we also fix the value of d and f in this step.

By setting x = p in F (x), we find the pth share of Cv as

Cv,p = F (p)

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 67

Secret

Share 2

Share n

Share 1

(a) Data preparation

Share 2

Share n

Share 1

Image
Space

(b) Ray-projection

Share 2

Share n

Share 1

Rendering

Rendering

Rendering

Share 1

Share 2

Share n

(c) Post ray-projection Rendering

Share 2

Share k

Share 1

Secret

(d) Image recovery

Figure 5.2: Workflow of secure cloud-based pre-classification volume ray-casting.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 68

=
(
Cv +

k−1∑
i=1

aip
i
)

mod q

= (Cv + αp) mod q, (5.9)

where

αp =
k−1∑
i=1

aip
i. (5.10)

Next, we create the pth share volume of V , Vp, and send Vp to the pth datacenter.

Ray-projection

In this step, rays from the image space are projected on each share volume data. We define that the

set of rays that is projected on a share volume data is equal to the set of rays that could have been

projected on the secret volume data. Therefore, the set of rays that is projected on a share volume

data is also equal to the set of rays that is projected on another share volume data.

Post Ray-projection Rendering

In this step, post ray-projection operations such as sampling, interpolation, and composition are

performed on each share volume. The post ray-projection of one share volume is similar to others,

and within a share volume, the rendering along all the projected rays is similar. We will therefore

focus our further discussion on rendering along one ray in the pth share volume data Vp.

Sampling: In this step, a ray projected on Vp is sampled at c sample points s1,p, s2,p, . . . , sc,p

such that xyz-coordinate si,p and xyz-coordinate si (a sample point on the ray when it is projected

on V) are the same.

Interpolation: This step finds the opacity and color of a sample point sp ∈ Vp by interpolating

the opacities and the colors of all eight neighboring voxels of s, and the operations of this step is

the same as the operation on the secret volume V .

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 69

Since we did not change the opacity, the interpolated opacity is found by the conventional opacity

interpolation technique. The voxel’s color, on the other hand, has changed. Therefore, color inter-

polation is performed by the modified-interpolation technique. The required interpolating factor is

equivalent to Dv, the interpolating factor in a case of interpolation over V , as the xyz-coordinate

of each sample point s and voxel v of Vp is equivalent to the xyz-coordinate of the sample point sp

and voxel vp in V , respectively.

By putting the opacity of vp ∈ N(sp) as Av and the interpolating factor of vp as Dv in Equa-

tion 2.3, we can get the interpolated opacity of sp ∈ Vp equal to As, which is the interpolated

opacity of s ∈ V .

Similarly, by putting the color of vp as Cv,p and the interpolating factor of vp as Dv in Equa-

tion 5.2, we can get the scaled interpolated color C ′s,p as

C ′s,p =
∑

v∈N(sp)

Cv,pD
(d)
v (5.11)

=
∑

v∈N(sp)

((
Cv + αp

)
mod q

)
D(d)

v (by Equation 5.9)

≡
(∑

v∈N(sp)

(
Cv + αp

)
D(d)

v

)
mod q

≡
(∑

v∈N(sp)

CvD
(d)
v +

∑
v∈N(sp)

αpD
(d)
v

)
mod q

≡
(
C ′s + αp

∑
v∈N(sp)

D(d)
v

)
mod q (by Equation 5.2)

≡
(
C ′s + αpDs

)
mod q, (5.12)

where

Ds =
∑

v∈N(sp)

D(d)
v

=
∑

v∈N(sp)

(
Dv + εDv ,d

)
× 10d (by Equation 5.1),

is the same for all share volumes, as the interpolating factor of the qth data voxel vq of each share

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 70

volume is Dv, and each Dv is rounded off by d decimal places.

Composition: This step composites the opacities and the colors of all the sample points s1,p, s2,p,

. . . , sc,p along the projected ray. As we do not share the opacities, they can be composited by the

conventional composition formula given in Equation 2.10. The composition of colors, however,

must be performed by the modified-composition technique that is formulated in Equation 5.5.

As the interpolated opacity of sample point si,p is Asi , by Equation 2.10 and Equation 2.11, the

composited opacity of the sample points s1,p, s2,p, . . . , sc,p is A.

The composition of color, however, uses C ′p as the color of si,p. Using C ′p in Equation 5.5, we

obtain the scaled composited color by

C ′p =

c∑
i=1

C ′si,pO
(f)
i (5.13)

≡
(c∑

i=1

C ′si,pO
(f)
i

)
mod q

≡
(c∑

i=1

(
C ′si + αpDsi

)
O

(f)
i

)
mod q (by Equation 5.12)

≡
(c∑

i=1

C ′siO
(f)
i +

c∑
i=1

αpDsiO
(f)
i

)
mod q

≡
(
C ′ + αp

c∑
i=1

DsiO
(f)
i

)
mod q (by Equation 5.5)

≡
(
C ′ +Kαp

)
mod q, (5.14)

where K =
∑c

i=1DsiO
(f)
i is the same for all the shares.

Image Recovery

Finally, an authorized user recovers the secret image from k share images obtained from k data-

centers. We will show that the recovered image is close to the image rendered by conventional

pre-classification volume ray-casting. As the colors and opacities of different pixels of the recov-

ered image are found by same method, we will focus our discussion on one pixel.

As we do not hide opacities, the opacity of a pixel of a share image becomes the opacity of the

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 71

corresponding pixel of the secret image. The color of a pixel of the secret image is recovered from

k shared colors (as given in Equation 5.14) by using Lagrange interpolation.

Given any k scaled composited colors: {C ′x0
, C ′x1

, . . . , C ′xk
} of k datacenters {x0, x1, . . . , xk}

(read xi as the share number for share C ′xi
), let

yi = C ′xi
mod q

=
(
C ′ +Kαxi

)
mod q (by Equation 5.14)

=
(
C ′ +K

k−1∑
j=1

ajx
j
i

)
mod q (by Equation 5.10)

= H(xi).

When k of these yi’s are interpolated, they produce the Lagrange interpolated polynomial

L(x) =
k−1∑
i=0

yiti(x),

where ti(x) is the Lagrange basis function. Next, suppose that

H(x) =
(
C ′ +K

k−1∑
j=1

ajx
j
)

mod q

is a (k − 1)-degree polynomial. Then, by the Unisolvence theorem L(x) is equivalent to H(x).

Therefore, we can obtainC ′ by setting x = 0 in L(x). SinceC ′ is scaled up by 10d+f , by Remark 1,

we recover the secret color C ′′ by scaling down C ′ by 10d+f . In other words,

C ′′ =
C ′

10d+f

=
(C + εC)× 10d+f

10d+f
(by Equation 5.6)

= C + εC .

In Corollary 2, we showed that εC can be bounded by ±1 for a sufficiently large value of d and f .

Thus, we can conclude that the color rendered by our scheme (i.e, C ′′) is close to the color rendered

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 72

by conventional ray-casting (i.e., C).

5.2.3 SR-MSSS

We now describe the SR-MSSS method, an alternative to SR-MPVR. SR-MSSS uses floating point

operations, but uses a variation of Shamir’s secret sharing with a weaker security guarantee. The

main workflow of SR-MSSS is similar to SR-MPVR, so we only highlight the differences below.

Data preparation

To share the colors, SR-MSSS uses the modified Shamir’s secret sharing scheme. Therefore, to

share the color Cv of a data voxel v ∈ V , we define a polynomial

F ′(x) = Cv +
k−1∑
i=1

aix
i.

Using this polynomial, we find the pth share of Cv as

Cv,p = F ′(p)

= Cv + αp. (5.15)

Using Cv,p as the color of the data voxel v, the pth share volume is created.

Post ray-projection rendering

As we do not use any modular prime operation to share the colors of the voxels, unlike SR-MPVR,

we can use the conventional color rendering algorithm to render the colors.

By putting Cv,p as the color of v ∈ Vp in Equation 2.2, we obtain the interpolated color Cs,p as

Cs,p =
∑

v∈N(sp)

Cv,pDv

=
∑

v∈N(sp)

(
Cv + αp

)
Dv (by Equation 5.15)

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 73

=
∑

v∈N(sp)

CvDv +
∑

v∈N(sp)

αpDv

= Cs + αpDs, (by Equation 2.2) (5.16)

where Ds =
∑

v∈N(sp)
Dv is a constant for all share volumes.

Next, using Cs,p as the interpolated color of a sample point s in Equation 2.9, we obtain the

composited color of c sample points s1,p, s2,p, . . . , sc,p by

Cp =
c∑

i=1

Csi,pOi

=
c∑

i=1

(
Csi + αpDsi

)
Oi (by Equation 5.16)

=
c∑

i=1

CsiOi +
c∑

i=1

αpDsiOi

= C + αp

c∑
i=1

DsiOi (by Equation 2.9)

= C +Kαp, (5.17)

where K =
∑c

i=1DsiOi is the same for all the shares.

Image recovery

To recover the secret color from color shares (derived in Equation 5.17) obtained from k datacen-

ters, we use Lagrange interpolation without the modular prime operation. The modified Lagrange

interpolation is written as

L′(x) =

k−1∑
i=0

Cxiti(x),

=
k−1∑
i=0

(C +K
k−1∑
j=1

ajx
j)ti(x). (by Equation 5.10)

By the Unisolvence theorem, L′(x) = C + K
∑k−1

j=1 ajx
j . Thus, by setting x = 0 in L′(x), we

can obtain the color C, which is equivalent to the color rendered by conventional ray-casting. Note

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 74

that no division operation is performed on C since the color values were not scaled in the rendering

stage.

5.2.4 SR-RSS

We now present another alternative, SR-RSS, that uses ramp secret sharing to reduce the size of the

share images.

Data preparation

The objective of this step is to optimize modified Shamir’s secret sharing to create smaller share

volumes.

We know that the three color components of a pixel, i.e., the red color R, the green color G, and

the blue color B, are rendered by identical rendering operations, and that by rendering a share, a

datacenter renders all the coefficients used in the secret sharing polynomial. Therefore, we use the

color components Rv, Gv, and Bv of a voxel v as three secrets in the secret sharing polynomial.

Although (3, k, n) ramp secret sharing can reduce the data overhead by three times (as instead of

creating three shares, ramp secret sharing creates only one share for all three color components),

the resulting overhead is still a concern, as a shared color is represented by a floating point number,

requiring 4 bytes on a typical system.

However, if we limit the values of k and n, it is possible to limit the share color to 216, thus

requiring only two bytes.

To reduce the value of a color share, we choose a smaller share number at the time of secret

sharing by setting the condition k = 4 and n = 5 in our ramp secret sharing. Thus the secret

sharing polynomial becomes

F ′(x) = a0 +Rvx+Gvx
2 +Bvx

3, (5.18)

where a0 is a random number.

Using this polynomial and choosing a value of x smaller than five, we find the pth share of all

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 75

the color components Rv, Gv, and Bv of data voxel v by

Cv,p = a0 +Rvp+Gvp
2 +Bvp

3. (5.19)

Using Cv,p as the color of the data voxel vp, we create the pth share volume Vp, and then send the

share volume to the corresponding datacenter. As the value of the color is less than 255 and the

value of x is less than or equal to five, for a0 ≤ 26011, the value of F ′(x) cannot exceed 65536.

Note that although we can choose n = k = 3 to restrict the value of a color share to 3315,

we do not recommend this optimization as such a scheme, by not using a random number in the

secret sharing polynomial, can result in a complete breakdown of our framework. First, this (3, 3, 3)

ramp secret sharing does not work for a gray image as it cannot hide black color (when all color

components are 0) and white color (when all color components are 255) of a voxel/pixel. Second,

due to spatial coherence in an image, it is easier for an adversary to guess the color of a voxel/pixel

from the known share value of the voxel/pixel and the share values of neighboring voxels/pixels

of the target voxel/pixel. Similarly, we also do not recommend n = k as this optimization cannot

guarantee data integrity and data availability (this will be discussed in Section 5.3.1).

Post Ray-projection Rendering

Similar to SR-MSSS, we use conventional color interpolation and color composition on the color

shares since no modular prime operation is required. Thus, by putting Cv,p as the color of v ∈ Vp

in Equation 2.2, we obtain the interpolated color Cs,p as

Cs,p =
∑

v∈N(sp)

Cv,pDv

=
∑

v∈N(sp)

(
a0 +Rvp+Gvp

2 +Bvp
3)Dv (by Equation 5.19)

=
∑

v∈N(sp)

a0Dv +
∑

v∈N(sp)

RvDvp+
∑

v∈N(sp)

GvDvp
2 +

∑
v∈N(sp)

RvDvp
3

= Ds +Rsp+Gsp
2 +Bsp

3, (by Equation 2.2) (5.20)

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 76

where Ds =
∑

v∈N(sp)
a0Dv is a constant for all share volumes; and Rs, Gs, Bs are respectively

the red color, green color, and blue color interpolated by conventional ray-casting.

Next, by using Cs,p as the interpolated color of a sample point s in Equation 2.9, we obtain the

composited color of c sample points s1,p, s2,p, . . . , sc,p by

Cp =

c∑
i=1

Csi,pOi

=

c∑
i=1

(
Dsi +Rsip+Gsip

2 +Bsip
3
)
Oi (by Equation 5.20)

=

c∑
i=1

DsiOi +

c∑
i=1

RsiOip+

c∑
i=1

GsiOip
2 +

c∑
i=1

BsiOip
3

= K +Rp+Gp2 +Bp3, (by Equation 2.9) (5.21)

where R, G, and B are the red color, green color, and blue color composited by the conventional

ray-casting, and K =
∑c

i=1DsiOi is constant for all the shares.

As the value of each F ′(p) is less than 65536, the value of Cp is also less than 65536. We convert

Cp to a fixed point number C(g)
p by first rounding off Cp by g decimal places and then multiplying

10g by the rounded off value. Mathematically, C(g)
p can be written as

C(g)
p = (Cp + εCp,g)× 10g, (5.22)

where εCp,g is the round-off error satisfying −0.5× 10−g ≤ εCp,g ≤ 0.5× 10−g. We then send the

scaled color share C(g)
p to the user.

Image Recovery

From any four share numbers (i.e., xi’s), and four color shares (i.e., C(g)
xi ’s), this step finds the

secret color components. To recover this secret color, we use Lagrange interpolation to obtain a

polynomial

L′(x) =

3∑
i=0

C(g)
xi
ti(x)

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 77

=

3∑
i=0

(
(Cxi + εCxi ,g

)× 10g
)
ti(x) (by Equation 5.22)

=
3∑

i=0

(K +Rxi +Gx2i +Bx3i + εCxi ,g
)ti(x)× 10g (by Equation 5.21)

=
(3∑

i=0

(K +Rxi +Gx2i +Bx3i)ti(x) +
3∑

i=0

εCxi ,g
ti(x)

)
× 10g

=
(
L′′(x) + εC

)
× 10g, (5.23)

where

L′′(x) =

3∑
i=0

(K +Rxi +Gx2i +Bx3i)ti(x),

and

εC =
3∑

i=0

εCi,gti(x)

is the rendering error due to rounding off Cp.

Theorem 3. If εC =
∑3

i=0 εCxi ,g
ti(x) is the error in color composition by SR-RSS, where εCxi ,g

is

the error in rounding off Cxi and ti(x) is the Lagrange basis function, then εC satisfies

|εC | ≤ 0.5× 10−g ×
5∑

i=2

(
5

i

)

Proof. As given, the error εC is a Lagrange interpolation of rounding errors εCxi ,g
. In this interpola-

tion, each εCxi ,g
satisfies −5× 10−(g+1) ≤ εCxi ,g

≤ 5× 10−(g+1), and the Lagrange basis function

ti(x)’s takes opposite signs for neighboring share numbers. Thus, to calculate the upper bound of

εC , we consider εCxi ,g
= 5× 10−(g+1) for all positive ti(x)’s, and εCxi ,g

= −5× 10−(g+1) for all

negative ti(x)’s. Similarly, to calculate the lower bound of εC , we consider εCxi ,g
= −5×10−(g+1)

for all positive ti(x)’s, and εCxi ,g
= 5× 10−(g+1) for all negative ti(x)’s.

We know that ti(x) is defined as

ti(x) =
k−1∏

j=0,j 6=i

x− xj
xi − xj

.

In our scheme, the share number xi satisfies 1 ≤ xi ≤ 5. Therefore, to maximize the value of

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 78

ti(x)’s, we choose xi’s from the set {2, . . . , 5}. Next, we know that |εC | will be maximized when it

is associated with only one coefficient. Thus, we set x = 0 in ti(x).

Now by substituting the above chosen values in the formula of εC , we get

|εC | ≤ 0.5× 10−g ×
5∑

i=2

(
5

i

)
.

By the Unisolvence theorem, L′′(x) also can be written as

L′(x) = (K +Rx+Gx2 +Bx3 + εC)× 10g.

Thus, we can recover the rendered colors by first dividing L′(x) by 10g, and then solving L′(x)
10g to

obtain the second coefficient (for the red color), third coefficient (for the green color), and fourth

coefficient (for the blue color) of the simplified polynomial. Using this trick, direct formulas to

obtain red R′, green G′, and blue color B′ are

R′ =

3∑
i=0

∑3
j=0,j 6=i

∑3
k=j+1,k 6=i xjxk∏3

j=0,j 6=i(xi − xj)
C

(g)
xi

10g
,

G′ = −
3∑

i=0

∑3
j=0,j 6=i xj∏3

j=0,j 6=i(xi − xj)
C

(g)
xi

10g
,

and

B′ =

3∑
i=0

1∏3
j=0,j 6=i(xi − xj)

C
(g)
xi

10g
,

By Theorem 3, the introduced error εC satisfies

|εC | ≤
1

2

(
0.5× 10−g ×

5∑
i=2

(
5

i

))
.

where R′ = R + εC (the same as for G′ and B′). Thus, by choosing g ≥ 1, we can obtain

|εC | < 1. As a result, we can conclude that the recovered color components are close to the color

components rendered by conventional rendering.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 79

Table 5.1: Data Sets

Name Dimension Bits per Voxel Size
Head 256×256×124 8 7.8 MB
Foot 256×256×256 8 16 MB

Bucky 32× 32× 32 8 32.2 KB
Ironprot 68× 68× 68 8 307.3 KB

These optimizations, however, degrades security as both the use of the ramp secret sharing

scheme, and the exclusion of the modular prime operation from secret sharing can disclose in-

formation about the secret. Furthermore, due to rounding error, there is a loss in information in the

rendered image.

Note that we choose to optimize SR-MSSS as all of the proposed optimization tricks can be

applied to SR-MSSS simultaneously. One can, however, extend the trick of using multiple secrets

in a secret sharing polynomial to SR-MPVR. The trick of limiting the value of a color share by

choosing a suitable share number, however, is not applicable to SR-MPVR as in the case of Shamir’s

secret sharing (which uses the modular prime operation), the size of a share is independent of the

share number.

5.3 Results and Analyses

We simulated the server, datacenters, and the client of our framework on a PC powered by an

Intel Core 2 Quad 2.83 GHz processor with 4GB of RAM. We implemented our framework by

first modifying the volume ray-casting module of the open source visualization package VTK to

facilitate pre-classification volume ray-casting, and then integrating secret sharing into the rendering

pipeline. In the case of SR-MPVR, we used (3, 5) Shamir’s secret sharing in conjunction with

modified pre-classification volume ray-casting; in the case of SR-MSSS, we used modified (3, 5)

Shamir’s secret sharing in conjunction with pre-classification volume ray-casting; and in the case

of SR-RSS we used (3, 4, 5) modified ramp secret sharing in conjunction with pre-classification

volume ray-casting. To validate our schemes, we used four sets of test volume data: Head, Foot,

Bucky, and Ironprot, whose details are given in Table 5.1. As the number of sampling points along

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 80

(a) Secret Bucky (b) Secret Head (c) Secret Foot (d) Secret Ironprot

(e) First Share of Bucky (f) First Share of Head (g) First Share of Foot (h) Second Share of Ironprot

(i) Second Share of Bucky (j) Fourth Share of Head (k) Second Share of Foot (l) Fourth Share of Ironprot

(m) Fourth Share of Bucky (n) Fifth Share of Head (o) Third Share of Foot (p) Fifth Share of Ironprot

(q) Recovered Bucky (r) Recovered Head (s) Recovered Foot (t) Recovered Ironprot

Figure 5.3: Single view rendering by SR-MPVR

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 81

(a) Secret Bucky (b) Secret Head (c) Secret Foot (d) Secret IronProt

(e) First Share of Bucky (f) Third Share of Head (g) Second Share of Foot (h) First Share of Ironprot

(i) Second Share of Bucky (j) Fourth Share of Head (k) Third Share of Foot (l) Third Share of Ironprot

(m) Third Share of Bucky (n) Fifth Share of Head (o) Fourth Share of Foot (p) Fourth Share of Ironprot

(q) Recovered Bucky (r) Recovered Head (s) Recovered Foot (t) Recovered Ironprot

Figure 5.4: Single view rendering by SR-MSSS

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 82

(a) Secret Bucky (b) Secret Head (c) Secret Foot (d) Secret Ironprot

(e) First Share of Bucky (f) First Share of Head (g) First Share of Foot (h) Second Share of Ironprot

(i) Second Share of Bucky (j) Third Share of Head (k) Second Share of Foot (l) Third Share of Ironprot

(m) Third Share of Bucky (n) Fourth Share of Head (o) Third Share of Foot (p) Fourth Share of Ironprot

(q) Fourth Share of Bucky (r) Fifth Share of Head (s) Fourth Share of Foot (t) Fifth Share of Ironprot

(u) Recovered Bucky (v) Recovered Head (w) Recovered Foot (x) Recovered Ironprot

Figure 5.5: Single view rendering by SR-RSS

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 83

(a) Secret (b) Third Share (c) Secret (d) Third Share

(e) Secret (f) Third Share (g) Secret (h) Third Share

(i) Secret (j) Third Share (k) Secret (l) Third Share

(m) Secret (n) Third Share (o) Secret (p) Third Share

(q) Secret (r) Third Share (s) Secret (t) Third Share

(u) Secret (v) Third Share (w) Secret (x) Third Share

Figure 5.6: Multiple view rendering by SR-MPVR

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 84

(a) Secret (b) Third Share (c) Secret (d) Fourth Share

(e) Secret (f) Fifth Share (g) Secret (h) Fifth Share

(i) Secret (j) Second Share (k) Secret (l) Third Share

(m) Secret (n) Third Share (o) Secret (p) Third Share

(q) Secret (r) Third Share (s) Secret (t) Third Share

(u) Secret (v) Third Share (w) Secret (x) Third Share

Figure 5.7: Multiple view rendering by SR-MSSS

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 85

(a) Secret (b) First Share (c) Secret (d) Second Share

(e) Secret (f) Third Share (g) Secret (h) Second Share

(i) Secret (j) Third Share (k) Secret (l) Fourth Share

(m) Secret (n) Third Share (o) Secret (p) Fifth Share

(q) Secret (r) First Share (s) Secret (t) Third Share

(u) Secret (v) Fourth Share (w) Secret (x) Fifth Share

Figure 5.8: Multiple view rendering by SR-RSS

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 86

a ray that is projected on any of these test volumes does not exceed 700, for SR-MPVR, we fixed

d = 4 and f = 6 to obtain |ε| ≤ 1. For SR-RSS, we rounded off the real numbers by one decimal

place (i.e., chosen g = 1) to keep the error below one.

Figure 5.3, Figure 5.4, and Figure 5.5 show the results of SR-MPVR, SR-MRSS, and SR-RSS,

respectively. As illustrated from these figures, the color information of the secret image is hidden in

share images, and the secret image can be recovered from these color-hidden images. Therefore, an

adversary having access to a share image cannot perceptually infer the color coded information of

the secret image. Figure 5.6, Figure 5.7, and Figure 5.8 show the results of SR-MPVR, SR-MSSS,

and SR-RSS from multiple viewpoints. As can be verified from these figures, our scheme has no

functional change with user’s interaction with the rendered image.

Note that since the color table look-up operations are performed by the server, the proposed

scheme will require server’s interference to provide user interactions requiring modification of color

look-up table.

5.3.1 Security analysis

In addition to perceptual security, our schemes also provide data confidentiality, data integrity, and

data availability.

Confidentiality

As SR-MPVR uses Shamir’s secret sharing, it is perfectly secure. Thus, an adversary, irrespective

of its computation power, cannot get any information about the secret color of a voxel/pixel by

accessing at most k − 1 datacenters.

By excluding the modular prime operation from secret sharing, SR-MSSS loses some informa-

tion about the secret color in a group of less than k datacenters. As discussed in Section 3.1.1, to

minimize the effect of loss of information, we can choose higher valued random numbers (i.e., ai’s)

as coefficients in the secret sharing polynomial to obtain higher share values for lower share num-

bers. For example, even for (2, n) modified secret sharing, if ai > 256 and x < 5, the probability

of knowing the secret is less than 1
256 . In other words, we can provide more than 256 choices to an

adversary for guessing the secret, more than the number of color values possible.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 87

By using (3, 4, 5) modified ramp secret sharing, SR-RSS, in addition to losing information due

to the exclusion of the modular prime operation, also loses information due to the use of multiple

secrets in a secret sharing polynomial. Due to this information loss, an adversary, by accessing

more than one datacenter, can easily guess some of the secret color by converting (3, 4, 5) modified

ramp secret sharing to (3, 3, 5) modified ramp secret sharing. Therefore, SR-RSS is insecure when

an adversary can access more than one datacenter. To counter such scenarios, one can easily adjust

SR-RSS by introducing (3, k + 3, n) ramp secret sharing, where k is the maximum number of

datacenters that an adversary cannot access simultaneously.

Integrity

By inheriting the property of (k, n) secret sharing, SR-MPVR, SR-MSSS, and SR-RSS ensure the

integrity of data/images. The k < n condition provides
(
n
k

)
different ways of reconstructing the

secret image. Therefore, if any adversary changes the color values of the share images (either by

directly tampering with the rendered image or by tampering the share volume) of at most n − 1

datacenters, then the reconstructed images from the tampered share images will differ from each

other, and from the secret image (as shown in Figure 5.9 for Head). As a result, by comparing at

most
(
n−1
k

)
reconstructed images, the client can detect tampering.

However, if the adversary is able to tamper with the share images of all n datacenters by obeying

the homomorphic property of secret sharing, then all the tampered reconstructed images at the client

site will be alike. Thus, in this case, the client will not be able to detect the tampering. Similarly, if

n = k, then tampering with even one share image is not detectable as there can be a maximum of

one recovered image. Therefore, for applications requiring data integrity, we recommend using at

least one more datacenter than the number of datacenters required to recover the secret image.

Availability

By inheriting the property of (k, n) secret sharing, SR-MPVR, SR-MSSS, and SR-RSS also ensure

data availability as the client is able to reconstruct the secret image even if at most n− k number of

datacenters are unable to participate.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 88

(a) One Share Tampered – Non-
Homomorphic

(b) Two Shares Tampered –
Non-Homomorphic

(c) Three Shares Tampered –
Homomorphic

(d) No Shares Tampered

Figure 5.9: Tampering detection

5.3.2 Privacy analysis

In this section, we give the privacy analysis of SR-MPVR and SR-MSSS.

The loss in privacy of a patient is dependent on two factors: loss of identity and loss of sensitive

information (e.g., the information about the diseases one is suffering from) associated with the

identity. Thus, the degree of privacy loss (Γ) can be modeled as:

Γ = Γi.Γd, (5.24)

where 0 ≤ Γi ≤ 1 denotes the degree of identity loss and 0 ≤ Γd ≤ 1 denotes the degree sensitive

information loss.

As proposed by Saini et. al. [97], Γi can be further modeled as a function of explicit information

Iwho (e.g., person’s name), and a set of implicit information such as Iwhere (e.g., place name), Iwhat

(e.g., activity), and Iwhen (e.g., time of an activity). When any of this information is color coded,

our scheme can hide it.

Irrespective of the value of Γi, the value of Γ can be lowered by lowering the value of Γd. Our

scheme, by hiding the color-coded information of an image, partly lowers Γi. Since the shape of an

image is available, the adversary can get useful information such as the type of disease that one is

suffering from.

However, our scheme can preserve privacy better than the schemes that hide only the identity

from the data/image (such as anonymization [98]), as hiding critical information from the third-

party datacenters lowers the risk of privacy loss even when information about the identity can be

known from external sources (such as from Iwho, Iwhere, and Iwhat).

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 89

5.3.3 Performance analysis

The usability of the proposed cloud-based secured rendering technique is dependent on its com-

putational overhead, data overhead, and the visualization latency. There are three computational

overheads: first, the overhead at the server in creating n shares from the secret data voxels, sec-

ond, the computational overhead at the datacenters due to use of our scheme (e.g., rendering large

integers instead of rendering smaller ones), and finally, the overhead at the client in reconstructing

the secret image from k share images. Similarly, there are also two types of data overheads: first,

the requirement of an extra number of bits for the server to transmit n shares to n datacenters, and

second, the requirement of more bits to transmit k share images to the client. The computation of

shares and their distribution to datacenters are performed offline by the server. Therefore, we will

not consider them in further discussion. Furthermore, we also ignore the computational overhead

of a datacenter as we assume that a datacenter can render as fast as a server. However, the data

overhead in transmitting k share images and the computational overhead required to reconstruct the

secret image add to the latency in rendering. Therefore, we will discuss them below.

Data overhead

For SR-MPVR and SR-MSSS, our rendering framework requires k share images to reconstruct the

secret image. Thus, if b number of bits are required to represent a color component of a pixel of a

share image, then a total of 3bk+ 8 number of bits are required to reconstruct the color and opacity

of a pixel: due to which, the data overhead to the client is 3bk−24
32 times more than conventional

server-side rendering. The value of b, however, is dependent on how we solve the incompatibility

issue of secret sharing with ray-casting. In the case of SR-MPVR, b is dependent on the rounding

off parameters d and f as the rendered color lies between 0 and q, where q > (255+εmax)×10d+f .

For SR-MSSS, b, however, is equivalent to the number of bits required to represent a real number.

Therefore, in our implementation, which uses (3, n) secret sharing, 32 bits for a real number, and

sets d = 4 and f = 6, SR-MPVR and SR-MSSS respectively result approximately 11 times and 8

times more data overhead to the client than the conventional server-side volume ray-casting.

In the case of SR-RSS, our rendering framework requires four color shares to recover the three

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 90

Table 5.2: Comparison among SR-MPVR, SR-MSSS, and SR-RSS

SR-MPVR SR-MSSS SR-RSS

Security Perfect security
Some

information loss

More
information loss
than SR-MSSS

Data Overhead
Dependent on
rounding bits.

Typically, High
Moderate

Dependent on
rounding bits.
Typically, Low

Computation Cost High Low Moderate
Image Quality Lossy Lossless Lossy

color components of a pixel of the secret image. Thus, if b bits are required to represent a color

share, then a total of 4b + 8 bits are required by the client to obtain the secret color and opacity

value of a pixel in the secret image. However, we know that the value of a color share cannot exceed

65536× 10g, where g is the number of decimal places by which a share is rounded off. Therefore,

in our implementation of SR-RSS, which sets g = 1, a client must download approximately two

times more data than the conventional server-side volume ray-casting.

Computational overhead

In our framework, the computational overhead to the client is equal to the computation cost required

to recover the colors of the secret image from the share images. Therefore, client’s computational

overhead is dependent on the computation cost of Lagrange interpolation and the dimensions of the

image. As SR-MPVR uses the modular prime operation and large integer operations, its computa-

tion cost to the client is higher than the computation costs of SR-MSSS and of SR-RSS to the client.

The computation cost of SR-MSSS, however, varies with the computation cost of SR-RSS accord-

ing to the required number of shares to reconstruct the secret. In our implementation, SR-MPVR

and SR-MSSS take 132 ms and 29 ms, respectively, to recover a 512 × 512 rendered image from

the first, second, and third image shares. For the same image, SR-RSS takes 34 ms to recover the

secret image from the first, second, third, and fourth share images. Client’s computation overhead

for SR-RSS is more than that of SR-MSSS in our implementation, as the constructed polynomial

for SR-RSS is one degree higher than that of SR-MSSS.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 91

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

P
S

N
R

 (
in

 d
b)

data overhead (in times)

SR-MPVR
SR-RSS

(a) Bucky

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14
P

S
N

R
 (

in
 d

b)

data overhead (in times)

SR-MPVR
SR-RSS

(b) Head

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

P
S

N
R

 (
in

 d
b)

data overhead (in times)

SR-MPVR
SR-RSS

(c) Foot

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

P
S

N
R

 (
in

 d
b)

data overhead (in times)

SR-MPVR
SR-RSS

(d) Ironprot

Figure 5.10: PSNR of the rendered image vs data overhead. As SR-MPVR results in a different
PSNR for a fixed overhead (as for a fixed number of rounding bits d+f , the PSNR can change with
the change in the value of d and f), we show the maximum obtained PSNR.

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 92

Image quality

By rounding off real numbers during rendering, both SR-MPVR and SR-RSS renders lossy image;

but SR-MSSS, without performing rounding operations, renders lossless images.

In the cases of SP-MPVR and SR-RSS, we can, however, obtain better quality images by using

higher precision fixed point numbers. As discussed in Section 5.3.3, a higher number of rounding

bits can increase the data overhead, resulting in a tradeoff between the quality of the image and

the data overhead. This claim can be verified from Figure 5.10, which, for our experimental setup,

shows the PSNR values of Head, Foot, Bucky, and Ironprot rendered images for different overheads.

As illustrated, to obtain a similar quality image, SR-MPVR leads to higher overhead than SR-RSS,

as SR-MPVR rounds off two floating point numbers in contrast to only one in SR-RSS. Note that

for any of these schemes, the PSNR values of different images are different for fixed overhead as

the round-off error and its effect on the final rendered color are dependent on the scalar values of

the data voxels.

Table 5.2 shows the security level, overheads, and image quality of all our proposed schemes:

SR-MPVR, SR-MSSS, and SR-RSS. As highlighted, (i) SR-MPVR is best suited for applications

prioritizing security over overheads and image quality; (ii) SR-RSS is suitable for applications re-

quiring low overhead at cost of high security and loss of information from the rendered image;

and (iii) SR-MSSS is designed for applications requiring lossless rendered images, and moderate

security and overhead.

5.4 Chapter Summary

In this chapter, we proposed our secure pre-classification volume ray-casting framework that hides

the color information from a 3D volumetric data from a datacenter, allows a datacenter to render a

color-hidden share image from a color-hidden share volume, and allows a user to recover the secret

image from the share images. We implemented the workflow of this framework both by integrating

the modified Shamir’s secret sharing (which do not use modular prime operation) with the con-

ventional pre-classification volume ray-casting, and by integrating integer-only pre-classification

volume ray-casting with the original Shamir’s secret sharing. For the later approach, we analysed

CHAPTER 5. SECURE PRE-CLASSIFICATION VOLUME RAY-CASTING 93

the loss in information from a rendered image due the conversion of a floating point number to a

fixed point number. For both these schemes, our analysis, however, showed that the data overhead

to a user can be a concern. For applications requiring minimal overhead at the cost of high security,

we proposed a third technique that uses a modified ramp secret sharing (a ramp secret sharing that

does not use modular prime operation) and smaller share numbers to share the color information

of the volume data. We showed that in addition to hiding confidential color information from a

datacenter, all our three schemes can also ensure data integrity and data availability. None of these

schemes, however, can hide the shape of an object from a datacenter.

94

Chapter 6

Secure Cloud-based Post-classification

Volume Ray-casting

In this chapter, we propose our secure post-classification volume ray-casting scheme that hides

both the color and opacity information of volume data/rendered images from cloud datacenters. In

this scheme, we assume that a datacenter performs Gouard shading to render the volume data.

The core idea of the proposed scheme is to distribute the ray-casting tasks among two groups of

datacenters, called Interpolator and Compositor, such that even though rendering operations other

than addition and scalar multiplication are not hidden, none of the groups can know the volume data

and rendered image. To hide the parts of the data/image that are added and scalar multiplied, we

use Shamir’s secret sharing as it is homomorphic to addition and scalar multiplication.

In this framework, a server first pre-computes pre ray-projection operations, such as gradi-

ent/normal estimation and calculation of Phong illumination factors, and of post-classification vol-

ume ray-casting, and then creates n shares of the scalar values and n shares of the outputs of the

pre ray-projection operations using Shamir’s (k, n) secret sharing. The shared information is then

sent to Interpolator, which interpolates the shared scalars, shared gradients, and shared Phong illu-

mination factors. Next, the Interpolator sends interpolated values to Compositor by hiding the pixel

positions. Compositor completes the remaining rendering operations such as classification, shading,

and composition, and sends the noise-like rendered image to a user. Finally, the user recovers the

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 95

secret image from noise-like rendered images.

The rest of this chapter is organized as follows. Section 6.1 revisits post-classification ray-casting,

and points out useful observations that drove us to design the proposed framework. In Section 6.2,

we propose our secure cloud-based framework, and Section 6.3 shows its results and analyses.

6.1 Post-Classification Volume Ray-Casting

As discussed in Section 2.6.2 of Chapter 2, post-classification volume ray-casting renders 3D volu-

metric data in a pipeline of seven independent rendering components: gradient and normal estima-

tion, ray-projection, sampling, interpolation, classification, shading, and composition. Relevant to

our work, we made the following observations about these rendering components.

• The pre ray-projection rendering operations such as gradient/normal estimation, and the cal-

culation of Phong illumination factors Yv (the addition of ambient reflection coefficient and

diffuse reflection coefficient) and Zv (specular reflection coefficient) are performed only per

voxel once. Being independent of the user’s input, these operations can be pre-computed.

The rest of the rendering components, however, must be processed dynamically.

• Interpolation, which finds the scalar Ps, gradient Gs, and Phong illumination factors Ys and

Zs of a sample point s along a projected ray, is defined as

Ps =
∑

v∈N(s)

PvDv (6.1)

for Ps (the same as for Gs, Ys, and Zs), where N(s) is the set of eight neighbouring voxels

of s, Pv is the scalar value, and 0 ≤ Dv ≤ 1 is the interpolating factor of the voxel v ∈ N(s).

Thus, when Dv is public, interpolation requires only additions and scalar multiplications.

• Shading, which finds the color of a sample point s, is defined as

Cs = C
↑
sYs + Zs, (6.2)

where C
↑
s is the classified color found from the color look-up table by using Ps as an index.

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 96

Thus, when Cs is public, shading requires additions and scalar multiplications.

• Composition finds the color C and opacity A along a projected ray from the shaded colors

and opacities of c sample points s1, s2, ..., sc. Color composition and opacity composition are

defined as

C =
c∑

i=1

CsiOi (6.3)

and

A =
c∑

i=1

Oi, (6.4)

where

Oi = Asi

c∏
j=i+1

(
1−Asj

)
, (6.5)

andAs is the classified opacity of s. Thus, for publicOi, color composition requires additions

and scalar multiplications, and opacity composition requires addition.

• After interpolation, the position and direction of a projected ray, which can disclose the co-

ordinate of the pixel that casted it, are not required; rather, a ray must be distinguished from

other rays as sample points along this ray need to be identified during color/opacity composi-

tion.

6.2 Our Framework

Based on the discussion in Section 6.1, we now design our secure rendering framework.

6.2.1 Architecture

As shown in Figure 6.1, our framework consists of four main components: the server that holds

secret data, the Interpolator that contains n ≥ 2 datacenters and performs ray-dependent rendering

operations (such as sampling and interpolation), the Compositor that contains n datacenters and

performs post-interpolation operations (such as classification, shading, and composition), and the

client who is authorized to access the secret image.

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 97

Server

Data

Preparation

Secret

Share p

Ray

dependent

rendering

Post

interpolation

rendering

Client

Ray

Projection

Image

Recovery

Image

Display

𝐶𝑝 , 𝐴 𝑃𝑠, 𝑝, 𝐺𝑠, 𝑝
𝑌𝑠,𝑝, 𝑍𝑠,𝑝 (𝑆𝑝, 𝑇𝑝)

 (S, T)

Compositor Interpolator

Datacenter p Datacenter p

 (𝑆𝑝, 𝑇𝑝)

Datacenter n

Datacenter 1

Datacenter n

Datacenter 1

Figure 6.1: Architecture of secure cloud-based post-classification volume ray-casting

This framework assumes that (i) the server and client are the trusted entities, (ii) the datacenters

are connected among themselves and with the client via a high speed network, (iii) the intra-group

and inter-group communication of the datacenters is regulated, (iv) an adversary cannot access

k ≤ n or more datacenters in Interpolator or in Compositor, and (v) an adversary cannot access a

datacenter in Interpolator and Compositor simultaneously.

6.2.2 Workflow

As shown in Figure 6.2, the workflow of the framework can be divided into four main steps: data

preparation, ray-projection, post ray-projection rendering, and image recovery. In the following, we

discuss each step in detail.

Data preparation

This step creates n shares of the secret volume V . To achieve this, the server first calculates the

gradient Gv and Phong illumination factors Yv and Zv of each data voxel v ∈ V , and then hides the

calculated values and the scalar Pv by using Shamir’s (k, n) secret sharing.

However, we know that Pv, Gv, Yv, and Zv are floating point numbers. Therefore, they are

incompatible with Shamir’s secret sharing. Based on the discussion in Section 3.2, we address this

issue by converting Pv,Gv, Yv, and Zv to fixed point numbers before secret sharing. In other words,

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 98

Share 2

Share n

Share 1

Secret

(a) Data preparation

Share 2

Share n

Share 1

Image Space

(b) Ray-projection

Share 1

Share 2

Share n

Share 2

Share 1

Share n

Rendering

Rendering

Rendering

(c) Post ray-projection rendering

Share 1

Share 2

Share k

Recovered

Image

(d) Image recovery

Figure 6.2: Workflow of secure cloud-based post-classification volume ray-casting

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 99

we represent Pv (the same as for Gv, Yv, and Zv) by

P (d)
v = (Pv + εPv ,d)× 10d, (6.6)

where εPv ,d is the round-off error obtained by rounding off Pv by d decimal places.

Thereafter, we define a secret sharing polynomial

F (x) =
(
P (d)
v +

k−1∑
i=1

ai,vx
i
)

mod q, (6.7)

to share P (d)
v . Similar secret sharing polynomials are also defined for G(d)

v , Y (d)
v , and Z(d)

v .

Next, by setting x = p in F (x), we find the pth share of P (d)
v by

P (d)
v,p =

(
P (d)
v + αv,p

)
mod q, (6.8)

where

αv,p =
k−1∑
i=1

ai,vp
i. (6.9)

Using the same technique, we also find the pth share ofG(d)
v , the pth share of Y (d)

v , and the pth share

of Z(d)
v as G(d)

v,p, Y (d)
v,p , and Z(d)

v,p , respectively.

Then, we construct the pth share volume Vp using P (d)
v,p as the scalar value, G(d)

v,p as the gradi-

ent, and Y (d)
v,p and Z(d)

v,p as the Phong illumination factors of the data voxel vp ∈ Vp that has the

same (x, y, z)-coordinate as the voxel v ∈ V . This share volume is sent to the pth datacenter in

Interpolator.

Ray-projection

In this step, rays from each pixel in the image space are projected on each share volume stored

in a datacenter in Interpolator. As we assume that the set of rays projected on a share volume

is equivalent to the set of rays that could have been projected on the secret volume, sets of rays

projected to different share volumes are equivalent. We, however, do not project rays to datacenters

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 100

in Compositor.

Post ray-projection ray-casting

This operation is cooperatively performed by Interpolator and Compositor to render the volume

data. Interpolator first performs the ray-dependent interpolation operations such as sampling and

interpolation, and then outsources the post-interpolation operations such as classification, shading,

and composition to Compositor by hiding the information about the pixel coordinates of the image

space. As the post ray-projection of one share volume is similar to others, and in a share volume, the

rendering along all the projected rays is similar, we will focus our further discussion on rendering

along one ray on the pth share volume Vp.

Ray-dependent rendering

Sampling: In this step, a ray projected on Vp is sampled at c sample points s1,p, s2,p, . . . , sc,p

such that xyz-coordinate si,p and xyz-coordinate si (a sample point on the ray when it is projected

on V) are the same.

Interpolation: To obtain the scalar value, gradient, and Phong illumination factors of a sample

point s, this step interpolates the scalar values, gradients, and Phong illumination factors of eight

neighbouring voxels of s ∈ Vp.

The interpolation of scalars (the same as for gradients and Phong illumination factors) involves

multiplying a scalar share P (d)
v,p by floating point number Dv. Thus, we replace Dv with a fixed

point number

D(f)
v = (Dv + εDv ,f)× 10f , (6.10)

where εDv ,f is the round-off error obtained by rounding off Dv by f decimal places. As a result,

the scaled interpolated scalar P ′s,p (the same as for scaled interpolated gradient G′s,p and scaled

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 101

interpolated Phong illumination factors Y ′s,p and Z ′s,p) of the sample point s of can be obtained by

P ′s,p =
∑

v∈N(s)

P (d)
v,pD

(f)
v

=
∑

v∈N(s)

(P (d)
v + αv,p) mod qD(f)

v (by Equation 6.8)

=
∑

v∈N(s)

(P (d)
v + αv,p) mod q

(
(Dv + εDv ,f)× 10f

)
(by Equation 6.10)

≡
(∑

v∈N(s)

(P (d)
v + αv,p)(Dv + εDv ,f)× 10f

)
mod q

≡
(∑

v∈N(s)

P (d)
v (Dv + εDv ,f)× 10f +

∑
v∈N(s)

αv,p(Dv + εDv ,f)× 10f
)

mod q

≡
(∑

v∈N(s)

P (d)
v (Dv + εDv ,f)× 10f + αs,p

)
mod q

≡
(∑

v∈N(s)

(Pv + εPv ,d)× 10d × (Dv + εDv ,f)× 10f + αs,p

)
mod q (by Equation 6.6)

≡
(∑

v∈N(s)

(PvDv + εPv ,dDv + PvεDv ,f + εPv ,dεDv ,f)× 10d+f + αs,p

)
mod q

≡
(
(Ps + εPs)× 10d+f + αs,p

)
mod q, (by Equation 6.1) (6.11)

where Ps is the scalar value interpolated by conventional rendering,

εPs =
∑

v∈N(s)

(εPv ,dDv + εDv ,fPv + εPv ,dεDv ,f)

is the error during interpolation, and

αs,p =
∑

v∈N(s)

(Dv + εDv ,f)αv,p × 10f . (6.12)

Note that as the interpolated scalars and gradients are in shared form, by using these values in

look up tables, a datacenter cannot get the secret colors and opacities.

To complete the remaining rendering operations, the pth datacenter in Interpolator copies its

interpolated scalar P ′s,p and interpolated gradient G′s,p to each datacenter in Compositor, but sends

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 102

the interpolated Phong illumination factors Y ′s,p and Z ′s,p only to the pth datacenter of Compositor.

To hide the pixel positions of the image space from Compositor while distinguishing the sam-

ple points along a ray from other sample points, the pth datacenter creates a proxy identification

PID(S,T) of a ray that originated from a pixel having the coordinates (S, T), and in place of (S, T),

sends this proxy to the pth datacenter of Compositor. The secret (S, T), however, is required during

the image recovery stage. Thus, the pth datacenter of Interpolator also sends the pth share of (S, T)

to the pth datacenter of Compositor. If (Sp, Tp) denotes the pth share of (S, T), then by Shamir’s

secret sharing Sp (the same as for Tp) can be found by

Sp = (S +

k−1∑
i=1

aix
i) mod q′, (6.13)

where ai is a random number and q′ > S is a prime number.

Post-interpolation rendering

In this step, each datacenter in Compositor performs post-interpolation rendering operations, such

as classification, shading, and composition, on the interpolated data received from the datacenters

of Interpolator. As these operations are the same in all the datacenters, we focus our discussion on

the pth datacenter.

Classification: The objective of this step is to find the classified color and classified opacity of a

sample point using scalar shares and gradient shares. The pth datacenter of Compositor receives n

shares of scalars and gradients from the datacenters of Interpolator. Thus, using Lagrange interpo-

lation, we can recover the secret interpolated scalars and gradients. Mathematically, the Lagrange

interpolated polynomial for a scalar share (the same as for gradient) can be found by

L(x) =

k−1∑
i=0

P ′s,pti(x) mod q

=
k−1∑
i=0

((
(Ps + εPs)× 10d+f + αs,p

)
mod q

)
ti(x) mod q (by Equation 6.11)

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 103

=
k−1∑
i=0

(P ′′s × 10d+f + αs,p)ti(x) mod q,

=
k−1∑
i=0

(
P ′′s × 10d+f +

∑
v∈N(s)

(Dv + εDv ,f)αv,p × 10f
)
ti(x) mod q (6.14)

(by Equation 6.12)

=
k−1∑
i=0

(
P ′′s × 10d+f +

∑
v∈N(s)

(Dv + εDv ,f)
(k−1∑
i=1

ai,vp
i
)
× 10f

)
ti(x) mod q (6.15)

(by Equation 6.9)

=

k−1∑
i=0

(
P ′′s × 10d+f +

k−1∑
i=1

βs,pp
i
)
ti(x) mod q, (6.16)

where ti(x) is the Lagrange basis function,

P ′′s = Ps + εPs

and

βs,p =
∑

v∈N(s)

(Dv + εDv ,f)ai,v.

As the value of Dv and f are public, βs,p is a constant for all the shares.

By the Unisolvence theorem, L(x), however, represents

L(x) =
(
P ′′s × 10d+f +

k−1∑
i=1

βs,px
i
)

mod q.

Thus, by first putting x = 0 in L(x), and then dividing L(0) by 10d+f , we recover the secret

interpolated scalar as P ′′s . This recovered scalar is then used as an index to the look-up tables to find

the classified colors and opacities.

Note that the recovered scalar involves round-off error εPs . Thus, when P ′′s is used as an index to

the look-up table, there can be an error ε
C
↑
s

in the classified color value C
↑
s and εAs in the classified

opacity As. In other words, using P ′′s and recovered interpolated gradient G′′s , we can find the

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 104

classified color and opacity as

P ′′s −→ C
↑,′
s

and

(P ′′s , G
′′
s) −→ A′s,

where

C
↑,′
s = C

↑
s + ε

C
↑
s

(6.17)

and

A′s = As + εAs . (6.18)

As the look-up tables are implemented as piecewise linear functions, even for a very small value

of εPs (for example, εPs approaches zero), the value of ε
C
↑
s

can be as large as 255 (same argument

for εAs). In practice, the possibility of such high error, however, is less as εPs is often unable to

change the value of truncated P ′′s (truncation is performed before the look-up operation), and in a

look-up table, there are few spiked transitions for neighbouring entries (due to spatial coherence in

an image). However, to obtain zero round-off error, we can set the value of rounding bits d and f as

large as the machine precision.

Shading: Using the classified colors and the Phong illumination factors received from Interpo-

lator, each datacenter of Compositor performs color shading. The pth datacenter of Compositor,

however, receives only the pth share of the Phong illumination factors: Y ′s,p and Z ′s,p. Therefore,

even though the classified colors and classified opacities are known, the pth datacenter can only

know the pth share of the shaded color.

Using Equation 6.2, the pth share of the scaled shaded color can be found by

C ′s,p = C
↑,′
s Y ′s,p + Z ′s,p

= (C
↑
s + ε

C
↑
s
)Y ′s,p + Z ′s,p (by Equation 6.17)

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 105

= (C
↑
s + ε

C
↑
s
)
((

(Ys + εYs)× 10d+f + αs,p

)
mod q

)
+
(
(Zs + εZs)× 10d+f + αs,p

)
mod q (by Equation 6.11)

≡
((

(C
↑
s + ε

C
↑
s
)(Ys + εYs) + (Zs + εZs)

)
× 10d+f + (C

↑
s + ε

C
↑
s
)αs,p + αs,p

)
mod q

≡
((

(C
↑
sYs + Zs) + (C

↑
s εYs + ε

C
↑
s
Ys + ε

C
↑
s
εYs + εZs)

)
× 10d+f

+ (C
↑
s + ε

C
↑
s
)αs,p + αs,p

)
mod q

≡
(
(Cs + εCs)× 10d+f + (C

↑
s + ε

C
↑
s

+ 1)αs,p

)
mod q, (by Equation 6.2) (6.19)

where Cs is the color shaded by conventional rendering, and

εCs = C
↑
s εYs + ε

C
↑
s
Ys + ε

C
↑
s
εYs + εZs (6.20)

is the error in shading.

Composition: In this step, each datacenter accumulates the shaded colors and classified opaci-

ties of c sample points which hold PID(S,T), and find the opacity and color share along the ray

originated from (S, T).

The classified opacity A′s of a sample point s is close to the opacity of s obtained in conventional

rendering. Therefore, putting A′s in Equation 6.5, we obtain O′i as

O′i = A′si

c∏
j=i+1

(
1−As′j

)
= (Asi + εAsi

)

c∏
j=i+1

(
1− (Asj + εAsj

)
)

(by Equation 6.18)

= Asi

c∏
j=i+1

(1−Asj) +Asi

c∏
j=i+1

εAsj
+ εAsi

c∏
j=i+1

(
1− (Asj + εAsj

)
)

= Oi + εOi , (by Equation 6.5) (6.21)

where

εOi = Asi

c∏
j=i+1

εAsj
+ εAsi

c∏
j=i+1

(
1− (Asj + εAsj

)
)

(6.22)

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 106

is the error in Oi. Next, using O′i in Equation 6.4, we obtain the composite opacity A′ as

A′ =
c∑

i=1

O′i

=
c∑

i=1

(Oi + εOi) (by Equation 6.21)

=
c∑

i=1

Oi +
c∑

i=1

εOi

= A+ εA, (by Equation 6.4) (6.23)

where

εA =
c∑

i=1

εOi (6.24)

is the error in opacity composition.

On the other hand, the shaded color C ′s,p of s is a share of the shaded color of s obtained in

conventional rendering. Thus, the composition of these shaded color shares will also produce a

share of the color composited in conventional rendering.

We, however, know that conventional color composition (given in Equation 6.3) cannot compos-

ite color shares as it involves floating point operations. In our case, the floating point operand is O′i.

Thus, we replace O′i with a fixed point number

O
(g),′
i = (O′i + εO′i,g)× 10g, (6.25)

where εO′i,g is the round-off error obtained in rounding off O′i by g decimal places. Using O(g),′
i in

place of Oi, and shaded color share C ′s,p in place Cs in Equation 6.3, we obtain the pth share of the

scaled composite color by

C ′p =
c∑

i=1

C ′si,pO
(g),′
i

≡
c∑

i=1

(
(Csi + εsi)× 10d+f + (C

↑
si + ε

C
↑
si

+ 1)αsi,p

)
mod qO

(g),′
i (by Equation 6.19)

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 107

≡
c∑

i=1

(
(Csi + εsi)O

(g),′
i × 10d+f + (C

↑
si + ε

C
↑
si

+ 1)αsi,pO
(g),′
i

)
mod q

≡
(c∑

i=1

(Csi + εsi)O
(g),′
i × 10d+f +

c∑
i=1

(C
↑
si + ε

C
↑
si

+ 1)αsi,pO
(g),′
i

)
mod q

≡
(c∑

i=1

(Csi + εsi)O
(g),′
i × 10d+f + Γp

)
mod q

≡
(c∑

i=1

(Csi + εsi)(O
′
i + εO′i,g)× 10g × 10d+f + Γp

)
mod q (by Equation 6.25)

≡
(c∑

i=1

(Csi + εsi)(Oi + εOi + εO′i,g)× 10d+f+g + Γp

)
mod q (by Equation 6.21)

≡
(c∑

i=1

(
CsiOi + εsiOi + (Csi + εsi)(εOi + εO′i,g)

)
× 10d+f+g + Γp

)
mod q

≡
(c∑

i=1

CsiOi +
c∑

i=1

(
εsiOi + (Csi + εsi)(εOi + εO′i,g)

)
× 10d+f+g + Γp

)
mod q

≡
(
(C + εC)× 10d+f+g + Γp

)
mod q, (by Equation 6.3) (6.26)

where C is the color composited by conventional ray-casting,

εC =
c∑

i=1

(
εsiOi + (Csi + εsi)(εOi + εO′i,g)

)
(6.27)

is the error in composition, and

Γp =
c∑

i=1

(C
↑
si + ε

C
↑
si

+ 1)O
(g),′
i αsi,p

=

c∑
i=1

(C
↑
si + ε

C
↑
si

+ 1)O
(g),′
i

∑
v∈N(si)

(Dv + εDv ,f)αv,p × 10f (by Equation 6.12)

=

c∑
i=1

(C
↑
si + ε

C
↑
si

+ 1)O
(g),′
i

∑
v∈N(si)

(Dv + εDv ,f)
k−1∑
j=1

aj,vp
j × 10f (by Equation 6.9)

=

k−1∑
j=1

c∑
i=1

∑
v∈N(si)

(C
↑
si + ε

C
↑
si

+ 1)O
(g),′
i (Dv + εDv ,f)aj,v × 10f × pj

=
k−1∑
j=1

bjp
j , (6.28)

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 108

where

bj =
c∑

i=1

∑
v∈N(si)

(C
↑
si + ε

C
↑
si

+ 1)O
(g),′
i (Dv + εDv ,f)aj,v × 10f .

Note that bj is a constant for all the shares as aj,v, Dv, f , g, C
↑
si , Oi, and c are public.

Since the theoretic value of classified errors ε
C
↑
s

and εAs can be as large as 255 (as discussed

earlier), the error in color composition εC and the error in opacity composition εA can be as large as

255. However, we have argued before that, in practice, such a case is unlikely.

Furthermore, if we set the value of d and f as large as machine precision, then we can obtain

ε
C
↑
s

= 0 and εAs = 0. By putting εAs = 0 in Equation 6.22, we obtain εOi = 0. Putting this value

of εOi in Equation 6.24 and Equation 6.20, we obtain εA = 0 and εs = 0, respectively. Finally,

putting εOi = 0 and εs = 0 in Equation 6.27, we obtain

εC =
c∑

i=1

εO′i,g.

We know that the round-off error εO′i,g satisfies |εO′i,g| ≤ 0.5× 10−f . Thus, for g > 3 + t, where t

is an integer satisfying c ≤ 10t, we can bound εC by ±1.

Finally, collecting the composited color C ′p, composited opacity A′, and the coordinates (Sp, Tp)

of all PID(S,T), the pth datacenter constructs the pth share image, and transmits this share image

to the user.

Image recovery

In this step, an authorized user recovers the secret image from k share images received from any

k datacenters. The opacity of a pixel in the share image is not hidden, therefore the opacity A′

of the pth pixel of a share image becomes the opacity of the pth pixel of the secret image. The

(x, y)-coordinates and colors of a pixel of the secret image, however, are obtained by Lagrange

interpolation on k shares of (x, y)-coordinates (i.e., k (Sp, Tp)’s) and k color shares (i.e., k C ′p’s)

respectively.

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 109

From k Sp’s (the same as for Tp’s), the Lagrange interpolated polynomial can be found by

L(x) =

k−1∑
i=0

Sxiti(x) mod q′

=
k−1∑
i=0

(
S +

k−1∑
j=1

ajx
j
i

)
ti(x) mod q′, (by Equation 6.13)

where xi is the ith share number. By the Unisolvence theorem, L(x) = (S +
∑k−1

i=1 aix
i) mod q′.

Thus, we find the secret S by setting x = 0 in L(x).

Similarly, the Lagrange interpolated polynomial from k color shares can be found by

M(x) =
k−1∑
i=0

C ′xi
ti(x) mod q

=
k−1∑
i=0

(
(C + εC)× 10d+f+g + Γxi

)
ti(x) mod q (by Equation 6.26)

=

k−1∑
i=0

(
(C + εC)× 10d+f+g +

k−1∑
j=1

bjx
j
i

)
ti(x) mod q. (by Equation 6.28)

By the Unisolvence theorem,

M(x) =
(
(C + εC)× 10d+f+g +

k−1∑
j=1

bjx
j
)

mod q.

Thus, by first setting x = 0 in M(x) and then dividing M(0) by 10d+f+g, we recover the secret

color as C + εC .

Note that as M(0) ≤ (C+ εmax
C)×10d+f+g, where εmax

C is the maximum value of εC , the prime

number q must be greater than (C+εmax
C)×10d+f+g. For example, for d and f as large as machine

precision, and g ≥ 3 + t, q must be greater than 256× 10d+f+g.

6.3 Results and Analysis

We simulated the server, the datacenters, and the client in a PC powered by an Intel Core 2 Quad

2.83 Ghz processor and with 4GB of RAM. We implemented our secure post-classification volume

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 110

(a) Secret Bucky (b) Secret Head (c) Secret Foot (d) Secret Ironprot

(e) First Share of Bucky (f) Second Share of Head (g) Third Share of Foot (h) First Share of Ironprot

(i) Third Share of Bucky (j) Third Share of Head (k) Fourth Share of Foot (l) Third Share of Ironprot

(m) Fourth Share of Bucky (n) Fourth Share of Head (o) Fifth Share of Foot (p) Fourth Share of Ironprot

(q) Reconstructed Bucky (r) Reconstructed Head (s) Reconstructed Foot (t) Reconstructed Ironprot

Figure 6.3: Rendered image in Interpolator

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 111

(a) Secret Bucky (b) Secret Head (c) Secret Foot (d) Secret Ironprot

(e) First Share of Bucky (f) Second Share of Head (g) Third Share of Foot (h) First Share of Ironprot

(i) Third Share of Bucky (j) Third Share of Head (k) Fourth Share of Foot (l) Third Share of Ironprot

(m) Fourth Share of Bucky (n) Fourth Share of Head (o) Fifth Share of Foot (p) Fourth Share of Ironprot

(q) Reconstructed Bucky (r) Reconstructed Head (s) Reconstructed Foot (t) Reconstructed Ironprot

Figure 6.4: Rendered image in Compositor

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 112

(a) Secret (b) Third Share (c) Secret (d) Third Share

(e) Secret (f) Third Share (g) Secret (h) Third Share

(i) Secret (j) Third Share (k) Secret (l) Third Share

(m) Secret (n) Third Share (o) Secret (p) Third Share

(q) Secret (r) Third Share (s) Secret (t) Third Share

(u) Secret (v) Third Share (w) Secret (x) Third Share

Figure 6.5: Rendered image in Compositor from multiple view points

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 113

ray-casting by integrating (3, 5) Shamir’s secret sharing to the volume ray-casting module of open

source 3D visualization software VTK. As our implementation of VTK allows a maximum of 64

bits to represent an integer, to convert a real number to an integer while keeping the error less, we

fixed d = 5, f = 5 , and g = 6. To validate our scheme, we used four sets of test volume data: Foot,

Head, Bucky, and Ironprot, whose details are given in Table 5.1.

Figure 6.3 and Figure 6.4 show the secret image, share images, and the recovered image in the

Interpolator and Compositor respectively. Figure 6.5 shows the results from multiple view points.

As can be verified from these figures, the image available to an individual datacenter of Interpolator

or Compositor is noise-like.

Note that since the color table look-up operations are performed by the Compositor, the pro-

posed scheme does not need interaction with the server to provide user interactions requiring the

modification of color look-up table.

6.3.1 Security analyses

We now analyze the level of confidentiality, integrity, availability, and privacy that our scheme

provides.

Confidentiality

In addition to the perceptual security, which can be verified from Figure 6.3, Figure 6.4, and Fig-

ure 6.5, our scheme, by using Shamir’s secret sharing to hide the shading factors both in Interpolator

and in Compositor, offers perfect secrecy for shaded colors. Furthermore, as we use Shamir’s secret

sharing to hide unshaded color in Interpolator and pixel positions in Compositor, a datacenter in

Interpolator or in Compositor, irrespective of knowledge of pixel positions and of unshaded colors,

respectively, can get little information (which is constant in a group of at most k − 1 datacenters)

about the image. This information only helps an adversary in guessing the secret image. With-

out all required information, the reconstructed image, as shown Figure 6.3 for Interpolator, is also

noise-like.

However, as a datacenter in Interpolator can know the secret (x, y)-coordinate of a pixel and a

datacenter in Compositor can know the secret opacity and unshaded color, an adversary, by access-

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 114

(a) (b) (c)

Figure 6.6: (a), (b), and (c) are the recovered images when all three share images are tampered, two
share images are tampered, and one share image is tampered respectively.

ing only one datacenter in Interpolator and one datacenter in Compositor, can know the rendered

image.

Integrity

By inheriting the property of (k, n) secret sharing, our scheme ensures data/image integrity when

an adversary can access at most n− 1 datacenters in Interpolator or Compositor.

The k < n condition provides
(
n
k

)
different ways to reconstruct the secret image. Therefore,

if an adversary tampers with the share volume of at most n − 1 datacenters in Interpolator or the

share images of at most n − 1 datacenters in Compositor, then at most
(
n−1
k

)
images, which are

recovered from k share images that were tampered by obeying the homomorphic property of secret

sharing, can be alike (if tampering does not obey the homomorphic property, then the recovered

images can be different). The remaining recovered images, which use the correct share image in

image recovery, however, will be different from the images recovered from tampered images (as

shown in Figure 6.6). Thus, by comparing at most
(
n−1
k

)
+ 1 recovered images, the client can

detect tampering. However, if the adversary can tamper the information of all n datacenters in

Interpolator/Compositor, then our scheme fails to detect tampering. Similarly, in the case of (k, k)

secret sharing, which produces only one recovered image, our scheme cannot detect tampering even

when only one share image is tampered.

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 115

Availability

Due to (k, n) secret sharing, our scheme also ensures data availability as the client is able to recon-

struct the secret image even if at most n−k datacenters in Compositor are unable to participate. The

non-participation of a datacenter in Compositor can either be due to the unavailability of necessary

information from the respective datacenter in Interpolator (when a datacenter in Interpolator does

not participate) or due to local issues.

6.3.2 Privacy analysis

The privacy loss is dependent on two factors: loss of identity and loss of sensitive information (e.g.,

the information about the diseases one is suffering from) associated with the identity. The loss of

one factor in the absence of another, however, is harmless. Thus, by not disclosing the sensitive

information contained in the data/image to an unauthorized user, our scheme preserves the privacy

of the owner of the data/image.

6.3.3 Performance analysis

The usability of our framework is dependent on its computational overhead and data overhead,

which are analyzed in this section. These costs affect the visualization latency of interacting with

the rendered image. We are, however, less concerned with the overhead associated with the pre

ray-projection operation since it can be performed offline.

Data overhead

Our framework introduces two types of data overhead: one during the communication of informa-

tion from Interpolator to Compositor and another during the communication of k share images from

Compositor to the client.

In our framework, the mth datacenter in Compositor requires at least k shares of the scalar value,

k shares of the gradient, and one share of the shading factors per sample point. Therefore, if b1

bits are required to represent a share (which is equal to the number of bits required to represent the

prime number q), a total of 2kb1 + 2b1 number of bits are required by a datacenter in Compositor

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 116

to complete rendering. Additionally, the datacenter also must download b2 bits to receive a share of

the (x, y) coordinate of a pixel. Thus, in our implementation that uses (3, 5) secret sharing, b1 = 64,

and b2 = 18, a datacenter in Compositor must download approximately five times more data than

conventional cloud-based rendering.

Similarly, the user requires k share images to recover the secret image. Thus, a total of (3b1 +

b2)k+ 8 bits is required to reconstruct the color and opacity of a pixel: due to which, the data over-

head is (3b1+b2)k−24
32 times more than conventional server-side volume ray-casting. Therefore, for

our implementation, the user must download approximately 19 times more data than conventional

server-side volume ray-casting – such high data overhead is the main weakness of our scheme.

Computation overhead

Our scheme has two types of computation overhead: the computational overhead during rendering

and the computational overhead during image recovery.

We assume that a datacenter in our scheme can render its share image as fast as a server in

the conventional ray-casting can render the secret image. Therefore, the computational overhead

in rendering mainly results from a datacenter in Interpolator performing k(k − 1) extra integer

multiplications, 2(k− 1) extra integer additions, and two integer modular prime operations to share

the (x, y)-coordinate of a pixel, and creating the PID(x,y) for each pixel. Thus, in our simulation,

which is implemented in C, a datacenter must work for an extra 94 ms for a 512×512 image space.

The computational overhead in recovering the secret image is dependent on the computation cost

of the Lagrange interpolation, which is used to reconstruct the secret color value and the secret

(x, y)-coordinate of a pixel, and the dimensions of the image space. Our C implementation to

recover a secret image from the first, second, and third share images finds the computation cost to

be approximately 172 ms for a 512× 512 dimension image.

6.4 Chapter Summary

In this chapter, first, we modified post-classification volume ray-casting to perform integer-only op-

erations by converting all floating point numbers to fixed point numbers. Then, we proposed our

CHAPTER 6. SECURE POST-CLASSIFICATION VOLUME RAY-CASTING 117

secure post-classification volume ray-casting framework that hides both the color and opacity in-

formation from a 3D volumetric data from a datacenter by using Shamir’s secret sharing, allows a

datacenter to render a noise-like share image from a share volume, and allows a user to recover the

secret image from the share images. Although this framework provides full perceptual confiden-

tiality by hiding both color and shape of an object from a datacenter, high data overhead to a user,

however, is a concern.

118

Chapter 7

Conclusion and Future Work

Cloud-based imaging presents security and privacy concerns. Although these concerns have been

addressed for cloud-based volume data/image storage, they are still an issue for cloud-based volume

data/image processing, such as image scaling/cropping or volume ray-casting. Securing cloud-based

volume data/image processing is challenging since: (i) no cryptosystem can hide all operations of

a volume data/image processing algorithm with acceptable overhead, and (ii) the floating point

operations of a volume data/image processing algorithm are incompatible with the modular prime

operations of a cryptosystem.

This thesis addressed the security and privacy issues in three popular cloud-based image pro-

cessing schemes: cloud-based image scaling/cropping, cloud-based pre-classification volume ray-

casting, and cloud-based post-classification volume ray-casting, by using Shamir’s secret sharing

(and its variants) to hide the additions and scalar multiplications operations of these algorithms.

Other operations were either pre-computed or distributed among datacenters such that none of the

datacenters gets enough information to know the secret volume data/image. To solve the incompat-

ibility issue of Shamir’s secret sharing with a volume data/image processing algorithm, we either

excluded the modular prime operation from secret sharing or converted floating point operations to

fixed point operations. We showed that the former technique degrades security, and the latter loses

some information from the rendered image.

Our secure image scaling/cropping framework (Chapter 4) uses a new (3, k, n) ramp secret image

sharing scheme to share an image. This image sharing scheme allows scaling/croping of noise-

CHAPTER 7. CONCLUSION AND FUTURE WORK 119

like shadow images stored in third-party datacenters. Receiving at least k scaled/cropped shadow

images, a user can recover the secret scaled/cropped image. Experiments and analyses showed

that this framework can hide the content of an image in a datacenter, detect tampering of an image

performed at a datacenter, and withstand the breakdown of certain number of datacenters. This

framework results in low computation overhead, but significant data overhead (1.5 times more data

overhead than conventional image streaming) to the user.

Our secure cloud-based pre-classification volume ray-casting framework (Chapter 5) hides the

color information of volume data from datacenters. This color-hidden data renders to color-hidden

images, which can be used by a user to recover the secret rendered image. Since Shamir’s secret

sharing is non-homomorphic to opacity multiplications, this scheme, however, cannot hide the shape

of an object. To address the incompatibility of secret sharing with ray-casting, we modified either

secret sharing (which is the case in SR-MSSS) or ray-casting (which is the case in SR-MSSS), and

to decrease the high data overhead of both these techniques, we optimized modified secret sharing

(which is the case in SR-RSS). Experiments and analyses showed that among our three frameworks,

SR-MPVR provides high security at the cost of high data overhead and the loss of some information

from the rendered image; SR-MSSS renders a lossless image and provides moderate security at the

cost of moderate data overhead; and SR-RSS incurs low data overhead at the cost of high security

and some information loss from the rendered image.

Finally, we proposed secure post-classification volume ray-casting (Chapter 6), which hides both

the color and shape of an object from rendering datacenters. This scheme distributes the render-

ing tasks among a number of datacenters and integrates Shamirs secret sharing into the rendering

pipeline in such a way that none of the datacenters can know the secret data or the rendered image.

A user, however, can recover the secret image from the hidden images. Experiments and analyses

showed that this framework can also detect tampering of data/image performed at a datacenter, and

can withstand breakdown of certain number of datacenters. This framework results in low compu-

tation cost and high data overhead (19 times more data overhead than conventional rendering) to the

user.

To the best of our knowledge, we are the first to apply Shamir’s secret sharing based secure

multiparty computation to 2D image scaling/cropping and volume ray-casting algorithms. In this

CHAPTER 7. CONCLUSION AND FUTURE WORK 120

work, we mainly studied the feasibility of applying secret sharing (or its variant) to an imaging

algorithm, and designed practical secure frameworks. At this point, we were less concerned about

performance and image quality.

Future works, however, may focus on improving the performance and image quality of the pro-

posed frameworks. Furthermore, the presented ideas can be applied to secure other areas such as

secure video scaling/cropping, secure surface rendering etc. In the following, we briefly discuss

some of the possible future works.

7.1 Improvement of the Proposed Frameworks

In this section, we discuss one improvement each for secure cloud-based image scaling/cropping,

secure cloud-based pre-classification volume ray-casting, and secure cloud-based post-classification

volume ray-casting.

7.1.1 Secure scaling/cropping of a compressed images

Our secure cloud-based image scaling/cropping framework scales and crops an uncompressed shadow

image. Thus, a datacenter must either store an uncompressed image, or decompress a compressed

shadow image before scaling/cropping. Evidently, The former approach results in high data over-

head. The latter approach, which is typically used in conventional image scaling/cropping, is not

much more improved than the former since the spatial coherence of an image is destroyed in a

noise-like shadow image. As a result, the proposed framework requires significantly more storage

and bandwidth than conventional image streaming.

One can decrease the storage and bandwidth requirements by secret sharing a compressed image,

and allowing scaling/cropping of a shadow image of the compressed image. Since compression

techniques differ from one another, a framework involving one compression technique can present

different challenges than a framework involving another compression technique. For JPEG com-

pression, we briefly discuss the challenges below.

Secret sharing a JPEG compressed image [99], and scaling/cropping a secret JPEG compressed

image [100, 101] have been independently studied. Proposed secret sharing schemes and proposed

CHAPTER 7. CONCLUSION AND FUTURE WORK 121

scaling/cropping schemes simultaneously hide and scale the DCT coefficients. Thus, an obvious

approach can be to combine these schemes, and hide the DCT coefficients such that scaling can be

performed on the hidden coefficients. As described below, such an approach, however, is not trivial.

To hide DCT coefficients, existing secret sharing schemes secret share DC coefficients, and either

permute or randomize the AC coefficients [99]. Permutation of AC coefficients does not support

cropping, and using the DC coefficient as a seed to randomize AC coefficients does not support

scaling. Furthermore, hiding all the AC coefficients makes zig-zag coding inefficient, and therefore

increases the size of the compressed image. Thus, a new secret sharing scheme must be designed.

An obvious approach can be to secret share all the AC coefficients, but use one secret sharing

polynomial for all the coefficients having the same value. We believe that this scheme can produce

noise-like images, and does not disturb zig-zag coding. The discloser of the number of AC coef-

ficients and their positions, however, can weaken security since the value of some high frequency

coefficients can be guessed. Thus, a detailed analysis of this approach and the possible tradeoffs

need to be examined.

7.1.2 Hiding the shape of an object in secure pre-classification ray-casting

Our secure pre-classification volume ray-casting cannot hide the shape of an object from a data-

center, and therefore does not provide high data confidentiality. We know that the shape can be

hidden only when the opacities are hidden, and Shamir’s secret sharing is non-homomorphic to the

multiplications in opacity rendering. Thus, new techniques must be devised to hide both colors and

opacities. In the following, we discuss two preliminary ideas.

First, we can use the idea of a secure post-classification volume ray-casting framework to separate

color rendering from opacity rendering such that the color renderer (i.e., the group of datacenters

rendering the color) does not know the secret opacities, and the opacity renderer does not know

the secret pixel positions. Instead, shares of opacities can be provided to the color renderer, and

proxy pixel positions can be provided to the opacity renderer. Executing such an idea, however, is

challenging since the direction of the projected rays cannot be hidden during opacity interpolation.

Alternatively, the opacities can be hidden by using a cryptosystem that is homomorphic to un-

limited multiplications. Cryptosystems such as ElGamal encryption, which are homomorphic to a

CHAPTER 7. CONCLUSION AND FUTURE WORK 122

predefined number of multiplications, can fulfill this requirement with high overheads. In future,

it will be interesting to examine if such a cryptosystem can be used in combination with Shamir’s

secret sharing.

7.1.3 Using Phong shading in post-classification ray-casting

Our secure post classification volume ray-casting uses Gouard shading, and therefore renders infe-

rior color than volume ray-casting using Phong shading. Thus, in the future, one can improve our

scheme by supporting Phong shading.

Phong shading computes the illumination factors

Ys = ka + kdMAX(Ns.L, 0)

and

Zs = ksMAX
(
(Ns.R)n, 0),

of a sample point after the projection of rays. Using these illumination factors, colors are then

shaded by

Cs = YsC
↑
s + Zs.

Thus, to hide the shaded color, both Ys and Zs must be hidden. We can hide Ys and Zs by hiding at

least one variable in the computation of Ys and Zs. The ambient coefficient ka, diffuse coefficient

kd, specular coefficient ks, and specular shininess n can be assumed to be public since they can be

known by knowing the type of object being rendered. As a result, we have to hide either normal

Ns, or light L and reflected light R to secure Phong shading. Both these options can be explored in

future works.

7.2 Secure Video Scaling/Cropping

Cloud-based video storage/processing, such as cloud-based video conferencing and cloud-based

video surveillance, are becoming popular. In this technique, videos, which can contain confidential

information, are stored and processed at third-party cloud datacenters.

CHAPTER 7. CONCLUSION AND FUTURE WORK 123

Although cloud-based video storage/processing can be advantageous than conventional server-

side video storage/processing, security and privacy are the main concerns. For example, by access-

ing a datacenter, an adversary can know the participants and discussed confidential information of a

video conference, or can know the identity of a person on surveillance. One can, however, address

the security and privacy concerns by hiding the content of a video from a datacenter.

Two important operations on video are scaling and cropping. Downloading a large video, such

as a surveillance video, may not anyways be feasible. Users connected through different devices

may request video at different scale levels. Furthermore, users may just want to view a particular

region of interest in the video, in which case, a cropped region should be downloaded. These two

operations, scaling and cropping, can be combined to support zooming and panning, two natural

user interactions. Thus, video scaling and cropping must be supported by a datacenter.

Video scaling/cropping [102], and video hiding [103, 104] are two independently well-studied ar-

eas. To the best of our knowledge, scaling/cropping a hidden video, however, has not been done yet.

In the future, one may work on addressing this problem by extending our idea of scaling/cropping a

hidden image.

7.3 Secure Surface Rendering

The cloud-based surface rendering framework, also called cloud-based indirect volume rendering,

uses surface rendering to remotely render a 3D image. In this framework, an organization captures

a set of 2D images and sends the captured images to a datacenter. Upon a user’s request, the

datacenter renders a 3D image from the image set by using a surface rendering algorithm, and sends

the rendered image to the user. Although use of cloud datacenters relieves an organization from the

complex rendering tasks, disclosure of confidential 2D images to datacenters creates security and

privacy concerns.

Securing surface rendering is more challenging than direct volume rendering since surface ren-

dering performs more complex operations. To render a 3D image, surface rendering first extracts

isosurfaces from an image set, and then renders the isosurfaces by an isosurface rendering algorithm.

The isosurfaces are typically extracted by marching cube or the marching tetrahedra algorithm, and

CHAPTER 7. CONCLUSION AND FUTURE WORK 124

the extracted isosurfaces are rendered by the volume ray-casting or rasterization algorithm. Thus,

to secure surface rendering, both the isosurface extraction algorithm and isosurface rendering al-

gorithm must be secured. Furthermore, since hidden isosurfaces need to be input to the isosurface

rendering algorithm, our secure volume ray-casting techniques cannot be used.

125

Bibliography

[1] VIDAR Systems Corporation. The transition to digital imaging in medicine. White

Paper, 2010. http://www.vidar.com/film/images/stories/PDFs/newsroom/

DigitalTransition˜White˜Paper˜hi-res˜GFIN.pdf.

[2] Ronald S. Weinstein, Anna R. Graham, and Lynne C. Richter et al. Overview of telepathol-

ogy, virtual microscopy, and whole slide imaging: prospects for the future. Human Pathology,

40:1057–1069, August 2009.

[3] David Green. Using digital images in teaching and learning: perspectives from liberal arts

institutions. Online Report, 2006. http://www.academiccommons.org/imagereport.

[4] Fabrizio Lamberti and Andrea Sanna. A streaming-based solution for remote visualization of

3D graphics on mobile devices. IEEE Transactions on Visualization and Computer Graphics,

13:247–260, March 2007.

[5] Julien Jomier, Sebastien Jourdain, Utkarsh Ayachit, and Charles Marion. Remote visualiza-

tion of large datasets with MIDAS and ParaViewWeb. In Proceedings of the 16th Interna-

tional Conference on 3D Web Technology, pages 147–150, Paris, France, 2011.

[6] Klaus J. Enge, Thomas Ertl, and Peter Hastreiter et al. Combining local and remote visualiza-

tion techniques for interactive volume rendering in medical applications. In Proceedings of

the Conference on Visualization, pages 449–452, Salt Lake City, Utah, United States, 2000.

[7] Olcay Sertel, Jun Kong, Hiroyuki Shimada, and et al. Computer-aided prognosis of neurob-

lastoma on whole-slide images: classification of stromal development. Pattern Recogniza-

tion, 42:1093–1103, June 2009.

http://www.vidar.com/film/images/stories/PDFs/newsroom/DigitalTransition~White~Paper~hi-res~GFIN.pdf
http://www.vidar.com/film/images/stories/PDFs/newsroom/DigitalTransition~White~Paper~hi-res~GFIN.pdf
http://www.academiccommons.org/imagereport

BIBLIOGRAPHY 126

[8] Mikhail Smelyanskiy, Daid Holmes, and Jatin Chhugani et al. Mapping high-fidelity volume

rendering for medical imaging to CPU, GPU and many-core architectures. IEEE Transactions

on Visualization and Computer Graphics, 15:1563–1570, November 2009.

[9] Mikael Lundin, Janusz Szymas, and Ewert Linder et al. A European network for virtual mi-

croscopydesign, implementation and evaluation of performance. European Society of Pathol-

ogy, 454:421–429, April 2009.

[10] 3DI. Cloud based medical image management and visualization platform. Online Report,

2012. http://www.shina-sys.com/assets/brochures/3Di.pdf.

[11] Karlheinz Dorn, Vladyslav Ukis, and Thomas Friese. A cloud-deployed 3D medical imaging

system with dynamically optimized scalability and cloud costs. In Proceedings of the 37th

EUROMICRO Conference on Software Engineering and Advanced Applications, pages 155–

158, Oulu, Finland, 2011.

[12] Denis Vazhenin. Cloud-based Web-service for Health 2.0. In Proceedings on Joint Interna-

tional Conference on Human-Centered Computer Envirnment, pages 240–243, Hamamatsu,

Japan, 2012.

[13] Medical imaging in the cloud. Online Report, 2012. http://www.corp.att.com/

healthcare/docs/medical_imaging_cloud.pdf.

[14] Lawrence M Kaufman. Data security in the world of cloud computing. IEEE Security and

Privacy, 7:61–64, July 2009.

[15] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In Proceedings of the 14th

International Conference of Financial Cryptography and Data Security: Workshop on Real-

Life Cryptographic Protocols and Standardization, pages 136–149, Canary Islands, Spain,

2010.

[16] Shucheng Yu, Cong Wang, Kui Ren, and Worcester Lou. Achieving secure, scalable, and

fine-grained data access control in cloud computing. In Proceedings of the 29th Conference

on Information Communications, pages 1–9, San Diego, California, USA, 2010.

http://www.shina-sys.com/assets/brochures/3Di.pdf
http://www.corp.att.com/ healthcare/ docs/ medical_imaging_cloud.pdf
http://www.corp.att.com/ healthcare/ docs/ medical_imaging_cloud.pdf

BIBLIOGRAPHY 127

[17] Mohammed A. AlZain, Eric Pardede, Ben Soh, and James A. Thom. Cloud computing secu-

rity: from single to multi-clouds. In Proceedings of the 45th Hawaii International Conference

on System Sciences, pages 5490–5499, Hawaii, USA, 2012.

[18] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption

be practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security Work-

shop, pages 113–124, Chicago, USA, 2011.

[19] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.

IACR Cryptology ePrint Archive, 2012. http://eprint.iacr.org/2012/144.pdf.

[20] Kevin Henry. The theory and applications of homomorphic cryptography. Master Thesis,

2008.

[21] Erkay Savaş and Çetin Kaya Koç. Finite field arithmetic for cryptography. IEEE Circuits

and Systems, 10:40–56, May 2010.

[22] Josh C. Benaloh. Secret sharing homomorphisms: keeping shares of a secret secret. In

Proceedings of the Advances in Cryptology, pages 251–260, Santa Barbara, USA, 1987.

[23] George R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS

National Computer Conference, pages 313–317, Arlington, USA, 1979.

[24] Lein Harn and Lin Changlu. Authenticated group key transfer protocol based on secret shar-

ing. IEEE Transactions on Computers, 59:842–846, 2010.

[25] Joan Cooper, Diane Donovan, and Jennifer Seberry. Secret sharing schemes arising from

Latin sqaures. Bulletin of the Institute of Combinatorics and Its Applications, 12:33–43,

1994.

[26] Timothy Finamore. Shamir’s secret sharing scheme using floating point arithmetic. Master

Thesis – Florida Atlantic University, 2012.

[27] Manoranjan Mohanty, Pradeep K. Atrey, and Wei Tsang Ooi. Secure cloud-based medical

data visualization. In Proceedings of the 20th ACM International Conference on Multimedia,

pages 1105–1108, Nara, Japan, 2012.

http://eprint.iacr.org/2012/144.pdf

BIBLIOGRAPHY 128

[28] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In

Proceedings of the 14th International Conference on Financial Cryptography and Data Se-

curity, pages 35–50, Tenerife, Spain, 2010.

[29] Manoranjan Mohanty, Wei Tsang Ooi, and Pradeep K. Atrey. Scale me, crop me, know me

not: supporting scaling and cropping in secret image sharing. In Proceedings of the 2013

IEEE International Conference on Multimedia & Expo, San Jose, USA, 2013.

[30] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, November

1979.

[31] Manoranjan Mohanty, Wei Tsang Ooi, and Pradeep K. Atrey. Secure cloud-based volume

data visualization. Under Submmision in the IEEE Transaction on Information Forensics

and Security, 2013.

[32] Manoranjan Mohanty, Wei Tsang Ooi, and Pradeep K. Atrey. Secure cloud-based volume

ray-casting. In Proceedings of the 5th IEEE Conference on Cloud Computing Technology

and Science, Bristol, UK, 2013.

[33] Chia-Chi Teng, Jonathan Mitchell, and Christopher Walker et al. A medical image archive

solution in the cloud. In Proceedings of the 1st International Conference on Software Engi-

neering and Service Sciences, pages 431–434, Utah, USA, 2010.

[34] James Philbin, Fred Prior, and Paul Nagy. Will the next generation of PACS be sitting on a

cloud? Journal of Digital Imaging, 24:179–183, April 2011.

[35] Chenghao He, Xi Jin, Zhanxiang Zhao, and Tian Xiang. A cloud computing solution for

hospital information system. In Proceedings of the 2010 IEEE International Conference on

Intelligent Computing and Intelligent Systems, pages 517–520, Xiamen, China, 2010.

[36] PACS in the cloud - revolutionising medical imaging. Online Report, 2013. http://click.

accenture.com/article/pacs-cloud-revolutionising-medical-imaging/.

http://click.accenture.com/article/pacs-cloud-revolutionising-medical-imaging/
http://click.accenture.com/article/pacs-cloud-revolutionising-medical-imaging/

BIBLIOGRAPHY 129

[37] eWEEK.com. Cloud computing in health care to reach $5.4 billion by 2017: re-

port. Online Report, 2012. http://www.eweek.com/c/a/Health-Care-IT/

Cloud-Computing-in-Health-Care-to-Reach-54-Billion-by-2017-Report-512295/.

[38] Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin Lauter. Patient controlled encryption:

ensuring privacy of electronic medical records. In Proceedings of the 2009 ACM Workshop

on Cloud Computing Security, pages 103–114, Chicago, USA, 2009.

[39] Jeremie Tharaud, Sven Wohlgemuth, and Isao Echizen et al. Privacy by data provenance with

digital watermarking. In Proceedings of the 6th International Conference on Intelligent In-

formation Hiding and Multimedia Signal Processing, pages 510–513, Darmstadt, Germany,

2010.

[40] Tim Rostrom and Chia-Chi Teng. Secure communications for PACS in a cloud environment.

In Proceedings of the 33rd Annual International Conference of the IEEE EMBS, pages 8219–

8221, Boston, USA, 2011.

[41] KDDI Inc. Medical real-time 3D imaging solution. Online Report, 2012.

http://www.kddia.com/en/sites/default/files/file/KDDI_America_

Newsletter_August_2012.pdf.

[42] Xinde Sun. A blind digital watermarking for color medical images based on PCA. In Pro-

ceedings of the IEEE International Conference on Wireless Communications, Networking

and Information Security, pages 421–427, Beijing, China, August 2010.

[43] Hussain Nyeem, Wageeh Boles, and Colin Boyd. A review of medical image watermarking

requirements for teleradiology. Journal of Digital Imaging, pages 1–18, September 2012.

[44] Baisa L. Gunjal and Suresh N. Mali. ROI based embedded watermarking of medical im-

ages for secured communication in telemedicine. International Journal of Computer and

Communication Engineering, 6:293–298, June 2012.

[45] N. K. Pareeka, Vinod Patidar, and K. K. Sud. Image encryption using chaotic logistic map.

Image and Vision Computing, 24:926–934, September 2006.

http://www.eweek.com/c/a/Health-Care-IT/Cloud-Computing-in-Health-Care-to-Reach-54-Billion-by-2017-Report-512295/
http://www.eweek.com/c/a/Health-Care-IT/Cloud-Computing-in-Health-Care-to-Reach-54-Billion-by-2017-Report-512295/
http://www.kddia.com/en/sites/default/files/file/KDDI_America_Newsletter_August_2012.pdf
http://www.kddia.com/en/sites/default/files/file/KDDI_America_Newsletter_August_2012.pdf

BIBLIOGRAPHY 130

[46] Nuha O. Abokhdair, Azizah B. A. Manaf, and Mazdak Zamani. Integration of chaotic map

and confusion technique for color medical image encryption. In Proceedings of the 6th

International Conference on Digital Content, Multimedia Technology and its Applications,

pages 20–23, Seoul, South Korea, 2010.

[47] Chih-Ching Thien and a Chen Lin. Secret image sharing. Computers and Graphics, 26:765–

770, October 2002.

[48] Moni Naor and Adi Shamir. Visual cryptography. In Proceeding of Eurocrypt, pages 1–12,

Berlin, Germany, 1994.

[49] Maurice Mignotte. How to share a secret. In Proceedings of the 1982 Conference on Cryp-

tography, pages 371–375, Burg Feuerstein, Germany, 1983.

[50] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transaction on

Information Theory, 29:208–210, September 2006.

[51] Young-Chang Hou. Visual cryptography for color images. Pattern Recognition, 36:1619–

1629, July 2003.

[52] Hao-Kuan Tso. Sharing secret images using Blakley’s concept. Optical Engineering,

47(7):077001–3, 2008.

[53] İlker Nadi Bozkurt, Kamer Kaya, Ali Aydin Selçuk, and Ahmet M. Gülog̃lu. Threshold

cryptography based on Blakley secret sharing. In Proceedings of the Information Security

and Cryptology, pages 313–317, Ankara, Turkey, 2008.

[54] Shyong-Jian Shyu and Ying-Ru Chen. Threshold secret image sharing by Chinese remainder

theorem. In Proceedings of the IEEE Asia-Pacific Services Computing Conference, pages

1332–1337, Yilan, Taiwan, 2008.

[55] Sorin Iftene. General secret sharing based on the Chinese remainder theorem with applica-

tions in e-voting. Electronic Notes in Theoretical Computer Science, 186(0):67–84, 2007.

BIBLIOGRAPHY 131

[56] Mustafa Ulutas., Vasif V. Nabiyev., and Guzin Ulutas. A new secret image sharing tech-

nique based on Asmuth Bloom’s scheme. In Proceedings of the International Conference on

Application of Information and Communication Technologies, pages 1–5, Baku, Azerbaijan,

2009.

[57] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty

computations with applications to threshold cryptography. In Proceedings of the 17th Annual

ACM Symposium on Principles of Distributed Computing, pages 101–111, Puerto Vallarta,

Mexico, 1998.

[58] George R. Blakley and Catherine Meadows. Security of ramp schemes. In Proceedings on

Advances in Cryptology, pages 242–268, Sanata Barbara, USA, 1985.

[59] Hirosuke Yamamoto. Secret sharing system using (k, L, n) threshold scheme. Electronics

and Communications in Japan, Part I, 69:46–54, September 1986.

[60] Benny Chor and Eyal Kushilevitz. Secret sharing over infinite domains. Journal of Cryptol-

ogy, 6:87–96, 1989.

[61] Li. Bai. A reliable (k, n) image secret sharing scheme. IEEE International Symposium on

Dependable, Autonomic and Secure Computing, 0:31–36, October 2006.

[62] Li Li and Ahmed A. Abd El-Latif. A novel secret image sharing scheme based on chaotic

system. In Proceedings of SPIE 4th International Conference on Digital Image Processing,

Kuala Lumpur, Malaysia, 2012.

[63] Mustafa Ulutas, Güzin Ulutas, and Vasif V. Nabiyev. Medical image security and EPR hiding

using Shamir’s secret sharing scheme. Journal of Systems and Software, 84:341–353, March

2011.

[64] Saeed S. Alharthi and Pradeep K. Atrey. Further improvements on secret image sharing

scheme. In Proceedings of the 2nd ACM workshop on Multimedia in Forensics, Security and

Intelligence, pages 53–58, Firenze, Italy, 2010.

BIBLIOGRAPHY 132

[65] Chih-Ching Thien. An image-sharing method with user-friendly shadow images. IEEE

Transactions on Circuits and Systems for Video Technology, 13:1161–1169, December 2003.

[66] Chang-Chou Lin and Wen-Hsiang Tsai. Secret image sharing with steganography and au-

thentication. Journal of System and Software, 73:405–414, November 2004.

[67] Ran-Zan Wang and Shyong-Jian Shyu. Scalable secret image sharing. Image Communica-

tion, 22:363–373, April 2007.

[68] Wang Liu and Chunhui Zhao. Digital watermarking for volume data based on 3D-DWT

and 3D-DCT. In Proceedings of the 2nd International Conference on Interaction Sciences:

Information Technology, Culture and Human, pages 352–357, Seoul, Korea, 2009.

[69] Esam Elsheh and A. Ben Hamza. Secret sharing approaches for 3D object encryption. Expert

Systems with Applications, 38:13906 – 13911, October 2011.

[70] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st

Annual ACM Symposium on Theory of Computing, pages 169–178, Maryland, USA, 2009.

[71] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party computa-

tion. Cryptology ePrint Archive, Report 2011/272, 2011. http://eprint.iacr.org/.

[72] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked keyword search

over encrypted cloud data. In Proceedings of the 30th IEEE International Conference on

Distributed Computing Systems, pages 253–262, Genoa, Italy, 2010.

[73] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy keyword search

over encrypted data in cloud computing. In Proceedings of the 2010 IEEE International

Conference on Computer Communications, pages 1–5, San Diago, USA, 2010.

[74] Jingwei Li, Chunfu Jia, Jin Li, and Zheli Liu. A novel framework for outsourcing and sharing

searchable encrypted data on hybrid cloud. In Proceedings of the 4th International Confer-

ence on Intelligent Networking and Collaborative Systems, pages 1–7, Bucharest, Romania,

2012.

http://eprint.iacr.org/

BIBLIOGRAPHY 133

[75] Cong Wang, Kui Ren, and Jia Wang. Secure and practical outsourcing of linear programming

in cloud computing. In Proceedings of the 30th IEEE International Conference on Computer

Communications, pages 820–828, Shanghai, China, 2011.

[76] Qingji Zheng and Xinwen Zhang. Multiparty cloud computation. Computing Research

Repository, 1206.3717:1–8, June 2012.

[77] Durgesh K. Mishra. Tutorial: secure multiparty computation for cloud computing paradigm.

In Proceedings of the 2010 Second International Conference on Computational Intelligence,

Modelling and Simulation, pages xxiv–xxv, Bali, Indonesia, 2010.

[78] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-preserving

data mining. The Journal of Privacy and Confidentiality, 1:59–98, April 2009.

[79] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party computa-

tion. Cryptology ePrint Archive, Report 2011/272, 2011. http://eprint.iacr.org/.

[80] Zekeriya Erkin, Martin Franz, and Jorge Guajardo et al. Privacy-preserving face recogni-

tion. In Proceedings of the 9th International Symposium on Privacy Enhancing Technologies,

pages 235–253, 2009.

[81] Erman Ayday, Jean L. Raisaro, Jean-Pierre Hubaux, and Jacques Rougemont. Protecting and

evaluating genomic privacy in medical tests and personalized medicine. In Proceedings of

the 12th ACM Workshop on Workshop on Privacy in the Electronic Society, pages 95–106,

2013.

[82] R. (Inald) L. Lagendijk, Zekeriya Erkin, and Mauro Barni. Encrypted signal processing for

privacy protection: conveying the utility of homomorphic encryption and multiparty compu-

tation. IEEE Signal Processing Magazine, 30(1):82–105, 2013.

[83] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science, pages 160–164, Chicago, USA, 1982.

[84] Andrew C. Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual

Symposium on Foundations of Computer Science, pages 162–167, Toronto, Canada, 1986.

http://eprint.iacr.org/

BIBLIOGRAPHY 134

[85] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its application

to electronic voting. In Proceedings of the 19th Annual International Cryptology Conference

on Advances in Cryptology, pages 148–164, Santa Barbara, USA, 1999.

[86] Lein Harn. Group-oriented (t, n) threshold digital signature scheme and digital multisigna-

ture. Computers and Digital Techniques, 141(5):307–313, 1994.

[87] Matthew Roughan and Yin Zhang. Secure distributed data-mining and its application to large-

scale network measurements. Computer Communication Review, 36:7–14, January 2006.

[88] Peter Bogetoft, Dan L. Christensen, and Ivan Damgård et al. Secure multiparty computation

goes live. In Financial Cryptography and Data Security, pages 325–343. Springer Berlin

Heidelberg, 2009.

[89] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-

party computation is practical. In Proceedings of the 15th International Conference on the

Theory and Application of Cryptology and Information Security: Advances in Cryptology,

pages 250–267, Tokyo, Japan, 2009.

[90] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:

outsourcing computation to untrusted workers. In Advances in Cryptology, pages 465–482,

Santa Barbara, USA, 2010.

[91] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In

Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 218–229,

New York, USA, 1987.

[92] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the Web: computing

without simultaneous interaction. In Proceedings of the 31st Annual Conference on Advances

in Cryptology, pages 132–150, Santa Barbara, CA, 2011.

[93] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay – a secure two-party

computation system. In Proceedings of the 13th Conference on USENIX Security Symposium,

pages 20–20, San Diego, CA, 2004.

BIBLIOGRAPHY 135

[94] Ramin Shahidi. Surface rendering versus volume rendering in medical imaging: techniques

and applications. In Proceedings of the Conference on Visualization, pages 439–440, San

Francisco, California, USA, 1996.

[95] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applica-

tion, 8:29–37, May 1988.

[96] Craig M. Wittenbrink, Tom Malzbender, and Michael E. Goss. Opacity-weighted color inter-

polation for volume sampling. In IEEE Symposium on Volume Visualization, pages 135–142,

North Carolina, USA, 1998.

[97] Mukesh Saini, Pradeep K. Atrey, Sharad Mehrotra, and Mohan Kankanhalli. Anonymous

surveillance. In Proceedings of the IEEE International Conference on Multimedia and Expo,

pages 1–6, Barcelona, Spain, 2011.

[98] Elaine M. Newton, Latanya Sweeney, and Bradley Malin. Preserving privacy by de-

identifying face images. IEEE Transaction on Knowledge and Data Engineering, 17:232–

243, Feburary 2005.

[99] Chang-Chou Lin and Wen-Hsiang Tsai. Secret image sharing with capability of share data

reduction. Optical Engineering, 42:2340–2345, August 2003.

[100] Brian C. Smith and Lawrence A. Rowe. Algorithms for manipulating compressed images.

IEEE Computer Graphics and Applications, 13:34–39, September 1993.

[101] Carlos L. Salazar and Trac D. Tran. On resizing images in the DCT domain. In Proceedings

of the IEEE International Conference on Image Processing, pages 2797–2800, Singapore,

2004.

[102] Quang Minh Khiem Ngo, Guntur Ravindra, Axel Carlier, and Wei Tsang Ooi. Supporting

zoomable video streams with dynamic region-of-interest cropping. In Proceedings of the 1st

Annual ACM SIGMM Conference on Multimedia Systems, pages 259–270, Phoenix, Arizona,

USA, 2010.

BIBLIOGRAPHY 136

[103] Ahmet M. Eskicioglu, Scott Dexter, and Edward J. Delp III. Protection of multicast scalable

video by secret sharing: simulation results. In Proceedings of the Security and Watermarking

of Multimedia Contents V, pages 505–515, Santa Clara, USA, 2003.

[104] Changgui Shi and Bharat Bhargava. A fast MPEG video encryption algorithm. In Proceed-

ings of the 6th ACM International Conference on Multimedia, pages 81–88, Bristol, United

Kingdom, 1998.

	Introduction
	Motivation
	Problem Statement
	Technical Challenges
	Summary of Contribution
	Choosing a cryptosystem
	Addressing incompatibility of Shamir's secret sharing with modular prime operation
	Proposed frameworks

	Organization of the Thesis

	Background and Related Work
	Cloud-based Imaging
	Cloud-based data/image storage
	Cloud-based data/image processing

	Cryptosystems Applied on Image
	Visual cryptography
	Blakley's secret sharing, and its application in sharing an image
	Secret sharing methods based on the Chinese Reminder Theorem, and their application in sharing an image
	Shamir's secret sharing, and its application in sharing an image

	Cryptosystems Applied on Volume data
	Computation in Hidden Domain
	Secure Multi-Party Computation
	Volume Data Rendering and 2D Image Scaling
	Image scaling
	Volume data rendering

	Chapter Summary

	Using Floating Point Numbers in Shamir's Secret Sharing
	Exclusion of the Modular Prime Operation
	Security analysis of the modified Shamir's secret sharing

	Modifying a Floating Point Number to a Fixed Point Number
	Error analysis

	Chapter Summary

	Secure Cloud-based Image Scaling/Cropping
	A New Secret Image Sharing Scheme
	Supporting bilinear scaling

	Scaling/Cropping an Image in Hidden Domain
	Shadow image preparation
	Shadow image scaling/cropping
	Secret image recovery

	Results and Analyses
	Security analysis
	Performance analysis

	Chapter Summary

	Secure Cloud-based Pre-classification Volume Ray-casting
	Pre-classification Volume Ray-casting with Fixed Point Operations
	Modifying interpolation
	Modifying composition

	Cloud-Based Secure Rendering
	Architecture
	SR-MPVR
	SR-MSSS
	SR-RSS

	Results and Analyses
	Security analysis
	Privacy analysis
	Performance analysis

	Chapter Summary

	Secure Cloud-based Post-classification Volume Ray-casting
	Post-Classification Volume Ray-Casting
	Our Framework
	Architecture
	Workflow

	Results and Analysis
	Security analyses
	Privacy analysis
	Performance analysis

	Chapter Summary

	Conclusion and Future Work
	Improvement of the Proposed Frameworks
	Secure scaling/cropping of a compressed images
	Hiding the shape of an object in secure pre-classification ray-casting
	Using Phong shading in post-classification ray-casting

	Secure Video Scaling/Cropping
	Secure Surface Rendering

