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Abstract

For multi-objective simulation optimization problem (MSOP), this the-

sis proposed a generic framework for designing various types of multi-

objective (MO) search algorithms. Based on the framework, two specific

algorithms are designed. First is an advanced stochastic search algorithm

multi-objective convergent optimization via most-promising-area stochas-

tic search (MO-COMPASS) that is developed with solid theoretical foun-

dations and proof showing convergence to the local optimum. Another is

gradient-oriented polar random search (GO-POLARS) that is designed to

strengthen the search efficiency, especially to make it suitable for continu-

ous problems and easy to control exploration of the search space. With the

dominated hyper volume concept and a unified gradient derived, we are

able to incorporate gradient-based techniques such as GO-POLARS, into

the MO search framework.
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Chapter 1

Introduction

Recently, simulation optimization problem (SOP) has attracted more re-

search interests, due to its broad application to solve complicated real-life

problems. Many industrial systems, such as supply chain, manufacturing,

and financial management, are often difficult to be formulated in mathe-

matical close form because of their complex business models. Simulation

becomes the best way to evaluate such kind of systems and help to identify

the optimal configurations.

Beside the complex business models, quite often for industrial applica-

tions there is also a large number of decisions to be made. For example, in

a supply chain system, normally the inventory levels or ordering quantities

for different products at every warehouse or retail store are the decisions

need to be made. In such cases, the problem dimension is associated to

the amount of real-life entities that concern us, which is usually a very big

number.

From mathematical point of view, it implies that the optimization prob-
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lem is configured in a high-dimensional search space. The number of can-

didate solutions increases exponentially as the dimension becomes larger.

So, in order to obtain the optimal solutions, it costs an extreme amount of

computational effort and time to sample and evaluate different possibili-

ties. Hence, instead of exhaustive search which is usually impractical, more

efficient search algorithms are desired so as to provide in-time decisions for

those large-scale industrial problems.

Many research works address this issue from different perspectives.

Some works focus on the stochastic search that explores various parts of

a solution space specified by a neighborhood structure, e.g., genetic algo-

rithms, the simulated annealing (SAN) algorithm (Kirkpatrick et al., 1983),

the nested partitions method (Shi and Olafsson, 2000), and convergent op-

timization via most-promising-area stochastic search (COMPASS) (Hong

and Nelson, 2006). Meanwhile, the others adopt local information, such

as gradient or second order derivatives. The example can be the steepest

descent (SD) approach (Arfken, 1985), the finite-difference stochastic ap-

proximation method (FDSA) (Blum, 1954b; Kiefer and Wolfowitz, 1952),

and the simultaneous perturbation stochastic approximation (SPSA) (S-

pall, 1999, 2003).

Although there are various state-of-art algorithms proposed to solve the

the complex SOPs, the challenges could become even more as nowadays

systems often have multiple performance measurements to be observed.

We classify those problems as MSOP.

Compared with the single-objective case, in an MSOP we are not only

concerned about the solution space which is in high dimension, but also the
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multi-dimensional objective space. The target of the optimization problem

is no longer finding a single point that has the optimal objective value,

but a bundle of solutions that are representative for the best value of each

contradictory objective. Thus, we could not simply adopt the procedure

for solving SOP, as many new aspects need to be taken into consideration

for design a MO search algorithm.

A typical MSOP in aerospace industry is addressed by D-SIMSPAIRTM,

a simulation-based planning and optimization system developed by D-

SIMLAB Technologies Pte. Ltd. (Lendermann et al., 2010). The main

purpose of the system is to enable OEM companies or their designated

service providers to determine the optimal inventory configuration that

satisfies targeted service level at minimum cost, by evaluating the perfor-

mance of different inventory configurations via simulation. Obviously, the

inventory levels of all part at all stock locations are the integer decision

variables we can manipulate, and at least two performance criteria, namely

the achieved service level (or the probability of achieving target level) and

the realized cost are the objectives we are interested in. More objectives

are to be involved if multiple airlines are served and the service level needs

to be considered independently.

For instance, for big component support service providers, it is common

that a flight network contains more than five stock locations for a particular

part number, and each part number can have an inventory level up to

30 at a location. Clearly, if a full-enumeration scheme were adopted, we

would need 305 trials to visit all possible solutions, which implies that if

each visit takes 1 second to run the simulation, the optimization process
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will complete only after 281 days. More severe situation arise when we

take into consideration more stock locations, for example, with 6 stock

locations, 306 visits will takes 23 years. D-SIMSPAIRTM has been adopting

heuristics-based approach to reduce this complexity, hence speeding-up the

optimization process. But to bring the capability (scalability in problem

size) of D-SIMSPAIRTM to a new level, a revision to the optimization

algorithm is required.

By analyzing the industrial problem, we can see that the problem di-

mension is quite critical in solving an MSOP, especially when the search

efficiency is concerned. Moreover, it also shows why the multi-objective

optimization come into the picture, which further increases the problem

complexity. Note that, the D-SIMSPAIRTM is only one example showing

the strong call for the industrial needs. There could be many more oth-

er cases in real-life application as nowadays in a complex system people’s

interests become more diverse.

Usually, people would like to convert multi-objective problems into

single-objective by assigning a weightage to each measurement. For exam-

ple, the multiple attribute utility method (MAU) (Butler et al., 2001). But

when there is no consensus about the weightage or in the situation where

measurements are not compromising, e.g. in D-SIMSPAIRTM no airline

would like to sacrifice its own interest for fulfilling the others, it makes

more sense to provide the whole Pareto set, i.e., all non-dominated solu-

tions (Lee et al., 2006, 2008, 2010) for the decision makers or a higher-level

optimization problem to make the final decision based on more detailed

information.
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Thus, in this thesis we aim to provide stochastic search methodologies

for solving the MSOP in term of providing a set of solutions that well

represent the whole Pareto set with required accuracy and efficiency.

In order to achieve the goal, rather than relying on a special design of

algorithm, we firstly introduce a stochastic search framework for MSOP and

show that it is indeed followed by other MO search algorithms, e.g., non-

dominated sorting genetic algorithm (NSGA)-I/II (Deb et al., 2002). So

that it provides a guideline for designing specific algorithms with concerns

and focus according to various industrial applications. Alternatively, for

an existing algorithm we may based on the framework identify where can

be potentially improved and redesign it for better performance.

Referring to different MO search algorithms developed in literature and

the later chapters of this thesis, we describe the general framework as in

Algortihm 1.1.

Algorithm 1.1: Framework of stochastic search for MSOP

1 Initialize Pareto set ;
2 while not terminating do
3 Select “pivot solutions” from the interim dominating structure ;
4 Construct Neighborhood ;
5 Sampling from Neighborhood ;
6 Compare the visited solutions and update Pareto set ;

According to the framework, first of all, one or a few solutions are chosen

to initialize the search. The initial Pareto set can be suggested by domain

experts or generated quickly from heuristics.

Then, at each iteration, one or two pivot solutions are randomly selected

according to the current dominating structure. Normally, a better quality
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solution in term of higher level of dominance will have better chance to

be selected. As we believe that, the goodness of the solution can be in-

herited when its neighbors are sampled. Without much consideration, a

conventional method to select the pivot solution in the interim Pareto set

following uniformity. Meaning that, every interim Pareto solution is treat-

ed equally, so as to have the same probability to be chosen as the pivot to

initiate the next iteration.

For example, the MO-COMPASS introduced later in Section 3.3.1 and

3.3.2 adopts the uniform selection. However, if we try to fit NSGA-II into

the framework, it can be realized that the probabilities of selection are not

even but based on a fitness score according to the layer of dominance and

crowding distance that indicates the solution density in objective space.

Obviously, if we are able to design other pivot selection scheme with valid

reasons, a new search algorithm could be developed.

The next important step would be constructing the neighborhood for

pivot solutions, within which new candidate solutions can be sampled.

By constructing an effective neighborhood, we focus on the search in a

more promising area which has higher chance to produce non-dominated

solutions. This technique is addressed by MO-COMPASS that is intro-

duced in Chapter 3. Another simple neighborhood structure could be the

set of all immediate neighbors that have unit Euclidean distance to the cur-

rent observed Pareto set. Or, in NSGA-II the structure can be concluded

as ⋃
~z1,~z2∈Π̂k

{FMut. ◦ FCro. (~z1, ~z2, ω)}.
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In this presentation, we treat the crossover and mutation procedure as a

special designed composite function, i.e., FMut. ◦ FCro., that can be applied

on two parent solutions selected from the intermediate Pareto set, with a

random factor ω occurring. According to it, all possible outputs are consid-

ered as in the neighborhood. Other than the NSGA-II, in another scenario

where gradients are known or could be estimated, we may apply a typical

gradient search procedure to reach its neighborhood, provided that there

is a weighing vector balancing gradients from contradictory objectives.

Sometimes, an adequate solution-sampling scheme is also a key factor

that affects the search efficiency for new Pareto solutions. In MO-COMPASS,

revised Mix-D (RMD)(Hong and Nelson, 2006) and coordinate sampling

(CS) (Hong et al., 2010) are the popular sampling schemes, due to their

simplicity and convenient implementation. Other than that, we could also

develop different sampling scheme for it. In NSGA-II, the sampling scheme

can be seen as the way to play with the random factor ω, e.g., tuning the

rate of mutation. However, when a typical gradient search is performed

where there is no randomness taking part, the sampling scheme becomes

trivial unless we are able to tune the step-size and search direction.

As we can see from the above examples, the sampling scheme is highly

coupled with its neighboring structure. Some kinds of neighborhood are

suitable for various types of sampling, while the rest only have limited ways

of sampling new solutions.

Anyhow, in most of the cases, the basic idea for designing a superior

neighborhood structure as well as its sampling scheme is to identify good

solutions fast without loosing opportunity to visit the potential better ones.
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Figure 1.1: The MO search framework, examples and new design.

In order to do so, we have to utilize acquired information in a smart way

while maintaining sufficient exploration in the solution space.

The iterative process continues until termination conditions are met

or we run out of simulation budget. We can see from the framework in

Algorithm 1.1 that three steps are critical, namely, 3, 4 and 5, as Step 6 is

no more than a straightforward calculation. In Section 5.3 we will elaborate

them in details.

The illustration of the framework and typical example of its varieties

are shown in Figure 1.1. With the framework, new search algorithm will

be designed by modifying one of the steps in the framework. For instance,

if we apply greediness in sampling new solution providing that we can find

a unified gradient among multiple objectives (as in Section 5.2), we can

simply propose the multi-objective greedy search algorithm.

In this thesis, based on the framework mentioned above, two innovative

MO search algorithms are developed.
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With the ideas of pure stochastic local search proposed in COMPASS

(Hong and Nelson, 2006), for the first algorithm we develop a new MO-COMPASS

for solving in MO circumstance that is proven to have convergent property.

Secondly, for utilizing the gradient information, we developed GO-POLARS

based on a brand new hyper polar coordinate system and corresponding

random distributions, in which we can perturb the search direction from

the gradient in a well-controlled manner.

To apply GO-POLARS in MO circumstance, we extend the concep-

t of a singular indicator for measuring a Pareto set, i.e., the dominated

hyper-volume (DHV) (Bradstreet et al., 2008; Nebro et al., 2008; Zitzler

et al., 2003), so as to invent a unified gradient for MSOPs. We note that

the methodology developed can also be applied to other gradient-based

techniques other than the GO-POLARS.

Following are the main contributions we have achieved in this thesis:

• The local Pareto set (LPS) is defined for the multi-objective discrete

optimization via simulation (MDOvS) which fills the gap of theoret-

ical work in this research field. It serves as a fundamental knowledge

for deriving the convergence property.

• The MO-COMPASS algorithm is developed and it is shown by numer-

ical experiments that the algorithm is superior in solving benchmark

MDOvS problems compared with existing algorithms. It improves

the search efficiency for solving MSOPs.

• The MO-COMPASS algorithm is rigourously proven to have strong

convergent property to LPS. It is the first algorithm that is claimed
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to have such property.

• The hyper polar coordinate and corresponding random distributions

are rigourously defined and applied for solving optimization problem,

in which the perturbation of search direction can be easily controlled.

It is the first time polar coordinate is used in designing optimization

search algorithm.

• The GO-POLARS is mathematically proven to have local convergent

property as stochastic approximation (SA).

• The DHV concept and hyper-volume by slicing objectives (HSO)

methods are extended so that they can be applied in identifying a

unified gradient for an MSOP, which is new in the area of multi-

objective optimization.

In subsequent parts of this thesis, we will firstly have a literature review

of various type of search algorithms in Chapter 2, discussing about the

search methodologies that have been developed by previous research works

especially for the simulation optimization.

For development of specific algorithms, the convergent method MO-COMPASS

is to be discussed in Chapter 3, and the gradient oriented random search

GO-POLARS is described in Chapter 4 and 5.

Noted that, the GO-POLARS is a brand new concept that even for a

single objective case. So in Chapter 4 we first discuss it for single-objective

problems, and then extend it into multi-objective circumstance in Chapter

5.
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Chapter 2

Literature Review

In literature, there are many optimization problems aiming to analyze a

complex system. In generic form, the problems can be described as

min
~x
~g (~x), for ~x ∈ Θ.

When ~g (·) has one dimension, we classify it as single-objective problem;

otherwise, it is multi-objective problem. From the other prospective, ac-

cording to the solution space Θ, the problems can be classified as discrete

and continuous.

Quite often the mathematical programming methods cannot be applied,

either because the loss function is too complicated to be analyzed or the

problem is formulated by a simulation model where the close form of loss

function does not occur. In such cases, adaptive search algorithms becomes

better choice as only local information is required which can be easily ob-

tained from loss functions or evaluated by simulation models.
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2.1 For Single-Objective Problems

We first look at the single-objective optimization problems, where there

is plenty of search algorithms that have been developed, but mainly are

included in two categories.

One category of well-known search algorithms is driven by gradient

information. The oldest method is the SD approach (Debye, 1909) which

assumes that the gradient is known at each search iterate, so the search

always moves towards its opposite direction with a step-size proportional to

its magnitude and a given gain sequence. When the ideal situation occurs

where the gradient can be directly measure, the steepest descent shows

a very good performance as the search iterate converges to the optimum

fastest comparing with the others.

However, in the case where the gradient cannot be directly measured,

a FDSA should be used for estimating the gradient information (Blum,

1954b; Kiefer and Wolfowitz, 1952). The basic idea of FDSA is to perturb

the decision variable with an infinitesimal distance at every coordinate in

both positive and negative direction and observe its corresponding change

in the objective value. A simple calculation shows that for a p-dimension

decision space, it takes 2 · p evaluations to approximate a gradient, which

could be expensive if the evaluation is done by simulation which normally

takes time and there is many gradients need to be estimated.

As FDSA is costly especially when dimension is high, Spall (1999, 2003)

propose the SPSA that increases the estimation efficiency. Which is dif-

ferent from FDSA, in SPSA the perturbation to the decision vector is
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conducted simultaneously at all dimensions and in each dimension either

take the positive or the negative direction. And the complement of the per-

turbation is also taken. Then, the gradient is approximated as the rate of

objective change to the perturbation value at each dimension. Obviously,

the evaluation time spent on SPSA becomes independent to the dimension,

to be more specific for each gradient only 2 evaluations are required.

Although it has been shown that under certain conditions, the SPSA

converges to a local optimal point almost surely (Spall, 2003), the global

convergence can only be ensured under strict conditions by Maryak and

Chin (2008) as in a relax setting the greedy use of gradient information

sacrifices the exploration on the whole solution space. It can be argued that,

in FDSA and SPSA the gradient is approximated with certain noise, which

unintentionally increases the variety of the search directions. However,

since the noise cannot be controlled explicitly, it is difficult to balance

search exploration at a desired level.

Another category, often referred as metaheuristics local search, main-

ly depend on stochastic sampling within carefully designed neighborhood

structures. For example, the SAN algorithm (Kirkpatrick et al., 1983),

Tabu search (Glover, 1990), genetic algorithms, the nested partitions method

(Shi and Olafsson, 2000), and COMPASS (Hong and Nelson, 2006).

Compared to gradient-driven algorithms, the neighborhood structure

often ensures a better exploration on the search space. For example, in the

developed algorithms, the SAN applies a temperature parameter setting as

a threshold to randomly decide whether a subordinate solution should be

accepted so as to continue the next iteration of search; while the genetic
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algorithms randomly select parent solutions to perform crossover and mu-

tation is performed in addition in order to make solutions diverse so as to

further enhance the exploration in the search space.

But on the other hand, there is certainly some room for improvement

in term of search efficiency, as the gradient information or other domain

related knowledge which can probably be measured or approximated is not

utilized at all.

It is obvious that if the search direction in a gradient-based algorithm

can be randomized with desired variation, or the stochastic sampling in a

metaheuristic can be oriented by the gradient information, we can design a

new search algorithm that believes to have better performance than both.

Although Pogu and Souza De Cursi (1994) proposed a method for ran-

dom perturbation of the gradient (RPG), we noticed that the perturbation

within a region surrounding the targeted point cannot control the search

direction explicitly. For example, when the step-size is sufficiently large or

small, the same amount of perturbation may incur much difference in the

search direction.

Thus, there is a lack of research work on the stochastic search that is

enabled with explicit control on the search direction so as to make it diverse

but towards the gradient direction with desired concentration.

2.2 For Multi-Objective Problems

However, there are limited works on the search algorithms for multi-objective

problems. For example, Czyzak and Jaskiewicz (1998) extends the simu-
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lated annealing method into multi-objective circumstance. According to

Fleischer (2002); Marler and Arora (2004), most of the rest are the multi-

objective evolutionary algorithm (MOEA)s, e.g., the Pareto-archived evo-

lution strategy (PAES) (Knowles and Corne, 1999), the strength-Pareto

EA (SPEA) (Zitzler, 1999), and the NSGA and its variation (Deb et al.,

2002; Srinivas and Deb, 1995). The main reason is because genetic algo-

rithm is able to keep a population of diverse solutions so that it is capable

to contain a Pareto set that covers the full objective range.

In the typical NSGA, all solutions in a population are divided into lay-

ers according to their dominance relationship. For example, the overall

non-dominated solutions are concluded into the first layer, and within the

remaining solutions the non-dominated set are treated as the second layer.

The rest can be done in the same manner. All solutions are sorted either

by layers, or within a layer according to their neighboring distance in the

descending order so as to ensure a well spread solution set. And thereby,

parent solutions will be selected according to the fitness score which is pro-

portional to their rank in the population. By crossing over and mutation,

new offspring will be generated to form the next generation.

Comparing with the original NSGA which is normally referred as NSGA-

I, the improved version NSGA-II adopts the Crowding-distance to rank the

solutions in a dominance layer so as to decrease the time complexity and

has elitism enabled so that it become more efficient in searching for the

optimal Pareto set. Thus, NSGA-II is the most popular algorithm in the

field.

While most of the works for MOEAs are focusing on reduction of com-
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putational time complexity, there are seldom multi-objective search algo-

rithms that utilized local information and shown to have a convergent prop-

erty that is rigourously proven. Hence, it will be good if we can propose a

search algorithm with proven convergent property and shown to be superior

than the current MOEA family.

Meanwhile, we are fortunate as many indicators for Pareto set com-

parison are available in literature. So, in designing new search algorithms,

we can use the indicators to measure their fitness into a multi-objective

benchmark problem. The indicators are applied in different perspective

(Radziukyniene and Zilinskas, 2008).

For example, the generational distance (GD) suggested by Nebro et al.

(2008) shows how far is the approximated Pareto set from the true one. It

is calculated by taking the distances of all solutions in the approximated

Pareto set to the nearest solution in the true set, and then get the averaged

value. Whereas, the inverted generational distance (IGD) (Veldhuizen and

Lamont, 1998) indicates how far the true Pareto set is from the approxi-

mation, that is calculated in a reverse manner. Although similar, these two

indicators are not identical, because in an extreme case where the approxi-

mation is exactly a proper subset of the true Pareto set, GD equals to 0 but

IGD could be large indicating that the true Pareto set is not completely

covered by the approximation.

Other than the distance metrics, Spread indicator (Nebro et al., 2008)

is a diversity metric that measures the extent of spread achieved among

obtained solutions, and the running performance metrics (Deb and Jain,

2002; Zeng, 2010) is used to dynamically assess the diversity performance
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of the generated solution sets.

One of the most popular indices is the DHV (Bradstreet et al., 2008;

Nebro et al., 2008; Zitzler et al., 2003). There are many research works

on how the DHV value can be evaluated in the most efficient way. While

et al. (2006) propose a method called HSO that adopts dimension-sweep

approach developed by Preparata and Shamos (1985). The HSO is a re-

cursive method, which divides a p dimension problem into several p − 1

dimension sub-problems which can be further divided until p = 1 where

hyper-volume is no more than the length of a line segment. It is proven

that the algorithm runs in time complexity of O (np−1) for p > 2. Up-

on it, Fonseca et al. (2006) presents an improved algorithm with pruning

techniques, which achieves O (np−2 log n) time and linear space complexity

in the worst case. In our research, HSO is adopted as the way for DHV

calculation due to its simplicity in implementation, although it is not the

fastest algorithm.

As there is a lack of multi-objective algorithms other than MOEAs,

this thesis is aiming to fill in the research gaps, not only in the generic

framework, but also a specific search algorithms that has rigorous proof for

its convergent property, together with a algorithm that utilizes gradient

information into a stochastic search so as to gain an explicit control on

balancing solution quality and search efficiency. The methods developed

are also inspiring for the development of new MO search algorithms that

fitting the different industrial requirement.
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Chapter 3

The Multi-Objective

Convergent Optimization via

Most-Promising-Area

Stochastic Search

In this chapter, we simplify the MSOP by assuming the solution space to

be discrete. It is a reasonable assumption, as this category of problems has

gained application in various industries such as manufacturing, logistics

and services, and is attracting more research interests as well. A simple

reason is that the performance of these systems largely depends on integer

settings like staffing or inventory level, number of equipment, products or

customers. Besides, we note that in some circumstances continuous decision

variables should also be considered in a discrete sense, for instance, the

manufacturing time is usually calculated in number of shifts.
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As mentioned in Chapter 1, the Convergent Optimization via Most-

Promising-Area Stochastic Search (COMPASS) (Hong and Nelson, 2006)

was originally proposed for efficiently solving single-objective SOP, or more

precisely the discrete optimization via simulation (DOvS). With this method,

solutions are sampled stochastically within the most-promising-area, in

which all solutions have shorter Euclidian distance to the current opti-

ma than the distance to any current non-optima. The solutions are to be

evaluated according to certain simulated allocation rule (SAR) and used

to construct the next most-promising-area. It has been proven that the

searching converges to the local optima regardless of the searching space

being constrained.

Since COMPASS works well for single-objective DOvS, we follow its

idea together with the fundamentals of solving MO problems. We propose

a MO-COMPASS algorithm that adapts to multi-objective circumstances

and illustrate numerical examples to show its ability in achieving the desired

efficiency.

3.1 Review on COMPASS

For a fully constrained problem, consider the searching space is Θ and for

each ~x ∈ Θ the expected single performance measurement is g(~x) , which

is estimated by sample average Ḡ(~x) from simulation results. Without any

preliminary knowledge, the most-promising-area C is initially set to Θ.

Let V be the set of all visited solutions. Every iteration, stochastically

select m solutions from C to be included in V and apply SAR on it to find
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the solution with the minimum sample average, and use it to refine the

most-promising-area, i.e.,

~̂x∗ = arg min
~x∈V

Ḡ(~x),

C = {~x ∈ Θ | ∀~y ∈ Θ, ~y 6= ~̂x∗ ⇒ ‖~x− ~̂x∗‖ ≤ ‖~x− ~y‖}.

The process can be illustrated by Figure 3.1. From the figure we can see

that, in every iteration the most-promising-area (MPA) is constructed in

the decision space around the best observed point, while the boundaries the

MPA are formed at middle lines between the best and each of the inferior

points. Then, in the next iteration, new samples are only generated in

the MPA. In such a manner we can ensure that all the new samples have

shortest distance to the best known point among all points which have been

evaluated.

We should take note that the selection of SAR affects the efficiency of

search algorithms, as the search algorithm determines which solutions to

visit while the SAR decides how much simulation budget to spend on each

visit. According to Hong and Nelson (2006), a valid SAR for COMPASS

should satisfy two conditions: (1) the simulation budget allocated to newly

visited solution should not be zero; (2) as total budget approaches infinity,

the budget allocation to each visited solution should approach infinity as

well.

In Xu et al. (2010), it is stated that fixed schedules or optimal computing

budget allocation (OCBA) ideas can be adopted for COMPASS. Moreover,

some SARs are integrated with search algorithm. For example, He et al.
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Figure 3.1: Illustration for single-objective COMPASS
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(2010) propose an integrated cross-entropy method with OCBA.

It is proven that repeating the process will lead the estimate to converge

to the local optima (Hong and Nelson, 2007). The searching process can be

terminated either when simulation budget is exhausted or all neighboring

solutions of are visited.

For a partially or unconstrained problem, searching starts from a con-

strained subset B and follows the similar steps as for fully constrained

problems, but the boundaries of the subset are revised accordingly for each

iteration so as to reserve certain buffer in each direction from any visited

solution whenever it is available. A stronger condition for SAR is required

for the case, so as to ensure that the estimation error converges to 0 with

sufficiently high rate to compensate the negative effect brought by the in-

creasing size of candidate solutions.

3.2 Fundamentals

3.2.1 Pareto Optimality

To compare two multi-objective solutions, besides looking at the weighted

sum of various measurements as a single compromising solution (Butler

et al., 2001; Swisher et al., 2003), an alternative approach is to compare

measurement for individual objective (Lee et al., 2006, 2010). A solution is

claimed to dominate another if and only if all its objective measurements

are superior to the others. Thus, in optimization, instead of looking for

a single best solution among Θ, we are more interested in finding a set of
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solutions that are not dominated by the others. We claimed those solutions

as best among Θ and the set is referred as the Pareto set

Π ≡ {~x ∈ Θ | 6 ∃~y ∈ Θ, ~g(~y) ≺ ~g(~x)}.

where ~g(~y) ≺ ~g(~x) if and only if ∀l ∈ {1, ..., H}, g(l)(~y) ≤ g(l)(~x) and

∃l ∈ {1, ..., H}, g(l)(~y) < g(l)(~x).

Similar to single-objective problems, it is difficult to obtain a full Pareto

set especially in a huge solution space, since most of the time we are not able

to deny the possibility that the current Pareto solution being dominated

by some unvisited solutions. Whereas, according to following definition, we

can claim a local Pareto optimality without visiting all feasible solutions.

The definition of local Pareto set for a continuous problem has been

proposed by Deb (1999), according to which, we can define local Pare-

to optimality for a multi-objective discrete problem by reconstructing the

neighborhood.

Definition 3.1. For a discrete problem defined on Θ, a solution set P ⊆ Θ

is claimed as LPS if and only if it is a Pareto set on N (P) ≡ {~z ∈ Θ | ∃~x ∈

P , ‖~x− ~z‖ ≤ 1}.

Or in mathematical form, P ⊂ Θ such that ∀~x ∈ P , 6 ∃~y ∈ N (P)

satisfying ~g(~y) ≺ ~g(~x). Note that N (P) is a neighborhood of P that

contains P itself.

An illustration is shown by the 4th part of Figure 3.2 (i.e., Iteration

K). As all the circled solutions are incomparable with each other, and all

their un-circled neighbors are visited and observed to be dominated (simply
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because the circled ones are interim Pareto solutions among all visited).

Then, the set of circled solutions can be claimed as an LPS.

Aiming to identity a local Pareto set for a MDOvS with high efficiency,

we propose the MO-COMPASS algorithm in Section 3.3.1 and 3.3.2.

3.2.2 Probability of Correct Selection

Since in an MDOvS, we can only observe the sample averages ~̄G(~x) from

simulation results, it is always possible that the Pareto set we selected is

not accurate in term of the true performance measure ~g(~x). To measure

the selection quality of the Pareto set, a commonly adopted approach is

the probability of correct selection, i.e., Pr
{

CS(Π̂,Θ)
}

, defined as the

probability of the event that the observed Π̂ is truly the Pareto set among

solution set Θ.

In literature, Lee et al. (2010) developed an upper bound for Pr
{

CS(Π̂,Θ)
}

based on the bounding of Type I and II error, which is useful when the

candidate solution set Θ is given as deterministic.

However, when a stochastic search algorithm for DOvS is to be de-

signed, we need to consider a subset V ⊂ Θ that is randomly selected, on

which a Pareto set Π̂V is to be observed based on the sample averages.

In such a case, we cannot directly apply Lee et al. (2010)’s method for

Pr
{

CS(Π̂V ,V)
}

concerning that V is stochastic, unless with conditioning

on V = A for all A ⊂ Θ, which will apparently increase the complexity of

the problem since |{A ⊂ Θ}| = |Θ| · 2|Θ|−1.

In this paper, we adopt another way of bounding for the probabili-
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ty of CS(Π̂V ,V), or its complementary event, i.e., false selection denot-

ed as FS(Π̂V ,V), by considering the fact that false selection occurs only

when some pairwise comparison is wrong due to inaccurate evaluation, i.e.,

Ḡ(l)(~x) ≤ Ḡ(l)(~y) for some ~x, ~y ∈ V is observed to be true, but in fact

g(l)(~x) ≥ g(l)(~y). This idea will be applied in the proof for Theorem 3.1

and 3.2.

3.3 The Multi-Objective COMPASS

3.3.1 For Fully Constrained MDOvS

We first consider an MDOvS where H objectives, i.e., g(l)(~x) for l ∈

{1, . . . , H}, are to be minimized with feasible solution space Θ which is

fully constrained or bounded. Note that in this paper, H is assumed to be

finite as well.

While structuring the MO-COMPASS algorithm, some basic princi-

ple of single-objective COMPASS is carried on, meaning that the most-

promising-area is constructed according to Euclidean distances to both

“good” and “bad” solutions.

However, instead of a single current best solution, in multi-objective

problem, “good” solutions refer to those contained in intermediate Pareto

set. Since they are incomparable among each other, the most-promising-

areas are constructed for each Pareto solution and are treated indifferently

in terms of the chances of sampling new solutions. To be more specific,

assuming Π̂k is the observed Pareto set at iteration k and Vk is the set of
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all visited solutions, the most-promising-area Ck is defined as:

Ck ≡
⋃
~z∈Π̂k

{
~x ∈ Θ | ∀~y ∈ Vk \ Π̂k, ‖~x− ~z‖ ≤ ‖~x− ~y‖

}
,∀k ≥ 1. (3.1)

Then the algorithm is described as follows:

Algorithm 3.1: MO-COMPASS for fully constrained DOvS

1 Let iteration count k = 0, C0 = Θ and V0 = ∅ ;
2 while not terminating do
3 k ← k + 1 ;
4 sample a set solutions Xk ← {~x1, . . . , ~xm} from Ck−1 ;
5 Vk ← Vk−1 ∪Xk ;
6 forall the ~x ∈ Vk do
7 apply SAR to determine ak(~x) and thus Nk(~x);

8 collect ~̄Gk based on simulation observations ;

9 identify Π̂k as the observed Pareto set on Vk ;

10 construct Ck based on Π̂k and Vk ;

Note that the H-dimension vector ~̄Gk is the sample average of observed

performance measures by iteration k. To be specific, let ak(~x) be the num-

ber of simulation replications assigned to solution ~x according to the SAR,

and ~G(i) be the values of performance evaluation from the ith replication,

then we have

~̄Gk =
1

Nk(~x)

Nk(~x)∑
i=1

~G(i) in which Nk(~x) =
k∑
j=1

ak(~x).

Practically, the iteration can be repeated until simulation budget is

exhausted or we are confident that Π̂k is indeed an LPS (Figure 3.2), for

example, all the neighbors of Π̂k are visited and Π̂k remains unchanged
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Figure 3.2: Illustration for MO-COMPASS

for a number of iterations. When conditions apply, Theorem 3.2 shows

the strong convergence of Π̂k to an LPS. Moreover, in the way to prove

it, Theorem 3.1 also tells that the strong convergence property of Π̂k also

holds with respect to the Pareto set among all visited solutions.

First, we need to exclude the case that two solutions perform exact-

ly the same for certain objective measure, for which we have Assumption

3.1. Consider a simple example where two solutions ~x1, ~x2 with g(1)(~x1) =

g(1)(~x2) and g(2)(~x1) < g(2)(~x2). When noise occurs in the objective eval-

uation, we can never eliminate the possibility that Ḡ(1)(~x1) > Ḡ(1)(~x2),

thus the wrong conclusion could be made that two solutions are incompa-

rable. Besides, we also need Assumption 3.2 to ensure that the simulation
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estimator ~̄G(~x) is consistent.

Assumption 3.1. There exists an ε0 > 0 such that for all ~x, ~y ∈ Θ and

l ∈ {1, . . . , H},

~x 6= ~y ⇒ |g(l)(~x)− g(l)(~y)| ≥ ε0.

Assumption 3.2. For every ~x ∈ Θ and l ∈ {1, . . . , H},

Pr

{
lim
r→∞

1

r

r∑
i=1

G(l)(~x, i) = g(l)(~x)

}
= 1.

We note that Assumption 3.1 can easily holds as for DOvS the solution

space is non-continuous. However, in some scenarios it can be violated.

In such situation, we can either the apply indifference-zone method (Teng

et al., 2010), or modify the performance measure by not changing its orig-

inal purposes so as to make the assumption satisfied.

Moreover, we need to provide a guideline for selection SAR, which is

stated in Condition 3.1.

Condition 3.1. The SAR guarantees that ak(~x) ≥ 1 if ~x is a newly visited

solution at iteration k, i.e., ~x ∈ Vk \ Vk−1, and limk→∞Nk(~x) = +∞ for

all visited solutions, i.e., ~x ∈
⋃∞
k=0 Vk.

Then we introduce Lemma 3.1, 3.2 and 3.3 which are proven in the

Appendix A.1, noted that the neighbourhood of Vk is defined as

Nk ≡
{
~x ∈ Θ

∣∣∣ ∃~z ∈ Π̂k, ‖~x− ~z‖ ≤ 1
}
.

Based on the lemmas, we can establish the two convergence properties as
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in Theorem 3.1 and 3.2.

Lemma 3.1. If Assumption 3.2 and Condition 3.1 are fulfilled, the se-

quence {V1,V2, . . . } generated by Algorithm 3.1 satisfies

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε i.o., ∃~x ∈ Vk, l ∈ {1, . . . , H}

}
= 0

for any ε such that 0 < ε < ε0.

Theorem 3.1. If Assumption 3.1, 3.2 and Condition 3.1 are satisfied, the

infinite sequence
{

Π̂1, Π̂2, . . .
}

generated by Algorithm 3.1 converges with

probability 1 to the Pareto set among all visited solutions in the sense that

Pr
{

FS
(

Π̂k,Vk
)

i.o.
}

= 0. (3.2)

Proof. Let Π∗k denote the true Pareto set on Vk. Then, the definition of

Pareto set and Assumption 3.1 tells that,

Π∗k ≡
{
~x ∈ Vk

∣∣ 6 ∃~y ∈ Vk,∀l ∈ {1, . . . , H} , g(l)(~x) > g(l)(~y)
}
.

Meanwhile, Π̂k is based on the sample average ~̄Gk, i.e.,

Π̂k ≡
{
~x ∈ Vk

∣∣∣ 6 ∃~y ∈ Vk, ∀l ∈ {1, . . . , H} , Ḡ(l)
k (~x) > Ḡ

(l)
k (~y)

}
.

So, it is clear that the event FS
(

Π̂k,Vk
)

, i.e., Π∗k 6= Π̂k happens only if

Ḡ
(l)
k ~x ≤ Ḡ

(l)
k (~y) for some ~x, ~y ∈ Vk and l ∈ {1, . . . , H} such that g(l)(~x) >
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g(l)(~y). Thus, in order to prove (3.2), it is sufficient to show

Pr


Ḡ

(l)
k (~x) ≤ Ḡ

(l)
k (~y) i.o.,

∃~x, ~y ∈ Vk, l ∈ {1, . . . , H} s.t. g(l)(~x) > g(l)(~y)

 = 0. (3.3)

Besides, Assumption 3.1 tells that g(l)(~x) > g(l)(~y) implies g(l)(~x) −

g(l)(~y) ≥ ε0. Hence, Ḡ
(l)
k (~x) ≤ Ḡ

(l)
k (~y) implies either

∣∣∣Ḡ(l)
k (~x)− g(l)(~x)

∣∣∣ > ε0
2

or
∣∣∣Ḡ(l)

k (~y)− g(l)(~y)
∣∣∣ > ε0

2
, or both.

Therefore, by Lemma 3.1

Pr
{
Ḡ

(l)
k (~x) ≤ Ḡ

(l)
k (~y) i.o., ∃~x, ~y ∈ Vk, l ∈ {1, . . . , H} s.t. g(l)(~x) > g(l)(~y)

}
≤

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε0

2
i.o., ∃~x ∈ Vk, l ∈ {1, . . . , H}

}
+

Pr
{∣∣∣Ḡ(l)

k (~y)− g(l)(~y)
∣∣∣> ε0

2
i.o., ∃~y ∈ Vk, l ∈ {1, . . . , H}

}
= 0,

which proves (3.3).

Lemma 3.2. For the sequence {V1,V2, . . . } generated by Algorithm 3.1, it

holds for all k ≥ 0 that Pr{~x ∈ Vk+1 | ~x ∈ Nk \ Vk} > 0.

Lemma 3.3. For the sequence {V1,V2, . . . } generated by Algorithm 3.1,

Pr {Vk 6= Vk+1 i.o.} = 0.

Theorem 3.2. If Assumption 3.1,3.2 and Condition 3.1 are satisfied, the

infinite sequence
{

Π̂1, Π̂2, . . .
}

generated by Algorithm 3.1 converges with
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probability 1 to a LPS in the sense that

Pr
{

FS
(

Π̂k,Nk
)

i.o.
}

= 0. (3.4)

Proof. Consider the condition on whether Nk ⊂ Vk, we then have the

following

Pr
{

FS(Π̂k,Nk) i.o.
}
≤ Pr

{
FS(Π̂k,Vk) i.o.

}
+ Pr {Nk 6⊆ Vk i.o.} .

As Pr
{

FS(Π̂k,Vk) i.o.
}

= 0 is shown by Theorem 3.1, here we only need

to prove

Pr {Nk 6⊆ Vk i.o.} = 0,

or equivalently

Pr{~x ∈ Nk \ Vk i.o., ∃~x ∈ Θ} = 0. (3.5)

To prove (3.5), we assume the opposite, i.e.,

Pr{~x ∈ Nk \ Vk i.o., ∃~x ∈ Θ} > 0. (3.6)

Since Lemma 3.2 tells Pr{~x ∈ Vk+1 | ~x ∈ Nk\Vk} > 0 for all k ≥ 0, together

with (3.6) it implies

Pr{~x ∈ Nk \ Vk and ~x ∈ Vk+1 i.o., ∃~x ∈ Θ} > 0.

In addition, as ∃~x ∈ Θ such that ~x ∈ Nk \ Vk and ~x ∈ Vk+1 derives
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Vk 6= Vk+1, we have

Pr{Vk 6= Vk+1 i.o.} ≥ Pr{~x ∈ Nk \ Vk and ~x ∈ Vk+1 i.o., ∃~x ∈ Θ} > 0,

(3.7)

Obviously, (3.7) contradicts with Lemma 3.3. Thus, (3.6) cannot hold,

which proves (3.5).

3.3.2 For Partially Constrained or Unconstrained M-

DOvS

The MO-COMPASS is also able to solve partially constrained or uncon-

strained MDOvS, by searching within a hyper-rectangular subset Bk at each

iteration k and updating the boundaries of Bk persistently so as to reserve

a positive buffer distance ∆(i) from each visited solution at ith dimension

when the space is available. Specifically,

Bk ≡
p⋂
i=1

[
b

(i)
k , b̄

(i)
k

]
(3.8)

in which

b
(i)
k = min

{
b

(i)
k−1,min

~x∈Vk
x(i) −∆(i)

}
and

b̄
(i)
k = max

{
b̄

(i)
k−1,max

~x∈Vk
x(i) + ∆(i)

}
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for all k ≥ 1. Then, the most-promising-area is constructed corresponding-

ly as

Ck ≡
⋃
~z∈Π̂k

{
~x ∈ Bk

∣∣∣ ∀~y ∈ Vk \ Π̂k, ‖~x− ~z‖ ≤ ‖~x− ~y‖
}
,∀k ≥ 1. (3.9)

Given a starting feasible solution ~x0, the MO-COMPASS procedure is

described by Algorithm 3.2.

Algorithm 3.2: MO-COMPASS for partially constrained or uncon-
strained MDOvS
1 Initialize iteration count k = 0 ;

2 set b
(i)
0 and b̄

(i)
0 such that b

(i)
0 < x

(i)
0 < b̄

(i)
0 , ∀i ∈ {1, . . . , d} ;

3 construct B0 according to (3.8) ;
4 let C0 = Θ ∩ B0 and V0 = ∅ ;
5 while not terminating do
6 k ← k + 1 ;
7 sample a set solutions Xk ← {~x1, . . . , ~xm} from Ck−1 ;
8 Vk ← Vk−1 ∪Xk ;
9 forall the ~x ∈ Vk do

10 apply SAR to determine ak(~x) and thus Nk(~x);

11 collect ~̄Gk based on simulation observations ;

12 identify Π̂k as the observed Pareto set on Vk ;

13 construct Bk and thus Ck based on Π̂k and Vk ;

Be aware that one of the differences from Algorithm 3.1 is that the

procedure must to be initialized by a feasible solution ~x0. In order for Π̂k

to converge to an LPS, ~x0 must satisfy condition as stated in Assumption

3.3, which is often true in practice when ~x0 is obtained by heuristics or

expert opinions.

Assumption 3.3. There exists a compact set Ω such that ~x0 ∈ Θ∩Ω and

~g(~x0) ≺ ~g(~x) for all ~x ∈ Θ \ Ω.
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In addition, we also assume that ~̄G is consistent as in Assumption 3.4

and a guideline for SAR is provided in Condition 3.2. So, we can deduce

the convergence property for partially constrained or unconstrained cases.

Assumption 3.4. For every ~x ∈ Θ and l ∈ {1, . . . , H}, there exists an

r∗ > 0 such that for all r ≥ r∗ and ε ∈ (0, ε0] (note ε0 as in Assump-

tion 3.1), Pr
{∣∣1

r

∑r
i=1 G

(l)(~x, i)− g(l)(~x)
∣∣> ε

}
≤ λ(r, ε), where λ(r, ε) is a

strictly decreasing function of r and λ(r, ε)→ 0 as r →∞.

Condition 3.2. The SAR guarantees that min~x∈Vk Nk(~x) ≥ rk where r0 ≥

1, rk+1 ≥ rk for all k ≥ 0, rk →∞ as k →∞, and limk→∞ k
d+1λ(rk, ε) = 0

for all ε ∈ (0, ε0], where ε0 is defined in Assumption 3.1.

Then, similar to the fully constrained cases, the two convergence prop-

erties of Π̂k are stated in Theorem 3.3 and 3.4 respectively. To establish the

theorems, we need Lemma 3.4, 3.5 and 3.6 which are proven in Appendix

A.2.

Lemma 3.4. If Assumption 3.4 and Condition 3.2 are fulfilled, the se-

quence {V1,V2, . . . } generated by Algorithm 3.2 satisfies

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε i.o., ∃~x ∈ Vk, l ∈ {1, . . . , H}

}
= 0

for any ε such that 0 < ε < ε0.

Theorem 3.3. If Assumption 3.1, 3.4 and Condition 3.2 are satisfied, the

infinite sequence
{

Π̂1, Π̂2, . . .
}

generated by Algorithm 3.2 converges with
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probability 1 to the Pareto set among all visited solutions in the sense that

Pr
{

FS(Π̂k,Vk) i.o.
}

= 0.

Proof. Theorem 3.3 can be proven in the same way as for Theorem 3.1, by

applying Lemma 3.4 instead of Lemma 3.1.

Lemma 3.5. For the sequence {V1,V2, . . . } generated by Algorithm 3.2,

it holds for all k ≥ 0 that Pr{~x ∈ Vk+1 | ~x ∈ Nk \ Vk} > 0, provided

Assumption 3.1, 3.3, 3.4 and Condition 3.2.

Lemma 3.6. For the sequence {V1,V2, . . . } generated by Algorithm 3.2,

Pr{Vk 6= Vk+1 i.o.} = 0, provided Assumption 3.1, 3.3, 3.4 and Condition

3.2.

Theorem 3.4. If Assumption 3.1, 3.3, 3.4 and Condition 3.2 are satisfied,

the infinite sequence
{

Π̂1, Π̂2, . . .
}

generated by Algorithm 3.2 converges

with probability 1 to an LPS in the sense that

Pr
{

FS(Π̂k,Nk) i.o.
}

= 0.

Proof. Theorem 3.4 can be proven in the same way as for Theorem 3.2, by

replacing Lemma 3.2 and 3.3 by Lemma 3.5 and 3.6 respectively.
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3.4 Sampling Schemes

For random selection from Ck, a default setting is that that every solution in

Ck has equal probability to be sampled. However, it is difficult to implement

in practice. Thus, Hong and Nelson (2006) adopts a RMD method.

In RMD method, we refer the best known point in current iteration as

~̃x; a straight line is randomly selected in the space as long as it passes ~̃x and

coincides with any of the dimensions. The line is then truncated at both

ends by the boundaries of the MPA. A new point is uniformly selected

on the line segment and it serves as the new ~̃x. The procedure should be

repeated by K times before ~̃x is reported as the new sample, where K is

some integer that can be tuned. It is argued that, as K becomes larger,

the new sample is uniformly distributed in the MPA.

And later, Hong et al. (2010) suggest the CS scheme which speed-up the

convergence for solving high-dimension DOvS. Basically, CS is a special

RMD with K set to 1. The sampling procedure can be further improved

by reducing redundant linear constraints that form the convex set (Xu

et al., 2010), or utilizing gradient information in a stochastic manner (e.g.,

Section 4.5.2).

We note that both sampling methods are applicable only to problems

with convex solution set. Since in MO-COMPASS, Ck can be non-convex,

we divide the selection into two steps: (1) uniform selection of a Pareto

solution ~z ∈ Π̂k, followed by (2) sampling on the subset about ~z, i.e.,

Dk(~z) ≡
{
~x ∈ Θ

∣∣∣ ∀~y ∈ Vk \ Π̂k, ‖~x− ~z‖ ≤ ‖~x− ~y‖
}
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for fully constrained problems, or taking the intersection with Bk for par-

tially constrained or unconstrained problems. Since it can be observed that

in both cases Dk(~z) is convex, either RMD or CS sampling can be applied.

By doing so, although each Dk(~z) has equal probability to be selected, so-

lution lying in overlapping areas tends to have larger chances. Intuitively,

it is consistent with our design principle as approaching to multiple Pareto

solutions may imply higher probability of it also being a Pareto solution.

Moreover, we note that the two steps sampling does not affect the un-

visited neighbors of Π̂k to be sampled with positive probability provided

that |Ck| < ∞. Thus, the local convergence property as been discussed in

Section 3.3.1 and 3.3.2 remains.

3.5 Numerical Results

3.5.1 Convergence Test

The algorithm can be tested by constructing a multi-objective mathemat-

ical problem defined on Zpn ≡ {1, . . . , n}p → RH where each objective is a

quadratic function formulated as

g(l)(~x) =

p∑
j=1

(x(j) − x∗(j)l )2 for 1 ≤ l ≤ H,

in which ~x∗l ∈ Zpn is preset as the true optimum for the lth objective.

Without knowing the formulation but only the returned objective val-

ues based on a given solution, we apply the MO-COMPASS on Zpn with

RMD sampling. In order to show its ability to converge to an LPS, in this
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experiment we assume there is no noise in the evaluation. Thus each solu-

tion is only evaluated once and the algorithm terminates when all solutions

in Nk have been visited and Π̂k has been found to be an LPS. With this

setting, the number of evaluations is equivalent to the number of solutions

visited.

Besides, according to the problem we constructed, it is easy to observe

that even when the number of objectives H remains the same, the size of

a possible LPS increases geometrically as the dimension p becomes higher.

Thus in the experiment, for easy test and comparison, we control the LPS

size as 2 by setting H = 2 and selecting adjacent ~x∗1 and ~x∗2 that satisfy

‖~x∗1−~x∗2‖ = 1, thus we have the unique LPS P = {~x∗1, ~x∗2}, so as to eliminate

any ambiguity caused by multiple local optima.

Varying the dimension p and scalar n, we test 30 independent applica-

tions of MO-COMPASS by initializing with different random seeds. The

average number of visits before reaching the LPS is shown in Figures 3.3,3.4

and Table 3.1.

n = 10 n = 20 n = 30 n = 40 n = 50
p = 1 62.7 39.1 28.9 22.7 19.5
p = 2 16.8 4.85 2.51 1.47 1.02
p = 3 2.97 4.84× 10−1 1.57× 10−1 7.24× 10−2 3.99× 10−2

p = 4 6.02× 10−1 4.37× 10−2 9.25× 10−3 3.17× 10−3 1.38× 10−3

p = 5 9.47× 10−2 3.47× 10−3 5.25× 10−4 1.37× 10−4 4.76× 10−5

p = 6 1.50× 10−2 2.89× 10−4 2.84× 10−5 5.45× 10−6 1.50× 10−6

p = 7 2.06× 10−3 2.12× 10−5 1.44× 10−6 2.12× 10−7 4.85× 10−8

p = 8 3.56× 10−4 1.67× 10−6 7.60× 10−8 8.39× 10−9 1.47× 10−9

p = 9 4.56× 10−7 1.11× 10−7 3.28× 10−9 2.73× 10−10 4.13× 10−11

p = 10 6.37× 10−8 8.00× 10−9 1.58× 10−10 9.90× 10−12 1.23× 10−12

Table 3.1: Proportion of solutions visited before reaching LPS, as p varies
(%)
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Figure 3.3: Average number of visits before reaching LPS, as n varies

Figure 3.4: Average number of visits before reaching LPS, as p varies
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Note that the Pareto solutions ~x∗1 and ~x∗2 are preset with a random

selection for each p and n, but remain the same across independent MO-

COMASS trials. Thus, the overall trend is not biased by the location of

LPS. In addition, the result also indicates that the effect of differing LPS

locations is smaller, as the trend versus p and n can be clearly identified.

From Figure 3.3 we observe that when dimension remains the same,

the number of visits before reaching LPS increases with the scalar at a rate

that is slower than linear. Meanwhile, if the scalar is kept unchanged, the

increasing rate becomes steeper as the dimension is higher (Figure 3.4).

Also, when the size of the solution space is taken into consideration, the

proportion of visited solutions approaches zero (Table 3.1).

Besides, all the results from our numerical settings have shown that, in

a noise-free case MO-COMPASS is able to terminate in an LPS with finite

iterations.

3.5.2 Benchmark Comparison

This example is to show the convergence property and demonstrate the effi-

ciency of MO-COMPASS. We compare it with an advanced multi-objective

genetic algorithm NSGA-II (Deb et al., 2002) in solving a set of testing func-

tions suggested by Zitzler et al. (2000), which are conventionally referred

as ZDTs (Table 3.2). Since the comparison of algorithms is in term of the

number of visited solutions, again we assume the evaluation is noise-free.

As MO-COMPASS aims at solving MDOvS, we modify the domain of

~x so that only discretized solutions can be chosen, i.e., ~x ∈
{

0, 1
L
, . . . , 1

}
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where L is the discretization level and p is the dimension of the search

space. In our testing, L = 20 and p = 30 for all ZDTs.

We use CS for MO-COMPASS and set the batch size as 10; while for

NSGA-II as the benchmark we set the population size as 50 and mutation

rate as 0.01. For both algorithms, number of visits as the budget is capped

as 3, 000 on ZDT1-4 and 1, 500 on ZDT6.

For each ZDT function we have 30 test runs for both algorithms initial-

ized with different random seeds. After that, we aggregate the observed

Pareto set from each run and find the Pareto set over all as shown in

Figure 3.5. It implies that, for all ZDTs, with the same budget, the aggre-

gated Pareto set obtained by MO-COMPASS dominates the set obtained

by NSGA-II, which is an evidence to claim that the former is more efficient.

Moreover, noted that the solid lines in Figure 3.5 sketch the true global

Pareto set for each function, MO-COMPASS is able to reach near the full

set with given budget. To further test its speed of convergence, we run

the algorithm until an LPS is reached. Figure 3.5 also shows the average

number of visits for MO-COMPASS to terminate across 30 runs.

3.5.3 Adaptiveness Test

Consider an MDOvS where the simulation evaluation error does occur, this

experiment shows the convergence of Pr{CS(Π̂,Θ)} as iteration goes on.

For illustration, the ZDT1 with L = 20 and p = 20 is used.

However, we can easily observe that Assumption 3.1 is violated, because

for any two solutions ~x, ~y that ~x 6= ~y as long as x1 = y1 we have g(1)(~x) =
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Figure 3.5: Illustration of MO-COMPASS
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g(1)(~y). To avoid the violation, instead of to minimize g(1) and g(2), we

modify the ZDT1 as to minimize g(1) + 0.05g(2) and g(2) which does not

affect the intended purpose. Then, an error term ε ∼ Norm(0, 10−3) is

added to both objective evaluations so that Assumption 3.2 holds. Besides,

the SAR has been set as an equal allocation with Nk(~x) = min {1, log k}

for all ~x ∈ Vk, which satisfies Condition 3.1.

To observe Pr{CS(Π̂,Θ)}, we conduct the experiment with 1, 000 inde-

pendent runs, each starting with a different random seed. The number of

evaluations is recorded once “correct selection” starts to occur, meaning it

is found to be true that the observed Pareto is not only an LPS (as in The-

orem 3.2), but also the Pareto set on all visited solutions (as in Theorem

3.1). Be aware that due to random initialization, the resulted LPS can be

different among test runs. Also, for computational simplicity, in order to

claim that an observed set is an LPS, we only check for its sufficient con-

ditions, i.e. the set is a Pareto set on all visited solutions and all neighbors

of the set are visited. In other words, the detection of the occurrence of

correct selection is delayed in practice.

Then we count the observed occurrence of correct selection versus the

number of evaluations, so as to estimate the convergence of Pr{CS(Π̂,Θ)}

to 1 shown by Figure 3.6. It infers that for MO-COMPASS with dedicat-

ed SAR, the probability of correct selection converges to 1 as number of

simulation evaluations increases.
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Figure 3.6: Convergence of Pr{CS(Π̂,Θ)} considering simulation evaluation
error.

3.5.4 Industrial Application

As mentioned in Chapter 1, D-SIMSPAIRTM is a typical industrial appli-

cation of MDOvS.

In this experiment, we apply the MO-COMPASS in D-SIMSPAIRTMwith

a flight network contains 69 stock locations and three part numbers with

low / medium / high demands respectively are chosen for illustration. S-

ince it has been ensured in D-SIMSPAIRTMthat each simulation evaluation

is given sufficient computational budget to achieve required accuracy, we

treat the evaluation as noise-free.

As there are two phases for its optimization procedure, namely “enu-

meration” which samples and looks for optimal inventory configuration for

specified part numbers, and “navigation” which is to find the best com-

bination of inventory configurations across all parts, our testing addresses

only the “enumeration” phase and aims to find a Pareto set of inventory
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configurations in terms of high service level and low cost. The “navigation”

phase is not considered in this test.

Obviously, for each part, the number of possible inventory configura-

tions is at least (X+1)69, where X is the maximum inventory level allowed

in each location. A simple calculation shows that if X = 1 and every in-

ventory configuration take simulation 1 second to evaluate, an exhausted

search could take more than 1013 years to complete, which is impossible to

be done in practice. Since then, we can never tell the optimal solutions with

100% confidence. Hence, in this experiment to measure the effectiveness

of MO-COMPASS, we refer to a pseudo optimality which is the Pareto set

among all solutions that have ever been simulated in our past study (with

various algorithms and different random seeds).

Besides, we proposed a simple random search algorithm as a benchmark

to show the efficiency of MO-COMPASS. The random search starts with

the same initial solution as MO-COMPASS, but at each iteration randomly

selects a solution from the history and uniformly vary its value at one

coordinate within the feasible region, so as to generate a new sample. It

can be referred as CS without any constraint from the MPA.

To plot the improvement history of search, we adopt the concept of

dominated hyper-volume (Section 5.1.1) to uniquely indicate the Pareto set

quality. It makes more sense where the cost and service level are treated as

two objectives, because when the service level is bounded in the range of 0

and 1, the indicator can be intuitively interpreted as the average cost saving

along the spectrum of the service level. In our study, set the maximum cost

as $12, 000 and given 10, 000 simulation evaluation for each, the comparison
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between MO-COMPASS and the random search for the three parts are

illustrated by Figure 3.7.

We can conclude from the comparison that, the MO-COMPASS is much

more efficient in terms of the gap to the pseudo optimality when a limited

budget is given. For low/medium/high demand parts, the gaps are $113.13

(1.04%), $121.63 (1.22%) and $468.30 (4.34%) respectively while for ran-

dom search are $7, 568 (69.5%), $8, 455 (84.7%) and $5, 622 (52.5%).

For MO-COMPASS, the gap becomes larger as demand becomes high-

er because the solution space is increasing while the simulated budget is

fixed. And, for high-demand part, the random search seems to be superi-

or at the beginning of the search, basically due to the reason that it has

a wider exploration in the large solution space in the early phase while

MO-COMPASS could be constrained in its MPA. However, as MPA keeps

refining itself, the advantage of MO-COMPASS shows up.
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Figure 3.7: Performance of MO-COMPASS in D-SIMSPAIRTM compared
to random search.
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General
Struc-
ture

min g(1)(~x), g(2)(~x),

s.t. g(2)(~x) = f(x2, . . . , xd) · h
(
g(1)(~x), f(x2, . . . , xd)

)
where ~x = (x1, . . . , xd) ∈ [0, 1]d

ZDT1

g(1)(~x) = x1

f(x2, . . . , xd) = 1 + 9 ·
∑d

i=2 xi/(d− 1)

h
(
g(1), f

)
= 1−

√
g(1)/f

(The function has a convex Pareto-optimal front)

ZDT2

g(1)(~x) = x1

f(x2, . . . , xd) = 1 + 9 ·
∑d

i=2 xi/(d− 1)

h
(
g(1), f

)
= 1−

(
g(1)/f

)2

(The function is the non-convex counterpart to ZDT1)

ZDT3

g(1)(~x) = x1

f(x2, . . . , xd) = 1 + 9 ·
∑d

i=2 xi/(d− 1)

h
(
g(1), f

)
= 1−

√
g(1)/f −

(
g(1)/f

)
sin
(
10πg(1)

)
(The Pareto-optimal front contains several non-continuous
convex parts)

ZDT4

g(1)(~x) = x1

f(x2, . . . , xd) = 1 + 10(d− 1) +
∑d

i=2 (x2
i − 10 cos (4πxi))

h
(
g(1), f

)
= 1−

√
g(1)/f −

(
g(1)/f

)
sin
(
10πg(1)

)
(The Pareto-optimal front contains several non-continuous
convex parts)

ZDT6

g(1)(~x) = 1− exp(−4x1) sin6(6πx1)

f(x2, . . . , xd) = 1 + 9 ·
[(∑d

i=2 xi

)
/(d− 1)

]0.25

h
(
g(1), f

)
= 1−

(
g(1)/f

)2

(The function includes difficulties caused by non-uniformity
of the search space)

Table 3.2: The ZDT testing functions.
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Chapter 4

The Gradient Oriented Polar

Random Search

As in the previous chapter, we discussed about the MO-COMPASS that

is shown to have local convergent property in solving MSOP. Start from

this chapter, we would also like to focus on how the gradient-based tech-

niques can help to improve the search efficiency, especially when a broad

exploration is concerned together with effective utilization of the local in-

formation.

In this chapter, we first propose a brand new polar coordinate system,

and two random distributions are defined based on it, namely the polar

uniform distribution and the oriented polar distribution, with which we

can easily control the randomness injected to a search direction. Based on

the proposed coordinate system, in Section 4.2 we propose a new search

algorithm called the GO-POLARS. Subsequently, the local convergence

property and numerical examples are to be discussed.
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In order to have a wider application, the technique is designed in con-

tinuous solution space. We test it on several single-objective problems.

Then in the next chapter, with the MO search framework (Algorithm 1.1)

and unified gradient concept (Section 5.2), we will apply the technique into

MSOP and the effectiveness is shown by numerical examples as well.

4.1 The Polar Framework

4.1.1 Hyper Polar Coordinates

For a p-dimensional optimization problem, a Cartesian coordinate system

is usually adopted to uniquely identify a solution point in the domain space.

In Cartesian system, all coordinates are orthogonal to each other, and a

point is denoted by ~x = [x1, . . . , xp] such that xi refers to its projected

position on the ith coordinate.

Cartesian system is a natural way to represent solutions of optimization

problems, because in many cases xi directly refers a decision parameter.

However, we observe that for many adaptive or local search algorithms

Cartesian representation may not be the best choice as the search is driven

by two key factors, namely the direction and the distance. But neither of

them is explicitly expressed in a Cartesian system. Thus, we may think of

an alternative way to denote the solution, such as polar coordinates.

It should be well known that, a polar coordinate system can be defined

on a two-dimensional space in which every point is denoted by its angle with

respect to an axis and distance to the origin (Weisstein, 2009). Besides,
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the similar idea can be brought into a three-dimensional case so as to form

a system called spherical coordinates (Weisstein, 2005) or spherical polar

coordinates (Arfken, 1985; Walton, 1967). However, higher dimension cases

are seldom discussed in literature. So, as following we propose a hyper polar

coordinate representation that can be adopted for any high dimensional

cases.

Definition 4.1. In a p-dimensional polar coordinate system, a point is

denoted by [ r, ~θ ], in which r ∈ [0,∞) and ~θ ∈ [0, 2π) × [0, π]p−2, if its

Euclidean distance from the origin is r (radial coordinate) and ~θ (angular

coordinate) refers its direction in the space in the sense that θi denotes its

angle with respect to the positive direction of the i + 1th axis towards the

hyperplane spanned by the first i axes.

To be more specific, the conversion from polar to Cartesian coordinates

in p-dimensional space can be described by Equation (4.1) and (4.2). The

degree of freedom of both coordinates remains the same.

x1 = r

p−1∏
j=1

sin θj , (4.1)

xi = r cos θi−1

p−1∏
j=i

sin θj for 2 ≤ i ≤ p . (4.2)

However, the conversion above is not invertible, because some points

which are uniquely represented by Cartesian coordinates may have mul-

tiple representations in a polar system, e.g. for any θ in the domain we

have [0, 0]Cart → [0, θ]Polar, and [0, 0, 1]Cart → [1, θ, 0]Polar. To eliminate the
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ambiguous, by Algorithm 4.1 we provide a sequential way of converting

Cartesian to polar coordinates. We notice that, since θi for i ≥ 2 is de-

fined on [0, π], we can find it by directly applying arc-cosine function; but

for θ1 that is defined on [0, 2π), both sine and cosine functions need to be

addressed for a unique identification.

Algorithm 4.1: Conversion from Cartesian to polar coordinates

1 r ←
√∑p

i=1 x
2
i ;

2 if r = 0 then

3 ~θ ← ~0;

4 else
5 i← p;
6 while i > 2 do

7 θi−1 ← arccos
[
xi/
(
r
∏p−1

j=i sin θj

)]
;

8 i← i− 1 ;

9 Solve cos θ1 = x2/
(
r
∏p−1

j=2 sin θj

)
and

sin θ1 = x1/
(
r
∏p−1

j=2 sin θj

)
, so as to get θ1.

An illustration for the hyper polar coordinate representation in the two

and three dimensional space can be found in Figure 4.1.

4.1.2 Polar Uniform Distribution

With hyper polar coordinates we are able to denote a point in terms of

the direction and distance referring to a given position, which provides an

advantage for algorithms to explicitly control their search process. But

as mentioned in early part of this chapter where the variation is involved

in sampling a direction, random distribution need to be defined before we

move to introduce the algorithm. First of all, we look at a uniform case.
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Figure 4.1: An illustration of hyper polar coordinates (in 2D & 3D)

We notice that the uniform sampling is not straightforward as in a

p-dimension space using Cartesian coordinates, in which we can simply

sample each xi uniformly within the domain. By using polar coordinates,

sampling each θj uniformly will cause points unevenly distributed on a unit

hypersphere (Figure 4.2). To be more specific, points tend to concentrate

around latter axes. Such an effect can also be concluded by analyzing E-

quation (4.1) and (4.2), where the product
∏p−1

j=1 sin θj takes in more factors

for small i with larger p and we know for sure that all |sin θj| ≤ 1. As the

result, the value on earlier axes tends to have high density around 0. Obvi-

ously, this way of sampling does not satisfy the uniformity we desire, since

points on certain directions have higher chance to be sampled compared to

the rest and the contrast becomes sharper as p increases.

Hence, we should look at the problem from a different point of view.

We can consider a hyper-ball with radius r around the origin, so that for

all the points spread in the outermost layer, each of them should have
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Figure 4.2: Biased polar uniform distribution with r = 1 and p = 3, 5, 10.

equal opportunity to be sampled as the direction. From mathematical

point of view, let f(r, ~θ) be the probability density function, then within

an infinitesimal space around the point [r, ~θ], the probability for points to

be sampled is

f(r, ~θ) · ∂(r, θ1, . . . , θp−1).

By consensus of uniformity, this probability should be proportional to

the volume of the infinitesimal space ∂V = ∂(x1, . . . , xp), meaning there

exists a function c(r) ≥ 0 depends only on r such that

f(r, ~θ) · ∂(r, θ1, . . . , θp−1)

∂(x1, . . . , xp)
= c(r).

Further notice that the Jacobian determinant (Kaplan, 1991) is the ratio

of the hyper-volumes mapping between different coordinate systems. For

conversion from p-dimensional polar to Cartesian coordinates, we denote

it as |Jp| and it can be shown that

|Jp| =
∣∣∣∣ ∂(x1, . . . , xp)

∂(r, θ1, . . . , θp−1)

∣∣∣∣ = (−r)p−1

p−1∏
j=1

sinj−1 θj. (4.3)
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Proof. We prove (4.3) by induction. Consider the base case, i.e., p = 2.

We have

|J2| =
∣∣∣∣∂(x1, x2)

∂(r, θ1)

∣∣∣∣ =

∣∣∣∣∣∣∣
∂x1/∂r ∂x1/∂θ1

∂x2/∂r ∂x2/∂θ1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
sin θ1 r cos θ1

cos θ1 −r sin θ1

∣∣∣∣∣∣∣ = −r,

which satisfies (4.3). Then we only need to prove that for all p ≥ 2,

|Jp+1| = (−r sinp−1 θp) |Jp| . (4.4)

For any p ≥ 2, from (4.1) and (4.2) we can derive a general form of

Jacobian matrix |Jp+1| in terms of |Jp|, i.e.,

Jp+1 =

 J
(1)
p · sin θp J

(2,...,p)
p · sin θp J

(1)
p · r cos θp

cos θp ~0 −r sin θp

 .
Note that J

(1)
p is the 1st column of matrix Jp, and J

(2,...,p)
p is the (p−1)×p

matrix consists of the 2nd to pth columns of Jp. So it follows that

|Jp+1| = (−1)p cos θp

∣∣∣∣ J (2,...,p)
p · sin θp J

(1)
p · r cos θp

∣∣∣∣
−r sin θp

∣∣∣∣ J (1)
p · sin θp J

(2,...,p)
p · sin θp

∣∣∣∣ , (4.5)

in which the matrix

[
J

(2,...,p)
p · sin θp J

(1)
p · r cos θp

]
can be obtained from

Jp by interchanging (p−1) pairs of columns and multiplying (p−1) columns

by sin θp and 1 column by r cos θp, while the matrix

[
J

(1)
p · sin θp J

(2,...,p)
p · sin θp

]
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is equivalent to sin θp · Jp. The matrix operations above imply that,

∣∣∣∣ J (2,...,p)
p · sin θp J

(1)
p · r cos θp

∣∣∣∣ = (−1)p−1 · sinp−1 θp · (r cos θp) |Jp|

and ∣∣∣∣ J (1)
p · sin θp J

(2,...,p)
p · sin θp

∣∣∣∣ = sinp θp |Jp| .

Thus, combining with (4.5) we have

|Jp+1| = −r cos2 θp sinp−1 θp |Jp| − r sin θp sinp θp |Jp|

=
(
−r sinp−1 θp

)
|Jp| ,

(4.6)

which proves (4.4).

Then, we derive the probability density function for a polar uniform

distribution as in (4.7) and thus have Definition 4.2. Note that c(r) has to

ensure that the integral of f( r, ~θ ) on the domain equals to 1.

f( r, ~θ ) = c(r) · rp−1

p−1∏
j=1

sinj−1 θj. (4.7)

Definition 4.2. A random point [ r, ~θ ] is said to be from a p-dimensional

polar uniform distribution, denoted as U p
polar, if its probability density func-

tion is given as in (4.7).

When enforce r = 1, i.e., let c(r) = 0 if r 6= 1, the angular coordinate

~θ can be sampled uniformly in the sense that [ 1, ~θ ] ∼ U p
polar, which is

illustrated by Figure 4.3. Since r is fixed and θj is independent from each
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Figure 4.3: Polar uniform distribution with r = 1 and p = 3, 5, 10.

other, we can decompose the probability density function for each j as

fj(θj) = cj sinj−1 θj, for j = 1, . . . , p− 1, (4.8)

where c1 = 1
2π

and cj =
∫ π

0
sinj−1 θdθ for j ≥ 2. As there is no close form for

cj, one of the sampling method is to apply numerical approaches, such as

acceptance-rejection method or Alias method (Schwarz, 2011; Vose, 1991)

after discretization into small intervals, so that the constant term can be

ignored.

In practice, some good properties can be observed. Since (4.8) is in-

dependent with dimension p, a point [ 1, ~θ ] ∼ U p
polar can be easily extend-

ed to U p+1
polar by adding element θp sampled from distribution with density

fp(θp) = cp sinp−1 θp.

Moreover, considering (4.1) and (4.2), we notice that the newly added

θp does not affect the relative values of previous xis since all of them are

simply scaled by sin θp, whereas the density in (4.8) only ensures that the

new comer xp+1 plays harmoniously with the early ones by maintaining the

uniformity into the higher dimension. This property is important when we
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need to control the distribution to be concentrated, which is to be discussed

later in Section 4.1.3.

We also observe that, a multivariate normal distribution N(~0, Iσ2) with

any σ is a special case for polar uniform distribution when it is converted

into polar coordinates, as stated in Theorem 4.1.

Theorem 4.1. If a vector ~x = [x1, . . . , xp] is from a multivariate normal

distribution N(~0, Iσ2), its corresponding polar coordinates [ r, ~θ ] ∼ U p
polar.

Proof. Since [x1, . . . , xp] ∼ N(~0, Iσ2), we have

f(x1, . . . , xp) =

p∏
i=1

φ(xi) = (2πσ2)−
p
2 exp

(
−p

2

p∑
i=1

x2
i

2σ2

)
.

Note that with conversion to polar coordinates,
∑p

i=1 x
2
i = r2. By

applying the Jacobian determinant as in (4.3), we can derive

f( r, ~θ ) = f(x1, . . . , xp) |Jp| = c(r) · rp−1

p−1∏
j=1

sinj−1 θj

where c(r) =
(

2πσ2 exp
(
r2

2σ2

))−p/2
. According to Definition 4.2, [ r, ~θ ] ∼

U p
polar.

We observe the case where p = 2, the result of Theorem 4.1 has been ap-

plied in a reversed manner for generating normal random variables (Muller,

1959), i.e., sample a vector [ r, θ1 ] from a 2-dimension polar uniform dis-

tribution with specified c(r) that depends on σ, and then claim the corre-

sponding Cartesian coordinates x1, x2 from an independent normal distri-

bution N( 0, σ2) respectively.
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Meanwhile, for the case where p > 2, Theorem 4.1 can simplify polar

uniform generation by using random variables form multivariate normal

distribution to sample ~θ.

4.1.3 Oriented Polar Distribution

Firstly, we consider a simple case, where we want the sampled direction to

be concentrated around a given direction ~̃d that coincides with the positive

direction of the pth axis, i.e. ~̃d = ~ep. It means that, under the Cartesian

representation only xp has a priority to choose larger value. Thus, using the

property discussed in Section 4.1.2, we may have a point [ 1, ~θ ] ∼ U p−1
polar,

and extend it to p-dimension by adding θp−1 where the distribution can

be adjusted from (4.8), so that xp has higher chance to take large value

without touching the ratios among the others. A typical way is to take the

composite density with concentrating function ϕ that decreases on [0, π],

and symmetrically increases on (π, 2π), i.e.,

fp−1(θp−1) = c′p−1 sinp−2 θp−1 · ϕ(θp−1). (4.9)

where ϕ(α) > ϕ(β) and ϕ(α) = ϕ(2π − α) for any 0 ≤ α ≤ β ≤ π. One

example of ϕ is the density function of a normal distribution N(0, σ2) with

reflection at π, i.e.,

φσ(θ) =
1

σ
√

2π
exp

(
θ2

2σ2

)
for θ ∈ [0, π],

and φσ(θ) = φσ(2π − θ) for θ ∈ (π, 2π).

(4.10)
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Note that (4.9) is defined on [0, 2π) for p = 2, and [0, π] for p > 2.

By using (4.10), we have an explicit way to control the degree of con-

centration, namely the magnitude of σ directly refers to the deviation of

the sample from ~̃d. An extreme case can be observed when σ = 0 so that

φσ(θp−1) for all θp−1 6= 0, meaning that all sampled direction coincide with ~̃d

almost for sure. In another way, if σ =∞, we have equal value of φσ(θp−1)

at all θp−1, thus the term is cancelled out from (4.9). In that case, the

distribution becomes U p
polar. Thus, σ <∞ is one and the only condition to

ensure that φσ(θ) is valid as a concentrating function.

For a general ϕ(θ), we define the standard polar oriented distribution

as in Definition 4.3.

Definition 4.3. A random point [ r, ~θ ] is said to be from a p-dimensional

standard polar oriented distribution, denoted as O p
polar, if [r, θ1, . . . , θp−2] ∼

U p−1
polar and θp−1 has distribution as in (4.9).

Given any r, the procedure of generating [ r, ~θ ] ∼ O p
polar is described by

Algorithm 4.2. With φσ(θ) set as the concentrating function and choose σ

to be different values, we have the illustration of sampled points shown by

Figure 4.4.

Algorithm 4.2: Sampling from a standard polar oriented distribution

1 j ← 1 ;
2 while j < p− 1 do
3 Sample θj from its domain with density as in (4.8) ;
4 j ← j + 1 ;

5 Sample θp−1 from its domain with density as in (4.9) ;

6 ~θ ← [θ1, . . . , θp−1].
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Figure 4.4: Standard polar oriented distribution with r = 1, p = 3, 5, 10
and φσ(θ) for which σ = π/6, π/9, π/12.
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Denote ~d = ([ 1, ~θ ])Cart as the Cartesian conversion of [ 1, ~θ ], we can

analyze the expectation of ~d, so as to derive Theorem 4.2. Later we will

use its corollary to prove the local convergence property in Section 4.3.

Theorem 4.2. For a unit vector ~d ∼ O p
polar, we can always finds a scalar

γ ∈ (0, 1] such that E
[
~d
]

= γ · ~ep.

Proof. From (4.2), it is straightforward that

E [dp] =

∫
θp−1

1 · cos θp−1 · fp−1(θp−1) dθp−1 ≤
∫
θp−1

fp−1(θp−1) dθp−1 = 1.

(4.11)

At the same time, considering (4.9) we also have

E [dp] =

∫
θp−1

1 · cos θp−1 · c′p−1 sinp−2 θp−1 · ϕ(θp−1) dθp−1. (4.12)

For the case when p = 2,

(4.12) = 2c′1

(∫ θ1=π/2

θ1=0

ϕ(θ1) d sin θ1 −
∫ θ1=π/2

θ1=π

ϕ(θ1) d sin θ1

)

= 2c′1 ·
∫ 1

0

(ϕ (arcsin (t))− ϕ (π − arcsin (t))) dt.

Similarly, when p > 2,

(4.12) =
c′p−1

p− 1

(∫ θp−1=π/2

θp−1=0

ϕ(θp−1) d sin θp−1 −
∫ θp−1=π/2

θp−1=π

ϕ(θp−1) d sin θp−1

)

=
c′p−1

p− 1
·
∫ 1

0

(
ϕ
(
arcsin

(
t1/(p−1)

))
− ϕ

(
π − arcsin

(
t1/(p−1)

)))
dt.
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We observe that t ∈ [0, 1]⇒ t1/(p−1) ∈ [0, 1] for all p ≥ 2, thus

arcsin
(
t1/(p−1)

)
∈ [0, π/2]

which implies

0 ≤ arcsin
(
t1/(p−1)

)
≤ π − arcsin

(
t1/(p−1)

)
≤ π.

Because as the concentrating function, ϕ has to be monotonically decreas-

ing on [0, π] which is discussed previously, so we can conclude that

ϕ
(
arcsin

(
t1/(p−1)

))
− ϕ

(
π − arcsin

(
t1/(p−1)

))
≥ 0,

and we note that the equality holds only when t = 1.

Besides, c′p−1 > 0 for all p ≥ 2. Hence, it holds that (4.12) > 0.

Together with (4.11), we conclude that

0 < E [dp] ≤ 1.

Moreover, from (4.1), (4.2) and (4.8) we can calculate that E [di] = 0

for 1 ≤ i ≤ p− 1. Thus, a final conclusion can be made as, for ~d ∼ O p
polar

∃ γ ∈ (0, 1],E
[
~d
]

= γ · ~ep. (4.13)

The result can also be visualized as intuitively Algorithm 4.2 is designed
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Figure 4.5: Oriented polar distribution with ~̃d =
∑p

i=2 ~ei − ~e1, φπ/9 and
p = 3, 5, 10.

to ensure distribution is centra-symmetric about the pth axis.

Note that the value of γ depends only on p and ϕ. Specially, when

ϕ = φσ and p is fixed, γ is a monotonically decreasing function about σ,

written as γ(σ).

For the case where the given ~̃d is an arbitrary unit vector, a linear

transformation can be applied such that every point obtained by Algorithm

4.2 is reflected on a line lies in the middle of ~̃d and ~ep. In a reverse manner,

we have Definition 4.4 for the oriented polar distribution. Figure 4.5 is an

illustration.

Definition 4.4. A random point ~d =
([
r, ~θ
])

Cart
is said to be from a

p-dimensional polar distribution oriented by a unit vector ~̃d, denoted as

O p
polar

(
~̃d
)

, if
(

2~d · ~m/‖~m‖2
)
~m− ~d ∼ O p

polar where ~m =
(
~̃d+ ~ep

)
/2.

Obviously, as the result of linear transformation, from Theorem 4.2 we

have Corollary 4.3.

Corollary 4.3. For a unit vector ~d ∼ O p
polar

(
~̃d
)

, we can always finds a

scalar γ ∈ (0, 1] such that E
[
~d
]

= γ · ~̃d.
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4.2 The Algorithm

The Gradient Oriented Polar Random Search (GO-POLARS) is designed

in an adaptive manner. At each iteration, the optimum estimate moves

to a random direction with a step size which is guided by the gradient.

Specifically, let Θ ⊆ Zp be the feasible region, the search algorithm can be

described as in Algorithm 4.3.

Algorithm 4.3: Gradient oriented polar random search

1 Pick an initial guess ~̂x0 ∈ Θ, and k ← 0 ;
2 while not terminating do
3 Select a deviation parameter σk ;

4 Generate a unit ~dk (as the sampling direction) from

O p
polar

(
~̂∇(~̂xk)
‖ ~̂∇(~̂xk)‖

)
with ϕ = φσk , in which ~̂∇

(
~̂xk

)
is the estimated

gradient at ~̂xk ;

5 ~̂xnew ← ~̂xk − bk
∥∥∥ ~̂∇(~̂xk)∥∥∥ ~dk ;

6 if ~̂xnew ∈ Θ and L
(
~̂xnew

)
< L

(
~̂xk

)
then

7 ~̂xk+1 ← ~̂xnew

8 else

9 ~̂xk+1 ← ~̂xk

10 k ← k + 1

Remark. The search procedure can be tuned by controlling the gain

sequence bk and the direction deviation sequence σk. In Section 4.3, we

will discuss conditions in terms of bk and σk for the algorithm to converge

to a local optimum.
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4.3 Local Convergence Property

In literature, local convergence properties of stochastic algorithms are often

shown by convergence theory of SA (Spall, 2003), such as in simulated

annealing (Gelfand and Mitter, 1993), genetic algorithms (Yin et al., 1995),

neutral network back-propagation (Spall and Cristion, 1994), and etc.. We

notice that GO-POLARS also shares some similarities with SA, i.e., both

have estimates updated adaptively according to the gradient information

with certain noise. So in this subsection, we relate GO-POLARS to SA

and conclude the convergence conditions for the sequence bk and σk.

We start with rewriting Step 5 in Algorithm 4.3 as an SA type, i.e.,

~̂xnew ← ~̂xk − ak~Yk
(
~̂xk

)
where

ak = γ (σk) · bk, (4.14)

and ~Yk

(
~̂xk

)
=

∥∥∥ ~̂∇(~̂xk)∥∥∥
γ (σk)

· ~dk. (4.15)

Note that in a typical SA procedure, ak is the gain sequence and ~Yk

(
~̂xk

)
=

~∇
(
~̂xk

)
+ ~εk

(
~̂xk

)
is an approximation of gradient ~∇ with error term ~εk.

The “statistics” conditions for strong convergence can be specified as in

(4.16) - (4.19) (Blum, 1954a,b; Nevel’son and Khas’inskĭı, 1973).

ak > 0, ak → 0,
∞∑
k=0

ak =∞, and
∞∑
k=0

a2
k <∞, (4.16)
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inf
η<‖~x−~x∗‖<1/η

(~x− ~x∗)T B~∇ (~x) > 0 for all 0 < η < 1, (4.17)

E
[
~Yk (~x)− ~∇ (~x)

]
= ~0 for all ~x and k, (4.18)

E
[∥∥∥~Yk (~̂xk)∥∥∥2

]
≤ c

(
1 + ‖~x‖2) for all ~x, k and some c > 0, (4.19)

where B is some symmetric, positive definite matrix.

We observe that (4.17) is the condition on the problem nature which is

independent of algorithm parameters. So if we can provide necessary con-

ditions on GO-POLARS for (4.16), (4.18) and (4.19), the local convergence

property can be derived in Theorem 4.4.

Theorem 4.4. Given that conditions in (4.17), (4.20), (4.21) and (4.22)

are satisfied, the search iterate ~̂xk generated by Algorithm 4.3 converges to

a local optimum almost surely.

∃σ∗ <∞ such that ∀k, σk ≤ σ∗, (4.20)

bk > 0, bk → 0,
∞∑
k=0

bk =∞, and
∞∑
k=0

b2
k <∞, (4.21)

∥∥∥~∇(~̂xk)∥∥∥2

≤ c
(
1 + ‖~x‖2) for all ~x, k and some c > 0. (4.22)

Proof. As discussed in Section 4.1.3, γ (σ) is monotonically decreasing

about σ on (0, 1]. Hence, (4.20) implies 0 < γ (σ∗) ≤ γ (σk) ≤ 1. To-
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gether with (4.14), we can derive from (4.21) that

bk > 0⇒ ak = γ (σk) · bk > 0,

bk → 0⇒ ak = γ (σk) · bk ≤ bk → 0,

∞∑
k=0

bk =∞⇒
∞∑
k=0

ak =
∞∑
k=0

γ (σk) · bk ≥ γ (σ∗)
∞∑
k=0

bk =∞, and

∞∑
k=0

b2
k <∞⇒

∞∑
k=0

a2
k =

∞∑
k=0

γ2 (σk) · b2
k ≤ γ2 (σ∗)

∞∑
k=0

b2
k <

∞∑
k=0

b2
k <∞.

The above shows that (4.16) is satisfied.

Then we consider the expectation of the error term,

E [~εk (~x)] = E
[
~Yk

(
~̂xk

)
− ~∇

(
~̂xk

)]
.

From (4.15) and Corollary 4.3, we know that for all ~x and k,

E
[
~Yk

(
~̂xk

)]
=

∥∥∥~∇(~̂xk)∥∥∥
γ (σk)

E
[
~dk

]
=

∥∥∥~∇(~̂xk)∥∥∥
γ (σk)

·γ (σk)

~∇
(
~̂xk

)
∥∥∥~∇(~̂xk)∥∥∥ = ~∇

(
~̂xk

)
,

implying E [~εk (~x)] = ~0. Thus, (4.18) holds.

Similarly, to prove (4.19), we observe

E
[∥∥∥~Yk (~̂xk)∥∥∥2

]
=
∥∥∥~∇(~̂xk)∥∥∥ · E [∥∥∥~dk∥∥∥2

]
/γ2 (σk).

As ~dk is a unit vector,
∥∥∥~dk∥∥∥ = 1 with no doubt. Then (4.22) is sufficient to

meet requirement of (4.19). Again, (4.22) is a condition that solely depends
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on ~g due to the problem nature.

Hence, Theorem 4.4 is proven.

4.4 Mechanism of Local-optimum Breakout

For a multi-modal optimization problem, to prevent ~̂xk to be trapped in

certain local region, we can apply a breakout mechanism in addition to

Algorithm 4.3.

The mechanism can be stimulated when
∥∥∥g (~̂xk)∥∥∥ is observed to be s-

maller than a threshold τ indicating that a local optimum has been reached.

Then without using any gradient information we let ~d ∼ U p
polar and

~̂xk+1 = ~̂xk + bJump · ~d

where bJump is a jumping distance that we believe to get rid the local

region. Then re-initialize the bk sequence by replacing bk+1 by b0. Notice

that, parameter τ and bJump can be tuned in the sense that small τ has

better exploitation within the local region while MLB is effective only when

bJump is large enough.

4.5 Numerical Experiments

4.5.1 A Benchmark Comparison

In this section, we compare GO-POLARS with several benchmark search

algorithms including gradient-based search and metaheuristics local search.
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The Goldstein-Prices function is a two-dimensional global optimization

test function as defined in (4.23). Note that the global minimum occurs at

~x∗ = [0,−1] with g (~x∗) = 3, and several local minima occur as well. Set

the search domain Θ = R2 and assume that the gradient can be calculat-

ed at every ~x ∈ Θ, we used the function to compare the performance of

GO-POLARS with SD, SAN and RPG as described in Table 4.1.

g (~x) =
[
1 + (x1 + x2 + 1)2 (19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
·
[
30 + (2x1 − 3x2)2 (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
(4.23)

For fair comparison, we adopt a neighborhood structure setting in SAN

that is similar to the GO-POLARS iterate. But instead of choosing direc-

tion from a polar normal distribution oriented by the gradient, we let it

be generated by a multivariate normal distribution that does not involve

gradient. However, for comparison consistency, the magnitude of gradien-

t is used in determining the sample distance. In the experiment, we set

ak = 0.001/k and σk = (1− k/500)π, so that the deviation of sampled di-

rection gradually decreases from π to 0, which ensures a better exploration

at the beginning of the search while obtained a better convergence when it

approaches to the end. Besides, for SAN, the temperature Tk is set to be

t(500−k). As the experiment does not show significant difference when t is

tuned to be any positive value, we set t = 1 for illustration. While for RPG,

we select the perturbation variable ~dk from a standard multivariate normal
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Figure 4.6: Average g
(
~̂x∗k

)
by different search algorithms.

distribution, and λk is tuned as well so as to achieve a better performance

at
√

100/ log(k + 1).

The four algorithms can be correlated by starting with a same initial

solution ~x0 that is randomly selected from [−2, 2]2, and run the algorithms

until k = 500. Repeat the process for 50 replications, we then present

the average g (~x∗k) in Figure 4.6. Note that in each replication, ~x∗k denotes

the best solution visited upon iteration k. It is obvious that the average

performance of RPG and GO-POLARS across replication is superior than

both SD and SAN.

To analyze the reason, we notice that in SD only single direction is

allowed to be sampled. As the problem has multiple local optima, it incurs

a larger probability of being trapped in one of them. But GO-POLARS

ensures that all directions have a positive chance to be selected when σ 6= 0,
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which enlarges the pool of solutions that can be explored.

SAN also allows solutions to be sampled on every direction. However, it

only rejects inferior samples after the solution is evaluated, according to an

artificial temperature parameter Tk. While in GO-POLARS, solutions on

different directions can be filtered without any evaluation by the gradient-

oriented polar distribution.

Besides, the performance of GO-POLARS and RPG is similar at the end

of the search, although GO-POLARS has an obvious advantage at the early

stage. The reason being that both algorithms integrate the advantage from

random search and utilizing gradient information. Whereas GO-POLARS

perturbs the direction instead of the point, so that the exploration effect is

multiplied by the stepsize ak which is large at the beginning. For RPG, as

the perturbation term is controlled separately, its effect remains significant

throughout the search, but relatively small compared with the effect from

the initial stepsize.

4.5.2 Application in Stochastic Search

As stated in Chapter 2, almost all stochastic search algorithms involve ran-

dom sampling within a specified neighborhood, where it is assumed that

gradient information is not available. However, in the cases when gradient

can be observed or estimated, we can apply GO-POLARS to help in sam-

pling good solutions more efficiently. On the other hand, if GO-POLARS

alone could not obtain desired efficiency, to integrate it with an advanced

stochastic search will probably make the achievement.
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Assume solutions are to be sampled from a convex set Θ in which ~̂x∗ is

the best known up-to-date. We may sample

~̂xnew = ~̂x∗−r · ~d, where ~d ∼ O p
polar

 ~∇
(
~̂xk

)
∥∥∥~∇(~̂xk)∥∥∥

 and r ∼ U(0, R ] (4.24)

in which R is the maximum value of r that ensures ~̂xnew ∈ Θ.

We illustrate the concept using COMPASS (Hong and Nelson, 2006),

which is initially proposed for solving discrete optimization problems, but

has been observed performing well also for continuous cases. The main

idea of the algorithm is to construct a most-promising-area after evalua-

tion of all historical samples and in a new iteration retake samples within

the area according to a given sampling scheme. For instance, Hong and

Nelson (2006) suggest the RMD method aiming to generate samples al-

most uniformly. But later it is identified to be less efficient in solving

high-dimensional problems, for which the CS is proposed instead (Hong

et al., 2010).

We apply the COMPASS on a high-dimension continuous test function

as in (4.25). The function is initially proposed by Rosenbrock (1960) with

p = 2 and extended by Moré et al. (1981) to higher dimension. Here, we

use the setting p = 10. Note that it has a unique optimum g (~x∗) occurring

at ~x∗ = [1, 1, . . . , 1].

g (~x) =

p/2∑
i=1

[
100

(
x2i − x2

2i−1

)2
+ (1− x2i−1)2

]
with Θ = [−4, 4]p (4.25)

Two sampling schemes are compared in the test, namely the CS and
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Figure 4.7: Average g
(
~̂x∗k

)
by COMPASS with different sampling schemes.

GO-POLARS sampling as in (4.24), for which φσ is adopted as the con-

centrating function and σ is set to π and π/6 respectively. Besides, the

batch size of COMPASS, i.e., the number of solutions to be sampled in

each iteration, is set to 1.

From the average g (~x∗k) drawn from 50 replications (Figure 4.7), we

conclude that compared with CS, the hybridized GO-POLARS provides a

higher convergent rate and the rate increases as the sampling concentrates

to the gradient direction (denoted by smaller σ). However, how to select

σ so as to achieve the highest convergent rate remains as an open issue for

future study.

In addition, by a long run study we found it almost impossible for

CS converge to the unique optimum, simply due to the reason that CS

is designed intently for discrete problems while in continuous cases the

search could be trapped in the region where solution cannot be improved
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on any coordinate directions. Thus, for COMPASS to be applied in solving

continuous problems, GO-POLARS is one of the only choices.

75



Algorithm
Search Iterate
(Neighborhood Structure)

Condition for

Accepting ~̂xnew

GO-POLARS

~̂xnew ← ~̂xk − ak
∥∥∥~∇(~̂xk)∥∥∥ ~dk

where ~dk ∼ O p
polar

(
~∇(~̂xk)
‖~∇(~̂xk)‖

) g
(
~̂xnew

)
< g

(
~̂xk

)

Steepest
descent
(SD)

~̂xnew ← ~̂xk − ak · ~∇
(
~̂xk

)
g
(
~̂xnew

)
< g

(
~̂xk

)

Random
Perturbation
of Gradient

~̂xnew ← ~̂xk − ak · ~∇
(
~̂xk

)
+ λk ~dk

where ~dk ∼ N
(
~0, Ip

)
,

λk =
√

100
log(k+1)

g
(
~̂xnew

)
< g

(
~̂xk

)

Simulated
Annealing

(SAN)

~̂xnew ← ~̂xk − ak
∥∥∥~∇(~̂xk)∥∥∥ ~dk

where ~dk ∼ U p
polar

g
(
~̂xnew

)
< g

(
~̂xk

)
or

z < exp

(
g(~̂xk)−g(~̂xnew)

Tk

)
where z ∼ U(0, 1)

Table 4.1: The overview of settings for testing algorithms.
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Chapter 5

The Multi-Objective

GO-POLARS and

Gradient-Based Techniques for

MSOP

In this chapter, we extend the GO-POLARS into the application for multi-

objective problem. The main challenge we have encountered is that it

is difficult to have a unified gradient as multiple objectives need to be

considered.

Back to the motivation for designing gradient-based techniques, our

main concern is to improvement the search efficiency. So instead of directly

looking into the unified gradient, we need to clarify the indicator for the

search improvement in a multi-objective circumstance. Then, with the

unified gradient developed from the indicator, we are able to apply various
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gradient-based techniques including GO-POLARS.

5.1 Indicators for Pareto Set Improvement

As we are aiming to develop fast search algorithm that is able to identify a

good Pareto set, it is important to find an indicator for the quality of the

set. It is not a trivial problem, as there could be many ways to compare two

different sets, especially when their elements are different from each others

and both sets contain many non-dominated solutions even when elements

in the other set are considered.

Although there are many types of metrics widely adopted in research

problems (Chapter 2), in practice shortcoming occurs due to the fact that

we cannot use a single value to uniquely identify the quality of the Pareto

set, in terms of both distance and diversity, so as to track the improvement

history. Besides, most of the metrics require that the real Pareto set is

known which may not be true in many scenarios. Therefore, the DHV

indicator (Bradstreet et al., 2008; Nebro et al., 2008; Zitzler et al., 2003)

will become a better choice.

5.1.1 The Dominated Hyper-Volume (DHV)

The hyper-volume is a scalar metric that indicates how much solution space

is dominated by a specific Pareto set, provided with an arbitrary worst case

scenario serving as a finite boundary. Therefore, a large hyper-volume value

implies good quality of Pareto set.

We can have an illustration in bi-objective case where the hyper-volume
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is the area dominated by Pareto solutions (Figure 5.1). Comparing the

chart in quadrant (a) and (b), we clearly see that since solution 2 & 3 are

dominated by solution 2’ & 3’ respectively, the Pareto set in (b) is superior

than (a) which can be reflected by the larger DHV when the worst case

scenario reference keeps consistent. Meanwhile, if we compare (a) and (c)

it shows that the short coverage, i.e., missing of solution 3 & 4, can also

be reflected by a decrement in DHV value. Other than these, (a) and (d)

illustrate that with the same range of coverage, a dense Pareto set has

larger DHV quantity as well.

Another advantage of DHV indicator is that it is not necessary to know

the real Pareto set. Instead, we only need an arbitrary worst case point

to bound the finite region. It is sufficient when we compare different algo-

rithms in term of their improvement rate and relative achievements, i.e.,

DHV serves as a first order indicator rather than for the absolute quali-

ty. For example, in previous chapter, Figure 3.7 compares MO-COMPASS

with random search using DHV indicator which can be interpreted as aver-

age cost savings under the specific scenario. In that case, we do not know

the exact optimal Pareto set, but it is sufficient to compare the relative

improvements between algorithms, in contrast with a worst case scenario

at cost $12,000 and service level 0.0.

5.1.2 Hyper-Volume Calculation

The calculation of hyper-volume has addressed a lot of research interest.

As mentioned in Chapter 2, HSO (While et al., 2006) and dimension-sweep
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Figure 5.1: Illustration of DHV indicator (H) for bi-objective Pareto sets
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approach (Preparata and Shamos, 1985) provides a recursive method that

derive a p dimension problem into several p − 1 dimension sub-problems

and eventually to the problem with p = 1 where hyper-volume is just a line

segment.

More importantly, the approach of dimension-sweep is helpful in our

analysis of search efficiency where DHV is considered as the improvement

indicator. Details will be discussed in Section 5.2.1.

5.1.3 Issues on Search Efficiency

With the concept introduced previously, we can quantify the search efficien-

cy of a multi-objective problem as the marginal increment of hyper-volume

noted as ∆H in a unit time or search iteration, in which H refers to the

dominated hyper-volume in contrast to a given worst scenario point.

Further notice that, in the framework proposed in Algorithm 1.1, pivot

solution is selected one (or, two in some cases, e.g., NSGA-II) at a time from

the Pareto set. Instead of considering ∆H on the whole Pareto front, it is

reasonable and more practical to analyze the partial-DHV due to individual

Pareto ~x, noted as H~x, and the marginal increment due to its improvement

(or in other words its offspring). We note it as ∆H~x, ∀~x ∈ Πk.

An illustration is in Figure 5.2, where (b), (c) and (d) respectively

shows three categories of offsprings, namely dominated, incomparable and

dominating in term of its relation to the pivot solution. They are in contrast

to the original case shown in (a). The dotted region indicatesH~x the darken

rectangular indicates the ∆H~x (equivalent to ∆H) in each scenario.
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Figure 5.2: Illustration of Marginal-DHV (∆H) due to offspring of pivot
solution in a bi-objective Pareto set
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Therefore, as equivalent to maximizing the search efficiency, our objec-

tive can be describe as in each iteration k,

max
~x∈Πk

E [∆H~x]. (5.1)

As being discussed in Chapter 1, under the framework proposed we could

approach the goal in (5.1) by adjusting the scheme of pivot selection for ~x

and sampling in its neighborhood N (~x).

5.1.4 Issues on Solution Spread and Diversity

Beside the issue of efficiency, in conducting a MO search we are also con-

cerning about whether the obtained Pareto set is well spread over the so-

lution space, as in that way the decision maker will have a more diverse

candidate pool to select from. Usually, to judge a well-spread Pareto set,

there are two criteria need to be taken care, namely whether the Pareto

set covers the whole range of the objective domain, and whether they are

evenly distributed on the range.

Although in literature there are a few metrics dealing with this issue,

e.g., Spread indicator (Nebro et al., 2008) and the running performance

metrics (Deb and Jain, 2002; Zeng, 2010), here we are more interested in

identifying its relationship with hyper-volume indicator, so that we are able

to find a singular metric for both search efficiency and solution spread and

diversity.

The Figure 5.3 shows several different scenarios of the solutions spread

in a two-dimension objective space. A well distributed Pareto front is
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illustrated in Quadrant (a), where we can see that all the partial-DHV H~x

are similar with each other. Intuitively, if we would like to further improve

the Pareto set, each solution on the frontier should be treated equally so

as to move them to the left bottom corner as a whole.

A different scenario is displayed by Quadrant (b), where Pareto solu-

tions are not evenly distributed, since they are not covering the whole range

of objective domain. It is obvious that all of them squeeze towards the up-

per boundary of g1, or in other words, the lower end of g2, while we are

lack of solutions with larger value on g2 but small value on g1. In that case,

the straightforward way to improve the Pareto could be sampling more

solutions in the lacking space, thus the solution 1 should be given more

attention than the others as it is the most frontier solution to the area. It

can be reflected by the partial-DHV because H~x1 is certainly the largest

among all.

The similar situation can be found in Quadrant (d). In the scenario,

the objective range is not well covered as the solutions are concentrating

to the centre. Then if we look at the area of partial-DHV, the conclusion

can be made that we should focus more on solution 1 and 4 so as to make

the Pareto front complete.

A counter party scenario is shown by Quadrant (c) in which Pareto

solutions have high dense at both ends. We can see that although they

cover the whole objective range, the middle part is missing, i.e., there are

few solutions with medium g1 and medium g2. In such a case, probably we

can sample more solutions around solution 1 and solution 2 as they are the

closest to the missing area. It also coincides with the conclusion we make
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Figure 5.3: Illustration of different Solution-Spread and the indication by
H~x

according to the partial-DHV as H~x1 and H~x2 are higher than the others.

From the examples above we can conclude that the partial-DHV asso-

ciating to any Pareto solution x reflects the density around x, as a high

value implies low density and vice versa. For example, in part (a), all the

four points have similar area of H~x, and it is obvious that the points are

evenly distributed on the Pareto front; whereas in part (b), (c) and (d),

the solution density is relatively low around points which have larger area

of H~x, and in such cases solutions in the Pareto set are less diverse.
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Hence, in order to obtain a well covered and evenly distributed Pareto

set, it is equivalent to

min max
~x∈Πk

H~x.

We found that the concept can also be extend to any high dimension-

al objective space, the detailed technique is mentioned in Section 5.2.1.

Applying the concept in the random search framework we proposed in Al-

gorithm 1.1, we could sample more around solutions with higher value of

H~x rather than the ones with lower value.

Remark. The worst case scenario point becomes more importance in the

context. Although arbitrary, it has to be representative enough to indicate

the worst value of each objective. Otherwise, it limits the room of spread

for the Pareto set.

5.1.5 Discussion on Terminating Conditions

Another advantage of the DHV indicator is that it makes easy for us to track

the search history and obtain a singular sign of when shall we terminate

the search because the result is satisfying or no more improvement can be

expected.

A straightforward approach is to draw a relationship between the DHV

value and the time, or in other form it can be number of visits or num-

ber of simulation evaluations. We can then apply regression method on

the relationship so as to predict the DHV growing in the future. If the

improvement is not worthy for spending additional computing budget, we

shall terminate the search.
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Figure 5.4: Improvement in DHV for a D-SIMSPAIRTMscenario

An industrial application is implemented for D-SIMSPAIRTMas in Sec-

tion 3.5.4. In the application, the two objectives we are maximizing the

service level and minimizing the total cost, which provides an even more

valuable insight for the DHV indicator. As we can see from Part (b) of

Figure 5.4, that showing a very special case where all Pareto solutions have

same amount of cost saving but with service level unchanged, it is not dif-

ficult to be concluded that the change in the DHV value exactly measures

the cost saving cost at each point as the service level is bounded between 0

and 1. To be more general, if we consider any arbitrary scenario such as in

Part (a), the change in DHV can be intuitively interpreted as the average

cost saving of Pareto solutions throughout the service level spectrum.

For illustration, the Figure 5.5 shows the improvement of non-dominated

area in a D-SIMSPAIRTMsearch run, i.e., the complement of DHV value

mentioned previously, because we can interpret it as the averaged cost we

have achieved so as to avoid the maximum cost we set arbitrarily.

The solid line in the figure records the reduction of the non-dominated

area, i.e., the averaged cost. And with regression method, we can fit it into
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a power function described as

y = y0 + α · x−β

and identify the parameters as y0 = 24, 261.77, α = 241, 824 and β = 0.57.

We can see that the R-Square value for the regression model is 98.31%,

which indicates that the observations fit the model quite well.

Two important conclusions can be made from the model. Firstly, the

y0 set an asymptotic line to which the average cost can approach. In an

idea situation, we may treat it as the lowest cost, or the optimal solution

we are targeting at. Another indicator is

∆y = α
[
x−β0 − (x0 + ∆x)−β

]

that denotes the marginal cost reduction with extra computing budget ∆x

in addition to existing x0. For example, if we would like to terminate the

search once the the expected averaged cost reduction is less than $100 in

the next 1 hour, provided that each solution visit takes 1 second, we should

terminate it at 16, 673 visits.

We should note that the regression parameters can be changed dy-

namically as more observations are collected. So, the prediction would be

inaccurate when only a few observations is obtained, e.g., at the beginning

of the search, or when there is a big jump just occurs. Thus, in practice

we may also look at other criteria concerned by the problem owner.

88



Figure 5.5: Reduction of averaged cost for the D-SIMSPAIRTMscenario

5.2 A Unified Gradient for MSOP

Concerning the search efficiency and solutions spread and diversity, one

typical approach is to consider the gradient of H~x in term of ~x, i.e.,

~∇H~x
=
∂H~x

∂~x
. (5.2)

The direction of the gradient suggests one of the fastest ways to increaseH~x

and at the same time the magnitude of the gradient relatively reflects the

magnitude of H~x. Based on what we discussed in Section 5.1.3 and 5.1.4,

the search algorithm for MSOP can be designed based on this singular

gradient information.

However, ~∇H~x
can hardly be measured straightforward, as H~x is a func-

tion defined on objective values ~g (~x), but ~x is the parameter given in the
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decision space. Thus we need to consider a composite function on ~x, i.e.,

H~x = H~g ◦ ~g (~x) . (5.3)

in which H~g is the function of DHV in the objective space. Then, applying

the chain rule, its gradient can be expressed as

~∇H~x
=
∂H~g
∂~g
× ∂~g (~x)

∂~x
, (5.4)

in which

∂~g (~x)

∂~x
=


∂g1
∂x1

. . . ∂g1
∂xp

...
. . .

...

∂gh
∂x1

. . . ∂gh
∂xp

 (5.5)

is a matrix and its element values could be measured or approximated from

simulation evaluation using techniques such as FDSA (Blum, 1954b; Kiefer

and Wolfowitz, 1952) or SPSA (Spall, 1999, 2003). Thus, we let

~λ~g =
∂H~g
∂~g

, (5.6)

and name it as the weighing vector as it balances gradients for different

objectives. We find that for an MSOP, ~λ~g becomes the key for obtaining a

unified gradient ~∇H~x
according to (5.4).

5.2.1 The Objective Weighing Vector

The Quadrant (d) of Figure 5.2 provides an good insight for identifying ~λ~g

in a bi-objective case. Based on Equation (5.6), ~λ~g is no more than a vector
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consists of elements showing the area increment of the dotted rectangular

when the pivot solution (left-bottom point) is moved by an infinitesimal

distance in each coordinate.

We demonstrate how ~λ~g can be identified in bi-objective case by Figure

5.6. In the bi-objective case, it is obviously that the magnitude of two

elements λ1, λ2 are respectively the width and height of rectangular, or

more specifically

λ1 = g
(1)
2 − g

(2)
2 , λ2 = g

(3)
1 − g

(2)
1 ,

noted that g
(i)
j is the gj value for ith solution.

While to have a more general elaboration, we need to apply the dimen-

sion sweeping technique, so as to extend it for any h-dimension scenario.

In order to get λi we sweep a perpendicular hyper-plane on coordinate of

gi for all Pareto solutions from lower to higher end, and keep observing the

intersected hyper-area (HA) with the dominated region.

The original dimension sweeping technique proposes that, the DHV

can be calculated by integrating HA on the sweeping depth (Preparata

and Shamos, 1985; While et al., 2006). But here, since we need to know

the infinitesimal increment of DHV at specific point ~g by moving it on

dimension i, we take the amount of HA increment when the sweeping hyper-

plane just reach ~g, i.e., the difference of HA at ~g compared with the HA at

the previous point, and record it as λi. We do it for all i ∈ {1, . . . , h}, so

as to obtain ~λ~g.

It is worthy to notice that While et al. (2006) also provides the way to

calculated HA at each point. Basically, it is part of the recursive process
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Figure 5.6: Identify ~λ~g in a bi-objective Pareto set

for calculating DHV, as a h-dimensional hyper-area is indeed a (h − 1)-

dimensional hyper-volume.

5.3 Gradient-Based Techniques

With the unified gradient proposed through Section 5.2, we can apply gradi-

ent related techniques in designing search algorithms or improving existing

ones. According to the general framework in Algorithm 1.1, the techniques

can be applied in two critical stages, namely, the pivot selection and sam-

pling of new solutions.
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5.3.1 Weighed Pivot Selection

For pivot selection, a simple approach is to rank the importance of each

Pareto solution according to the magnitude of its unified gradient because

it indicates the potential of occurring better solution nearby. Then we can

make the selection based on the probability proportional to it, we refer the

method as weighed pivot selection (WPS).

5.3.2 Gradient-Oriented Coordinate Sampling

For sampling of new solutions, a straight forward example could be follow-

ing the idea of steepest descend method, meaning that in every iteration

sample a solution on the gradient direction of a pivot solution with a pre-

determined step-size. However, we should notice that MSOP is different

from a single objective optimization problem as we are not aiming to find

a unique optimal solution but a complete set of non-dominated solutions.

So, in order to diversify the sampled population, we would like to inject

certain noise into the sampling.

Based on the MO-COMPASS proposed in Chapter 3 that is suitable

for discrete scenarios, below of this section illustrates an enhanced version

by introducing the gradient-oriented coordinate sampling (GOCS) as the

sampling scheme.

We introduce GOCS by comparing it with the CS as in Section 3.4.

Generally, CS has two steps, namely (1) uniformly select a dimension, (2)

find the range of values on the dimension in the most-promising-area and

uniformly sample a point. The GOCS modifies CS in the sense that the
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dimension i is selected with probabilities proportional to the magnitude of

gradient element, i.e., |gi|; and the range is truncated at the pivot solution

and only the part coincides with the sign of gi is taken to be sampled.

Because of the truncation, if the same candidate pool as for CS is to be

maintained, we can simple make use of CS with a small portion of chance

in addition to the GOCS procedure shown above.

Then we test the two techniques, namely WPS and GOCS, by applying

them in MO-COMPASS for solving ZDT1 and ZDT2 as in Section 3.5.2.

For both problems, we set the discretization levels to 10, 000 and dimensions

to 30 so as to make the solution space relatively large. While for the

search algorithm, batch size is set to 10 and 50 search runs are applied for

observing the average dominated hyper volume versus number of solutions

sampled.

From Figure 5.7, it is not difficult to conclude that both WPS and

GOCS are able to make the search algorithm faster and the combination of

the two techniques achieved the best performance among all. Given limited

budget at 1, 000 samples, we have 9.56% DHV improvement with WPS +

GOCS for ZDT1 and 7.08% for ZDT2.

However, we should note that the advantage of the gradient based tech-

nique is highly based on the problem nature. Usually, it works well for

problem with a small number of local optima or when the global optimum

is much superior than the others. In practice, the advantage will become

more obvious when the problem scale is larger.

The trend can be shown by the D-SIMSPAIRTM application mentioned

in 3.5.4, where we also tested WPS + GOCS for all the three parts with low,
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Figure 5.7: Improvement in Search Efficiency by WPS and GOCS.
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Figure 5.8: Gradient-Based Efficiency Improvement for D-SIMSPAIRTM

Low-Demand Case.

medium and high demand. The result is shown in Figure 5.8 to 5.10. For

low demand part the improvement is negative as the search into gradient

direction loses opportunity to browse more potential solution area; while

for medium and high demand part, the improvement becomes more obvious

as the problem scale increases.

Nevertheless, the GOCS is helpful in efficiently solving industrial prob-

lems as normally those with large scale are the most essential ones.

5.3.3 GO-POLARS Sampling

Alternatively, we can apply WPS with GO-POLARS sampling (GPS) as

introduced in Section 4.5.2, in which the unified gradient is used as for the

orientation.

The numerical examples are conducted for ZDT1-6 (Zitzler et al., 2000)
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Figure 5.9: Gradient-Based Efficiency Improvement for D-SIMSPAIRTM

Medium-Demand Case.

Figure 5.10: Gradient-Based Efficiency Improvement for D-SIMSPAIRTM

High-Demand Case.
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Figure 5.11: GO-POLARS Sampling in MO-COMPASS for ZDT1.

in discrete cases, where we set the dimension to 30, discretization level to

1, 000. For the GO-POLARS as the sampling scheme, we let σ = π/3.

And in order for GPS to be incorporated in MO-COMPASS, it works in

a discrete manner, meaning that the sampled points are always rounded

to the nearest integers for evaluation. The algorithm batch size is set to

10, while 50 search runs are observed and the averaged dominated hyper-

volume, i.e., area in the bi-objective scenario, is recorded versus number of

visits to samples. Given limited number of visits, the results are shown by

Figure 5.11 to 5.15.

For ZDT1-3, we compare GPS with CS and GOCS. Whereas for ZDT4

and ZDT6, we only compared with CS as GOCS does not show to work

well due to the problems nature.

It can be observed that, with the limited budget, the GPS improves
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Figure 5.12: GO-POLARS Sampling in MO-COMPASS for ZDT2.

Figure 5.13: GO-POLARS Sampling in MO-COMPASS for ZDT3.
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Figure 5.14: GO-POLARS Sampling in MO-COMPASS for ZDT4.

Figure 5.15: GO-POLARS Sampling in MO-COMPASS for ZDT6.
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the DHV with the highest rate comparing with others. The result can be

expected since with GO-POLARS we utilized more local information.

However, we should also notice that GPS may not have the best perfor-

mance when more budget is assigned to the search. Two possible reasons

can be addressed.

Firstly, in the numerical test we keep the same σ throughout the search,

by which the advantages of GO-POLARS have not been fully taken as a

small σ helps to increase the improvement rate but easy to be trapped in

local optimum as search going on. So, in future we may try to vary the σ

in different phase of the search, although the rule for doing so should be

carefully designed.

Secondly, we are only testing the algorithm in discrete cases. Hence,

the bias exists when we round the decision points to their nearest integers.

The impact becomes more significant when the search going on because the

MPA shrinks at the same time. In future study, we may relax the problem

settings to continuous, or apply an independent GO-POLARS to an MSOP

so as to get rid of the shrinking MPA.
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Chapter 6

Conclusion

In this thesis, we proposed a generic framework for designing various types

of MO search algorithms. Based on the framework, an advanced stochastic

search algorithm MO-COMPASS for solving MDOvS was firstly developed

with solid theoretical foundations and clearly specified SARs.

With rigorous mathematical proofs, we are confident that MO-COMPASS

is able to strongly converge to an LPS with finite iterations. The results

are further confirmed by numerical examples from both mathematical for-

mulation and industry application. Compared with academic and indus-

trial benchmarks, MO-COMPASS also demonstrates a more competitive

capability of solving large scale problems with a high efficiency. It can be

applied to various industrial problems and enhance the system performance

effectively and efficiently.

To strengthen the search efficiency, especially to make it suitable for

continuous problems and easy to control exploration of the search space,

we continued to work on a brand new search algorithm concept, namely
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the GO-POLARS, after we reviewed two categories of search algorithms

for optimization problems and suggested that incorporating randomness in

utilizing gradient information will improve both gradient-based search and

metaheuristics local search.

The GO-POLARS algorithm was based on a newly proposed hyper

polar coordinate representation and associated random distributions. It has

been shown to have the strong local convergence property and works well in

numerical examples either independently or hybridizing with sophisticated

stochastic algorithms.

In addition, we adopted and further improved the concept of dominated

hyper volume that concerning both search efficiency and solutions spread

and diversity, and proposed a method based on it to identify a unified

gradient for MSOP. With this contribution, we could incorporate several

gradient-based techniques, including GO-POLARS, into the MO search

framework.

In future research, we could analyze the way to incorporate with more

advanced SARs in the MO search algorithm, e.g., MO-COMPASS and etc.,

such as multi-objective optimal computing budget allocation (MOCBA)

with indifference-zone (Teng et al., 2010). Additionally, we may study the

global convergence property of MO-COMPASS and GO-POLARS so as to

strengthen them for industrial use, as what has been achieved for single-

objective case (Xu et al., 2010). Also, the behavior and restriction of those

algorithms in practice can be further investigated.

We may also address the adjustment of σ for GO-POLARS and analyze

how it affects the solutions quality versus search efficiency for different ap-
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plications. The possibility to fit GO-POLARS into MO search framework

so as to design more advanced algorithms can also be discussed. Besides,

instead of gradient, other directional information based on the nature of re-

spective problems can also be used to orient the polar random distribution.

Then a large number of search and sampling algorithms can be developed

based on the concept.

Overall, with the promising numerical results and the broad deriva-

tives, we have plenty of reason to believe that we are opening a new era of

stochastic search for multi-objective simulation optimization.
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Appendix A

Proofs of Lemmas for

MO-COMPASS

A.1 For Fully Constrained MDOvS

Proof of Lemma 3.1. Consider a modified version of Algorithm 3.1 as Al-

gorithm A.1, in which we have ~x ∈ Θ instead of ~x ∈ Vk in Line 6. Corre-

spondingly, for the SAR, Condition A.1 is applied in addition to Condition

3.1.

Condition A.1. The SAR ensures that for each ~y ∈ Θ \ Vk at itera-

tion k, new simulation evaluations are obtained with amount Nk(~y) =

min~x∈Vk Nk(~x), for calculating ~̄Gk(~y), which is to be discarded at the be-

ginning of iteration k + 1.

Since the modification does not affect the way of generating Vk, or
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Algorithm A.1: MO-COMPASS for fully constrained DOvS (Mod-
ified)

1 Let iteration count k = 0, C0 = Θ and V0 = ∅ ;
2 while not terminating do
3 k ← k + 1 ;
4 sample a set solutions Xk ← {~x1, . . . , ~xm} from Ck−1 ;
5 Vk ← Vk−1 ∪Xk ;
6 forall the ~x ∈ Θ do
7 apply SAR to determine ak(~x) and thus Nk(~x);

8 collect ~̄Gk based on simulation observations ;

9 identify Π̂k as the observed Pareto set on Vk ;

10 construct Ck based on Π̂k and Vk ;

allocating simulation to any ~x ∈ Vk, if we can prove

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε i.o., ∃~x ∈ Vk, l ∈ {1, . . . , H}

}
= 0,∀ε s.t. 0 < ε < ε0

(A.1)

for Algorithm A.1 with Assumption 3.2, Condition 3.1 and A.1, the same

result follows for Algorithm 3.1 when only Assumption 3.2 and Condition

3.1 apply.

According to Algorithm A.1, Vk ⊆ Vk+1 ⊆ Θ. Since |Θ| < ∞, we

conclude that V∞ =
⋃∞
k=0 Vk which depends on the sequence {V1,V2, . . . }

must exists.

Therefore, for all ~x ∈ V∞, Condition 3.1 provides

lim
k→∞

Nk(~x) = +∞. (A.2)

Meanwhile, Condition A.1 ensures that (A.2) holds for all ~x ∈ Θ \ V∞. It

implies that the same result remains for all ~x ∈ Θ.
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As ∀k ≥ 0,Vk ⊆ Θ, for all ε such that 0 < ε < ε0,

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε i.o., ∃~x ∈ Vk, l ∈ {1, . . . , H}

}

≤ Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε i.o., ∃~x ∈ Θ, l ∈ {1, . . . , H}

}
. (A.3)

By the strong law of large numbers, Assumption 3.2 and (A.2) imply that

(A.3) ≤
∑

~x∈Θ,l∈{1,...,H}

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε i.o.

}
= 0, (A.4)

which proves (A.1).

Proof of Lemma 3.2. For all k ≥ 0, given ~x ∈ Nk \ Vk, the definition of Nk

implies

∃~z ∈ Π̂k, ‖~x− ~z‖ ≤ 1. (A.5)

Besides, for all ~y ∈ Vk \ Π̂k we have ~x 6= ~y since ~x /∈ Vk but ~y ∈ Vk.

Thus, ‖~x− ~y‖ ≥ 1. Consider (A.5) as well, we then have

∃~z ∈ Π̂k,∀~y ∈ Vk \ Π̂k, ‖~x− ~z‖ ≤ ‖~x− ~y‖. (A.6)

Because of definition of Ck as in (3.1), (A.6) implies ~x ∈ Ck. As the

result, Algorithm 3.1 guarantees

Pr{~x ∈ Vk+1 | ~x ∈ Nk \ Vk} ≥
1

|Ck|
≥ 1

|Θ|
> 0.
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A.2 For Partially Constrained or Unconstrained

MDOvS

Proof of Lemma 3.3. According to Algorithm 3.1, Vk ⊆ Vk+1 ⊆ Θ, ∀k ≥ 0.

Besides, |Θ| < ∞ as the problem is fully constrained. Therefore, it must

be true that Pr{Vk 6= Vk+1 i.o.} = 0.

Proof of Lemma 3.4. Define

Bk ≡
d⋂
i=1

[
b

(i)
0 − k∆(i), b̄

(i)
0 + k∆(i)

]
. (A.7)

So for all k ≥ 0, we know that Bk is finite and deterministic, and Bk ⊆ Bk ⊂

Θ. Then, we consider a modified version of Algorithm 3.2 as Algorithm

A.2, in which we have ~x ∈ Bk instead of ~x ∈ Vk in Line 9. For the SAR,

Condition A.2 is enforced beside Condition 3.2.

Condition A.2. The SAR ensures that for each ~y ∈ Bk \ Vk at iteration

k, new simulation evaluations are obtained with amount Nk(~y) = rk as

in Condition 3.2, for calculating ~̄Gk(~y), which is to be discarded at the

beginning of iteration k + 1.

Similar to the proof for Lemma 3.1, as the modification does not affect

the way of generating Vk, or allocating simulation to any ~x ∈ Vk, if we can
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Algorithm A.2: MO-COMPASS for partially constrained or uncon-
strained MDOvS (Modified)

1 Initialize iteration count k = 0 ;

2 set b
(i)
0 and b̄

(i)
0 such that b

(i)
0 < x

(i)
0 < b̄

(i)
0 , ∀i ∈ {1, . . . , d} ;

3 construct B0 according to (3.8) ;
4 let C0 = Θ ∩ B0 and V0 = ∅ ;
5 while not terminating do
6 k ← k + 1 ;
7 sample a set solutions Xk ← {~x1, . . . , ~xm} from Ck−1 ;
8 Vk ← Vk−1 ∪Xk ;
9 forall the ~x ∈ Bk do

10 apply SAR to determine ak(~x) and thus Nk(~x);

11 collect ~̄Gk based on simulation observations ;

12 identify Π̂k as the observed Pareto set on Vk ;

13 construct Bk and thus Ck based on Π̂k and Vk ;

prove

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε i.o., ∃~x ∈ Vk, l ∈ {1, . . . , H}

}
= 0,∀ε s.t. 0 < ε < ε0

(A.8)

for Algorithm A.2 with Assumption 3.4, Condition 3.2 and A.2, the same

result follows for Algorithm 3.2 when only Assumption 3.4 and Condition

3.2 apply.

∀k ≥ 0, as Vk ⊆ Bk, given any ε such that 0 < ε < ε0, we have

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε, ∃~x ∈ Vk, l ∈ {1, . . . , H}

}
≤ Pr

{∣∣∣Ḡ(l)
k (~x)− g(l)(~x)

∣∣∣> ε, ∃~x ∈ Bk, l ∈ {1, . . . , H}
}

≤
∑

~x∈Bk,l∈{1,...,H}

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε

}
. (A.9)
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By Condition 3.2 we know that there exists K > 0 such that for all k ≥

K, we have rk ≥ r∗. In addition, Condition 3.2 and Condition A.2 ensure

that for all ~x from either Vk or Bk \ Vk, it always holds that Nk(~x) ≥ rk.

Therefore, according to Assumption 3.4, for all k ≥ K and all ε such that

0 < ε < ε0,

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε

}
≤ λ(rk, ε),∀~x ∈ Bk, l ∈ {1, . . . , H} , (A.10)

and thus,

(A.9) ≤ H|Bk|λ(rk, ε) ≤ H(b+ ∆k)dλ(rk, ε) (A.11)

because |Bk| ≤ (b+ ∆k)d where

b = max
1≤i≤d

[
b̄

(i)
0 − b

(i)
0 + 1

]

and

∆ = max
1≤i≤d

[
2∆(i)

]
.

Then, since Condition 3.2 also provides

lim
k→∞

kd+1λ(rk, ε) = 0,

from (A.11) we have

∞∑
k=0

Pr
{∣∣∣Ḡ(l)

k (~x)− g(l)(~x)
∣∣∣> ε, ∃~x ∈ Vk, l ∈ {1, . . . , H}

}
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≤ K +H
∞∑
k=K

(b+ ∆k)dλ(rk, ε) <∞, (A.12)

which proves (A.8) by the first Borel-Cantelli lemma (Billingsley, 1995).

Proof of Lemma 3.5. For all k ≥ 0, given ~x ∈ Nk \ Vk, by the same way as

in the proof of Lemma 3.2, we have ~x ∈ Ck, noted that the definition for

Ck is given in (3.9), and Nk ⊆ Bk when ∆(i) > 0 for all i. Hence, according

to the Algorithm 3.2

Pr{~x ∈ Vk+1 | ~x ∈ Nk \ Vk} ≥
1

|Ck|
. (A.13)

To prove (A.13) > 0 for all k ≥ 0, we only need to show

|Ck| <∞,∀k ≥ 0, w.p.1. (A.14)

Thus, we define for all ~z ∈ Θ,

Dk(~z) ≡
{
~x ∈ Θ

∣∣∣ ∀~y ∈ Vk \ Π̂k, ‖~x− ~z‖ ≤ ‖~x− ~y‖
}
.

Then, instead of (3.9), an alternative way to define Ck is Ck ≡ Bk ∩⋃
~z∈Π̂k
Dk(~z). It implies

Ck ⊆ Bk ⊆ Bk (A.15)
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in which Bk is defined in (A.7), and

Ck ⊆
⋃
~z∈Π̂k

Dk(~z). (A.16)

In addition, Assumption 3.3 tells that for all k the true Pareto set on

Vk, that is Π∗k, must be contained in Ω which is finite, i.e., Π∗k ⊆ Ω and

|Ω| <∞. Besides, Theorem 3.3 ensures Pr
{

Π̂k 6= Π∗k i.o.
}

= 0, thus

Pr
{

Π̂k 6⊆ Ω i.o.
}

= 0. (A.17)

So, w.p.1 there exists a set A ⊆ Ω such that A =W in which

W ≡
{
~z ∈ Θ

∣∣∣ ~z ∈ Π̂k i.o.
}

(A.18)

that depends on the sequence of Vk, namely

∑
A⊆Ω

Pr {A =W} = 1. (A.19)

Condition on A =W according to (A.19), so we have

Pr


∣∣∣∣∣∣
⋃
~z∈Π̂k

Dk(~z)

∣∣∣∣∣∣ =∞ i.o.

 ≤
∑
A⊆Ω

Pr

{∑
~z∈A

∣∣∣∣∣Dk(~z)

∣∣∣∣∣ =∞ i.o.

∣∣∣∣∣ A =W

}
.

(A.20)

Moreover, we notice that according to Algorithm 3.2, the procedure of

sampling in and construct Ck can be decomposed into sub-procedures of
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sampling and updating Dk(~z) for all ~z ∈ Π̂k. As the sub-procedure does

not make any difference compared to single-objective COMPASS, the same

result follows Hong and Nelson (2006) that

Pr
{
|Dk(~z)| =∞ i.o.

∣∣∣ ~z ∈ Π̂k i.o.
}

= 0, (A.21)

which implies (A.20) = 0. Therefore, consider (A.16) we then have

Pr { |Ck| =∞ i.o.} = 0. (A.22)

The result in (A.22) means that w.p.1 there exists K > 0 (depending on

the sequence of Vk) such that for all k ≥ K, |Ck| <∞. Besides, according

to (A.15), when k < K we also have |Ck| < |BK | < ∞. Thus, (A.14) is

proven.

Proof of Lemma 3.6. According to Algorithm 3.2, Vk 6= Vk+1 only if |Ck \

Vk| > 0, for which a necessary condition is |
⋃
~z∈Π̂k
Dk(~z)\Vk| > 0 because

of (A.16). So, we have

Pr {Vk 6= Vk+1 i.o.} ≤ Pr


∣∣∣∣∣∣
⋃
~z∈Π̂k

Dk(~z) \ Vk

∣∣∣∣∣∣ > 0 i.o.

 . (A.23)

If Π̂k can be bounded by the set Ω after a finite number of iterations,

i.e., when Π̂k 6⊆ Ω i.o. is not true, we can condition (A.23) on the event
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W = A. Hence,

(A.23) ≤∑
A⊆Ω

Pr

{ ∣∣∣∣∣⋃
~z∈A

Dk(~z) \ Vk

∣∣∣∣∣ > 0 i.o.

∣∣∣∣∣W = A

}
+ Pr

{
Π̂k 6⊆ Ω i.o.

}
≤
∑
A⊆Ω

Pr

{∑
~z∈A

∣∣∣∣∣Dk(~z) \ Vk

∣∣∣∣∣ > 0 i.o.

∣∣∣∣∣W = A

} (A.24)

since (A.17) tells Pr
{

Π̂k 6⊆ Ω i.o.
}

= 0.

Consider the sub-procedure of sampling and updating Dk(~z) for all ~z ∈

Π̂k. Hong and Nelson (2006) shows that w.p.1 there exists K > 0 such that

|Dk(~z)| <∞ for all k ≥ K. And according to Algorithm 3.2, all ~x sampled

from Dk(~z) are to be included in Vk+1, so we have

Pr
{ ∣∣∣Dk(~z) \ Vk

∣∣∣ > 0 i.o.
∣∣∣ ~z ∈ Π̂k i.o.

}
= 0

which implies (A.24) = 0.
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