
SUPPORTING ARBITRARY ZOOM IN

ZOOMABLE VIDEO

CONG PANG

NATIONAL UNIVERSITY OF SINGAPORE

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48678805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SUPPORTING ARBITRARY ZOOM IN

ZOOMABLE VIDEO

CONG PANG

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2013

Declaration

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly acknowledged all

the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

Cong Pang

February 12, 2014

Acknowledgements

First of all, I would like to thank my advisor Associate Professor Wei Tsang

Ooi for providing me the opportunity to work on this project and guiding

me through.

Prof. Ooi introduced me to the world of video coding and initiated the idea

of this project. He arranged meetings and discussion sessions regularly at

which I learned a lot about various video technologies and applications. He

is always approachable and helpful throughout this project. His expertise

and guidance helped me to drive the project forward, making me work ef-

ficiently especially on experimental simulation.

I also would like to thank Dr. Ravindra Guntur, Mr. Ngo Quang Minh

Khiem, Mr. Arash Shafiei, Mr. Zhenwei Zhao and Dr. Vu Thanh Nguyen,

who shared their experience, materials and expertise with me. The first

few discussions with Dr. Ravindra Guntur and Mr. Arash Shafiei are par-

ticularly useful to get me started on this project.

Finally, I would like to thank the Jiku Project group for the valuable dis-

cussions with them on weekly meetings.

i

Contents

1 Introduction 1

1.1 Organization . 5

2 Related Work 6

3 User Access Pattern 10

3.1 Experimental Procedure . 10

3.2 Zoom Level Distribution . 11

3.3 Conclusion . 15

4 Problem Statement and Formulation 16

4.1 The Problem . 16

4.2 Problem Formulations . 18

5 Modeling 20

5.1 Bandwidth Cost Modeling 20

5.2 Quality Cost Modeling . 23

5.3 Computational Cost Modeling 26

5.4 Model Validation . 28

6 Methodology 30

6.1 Optimizing Bandwidth . 30

6.2 Optimizing Bandwidth and Quality 32

ii

CONTENTS

6.3 Joint Optimization of m and R 34

7 Performance Evaluation 36

7.1 Methods for Comparisons 36

7.2 Findings and Discussion . 38

8 Conclusion and Future Work 43

iii

Summary

Zooming into a live video stream on small screen devices, such as mobile

phones, provides a personalized experience in which users can watch inter-

esting regions within the video at higher resolution. A common method

to implement zoom operation on live video streams is bitstream switching,

where the captured video stream is re-encoded into multiple streams with

different resolutions. Zooming into a specific region therefore is equivalent

to cropping the region from a higher resolution version of the video.

This thesis considers the following problem: which resolution levels should

we re-encode the captured video in, given a set of zoom levels that the users

are requesting for. The set of resolution levels depends on the amount

of processing power available (to re-encode), the amount of bandwidth

available, and the quality of the video region displayed to the user.

We proposed two strategies, one optimizes for quality and one trades off

between quality and bandwidth. Both use the processing power as the

constraints. We compare our strategies to a naive scheme that statically

determine the resolution levels without considering the user requests, and

showed that our strategies leads to lower bandwidth and better video qual-

ity.

iv

List of Tables

4.1 Notations . 18

v

List of Figures

1.1 Jiku Architecture . 1

3.1 Rag&Flag Video. 12

3.2 Lounge Video . 13

3.3 User Access Pattern . 14

5.1 Different Choices of Resolution Level to Send When Users

Requested Zoom Level Corresponding to Resolution 720×540. 21

5.2 Curve Fitting for Bandwidth Cost (z = 0.28) 22

5.3 PSNR of Images After Scaled Up 25

5.4 Computational Cost . 27

5.5 Accuracy of Model . 29

7.1 Rag&Flag Video . 40

7.2 Lounge Video . 41

7.3 Quality vs. Bandwidth . 42

vi

Chapter 1

Introduction

Figure 1.1: Jiku Architecture

To improve the experience of attending urban events, we have developed

a system called Jiku Live [24] that allows attendees to use their mobile

phones to access video streams of the events captured using networked

cameras provided by the organizers. Users can browse, watch, interact,

record, and share video streams of the events, providing a personalized

experience in which attendees can watch the part of the events that are

relevant and interesting to them, possibly from a different angle of their

physical locations.

1

CHAPTER 1. INTRODUCTION

One of the key features in Jiku Live is zoomable video streaming [13, 10, 8].

Jiku Live streams live videos to mobile phones, allowing multiple users to

zoom and pan to see different regions of interest within the video streams

at the same time. The system captures the scene at a video resolution that

is much higher than the display resolutions on the mobile phones. When

the user zooms in, a higher resolution version of the video is cropped and

transmitted for playback on the mobile phones.

To support zoomable video, the system does two things: (i) video frames

are split into a grid of either non-overlapping [10] or overlapping [8] tiles, (ii)

video frames are re-encoded into short segments (say, one second each) at

different resolutions. When a user zooms in, tiles at the resolution closest to

the requested zoom level that overlap with the required region-of-interest,

or RoI, are sent to the client for decoding.

The Jiku Live system comprises of Jiku Video Server and Jiku Live Player.

The overview of Jiku Video Server is presented in Figure 1.1. The Jiku

Video Server is responsible for converting video streams from network cam-

eras into tiles before streaming the RoI to the clients; while Jiku Live Player

is a typical streaming video client with added support for zoom and pan

operations. Jiku Live Player communicates with Jiku Video Server and re-

ceives video streams from it. The client also allows users to switch between

the available network cameras.

Streaming at an arbitrary RoI and an arbitrary zoom level is essential to

supporting smooth zooming and panning within the video streams. This

thesis focuses on the second issue (we call it arbitrary scaling).

First, consider a Jiku Live system that does not support arbitrary zoom

level. Users can only zoom in and out at levels that correspond to the

2

CHAPTER 1. INTRODUCTION

resolutions of the tiles created. Zooming is “discrete.” In such systems, it

is typical that the zoom levels (and thus the resolutions of the tiles) are set

at regular zoom intervals (e.g., 2×, 3×, 4×, etc).

Now consider how we could support arbitrary zoom levels. Since it is not

practical to store the tiles at as many resolutions as the possible resolution

levels in this case, one solution is to store the tiles at fixed resolution levels,

and then scale the tiles to the resolution level corresponding to the zoom

level when the zoom level is requested.

There are two choices regarding where the video is scaled. One is to scale

the video to the requested size on the server and transmit it to the client.

This is a naive solution. Every time a user requests the video at a given

zoom level, the server just crops and scales the requested RoI to the res-

olution level corresponding to the user’s request. This solution is costly

because the server needs to transcode the original video for every unique

zoom level requested. It is therefore not scalable.

The second option is to transmit the original video streams directly to the

client and let the client scale down the video itself. This is another naive

solution where the server always store the video at the original resolution

level. Every time a user requests the video, the server only crops the

requested RoI and sends it as a stream. Scaling is done only on the client.

This solution is also not scalable due to the bandwidth cost, as even if the

user needs a lower resolution video (e.g., watching the video with outer

most zoom), a high resolution video still needs to be sent.

Each choice has its advantages and disadvantages. Running video scaling at

the server reduces bandwidth, but requires a scaling operation on the server.

Scaling the video at the client eases the computational burden on the server,

3

CHAPTER 1. INTRODUCTION

but it requires a higher demand on the network bandwidth. Therefore,

a tradeoff exists between computational efficiency of mobile devices and

network bandwidth.

The bandwidth and computational demand for the process depends on

the resolution levels one choose to encode the tiles in and the zoom levels

requested by the users. In scenarios where each zoom level is equally likely

to be requested by users, storing the resolution levels at regular intervals

makes sense. However, previous studies have found that user’s RoI tends

to cluster around the certain region at certain zoom levels [2]. In this case,

it is more beneficial to encode the tiles at a resolution level that is most

likely requested by the users.

The problem considered in this thesis is the following: given the computa-

tional and bandwidth constraints, and the zoom levels requested by users,

what resolution levels should we encode the tiles in, such that the client

can playback the video at the best quality. We focus on the scenario with

a single server and single input video.

We model the problem as follows. In our system, the input video is pre-

encoded into m resolution levels on the server R = {r1, r2, ...rm}. Without

loss of generality, we assume ri < rj if i < j. We define the resolution

of the video captured as rm = 1. A encoded video has resolution level ri

if the width and height of the video frames are scaled down by a ratio of

ri. For instance, if 1920×1080 is the resolution of the video captured, the

re-encoded video with 960×540 has a resolution level of 0.5.

There are n clients, requesting videos at zoom levels Z = 〈z1, z2, ...zn〉,

zi ≤ zj if i < j. Note that two users can request the same zoom level. We

define the innermost zoom level, where the user zooms in to the maximum

4

CHAPTER 1. INTRODUCTION

resolution rm, as zoom level 1. As the users zoom out, the zoom level

decreases. If the user zooms to a resolution that is k times smaller than

rm, we say that the zoom level requested is 1/k. For each zoom level

requested zi, the server sends back the pre-encoded zoom level f(zi) ∈ R.

The objectives of this thesis are to determine m and R given Z, such that

the total computational power required to create the resolution levels in

R does not exceed the server computational limit, considering the video

quality and the bandwidth cost.

We consider two variants of this problem, called best-quality streaming (BQ)

and balanced-scaling streaming (BS). Best-quality streaming always sends

the video back at a higher resolution level than a user’s request to the

user so as to keep the quality of the returned video best. In other words,

f(zi) > zi. Balanced-scaling streaming tries to find the distribution of the

resolution levels for the video to be zoomed and stored on the server by

balancing bandwidth and video quality.

1.1 Organization

The rest of the thesis is organized into seven chapters. We begin with a

review of literature in Chapter 2, followed by a report on a pilot study

conducted to verify the need and usefulness of supporting zoom and pan,

with arbitrary RoI cropping in a video stream at arbitrary zoom level in

Chapter 3. Then chapter 4 describes arbitrary scaling and its formulation.

Chapter 5 and 6 explain how we analyze the cost modeling and solve the

problem in simplest situation. In Chapter 7, we present our results. Finally,

we conclude in Chapter 8, where several issues encountered in the thesis

are discussed and possible future work are explored.

5

Chapter 2

Related Work

Many studies have been conducted on region of interest (RoI) of an im-

age/video, including its construction, characteristics, and interaction with

users. A method for viewing large images on small displays was proposed

by Liu et al. [18]. Later, Xie et al. [27] investigated user interest for image

browsing on small-form factor devices. Santella et al. [23] presented an

interactive method for cropping photographs by eye tracking. Aiming to

produce an adaptive video stream for mobile devices with different display

sizes, zoomable video, either manual [25] or automatic [5], is studied to

enhance video viewing experience on small display; [21] take a further step

to investigate ROI prediction strategies for a client-server system.

Apart from generating a multi-resolution representation, Mavlankar et al.

studied the optimal slice size for zoomable video in a network streaming

context [20]; [6] propose a mechanism to support region-of-interest adapta-

tion of stored video by creating a compression compliant stream while still

allowing it to be cropped.

6

CHAPTER 2. RELATED WORK

Many recent works have been done on selection of an RoI to zoom into

in the context of video. Early research efforts and projects in this area

mainly focus on how to crop and pan or automatically determining an RoI,

and finally simply zoom the video to proper size. Multiple ROIs support

by adopting flexible macroblock ordering is investigated [1]. ROI predic-

tion and recommendation for streaming zoomable video is studied [21, 3];

Meanwhile,[4] tracks the RoI by finding the globally optimal trajectory for

a cropping window using a shortest path algorithm. [16] defined a frame-

work that measures the preservation of the source material, and methods

for estimating the important information in the video for video retargeting

cropping. [26] present a system for automatically extracting the region of

interest and controlling virtual cameras control based on panoramic video.

[22] discussed the technique for frame accurate cropping of MPEG video.

The technique is based on removing temporal dependencies of cropped

frames from frames before of after the cropping point while decoding and

encoding only the minimum number of frames. To support zoomable video

for local playback through the decoding process, [17] implemented a system

consisting of an online analyzer and a mobile video player that implements

selective decoding in MPEG-4 Part 2 Simple Profile.

On the issue of content scaling of zoomable video streaming, bitstream

switching has been proposed as a possible solution. The server encodes

the video in multiple resolutions and streams the lowest resolution by de-

fault. When the user zooms into the video for RoI from the low resolution

video, the corresponding RoI is cropped from a higher resolution video and

transmitted. That is, the video server switches between different resolution

videos when users zoom in and out. Different approaches have been pro-

posed to encode videos with bit-stream switching in the context of viewing

7

CHAPTER 2. RELATED WORK

a selected RoI from a high-resolution panoramic video stream [9]. [12] de-

scribed two new frame types (SP- and SI-frames) defined in H.264/AVC

to provide functionalities such as bitstream switching, splicing, random ac-

cess, error recovery, and error resiliency. [10] proposes a new data format

and tile adaptive rate control to achieve high quality partial panoramic

video transmission, even over restricted bandwidth networks.

More recently, Khiem et al. studied zoomable video at a network streaming

context [15, 13, 14]. Based on user access patterns of ROI, their work

focuses on encoding a video intelligently to save bandwidth, thus sharing

a common objective as our works. However, the works differ in several

aspects. Firstly, the contexts are different. Khiem focuses on arbitrary RoI

cropping over the network, while this work deals with arbitrary scaling.

Secondly, the approaches are different. Khiem’s work simply stores videos

in several fixed levels on the server side. Our work, however, dynamically

adjust the resolution levels stored on the server according to the current

user requests.

In addition, user studies [2, 15] have shown that users interaction is hard

to predict, but the users’ RoIs are highly similar. We need a streaming

solution that can quickly adapt to the large amount of scaling requests

changes, have a content independent architecture and be capable of han-

dling any arbitrary scaling ratio. Recent works have been done to improve

the throughput by optimizing RoI streaming methods in [14, 7]. How-

ever, current video standards do not support arbitrary, interactive scaling

required for RoI-based streaming. [11] supports spatially scalable coding

with arbitrary cropping, but it does not support interactions because of

the pre-determined spatial resolutions and cropping. Few attempts have

8

CHAPTER 2. RELATED WORK

been made to address the optimization of interactive RoI based arbitrary

scaling streaming of encoded video requested by many users.

In summary, extensive research has been done for arbitrary RoI cropping

in the network streaming context in zoomable video systems, with focus on

video encoding process. To the best of our knowledge, we have not found

works on supporting zoomable video for arbitrary scaling.

9

Chapter 3

User Access Pattern

During the deployment of the Jiku Live sytem, we observe that users’

zoom levels tend to cluster around some values. Users tend to zoom into

interesting objects or events within the video, and there is a “natural” range

of zoom levels to view these objects. This observation forms the basis of

our work. Otherwise, if zoom levels requested by the users are uniformly

distributed, the server should encode the videos into resolution levels that

are uniformly distributed across as well.

To verify this observation, we conducted a preliminary user study.

3.1 Experimental Procedure

We used two 1920×1080 video clips, one of a publicly available (on YouTube)

video recording of an open-air stage performance 1, which we named as

Rag&Flag, and another of common indoor activities, named Lounge. In

each video, the camera was mounted statically with a fixed view at the

center of the site so as to have a full view. Movement of the actors in the

1http://www.youtube.com/watch?v=fX2dVlEC8AY

10

CHAPTER 3. USER ACCESS PATTERN

scenes was not explicitly tracked. The video clips were stored on the mo-

bile phone. We implemented a local video player running on the Android

platform, displaying the video at a size of 512×288.

At the default view, the user sees a scaled down version of the whole video

(without cropping). We provide a user interface that allows users to per-

form zoom and pan operations on the videos through finger touch gestures.

The interface supports arbitrary zooming level and ROI cropping. Reso-

lution 512×288 is the default view (lowest zoom, or zoom level 4/15) and

the resolution 1920×1080 (zoom level 1) is the most detailed one.

We invited 50 users to watch the videos and operate freely using our mobile

phone. Their interactions with these videos were logged.

Figure 3.1 and 3.2 show examples of zooming. Users can zoom to view

the details within the video. The images show screen shots of the video

player at different time while a user is watching the videos. The first image

for each video shows the whole scene. In the Rag&Flag video, one could

zoom into the stage around the vehicle for a clearer view and pan to view

another place where people were dancing as the event proceeds. In the

Lounge video, one might want to zoom into an area in a scene to examine

the detail more clearly (e.g., faces of talking people, articles they were

passing to each other).

3.2 Zoom Level Distribution

Figure 3.3 shows the overall distribution of aggregated zoom levels from

50 users when they view the two videos. We log the current zoom level

every second while the users are watching the videos. The figure shows

11

CHAPTER 3. USER ACCESS PATTERN

(a)

(b)

(c)

(d)

Figure 3.1: Rag&Flag Video.

12

CHAPTER 3. USER ACCESS PATTERN

(a)

(b)

(c)

(d)

Figure 3.2: Lounge Video

13

CHAPTER 3. USER ACCESS PATTERN

]

400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

b
a

b
ili

ty

Resolution
(a) Rag&Flag

512 668 824 980 1136 1292 1448 1604 1760 1916
0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a

b
ili

ty

Resolution
(b) Lounge

Figure 3.3: User Access Pattern

the percentage of time a zoom level is logged, with the x-axis showing

the corresponding resolution of a zoom level. We observe that, on every

14

CHAPTER 3. USER ACCESS PATTERN

video, users watch the video with zoomed in most of the time. Besides,

the zoom levels preferred by users differ with the video content. This is

understandable, Rag&Flag, for example, contains much motion. To see the

details one needs to zoom in. To see the whole event, one needs to zoom

out. People frequently zoom in and zoom out, thus causing that each zoom

level is preferred almost equally. Afterwards, it is more comfortable for the

user to stay in the middle zoom level since this level arrives at a compromise

of both. While the video Lounge is dull, and users are only interested in

certain zoom levels. So the distribution looks to be clustered.

3.3 Conclusion

Now that we have confirmed that user access patterns are not uniformly

distributed, we will proceed to formulate the problem we solve in this thesis.

15

Chapter 4

Problem Statement and

Formulation

In this chapter, we first intuitively explain the optimization problem that

arises in supporting arbitrary zooming. We then explain how the cost

model is built. Finally, we formulate the problem.

Table 4.1 lists the major symbols that will be used in the rest of the thesis,

other symbols will be introduced when encountered.

4.1 The Problem

As discussed, we want to determine the resolution levels to encode the input

video in, given the set of current zoom levels requested by the users and

the computational constraints, to improve the quality of the video received

by the users and to reduce the bandwidth. To solve this problem, we can

partition it into two sub-problems.

16

CHAPTER 4. PROBLEM STATEMENT AND FORMULATION

The first is how to get the appropriate number of resolution levels of the

video stored on the server. The maximum number of levels a server can

support essentially depends on the computational resources of the server

allocated to this task.

Given the number of resolution levels, the second sub-problem is to deter-

mine the resolution levels to encode the video in. We consider a simple

version of the problem where there is only one server and one input video.

There are several variations to this problem, depending on how a requested

zoom level is mapped to the resolution level (the function f() in Chapter 1).

Consider a user request to view the video at zoom level z, where 0 ≤ z ≤ 1.

The nearest two resolution levels stored on the server is r and r′, such that

r < z < r′. We can either send the video at resolution level r and let the

client scale it up and play it back, or send the video at resolution level

r′ and let the client scale it down before playback. Sending resolution r

leads to lower bandwidth and lower video quality, while sending resolution

r′ leads to higher bandwidth but better quality.

In an ideal case, there exist a video with resolution level z on the server.

In which case the video with resolution level z is sent.

We model the cost of bandwidth, computation, and video quality as follows.

The bandwidth cost depends not only on the resolution level sent r, but also

on the zoom level requested z. We denote the bandwidth cost as Cb(z, r).

The loss of video quality is modeled as Cq(z, r).

The computational cost is mainly due to scaling, encoding, and analysis of

the video. We can generally model the scaling cost as Es(r, r
′), if the video

of resolution level r is scaled down to level r′. We show in the next chapter,

however, that the scaling cost only depends on the target resolution. We

17

CHAPTER 4. PROBLEM STATEMENT AND FORMULATION

can therefore simplify the scaling cost as Es(r
′). The computation costs to

encode and analyze the video depends only on the resolution r′ of the video,

and are denoted as Ee(r
′) and Ea(r

′) respectively. The computational cost

are normalized such that the total computational capacity of the server is

1. We denote Cp(r) as the total computational cost for creating a video

with resolution level r.

Table 4.1: Notations
Notation Description
B The available maximum bandwidth coming out from one

computer
Es(r1, r2) The computational time of scaling from resolution level

r1 to resolution level r2 in one computer
Ee(r) The computational time of encoding a one second video

at resolution level r in one computer
Ea(r) The computational time of analyzing a one second video

at resolution level s in one computer
Cp(r) The computational time of creating a video with reso-

lution level r.
Cb(z, r) The bandwidth cost when the level of the desired video

by user is z but the level of the retrieved video is r
Cq(z, r) ≥ 0 The quality cost when the zoom level of the desired video

by user is z and the level of the retrieved video is r
Z The set of zoom levels requested by users at a moment.
zi, n The zoom level of video requested by user i and number

of users n. zi ∈ Z
R The set of resolution level on the server.
ri,m The resolution level i of stored videos and number of

levels m. ri ∈ R
f(zi) The resolution level send back to the ith user. f(zi) ∈ R

4.2 Problem Formulations

We now present two different formulations of the problem.

First, consider we want to maximize the video quality at the clients. In

other words, we want to minimize the loss in quality, subjected to band-

18

CHAPTER 4. PROBLEM STATEMENT AND FORMULATION

width and computational constraints. We can formally formulate the prob-

lem as follows. Given n users, requested for zoom levels z1, z2, ..., zn respec-

tively, findR, the resolution levels to encode the video inR = {r1, r2, ..., rm},

to

minimize
n∑

i=1

Cq(zi, f(zi))

subjected to:

n∑
i=1

Cb(zi, f(zi)) ≤ B

m∑
i=1

Cp(ri) ≤ 1

(4.1)

where ri ∈ {f(zi)|i = 1..n}.

It is also possible to formulate the problem, to jointly minimize bandwidth

and quality loss. Suppose we define α, 0 ≤ α ≤ 1, as the factor that repre-

sent the relative importance of bandwidth and quality, we can reformulate

the problem as:

minimize
n∑

i=1

(αCb(zi, f(zi)) + (1− α)Cq(zi, f(zi)))

subjected to:
m∑
i=1

Cp(ri) ≤ 1 (4.2)

where ri ∈ {f(zi)|i = 1..n}.

When α = 0, Equation (4.2) turns out to be Equation (4.2). As α decreases,

the importance of quality increases. As α increases, bandwidth becomes

more important.

19

Chapter 5

Modeling

Before we proceed to the solution, we first explain how we model the cost

functions for bandwidth, computation, and video quality.

To determine these functions, we build an off-line training system to analyze

the running time, bandwidth usage, and resulting PSNR of video while

transmitting video streams in different resolution levels and different RoIs.

We then build a regression model for approximating the bandwidth, video

quality, and computational cost.

5.1 Bandwidth Cost Modeling

The function for cost of bandwidth is denoted as Cb(z, r), and refers to

the bandwidth when the zoom level requested by the user is z but the

resolution level of the transmitted video r. We proposed two methods for

bandwidth cost modeling.

The first, simpler, method estimates the bandwidth cost based on the res-

olution of the video alone, without considering the content. As the content

20

CHAPTER 5. MODELING

Server

Client

Transmision

720x540

960x720

360x270

480x360

240x180
360x270

480x360

360x270 360x270 360x270

Figure 5.1: Different Choices of Resolution Level to Send When Users
Requested Zoom Level Corresponding to Resolution 720×540.

of the video has variable background and motions, taking the content into

consideration would lead to a more sophisticated method.

For example, if the original resolution of input video streams is 1280×960,

we transcode and store them in two resolution levels 0.375 and 0.75, corre-

sponding to resolution 480×360 and 960×720. Meanwhile, the resolution

of ROI displayed on the mobile is constrained as 360×270. User requests

video streams at zoom level 0.5625 (720×540). Thus, the server should crop

a video of which the size is 360×270 from the video stored on the server of

which the size is 720×540. However, this level does not exist in the server.

So the server has to choose from resolution 480×360 or 960×720, then crop

and transmit RoI of the stored video to the client. The client receives the

video streams and scale it to 360×270. Figure 5.1 shows how the transmit-

ted part is scaled while cropping from different resolution levels. As can be

seen, the bandwidth cost transmitted from the server is related to both z

and r.

Let the bandwidth cost transmitted back to user as I if we already have

stored the video at the resolution 720×540 on the server. Then the band-

21

CHAPTER 5. MODELING

width required of the transmitted video is modelled as:

Cb(z, r) = (r/z)2 · I (5.1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Closest Resolution Level

B
a
n
d
w

id
th

 C
o
s
t(

K
B

p
s
)

Figure 5.2: Curve Fitting for Bandwidth Cost (z = 0.28)

The second method is to estimate the bandwidth considering content. In

this method, the bandwidth cost is related not only to z and r, but also the

content in the video streams. We assume that the content of the previous

video segment is similar to the current segment, and therefore use the RoI

size Cprev
b of the previous segment to estimate RoI size Cb of the current

segment.

Figure 5.2 depicts how bandwidth cost increases while the closes resolu-

tion level increases. Regression analysis is introduced here to form the cost

function. Equation (5.1) indicates that it is reasonable to use polynomial

curve fitting by r/z to estimate the bandwidth. The degree of the approxi-

mating polynomial should be 2. We finally construct the function as shown

in Equation (5.2). Coefficients a, b, c are trained from experiments. In our

22

CHAPTER 5. MODELING

system, a = 0.6232, b = 0.3708, c = 0.0060. As shown in Figure 5.2, the

curve of our function fits well to the real bandwidth cost.

Cb(z, r) = Cprev
b · (a · (r/z)2 + b · (r/z) + c) (5.2)

Note that I in the first method is different from Cprev
b in the second method.

I actually do not consider too much about the content of the video. In the

example, we can either assign it a constant value as 1 for simplicity or the

video size of the original video segment by the constant scale ratio of video

played on the mobile to make it more reliable. On the contrary, Cprev
b is

the real size of an RoI segment of a continuous video stream in the previous

second. So we usually have to analyze the video stored on the server to

compute the bandwidth of the RoI when the RoI changes. The second

method is therefore more complicated and more computationally intensive.

We use both cost models in our solution. We use the first one when for

determining the resolution level to store, since this decision is needed fre-

quently (every second in our implementation), and we periodically use the

second, more expensive method, to determine how many resolution levels

we need to store (in the order of minutes).

5.2 Quality Cost Modeling

When the client receives the video from the server, it may need to scale

it to the right size. However, if the client scales up the video, there will

be quality loss. We use the differences in PSNR to measure the quality

of lossy scaling on the client. The loss is denoted as Cq(z, r) ≥ 0, which

23

CHAPTER 5. MODELING

means the quality loss when the zoom level of demanded video by user is

z and the level of transmitted video is r.

If z < r, a user receives a video with a resolution level higher than needed.

In this case, we set Cq(z, r) to zero since scaling down from higher resolution

video will not result in quality loss. If r < z, Cq(z, r) is non-zero. Further,

Cq(z, r) should be monotonically decreasing with increasing r, reaching

zero when z = r.

Our experiments show that we can estimate PSNR based on r and z. Fig-

ure 5.3(a) presents the PSNR results while scaling up to different resolution

levels. Each data point shows the PSNR between an image scaled up from

a source resolution level to the target resolution level and the image at the

target zoom level. The X-axis shows the source resolution levels. There

are 10 lines in the figure and points on the same line have the same target

resolution level. It can be easily found that the each of the lines can be

formulated by linear regression. We calculate the slope and intercept of

those lines and depicts the results separately in Figures 5.3(b) and 5.3(c).

The 10 points in the each of the two figures present the 10 lines. These

points fit a polynomial curve of the second degree. An equation to estimate

the quality cost is finally obtained.

Our experiments also show that PSNR value is related to the image content;

however, curves for different images behave similarly. In our model, we add

a multiplier to model the effect of image content.

24

CHAPTER 5. MODELING

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30

32

34

36

38

40

42

44

Source Zoom Level

P
S

N
R

(d
B

)

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

0.9375

(a) PSNR values if image Scale Up

0.4 0.5 0.6 0.7 0.8 0.9 1
20

25

30

35

40

45

50

55

Target Zoom Level

S
lo

p
e

 C
o

e
ff

ic
ie

n
t

(b) Slope of Regression Lines

0.4 0.5 0.6 0.7 0.8 0.9 1
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

Target Zoom Level

In
te

rc
e

p
t

(c) Intercept of Regression Lines

Figure 5.3: PSNR of Images After Scaled Up

25

CHAPTER 5. MODELING

5.3 Computational Cost Modeling

The original video streams received by the server from the cameras need to

be transcoded and stored on the server in one-second segments in several

resolution levels. The whole procedure mainly consists of video scaling,

encoding, and analysis. The computational cost is measured by the time

spent on processing a one-second video segment. Since the computational

cost depends on individual host, we need to train our model on every com-

puter used in the system. A regression model similar to that for bandwidth

is then built. The regression analysis is the same as that for the quality

regression model. We find that we can estimate the computational cost

based on the scale ratio of resolution level ri and the original resolution r1.

To build this function, we make 184 measurements that compare the ob-

served actual computation time on our server for different input videos.

The data in each measurement contain the costs separately for video scal-

ing, encoding, and analysis of a 60-seconds video.

Figure 5.4(a) demonstrate the time cost of the main parts in the system.

The total computational cost at a resolution level r can be computed as:

Cp(r) = Es(rm, r) + Ee(r) + Ea(r) (5.3)

where Es(rm, r) is the cost of scaling the video resolution from rm to r,

Ee(r) is the cost of encoding the video at resolution level r, and Ea(r) is

the cost of analyzing the video at resolution level r.

Note that Es depends on the scaling algorithm we chose. For a particular

algorithm, the computational cost of the scaling is related to both the size

of source image and the target image. Scaling down from an image of lower

26

CHAPTER 5. MODELING

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

Zoom Levels

T
im

e
 o

f
C

o
m

p
u

ti
n

g
(m

s
)

Total Time

Scaling Time

Encoding Time

Analysing Time

(a) Computing Time for Different Resolution Levels

0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

Original Zoom Level

T
im

e
 o

f
S

c
a

lin
g

 D
o

w
n

(m
s
)

0.30

0.40

0.50

0.60

(b) Scaling Down Using Naive Bilinear Algorithm

Figure 5.4: Computational Cost

resolution cost less than scaling down from an image with a larger reso-

lution, when the target resolution is constant. Thus, Es() should depend

on both the source and target resolution. In our system, however, we use

a naive bilinear scaling algorithm without any optimization of our system.

Figure 5.4(b) shows the result of scaling down using this algorithm. Each

data point represents a single experiment of scaling down one image from

resolution level ri to a target resolution level rj. The X-axis represents the

27

CHAPTER 5. MODELING

source resolution levels. These points approximately form 4 lines, points

in the same line have the same target resolution level. These data reveal

that the computational cost of scaling is only related with the target size

of image for our algorithm, and we can always scale down from the video

of original size. We therefore model Es as a function on r only.

5.4 Model Validation

We make a series of bandwidth, quality, and computational time measure-

ments for different input videos. On computational cost, a multi-factor

regression model is fitted for the computer hardware. The regression mod-

els predict bandwidth, quality loss, and computational time. We use the

model to predict the cost of bandwidth, quality, and computational time

in the next second.

Around 100 to 200 measurements are made for each regression model. Fig-

ure 5.5(a) summarize the results of these measurements for bandwidth un-

der the second approach mentioned. Each data point represents a single

validation experiment result in which a single bandwidth cost estimation

was compared to an actual value. The goodness of fit values for the figure

is 93.51. As shown in Figures 5.5(b) and 5.5(c), similar results were found

for quality loss as well.

Figure 5.5(c) indicates that the prediction of computational cost is not

quite accurate. In practice, however, we overestimate the computational

cost so that we can still generate the videos of different resolution levels

within the stipulated time, considering the prediction error.

28

CHAPTER 5. MODELING

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Actual Bandwidth(KBps)

R
e
g
re

s
s
io

n
 B

a
n
d
w

id
th

(K
B

p
s
)

(a) Bandwidth Cost

30 35 40 45
28

30

32

34

36

38

40

42

44

Actual PSNR(dB)

R
e
g
re

s
s
io

n
 P

S
N

R
(d

B
)

(b) Quality

0 100 200 300 400
0

50

100

150

200

250

300

350

400

Actual CPU Time(ms)

R
e
g
re

s
s
io

n
 C

P
U

 T
im

e
(m

s
)

(c) Computational Cost

Figure 5.5: Accuracy of Model

29

Chapter 6

Methodology

With the cost functions determined, we can now focus on the main issues of

the paper: given the requested zoom levels Z and the system constraints,

find R, the resolutions encode the videos in. As we described before, we

have two sub-problems, findingm and findingR givenm. For each problem,

we have two variations, to optimize the video quality (Equation (4.2)) or to

optimize a weighted sum of video quality and bandwidth (Equation (4.2)).

We first focus on the case where m is known, and consider the two opti-

mization problems.

6.1 Optimizing Bandwidth

When quality is required to be much more important than bandwidth, we

only consider the cost of quality for optimization. The server always sends

the video of the best quality to the user. We name this strategy as best

quality streaming (BQ). Equation (4.2) is our objective function.

30

CHAPTER 6. METHODOLOGY

We solve this problem using dynamic programming. Supposing we have

set of resolution levels R = {r1, r2, ..rm}, If we set f(zi) to the nearest rk

where rk ≥ zi, then the server always sends a higher quality of video to the

user. There will be no quality loss. We define an indicator variable xi,j as

follows:

xi,j =

1 if rj−1 < zi ≤ rj

0 otherwise

(6.1)

Our goal then is to find R to minimize the bandwidth:

OPT (n,m) = min
∑
rj∈R

∑
zi∈Z

xi,jCb(zi, rj), (6.2)

We observe that every element in R must be equal to some elements in Z.

A naive solution is thus to exhaustively try all possible solutions of R, but

this solution would lead to a
(
n
m

)
search space.

We can solve this problem using dynamic programming in O(nm) time.

Let B(i, j) be the minimum bandwidth cost considering the last n− i + 1

users (zi, ..., zn) and j resolution levels are stored on the server, then:

B(i, j) =

n−j+1

min
k=i
B(k + 1, j − 1) +

k∑
l=i

Cb(zl, zk) j > 1

n∑
k=i

Cb(zk, zn) j = 1

The intuition behind the recurrence above is as follows. If j = 1, we only

store one resolution level on the server – the one that corresponds to the

highest zoom level requested, zn (i.e., r1 = zn). The total bandwidth cost

can be calculated in a straightforward manner, by summing the cost of

31

CHAPTER 6. METHODOLOGY

each zoom level with respect to zn. If j > 1, then we first try to decide the

smallest resolution level to store on the server (which could be any level

between zi to zn−j+1). Each possible level k splits the list of zoom levels in

two, whose costs are computed separately. The cost for the zoom levels zi

to zk is the sum of the individual bandwidth cost of each zoom level; the

bandwidth cost for zoom level zk+1 to zn is then computed recursively.

B(1,m) gives the minimum bandwidth cost. By tracing the value of vari-

able k which leads to this minimum cost, we can find the values of zk that

should be included in R.

We can make the algorithm runs faster by approximating the solution. In

cases where n is large, we can group zoom levels that are near each other

at a single level. We define a parameter θ, the step size for R. This is a

value of the minimum distance between any ri and rj. That is, |ri−rj| > θ.

We use θ to reduce the number of elements in Z, grouping zoom levels into

buckets of size θ.

6.2 Optimizing Bandwidth and Quality

We now present the balanced-scaling streaming (BS) that balances quality

and bandwidth. The cost function for this method is shown in Equation

(4.2). The cost function is asymmetric. Motivated by the nature of the

k-means algorithm, we proposed our clustering method for this asymmetric

cost function. It starts from random choice of m zoom levels from z1, ..., zn

as cluster centers. These centers are initial centroids. The centroids rep-

resent R, the set of resolution levels stored on the server. There are two

alternating steps in this method.

32

CHAPTER 6. METHODOLOGY

Step 1 Allocating elements to clusters: Traverse all the zoom levels re-

quested and allocate each request z to the nearest centroids:

minr∈R (αCb(z, r) + (1− α)Cq(z, r)) (6.3)

z will be assigned the cluster centered at r. After this step, we created m

clusters, denoted as Z1, Z2,..., Zm.

Step 2 Find new centroids for clusters: New centroids for each cluster Zi

is calculated by minimizing the mean squared error (MSE) for each cluster:

arg min
r∈Zi

∑
z∈Zi

(αCb(z, r) + (1− α)Cq(z, r))
2 (6.4)

The new centroids, r, from each cluster forms the new R.

After each cycle, a value of the following mean-squared-error objective func-

tion needs to be computed in order to track the convergence of the whole

clustering process:

min
∑
r∈R

∑
z∈Z

(αCb(z, r) + (1− α)Cq(z, r))
2 (6.5)

In order to guarantee the monotonic property of the k-means algorithm,

both steps should be carried out with the same loss function (Equation 6.3).

The two steps will be repeated until the termination condition is met. We

define the termination condition reaching convergence of objective function

(Equation 6.5).

To understand the behavior when the cost function of the k-mean algorithm

is asymmetric, there is an exhaustive study conducted in [19]. Our method

cannot guarantee that the clustering process will converge to an optimal

33

CHAPTER 6. METHODOLOGY

solution. It can only assure local optimality which depends on the initial

centroids of user requests.

6.3 Joint Optimization of m and R

We have previously assumed that number of resolution levels m to store

on the server is pre-determined. We show how we can determine m.

Since larger m would lead to better video quality, we want to maximize m

under the constraint of computational cost. Figure 5.4(b) shows that the

time cost monotonically increases with respect to the resolution level. It

implies we may be able to find the boundary for the number of resolution

levels. In our system, we define the minimum resolution level as rmin and

the maximum resolution level as rmax. The two parameters help us bound

the boundaries for R. That is,

1

Cp

(rmax) < |R| < 1

Cp

(rmin) (6.6)

While the number of resolution levels m to store depends mainly on the

computational cost, the computational cost, however, depends not only the

number of levels, but also what these levels are. It is therefore not possible

to determine only m. Both R and m have to be jointly determined.

Our solution to find the maximize m under the computational cost con-

straint is to use binary search within the range of m in Equation (6.6). For

each m, we use the algorithms described in previous sections to find the

optimal R, and check if, for this optimal R, whether the computational

cost is satisfied.

34

CHAPTER 6. METHODOLOGY

Algorithm 1: FindResolutionNumber(lower bound L, upper bound U)

1: if L = U or U − L > 1 then
2: check if L or U is a valid solution and return a valid solution.
3: end if
4: mid← (L+ U)/2
5: {check if mid is a valid solution}
6: R← FindResolutionLevels(Z,mid)
7: C ←

∑
r∈R Cp(r)

8: if C > 1 then
9: return FindResolutionNumber(L,mid)

10: end if
11: return FindResolutionNumber(mid, U)

Here, FindResolutionLevels() invokes one of the algorithms to determine

R given m, as described in the previous sections.

The algorithm to jointly find the optimal m and R is expensive. We there-

fore do not run this algorithm for every video segment. Instead, in practice,

we run the algorithm periodically every 30 seconds. Between the runs, we

assume that the optimal m remains the same and only optimizes R.

There is a problem with this algorithm if we directly use it to search for

m because we do not consider the bandwidth constraint. There are ways

to extend this algorithm to consider the bandwidth constraint. In our

implementation, however, we did not consider the bandwidth constraint.

35

Chapter 7

Performance Evaluation

With the algorithms described in Chapter 6 implemented, we carried out

experiments to evaluate the performance of our system that supports arbi-

trary zoom levels in zoomable video. This chapter describes these experi-

ments and presents the results.

As stated in Chapter 1, the objectives of our work are to improve the quality

of video streams that are delivered from the server to the users in one

request period under computational resource constraints, with bandwidth

either as a constraint or another optimization objective. We experimentally

evaluate these two aspects in this chapter.

7.1 Methods for Comparisons

Static Scaling (SS) Our experiments compare our methods with the

baseline methods used in the existing Jiku Live system, which we called

static scaling. In this method, the resolution levels stored on the server are

static and do not depend on Z. This method corresponds to that described

36

CHAPTER 7. PERFORMANCE EVALUATION

by Shafiei et al. [24]. We pick three resolution levels R = {r1, r2, r3}, with

r2 = (r1 + r3)/2. This method works well when there are many users

requesting at the same time. First, the bandwidth is reduced if the user

zooms out, as only the lower resolution levels need to be sent. Second, by

only re-encoding the input videos to three resolution levels only, the burden

of the server is eased.

Dynamic Scaling (DS) This is the method proposed in this thesis, where

the number of resolution levels m and the resolution levels are dynamic,

depending on Z.

In addition to how we fix R, the performance of the methods also depends

on f(), how we map from the requested zoom levels to the stored resolution.

As explained, we have two variations of objective functions:

Best Quality (BQ): The server always sends the best-quality video to

the client, where f(zi) maps to the resolution level that is next higher than

zi.

Balanced Strategy (BS): The server trades off the bandwidth and video

quality, and pick a resolution level that is “close” to the zoom level, de-

pending on the cost function (Equation 4.2).

Considering objectives of the system, the combination of these gives 4 al-

gorithms: SS-BQ, SS-BS, DS-BQ, DS-BS.

In our experimental system, SS-BS stores the videos at resolution 512×288,

1216×684, and 1920×1080. The three levels for SS-BS corresponds to the

minimum, middle, and maximum resolution levels. For SS-BQ, since the

server always sends the next higher resolution level to the client, storing

the minimum level is not useful. We have thus divided the possible reso-

lution levels into three equal size ranges, with four resolution levels at the

37

CHAPTER 7. PERFORMANCE EVALUATION

boundary (512×288, 960×540, 1440×810, and 1920×1080). We store the

three larger resolution levels out of these four on the server.

We use a pixel gap of 4 pixels, i.e., a θ of 4/1920, as the step size for

grouping R. We use 0.0001 as the threshold to terminate the clustering

algorithm.

Our experiment runs on a Mac Pro 4.1 with a 2.66 GHz Quad-Core Intel

Xeon processor, 8 GB RAM, running Mac OS X 10.6.8. Every core is

treated as one computer in our experiments.

The system performance depends on the zoom levels requested. Chapter 3

presents the data gathered from user study where 50 users watched two

videos, and their current zoom levels and RoIs are logged every second.

Our evaluation is conducted using these traces.

7.2 Findings and Discussion

The generated zoom level requests are fed into the systems every second as

Z. We run two sets of experiments, one for each input video.

Figures 7.1 and 7.2 compares the results for both videos. In these experi-

ments, we set m = 3, and vary α from 0 to 1.

For the Rag&Flag video, comparing SS-BQ and DS-BQ, we can see that

SS-BQ leads to larger bandwidth (at least 3.2 Mbps more than DS-BQ,

but with no significant improvement in quality (less than 1 dB difference).

The results for DS-BS shows that, we can tune the tradeoff between band-

width and quality, and is roughly equivalent to SS-BS when alpha is be-

tween 0.4 and 0.5.

38

CHAPTER 7. PERFORMANCE EVALUATION

The results for the Lounge video shows the same relative relationship

among the different schemes and leads to the same conclusion as the Rag&Flag

video.

The previous results are for m = 3. Our model for computational cost

indicates that our server is capable of re-encoding the input videos into 15

different resolution levels, or m = 15. Fixing m = 15 and α = 0.5, we rerun

the experiments with dynamic scaling. The results are shown in Figure 7.3.

Figure 7.3 plots the quality of the video against bandwidth needed. Points

that gravitate towards to top left corner are more desirable, since they

indicates better quality with lower bandwidth. For both video clips we

tried, we found that DS-BQ with m = 15 as determined by the algorithm

has the best tradeoff between quality and bandwidth.

39

CHAPTER 7. PERFORMANCE EVALUATION

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 0.2 0.4 0.6 0.8 1

B
a

n
d

w
id

th
 (

M
b

p
s
)

Alpha

Average Bandwidth Needed (m = 3)

DS-BS
DS-BQ
SS-BS
SS-BQ

(a) Bandwidth

 33

 34

 35

 36

 37

 38

 39

 40

 0 0.2 0.4 0.6 0.8 1

P
S

N
R

Alpha

Average Quality (m = 3)

DS-BS
DS-BQ
SS-BS
SS-BQ

(b) Video Quality

Figure 7.1: Rag&Flag Video

40

CHAPTER 7. PERFORMANCE EVALUATION

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.2 0.4 0.6 0.8 1

B
a

n
d

w
id

th
 (

M
b

p
s
)

Alpha

Average Bandwidth Needed (m = 3)

DS-BS
DS-BQ
SS-BS
SS-BQ

(a) Bandwidth

 37

 37.5

 38

 38.5

 39

 39.5

 40

 40.5

 41

 41.5

 42

 0 0.2 0.4 0.6 0.8 1

P
S

N
R

Alpha

Average Quality (m = 3)

DS-BS
DS-BQ
SS-BS
SS-BQ

(b) Video Quality

Figure 7.2: Lounge Video

41

CHAPTER 7. PERFORMANCE EVALUATION

 33

 34

 35

 36

 37

 38

 39

 40

 12 14 16 18 20 22 24 26 28

P
S

N
R

Bandwidth

PSNR vs. Bandwidth

DS-BS (m = 3)
DS-BQ (m = 3)

DS-BS (m = 15)
DS-BQ (m = 15)

SS-BS
SS-BQ

(a) Rag&Flag

 37

 37.5

 38

 38.5

 39

 39.5

 40

 40.5

 41

 41.5

 42

 2.5 3 3.5 4 4.5 5 5.5

P
S

N
R

Bandwidth

PSNR vs. Bandwidth

DS-BS (m = 3)
DS-BQ (m = 3)

DS-BS (m = 15)
DS-BQ (m = 15)

SS-BS
SS-BQ

(b) Lounge

Figure 7.3: Quality vs. Bandwidth

42

Chapter 8

Conclusion and Future Work

In this thesis, we study the problem of resolution level selection for arbi-

trary scaling in the live zoomable video. The contributions of this thesis

are twofold. First, we conducted a user study with 50 users and reveal the

user behavior with watching two video clips with zoomable interfaces on a

mobile phone. The study reveals that users tend to zoom but the distribu-

tion of zoom level is not uniform. Second, using the requested zoom levels

as input, we designed, implemented, and evaluated online algorithms for

deciding the resolution levels under computational constraints, considering

both bandwidth and quality.

The following issues are still open. First, we did not consider the band-

width constraints when we jointly optimizes for m and R. Second, we only

consider a version of the problem with one server and one camera. We

would like to extend the problem to multiple servers and cameras. Third,

more user studies should be carried out, on more video clips.

43

Bibliography

[1] T. Bae, T. Thang, D. Kim, Y. Ro, J. Kang, and J. Kim. Multiple

region-of-interest support in scalable video Coding. ETRI Journal,

28(2), 2006.

[2] A. Carlier, R. Guntur, and W. T. Ooi. Towards characterizing users’

interaction with zoomable video. In Proceedings of the 2010 ACM

Workshop on Social, Adaptive and Personalized Multimedia Interac-

tion and Access, SAPMIA ’10, pages 21–24, Firenze, Italy, 2010.

[3] A. Carlier, G. Ravindra, V. Charvillat, and W. T. Ooi. Combining

content-based analysis and crowdsourcing to improve user interaction

with zoomable video. In Proceedings of the 19th ACM international

conference on Multimedia, MM ’11, pages 43–52, Scottsdale, Arizona,

USA, 2011. ACM.

[4] H. El-Alfy, D. Jacobs, and L. Davis. Multi-scale video cropping. In

Proceedings of the 15th ACM International Conference on Multimedia,

MM ’07, pages 97–106, Augsburg, Germany, 2007.

[5] X. Fan, X. Xie, H. Zhou, and W. Ma. Looking into video frames on

small displays. In Proceedings of the 11th ACM International Con-

ference on Multimedia, MM ’03, pages 247–250, Berkeley, CA, USA,

2003. ACM.

44

BIBLIOGRAPHY

[6] W.-C. Feng, T. Dang, J. Kassebaum, and T. Bauman. Supporting

region-of-interest cropping through constrained compression. ACM

Transactions on Multimedia Computing, Communications and Appli-

cations, 7(3):17:1–17:16, Aug. 2011.

[7] R. Guntur and W. T. Ooi. On tile assignment for region-of-interest

video streaming in a wireless lan. In Proceeding of the ACM Work-

shop on Network and Operating Systems Support on Audio and Video,

NOSSDAV’12, Toronto, Canada, 2012.

[8] S. Halawa, D. Pang, N.-M. Cheung, and B. Girod. ClassX: an open

source interactive lecture streaming system. In Proceedings of the 19th

ACM International Conference on Multimedia, MM ’11, pages 719–

722, Scottsdale, Arizona, USA, 2011.

[9] S. Heymann, A. Smolic, K. Mueller, Y. Guo, J. Rurainsky, P. Eisert,

and T.Wiegand. Representation, coding and interactive rendering of

high-resolution panoramic images and video using MPEG-4. In Pro-

ceedings of the Panoramic Photogrammetry Workshop PPW’05, Feb

2005.

[10] M. Inoue, H. Kimata, K. Fukazawa, and N. Matsuura. Interactive

panoramic video streaming system over restricted bandwidth network.

In Proceedings of the 18th ACM International Conference on Multi-

media, MM ’10, pages 1191–1194, Firenze, Italy, 2010.

[11] ISO/IEC. ISO/IEC JTC 1/SC 29/WG 11, scalable video coding ap-

plications and requirements, 2005.

[12] M. Karczewicz and R. Kurceren. The SP- and SI-frames design for

H.264/AVC. IEEE Transactions on Circuits and Systems for Video

Technology, 13(7):637–644, 2003.

45

BIBLIOGRAPHY

[13] N. Q. M. Khiem, R. Guntur, A. Carlier, and W. T. Ooi. Supporting

zoomable video streams with dynamic region-of-interest cropping. In

Proceedings of ACM Multimedia Systems, MMSys’10, pages 259–270,

Scottsdale, Arizona, USA, 2010.

[14] N. Q. M. Khiem, R. Guntur, and W. T. Ooi. Adaptive encoding of

zoomable video streams based on user access pattern. In Proceedings

of ACM Multimedia Systems, MMSys’11, pages 211–222, San Jose,

CA, USA, 2011.

[15] N. Q. M. Khiem, R. Guntur, and W. T. Ooi. Towards understanding

user tolerance to network latency in zoomable video streaming. In

Proceedings of the 19th ACM International Conference on Multimedia,

MM ’11, pages 977–980, Scottsdale, Arizona, USA, 2011.

[16] F. Liu and M. Gleicher. Video retargeting: automating pan and scan.

In Proceedings of the 14th ACM International Conference on Multime-

dia, MM ’06, pages 241–250, Santa Barbara, CA, USA, 2006. ACM.

[17] F. Liu and W. T. Ooi. Zoomable video playback on mobile devices

by selective decoding. In Proceedings of the Pacific Conference on

Multimedia, PCM’12, pages 251–262, 2012.

[18] H. Liu, X. Xie, W.-Y. Ma, and H.-J. Zhang. Automatic browsing of

large pictures on mobile devices. In Proceedings of the 11th ACM Inter-

national Conference on Multimedia, MM ’03, pages 148–155, Berkeley,

CA, USA, 2003. ACM.

[19] J. MacQueen et al. Some methods for classification and analysis of

multivariate observations. In Proceedings of the 5th Berkeley Sympo-

sium on Mathematical Statistics and Probability, volume 1, page 14.

California, USA, 1967.

46

BIBLIOGRAPHY

[20] A. Mavlankar, P. Baccichet, D. Varodayan, and B. Girod. Optimal

slice size for streaming regions of high resolution video with virtual

pan/tilt/zoom functionality. In Proceedings of the 15th European Sig-

nal Processing Conference, EUSIPCO’07, pages 1275–1279, 2007.

[21] A. Mavlankar, D. Varodayan, and B. Girod. Region-of-Interest pre-

diction for interactively streaming regions of high resolution video. In

Proceedings of the International Packet Video Workshop, PV’07, pages

68–77, Lausanne, Switzerland, Nov. 2007.

[22] M. Rehan and P. Agathoklis. Frame-Accurate video cropping in com-

pressed MPEG domain. In Proceedings of the IEEE Pacific Rim

Conference on Communications, Computers and Signal Processing,

PacRim’07, pages 573–576, 2007.

[23] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. Cohen.

Gaze-based interaction for semi-automatic photo cropping. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 771–780. ACM, 2006.

[24] A. Shafiei, Q. M. K. Ngo, R. Guntur, M. K. Saini, C. Pang, and

W. T. Ooi. Jiku Live: a live zoomable video streaming system. In

Proceedings of the 20th ACM international conference on Multimedia,

MM ’12, pages 1265–1266, New York, NY, USA, 2012. ACM.

[25] K. B. Shimoga. Region of interest based video image transcoding

for heterogeneous client displays. In Proceedings of the International

Packet Video Workshop, PV’02, 2002.

[26] X. Sun, J. Foote, D. Kimber, and B. Manjunath. Region of interest

extraction and virtual camera control based on panoramic video cap-

turing. IEEE Transactions on Multimedia, 7(5):981–990, Oct, 2005.

47

BIBLIOGRAPHY

[27] X. Xie, H. Liu, S. Goumaz, and W.-Y. Ma. Learning user interest

for image browsing on small-form-factor devices. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages

671–680. ACM, 2005.

48

	Introduction
	Organization

	Related Work
	User Access Pattern
	Experimental Procedure
	Zoom Level Distribution
	Conclusion

	Problem Statement and Formulation
	The Problem
	Problem Formulations

	Modeling
	Bandwidth Cost Modeling
	Quality Cost Modeling
	Computational Cost Modeling
	Model Validation

	Methodology
	Optimizing Bandwidth
	Optimizing Bandwidth and Quality
	Joint Optimization of m and R

	Performance Evaluation
	Methods for Comparisons
	Findings and Discussion

	Conclusion and Future Work

