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Summary 

 

Throughout fluid dynamics history, the fundamental importance and wide application bring 

the study of solid-fluid interaction a sustained academic and industrial interest. Among solid-

fluid interactions, numerical simulation of solid-multiphase flow interaction might still be one 

of the most challenging topics in Computational Fluid Dynamics (CFD). The difficulties arise 

from the necessity of treating two distinct types of interfaces, fluid-fluid interface and solid 

boundary, simultaneously. To simulate such a problem, a multiphase flow solver and 

implementation of boundary conditions on a solid boundary are necessary. This work is 

devoted to study numerical methods in these two respects respectively and also establish a 

unified framework for simulation of solid-multiphase flow interactions.  

 

In respect of multiphase flow solver, this work develops a stencil adaptive phase-field lattice 

Boltzmann method (LBM) for two dimensional incompressible multiphase flows. It utilizes 

two types of symmetric stencils which can be combined to form a similar structure to D2Q9 

lattice model in LBM. This feature allows the present method to maintain the simplicity of 

original LBM. Numerical experiments demonstrate that the developed method enables a high 

resolution for interfacial dynamics with greater grid distribution flexibility and considerable 

saving in computational effort. Additionally, a free energy-based phase-field LBM is also 

developed for simulation of multiphase flow with density contrast. The present method is to 

improve the Z-S-C model (Zheng et al. 2006) for correct consideration of density contrast in 

the momentum equation. To achieve this aim, we start from a LBE of which the particle 

distribution function is used to measure the local density. To ensure simulation stability, a 

transformation was introduced to change the particle distribution function for the local 



x 

 

density and momentum into that for the mean density and momentum. As a result, the present 

model enjoys the good property of using the particle distribution function for mean density 

and momentum as in Z-S-C model. On the other hand, it can correctly consider the effect of 

density contrast in the momentum equation. Numerical examples demonstrate that the present 

model can correctly simulate multiphase flows with density contrast, and has an obvious 

improvement over the Z-S-C model in terms of solution accuracy. 

 

The other major concern is implementation of boundary conditions such as Dirichlet and 

Neumann boundary conditions. Among methods to achieve this aim, Immersed Boundary 

Method (IBM) has gained growing popularity for its efficiency and robustness. Nevertheless, 

most previous works are restricted to Dirichlet boundary condition. To overcome this 

limitation, we take the first endeavour to develop an IBM for Neumann boundary condition 

in this work. The primary concept of the current method is to utilize the physical mechanism 

and interpret Neumann boundary condition as contribution of flux from the surface to its 

relevant physical parameters in a control volume. The developed IBM for Neumann 

boundary conditions can also be consistently applied with IBM for Dirichlet boundary 

conditions. In this way, both solid-single phase and multiphase flow interactions can be 

successfully simulated through IBM in the present work. This work releases IBM from the 

long existing restriction and opens the possibility of IBM simulation for ubiquitous fluid-

solid interactions involving Neumann boundary conditions.  

 

Last but not least, the application of immersed boundary phase-field LBM for simulation of 

solid-multiphase flow interactions is also demonstrated. Two types of interfaces, fluid-fluid 

interface and solid boundaries are successfully implemented simultaneously through the 
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developed framework. The equilibrium results and dynamic processes of solid-multiphase 

flow interactions are compared with results in the literature. Additionally, its capacity to be 

adapted to geometrical and/or chemical patterned surface is also demonstrated.    
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Chapter 1 

Introduction 

 

1.1 Background 

Interaction of multiphase flow with solid is ubiquitous in both nature and industry. It is a 

crucial element of numerous phenomena such as spreading of two immiscible media, oil-

water in porous media and solid impact on liquid surface. There are abundant theoretical and 

experimental works devoted to investigate the accompanying phenomena since one of the 

first systematic studies by Worthington (1908). Nonetheless, inherent complexity of 

interfacial dynamics poses a great challenge in theoretical prediction and experimental 

measurement (Prosperetti and Tryggvason 2003). In this regards, numerical simulation is 

instrumental in gaining better understanding of the phenomena by providing details that 

elaborate the solid-multiphase flow interaction in depth. To simulate solid-multiphase flow 

interactions, there are two essential elements: Firstly, a multiphase flow solver is necessary; 

Secondly, implementation of boundary conditions on a solid object is also indispensable. 

Although research in these two areas has advanced continuously in last few decades, there are 

still many challenging issues in computational fluid dynamics (CFD) to be solved. 

 

Firstly, to perform direct numerical simulation of a multiphase flow system, interface 

track/capture schemes are needed to couple with a flow field solver. Based on different 

interpretations of the interface, there are various interface tracking/capture schemes 

developed. Among them, phase-field method (Anderson et al. 1998, Jacqmin 1999) becomes 

increasingly popular for its sound physical background and capability to capture an interface 
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with large deformation. The phase-field method is previously used together with Navier-

Stokes (N-S) solver (Antanovskii 1995) (a macroscopic description of hydrodynamics and 

established on continuity assumption). Later, it is also coupled with lattice Boltzmann method 

(LBM, which is based on mesoscopic kinetic equation and serves as an alternative for flow 

field simulation). LBM has attracted particular attention in the last two decades (Aidun and 

Clausen 2010). Its popularity is mainly attributed to computational efficiency, easy parallel 

computation and simple implementation of boundary conditions on complex geometries. 

Owing to these advantages, the phase-field LBM has been applied to simulate various 

multiphase flow problems. However, as a diffuse interface method (in which the phases’ 

interface has a finite thickness), the phase-field LBM faces the challenge of balancing 

accuracy and computational efficiency. To solve this problem, it is a good choice to apply 

adaptive mesh refinement (AMR) with phase-field LBM. Another challenge for phase-field 

LBM is simulation of multiphase flow with density contrast. The phase-field LBM is 

originally developed for density matched problems and it is nontrivial to adapt it to cases 

with density contrast. This is an important issue concerning the fact that most practical 

problems involve density and viscosity contrast. Therefore, to simulate more practical 

problems, there is also a necessity to develop a phase-field LBM for simulation of multiphase 

flows with density contrast. 

 

Secondly, to simulate the solid interaction with single phase/multiphase flows, 

implementation of boundary conditions such as Dirichlet (value of physical parameters is 

given) and Neumann (value of derivatives along the normal direction is given) boundary 

conditions is an indispensable task. In respect of underlying mesh used, the methods to 

implement boundary conditions can be classified as: (1) body conformal methods and (2) 

non-body conformal methods. The most straightforward way to implement boundary 
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conditions might be using body conformal grid. However, it is usually difficult to generate a 

good quality body-fitted grid (Mittal and Iaccarino 2005). To overcome this difficulty, non-

body conformal methods can be employed. A prominent advantage of non-body conformal 

methods is that they significantly simplify the grid generation process through decoupling 

solution of governing equations and implementation of boundary conditions. Based on the 

techniques to enforce boundary conditions, the non-body conformal methods can be further 

classified into: (1) sharp interface approaches and (2) diffuse interface approaches. In these 

two categories, the diffuse interface approaches enable more robust simulation and simpler 

procedure with partial loss of accuracy. The most celebrated method in this category might be 

immersed boundary method (IBM) developed by Peskin (1972). It has been widely applied to 

simulate fluid interaction with stationary/moving complex geometries (Mittal and Iaccarino 

2005). Notwithstanding, IBM has fallen short in an important aspect so far. Albeit 

tremendous prominent efforts have been dedicated to refine IBM, most are restricted to the 

Dirichlet boundary condition. To the best of our knowledge, few works that implement the 

Neumann boundary condition through IBM can be found in the literature. This remarkably 

limits the application of IBM in CFD since physical phenomena with relevant Neumann 

boundary conditions are extremely common. One of the instances is solid-multiphase flow 

interactions. This indicates that there is a practical demand to develop an efficient IBM for 

Neumann boundary condition. Thus, to enable IBM to simulate more general solid flow 

interaction problems, it is essential to develop IBM that can be applied to both Dirichlet and 

Neumann boundary conditions. 

 

In the following of this Chapter, a review of multiphase flow modeling will be presented in 

the first place. Considering the interest of this thesis, special attention will be paid to the 

phase-field method and lattice Boltzmann method. Secondly, implementation of boundary 
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conditions for solid, especially using the immersed boundary methods, will also be 

introduced. Lastly, objectives and organization of this thesis will be presented at the end of 

the Chapter. 

 

1.2 Modeling of Multiphase Flow 

Thanks to the rapid development of algorithms and computational power, direct numerical 

simulation of multiphase flows has undergone remarkable progress in the last decades. 

Various methods for multiphase flow simulation have been proposed based on different 

physical interpretations. This section aims to provide a literature review on the numerical 

methods for multiphase flow simulation. The review will mainly focus on the phase-field 

method and lattice Boltzmann method considering the scope of this thesis. 

 

1.2.1 Navier-Stokes solvers for multiphase flow simulation 

In direct numerical simulation of multiphase flows, the flow field is conventionally obtained 

by solving the celebrated Navier-Stokes equations, while the phase interface can be either 

tracked or captured through different methods. With respect to the grid on which the interface 

is tracked/captured, there are two classes of methods: (1) Moving grid methods and (2) Fixed 

grid methods (Scardovelli and Zaleski 1999). In the moving grid methods, phases’ interface 

is explicitly treated as a grid boundary and boundary conditions must be applied on it. 

Methods in this category like interface fitted method (Ryskin and Leal 1984a, Ryskin and 

Leal 1984b, Ryskin and Leal 1984c) use a set of interface fitted grid that can only be 

occupied by one fluid. Later, this method has also been extended to account for both phases 

using two subdomains of grid and applied to simulate drop motion in quiescent liquid (Dandy 
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and Leal 1989). More recent application of interface fitted grid method can be found in the 

work of Magnaudet et al. (1995) and Cuenot et al. (1997). Additionally, other moving grid 

methods include boundary integral method (Toose et al. 1995, Cristini et al. 1998) and 

boundary element method (Khayat 2000). A common feature of moving grid methods is that 

re-generation of grid according to interface change is required. This procedure entails 

considerable computational cost and may also introduce interpolation error. In addition, it is 

also intractable for this class of methods to treat interface intersection and topology change. 

Owing to these characteristics, moving grid methods are commonly applied to simulate 

bubble dynamics in which phases’ interface has relatively small deformation. Compared with 

the moving grid methods, fixed grid methods have grown in popularity due to their 

computational efficiency and flexibility. In this category, phases’ interface can evolve on an 

(fixed or dynamically adapted) underlying Eulerian grid and this concept can be dated back to 

1960s (Harlow and Welch 1965). Depending on the way to identify phases’ interface, the 

fixed grid methods can be further categorized into: Lagrangian approaches and Eulerian 

approaches. In Lagrangian approaches such as marker-and-cell method (Harlow and Welch 

1965, Harlow and Shannon 1967) and front-tracking method (Unverdi and Tryggvason 1992, 

Tryggvason et al. 2001, Muradoglu and Tryggvason 2008, Muradoglu and Tasoglu 2010), a 

set of explicit moving Lagrangian points is introduced to track interface motion. Compared 

with the previously introduced moving grid methods, computational load can be partially 

reduced in fixed grid-Lagrangian approaches. However, these approaches are still 

computationally expensive because artificial treatments such as adding or removing 

Lagrangian points are compulsory when interface undergoes large deformation. Moreover, 

the artificial treatments involved may also undermine conservation law. In addition to 

Lagrangian approaches, the other kind of approaches, Eulerian approaches have attracted 

much interest recently owing to their convenient description of interface topology. 
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Commonly applied Eulerian approaches include volume of fluid method (VOF) (Hirt and 

Nichols 1981, Lafaurie et al. 1994, Scardovelli and Zaleski 1999), Level set (LS) method 

(Osher and Sethian 1988, Sussman et al. 1994, Sethian and Smereka 2003) and phase-field 

method (Jacqmin 1999, Jacqmin 2000, Ding et al. 2007). 

 

In VOF, volume fraction of one phase is used to identify different phases. The interface is 

captured by piecewise linear segments based on the volume fraction in the flow field. After 

the interface is identified, it is then advected by the velocity field. The most challenging 

theoretical and also practical problem in VOF might be the “reverse problem”, that is, 

construction of interface according to the known volume fraction. This issue is crucial 

because it is a foundation to evaluate interface curvature, normal direction and surface 

tension. The difficulty arises from the fact that, with a given volume fraction, almost infinite 

types of interface shape are available to be selected and the selection process highly depends 

on artificial criteria. In fact, VOF has undergone continuous advancement in dynamic 

interface reconstruction (Scardovelli and Zaleski 1999). The early first-order interface 

reconstruction methods include Simple Line Interface Calculation (SLIC) and Subtractive 

Optimally Localized Averages (SOLA). Thereafter, more sophisticated methods such as the 

widely used Piecewise Linear Interface Construction (PLIC) methods (Ashgriz and Poo 1991, 

Lopez et al. 2005) have also been proposed. Moreover, with respect to solid-multiphase flow 

interaction, several methods have been proposed to treat the three-phase contact line 

(Pasandideh-Fard et al. 1996, Renardy et al. 2001, Sikalo et al. 2005). Generally speaking, 

extra effort must be paid to determine the volume fraction on solid boundary. Moreover, a 

slip model is required to relieve contact line singularity (which is caused by imposition of the 

no-slip boundary condition for viscous fluid). Another popular method for multiphase flow 

simulation is the level set method (Osher and Sethian 1988, Osher and Fedkiw 2001). In this 
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method, a signed distance function is used to identify different phases. With interface re-

initialized (in which artificial manipulations are also required) based on distance function, 

interface outward normal and interfacial force can be evaluated. Although LS method and 

VOF use different variables to identify interface, both parameters are actually advected by 

velocity field according to similar equations. Moreover, considering the three-phase contact 

problems, LS also adopts similar approach with VOF. To be specific, the normal direction of 

interface can be determined by contact angle, while slip model is used to resolve contact line 

singularity. 

 

Apart from VOF and LS method, another approach named phase-field method has gained 

increasing popularity recently. In the phase-field method (Anderson et al. 1998, Jacqmin 

1999), order parameter (phase’s concentration) is introduced to characterize different phases. 

Moreover, the interface is manipulated as a region with finite thickness where the physical 

parameters vary rapidly and smoothly. This concept originates from physical insight gained 

by Maxwell (1952) and Gibbs (1878) as well as the following “interface gradient theory” by 

Rayleigh (1892) and van der Waals (1893). Unlike VOF/LS method which is established on 

mechanical balance of surface forces, the phase-field method is based on theory of fluid free 

energy (which can be expressed as a function of order parameter). For a multiphase system 

with two immiscible fluids, total free energy has contribution from two parts. One is the bulk 

free energy and the other is gradient energy term contributed by phases’ interface. In this 

framework, interfacial force can be variationally derived from the defined free energy field. 

Through this way, phase-field method provides a systematic and thermodynamic consistent 

description of a variety of multiphase flow phenomena including solidification, spinodal 

decomposition and moving contact line problems (Anderson et al. 1998). Another difference 

between VOF/LS method and phase-field method lies in the governing equation for interface 
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evolution. As introduced previously, the governing equation for interface in VOF/LS is an 

advection function. Without diffusion terms, sophisticated numerical discretization schemes 

might be required to ensure stability. On the other hand, the advection-diffusion Cahn-

Hilliard equation is used in phase-field model for interface evolution. With a physical 

diffusion term in Cahn-Hilliard equation, it allows easier numerical treatment. Moreover, it is 

also noted that although VOF/LS method solves the advection equation in the whole field, 

only one contour curve of the solution function is used (volume fraction in VOF or distance 

function in LS method). In contrast, the solution function in the phase-field method usually 

has a physical meaning so that it can be directly coupled with the governing equations of flow 

field. In other words, the solution function in the whole field rather than a single contour 

curve is used in the phase-field method. Furthermore, the phase-field method also enjoys 

higher computational efficiency because it allows the interface to freely propagate on a fixed 

grid without any arbitrary inventions such as construction/re-initialization that are needed in 

VOF/LS method. Last but not least, phase-field method has specific advantages over VOF 

and LS method in respect of solid-multiphase flow simulation. Attributed to thermal 

consistency of phase-field method, solid-multiphase interaction can be readily modeled by 

adding a surface energy term in free energy function. Additionally, due to the diffusion 

mechanism involved in phase-field framework, the contact line singularity can be naturally 

resolved. Here, it must be stressed that although these interface track/capture schemes are 

originally coupled with N-S solver, the principle of these schemes is independent of flow 

field solvers. 
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1.2.2 Lattice Boltzmann methods for multiphase flow simulation 

The preceding subsection reviewed multiphase flow models that are traditionally coupled 

with the N-S solvers. In recent years, another flow field solver, the lattice Boltzmann method 

has undergone rapid development and been applied in a variety of fluid problems (Chen and 

Doolen 1998, Nourgaliev et al. 2003, Aidun and Clausen 2010). Different from N-S 

equations which are derived from applying physical conservation laws to a control volume, 

the LBM originates from kinetic theory. In LBM, the dependent parameters are the density 

distribution functions and macroscopic hydrodynamic properties that are recovered from the 

averaged properties. Moreover, convection of fluid is represented by a streaming process 

while nonlinear diffusion is revealed in the collision process. The major advantages of LBM 

include simple formulation, easy implementation of boundary condition on complex 

geometries and suitable for parallel computation. A detailed examination of these features 

shows that LBM has potential to be an efficient tool for multiphase flow problems with 

complex geometries (Nourgaliev et al. 2003). In fact, many multiphase flow simulations have 

been accomplished using LBM. Generally speaking, there are four types of LBMs for 

interfacial dynamics. They are color-fluid model of Gunstensen and collaborators (1991), 

inter-particle-potential model of Shan and Chen (1993,  1994), mean-field model of He et al. 

(1999) and phase-field LBM of Swift et al. (1995, 1996). All these LBMs can be viewed as 

diffuse interface methods. In the color-fluid model, the red and blue particle distribution 

functions are used to represent two different fluids. More recent development can be found in 

the work of Lishchuk et al. (2003) and Reis and Phillips (2007). The inter-particle-potential 

model incorporates surface tension as a potential force through modification of collision term 

in lattice Boltzmann equation (LBE). However, as pointed out by Shan and Chen (1993, 

1994), the modified collision process may not conserve the local net momentum. As a 

consequence, the numerical fluctuations such as spurious velocities (Guo et al. 2011) (caused 
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by force imbalance due to numerical errors) will appear near the interface. The mean-field 

model has been successfully applied to binary fluids as well as multiphase problems with 

viscosity and density contrast (Lee and Lin 2005). Nevertheless, it is not clear whether the 

Cahn-Hilliard equation is accurately recovered by this model. The phase-field LBM is 

originally developed by Swift for both liquid-vapor and binary fluid system (Swift et al. 1995, 

Swift et al. 1996). In the phase-field LBM, one set of LBE is used to simulate evolution of 

flow field. Concurrently, the other set of LBE is designed to recover Cahn-Hilliard equation 

for interface capturing (Zheng et al. 2005). Like the phase-field N-S solver, the phase-field 

LBM also enjoys advantages such as thermal consistency, ease of handling drastic topology 

change and natural resolution of contact line singularity. Owing to these advantages, the 

phase-field LBM is adopted in this work for multiphase flow simulation. 

 

1.2.3 Challenges faced by phase-field LBM 

The phase-field LBM has been successfully applied to simulate various multiphase flow 

problems (Inamuro et al. 2004, Zheng et al. 2005, Huang et al. 2008, Sbragaglia and Shan 

2011). On the other hand, it also faces challenges to be overcome. Firstly, as a diffuse 

interface method, the phase-field LBM faces the challenge to balance high resolution of 

interface and computational load entailed. Secondly, many numerical works done by phase-

field LBM do not account for density difference and it is nontrivial to take density contrast 

into consideration. This is a great concern because many practical problems involve density 

and viscosity contrast. The following subsections will introduce these two issues in more 

detail. 
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1.2.3.1 Accuracy and efficiency balance in phase-field LBM 

A major challenge faced by the phase-field method is to obtain high resolution within 

affordable computational loads. It is known that the interface has a finite thickness in phase-

field method. When the method is applied to simulate hydrodynamic phenomena, the 

underlying assumption is that thickness of interface is small relative to length scale of the 

problem studied. Namely, the sharp interface limit (Yue et al. 2010) should be approached. 

One straightforward way is to use fine grid. In multiphase flow problems, the position and 

structure of interface usually cannot be predicted in advance. Therefore, a non-uniform grid 

with pre-set finest region is not helpful in this situation. Additionally, if uniform grid is 

employed, the whole computational domain must be refined to keep a sharp interface. Such 

an approach will entail remarkable computational load. In this condition, Adaptive Mesh 

Refinement (AMR) technique is a natural choice to balance accuracy and efficiency. In fact, 

great effort has been devoted to incorporate AMR in the conventional CFD solvers, in which 

tree-structured grid might be the most frequently used grid (Burman et al. 2004, Anderson et 

al. 2005, Sussman 2005, Zheng et al. 2005, Ceniceros et al. 2010). In lattice Boltzmann 

framework, attempts have also been made to refine mesh locally. Based on multi-block 

algorithm, solution adaptive mesh refinement technique was first introduced in LBM by 

Crouse et al. (2003) and Toolke et al. (2006). More recently, this technique was combined 

with potential model to simulate bubbly flows by Yu and Fan (2009). In their work, time step 

and relaxation parameters are changed with local grid spacing. Consequently, interpolation 

must be applied in both space and time. In this manner, the conservation laws cannot be 

easily imposed. Moreover, variation of the relaxation parameters makes additional 

manipulation of collision term necessary. In addition to the multi-block-based AMR, Rohde 

et al. (2008) proposed an adaptive finite volume LBM. In this method, the conservation laws 

can be easily satisfied (Rohde et al. 2008). Nevertheless, simplicity of LBM is partially lost. 
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It can be seen that several versions of adaptive LBM developed so far either involve complex 

interpolation or partially lose the simplicity of LBM. One reason for complexities in adaptive 

LBMs is that the grid structure developed for N-S solvers is used in LBM framework. 

Although the tree-structured grid has been proven to be very efficient for N-S solvers, it may 

not be suitable for LBM.  In LBM, the simulation is carried out on lattice models, of which 

the structures are not consistent with tree-structured grid. To solve this problem, a novel 

stencil adaptive (Ding and Shu 2006) LBM was proposed by Wu and Shu (2011) recently. In 

this algorithm, two different types of stencils, named orthogonal (denoted as “+”) and 

diagonal (denoted as “”) structures (“+” is used to represent a configuration of 5-points 

symmetric stencil, where mesh points are distributed along the horizontal and vertical lines. 

While, the other stencil configuration is represented by “  ”, where mesh points are 

distributed along diagonal lines), appear alternatively during the mesh refinement process. It 

is interesting to note that combination of these two types of stencils has the same 

configuration as D2Q9 (2 dimensions with 9 discrete lattice velocity directions) lattice 

velocity model. Attributed to the consistency between grid structure and lattice model, an 

identical lattice relaxation parameter can be used (Wu and Shu 2011). Moreover, complex 

interpolation of physical variables and modification of collision term can be avoided. 

Detailed analysis of convergence and efficiency of stencil adaptive LBM for single phase 

flow can be found in the work of Wu and Shu (2011). In order to take advantage of the phase-

field LBM and obtain high resolution at the same time, it is a good choice to develop a stencil 

adaptive phase-field LBM for multiphase flow simulation. 
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1.2.3.2 LBM for multiphase flow with density contrast 

Besides accuracy and efficiency balance, another major issue for phase-field LBM is 

simulation of multiphase flows with density contrast. In the last decade, the phase-field LBM 

has been successfully applied to simulate a wide range of multiphase flow phenomena (Aidun 

and Clausen 2010). Nevertheless, the pioneering phase-field models are only feasible for 

multiphase flows with small density contrast and it is nontrivial to adapt them to the 

multiphase flows subject to even moderate density variation. The difficulty is mainly caused 

by the sharp variation of density across the interface. Hence, proper treatment of high density 

gradient across the interface is critical to ensure stability of simulation (Lee and Lin 2005). 

Besides the above issue that also exists in conventional N-S solvers (Ding et al. 2007), LBM 

encounters additional constraints in the simulation of multiphase flow with density contrast. 

These constraints are associated with intrinsic properties of LBM. It is well known that LBM 

has two basic processes. They are streaming and collision processes. From Chapman-Enskog 

expansion analysis, it is found that the streaming process is to recover the convection and 

pressure gradient terms of N-S equation while the collision process is to recover the viscous 

term of N-S equation. The pressure and density are linked by the equation of state, 
2

sp c , 

where sc is the speed of sound. In the lattice Boltzmann framework, sc  is a constant for a 

selected lattice velocity model. For this case, the pressure variation directly depends on the 

density variation. This application has no problem for incompressible single phase flows as 

both pressure and density change very little in the flow field. However, when it is applied to 

the multiphase flow with density contrast, it may lead to unphysical solution. Physically, it is 

known that the fluid-fluid interface is a contact discontinuity, where the density is 

discontinuous but the pressure and velocity are continuous across the interface. When 

2

sp c  is directly applied for multiphase flow simulation, it implies that pressure is also 
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discontinuous across the interface. This is physically incorrect. As the streaming process of 

LBM can only recover 
2

sc  for the pressure term, we can introduce a forcing term of 

2( )sp c   in LBE in order to simulate multiphase flows with density contrast by LBM. 

This technique has been used by many researchers such as He et al. (1999) and Lee and Lin 

(2005). Another constraint is related to numerical instability of LBM computation. Although 

LBM is a weak compressible method (Uriel et al. 1987, Guo et al. 2000), it is usually limited 

for application to incompressible flows. In LBM, the particle distribution function is used to 

measure the density and momentum. Thus, the variation of particle distribution function is 

closely related to the variation of density. For the incompressible single phase flow, the 

density variation in the flow field is very little, so does the variation of particle distribution 

function. This property ensures very stable computation of LBM for the single phase flow. 

On the other hand, when the multiphase flow with density contrast is considered, the density 

will have a large variation across the interface. For this case, the particle distribution function 

will also encounter a large variation, which may cause a severe instability of LBM 

computation. To remove this difficulty, some efforts have been made. An interesting work 

was given by He et al. (1999), who introduced an incompressible transformation to change 

the particle distribution function for density and momentum into that for pressure and 

momentum. As pressure is smooth in the whole flow field, the high variation of particle 

distribution function is avoided. Later, Lee and Lin (2005) (for simplicity, it is called L-L 

model in this thesis) also adopted the same incompressible transformation but went further to 

propose a series of stable discretization schemes to enhance numerical stability. The 

stabilization schemes include the use of stress form of surface tension force for the pressure 

and momentum LBE and the potential form of surface tension force for the order parameter 

LBE, the second-order biased/mixed difference approximation in the pre-streaming collision 
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step and the central difference approximation in the post-streaming collision step. Recently, 

Zheng et al. (2006) also presented a model (for simplicity, it is termed Z-S-C model in this 

thesis) to avoid high variation of particle distribution function. Like the work of He et al. 

(1999) and Lee and Lin (2005), Z-S-C model also uses two sets of LBEs. One set of LBE is 

used for interface capturing, which can recover the Cahn-Hilliard (C-H) equation (Cahn and 

Hilliard 1958) with the second order of accuracy (Zheng et al. 2005). The other set of LBE is 

utilized for simulation of flow field, where the particle distribution function is used to 

measure the mean density and momentum. For any multiphase flow problem, the mean 

density changes very little in the whole flow field. So, the variation of particle distribution 

function in the Z-S-C model is very small. This good property makes its numerical 

computation very stable and efficient (Zheng et al. 2006). On the other hand, we have to 

indicate that since the particle distribution function is directly used to measure the mean 

density, the effect of local density variation cannot be properly considered in the momentum 

equation when the multiphase flow with density contrast is solved. In order to keep the good 

stability condition and high computational efficiency of the Z-S-C model, an improved model 

for correct consideration of density contrast will be developed in this work.  

 

1.3 Modeling of Solid-Fluid Interactions 

The preceding section reviewed modeling of multiphase flow. This section will introduce the 

other essential element in modeling of solid-multiphase flow interactions, that is, 

implementation of solid boundary conditions. 

 

In fluid mechanics, problems involving interactions between fluids and structures are 

ubiquitous. To simulate such problems, implementation of boundary conditions such as 
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Dirichlet and Neumann boundary conditions is inevitable. A conceptual straightforward way 

is to use a body-conformal method. In the body-conformal method, grid is generated to fit 

solid shape. Subsequently, governing equations are naturally discretized involving solid 

geometrical information and boundary conditions can also be readily imposed. In this way, an 

accurate solution can be yielded (Mittal and Iaccarino 2005). Nevertheless, it is sometimes 

impractical to generate a body-conformal grid especially when a complex geometry or a 

moving boundary is present in the flow field. In contrast with body-conformal method, a 

more feasible and robust way is to employ non-body-conformal methods (Peskin 1972, 

LeVeque and Li 1994, Fedkiw et al. 1999, Lee and Leveque 2003, Mittal and Iaccarino 2005, 

Le et al. 2006). In non-body-conformal methods, governing equations can be solved on a 

fixed Cartesian (Eulerian) grid, while influence of boundary is depicted by adding a forcing 

or source term into the governing equations. Depending on the way to treat forcing terms, the 

non-body conformal methods can be further divided into: sharp interface methods and diffuse 

interface methods. A representative method in the first category is the Immersed Interface 

Method (IIM) developed by LeVeque and Li (1994). A typical feature of IIM is that the jump 

conditions of physical parameters are applied across the interface. Such a treatment enables 

IIM to achieve second order accuracy but also entails complex implementation. The 

application of IIM has later been extended to three-dimensional (3D) simulation (Xu and 

Wang 2008, Xu 2011), moving boundary problems (Li and Lai 2001, Xu and Wang 2006), 

and also problems involving elastic membranes (Lee and Leveque 2003). 

 

In contrast with sharp interface methods, the diffuse interface methods manipulate the effect 

of immersed boundary as a diffusive body force. When a jump condition is applied in shape 

interface methods, it is usually necessary to distinguish whether a fluid node is inside or 

outside of boundary and to reconstruct information according to interface’s normal direction. 
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However, in the diffuse interface methods, these procedures are unnecessary. This can greatly 

simplify simulation procedure and enable a much more robust simulation for 3D and moving 

boundary problems. The most well-known diffuse interface methods might be Immersed 

Boundary Method (IBM) developed by Peskin (1972). Since his pioneering work, IBM has 

undergone continuous development in accurate evaluation of forcing terms. In Peskin’s 

original work (Peskin 1972), solid boundary is treated as being elastic. A restoring force is 

first evaluated on the boundary and then distributed back to the flow field through discrete 

delta function. The relationship between the restoring force (generated by distortion of 

boundary) and body deformation is governed by the Hooke’s law, in which a user-defined 

coefficient is involved. To avoid usage of arbitrary coefficient, a direct forcing method was 

introduced by Mohd-Yusof (1997) and also applied by Fadlun et al. (2000). In this method, 

the N-S equations are employed to compute the force on the boundary. More recently, a 

boundary condition-enforced IBM was developed by Wu and Shu (2009). In the previous 

force calculation schemes, the restoring force is pre-calculated and there is no mechanism to 

enforce the no-slip boundary condition. In contrast, Wu and Shu’s IBM considers the 

restoring force as unknown and it is determined in a way that the no-slip boundary condition 

is enforced. In this manner, flow penetration that is observed in the previous IBM simulation 

is proved to be effectively eliminated. In addition to the advances in algorithms, application 

of IBM for structure-fluid interactions has also been extended to a broad range. The 

application of IBM includes particulate flow (Fogelson and Peskin 1988, Feng and 

Michaelides 2004, Wu and Shu 2009), flexible filament (Zhu and Peskin 2002), structure-

turbulent flow interactions (Balaras 2004) to name a few. An elegant review of kindred topics 

is provided by Mittal and Iaccarino (2005). It can be seen that tremendous effort has been 

devoted to refine IBM. However, most works are restricted to the Dirichlet boundary 

condition over decades. To the best of our knowledge, research that aims at extending the 
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IBM to depict the Neumann boundary condition is very limited. This remarkably restricts the 

application of IBM in CFD since physical phenomena associated with Neumann boundary 

conditions are extremely diverse. One of the instances is the solid-multiphase flow 

interactions. To study these problems in the phase-field framework, the no-slip boundary 

condition is still utilized. Additionally, two Neumann boundary conditions are used to govern 

the variation of composition on a solid boundary (Jacqmin 2000). Although many works have 

been done by the phase-field method, most reported works investigate three-phase (two fluids 

with solid) interaction on smooth surface or, at most, grooved surface with simple geometries 

represented by straight lines. This is mainly caused by tedious implementation of Neumann 

boundary conditions on a curved geometry. To overcome this difficulty, an IBM-based 

algorithm that can handle Neumann boundary conditions will be instrumental.  

 

1.4 Objectives of the Thesis 

Based on the previous literature review, to establish an efficient numerical framework to 

study the solid-multiphase flow interactions, there are four major objectives in this work. 

Concerning multiphase flow simulation, there are two objectives. One is to develop a stencil 

adaptive phase-field LBM to balance accuracy and efficiency. The other is to develop a 

phase-field LBM for multiphase flow with density contrast. On other hand, with respect to 

boundary condition implementation, the third major objective of this thesis is to develop an 

IBM for Neumann boundary conditions and to create a breakthrough in the long existing 

limitation that IBM can only handle Dirichlet boundary conditions for various solid-fluid 

interactions. Last but not least, application of the developed method to simulate solid-

multiphase flow interactions will also be demonstrated.  These objectives are illustrated 

further in the following context: 
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(1)  To develop a stencil adaptive phase-field lattice Boltzmann solver for two-

dimensional (2D) incompressible multiphase flows. In order to achieve high 

resolution of interface within affordable computational consumption, the stencil 

adaptive technique will be implemented in phase-field LBM simulation. Attributed to 

the consistency between stencil grid-structure and D2Q9 lattice model, the developed 

method is expected to be freed from complicated spatial and temporal interpolation. 

Both the accuracy and efficiency of the proposed method will be studied through 

simulation of several multiphase flow problems. 

 

(2)  To develop a phase-field LBM for multiphase flow with density contrast. A 

novel phase-field LBM will be developed to improve Z-S-C model (Zheng et al. 2005) 

for correct consideration of density contrast. To correctly consider the effect of local 

density variation in the momentum equation, the particle distribution function in the 

LBE is initially used to measure the local density and momentum. Then, to improve 

numerical stability, a transformation which is similar to that used in the work of He et 

al. (1999) will be introduced to change the particle distribution function for the local 

density and momentum into that for the mean density and momentum. As a 

consequence, the present model, on one hand, enjoys the good property of using the 

particle distribution function for mean density and momentum, and on the other hand, 

can correctly consider the effect of density contrast in the momentum equation. The 

proposed method will be verified in detail through simulation of 2D/3D steady and 

unsteady multiphase flow problems. 

 

(3)  To develop an immersed boundary method for Neumann boundary conditions for 

solid-fluid interactions. In this work, we will make the first endeavour to extend the 
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application of IBM with Neumann boundary condition. To achieve this, we will start 

from the physical conservation law, and view the Neumann boundary condition as 

contribution of flux from the boundary to a dependent variable in a control volume. 

The flux contribution from the boundary can be directly linked to the correction of 

dependent variable. The developed IBM for Neumann boundary conditions will be 

used consistently with the boundary condition-enforced IBM for Dirichlet boundary 

conditions. The solid-fluid interactions involving Dirichlet and/or Neumann boundary 

conditions will be presented.  

 

(4)  To apply the immersed boundary-phase field-lattice Boltzmann method to study 

solid-multiphase flow interactions. The developed IBM (for both Dirichlet and 

Neumann boundary conditions) will be used together with the phase-field lattice 

Boltzmann method to treat two distinct types of interfaces. To be concrete, the IBM 

will be used to implement boundary conditions for solid surface. Concurrently, the 

phase-field lattice Boltzmann method will be used to capturing the liquid-liquid 

interface. The application of the developed method for steady and unsteady solid-

multiphase flow interactions will be presented.  

 

1.5 Organization of the Thesis 

The rest of thesis is organized as follows: 

 

To establish the groundwork of this thesis, Chapter 2 will first introduce the free energy and 

phase-field theory. Subsequently, the phase-field model in both Navier-Stokes description 
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and lattice Boltzmann framework will be illustrated. Furthermore, wetting boundary 

conditions for solid-multiphase flow interactions in the phase-field framework will also be 

presented. Finally, a brief conclusion will be given at the end of this Chapter. To validate the 

current code, numerical examples including rotation of a Zalesak’s disk, deformation of a 

circular interface and droplet deformation in the shear flow are presented. The obtained 

numerical results are compared with the theoretical results and data in the literature.  

 

Chapter 3 presents the development of a stencil adaptive phase-field lattice Boltzmann 

method for two-dimensional multiphase flow simulation. First, the stencil adaptive algorithm 

will be illustrated. Thereafter, a detailed description of stencil adaptive algorithm for phase-

field lattice Boltzmann equations and evaluation of relevant spatial derivatives will be 

provided. The proposed algorithm will be verified with respect to accuracy and efficiency 

through simulation of stationary bubble, bubble rising in quiescent fluid and droplet 

spreading in the partial wetting regime. 

 

In Chapter 4, development of a phase-field lattice Boltzmann method for simulation of 

multiphase flow with density contrast will be presented. In this Chapter, the Z-S-C model and 

the incompressible transformation will be reviewed in the first place. It is then followed by 

demonstration of a newly developed phase-field LBM for multiphase flow with density 

contrast. The proposed algorithm will be verified through 2/3D steady and unsteady 

numerical examples including: viscous coupling, Rayleigh-Taylor instability, droplet splash, 

droplet collision and droplet impact on solid considering dynamic contact angle. 
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Chapter 5 demonstrates the development of an immersed boundary method for solid-fluid 

interactions involveing Dirichlet and/or Neumann boundary conditions. First, a brief 

introduction of immersed boundary method is presented. Secondly, a boundary condition-

enforced IBM for Dirichlet boundary condition will be illustrated. Thirdly, the following 

subsection is devoted to elaborate the idea to implement Neumann boundary condition in 

IBM in detail. Thereafter, the application of IBM for various solid-fluid interaction problems 

will be demonstrated. The numerical examples include: solid-single phase flow interactions 

such as flow over a circular cylinder, fish motion at high Reynolds number and flow over a 

sphere as well as solid-multiphase flow interaction problems such as a transition layer formed 

on solid surface.   

 

Chapter 6 presents application of immersed boundary phase-field lattice Boltzmann method 

to study solid-multiphase flow interactions. An introduction of solid-multiphase flow 

interactions will be provided in the first place. Secondly, the simulation procedures will be 

summarized. Subsequently, numerical examples will be presented. The method is first 

applied to simulate dynamics cases including de-wetting process and droplet spreading on a 

smooth surface in the partial wetting regime for validation. Moreover, simulation of droplet 

spreading on a curved surface will also be performed. Additionally, the ability of the current 

algorithm to handle complex geometries will be demonstrated by simulation of the contact 

line dynamics on single and two alongside circular cylinders as well as impulsive motion of a 

submerged cylinder. Furthermore, extension of the developed method to simulate 3D moving 

contact line problems will also be presented. 
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Lastly, a conclusion of the present work and recommendation for future studies will be 

presented in Chapter 7 to end this thesis. 
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Chapter 2  

Free Energy-Based Phase-Field Method 

 

The works in this thesis are based on the phase-field lattice Boltzmann method. Thus, to 

establish the groundwork, Chapter 2 is devoted to introducing free energy theory and 

fundamental governing equations in both Navier-Stokes formulation and lattice Boltzmann 

framework. Moreover, the boundary conditions in the phase-field method for solid-

multiphase flow interactions will also be presented. The ability of the phase-field LBM 

introduced in this Chapter to simulate multiphase flow problems are demonstrated through 

several numerical cases including: rotation of a Zalesak’s disk, deformation of a circular 

interface and three-dimensional droplet deformation in shear flow.  

 

2.1 Free Energy Theory 

Before presenting the governing equations, it would be helpful to introduce free energy 

theory. In the phase-field method, an order parameter   (Anderson et al. 1998), is introduced 

to characterize the phases and interface. It holds a constant value ( Bulk ) in the bulk regions 

(where the change of density is negligible) while changes smoothly across the interface. 

Considering a system of two incompressible immiscible fluids, the Helmholtz free energy 

functional of a system can be written as 

    
2

2
V A dV


 

 
     

 
  (2.1) 
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The above equation means that the total free energy   (over the flow domain V ) consists of  

bulk free energy density ( )A   and interface energy 
2( )

2


 . For the bulk free energy 

density, a commonly used double-well form is used. It takes the form of  

      
2 2

Bulk Bulk         (2.2) 

In Eqs. (2.1) and (2.2), there are two coefficients   and A . These two coefficients are related 

to interface width w  and surface tension   in such a way that the interface width is 

proportional to A  and the surface tension is proportional to A  (Jacqmin 1999, 

Papatzacos 2002). In numerical simulation, interface width and surface tension are usually 

given so that   and A  can be evaluated based on them. To be specific, the coefficients   

and A  can be evaluated through 

 
2

Bulk

A
w




  (2.3) 

 34 2

3
Bulk

A
   (2.4) 

Additionally, in the free energy framework, the chemical potential   of the composition 

variable   is defined as the rate of change of free energy with respect to the phase 

concentration. It can be written as 

 
2 2 24 ( )BulkA     

 

 
     
 

 (2.5) 
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2.2 Governing Equations in Navier-Stokes Formulation 

Coupled with the free energy theory, the governing equations of an incompressible viscous 

fluid system can be written as 

 0 u  (2.6) 

 
 

   Tu
uu u + u F

b
p

t


 


      


    (2.7) 

where u  is the velocity vector,   is the dynamic viscosity and p  is pressure which will be 

defined later. In addition, bF  is the body force and the exact expression depends on the 

physical problem studied. For example, in a bubble rise case, bF  can be buoyancy g   ( g  

is gravity acceleration and   is the density difference between two fluids). Different from 

governing equations for single phase fluid, the surface tension can be incorporated in term 

p . It takes the form of  

 0
p p


      (2.8) 

This equation can be rearranged as 

  0p p          (2.9) 

Substituting Eq. (2.9) into Eq. (2.7), the momentum equation for a binary fluid system can 

also be written as 

 
 

     0

Tu
uu u + u F
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t
 


    


         


    (2.10) 

In addition to the flow field, the change of the phase-field is governed by the Cahn-Hilliard 

equation 
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   2
u M

t



 


   


 (2.11) 

where M is a parameter named as mobility. It can be seen from Eq. (2.11) that the phase-field 

is not only influenced by convection but also by diffusion caused by the gradient of chemical 

potential  . 

 

2.3 Governing Equations in Lattice Boltzmann Framework 

The free energy-based phase-field theory is an interface capturing method which can be used 

together with different flow field solvers. The preceding section gives the governing 

equations in the Navier-Stokes formulation. Besides N-S solver, an alternative lattice 

Boltzmann method (LBM) has attracted much interest for multiphase flow simulation 

recently. It enjoys advantages such as easy programming and suitable for parallel 

computation as introduced in Chapter 1. Therefore, the phase-field LBM will be used for 

multiphase flow simulation in this work. Considering two immiscible incompressible fluids, 

the lattice Boltzmann equation (LBE) for the flow field can be written as 

  , ( , )f t t t f t       x e x  (2.12) 

Here, f  is the density distribution function, t  is the time step and e  is the lattice velocity. 

The collision term   with additional force terms reads as 
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with 
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   20.5 sc t     (2.14) 

In Eqs. (2.12) and (2.13), w  is a coefficient, e  is the lattice velocity and sc  is the speed of 

sound in LBM. Their values depend on lattice velocity model chosen. The most commonly 

used lattice model including D2Q9, D3Q15 and D3Q19 (denoted as DnQm, where n 

indicates space dimension and m indicates the speed model) as sketched in Fig. 2.1. The main 

parameters of these lattice velocity models are listed in Table 2.1. In addition,   is the 

relaxation parameter, and   in Eq. (2.14) is the kinematic viscosity of fluid. The equilibrium 

distribution function that satisfies the conservation laws takes the form of  
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The coefficients for D2Q9 and D3Q15 models are 
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 (2.16) 

where   equals 8 and 14 for D2Q9 and D3Q15 model, respectively. Moreover, the 

macroscopic variables can be evaluated through the conservation laws 

 f


   (2.17) 

  
1

2
bf t  



      u e F  (2.18) 

In addition to the flow field, the other set of LBE is used to capture the interface change 

(Zheng et al. 2005,  2008). It is formed by the distribution function g  
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          , , 1 , ,x e x x e xg t t t g t q g t t g t                   (2.19) 

where   represents the collision term and it reads as 

 
( , ) ( , )eqg t g t 






 

x x
 (2.20) 

Here, 
eqg  represents the equilibrium distribution function and   is the relaxation parameter 

for   field. The equilibrium distribution function 
eqg  satisfies the following conservation 

laws 

 
eqg



   (2.21) 

The mobility parameter is 

  0.5M q q t

     (2.22) 

Here,  1 0.5q   and   is the characteristic mobility. Furthermore, the equilibrium 

distribution function takes the form of  

 e u
eqg A B C          (2.23) 

Moreover, the relevant coefficients for 
eqg  are 
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 (2.24) 

where D  is the dimension. The D2Q5 and D3Q7 lattice velocity models are used for 

interface capturing LBE in two and three-dimensional simulations, respectively. The above 
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introduced LBE can recover Cahn-Hilliard equation with second order accuracy (Zheng et al. 

2005).   

 

2.4 Wetting Boundary Conditions 

A general phase-field framework for multiphase flow without considering the presence of a 

solid boundary has been introduced previously. In this subsection, modeling of a partial 

wetting surface will be addressed. When a solid surface interacts with multiphase flows, the 

surface may be neutral or partially favored to be wetted by one fluid. This surface 

characteristic is referred to as wettability. In the phase-field method, wettability can be 

represented by a wall free energy in the total free energy functional 

      
2

2
s s

V S
A dV dS


  

 
        

   (2.25) 

where S  denotes the solid surface, s  is the order parameter on the wall and  s s  is the 

wall free energy density that takes the form of  

  s s s     (2.26) 

where   describes the essential feature of a solid surface and it is called as wetting potential. 

Minimizing the total free energy functional gives the boundary condition 

    s s        n  (2.27) 

where n  indicates the local unit outward normal on a solid surface. It can be seen that it is a 

Neumann boundary condition for the order parameter. Moreover, four equilibrium solutions 

of the order parameter on the wall are (Papatzacos 2002) 
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with the non-dimensional wetting potential   defined as 

 2 2Bulk A




 
  (2.29) 

The relation between   and the equilibrium contact angle reads 
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Based on the monotonically decreasing relationship (as shown in Fig. 2.2) established by Eq. 

(2.30), the value of   can be uniquely determined with a given equilibrium contact angle. 

Thereafter   can also be calculated in a straightforward way. In addition to the boundary 

condition expressed by Eq. (2.27), a zero mass flux condition of the chemical potential   is 

applied 

   0
s

  n  (2.31) 

It is a Neumann boundary condition for the chemical potential. To sum up, the boundary 

conditions that should be enforced on a solid surface are 

 0s u  (2.32) 
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 (2.34) 

 

2.5 Numerical Validations 

In this subsection, several multiphase flow problems were simulated to validate the models 

and the codes. The numerical examples include: rotation of a Zalesak’s disk, deformation of a 

circular interface and 3D droplet deformation in shear flow. 

 

2.5.1 Rotation of a Zalesak’s disk 

A benchmark case, rotation of Zalesak’s disk (Zheng et al. 2005), is simulated to examine the 

accuracy of interface capturing of the current codes. A disk with radius of 0.4L  attached with 

a slot of 0.075L  width is centered at  0.5 ,0.5L L  in a flow field of L L  ( 120L   lattice 

units). The order parameter is set as 1 inside the disk and -1 outside the disk. Periodic 

boundary condition is applied on all boundaries. In this case, the velocity field is symmetric 

and takes form of  

  0 / 0.5u U x L    (2.35) 

  0 / 0.5v U y L   (2.36) 

where 0U  is set as 0.01 in the current simulation. The rotation of a Zalesak’s disk is shown in 

Fig. 2.3 at 0, 0.25T, 0.5T, 0.75T and T of rotation (from top to bottom, left to right). It can be 

seen that during the rotation of the disk, shape of both the circle and slot is captured well. 
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Additionally, Table 2.2 compares the absolute area loss ( Theoretical NumericalArea Area ) as well 

as the relative area loss ( Theoretical Numerical TheoreticalArea Area Area ) for Zalesak’s disk rotation 

on grids 121 121  and 241 241 . It can be seen that the area loss is very small. It is 0.065 

even with course grids 121 121 .  

 

2.5.2 Deformation of a circular interface 

In addition to rotation of a complex topology, a more challenging case that involves topology 

change of interface is simulated in this subsection. In this case, a circle with radius of 0.2L  is 

initially centered at  0.5 ,0.3L L  in a computational domain of L L  ( 120L   lattice units). 

The velocity field is given by (Rudman 1997, Zheng et al. 2005) 

    0 cos / 0.5 sin / 0.5u U x L y L             (2.37)

    0 sin / 0.5 cos / 0.5v U x L y L            (2.38) 

This velocity field is imposed on the whole field when 0 t T   while for 2T t T  , the 

sign of u  and v  are reversed. The interface deformation during 0 2t T   is shown in Fig 

2.4. It can be seen from Fig. 2.4(a) to 2.4(c) that the circle is rotated anticlockwise and 

deformed during 0 t T  . When 2T t T  (Fig. 2.4(d) and (e)), the deformed circle is 

rotated back and returned to its original shape. To demonstrate the superior ability of 

interface capturing by the present method, a result by VOF method (Zheng et al. 2005) was 

also shown in Fig. 2.5. More information about VOF methods’ simulation of this problem 

can be found in the work of Rudman (1997). It can be seen that the circular shape caputred by 

the present method has little distortion and very smooth interface.  
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2.5.3 Droplet deformation in shear flow 

Apart from the preceding 2D cases, 3D problems will be demonstrated hereafter. In this 

subsection, simulation of a 3D droplet in shear flow was performed.  

 

In this case, a droplet is deformed between two parallel moving walls. A droplet with initial 

radius R is centered in the computational domain. The distance between upper and lower 

walls is denoted as H and the walls are moving with velocity upperU  and lowerU . In this context, 

the shear rate   and Capillary number are defined as  upper lowerU U H    and 

1Ca R    (the subscripts 1 and 2 indicate properties of droplet and surrounding fluid, 

respectively). To perform validation, the parameters are first set the same as those in the 

literature (van der Graaf et al. 2006, Huang 2009). To be specific, 1 2 1r    , Ca  took 

the value from 0.05 to 0.3 with spacing of 0.05. The droplet of radius 15 is initially centered 

in a domain of 120 30 60  . Owing to the symmetry of this problem (symmetric to x-z 

plane), only half of the domain is considered. The droplet deformation parameter (defined as 

   f L B L BD R R R R    where LR  and BR  are major and minor axis of ellipse) is 

compared with data in the literature in Fig. 2.6. The important parameters are summarized in 

Table 2.3. The theoretical result is given by 35 32fD Ca (Huang 2009), which is based on 

small Capillary number assumption. From Fig. 2.6, it can be seen that the present results 

show good comparison with the theoretical prediction at low Capillary number ( 0.2Ca  ). 

However, when the Capillary number increases, the numerical results show nonlinear 

deviation from the theoretical results, which is the same as that obtained by Huang (2009). In 

addition, it also can be seen that compared with Huang’s result, the present result better 
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approximates the theoretical result. This is because larger computational domain and higher 

resolution are used in the present simulation. Moreover, the droplet shape under different 

Capillary number is presented in Fig. 2.7. It can be seen clearly that the droplet undergoes 

obvious deformation when the Capillary number is equal to 0.3.  

 

2.6 Concluding Remarks 

The phase-field framework was introduced in this Chapter to provide a background for 

subsequent Chapters. In summary, the free energy theory was introduced in the first place. 

Thereafter, the governing equations of phase-field method in both Navier-Stokes formulation 

and lattice Boltzmann framework were described. Additionally, considering the interest of 

this thesis, wetting boundary conditions were also elaborated in this Chapter. Moreover, the 

introduced phase-field LBM was validated through simulation of rotation of a Zalesak’s disk, 

deformation of a circular interface and 3D droplet deformation in shear flow. The current 

results demonstrate good comparison with theoretical and numerical results in the literature.  
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Table 2.1 Parameters of DnQm lattice models (n indicates space dimension and m means the 

speed model) 

Model Lattice vector e  Weight   
2

s
c

 

D2Q9 

(0,0)  4/9 

1/3 _( 1,0), (0, 1)   1/9 

( 1, 1)   1/36 

D3Q15 

(0,0,0)  16/72 

1/3 ( 1,0,0) , (0, 1,0) , (0,0, 1)  8/72 

( 1, 1, 1)    1/72 

D3Q19 

(0,0,0)  12/36 

1/3 ( 1,0,0) , (0, 1,0) , (0,0, 1)  2/36 

( 1, 1,0)  , ( 1,0, 1)  , (0, 1, 1)   1/36 

 

Table 2.2 Area loss for the Zalesak’s disk rotation 

 Exact area Numerical area Absolute area loss Relative area loss 

Grids 121 121  4150.01 3879.49 270.52 0.065 

Grids 241 241  16860.30 16349 511.31 0.03 
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Table 2.3 Important parameters in droplet deformation 

Definition Expression 

Shear rate  upper lowerU U H    

Capillary number 1Ca R    

Droplet deformation parameter    f L B L BD R R R R    
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(a) D2Q9 (b) D3Q15 

 

(c) D3Q19 

Fig. 2.1 Sketches of some DnQm lattice velocity models 
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Fig. 2.2 The non-dimensional wetting potential versus the equilibrium contact angle 
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Fig. 2.3 Zalesak’s disk at time 0, 0.25T, 0.5T, 0.75T and T  
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(a) t=0 (b) t=T/2 

 

  

(c) t=T (d) t=3T/2 

 

 

(e) t=2T 

Fig. 2.4 Interface deformation in shear flow 
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(a) t=T/2 (b) t= T 

 

(c) t=3T/2 (d) t=2T 

Fig. 2.5 Interface deformation in shear flow by VOF method 

 

 

 

 



43 

 

 

 

 

 

Fig. 2.6 Comparison of deformation parameter at different capillary numbers 
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(a) Ca=0.05 

 

(b) Ca=0.3 

Fig. 2.7 Droplet shape with different Capillary numbers 
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Chapter 3
1
 

Development of a Stencil Adaptive Phase-Field Lattice Boltzmann Method 

for Two-Dimensional Incompressible Multiphase Flows 

 

As introduced in Chapter 1, there are two major challenges faced by the phase-field lattice 

Boltzmann method for multiphase flow simulations. One difficulty is to incorporate the 

solution adaptive technique to gain flexibility in grid arrangement and achieve high 

computational efficiency. The other is the difficulty in simulating multiphase flow with 

density contrast. This Chapter will be devoted to addressing the first issue. It presents a 

stencil adaptive phase-field lattice Boltzmann method (LBM) for simulation of two-

dimensional (2D) multiphase flows. 

 

It is known that a major challenge faced by the phase-field model is to approach sharp 

interface limit within affordable computational loads. A natural solution is to supplement 

phase-field model with adaptive mesh refinement (AMR). Although much effort has been 

devoted to apply AMR with Navier-Stokes (N-S) (Kan et al. 1998) solvers, only a few works 

can be found in the framework of LBM. To enable high-efficiency multiphase flow 

simulation, this Chapter will develop a stencil adaptive (Ding and Shu 2006, Wu and Shu 

2011) phase-field LBM. The proposed method enables high resolution of interface with 

considerable saving in grid points. Additionally, owing to the symmetric structure of two 

                                                 
1 The material in this Chapter has been partially published in 

J. Y. Shao, C. Shu, J. Wu and Y. T. Chew, “A stencil adaptive phase-field lattice Boltzmann method for two 

dimensional incompressible multiphase flows.” International Journal for Numerical Methods in Fluids: Publish 

on line. 
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stencils used, the present adaptive phase-field LBM avoids complex spatial and temporal 

interpolation that are required in previously developed adaptive LBMs (Crouse et al. 2003, 

Toolke et al. 2006). The accuracy and efficiency of the proposed method will be 

demonstrated through simulation of both steady and unsteady problems including stationary 

bubble, bubble rising in quiescent flow as well as spreading droplet in the partial wetting 

regimes. 

 

The rest of this Chapter is organized as follows: Section 3.1 briefly introduces the stencil 

adaptive algorithm in the first place. Section 3.2 is then devoted to describing in detail the 

stencil adaptive phase-field lattice Boltzmann method for two-dimensional incompressible 

multiphase flow problems. The numerical examples will be presented in Section 3.3. Lastly, 

concluding remarks are drawn in Section 3.4. 

 

3.1 Stencil Adaptive Algorithm 

It is known that adaptive mesh refinement is a well-developed technique for conventional N-

S solvers. For 2D AMR N-S solvers, the quad-tree structured grid is commonly applied. In 

this kind of methods, the physical parameters are usually defined at the cell center. During 

the refinement process, the cell can be simply divided into four sub-cells. This technique is 

suitable for finite volume-based algorithms. On the other hand, it should be indicated that this 

technique may not be easy to approximate gradients of flow variables with high order 

accuracy. This is because for each cell, the flow variables are defined at the cell center and 

each cell only has 4 neighbouring cells. In this case, the information provided by a reference 

cell’s immediate neighbours is not sufficient to approximate spatial derivatives of flow 

variables with high order accuracy. When the quad-tree technique is applied to solve the 
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lattice Boltzmann equation, the situation will be even worse. To be concrete, considering the 

D2Q9 lattice model in LBM, the streaming process involves the reference node itself and 8 

neighbouring points. Obviously, the quad-tree grid does not have complete 9-point structure 

to perform streaming. Thus, to carry out streaming with quad-tree grid, complex interpolation 

procedures are necessary. In contrast, the stencil adaptive algorithm utilizes two types of 

symmetric 5-point stencils, the orthogonal stencil and the diagonal stencil (they are denoted 

as “+” and “”, respectively) as shown in Fig. 3.1. They are alternately inserted into the 

mesh as the mesh is refined level by level. Every point in a flow field is then identified by a 

unique global index and also by either of these two structures. It is found (Wu and Shu 2011) 

that the combination of these two stencil structures could construct a structure similar to the 

D2Q9 model so that the streaming process can be effectively performed. In this subsection, 

the stencil refinement technique will be introduced in the first place. It is followed by 

description of coarsening technique, action indicator and initialization of physical parameters 

for a newly inserted point. 

 

In the stencil adaptive method, a uniform Cartesian mesh is generated initially. It is regarded 

as the background mesh and labeled as level 0. For an interior mesh point i , two types of 

stencils are alternatively added for a target point (the grid point where refinement or 

coarsening happens). Concurrently, the configuration of the refined stencil is changed from 

orthogonal to diagonal or contrary. Fig. 3.2 shows the stencil of a reference node i  changed 

from orthogonal to diagonal after insertion of four new points 
1

1i , 
1

2i , 
1

3i  and 
1

4i . Meanwhile, 

the stencil type and resolution level of newly added points keep the same as those of the 

reference node i . The coordinates of four newly inserted nodes can be evaluated through 
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To further refine the mesh around the reference point i , four new points are inserted and the 

resolution level will be advanced from level 1 to level 2. The stencil type of this reference 

node will transfer to orthogonal after the second refinement. Through this stencil refinement 

process and definition of resolution level, it can be concluded that the stencil with even 

resolution level has the orthogonal configuration and the stencil with odd resolution level has 

the diagonal configuration. In order to simplify the refinement process and ensure stability, 

there are two constraints for stencil refinement process as pointed out by Ding and Shu 

(2006): 

 Constraint 1: The resolution level of the stencil at the supporting node cannot be 

coarser than that of the target stencil (the stencil of a target point) at the reference 

node.  

 Constraint 2: The maximum difference of resolution level in one stencil cannot be 

greater than a certain value, for example, one or two.  

The aim of adaptive technique is to apply the finest mesh around the region needed to be 

highly resolved while using coarse mesh for the rest. In interfacial dynamics, both the 

position and shape of interface change from time to time. Thus it is desirable to keep the 

finest mesh around the interface while removing the unnecessary nodes when solution at 

some points is not so sensitive. This can be done by the coarsening process. Compared to the 

refinement process, the coarsening process is relatively easier. In correspondence to the 

refinement constraints, there are two constraints for the stencil coarsening process: 

 Constraint 3: When the resolution level of the target stencil reaches the original level 

where the background node is generated, the stencil coarsening stops. 
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 Constraint 4: the resolution level of the stencil at the supporting nodes cannot be finer 

than that of the target stencil. 

In addition to the refinement and coarsening algorithms, an action indicator is required to 

control the dynamic adaptive process. Generally, two kinds of indicators can be used. They 

are absolute difference and relative difference of any parameter of interest. 

 Absolute difference:    1 max mini i     (3.2) 

 Relative difference: 
   

2

max min

max

i i

i

 




   (3.3) 

where i  indicates the value of   (the order parameter in the phase-field model, which is 

chosen to be the indicator in the present study) on the supporting nodes of a stencil. The 

subscript i  varies from 1 to 4 and denotes four supporting nodes in a stencil. In addition, the 

upper and lower thresholds must be set to control refinement and coarsening region. The 

value of upper and lower thresholds will be addressed in Section 3.3 for each case. 

 

Furthermore, besides a smooth transition among grid with different resolution levels, an 

accurate initialization of flow variables at the newly inserted point is also essential to obtain a 

stable solution. A high order initialization scheme proposed by Ding and Shu (2006) is 

adopted in the present study. The equation takes the form of 

        
24

4

1

1

4 4

m m
m

h
O h


 

        (3.4) 

In Eq. (3.4),    indicates any parameter of interest of a newly added point, while   is the 

Laplacian operator and it is approximated by the central difference scheme. The superscript m 
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is the resolution level of a point and the subscript   is the index of supporting nodes in the 

stencil of the newly inserted point that runs from 1 to 4. Moreover, 
mh  is the characteristic 

length of a stencil, which is defined as the distance between a supporting node and its 

reference node. For instance, take node k in Fig. 3.3 as a reference node, mh  is the distance 

between node i and k. In this manner, the macroscopic variables can be initialized. In the 

lattice Boltzmann framework, the density distribution function at the newly added point is 

initialized by its equilibrium distribution function evaluated through macroscopic variables. 

 

3.2 Stencil Adaptive Phase-field Lattice Boltzmann Method 

Since the collision is simply a local process in LBM, this part will focus on the 

implementation of streaming process, evaluation of spatial derivatives in interface capturing 

LBE and refinement of stencil near the boundary.  

 

3.2.1 Implementation of streaming process 

In the present study, D2Q9 lattice velocity model is used for simulating flow field and 

interface capturing. To provide a complete demonstration of streaming process, 

implementation of the lattice Boltzmann equation for flow field 

   , ,f t t t f t       x e x  is illustrated. Following the procedures in the work of 

Wu and Shu (2011), the governing equation for flow field can be rearranged as 

    , ,f t t l t t     x x e  (3.5) 

    , ,l t t f t t        x e x e  (3.6) 
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In the above equations,  ,x el t t   is the post-collision state of density distribution 

function. When a non-uniform grid is used, an interpolation technique developed by Wu and 

Shu (2010) is adopted to evaluate  ,l t t x e  with assistant of the surrounding points. 

Since the interpolation is applied at the same time level, the time t in function l  is omitted in 

following description. Take a Diagonal (current stencil structure)-Orthogonal (parent stencil 

structure) configuration as an example. As shown in Fig. 3.4, the solid circle indicates 

reference node, the open circle indicates existing supporting point and the solid square 

represents the intermediate streaming position of which the density distribution function must 

be interpolated based on the information on the stencil. To evaluate the distribution functions 

at position from 1l  to 8l , a second order local interpolation is utilized. First, take the position 

1l  for instance. It is on the horizontal line of iy y . In this case, only three points: 
1

3

mi 
, i  

and 
1

1

mi 
 contribute to interpolation of the density distribution function at position 1l  as 

shown in Fig. 3.5. The algebraic interpolation form reads as 

      1 1

1 1 1 1 3 2 1 3 1 1( ) m m

il t a l a l a l     x e x x x  (3.7) 

In the above equation, 
1

3

m
x , ix  and 

1

1

m
x  are the coordinates of points 

1

3

mi 
, i , and 

1

1

mi 
,  

respectively. Additionally, 1 3a   are interpolation coefficients which can be expressed as 
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In Eq. (3.8), 1l ix x x t c       . Moreover, if we use the characteristic stencil length mh  

as defined previously, Eq. (3.8) can be simplified as 
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 (3.9) 

In this manner, 1l  can be obtained through Eqs. (3.7) and (3.9). Following the same 

procedure, 3l  can be evaluated using the density distribution function at three points: 
1

4

mi 
, i  

and 
1

2

mi 
 along the vertical line. Besides the positions 1, 3, 5, 7l l l l  that fall on a line parallel 

either with x or y direction, the density distribution functions at other positions 2, 4, 6, 8l l l l

can also be evaluated in a similar way. Take the density distribution function at position 2l  

for example. Instead of performing interpolation along x and y direction, the value at position 

2l  is evaluated based on 3

mi , i  and 1

mi  along a diagonal line. The corresponding equation 

reads 

      2 2 1 2 3 2 2 3 2 1( ) m m

il t b l b l b l   x e x x x  (3.10) 

And the corresponding coefficients are 
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The above procedure is performed in the Diagonal-Orthogonal type stencil. The same 

approach can be applied to the Orthogonal-Diagonal type stencil. Furthermore, it can be 

found that the interpolation coefficients are only related to the stencil configurations and 

lattice velocities. It should be indicated that an identical x  which is equal to or smaller than 

the finest grid length and an identical t x c   is used in the numerical simulation. 

Therefore, only the spatial interpolation is required. Once l  is obtained, the streaming 

process can be carried out in a straightforward manner along different lattice velocity 

directions. Similarly, the streaming process for interface capturing lattice Boltzmann equation 

could also be completed following the same procedure. 

 

3.2.2 Approximation of spatial derivatives in interface capturing LBE 

An accurate evaluation of distribution function is a crucial issue in the adaptive lattice 

Boltzmann method. On the other hand, since the order parameter varies sharply in the 

interfacial region, a stable discretization of spatial derivatives also has remarkable effect on 

the simulation of interfacial dynamics. In this part, we will show how to use a 9-point 

isotropic structure (Swift et al. 1996, Tiribocchi et al. 2009, Guo et al. 2011) to discretize 

spatial derivatives in the interface capturing LBE. We will take the Diagonal-Orthogonal (D-

O) stencil as an example to demonstrate discretization of both the first and the second order 

derivatives of order parameter. As shown in Fig. 3.6, a point with D-O type structure is taken 

as the reference node, which has the stencil size of mh  (distance from point 2 to point 0). Its 

supporting nodes are denoted from 1 to 8 for simplicity. One forward way to construct partial 

derivatives using the reference node and the surrounding 8 points is to apply Taylor series 

expansion. For instance, to evaluate the first order derivative of   along x direction, one 
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could apply Taylor series expansion to three pairs of nodes: points 2 and 4, points 1 and 5 as 

well as points 6 and 8. 

  
2 4

2 2upper m
x h

  


  (3.12) 

 
1 5

2 2middle m
x h

  



 (3.13) 

  
8 6

2 2lower m
x h

  


  (3.14) 

Thereafter, 
x




 at the reference point could be evaluated through 

 
1

3 upper middle lowerx x x x

       
        

 (3.15) 

Similarly, the second order derivative along x direction could be evaluated by 

    
2

1 5 2 4 6 82 2 2 2

1 1 5

6 3 3m m mx h h h


      


      


 (3.16) 

 

3.2.3 Refinement of the stencil near boundary 

In certain multiphase flow problems such as contact line dynamics, accurate implementation 

of the involved Neumann boundary condition is crucial. To achieve a stable and accurate 

solution, the finest mesh should be assigned and preserved along the boundary during the 

simulation when Neumann boundary condition is needed. Hence, once a new boundary node 

is inserted, its type and relationship with the surrounding points must be identified correctly. 
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Fig. 3.7(a) demonstrates grid points along the lower boundary. In this figure, the grid near the 

boundary is refined to level 2. The open circle indicates point of level 0, the solid circle is 

point of level 1, the open diamond indicates point of level 2 and the solid square is the 

boundary point. It could be seen that the stencil structure of a boundary point is incomplete 

and different from that for interior nodes. To be specific, it can be seen in Fig. 3.7(b) that the 

stencil of a point on the lower boundary takes the form of “⊥” rather than a complete “+” 

structure, which is one type of symmetric stencil as shown in Fig. 3.1. Therefore, specific 

attention should be paid to establish connection for a boundary node. First, all initial points 

are categorized into several categories: interior points, boundary points and corner points. 

Moreover, the four boundaries and four corner points are also distinguished. Consider the 

following situation: a stencil near the boundary is refined and a point such as 
2

4i  in Fig. 3.7(a) 

is inserted into the boundary. First, track back to its parent structure and the nodes 
1

3i  and 
1

4i . 

If both of them are on the same boundary, then the newly added node 
2

4i  must be on the same 

boundary. Thereafter, points i , 
2

4i , 
1

3i  and 
1

4i  construct a lower boundary stencil “⊥”. One 

may ask how to manipulate the corner that is missed from the complete “+”. In the present 

work, this corner is viewed as pointing to the reference node itself. It could also be left as null 

in the data structure. In this manner, the grid could be refined to the finest level near the 

boundary and enable high resolution for the Neumann boundary condition. 

 

3.3 Results and Discussions 

In this subsection, the accuracy and efficiency of the developed stencil adaptive phase-field 

lattice Boltzmann method will be validated through several numerical tests including the 

stationary bubble case, bubble rising under buoyancy and the contact line problem-spreading 
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of a droplet in the partial wetting regimes. It should be stressed that only the results of grid 

independency were shown hereafter for convergence study. This is because there is a relation: 

x t c    (c usually takes value of 1) in LBM. With this relation, grid independency also 

implies time step size independency.  

 

3.3.1 Stationary bubble 

As a classical validation case, the simulation of a stationary bubble is performed in this 

subsection. First, the effect of interface thickness is studied. Then, the convergence of phase-

field model to sharp interface limit is investigated. These numerical experiments serve to 

provide a guidance to select appropriate numerical parameters and demonstrate the 

characteristics of stencil adaptive phase-field lattice Boltzmann method. The validation of 

Laplace law is also shown at the end of this subsection. 

 

3.3.1.1 Effect of interface width 

In this case, a bubble initially represented by many line segments will eventually return to its 

equilibrium state and show a smooth circular shape. The flow domain is represented by a 

background uniform grid of 121 121 with the finest region of 4 resolution levels locating in 

the vicinity of the interface. The finest grid spacing minx  is set as 1. The radius of this 

bubble is set as 25 background grid length. Moreover, the densities ( 3kg m ) of two kinds of 

fluids are set as 1.2H   and 1L  . The order parameter is set to be 0  inside the bubble 

and 0  (defined by 0
2

H L

unit

 





  with unit  indicates unit mass density) elsewhere. In 
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addition, the other physical parameters are set as 0.1  ( mN m ), 0.875   and 0.7  . 

For a 2D problem, the Laplace law reads as 

 p R     (3.17) 

where p  is the pressure jump across the interface and R  is the radius of the bubble. In 

order to provide a guidance to choose an appropriate interface thickness in the stencil 

adaptive phase-field LBM, the effect of interface width with a fixed radius and resolution 

level is investigated first. 

 

The width of interface layer is taken from 2.0 to 6.0. Figure 3.8 plots both theoretical and 

numerical surface tension force versus interface width. It is shown that the accuracy of 

numerical surface tension increases with the interface width. When the interface width is 

equal to 2.0, the numerical simulation only resolves approximately 60% of theoretical surface 

tension force. However, when the interface width gradually increases to 3.5, the numerical 

simulation resolves more than 90% of theoretical surface tension force. Moreover, the 

numerical results become stable and approach the analytical value when the interface width 

increases even further. This is attributed to the fact that the discretization error will decrease 

as the interface width increases (Lee and Lin 2005). Therefore, in order to accurately resolve 

the surface tension force, the interface width should be set larger than 3 grid spacing in the 

vicinity of interface. 
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3.3.1.2 Effect of stencil refinement on Cahn number, solution accuracy and 

computational efficiency 

Based on the investigation of the influence of interface thickness, it can be seen that the 

interface thickness is usually selected as 3 to 5 grid spacing to accurately resolve the surface 

tension. On the other hand, the phase-field model will converge to sharp interface limit only 

when the Cahn number, which is defined as Cn w L  (where w  indicates the interface 

thickness and L is the characteristic length of flow domain), decreases toward 0. If a uniform 

grid is used, the high resolution of a sharp interface will entail unnecessary fine grid all over 

the flow domain and thus poses strict constraint in problem size even for 2D problems. 

Consequently, the dynamic refinement and coarsening are crucial for the model. To 

demonstrate the superiority of adaptive phase-field model, the Cahn number is examined 

when the grid resolution level increases from 0 to 6 with radius fixed as 25 times of the 

background grid length and the interface thickness is set as 3.5 lattice units. Owing to the 

symmetry of this problem, only the right upper corner of initial order parameter contour 

together with grid distribution at different resolution levels is plotted in Fig. 3.9. Meanwhile, 

the equilibrium interface profile versus distance away from the center at different resolution 

levels is presented in Fig. 3.10. It can be observed that the interface thickness reduces 

remarkably as the resolution level increases. Compared with the result of a uniform grid 

(resolution level = 0), the interface profile simulated at resolution level = 6 is very sharp. 

 

Furthermore, the Cahn number and the number of nodes used for each case are listed in Table 

3.1. Supplemented by adaptive technique, the Cahn number in the phase-field model becomes 

one order smaller when the resolution level increases from 0 to 6. Meanwhile, it can also be 

found from Table 3.1 that 961 961  nodes are required for a uniform grid if Cahn number is 
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chosen as 0.00875. However, with adaptive technique, only 4.25% of nodes are needed. To 

further clarify the relationship between Cahn number and resolution level in the stencil 

adaptive lattice Boltzmann method, a quantificational equation is provided. The interface 

thickness can be expressed as 

 
22

background

m m

x
W C


  (3.18) 

In the above equation, C is the number of grid-spacing used to represent the interface 

thickness in the phase-field model, m indicates resolution level and backgroundx  is background 

grid spacing. Usually, C  and backgroundx  are fixed during the simulation. For this case, when 

the grid is refined to m  levels, the finest mesh will be 22
m

backgroundx
 

  
 

. Thus the interface 

thickness can be calculated through Eq. (3.18). Consequently, the Cahn number can be 

expressed as 
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x
Cn C

L

 
 
 
 

 (3.19) 

Eq. (3.19) implies that the Cahn number will be 22
m

 times smaller when resolution level is 

equal to m as compared to a uniform background grid. 

 

Besides the accuracy, the efficiency improvement is demonstrated in Table 3.2 ( 63 10  steps 

were run on both solvers). The absolute and percentage of number of nodes used by the 

adaptive LBM and the standard LBM solver with uniform grid (the uniform grid spacing is 

taken as the same with the minimum grid spacing in adaptive LBM) are presented in the table. 
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It can be seen that with increase of the refinement level, the number of nodes used by 

adaptive LBM can be reduced remarkably as compared to uniform grid. Furthermore, the 

CPU time is also compared in the table. It can be found that, when the resolution level equals 

zero, the time taken by the adaptive solver is double of that by uniform solver. This is due to 

the fact that adaptive solver utilizes a non-uniform grid, and extra time is needed for 

searching the neighbouring nodes of a reference node. It might not be very economical to 

conduct a simulation on a uniform grid using adaptive solver as expected. Nevertheless, when 

the resolution level is increased to 2 and 4, the time taken by adaptive solver becomes much 

less than uniform solver because substantial amount of unnecessary nodes is avoided in the 

simulation. Consequently, stencil adaptive LBM is a favorable solver when both high 

resolution and efficiency are desired. 

 

3.3.1.3 Validation of Laplace law 

To validate Laplace law, the simulation of a bubble with radius varying from 10 to 30 

(variation of radius is chosen as 2.5) is performed. In addition, the interface width is fixed as 

4 and the finest refinement level is set as 4 based on the previous investigation on accuracy 

and efficiency. The pressure jump as a function of curvature is presented in Fig. 3.11. As 

predicted by Eq. (3.17), the relationship is linear, which is well confirmed in the figure. 

Furthermore, the slope of the straight line is also the same as the analytical surface tension. 

 

3.3.2 Bubble rising under buoyancy 

The accuracy and convergence of the stencil adaptive LBM for multiphase flows have been 

testified through simulation of a stationary bubble under different situations. To further 
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demonstrate the ability of this method to capture moving interface, a rising bubble in a 

quiescent flow is simulated. The parameters are chosen the same as those in the work of 

Takada et al. (2001). They used the free-energy based LBM (swift et al. 1996) and included 

the buoyancy force in the lattice Boltzmann equation for the flow field. The simulations in 

their work were performed on the uniform grid. In this case, a bubble with radius of 12 lattice 

units is initially centered at (60, 60) in a flow domain of 80 300 . A uniform grid of 41 151  

is used as background mesh and the resolution level is set as 4. Different from the case of 

stationary bubble, the shape and position of the interface cannot be predicted in advance for 

this problem. Therefore, a dynamic refinement/coarsening indicator is required. In the present 

study, the absolute difference of the order parameter is employed as the action indicator, and 

the corresponding lower and upper thresholds are set as 1.5 and 3.0, respectively. The 

physical parameters are set as 1.42H  , 0.58L   ( 3
kg m ) and 0.00521   ( N m ). The 

order parameter in this case is set as 0  inside the bubble and 0  elsewhere. In addition, 

several important dimensionless parameters including Morton number, Eotvos  number as 

well as Reynolds number are defined below 
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
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where g  is the gravity acceleration, d  is the diameter of the bubble,   is the dynamic 

viscosity and TV  is the terminal velocity of the rising bubble. Four cases with Eotvos  

number in the range of 5 to 40 are simulated. The relevant parameters are listed in Table 3.3. 
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For this problem, the bubble will first accelerate and then approach a terminal velocity. This 

trend is clearly demonstrated in Fig. 3.12, which shows the evolution of the velocity at 

different Eo . Compared with the results of Takada et al. (2001), the adaptive lattice 

Boltzmann method provides good results with only approximately 30% of nodes used by a 

uniform grid in the previous study (Takada et al. 2001) (To be precise, 7547 nodes are used 

in the present study while 24381 nodes are used for the uniform grid). This is because 

although less number of nodes is used in the present study, the adaptive technique enables the 

finest grid being located in the vicinity of interface where the largest gradient occurs. The 

exact value of terminal velocity is compared with the data in the literature in Table 3.4. It can 

be seen from Table 3.4 that the present terminal bubble velocity compares well with those of 

Takada et al. (2001) even with much lesser nodes used. Furthermore, the bubble shape 

represented by order parameter contour together with local grid distribution in part of the 

flow field is presented in Fig. 3.13. The present bubble shapes of all cases are in line with 

those obtained by Takada et al. (2001) and Hirt and Nichols (1981). 

 

Additionally, the influence of mesh refinement on accuracy in this dynamic process is also 

investigated. Three different refinement levels are chosen to simulate cases 2 and 4. Table 3.5 

compares the terminal velocities obtained through refinement level at 2, 4 and 6 with the data 

available in the literature. It shows that, when the background mesh is kept the same, and the 

finer grid is used in the vicinity of the interface, the numerical results will be more accurate. 

Furthermore, Fig. 3.14 shows the bubble shape and its surrounding mesh with mesh 

refinement level being equal to 2, 4 and 6, respectively. It could be seen that as mesh is 

refined level by level, the bubble will converge to a specific shape. From the grid refinement 
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study above, it can be inferred that the convergence as well as the accuracy of current 

adaptive technique for dynamic process are well validated. 

 

3.3.3 Spreading of a droplet in the partial wetting regime 

In this subsection, the droplet spreading which involves three phase interactions is simulated 

to demonstrate the accuracy of boundary refinement. To be specific, a two-dimensional liquid 

droplet spreading on a solid surface with the equilibrium contact angle varying from 45  to 

135  is simulated (the variation of contact angle is chosen to be 15 ). The computational 

domain is set as 200 100  with a droplet radius of 25 lattice units. The initial contact angle is 

160 . A uniform grid of 101 51  is used as background mesh. The resolution level is set as 4, 

and the absolute difference of the order parameter is chosen as the action indicator with the 

lower and upper thresholds being selected to 1 and 3, respectively. Different from the bubbly 

flows, the highest resolution region in the contact line dynamics usually locates around the 

boundary. Therefore, besides the vicinity of the droplet interface, the finest grid is also 

applied on the lower wall. For the physical parameters, we take 1.42H  , 0.58L   and the 

surface tension as 0.00521. In addition, the interface thickness is taken as 6 times of the finest 

grid spacing. Fig. 3.15 compares the numerical equilibrium contact angle and theoretical 

value. In this figure, the line is the theoretical value predicted by 

   
3 3

2 2
1

cos 1 1
2

  
 

    
 

, and the open circle is the numerical result of adaptive LBM. 

The equilibrium contact angle is calculated based on droplet height and base radius measured. 

It can be observed that the current results are in good agreement with theoretical values in a 

wide range of contact angles. Fig. 3.16 presents equilibrium profile of droplet in three 
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different cases ( eq  equals 60 , 90  and 120 ). Additionally, the spreading process together 

with grid distribution are plotted in Fig. 3.17 which presents the droplet profile at several 

typical time stages when 60eq  . Particularly, Figs. 3.17 (a) to (c) show the droplet 

deforming locally. The time here is nondimensionalized by /U D  where D  is initial diameter 

of the drop and U  is given as 45 10 . It is obvious that the shape of the droplet only 

changes locally in vicinity of the contact line region near the lower wall. Figs. 3.17 (d) to (f) 

demonstrate the global spreading process. During this stage, both the height and base 

diameter change dramatically until the droplet approaches the equilibrium contact angle. 

 

Furthermore, the computational efficiency of the proposed stencil adaptive phase-field LBM 

to simulate a dynamic process is studied through this case. The equilibrium contact angle is 

chosen as 60  without loss of generality. In order to compare the efficiency, the refinement 

levels are set as m = 2, 4 and 6, respectively and three sets of uniform grids with the grid 

spacing at 22
m

backgroundx  are used for comparison. First, the accuracy of the numerical 

simulation is verified through comparison of the numerical equilibrium contact angle with the 

theoretical prediction in Table 3.6. Thereafter, the efficiency improvement is presented in 

Table 3.7. It could be seen that if the uniform grid is adopted, the computational load quickly 

increases as the grid size is increased. Concurrently, the adaptive algorithm stands out of the 

standard LBM with regard to both computational storage and efficiency. Concretely speaking, 

when m = 4 and 6, approximately 30% of grid points is used in adaptive technique as 

compared to the standard LBM. At the same time, 50% to 60% of computational time is 

required. These results prove the enhanced efficiency of current scheme, which indicates that 

the use of adaptive approach in LBM for multiphase flow simulation is favorable. 
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3.4 Concluding Remarks 

In this Chapter, with the help of stencil adaptive technique, a high resolution phase-field 

lattice Boltzmann method for the incompressible multiphase flows was developed. The two 

major ingredients in the current method are the phase-field lattice Boltzmann model and a 

stencil adaptive lattice Boltzmann algorithm. The phase-field model allows simulation of 

multiphase flows on an Eulerian grid regardless of topology and shape change of the interface. 

In addition, it can also naturally resolve the contact line problem by simply introducing the 

diffusion-induced motion. On the other hand, the stencil adaptive algorithm utilizes two types 

of symmetric stencils. These two stencils can be combined to form a similar structure as 

D2Q9 model in LBM. As a result, only one-dimensional interpolation with second order 

accuracy is performed. Therefore, the stencil adaptive LBM maintains the simplicity of the 

original LBM. To validate the proposed method, several multiphase flow problems have been 

simulated. The accuracy and convergence of the current method were first investigated 

through the simulation of a stationary bubble. The numerical result compared well with that 

predicted by Laplace law. Furthermore, to demonstrate the ability of proposed method for 

capturing moving interface, simulation of a rising bubble in a quiescent flow was carried out. 

In addition, the current method was also applied to simulate the spreading of a droplet in the 

partial wetting regime, which showed the capability of present method for interaction of three 

phases (solid and two liquid phases). For these dynamic problems, the accuracy and 

efficiency of current scheme were also examined. All the obtained results showed good 

agreement with those in the literature. In conclusion, the numerical experiments performed in 

this study indicate that the current stencil adaptive phase-field LBM enables a high resolution 

for the interfacial dynamics with greater grid distribution flexibility and considerable saving 

in computational effort.  
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Table 3.1 Comparison of Cahn number and the number of nodes used in stencil adaptive 

LBM 

Resolution level
 

Cn  Number of nodes
 

0 0.07
 

14641
 

2 0.035
 

17461
 

4 0.0175
 

23797
 

6 0.00875
 

39289
 

 

 

Table 3.2 Comparison of total numbers of nodes and running time between stencil adaptive 

LBM and standard LBM (The computations were accomplished on Laptop with CPU 

specifications: Intel Core 2 Duo P8400 / 2.26 GHz.) 

Solvers 
Resolution 

level 

Number of 

nodes 

Percentage of 

nodes used by 

adaptive 

solver (%) 

Running time (s) 

Percentage of 

time used by 

adaptive 

solver (%) 

Standard 

LBM 
- 

121 121  
- 11203.81 - 

Stencil 

adaptive LBM 
0 14641 100

 
21630.48

 
193.06 

Standard 

LBM 
- 241 241

 
- 41578.39 - 

Stencil 

adaptive LBM 
2 17461

 
30.06

 
37949.22

 
91.27 

Standard 

LBM 
- 481 481

 
- 187540.91 - 

Stencil 

adaptive LBM 
4 23797

 
10.29

 
85124.06

 
45.39 
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Table 3.3 Parameters for the bubble rising under buoyancy 

Cases Eo  Mo w  

1 5 0.2267 1.5 

2 10 0.4535 1.5 

3 20 0.9070 1.2 

4 40 1.8134 1.0 

 

 

Table 3.4 Comparison of terminal velocity (m/s) for bubble rising under buoyancy 

Cases VOF (Hirt and Nicholas 1981)  Takada et al. (2001) Present 

1 8.28e-3 7.82e-3 7.83e-3
 

2 1.43e-2 1.38e-2 1.41e-2 

3 2.15e-2 2.17e-2 2.16e-2 

4 3.08e-2 3.11e-2 3.18e-2 

 

 

Table 3.5 Terminal bubble rising velocities with different refinement levels (results of VOF 

by Hirt and Nichols 1981; results of Takada et al. 2001) 

Cases VOF  Takada et 

al. (2001) 

Present  

(2 levels) 

Present  

(4 levels) 

Present  

(6 levels) 

2 1.43e-2 1.38e-2 1.21e-2 1.41e-2 1.42e-2 

4 3.08e-2 3.11e-2 3.3e-2 3.18e-2 3.09e-2 
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Table 3.6 Numerical equilibrium contact angles with different refinement levels 

Refinement level 2 4 6 

Numerical eq ( ) 58.7 59.2 59.5 

 

 

Table 3.7 Efficiency comparison between standard and stencil adaptive LBM in droplet 

spreading 

Solvers 
Resolution 

level 

Number 

of nodes 

Percentage of 

nodes used by 

adaptive 

solver (%) 

Running 

time (s) 

Percentage 

of time used 

by adaptive 

solver (%) 

Standard 

LBM 
- 201 101  - 8218.14

 
- 

Stencil 

adaptive 

LBM 

2 9865 48.60 7620.59
 

92.73 

Standard 

LBM 
- 401 201  - 37442.89

 
- 

Stencil 

adaptive 

LBM 

4 22847 28.34 19200.30
 

51.28 

Standard 

LBM 
- 801 401  - 126153.99

 
- 

Stencil 

adaptive 

LBM 

6 90825 28.27 82994.88
 

65.79 
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Fig. 3.1 Configuration of Orthogonal and Diagonal stencils 

 

 

 

Fig. 3.2 Stencil at an arbitrary point i changes from level 0 (orthogonal) to level 1 (diagonal) 

 

 



70 

 

 

 

Fig. 3.3 Assistant nodes for interpolation of a newly inserted node k 

 

 

 

Fig. 3.4 Sketch of local interpolation for a reference node i  and streaming on a diagonal-

orthogonal stencil 
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Fig. 3.5 Sketch for the interpolation of 1l  along a horizontal line 

 

 

 

 

Fig. 3.6 Sketch of points used for approximation of the first and second order derivatives 
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(a) Sketch of stencil refinement near a boundary 

 

 

(b) The stencil structure of a reference node on a boundary 

Fig. 3.7 Stencil structure on the boundary 
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Fig. 3.8 Surface tension ( mN m ) versus interface width (in lattice unit) 
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(a) Resolution level=0    (b) Resolution level=2 

 

(c) Resolution level=4   (d) Resolution level=6 

Fig. 3.9 Local interface profile with gird distribution and different resolution levels 
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Fig. 3.10 Interface profile when resolution level increases from 0 to 6 (The length is scaled by 

the initial diameter of the bubble and the order parameter   is an nondimensional parameter) 

 

 

Fig. 3.11 Validation of Laplace law (R in lattice unit and /p R   theoretically) 



76 

 

 

 

 

 

Fig. 3.12 Evolution of the bubble velocity (m/s) at different Eo  (N is time step) 
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(a) 5Eo      (b) 10Eo   

  

(c) 20Eo      (d) 40Eo   

Fig. 3.13 Shape of the bubble at different Eo  with local grid distribution 
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(a) Resolution level=2  (b) Resolution level=4 

 

(c) Resolution level=6  

Fig. 3.14 Bubble shape with different levels of refinement (Case 4) 
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Fig. 3.15 The equilibrium contact angle ( ) versus dimensionless wetting coefficient 

 

 

(a) 60eq     (b) 90eq     (c) 120eq   

Fig. 3.16 Droplet shapes at different equilibrium contact angles 
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(a) T = 0.02    (b) T = 0.04 

   

(c) T = 0.08    (d) T = 0.2 

   

(e) T = 0.4    (f) T = 0.8 

Fig. 3.17 Droplet shapes with grid distribution at different time when 60eq   
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Chapter 4 

Development of a Free Energy-Based Phase-Field Lattice Boltzmann 

Method for Simulation of Multiphase Flow with Density Contrast 

 

Chapter 4 will be devoted to solve the other challenging issue in the simulation of multiphase 

flows by phase-field lattice Boltzmann method (LBM), that is, simulation of density contrast 

multiphase flow problems. It is known that the phase-field LBM has become increasingly 

popular for multiphase flow simulation. However, it is nontrivial to modify the density 

matched LBM to the density contrast cases. The present method is to improve the Z-S-C 

model (Zheng et al. 2006) for correct consideration of the density contrast in the momentum 

equation. The original Z-S-C model uses the particle distribution function in the lattice 

Boltzmann equation (LBE) for the mean density and momentum, which ensures a stable 

simulation but cannot properly consider the effect of local density variation in the momentum 

equation. To correctly consider it, the particle distribution function in LBE must be for the 

local density and momentum. However, when the LBE of such distribution function is solved, 

it will encounter a severe numerical instability. To overcome this difficulty, a transformation, 

which is similar to the one used in the works of He et al. (1999) and of Lee and Lin (2005) is 

introduced in this work to change the particle distribution function for the local density and 

momentum into that for the mean density and momentum. As a result, the present model still 

uses the particle distribution function for the mean density and momentum, and in the 

meantime, considers the effect of local density variation in the LBE as a forcing term. 

Numerical examples demonstrate that the present model correctly simulates multiphase flows 
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with density contrast, and it has an obvious improvement over the Z-S-C model in terms of 

solution accuracy. 

 

The rest of this Chapter is arranged as follows: First, a brief review of Z-S-C model and 

incompressible transformation will be presented in Section 4.1. Thereafter, a novel free 

energy-based phase-field LBM will be proposed in Section 4.2 to simulate multiphase flow 

problems with density contrast. The proposed method will be verified in Section 4.3. The 

validation cases include two-dimensional (2D) viscous coupling of multiphase flows, 

nonlinear development of Rayleigh-Taylor instabilities and droplet splash on the wet surface. 

In addition, simulation of three-dimensional (3D) off-center droplet collisions and drop 

impact on the dry walls will also be performed. Finally, the concluding remarks will be 

drawn in Section 4.4. 

 

4.1 Review of Z-S-C model and incompressible transformation 

4.1.1 Z-S-C model 

In Z-S-C model, the Cahn-Hilliard equation is used for the interface capturing and a Lattice 

Boltzmann Equation (LBE) which uses the mean density of two phases as conservative 

variable is used for the flow field simulation. The interface is captured via the Cahn-Hilliard 

equation (Zheng et al. 2005, 2006, 2008)  

   2
u M

t



 


   


 (4.1) 
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Here   is the order parameter, M is the mobility and   is the chemical potential that is 

defined as 
2 2 2

04 ( )A        ( 0  is the order parameter value in the bulk fluid region). 

The coefficients   and A  can be evaluated through 
0

2w A   and 
3

0
4 2 3A    with 

w  and   being interface width and surface tension, respectively. In the lattice Boltzmann 

framework, the Cahn-Hilliard equation can be expressed by a Lattice Boltzmann Equation 

(LBE) as  

 

         

   

, , 1 , ,

, ,

x e x x e x

x x
eq

g t t t g t q g t t g t

g t g t

     

 



  



        




 (4.2) 

where g  is the distribution function and used to compute the order parameter, 
eqg  is the 

equilibrium distribution function and   is relaxation parameter. Moreover, t  is the time 

step and e  is the lattice velocity (the value of which depends on the lattice velocity model 

chosen). For two-dimensional (2D) and three-dimensional (3D) flow problems, D2Q5 and 

D3Q7 lattice velocity models are used, respectively. The corresponding lattice velocity as 

well as equilibrium distribution function 
eqg  are given by  

 

 

 

 

0,0 , 0

1,0 , 1,3

0, 1 , 2,4

e





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 







 (4.3a) 
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 (4.3b) 
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Eq. (4.3a) is the lattice velocities for D2Q5 model and Eq. (4.3b) is for D3Q7 lattice velocity 

model. In addition,  

 e u
eq

g A B C
    

      (4.4a) 
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  
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 (4.4b) 

where D  is the dimension.  1 0.5q

   and   are related to the mobility as 

 0.5M q q t

    . Moreover, the order parameter is calculated through 

 g



   (4.5) 

As introduced in Chapter 2, this LBE can recover the Cahn-Hilliard equation with second 

order accuracy. Apart from using the density distribution function g  for interface capturing, 

another set of LBE is used for the flow field simulation (Zheng et al. 2006) 

 

   
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w t
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 
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 



  
  
    


   


     

 (4.6) 

The equilibrium distribution function is 

 
 

22

2 4 22 2

ue ue ueq

s s s

h w A w n
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 (4.7) 
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with    0 9 4 15 1 3 4A n n      and  1~8 3 1 3A n    . Moreover, the density 

and velocity are calculated through the following equations 

 n h


  (4.8a) 

  
1

2
u e Fn h

  



      (4.8b) 

It should be noted that in the Z-S-C model, the density of flow field is set as the mean value 

of two different fluids, that is,   / 2
H L

n     with H  and L  representing high and low 

density values. In this manner, a pressure field 
2

snc  (where sc  is the speed of sound) that 

subjects to small variation is generated implicitly by the streaming process in LBE. This 

ensures continuity of pressure across the fluid-fluid interface. However, this manipulation 

only is unable to consider the effect of density contrast (Fakhari and Rahimian 2010).  This is 

because the effect of local density variation is not considered in the momentum equation. The 

major contribution of this work is to remove this drawback.  

 

4.1.2 Incompressible Transformation 

As indicated previously, to correctly consider the effect of density contrast in the momentum 

equation, the particle distribution function in LBE must be for the local density and 

momentum. Then, to avoid high variation of the particle distribution function which may 

cause numerical instability, we need to introduce a similar transformation like the 

incompressible transformation proposed by He et al. (1999) and applied in the work of Lee 

and Lin (2005). In the following, we will give a very brief description on the incompressible 
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transformation. By setting  2 2

s s
g f c p c w
  

    and  2 2eq eq

s s
g f c p c w
  

   , one can 

simply transform the original particle distribution function f  for the local density and 

momentum into g  for the pressure and momentum. The resultant discrete Boltzmann 

equation (DBE) after transformation reads (Lee and Lin 2005) 

      21
e e u

eq

s
g g g c w

t
        

  



             



 
    

 
 (4.9) 

where 
2 1 3sc   is the sound speed in LBM.   is defined as 
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 (4.10) 

By using the Chapman-Enskog expansion analysis, Eq. (4.9) can recover the pressure and 

momentum equations as follows (Lee and Lin 2005) 

 
2

0u
s

p
c

t



   


 (4.11a) 

   T
p

t
   

               

u
u u u+ u  (4.11b) 

The pressure and velocity fields can be obtained from the pressure distribution functions. In 

addition, the local density in the above equation is calculated from the order parameter 

 1L H       (with   taking the value of 0 and 1 in two bulk regions).  
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4.2 New Free Energy-Based Lattice Boltzmann Model for Multiphase Flow with Density 

Contrast 

To illustrate the present model, we will start from the following LBE with the interfacial 

force 

    
       

2

, ,
, ,

e ux x
x e x

eq

h s

h t h t
h t t t h t t

c

  
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 
  



   
       (4.12) 

When the particle distribution function h  in Eq. (4.12) is used for the mean density and 

velocity, the effect of the local density variation cannot be properly considered in the 

momentum equation. This may lead to incorrect results for multiphase flow problems with 

density contrast. To correctly consider the local density effect in the momentum equation, h  

has to be used for the local density and velocity. On the other hand, when  ,h t x  is used for 

the local density, from Chapman-Enskog expansion analysis, it is known that the streaming 

process implicitly generates 
2

sc  (where   is the local density) for the pressure. This 

relationship between pressure and density is valid for the incompressible single phase flow as 

both pressure and density are continuous and change very little in the flow domain. However, 

when the multiphase flow with density contrast is considered, the relationship of 
2

sp c  

will lead to unphysical solution. This is because the fluid-fluid interface is a contact 

discontinuity, where the pressure is continuous but the density is discontinuous. In the lattice 

Boltzmann framework, sc  is a constant in the chosen lattice velocity model. Obviously, the 

relationship of 
2

sp c  will give a discontinuous pressure across the fluid-fluid interface. 

This is physically incorrect. To correctly recover N-S equation, we have to take the difference 

of 
2( )sp c   as a forcing term (He et al. 1999) in LBE. It is shown in the Z-S-C model 
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(Zheng et al. 2006) that the pressure field can be computed by 
2

0 sp c , where 0  is the 

mean density. Thus, to simulate multiphase flows with density contrast, the LBE should be 

changed to 
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 (4.13) 

When the density contrast increases, the calculation will become very unstable due to the 

presence of large density gradient and resultant drastic velocity oscillation. It is very likely to 

violate the low Mach number limit as    O O Mau .  To solve this problem, we follow the 

idea of incompressible transformation and introduce the following transformation to change 

the particle distribution function for the local density and velocity into that for the mean 

density and velocity,  

  0f h w       (4.14) 

where h  is used for the local density and f  is utilized for the mean density. The 

corresponding equilibrium distribution function is 

  
   

22

0 0 2 4 22 2

eq eq

s s s

f h w w
c c c

 

      
   
         

    

ue u e u
 (4.15) 

where 0  is defined as the mean density of multiphase flow,  
0

2
H L

     which is 

subjected to small variation and   is the local density which varies across the fluid interface. 

By using Eqs. (4.13) and (4.14), we can derive the following expression 
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With incompressible condition of 0 0
t




 


 
 
 

+ u  and 0
t




 


 
 
 

+ u , the above 

equation can be rewritten as 
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 (4.17) 

Substituting Eq. (4.17) into Eq. (4.13), the following equation can be obtained 
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 (4.18) 

For the incompressible flow 
2

0 ~ ( )O Ma  and ( ) ~ ( )- w O Ma  , thus 

3

0( ) ~ ( )- w O Ma     which can be omitted. Moreover, to recover the N-S equation more 

accurately, the forcing term are modified and the LBE for the flow field are written as (Guo 

et al. 2011) 
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 (4.19) 

where f h   and f  is written as f  for convenience. The macroscopic variables are 

computed by 
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       (4.20) 

The corresponding equilibrium distribution function is 
eq eqf f  . In the following, the 

Chapman-Enskog expansion analysis is applied to Eq. (4.19). Define 
     0 1 22

f f f f
   

    , 

0 1
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t t t
      , 1

   , and 
 1

G G
 

 , where   is a small expansion parameter.  The 

following relations can be established 
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with 
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. Additionally, the relations 
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  could also be established. With 

these relations, the zeroth moments of Eq. (4.21b) and (4.21c) give 
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Moreover, the first moments of Eq. (4.21b) and (4.21c) are  
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To sum up, the macroscopic equations recovered are 
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where 
2

0 sp c . It can be seen that Eq. (4.19) can correctly reflect the influence of density 

contrast and it will be used for simulation of the flow field. D2Q9 and D3Q15 lattice velocity 

models are used for this LBE for 2D and 3D problems respectively. From the density 

distribution function, the mean density and velocity of the flow field can be calculated. 

Meanwhile, the local density can be computed from the order parameter by 
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   
0 0

2
L H L

           where  
0

2
H L

     is in the high density phase ( 0
  in the 

other phase). It can be seen that in this way, the conservation variable of the distribution 

function can be kept away from large oscillation and thus enable a stable simulation. 

Concurrently, the influence of density gradient is incorporated into the governing equation as 

a forcing term. Besides the LBE for the flow field, one also needs a governing equation for 

evolution of the order parameter. In the current work, the LBE in Z-S-C model is adopted 

because D2Q5 (for 2D cases) and D3Q7 (for 3D cases) models used in Z-S-C interface 

capturing LBE are more computationally effective. 

 

In conclusion, a new free energy-based lattice Boltzmann model has been proposed in this 

subsection. This work mainly improves the lattice Boltzmann equation for simulation of the 

flow field used in the work of Zheng et al. (2006). To correctly account for the density 

contrast in the multiphase flow simulation, the particle distribution function should be used 

for the local density. Then, to improve numerical stability, a transformation is introduced to 

change the particle distribution function for the local density into that for the mean density.  

 

4.3 Results and Discussions 

In this Section, the proposed free energy based LBM is validated through both stationary and 

dynamic problems. There are 2D cases including viscous coupling of multiphase flow in a 

plane channel, nonlinear development of Rayleigh-Taylor instability and droplet splash on a 

wet surface as well as 3D cases including off-center droplet collision and droplet splash on a 

surface considering dynamic contact angle. 
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4.3.1 Viscous coupling in a 2D Channel 

Viscous coupling of immiscible multiphase flows is a fundamental problem in porous media 

(Huang and Lu 2009). In this subsection, we study viscous coupling in a 2D channel as 

sketched in Fig. 4.1. The computational domain is set as 100 200 . The periodic boundary 

condition is applied on the left and right boundaries. Meanwhile, the no slip boundary 

condition is used on the upper and lower boundaries. A body force of 8
1.5 10G


   is applied 

only on fluid 1. It can be seen from Fig. 4.1 that one phase moves along the solid surface in 

the region of a y b   and the other flows in the region of 0 y a  . The dynamic viscosity 

ratio between the two phases is defined as 1 2/R   . To examine the ability of the 

proposed method to account for density contrast, the kinematic viscosity is set as the same for 

both fluids. Hence, 1 2/R     takes the same value as 1 2R   . The analytical 

velocity profile can be expressed as 
2

1 1 1u A y C   and 2 2 2u B y C  , where 1 1/ 2A G v  ,

2 12B R Aa ,  2

1 1 2
C Aa B b a     and 2 2C B b  . A detailed derivation can be found in 

Huang and Lu (2009). The numerical results are plotted together with those of Z-S-C model 

and theoretical prediction in Fig. 4.2, in which the density contrasts are 1 2 1 18R     

(Fig. 4.2(a)) and 1 50R   (Fig. 4.2(b)), respectively. It can be seen that the results obtained 

by Z-S-C model are smooth parabola and different from the analytical solutions. On the other 

hand, the present numerical results agree well with the corresponding analytical solutions. A 

small difference is that the turning point at lattice unit ( 50 ) is not as sharp as the analytical 

solution. This is expected since a diffuse interface method is used where the fluid-fluid 

interface spreads over several mesh intervals. Conversely, this effect is not considered in the 

analytical solutions. In conclusion, the results demonstrate that the proposed method can 

successfully resolve the stationary multiphase flow problems with density contrast. 
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4.3.2 Rayleigh-Taylor instability 

In this subsection, a dynamic problem, Rayleigh-Taylor instability, is simulated. When a 

heavier fluid is placed on the top of another lighter fluid and the system is subject to 

gravitational field, any perturbation along the interface can grow nonlinearly. This is the 

Rayleigh-Taylor instability (Sharp 1984, Tryggvason 1988, He et al. 1999). It is characterized 

by the Atwood number    
H L H L

At        which represents the density difference of 

two fluids and the Reynolds number 3Re L g   ( L  is the characteristic length which is 

taken as the width of the domain, g  is gravity acceleration and v  is the kinematic viscosity). 

The high nonlinearity and density difference-dependent characteristics of the problem make it 

a challenging and suitable dynamic validation case for the proposed LBM to simulate 

multiphase flows with density contrast.  

 

To verify the proposed model, the same computational parameters are applied as in He et al. 

(1999). The Atwood number is set as 0.5, the Reynolds number is taken as 256 and the 

viscosity contrast is not considered. The computational domain is 4L L  and an interface is 

initialized at  2 0.1 cos 2 /y L L x L  , which indicates a planer interface perturbed by a wave 

with amplitude of 0.1L  and wave number of 1k  . Three sets of mesh sizes: 64 256 , 

128 512  and 256 1024 , are used to examine the grid dependency. Fig. 4.3 compares the 

time evolution of bubble/spike position on three different grids with that of He et al (1999). 

In this figure, the time was non-dimensionalized by L g/ . The numerical results show that 

the present solver provides satisfactory results on all three sets of grids. It could be found that 

the results on grids of 128 512  and 256 1024  are almost identical to each other. As 
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demonstrated in Fig. 4.4, at the initial stage of Rayleigh-Taylor instability, two symmetric 

rotating vortices are formed around the evolving interface subject to gravity. The vortices are 

elongated as the initial perturbation grows, and are finally broken up into two pairs of small 

vortices. Fig. 4.5 shows the interface contours represented by 0   at five non-dimensional 

time levels from 1 to 5. It could be seen that as time progresses, the initial perturbation first 

grows downwards following the direction of gravity (Time=1.0). The spike of heavier fluid 

then rolls up and two secondary side-spikes are generated (Time=2.0 and 3.0). Thereafter, the 

main spike keeps moving downwards while two second side-spikes evolve upwards driven by 

the up-moving lighter fluid (Time=4.0). After that, the extended side-spike would break up 

into several small droplets (Time=5.0). The present interface patterns at different time states 

compare well with those of He et al (1999) as shown in Fig. 4.6. The differences of interface 

structures at Time=5.0 are attribute to the fact that different numbers/values of contour levels 

were plotted. 

 

4.3.3 Droplet splash on a wet surface 

To further verify the proposed model, the droplet splash on a wet surface is simulated. Both 

the time evolution of droplet radius and the droplet shape at different time levels are 

compared with results in the literature (Fakhari and Rahimian 2010). Fakhari and Rahimian 

(2010) used a phase field-based LBM coupled with multiple relaxation time (MRT) technique 

to simulate drop impact on a wet surface. The applied phase field-based LBM is similar to 

that proposed by He et al. (1999). To improve the numerical stability for high viscosity 

contrast or high Reynolds number problems, the MRT technique is introduced into their 

method. Two important non-dimensional parameters of this problem are Reynolds and Weber 

numbers defined by 
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where 0
U  is the initial impact velocity, D  is the initial droplet diameter, L

v  and L
  are the 

liquid kinematic viscosity and density, respectively. The problem set-up is sketched in Fig. 

4.7. The mesh size of 1201 401  is used. The wall boundary condition at the bottom and slip 

boundary condition at the top were applied. At the same time, the periodic boundary 

condition is used at the left and right sides. The initial droplet radius is set as 100 and the 

impact velocity was 0
0.05U  . The densities of droplet and ambient fluid are 5

L
   and 

1
G

  , respectively. The height of the wet surface is taken as 10
wet

H H / , where H is the 

height of computational domain. Moreover, the Weber number was kept as 5000 in all 

simulations for this case. Same as the situation in Fakhari and Rahimian (2010), three 

different Reynolds numbers, 50, 200 and 1000, are considered (for high Reynolds number 

such as 1000, Multiple-Relaxation-Time collision operator was used). The time evolution of 

the dimensionless droplet radius (the dimensionless time is defined as 0
/T tU D  and the 

dimensionless droplet radius is defined as R r D / ) is compared with the results in the 

literature in Fig. 4.8. Agreement can be observed at different Reynolds numbers. Furthermore, 

Fig. 4.9 compares the shape of droplet and thin liquid layer (the interface is represented by 

0   contour) during splash with that given by Fakhari and Rahimian (2010) at several time 

stages. At low Reynolds number of 50, after the initial impact with relatively low impact 

velocity, the droplet gently spreads on the thin liquid film, then gradually bridges the gas gap 

between the droplet and the film and generates a liquid jet at later time stage. Additionally, it 

can also be seen that during this process, a surface wave is also generated and propagates 
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along the surface. On the other hand, different flow phenomenon could be observed at higher 

Reynolds number (Re=200). As can be seen from Fig. 4.9, a liquid jet is formed immediately 

after the impact (Time=0.4). As the droplet spreads on the film, the liquid jet also grows into 

a corolla and rolls up (from Time=0.6 to Time=4.0). When time evolves, the rim of the 

corolla is elongated and finally breaks up into several small droplets (Time=5.0). It is shown 

that the proposed model also provides satisfactory results in terms of droplet shapes at 

different Reynolds numbers. 

 

4.3.4 Off-center droplet collision 

To further explore the capability of the present model, the 3D off-center droplet collisions 

with complex topological interface change were simulated in this subsection. In this case, two 

droplets with the same radius (12 lattice units) are placed in the flow domain as shown in Fig. 

4.10. The density contrast of liquid droplet and the ambient fluid is set as 1 2 4R    , 

the dynamic viscosity contrast is 1 2 4R    . The dimensionless parameters are the 

Weber number 
2

1
2We RU  , (where R  is the droplet radius and 2D R  is diameter, U  

is the relative impact velocity between two droplets and   is the surface tension. We  is fixed 

as 60 in the following simulations), 1 1
Re DU   ( Re  is fixed as 200 in the following 

simulations) and /B H D  which is a geometrical impact parameter. It is shown that 

different interface patterns can be observed with varying We  and B (Ashgriz and Poo 1990, 

Qian and Law 1997, Inamuro et al. 2004, Premnath and Abraham 2005).  One half of the 

flow domain is discretized with a mesh size of 111 51 91  . Symmetric boundary condition 

is applied on the z-x plane while periodic boundary condition is used on other boundaries. 

The two droplets are separated by 6 lattice units in the x direction. Cases with B  = 0.27, 0.36, 
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0.82 and 0.91 are simulated. Figure 4.11 shows evolution (time is nondimensionalized by 

/U D ) of droplet shape during collision at B = 0.27. With relative low value of B, large 

portion of droplet coalesces at the initial stage of collision as shown in Fig. 4.11(b). After the 

initial coalesce, the un-coalesced portion of two droplets will continuously move along with 

their initial impact velocity direction. Moreover, due to asymmetry of the droplet movements, 

the coalescent droplet rotates clockwise as can be observed in Fig. 4.11 (c-f). In this low B 

value case, the two droplets will not separate after initial coalesce and this regime is termed 

as “coalescence regime” (Ashgriz and Poo 1990). Besides the coalescence regime, the 

stretching separation regime was also captured in the current simulation as shown in Fig. 4.12 

with B=0.91.  Separation regime is always observed with large impact parameter B (Ashgriz 

and Poo 1990, Qian and Law 1997), in which only small portion of the droplets is in contact 

during the initial impact as shown in Fig. 4.12(c) and 4.12(d). The same as in the coalescence 

regime, after initial collision, the coalescent droplet rotates clockwise due to asymmetry of 

the velocity field. At the latter stages in separation regime, the neck of the coalescent droplet 

will be continuously stretched as shown in Fig. 4.12(e) and (f) and finally breakup (Fig. 

4.12(g) and (h)). In the simulation, it is found that when B equals 0.27 and 0.36, the droplet 

collision falls into the coalescence regime while the droplet collision falls into the separation 

regime when B equals 0.82 and 0.91. The droplet movement and the obtained droplet 

collision regimes are consistent with the experimental (Ashgriz and Poo 1990, Qian and Law 

1997) and numerical (Premnath and Abraham 2005) results in the literature.  

 

4.3.5 Drop impact on dry walls 

In this subsection, 3D drop impacts on dry walls while considering the dynamic contact angle 

is simulated by the proposed phase-field LBM. It is known that the surface wettability can be 
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represented by an equilibrium contact angle 
eq

 . Nevertheless, when a contact line moves, the 

dynamic contact angle 
d

  can be different from 
eq

  (Blake 2006). In this subsection, the 

influence of dynamic contact on droplet impingement is considered. The setup of this 

problem is sketched in Fig. 4.13. As showed in this figure, a droplet with radius of 
0 35R   

lattice units is initialized close to the x-y plane with impact velocity 
0

U . The wall boundary 

condition and the dynamic contact angle are applied on the lower wall. The open boundary 

conditions are applied on the other boundaries. Owing to the symmetry of this problem, only 

a quarter of the whole domain is simulated. The simulated computational domain is 

140 140 105  . The density and viscosity ratios of two fluids are defined as L G
r


   and 

L G
r


  , respectively. Moreover, the major non-dimensional parameters are: the Weber 

number  2

0 0L
We D U  , the Reynolds number  0 0L L

Re D U  , the Ohnesorge number 

0L L
Oh D   , the contact line capillary number  cl L L cl

Ca U   . Additionally, the 

time is nondimensionalized by 0
U D . In this context, the dynamic contact angle 

d
  can be 

evaluated through an empirical relation employed by Mukherjee and Abraham (2007) as well 

as Sikalo et al. (2005).  It takes the form of  

 
1( )d H cl H eqf Ca f       (4.27) 

where 
1

H
f


 is the inverse of the Hoffman function which is defined as 

  
0.706

0.99
arccos 1 2 tanh 5.16

1 1.31
H

x
f x

x

    
     

     
 (4.28) 

To validate the implementation of dynamic contact angle, the computational parameters are 

set the same as that of Mukherjee and Abraham (2007). They used a MRT version of Lee and 
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Lin (2005)’s LBM model to simulate the drop impact on a wet surface. Lee and Lin (2005)’s 

method starts from discrete Boltzmann equation and solve the resultant lattice Boltzmann 

equation in three steps: pre-streaming collision, streaming and post-streaming collision. In 

addition, a second-order mixed difference approach was employed by Lee and Lin (2005), 

which is helpful for high density ratio simulation. In this case, the density and viscosity ratios 

are set as 10r   and 10r  . Moreover, the Weber number is set as 30 and Ohnesorge 

numbers is set as 0.026. The equilibrium contact angle is set as 87.4
eq

  . Fig. 4.14 

compares the evolution of spread factor (
0Drop

R R R

 ) with data in the literature. It can be 

seen that good agreement is achieved. Moreover, droplet deformation at different time stages 

is also plotted in Fig. 4.15. The current droplet patterns at different time steps also compare 

well with those in Mukherjee and Abraham (2007). Moreover, the influence of Ohnesorge 

number on impact process is examined. Fig. 4.16 presents the evolution of spread factor at 

different Ohnesorge numbers. It can be seen that increase of Ohnesorge number can greatly 

restrict the drop motion. This is expected since Ohnesorge number expresses the ratio of 

viscous to surface tension force. Besides, effect of the gravitational force was also studied. 

Simulations with Bond number, 2Bo gD    equals 10, 30, 50 were performed. 

Evolutions of the spread factor were plotted in Fig. 4.17. It can be seen that the drop impact 

was enhanced by the gravitational force with increasing Bond number. Moreover, the 

interface patterns during impact with the Bond number 10, and 50 were shown in Fig. 4.18 

and Fig. 4.19, respectively. The influence of gravitational force can be observed more 

directly from these figures. 
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4.4 Concluding Remarks 

In the original Z-S-C model (Zheng et al. 2006), two sets of LBEs are used. One set of LBE 

is used for interface capturing, which can recover the Cahn-Hilliard equation with the second 

order of accuracy. The other set of LBE is for simulation of the flow field, where the particle 

distribution function is directly used for the mean density and momentum. The use of mean 

density in the Z-S-C model can well capture the pressure field and its numerical computation 

is very stable and efficient. However, when a multiphase flow with density contrast is 

considered, it may not give the correct solution since the density contrast is not properly 

considered in the momentum equation. To overcome the drawback of Z-S-C model, a new set 

of LBE for simulation of the flow field is presented in this work. In the meantime, the set of 

LBE in the Z-S-C model for interface capturing is still used in the present work. To correctly 

consider the effect of density contrast in the momentum equation, we start with a LBE, where 

the particle distribution function is for the local density and momentum. Then, to improve 

numerical stability, a transformation which is similar to the one used in the works of He et al. 

(1999) and Lee and Lin (2005) is introduced to change the particle distribution function for 

the local density and momentum into that for the mean density and momentum. Through this 

way, the LBE for flow field in the present model can correctly consider the effect of density 

contrast in the momentum equation. In the meantime, it enjoys good properties of particle 

distribution function for the mean density. The proposed model was validated through 

simulations of viscous coupling in a plane channel, nonlinear Rayleigh-Taylor instability, 

droplet splash on a wet surface, three-dimensional off-center droplet collisions and drop 

impact with dynamic contact angle. Numerical results showed that the current model 

successfully embodies influence of density contrast and correctly simulates both steady and 

dynamic multiphase flow problems.  
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Fig. 4.1 Sketch of viscous coupling in a 2D channel 

 

 

   

(a) 1 18R    (b) 1 50R   

Fig. 4.2 Profile of xu  in the middle of a channel 
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Fig. 4.3 Time evolution of spike and bubble position 

 

 

Fig. 4.4 Interface shape with streamline at Time 1.5 
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(a) Time = 1.0   (b) Time = 2.0   (c) Time = 3.0  (d) Time = 4.0  (e) Time = 5.0 

Fig. 4.5 Fluid interface evolution of Rayleight Taylor instability at Re = 256 

 

Fig. 4.6 Rayleight Taylor instability at Re = 256 (He et al. 1999) 
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Fig. 4.7 Problem setup of droplet splash on wet surface 

 

 

Fig. 4.8 Time evolution of droplet splashing radius 
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(a) Re=50, Time=0.2    (b) Re=200, Time=0.2 

  

(c) Re=50, Time=0.4    (d) Re=200, Time=0.4 

  

(e) Re=50, Time=0.6    (f) Re=200, Time=0.6 

  

(g) Re=50, Time=1.0    (h) Re=200, Time=1.0 

  

(i) Re=50, Time=2.0    (j) Re=200, Time=2.0 
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(k) Re=50, Time=3.0    (l) Re=200, Time=3.0 

Fig. 4.9 Droplet splashing process at Reynolds numbers of 50 and 200. The left column 

shows results at Re=50 and the right column shows results at Re=200. In each frame, the 

present results (right panel) are compared with those of Fakhari and Rahimian (2010) (left 

panel) 

 

 

 

Fig. 4.10 Problem setup of two-droplets collision 
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(a) T=0      (b) T=1.83 

 

  

(c) T=3.67      (d) T=6.41 
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(e) T=8.25      (f) T=11 

 

  

(g) T=14.67    (h) T=22.93 

Fig. 4.11 Interface evolution during droplet collision at We = 60, B = 0.27 
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(a) T=0    (b) T=1.83 

 

  

(c) T=2.75    (d) T=4.59 
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(e) T=9.2    (f) T=10.1 

 

  

(g) T=13.8    (h) T=18.3 

Fig. 4.12 Interface evolution during droplet collision at We = 60, B = 0.91 

 



112 

 

 

 

Fig. 4.13 Sketch of drop impact problem 

 

 

Fig. 4.14 Time evolution of spread factor 
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(a) T = 0.12   (b) T = 0.54 

  

(c) T = 1.38 (d) T = 3.06 

  

(e) T = 5.58 (f) T = 15.87 

Fig. 4.15 Droplet deformation at different time stages 
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Fig. 4.16 Evolution of spread factor with different Ohnesorge numbers 

 

 

Fig. 4.17 Evolution of spread factor for drop impact on a dry wall 
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(a) T = 0.5 (b) T = 1.5 

  

(c) T = 5.6 (d) T = 18 

Fig. 4.18 Droplet deformation with Bond number 10 

 

  

(a) T = 0.5 (b) T = 1.5 

  

(c) T = 5.6 (d) T = 18 

Fig. 4.19 Droplet deformation with Bond number 50 
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Chapter 5
2
 

Development of an Immersed Boundary Method to Simulate Solid-Fluid 

Interactions 

 

In Computational Fluid Dynamics (CFD), solid-fluid (single/multi-phase flows) interactions 

are prevalent and have received sustained academic and industrial interests. To simulate such 

a problem, a central issue is to implement boundary conditions, such as Dirichlet and 

Neumann boundary conditions, on solid bodies. Among various methods to implement 

boundary conditions as introduced in Chapter 1, Immersed Boundary Method (IBM) is 

famous for its efficiency and robustness. Since being developed by Peskin (1972, 1977), 

extensive works have been undertaken to improve IBM for Dirichlet boundary conditions 

(Mittal and Iaccarino 2005, Wu 2010). In particular, the boundary condition-enforced IBM 

(Wu and Shu 2009) adopts an implicit velocity correction approach and ensures satisfaction 

of Dirichlet boundary condition. Besides refinement of the algorithm, the application of IBM 

has also been extended to a very broad range (Mittal and Iaccarino 2005, Wu 2010). 

Nevertheless, they are mainly restricted to problems such as solid-single phase flow 

interactions, which only involve Dirichlet boundary conditions. The difficulty is attributed to 

the fact that implementation of Neumann boundary condition is not as straightforward as that 

of Dirichlet boundary condition. This disadvantage greatly limits the application of IBM 

because many problems may also involve Neumann boundary condition such as solid-

                                                 
2 The material in this Chapter has been partially published in 

J. Y. Shao, C. Shu and Y. T. Chew (2013), “Development of an immersed boundary-phase field-lattice 

Boltzmann method for Neumann boundary condition to study contact line dynamics,” Journal of Computational 

Physics 243:8-32. 

http://apps.webofknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Z241ojfhhmMflmo@2Jl&page=1&doc=1
http://apps.webofknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Z241ojfhhmMflmo@2Jl&page=1&doc=1
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multiphase flow interactions. In this Chapter, we will initiate the first endeavour to 

implement Neumann boundary conditions in IBM. Additionally, within this work, both 

Dirichlet and Neumann boundary conditions will be implemented consistently through IBM 

for various solid-fluid interaction problems. 

 

This Chapter is organized as follows: Section 5.1 brifely introduces the immersed boundary 

method in the first place. Section 5.2 introduces IBM for Dirichlet boundary condition in the 

lattice Boltzmann framework, considering the interest of present work. It is then followed by 

Section 5.3 to elaborate the idea to implement Neumann boundary conditions in IBM. 

Thereafter, numerical examples of solid-fluid problems involving Dirichlet and/or Neumann 

boundary conditions simulated by IBM will be demonstrated in Section 5.4. Finally, 

conclusions will be drawn in Section 5.5. 

 

5.1 Immersed Boundary Method 

Since being introduced by Peskin (1972, 1977), the immersed boundary method has become 

increasingly popular for implementing Dirichlet boundary condition to simulate solid-fluid 

interactions. The popularity and high efficiency of IBM is attributed to decoupling of solution 

of the governing equations for the flow field with implementation of the boundary conditions. 

The governing equations can be solved on a fixed Eulerian grid regardless of the solid 

geometry. Concurrently, the influence of a solid boundary is represented by a forcing term, 

which is first evaluated on the solid boundary and then distributed back to Eulerian grid 

through discrete Delta functions. A major issue in IBM, also the focus in previous IBM 

development, is to accurately evaluate the forcing term (Wu 2010). The original work by 
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Peskin (1972, 1977) is also known as the penalty method. In the penalty method, restoring 

force is calculated through Hooke’s Law. It introduces an arbitrary spring parameter that 

influences force calculation. To avoid using arbitrary coefficients, direct forcing method, in 

which the momentum equation is used to evaluate the forcing term, is developed and widely 

applied (Mohd-Yusof 1997, Fadlun et al. 2000). The direct forcing method is improved with 

regard to forcing oscillation by Uhlmann (2005) and also combined with a nonlinear 

weighted approach by Luo et al. (2007). Nevertheless, in these IBMs, the forcing term is 

evaluated explicitly and the no-slip boundary condition is only approximately satisfied. To 

enforce the no-slip boundary condition, a boundary condition-enforced IBM has been 

proposed by Wu and Shu (2009) recently. In this method, the forcing term is calculated in an 

implicit manner, and it is determined in the way that the velocity at the boundary point 

satisfies the no-slip boundary condition. Their results show that the no-slip boundary 

condition is well satisfied and the streamline penetration observed in the previous works is 

effectively eliminated. The method has also been applied to investigate various solid-fluid 

interactions (Wu 2010). This method will be introduced in detail later and used in the present 

work for Dirichlet boundary condition.  

 

As introduced previously, a large body of work has been done to improve treatment of 

Dirichlet boundary condition (Mittal and Iaccarino 2005, Wu 2010). On the hand, to the best 

of our knowledge, there are few works of IBM for Neumann boundary condition available in 

the literature since IBM was proposed in the 1970s. Absence of such an approach greatly 

limits the application of IBM because it is known that Neumann boundary condition is 

commonly encountered in solid-fluid interactions. Motivated by the numerous potential 

applications, we will initiate the first endeavour to implement the Neumann boundary 
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condition in IBM in this work, based mainly on physical interpretation. Concretely speaking, 

rooted in physical conservation law, the Neumann boundary condition is considered as 

contribution of the flux from the boundary to its relevant physical parameter in a control 

volume. Additionally, the link between the flux and its corresponding flow field variable is 

directly manipulated through the immersed boundary concept. In this way, the Neumann 

boundary condition can be implemented in IBM. In the following context, the IBM for 

Dirichlet boundary condition will be introduced first. Thereafter, Section 5.3 will be devoted 

to implement the Neumann boundary condition in IBM.  

 

5.2 Immersed Boundary Method for Dirichlet Boundary Condition 

To enforce the Dirichlet boundary condition, a recently developed boundary condition-

enforced IB-LBM (Wu and Shu 2009) is adopted in this work. In this method, the velocity 

correction term is determined in a way that guarantees that the no-slip boundary condition is 

enforced. Recalling the lattice Boltzmann equations (LBEs) for the flow field in Chapter 2, 

they are rearranged as 

        
1

, , , ,eqf t t t f t f t f t t       

        x e x x x F  (5.1) 

  
 

 2 2

1
1

2
b

s s

w

c c


   



  
        

   

e u
F e u F  (5.2) 

  
1

2
bf t  



      u e F  (5.3) 

As can be seen from Eq. (5.3), the velocity consists of three parts. One arises from the density 

distribution function. The other two are attributed to the force density  b   F F . 
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There are two types of forces contributing to F , namely, the interfacial force    

(Jacqmin 1999) and the forcing term bF  that represents the effect of immersed boundary 

(without considering any other body force). Hence we can define the three velocity 

components as below 

 
1

f  


 u e  (5.4) 

 
1

2
t  


 u  (5.5) 

 
1

2
b t 


u F  (5.6) 

With this definition, the overall velocity is 

     u u u u  (5.7) 

where u  is the overall velocity, u  is from the density distribution function without 

considering the presence of the solid boundary, u  is caused by the interfacial force and u  

is the velocity correction term caused only by the no-slip boundary condition. Based on this 

analysis, an intermediate velocity *
u  is defined as 

 
*

  u u u  (5.8) 

Therefore, the overall velocity can be rearranged as  

 *  u u u  (5.9) 
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In the boundary condition-enforced IB-LBM, the velocity correction term u  is set as an 

unknown and evaluated implicitly. To solve u  on Eulerian points, l

Bu  is first defined to 

represent the velocity correction on Lagrangian points. In this context, u  can be obtained by 

Dirac delta function 

      , ,l l l

B B Bt t ds  


 u x u X x X  (5.10) 

where   is a closed curve defined by the boundary and  l

B x X  is smoothly 

approximated by continuous kernel distribution (Feng and Michaelides 2005)  

      2

1l l l

E B E B E BD x x y y
h
    x X  (5.11a) 

for 2D cases. For 3D cases, it takes form of  

        3

1l l l l

E B E B E B E BD x x y y z z
h
      x X  (5.11b) 

Moreover,  

  
   1 4 1 cos 2 ,

0,

r
r




     


 
2

2

r

r




 (5.12) 

where r is the distance between a Eulerian point and a Lagrangian point. Using the 

continuous delta function, Eq. (5.10) could be written as 

      
1...

, ,l l l

E B B E B

l m

u x t u X t D x X s 


    (5.13) 
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In the above equation, s  is the arc length between two neighbouring boundary points (or 

surface area for 3D cases). Recalling Eq. (5.9), the corrected velocity in Eulerian domain can 

also be written as 

      *, , ,E E Ex t x t x t u u u  (5.14) 

To satisfy the no-slip boundary condition, the interpolated fluid velocity on a boundary point 

must equal to the wall velocity  ,l l

B B tU X  at the same place. The mathematical description is 

    *, , ( , )l l l l

B B E xy B B xy l xyt t D x y t D s D x y       U X u x u X  (5.15a) 

for 2D cases. For 3D cases, it takes form of  

    *, , ( , )l l l l

B B E xyz B B xyz l xyzt t D x y z t D s D x y z         U X u x u X  (5.15b)  

or in a matrix form 

 AX B  (5.16) 

with A , B  and X  expressed as 

 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

B B B
n m

B B B
n m

B B B
m m mn n n nm

     

     

     

  
  
  
  
   

  

A  (5.17) 

 

*1
11 12 1 1

*2
21 22 2 2

*
1 2

nB

nB

m
m m mn nB

  

  

  

    
    
     
    
       

    
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uU
B
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 (5.18) 
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  1 2, ,
T

m

B B B  X u u u  (5.19) 

where subscript m is the number of Lagrangian points; and n is the number of adjacent 

Eulerian points around the boundary. With l

Bu  determined in this system, it is then 

distributed back to Eulerian points and the resulting force density can be evaluated through 

 2b t F u  (5.20) 

With the velocity corrected in this manner, the no-slip boundary condition can be enforced 

and streamline penetration to the boundary, which is commonly observed in the conventional 

IBM, could be eliminated. This method has been applied for simulation of 2D/3D stationary 

as well as moving boundary problems (Wu and Shu 2009,  2010a, 2010c). Several solid-

single phase fluid interactions will also be demonstrated in this Chapter for the purpose of 

code validation. 

 

5.3 Immersed Boundary Method for Neumann Boundary Condition 

The Dirichlet boundary condition is implemented in the previous section. However, in many 

solid-fluid interactions, both Dirichlet and Neumann boundary conditions are present. As 

introduced formerly, although numerous works have been devoted to refine the 

implementation of Dirichlet boundary condition in IBM, few IBM applications with 

Neumann boundary condition are available at present to the best of our knowledge. In this 

work, the Neumann boundary condition is implemented based on physical conservation laws 

for the first time. For clear explanation, we will first consider a linear diffusion equation with 

a Neumann boundary condition to illustrate the concept, which can be applied to implement 

Neumann boundary conditions in different physical problems. Then, more concrete examples 
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for application of this approach to simulate solid-multiphase flow interactions will also be 

demonstrated.  

 

5.3.1 Flux contribution at the control surface to dependent variable in a control volume 

To elaborate the implementation process, we consider the following diffusion equation 

 
2

t


 


 


 (5.21) 

with Neumann boundary condition (  n  specified). In Eq. (5.21),   is a constant, 2  is 

the Laplacian operator. If we define a flux vector q  as 

  , ,x y zq q q     q  (5.22) 

then, Eq. (5.21) can be rearranged as 

 
t


 


q  (5.23) 

As shown in Fig. 5.1, Eq. (5.23) can be obtained by applying the physical conservation law to 

a control volume. There are six control surfaces for the control volume. The flux at control 

surface of 0x   is xq dydz , which is into the control volume, while the flux at control surface 

of x dx  is  x xq dx q x dydz   , which is out of the control volume. The net flux into the 

control volume by these two surfaces is   xdxdydz q x   . Overall, the net flux into the 

control volume by the six control surfaces is  dxdydz q . From physical conservation 

law, this net flux must be equal to the rate of change of   within the control volume 

 t dxdydz  , that is    t dxdydz dxdydz    q . As a result, Eq. (5.23) is obtained. 
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From the above process, for a general control surface, which has an outward normal direction 

 , ,x y zn n nn , its flux contribution to the control volume is 

  x x y y z z nq n q n q n dS q dS      (5.24) 

where dS  is the area of the control surface, and nq     n . This means that the flux 

nq dS  directly contributes to t   when the single control surface is considered. We will 

use this feature to correct for   when presenting the Neumann boundary condition. 

 

5.3.2 Implementation of Neumann boundary condition in the context of IBM 

To clearly illustrate the idea, implementation of Neumann boundary condition in 2D through 

IBM will be presented in this subsection. The extension to 3D case is straightforward. In the 

context of IBM, the solution of Eq. (5.21) can be obtained by the following steps. In the first 

step, we solve Eq. (5.21) in the whole domain including interior and exterior of the immersed 

object. For simplicity, we note its solution as * . That is, *  satisfies 

 
*

2 *

t


 


 


 (5.25) 

and with * , we can calculate its normal derivative at the boundary point by the following 

way. Using interpolation, the first order derivatives at the boundary point can be calculated 

by 

      
* *

2, ,i i

B j j B

j

t t D h
x x

  
 

 
X x x X  (5.26) 
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      
* *

2, ,i i

B j j B

j

t t D h
y y

  
 

 
X x x X  (5.27) 

where  
*

,i

B t
x




X  and  

*

,i

B t
y




X  represent the first order derivatives of *  with respect to 

x and y at the boundary point 
i

BX , while  
*

,j t
x




x  and  

*

,j t
y




x are the first order 

derivatives of *  with respect to x and y at Eulerian point jx . Note that the derivatives at 

Eulerian points are obtained by the second order central difference schemes. Finally, the 

normal derivative at the boundary point is calculated by 

      
* * *

, , ,i i i

B B xi B yiX t X t n X t n
n x y

    
 

  
 (5.28) 

For the general case, the computed * n  is not equal to the given  n  at boundary 

points. As discussed in Section 5.3.1, their difference will contribute as a surface flux to 

correct   value at the surrounding Eulerian points. In the context of IBM, the whole domain 

including interior and exterior of the immersed object is used as the computational domain. 

Thus, at a boundary point, there are two normal directions. One is to point to the flow domain 

while the other is to direct into the inside of the immersed object. The surface fluxes from 

two directions will affect the   field at the surrounding Eulerian points. As shown in Fig. 5.2, 

due to the feature of Dirac delta function interpolation, the surface flux on a small area dS  

will only affect its surrounding Eulerian points in the box of 2B h x X . In fact, for any 

Eulerian point in the box, its control volume must enclose the small surface area dS . For this 

case, the surface fluxes from two opposite directions of dS  will both contribute positively to 

  in the control volume. Thus, due to non-satisfying of Neumann boundary condition (offset 

of normal derivative), the surface flux from dS  can be written as 
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  
*

, 2i

n B

Specified

q t
n n

 
 

  
      

X  (5.29) 

The flux nq  in Eq. (5.29) will be used to correct for   at Eulerian points in the box. 

Suppose that the correction is noted as  . Following the concept of IBM for distributing the 

surface force (flux) at a boundary segment to its surrounding Eulerian points by the delta 

function (the effect of the boundary to the surrounding Eulerian points is decreased as the 

distance of a Eulerian point from the boundary is increased) (Peskin 1972, Mittal and 

Iaccarino 2005), we can have 

 
 

   
,

,
j i i

n B ij j B i

i

t
q t D s

t





  

x
X x X  (5.30) 

The above process is similar to the velocity correction. Once  ,j t x  is obtained by Eq. 

(5.30), we can correct for the   field by 

      *, , ,j j jt t t   x x x  (5.31) 

Eq. (5.30) is applied for the time-dependent diffusion equation (5.21). For this case, IBM 

uses an explicit approach to update the solution in time due to the effect of the boundary. For 

a time-independent problem, an iterative process can be taken first before IBM is applied. To 

illustrate the iterative process, we consider the following time-independent equation 

 2     (5.32) 

with Neumann boundary condition. After numerical discretization, the resultant equation 

system of Eq. (5.32) can be solved by a direct method. It can also be solved by an iterative 

method. One of the iterative processes can be written as 
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 1 2m m      (5.33) 

where m is the iteration number.  To start the iterations, we need to give an initial guess of  . 

Then from Eq. (5.33), we can get * . Like the time-dependent case, the computed * n  is 

in general not equal to the given  n  at the boundary point. Then we can follow the same 

procedure as for the time-dependent problem to compute nq  by using Eq. (5.29). With nq , 

the correction   can be calculated by 

      i i

j n B ij B i

i

q D s   x X x X  (5.34) 

Eq. (5.34) is used to determine  j x  and it is the same as Eq. (5.30) if one takes t  as 1. 

Next,   is updated through Eq. (5.31) at Eulerian points around the immersed boundary. 

After that, we move to the next iteration. With updated   value given by Eq. (5.31), we can 

get a new *  from Eq. (5.33) (updated   value is applied to the right side of Eq. (5.33)). This 

iteration process is carried on until the convergence criterion is satisfied. 

 

5.3.3 Application to solid-multiphase flow interactions 

In this subsection, the approach illustrated above will be used to simulate solid-multiphase 

flow interactions. It should be stressed that although the solid-multiphase flow interactions 

are taken as an example to further illustrate the implementation process, the developed IBM 

for Neumann boundary condition can be generally applied to different physical problems. In 

solid-multiphase flow interactions, two Neumann boundary conditions of      n and 

0  n  need to be implemented. They are related to the expression of Cahn-Hilliard 
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equation and chemical potential as introduced in Chapter 2. For demonstration purpose, we 

rewrite them to the following two forms 

 
t







   


u q  (5.35) 

  3 2

04      q  (5.36) 

where  

 M   q ,    q  (5.37) 

Following the procedure in Section 5.3.2, we first solve Eqs. (5.35) and (5.36) in the whole 

domain without consideration of the boundary conditions to obtain *  and 
*

 . In this case, 

*  and 
*

   satisfy the following equations 

 
* *

t






   


u q  (5.38) 

  * *3 2 * *

04      q  (5.39) 

Following the steps in Eqs. (5.26-5.28), with obtained *  and 
*

 , we can easily compute 

* n   and 
* n  . In general, the calculated * n   and 

* n   are not equal to the 

given Neumann boundary conditions. Their differences will generate the surface fluxes nq  

and nq . According to Eqs. (5.29) and (5.37), nq  and nq  can be expressed as 

  
*

, 2i

n B

Specified

q t M
n n

 



 


  
   
  
 

X  (5.40) 
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q t
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

 
 

  
     

X  (5.41) 

Note that nq  is to correct t   in Eq. (5.35), while nq  is to correct   in Eq. (5.36). If 

we set  correction of   as   and  correction of   as  , following Eqs. (5.30) and (5.34), 

we have 

 
 

   
,

,
j i i

n B j B i

i

t
q t D s

t






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X x X  (5.42) 

      , ,i i

j n B j B i

i

t q t D s    x X x X  (5.43) 

where is  is the arc length of Lagrangian grid in 2D case and surface area in 3D case. After 

obtaining   and  , the corrected   and   at Eulerian points can be computed by 

      *, , ,j j jt t t   x x x  (5.44) 

      *, , ,j j jt t t     x x x  (5.45) 

At present, the updated   and   have included the influence of the solid boundary. 

Thereafter, they are readily adopted to evaluate the resulting forcing and velocity terms in 

Eqs. (5.2) and (5.3). In this manner, the Neumann boundary conditions are implemented in 

the framework of immersed boundary method. 
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5.4 Some Test Examples 

In this section, numerical examples of solid-fluid interactions will be presented. The 

problems consist of solid-single phase flow interactions that involve Dirichlet boundary 

conditions as well as solid-multiphase flow interactions that involve both Dirichlet and 

Neumann boundary conditions. The solid-single phase flow interactions will be presented in 

the first place. For single phase flow problems, the interfacial force is zero and the lattice 

Boltzmann equation for interface capturing is not solved. Thereafter, simulation of solid-

multiphase flow interactions will be briefly demonstrated. The detailed application of the 

developed method for solving solid-multiphase flow interactions will be shown in the next 

chapter. 

 

5.4.1 Flow over a circular cylinder 

Wake flows around two-dimensional bluff bodies such as circular cylinders have been 

extensively studied. With increase of Reynolds number (defined as Re
U D


 , where D is 

the diameter of the cylinder, U  is the free stream velocity and   is the kinematic viscosity), 

the wake becomes unsteady and then asymmetric when the flow passes over a circular 

cylinder (Sheard et al. 2003). The initial transition for the cylinder wake occurs with the 

separation of flow from the rear of the cylinder. When Reynolds number is in range of 

5 Re 47  , the recirculation zone remains steady and symmetrical about the centerline of 

the flow. A transition to periodic flow occurs when Reynolds number is larger than 47.1, 

which was found by Dusek et al. (1994) through numerical simulation and also validated by 

Sheard et al. (2001). The wake transition shape and the corresponding Reynolds number are 
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listed in Table 5.1. Besides the transition in wake patterns, the drag force coefficient as 

defined in Eq. (5.46) also changes with variation of Re.  

 
  21 2

D
d

F
C

U D 

  (5.46) 

where DF  is total drag force which is calculated by 

 D xF f d


  x  (5.47) 

and xf  is the x-component of the force density. When the Reynolds number increases, the 

wake becomes unsteady, and a lift force appears. Following the same way, the lift force 

coefficient can be evaluated by 

 
  21 2

L
l

F
C

U D 

  (5.48) 

where LF  is the lift force  

 L yF f d


  x  (5.49) 

and yf  is the y-component of the force density. In the current work, the fluid density is set as 

1.0   and the free stream velocity is 0.1U  . This velocity is also used as the initial 

velocity of the flow field. According to the wake transition type, four different Reynolds 

numbers of 20, 40, 100 and 200 are chosen. First, steady flow at Re = 20 and 40 is simulated. 

To accurately simulate the influence of the circular cylinder and reduce the computational 

resources required, a non-uniform Cartesian grid is used. In the present simulation, a circular 
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cylinder with diameter of 1.0 represented by 120 Lagrangian points is put in a rectangular 

domain of 60 50D D  with 397 337  grid points. The fine grid region around the cylinder is 

1.2 1.2D D  with 97 97  grid points. The center of this cylinder is located at (20.6D, 25.6D). 

Simulations have been performed on three computational domains: 45 37.5D D , 

60 50D D , and 90 75D D . The results show that the computational domain 60 50D D  

is large enough to obtain accurate results. Figures 5.3 and 5.4 show the global geometry and 

local mesh around the circular cylinder, respectively. For the steady case, the simulation is 

performed until the nondimensional time 50.0 (nondimensionalized by U D  with 1D  ). 

The streamlines around the cylinder are presented in Figs. 5.5 and 5.6. The results obtained 

by the boundary condition-enforced IBM are compared with those of conventional direct 

forcing IBM. It can be seen that, in the present results, the streamlines inside the circular 

cylinder are closed. This means that there is no mass transfer across the cylinder.  Conversely, 

the streamline penetration is very obvious in the results obtained by the conventional direct 

forcing IBM. This is mainly due to the fact that no-slip boundary condition is accurately 

enforced by the boundary condition-enforced IBM. Nevertheless, this condition is only 

approximately satisfied in the traditional IBMs. Additionally, the drag force coefficient dC  

and recirculation length L at Re = 20 and 40 obtained by the boundary condition-enforced 

IBM are compared with data in the literature in Table 5.2. It shows that the present results 

quantitatively compare well with those in the literature (Dennis and Chang 1970, He and 

Doolen 1997). Furthermore, simulations of the unsteady shedding wakes at Re = 100 and Re 

= 200 are performed. The simulation was performed until nondimensional time equals 200. 

The time-averaged drag coefficients at Re = 100 are compared with results in the literature in 

Table 5.3. It can be seen that good agreement is achieved. In addition, the streamlines around 

the cylinder and instantaneous positive-negative vortex shedding at Re = 100 and Re = 200 

are plotted in Fig. 5.7 and Fig. 5.8. They show typical vortex shedding patterns after the flow 
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field lost symmetry. The Karman vortex street can be clearly observed. Furthermore, Fig. 5.9 

shows the time evolution of the drag and lift coefficients for the circular cylinder at Re = 100 

and Re = 200. The periodic variation of the drag and lift coefficients can be seen clearly from 

the figures. 

 

5.4.2 Fish motion 

Besides simulation of flow around a stationary object in the previous subsection, the 

boundary condition-enforced IBM will also be applied to simulate a moving boundary flow 

problem, that is, fish motion at high Reynolds numbers. Investigation of fish motion has been 

an area of active interest in different fields for decades. Many efforts have been made to 

model the kinetics of fish (Lighthill 1960, Koochesfahani 1989, Liu and Kawachi 1999, 

Sfakiotakis et al. 1999, Colgate and Lynch 2004). Among them, a kinematics model for 

undulatory motion of a swimming fish was proposed by Wassersug and Hoff (1985). They 

also plotted the specific amplitude from tip to tail of a larvae and cod. Additionally, by using 

Fourier terms, Videler (1993) provided a formula to describe lateral motion of a swimming 

fish. According to Videler (1993), the undulatory fish swimming motion can be accurately 

expressed by the equation that describes harmonic motion in physics. The lateral motion that 

expressed by the first three, odd Fourier terms reads (Videler 1993) 

 
1,3,5

( , ) [ ( )cos( 2 ) ( )sin( 2 )]m i i i i

i

y x t a x i f t b x i f t 


   (5.50) 

in this equations, ( , )my x t  is the coordinate of the center line in the y direction. Moreover, 

( )ia x  and ( )ib x  are Fourier coefficients, if  is the phase speed of the travelling wave, t is the 
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time and x is the coordinate. By dropping the less effective terms, the fifth frequency terms, 

one can derive the expression (Videler 1993) 

 1 1( , ) ( )cos(2 ) ( )sin(2 )my x t a x ft b x ft    (5.51) 

together with 
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 (5.52) 

where, ( )ma x  is the undulatory amplitude,   is the wavelength and f is the frequency. Eq. 

(5.51) can also be simplified as 

 ( , ) ( )cos(2 / 2 )m my x t a x x ft     (5.53) 

The amplitude of undulation wave varies for different swimming species. According to the 

plot of the specific amplitude along the body (Wassersug and Hoff 1985), the amplitude 

function can be determined. Studying several types of third and fourth-order polynomials, Liu 

and Kawachi (1999) found that a polynomial denoted by “am3” results in bigger propulsion 

with the same snout and tail amplitude. They also concluded that this might be due to the 

smooth line of mode “am3”, and this enables production of equilibrium vortex generation. 

The third-order polynomial (Liu and Kawachi 1999) can be written as 

 
2 3

0 1 2 3( )ma x C C x C x C x     (5.54) 

Coefficients from 0C  to 3C  are calculated from the curve plotted by Wassersug and Hoff 

(1985) through Chebyshev Curve Fitting method. The exact values of these coefficients are 

listed in Table 5.4. The amplitude approximated by this third-order polynomial is also plotted 
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in Fig. 5.10. In the present analysis, NACA0012 airfoil expressed by Eq. (5.55) is used as the 

contour of the fish body 

 
2 3 40.12

( ) (0.2969 0.126 0.3516 0.2843 0.1015 )
0.2

y x x x x x x      (5.55) 

where x varies from 0.0 to 1.0. The flow field is 30 24 with non-uniform grid represented by 

821 601  points. The finest grid is 1.1 0.6 with mesh spacing of 1/200 around the fish body. 

The mesh with NACA0012-shaped fish contour is illustrated in Fig.5.11. The fish is 

represented by 181 boundary points and located at (10.0, 12.0) initially. The fluid density is 

1.0  , the free stream velocity is 0.1U   and Reynolds number is 7200. Three cases with 

different frequencies of 1.3, 1.7 and 2.0 are simulated. The instantaneous streamlines and 

alternately positive-negative vorticity shedding after the drag/lift coefficient demonstrates 

periodic characteristic are shown in Fig. 5.12 and 5.13. It is known that the propulsive force 

is generated by the momentum transferred to the surrounding fluid during fish motion. When 

an undulation wave is passed across the fish, fluid is displaced around a fish and reaction 

forces arise. By integration of the force density along the fish surface, one can obtain the net 

force and moment generated by the fish. The total force includes contribution from the lift 

and drag forces. Lift is defined as the force acting perpendicular to the direction of motion, 

while drag acts parallel to the direction of motion. Table 5.5 compares the maximum and 

minimum drag coefficients in a period at f = 1.3, f = 1.7 and f = 2.0 with data in the literature 

(Shu et al. 2007). It can be seen that the present results show satisfactory comparison with 

data in the literature. Moreover, Fig. 5.14 shows drag coefficient at different undulation 

frequency. Negative drag coefficient implies propulsion force, which is generated by 

undulatory fish motion. The drag coefficient at different frequencies shown in Fig. 5.14 

reveals that the frequency has remarkable influence on the propulsive force generated. It can 
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be seen that when frequency equals to 1.3, the average drag coefficient in a period is nearly 

zero. When frequency is up to 1.7, the propelling force almost lasts for the entire period. 

Moreover, the propelling force rises remarkably when the frequency increases further to 2.0. 

 

5.4.3 Flow over a sphere 

A three-dimensional problem, flow over a sphere, is presented in this subsection. In this case, 

Reynolds number is defined as Re
U D


 , where U  is the free stream velocity taken as 0.1 

and D is the sphere diameter. According to Sheard et al. (2003), the flow around a sphere 

could be classified into three different regimes: steady axisymmetric flow ( Re 200 ), steady 

non-axisymmetric flow ( 210 Re 270  ) and unsteady non-axisymmetric flow 

( 280 Re 375  ). Steady flow at Re = 100 and 200, non-axisymmetric flow at Re = 250 are 

simulated in this study. The flow domain is a rectangular box with size of 30 20 20D D D   

in x, y and z directions respectively as shown in Fig. 5.15. It is represented by non-uniform 

mesh with 155 146 146   nodes. The center of the sphere is located at (10 ,10 ,10 )D D D  in 

the flow domain. The finest mesh region is arranged around the sphere with dimension of 

1.3 1.3 1.3D D D   represented by 52 52 52   nodes as shown in Fig. 5.16. Since the flow is 

axisymmetric when Re = 100 (Fig.5.17) and 200 (Fig.5.18), only the streamlines at the x-y 

plane of symmetry are plotted. The symmetric recirculation region can be seen clearly from 

the figures. It can also be seen that the recirculation length increases with Reynolds number. 

The drag coefficient at Re = 100 and 200 are compared with the benchmark data in Table 5.6. 

The convergence criteria was set as the difference of the drag force between two iteration 

steps less than 510 . The present results agree well with the previous numerical (Johnson and 

Tezduyar 1994) and experimental results (White 1974). Moreover, for axisymmetric flow, the 



138 

 

simulations at Re = 250 are also performed. When Reynolds number goes up to 250, the non-

axisymmetric recirculation region can be seen clearly from Fig. 5.19 and Fig. 5.20. It shows 

that the streamlines in the x-y plane is still symmetric. However, the symmetry is lost at the 

x-z plane. In this case, the flow is being considered as planar symmetric. This result is in 

good agreement with previous finding (Johnson and Tezduyar 1994). 

 

5.4.4 Transition layers on hydrophilic and hydrophobic walls 

The previous subsections demonstrate interactions between solid and single phase flows that 

involve Dirichlet boundary conditions. In the following subsections, problems with immersed 

solid in the multiphase flows, in which both Dirichlet and Neumann boundary conditions are 

present, will be discussed. The transition layer generated when a solid object is immersed in 

multiphase flows is presented in this subsection.  

 

When a solid wall is immersed in a multiphase flow and the surface wettability is not neutral, 

that is,  
s

 n  has non-zero value, the value of the order parameter on the wall will deviate 

from that in the bulk region (Papatzacos 2002) and a transition layer can be formed along the 

solid surface. In this case, analytical solutions exist for the order parameter on the solid 

surface. Hence it is adopted to test the performance of the proposed algorithm. The problem 

considered in this section is a square domain with a circular cylinder located in the center of 

the domain. The cylinder radius is chosen as the reference length, that is, the non-dimensional 

radius is 1, and the non-dimensional length of the computational domain is taken as 3.5. To 

ensure that the computation is consistent between the physical system and the lattice 

Boltzmann system, the non-dimensional radius and the length of computational domain in the 
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lattice Boltzmann system are kept as 1 and 3.5, respectively. For the present LBM calculation, 

x  is set as 1 for simplicity. Thus in the lattice Boltzmann system, the number of mesh 

points for the radius, radiusN , is the radius of the cylinder, and the number of mesh points used 

in each direction, N, is actually the length of the domain. Since the cylinder radius radiusN  is 

taken as the reference length, in the lattice Boltzmann system, the non-dimensional radius of 

the cylinder is / 1radius radiusN N  , and the non-dimensional length of the square computational 

domain should be / 3.5radiusN N  . This general rule must be obeyed when different mesh 

size and radius of cylinder are used in the lattice Boltzmann system. Hereafter, all the 

computational parameters are given in the lattice Boltzmann system unless stated otherwise.  

 

5.4.4.1 Effect of transition layer thickness 

A solid circular cylinder with radius of 40 represented by 148 Lagrangian points is centered 

at (70, 70) in a 140 140  computational domain. The flow domain is initialized as follows. 

1   for both fluids, 0  is set as 1 in the bulk region, 0.001  ,   and   take the same 

value as 0.75. (These physical parameters will be used for the cases hereafter unless 

otherwise stated). In this case, the gradient of the order parameter is fixed as 0.334933   

which corresponds to static contact angle of 60 , and the transition layer thickness ( w  in 

Chapter 2, Eq. (2.3)) varies from 4.0 to 6.0 with increment of 0.5. Moreover, neutral 

boundary conditions are applied on the outer boundaries. To be concrete, for density 

distribution functions: 
eq

Boundary Boundary
f f   and 

eq

Boundary Boundary
g g   with   running over 

0 to 8 lattice directions. For the macroscopic variables, natural boundary conditions (or 

neutral wetting boundary conditions) are applied. To be concrete: Boundary
u 0 , 1

Boundary
  , 
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1
Boundary

  , 0
Boundary

   and 0
Boundary  . In addition, the convergence criterion is set 

as 
1 510n n n

s s s      hereafter for this case. Figure 5.21 displays the initial flow field 

where   takes the same value in the whole flow domain. Figure 5.22 demonstrates the flow 

domain after applying the boundary condition through IBM when the transition layer 

thickness is set as 4.0. The transition layer attached to the solid boundary can be seen clearly 

in this figure. Moreover, Table 5.7 compares   on the boundary obtained through numerical 

simulation with the analytical solution when the surface thickness varies from 4.0 to 6.0. The 

relative error is defined as 

 
Theoretical Numerical

Relative

Theoretical

E
 




  (5.56) 

It can be found in Table 5.7 that the present results agree well with the theoretical prediction. 

 

Moreover, on account of the circular cylinder being a central-symmetric geometry, the 

solution of this problem should also be isotropic. Hence, it is natural to raise a question, that 

is, whether   obtained on the solid boundary demonstrates isotropy. To examine this issue, 

one can first look at Fig. 5.22. No oscillation can be observed in the flow domain. To be more 

precise, quantitative comparison is made in Table 5.8. It lists the maximum error between the 

local and the average numerical   value. It shows that the maximum errors are less than 

46 10  and the errors monotonously decrease as the thickness increases. The above 

comparisons demonstrate good isotropy of the obtained numerical results. In addition, the 

influence of grid size on numerical solution is examined. The interface width is chosen as 7 

and other computational parameters except for grid size are set to be the same. Three sets of 

grids (141 141 , 211 211  and 281 281 ) are tested and listed together with results in Table 
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5.9. It can be seen that the numerical results steadily approach theoretical solution as grid size 

is refined from 141 141  to 281 281 . Note that for the three sets of grids, the non-

dimensional length of the domain is kept as 3.5.  

 

5.4.4.2 Effect of  
s

 n  

The previous subsection simulates the case with a fixed Neumann boundary condition that is 

equivalent to contact angle of 60 . This subsection demonstrates the capacity of the present 

method to handle different  
s

 n  (corresponding to 5 175eq  ). The surface thickness 

is taken as 9.0. The computation is carried out on a 251 251  mesh size and the radius of the 

cylinder is represented by 65 grid points. Fig. 5.23 compares the numerical results with the 

theoretical values corresponding to different wetting potentials. The data are listed in Table 

5.10. It can be seen that the numerical results compare well with theoretical values when 

contact angle varies from 5  to 135 . It can also be found that both the absolute and relative 

errors increase from zero when eq  deviates from 90 . This may be attributed to the nature of 

this problem. According to the relationship provided by 
3 3

2 2
1

cos (1 ) (1 )
2

eq  
 

    
 

 

which is also shown in Fig. 2.2 in Chapter 2, it can be seen that when the equilibrium contact 

angle is close to 0  or 180 , the curve becomes very sharp. This indicates that in the region 

near 0  or 180 , the equilibrium contact angle is very sensitive to the   value. That is, when 

  is changed a little bit, the equilibrium contact angle will change a lot. So, in the region 

near 0  or 180 , a small numerical error for   would cause a large numerical error for the 

equilibrium contact angle. To further study this issue, the same problem is simulated by direct 

implementation of the boundary conditions. It is found that the numerical results given by 
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direct implementation of the boundary conditions also give larger errors when the contact 

angle is close to 0  or 180 , but are more accurate than the IBM results. This means that the 

present solver may not be very efficient to resolve the problem when the contact angle is 

close to 0  or 180 . It would need a very fine mesh to solve the problem in order to get an 

accurate solution.  

 

5.5 Concluding Remarks 

In this Chapter, both Dirichlet and Neumann boundary conditions were implemented 

consistently in IBM for simulation of various solid-fluid interactions. The IBM for Dirichlet 

boundary condition was briefly discussed. More importantly, for the first time, an IBM to 

implement Neumann boundary condition was developed in this work. The primary concept of 

the current method is to utilize the physical mechanism and interpret Neumann boundary 

condition as contribution of the flux from the surface to its relevant physical parameters over 

a control volume. Using the concept of IBM, the flux is directly related to the correction of 

the flow variables at Eulerian points. Several numerical experiments were performed to 

demonstrate the ability of IBM for simulation of solid-fluid interactions. First, simulation of 

steady and unsteady problems of solid-single phase flow interactions that involve Dirichlet 

boundary condition was performed. The numerical cases included flow over a circular 

cylinder, fish motion at high Reynolds number and flow over a sphere. The present numerical 

results compared well with data in the literature. Additionally, the developed immersed 

boundary method for Neumann boundary condition was applied together with the boundary 

condition-enforced IBM for Dirichlet boundary condition to simulate solid-multiphase flow 

interactions. The developed method was examined in detail through simulation of transition 
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layers on both hydrophilic and hydrophobic walls. The results show that the Neumann 

boundary condition can be implemented accurately. This work releases IBM from the long 

standing restriction that it can only handle Dirichlet boundary condition and sheds light on 

the implementation of IBM to ubiquitous fluid-solid interactions defined by Neumann 

boundary conditions.   
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Table 5.1 Transition Reynolds numbers for the wake around a circular cylinder (Sheard et al. 

2001) 

Circular cylinder transition type Reynolds number 

Boundary –layer separation 4 to 5 

Unsteady wake 47 

 

 

 

 

Table 5.2 Comparison of the drag force coefficient dC  and recirculation length L for steady 

flow over a circular cylinder at Re = 20 and 40 

Reynolds number References dC  
L 

Re = 20 

 

 

Re = 40 

Dennis and Chang (1970) 2.045 1.88 

He and Doolen (1997) 2.152 1.842 

Present 2.044 1.88 

Dennis and Chang (1970) 1.522 4.96 

He and Doolen (1997) 1.499 4.49 

Present 1.529 4.63 
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Table 5.3 Comparison of the drag coefficient for flow over a cylinder at Re = 100 

Method dC  

Liu et al. (1998) 1.35 

Linnick and Fasel (2005) 1.34 

Present 1.349 

 

Table 5.4 The polynomial coefficients for fish motion 

Coefficients 0C  
1C  

2C  
3C  

Value 0.055306 0.22649 0.29446 -0.32656 

 

 

 

Table 5.5 Maximum and minimum drag coefficients for fish motion at Re = 7200 

Frequency  Reference Maximum Minimum 

f = 1.3 

 

f = 1.7 

 

f = 2.0 

Shu et al. (2007) 0.0963 -0.0469 

Present 0.1162 -0.0439 

Shu et al. (2007) 0.0008 -0.3383 

Present 0.0038 -0.3261 

Shu et al. (2007) -0.1117 -0.6120 

Present -0.1129 -0.6200 
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Table 5.6 Comparison of the drag coefficient for flow over a sphere at Re = 100 and 200  

Reynolds number Reference Results 

100 

 

Johnson and Patel (1999) 1.112 

White (1974) 1.8 

Present 1.126 

200 

Johnson and Patel (1999) 0.79 

White (1974) 0.81 

Present 0.79 

 

 

Table 5.7 Comparison of   on the cylinder surface with theoretical prediction 

1.155Theoretical   

Interface thickness Numerical  Relative error 

4.0 1.091 5.5% 

4.5 1.095 5.1% 

5.0 1.098 4.9% 

5.5 1.101 4.6% 

6.0 1.104 4.4% 
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Table 5.8 Maximum error on the boundary 

Interface thickness 4.0 4.5 5.0 5.5 6.0 

maxaverage   45.634 10  45.573 10  45.543 10  45.403 10  45.336 10  

 

 

 

 

Table 5.9 Influence of grid size on   value on the boundary 

 1.155Theoretical 
  

Mesh Size numerical  Relative error 

141 141  1.114 3.54% 

211 211  1.122 2.86% 

281 281  1.127 2.42% 
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Table 5.10 Comparison of   value on the boundary 

eq ( )   theoretical  
IBM  

absoluteE  
relativeE (%) 

5 0.679 1.295 1.23 0.065 5.062 

30 0.586 1.259 1.202 0.057 4.566 

45 0.476 1.214 1.168 0.046 3.789 

60 0.335 1.155 1.122 0.033 2.857 

75 0.173 1.083 1.065 0.018 1.662 

90 0 1.0 1.0 0.0 0.0 

105 -0.173 0.91 0.928 0.018 1.978 

120 -0.335 0.816 0.853 0.037 4.534 

135 -0.476 0.724 0.779 0.055 7.597 

150 -0.586 0.643 0.716 0.073 11.331 

175 -0.679 0.567 0.652 0.085 14.996 
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Fig. 5.1 Sketch of a control volume with flux  

 

 

Fig. 5.2 Illustration of flow domain, immersed boundary points and influence region of 

boundary points to surrounding fluids 
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Fig. 5.3 Geometry of the flow domain and the circular cylinder 

 

 

Fig. 5.4 Local mesh around the cylinder 

 

   

(a) Direct forcing IBM (b) Boundary condition-enforced IBM 

Fig. 5.5 Streamlines around the cylinder at Re = 20 simulated by the conventional IBM and 

boundary condition-enforced IBM 
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(a) Direct forcing IBM (b) Boundary condition enforced IBM 

Fig. 5.6 Streamlines around the cylinder at Re = 40 simulated by the conventional IBM and 

boundary condition-enforced IBM 

 

  

(a) Re = 100 (b) Re = 200 

Fig. 5.7 Streamlines around the cylinder 

 

  

(a) Re = 100 (b) Re = 200 

Fig. 5.8 Instantaneous positive-negative vorticity around the cylinder 
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(a) Re = 100 (b) Re = 200 

Fig. 5.9 Time evolution of the drag and lift coefficients 

 

 

Fig. 5.10 The amplitude of fish undulation approximated by third order polynomial 
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Fig. 5.11 Local non-uniform mesh around NACA0012-shaped fish contour 
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(a) Undulation frequency equals to 1.3, Re = 7200 

 

(b) Undulation frequency equals to 1.7, Re = 7200 

 

(c) Undulation frequency equals to 2.0, Re = 7200 

Fig. 5.12 Streamlines around the swimming fish 

 

 



155 

 

 

 

 

 

(a) Undulation frequency equals to 1.3, Re = 7200 

 

(b) Undulation frequency equals to 1.7, Re = 7200 

 

(c) Undulation frequency equals to 2.0, Re = 7200 

Fig. 5.13 Vorticity contour around the swimming fish 
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Fig. 5.14 The drag coefficient of fish swimming for different frequencies at Re = 7200 

 

 

Fig. 5.15 Sketch of a rectangular flow domain 
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Fig. 5.16 Local mesh around the sphere 

 

  

(a)  (b) 

Fig. 5.17 Streamlines of steady axisymmetric flows at Re = 100 
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(a) (b) 

Fig. 5.18 Streamlines of steady axisymmetric flows at Re = 200 

 

  

(a) (b) 

Fig. 5.19 Streamlines of steady non-axisymmetric flows on x-y plane at Re = 250 
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(a) (b) 

Fig 5.20 Streamlines of steady non-axisymmetric flows on x-z plane at Re = 250 

 

 

Fig. 5.21 Initial flow field with solid cylinder located at the center 
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Fig. 5.22 Transition layer generated along the solid surface due to implementation of wetting 

boundary conditions through immersed boundary method 

 

 

Fig. 5.23 Theoretical and numerical   values on the boundary versus the non-dimensional 

wetting potential   

 



161 

 

Chapter 6
3
 

Application of Immersed Boundary-Phase Field-Lattice Boltzmann 

Method for Solid-Multiphase Flow Interactions 

 

In this Chapter, the numerical methods developed in previous chapters will be applied to 

simulate solid-multiphase flow interaction, which is still one of the most challenging 

problems in Computational Fluid Dynamics (CFD). The numerical challenges are mainly 

brought by the complexities involved. There are two distinct types of interfaces that must be 

treated simultaneously, that is, the liquid-liquid interface and the immersed solid boundaries. 

Additionally, the problem becomes much thornier when the solid is complex or allowed to 

move.  So far, feasible and efficient solutions to this problem are still limited. In this work, 

we will tackle this problem through the developed Immersed Boundary-Phase Field-Lattice 

Boltzmann Method. In this framework, the phase-field lattice Boltzmann method is used to 

update the flow field and capture the fluid-fluid interface. It is a diffuse interface method that 

permits the fluid interface moving freely, regardless of topology change, on a fixed Eulerian 

grid. On the other hand, the newly developed Immersed Boundary Method (IBM) for 

Neumann boundary conditions is applied together with IBM for Dirichlet boundary condition 

to treat the solid boundary. Both two and three dimensional cases will be studied by the 

method developed.  

                                                 
3 The material in this Chapter has been partially published in 

J. Y. Shao, C. Shu and Y. T. Chew (2013), “Development of an immersed boundary-phase field-lattice 

Boltzmann method for Neumann boundary condition to study contact line dynamics,” Journal of Computational 

Physics 243:8-32. 

http://apps.webofknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Z241ojfhhmMflmo@2Jl&page=1&doc=1
http://apps.webofknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Z241ojfhhmMflmo@2Jl&page=1&doc=1
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This Chapter is organized as follows: Section 6.1 provides a brief introduction to problems of 

interaction between solid and multiphase flow. It is followed by a overall simulation 

procedure in Section 6.2. The numerical examples will be demonstrated in Section 6.3. 

Considering additional difficulties caused by simulation of density contrast cases (the 

numerical instabilities are caused by shockwave like interface, across which the density 

profile changes sharply and drastically), we only demonstrate application of immersed 

boundary phase-field LBM for small density/viscosity contrast cases.  Finally, concluding 

remarks will be provided in Section 6.4 at the end of this Chapter.  

 

6.1 Solid-Multiphase Flow Interactions 

Solid-multiphase flow interactions encompass a wide range of natural phenomena and 

industrial practice, such as a raindrop impact on ground (Yarin 2006), drop sitting on lotus 

leaf (Quere 2008), water striders walking on fluid surface (Gao and Feng 2011) that can be 

observed in daily life, particle suspensions (Joseph et al. 2003, Singh and Joseph 2005, Singh 

et al. 2010) and wave-structure interactions (Lin and Chen 2013) in industrial applications, 

just to name a few. A unique characteristic that distinguishes solid-multiphase flow 

interaction from solid-single phase flow interaction is the contact line of three phases. It is the 

area where liquid interface intersects with the solid boundary. If we consider a two 

dimensional (2D) problem, it is actually represented by a point, and a line for a three 

dimensional (3D) problem (picture a drop on a leaf). The motion of three phase contact line 

plays a fundamental role in solid-multiphase flow interaction problems. However, the 

physical mechanism of a moving contact is still on debate (Dussan 1976, Dussan 1979, Blake 

2006, Snoeijer and Andreotti 2013) due to the widely disparate spatial and temporal scales 

rooted in this problem. Based on interpretation at difference scales, the numerical modeling 
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of this problem also varies. From macroscopic and mesoscopic points of view, the contact 

line dynamics can be modeled by a slip boundary condition in sharp interface methods 

(Dussan and Davis 1974, Dussan 1979, Zhou and Sheng 1990, Bussmann et al. 1999, 

Bussmann et al. 2000, Renardy et al. 2001, Spelt 2005) or Robin boundary conditions in the 

phase-field method (Rowlinson and Widom 1982, Seppecher 1996, Jacqmin 2000, Yue et al. 

2010).  In the macroscopic sharp interface approach, the contact line is considered as a sharp 

discontinuity where singularity occurs (Seppecher 1996, Bonn et al. 2009). The singularity 

attributes to conflict between movement of contact line and the no-slip boundary condition 

that should be enforced for incompressible viscous flows. In contrast, the diffuse interface 

method (mesoscopic method) assumes that the interface has a thin thickness where the 

change of phase or flow parameters is smooth and gradual. Thus, the singularity encountered 

in the sharp interface method can be naturally resolved (Antanovskii 1995, Anderson et al. 

1998, Jacqmin 2000, Ding and Spelt 2007, Ding et al. 2007). Due to this advantage, the 

phase-field method, as a diffuse interface method, has gained increasing popularity in 

simulation of contact line dynamics. As introduced in Chapter 2, to simulate contact line 

dynamics in phase-field method, the no-slip boundary condition is still utilized. Additionally, 

two Neumann boundary conditions (      n  for the order parameter   and 

0  n  for chemical potential  ) are used to govern the variation of composition on a 

solid boundary. However, owing to the intricacies caused by direct implementation of 

Neumann boundary condition on a body conformal grid for a complex geometry, most 

studies of contact line dynamics focus on perfectly smooth surface or grooved surface 

represented by straight lines. To overcome this problem, it is desirable that the boundary 

conditions can be applied through a non-body conformal manner. To approach this aim, an 

immersed boundary method that treats both the Dirichlet and Neumann boundary conditions 
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consistently is developed in the previous Chapter. The simulation procedures and numerical 

examples will be presented in the following context.  

 

6.2 Simulation Procedures 

To simulate solid-multiphase flow interactions, the methods developed in the previous 

Chapters are integrated together and the simulation procedures are summarized here. The 

phase-field LBM is adopted for flow field and interface capturing. Simultaneously, the 

Dirichlet and Neumann boundary conditions on solid boundaries are treated through IBM. To 

be concrete, the Dirichlet boundary condition is treated by a boundary condition-enforced 

IBM (Wu and Shu 2009) and the Neumann boundary condition is embodied analogous to the 

way that a flux affects its relevant physical parameter in a control volume. To provide an 

outline of the algorithm, the simulation procedures are summarized in the following context: 

(1) Set the initial flow fields; Compute the coefficient matrix A  in AX B  (Eq. 

5.16) and evaluate 
1

A ;  

(2) Using the lattice Boltzmann equation    , ,f t t t f t       x e x  and 

   , ,g t t t g t       x e x  to obtain the distribution functions at time level 

nt t  (with initial values of u ,   and   being zero) and compute the 

macroscopic variables; 

(3) Solve equation system AX B  (Eq. 5.16) to determine the velocity 

correction term u  at boundary points and distribute them to Eulerian points; 
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(4) Apply Eq. (5.41) to evaluate nq  on the boundary and Eq. (5.43) to compute 

  on Eulerian points. Update   using Eq. (5.45); 

(5) Obtain nq  through Eq. (5.40), compute t   on the Eulerian points using 

Eq. (5.42) and update the overall   according to Eq. (5.44); 

(6) Evaluate force density in Eq. (5.2), update velocity in Eq. (5.3) and compute 

the equilibrium distribution function; 

(7) Repeat steps (2) to (6) until a convergence criterion is reached. 

 

6.3 Results and Discussion 

In this section, applications of immersed boundary phase-field lattice Boltzmann method will 

be presented. The method is first validated in detail through simulating a dewetting problem. 

It is then applied to simulate droplet spreading on a flat surface over a wide range of partial 

wetting regimes. Moreover, spreading on a curved plate is also simulated. Furthermore, the 

ability of the present method to handle Neumann boundary condition on complex geometries, 

probably the most desirable feature of proposed IBM, is demonstrated through simulation of 

the contact line dynamics on circular cylinder(s). Additionally, a moving boundary problem, 

a cylinder cross over a liquid interface is also presented. Besides 2D simulations, 3D 

examples including droplet on both flat and curved surface are presented. In this Section, the 

length is given in lattice units (one lattice unit represents 5 3
10 ~ 10

  m). The density of both 

fluids will be set as 1 (can be correlated with 
3

kg m  in physical units), and the surface 

tension is 3
10

  (can be correlated with N m  in physical units) if otherwise stated. Moreover, 
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most cases considered here are with small droplets have diameter around tens of micrometers 

and the gravitational effect can be neglected.   

 

6.3.1 Droplet dewetting 

A solid-multiphase flow interaction problem, droplet dewetting, is used to test the numerical 

behavior of current method for dynamic problems. Both accuracy and grid-independency are 

examined in the first place. Thereafter, comparison between results of direct implementation 

of boundary conditions and those of immersed boundary method are carried out for different 

surface wettabilities. 

 

In dewetting problems, a droplet is initialized with a relatively small contact angle ( 60  for 

instance), while the plate where the droplet is placed is set as neutral wetting or hydrophobic 

(with large equilibrium contact angle equal or larger than 90 ). Consequently, there is an 

initial contact angle difference equilibirum initial     . In this case, the droplet will move 

upward due to this initial difference. This situation is similar to electrowetting experiments in 

which a voltage is suddenly applied. The speed of droplet motion depends on parameters 

such as the initial difference. To quantitatively characterize the droplet motion, two quantities 

are defined in the first place. They are averaged Y-position and Y-velocity component of the 

droplet: 

 
ij ij

Drop
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
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
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First, the accuracy and grid-independency for this dynamic case are verified by changing both 

Eulerian and Lagrangian grids. Then dewetting on solid boundary with different wettability is 

also examined. In these cases, the time evolutions of droplet height and velocity are 

compared with the results by direct implementation of boundary conditions.  

 

6.3.1.1 Grid-independency test 

Lagrangian grid-independency test 

To verify the grid-independency of Lagrangian grid, three different sets of Lagrangian grid 

(enumerated in Table 6.1) are tested. The computational domain is set as 300 210  lattice 

units with a smooth plate (length equals 200 lattice units) centered at (150, 30). Concurrently, 

a body-conformal domain of 200 150  with a plate centered at (100, 0) is used for direct 

implementation of boundary conditions. Moreover, a droplet of radius 60 lattice units is 

centered on the plate with initial contact angle of 60 . Meanwhile, the equilibrium contact 

angle of the plate is set as 120 . Neutral boundary conditions are applied on upper and lower 

walls, while periodic boundary conditions are used for the left and right boundaries. 

Furthermore,   is fixed as 0.65 (corresponding to kinematic viscosity of 0.05) hereafter 

unless mentioned otherwise. The time evolution of DropY  obtained by immersed boundary 

method on three sets of Lagrangian grid are compared with that by direct implementation of 

boundary conditions in Fig. 6.1. It can be seen that the dynamic processes provided by IBM 

are almost identical when Lagrangian grid size varies in a wide range (normally, the value of 

L E   is larger than 1.0 and less than 2.0 in IBM). Furthermore, all the results of IBM are 

compared well with those given by direct implementation of boundary conditions. This 
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shows that the Lagrangian resolution in this study is adequate. Thus, the value of L E   is 

chosen around 1.5 in the following numerical tests.  

 

Eulerian grid-independency test 

The grid-independency of Eulerian grid is also examined. In this part, numerical simulation is 

performed on three Eulerian grids. The evolution of DropY  in three cases is compared with that 

by direct implementation of boundary conditions in Fig. 6.2. It can be seen that the change in 

Eulerian grid size also has little influence on the dynamic process obtained and all the 

numerical results by IBM show good comparison with those by direct implementation of 

boundary conditions. This study also shows that the Eulerian grid size used in this work is 

fine enough to get accurate numerical results.  

 

6.3.1.2 Influence of surface wettability 

Besides examining the accuracy and grid-independency of the proposed algorithm to simulate 

dynamic process, the surface wettability is varied in this part and droplet velocity obtained by 

IBM is compared with that by direct implementation of boundary conditions. As 

demonstrated previously, Eulerian grid of 301 211  with L E   varying from 1.2 to 1.8 can 

provide stable and accurate solution. The surface wettability is set as contact angle of 90 , 

120  and 150  respectively. Figure 6.3 compares IBM results of these three different cases 

with those by direct implementation of boundary conditions. It can be observed that the time 

evolution of DropV  provided by IBM basically compares well with that on the body conformal 
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grid even when the surface demonstrates super-hydrophobicity (i.e. 120eq   and 

150eq  ). 

 

6.3.2 Droplet spreading on a plate in partial wetting regime 

We now apply the proposed method to simulate another problem: Droplet spreading in the 

partial wetting regime. In this case, the numerical contact angles are compared with 

theoretical predictions. Moreover, the time evolution of resolved droplet height and base 

diameter are compared with that obtained by direct implementation of the wetting boundary 

conditions. 

 

In this case, a flat plate with length of 400 is centered at (250, 50) in a computational domain 

of 500 230 . A droplet with radius of 45 is initialized above a plate with contact angle of 

160 . The boundary conditions corresponding to the equilibrium contact angle eq  from 30  

to 150  are tested. The interface thickness is set as 4.5. The non-dimensional time is defined 

as t Nh D   (Khatavkar et al. 2007), in which N indicates time steps, h means the 

Eulerian mesh spacing and D is the diameter of the droplet. Figures 6.4(a) to (e) display the 

equilibrium status of the spreading droplet with different eq . To identify droplet contact 

angle, two ways are available. One way is to use a protractor and directly measure it on a 

phase-field contour (only one contour line 0   that represents the interface will be used) 

after the droplet evolves to its equilibrium state, as shown in Fig. 6.5(a), in which cl  is 

tangent line of level curve 0   on the wall. The other way is based on the fact that the 

droplet takes an arc shape to minimize the free energy after it approaches equilibrium on a 
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smooth surface. It is the way adopted to calculate eq  in this work. As sketched in Fig. 6.5(b) 

when 90eq  , we denote radius of droplet, height of droplet and radius of the circle as DropR , 

DropH  and R  respectively. It can be derived that the contact angle is 
2
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. Following this procedure, the 

same equation can be derived when 90eq  . (In this work, the values of DropR  and DropH  

are tracked in the code based on the contour line of 0  ). Figure 6.6 compares the 

numerical results of the current method with the analytical solution. The numerical 

equilibrium contact angle was obtained after the difference of it between two iteration steps 

was less than 310 . This criterion was applied for the equilibrium status of spreading cases 

hereafter if otherwise stated. It demonstrates that the numerical results agree well with 

theoretical values over a wide range, especially when the contact angle is less than 135 . This 

may be due to the reason that for a droplet with a fixed volume, the base radius decreases for 

larger contact angle and hence the accuracy is negatively affected. This tendency is also 

observed when the boundary condition is directly implemented. In addition, quantitative 

comparisons are made in Table 6.2 between theoretical values and those obtained by direct 

implementation of the wetting boundary conditions (the computational domain is adjusted to 
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400 180 ). It can be seen that the numerical results obtained by IBM are almost identical 

with those by direct implementation of the wetting boundary conditions. 

 

Besides comparison of the equilibrium contact angle, the time evolution of the droplet height 

and base diameter (normalized by the initial droplet diameter) by IBM is also compared with 

that by direct implementation of the wetting boundary conditions on a body-conformal grid in 

Fig. 6.7. It can be found that dynamics provided by IBM is also in good agreement with that 

obtained by direct application of the boundary conditions. Figure 6.7 also demonstrates 

overall behavior of a spreading droplet. To be specific, initially the base diameter undergoes 

dramatic changes while the droplet height stays almost the same when t < 1. Subsequently, 

the development of both the droplet height and diameter can be observed until the droplet 

relaxes to its equilibrium status (Khatavkar et al. 2007). This process can be seen more 

directly in Fig. 6.8. In addition, the level curves for the phase variable with velocity vector 

field at two time stages are plotted together with those by direct implementation of boundary 

conditions in Fig. 6.9. It can be seen that the flow field provided by IBM matches very well 

with that by direct implementation of boundary conditions. To further validate the numerical 

results, the spreading rate of this process is evaluated. Fitting the curves in Fig. 6.7 between 

0 110 10t   gives nr t  where n = 0.351. This value compares reasonably well with that 

reported in Khatavkar et al. (2007) which is n = 0.34. These results demonstrate that the 

present algorithm can not only reproduce the equilibrium results, but also can correctly 

predict dynamic process of the moving contact line phenomenon. 
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6.3.3 Droplet spreading on a curved surface 

In this case, simulation of a 2D droplet evolution on convex surface is performed. Initially, a 

droplet with radius of 40 is centered at (0, -30) in domain of 240 120 . The center of original 

droplet is located in the center of computational domain (Bao et al. 2012). The reference 

length in the current simulation is set as 200, and the other parameters are set the same as 

those in the work of Bao et al. (2012) To be specific, the radius of the curved surface is 300 

and the center of the curved surface is at (0, -330). Wall boundary conditions are directly 

applied on the upper and lower walls while the wetting boundary condition is applied through 

IBM on the curved surface. Cases with static contact angles of 60  and 120 are studied. Fig. 

6.10 presents the equilibrium droplet shape with different static contact angles. The droplet 

shape resembles well with that shown in the literature. Moreover, the geometrical 

characteristics of the droplet ratio between DropH  and  DropR  (defined in Figure 6.10(a)) is 

measured and compared in Table 6.3 with results in the literature (Bao et al. 2012). It can be 

seen that good agreement has been achieved.  

 

6.3.4 Contact line dynamics on a single and two alongside circular cylinders 

Most of the cases examined previously only consider the simple smooth surface in order to 

compare the results with those by direct implementation of the boundary conditions. This 

subsection is devoted to demonstrate ability of the proposed algorithm to handle problems 

with curved boundary. First, the contact line dynamics on a single circular cylinder is 

simulated. Then, contact line around two alongside cylinders is studied with different surface 

wettabilities. 
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6.3.4.1 Single cylinder 

In this case, a circular cylinder with radius of 40 is fixed at the center of computational 

domain of 200 200 . Periodic boundary condition is applied at the left and right sides and 

neutral wetting boundary condition is used for the upper and lower walls. The fluid-fluid 

interface is initialized as a flat surface located at the middle of the computational domain. The 

lower region is set as liquid phase with 1   and the ambient fluid is set as 1    (the order 

parameter in the cylinder is set the same as the ambient fluid). 

 

Figures 6.11(a) to (c) show the equilibrium statuses when theoretical contact angles are set as 

60 , 90  and 120 . It can be seen that the fluid-fluid interface evolves along the solid 

boundary. For the hydrophilic surface, the fluid-fluid interface will rise above the initial 

horizontal line. On the contrary, the fluid-fluid interface is lowered below the initial 

horizontal line for the hydrophobic surface. In this case, the numerical contact angle is 

measured directly based on the obtained flow field (contour line 0  ). The definition of the 

equilibrium contact angle (Singh and Joseph 2005) is shown in Fig. 6.12. In this figure, bn  is 

the outward normal of the circular cylinder and bτ  is the tangential direction at the same 

position. These two directions are plotted at the three-phase contact line (contact point in this 

figure). Table 6.4 compares the numerical equilibrium contact angles with theoretical values. 

It is validated that the current numerical algorithm can accurately produce equilibrium 

contact angle when curved boundary is involved in the multiphase flow-solid interactions. 
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6.3.4.2 Two alongside cylinders 

To further unfold the robustness of the present algorithm to manipulate arbitrary number and 

shape of complex solid boundaries, the cases with two alongside circular cylinders having the 

same as well as different wettabilities are simulated. The two circular cylinders with radius of 

40 are fixed at (150, 50) and (250, 50) respectively in an expanded computational domain of 

400 200 . 

 

Figure 6.13 shows the equilibrium flow field. The two cylinders in Fig. 6.13(a) have the same 

wettability with equilibrium contact angle of 60 . Meanwhile, the two cylinders in Fig. 

6.13(b) have the same equilibrium contact angle of 120 . It can be found in these figures that, 

for each cylinder, the fluid-fluid interface deformation is asymmetric. At two ends far away 

from the interval between two cylinders (the left and right free ends), the fluid-fluid interface 

relaxes to the prescribed eq . However, the fluid-fluid interface in the interval is raised 

( 60eq  ) or lowered ( 120eq  ) as compared with initial horizontal line. This is due to the 

fact that when two cylinders are located close enough, a capillary interaction in the interval is 

generated in response to the overlap of perturbations in the meniscus shape (Kralchevsky and 

Nagayama 1994). Additionally, another case with two cylinders having different wettability 

has also been simulated. As shown in Fig. 6.13(c), the left one has 60eq   and the right one 

is 120eq  . In this case, the fluid-fluid interface also relaxes to the prescribed eq  at two 

free ends. However, different from two cylinders with the same wettability, the interface is 

raised near the hydrophilic cylinder and lowered in the vicinity of the hydrophobic cylinder. 

In this case, the two cylinders, if they are allowed to move freely, will be pushed away from 

each other due to the repulsive long-range force generated. In-depth investigation 
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(Kralchevsky and Nagayama 1994, Kralchevsky and Nagayama 2000, Singh and Joseph 

2005, Millett and Wang 2011) of these phenomena is beyond the scope of present work and 

interesting readers can refer to the literature listed above and references therein. In summary, 

numerical examples in this subsection demonstrate that, the present algorithm can easily be 

adapted to contact line problems with curved boundaries as well as surfaces with chemical 

inhomogeneous characteristics. Hence, it can serve as an efficient approach to study the 

multiphase fluid-solid interaction problems. 

 

6.3.5 Impulsive motion of a submerged circular cylinder 

A stationary circular cylinder interacting with free interface is simulated in the preceding 

subsections. In this subsection, a moving boundary problem, the impulsively started moving 

of an immersed cylinder is presented. A sketch of this problem is provided in Fig. 6.14. A 

circular cylinder is initially emerged slightly below the free interface of two fluids with 

density 1.1 and 1 respectively. It will move with a fixed velocity U either upwards or 

downwards. The radius of cylinder is set as 1.0 and the computational domain is 400 240 . 

The interface is located in the half length of H. The distance between the center of cylinder 

and interface is 1.25. The non-dimensional number is Fr U gh  and is fixed as 0.39 in the 

simulation. The computational domain is set as 400 240 , the characteristic velocity is set as 

0.0325, liquid kinematic viscosity is 0.15, and the wettability of cylinder is set as 90 . The 

free surface shape at T=Ut/h=0.4 is compared with result in the literature (Tyvand and Miloh 

1995, Greenhow and Moyo 1997) in Fig. 6.15. It can be seen that the present disturbance of 

the free interface caused by motion of the cylinder shows good comparison with that in the 

literature. Moreover, interactions of the cylinder with the free interface at latter time stages 

are also shown in Fig. 6.16. 
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6.3.6 3D droplet spreading on a smooth surface 

Beside 2D cases, 3D simulation of immersed boundary-phase field LBM for moving contact 

line problems is also carried out. To validate the 3D simulation, a standard case, droplet 

spreading on smooth surface is performed in the first place. In this case, the computational 

domain is set as 100 100 80   with a smooth plate of 90 90  centered at (50, 50, 20). The 

droplet radius is set as 22.5. The 3D droplet shape when equilibrium contact angle equals 60 , 

90  and 120  is demonstrated in Fig. 6.17. The numerical equilibrium contact angles are 62 , 

91  and 123  respectively. It can be seen that the current numerical results well approach 

theoretical equilibrium contact angles. 

 

6.3.7 3D droplet on a curved surface 

After validation of the 3D code, this subsection will study 3D droplet evolution on both 

convex and concave shaped surfaces. In this case, the computational domain is 100 100 80  . 

A sketch of the concave case in x-z plane is shown in Fig. 6.18 (The surface only has 

curvature in x-z plane). As shown in the figure, the center point of chord A is fixed at (50, 50, 

20) and the chord length chordL  is fixed as 90. Moreover, arc  as defined in Fig. 6.18 is set as 

15 . For the convex case, the setting is the same except that the center of curved surface is in 

negative z direction. Fig. 6.19 compares the droplet wetted distance on surface between the 

plane surface and concave surface in x-z plane. It should be noted that for a flat plane, the 

wetted distance is the same at each direction. However, on the concave plane the distance 

will be different. In Fig. 6.19, the wetted distance of a drop on the concave surface is the arc 

length of the wetted area in middle x-z plane of the computational domain. It can be seen that 

the wetted distance on the concave surface is larger than that on flat surface. In contrast to the 
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concave surfaces, we also found that the wetted distance is smaller on the convex surface. 

Moreover, the droplet shapes on the curved surface are also plotted. Figs. 6.20 and 6.21 

present droplet shapes with different static contact angles on both the concave and convex 

surfaces respectively. Through these numerical examples, the ability of the developed 

algorithm to investigate 3D contact line problems involving complex or curved surface such 

as surface wave interaction with pipes is demonstrated.  

 

6.4 Concluding Remarks 

The application of immersed boundary-phase field lattice Boltzmann method to simulate 

solid-multiphase flow interaction was demonstrated in this Chapter. For solid-multiphase 

flow interactions, two types of interfaces: the fluid-fluid interface and the solid boundary 

must be treated at the same time. In the present work, phase-field lattice Boltzmann method is 

used to capture the fluid-fluid interface. Simultaneously, the developed immersed boundary 

method is applied to treat both Dirichlet and Neumann boundary conditions for solid 

boundary. The method has been validated in details through several numerical cases. The 

equilibrium results and dynamic processes of solid-multiphase flow interactions were 

compared with theoretical predictions or data in the literature. Additionally, its capacity to be 

adapted to geometrical and/or chemical patterned surface was also demonstrated.  
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Table 6.1 Three sets of Lagrangian grid and ratio of Lagrangian grid spacing over Eulerian 

grid spacing ( L E  ) 

Number of Lagrangian grid points 168 126 112 

L E   1.2 1.6 1.8 

 

Table 6.2 Comparison of equilibrium contact angle on flat plate 

Theoretical value IBM 

Direct implementation of 

wetting BCs 

60  60.6  60.4  

90  90  90  

120  120.5  120  

 

Table 6.3 Comparison of droplet shape on curved surface 

 Bao et al. 2012 Present 

Drop DropR H , 60eq   1.62 1.64 

Drop DropR H , 120eq   0.53 0.52 

 

Table 6.4 Comparison of equilibrium contact angle on circular cylinder 

Theoretical value 60  90  120  

IBM 61 1  90 1  120 1  
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Fig. 6.1 Evolution of DropY  (Nstep is time step. Eulerian grid: 300 210 ; DIBC: Direct 

implementation of the boundary conditions; L E  : Mesh spacing ratio between Lagrangian 

and Eulerian grid) 

 

 

Fig. 6.2 Evolution of DropY  (Nstep is time step. Three different Eulerian grids: 301 211 , 

361 251  and 401 291 , are used; 1.5L E   . DIBC: Direct implementation of the 

boundary conditions) 
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Fig. 6.3 Evolution of droplet DropV  (Nstep is time step. DIBC: Direct implementation of the 

boundary conditions; IBM: Immersed Boundary Method) 

 

 

(a) 30eq     (b) 60eq     (c) 90eq   

 

(d) 120eq     (e) 150eq   

Fig. 6.4 Equilibrium statuses of the spreading droplet on a flat plate 
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(a) Local   level contours when the droplet approaches 60eq   

 

 

(b) Sketch of arc shape of an equilibrium droplet 

Fig. 6.5 Two ways to calculate equilibrium contact angle for droplet spreading on smooth 

surface 
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Fig. 6.6 The non-dimensional wetting potential versus the theoretical and numerical 

equilibrium contact angle 

 

 

Fig. 6.7 The time evolution of non-dimensional droplet height and diameter (normalized by 

the initial droplet diameter) when 60eq   
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(a) 60eq   

 

(b) 90eq   

 

(c) 120eq   

Fig. 6.8 Spreading process of a droplet with three different equilibrium contact angles 
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(a) Nstep = 2000 

 

 

(b) Nstep = 10000 

Fig. 6.9 Level curves of order parameter together with velocity vector field during spreading 

process. The left panel is the result by direct implementation of the boundary conditions and 

the right panel is result by IBM ( 60eq  ) 
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(a) 60eq   

 

 

(b) 120eq   

Fig. 6.10 The results of contact lines on the curved surface with different equilibrium contact 

angles 
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(a) 60eq     (b) 90eq     (c) 120eq   

Fig. 6.11 Contact line on a single circular cylinder 

 

 

 

Fig. 6.12 Schematic depiction of contact angle definition on a circular cylinder 
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(a) Both cylinders with the same surface wettability of 60eq   

 

(b) Both cylinders with the same surface wettability of 120eq   

 

(c) The left cylinder with surface wettability of 60eq   and the right one with 120eq   

Fig. 6.13 Contact line on two alongside cylinders with the same as well as different surface 

wettability 
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Fig. 6.14 A sketch of motion of an immersed cylinder 
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(a) Submerged cylinder impulsively moving downward 

 

(b) Submerged cylinder impulsively moving upward 

Fig. 6.15 Interface disturbance caused by impulsively started motion of cylinder 
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(a) T=0.3 (b) T=1.5 

  

(c) T=2.7 (d) T=3.3 

  

(e) T=3.9 (f) T=7.5 

Fig. 6.16 Interaction of a moving cylinder with the free surface 
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(a) 60eq    (b) 90eq   

 

(c) 120eq   

Fig. 6.17 3D droplet spreading on the smooth plate 
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Fig. 6.18 A sketch of concave surface in computational domain 

 

 

Fig. 6.19 Comparison of the droplet wetted distance on surface between plane surface and 

concave surface in x-z plane  

z 

x 
A 

arc

z 

chordL

z 



193 

 

 

 

 

  

(a) 60eq    (b) 90eq   

 

(c) 120eq   

Fig. 6.20 3D droplet shape on the concave surface 
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(a) 60eq    (b) 90eq   

 

(c) 120eq   

Fig. 6.21 3D droplet shape on the convex surface 
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Chapter 7 

Conclusions and Recommendations 

 

In this Chapter, a conclusion of the present work will be provided in the first place. 

Thereafter, recommendations for future studies will be presented to end this Chapter. 

 

7.1 Conclusions 

In this thesis, three algorithms have been developed for simulation of solid-multiphase flow 

interactions. With respect to multiphase flow simulation, a stencil adaptive phase field-lattice 

Boltzmann method (LBM) has been proposed to balance the accuracy and computational 

efficiency. Moreover, a free energy-based phase-field LBM has been developed for 

simulation of the multiphase flow with density contrast. On the other hand, concerning 

boundary condition implementation, an immersed boundary method (IBM) for Neumann 

boundary condition has been purposed. It breaks through the long existed limitation that IBM 

can only treat Dirichlet boundary conditions and allows IBM to simulate more generous 

solid-fluid interactions. Moreover, the developed IBM was applied to study solid-multiphase 

flow interaction problems, which involve both Dirichlet and Neumann boundary conditions, 

in the phase-field framework. A more detailed summary will be provided in the following 

context according to the three developed algorithms respectively.  

 

In respect of multiphase flow simulation, a stencil adaptive phase-field LBM has been 

developed to achieve high resolution of interface and concurrently reduce computational 
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resources required. The phase-field LBM has attracted much interest for the multiphase flow 

simulation owing to the advantages such as high efficiency in the interface capturing, natural 

resolving of contact line singularity and simple simulation procedure. However, as a diffuse 

interface method, a significant challenge for the phase-field LBM is to obtain a thin interface 

within affordable computational storage and time. To solve this problem, several solution-

adaptive LBMs have been proposed. Nevertheless, due to the application of grid-structure 

that is not consistent with the lattice velocity model, these algorithms either involve complex 

spatial and temporal interpolation or partial loss of simplicity of LBM. To avoid complex 

interpolations and maintain simplicity of LBM, a stencil adaptive phase-field LBM has been 

developed in the present work. In the stencil adaptive algorithm, two types of symmetric 

stencils were alternatively inserted during the adaptive process. It was interesting to note that 

the combination of two types of stencil forms a structure very similar to the D2Q9 lattice 

model. Thanks to this similarity, the second order of accuracy can be achieved with only one-

dimensional interpolation. The simplicity of LBM was also maintained. The accuracy and 

efficiency of the developed method has been examined through simulation of several 

multiphase flow problems. To be specific, the numerical behaviour of the present method was 

first investigated through the simulation of a stationary bubble. The Laplace law has been 

validated in this case. Moreover, the improvement in interface resolution was also 

demonstrated. Additionally, the simulation of a rising bubble was performed to demonstrate 

the ability of the present method to capture the moving interface. Furthermore, it was applied 

to simulate a contact line problem-droplet spreading on a solid surface with different 

wettability. All the obtained results showed good agreement with theoretical predictions 

and/or results in the literature. Besides accuracy, efficiency improvement was also 

demonstrated in stationary as well as dynamic cases. In conclusion, the numerical 

experiments performed verified that the developed stencil adaptive phase-field LBM enables 
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a high resolution for interfacial dynamics with greater grid distribution flexibility and 

considerable saving in computational effort. 

 

Secondly, a novel phase-field LBM has been proposed to improve Z-S-C (Zheng et al. 2006) 

model for correct consideration of density contrast. In Z-S-C model, there are two sets of 

LBEs. One is for simulation of the flow field and the other is to recover C-H equation for the 

interface capturing. In the LBE for the flow field simulation, mean density is used as 

conservative variable. This ensures a stable and efficient simulation. However, the effect of 

local density variation is not properly considered. To correctly consider the effect of density 

contrast in the momentum equation, we start with a LBE, where the particle distribution 

function is for the local density and momentum. Then, to improve numerical stability, a 

transformation which is similar to the one used in the works of He et al. (1999) and Lee and 

Lin (2005) is introduced to change the particle distribution function for the local density and 

momentum into that for the mean density and momentum. Through this way, the LBE for the 

flow field in the present model can correctly consider the effect of density contrast in the 

momentum equation. In the meantime, it enjoys good properties of the particle distribution 

function for the mean density. The developed method has been validated through several 

numerical examples. It was first validated through simulations of viscous coupling of 

immiscible multiphase flow in a two-dimensional (2D) channel. The results were found to 

compare well with the theoretical solutions. Moreover, 2D nonlinear development of 

Rayleigh-Taylor instability and droplet splash on a wet surface were also simulated. Besides 

the 2D cases, three-dimensional (3D) simulations of drop impact on a dry surface considering 

the dynamic contact angle and 3D droplet collisions were performed and compared with the 

results in the literature as well. It is shown that the developed free energy-based LBM 
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successfully accounts for density contrast and can be used as an efficient tool to simulate both 

2D and 3D multiphase flow problems. 

 

Thirdly, an immersed boundary method was developed to implement Neumann boundary 

conditions that present in various solid-fluid interaction problems, on the complex solid 

surfaces. IBM is known as an efficient and robust algorithm to perform simulation of solid-

fluid interactions. It has undergone continuous refinement for decades. Nevertheless, most 

works are limited to implementation of the Dirichlet boundary conditions. In this work, we 

initiate the first endeavour to apply IBM for the Neumann boundary conditions for more 

flexible solid-fluid interactions. The primary concept of the present method is to utilize 

Neumann boundary condition’s physical interpretation. To be specific, Neumann boundary 

condition can be interpreted as contribution of the flux from the surface to its relevant 

physical parameters in a control volume. Using the concept of IBM, the flux can be directly 

related to the correction of the flow variables at Eulerian points. The application of IBM for 

several solid-fluid interaction problems were demonstrated in this work. First, the solid-single 

phase interactions such as flow over a circular cylinder, fish motion at high Reynolds number 

and flow over a sphere were presented. Subsequently, solid-multiphase flow interaction and 

transition layer formed on a solid surface were also simulated. The significance of this work 

is that it has extended the application of IBM to a boarder range and shed light on the 

implementation of IBM to ubiquitous fluid-solid interaction problems that involve the 

Neumann boundary conditions. 

 

Last but not the least, the application of immersed boundary phase-field lattice Boltzmann 

method to study several solid-multiphase flow interactions was illustrated. Simulation of 
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solid-multiphase flow interactions might be one of the most challenging topics in 

computational fluid dynamic recently. It is because two different types of interface must be 

treated simultaneously in the simulation. One is the fluid-fluid interface and the other is the 

solid boundary. In this work, combination of the developed IBM for solid-fluid interaction 

and the phase-field lattice Boltzmann method provides us an efficient tool to tackle this 

problem. The performance of immersed boundary phase-field LBM has been testified 

through droplet dewetting and droplet spreading. Both equilibrium results and dynamic 

process were verified in details. Numerical results showed that the method can accurately 

reproduce equilibrium status and dynamic processes as compared to direct implementation of 

the same boundary conditions. The simulation of a droplet spread on a curved surface was 

also performed. Additionally, its capacity to simulate geometrical and/or chemical patterned 

surface was also demonstrated through simulation of the stationary and moving immersed 

cylinder(s) interaction with the free surface. Furthermore, the developed IBM for Neumann 

boundary condition was also extended to study the 3D moving problems on complex 

geometries as well.  

 

7.2 Recommendations 

This thesis has established an immersed boundary phase-field LBM framework for 

simulation of solid-multiphase flow interactions. Nevertheless, there is still a scope for 

improvement and application of these algorithms can also be further extended. 

Recommendations of the future works are presented in the following context.  

 

First, the current stencil adaptive method is developed for 2D multiphase flows. It is known 

that for 3D simulation, the conflict between high resolution and computational effort might 
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be more serious. However, the 3D adaptive LBM is still less developed due to the complex 

structure of 3D lattice model. Thus, 3D adaptive LBM can be studied in the future work. 

Secondly, although the newly developed phase-field LBM has been successfully applied to 

both 2D and 3D multiphase flow problems have density ratio within the range of 210 , it is 

still unable to handle large density contrast (in the order of 310 ). This is attributed to the fact 

that when a flow field is exposed to large density gradient, the physical diffusion in Cahn-

Hilliard equation is not adequate to ensure a stable simulation. In this situation, it would be 

useful to apply more sophisticated numerical schemes and introduce artificial diffusion. To 

achieve this aim, the lattice Boltzmann equation for flow field can be directly coupled with 

the macroscopic Cahn-Hilliard equation supplemented by upwind schemes. In this manner, 

the phase-field LBM can be extended to problems with large density contrast in the future. In 

addition, the application of the developed immersed boundary phase-field lattice Boltzmann 

method in areas of: (1) solid interaction with multiphase flow with large density contrast and 

(2) moving boundary interactions with multiphase flow can be further extended.  
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