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Abstract 

Histone deacetylase inhibitors (HDAC inhibitors) are regarded as very 

promising anti-cancer drugs for their high selectivity and relatively low 

effective concentrations in causing tumor growth inhibition. However, like 

other groups of anti-cancer drugs, HDAC inhibitors also are faced with the 

problem of chemo-resistance in some specific cancer types, especially solid 

tumors such as gastric cancer. This project aims to investigate possible 

mechanisms of HDAC inhibitor resistance in gastric cancer by a genomic 

screening method. 

From 17 gastric cancer cell lines covering diverse origins and souces, 

we identified AGS, YCC11, Ist1, AZ521 and SCH cells as sensitive cell lines to 

HDAC inhibitor treatment, and YCC3, YCC7, MKN7 cells as the resistant cell 

line group. Our sensitivity indexes included cell proliferation assay (MTT 

assay), apoptotic assay (PARP cleavage by Western blot) and cell anchorage 

independent growth assay.  The experimental drugs included Trichostatin A 

(TSA, class I, II HDAC inhibitor), SAHA (another hydroxamate HDAC inhibitor, 

which is similar to TSA but approved for clinical use) and MS275 (benzamide 

HDAC inhibitor, which can specifically inhibit class I HDACs).  

Combining gene expression data from both the Affymerix U133 

platform and the Illumina 6 platform, an integrated genomic analysis was 

performed using Partek software to investigate genes differentially expressed 
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between the sensitive and resistant gastric cancer cell lines group. Two gene 

candidates, STAT1 and RNH1, were nominated and subsequently validated at 

the protein level. 

Of the two genes, STAT1 has been previously reported to contribute 

to HDAC inhibitor resistance in Kras-mutated colon cancer cells providing 

confidence in the robustness of our genomic analysis. We focused on 

investigating the effects of RNH1 on HDAC inhibitor-resistance in gastric 

cancer cells. 

In order to investigate the importance of the RNH1 in gastric cancer 

HDAC inhibitor resistance, stable knock-down of RNH1 in YCC3 and YCC7 cell 

lines were established. Using cell proliferation, apoptosis and colony 

formation assays, we found that RNH1 knock-down in YCC3 and YCC7 cells 

reversed their HDAC inhibitors-resistance. These results were observed using 

two independent RNH1 shRNA sequences, demonstrating that this is not due 

to off-target effects.   

The effect of RNH1 over-expression in sensitive cell lines was also 

tested. RNH1 overexpression in YCC11 and AZ521 cells caused higher 

resistance to HDAC inhibitors.  

We hypothesized that the effects of RNH1 might be mediated through 

the production of reactive oxygen species (ROS) induced by HDAC inhibitors.  

Indeed, sensitive gastric cancer cell lines showed higher ROS production by 
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TSA treatment. Experimental deregulation of RNH1 in selected cell lines could 

also alter ROS production by TSA treatment Moreover, treating the cell lines 

with redox modulation molecules, such as GSH, could rescue sensitive cell 

lines from TSA induced growth inhibition, while PEITC treatment could 

enhance the growth inhibition of previously-resistant cell lines by TSA. 

Finally, the effect of RNH1 on HDAC inhibitor sensitivity in normal 

gastric epithelial cell lines (GES1 and HFE145) and other types of cancer cell 

lines (Hela, MCF7, HepG2 and HCT116) were also tested. Similar to gastric 

cancer, cell lines with higher RNH1 expression level (GES1, HFE145 and 

HepG2) showed higher resistance to TSA treatment. 

Taken collectively, our results demonstrate that RNH1 can contribute 

to HDAC inhibitor resistance in gastric cancer cells through regulating ROS 

production. These results improve our understanding the HDAC-related 

biology, and could prove useful in guiding the design of future clinical trials 

evaluating HDAC inhibitors.  
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Chapter One. Introduction 

 

1.1   Gastric Cancer 

 

Gastric cancer refers to cancer originating from any part of 

the stomach and mainly includes four histological types: adenocarcinoma, 

lymphoma ， carcinoid tumor and gastrointestinal stromal tumor. 

Adenocarcinomas originating in mucosa (inner lining of the stomach) possess 

95% of the gastric cancer cases. (1) 4% of gastric cancer is attributed by slow-

glowing mucosa-associated lymphoid tissue (MALT) lymphoma, and 3% of 

gastric cancer is carcinoid tumor arising from hormone-making cells of 

stomach in neuroendocrine system. Gastrointestinal stromal tumor 

originated in interstitial cell of Cajal in the stomach wall possesses the rarest 

portion. Gastric cancer is defined into proximal and distal according to the 

site of cancer origin. Cancer develops near the gastro-esophageal junction is 

defined as proximal while cancer develops in the lower part of stomach is 

defined as distal gastric cancer. (1) 
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1.1.1 Epidemiology of Gastric Cancer  

 

There is up to 10-fold difference in gastric cancer incidence rate 

throughout the world, and most gastric cancers (two-third) occur in 

developing countries (2, 3).(Figure 1.1) the highest gastric cancer rates are 

reported in Japan and Korea (4, 5). Other countries with high-incidence for 

gastric cancer include East Asia, Eastern Europe, and Central and South 

America, while relative low rates are found in South Asia, North and East 

Africa, North America, Australia, and New Zealand. (6) Gastric cancer is a 

late-onset disease with a peak incidence at the age of 50-70 years, and the 

incidence rated in males are as twice as the one in females (7, 8). So the 

estrogen could be considered as a important protection factor. Blacks and 

lower socio-economic groups in developing countries also possess 

significantly higher gastric cancer incidence rates (8).  
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Figure 1.1.  Global variation in cancer incidence for gastric cancer.  

The incidence of gastric cancer for men of all ages is highest in developing 

countries (orange and red) such as Asia and South America and lowest in 

developed countries (green) such as in North America. Graphic adopted from 

reference (3) 
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1.1.2 Classification of Gastric Cancer  

 

There are mainly two gastric cancer classification including the Ming 

classification which is based on growth pattern, and Lauren’s classification 

which is based on various predominant histological pattern (9). Lauren’s 

classification is the most widely-used and accepted approach to classify 

gastric cancer as it has proven useful in evaluating the natural history of 

gastric cancer (9). In Lauren’s classification, gastric cancer is classified into 

two subtypes: the intestinal-type, a well differentiated tumor characterized 

by cohesive neoplastic cells forming gland-like tubular structures and the 

diffuse-type, a poorly differentiated tumor resulting in individual cells 

infiltrating and thickening the stomach wall. (10) These two types have 

distinct morphologic appearance, pathogenesis, and genetic profiles. There 

are still gastric cancer cases which do not fit into either histological type and 

present a mixed pattern (intestinal and diffuse) (10). The intestinal gastric 

adenocarcinomas have a better prognosis than the diffuse ones. (9) Gastric 

adenocarcinoma of intestinal type is causally related to Helicobacter pylori (H. 

pylori). In the past decades, steady and slow fall could be seen in the 

incidence of intestinal gastric adenocarcinoma, which may due to an 

improvement in socioeconomic situation, sanitation, food preservation and 

declining H. pylori incidence (11, 12).  
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1.1.3 Prognosis of Gastric Cancer  

 

Gastric cancer incidence rate ranks the fourth among all type of 

cancers and it is the second common reason of cancer-related death 

worldwide.(13, 14) 5-year survival depends on tumor stage when the 

diagnosis is confirmed. The survival rate is fairly high for patients with 

localized disease (62%), but dramatically decreases when the tumor has 

already spread to regional lymph nodes (22%) or distant organ sites (3%). (15)  

the survival rates also vary among the different countries. In US from 1995 to 

2001 it was only 23% (16) and in Europe 21% in 1991–1994 (17), while the 

corresponding survival rate in Japan is reported to be approximately 60% (18). 

The reasons contributing to survival differences may involve better disease 

screening program and treatment experiences. (19) In general, developing 

countries with higher incidence rates of gastric cancer show better survival 

rates than developed countries with lower incidence due to the difference in 

the tumor location in stomach (9). It is reported that proximal cancers are 

predominant in developed countries and are associated with higher socio-

economic class, poor prognosis compared with distal cancers which are 

common in developing countries (19).  
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1.1.4 Risk Factors of Gastric Cancer 

 

Gastric cancer is a disease affected by multi-factors. The 

environmental or lifestyle factors are major contributors to the etiology of 

this disease. 

 

1.1.4.1    Helicobacter Pylori infection 

 

Helicobacter Pylori (H. Pylori) infection was regarded as a group I 

carcinogen by the World Health Organization’s International Agency for 

Research on Cancer (IARC). (20) A study supports the concept, in which a 

cohort of 4.655 healthy people was monitored for 7.7 years by measuring 

blood pepsinogen levels (markers of atrophy) and anti-H. Pylori antibodies. 

(21) H. Pylori is a gram-negative bacterium and is associated to the 

development of chronic gastritis, peptic ulceration, gastric carcinoma and 

MALT lymphoma. (22) Countries with high gastric cancer incidence rates 

always have a high prevalence of H. Pylori infection. (7) H. Pylori Infection is 

usually acquired during childhood by oral ingestion and is highly associated 

with low socioeconomic status (23, 24). H. Pylori may promote gastric 

carcinogenesis through the stage of chronic gastritis and gastric atrophy due 

to higher gastric pH which permit the proliferation of nitrate-reducing 

anaerobic bacteria, resulting in the production of N-nitroso compounds.(25) 
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H. Pylori infection has been also reported to inhibit ascorbic acid secretion in 

stomach, and ascorbic acid is the strong scavenger of N-nitroso compounds 

and oxygen free radicals (26). 

 

1.1.4.2    Dietary factors 

 

Consumption of salty foods and N-nitroso compounds and low intake 

of fresh fruits and vegetables have been reported to increase the risk of 

gastric cancer incidence.  (27) A high intake of salty food and N-nitroso 

compounds and low intake of fresh fruits and vegetables increase the risk of 

H. Pylori infection, gastritis and then gastric carcinogenesis  by providing ideal 

conditions for the growth of H. Pylori, which in turn facilitates the growth of 

N-nitrosating bacteria such as Escherichia coli and also reduces the resistance 

to carcinogenic N-nitroso compound in the stomach (28, 29).  There are 

prospective studies reporting the negative relationship between gastric 

cancer risk and fruit and vegetable consumption (30-32). 

Polyphenols in green tea have shown antitumor and anti-inflammatory 

effects in animal studies through the antioxidant activities and the ability to 

inhibit nitrosation, which have been implicated as anti-risk factor of gastric 

cancer (33, 34). 
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1.1.4.3    Smoking  

 

Prospective studies have proved a significant dose dependent 

relationship between smoking and gastric cancer risk (35, 36). The prolonged 

consumption of tobacco products is highly related to the increased gastric 

cancer mortality in both male and female (37). All this evidence supports the 

considering of smoking as an important risk factor for gastric cancer.  

 

1.1.4.4    Other Factors 

  

The association between alcohol and gastric cancer seems little 

supported (38). Other common risk factors with less effects on gastric cancer 

include radiation (39), Epstein-Barr (EB) virus (40, 41), blood type A (42), 

pernicious anemia (43) and prior gastric surgery for benign conditions (44). In 

addition, a positive family history is also regarded as a significant risk factor, 

especially with genetic syndromes such as hereditary non-polyposis colon 

cancer and Li-Fraumeni syndrome (45-47). 
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1.2    Epigenetics and Gastric Cancer 

 

Epigenetics refers to heritable changes of gene expression which is 

not due to the alterations of the nucleotide sequence of DNA, and DNA 

methylation and histone post-translational modifications are regarded as the 

most important two aspects among widely characterized epigenetic 

modifications in mammals (48) (Figure1.2) Epigenetic alterations in cancer 

affect a wide range of genes involved in different and fundamental cellular 

pathways including apoptosis, angiogenesis, cell cycle control, immune 

recognition and tumor cell invasion and metastasis. Epigenetic abnormalities 

in cancer cells can be completely or partially rescued through the effects of 

pharmacologic inhibitors of the enzymes responsible for building and 

maintaining the balanced epigenetic status. (49) Gastric cancer is a genetic 

disease, and both multiple genetic and epigenetic alterations play equally 

important roles in the process. Genetic alterations such as p53 (50), 

ErbB2/HER2 (51, 52)and FGFR2 (53, 54) etc have been reported to be closely 

associated with gastric cancer carcinogenesis and prognosis. This thesis will 

focus on the discussion of epigenetic alterations of gastric cancer, especially 

in histone modification. 
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Figure 1.2 Schematic illustration of the regulation of gene expression by 

histone acetylation and CpG methylation.  

Ac, acetylation of histone tail; Met, methylation of CpG island; TF, 

transcription factor; DNMT, DNA methyltransferase; HDAC, histone 

deacetylase; MeCP, methyl-CpG binding proteins. Figure obtained from 

reference (48) 

 

 

 

 

 

 

 

 

 



 

  11 
 

1.2.1   DNA methylation and Gastric Cancer 

 

DNA methylation refers to the process where methyl groups are 

added to the 5’ position of the nucleotides, which is usually the base cytosine 

right after guanine and leads to gene silencing. Only about 1% sequence In 

human genome is CpG rich, called CpG islands (55). Around 50% of CpG 

islands are associated with gene promoter regions (56). DNA methylation can 

occur at both CpG islands and also non-CpG rich region (57-59). There are 

mainly two types of DNA methylation: global methylation and promoter-

specific DNA methylation (60, 61).  

Aberrant methylation of some tumor suppressor genes (TSGs) is a 

fundamental abnormality in many cancers including gastric cancer by 

silencing TSGs or promoting inactivating mutations of TSGs (58). For instance, 

MLH1 is a DNA repair gene, responsible for the repairing of mistakes in 

replication error (RER) in the tandem repeats of the short sequences. 

Hypermethylation of MLH1 is almost exclusively found in microsatellite 

instability-high tumors representing the RER phenotype. (62) This suggests 

the significance of MLH1 hypermethylation in the RER phenotype in gastric 

cancer. Surprisingly, MLH1 in surrounding normal mucosa is also similarly 

hypermethylated, which suggests this biomarker could indicate an early stage 

of carcinogenesis.(63, 64) in addition, E-cadherin, one of the members of the 

trasmembrane glycoprotein family, is a cell adhesion molecule and plays an 
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important role in growth development and carcinogenesis. (65) It was 

reported that E-cadherin promoter hypermethylation was seen in primary 

gastric carcinomas, especially in diffuse type, and E-cadherin promoter 

hypermethylation was observed at similar frequencies in both early and 

advanced gastric cancer cases (66). Unfortunately, E-cadherin gene 

methylation can also be observed in non-neoplastic gastric mucosa, which 

may provide obstacles to determining its role in gastric cancer development. 

Environmental impact could be considered as another possible contributing 

factor for hypermethylation. For example, H. Pylori infection is associated 

with promoter hypermethylation of TSGs such as RUNX3, CDH1 (67, 68) 

probably through nitric oxide production of microphages in gastric cancer. 

DNA methyltransferases (DNMT) are enzymes responsible for DNA 

methylation. There are four types of DNMTs: DNMT1, for methylation 

maintenance following DNA replication; DNMT2, for some de novo CpG 

methylating capacity (69); DNMT3A and 3B, for de novo methylation on 

unmethylated sites (70). Aberrantly high expression of DNMTs could be a 

potential mechanism of DNA hypermethylation in cancer. It is reported that 

higher DNMT1 protein expression level is significantly related to DNA 

methylation of multiple CpG islands in gastric cancer with poor 

differentiation, which suggests an important role of DNMT1 through frequent 

DNA methylation of multiple CpG islands in the poorly differentiated gastric 

cancer development (71). Although the role of altered expressions of DNMTs 
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in human cancer is still not fully understood, people are still interested in 

applying DNMT inhibitors to cancer therapy. 

Two DNMT inhibitors, 5-azacitidine and decitabine were approved by 

the FDA for clinical use in myelodysplastic syndrome (72, 73). As cytidine 

analogs, both drugs are phosphorylated by uridine/cytidine kinase of cells, 

and then can incorporate into DNA strands like natural cytosines during DNA 

synthesis. (74) It is reported that the 5-azacitidine efficacy in myelodysplastic 

syndromes and leukemia is due to the reactivation of cyclin dependent kinase 

inhibitor, p15, which is normally silenced by promoter methylation (75). 

Despite the promising activity in myelodysplastic syndrome, early clinical 

trials showed that DNMT inhibitors have low anticancer activity and 

significant toxicity as single agent in solid tumors. (76) Recent studies suggest 

that low concentrations of DNMT inhibitors may synergistically promote 

other chemotherapies and contribute to overcoming intrinsic or acquired 

chemoresistance (77, 78). The possibility of using 5-azacitidine and decitabine 

as a single or combined treatment for solid tumor is still under investigation 

by many research groups. (79) So far, there is no report about DNMT 

inhibitor treatment in gastric cancer. 
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1.2.2   Histone Modification and Gastric Cancer 

 

                                  The importance of histone modifications in the 

pathogenesis of gastric cancer has been underscored by recent studies. (80) 

Histones are the basic unit of the nucleosome, consisting of the core histones, 

H2A, H2B, H3 and H4, each contains two copies (81, 82). With long tails 

protruding from nucleosome H3 and H4 histones can be covalently modified 

by other molecules. The modification allows regulatory proteins to access 

DNA and regulate the transcription process. Modifications of histones include 

methylation, acetylation, phosphorylation, ubiquitination, SUMOylation, 

citrullination and ADP-ribosylation. Histone modifications play a role in 

different aspects of biology, such as DNA repair, gene regulation, and cell 

proliferation. (80) The patterns of histone H3 and H4 acetylation in gastric 

cancer have been evaluated, as well as the expression of acetylated H3K9, 

acetylated H4K16, H3K9triMe and H4K20triMe. The results suggest that 

global histone modification patterns could serve as an independent predictor 

for gastric cancer recurrence and survival. (83) in this thesis, we focus on the 

histone acetylation modification. 
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Figure 1.3 Schematic diagram of A. histone structure in nucleosomes; B N-

terminal tails protruding from core histones 

K, Lysines are potential acetylated/deacetylated sites for histone 

etyltransferase (HAT) and histone deacetylase (HDAC); A, Acetyl; C, Carboxy-

terminus;  N, Amino-terminus; E, glutamic acid; M, methyl; P, Phosphate; S, 

Serine; Ub, Ubiquitin. Figure obtained from reference (84) 
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1.2.2.1   Histone Acetylation and Deacetylation 

 

The acetylation and deacetylation of key lysine residues of histones 

are controlled by Histone acetyltransferase (HAT) and histone deacetylase 

(HDAC). (84) 

HATs transfer the acetyl groups from acetyl coenzyme A to e-NH3+ 

groups of lysine residues within histones, or by adding an acetyl group to the 

a-amino group of the first residue of the polypeptide.(85) There are two 

classes of HAT based upon their sub-cellular location, and acetylation 

activities, which are the cytosolic (type-B) HATs and the Nuclear (type-A) 

HATs (86). Acetylations on histone lysine residues by HAT result in 

transcriptional activation (87). The acetyl groups are added to and neutralize 

the positive charge of lysine of histone, which can influence the interaction 

between the histone tails and DNA, as well as RNA and other proteins. The 

acetyl group also provides a specific binding site for certain proteins via their 

bromodomain. (88) Histone acetylation, subsequently, results in opening up 

of a specific DNA region allowing the access of transcription factors to 

promoters for transcription. (89)  

              Histone acetylation status is balanced by highly dynamic 

interactions between HAT and HDAC. HDAC removes the acetyl group, 

reverses the charge neutralization effect, promotes the deacetylation and 

thus tightens the chromatin structure inhibiting genetic transcription (90). In 
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humans, 18 HDAC enzymes have been identified and classified, based on 

homology to yeast HDACs. (91) Class I HDACs include HDAC1, 2, 3 and 8, 

which are related to yeast RPD3 deacetylase(92); Class II HDACs include 

HDAC4, -5, -6, -7, -9 and -10, which are related to yeast Hda1.(93) All class I 

and II HDACs are zinc-dependent enzymes. Class III HDACs, sirtuins, require 

NAD+ for their enzymatic activity. (94) Class IV HDACs, HDAC11, like yeast 

Hda 1 similar 3, have conserved residues in the catalytic core region shared 

by both class I and II enzymes. (95) HDACs can target both histone and non-

histone proteins. (91) 

 

1.2.2.2   Histone Acetylation Status and Gastric Cancer 

 

The balance between histone acetylation and deacetylation mediated 

by HATs and HDACs is impaired in cancer cells. Accumulated evidence from 

past few years suggests that the modifications of acetylation status play a 

central role in gastric cancer development. (96, 97) The global acetylation 

status of histones during carcinogenesis was studied by examining the 

expression of acetylated histone H4 by Western blotting in samples of non-

neoplastic gastric mucosa and different stages of gastric cancer tissues (98). 

The level of acetylated histone H4 expression was shown to be reduced in 70% 

of gastric cancer tissues compared to non-neoplastic mucosa samples, while 

the total amount of histone did not differ significantly between tumor and 
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normal tissues. The results suggest that global hypoacetylation could be 

observed in gastric cancer. Reduced histone H4 acetylation was also found in 

some gastric lesions exhibiting intestinal metaplasia which is usually regarded 

as the predisposing condition to gastric cancer. Thus, hypoacetylation could 

be closely associated with tumorigenesis as well as invasion and metastasis of 

gastric cancer. 

 

 

1.2.2.3    Histone Acetyltransferase (HAT) and Gastric Cancer 

 

Previous studies showed the aberrations of HATs have both tumor 

suppressor and oncogene functions in gastric cancer. For example, 

the histone acetyltransferase gene EP300 may function as a tumor 

suppressor gene because it is reported somatically mutated in breast, 

colorectal, gastric and pancreatic cancers, and is located on a region of 

chromosome 22 that has been reported with loss of heterozygosity in 

many cancer types. (99) While, another member of the HAT family, Hbo1, 

which is unique among HAT enzymes in that it serves as a positive regulator 

of DNA replication, shows strong protein expression in carcinomas of the 

testis, ovary, breast, stomach/esophagus, and bladder detected by 

immunohistochemistry. (100)  
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1.2.2.4    Histone Deacetylase (HDAC) and Gastric Cancer 

 

Most of the histone deacetylase (HDAC) family proteins are over-

expressed in cancers compared with normal tissues except HDAC10 and 

HDAC11. (91, 101-104) Class I HDAC isoforms HDAC1, HDAC2, and HDAC3 has 

been reported to be highly expressed in primary tissue in the patients with 

gastric cancer, and the high expression of all three of these isoforms together 

was significantly associated with nodal tumor spread and decreased overall 

patient survival. (105) HDAC1 is over-expressed in 60% gastric cancer 

compared with normal tissue. Over-expression or hyper-activation of histone 

deacetylases in gastric cancer cells could induce transcriptional repression of 

various sets of genes in regulating proliferation, migration, angiogenesis, 

differentiation, invasion, and metastasis.(98, 106) Knockdown of HDACs 

inhibited cancer features by inducing autophagy, apoptosis, senescence, 

growth inhibition and sensitized cells for chemotherapy as reviewed by Witt 

O. et al. (107, 108). It should be noted that the knockdown-induced 

phenotypic effects could be dependent on the cell context. 
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1.2.2.5    Histone Deacetylase Inhibitors and Gastric Cancer 

 

Because histone or non-histone acetylation is reversible, histone 

deacetylases have been regarded as an attractive target for cancer therapy 

by epigenetic inhibitors. So far,  many types of HDAC inhibitors have been 

purified from natural sources or artificially synthesized.(109) HDAC inhibitors 

can be structurally classified as four groups, which are hydroxamate, cyclic 

peptide, aliphatic acids and benzamide. (91, 110)  HDAC inhibitors inhibit 

HDAC by binding into the active site pocket and chelating the catalytic zinc-

ion located at its base, hence, preventing HDAC from being bound by its 

natural substrates which is demonstrated by Figure 1.4 using vorinostat 

(SAHA) as an example. Since the enzymatic pocket is highly conserved among 

HDACs, most HDAC inhibitors inhibit at least several or even all HDACs, such 

as SAHA and trichostatin A (TSA), which are named pan-HDAC inhibitors. (111) 

Some other HDAC inhibitors, such as entinostat (MS275), depsipeptide and 

MGCD0103 specifically inhibit class I HDACs (102, 112). Currently, at least 16 

HDAC inhibitors have been developed and entered into phase I and II clinical 

trials, with different efficacy and specificity (91, 110, 112, 113). (Table 1.1) 

Two of them, Vorinostat (SAHA) and Romidepsin were approved by the US 

FDA in 2006 and 2009 respectively for the treatment of advanced and 

refractory primary cutaneous T-cell lymphoma (CTCL) (114, 115). Despite the 

higher selectivity of HDAC inhibitor in inducing transformed cell death than 
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normal cells (116), it is not surprising that HDAC inhibitors induce various 

side-effects including bone marrow depression, diarrhea, weight loss, taste 

disturbances, electrolyte changes, disordered clotting, fatigue and cardiac 

arrhythmias in phase I and II clinical trials (117). The non-specific toxicity of 

pan HDAC inhibitors leads to the intense interest of exploiting the application 

of specific HDAC inhibitors. Three class I HDAC inhibitors, MS275, 

depsipeptide and MGCD0103, are currently being evaluated in Phase I/II 

trials in patients with solid or hematological malignancies. (118) Class I HDAC 

inhibitors displayed similar clinical efficacy as pan HDAC inhibitors, however, 

the toxicity profiles induced were also similar (118). In this case, it will be 

rational to evaluate the efficacy and toxicity of class II HDAC inhibitors in 

clinical trials.   

So far, there is no report about clinical trials of HDAC inhibitors as 

single agents to treat gastric cancer patients. An analysis of global human 

gastric cancer gene signatures and connectivity maps suggest that HDAC 

inhibitors such as SAHA and TSA have an inversely correlated gene signature 

compared to the gastric cancer specific gene signature, which suggests HDAC 

inhibitors as lead therapeutic candidates for gastric cancer (119).  
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Figure 1.4 Structure of SAHA bound to an HDAC-like protein.  

HDAC-like protein is based on the crystal structure of HDAC homologue from 

the hyperthemophilic bacterioum,  Aquifex aeolicus (108) and its active site 

structure was represented by netting. The hydroxamic acid moiety of SAHA 

binds to the zinc at the bottom of the catalytic pocket. The burying of most of 

the structure of SAHA into the active site of HDAC prevents HDAC from 

binding to its natural substrate, thus, blocking its enzymatic deacetylation. 

Figure obtained from reference (111). 
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Table 1.1 Classification of histone deacetylase inhibitors in clinical trials 

Table obtained from reference (109) 
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1.2.2.6     Histone Deacetylase Inhibitors Resistance in Cancer 

 

In hematological malignancies most single-agent HDAC inhibitor trials 

showed complete or partial responses in up to a third of patients enrolled. 

(109, 120) However, the response rates in solid tumors were relatively much 

lower, which was mostly less than 10%. (109) As an exciting new group of 

agents for the treatment of cancer, HDAC inhibitors will be applied into more 

and more clinical trial of different type of cancers. Thus it is necessary to 

understand the resistance mechanism of HDAC inhibitor in cancers, especially 

solid tumor treatment, which will provide useful information in cancer type 

and drug selection for clinical application. Some genes, such as STAT1 in 

colon cancer cells harbored with active RAS (121) and HR23B in cutaneous T-

cell lymphoma (CTCL) cells (122) were reported to be responsible for HDAC 

inhibitor resistance. So far there is no publication about potential genes 

related to HDAC inhibitors resistance in gastric cancer cells. 
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1.3    Reactive Oxygen Species (ROS) and Gastric Cancer 

 

Despite being essential for life, oxygen can cause various cellular 

stresses called oxidative stress by generating Reactive oxygen species (123). 

Reactive oxygen species (ROS) refer to oxygen-containing breakdown 

products of molecular oxygen such as hydrogen peroxide, hydroxyl radicals, 

and superoxide anion, which are highly reactive and are able to damage lipid 

membranes, proteins, and DNA when present in high amounts. (124) Cellular 

defences to ROS include antioxidant enzymes, such as superoxide dismutase, 

catalase, glutathione peroxidase and thioredoxin reductase, and antioxidant 

scavengers, such as ascorbate, glutathione and thioredoxin. (124)  

              There are many reports investigating or suggesting the mediation of 

ROS in gastric cancer cells apoptosis induced through ROS-mitochondrial 

pathway.(125, 126) However, ROS can also play an important role in gastric 

carcinogenesis. The relationship between ROS and gastric carcinogenesis 

could be mediated through H Pylori. A positive association between ROS 

production and H Pylori infection has been established for decades (127). 

(Figure 1.5) H. Pylori induces infiltration of the gastric mucosa by immune or 

inflammatory cells. If this immune or inflammatory response could not clear 

the infection, the host will be left prone to chronic inflammation. One 

adverse consequence of this inflammatory response may be gastric cancer. 

(128) It has also been shown that ROS production is enhanced by infection 
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with cagA-positive H Pylori strains (129). The most probable initiator of 

gastric carcinogenesis is oxidative or nitrosative DNA damage, and oxidative 

stress induced by H. Pylori can also modify epithelial cell turnover in 

stomach.(130) This idea is supported by studies describing an increase in 

both epithelial cell proliferation and cell apoptosis under H pylori infection. 

(131) Recent publications show that some genes, such as prostaglandin 

reductase 2 may act as a switch in modulating ROS-mediated cell death and 

tumor transformation of gastric cancer cells, although the gene itself is 

associated with higher mortality in gastric cancer patients. (132) 
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Figure 1.5   ROS production in H. pylori-infected gastric mucosa  
Figure obtained from reference (127) 
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1.4   Histone Deacetylase Inhibitors and Reactive Oxygen Species (ROS)  

 

The generation of ROS can be regarded as a potential method in the 

treatment of cancer. Interestingly, the ability of a cell to defend itself against 

ROS has been reported to be associated with resistance to chemo-therapies 

including HDAC inhibitors treatment. (91) 

 

1.4.1 The Role of Reactive Oxygen Species (ROS) in Cancer Treatment by 

Histone Deacetylase Inhibitors  

 

ROS production may play an important role in HDAC inhibitor-induced 

cell death. SAHA was reported to induce ROS production and then apoptosis 

in cancer cells.  The pro-apoptotic Bcl-2 family member, Bid was up-regulated 

under the SAHA treatment. Bid translocation to mitochondria and 

subsequent disruption of mitochondria was identified as the source of ROS 

by SAHA (133). LAQ824, another hydroxamate, can induce apoptosis by 

inducing ROS increase and SM22 gene expression in 13-cis-retinoic acid 

(CRA)-resistant human melanoma cells (134). In addition, SAHA failed to 

increase the level of ROS in pan-HDAC inhibitors-resistant human acute 

myeloid leukemia (AML) HL-60 (HL-60/LR) cells (135). All these publications 

suggest the involvement of ROS production in HDAC inhibitor mediated 
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cancer cell apoptosis. HDAC inhibitor has been reported to up-regulate the 

expression of thioredoxin-binding protein 2 (TBP2) which can bind to and 

inhibit reduced thioredoxin (Trx) activity. Trx deactivation could induce ROS 

production in transformed but not in normal cells (116). Trx can also inhibit 

apoptosis signal-regulating kinase 1 (ASK1). ASK1 promotes SAHA induced 

apoptosis by enhancing the expression of pro-apoptotic protein Bim through 

a positive feedback on E2F1 activity (136).  

Although most observations support that ROS accumulation could be 

the mediator between HDAC inhibitors treatment and cancer cells death, the 

situation could be different in liver cancer cells. In response to the oxidative 

stress, hepatoblastoma cell Huh6 could be induced to undergo apoptosis 

through the nuclear translocation of p53, and the translocated p53 activated 

target genes which are essential in cell apotosis. Interestingly, HDAC inhibitor 

(nicotinamide) treatment strongly inhibited the nuclear translocation of p53 

induced by ROS stress and the subsequent p53-dependent apoptosis in Huh6 

cells, (137) which suggests that the relationship between ROS and HDAC 

inhibitors could be complicated according to different types of cancer. 
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1.4.2    The Role of Reactive Oxygen Species (ROS) on Cancer Chemo-

sensitivity to Histone Deacetylase Inhibitors 

 

A cDNA microarray analysis performed in a clinical trial suggested that 

a gene signature composed mainly of antioxidants was associated with 

clinical resistance to SAHA. (138) Thus, increased antioxidant expression may 

contribute to HDAC inhibitor resistance. In early stage, studies focused on the 

role of thioredoxin (Trx) in regulating sensitivity to HDAC inhibitors. Trx 

function as a ubiquitous antioxidant and electron donor for ribonucleotide 

reductase and the thioredoxin reductase keeps Trx in a reduced state by 

using NADPH as a cofactor. (139) SAHA can up-regulate the expression of Trx-

binding protein 2 (TBP2) which can bind and inactivate Trx. This suggests that 

HDAC inhibitors could inactivate antioxidants and facilitate oxidative stress. 

(140) Some other study further enhances the idea of  inactivation of Trx 

sensitizing certain cancer cells to HDAC inhibitor treatment with siRNA for Trx 

down-regulating Trx levels and increasing significantly the sensitivity of the 

cells to SAHA. (116) Another attractive point for Trx is that SAHA can 

surprisingly increase Trx levels in normal cells compared to different effects 

in transformed cells. (141) The interesting difference may provide a potential 

explanation for the higher resistance of normal cells to HDAC inhibitor 

induced ROS production and cell apoptosis, although the mechanism is not 

fully understood.  
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Recently, it is reported that other antioxidants could also be up-

regulated in a pan-HDAC inhibitor-resistant leukemia cell line HL60/LR, while 

Trx was decreased in the same cell model under SAHA treatment. SAHA 

induces increased ROS and translocation of nuclear factor E2-related factor 2 

(Nrf2) from cytoplasm to nucleus in HL60/LR cells. Nrf2 translocation up-

regulates antioxidant genes including glutamate cysteine ligase (GCL), 

glutathione reductase (GSR), glutathione S-transferase (GST), and superoxide 

dismutase (SOD) as a cellular protective mechanism. Addition of beta-

phenylethyl isothiocyanate (PEITC), which can deplete cellular glutathione, 

significantly sensitizes leukemia cell lines and primary leukemia cells to SAHA 

treatment. (142) The publication suggests other potential mechanisms for 

HDAC inhibitor resistance related to ROS pathway in cancer cells.  

 

 

1.5   Ribonuclease Inhibitor (RNH1)  

 

The molecular weight of Ribonuclease inhibitor (RNH1) is about 50-

kDa, and the protein is found in the cytoplasm (143, 144) , nuclei and 

mitochondria (145) of mammalian cells. RNH1s are a family of highly 

conserved proteins. The conservation of the amino acid sequence between 

different hosts, such as pig, cow, rat, mouse, sheep and human is as high as 

nearly 70%. (144) All eukaryotic RNH1s share two characteristics: the high 
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percentage content of reduced cysteine amino acids (30-32 residues, 7% of 

total amino acids), and a central portion composed of 15-16 repeated 

hydrophobic leucine rich motives (144, 146). The high percentage content of 

reduced cysteines is observed in its cytoplasmic localization, which is 

required for its function as an ribonuclease inhibitor.(147) The role of 

leucine-rich repeats, like the ones in other family of proteins, is to provide 

surface areas to promote protein-protein interactions (148, 149).Previous 

publications suggest biological roles of RNH1 as a modulator of the biological 

functions of various ribonucleases or as an oxidative sensor to monitor the 

redox status in normal or aged cells.(150-152) In this study, RNH1 was 

identified through genomic analysis and functionally proved as a contributor 

to the HDAC inhibitor resistance of gastric cancer cells 

 

 

1.6   Aims of This Study  

In this project, we will examine the phenotypic and molecular effects 

of HDAC inhibitors, such as TSA, SAHA and MS275, on gastric cancer cells. 

With the genomic analysis of differently expressed genes between HDAC 

inhibitors sensitive and resistant gastric cancer cells, we tried to investigate 

the possible candidate genes or signatures for HDAC inhibitors response in 

gastric cancer cells.  
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Chapter Two: Materials and Methods 

2.1 Cell Culture 

2.1.1 Cell lines and Drug Treatments  

Gastric cancer cell lines AGS, N87, and Hs746T were purchased from 

the American Type Culture Collection. AZ521, Ist1, TMK1, MKN1, MKN7, 

MKN28, HFE145, GES1 and IM95 cells were obtained from the Japan Health 

Science Research Resource Bank. SCH cells were provided by Yoshiaki Ito 

(Cancer Sciences Institute of Singapore). YCC cells (YCC3, YCC6, YCC7, YCC11 

and YCC16) were a gift from Sun-Young Rha (Yonsei Cancer Center, South 

Korea). HepG2, MCF7, HCT116 and Hela cells were provided by Dr. Tingdong 

Yan (Duke-NUS Graduate Medical School). AGS, IST1, AZ521, SCH, GES1 and 

MKN7 cells were maintained in RPMI 1640 medium (Sigma, St Louis MO) with 

10% FBS (Gemini Bio-Products, West Sacremento, CA). YCC cells were 

maintained in MEM medium with 10% FBS. IM95, HS746T, HFE145, HepG2 

and HCT116 cells were maintained in DMEM medium with 10% FBS. All cells 

were grown in a humidified incubator with 5% CO2 at 37oC. All cells are 

adherent cells. Subculturing of cells was performed using 0.25% trypsin 

(Invitrogen Corporation, USA) to detach and split  at the ratio from 1:4-1:10 

and maintained as the method described above.  
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Histone deacetylase inhibitors, Trichostatin A (TSA, from Sigma, St Louis MO), 

Vorinostat (SAHA) and MS275 (Enzo life Sciences, UK) were utilized as 

experimental drugs. Cells were treated with 50-800nM TSA or 0.625-10um 

SAHA or 3.125-50uM MS275  dissolved in DMSO, or DMSO only (control) for 

24, 48 and/or 72 hours. For molecular assays, cells were treated with 400nM 

TSA or 5uM SAHA or 30uM MS275 unless otherwise specified.  

 

2.1.2 Preservation of Cell Lines 

All cells were preserved in liquid nitrogen. Cell suspension in medium 

was mixed with 5% DMSO (Sigma, USA). Cells were aliquoted into 2ml plastic 

cryogenic vial (IWAKI, Japan). The cryovials were put into a Cryo Freezing 

Container (Nalgene labware, USA) overnight at -80oC and stored in liquid 

nitrogen the next day.  

 

2.1.3 Quantification of Cell Number 

Cells were counted by using hemocytometer (VWR LabShop, USA). 

Briefly, 10ul of diluted cell suspension was mixed with equal volume of 

Trypan Blue (Invitrogen Corporation, USA). 10ul stained cells were loaded 

into each chamber of the hemocytometer and cells were counted under 

microscopy according to manufacturer’s menu. 
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2.2 In Vitro Cell Assays 

2.2.1 Cell Proliferation Assays 

  Cell proliferation assays were performed using a CellTiter96 Aqueous 

Nonradioactive Cell Proliferation Assay kit (Promega, USA) following the 

manufacturer's protocol. The method is colorimetric to determine the 

number of viable cells in proliferation or in chemo-sensitivity assays. The kit 

contains solutions of a novel tetrazolium compound [3-(4, 5-dimethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner 

salt; MTS]. Living cells can bio-reduce MTS into a purple formazan product 

which is soluble in culture medium. Specific machines can measure the 

absorbance of the formazan at 490nm directly from 96-well assay plates. The 

conversion of MTS into formazan is performed by dehydrogenase enzymes 

found in metabolically active cells. In some certain ranges, the absorbance 

quantity of formazan product measured at 490nm is directly proportional to 

the number of living cells in culture. 

  Before proliferation assays, cells were seeded at concentrations of 1-

5×103 cells per well in 96-well plates. After experimental end points, 20ul 

MTS reagent was added to each well. After four hour of incubation at 37oC, 

cellular proliferative activity was measured using an EnVision 2104 multi-

label plate reader (Perkin Elmer, Finland) at 490nm absorbance after 24, 48 

and 72hours. All experiments were repeated for at least three independent 
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times. GI50 was calculated by the formula: [(Td-T0)/(C-T0)] x 100 = -50] using 

absorbance measurements of [time zero, (T0); control growth, (C); and test 

growth in the presence of drug at the seven concentration levels (Td)]. 

 

2.2.2 Colony Formation Assays 

Base layers of 0.6% Low Melt Point Agarose (Promega, USA) in 

complete culture medium were poured into 6-well plates and allowed to 

harden at 4°C. 30 000 cells/well were suspended in complete media plus 

agarose mixture at 42°C and seeded on top of the solidified base layer. The 

double layer plates were also allowed to harden at 4°C. Plates were 

incubated at 37°C in for 3-4 weeks, during which complete media was 

changed every 3 days. After 3-4 weeks, colony numbers were counted and 

the plates were photographed using the Kodak GL 200 System (EpiWhite 

illumination). Each assay was repeated 3 times, and the results were 

averaged over three independent experiments. 
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2.2.3 Oxidative stress assay 

CellROX™ Deep Red Reagent is a fluorogenic probe designed to 

reliably measure ROS in live cells. The CellROX™ Deep Red dye is cell 

permeable and nonfluorescent while in a reduced state. Upon oxidation the 

dye exhibits excitation/emission maxima at 640/665 nm. Cells were treated 

with the test drugs and incubated for the recommended time. CellROX™ 

Deep Red Reagent was added at a final concentration of 5μM to the cells, 

and the cells were incubated for 30 minutes at 37°C. Medium was removed 

and the cells were washed for three times with PBS. Experiments were 

repeated for three independent times, and the results were averaged over 

three independent experiments. 

 

2.3. Gene Transcription Assay 

2.3.1 Differential Gene Expression Analysis 

GC cell lines were profiled using Affymetrix Human Genome U133 

plus GeneChips (HGU133 Plus 2.0; Affymetrix, Santa Clara, CA) and Illumina 

Human-6 v2 Expression BeadChips (Illumina, San Diego, CA). Gene expression 

profiles (both Affymetrix and Illumina arrays) were imported into Partek 

Genomics Suite™ 6.3 (Partek Inc., St. Louis, MO) using default Partek 

normalization parameters. Probe-level data was pre-processed, including 

background correction, normalization, and summarization, using robust 
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multi-array average (RMA) analysis adjusted for probe sequence and GC 

content (GC-RMA). These values were then log2 transformed. Background-

adjusted, normalized values were then averaged to generate a single value 

under each gene ID. Differential expression analysis was performed using 

one-way ANOVA between the HDAC inhibitor sensitive and resistant groups, 

using a filter of p<0.05. False discovery rates (FDR) were calculated using the 

‘q value’ application in Partek software, and the standard was set as <0.3. 

The gene lists from both Affymetrix and Illumina arrays were overlapped to 

generate a final candidate differentially expressed gene list. 

 

2.3.2 Quantitative real-time PCR 

RNA was isolated from these cells (Qiagen kit) and reverse transcribed 

to cDNA (First strand synthesis, Invitrogen) followed by Q-PCR. Reaction 

mixes consisted of 10ul Quantifast SYBR green PCR master mix, 1ul of RNH1 

/LINE1 primers, 20ng of the template in a final reaction volume of 20ul.  Real-

time PCR (ABI 7900HT, Applied Biosystems) cycling conditions were 10 

minutes at 95°C, followed by 40 cycles of 15 secs at 95°C and 1 min at 60°C. 

All experiments were performed in triplicate. RNH1 cycle thresholds were 

normalized to the LINE1 repeat element from the same samples, as an 

endogenous control. Scramble samples from YCC3 or YCC7 were chosen as 

calibrator and for each analysis a negative control was also prepared using all 
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reagents except DNA template. The forward and reverse primers of RNH1 

and LINE1 were: RNH1_F_P1: 5’ ACAACAGGCTGGAGGATGC 3’, RNH1_R_P1: 5’ 

CAGTTGTTGCTGAGGTCCAG 3’; RNH1_F_P2: 5’ CCTGCAGCTGGTGGAGAG 3’, 

RNH1_R_P2: 5’ GGAAGAGCCTCAGGAGATGA 3’; RNH1_F_P3: 5’ 

CGGTTAGCAACAACGACATC 3’, RNH1_R_P3: 5’ ATCACCCAGCTTGTTGCTG 3’; 

LINE 1_F:  5’ AAAGCCGCTCAACTACATGG 3’, LINE 1_R:  5’ 

TGCTTTGAATGCGTCCCAGAG 3’ 

 

2.4. Gene Translation Analysis 

2.4.1 Protein Extraction 

 

 For western blotting, total cell lysates were prepared by incubating 

cell pellets on ice for 30 mins in 0.5% NP-40 buffer (50mM TrisHCl (pH 8.0), 

1mM EDTA, 0.3MNaCl, 10% glycerol, 1mM DTT, 0.5% NP-40 complemented 

with proteinase inhibitor and halt phophatase inhibitor (Thermo Scientific 

Pierce, UK )). Cells were then spined at maximum speed for 20 mins at 4oC 

and supernatants were collected as total cell lysates and immediately frozen 

in nitrogen liquid, which were then transferred and stored in a -80oC freezer.    
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2.4.2 Determination of Protein Concentration 

  Protein concentrations were measured using a BCA assay (Thermo 

Scientific Pierce, UK) according to the manufacturer's protocol.  Briefly, 10 ul 

of BSA standand from 2mg to 0.125mg (Bio-rad Laboratories, USA) were used 

as protein standards on a 96 well plate. 10ul water was loaded as 0mg 

standard while 10ul lysis buffer was loaded as blank.  1ul lysate was loaded 

for each sample. Samples and standard were loaded in duplicate. Reagent A 

and reagent B were mixed at the ratio of 5:1 and 200ul of mixture was added 

to each reaction. Proteins were then incubated in dark for 30 mins. Protein 

concentrations were measured at absorbance of 562nm using Bio-rad 96 well 

plate spectrometer reader (Bio-rad Laboratories, USA).  

 

 2.4.3 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

  The SDS-PAGE gel was performed using a Mini-PROTEAN 3 

Electrophoresis System (Bio-rad Laboratories, USA). Two concentrations of 

SDS gels were used in this study depending on the molecular size of the 

protein to be detected. Proteins with size >40KDa and those <40Kda were 

separated by 8% and 15% gels respectively. Briefly, separating gels were 

prepared by mixing appropriate amount of 30% acrylamide/ bisacrylamid 

solution (37.5:1; Bio-rad Laboratories, USA) with 2.5 ml 1.5M Tris-HCl (pH 8.8), 

100ul of 10% SDS, 100ul of 10% ammonium persulfate (APS) ( Bio-rad 
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Laboratories, USA), 6ul of TEMED (Bio-rad Laboratories, USA) and water was 

added to a total volume of 10ml. The mixture was then poured into gel set 

cassette. 200ul 100% ethanol was added on the top of the gel immediately.  

 After the gel was set, overlay was decanted and a 5% stacking gel was 

poured on top of the separating gel. 5% stacking gel was the mixture of 0.5ml 

30% acrylamide/bisacrylamid solution with 0.5ml 1M Tris-HCl (pH 6.8), 50ul 

of 10% SDS, 50ul of 10% APS, 5ul TEMED and water. A gel comb was inserted 

properly and the stacking gel was allowed to set before electrophoresis. 40ug 

of protein samples  were mixed with 1X loading buffer (62.5mM Tris-HCl (pH 

6.8), 10% glycerol, 2% SDS, 0.05% bromophenol blue) and 2.5% of 2-

mercaptoethanol was added right before boiling in 99oC heat block for 5 mins. 

Samples were allowed to cool down and loaded to each well of SDS gels. 

Kaleidoscope prestained standards (Bio-rad Laboratories, USA) was loaded as 

protein standard. Electrophoresis was performed under constant 0.045A per 

gel until reaching appropriate protein separation in 1X Tris-Glycine-SDS PAGE 

Buffer (1st base, Singapore) 

 

2.4.4 Gel Transfer 

 After protein separation, the gel transfer was performed using Mini 

Trans Blot Cell Systems (Bio-rad Laboratories, USA). The polyacrylamide gel 

was soaked in 1X transfer buffer: prepared by 1:10 10X Tris-Glycine-SDS PAGE 
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buffer, 2:10 100% Methanol and 7:10 water. Gel was then placed in between 

layers of filter membrane (Millipore, USA), Whatman papers and foam pads 

(Bio-rad Laboratories, USA) and put into holder cassettes in electrode 

assembly with the membrane facing the anode. The transfer was done in 1X 

transfer buffer at constant 100V for 90 mins at 4oC.  

 

2.4.5 Western Blotting and Detections 

Western blotting was performed on PVDF membrane fractions using 

the following antibodies and dilutions: 1:200 RNH1 (Santa Cruz Biotechnology, 

Inc., USA), 1:2000 PARP (Cell Signaling Technologies). 1:200 β-Actin and 1:200 

GAPDH (Santa Cruz Biotechnology, Inc., USA) were used as loading control. As 

secondary antibodies we used the goat anti-rabbit and goat anti-mouse 

antibodies (Cell Signaling Technologies), conjugated with Horseradish 

Peroxidase (HRP). Proteins were detected using the Enhanced 

ChemiLuminescence (ECL) Plus Blotting Detection system (Amersham 

Biosciences, Buckinghamshire, UK) and were visualized by autoradiography 

on photographic film (KODAK X-OMAT, New York, USA). Experiments were 

repeated a minimum of three independent times. 
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2.5 Gene Modulation 

2.5.1 Transfection of shRNA  

 YCC3 and YCC7 cells were transfected with either specific HuSH-29 

shRNAs (OriGene Technologies, USA) targeted to RNH1 or negative control 

scrambled shRNAs using Lipofectamine 2000 transfection reagent (Invitrogen, 

USA) in Optimem Medium (Invitrogen, USA) following the manufacturer's 

protocol. Briefly, 6ul Lipofectamine 2000 transfection reagent was added to 

100ul Opti-MEM reduced serum medium (Invitrogen, USA) and they were 

incubated for 5 minutes at room temperature after mixing. 2ug scrambled or 

RNH1 shRNA vector was diluted into 100ul Opti-MEM. Diluted Lipofectamine 

2000 transfection reagent was mixed with diluted shRNA and incubated for 

20 minutes at room temperature to form transfection complexes. 

Transfection complexes were dispensed into clean wells on 6 well plates and 

overlayed with 2 ml cell suspension in growth medium. In all of the plasmids 

the HuSH shRNAs were cloned into OriGene's non-proprietary pGFP-V-RS 

vector, which allows stable transfection and stable delivery of the shRNA 

expression cassette into host cells via a replication-deficient retrovirus. The 

scramble pGFP-V-RS vector offers turbo-GFP expression that facilitates easy 

monitoring of transfection. The HuSH pGFP-V-RS plasmid vector (Figure 2.1) 

contains both 5’and 3’LTRs of Moloney murine leukemia virus (MMLV) that 

flank the puromycin marker expression cassette. The puromycin-N-acetyl 

transferase gene provides selection of antibiotics puromycin. For YCC3, the 



 

  44 
 

targeted sequence of Clone 1: TACGACATTTACTGGTCTGAGGAGATGGA; Clone 

2: TGCTCTGGTTGGCCGACTGCGATGTGAGT. For YCC7, the targeted sequence 

of Clone 1: TACGACATTTACTGGTCTGAGGAGATGGA; Clone 2: 

TGGAGAGCTGCGGTGTGACATCAGACAAC. After 72 hours shRNA transfection, 

cells were incubated in medium containing 1uM puromycin for 4 weeks to 

establish stable knock-down of RNH1.  
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Figure 2.1  The HuSH pGFP-V-RS plasmid vector  
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2.5.2. Gene overexpression 

The full length coding regions of RNH1 cDNA ORF clone inserted into 

the pCMV6-AC-GFP vector (Figure2) was purchased from OriGene 

Technologies, USA. ORFs cloned in this vector will be expressed in 

mammalian cells as a tagged protein with a C-terminal tGFP tag. Control 

vectors or fusion-RNH1 vectors were transiently transfected into AZ521 and 

YCC11 cells using Lipofectamine 2000 transfection reagent (Invitrogen, USA) 

in Optimem Medium (Invitrogen, USA) following the manufacturer's protocol. 

Briefly, 6ul Lipofectamine 2000 transfection reagent was added to 100ul 

Opti-MEM reduced serum medium (Invitrogen, USA) and they were 

incubated for 5 minutes at room temperature after mixing. 2ug control or 

RNH1 cDNA vector was diluted into 100ul Opti-MEM. Diluted Lipofectamine 

2000 transfection reagent was mixed with diluted cDNA and incubated for 10 

mins at room temperature to allow transfection complexes to form. 

Transfection complexes were dispensed into clean wells on 6 well plates and 

overlayed with 2 ml cell suspension in growth medium. After 48 hours, cells 

were subjected for downstream analysis. 
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Figure 2.2 The pCMV6-AC-GFP vector 
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2.7. Statistical Methods.  

Unless otherwise specified, all other p-values used in comparisons of 

two groups were computed using Student’s t-test. All p-values are two-tailed. 
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Chapter Three: Results Part I 

 

 

3   Sensitivity of Gastric Cancer Cell Lines to HDAC inhibitors 

3.1   Sensitivity of Gastric Cancer Cell Lines to Trichostatin A (TSA) 

3.1.1   Selection of Gastric Cancer Cell lines Experimental Panel 

 

17 Gastric Cancer cell lines were chosen for the sensitivity scanning 

under TSA treatment. The origins and culture media were listed as Table 3. 

The selection was random, but we aimed cover as many histological subtypes 

of GC as possible. 
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Table 3.1 17 Selected Gastric Cancer Cell lines.  

The original sources and the culture media of each cell lines were listed. GC, 

gastrocarcinoma; AC, adenocarcinoma; ASC, adenosquamose carcinoma; CC, 

choriocarcinoma  
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3.1.2   Cell Reduction of 17 Gastric Cancer Cell Lines Induced by TSA 

 

Previous studies have suggested that individual gastric cancers can 

display differing responses to HDAC inhibitor treatment.(112) To identify 

gastric cancer cell lines exhibiting differential sensitivities to HDAC inhibitor 

compounds, we treated 17 gastric lines with increasing doses of TSA, a pan-

HDAC inhibitor, to determine LC20 values for each line, referring to the drug 

concentration required to cause 20% cell reduction relative to untreated 

controls (Figure 1A). 5 cell lines (YCC11, AGS, IST1, SCH and AZ521) were 

associated with low LC20 values (less than 200nM) relative to the other lines 

(above 400nM, mostly above 800nM) – these lines were designated as TSA-

sensitive lines (Figure 3.1)  
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Figure 3.1 Ranking of LC20 values of 17 Gastric Cancer cell panel under TSA 

treatment.  

Y axle is the LC20 value. Triplicate experiments were performed for each cell 

lines and the average values were calculated and ranked.                            
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3.1.3   Growth Inhibition of 17 Gastric Cancer Cell Lines Induced by TSA 

 

To support the LC20 results, we then compared GI50 values (the drug 

concentration required for 50% cell growth inhibition) among the selected 17 

gastric cancer cell lines under the TSA treatment (0-800nM, 24 hours). (Figure 

3.2)  MTS assay was performed to GI50 was calculated to evaluate the 

growth inhibition of each cell lines induced by TSA treatment.  Cell lines were 

ranked according to the GI50 values. Higher GI50 value means higher 

resistance to growth inhibition induced by TSA treatment. 5 cell lines with 

highest GI50 values (YCC3, YCC7, YCC10, MKN1 and MKN7) were defined as 

potential resistant gastric cancer cells to TSA treatment.  There was a >10x 

difference in the GI50 values between the sensitive and resistant groups 

(P<0.001). This result demonstrates that different gastric lines can indeed 

demonstrate differential sensitivities to HDAC inhibitor treatment.  
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Figure 3.2 Ranking of GI50 values of 17 gastric cancer cell panel under TSA 

treatment.    

Y axle is the GI50 value. Triplicate experiments were performed for each cell 

lines and the average values were calculated and ranked.           

 

 

 

 

 

 

 

 

 



 

  55 
 

3.1.4   Apoptosis of 10 Gastric Cancer Cell Lines Induced by TSA 

 

Inhibition of cell proliferation by TSA could be due to several 

alternative and distinct mechanisms, including induction of apoptosis, cell 

growth arrest, and senescence. To clarify which of these mechanisms might 

explain the TSA effects, we assessed the TSA-treated cells for the presence of 

cleaved PARP and caspase 3, well-established markers of apoptosis. Because 

both death-receptor pathway (extrinsic) and mitochondrial pathway (intrinsic) 

of apoptosis pathways need PARP and caspase 3 cleavage, cleaved PARP and 

caspase 3  were used as indicators of TSA inducing gastric cancer cell 

apoptosis. Western blotting was performed to show the difference of cleaved 

PARP and caspase 3 induced by TSA treatment between potential sensitive 

and resistant gastric cancer cell line groups. (Figure 3.3) All the 5 GC cell lines 

with lower GI50 values showed obvious PARP and caspase 3 cleavage, while 

gastric cancer cell lines YCC3, YCC7 and MKN7 showed no obvious cleaved 

PARP or caspase 3. 
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Figure 3.3 Western blot of cleaved PARP (A) or caspase 3 (B) induced by TSA 

treatment between sensitive and resistant gastric cancer cell line groups.  

All the gastric cancer cells were treated by 400nM TSA for 24 hours. Cells 

treated by same amount of DMSO were taken as negative control. Whole 

protein extracted from the cell pellets were sent to western blot  
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3.1.5   TSA treatment of YCC10 and MKN1 with extended time 

 

An experiment with different time points of TSA treatment was 

performed on MKN1, YCC10 and YCC3. Unlike YCC3, extended TSA treatment 

(such as 48 hours) could induce obvious growth inhibition and cell reduction 

of MKN1 and YCC10, although these two cell lines showed high resistance to 

TSA treatment within 24 hours. (Figure 3.4 A and B) Cleaved PARP was also 

observed in MKN1 and YCC10. (Figure 3.4 C) From the observation, MKN1 

and YCC10 were excluded from resistant gastric cancer cell line group to 

HDAC inhibitors. 
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Figure 3.4 TSA treatment of YCC10, MKN1 and YCC3 with different time 

course.  

(A) Photographs showed the growth condition of the three gastric cancer cell 

lines with TSA treatment of different time course (24 hours and 48 hours). (B) 

MTS assay was performed to show survival cells after TSA treatment with 

different time courses. (C) Western blot was performed to YCC10 and MKN1 

treated by TSA (400nM, 24 hours) to test the PARP cleavage. 
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3.1.6   Colony Formation Inhibition of 7 Gastric Cancer Cell Lines Induced by 

TSA 

 

As a third measure to verify the differential sensitivities of the 

sensitive and resistant lines to HDAC inhibitor treatment, we conducted soft-

agar colony formation assay. As shown in Figure 3.5, after 3 weeks TSA 

treatment, all the sensitive lines showed obvious decreased colony formation 

compared to the untreated cells, whereas the colony formation inhibition 

could be observed in resistant lines (YCC3 and YCC7. MKN7 cells cannot form 

colony) Difference of colony formation inhibition induced by TSA treatment 

was compared between sensitive and resistant gastric cancer cell line groups 

by bar chart. The result suggested that there was a sensitivity difference in 3-

dimentional culture environment between gastric cancer sensitive and 

resistant groups.  
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Figure 3.5 Colony formation assay of gastric cancer cell lines treated by TSA.  

Potential sensitive gastric cancer lines were indicated by blue color, while 

resistant lines were indicated by red color. Sensitive lines exhibit decreased 

soft-agar colony formation after TSA treatment. Lines were compared after 

100nM TSA treatment after 3 week 
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3.2   Sensitivity of 8 Gastric Cancer Cell Lines to Vorinostat (SAHA) 

3.2.1   Growth Inhibition of 8 Gastric Cancer Cell Lines Induced by SAHA 

 

To further determine if the cell line sensitivity and resistance profiles 

might be specific to TSA, or also extendable to other HDAC inhibitor 

compounds, MTS assays were performed on the 8 gastric cancer cell lines 

selected from TSA scanning under another hydroxamate HDAC inhibitor 

SAHA (0-10uM, 24 hours). SAHA is also a pan-HDAC inhibitor, belongs to the 

hydroxamate class which is similar to TSA and has been applied clinically. 

GI50s (drug concentration needed for 50% cell growth inhibition) were 

calculated to evaluate the growth inhibition of each cell lines induced by 

SAHA treatment. (Figure 3.6)  The difference is significant between sensitive 

and resistant groups (p<0.001) 
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Figure 3.6 Sensitivity difference indicated by GI50 value between sensitive 

and resistant gastric cancer cell line groups under SAHA treatment.  

The treatment concentration range is 0-10uM, and the treatment time is 24 

hours. Y axle is the GI50 value. Triplicate experiments were performed for 

each cell lines and the average values were calculated and ranked. 
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3.2.2   Apoptosis of 8 Gastric Cancer Cell Lines Induced by SAHA 

 

Western blot was performed to show the difference of cleaved PARP 

induced by SAHA treatment between potential sensitive and resistant gastric 

cancer cell line groups. All the 5 gastric cancer cell lines with lower GI50 value 

showed obvious increased PARP cleavage, while gastric cancer cell lines YCC3, 

YCC7 and MKN7 showed no obvious increased cleaved PARP induced by 

SAHA treatment.  
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Figure 3.7 The difference of cleaved PARP induced by SAHA treatment 

between sensitive and resistant gastric cancer cell line groups.  

All the gastric cancer cells were treated 5uM SAHA for 24 hours. Cells treated 

by same amount of DMSO were taken as negative control. Whole protein 

extracted from the cell pellets were sent to western blot  
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3.3   Sensitivity of 8 Gastric Cancer Cell Lines to entinostat (MS275) 

3.3.1   Growth Inhibition of 8 Gastric Cancer Cell Lines Induced by MS275 

MTS assay was also performed to the 8 gastric cancer cell lines 

selected under benzamide HDAC inhibitor MS275 treatment (0-50uM, 24 

hours). MS275 belongs to the benzamide class which is a specific class I HDAC 

inhibitor. GI50 (drug concentration needed for 50% cell growth inhibition) 

was calculated to evaluate the growth inhibition of each cell lines induced by 

SAHA treatment.  The difference is significant between sensitive and resistant 

groups (p<0.001). 
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Figure 3.8 Sensitivity difference indicated by GI50 value between sensitive 

and resistant gastric cancer cell line groups under MS275 treatment.  

The treatment concentration range is 0-50uM, and the treatment time is 24 

hours. Y axle is the GI50 value. Triplicate experiments were performed for 

each cell lines and the average values were calculated and ranked. 
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3.3.2   Apoptosis of 8 Gastric Cancer Cell Lines Induced by MS275 

Western blot was performed to show the difference of cleaved PARP 

induced by MS275 treatment between potential sensitive and resistant 

gastric cancer cell line groups. All the 5 gastric cancer cell lines with lower 

GI50 value showed obvious increased PARP cleavage, while gastric cancer cell 

lines YCC3, YCC7 and MKN7 showed no obvious increased cleaved PARP 

induced by TSA treatment.  
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Figure 3.9 The difference of cleaved PARP induced by MS275 treatment 

between sensitive and resistant gastric cancer cell line groups. 

 All the gastric cancer cells were treated 30uM MS275 for 24 hours. Cells 

treated by same amount of DMSO were taken as negative control. Whole 

protein extracted from the cell pellets were sent to western blot. 
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3.4 Alterations in histone acetylation status after HDAC inhibitors 

treatment in gastric cancer cell lines 

HDAC inhibitors are believed to act by inhibiting histone deactylase 

activity, resulting in enhancements of histone acetylation levels and 

increased gene expression (109). To assess if the TSA-sensitive and resistant 

lines might be associated with differences in their baseline or treatment-

induced histone aceytlation profiles, we determined Histone 3 (lysine 9) and 

Histone 4 acetylation (lysine 12) levels in 3 sensitive and 3 resistant lines 

before and after HDAC inhibitor treatment. These experiments were 

performed at HDAC inhibitors concentrations sufficient to trigger a robust 

apoptotic response in sensitive lines. H3 and H4 acetylation levels were 

observed to be similarly increased in both sensitive and resistant cell line 

groups after HDAC inhibitors treatment. Additionally, p21 up-regulation by 

HDAC inhibitor treatment has been widely observed in cancer cells (153, 154). 

Interestingly, we found that TSA treatment also induced p21 up-regulation in 

both sensitive and resistant GC cells (Figure 3.10 A). These results suggest 

that both histone acetylation enhancement and p21 induction are likely not 

sufficient to trigger growth arrest and apoptosis in gastric cancer cells. 

Additional factors may thus contribute to the cellular sensitivity of gastric 

cancer cells to HDAC inhibitors. 
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Figure 3.10 Alterations in histone acetylation status after HDAC inhibitors 

treatment in gastric cancer cell lines.  

(A) Sensitive and resistant gastric cancer cell lines were treated by TSA 

(400nM, 24 hours), and Western blotting was performed to measure global 

levels of acetylated Histone 3 and 4 as well as unacetylated Histone 3 and 4. 

P21 protein up-regulation was also tested. (B) Sensitive and resistant gastric 

cancer cell lines treated by SAHA (5uM, 24 hours) (C) Sensitive and resistant 

gastric cancer cell lines treated by MS275 (30uM, 24 hours). 
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Chapter Four: Results Part II 

4 Identify RNH1 Contributing to Histone Deacetylase Inhibitors Resistance 

in Gastric Cancer Cells 

4.1 Deterimination of RNH1 as the Potential Gene Related to Histone 

Deacetylase Inhibitors Resistance in Gastric Cancer Cells 

4.1.1   Genomic Analysis of Differently Expressed Genes between Sensitive 

and Resistant Gastric Cancer Cell Groups 

 

To identify factors regulating the cellular sensitivity of gastric cancer 

cells to HDAC inhibitors, we examined genes differentially expressed 

between the sensitive and resistant lines. To reduce the possibility of false-

positive results, we adopted an integrated genomic strategy where we 

combined gene expression profiles of the cell lines from two different 

commercially available microarray platforms (Affymetrix and Illumina), 

focusing on genes commonly identified by both platforms. . Through Partek 

software baseline gene expression level was compared between the two cell 

groups. On the Affymetrix platform, we identified 1231 genes differentially 

regulated between HDAC inhibitor sensitive and resistant lines (p<0.05; fold 

change >1.5) and 1165 genes on the Illumina platform at the same 

significance threshold, representing 514 genes commonly identified by both 

platforms. Among these genes, we then imposed a q-value (False Discovery 



 

  72 
 

Rate) filter of <0.3 to select the top 7 candidates. These included RNH1, 

STAT1, ELF, CXCL5, RAB40B, BLCAP and SGPP2 (Figure 4.1), which were all 

highly expressed in the resistant lines. Notably, among these 7 genes we 

identified STAT1, a gene previously associated with HDAC inhibitor resistance 

in colon cancer (121) - this re-discovery provides confidence in the 

robustness of our results.  
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Figure 4.1 Identify differently expressed genes between gastric cancer 

sensitive and resistant groups.  

The baseline gene expression data from both Affymetrix and Illumina 

platforms were normalized and the comparison was performed to identify 

the differently expressed genes between sensitive and resistant gastric 

cancer cell line groups. Around 400 genes in common were identified from 

both platforms (p<0.05).  7 top candidate genes were filtered out at False 

Discovery Rate (FDR) <0.3 through calculating q value. 
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4.1.2 Gene STAT1 and RNH1 expression in 300 Primary Gastric Tissue 

Samples of Singapore Cohort  

 

                In order to investigate the expression profile of gene STAT1 and 

RNH1 in primary gastric tissue to compare the results from cell lines, we 

analyzed the u133 plus microarray gene expression data from 300 primary 

gastric tissue samples of Singapore cohort including 100 normal tissue 

samples and 200 cancer tissue samples. We found that both STAT1 and RNH1 

were more highly expressed in cancer tissues than in normal tissues. Setting 

2 folds of normal tissue median as the threshold, we found that 27% (54/200) 

cancer tissue samples for gene STAT1 and 5% (10/200) cancer tissue samples 

for gene RNH1 showed higher expression. Through Pearson correlation 

analysis, we found there was no obvious correlation between STAT1 and 

RNH1 expression in gastric cancer tissues. We also performed gene silencing 

of STAT1 or RNH1 in two HDAC inhibitor resistant cell lines, YCC3 and MKN7. 

We found that silencing of these two genes could not affect protein 

expression of each other. The result suggested that STAT1 and RNH1 could 

influence HDAC inhibitor sensitivity in two independent path ways. 
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Figure 4.2 Gene expression profiles of STAT1 and RNH1 in 300 primary 

tissues of Singapore cohort and the correlation between STAT1 and RNH1 

(A) Comparison of STAT1 and RNH1 gene expression between gastric normal 

and tumor tissue. U133 plus raw data were normalized using RMA package, 

and averaged by gene symbols. T-test was performed between normal and 

tumor tissue. (B) Correlation of gene expression between STAT1 and RNH1 in 

primary tissues. Pearson correlation test was performed between STAT1 and 

RNH1. (C) The effect of gene STAT1 or RNH1 knock-down to each other. 

STAT1 or RNH1 was silenced in two cell lines YCC3 and MKN7. Cells were 

collected to be sent to Western blot 24 hours or 72 hours after transfection. 
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4.1.3 Protein levels of the Top Candidate Genes  

 

We then extended our results from gene expression to the protein 

level, due to the possibility of an imperfect correlation between gene and 

protein expression (155, 156). Western blotting assays using antibodies 

directed to these candidate genes revealed that two genes, STAT1 and RNH1 

(colored with red in Figure 4.2), exhibited higher protein levels in HDAC 

inhibitor resistant lines compared to sensitive lines. Compared to STAT1, 

gene RNH1 showed more dramatic difference between the two cell groups. 

In contrast, similar protein expression trends were not observed for the other 

4 candidates (high-quality antibodies were not available for BLCAP). We thus 

elected to focus on RNH1 for further characterization. 
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Figure 4.3 Protein levels of the filtered genes in the 8 gastric cancer cell 

lines.   

Western blot was performed to show the protein level of 8 candidate genes 

in the 8 gastric cancer cell lines.  
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4.1.4   RNH1 Gene Highly Expressed in HDAC inhibitor-resistance Gastric 

Cancer Cells  

 

Since the different protein levels of gene RNH1 implies a possible 

relationship in HDAC inhibitor resistance from selected 8 gastric cancer cell 

lines, it would be interesting to know if the protein status of RNH1 in other 

gastric cancer cell lines which are relatively sensitive to HDAC inhibitor 

treatment. To examine patterns of RNH1 expression in gastric cell lines 

beyond the original 8 lines used in the microarray analysis, we performed 

RNH1 Western blotting on an additional 6 gastric lines identified as being 

sensitive to HDAC inhibitors together with AZ521 and YCC3 as negative and 

positive control respectively. With the exception of NUGC3 cells, the other 5 

lines exhibited lower levels of RNH1 protein expression compared to HDAC 

inhibitors resistant YCC3 cells (Figure 4.3). These results thus suggest that 

levels of RNH1 protein expression are negatively correlated to HDAC inhibitor 

sensitivity in gastric cancer.  
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Figure 4.4 The protein level of RNH1 in other gastric cancer cell lines which 

were relatively sensitive to HDAC inhibitors. 

Upper figure showed the protein level of RNH1 of other 7 HDAC inhibitor 

sensitive gastric cancer cell lines compared to YCC3 cells. Lower figure 

showed the corresponding GI50 values of each cell lines 
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4.1.5 RNH1 Protein Level of Gastric Cancer Cells Remain Steady after TSA 

Treatment 

 

              To investigate if HDAC inhibitors could alter RNH1 protein levels in 

gastric cancer cells either sensitive or resistant to HDAC inhibitor, we treated 

several gastric cancer cell lines with 400nM TSA for 24 hours. The results 

showed that TSA treatment could not alter RNH1 protein expression in either 

HDAC inhibitor sensitive or resistant cell lines. The steady characteristics of 

RNH1 under HDAC inhibitor treatment supports a functional role of RNH1 in 

HDAC inhibitor resistance. 
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Figure 4.5 the protein level of RNH1 of gastric cancer cells before and after 

TSA treatment  

Both HDAC inhibitor sensitive or resistant gastric cancer cell lines were 

treated by 400nM TSA for 24 hours. Cytoplasmic protein was extracted and 

sent to Western blot assay. 

 

 

 

 

 

 

 

 



 

  83 
 

4.2 Deregulation of RNH1 Affects Gastric Cancer Cells Sensitivity to TSA 

4.2.1 Knock-down of RNH1 Sensitizes Gastric Cancer Cells to TSA Treatment 

 

To investigate the functional role of RNH1 on gastric cancer HDAC 

inhibitor sensitivity, we conducted genetic knockdown experiments. Stable 

knock-down of RNH1 was confirmed by qPCR and Western blotting analysis, 

using two distinct and non-overlapping RNA1 shRNAs in two HDAC inhibitor 

resistant cell lines, YCC3 and YCC7 (Figure 4.4). Compared to control cells, 

RNH1-silenced cells tended to exhibit decreased growth rates (Figure 

4.5Figure) and exhibited significantly lower TSA GI50 concentrations (3-4 fold) 

in both lines (Figure 4.6A and Figure 4.7A) suggesting that silencing RNH1 can 

sensitize gastric cancer cells to TSA treatment. To confirm these findings by 

other cellular indices, we then conducted cell death and colony formation 

assays. As shown in Figure 4.6B and Figure 4.7B, RNH1-silenced cells YCC3 

and YCC7 cells exhibited increased PARP cleavage upon TSA treatment. 

Moreover, RNH1-silenced cells also exhibited decreased colony formation 

capacities after TSA treatment, by about 2-4 fold (Figure 4.6C and Figure 

4.7C). Similar results were observed when TSA was replaced by SAHA or 

MS275, two other HDAC inhibitor compounds (Figure 4.6 and Figure 4.7). 

Taken collectively, these results observed in two independent HDAC inhibitor 

resistant gastric lines suggests that inhibiting RNH1 can sensitize gastric 

cancer cells to HDAC inhibitor treatment.   
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Figure 4.6 Quantification of RNH1 deregulation in gastric cancer cells  

 

(A) Quantitative real-time PCR analysis (upper figure) and quantified western 

blotting signals (lower figure) of YCC3 cells before and after RNH1 silencing. * 

indicates p<0.05 between YCC3 cells transfected with a scramble shRNA 

control and cells transfected with shRNH1-1 or shRNH1-2 (B) Quantitative 

real-time PCR analysis (upper figure) and quantified western blotting signals 

(lower figure) of YCC7 cells before and after RNH1 silencing. * indicates 

p<0.05 between YCC7 cells transfected with a scramble shRNA control and 

cells transfected with shRNH1-1 or shRNH1-3.  
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Figure 4.7 Effect of RNH1 silencing on gastric cancer cell proliferation.  

(A)   Proliferation assays of YCC3 cells after RNH1 silencing. * indicates p<0.05 

between YCC3 cells transfected with a scramble shRNA control and cells 

transfected with shRNH1-1 or shRNH1-2. (B) Proliferation assays of YCC7 cells 

after RNH1 silencing. * indicates p<0.05 between YCC7 cells transfected with 

a scramble shRNA control and cells transfected with shRNH1-1 or shRNH1-3  
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Figure 4.8 Genetic inhibition of RNH1 sensitizes HDAC inhibitors-resistant 

cells line YCC3.  

 

(A) Proliferation assays comparing GI50 values of wild-type YCC3 cells with 

YCC3 cells where RNH1 was silenced using two independent RNH1 shRNAs 

(shRNH1-1, shRNH1-2) or a scrambled shRNA control. RNH1-silenced cells 

exhibited significantly lower GI50 values for TSA, SAHA and MS275, 

compared to control cells. * p<0.001 between scramble shRNA treated and 

shRNH1-1 or shRNH1-2 treated cells. (B) Apoptosis assays comparing wild-

type YCC3 cells with RNH1-silenced YCC3 cells before and after HDAC 

inhibitor treatment. Western blots were performed to monitor PARP 

cleavage before and after TSA (400nM, 24 hours), SAHA (10uM, 24 hours) or 

MS275 treatment (30uM, 24 hours). (C) Colony formation assays comparing 

YCC3 cells with and without stable RNH1 silencing after HDAC inhibitor 

treatment. HDAC inhibitor-treated but RNH1-silenced YCC3 cells exhibited 

significant lower levels of colony formation after TSA (100nM, 3 weeks), 

SAHA (1uM, 3 weeks) and MS275 treatment (5uM, 3 weeks) compared to 

HDAC inhibitor-treated control YCC3 cells. * indicates p<0.001 between 

control and HDAC inhibitor treated cells. (D) The colony image of YCC3 cells 

with or without RNH1 silencing before or after TSA, SAHA or MS275 

treatment.  
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Figure 4.9 Genetic inhibition of RNH1 sensitizes HDAC inhibitors-resistant 

cells line YCC7.  

 

(A) Proliferation assays comparing GI50 values of wild-type YCC7 cells with 

YCC7 cells where RNH1 was silenced using two independent RNH1 shRNAs 

(shRNH1-1, shRNH1-3) or a scrambled shRNA control. RNH1-silenced cells 

exhibited significantly lower GI50 values for TSA, SAHA and MS275, 

compared to control cells. * p<0.001 between scramble shRNA treated and 

shRNH1-1 or shRNH1-3 treated cells. (B) Apoptosis assays comparing wild-

type YCC7 cells with RNH1-silenced YCC7 cells before and after HDAC 

inhibitor treatment. Western blots were performed to monitor PARP 

cleavage before and after TSA (400nM, 24 hours), SAHA (10uM, 24 hours) or 

MS275 treatment (30uM, 24 hours). (C) Colony formation assays comparing 

YCC7 cells with and without stable RNH1 silencing after HDAC inhibitor 

treatment. HDAC inhibitor-treated but RNH1-silenced YCC7 cells exhibited 

significant lower levels of colony formation after TSA (100nM, 3 weeks), 

SAHA (1uM, 3 weeks) and MS275 treatment (5uM, 3 weeks) compared to 

HDAC inhibitor-treated control YCC7 cells. * indicates p<0.001 between 

control and HDAC inhibitor treated cells. (D) The colony image of YCC7 cells 

with or without RNH1 silencing before or after TSA, SAHA or MS275 

treatment.  
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4.2.2   Over-expression of RNH1 Enhances Gastric Cancer Cells Resistance to 

TSA 

 

We then performed the reciprocal experiment by over-expressing 

wild-type RNH1 in the HDAC inhibitor sensitive lines AZ521 and YCC11. 

Ectopic overexpression of RNH1 in these cell lines was confirmed to be within 

physiological parameters (Figure 4.8), and associated with decreased growth 

(Figure 4.9). As shown in Figure 4.10 and Figure 4.11, over-expression of wild-

type RNH1 in these lines significantly increased their TSA GI50 values, 

attenuated production of cleaved PARP, and decreased the effects on colony 

formation inhibition by TSA. Similar results were observed when TSA was 

replaced by SAHA or MS275, two other HDAC inhibitor compounds (Figure 

4.10 and Figure 4.11). These results provide further evidence that high levels 

of RNH1 are sufficient to render gastric cancer cells resistant to HDAC 

inhibitor therapy.  
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Figure 4.10 Comparison of RNH1 levels among gastric cancer cell lines and 

normal gastric epithelial cell lines.  

 

RNH1 Western blotting was performed on AZ521 and YCC11 cells before and 

after RNH1 over-expression, YCC3, YCC7, HFE145 and GES1 cells. 

Quantification of Western blotting data was performed using Image J 

software (http://rsb.info.nih.gov/ij/). 
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Figure 4.11 Effect of RNH1 overexpression on gastric cancer cell 

proliferation.  

(A) Proliferation assays of AZ521 cells after RNH1 over-expression. * indicates 

p<0.05 between AZ521 cells over-expressing a RNH1 cDNA to an empty 

vector control (B) Proliferation assays of YCC11 cells after RNH1 over-

expression. * indicates p<0.05 between YCC11 cells over-expressing a RNH1 

cDNA to an empty vector control. 
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Figure 4.12 RNH1 over-expression renders HDAC inhibitor-sensitive cell line 

AZ521 resistant to HDAC inhibitor treatment.  

 

(A) Proliferation assays comparing GI50 values of parental AZ521 cells to 

AZ521 cells over-expressing RNH1 or empty vector transfected controls. 

RNH1-overexpressing AZ521 cells exhibited significantly increased GI50 

values for TSA, SAHA and MS275 compared to control cells. * indicates 

p<0.001 between RNH1-overexpressing AZ521 and empty vector control cells. 

(B) Apoptosis assays comparing RNH1-overexpressing AZ521 cells to empty 

vector controls before and after HDAC inhibitor treatment. Western blots 

were performed to monitor PARP cleavage before and after TSA (200nM, 24 

hours), SAHA (5uM, 24 hours) or MS275 treatment (5uM, 24 hours). (C) 

Colony formation assays comparing RNH1-overexpressing AZ521 cells to 

empty vector control cells after HDAC inhibitor treatment. HDAC inhibitor-

treated RNH1-overexpressing AZ521 cells exhibited significant more colony 

formation after TSA (100nM, 3 weeks), SAHA (1uM, 3 weeks) and MS275 

treatment (1uM, 3 weeks) compared to HDAC inhibitor-treated control 

AZ521 cells.  * indicates p< 0.001 between control and HDAC inhibitor 

treated cells. (D) The colony image of AZ521 cells with or without RNH1 

overexpression before or after TSA, SAHA or MS275 treatment. 
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Figure 4.13 RNH1 over-expression renders HDAC inhibitor-sensitive cell line 

YCC11 resistant to HDAC inhibitor treatment.  

 

(A) Proliferation assays comparing GI50 values of parental YCC11 cells to 

YCC11 cells over-expressing RNH1 or empty vector transfected controls. 

RNH1-overexpressing YCC11 cells exhibited significantly increased GI50 

values for TSA, SAHA and MS275 compared to control cells. * indicates 

p<0.001 between RNH1-overexpressing YCC11 and empty vector control cells. 

(B) Apoptosis assays comparing RNH1-overexpressing YCC11 cells to empty 

vector controls before and after HDAC inhibitor treatment. Western blots 

were performed to monitor PARP cleavage before and after TSA (200nM, 24 

hours), SAHA (5uM, 24 hours) or MS275 treatment (5uM, 24 hours). (C) 

Colony formation assays comparing RNH1-overexpressing YCC11 cells to 

empty vector control cells after HDAC inhibitor treatment. HDAC inhibitor-

treated RNH1-overexpressing YCC11 cells exhibited significant more colony 

formation after TSA (100nM, 3 weeks), SAHA (1uM, 3 weeks) and MS275 

treatment (1uM, 3 weeks) compared to HDAC inhibitor-treated control 

YCC11 cells.  * indicates p< 0.001 between control and HDAC inhibitor 

treated cells. (D) The colony image of YCC11 cells with or without RNH1 

overexpression before or after TSA, SAHA or MS275 treatment. 
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4.3 HDAC inhibitor-induced Reactive Oxygen Species (ROS) Production 

Involved in Gastric Cancer Cell Resistance Contributed by RNH1 

4.3.1   TSA Induces Higher ROS Production in HDAC inhibitor Sensitive 

Gastric Cancer cells  

 

RNH1 encodes a ribonuclease inhibitor protein which is mainly 

distributed in the cytoplasm (143, 144). Proposed biological roles of RNH1 

include modulating the biological activities of cellular ribonucleases and as an 

oxidative sensor to monitor the redox status of a cell (150-152). Because ROS 

production has been proposed to play an important role in HDAC inhibitor-

induced cancer cell death (133), we hypothesized that RNH1 might 

contribute to HDAC inhibitor resistance by suppressing drug-induced ROS 

production in gastric cancer cells. To investigate this possibility, we first 

measured levels of drug-induced ROS in both the sensitive and resistant 

gastric cell lines, at early point-treatment time points. As shown in Figure 

4.12, TSA induced higher ROS levels in HDAC inhibitor sensitive lines, 

compared to resistant lines (p<0.01). The average level of ROS production in 

the sensitive group was about 5-fold higher than the resistant group, with the 

exception of SCH cells which exhibited a relatively low level of ROS 

production.  This result suggests that gastric cancer sensitivity to HDAC 

inhibitor treatment is associated with their ability of cells to produce ROS 

upon drug exposure. 
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Figure 4.14 Comparison of ROS production after TSA treatment between 

HDAC inhibitor sensitive and resistant gastric cancer cell line groups.  

TSA-inducing ROS production was measured using CellRox ROS detection 

reagent in the 8 selected gastric cancer cell lines. Middle bar = median, box = 

inter-quartile range, and bars extend to 1.5x the inter-quartile range.  
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4.3.2   Deregulation of RNH1 Affects ROS Production Induced by TSA in 

Gastric Cancer cells 

 

To explore the role of RNH1 in ROS production induced by HDAC inhibitor 

treatment, we then compared drug-induced ROS levels between RNH1-

silenced YCC3 cells and wild-type YCC3 cells, and RNH1 over-expressing 

AZ521 cells to parental AZ521 cells. RNH1-silenced YCC3 cells produced 

significantly higher levels of ROS upon HDAC inhibitor treatment, by about 

10-17 fold (p<0.001) compared to control cells (Figure 4.13). Conversely, 

RNH1-overexpressing AZ521 cells exhibited significantly decreased drug-

induced ROS production compared to parental cells (p<0.01; ~2-fold) (Figure 

4.13). Similar results were observed in both RNH1-silenced YCC7 cells (ROS 

levels increased ~2 fold) and also in RNH1-overexpressing YCC11 cells (ROS 

levels decreased ~5-fold) (Figure 4.13). These results indicate that the levels 

of cellular RNH1 likely represent an important determinant in the ability of 

gastric cancer cells to produce ROS in response to HDAC inhibitor therapy. 
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Figure 4.15 Genetic manipulation of RNH1 levels is sufficient to alter TSA-

induced ROS production.  

ROS levels were compared between YCC3 or YCC7 and RNH1-silenced YCC3 

or YCC7 cells, and between AZ521 or YCC11 and RNH1-overexpressing AZ521 

or YCC11 cells. TSA-induced ROS production was enhanced in RNH1 silenced 

cells, and decreased in RNH1-overexpressing cells. * indicates p<0.001. 
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4.3.3 ROS Regulators Influence Gastric Cancer Cells Sensitivity to TSA 

4.3.3.1 ROS Inducer Enhances the Gastric Cancer Cell Sensitivity to TSA 

Treatment 

 

To ask if drug-induced ROS might be necessary for HDACi-induced 

cancer cell death, we then exposed gastric cancer cells to two compounds 

known to alter cellular ROS levels - β-phenethyl isothiocyanate (PEITC), which 

is known to increase ROS levels (157), and L-glutathione (GSH), which is 

known to scavenge and reduce ROS (158). Interestingly, PEITC has been 

previously reported to enhance the cytotoxicity of HDAC inhibitors in 

leukemia (142). As shown in Figure 4.14, PEITC co-treatment (5uM) enhanced 

the ability of TSA to inhibit proliferation in both YCC3 and YCC7 cells (Figure 

4.14 A), as well as  in RNH1-overexpressing AZ521 and YCC11 cells (Figure 

4.14 B), at TSA concentrations that would not normally affect cellular 

proliferation in these cells (200nM TSA). The PEITC/TSA combination also 

effectively induced much higher ROS production compared to the 

monotherapy-treated lines.  
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Figure 4.16 TSA/PEITC-treated cells were observed to show significant 

decreases in cellular proliferation and also significant inductions in ROS 

levels.  

PEITC Resistant cells (YCC3 and YCC7 on top, RNH1 over-expressing AZ521 

and YCC11 cells on the bottom) were treated with TSA, the ROS β-phenethyl 

isothiocyanate (PEITC), or a TSA/PEITC combination (same concentration as 

monotherapy). (Top graphs) Proliferation inhibition induced by each 

treatment. (Bottom graphs) ROS levels induced by each treatment group. * 

indicates p<0.01 between control and TSA/PEITC treated cells 



 

  103 
 

4.3.3.2 ROS Scavenger Enhances the Gastric Cancer Cell Resistance to TSA 

Treatment 

 

Conversely, we found that pre-incubating cells with GSH rendered 

them resistant to HDAC inhibitor induced cell death. Specifically, GSH pre-

treatment rescued AZ521 or YCC11 cells and RNH1-silenced YCC3 or YCC7 

cells from TSA-induced growth inhibition, at TSA concentrations normally 

sufficient to induce robust cell death in the parental cells (200nM for AZ521 

or YCC11 and 400nM for YCC3 or YCC7 with RNH1-silencing). This resistance 

caused by GSH pre-treatment was also associated with a parallel decrease in 

HDAC inhibitor induced ROS production (Figure 4.15). These results suggest 

that induction of ROS by HDAC inhibitors was necessary for the induction of 

proliferation inhibition and cell death in gastric cancer cells. 
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Figure 4.17 GSH/TSA-treated cells were observed to show resistance to 

TSA-induced proliferation inhibition. 

 

Sensitive cells AZ521 and YCC11 (A), RNH1-silenced YCC3 cells (B) and YCC7(C) 

were treated with TSA, the ROS scavenger L-glutathione (GSH), or pre-

treatment by GSH for 2 hours followed by TSA. * indicates p<0.05 between 

control and TSA treated cells. 
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Chapter Five. Results Part III 

 

5 Extent of RNH1 Significance  

5.1 The RNH1 Protein Level and Sensitivity to TSA in Normal Gastric 

Epithelial Cells 

 

One appealing characteristic of HDACis is that non-cancerous cells 

typically exhibit high in vitro tolerance to these drugs (116). We thus explored 

if RNH1 expression levels might be associated with HDACi resistance in 

normal gastric epithelial cells, and also cancer cells of non-gastric origin. We 

exposed two normal gastric epithelial lines (HFE145 and GES1) to increasing 

concentrations of TSA. Both cell lines exhibited GI50 values above 800nM, an 

even greater level of resistance than YCC3 or YCC7 cells (Figure 5.1). 

Importantly, both normal gastric lines expressed high RNH1 levels, similar to 

YCC3 cells (Figure 5.1A). This observation is consistent with the hypothesis of 

RNH1 contributing to HDACi resistance in normal gastric cells.  
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Figure5.1 RNH1 levels correlate with TSA sensitivity in normal gastric 

epithelial cells  

 

(A) Western blots showing RNH1 protein levels in normal gastric epithelial 

cell lines, HFE145 and GES1. AZ521 (sensitive) and YCC3 (resistant) were 

included as a reference. (B) Proliferation assays showing TSA GI50 values of 

HFE145 and GES1 cells. AZ521 and YCC3 were included as reference. 
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5.2 The RNH1 Protein level and Sensitivity to TSA in Cells of Other Cancer 

Types  

 

Because HDAC inhibitor-induced ROS is not specific to gastric cancer, 

we examined the correlation between RNH1 expression and HDAC inhibitor 

sensitivity in cancer cells from other tissue types. We tested four other 

cancer cell lines -MCF-7 cells (breast cancer), HEPG2 cells (liver cancer), 

HCT116 cells (colon cancer) and Hela cells (cervical cancer). We found that 

HEPG2 cells expressed much higher RNH1 protein levels compared to HCT116 

and Hela cells, and MCF7 expressed intermediate level of RNH1 protein 

(Figure 5.2A). The four cell lines were then tested for their sensitivity to HDAC 

inhibitor treatment. Under TSA treatment, HEPG2 cells exhibited an 

extremely high GI50 value (>800nM) (Figure 5.2B) and lower levels of cleaved 

PARP than other cell lines (GI50 <200nM) (Figure 5.2C). The responses of 

these cell lines to TSA treatment are similar to previous publications testing 

the same lines (121, 159). The observation that HEPG2 cells, with high RNH1 

levels, showing higher resistance to TSA treatment than other cell lines, with 

low RNH1 levels, imply that RNH1 may also contribute to HDAC inhibitor 

resistance in other cancer types. 
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Figure 5.2 RNH1 levels correlate with TSA sensitivity in cancer cells from 

other tissues. 

 

(A) Western blots showing RNH1 protein levels in MCF7 (Breast cancer), 

HepG2 (Liver cancer), HCT116 (Colon cancer) and Hela (Cervical cancer) cells. 

YCC3 cells were included as a reference. (B) Proliferation assays showing GI50 

values of Hela, HCT116, HepG2 and MCF7 cells treated by TSA. (C) Apoptotic 

assay of Hela, HCT116, HepG2 and MCF7 cells. Western blots were 

performed to detect PARP cleavage of all the cells treated by TSA.  
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5.3    The Effect of RNH1 Deregulation on Other Anti-cancer Drugs 

 

In order to test if RNH1 levels also influence the sensitivity of GC cells 

to other drug treatments, we performed the proliferation assays of YCC3 

with/without RNH1 silencing and AZ521 with/without RNH1 overexpression 

under cisplatin treatment (Figure 5.3). Interestingly, genetic knockdown or 

over-expression of RNH1 did not seem to influence the sensitivity of gastric 

cancer cells to cisplatin, although cisplatin is also known to induce ROS 

production in cancer cells.(160) This result suggests that ROS production 

plays a more important role in HDAC inhibitor-induced gastric cancer cell 

death compared to other cytotoxic drugs. 
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Figure 5.3 RNH1-deregulation does not influence sensitivity of gastric 

cancer cells to cisplatin treatment.   

(A) Proliferation assays of YCC3 cells with stable RNH1-silencing. Proliferation 

assays were performed and GI50 values calculated to examine the effect of 

RNH1 knock-down on cisplatin sensitivity. (B) Proliferation assays of AZ521 

with RNH1 over-expression. Cell proliferation assays were performed and 

GI50 valuse calculated to examine the effect of RNH1 over-expression in 

AZ521 treated by cisplatin. 
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Chapter Six. Discussion 

 

HDAC inhibitors, especially artificially synthesized ones, have been 

discovered as anti-cancer drug for more than 10 years. One of the most 

attractive  characteristic of HDAC inhibitors is that they selectively induce cell 

death in transformed cells, while not the normal cells (161). In some 

hematologic malignancies, HDAC inhibitors such as SAHA, showed favorable 

clinical outcomes and have been approved for clinical usage (114). Recent 

publications suggested the feasibility of applying HDAC inhibitor in gastric 

cancer patients (105) and the potential high sensitivity of gastric cancer cells 

to HDAC inhibitor treatment (119). However, like other anti-cancer drugs, 

HDAC inhibitors induce heterogeneous responses in different cancer types, or 

in different subtypes of the same cancer. Thus it is necessary to understand 

the resistance mechanism of HDAC inhibitor in cancers, especially solid tumor 

treatment, which will provide useful information in cancer type and drug 

selection for clinical application. This project focuses on the different 

sensitivities of gastric cancer cell lines to HDAC inhibitor treatment and 

identified some potential genes (RNH1 and STAT1) or signatures (ROS 

alteration) responsible for the difference by genomic comparison between 

cell groups with different sensitivities. The significance has also been 

extended to other cancer types.  
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6.1 The Sensitivity of Gastric Cancer Cells to HDAC Inhibitors 

 

So far there is no HDAC inhibitor applied clinically in gastric cancer 

patients. However, some publications suggested the importance of 

altered histone acetylation in gastrointestinal carcinogenesis, especially in 

relation to invasion and metastasis. (162) High HDAC expression, especially 

class I HDACs, are significantly associated with nodal spread and are 

independent prognostic markers for gastric cancer, (105, 163, 164) which 

implies considerable therapeutic efficacy of these agents. It has been more 

than 10 years that people noticed that HDAC inhibitors could induce gastric 

cancer cell growth arrest or apoptosis. (162) Recently an in vitro chemo-

sensitivity assay validated the comparable chemo-response of gastric cancers 

to HDAC inhibitors and established drugs. (165) The general high sensitivity of 

gastric cancer cells to HDAC inhibitor treatment was re-proved by our data 

from TSA treatment. Most gastric cancer cell lines (15 out of 18) showed 

obvious cell reductions induced under rather low concentrations of TSA 

treatment (less than 400nM). Among the 18 cell lines screened, only 3 cell 

lines displayed relatively high resistance to HDAC inhibitors. The fact that 

most gastric cancer cell lines are sensitive to HDAC inhibitors implies that 

HDAC inhibitors could be a class of useful cancer therapeutic drug for gastric 

cancer patients. 
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6.2 The Heterogeneous Response of Gastric Cancer Cell Lines to HDAC 

Inhibitors 

 

Besides surgery and radiotherapeutics, the use of chemotherapeutics 

remain the major option for cancer patients, especially for the patients in late 

stage. (166) However, one of the most frustrating outcomes of these 

chemotherapeutics is that patients do not respond or develop resistance. For 

instance, anti-EGFR (epidermal growth factor receptor) targeted therapy only 

improved disease control and survival in a subgroup of patients with 

metastatic colorectal cancer (mCRC). (167, 168) Other examples include 

gefitinib and erlotinib, the epidermal growth factor receptor (EGFR) tyrosine 

kinase inhibitors in patients with non–small cell lung cancer (NSCLC) (169, 

170). This may also happen to HDAC inhibitor treatment in gastric cancer 

patients. Using both 2-dimensional (growth inhibition, apoptosis) and 3-

dimensional (colony formation) assays, we found that different gastric cancer 

cell lines displayed significantly different sensitivities to HDAC inhibitors, up 

to >10-fold in some cases. The differences in sensitivity were common to 

different HDAC inhibitors (TSA, SAHA and MS275), suggesting that these 

responses are generalizable to this drug class. Our in vitro findings render it 

plausible that primary gastric cancers may also exhibit similarly 

heterogeneous responses to HDAC inhibitors in vivo  like cutaneous T cell 

lymphoma (CTCL) patients (171, 172).  
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6.3 HDAC Inhibitors Induce Different Apoptotic Responses among Gastric 

Cancer Cell Lines 

 

It has been decades since some small-molecule compounds, either 

naturally existing or artificially synthesized, have been discovered with the 

capacity to alter HDAC activity and display anti-cancer power. This has led to 

the development of a series of HDAC inhibitors with different structures 

designed specifically for various targets. Efforts have focused on increasing 

their selective ability in promoting cancer cell cycle arresting and/or inducing 

cell death (173, 174). Cancer cell apoptosis is the one of main indicators for 

cancer therapy outcome.  

HDAC inhibitors have been reported to activate either death-receptor 

pathways (extrinsic) or mitochondrial pathways (intrinsic) of apoptosis in 

many cancer models, such as leukemia cells, breast cancer cells or melanoma 

cells (175-177). The activation of caspases has been reported by early 

publications to be associated with HDAC inhibitor-induced cell death as the 

executioners of apoptosis. However, the requirement of caspases in HDAC 

inhibitor induced apoptosis is controversial (133, 178-180). Since multiple 

apoptotic pathways in mammalian cell have been characterized, and both 

apoptotic pathways need caspase 3 and Poly ADP-ribose polymerase (PARP) 

cleavage. (181-183) So in this project, caspase 3 and PARP cleavage were 

utilized as indicators to test if gastric cancer cell apoptosis could be induced 
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by HDAC inhibitor treatment. We found that most gastric cancer cell lines 

treated by HDAC inhibitors showed PARP and caspase 3 cleavage, which 

suggests that HDAC inhibitor-induced cell death could be through the 

caspase-PARP dependent apoptosis pathway. Further studies will be needed 

for elucidating specific apoptosis pathways responsible for HDAC inhibitor 

treatment in gastric cancer cells, which is not the key objective of this project.  

 There was a tremendous difference in caspase 3 or PARP cleavage 

signal between HDAC inhibitor sensitive and resistant cell lines. The 

difference in caspase 3 or PARP cleavage was chosen as the major standard 

to determine the sensitivity groupings of gastric cancer cell lines. According 

to this standard, MKN1 and YCC10 were excluded from the resistant group, 

although they showed even higher resistance than YCC3 and YCC7 in growth 

inhibition induced by TSA within 24 hours. Among the seventeen scanned 

gastric cancer cell lines, only three lines showed resistance to apoptosis 

induced by HDAC inhibitors, which further demonstrated that gastric cancer 

cells were generally sensitive to HDAC inhibitor treatment. 
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 6.4 Candidate genes related to the difference in gastric cancer cell line 

sensitivity to HDAC inhibitors 

 

In spite of recent development in chemotherapeutics, a major 

obstacle in the clinical treatment of patients with advanced and metastatic 

cancer is still intrinsic or acquired resistance during chemotherapeutic 

treatment (166). Chemo-resistance mechanisms could be related to various 

signal pathways involving altered expression and/or activity of different 

signal targets, which protects cancer cells from chemotherapy induced 

growth arrest and/or cell death effects. Many signaling pathways, such as 

EGFR, hedgehog, and Wnt/b-catenin and signaling targets, including PI3K 

(phosphatidyl inositol 3'-kinase)/Akt, nuclear factor-kB, Bcl-2, 

cyclooxygenase-2 (COX-2), survivin, snail, slug, and twist may contribute to 

this chemotherapeutic resistance (153, 184-194). Previous studies discovered 

genes which were responsible for HDAC inhibitor resistance in different types 

of cancer, such as STAT1 in colon cancer cells harboring active RAS (121) and 

HR23B in cutaneous T-cell lymphoma (CTCL) cells (122). So far there is no 

report about genes responsible for HDAC inhibitor resistance in gastric cancer 

cells.  

In our genomic analysis, STAT1 appeared in the list of top candidate 

genes which were differently expressed between sensitive and resistant cell 

groups. The appearance of STAT1 could be regarded as the evidence that our 
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bioinformatic analysis could provide biologically plausible outcomes. 

Compared to STAT1, RNH1 showed a more obvious high expression in protein 

level in HDAC inhibitor resistant cell lines. Further experiments proved that 

protein ribonuclease inhibitor, encoded by gene RNH1, contributed to the 

resistance to HDAC inhibitor treatment in gastric cancer cells, and RNH1 

could regulate HDAC inhibitor-induced ROS generation to influence the 

sensitivity of gastric cancer cells. The effect of STAT1 on gastric cancer cells’ 

resistance to HDAC inhibitors seem uncertain, because we observed that at 

least one resistant line YCC7 shows a low level of STAT1 (Figure 4.3). The 

results suggest that the mechanism of gastric cancer sensitivity to HDAC 

inhibitors could rely on different genes from colon cancer, although the two 

cancer types share much common characters. 
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6.5 The Roles of Reactive Oxygen Species (ROS) in Gastric Cancer Sensitivity 

to HDAC Inhibitors Treatment 

 

ROS contributes to a wide range of pathologies including cancers, 

cardiovascular diseases, and neurological diseases. The relationship between 

ROS and gastric cancer has been discussed in the Introduction section. It has 

been proved by some publications that various HDAC inhibitors stimulate 

ROS production and their anticancer activity can be inhibited by anti-oxidant 

treatment. (116, 133, 140, 175). These studies suggest that ROS production 

may play an important role in cancer cell arrest and /or cell death induced by 

HDAC inhibitors. ROS stress may induce apoptosis through the intrinsic 

apoptotic pathway activation (195). In this project, we also found that ROS 

production by HDAC inhibitors was much higher in sensitive gastric cancer 

cells than the one in resistant cells. Previous publications focused on the role 

of thioredoxin (Trx) and its inhibitor, thioredoxin binding protein (TBP-2), in 

regulating ROS production by HDAC inhibitors. (116, 140) However, in this 

project, gene RNH1 seemed to play a more important role in explaining the 

sensitivity and ROS production difference by HDAC inhibitors in gastric cancer 

cells. This is the first time that RNH1 has been found to be involved in 

regulation of HDAC inhibitor-induced ROS production. 
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6.6 The roles of RNH1 in gastric cancer cell sensitivity to HDAC inhibitors 

 

RNH1 has been found in the cytosol of many cell types. (144) RNH1 

inhibits both secretory and intracellular ribonucleases, but it has not been 

detected in extracellular fluids, such as plasma, saliva, and urine. (196, 197). 

The literature about the biological role of RNH1 is full of conflicting 

observations. RNH1 biosynthesis seems to correlate positively with cell 

proliferation; increased RNH1 levels have been found in rat liver after 

treatment with 2-acetamidofluorene to induce tumors (198) and in 

developing neonatal rats(199). Other studies, however, found that high RNH1 

levels decreased angiogenesis and tumor formation in mouse xenografts. 

(200) A recent publication showed that knock-down of RNH1 expression in 

non-invasive BIU-87 bladder cancer cells promoted its growth rate and 

metastasis ability. (201)  

Several studies suggested that RNH1 could protect cells against 

oxidative damage. Overexpression of RNH1 in rat glial cells conferred 

protection against hydrogen peroxide-induced stress, and injection of RNH1 

into mice also conferred protection from per-oxidative injuries of the liver 

induced by exposure to carbon tetrachloride. (202) RNH1 has also been 

found to contributes to intracellular redox homeostasis in normal, primary 

endothelial HUVE cells, and malignant HeLa cells indicated by decreased GSH 
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levels as well as increased oxidant-induced DNA. (152) Our experiments show 

that RNH1 is involved in HDAC inhibitor-induced ROS generation and cell 

death in gastric cancer cells, and the idea was reinforced by the synergistic 

effect of the ROS inducer, B-phenethyl isothiocyanate (PEITC), with TSA in 

high RNH1 expressing cells, and the rescuing effect of L-glutathione (GSH) 

from TSA in low RNH1 expressing cells. RNH1 seemed rather specific in 

regulating cell sensitivity to HDAC inhibitor treatment, because the effect 

could not be seen in cisplatin treatment, although cisplatin also could induce 

ROS generation in cancer cells (160). We considered that some other 

molecules may be involved in and might explain the specificity of RNH1 to 

HDAC inhibitor treatment. 
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6.7 Conclusions 

 

In conclusion, the RNH1 gene was identified as a contributor to HDAC 

inhibitor resistance in gastric cancer cells through genomic analysis of 

differently expressed genes between sensitive and resistant cell groups, as 

well as following functional verification. We propose that RNH1 mediates this 

effect through its ability to regulate HDAC inhibitor-induced ROS levels. Our 

results suggest that ROS production plays a more important role in HDAC 

inhibitor-induced gastric cancer cell death compared to other cytotoxic drugs. 

HDAC inhibitors could be a promising option of chemotherapy for 

gastric cancer, although no clinical trial has been performed so far. Exploiting 

the possible mechanism of HDAC inhibitor sensitivity in gastric cancer cells 

could help understand the rationale and provide supportive information for 

future possible clinical applications, which may also help to explain and 

overcome the relatively low response rate of HDAC inhibitors as single agents 

applied in other solid tumors (109).  
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6.8 Future Perspectives 

 

This study has demonstrated the RNH1 can contribute to HDAC 

inhibitor resistance in gastric cancer cells. In this session, we will suggest 

further investigations to follow up on the existing findings of this project. 

 

1. In vivo validation of RNH1 contributing to HDAC inhibitor resistance in 

gastric cancer 

 

Although we proved the role of RNH1 contributing to HDAC inhibitor 

resistance at the gastric cancer cell culture level, it is necessary to establish 

further in vivo evidence of this RNH1 effect in some animal models, such as 

xenograft growth inhibition in a nude mouse model. Since we already have 

stable RNH1-silenced cell lines YCC3 and YCC7, the next step of this project 

would be to establish xenografts of YCC3 or YCC7 cells with /without RNH1-

silencing in nude mouse model, then observing the different xenografts for 

growth inhibition induced by SAHA or MS275 treatment between control and 

RNH1-silenced groups. (TSA is not suitable to be clinically administrated for 

its short half life in blood and high toxicity. 
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2. Investigating further mechanism of RNH1 influencing ROS production 

induced by HDAC inhibitor treatment 

 

Due to the fact of RNH1 contains a high content of reduced cysteines, 

it is easy to hypothesize that RNH1 could influence HDAC inhibitor-induced 

ROS production by interacting with ROS molecules directly as a buffering 

system. However, our observation that RNH1 could not influence cell growth 

inhibition by another anti-cancer drug, cisplatin, seems to put doubt on this 

deduction. Before the observation denies the hypothesis, several questions 

need to be answered: (a) Does ROS production play an important role in 

gastric cancer cell apoptosis induced by cisplatin treatment? (b) Could RNH1 

deregulation also influence ROS production in gastric cancer cells treated by 

cisplatin? (c) Are there other genes involved in the RNH1 regulation of ROS 

production in gastric cancer cells? 

To answer questions (a) and (b), similar experimental methods, such 

as the effect of PEITC or GSH on cisplatin-induced apoptosis and oxidative 

stress assays, could be performed on cisplatin treated gastric cancer cell lines 

similar to HDAC inhibitor treated cells. For question (c), different gene 

expression comparisons could be performed between cell lines before and 

after RNH1 gene deregulation to filter out possible candidate genes related 

to RNH1 regulating ROS production. 
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3. Investigating significance of RNH1 contribution to HDAC inhibitor 

resistance on other types of cancer 

 

RNH1 is distributed in various types of tissues in the human body 

(144), so it is feasible to expect that the role of RNH1 in gastric cancer may 

also be observed in other types of cancer. In our primary study (Figure 5.2), 

liver cancer HEPG2 cells expressed high levels of RNH1 and also showed 

higher resistance to HDAC inhibitor treatment than the colon cancer cell line 

HCT116 and Hela cervical cancer cells with extremely low RNH1 expression. 

Interestingly, MCF7 breast cancer cells with relatively high levels of RNH1 are 

still sensitive to HDAC inhibitor treatment, which reminds us the role of RNH1 

in HDAC inhibitor sensitivity could be diverse according to different tissue 

localizations. More experimental evidence should be involved to verify the 

detailed character of RNH1 in this event. 
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