
PARALLELISM-ENERGY PERFORMANCE
ANALYSIS OF MULTICORE SYSTEMS

BOGDAN MARIUS TUDOR
B. Eng., UNIVERSITY “POLITEHNICA” OF BUCHAREST, 2007

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48678782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that the thesis is my original work and it has been written by
me in its entirety.

I have duly acknowledged all the sources of information which have been used
in the thesis.

No portion of the work referred to in this thesis has been submitted in support
of an application for another degree of qualification at this or any other university
or institution of learning.

Bogdan Marius Tudor
5 November 2013

� Copyright 2013 Bogdan Marius Tudor. All rights reserved.

Abstract

Modern multicore systems consist of multiple on-chip cores supported by off-

chip shared resources such as memory and I/O devices. Scaling the performance in

the multicore era requires programs to expose sufficient parallelism such that their

execution consists of overlapping activities on both on-chip and off-chip resources.

But too much overlap might trigger contention for the shared resources, extending

the response time of the application. On the other hand, the performance of

many multicore systems is increasingly constrained by either a power or an energy

budget. Thus, in the multicore era, analyzing the performance of an application

requires understanding of how the application parallelism is mapped to hardware

parallelism, and how its exploitation affects the execution time and the energy

usage.

This thesis proposes a hybrid measurement–analytical modeling approach for

analyzing the performance of shared-memory applications on multicore systems.

For a given application we predict the impact of the number of cores and core

clock frequency on the parallelism and energy performance on traditional x64 and

emerging low-power ARM multicore systems. The proposed parallelism model

captures the overlap between response times of cores, memory and I/O devices to

predict both the amount of parallelism exploited and the parallelism lost due to

data dependency, memory contention and network I/O overhead. Based on the

parallelism model and a static power characterization of a multicore system, our

proposed energy model predicts the power and energy use of a program. In con-

trast to previous approaches that rely on instrumentation of the program source

or binary code, our model uses non-intrusive inputs such as the size of the OS

run-queue, hardware events counters and external power measurements. Valida-

tion against direct measurements of applications covering HPC, financial analysis,

multimedia and datacenter computing on four UMA and NUMA multicore sys-

tems shows an average relative model error of around 6-13%.

A number of key insights are drawn using our approach. First, for memory-

or I/O-bounded problems, allocating large number of cores increases energy usage

and may also increase execution time due to resource contention among cores.

Second, balancing the core and memory resources by selecting an appropriate

number of cores and clock frequency can reduce the energy by up to 27% even

on an ARM Cortex-A9 system. Third, we show that more energy savings can be

achieved on datacenter workload memcached when balancing the cores, memory

and I/O resources of a system by improving bottlenecked resources, rather than by

turning off under-utilized resources. In summary, we show that balancing system

resources is key to reducing the energy usage of an application, and this is achieved

by improving the hardware performance, rather than by lowering the power usage.

iv

Machines take me by surprise with great frequency.

– Alan Turing

vi

Acknowledgements

This thesis was made possible by the supported received frommany people through-

out my (long) candidature.

I thank my PhD supervisor, Professor Teo Yong Meng, for the resolute support

and for allowing me to carve my own research path. His passion as a researcher is

only matched by his kindness and patience as a teacher. Through the six years of

my candidature, I have learned from him numerous lessons that have permanently

changed my outlook on research, teaching, professional life and far beyond. From

him I learned the deeper meaning of being a professor and why this is perhaps the

most philanthropic career one can embark on. Prof. Teo, I know I am responsible

for many gray hairs from my clumsy writing, convoluted thinking and my many

other issues, but I hope I can thank you by showing that your lessons have not

been in vain.

I am indebted to many researchers that have helped me at different stages

of the candidature. I thank my committee, Professors Tulika Mitra and Wong

Weng-Fai from NUS and Professor Alan Edelman from MIT, for their comments

and advices during the various milestones of my candidature. I thank Dr Verdi

March for the numerous discussions on my research. Dr Simon See has helped me

with many ideas and access to equipments. Professor Y.C. Tay has opened my

eyes to the exciting world of modeling in his CS6282 lectures and has helped me

greatly in the follow-up discussions when I inevitably got stuck. Professor Chin

Wei Ngan has always been supportive of every equipment need I have had.

I thank my friends and colleagues in Singapore for making my time here a

truly memorable experience. You are far too many to mention, but Cristi, Andrei,

Marian, Claudia, Mihai, Narcisa, Marcel, Saeid, Andreea, Khanh, Dumi, Lavanya

and Shi Lei have marked my time spent far away from home.

I thank my family for your efforts in raising me, for supporting my physical

absence so I can pursue my dreams, and for pushing me to give out my best. I

vii

feel their love and warmth every day, even when they are 9,000 km away.

Finally, I thank my wife Cristina for her love, unwavering support, encourage-

ments and for inspiring me everyday to be a better person. Without her I would

have not completed this chapter of my life and thus, it is fitting that to her I

dedicate this thesis.

viii

List of Publications
1. Bogdan Marius Tudor and Yong Meng Teo. On Understanding the Energy Con-

sumption of ARM-based Multicore Servers, Proceedings of the 34th ACM SIG-

METRICS International Conference on Measurement and Modeling of Com-

puter Systems, pages 267–278, Pittsburgh, USA, June 17–21, 2013, acceptance

rate 13%. Paper is featured in HPCwire article Mapping the Energy

Envelope of Multicore ARM Chips, 6 June 2013, http://goo.gl/Xvlth7.

2. Bogdan Marius Tudor and Yong Meng Teo. Towards Modelling Parallelism and

Energy Performance of Multicore Systems, Proceedings of the 26th International

Parallel & Distributed Processing Symposium PhD Forum, pages 2526–2529,

Shanghai, China, May 21–25, 2012. Awarded PhD Forum Best Poster

Award.

3. Bogdan Marius Tudor, Yong Meng Teo and Simon See. Understanding Off-chip

Memory Contention of Parallel Programs in Chip Multiprocessors, Proceedings

of the 40th International Conference on Parallel Processing, pages 602-611,

Taipei, Taiwan, 21–25 September, 2011, acceptance rate 22%.

4. Bogdan Marius Tudor and Yong Meng Teo. A Practical Approach for Perfor-

mance Analysis of Shared-Memory Programs, Proceedings of the 25th Interna-

tional Parallel & Distributed Processing Symposium, pages 652–663, Anchor-

age, USA, 16–20 May, 2011, acceptance rate 19%.

ix

x

Table of Contents

Abstract iii

Acknowledgements viii

List of Publications ix

Table of Contents xiii

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Motivation . 3

1.2 Challenges . 5

1.3 Objective and Approach . 7

1.4 Thesis Contributions . 9

1.5 Thesis Organization . 11

2 Related Work 13

2.1 Parallelism Performance Approaches 14

2.1.1 Theory of Parallelism . 14

2.1.2 Runtime Overheads Studies 18

2.1.3 Memory Contention in Multicore Systems 21

2.1.4 General Analytical and Empirical Models 24

2.1.5 Measurement and Instrumentation 29

2.2 Power and Energy Studies . 30

2.2.1 Analytical Modeling and Simulation Approaches 31

2.2.2 Measurement and Empirical Approaches 33

xi

2.2.3 Energy-Proportionality in Multicore Systems 37

2.3 Summary . 39

3 Proposed Analytical Models 41

3.1 Overview and Approach . 41

3.2 General Parallelism Performance Model 44

3.2.1 Inherent and Exploited Parallelism 48

3.2.2 Response Times and Parallelism 52

3.2.3 Useful Work . 56

3.2.4 Data Dependency . 59

3.2.5 Memory Contention . 64

3.2.6 I/O Overhead . 75

3.3 Power and Energy Models . 79

3.3.1 Power Model . 79

3.3.2 Energy Model . 82

3.3.3 Energy Proportionality . 84

3.4 Summary . 87

4 Model Parameterization and Validation 89

4.1 Workloads and Experimental Setup 89

4.1.1 Workloads . 90

4.1.2 Systems . 92

4.1.3 Power and Energy Measurement 95

4.2 Measurement Analysis of Memory Contention 96

4.2.1 Impact of Number of Cores on Memory Contention 96

4.2.2 Burstiness of Memory Traffic 102

4.3 Model Parametrization . 105

4.3.1 Baseline Runs Configuration 105

4.3.2 Workload Parameterization 107

4.3.3 System Parameterization . 109

4.4 Models Validation . 111

4.4.1 Memory Contention . 112

4.4.2 I/O Overhead . 117

4.4.3 Exploited Parallelism . 120

4.4.4 Power and Energy . 126

4.4.5 Errors and Limitations . 130

xii

4.5 Summary . 136

5 Model Applications 137

5.1 Understanding Parallelism-Energy Performance 138

5.1.1 Inherent and Exploited Parallelism 138

5.1.2 Power and Energy Performance 140

5.2 Meeting Performance Requirements on Multicore Systems 143

5.2.1 Number of Cores Required to Meet a Deadline 143

5.2.2 Understanding Parallelism Loss 146

5.2.3 Impact of Changing from UMA to NUMA 148

5.3 Improving Energy Efficiency in Parallel Programs 150

5.3.1 Core-Frequency Configuration forMinimum Energy Use . . . 150

5.3.2 When is Low Power not Energy-Efficient? 155

5.3.3 Improving Energy Efficiency of Low-power Multicore Systems157

5.4 Summary . 161

6 Conclusions 163

6.1 Thesis Summary . 163

6.2 Future Research Directions . 165

References 169

A Validation Results 187

A.1 Validation of Memory Contention Model 187

A.1.1 Intel UMA . 187

A.1.2 Intel NUMA 2 . 199

A.1.3 AMD NUMA . 202

A.2 Validation of Parallelism and Energy Model on ARM Cortex-A9 . . 205

xiii

xiv

List of Figures

2.1 Overheads of a parallel program . 20

3.1 Approach for applying the model 43

3.2 Breakdown of general program parallelism 47

3.3 Breakdown of shared-memory parallelism 48

3.4 Degree of parallelism profile . 49

3.5 CPU core activity and overheads 52

3.6 Architectures of multi-processor multicore systems: UMA & NUMA 66

3.7 Overlapping of I/O times . 77

4.1 Memory interconnect of NUMA systems 94

4.2 Power and energy measurement setup 95

4.3 Effect of varying the number of cores on CG.C 100

4.4 Burstiness of off-chip memory traffic: HPC dwarf CG 103

4.5 Burstiness of off-chip memory traffic: PARSEC x264 104

4.6 Modeled inherent parallelism: effect of run-queue sample interval . . 106

4.7 Validation of memory contention model: CG and EP 113

4.8 Validation of the I/O overhead model: memcached 119

4.9 Modeled vs measured exploited parallelism: BT.C on Intel UMA . 122

4.10 Modeled vs measured exploited parallelism: BT.C on Intel NUMA 122

4.11 Modeled vs measured exploited parallelism: BT.C on AMD NUMA 125

4.12 Validation of power-energy model: EP and CG 128

4.13 Validation of power-energy model: SP and memcached 129

5.1 CPU, memory and I/O energy proportionality: memcached 141

5.2 CPU, memory and I/O device utilization: memcached 142

5.3 Measured exploited parallelism: SP.B 145

5.4 Modeled exploited parallelism and parallelism loss: SP 147

xv

5.5 Modeled memory contention: SP.B on UMA & NUMA 148

5.6 Modeled exploited parallelism: SP.B on UMA & NUMA 149

5.7 Execution time and energy usage of EP 151

5.8 Execution time and energy usage of SP 151

5.9 Execution time and energy usage of memcached 152

5.10 SP energy usage: ARM Cortex-A9 vs Intel NUMA x64 157

5.11 Memcached Response Times . 158

5.12 Memcached with 1 Gbit Ethernet and Double Memory Bandwidth . 159

A.1 Memory contention validation: BT.W on Intel UMA 187

A.2 Memory contention validation: BT.A on Intel UMA 188

A.3 Memory contention validation: BT.B on Intel UMA 188

A.4 Memory contention validation: BT.C on Intel UMA 189

A.5 Memory contention validation: CG.W on Intel UMA 189

A.6 Memory contention validation: CG.A on Intel UMA 190

A.7 Memory contention validation: CG.B on Intel UMA 190

A.8 Memory contention validation: CG.C on Intel UMA 191

A.9 Memory contention validation: EP.W on Intel UMA 191

A.10 Memory contention validation: EP.A on Intel UMA 192

A.11 Memory contention validation: EP.B on Intel UMA 192

A.12 Memory contention validation: EP.C on Intel UMA 193

A.13 Memory contention validation: FT.W on Intel UMA 193

A.14 Memory contention validation: FT.A on Intel UMA 194

A.15 Memory contention validation: FT.B on Intel UMA 194

A.16 Memory contention validation: IS.W on Intel UMA 195

A.17 Memory contention validation: IS.A on Intel UMA 195

A.18 Memory contention validation: IS.B on Intel UMA 196

A.19 Memory contention validation: IS.C on Intel UMA 196

A.20 Memory contention validation: SP.W on Intel UMA 197

A.21 Memory contention validation: SP.A on Intel UMA 197

A.22 Memory contention validation: SP.B on Intel UMA 198

A.23 Memory contention validation: SP.C on Intel UMA 198

A.24 Memory contention validation: EP.C on Intel NUMA 199

A.25 Memory contention validation: IS.C on Intel NUMA 199

A.26 Memory contention validation: CG.C on Intel NUMA 200

A.27 Memory contention validation: FT.C on Intel NUMA 200

xvi

A.28 Memory contention validation: SP.C on Intel NUMA 201

A.29 Memory contention validation: EP.C on AMD NUMA 202

A.30 Memory contention validation: IS.C on AMD NUMA 202

A.31 Memory contention validation: CG.C on AMD NUMA 203

A.32 Memory contention validation: FT.C on AMD NUMA 203

A.33 Memory contention validation: BT.C on AMD NUMA 204

A.34 Memory contention validation: SP.C on AMD NUMA 204

A.35 CPU cycles validation: EP on ARM Cortex-A9 205

A.36 Execution time validation: EP on ARM Cortex-A9 205

A.37 Power validation: EP on ARM Cortex-A9 206

A.38 Energy validation: EP on ARM Cortex-A9 206

A.39 CPU cycles validation: IS on ARM Cortex-A9 207

A.40 Execution time validation: IS on ARM Cortex-A9 207

A.41 Power validation: IS on ARM Cortex-A9 208

A.42 Energy validation: IS on ARM Cortex-A9 208

A.43 CPU cycles validation: CG on ARM Cortex-A9 209

A.44 Execution time validation: CG on ARM Cortex-A9 209

A.45 Power validation: CG on ARM Cortex-A9 210

A.46 Energy validation: CG on ARM Cortex-A9 210

A.47 CPU cycles validation: FT on ARM Cortex-A9 211

A.48 Execution time validation: FT on ARM Cortex-A9 211

A.49 Power validation: FT on ARM Cortex-A9 212

A.50 Energy validation: FT on ARM Cortex-A9 212

A.51 CPU cycles validation: BT on ARM Cortex-A9 213

A.52 Execution time validation: BT on ARM Cortex-A9 213

A.53 Power validation: BT on ARM Cortex-A9 214

A.54 Energy validation: BT on ARM Cortex-A9 214

A.55 CPU cycles validation: SP on ARM Cortex-A9 215

A.56 Execution time validation: SP on ARM Cortex-A9 215

A.57 Power validation: SP on ARM Cortex-A9 216

A.58 Energy validation: SP on ARM Cortex-A9 216

A.59 CPU cycles validation: memcached on ARM Cortex-A9 217

A.60 Execution time validation: memcached on ARM Cortex-A9 217

A.61 Power validation: memcached on ARM Cortex-A9 218

A.62 Energy validation: memcached on ARM Cortex-A9 218

xvii

xviii

List of Tables

2.1 Limitations of commonly used performance analysis methods 39

3.1 Table of notations . 45

3.2 Summary of model equations . 88

4.1 Six NPB 3.3, two PARSEC 2.1 and one datacenter workload 90

4.2 Normalized increase in number of cycles in HPC dwarfs 98

4.3 Variation of rM(n) and w(n) using one memory controller 101

4.4 Problem size description for CG and x264 103

4.5 Parameterization of memory contention model 108

4.6 Static power characterization of ARM Cortex-A9 (Exynos 4412) . . 109

4.7 Goodness-of-fit of CPU cycles model 116

4.8 Workload parameters for memcached 118

4.9 Model vs measured exploited parallelism on Intel UMA 121

4.10 Model vs measured exploited parallelism on Intel NUMA 123

4.11 Model vs measured exploited parallelism on AMD NUMA 124

4.12 Model errors . 131

5.1 Inherent parallelism, exploited parallelism and parallelism loss . . . 139

5.2 Time and energy performance on ARM Cortex-A9 system 141

5.3 Minimum time and energy configurations 153

5.4 Execution time and energy savings over Linux DVFS policies 154

xix

xx

Chapter 1

Introduction

With the end of the CPU frequency race, multicore systems have been pushed

into the mainstream [10, 36, 48]. In the multicore era, the performance is scaled

by increasing the number of cores that exploit the parallelism of a program. The

execution on a modern multicore system consists of multiple activities involving

both on-chip resources, such as cores and caches, and off-chip supporting resources,

such as memory and I/O. An efficient execution overlaps the on-chip and off-

chip activities, such that waiting time in the system is minimized. But with

each technology generation, the gap between on-chip and off-chip performance

is growing, leading to imbalances among the cores, memory and I/O resources.

Understanding and mitigating this imbalance becomes critical because it impacts

negatively the achievable execution performance and leads to large energy wastage

in multicore systems.

In the multicore era, performance is scaled by exploiting parallelism. Thus,

it is important to understand how much parallelism exists in a program and how

much is exploited at runtime. A multicore processor consists of multiple parallel

execution units called cores. The cores are pipelined and are often superscalar,

and thus can execute multiple integer or floating point instructions, and issue

1

Chapter 1. Introduction

multiple memory and I/O requests at the same time. Thus, the execution of a

program on a multicore system consists of overlapping multiple activities involv-

ing on-chip resources such as cores and caches, and off-chip supporting resources

– such as memory and I/O. Through modeling the parallelism performance of a

program, we can understand how many parallel units of work in a program can

be executed on a number of cores, as a function of the off-chip supporting re-

sources. Since the execution of a parallel program depends on many resources

working simultaneously, its response time depends not only on the performance of

individual resources, but also on the overlap between them. An efficient execution

on multicore systems overlaps as much as possible the on-chip and off-chip ac-

tivities, because that waiting time among different resources is minimized, which

translates into a smaller response time of the program. But overlapping too many

activities may hit the limits of off-chip resources and can introduce resource con-

tention among cores. This may diminish the exploited parallelism and extend the

execution time of the program.

In a multicore system, both on-chip and off-chip resources consume power.

Since the energy usage of a program is proportional to its execution time and

the power consumed by the resources, we can use the parallelism performance of

a multicore as the handle for predicting the energy cost of a program. Energy-

proportionality is a desirable property of a system in which the energy consump-

tion is proportional to its useful work output. When a program incurs large

waiting times among the execution resources, its energy proportionality will be

low, because execution resources typically consume power even when idle. Under-

standing the parallelism performance enables predicting of execution configura-

tions that balance the on-chip and off-chip resources, thus improving the energy-

proportionality of multicore systems.

2

Chapter 1. Introduction

1.1 Motivation

With each new technological generation of multicore systems, the achievable par-

allelism performance and energy-proportionality are increasingly threatened by

two problems: utilization and dark silicon.

The gap between on-chip and off-chip performance is increasing with each

technological generation [74, 98]. Due to architectural constraints such as chip

footprint, power and thermal issues, among others, cores need to share off-chip

resources such as memory and I/O. This leads to competition for resources and

contention among cores. For performance scalability, the number of cores is in-

creasing with each technology generation but memory bandwidth is increasing at

a much slower rate, because of wire delays and power dissipation, among others.

Therefore, off-chip resources available per core are not keeping pace with the in-

crease in the number of cores. Another trend is that memory capacity available

per dollar continues to grow according to Moore’s Law. Applications with larger

program size executed on multicore systems result in bigger working sets, which

in turn require larger off-chip bandwidth. As long as these technology trends con-

tinue, the overlap between on-chip and off-chip activities can be compromised,

as on-chip resources are waiting for off-chip requests. Thus, scaling the number

of cores introduces a utilization problem, when on-chip resources are less utilized

compared to off-chip resources.

Increasing the number of cores introduces not only a utilization problem but

also an energy-efficiency problem. Although the number of transistors that can

be integrated into a chip continues to grows according to Moore’s law, the scaling

down of voltage supply, known as Dennard scaling, has stalled [36, 96, 97]. Due

to this factor, the electrical power continues to increase across technological gen-

erations and thus, power density is becoming a serious performance issue because

3

Chapter 1. Introduction

multicore systems are entering the dark silicon era, where not all the transistors

integrated onto a chip can simultaneously be used on a sustained basis due to

electrical and thermal constraints [20, 38, 87]. Furthermore, this problem is ex-

acerbated because many multicore systems are utilized not efficiently in terms

of energy, especially when executing server workloads. In industry, availability

and Quality-of-Service are even more important than utilization [16, 42, 43, 44].

The energy cost incurred by a program covers both cores and off-chip supporting

resources. This introduces challenges and opportunities for better power manage-

ment and for reducing energy wastage when the cores or the off-chip resources are

poorly utilized. Considering that under-utilized servers still consume both IT and

cooling power, this leads to significant energy wastage. It is estimated that the

total power drawn by datacenters in the year 2012 amounts to more than 1% of

total worldwide electricity consumption [35]. To make matters worse, more than

half of this energy is wasted because of under-utilization, even in highly optimized

data centers such as the ones run by Google [7, 81]. Thus, the race for better

parallelism performance enters the energy-efficiency stage, where is imperative to

understand the relationship between effective performance and its energy cost.

Coupled with the hardware shift to multicore, software is undergoing an evo-

lution. Traditional parallel programming techniques such as Fortran, C or C++

supported by POSIX threads and OpenMP are joined by new software systems

such as Cilk, Fortress, X10 [85], mobile applications frameworks, among many oth-

ers. But new programming languages or programming models often have a high

level of abstraction of the hardware, trading-off performance for programmer pro-

ductivity. Furthermore, software has increasingly different resource requirements,

including CPU, memory, I/O and graphics. But because of the programming

abstractions, it is hard for the programmer to understand how effective is the

overlap among the arithmetic operations and waiting for memory accesses and

4

Chapter 1. Introduction

I/O requests. Without knowing the degree of the overlap, software developers

cannot understand the extent of the energy wastage in the system. Thus, there

is a need to understand how the software parallelism matches the hardware par-

allelism of modern multicore systems, and how its exploitation affects the power

and energy utilized.

1.2 Challenges

The changes in hardware and software systems pose new challenges in under-

standing the performance of multicore systems. With the growth in adoption of

multicore systems, performance analysis of program parallelism increases in im-

portance for several reasons. Firstly, at the design stage, the parallel program

developer needs a method to understand the parallelism of the applications and of

the execution performance. Modern multicore platforms are increasingly different

in terms of core, memory and I/O performance. As such, the developers need to

understand how their applications behave on different configurations, especially

if they need to satisfy performance requirements such as a maximum execution

time. Secondly, for users of multicore systems, performance evaluation allows them

to understand which machine configuration satisfies their requirements. Thirdly,

non-intrusive performance analysis methods can be applied concurrently to the

program execution to auto-tune its performance. Finally, computer architects can

optimize the design of a system if they understand how the parallelism of the pro-

gram matches the parallelism of the system – potentially reducing both execution

time and energy wastages.

However, the multicore shift brings a growing spectrum of parallel program-

ming options such as programming models, languages, types of multicore systems,

problem size, number of threads, number of cores, thread-to-core mapping and

5

Chapter 1. Introduction

memory architecture, among others. This leads to significant challenges in un-

derstanding the performance loss associated with each choice. With the wide

adoption of multicore systems, there is a growing need for performance analysis

methods that are general enough to be applied across both software and hardware

platforms.

Current performance analysis approaches can be compared based on three key

design trade-offs: ease of use, intrusiveness of the method and accuracy of the re-

sults. Recently, a shift in analysis methods recognizes that the performance of large

parallel programs depends on a multi-dimensional space of options and configura-

tion parameters. Therefore, the ease of applying the model across this parameter

space is a crucial design criterion for performance analysis methods [28, 111].

Methods that rely on empirical data, such as regression based-approaches, neural

networks and machine learning [28, 15, 41, 105] typically produce good accuracy

but they require significant modeling effort or a large volume of training data.

On the other hand, traditional methods for performance analysis include soft-

ware instrumentation methods and trace-driven analysis [64, 65, 100]. However,

while they have good accuracy, these approaches are intrusive and have a large

cost of tracing. This reduces their applicability for big program sizes. Further-

more, instrumentation is often tailored to a particular programming language or

binary platform. This leads to difficulty in generalizing them across programming

languages and models or across different hardware platforms. Finally, analyti-

cal models are easy to apply, but often the simplifying assumptions about the

hardware platform reduce their accuracy below practical usefulness. Furthermore,

analytical model often do not use inputs which are easily available [8, 31, 34, 101].

With the adoption of multicore technologies in a wide range of systems, there is

a need for performance analysis models that can be be applied across different

programming languages and multicore architectures. Moreover, the need to scale

6

Chapter 1. Introduction

to large problem sizes can be met by non-intrusive analysis methods.

1.3 Objective and Approach

The key objective of this thesis is to develop a methodology for understanding

and predicting the parallelism and energy performance of a given shared-memory

application across different multicore architectures. Our methodology predicts the

achieved parallelism and energy performance and performance loss caused by data

dependency, memory contention among cores and I/O overhead.

To achieve this objective, we propose an analytical approach supported by

observations derived from measurement experiments. Using measurement analysis

of program execution on large multicore systems, we discover key insights on

the causes of parallelism loss. Based on these insights, we propose an analytical

model for the speedup and energy requirements of shared-memory programs, and

the speedup loss due to data-dependency, memory contention among cores and

I/O overhead. Using our model, users and developers of parallel programs can

analyze and optimize parallel program executions, by predicting configurations

that maximize the speedup, minimize energy requirements or achieve a trade-

off between speedup and energy use. Furthermore, our model can be applied to

determine the utilization of key resources, establish the system bottleneck and act

as a guide in improving the energy proportionality of the system by balancing the

core, memory and I/O resources.

Our analytical model of parallelism and energy performance relates the inher-

ent and exploited parallelism of a program to the useful work and overheads of

the program. The analytical model is divided into two main components: (i) a

parallelism performance model and (ii) a power and energy performance model.

The parallelism performance model predicts the achieved speedup, the inherent

7

Chapter 1. Introduction

parallelism of a program, and the speedup loss. We address the speedup loss due

to data-dependency among threads, memory contention among cores on UMA

and NUMA systems and network I/O contention. To generalize this model across

different software and hardware platforms, we use two non-intrusive and widely-

available sets of metrics reported by modern systems: the dynamic size of the

operating system run-queue as the proxy for program parallelism, hardware events

counters as generalization of different hardware platforms to study the memory

contention and a trace of network I/O operations for programs that have I/O

requirements.

The power and energy performance model predicts the power and energy use

by the execution of a shared-memory program. The power model uses a static

characterization of the power drawn by the different system components and the

hardware events counters to model the resource utilization.

The diverse workloads used include HPC dwarfs, real-world parallel applica-

tions and server workloads such as in-memory key-value store, which are widely

used in datacenters by companies such as Facebook, Twitter or Amazon, among

others. The target architectures are commodity Intel/AMD server systems and

low-power ARM Cortex-A9 multicores. We target programs with large compute,

memory requirements or network I/O requirements, and therefore we do not ad-

dress workloads where the performance impact of storage I/O is crucial.

Next, we discuss the approach for applying the model. For an application and

a target platform, we perform a small number of baseline executions. During these

executions, which are conducted on a small number of cores, we collect two types

of input parameters: (i) workload parameters and (ii) system parameters. The

workload parameters are considered workload-dependent and must be collected

for each application on a target system. The system parameters are considered

system-dependent and are collected only once. Using these traces as the inputs of

8

Chapter 1. Introduction

our analytical models, we can predict the parallelism and energy performance for

a given program on different number of cores and memory configurations.

1.4 Thesis Contributions

This thesis consists of two key contributions.

1. Performance approaches for parallelism in the multicore era.

(a) Analytical models supported by hardware events counters — We develop

an analytical model for understanding the parallelism performance of large

shared-memory applications on traditional and low-power multicore sys-

tems. To improve modeling accuracy, we exploited traces of the operating

system run-queue and hardware events counters as inputs for the model.

To the best of our knowledge this is the first time the run-queue size is

used as the proxy to program parallelism. The advantages are improved

model accuracy, ease of use and generality with respect to the parallel

programming languages and models supported [114].

(b) Parallelism-Energy Performance — We propose an analytical model for

the energy performance of a parallel application on multicore systems.

As multicore system scale, the power or the energy budget becomes an

important limiting factor on achieved performance. When the memory or

the I/O becomes the system bottleneck, it leads to high energy cost and

low performance. By relating the energy with the parallelism performance,

our approach allows us to estimate the knee clock frequency that balances

core and memory performance in multicore systems, as well as the I/O

bandwidth required to sustain the core-memory performance. The novelty

of our model stems from modeling the overlap among cores, memory and

9

Chapter 1. Introduction

I/O response times, and predicting the parameters that balance the system

performance [115, 116].

2. Insights into the causes, and mitigation strategies for performance loss.

(a) Parallelism loss due to memory contention —We provide insights on mem-

ory contention among cores, using experiments on state-of-the-art UMA

and NUMA systems, with up to 48 cores. In contrast with previous stud-

ies [63], we show that memory burstiness depends on problem size. Small

problems generate bursty accesses, but large problem sizes exhibit a non-

bursty pattern of memory accesses when the program is slowed down by

memory contention among cores [117, 116].

(b) Energy-proportionality optimizations by adjusting existing configurations

— We optimize of the execution of parallel applications by determining

the number of cores and core frequency that achieves an optimal point in

the power-performance space. The optimality criteria range from fastest

execution time to minimum energy usage. The optimizations achieve sig-

nificant energy reduction and performance improvements compared to the

default OS scheduling policies [114, 116].

(c) Energy-proportionality optimizations by improving the hardware — We

show that increasing memory and I/O bandwidth can improve both the

execution time and the energy usage of server workloads on low-power

ARM Cortex-A9 systems. Counter to intuition, we show that restoring

system balance by improving the bottleneck devices achieves larger energy

savings compared to slowing down unutilized resources [116].

10

Chapter 1. Introduction

1.5 Thesis Organization

The thesis is organized as follows.

Chapter 2 presents related work in the area of parallelism performance and

power-energy prediction. We discuss the classical approaches for parallelism per-

formance and why their limitations in modern multicore systems require an ex-

tension of the classical definitions of inherent parallelism. In the area of power

and energy prediction, we discuss the technical approaches for understanding the

power used by a system, including simulations and analytical models. Lastly, we

discuss the state of the art in energy-proportionality studies and their limitations.

In Chapter 3, we present the general models for parallelism and energy perfor-

mance. The chapter is structured in two parts. First we discuss the general model

for parallelism performance, and define the inherent and exploited parallelism of

a program, as well as the parallelism loss. We show an implementation of the gen-

eral model of parallelism performance for shared-memory programs with network

I/O operations, and propose three sub-models for understanding the parallelism

loss due to data-dependency among threads, memory contention among cores and

I/O overhead. The second part the chapter discusses the proposed model for

energy requirements, which is derived from a static characterization of the power

requirements and the modeled service times of both on-chip and off-chip resources.

Chapter 4 discusses the observations from measurement analysis, followed by

the parameterization of our model using baseline runs and by the validation of

the model against measurements. First we discuss a series of measurements on

state-of-the-art UMA and NUMA multicore systems with up to 48 cores and eight

memory nodes. These observations simplify the modeling of the memory con-

tention overhead. Second, we discuss model parameterization, the input parame-

ters selections during the baseline runs and the static power characterization of the

11

Chapter 1. Introduction

system. Lastly, the chapter shows validation results of our model against direct

measurements of exploited parallelism and energy usage on four traditional and

one emerging low-power multicore systems.

Chapter 5 presents three applications of our model. The first application rep-

resents a typical problem in many datacenters today: determining the minimal

configuration needed to execute a program within a pre-specified time. We show

that by default an OS may chose configurations that lead to time and energy

wastage, when the memory is the system bottleneck. Second, we apply the model

to predict the number of cores and the core frequency that minimizes the execu-

tion time of a program execution, and show that important energy savings can be

achieved by turning off unutilized resources, compared to the default OS allocation

policies. Third, we present a method for system architects to improve the energy

proportionality of low-power multicore systems using directed power allocation.

We show that our model can be used to direct a power allocation strategy to im-

prove the performance of bottleneck devices. We show that more energy is saved

by increasing the performance of bottleneck devices than by turning off unutilized

devices. This shows that the key for improving energy proportionality is higher

performance, even if this leads to higher power usage.

Chapter 6 summarizes this thesis and discusses further research avenues.

12

Chapter 2

Related Work

In this section, we discuss the approaches for performance analysis of execution

time and energy performance. We are interested in studies that relate multicore

performance with off-chip resources such as memory or I/O. We discuss methods

that address two types of analysis:

1. Performance understanding – We focus on accounting the parallel performance

loss in multicore systems and understanding its causes. This allows performance

understanding of parallel programs.

2. Performance prediction – The objective is to model the performance of a pro-

gram on a target system, as a factor of number of cores, memory and I/O

performance, under different system configurations.

First we discuss the related work in the area of parallelism performance, fol-

lowed by approaches for analysis of power-energy performance. Lastly we sum-

marize the limitations of the related work and highlight the differences to our

approach.

13

Chapter 2. Related Work

2.1 Parallelism Performance Approaches

We start by discussing the theory of parallelism models, because they are the

closest to our approach, followed by runtime overheads studies, focusing on the

memory contention among cores. Next we discuss general analytical models and

empirical methods, and then we cover measurement approaches for parallelism

performance.

2.1.1 Theory of Parallelism

The theory of parallelism models rely on quantifying the parallelism of a program

as the average number of work units that can be performed per unit time. The

common assumption for these models is that they do not explicitly account for

any type of runtime overheads, and therefore, all work is considered useful work.

Nevertheless, these models are widely used in scheduling parallel tasks.

In the theory of parallelism models, a parallel program is represented as an

directed acyclic graph (DAG) [19, 34, 94]. Each vertex in the DAG represents a

subtask of the problem, with each subtask denoting a unit of sequential work, each

with possibly different service time. The subtasks have precedence requirements

that represent the data dependency of the problem. An arc in the DAG from an

subtask to another means that the former must complete before the latter can

begin execution. The critical path of this DAG denotes the longest sequence of

serial calculations. If the service demand of the critical path is summed up, the

result Tcp is the lower bound of the time required to finish the program:

T ≥ Tcp

The sum of all the service demands of the DAG’s vertexes denote the total work-

14

Chapter 2. Related Work

load of the program, which in turn is the upper bound of the time required to

complete the program using one processor:

T ≤ T (1).

Eager et al. [34] provide a simple model for the speedup of an application and

the efficiency of executing it. The model relies on the average program parallelism

π as the single parameter required to estimate speedup.

A notable result given by Eager et al. is that, given an unbounded number

of processors, and in the absence of runtime overheads, the maximum speedup

achievable when there is no bounds on the number of processors, S(∞), is equal

with the average program parallelism:

S(∞) = π(∞) (2.1)

The model assumes a work-conserving scheduling discipline, in which the proces-

sors will not stay idle if there is work that can be executed. Using this assumption,

by knowing only the inherent parallelism π and n, the model establishes the lower

SLB and upper bounds SUB of speedup:

SLB(n, π) =
n · π

n+ π − 1
(2.2)

SUB(n, π) = min(n, π) (2.3)

Both bounds are reachable.

If, in addition to π, the sequential fraction f is know, then the upper bound

of the speedup can be strengthened to

SUB(n, π, f) = min(
n

1 + (n− 1)f
, π). (2.4)

15

Chapter 2. Related Work

Eager et al. [34] argues that if it uses a estimate of the speedup located between

the bounds, then this estimate Ŝ(n) is at most 34% away from the real speedup.

The speedup estimate is given by the following formula:

Ŝ(n, π) =
2 · SUB · SLB

SUB + SLB

=
2 ·min(n, π)

n · π
n + π − 1

min(n, π) +
nπ

n+ π − 1

. (2.5)

Downey [31] extends Eager’s model to include the variance of the degree of

parallelism V ar(π). For this, the model proposes two hypothetical parallelism

profiles, one corresponding to a low-variance program and the other to a high-

variance program. The paper then derives two speedup models, one for each type

profile.

The parameters of the low-variance profile are chosen such that π(t) = π for

all but some fraction of the duration σ, with 0 ≤ σ ≤ 1. The reminder σ fraction

of the program, is evenly divided between a sequential part (π(t) = 1) and a high

parallelism part, where π(t) = 2π − 1. With these carefully chosen values, the

variance in parallelism of this program V ar(π) is thus

V ar(π) =
σ

2
· (π − 1)2 +

σ

2
· (2π − 1− π)2 = σ(π − 1)2 (2.6)

where the first term of the equation accounts for the variance in the sequential

(π(t) = 1) region of the program, and the second term accounts for the variance

in the high parallelism (π(t) = 2π − 1) part of the program.

The profile for the high-variance program has a sequential component (π(t) =

1) of duration σ and a parallel component where the parallelism π(t) = π+πσ−σ

of duration one. With these carefully chosen values, the variance in parallelism

16

Chapter 2. Related Work

V ar(π) is

V ar(π) =
σ(π − 1)2 + 1 · (π − π + πσ − σ)2

1 + σ
= σ(π − 1)2. (2.7)

Since for both types of program, the variation of parallelism V ar(π) = σ(π − 1)2,

the paper argues that the semantic of σ is thus the square of the coefficient of

variation, CV 2. Since CV =

√
V ar(π)

π
, the relation between σ and V ar(π) is:

σ =
V ar(π)

π2
(2.8)

Using this semantic of σ, a program is considered low-variant if σ < 1, whereas if

the program exhibits σ ≥ 1 is considered high-variant.

The speedup SLV ar for a program with a low-variance DOP profile can be

calculated as

SLV ar(n, π, σ < 1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πn

π + σ
2
(n− 1)

1 ≤ n < π

πn

σ(π − 1
2
) + n(1− σ

2
)

π ≤ n < 2π − 1

π 2π − 1 ≤ n

(2.9)

while for the high-variance profile, the speedup SHV ar is:

SHV ar(n, π, σ ≥ 1) =

⎧⎪⎨
⎪⎩

πn(σ + 1)

π + πσ − σ + nσ
1 ≤ n < π + πσ − σ

π π + πσ − σ ≤ n

(2.10)

SHV ar = SLV ar when σ = 1.

Downey’s model thus refines the speedup estimate that Eager et al. provides.

When σ = 0, then SLV ar approaches SUB, whereas when σ → ∞, SHV ar ap-

proaches SLB. However, the model does not address the cases where the degree of

parallelism cannot be assigned clearly to low-variation or high-variation.

17

Chapter 2. Related Work

Limitations The major limitation of the theory of parallelism models is that

they do not address how to determine the average parallelism of a program. Fur-

thermore, determining π and V ar(π) using measurements of program execution

limits the predictive value of the models, because it does not allow extrapolation

with respect to machine size. A second limitation is that they do not address the

runtime overheads, and do not model the parallelism loss due to runtime overhead.

2.1.2 Runtime Overheads Studies

In this section we discuss the related work of modeling the runtime overheads

in parallel programs. We first present a general approach for accounting run-

time overheads, and then focus on studies of memory contention among cores,

because this type of overhead is more costly in current multicore architectures.

We conclude this section by summarizing the shortcomings of current approaches

for studying overheads in parallel programs.

When a program is run on a parallel machine, there will be runtime overheads

that will impact the performance of the program. There is a multitude of factors

that cause this degradation of performance, and often the performance analysis

models do not explicitly account for them. For example, a common assumption

in parallelism models is that the load balancing is perfect [8, 31, 34, 51, 61, 101].

However, load imbalances are widely encountered during program execution both

as an unintended consequence of task partitioning [40] or deliberately due to the

scheduler favoring other performance criteria besides load balancing, such as cache

or memory locality among others [103].

Due to the large number of factors affecting the runtime overheads, it is in-

tractable to model the effect of each of these factors. Therefore studying the

impact of runtime overhead on performance involves first characterizing and clas-

sifying the overheads and second, modeling the effects only of those that are

18

Chapter 2. Related Work

deemed significant for performance.

One characterization of the overhead is attempted by Mark Bull in [21]. Bull’s

scheme classifies the temporal and spatial overheads in categories that are com-

plete, meaningful and orthogonal. The overhead is defined as the difference be-

tween the observed performance and the theoretical best performance of a program

running on n processors. The model defines the best performance, Tideal(n), as:

Tideal(n) =
T (1)

n
(2.11)

where T (1) is the total work of the program, without considering any overhead.

This definition is similar with the theory of parallelism execution time of an em-

barrassingly parallel program, in the absence of any runtime overhead. However,

Bull’s classification introduces several categories of parallel overhead, and extends

the theory of parallelism model to account for runtime overheads. If Oi(n) rep-

resents the overhead of category i incurred when running on n processors cores,

then

T (n) = Tideal(n) +
∑
i

Oi(n). (2.12)

Bull’s complete categorization is presented in figure 2.1. The classes at the top

of the temporal overhead classification scheme are:

1. Control of parallelism overheads which account for the runtime of the addi-

tional code executed to manage the parallel structures.

2. Information movement overheads are associated with data transfer between

memory and processors and among the processors.

3. Additional computations overheads are required to expose the parallelism of

the program to the threads or processes involved.

19

Chapter 2. Related Work

4. Critical path overheads result from the critical path being longer than the

ideal.

Temporal
overheads

Information
movement

Critical
path

Control of
parallelism

Additional
instructions Implementation

changes

Algorithmic
changes

Run-time
scheduling

User
scheduling

Insufficient
parallelism

Replicated
work

Load
imbalance

Memory
access

Synchronization

From level 1

From level 2

From level n

Locks

Barriers

Events

...

...

Unparallelized
code

Partially
 parallelized code

Figure 2.1: Overheads of a parallel program

The control of parallelism overhead comprises of user scheduling, which is time

required for the application-level scheduling and task partitioning, and run-time

system overhead, which accounts for the thread and process management.

In the information movement class, data accesses overhead refers to the time

required to access the data from memory. This category is further divided based

on the memory hierarchy and includes the transfer of data from other systems via

network. Synchronization overheads are subdivided into the type of synchroniza-

tion structures involved. It should be noted that this synchronization overhead

does not include the time spent waiting at the synchronization points, because

this time is included in the critical path overhead.

Additional computations might be needed due to algorithmic changes that are

required to expose the parallelism of the problem or due to implementation changes

20

Chapter 2. Related Work

which are not explicitly required by the problem or by the parallel algorithm.

The overhead related to the critical path is caused by imperfect parallelization

of the program. The main cause of this overhead is that optimal scheduling of the

tasks is an NP-complete problem[33]. Specifically, given a set J of jobs where job

ji has service time li and a number of processors n, finding the minimum possible

time required to schedule all jobs in J on n processors such that none overlap is

an NP-complete problem. Since an efficient solution cannot be found quickly, the

most common solution is to admit load imbalances and replicated work regions in

the scheduling solution. Load imbalance denotes some processors to be idle even

when there are enough parallel tasks, because they are asymmetrical in service

time. Another component of the critical path overhead is the time-cost of replicated

work : some pieces of the program are executed by more than one processor, even

though it is only necessary to execute them once. The last component of the

critical path overhead is the insufficient parallelism which denotes that at the

current stage of the program there are not enough tasks for all the processors.

The major limitation of this classification is that some of the overheads are not

easily quantifiable. For example, measuring the additional computations required

by algorithmic or implementation changes is challenging. However, this type of

classification stands at the base of the automatic overhead analysis done by tools

like Ovaltine [14], ompP [40], Scal-Tool [106], and Scalea [113].

2.1.3 Memory Contention in Multicore Systems

As technological trends suggest that the increase in number of cores cannot be

matched by the increase in memory bandwidth and speed [98], the memory con-

tention problem [89] receives renewed attention.

Contention for shared resources in multicore systems has received significant

attention in the research community. In general, studies of off-chip resource con-

21

Chapter 2. Related Work

tention fall in two main directions: reducing off-chip memory accesses [25, 37, 50,

73, 91, 95, 124], and improving the performance of off-chip requests [63, 74, 88, 90].

In reducing off-chip memory accesses, a major target for optimization is the last-

level of cache memory. Partitioning of shared caches has been proposed as a

technique to reduce the number of cache misses [73, 91, 95, 108]. Utility-based

cache partitioning [95] uses specialized hardware to determine the miss rate of co-

scheduled parallel programs, and partitions the available cache memory to reduce

the overall miss rate. But, in software-based cache partitioning [25], operating

systems page coloring is used to map the physical memory requests of a program

to a reserved part of the cache. In cache-aware applications, co-scheduling is ex-

ploited to optimize cache miss fairness among different programs [37] or overall

system performance [124]. Herdrich et al. [50] proposes throttling the speed of the

cores to generate an imbalanced number of cache misses for relieving contention in

applications with different memory access intensity. There are many approaches

to improve the performance of off-chip requests. Memory bandwidth partition-

ing [57, 63, 74, 88, 90] has been proposed for optimizing different performance

criteria. Kim et al. propose ATLAS [63], a memory controller scheduler that

prioritizes threads with least-attained service levels to improve the overall perfor-

mance of co-scheduled threads. The Fair Queue Memory System [90] ensures that

co-scheduled threads receive a predetermined fraction of the memory bandwidth

regardless of other threads memory requirements. Liu et al. [74] studied and mod-

eled the interaction between cache and bandwidth partitioning with the goal of

optimizing the overall performance of co-scheduled threads.

While there are many studies to reduce memory contention, there are few gen-

eral models that directly link the performance of parallel applications to resource

contention, number of active cores, problem size and the patterns of memory ac-

cess.

22

Chapter 2. Related Work

Liu et al. propose a general analytical model for understanding the effect of

bandwidth fraction on individual thread performance [74]. Based on the cache

miss ratio, their model determines the CPI performance of co-scheduled threads,

and the slowdown of co-scheduling groups of threads relative to scheduling each

thread individually. However, it is unclear how the fraction of last-level cache

misses is determined when different number of threads are scheduled together.

Their model also does not explore changes in problem size, in particular large

problem size that is typical for parallel programs.

Using high performance applications, Hood et al. [53] propose a model to de-

termine the performance impact of shared-resource contention such as cache, bus,

memory controllers and processor interconnects. Their differential performance

analysis approach measures the performance for different configuration scenarios.

However, their approach does not apply to predictive performance analysis, nor

does it take in consideration the problem size and burstiness patterns.

Sancho et al. [99] study the relationship between memory bandwidth and per-

formance of parallel programs when the number of memory channels of each mem-

ory controller is changed. Their approach is based on measurements of memory

bandwidth and parallel processing rate, and shows that increasing the number of

cores exerts higher memory demand and has diminishing results on performance

due to memory bandwidth saturation. Their focus is to understand which config-

uration offers the best memory bandwidth.

Xie and Loh [121] propose to classify multithreaded applications using its over-

all behavior on shared last-level cache. Applications are divided into four cate-

gories based on its request intensity, and how it interacts with other applications.

However, their approach does not cover the impact of the number of cores on which

these applications are scheduled, or understanding of the relative size between the

last-level cache and the working set of the applications.

23

Chapter 2. Related Work

Limitations Recent studies about on-chip and off-chip memory contention are

proposed in conjunction with software and hardware improvements to available

multicore systems. Therefore, most studies explore a small parameter space, and

thus are hard to generalize to other multicore systems. In particular, the effect of

active number of cores and problem size on memory contention is not addressed

by most of the related work. Even when the number of cores is modeled [74],

the main objective is not to relate to overall parallelism performance, but rather

with proposed hardware and software improvements. Finally, another limitation

is that most studies involve simulations either for validation or for experimental

observations [63]. Due to the prohibitive cost of simulating large problem sizes,

these approaches are not suitable for studying the performance of large parallel

programs.

2.1.4 General Analytical and Empirical Models

Recent performance analysis methods for multicore systems recognize that the

performance of large parallel programs often depends on hundreds of parameters

including programming model, memory architecture, problem size, partition size

among others. Thus, there is a pronounced shift towards performance analysis

methods that emphasize the ease of determining and applying an analytical model

that predicts the performance of the system [111].

In this section, we discuss two types of predictive models. General analytical

models derive an equation of the parallelism performance, as a factor number of

active cores and various software and hardware metrics. In contrast, empirical

models fit an equation over data acquired during several runs on the program

using different software and hardware configurations.

24

Chapter 2. Related Work

General Analytical Models Among the general models that predict the per-

formance of a program, Amdahl’s law [8] is the most widely known. Amdahl’s

law derives the speedup of a program as a factor of the sequential fraction f and

number of processors n:

S(n) =
1

f +
1− f

n

(2.13)

and from this relation to derive the upper bound of S as

S(∞) =
1

f
. (2.14)

Using this equation, the model can be used to predict the overall speedup gained

by improving only one section of the program [92].

Amdahl’s model shows that the sequential fraction of the application impairs

performance to a large degree, as even minuscule sequential fractions can com-

promise large speedups. In order to gain a high speedup, the sequential fraction

must be minimized. Moreover, equation 2.14 shows that the speedup obtained

in a program that has a sequential fraction f is bounded by 1/f . Gustafson [47]

has shown that the sequential fraction depends on the size of the problem, thus

showing that scalability increases together with the problem size.

Another class of general models combines the theory of parallelism with se-

quential fraction, to derive equations of the parallel speedup [31, 32, 34, 101].

These models are discussed in under the theory of parallelism approaches.

In general, Amdahl’s model and its extensions are easy to apply, but have

a limited value for understanding the performance loss in complex applications.

Using sequential fraction makes the models hard to apply, because f is inconsistent

across hardware and software platforms. Furthermore, simply dividing the work

of a program into purely sequential and embarrassingly parallel is too simplistic

25

Chapter 2. Related Work

to model the data dependency in a modern parallel program. Lastly, Amdahl’s

model abstracts various types of overheads under a single parameter, the sequential

fraction. Understanding the parallelism loss due to the various overheads becomes

difficult under this model.

Empirical Models Empirical methods use a number of runs of the programs,

called baseline runs, to determine a mathematical function that fits an observed

performance [15, 28, 41, 56, 105, 107]. This function then allows various predictions

about the system. Generally, these models use multiple linear regression [15, 105],

machine learning [41] or neural networks [105] using data measured in various pa-

rameter configurations to relate the measured performance metrics of the program

to the changes in the configuration parameters. These models have good accuracy

and generally low intrusiveness, and therefore they are used for decision making

in ACTOR runtime system [27].

Barnes et al. [15] explore regression to predict the scalability of distributed-

memory applications. They use program executions a small set of processors to

predict the behavior on enlarged sets.

The approach is to run the same program on a set of q processors, where

q ∈ {2, 4, . . . , p0} and p0 < p. The input variables of the program (x1, x2, . . . , xk)

are varied on each run and the execution time of the program for each of these

runs is considered as a function of the input variable and number of processors.

Thus, the model develops a predictor T̂ of the execution time T :

T̂ = F (x1, x2, . . . , xk, q). (2.15)

The goal of the model is now to determine the predictor T̂ in such a way that they

26

Chapter 2. Related Work

minimize the relative error E = |T−T̂ |
T

. Equation 2.15 can be developed as

log2(T) = log2(F (x1, x2, . . . , xk, q)) + error

= β0 + β1log2(x1) + β2log2(x2) + . . .+ βklog2(xk) + βqlog2(q) + error

(2.16)

The most important part of this equation is the term βqlog2(q) which models the

impact of the number of processors. This term is further expanded as g(q):

g(q) = βqlog2(q) = γ0 + γ1log2(q) + γ2log
2
2(q). (2.17)

The model considers two versions of this equations: the quadratic coefficient γ2 as

zero (in which case the function g(q) is a simple linear function) and as non-zero.

A refinement of this model is to separate the communication and computation

times, as the authors suspect that they scale differently. They used instrumented

programs to determine for each run what is the communication time and what is

the computation time, and then they apply the regression model for each of these

two times.

They used the training runs to estimate the β and γ parameters that mini-

mized the relative error. The number of training runs is between 10-30 per input

variables. The training runs are conducted on a number of processors of p0 = p/8,

p0 = p/4 and p0 = p/2.

In general, empirical models have very good accuracy. The validation of the

model against measurements on the same number of processors shows that the

accuracy for predicting up to 1024 processors is 13%.

Limitations The main limitation of general analytical models is caused by their

simplifying assumptions. Some of the assumptions may reduce the accuracy of the

model. For example, the use of the sequential fraction f in Amdahl’s law and its

27

Chapter 2. Related Work

extensions compounds many important overheads that affect the parallelism of the

program. Moreover, the sequential fraction f lacks consistency across many soft-

ware and hardware platforms. As such, determining f from a run on a particular

configuration might not be suitable in applying the model for other configurations.

Furthermore, the sequential fraction is a simplistic model of the data dependency

in the program, because it considers the parallelism either sequential or embar-

rassingly parallel. In reality, the parallelism can take any value between one and

the maximum parallelism, as shown by the theory of parallelism models.

The disadvantage of empirical approaches is that it does not allow qualitative

insights into the problem, but merely provides a quantitative estimate. These

models do not permit the separation of the different factors that affect the scal-

ability, for example, the impact of workload changing and of changing the core

frequency or memory topology. Another disadvantage is that using regression re-

quires a large number of training runs to get an accurate prediction. Usually the

validation is done only for predictions within the same order of magnitude as the

training runs. For example, in Barnes et al. the maximum increase in p is eight

times p0. Therefore, it is unclear how accurate is the model if the prediction is

done for a number of processors orders of magnitude larger than the number of

processors used for the training runs.

In summary, the main limitations of general analytical models are their limited

predictive ability and their lack of accuracy if the model assumptions do not

match the behavior of real program executions. In contrast, empirical methods

have better predictive capabilities, but they are limited in providing performance

understanding for different types of parallelism loss, and require a large number

of baseline runs to train the models.

28

Chapter 2. Related Work

2.1.5 Measurement and Instrumentation

Methods relying on program instrumentation are used to obtain detailed insight on

the performance of a program. In general, the approach to instrument a parallel

program includes source code instrumentation or binary code instrumentation.

Source code instrumentation methods include OPARI to instrument OpenMP

programs, PMPI for MPI programs, or GCC profiling support for general C, C++

and Fortran codes, among many others [39, 46, 64, 65, 100]. Among binary code

instrumentation tools, PIN [77] is the most widely used.

In general, models relying on instrumentation, have the best accuracy, but

incur a large cost of applying them. Instrumented executions are typically sub-

stantially slower, because of the extra code injected in the application. Further-

more, it is known that instrumentation is intrusive and often prevents some types

of optimizations. For example, OPARI which is at the heart of KOJAK, TAU,

Scalasca [46] and ompP [39] tools, prevents the usage of implicit barriers, which in

turn prevents the OpenMP NOWAIT clause, thus forcing the threads to perform

an additional synchronization operation. Instrumentation may slow down the pro-

gram or interfere with cache sensitive areas, and therefore increase the overhead

of the parallel programs. Some vendors provide highly optimized versions of pop-

ular parallel kernels (such as BLAS or LAPACK) which come directly compiled as

libraries. Without access to the source code of such products, prediction methods

relying on instrumentation may be inapplicable.

Another disadvantage of measurement and instrumentation methods is the

cost of logging the events and processing the logs. High resolution sampling of the

executions might create logs which are substantial in size. Furthermore, writing

the logged information to memory or to the disk might perturb the execution of

the program. For example, writing the logged information into memory during

29

Chapter 2. Related Work

the execution of cache-sensitive compute phases might perturb the cache balance,

inducing an additional overhead, compared to non-instrumented executions.

However, the major disadvantage of instrumentation methods is their lack of

generality across different software and hardware platforms. Source code instru-

mentation tools target a limited number of programming languages and models,

and can only be applied when the source code of the program is available. Binary

code instrumentation tools can only be applied for a specific hardware platform.

For example, PIN only supports Intel and AMD architectures.

2.2 Power and Energy Studies

The focus of our power and energy models is programs with significant compute,

memory or I/O requirements. Therefore, the discussion of related work on power

and energy models is conducted with respect of techniques for analyzing the power

performance of compute, memory and I/O systems.

The study of power and energy usage in parallel system has received con-

siderable attention in the literature. Before the shift to multicore, the power

models addressed the impact of the core frequency f on overall power and energy

consumption. After the clock frequencies have plateaued, power models shifted

to understanding the impact of increasing the number of cores n on power and

energy cost.

We structure the related work on approaches for power and energy profiling

can into three parts: (i) modeling and simulation approaches, (ii) measurement

and empirical methods and (iii) energy-efficiency studies.

30

Chapter 2. Related Work

2.2.1 Analytical Modeling and Simulation Approaches

Rapid increases in clock frequencies and number of transistors per die have dra-

matically increased the complexity of the processors, and their power consump-

tion. Thus, power consumption and dissipation have become key concerns in many

multicore systems.

In general, due to the complexity of processor microarchitectures, completely

analytical models for power and energy usage are difficult to employ. Instead,

simulations of CPU microarchitecture are used to derive the power and energy

cost either at microprocessor component level, or at chip level [24, 78, 118].

Most simulation approaches employ the general analytical model for power

consumption of a CMOS circuit:

P = Nsw · Cl · V 2
dd · f (2.18)

where Nsw is the switching activity performed by the CMOS circuit, Cl is the

load capacitance, Vdd is the operating voltage and f is the clock frequency of the

digital circuit [71]. The general power equation suggests that power consumption

depends quadratically on voltage and linearly on frequency. However, because

processor chips are composed of many distinct CMOS circuits operating at differ-

ent frequencies and voltages, the relationship between total power required by a

chip and its operating frequency is more complicated. Nevertheless, the general

power equation is the basic model behind power and energy simulators.

In general, simulators for power and energy use a cycle-accurate execution

model of a processor. All the processor components, including functional units,

control units, internal data-paths and internal buses among others, are completely

specified. During the cycle-by-cycle execution, the simulator analyzes all the com-

31

Chapter 2. Related Work

ponents that are used from the processor and cumulates their power usage, as

modeled by the general power equation [12, 118, 122].

SimplePower [122] is a cycle accurate, execution driven register transfer level

(RTL) simulator. It simulates the integer subset of the instruction set of Sim-

plescalar [12]. Its architecture is based on a five-stage pipelined data-path, con-

sisting of instruction fetch, instruction decode, execution, memory access and

write-back stages. At each clock cycle, it simulates the execution of all active

instructions and activates the corresponding functional units. For each activated

functional unit, a RTL interface is used to derive the power consumption in a

technology-dependent way. For each fabrication technology supported, the sim-

ulator includes a table of capacitances and voltages. SimplePower includes an

instruction and data cache simulator and a memory bus interconnect. To simu-

late a complete processor-memory system, SimplePower is usually coupled with a

memory simulator, such as CACTI [118].

Limitations. There are three major limitations of using simulators for power

and energy analysis. First, cycle accurate simulators have a large execution cost

and simulating large problem sizes is currently untractable. This is particularly

problematic because large parallel programs are common workloads in current

multicore systems. Second, simulators do not scale well in terms of the number

of simulated cores. Third, simulators are often used to isolate the performance

of specific components. For example, a common assumption when simulating a

processor is that the last level cache is infinite. This assumption is reasonable in

the context of understanding the performance of the processor alone, but is invalid

for understanding the performance of the entire system.

32

Chapter 2. Related Work

2.2.2 Measurement and Empirical Approaches

When the level of analysis is chip-wide or system-wide, the power and energy

cost depends on a multitude of factors, including number of functional compo-

nents inside the cores, number of cores, size, types and number of caches, buses,

memory systems, fabrication technology among many others. For such analysis,

measurement and empirical methods are attractive approaches, because it allows

easy understanding and predictive analysis.

In general, measurement analysis approaches use two types of methods for

reading the power values: external instrumentation and internal instrumenta-

tion [17, 22, 58, 68, 71].

In external instrumentation, external power measurement instruments are con-

nected to the power supply of different components of the system [22, 58]. The

devices record directly the power and energy use. This methods have the advan-

tage that it is suitable for many types of devices and typically it is very accurate

(the accuracy depends on the measurement instrument). The main disadvantage

is that the instrument needs to be physically connected to the component that is

being profiled. In many cases, this is very difficult, for example in system-on-a-

chip, because many components are physically packaged as one device. However,

for system-wide analysis, external instrumentation typically presents the most ac-

curate method.

In contrast, internal measurement approaches use software values output by the

system’s sensors. These approaches are further divided into hardware-independent

methods and hardware dependent methods. Advanced Configuration and Power

Interface (ACPI) [1] is a hardware-independent standard for power monitoring

and reporting. ACPI is implemented by many components in modern systems and

helps control the power states and power consumption by the operating system.

33

Chapter 2. Related Work

For example, in battery-powered devices running Linux, ACPI reports the voltage

and current drawn from the battery. ACPI forms the basic monitoring method

for devices running Linux, Mac OS X or Android [22, 58]. However, the main

limitation of ACPI monitoring is the resolution and its accuracy. ACPI reports

the values of voltage and current using the procfs pseudo-filesystem and the time

between two updates is in the order of seconds. As such, its accuracy is reduced for

workloads which are very dynamic. Furthermore, the values of power consumption

are drawn at system-wide level. Hardware dependent methods rely on platform-

specific sensors and monitoring tools [58]. Typically they have better resolutions

and allow a breakdown of power consumption per component.

Because most power-measurement approaches report the power at system-wide

level, many studies use empirical models that separate the total power into compo-

nents [30, 58, 69, 70, 104]. Workloads designed to stress particular components of

the system are used to perform a differential analysis between the system without

component stress and system without component stress. In general, these empiri-

cal studies use baseline runs of different programs on a target system, and collect

power and energy readings in configurations that activate different components of

the system.

Bertran et al. produce an empirical decomposable model of power and energy

performance of a multicore processor, based on correlating power usage with hard-

ware events counters [17]. Their approach is to first define modeling inputs, which

are the power component activity ratios. Next, they define the training data which

is generated using microbenchmarks and collect training data. Then, they model

the power consumption for individual components.

The approach to determine the utilization of different processor components

is to separate the architecture of the processor into in-order engine, memory sub-

system and out-of-order engine. For each of these components, they compute a

34

Chapter 2. Related Work

formula of power activity ratio AR based on a ratio of the value of hardware

events counters. For a single core, processor, their model for power consumption

of a single core is:

Ptotal = (

#comp.∑
i=1

ARi · Pi) + Pstatic

where ARi is the activity ratio (i.e. utilization) of component i, Pi is the power

consumption of the component under full load, and Pstatic is the total static power

of the system. Pi is derived from the training data using multiple linear regressions.

They extend the power model for single core to multiple cores, considering that

static power does not change when the number of active cores are changed.

Ptotal =

#cores∑
j=1

((

#comp.∑
i=1

ARij · Pi) + Pstatic)

The model is validated against measurements conducted on configurations differ-

ent from the training runs and the accuracy is showed to be under 3%.

Models that focus on energy performance are significantly more complex than

power models. This is because they require a model of both power and execution

time. In general, the studies focus on embedded systems, where execution time is

modeled using a bottleneck analysis [26, 60, 71].

Liang et al. create a predictive empirical model for energy usage of single-core

ARM systems with DVFS support. Their model considers that the execution of

instructions includes two portions:

1. Time spent in ideal CPU operations, such as integer instructions, floating

point instructions and control flow operations.

2. Time spent in external memory accesses, which is determined by the number

of cache misses.

The model considers that number of CPU cycles incurred by the program, consists

35

Chapter 2. Related Work

of memory cycles and ideal cycles: N = Nideal + Nmem. The time for the ideal

CPU operations is Nideal

f
and the time required for the external memory operations

to complete is:

Tmem =
Nideal

f
+

Nmem

f

Because the execution of the instruction overlaps waiting for data from memory,

when the memory is the bottleneck, TCPU = Tmem. For the other case, TCPU =

Tideal. In order to model the memory access characteristic of the program, the

model defines memory access rate, MAR:

MAR =
Instruction Cache Misses + Data Cache Misses

Number of Instructions Executed
(2.19)

and derives the equation for the total execution time of a task as

TTASK = TCPU +MAR · TBUS (2.20)

where TBUS is the bus time, and is related to the bus frequency. They regress

the inputs of the model using data acquired using a series of training runs. Using

this model, the authors derive a frequency, called critical speed that achieves the

minimum energy usage. They further derive an empirical equation for a particular

platform, which predicts the critical speed as a function of MAR. Using this equa-

tion, they predict the frequency that minimizes the energy usage of a program for

a single core system.

Limitations. While empirical methods usually have good prediction accuracy,

they often have little value for performance understanding, especially in the con-

text of parallel applications on multicore systems. For example, Liang et al. only

model single core systems, and do not address the effect of problem size on per-

36

Chapter 2. Related Work

formance. Furthermore, the model requires training runs that cover all available

frequencies of the system, which constitute a significant effort for systems with

large number of DVFS steps.

2.2.3 Energy-Proportionality in Multicore Systems

In this section, we discuss the related work on energy-proportionality and energy-

efficiency of multicore systems. Energy-proportionality refers to the desirable

property of a system that consumes energy proportional to its useful work out-

put [16]. Computing systems often have poor energy-proportionality because most

commodity hardware components have a significant idle power usage, and often

they exhibit sublinear increase in power and energy usage with an increase in

utilization.

An important aspect that directly impacts the energy efficiency is the problem

of selecting the optimal number of cores in a multicore system. This question

has been addressed from the perspective of selecting the optimal performance of

area-equivalent cores that, when replicated across the entire die, offers the best

system-wide throughput. Many studies have addressed the dichotomy of using the

transistors budget of a chip to create either few powerful cores (termed brawny

cores), or many less powerful cores (termed wimpy cores) [29, 45, 51, 52, 76, 93].

In general, their conclusion is that wimpy cores may offer better system-wide

throughput than the area-equivalent high performance cores, if two considera-

tions are met. First, the workload is stationary and has enough parallelism to

sustain execution on many cores [51]. Second, the relative performance between

wimpy to brawny nodes does not impact the overall cluster cost, programabil-

ity and schedulability of the parallel tasks [52]. By obtaining better system-wide

throughput with the same energy costs, wimpy cores are shown to be more energy-

proportional than the area-equivalent brawny cores, for programs with relatively

37

Chapter 2. Related Work

high degrees of parallelism.

Hill and Marty [51] propose a modeling study that extends Amdahl’s Law to

heterogeneous multicore systems. Their conclusion is that workloads with a real-

istic degrees of parallelism profile would achieve better performance using hetero-

geneous cores, rather than a system with fully wimpy cores or fully brawny cores.

Systems with heterogeneous cores include ARM big.LITTLE which combines two

powerful ARM Cortex-A15 cores with three power-efficient ARM Cortex-A7 cores,

and Bahurupi [93] which provisions the cores with the ability to morph into coali-

tions with high execution rate.

A more recent focus on power-aware computing recognizes that off-chip re-

sources are becoming key in exploiting energy-proportional executions. For exam-

ple, the energy used by memory is a growing concern, with 30–57% of the energy

spent by a server being attributed to the DDR3 DRAM memory chips [123].

Even worse is that mainstream memory chips such as DDR3 have poor energy-

proportionality: a DDR3 memory subsystem used 20% will consume almost half

the power used when fully loaded [81]. As such, recent work has proposed using

low power DDR (LPDDR), that is typically used in embedded devices, as the

memory banks of future multicore servers [81, 123]. Such servers will typically

have lower peak bandwidth, but negligible impact on web-hosting workloads and

a reduction by 3–5 times of memory power. Similar concerns have lead to designs

of energy-efficient processing systems in networked [9] or database systems [66]

where key for efficiency is to improve the energy-proportionality of I/O devices.

As more hardware devices are becoming energy-proportional, the perspective

of low-power but high-performance computing is becoming a reality. However, a

reduction of power consumption at all costs is not always possible or beneficial.

For example, during an application execution there might be small periods of

computational bursts that are better to be performed without deferment either

38

Chapter 2. Related Work

because of a deadline [72] or because it is more energy-efficient to execute them on

a high-power device [96, 97]. As such, an increasing concern in energy-proportional

computing is to understand the relationship between power and performance, such

that a reduction of energy consumption is performed through dynamic power

allocation to the right hardware component at the right time [87].

Limitations. The main limitations on the related work on power-proportionality

is their focus on on-chip resources only. Many studies focus only on the microarhi-

tectural level [29, 51, 93] or at most address the on-chip cache [76]. As such, the

impact of off-chip resources such as memory and I/O on the performance of brawny

or wimpy cores is unknown. Our work shows that balancing the cores and off-chip

resources improves energy-proportionality even more than focusing on on-chip re-

sources only, and leads to lower energy consumption but sometimes with a higher

power cost.

2.3 Summary

Current performance analysis approaches can be divided into methods for per-

formance prediction and methods for performance understanding. Furthermore,

the methods are compared based on three key design trade-offs: difficulty of use,

intrusiveness and inaccuracy. Table 2.1 summarizes the type of analysis and the

limitations of commonly used approaches.

Approach
Analysis Type Limitations

Prediction Understanding Difficult to Use Intrusive Inaccurate
Analytical Models Yes Yes No No Yes
Empirical Methods Yes No Yes No No
Instrumentation Methods No Yes Yes Yes No
Our approach Yes Yes No No No

Table 2.1: Limitations of commonly used performance analysis methods

General analytical models [8, 31, 34, 101] are easy to apply, but often the

39

Chapter 2. Related Work

simplifying assumptions reduce accuracy below what is useful for practical pur-

poses. Instrumentation methods and trace-driven analysis [64, 65, 100] require

modification of the program which might result in lower performance compared

to the non-instrumented case. While they have good accuracy, these approaches

are often intrusive. This leads to difficulty in generalizing them across program-

ming languages and models. Recently, a shift in analysis methods recognize that

the performance of large parallel programs depends on a multidimentional space

of options and configuration parameters, including programming models, number

of threads and processor cores, problem size, memory architecture, thread-to-

core placement among others. Therefore, the ease of applying the model across

this parameter space is becoming a crucial design criteria for performance anal-

ysis methods [28, 111]. Methods that rely on empirical data, such as regression

based-approaches, neural networks and machine learning [15, 28, 41, 105] typically

produce good accuracy but they require significant modeling effort or large volume

of training data. Furthermore, they typically have very good prediction accuracy,

but they do not address the topic of performance understanding.

Our approach is to create a general analytical model with inputs derived from

measurements. Our general model breaks down the parallelism of a program into

useful work and various types of overheads. Using observations derived from mea-

surements, we model the data dependency and memory contention. The models

of data dependency and memory contention use widely available metrics derived

from the trace of the operating systems run-queue and from hardware events

counter collected during a few baseline runs. Using this approach we create a

model for understanding and predicting the performance of shared-memory pro-

grams on multicore systems. Our proposed model achieves good accuracy because

it is based on observations derived from measurement analysis. Furthermore, our

approach is easy to apply and has little intrusiveness.

40

Chapter 3

Proposed Analytical Models

This section presents our modeling approach for analyzing the parallelism and

energy performance of parallel programs on multicore systems. First we describe

the model overview and approach. Next we introduce the parallelism performance

model with its definitions, the data dependency model, the memory contention

model, and the I/O overhead model. This is followed by the power and energy

model.

3.1 Overview and Approach

The objective of the general analytical models is to describe the execution time

performance, as well as the power and energy usage of a program running on a

target multicore system.

We propose a general parallelism model that predicts the execution time of a

program on a target machine configuration. The approach starts by modeling the

inherent parallelism of a program as the useful work. Next, during the execution

of the program on a given machine configuration, the inherent parallelism maps

onto exploited parallelism and parallelism loss due to runtime overheads.

41

Chapter 3. Proposed Analytical Models

The general model is implemented for shared-memory programs spanning key

application domains such as high-performance computing, multimedia, financial

computing and web-hosting. For these applications, we identify three key ex-

ecution resources – cores, memory and I/O devices, and derive expressions for

the parallelism loss due to data-dependency among threads, memory contention

among cores, and I/O overhead due to the network I/O operations. Furthermore,

we implement the models by linking the useful work and runtime overheads to

three key execution resources in modern multicore systems: processor core re-

sources (i.e. the number of cores and core frequencies), memory resources (i.e.

memory bandwidth and topology), and I/O resources (i.e. device bandwidth and

I/O operations latency).

The key technique used to model the parallelism loss is bottleneck analysis.

During the execution of a program, there is a large degree of overlap between

the servicing of useful work by the cores, of the memory requests by the memory

subsystem, and of the I/O requests by the network device. The execution time of

any phase of a program is dictated by the resource with the largest service time,

which is the bottleneck device. The service time of all the other resources are

completely overlapped with the service time of the bottleneck device. Further-

more, our targeted programs spanning HPC, multimedia, financial and datacenter

domains, consists of multiple iterations of the same compute, memory and I/O

execution phases. Thus, it suffices to model only one execution phase to infer the

entire execution behavior.

The proposed model for power and energy performance predicts the energy

usage as a factor of active number of cores and clock frequency of the cores. The

energy model is build upon the parallelism performance model, using execution

time predictions from the parallelism model and a static power characterization

of the system. In contrast with the execution time model, the energy is not

42

Chapter 3. Proposed Analytical Models

determined as the maximum among cores, memory and I/O energy usage, but

rather as the sum of the energy usage of each component.

Parallelism Performance

Baseline Program

Executions

Shared-memory Programs
E.g.: OpenMP, pthreads,

datacenter workloads, etc.

- Inherent Parallelism

- Exploited Parallelism

- Parallelism Loss

Workload

Parameters

System

Parameters

Analytical Models

Energy Performance

 - Power Consumption

 - Energy Usage

Figure 3.1: Approach for applying the model

The approach for applying the general model of parallelism is described in

figure 3.1. Given a shared-memory program, we perform a set of baseline exe-

cutions using a small number of runs. During these executions, we collect traces

of software and hardware metrics and traces of power and energy use. We use

the software and hardware traces as the inputs into the parallelism model. The

objective of this model is to predict the inherent parallelism of a program, its

exploited parallelism on a multicore systems and the parallelism loss due to data

dependency and memory contention. The traces of power and energy are used in

conjunction with the parallelism model by the power and energy model to predict

the power and energy usage of the program.

The novelty behind our approach lies in bridging the abstract view of program

43

Chapter 3. Proposed Analytical Models

parallelism to the hardware parallelism of a modern multicore platform. While

previous work has used metrics such as degree of parallelism [54, 101] and average

parallelism [31, 32, 34] to express the performance of a program, they have not

followed up with a model that reflects how such abstract metrics are tied to what is

measurable in the hardware of a real system. Our model shows how the software

view of parallelism matches the hardware parallelism, and provides a practical

method for inferring the application performance from hardware events metrics

available on contemporary and emerging multicore systems.

Table 3.1 shows the notations used throughout the thesis.

3.2 General Parallelism Performance Model

The objective of the parallelism performance model is to link the inherent and

exploited parallelism of a shared-memory program to hardware events that are

directly observable or measurable. This allows the direct determination of the

inherent and exploited parallelism, and of the parallelism loss due to parallel

overheads.

In a software view of parallelism, a parallel program can be modeled as a

directed acyclic graph where the nodes are work units and the edges represent the

logical dependencies between work units [31, 32, 34, 54, 101]. In general, the study

of program parallelism uses the number of work units per unit time as the degree

of parallelism of the program. Different units of work can be used, depending on

the type of the parallelism that is analyzed.

From problem to execution, we distinguish three types of parallelism:

1. Ideal parallelism of a problem denotes the average number of work units that

can execute concurrently at problem level. At this level, the work units are

problem-dependent. For example, considering the problem of sorting integer

44

Chapter 3. Proposed Analytical Models

Symbol Description
General parameters

m Number of threads
n Number of cores
f Clock frequency
t Time moment
T Time interval
c Total cycles incurred by program
w Work cycles executed by program
a Stall cycles due to contention
b Stall cycles not due to contention
rM Last level cache misses
rI Data transferred by I/O device

Parallelism performance
π Inherent program parallelism
π′ Exploited program parallelism
πd Parallelism loss due to data dependency
πμ Parallelism loss due to memory contention
πσ Parallelism loss due to I/O operations
U Useful work expressed as time units
M Memory contention, as time units
C Work expressed as time units
I I/O waiting time
ωμ Memory contention factor
ωσ I/O overhead factor

Energy performance
P Average power consumption of a program
E Total energy usage of a program
η Energy proportionality factor

Table 3.1: Table of notations

numbers, the unit of work is swap operation between two numbers, and the

parallelism of this problem is the average number of swap operation that can

be performed per unit time. The ideal parallelism is determined by the problem

size and the parallel algorithm, which dictates the dependencies between the

work units.

2. Inherent parallelism of a program [54] denotes the average number of work units

in a program that can execute concurrently per unit time, at a logical level, in

45

Chapter 3. Proposed Analytical Models

the absence of any execution constraints. The parallel problem is transformed

into a parallel program using a parallel programming model. Depending on

the programming model, the ideal parallelism work units are mapped to other

work units called parallel tasks. In implicit parallelism models, the compiler

or runtime system automatically identifies the parallel work units and maps

them to parallel tasks. For example, Go programming language [2] is an im-

plicit parallelism programming language that maps each function to a parallel

task called goroutine. In contrast, in explicit parallelism models, the program-

mer identifies, exposes and controls the parallelism, via programming language

constructs. For example, C with pthreads is an explicit parallelism models,

because the programmer manually assigns the work units to different threads,

The effect of both implicit and explicit parallelism models is a constraint of the

parallelism of the program, because the parallelism is upper-bounded by the

number of parallel tasks generated by the programming models.

3. Exploited parallelism of a program denotes the number of processor cores that

are executing useful work per unit time, averaged over the entire execution of

the program. When a program is executed on a physical system, the threads of

the programs are mapped to physical cores. The mapping between the threads

or processes and the cores is controlled by a runtime scheduler. The effect of

this mapping is that the number of physical cores constraints the exploited

parallelism. Another effect is that there is runtime overhead associated with

executing on a physical system, and therefore, not all work is considered useful.

From inherent to exploited parallelism, there is a parallelism loss caused by

runtime overheads. Even without resource constraints, the three most common

overheads in parallel programs are caused by memory contention among cores,

communication and I/O operations [21]. Let π denote the inherent parallelism of

46

Chapter 3. Proposed Analytical Models

�∞ 0

Ideal
Parallelism

Inherent
Parallelism

π

Exploited
Parallelism

π′m ��
πd

Data
Dependency

��
πδ

Communi-
cation

��
πσ

I/O

��
πμ

Memory
Contention

Figure 3.2: Breakdown of general program parallelism

a program partitioned into m parallel tasks and π′ the exploited parallelism when

executing on n cores. For the parallelism loss, let πd(m) denote the parallelism loss

due to data dependency, πμ due to memory contention, πδ due to communication

and πσ due to I/O operations. Figure 3.2 shows the break-down of the parallelism

of a program into inherent parallelism, exploited parallelism and parallelism loss.

This thesis focuses on shared-memory programs running on multicore systems

such as Intel and AMD x64 or ARM Cortex family. Therefore, from the general

model of parallelism, we do not consider the parallelism loss due to communication,

because communication is an overhead specific to distributed memory. Further-

more, we focus on shared-memory programs where the I/O operations cover only

network I/O operations, and not storage I/O. Therefore we only further model the

parallelism loss associated with these overheads:

1. πd – data dependency among the work units;

2. πμ – memory contention among cores;

3. πσ – network I/O overhead.

The breakdown of the parallelism and parallelism loss in a shared memory

program is shown in figure 3.3. For shared-memory applications, our observation

is that we can analyze the program parallelism directly at thread level. Even if

some programming models may have different parallel work units at program level,

47

Chapter 3. Proposed Analytical Models

�∞ 0

Ideal
Parallelism

Inherent
Parallelism

πm ��
πd

Data
Dependency

��
πσ

I/O
Overhead

��
πμ

Memory
Contention

Exploited
Parallelism

π′

Figure 3.3: Breakdown of shared-memory parallelism

all shared-memory programming models are build on top of threads, and even-

tually all program-level parallel work units are mapped to threads. Furthermore,

the choice of threads as units of work abstracts the differences between differ-

ent programming languages, threading packages, operating systems and hardware

platforms. However, the parallelism of a shared-memory program cannot be sim-

ply estimated by counting the number of threads, due to the data-dependency

gaps in the execution time and due to runtime overheads.

Next we define the inherent and exploited parallelism of shared-memory pro-

grams, the useful work of a program, and the parallelism loss due to data-dependency

and memory contention.

3.2.1 Inherent and Exploited Parallelism

At a logical level, if the number of execution resources available to a parallel

program is unbounded, then the degree of parallelism of the application is dictated

only be its inherent structure. To model the parallelism of a program, we extend

the widely used concept of inherent parallelism [32, 34, 54, 101] to accommodate

the effect of partitioning a shared-memory program into threads. Considering a

shared-memory program with m threads, the program starts at time moment 0

and finishes at time moment T . Threads are active if they are executing work,

or suspended if they are stopped at a synchronization point such as a mutex,

48

Chapter 3. Proposed Analytical Models

�

�
0 Ttime

1

m

In
h
er
en
t
P
ar
al
le
li
sm

t

π(m,∞, t)

Figure 3.4: Degree of parallelism profile

semaphore or condition variable. Figure 3.4 shows the parallelism profile of a

program. The parallelism of the program is always lower-bounded by one (there

is always at least one thread active) and upper-bounded by m (when all threads

are active). Let π(m,∞, t) be the degree of parallelism at time moment t, where

m denotes that there are m threads, and ∞ denotes that there is no upper bound

on the number of execution resources:

1 ≤ π(m,∞, t) ≤ m, ∀t ∈ [0, T] (3.1)

We define the inherent program parallelism π(m,∞), as the number of

active threads used by the program, averaged over the entire execution of the pro-

gram:

Definition 1 (Inherent Parallelism of Shared-Memory Programs). Given

an infinite number of execution resources, the inherent parallelism of a parallel

program partitioned into m threads, over its execution time T is:

π(m,∞) =
1

T

T∫
0

π(m,∞, t)dt (3.2)

where π(m,∞, t) is the number of threads performing work at time moment t.

49

Chapter 3. Proposed Analytical Models

At logical level, the inherent parallelism of a shared-memory program is a mea-

sure of the number of threads that can execute concurrently, given no constraints

on the number of processor cores available, averaged over the execution time.

At a physical level, when a program consisting of m threads is executed on a

set of n homogeneous processor cores, there are two effects on the parallelism of

the program:

1. The constraint of the inherent parallelism, if m > n, because there are not

enough processor cores to execute all the threads concurrently.

2. The presence of runtime overhead which reduces the amount of parallelism that

is exploited by the machine, because only part of the work performed by the

threads is useful work.

Next we model these two effects.

When a program is partitioned into m threads, only a subset are active at any

given time, due to data dependencies. Let π(m,n, t) denote the number of active

threads running on n cores at time t, and π(m,n) denote the number of active

threads, averaged over the entire execution time of the program, T . Thus,

π(m,n) =
1

T

T∫

0

π(m,n, t)dt (3.3)

When there are enough cores to execute all threads concurrently, m ≤ n, the

average number of active threads is maximized, and is equal to the inherent paral-

lelism π(m,∞). Thus, π(m,∞) = π(m,n ≥ m). However, if the number of cores

m > n, then the number of active threads is constrained by n.

We define the exploited parallelism to account for the effect of bounding the

number of existing cores and runtime overhead:

50

Chapter 3. Proposed Analytical Models

Definition 2 (Exploited Parallelism of Shared-Memory Programs). Given

a finite number of processor cores n, the exploited parallelism of a parallel program

partitioned into m threads, π′(m,n), with execution time T , is:

π′(m,n) =
1

T

T∫
0

π′(m,n, t)dt (3.4)

where π′(m,n, t) is the number of cores performing useful work at time t.

When the number of cores n on which the program is running increases towards

m the exploited parallelism becomes less constrained by the number of available

cores. Finally, when m ≤ n, there is no longer any constraint of the parallelism,

because m cores are enough to execute all threads concurrently. We mark this as

π′(m,∞) = π′(m,n ≥ m). However, π′(m,∞) is different from π(m,∞) due to

runtime overheads.

The inherent and exploited parallelism are interesting to both users and devel-

opers of parallel programs. The inherent parallelism upper bounds the speedup

obtainable using any number of cores, in the absence of superlinear speedup ef-

fects [34]. The exploited parallelism represents the amount of useful work extracted

from a program by a parallel machine. When executed on a real machine, the pro-

gram execution consists of both useful work and runtime overheads. This thesis

focuses the runtime overhead study due to memory contention. Although there

are many types of runtime overheads in parallel systems [21], a significant type

of runtime overhead in multicore systems is caused by contention among cores for

shared resources [63, 74, 75, 98].

51

Chapter 3. Proposed Analytical Models

3.2.2 Response Times and Parallelism

Next we define the useful work of a program, and derive the equation of exploited

parallelism as a factor of useful work of the program, data-dependency, memory

contention and I/O overheads.

The key idea behind the approach is to express the exploited parallelism and

the parallelism loss such that we can relate it to the causes of parallelism loss.

We have used the CPU activity as the handle for expressing the useful work

of a program. We divide the activity of a CPU core into four parts, shown in

Processor
cores activity

Halted
cycles

Unhalted
cycles

Stall

Work

By I/O

By Scheduler

Arithmetic operations

Waiting for memory

Waiting for I/O

Data dependency

Figure 3.5: CPU core activity and overheads

figure 3.5, and explain below how each part relates to the useful work and the

parallel overheads of a program. At any time moment, a CPU core can be either

halted or unhalted. An unhalted core is executing the code of the program. In

this case, the core can execute work cycles, during which at least one integer or

floating point instructions is retired, or it can issue a memory request. The core

can also be waiting for a memory request to finish, and if it does not have any

arithmetic instructions to execute at the same time, it will incur a stall cycle.

A halted core is prevented by the OS scheduler to execute. We distinguish two

reasons for a halted core. First, the OS is waiting for an I/O operation issued by

this core to finish, and the core does not have any instructions to overlap with

this waiting time. Second, the OS scheduler has stopped the thread because of an

52

Chapter 3. Proposed Analytical Models

operation on a mutex, semaphore, conditional variable or barrier. We use these

categories of activities to define our useful work and the three types of parallel

overheads.

In our model, the applications consist of workloads that are serviced by three

types of resources: n CPU cores, the memory subsystem and one I/O device.

However, the response times required at these resources can overlap in time, and

thus, the response time of the program cannot be established by simply adding the

service and waiting time on all the resources. Modern server systems, including

ones based on low-power processors, have I/O devices that can send and receive

data without intervention from the CPU cores. They do so because the device is

memory mapped, and all data transferred between the device is marshalled by a

special processor called a DMA controller. Therefore, I/O device response time

can be overlapped with the CPU response time. Furthermore, CPU cores have

deep pipelines supporting out-of-order executions that overlap the execution of

arithmetic operations with the waiting for memory requests. Thus, in a multicore

system, the arithmetic instructions executed by multiple cores in parallel are over-

lapped with waiting for outstanding memory requests and I/O response time on

the I/O device. However, from a measurement point of view, not all active and

idle times are independent. A CPU core is seen as active both during execution

of arithmetic operations, and while waiting for memory requests [49]. As a result,

the CPU time of a program effectively accounts for both memory response time

and service time of arithmetic instructions.

Based on the overlap between processor and I/O resources, we define two

response times in the system:

1. CPU response time (C) – total time during which a core is executing instruc-

tions or waiting for memory requests, for all cores;

53

Chapter 3. Proposed Analytical Models

2. I/O response time (I) – total time during which a core is waiting for the I/O

device, for all cores;

First we build the model for the CPU response time. Later we extend this

model to include the I/O response time.

CPU Response Time

Let W be the service time of the CPU activity of the program, expressed as time

units, and let M be the total response time of all the memory requests performed

by the program. Considering the overlap between the arithmetic operations and

the waiting for memory requests:

C(n) =

⎧⎪⎨
⎪⎩

W (n) if the cores are the bottleneck;

M(n) if the memory is the bottleneck.
(3.5)

which is equivalent to

C(n) = max
(
W (n),M(n)

)

Because we consider weak-scaling programs, the useful work of a program W

does not change with n. In modeling the memory contention (section 3.2.5), we

provide more details on this hypothesis, and in the validation section we provide

experimental evidence to support it.

However, the response time of the memory requests can increase when the

number of active cores n increases. As such, we can express M :

M(n) = M(1) + ΔM(n) (3.6)

where M(1) is the response time of the memory requests when only one core is

active, and ΔM(n) is the delay caused by the memory contention among the n

54

Chapter 3. Proposed Analytical Models

cores. Because ΔM(n) is a measure of memory contention among cores, when

activating multiple cores, we consider that CPU response time is monotonically

increasing as long as the memory configuration does not change. Thus, ΔM(n) ≥
0. When the cores are the bottleneck, there will be no increase in the CPU time,

and ΔM(n) = 0. But when the memory is the bottleneck, ΔM(n) > 0.

Without losing generality, we can express the two cases of C(n) as:

C(n) = max
(
W,M(1) + ΔM(n)

)
(3.7)

On an execution using one core, C(1) = max
(
W,M(1)

)
. Thus, we can rewrite

equation 3.7 as:

C(n) = C(1) + ΔM(n) (3.8)

where C(1) is the service time of the useful work of the program, and ΔM(n) is

the memory contention overhead.

The total service time of the program is thus:

T (n)∫
0

π(m,n, t)dt = C(n) = C(1) + ΔM(n) (3.9)

Equation 3.8 shows that the service time of a parallel program depends on the

overlap between useful work and waiting for memory requests: When the cores are

the system bottleneck, the service time of the entire program is equal to the service

time of the useful work. In contrast, when the memory is the system bottleneck, the

service time of the program is equal to the response time of the memory requests.

I/O Response Time

Next we extend the model for programs with network I/O requests. Because

we consider that the I/O device is memory-mapped and consider that the DMA

55

Chapter 3. Proposed Analytical Models

controller marshals the data between the I/O device and the memory, we assume

the CPU is not utilized during any I/O transfer. This allows the I/O transfers to

be overlapped with both useful work and with memory contention.

If I(n) is the total I/O waiting time seen by the cores, then the total service

time of the program consists of the sum of all the moments when the program

is executing useful work, executing stall cycles due to memory contention, and

waiting for I/O transfers to finish. Because the I/O transfer can overlap with the

useful work and the waiting for memory accesses, we note that only I/O transfers

that are not overlapped to useful work are considered I/O overhead. Thus, the

total service time of a program with I/O overhead is:

T (n)∫
0

π(m,n, t)dt = max
(
I(n), C(n)

)
= max

(
I(n), C(1) + ΔM(n)

)
(3.10)

Let ΔI(n) be the response time of the I/O that is not overlapped with the

useful work T (1):

ΔI(n) = I(n)− T (1) (3.11)

The service time of a program can be rewritten as:

T (n)∫
0

π(m,n, t)dt = T (1) + ΔM(n) + ΔI(n) (3.12)

3.2.3 Useful Work

Taking a pragmatic view on parallel overheads, we note that any execution on one

core does not suffer from any parallel overhead. As such, we can define the useful

work of a parallel program, U as the response time of the program incurred during

56

Chapter 3. Proposed Analytical Models

an execution on one core:

U = T (1) (3.13)

Due to the overlap between the service times of the three resources:

U = max
(
W,M(1), I(1)

)
(3.14)

Next we derive the execution time of the program on an arbitrary number of

cores, T (n) and the parallel speedup.

From the definition of π(m,n), it follows that the execution time of the program

on n cores, T (n) is:

T (n) =

T (n)∫
0

π(m,n, t)dt

π(m,n)
=

T (1) + ΔI(n) + ΔM(n)

π(m,n)
(3.15)

On a single core, there is no extra delay caused by memory contention among

cores, hence ΔM(1) = 0. Additionally, on a single core, π(m, 1) = 1, because

there can be a single active core. The total amount of time required to execute

the program on one core, T (1), is:

T (1) = U

The parallel speedup is therefore:

T (1)

T (n)
= π(m,n)

U

U +ΔM(n) + ΔI(n)

We normalize the waiting time for memory and I/O to the useful work time,

U = T (1). We define the memory contention factor, ωμ

ωμ(n) =
ΔM(n)

U
(3.16)

57

Chapter 3. Proposed Analytical Models

the ratio of average number of active threads due to memory contention to the

average number of active threads due to useful work. We further define the I/O

overhead factor, ωσ

ωσ(n) =
ΔI(n)

U
(3.17)

as the ratio of average number of threads waiting for I/O to the average number

of threads active due to useful work.

Thus, the speedup of a shared-memory program with m threads on n cores is:

T (1)

T (n)
=

π(m,n)

1 + ωμ(n) + ωσ(n)
(3.18)

We show next that the parallel speedup is equivalent with the exploited paral-

lelism. At any time moment t, we have π′(m,n, t) threads executing useful work,

ωμ(n) · π′(m,n, t) threads active due to memory contention and ωσ(n) · π′(m,n, t)

active due to I/O overhead. Therefore, the average number of threads performing

work, π(m,n), observed over the execution time T (n) is:

π(m,n) =
1

T (n)

T (n)∫
0

(
1 + ωμ(n) + ωσ(n)

)
π′(m,n, t)dt

and we have

π′(m,n) =
π(m,n)

1 + ωμ(n) + ωσ(n)
(3.19)

Equations 3.18 and 3.19 show the conceptual equivalence of our definition of ex-

ploited parallelism to the parallel speedup:
T (n)∫
0

π′(m,n, t)dt is equivalent to execu-

tion time on one core, without parallel overheads, and T (n) is the execution time

on n core, including the parallel overheads. However, expressing the parallelism

performance as inherent and exploited parallelism allows us to quantify the factors

that affect performance as parallelism loss.

58

Chapter 3. Proposed Analytical Models

Equation 3.19 exposes a useful insight on the parallelism of a shared-memory

program. For a program partitioned into m threads and executed on n cores,

π(m,n) is the total amount of parallel work, and the denominator expresses how

much of that work is useful work.

Eager et. al [34] have derived a expression similar to equation 3.19, using the

average program parallelism and the speedup, but without considering runtime

overhead. In general, our speedup model is consistent with many studies on in-

herent parallelism [34, 101, 54, 32]. However, these studies relate the speedup

only to the average parallelism of the program and express the performance loss

due to constraining the number of cores. These simplified models, while use-

ful, are impractical for understanding current multicore systems, where memory

contention can have a significant impact on speedup performance. Another limita-

tion of existing studies based on inherent parallelism is that they do not provide a

method of deriving the inherent parallelism. Simply measuring the active number

of threads is not sufficient, since some of the threads may be active but stalled

due to memory contention. In contrast, our model defines the speedup loss due

to data dependency and memory contention. Furthermore, we provide a practical

approach of deriving π(m,n), ωμ(n) and ωσ(n).

3.2.4 Data Dependency

Next we present a model to determine π(m,∞), π(m,n) and the parallelism loss

due to data dependency, πd(m).

The data dependency of the program is the average number of threads which

are inactive throughout the execution time of the program, if there are no con-

straints on the number of execution resources. The reasons why some threads may

not be active include synchronization operations, load imbalances among threads

and insufficient work to keep all threads busy. In general, we treat all sources

59

Chapter 3. Proposed Analytical Models

of thread inactivity as data dependency. We acknowledge that there are reasons

unrelated to the parallelism that may cause threads to become inactive, such as

I/O operations or some system calls, even in the absence on constraints on the

execution resources. As we target applications with heavy memory contention

and data dependency, we focus on parallel programs where system calls do not

represent a significant source of performance loss.

Definition 3 (Parallelism Loss Due to Data Dependency). The parallelism

loss due to data dependency in the program, πd(m), is defined as the difference

between the total number of available threads, m, and average number of active

threads, π(m,∞), given no constraints on the number of execution resources:

πd(m) = m− π(m,∞) (3.20)

We derive a model for the data dependency of the program that determines

the average number of active threads of a program, π(m,n), based on an execution

of the program partitioned into m threads on b cores, where m > b. Based on

π(m,n), we then determine πd(m).

The insight behind our approach is that when the number of threads is greater

than the number of cores, the sum of the number of executing threads and the

number of threads in the run-queue represents the number of active threads of the

program. Our key idea is to conduct one measurement run, called a baseline run

executing the program on a number of processor cores smaller than the number of

threads. Since there are more threads than cores, some of the threads will queue

for service in the run-queue. Based on the profile of number of active threads over

time and on the service time of the threads, we infer the time required to execute

the threads when there are enough cores to execute all the threads concurrently,

60

Chapter 3. Proposed Analytical Models

m ≤ n, without considering the memory overhead. We then determine π(m,n) as

time weighted average.

However, oversubscribing the cores has three effects on performance [55]:

1. The total execution time of the program is different compared to when there

are enough cores for all the threads, because there are not enough cores to

execute all threads concurrently.

2. It may cause load imbalances between threads.

3. It may cause significant context switching which may increase the kernel service

time of the program as well as affect the efficiency of the caching.

Our model accounts for the first two effects, and we give an experimental analysis

of the third.

We run the program partitioned into m threads on b cores, where m > b. We

determine the time required to finish the program, given enough cores to execute

all threads concurrently, m ≤ n, which we denote as critical path time Tcp. The

average number of active threads is then determined as a time weighted average

of the parallelism of each region of program.

When m > n, some threads may have to queue for service in the run-queue.

Therefore, at time moment t, x(m, t) denotes the number of threads that are

executing and q(m, t) denotes the number of threads that are queueing. Given

enough cores to run all the threads in parallel, m ≤ n, then the number of active

threads is:

π(m,∞, t) = x(m, t) + q(m, t)

Based on the time required to execute the baseline run, the model determines the

critical path time, Tcp.

During the baseline run, let τ denote the service time received by the program

61

Chapter 3. Proposed Analytical Models

from time t to time t+ΔT . If ΔT is sufficiently small such that there is no change

in the number of active threads from t to t +ΔT , we have:

τ = x(m, t) ·ΔT =

m∑
j=1

τj

where τj is the service time required by thread j. The execution time when m ≤ n,

is ΔTcp, and is equivalent to the maximum service time received by one thread:

ΔTcp = max{τj}

The average number of active threads during this interval is:

π(m,∞, t) =
τ

ΔTcp
=

∑m
j=1 τj

max{τj}

When m ≤ n cores, the total execution time of the program, Tcp, is the sum of the

minimum time to execute every part of the program Tcp =
∑

ΔTcp. Therefore,

the average number of active threads over the entire execution of the program is

the average of the values of π(m,∞, t) with weights ΔTcp:

π(m,∞) =

∑
π(m,∞, t)ΔTcp

Tcp
(3.21)

and

πd(m) = m−
∑

π(m,∞, t)ΔTcp

Tcp
(3.22)

It can be argued that since τ = x(m, t) · ΔT , it is not needed to measure τj .

However, simply computing ΔTcp as an average, ΔTcp =
x(m,t)·ΔT

x(m,t)+q(m,t)
, would not ac-

count for the load imbalances between threads. This may lead to underestimating

the data dependency of the program.

Next, we show the derivation of the average number of active threads when

62

Chapter 3. Proposed Analytical Models

the program is executing m threads on an arbitrary n cores. We start from the

profile of the active number of threads π(m,∞, t) over time. If during interval

ΔT there are π(m,∞, t) active threads, then on n cores the number of executing

threads is min{n, π(m,∞, t)}. Therefore, the time required to execute them on n

cores, ΔT (n), is:

ΔT (n) =
ΔTcp · π(m,∞, t)

min{n, π(m,∞, t)}

The average number of active threads, π(m,n) is determined as the average num-

ber of active threads, min{n, π(m,∞, t)}, weighted to ΔT (n) for part of the pro-

gram, similarly to equation 3.21:

π(m,n) =

∑
π(m,n, t)ΔT (n)∑

ΔT (n)
(3.23)

We implemented the model using sampling. The size of the run-queue is sam-

pled using a constant ΔT time interval. For every sample, we measure π(m,∞, t)

and the vector of service time of the threads, τj .

The proposed model for determining the average number of active threads and

the data dependency of the program has important practical advantages. The

proposed approach is independent of programming languages, threading package

or programming methodology because we use the dynamic size of the run-queue

as the proxy for determining the parallelism. Furthermore, the OS statistics about

the dynamic size of the run-queue are be obtained using a non-invasive method,

such as reading the procfs pseudo-file-system. This entails that we do not need

any type of instrumentation of program source or binary code, which confers

important practical properties. Program instrumentation is intrusive and often

prevents some types of optimizations. For example, OPARI which is at the heart

of KOJAK [119], TAU [102], Scalasca [46] and ompP [39] performance analysis

tools, prevents the usage of implicit barriers, which in turn prevents the OpenMP

63

Chapter 3. Proposed Analytical Models

NOWAIT clause, thus forcing the threads to perform an additional synchronization

operation. Instrumentation may slow down the program or interfere with cache

sensitive areas, and therefore increase the overhead of the parallel programs. Some

vendors provide highly optimized versions of popular parallel kernels (such as

BLAS or LAPACK) which come directly compiled as libraries. Without access to

the source code of such products, prediction methods relying on instrumentation

may be inapplicable. Lastly, instrumentation methods lack generality, because

often they cannot be applied across different programming languages, threading

packages and runtime systems.

3.2.5 Memory Contention

We propose a model to derive the memory contention factor, ωμ(n), and paral-

lelism loss due to memory contention among cores for shared-memory programs.

We previously defined the memory contention factor ωμ(n), the ratio of average

number of active threads due to memory contention to the average number of

active threads due to useful work:

ωμ(n) =
ΔM(n)

U
(3.24)

Definition 4 (Parallelism Loss Due to Memory Contention). The paral-

lelism loss due to memory contention among cores, πμ, is defined as the number

of threads busy due to memory contention, averaged over the entire execution of

the program:

πμ(m,n) = π(m,n)
ΔM(n)

T (n)
(3.25)

From the definition of memory contention factor, ωμ, we can rewrite the par-

64

Chapter 3. Proposed Analytical Models

allelism loss due to memory contention, πmu(m,n) as:

πμ(m,n) = π(m,n)
ωμ(n)

ωμ(n) + ωσ(n) + 1

Next we derive a general model for memory contention factor.

The targeted architectures are considered multiprocessors of multicores. We

model the general cores as having variable frequency with out-of-order super-

scalar or pipelined execution, and contain multiple level of caches which can be

private (per-core) or shared among cores. The caches are considered inclusive,

therefore only the last-level cache misses are sent to the memory controllers to

be serviced. The interconnect architectures between processor are uniform mem-

ory access (UMA) and non-uniform memory access (NUMA). Figure 3.6 shows the

characteristics of the UMA and NUMA memory architectures. In UMA, each pro-

cessor has a dedicated bus to the single memory controller, while in NUMA each

processor has its own bus to the local memory controller, as well as a connection

to any other processor. This simple model covers previous generation and state-of-

the-art multicore systems, based on Intel Core microarchitecture and ARM Cortex

microarchitectures (UMA), and Intel Nehalem and AMD K10 (NUMA). For UMA,

we consider the number of processors as maximum two, while for NUMA we do

not bound the maximum number of processors.

We propose a model for the memory contention factor based on quantifying

the number of cycles spent by a program on a multicore systems. Our model is

centered on the memory contention among different cores. Unlike many existing

studies [62, 120], we are not interested in the absolute value of processor cycles,

but in the growth of the processor cycles due to memory contention among cores.

We therefore are interested in the growth of number of cycles relative to a baseline

value on one core, where there is no memory contention among cores.

65

Chapter 3. Proposed Analytical Models

(a) n processors with UMA interconnect

(b) n processors with NUMA interconnect

Figure 3.6: Architectures of multi-processor multicore systems: UMA & NUMA

Without losing generality, we simplify the derivation of the memory contention

model by focusing on the cases where the cores or the memory are the system

bottleneck, and the program has no I/O requests. Thus ωσ = 0 and U = T (1) =

C(1). Because we consider out-of-order cores, we model the overlap between

executing useful work and waiting for memory requests. Previously we defined

the service time of an execution phase, C, as the overlap between useful work and

waiting for off-chip requests:

C(n) = max
(
W (n),M(n)

)

66

Chapter 3. Proposed Analytical Models

We divide the cycles into three categories:

1. Work cycles: w(n), which are cycles in which at least one floating point or

integer operation is retired, or at least one memory operation is issued;

2. Stall cycles that are not due to resource contention, such as pipeline hazards,

branch mispredictions, cache hits and uncontended memory accesses: b(n);

3. Cycles spent waiting for off-chip memory accesses: a(n).

If the core frequency during an execution episode is f , let c(n) denote the total

number of cycles incurred by n cores when executing a shared-memory program.

During the execution of an episode, we have:

c(n) = f · C(n) (3.26)

w(n) + b(n) = f · U(n) (3.27)

a(n) = f ·M(n) (3.28)

With these notations, we can rewrite ΔM(n) as:

ΔM(n) =
ΔC(n)

f
=

a(n)− a(1)

f
=

c(n)− c(1)

f
(3.29)

Due to the overlap between executing useful work and waiting for memory

requests, we have:

c(n) = max
(
w(n) + b(n), a(n)

)

Because we target weak-scaling workloads, from measurement analysis we ob-

serve that w(n) and b(n) are constant with n, when the number of cache misses

and the total number of instructions do not change with n. While it is expected

that w does not depend on n, we comment here on why b does not change when n

changes. The intuitive explanation for this behavior is that, since b(n) represents

67

Chapter 3. Proposed Analytical Models

the stalls due to uncontended resources, it does not matter how many cores split

these stalls, because their total remains the same. Similarly, the execution time

of floating point and integer instructions depends only on the availability of the

operands. If caching does not change when n changes, then operand availabil-

ity does not change, and neither does the number of cycles required to execute

them. Moreover, we are interested in modeling the number of total cycles for

large program runs, with long steady-state compute phases that result in balance

of shared caches. Therefore small, transient deviations from this assumption do

not make the objective of this study. Furthermore, we have evaluated this as-

sumption empirically on all our workload tests and present evidence to support

it.

On a single core, the contention for shared resource among cores is zero, there-

fore c(1) = max
(
b(1) + w(1), a(1)

)
can be considered the useful work part of the

program. Although b(1) are stall cycles, we consider them a component of the

useful work, i.e. the number of stall cycles required to fetch the data when there

is no contention among cores. Considering that the frequency f is fixed during

the execution of one program episode:

ω(n) =
ΔM(n)

U
=

f
(
M(n)−M(1)

)
w + b

=
a(n)− a(1)

w + b
=

c(n)

c(1)
− 1 (3.30)

The total number of cycles, c(n) is modeled using a hierarchical approach, as

follows. We derive first an equation for c(n) for one socket and subsequently we

model the effect of interconnecting multiple sockets.

The cores have inclusive caches, therefore only last level misses are sent to the

memory controllers. Furthermore, because we are interested in large program sizes,

we consider that the overwhelming type of cache misses are data-cache misses.

Once a memory request misses the last-level data cache, it is sent to the memory

68

Chapter 3. Proposed Analytical Models

controller to be serviced and then the data returns to the last-level cache. There

are several queues in which the memory request might be kept from the moment

it leaves the last-level cache to the moment it returns to the last-level cache, and

the queueing discipline in each of the memory bus queues or memory controller

queue is difficult to measure or analyze directly. There are very few information in

the literature about the queueing disciplines of various types of buses and memory

controllers for Intel, AMD or ARM systems. Furthermore, the differences between

the targeted architectures are significant, and even if all the queueing time could be

modeled directly for each of the queue, and thus derive a general equation for the

queueing time, solving this equation to a closed-formed might be impossible [59].

We therefore favor a simplifying assumption that allows a unified approach to the

memory systems of all the architectures, and solving the equation to a closed-form

solution.

For both UMA and NUMA, we consider one memory controller to be a single

server system with one queue, in which requests are serviced in first-come-first-

serve order. We apply a single-server queueing model to determine the response

time of the memory requests, M(n). From our experiments, which are detailed in

section 4, we identify two cases of memory requests patterns:

1. If the memory is the system bottleneck, the memory requests are non-bursty,

and an exponential distribution fits their arrival rate over time. In this case,

the memory subsystem is treated as an M/M/1 queueing model.

2. If the memory is not the system bottleneck, the memory requests are bursty

and a Pareto distribution fits their arrival rate over time. We use an M/D/1

queueing system to model the response time of the memory requests.

Out of these two cases, the first one is more valuable, because the CPU response

time is be dominated by the response time of the memory requests. For the second

69

Chapter 3. Proposed Analytical Models

case, because the bottleneck is not the memory, the response time for the entire

program will not be dictated by either the I/O response time or the response time

of the useful work.

Memory is System Bottleneck

We apply a M/M/1 model to derive the response time of the memory requests.

Since the memory requests start from the cores but are filtered by two or three

levels of cache, the inter-arrival times of the request are assumed independent

and identically distributed. Considering the superscalar and out-of-order nature

of modern processors, cores issue memory requests and flops/integer operations

instructions at the same time. This means that while cores are waiting for mem-

ory requests to be completed, they are also executing instructions for which the

operands have been fetched from memory. Therefore, for programs with signif-

icant memory contention, the critical path of the execution time of a program is

dominated by the response time of memory requests. Let Mreq(n) be the average

response time of one memory request that has arrived at a memory controller

which services n cores. From the M/M/1 model [59]:

Mreq(n) =
1

μ− λ

where μ is the service rate of the memory controller and λ is the arrival rate of the

memory requests. Let rM(n) denote the total number of last level cache misses,

and L the arrival rate of requests from one core. Because the response time of the

memory node is independent of the core frequency f , the total number of CPU

cycles incurred while waiting for one memory request is:

areq(n) = f ·Mreq(n) =
f

μ− λ

70

Chapter 3. Proposed Analytical Models

For a single socket system, with n cores active, λ = n ·L and the total number

of cycles incurred by the program is

a(n) = rM(n)areq(n) =
f · rM(n)

μ− n · L (3.31)

and the total time spent by a the processor cores waiting for memory is:

M(n) =
rM(n)

μ− n · L (3.32)

Because the system bottleneck is the memory:

c(n) = a(n) =
f · rM(n)

μ − n · L (3.33)

Next we extend the model to multiple processors, using a fill-socket-first policy.

Let ns be the number of cores of one processor. In UMA, each processor has its

own bus, and therefore requests from different sockets queue for memory access

separately. Therefore, queueing time is modeled separate for each processor. In a

two socket system, if n1 cores are active in the first socket and n2 in the second,

aUMA(n) = a(n1) + a(n2) + Δa, where Δa represents the increase in number of

cycles due to the increase in load on the controller, which services requests from two

sockets, instead of one. If n changes using a fill socket first policy, when changing

from ns cores (all on the first socket) to ns+1 cores (ns on the first processor and

one on the second processor), the difference between Δa = a(ns+1)−a(ns) reflects

the increase in response time from increasing the load on the memory controller:

aUMA(n) = c(ns) + c(ns − s) + Δc (3.34)

For NUMA, when two processors and two memory nodes are active, there

71

Chapter 3. Proposed Analytical Models

is an additional delay to send the memory request to a remote node. Let δ be

the additional time required to send one memory requests to a remote memory

controller, compared to the case when only the local controller is active. A core

splits its memory request into local memory request and remote memory requests.

The total number of cycles required for a memory request to be serviced by one

memory controller that services n cores is:

alocal(n) = a(n)

aremote(n) = δ(n) + a(n)

and δ depends on the ratio of remote memory accesses to total memory accesses.

We use a linear model for δ. If n cores active are split as ns on the local socket

and n − ns cores on the remote, on average the memory accesses will be split

ns

n
rM(n) on the local memory controller and n−ns

n
rM(n) on the remote memory

controller. Therefore, the total number of cycles for a two-processor NUMA system

is:

aNUMA(n) =
ns

n
rM(n)alocal +

n− ns

n
rM(n)aremote (3.35)

In equations 3.31, parameters L and μ implicitly model the effect of memory

request and memory performance on the number of cycles. Similarly, in equa-

tions 3.34 and 3.35, the parameters Δa and δ account for the increase in cycles

when activating additional sockets. A detailed model of these parameters is be-

yond the objective of this thesis, because a memory bus and memory controller

performance model is platform specific. Furthermore, from a practical point of

view, parameters L and μ can be extracted using linear regression from a set of

measured values of a(n). Since we have observed that rM(n) is constant, parame-

ters L and μ can be linearly regressed using equation 3.31 and at least two points

of 1
a(n)

. Similarly, Δc and δ can be determined using measured values of a(s) and

72

Chapter 3. Proposed Analytical Models

a(s + 1). Because the memory is the system bottleneck, c(n) = a(n), and thus

we can replace all measurements of the cycles incurred while waiting for mem-

ory, a, with measurements of the total number of cycles incurred by a program,

c. Therefore, to apply the memory model, we need the following set of input

parameters:

1. For a single socket system, two runs of the program on n1 and n2 cores and

measurements of c(n1) and c(n2) are required. Parameters L and μ are regressed

through the coordinates {n1, 1/c(n1)} and {n2, 1/c(n2)}.

2. For a multiple socket system, is required:

� On UMA, measurements on 1, ns and ns + 1 cores. We measure Δc =

c(ns + 1)− c(ns), in addition to regression of L and μ.

� On NUMA, measurements on 1, ns and ns + 1 cores. Parameter δ is

regressed from the line {ns, c(ns)} to {ns + 1, c(ns + 1)}, in addition to L

and μ.

Therefore, ω(n) can be determined from at most three measurements of c(n) via

equation 3.30.

Cores are the System Bottleneck

The memory requests that are send to the memory server are filtered by two levels

of cache, and since the programs analyzed in this paper consist of server workloads,

we assume that there is sufficient time between memory requests arrivals to satisfy

a memorylessness property of the memory requests inter-arrival time. However,

we do not make any assumptions on the size of the memory requests, and thus,

on the distribution of service times required by the memory requests. TM,j is

composed of service time SM,j and waiting time ZM,j of the memory requests.

73

Chapter 3. Proposed Analytical Models

TM,j = SM,j + ZM,j (3.36)

Let rM be the total number of last level cache misses, ¯rM,j the average number

of last level cache misses requested during one instruction window, and V ar(rM,j)

the variance of last level cache misses requested during one instruction window.

The total number of instruction windows throughout the execution of the program

is j:

j =
rM
¯rM,j

(3.37)

When sM is the service time required by one memory request, then the average

and variance of the service time required by all rM requests are:

¯SM,j = sM · r̄M
V ar(SM,j) = s2M · V ar(rM)

Let λM be the arrival rate of memory request from a single core. If there are

n active cores that are issuing memory request, the total arrival rate of memory

requests is:

λ = n · λM (3.38)

The response time of the rM memory requests is modeled using a M/G/1 queueing

system. From Pollaczek-Khinchin formula [110]:

SM,j(n) = ¯rM,jsM (3.39)

ZM,j(n) = ¯SM,j
2
λ
1 + V ar(SM,j)

2(1− ¯SM,jλ)
(3.40)

From equations 3.37 to 3.40:

TM,j(n) = r̄MsM + ¯rM,j
2s2MnλM

1 + s2MV ar(rM,j)

2(1− ¯rM,jsMnλM)

74

Chapter 3. Proposed Analytical Models

TM = j · TM,j = rMsM

(
1 + sM ¯rM,jnλM

1 + s2MV ar(rM,j)

2(1− sM ¯rM,jnλM)

)
(3.41)

Equation 3.41 shows that the response time of the memory requests degrades with

an increase in n. Furthermore, the increase in memory response time also depends

on the burstiness of memory traffic. Equation 3.41 also describes how the workload

interacts with the machine: λM and rM depend on the workload, while sM is a

system parameter, which depends on the bandwidth of the memory system.

To apply the model, we determine the response time of one memory request

as the ratio of cache line size and the effective memory bandwidth. The average

memory burst size rM,j is determined based on the probability profile of the burst

size. In the model parameterization section, we show that server workloads fall

under two categories, bursty memory traffic and non-bursty memory traffic. For

bursty memory traffic we use a Pareto distribution to model ¯rM,j and V ar(rM,j),

based on inputs collected during the baseline runs. For non-bursty memory traffic,

we use an exponential distribution of burst size, and reduce the M/D/1 model to

an M/M/1 model. Finally, rM is determined from the trace of the hardware events

counters.

3.2.6 I/O Overhead

Next we extend our general model to determine the parallelism loss due to the

I/O overhead.

Due to the overlap between performing arithmetic work, waiting the memory

requests and waiting for I/O operations, we consider I/O overhead only the threads

that are waiting for an I/O operation to finish without executing useful work at

the same time.

We previously define the I/O overhead factor, ωσ as the ratio of threads waiting

75

Chapter 3. Proposed Analytical Models

for I/O operations to the threads performing useful work:

ωσ(n) =
ΔI(n)

U

Definition 5 (Parallelism Loss Due to I/O Overhead). The parallelism

loss due to I/O overhead, πσ, is defined as the number of threads performing I/O

operations that are not overlapped with useful computations, averaged over the

entire execution of the program:

πσ(n) = π(m,n)
ΔI(n)

T (n)
(3.42)

Next we discuss our approach for determining ΔI(n). From the definition of

ΔI(n) = I(n)−T (1) we note that the waiting time experienced by the n cores on

the I/O device depends on the response time of the I/O device, which we denote

Ir. When there are n core out of which π(m,n) are active, the I/O waiting time

cumulated over the entire cores is:

I(n) = π(m,n)Ir (3.43)

To model Ir, the applications targeted by us involve network I/O requests op-

erating based on a request-reply pattern. In general, many types of web-hosting

workloads are governed by this pattern [110]. For example, a webserver receives

an HTTP request on the I/O interface, forms a reply by performing some compu-

tations and then sends the reply back to the sender.

The typical mechanism employed by a program to receive data from a I/O

device involves performing a system call on a network socket. To service the

requests, a thread performs a system call (on Linux, typically read or recvmsg)

instructing the operating system to read the content of the request from the device.

76

Chapter 3. Proposed Analytical Models

If the system does not receive any data on the device, the system call blocks the

calling thread until the request can be completed. When the I/O device receives

the request data, the operating system copies the data to the main memory using

direct memory access (DMA), and then unblocks the thread from the system call.

After the reply is formed, the thread performs another system call (typically write

or sendmsg) that instructs the operating system to send a reply data to the I/O

device. Thus, response time of an I/O operation can be divided into:

1. I/O blocking time (IB) – total time between the thread blocking on a read

system call and the time moment when the data arrives from the sender to the

I/O device, for all read system calls.

2. I/O transfer time (IT) – total time required to transfer the data between the

I/O device and the main memory.

In contrast to the read operation, the write requests do not incur blocking time

until the data arrives to the destination, because this aspect of the communication

protocol is controlled independently by the operating system, according to the

underlying transport protocol. Figure 3.7 shows a typical sequence of I/O system

I/O read
time

CPU
time

I/O
write
time

I/O
blocking
time

time

request
arrival

I/O
read
time

CPU
time

I/O
write
time

read
end

write
start

write
end
read
start

request
arrival

read
end

write
start

write
end
read
start

I/O inter-arrival
time

Figure 3.7: Overlapping of I/O times

calls and the I/O blocking times and transfer times. IT is the sum of the I/O read

77

Chapter 3. Proposed Analytical Models

and write times. Let λI/O be the inter-arrival time of I/O requests:

IB =
1

λI/O

− IT − C (3.44)

If we consider λI/O independent of the I/O sequence response time, the blocking

time and I/O transfer time of a thread can be overlapped. Thus, for a thread, the

response time of the I/O incurred during the request-reply episode is:

Ir ≈ max(IT + C,
1

λI/O

) (3.45)

and the I/O idle time, DI/O, is the difference between inter-arrival time and the

sum of CPU time and I/O transfer time.

However, in server workloads such as Apache or memcached a thread multi-

plexes multiple network sockets, such that the CPU time incurred by one request-

reply can overlap with the transfer time incurred by another request-reply [110].

Thus, the I/O time of a program is

Ir = max(IT ,
1

λI/O

) (3.46)

To apply the I/O model, IT is determined as the ratio of transferred data to the

network bandwidth, and the I/O blocking time is determined from the measured

arrival rate of I/O requests. If rI is the total data transferred by the I/O device

and BI is the I/O device bandwidth, then the transfer time of the I/O device is:

It =
rI
BI

(3.47)

78

Chapter 3. Proposed Analytical Models

3.3 Power and Energy Models

The objective of the energy model is to predict the power and energy requirements

of a program, as a factor of the number of active cores n and core frequency f . We

focus the model on the power and energy of the processor cores and of the memory.

To derive the energy utilized by a system we use a hybrid measurement-modeling

approach, in which we combine measure values of power with modeled service time

of the cores, memory and I/O devices. The power measurements are performed

only once per system, because they do not depend on the workload. Using in-

formation derived from these measurements, we model the energy requirements a

program running on a multicore system.

Let E be the energy requirement of a program, P the average power consump-

tion of the program, and T the execution time of the program:

E = P · T (3.48)

We derive P using a model of process cores, memory and I/O devices. Next, we

use the parallelism model to derive the execution time for different core frequencies

f , thus completing the energy model.

3.3.1 Power Model

We consider all devices in a system, except the processor, to have two power states:

idle and under load. The processor is considered to have an idle power state,

which corresponds with no active cores and several loaded states, which depend

on the number of active cores. Each core is considered to have the same two

power states. By convention, we note that the processor power utilization under

idle load includes all the idle system power, including cooling devices, peripheral

79

Chapter 3. Proposed Analytical Models

devices such as video and storage, and all motherboard circuitry different from

the memory and I/O subsystems.

The power drawn by the multicore system at any given time is divided into

three components:

1. Processors power, PCPU , is defined as the average power drawn by the processor

cores, including the power required for cooling them when active.

2. Memory power, PM , is the average power drawn by the memory subsystem.

3. I/O power, PI/O, is defined as the average power consumption of the network

I/O device.

P = PI/O + PM + PCPU

Similarly to the parallelism model, the focus of the energy model is programs with

large compute, memory or network I/O requirements, and therefore, we do not

address programs with significant energy variations caused by storage. Thus, we

consider all power drawn by storage and other motherboard circuitry constant,

and accounted into PCPU .

Using measurement analysis, we have observed that the memory traffic is non-

bursty when the memory is the system bottleneck. From this observation, it

follows that the memory bandwidth is utilized constantly throughout the execution

of the program. Therefore, we model the memory utilization as fully utilized

during periods when any cores is issuing memory requests, and zero utilized when

no cores are issuing memory requests.

Furthermore, the memory power is not considered to be affected by the fre-

quency of the processors. For NUMA systems, let p denote number of active

80

Chapter 3. Proposed Analytical Models

memory nodes and Pmc denote the power drawn by one memory node:

PM = p · Pmc

For UMA, p = 1.

On a processor system with n cores, we consider that the cores are utilized

only when a subset of the m threads of the programs are active. Therefore, the

average core utilization, cumulated across all cores is π′(m,n) + πμ(n). Let Pc

be the average power utilization of one core. The power consumption of n active

cores is:

PCPU = π(m,n)Pc

Summarizing, the power consumption of a program partitioned into m threads

running on n cores is:

P (n) = Pi + pPmc + π′(m,n)Pc (3.49)

Pc includes the power consumption of the core execution resources, such as

pipelines, branch predictors, ALU units, floating point units, among others. Pmc

include the power consumption of the memory controllers, the memory bus, inter-

processors communication network and memory banks. Depending on the work-

load, only some of these components are active. As such, the power drawn by a

core depends on the type of workload (i.e. integer operation, floating point oper-

ations or memory operations) and the core clock frequency f . We do not model

these further, and instead we perform measurements during which we measure

the power drawn when a core is effecting floating points, integer and stall cycles,

for all supported core frequencies. Similarly, we do not model further the power

drawn by the memory in idle and loaded states, but we measure it. Finally, for

81

Chapter 3. Proposed Analytical Models

I/O, we measure the power under idle and loaded states. These measurements are

discussed in the Section 4.3.3.

3.3.2 Energy Model

The energy model predicts the energy used (E) used as a factor of number of

cores, n and core clock frequency f . The approach is to divide the energy used

based on the three types of resources: cores, memory and I/O device. The total

energy of the system, E is:

E = ECPU + EM + EI/O (3.50)

The energy used by the cores depends on how the number of active cores and the

type of activity effected by the cores. Let PCPU(n, f) be the power drawn by the

processor when n core are active and operating at frequency f . By convention we

denote PCPU,idle = PCPU(0, f). The energy consumed by the cores throughout the

execution of a program is:

ECPU =

#cores∑
k=0

TnPCPU(n, f) (3.51)

where Tn is the total wall clock time when n cores are active. If the workloads

are fully parallelizable, the modeling of Tn can be simplified. Assuming that the

program uses n threads, we split the entire execution time of the program, T , into

a period during which n cores are active and periods during which no cores are

active1:

1We note that the workloads addressed by us vary less widely than online data-intensive web-
services. For more such workloads this assumption results in an underestimation of the power
usage, because cores become active at discrete intervals, rather than as a cohort. See Meisner
et al. [83] for a detailed power characterization of such workloads.

82

Chapter 3. Proposed Analytical Models

ECPU = T · UCPU · PCPU(n, f) +

T (1− UCPU)PCPU,idle (3.52)

The power and energy usage of the rest of the system (i.e. video, storage, periph-

eral devices, voltage stabilizers etc.) is considered fixed and independent of the

workload, and accounted in PCPU,idle.

When the program is executing on n cores, the CPU utilization will be equal

to the ratio of average number of cores doing useful work and memory contention,

to the total number of cores:

UCPU =
π′(m,n) + π′(m,n)ωμ(n)

n
=

π(m,n)

n
· 1 + ωμ

1 + ωμ + ωσ
(3.53)

The power drawn by a core depends on the type of activity effected by the core.

Let PWORK(n, f) be the power consumed by n cores when executing work cycles,

and PSTALL(n, f) be the power consumed when executing stall cycles. Because

threads are considered homogeneous, all cores execute an equal mix of instructions

and the power drawn by n cores is the average of PWORK and PSTALL, weighted

with the ratio of work to stall cycles:

PCPU =
w · PWORK +

(
c− w

)
PSTALL

c
(3.54)

Both PWORK and PSTALL are system characteristics that depend on n and f , while

w and c(n, f) are workload characteristics.

The energy incurred by the memory is divided into energy incurred when there

are no memory requests, EM,idle and energy incurred when the memory is serving

memory requests, EM,active:

EM = EM,active + EM,idle (3.55)

83

Chapter 3. Proposed Analytical Models

The total time where requests are serviced by the memory is memory service time,

M , while the time when the memory does not service requests is T −M . Because

M = r · sM :

EM,active = M · PM,active

EM,idle = (T −M)PM,idle (3.56)

Similarly, for the I/O requests, the time when the I/O device is busy transfer-

ring data is IT , while the idle time is T − IT :

EI/O = EI/O,active + EI/O,idle

EI/O,active = IT · PI/O,active

EI/O,idle = (T − IT) · PI/O,idle (3.57)

The model separates the impact of the system parameters from the workload pa-

rameters. PWORK , PSTALL, PCPU,idle, PM , and PI/O are independent of workloads.

Thus, they can be measured once and then used as constants in the model. In

contrast, w and IT depend only on the workload, while c, T , UCPU depend both

on workload and on the system, as described in the previous section.

3.3.3 Energy Proportionality

Energy proportionality is a desirable property of a system that consumes power

proportional to its useful work output [16]. A perfectly energy proportional system

will thus consume zero power when not loaded. In a real system, perfect energy

proportionality is not achievable because a hardware device will consume some

amount of power even when not loaded, due to circuit design concerns or leakage

currents, among other factors.

84

Chapter 3. Proposed Analytical Models

We define the energy proportionality factor of a device as the ratio of total

active energy to total energy spent to execute a program, η:

η =
Eactive

Etotal
(3.58)

Thus, the energy proportionality of the cores, memory and I/O devices are:

ηCPU =
UCPUPCPU(n, f)

PCPU,idle + UCPU(PCPU(n, f)− PCPU,idle)
(3.59)

ηM =
MPM,active

TPM,idle +M(PM,idle − PM,active)
(3.60)

ηI/O =
ITPI/O,active

TPI/O,idle + IT (PI/O,idle − PI/O,active)
(3.61)

From the above equations we note that the energy proportionality of a system is

maximized when there is no idle time. This implies that the energy proportionality

of a system is maximized when there is perfect overlap between the service times

incurred by cores, memory and I/O devices:

W = M = I (3.62)

Thus

w + b

fπ(m,n)
=

rM
μ− nL

=
rI
BI

(3.63)

We note that by adjusting the core frequency, we can balance the core per-

formance to match the memory performance. We denote with fk the kneepoint

frequency which balances the cores and memory resources such that their response

times are equal.

For small values of f , the power cost is small but the execution time is large.

85

Chapter 3. Proposed Analytical Models

For values of f close but smaller than fk, the time spent by cores waiting for

memory is balanced by performing useful work and the energy-frequency profile

reaches the optimal zone. When f > fk, power consumption increases when f

increases, but execution time does not decrease, because it is bounded by the

response time of the memory requests. This leads to very high energy usage.

Substituting M(n) using equation 3.32 in equation 3.5, we can determine the

knee point frequency f as a factor of number of active cores n:

fk(n) =
w + b

r(n)
(μ− nL) (3.64)

The relationship between fk and n is linear, but the slope is affected by the

arrival rate of memory requests to the memory controller, L, and the ratio of

useful work w + b to number of last-level misses r. Equation 3.64 entails that fk

is lower for programs with higher memory contention. This conclusion matches

the intuition, because a program with low contention will result in a high knee

frequency, thus the program can be executed at high clock frequency without

hitting the memory wall. In contrast, a program with high contention will saturate

the memory bandwidth even at low clock frequency, if the rate of memory accesses

is very high.

Next we discuss the impact of the memory resources and the I/O resources on

energy proportionality. From our memory model, we note that when the memory

subsystem is close to full utilization, the memory traffic is non-bursty. As such, we

can approximate the memory service rate μ with the effective memory bandwidth

between the cores and the memory chips, which we denote with BM . For perfect

energy proportionality, the memory and the I/O devices should be fully utilized,

and the relationship between the the bottleneck I/O bandwidth and the memory

86

Chapter 3. Proposed Analytical Models

bandwidth is:

BI =
rM
rI

(BM − nL) (3.65)

Equation 3.65 shows that the I/O throughput per core that fully utilizes the

I/O bandwidth drops linearly with the number of cores, but is affected by the

memory bandwidth and the number of I/O and memory requests. Unfortunately,

most contemporary multicore systems do not allow a dynamic changing of the

I/O or of the memory bandwidth. However, even in this case our model can serve

as a guide for system architects to provision the off-chip resources for a specific

application. For example, in datacenters most multicore systems are used for

web-hosting applications that have fairly uniform memory and I/O characteris-

tics. For such applications, our model can serve as a guide for designing custom

multicore systems that have the memory and I/O resources specifically tailored to

minimize energy wastage. Additionally, we can use the model as a case for sug-

gesting that future energy-efficient multicore systems should be provisioned with

the ability to dynamically adjust the I/O and the memory bandwidths, as long as

this adjustment results in a lower power usage.

3.4 Summary

This chapter describes our general analytical model for parallelism and energy

performance. The general analytical model is split into the parallelism model and

power-energy model. The parallelism model predicts the inherent and exploited

parallelism of a shared-memory program, and the parallelism loss due to data-

dependency, memory contention among cores and I/O overhead. We show an

implementation of the general model for commodity multicore systems using the

operating system run-queue as the proxy for parallelism, a queueing model for

predicting the memory contention factor in multiprocessor UMA and NUMA sys-

87

Chapter 3. Proposed Analytical Models

Parallelism performance

Inherent program parallelism: π(m,n) =
∑

π(m,n,t)ΔT (n)∑
ΔT (n)

1

1

Exploited program parallelism: π′(m,n) = π(m,n) 1
ωμ(n)+ωσ(n)+1

1

1

Parallelism loss due to data dependency: πd(m) = m− π(m,∞)
1

1

Parallelism loss due to memory contention: πμ(m,n) = π(m,n) ωμ(n)
ωμ(n)+ωσ(n)+1

1

1

Parallelism loss due to I/O overhead: πσ(m,n) = π(m,n) ωσ(n)
ωμ(n)+ωσ(n)+1

1

1
Energy performance

Average power consumption of a program: P (n) = Pi + pPmc + π(m,n)Pc
1

1
Energy usage of a program: E(n, f) = ECPU + EM + EI/O

Energy proportionality

Knee clock frequency: fk(n) =
w+b
r(n)

(μ− nL)
1

1
Core energy proportionality: ηCPU = UCPUPCPU (n,f)

PCPU,idle+UCPU (PCPU (n,f)−PCPU,idle)

Memory energy proportionality: ηM =
MPM,active

TPM,idle+M(PM,idle−PM,active)

I/O energy proportionality: ηI/O =
ITPI/O,active

TPI/O,idle+IT (PI/O,idle−PI/O,active)

Table 3.2: Summary of model equations

tems and a simple I/O performance model. Following our parallelism model, we

introduce a model of power and energy requirements of shared-memory programs

in multicore systems that can be used to analyze the energy proportionality of a

system. Table 3.2 summarizes the equations of our modeling approach.

88

Chapter 4

Model Parameterization and

Validation

In this section we present our experimental parameterization and validation of

the general model. First, we discuss the workloads and setup used in our exper-

iments. Second we evaluate the effects of changing the number of active cores

on memory contention and on the burstiness of memory traffic. Next, we discuss

the model parameterization, during which we measure both the system-dependent

and workload-dependent inputs. We perform a sensitivity analysis to select the

configuration of the baseline runs that generate the most accurate inputs for our

model. Finally we present validation results of the model against measurements

on commodity x64 Intel/AMD and low-power ARM Cortex-A9 multicore systems.

4.1 Workloads and Experimental Setup

In this thesis, we focus on workloads spanning different application domains and

with diverse degrees of resource requirements. The programs using in the valida-

tion and analysis cover high performance computing (HPC), financial computing,

89

Chapter 4. Model Parameterization and Validation

multimedia and web-hosting. We analyze the performance of these workloads on

commodity Intel/AMD x64 systems and low-power systems such as ARM Cortex-

A9 multicores.

4.1.1 Workloads

We have profiled six shared-memory HPC programs from NPB 3.3 suite [13], two

PARSEC 2.1 applications representing financial and multimedia workloads [18]

and a program specific to datacenter computing – memcached [4]. In the valida-

tion we only discuss a subset of the programs, that best illustrate the different

cases of core, memory and I/O resource requirements. The programs included

in the validation are shown in Table 4.1. In this chapter we present summary

results for all programs, and focus the discussion on a smaller set of workloads. In

Appendix A we present the detailed validation results over all the programs.

The problem sizes used in the validation are selected such that it always fits

in the main memory of the system, without paging out to disk swap. Because our

target systems range in main memory size from 1 GB to 64 GB, we discuss for

each system the problem size used. In general, we have used large problem sizes

that result in executions times of several minutes. For all systems, the resulting

working sets are large enough to exceed the sizes of all the caches.

Domain Name Parallel kernel

HPC

EP Embarrassingly parallel: low data dependency, low memory
IS Parallel sorting: bucket sort of integers
FT Spectral methods: fast Fourier transform
CG Sparse linear algebra: data with many 0 values
BT Dense linear algebra: use matrices and vectors to store data
SP Structured grid: penta-diagonal solver

Multimedia x264 Video encoding using H264 codec
Financial blackscholes European share options pricing using Black-Scholes PDE
Datacenter memcached In-memory key-value storage and retrieval

Table 4.1: Six NPB 3.3, two PARSEC 2.1 and one datacenter workload

90

Chapter 4. Model Parameterization and Validation

Table 4.1 presents the workloads used during the validation and analysis in

this thesis 1.

The HPC workloads are chosen from the NPB 3.3 benchmark [13] that imple-

ments HPC dwarfs [10] using OpenMP 2.5. The dwarfs selected scale in terms

of both problem size and number of threads, and cover a wide degree of data-

dependency and memory contention factors. EP is highly parallel with little

communication, while IS, FT, CG, BT and SP have significant memory require-

ments and data dependency. The programs are compiled using gcc4.3 with full

optimizations (-O3) and relaxed floating points options (-ffast-math). For the

x64 multicore systems we compiled the programs into 64-bit executables, while for

the ARM system we have compiled into 32-bit executables using the ARMv7-A

instruction set architecture with hard floating point options (-mfloat-abi=hard

-mfpu=neon-vfpv4).

The financial and multimedia workloads selected from PARSEC 2.1 [18] are

implemented using pthreads. The problem size ranges from very small (termed

simsmall) to very large (termed native). These programs have complex data-

dependency but typically little memory contention factors and no network I/O

requirements. The compile options are similar with the HPC programs.

The datacenter workload is chosen to cover the typical applications run in

large datacenters. The most widely used workloads in contemporary datacenters

are webservers such as Apache or lighttpd and in memory cache programs such

as memcached [82, 83]. Because the webservers have complex storage I/O re-

quirements, we have opted to use memcached version 1.4.13 as our representative

datacenter workload. Memcached is an in-memory key-value store that is widely

used to serve dynamic page content by web giants such as Facebook, Twitter and

1In this thesis, we use the NPB notation for workloads. For example EP.C refers to program
EP with input C. When a program is referred without input, it refers to a characteristic of the
program that is input-independent.

91

Chapter 4. Model Parameterization and Validation

Amazon, among others. By relying on an in-memory cache, they significantly

reduce the need to access the storage-backed databases, thus improving the re-

sponse time of their requests. We ran memcached on a cache size of 250 MB (the

cache size is chosen such that it fits even in systems with only 1 GB of RAM).

Memcached uses pthreads as worker threads to serve requests. The request are

issued by program memslap2 version 0.44. Memslap is run on different system,

which is connected to the system under test through an Ethernet network inter-

face. Memslap continuously sends requests to memcached, with the thinking time

between requests independent on the response rate of the request. The datacen-

ter workload memcached has complex CPU, memory and I/O requirements, but

negligible data-dependency among the worker threads.

4.1.2 Systems

The measurements and the validation are conducted over a range of traditional

(x64) and low-power ARM multicore systems:

1. Intel UMA (8 cores): Dual socket Intel E5320 at 1.87 GHz, 4 cores and

8 MB L2 cache per socket, 1 memory controller with 4 GB dual channel

DDR2 RAM, 1 Gbps Ethernet, Linux 2.6.22 64-bit;

2. Intel NUMA (24 cores): Dual socket Intel X5650 at 2.67 GHz, 6 cores

with 12 hardware threads and 12 MB L3 cache per socket, 2 memory con-

trollers with 24 GB RAM single channel DDR3 RAM, 1 Gbps Ethernet,

Linux 2.6.35 64-bit;

3. AMD NUMA (48 cores): Quad socket AMD Opteron 6172 at 2.10 GHz,

12 cores with 10MB L3 cache per socket, eight memory controllers with 64

2Memslap issues requests with constant size and uniform popularity, which may lead to
higher CPU utilization than in actual usage of memcached. For practical traffic characteristics
see Atikoglu et al. [11]

92

Chapter 4. Model Parameterization and Validation

GB dual-channel DDR3 RAM, 1 Gbps Ethernet, Linux 2.6.35 64-bit;

4. ARM Cortex-A9 (4 cores): Samsung Exynos 4412 System-on-a-Chip

with 4 ARM Cortex-A9 cores ranging from 0.2 to 1.4 GHz, 1 MB L2 cache,

one memory controller with 1 GB dual-channel LPDDR2, 100 Mbps Ether-

net, Linux 3.6.0 32-bit.

In systems with simultaneous multithreading, we consider the two hardware

threads of each physical core as logical cores, because the objective of this study

is off-chip memory requests. Each of the two hardware threads issue memory re-

quests independently, so from the perspective of the memory accesses, the physical

core with two hardware threads appears as two cores. Therefore, we consider Intel

NUMA as having 24 cores.

The multicore systems used in experiments have two main types of memory

architectures, uniform memory access (UMA) and non-uniform memory access

(NUMA). In our UMA systems, two quad-core processors are connected to a com-

mon memory controller through private buses. The last-level cache in UMA is

semi-unified, because a pair of cores shares a common L2 cache. Since all the

cores share one memory controller, contention occurs when memory requests ex-

ceed the capacity of the memory controller. In contrast, each multicore processor

in a NUMA system accesses its own memory through its dedicated local mem-

ory controller. A core accesses memory owned by another processor through its

inter-processor connection network. All multiprocessor systems from Intel since

the Nehalem microarchitectural generation (2009) and from AMD since the K8

generation (2003) are NUMA systems.

The interconnect networks for the NUMA systems is shown in Figure 4.1.

Intel NUMA has two memory controllers directly interconnected, therefore there

are two latencies for accessing the memory – direct and one hop. AMD NUMA

93

Chapter 4. Model Parameterization and Validation

has eight memory controllers interconnected through a partial mesh, and there

are three latencies of accessing the memory – direct, one hop and two hops.

(a) Intel NUMA (b) AMD NUMA

Figure 4.1: Memory interconnect of NUMA systems

The program was partitioned into a fixed number of threads. The trace of

the operating system run-queue was obtained using a C program that samples

the procfs entries to log the number of runnable threads and their user-level

CPU service time. We used time system utility to measure the wall clock time,

sched_setaffinity system call to restrict the number of cores allocated to a

program, numactl utility to specify the memory access nodes.

The number of cores was varied from one to maximum number of cores of the

machine using a fill-processor-first policy. For Intel NUMA, memory controller 0

was used until all cores from processor 0 were active, and then memory controller

1 was activated. For AMD NUMA, the memory controllers were activated in

order of increasing latency: 0, 2, 4, 6, 1, 3, 5, 7. We used PAPI 4.1.2 to measure

the following counters: PAPI_TOT_CYC for the number of cycles, PAPI_TOT_INS

for the number of instruction, PAPI_RES_STL for stall cycles, PAPI_L2_TCM for the

number of cache misses, LLC_MISSES on Intel NUMA and L3_CACHE_MISSES on

AMD NUMA for L3 misses. The work cycles were determined as the difference

between all cycles and stall cycles. We used papiex tool to measure the hardware

94

Chapter 4. Model Parameterization and Validation

counters of the profiled applications only, without interference from background

processes and operating system. To ensure that the memory bandwidth is not

shared with any other process, we turned off all non-essential processes and we

run the profiled application with the highest priority allowed (process nice value

-20). Unless otherwise stated, we run each experiment five times, and for the cases

where we found significant differences among the runs, we present and discuss the

relative difference among the runs.

4.1.3 Power and Energy Measurement

Samsung
Exynos 4412

System
Under
Test

Intel Core i7

Controller
System

Yokogawa WT210

Power Monitor

5V
DC

100 Mbps
Ethernet

Serial
Interface

Power
Supply

Figure 4.2: Power and energy measurement setup

For measuring the power and energy consumption, we use a Yokogawa WT210

digital power meter configured to measure the power and energy per one input

channel. Because we measure the overall system power, we connect the power

meter to the power supply of the entire system. We perform power and energy

measurements only for the low-power computing device, because we can measure

more accurately the DC power directly supplied to the board. For Intel and

AMD systems, the AC power supplied to the system is converted to DC using

an internal power supply. Due to this conversion from AC to DC, the sensitivity

of the measurements are much lower and thus we cannot accurately detect the

changes in power and energy usage, when the programs exert different types of

95

Chapter 4. Model Parameterization and Validation

service requirements. For these reasons, we have performed validation of the power

and energy model only on the ARM system.

Figure 4.2 shows the setup of the power measuring system. An Intel Core i7

system is used as a controller, connected to the ARM system under test using

a 100 Mbps Ethernet link. The controller starts and stops all experiments and

collects all the data. The power monitor outputs every second the average power

during the last second, and total energy used since an arbitrary time moment.

4.2 Measurement Analysis of Memory Contention

This section presents our observations on the memory contention in large multicore

systems with different memory architectures. We first show the effects of memory

contention on parallel programs by varying the number of active cores for different

problem sizes. Next, we study the nature of memory contention by profiling the

patterns of memory access.

4.2.1 Impact of Number of Cores on Memory Contention

To understand the impact of the number of active cores on memory contention,

we profile a suite of HPC programs and PARSEC applications, by changing the

number of cores and memory placement policies. We evaluate the growth in the

work of the program, for different problem sizes.

Experimental Setup Our measurement experiments focus on understanding

how the execution of a program is affected by the off-chip memory traffic. We first

perform a set of measurements on the number of cycles required to execute the

programs when using different number of cores. Second we measure the patterns

of memory traffic to understand the nature of the memory contention. Because we

96

Chapter 4. Model Parameterization and Validation

evaluate the performance of the memory subsystem, we use the HPC workloads,

which are much more memory-intensive compared to the PARSEC workloads.

Memory Contention vs. Number of Cores For each program, we measure

the total number of cycles required to execute the program including initialization

and cleanup, as well as the number of stall and work cycles, and the total number

of last-level cache misses. Mainstream processor cores are based on superscalar

and deeply pipelined microarchitectures. Thus, in each cycle a core can execute

multiple integer and floating point operations and issue multiple memory requests.

If the operands of an instruction are available in the registers, the execution of

the instruction can proceed. Otherwise, the core stores the instruction in the

instruction dispatch queue until the operands are fetched from the first-level cache.

If the data is not available in the first-level cache, then it attempts to fetch it from

the subsequent levels of cache. If the data is not found in cache, the core issues

a memory request to the main memory. Due to the long latencies of accessing

higher levels of cache or the main memory, instructions can be stopped for several

hundreds of cycles [62]. If the entire dispatch queue is filled with instructions

waiting for data, no instructions can proceed and the core is stalled waiting for

memory. If no operations are completed during a cycle, it is called a stall cycle. In

contrast, if at least one instructions is completed during the cycle then is termed

a work cycle. Next we discuss our observations.

Table 4.2 shows the normalized increase in the total number of cycles for five

HPC dwarfs with small (W) and large (C) problem size3. The increase in the

number of cycles is defined as the difference between the total cycles incurred

using n cores and one core, normalized to the number of cycles on one core. We

present the normalized increase for n equal to half and all cores of the systems (i.e.

3Problem sizes are denoted by letters, and are according to NPB benchmark specification.
Notation CG.C means program CG problem size C.

97

Chapter 4. Model Parameterization and Validation

Program Size

Normalized Increase in Number of Cycles
Intel UMA Intel NUMA AMD NUMA
#Cores #Cores #Cores

n=4 n=8 n=12 n=24 n=24 n=48
EP

W

0.00 0.00 0.03 0.57 0.01 0.59
IS 0.35 0.90 0.33 0.33 0.21 0.44
FT 0.41 1.04 0.18 0.34 0.11 0.23
CG 0.06 0.04 0.10 0.43 0.11 0.13
BT 0.14 0.33 0.08 0.30 0.11 0.12
SP 0.27 0.86 0.10 0.50 0.13 0.21
EP

C

0.00 0.00 0.01 0.54 0.06 0.55
IS 0.14 0.56 0.26 0.85 0.40 0.70
FT 0.70 1.76 1.62 3.94 0.39 0.46
CG 0.64 2.41 1.43 3.31 0.83 1.91
BT 0.48 1.18 1.73 2.25 0.20 0.75
SP 3.14 7.04 6.55 11.59 4.69 9.84

Table 4.2: Normalized increase in number of cycles in HPC dwarfs

4 and 8 on Intel UMA, 12 and 24 on Intel NUMA, 24 and 48 on AMD NUMA).

Because FT.C working set size exceeds 4 GB and leads to swapping in our Intel

UMA system, we use class B as large problem size for program FT on Intel UMA.

Overall, on all three systems the increase in number of cycles is more pronounced

for higher number of active cores.

We identified two main types of behavior with respect to the number of active

cores:

1. Programs with small problem size or working sets which are cached effec-

tively generate low number of off-chip requests. This leads to a negligible

growth in number of cycles when the number of active cores increases.

2. Programs with large problem sizes generate high number of off-chip memory

requests which lead to a significant growth in the number of cycles when the

number of cores increase.

We show these two patterns using a representative HPC program. Program

CG is a parallel application that approximates the largest eigenvalues for a large

98

Chapter 4. Model Parameterization and Validation

and sparse matrix. We use a small and a large problem size [13]:

1. Class W consists of a matrix with 7, 0002 elements;

2. Class C consists of a matrix with 150, 0002 elements.

CG is representative for all HPC applications and is chosen because it represents

a case with moderate memory contention (SP has higher contention, FT, IS,

EP, and all PARSEC programs have lower contention). Small problem size W

generates a small increase in the number of cycles, even on large number of cores.

The largest increase for problem CG.W is reached on Intel NUMA on 24 cores,

with 63% increase. In contrast, CG.C shows a large growth in number of cycles,

on all three systems, with a maximum increase of 331% on Intel NUMA.

Next, we focus the discussion on the more interesting case of large problem

size. Figure 4.3 shows the results for CG.C. On all systems, there are three main

observations when the number of active cores is increased:

1. The number of total cycles increases non-uniformly.

2. The growth in number of total cycles is due to an increase in number of stall

cycles.

3. The number of work cycles and the number of last level cache misses grow

insignificantly.

For problem size C, the patterns of growth depend on the architecture and the

number of memory controllers. For Intel UMA we observe two sustained growth

intervals, the first from one to four cores, the second from five to eight. This

corresponds to a per-processor pattern of growth. Similarly, on Intel NUMA, the

growth on the first processor (1 to 12 cores) is similar in shape with the growth

from 13 to 24 cores. However, when the second processor is activated (from 13

99

Chapter 4. Model Parameterization and Validation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 4 8
 0

 2

 4

 6

 8

 10

N
um

be
r o

f C
yc

le
s

[*
10

11
]

N
um

be
r o

f L
as

t L
ev

el
 M

is
se

s
[*

10
10

]

Number of Cores

Total Cycles
Stalled Cycles

Work Cycles
Last Level Misses

(a) Intel UMA (Xeon E5320)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 6 12 18 24
 0

 2

 4

 6

 8

 10

 12

 14

N
um

be
r o

f C
yc

le
s

[*
10

11
]

N
um

be
r o

f L
as

t L
ev

el
 M

is
se

s
[*

10
10

]

Number of Cores

Total Cycles
Stalled Cycles

Work Cycles
Last Level Misses

(b) Intel NUMA (Xeon X5650)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 6 12 18 24 30 36 42 48
 0

 1

 2

 3

N
um

be
r o

f C
yc

le
s

[*
10

11
]

N
um

be
r o

f L
as

t L
ev

el
 M

is
se

s
[*

10
10

]

Number of Cores

Total Cycles
Stalled Cycles

Work Cycles
Last Level Misses

(c) AMD NUMA (Opteron 6172)

Figure 4.3: Effect of varying the number of cores on CG.C

100

Chapter 4. Model Parameterization and Validation

cores onward), there is a small decrease in memory contention which results from

the added memory bandwidth of the second memory controller. On AMD NUMA,

there are four intervals of growth, each corresponding to a processor. Although

each processor has two memory controllers, which are activated at 6, 18, 30 and 42

active cores, their activation does not change significantly the shape of the growth.

As the number of cores is increased, we observe that the number of work cycles

remains roughly constant because the critical path of the program is dominated

by instruction waiting for operands fetched from memory. Instruction execution

is interleaved almost fully with fetching operands. Thus, the increase in the total

number of cycles is dominated by waiting for memory requests or stall cycles.

Table 4.3 shows presents experimental evidence for the assumption that work

cycles and last-level cache misses do not change significantly when the number

of active cores change. We measure w(n) and r(n) and observe that on Intel

UMA, the number of r(n) does not change significantly neither among different

runs nor when changing the number of cores. On Intel and AMD NUMA, the r(n)

increases slightly with n, and therefore, we use a normalized value of w(n) to r(n).

We computed the coefficient of variation of w(n) and r(n) for UMA and of w(n)
r(n)

for

NUMA. For NUMA, we restricted the memory access to the local controller only.

Overall, the variation of w(n) to r(n) is very small, confirming our assumption

System
Coefficient Programs
of variation EP.C BT.C SP.C FT.B IS.C CG.C

Intel UMA (Xeon E5320)
w(n) 0.00 0.00 0.04 0.02 0.01 0.02
rM(n) 1.30 0.02 0.11 0.06 0.00 0.03

Intel NUMA (Xeon E5520) w(n)
rM (n) 3.30 0.03 0.06 0.02 0.04 0.83

Table 4.3: Variation of rM(n) and w(n) using one memory controller

for weak-scaling programs. This can be clearly seen in Figure 4.3, as the shape of

growth of the stall cycles closely follows the shape of growth of total cycles.

101

Chapter 4. Model Parameterization and Validation

Another interesting observation is that the number of last-level cache misses,

L2 for UMA and L3 for NUMA, remains stable. Because we fixed the number

of threads, and varied only the number of cores, the total number of instructions

also remains constant for a given problem size. This confirms that the increase in

the total number of cycles is the result of contention for off-chip memory requests,

rather than an increase in the number of memory requests or an increase in the

number of instructions executed.

4.2.2 Burstiness of Memory Traffic

To understand the nature of memory contention, we profiled the memory access

patterns. Using a very fine grained sampler we have developed, we measure the

number of last-level cache misses that occur every five microseconds. This allows

us to determine the burstiness of memory accesses over time. The sample size

of five microseconds gives very good resolution of the lifetime of the applications,

but has minimal impact on intrusiveness. The difference between the number of

last level cache misses with and without the profiler is less than 3%.

The second objective of our experiments is to analyze the relationship between

problem size and the burstiness of memory traffic. To study this, we measure

the burstiness of last-level cache misses over time. Figures 4.4 and 4.5 show the

burstiness of off-chip memory traffic for two representative programs CG and x264,

each for a selection of problem size ranging from small and large, as shown in Ta-

ble 4.4. Program CG determines the largest eigenvalues of a sparse matrix, while

x264 performs H.264 video encoding for different frame numbers and resolutions.

Figures 4.4 and 4.5 show the burstiness of the memory traffic for both pro-

grams, on Intel NUMA using 24 threads and 24 cores. The graph in log-log scale

plots P (Burst Size > x), the probability that the memory burst size exceeds the

102

Chapter 4. Model Parameterization and Validation

Program and Size Problem Size Description
CG.S matrix of size 1, 4002

CG.W matrix of size 7, 0002

CG.A matrix of size 14, 0002

CG.B matrix of size 75, 0002

CG.C matrix of size 150, 0002

x264.simsmall 8 frames at 640 x 360
x264.simmedium 32 frames at 640 x 360
x264.simlarge 128 frames at 640 x 360
x264.native 512 frames at 1, 920 x 1, 080

Table 4.4: Problem size description for CG and x264

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1 2 5 10 20 50 100 200 500 1000 2000

P
ro

b(
#R

eq
ue

st
ed

 C
ac

he
 L

in
es

 >
 x

)

x(#Cache Lines)

cg.S
cg.W
cg.A
cg.B
cg.C

Figure 4.4: Burstiness of off-chip memory traffic: HPC dwarf CG

103

Chapter 4. Model Parameterization and Validation

number of cache lines x, for different sizes of cache lines. The plot shows that

the size of memory requests varies widely, ranging from four to seven orders of

magnitude from small to large program sizes. However, the small (S and W for

CG, and simsmall, simmedium and simlarge for x264) and large problem sizes

(B and C for CG, native for x264) behave quite differently. In small problem

size, for both programs the long tail property of the distribution of burst size is

prominent. For bursts larger than 50 cache lines, log P (BurstSize > x) decreases

linearly with log x with the log of burst size in approximately a diagonal straight

line. This confirms that the traffic is highly bursty, which is in line with previous

10-6

10-5

10-4

10-3

10-2

10-1

100

1 2 5 10 20 50 100 200 500

P
ro

b(
#R

eq
ue

st
ed

 C
ac

he
 L

in
es

 >
 x

)

x(#Cache Lines)

x264.simsmall
x264.simmedium

x264.simlarge
x264.native

Figure 4.5: Burstiness of off-chip memory traffic: PARSEC x264

observations about the nature of memory traffic [63]. However, as the problem

size increases, the deviation from a decreasing diagonal line becomes clearer, and

for large problem sizes B and C in program CG the long tail property is absent.

This means that CG memory traffic is not significantly bursty. The intuitive ex-

planation behind this observation is that large problem size B and C the memory

bandwidth is highly utilized and therefore there are no significant time intervals

without memory requests. The same trend of decreasing burstiness when problem

size increases was observed for all programs with significant memory contention

104

Chapter 4. Model Parameterization and Validation

(IS, CG, FT , BT and SP). The results on the other two systems, Intel UMA and

AMD NUMA are roughly similar.

In conclusion, our experiments show two types of memory contention behavior

with respect to problem size:

1. Small problem sizes lead to small contention for off-chip resources but result

in highly bursty traffic.

2. Large problem sizes can lead to non-bursty memory traffic but results in

large off-chip memory contention among cores.

From these results we conclude that we can apply a stochastic single-server queue-

ing model to analyze the memory response time for large parallel programs on

multicore systems, as proposed in section 3.2.5. In the model parameterization

section we show that the program with bursty memory traffic can be modeled us-

ing a Pareto distribution of service time of memory requests, while the non-bursty

memory traffic can be modeled using an exponential distribution of service time.

4.3 Model Parametrization

In this section we discuss the selection of two types of model inputs: workload-

specific and system-specific. Workload specific inputs are selected using a series of

baseline runs on configurations determined using a sensitivity analysis. System-

specific parameters are measured only once per system.

4.3.1 Baseline Runs Configuration

We discuss the configuration of the baseline run by sampling the run-queue size

and exemplify this selection on program BT.C.

105

Chapter 4. Model Parameterization and Validation

The choice of run-queue sample interval is important in determining the correct

parallelism profile, and we consider two opposing aspects:

1. If the sample interval is large, there is a higher probability of not detecting

parallelism changes within the interval. Ideally, the sample interval must

thus be lower than the time between two consecutive changes in the value

of π(m,∞, t).

2. It the sample interval is too small, the service time of the threads cannot

be accurately determined, leading to incorrect compensation for load imbal-

ances.

Quantitative analysis is performed to determine the optimal run-queue sample

intervals and number of cores for the baseline run. Figure 4.6 shows the modeled

π(m,∞) for program BT class C (BT.C), partitioned in 8 threads, with baselines

conducted on 1, 2, 4 and 8 cores on the Intel UMA system. Figure 4.6 shows that

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500

In
he

re
nt

 P
ar

al
le

lis
m

Sample Size [msec]

Sample too fine Sample too
coarse

BT.C 1 core
BT.C 2 cores
BT.C 4 cores
BT.C 8 cores

Figure 4.6: Modeled inherent parallelism: effect of run-queue sample interval

sample intervals lower than 10 ms are impractical, because the procfs updates the

CPU service time of the threads in 10 ms intervals. Because on our systems the

106

Chapter 4. Model Parameterization and Validation

scheduler quanta ranges between around 100 ms for Intel UMA and 80 ms for

Intel NUMA, the useful interval of sampling is between 10-80 ms.

The measured inherent parallelism of BT.C on UMA, for m = 8 threads,

π(8, 8) is 7.70, averaged over 10 runs. Based on this analysis, we conclude that the

accuracy of our model depends on the relative difference between sample intervals

and threads inter-synchronization time. We therefore opt for a value of 10 ms,

the smallest in the useful range. Furthermore, the number of cores in the baseline

run does not change the predicted value of π(m,∞) significantly. Therefore we

select one core as the value for the baseline runs, to capture the largest number

of samples.

4.3.2 Workload Parameterization

Based on the observations from the memory contention measurement experiments,

we classify the workloads into two categories:

1. Programs with low memory contention, which trigger few off-chip requests

are considered to be CPU-bounded on all configurations. Thus, the response

times of the memory requests is totally overlapped with the response time

of the core service requests. When applying the model, we consider the

response time of the memory requests negligible, when compared to the

larger response time of the core service requests.

2. Programs with high memory contention trigger sufficient off-chip memory

requests to become memory-bounded. We use a M/M/1 queueing model to

predict the response time of the program as a factor of number of active

cores. These programs can become memory-bounded on configurations with

large core counts or high core frequencies.

107

Chapter 4. Model Parameterization and Validation

System Program Growth C(nmax)
C(1) Bottleneck μ

rM
[×1013] L

rM
[×1013]

Intel UMA

EP.C 0.99 Cores – –
IS.C 1.56 Memory 36.73 898.8
CG.C 3.42 Memory 11.07 95.81
FT.B 2.76 Memory 61.76 510.19
BT.C 2.18 Memory 2.63 26.9
SP.C 8.04 Memory 6.76 33.93
x264 1.10 Cores – –

blackscholes 1.02 Cores – –
memcached 1.55 I/O – –

Intel NUMA

EP.C 1.02 Cores – –
IS.C 1.27 Memory 1031.43 19.29
CG.C 2.44 Memory 139.74 7.12
FT.B 2.62 Memory 127.10 6.77
BT.C 1.74 Memory 109.31 11.33
SP.C 7.54 Memory 48.16 3.52
x264 1.21 Cores – –

blackscholes 1.00 Cores – –
memcached 1.36 I/O – –

AMD NUMA

EP.C 1.30 Cores – –
IS.C 1.32 Memory 738.01 8.08
CG.C 1.72 Memory 78.69 2.93
FT.C 1.67 Memory 116.34 2.57
BT.C 1.2 Memory 228.58 3.35
SP.C 2.88 Memory 318.46 17.36
x264 1.422 Cores – –

blackscholes 1.31 Cores – –
memcached 1.65 I/O – –

ARM Cortex-A9

EP.C 1.01 Cores – –
IS.B 2.29 Memory 13.73 86.87
CG.B 2.60 Memory 20.42 119.90
FT.A 3.11 Memory 84.88 460.40
BT.C 1.90 Memory 12.29 90.18
SP.C 2.67 Memory 4.23 24.15
x264 1.17 Cores – –

blackscholes 1.08 Cores – –
memcached 0.64 I/O – –

Table 4.5: Parameterization of memory contention model

108

Chapter 4. Model Parameterization and Validation

Table 4.5 shows the classification of each workload based on the system bottle-

neck such as CPU, memory or I/O. For each program, we report the normalized

increased in the total cycles incurred when using one core against total cycles

incurred when executing on the total number of cores that fully exercises one

memory controller. For example, on the Intel UMA, since all the processors share

the main memory, nmax = 8 is the maximum number of cores that share one

memory domain. For ARM Cortex-A9, nmax = 4. For the NUMA systems, we

use nmax = 12 on Intel NUMA and nmax = 12 on AMD NUMA.

For memory-bounded programs, we provide the empirical parameters μ and L

for the M/M/1 queueing models that describe the response time of the memory

requests. Since for our weak-scaling programs, the number of last level cache

misses rM is assumed constant, we normalize the values of μ and L to the total

last level cache misses rM .

4.3.3 System Parameterization

Freq. Idle Power [mW] Stall cycles power [mW] Float power [mW] Integer power [mW]
[GHz]

System Processor
Number of Cores Number of Cores Number of Cores

1 2 3 4 1 2 3 4 1 2 3 4

0.2 1,740 1,512 – – – 21 35 70 108 137 43 90 132 176
0.3 1,750 1,522 – – 34 66 51 105 159 212 63 132 196 270
0.4 1,762 1,534 – 45 88 131 73 149 228 289 92 188 280 360
0.5 1,778 1,550 – 90 142 194 97 200 292 372 124 249 352 467
0.6 1,796 1,568 22 128 192 255 122 244 360 465 152 306 436 592
0.7 1,811 1,583 46 167 237 309 149 291 430 569 184 358 522 734
0.8 1,823 1,595 74 209 284 366 176 342 542 687 218 419 647 859
0.9 1,850 1,622 108 248 346 438 212 403 643 825 256 548 780 1,028
1.0 1,880 1,652 150 308 428 583 255 540 779 1,005 310 655 941 1,260
1.1 1,908 1,680 174 356 537 672 302 642 922 1,214 370 777 1,152 1,532
1.2 1,952 1,724 218 476 631 799 366 774 1,123 1,485 488 944 1,391 1,868
1.3 2,026 1,798 269 563 752 963 472 933 1,377 1,854 574 1,149 1,749 2,384
1.4 2,081 1,853 369 649 871 1,114 550 1,079 1,609 2,220 662 1,328 2,079 2,869

Table 4.6: Static power characterization of ARM Cortex-A9 (Exynos 4412)

To determine the system parameters used as model inputs by our model, we

execute a series of microbenchmarks designed by us to determine the power con-

sumption for different types of activities. Each of the three programs stresses one

type of CPU activity: work integer cycles, work floating point cycles and stall

109

Chapter 4. Model Parameterization and Validation

cycles due to waiting for memory. Additionally, we collect the idle power. To

determine the power drawn by memory and Ethernet device, we selectively turn

on and off these components. All the power values reported in this section are

obtained by averaging the results across three repetitions. Table 4.6 shows the

static power characteristics of the system.

First we determine the total system power under idle load, when changing the

core frequency. We measured total system power and processor-only power, which

is obtained by discounting the power drawn by the memory and I/O components.

Thus, in our analysis the total processor power includes the power consumed by

miscellaneous system components such as GPU, peripherals, voltage converters

and stabilizers and other motherboard circuitry. The power drawn by these com-

ponents is considered fixed and independent of the workloads. Next, we profile the

processor active power when the cores execute two types of work cycles: integer

operations and floating point operations. To determine this power, we designed a

microbenchmark that achieves close to 100% core pipeline utilization under each

type of operations. The results are determined for different number of cores, un-

der each supported clock frequency. To profile the stall cycles, we designed a

microbenchmark that reads a large amount of data from memory, and continu-

ously attempting to miss the last level of cache. This benchmark trigger more

than 90% stall cycles in the cores pipeline and intense memory activity. For this

microbenchmark, we measure the total system power and deduct the power in-

curred by the memory. As shown in the table, for small core frequencies and core

counts, the processor does not fully stress the memory bandwidth, and thus, the

stall cycles power cannot be measured for these configurations. When applying

the model, we approximate by zero the power drawn on these configurations when

the cores are executing stall cycles only. The memory idle power is taken from

the literature [80] and is approximated as 28 mW, which is typical for a LPDDR2

110

Chapter 4. Model Parameterization and Validation

DRAM module powered at 1.2 Volts. We measure the active memory power by

running the microbenchmark that constantly misses the cache. Under this state,

the memory draws approximately 248 mW, derived after discounting the power

drawn by the rest of the system. The JEDEC standard for LPPDR2 DRAM in-

dicates a specification of 250 mW power consumption when powered at 1.2 V [3],

which confirms the parametrization results. The I/O power load is determined by

measuring the total power with network card under full load, under idle load and

turned off. The Ethernet card draws 200 mW, irrespective of the load.

A power measurement experiment on a Samsung Galaxy S3 phone done using

direct measurement with attached circuit probes obtains similar figures for CPU

and memory power consumption [23]. Considering that the Samsung Galaxy S3

and the Exynos 4412 low-power server analyzed by us have identical CPU and

memory subsystem, this stands to confirm the accuracy of our static power char-

acterization.

4.4 Models Validation

In this section, we discuss the validation of our parallelism model against mea-

surements. First we validate the memory and I/O contention models individually.

Next we show the validation of the entire models for inherent and exploited par-

allelism. For each type of validation, we show in this chapter a subset of the

results, focusing on programs that exhibit stronger resource demands. For the

memory contention model we use six HPC dwarfs from the NPB benchmark suite

that cover a wide range of the intensity of CPU and memory service-demands.

From PARSEC, we chose x264 and blackscholes, which are programs targeting

multimedia and financial analysis. Finally, as representative for datacenter server

workloads, we use memcached, which can exhibit complex CPU, memory and I/O

111

Chapter 4. Model Parameterization and Validation

demands. For each model we always present summary results for the six dwarfs,

the two PARSEC programs and memcached, but discuss in detail the validation

for only a subset of programs, discussed in each validation subsection. The detailed

validation results for all programs are shown in Appendix A.

4.4.1 Memory Contention

We discuss the validation and accuracy of our model against measurements before

analyzing the effects of varying the number of cores. We show detailed validation

results on a program with large contention, CG.C and another with small con-

tention, EP.C. We also provide summary validation results for all HPC dwarfs,

two PARSEC application and memcached.

Figure 4.7(a), (c) and (e) shows the comparison between modeled and measured

degree of memory contention for program CG.C using a fill-processor-first-policy

on the traditional multicore system. The average relative error across all measured

and predicted model results of memory contention factor ωμ is 5-11% on all three

systems. For Intel UMA we use three measured values of c(n) to apply the model:

c(1), c(4) and c(5) and achieve average accuracy of 6%. For AMD NUMA, we use

five measured values as inputs: c(1), c(12), c(13), c(25) and c(37) and achieve the

best accuracy with error less than 5% across all problems with large contention.

For AMD NUMA, we could use three values, c(1), c(12), c(13) and assume that

all interconnects are homogeneous, but this degrades the prediction accuracy up

to 25% average relative error. On Intel NUMA, we use three measured values

of c(n): c(1), c(12) and c(13) and the model reaches the lowest accuracy with

11% average error, largely due to the misprediction around the values of c(6) and

c(18). This misprediction is caused by two factors: (i) oversubscription effects

and (ii) variability of measurement values. Because we fix the number of threads

to 24 on Intel NUMA but vary the number of cores, there will be more than

112

Chapter 4. Model Parameterization and Validation

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (Number of Cores)

Measurement
Model

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

(a) CG.C on Intel UMA (Xeon E5320) (b) EP.C on Intel UMA (Xeon E5320)

 0

 1

 2

 3

 4

 1 6 12 18 24

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (Number of Cores)

Measurement
Model

 0

 1

 2

 3

 4

 1 6 12 18 24

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (Number of Cores)

Measurement
Model

(c) CG.C on Intel NUMA (Xeon X5650) (d) EP.C on Intel NUMA (Xeon X5650)

 0

 0.5

 1

 1.5

 2

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (Number of Cores)

Measurement
Model

 0

 0.5

 1

 1.5

 2

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (Number of Cores)

Measurement
Model

(e) CG.C on AMD NUMA (Opteron 6172) (f) EP.C on AMD NUMA (Opteron 6172)

 0

 1

 2

 3

 4

 5

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ

Frequency [GHz]

1 core 2 cores

3 cores 4 coresMeasurement
Model

 0

 1

 2

 3

 4

 5

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ

Frequency [GHz]

1 core 2 cores

3 cores 4 coresMeasurement
Model

(g) CG.B on ARM Cortex-A9 (Exynos 4412) (h) EP.C on ARM Cortex-A9 (Exynos 4412)

Figure 4.7: Validation of memory contention model: CG and EP

113

Chapter 4. Model Parameterization and Validation

one thread executing on each core. Furthermore, to counter the variability of

measurement values due to the operating system scheduler moving threads across

NUMA domains, we bind each thread to a specific core. This has reduced the

variability of the results, but has introduced negative caching effects between the

threads that share the same core. These effects are more pronounced when the

oversubscription factor (ratio of threads to cores) is large or a round number, which

largely corresponds with the effects observed in related work [55]. The patterns of

growth observed on the other programs with large contention (FT and SP) were

similar to those observed on CG. On all three systems, the core clock is fixed to

the maximum supported frequency.

Figure 4.7 (g) and (h) show the validation of the memory contention model

on the low-power ARM Cortex-A9 system. The two graphs show the effects of

both changing the number of cores and the core frequency. In order to apply the

model, we perform four baseline runs. The first two baseline runs are performed

on one core at the minimum frequency (f = 200 GHz) and at maximum frequency

(f = 1400 GHz). The last two baseline runs are performed using all four cores at

minimum frequency at maximum frequency, respectively. We apply the M/M/1

queueing model and regress the number of cycles incurred as the number of cores

increases, for both f = 200 MHz and f = 1400 MHz. This allows us to determine

the cycles incurred on all four cores when operating at the two extreme frequency

points. To predict for intermediate frequency points, we leverage the linear in-

crease in number of memory cycles as the core frequency increases, as described

by Equation 3.29. Thus, using the four baseline configuration we can predict the

number of cycles for all 52 configurations (4 cores × 13 frequency points).

Programs with low contention do not result in an significant increase in number

of cycles when the number of active cores is increased. Figure 4.7(b), (d), (f) and

(h) show the modeled and measured values of contention for EP.C. For UMA,

114

Chapter 4. Model Parameterization and Validation

memory contention is negligible because demand for memory that arises from

more cores can be met by the cache and off-chip memory resources. However, the

NUMA architectures show two interesting trends. The effect of positive memory

contention (ωμ(n) < 0) is observed with less than 11 cores on EP.C running on

Intel NUMA because adding cores also increases memory resources (L1 and L2

cache). Beyond one processor, memory contention increases to 50%, which is not

captured by our model. This is caused by an increase in number of last level

cache misses, from 1, 800 misses on one core to 31 millions on 24 cores. Our

model assumes the number of work cycles and last level misses constant. This

assumptions holds for programs with large memory contention, but may not be

for programs with low contention, such as EP . Furthermore, the increase in degree

of contention is correlated with the latency of memory accesses. On AMD NUMA,

from 1 to 30 cores only local and 1-hop memory is accessed and growth in number

of cycles is moderate (under 5%). From 30 to 42 cores, both one-hop and two-

hops remote memory are accessed and this results in a more pronounced increase

in number of cycles incurred by the program.

For the ARM Cortex-A9, we show in Figure 4.7(g) and (h) both the effects of

changing the number of cores and the core frequency. This allows us to validate

both the accuracy of the M/M/1 queueing model and of the dependency between

core frequency and memory response time, as described by Equation 3.28.

Next we show summary results for all applications. The goodness-of-fit for

determining the linearity of 1
c(n)

, as shown in table 4.7 for n = 1 to 4 on Intel UMA,

n = 1 to 12 on Intel NUMA and AMD NUMA, further confirms the accuracy of

our model. There is a correlation between the goodness of fit R2 and the degree

of memory contention. Programs EP.C and x264.native show lower collinearity,

because they exhibit the smallest degree of contention. This confirms that the

M/M/1 queueing model does not explain their behavior very well, because they

115

Chapter 4. Model Parameterization and Validation

System
Goodness-of-fit, R2, for Programs

EP IS FT CG BT SP x264 blackscholes memcached

Intel UMA 0.86 0.97 1.00 0.96 0.99 0.97 0.87 0.89 0.91
Intel NUMA 0.91 0.98 0.99 0.92 0.98 0.96 0.85 0.84 0.82
AMD NUMA 0.90 0.99 1.00 0.99 0.97 0.99 0.81 0.91 0.79

Table 4.7: Goodness-of-fit of CPU cycles model

are bursty. R2 is close to 1 (i.e. perfect collinearity of 1/c(n)) when the memory

overhead is high. The accuracy of the M/M/1 model for describing the behavior

of programs with large memory contention further confirms the non-bursty nature

of programs with large memory contention.

Next we present an analysis of the growth of memory contention for CG.C.

The program exhibits high degree of memory contention of 1.8 to 3.3 times as

compared with a sequential execution. On Intel UMA, the contention closely

follows how many cores are used in each processor. For one to four cores, the

increase in ωμ(n) is due to contention of the shared bus, since all cores within one

processor share the same memory bus. From four to five cores, the increase in

contention is small, since memory requests by the fifth core, which is allocated

in a new processor, uses the bus of the new processor. When the buses and the

memory controllers in both processors reach maximum load, contention is most

severe as can be seen from increasing the number of cores from seven to eight. On

both Intel NUMA and AMD NUMA, the degree of memory contention is smaller

than on UMA for similar number of cores. However, the pattern of growth still

has a per-processor shape. From one to twelve cores, ωμ(n) increases non-linearly,

which shows that the local memory controller of processor one become saturated.

When the thirteenth core (located in processor two) is activated, the memory

controller of processor two takes over a fraction of the memory requests from

processor one controller, reducing the contention. This is why there is a clear

decrease in ωμ(n) from twelve to thirteen. There are other reasons that lead to

116

Chapter 4. Model Parameterization and Validation

better NUMA performance compared to the UMA system, such as the larger cache

size, faster bus speed and larger memory bandwidth. Overall, the programs that

show a larger degree of memory contention on UMA also manifest large contention

on NUMA.

Memory contention can be broadly characterized as high, as shown in Fig-

ure 4.7(a), (c) and (e) and low, as in Figure 4.7(b), (d) and (f) . However the

mapping between problem size and degree of contention is not bijective. Low

problem size results in low contention for all programs analyzed by us. This is

due to the size of the working set which is of comparable size to the caches of the

system. However, for large problem size, there are two cases. In the first case,

EP.C and x264.native have large working set (920 MB for EP, 400 MB for x264),

much larger than the cache of the system, yet do not result in large contention.

This is because their pattern of accessing the memory results in low number of

cache misses and therefore their performance does not depend significantly on the

memory bandwidth. In contrast, the second case, of CG, FT , and SP , their large

problem size also translates in large contention. The program with the largest

observed contention, the pentadiagonal-solver SP access memories along all di-

mensions of a multi-dimensional space. Such complex data access patterns leads

to large number of cache misses. This results in SP.C having the largest values of

contention, with ωμ(8) = 7.3 on Intel UMA and ωμ(24) = 10.5 on Intel NUMA.

4.4.2 I/O Overhead

We use program memcached to validate the I/O overhead model on both tradi-

tional and low-power systems. For each system we conduct a set of experiments

using the memslap client that continuously sends requests to the system under

test. The client is running on a separate system, termed controller systems (Intel

Core-i7), connected to the system under test using a 1 Gbps Ethernet link.

117

Chapter 4. Model Parameterization and Validation

For each experiment, we use memslap to set a number of key-value objects

into memcached, and to get a series of these objects. The number of set and get

requests, shown in Table 4.8, is chosen such that memcached achieves a hit rate

close to 100%. For the ARM Cortex-A9 system we have used a smaller cache

System Set req. Get req. Read bytes [MB] Written bytes [MB] Cache size
Intel UMA 200,000 1,800,000 382 1,898 1024 MB
Intel NUMA 200,000 1,800,000 382 1,898 1024 MB
AMD NUMA 200,000 1,800,000 382 1,898 1024 MB

ARM Cortex-A9 60,000 540,000 115 570 256 MB

Table 4.8: Workload parameters for memcached

size and a smaller number of requests, to achieve a similar execution time and hit

rate with the traditional x64 multicore systems. The get requests are performed in

batches of 12 operations per one request. The requests are completely independent

and can be serviced in parallel by memcached, thus the parallelism loss due to data

dependency, πd ≈ 0. Therefore, any parallelism loss is caused only by memory

contention and by I/O overhead.

Next we show the comparison of the modeled parallelism loss due to I/O over-

head, ωσ, with the measured values. The measured values of ωσ are obtained by

measuring the average number of cores that are not doing neither useful work, nor

active due to memory contention, using the perf performance monitoring tool.

Figure 4.8 shows the comparison between modeled and the measured paral-

lelism loss due to I/O overhead. There are two trends that are consistent across

all four validation experiments. First, the parallelism loss due to I/O overhead, πσ

grows almost linearly with n. The reason is that for all the multicore systems, the

network I/O is almost always the system bottleneck. For traditional multicores,

an execution on one core completely saturates the I/O bandwidth. Thus, using

more than one core when running memcached does not lead to improvements in

execution time: all the hardware parallelism is lost due to waiting on the network

I/O device. For the low-power ARM Cortex-A9 system, we also show how the

118

Chapter 4. Model Parameterization and Validation

 0

 1

 2

 3

 4

 5

 6

 7

 1 4 8

P
ar

al
le

lis
m

 L
os

s
du

e
to

 I/
O

π σ
(n

)

n (#cores)

Measurement
Model

 0

 5

 10

 15

 20

 25

 1 6 12 18 24

P
ar

al
le

lis
m

 L
os

s
du

e
to

 I/
O

π σ
(n

)

n (#cores)

Measurement
Model

(a) Intel UMA (Xeon E5320) (b) Intel NUMA (Xeon X5650)

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 6 12 18 24 30 36 42 48

P
ar

al
le

lis
m

 L
os

s
du

e
to

 I/
O

π σ
(n

)

n (#cores)

Measurement
Model

 0

 1

 2

 3

 4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ar

al
le

lis
m

 L
os

s
du

e
to

 I/
O

π σ
(n

)

Frequency [GHz]

1 core 2 cores
3 cores 4 coresMeasurement

Model

(c) AMD NUMA (Opteron 6172) (d) ARM Cortex-A9 (Exynos 4412)

Figure 4.8: Validation of the I/O overhead model: memcached

parallelism loss depends also on the core frequency f . For small core frequencies

the CPU time W dominates the execution time, andmemcached is CPU-bounded.

But at the CPU frequency approaches 1.4 GHz, W decreases, and the imbalance

between CPU and I/O reduces. However, using one core even at maximum fre-

quency does not fully saturate the memory bandwidth. The knee-point where the

system transitions from CPU-bounded to I/O-bounded execution is n = 2 cores

and frequency f = 0.6GHz. Beyond this configuration point, increasing the core

frequency or count does not reduce execution time, and the parallelism loss due

to I/O overhead starts to increase.

The second observation is that the model has good accuracy, but tends to

underestimate the parallelism loss due to I/O overhead. The model inaccuracy for

the traditional multicore system is within 3% (Intel NUMA) and 5% (Intel UMA)

119

Chapter 4. Model Parameterization and Validation

when comparing the parallelism loss directly, and less than 15% when comparing

the modeled I/O throughput with the measured throughput. However, for the

low-power multicore, the accuracy is significantly worse, with an average error of

22%.

The larger modeling error on the low-power multicore is caused by the as-

sumption that the total work performed by memcached remains constant when

the number of cores and core frequency changes. Even though we fixed the problem

size across experiments, the total number of instructions and work cycles does not

remain constant when the number of cores and clock frequency changes. There are

two reasons for this: (i) Memcached uses a polling mechanism to check if the net-

work sockets have any available data; this mechanism incurs more instructions as

the number of threads is increased. (ii) The low-power ARM Cortex-A9 executes

the code of the network interrupts and of the network driver only the first core.

Thus, even if we assume that memcached is perfectly parallelizable, in practice all

the kernel-level code is executed on a single core. This is particularly worse on

executions on low core frequencies, when the first core uses a disproportionately

large number of cycles to service the network interrupts and the TCP/IP code.

Our model assumes all these cycles can be fully parallelizable among cores, hence

underestimating the parallelism loss due to I/O overhead.

4.4.3 Exploited Parallelism

To validate the exploited parallelism prediction we compare modeled values of

exploited parallelism against speedup measurements. To evaluate the accuracy of

the data dependency model independent of the accuracy of the memory contention

model, we use predicted and measured values of ωμ(n) in modeling π′(m,n =

m), and present both. Firstly, we validate the speedup of programs partitioned

in different number of threads, and running on enough cores to execute them

120

Chapter 4. Model Parameterization and Validation

concurrently. Secondly, we fix the number of threads and execute them on different

number of cores.

Program m
Measured Modeled π′(m,n = m)

π′(m,n = m) measured ωμ modeled ωμ

BT.C
2 1.77 1.80 1.80
4 2.52 2.65 2.52
8 3.50 3.91 3.50

EP.C
2 1.98 1.99 1.99
4 3.96 3.99 3.99
8 7.83 7.98 7.98

FT.B
2 1.63 1.72 1.72
4 2.23 2.33 2.30
8 2.80 2.83 3.11

IS.C
2 1.93 1.95 1.95
4 3.45 3.47 3.69
8 5.02 5.08 6.65

CG.C
2 1.75 1.82 1.82
4 2.27 2.20 2.76
8 2.33 4.18 3.91

SP.C
2 1.32 1.30 1.30
4 0.99 0.95 0.86
8 0.97 0.81 0.83

x264.native
2 1.91 1.88 1.91
4 3.67 3.47 3.60
8 4.91 4.70 4.65

blackscholes.native
2 1.82 1.73 1.73
4 3.06 3.30 3.20
8 3.71 4.18 4.11

memcached.memslap
2 0.95 0.99 0.99
4 1.07 1.05 1.02
8 0.96 1.01 1.00

Table 4.9: Model vs measured exploited parallelism on Intel UMA

For Intel UMA, we partition all six program into 2, 4 and 8 threads and

perform baseline runs on one core to derive the average number of active threads.

Using both modeled and measured values of ωμ(n), we compare the speedup model

against measurements, when the program is running on 2, 4 and 8 cores. Table 4.9

shows the validation results. The average relative error of the model is 7.5% for

121

Chapter 4. Model Parameterization and Validation

measured ωμ and 11.3% for modeled ωμ. In table 4.10 we show the validation

results for system Intel NUMA. The dwarfs are partitioned into 2, 4, 8, 12, 16 and

24 threads and validated against speedup measurements performed on a number

of cores equal with number of threads. For Intel NUMA, all cores are allocated on

the first socket for the runs with 2, 4, 8 and 12 threads, but the cores are divided

equally between the sockets for runs with 16 and 24 threads. For AMD NUMA

we used 4, 8, 12, 24 and 48 cores, using a fill-socket-first policy, and the validation

results are shown in table 4.11.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 4 8

E
xp

lo
ite

d
P

ar
al

le
lis

m
 π

’(m
,n

)

n (#cores)

Modeled
Modeled w/ measured ω(n)

Measured

Figure 4.9: Modeled vs measured exploited parallelism: BT.C on Intel UMA

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 4 8 12 16

E
xp

lo
ite

d
P

ar
al

le
lis

m
 π

’(m
,n

)

n (#cores)

Modeled
Modeled w/ measured ω(n)

Measured

Figure 4.10: Modeled vs measured exploited parallelism: BT.C on Intel NUMA

122

Chapter 4. Model Parameterization and Validation

Program m
Measured Modeled π′(m,n = m)

π′(m,n = m) measured ωμ modeled ωμ

BT.C

2 1.88 1.82 1.80
4 2.62 2.64 2.58
8 3.80 3.91 3.69
12 3.92 3.91 3.60
24 5.02 4.98 4.90

EP.C

2 1.98 1.99 1.99
4 3.96 3.99 3.99
8 7.83 7.98 7.98
12 11.53 11.81 11.90
24 20.52 20.81 20.92

FT.C

2 1.83 1.68 1.78
4 2.73 2.70 2.70
8 3.11 3.00 3.08
12 4.52 4.48 4.50
24 7.85 7.91 7.70

IS.C

2 1.93 1.95 1.95
4 3.95 3.87 3.90
8 5.73 5.80 5.80
12 9.52 9.78 9.65
24 14.15 14.54 14.92

CG.C

2 1.88 1.88 1.84
4 2.35 2.39 2.96
8 3.87 3.65 3.18
12 4.58 4.41 4.50
24 5.56 5.50 5.38

SP.C

2 1.42 1.40 1.40
4 1.49 1.59 1.56
8 1.51 1.58 1.53
12 1.48 1.72 1.52
24 1.90 1.91 1.81

x264.native

2 1.78 1.60 1.62
4 3.45 3.40 3.43
8 6.47 6.21 6.32
12 7.70 7.52 7.60
24 9.76 9.40 9.42

blackscholes.native

2 1.73 1.72 1.71
4 2.90 2.71 2.70
8 4.24 4.20 4.17
12 5.04 5.10 5.07
24 5.65 5.50 5.44

memcached.memslap

2 0.98 0.98 0.98
4 0.96 0.96 0.96
8 1.01 1.00 1.00
12 1.01 1.01 1.01
24 1.01 1.00 1.00

Table 4.10: Model vs measured exploited parallelism on Intel NUMA
123

Chapter 4. Model Parameterization and Validation

Program m
Measured Modeled π′(m,n = m)

π′(m,n = m) measured ωμ modeled ωμ

BT.C

4 3.63 3.56 3.73
8 6.47 6.43 6.76
12 9.39 9.14 9.14
24 17.43 16.01 14.35
48 23.40 21.11 20.94

EP.C

4 4.00 3.99 3.99
8 7.79 7.90 7.87
12 11.95 11.64 11.64
24 22.23 21.97 22.30
48 33.44 33.01 45.91

FT.C

4 3.41 3.41 3.69
8 6.03 6.13 6.58
12 8.64 8.68 8.68
24 13.46 14.21 13.86
48 21.66 26.74 22.87

IS.C

4 3.95 4.24 4.24
8 7.30 8.12 7.98
12 10.23 11.24 11.24
24 15.60 16.72 17.69
48 26.36 26.69 25.26

CG.C

4 3.85 4.00 3.59
8 5.90 6.86 5.83
12 7.20 6.89 6.89
24 12.20 12.28 10.56
48 15.77 16.63 17.55

SP.C

4 2.22 2.19 3.24
8 3.09 3.41 4.55
12 3.86 4.07 4.07
24 6.81 7.08 4.85
48 7.61 8.66 6.47

x264.native

4 3.55 3.51 3.50
8 6.56 6.50 6.47
12 9.21 8.98 8.90
24 13.29 13.11 13.00
48 14.29 13.14 13.10

blackscholes.native

4 2.92 3.11 3.00
8 4.36 4.50 4.47
12 5.15 5.48 5.40
24 6.32 6.41 6.36
48 6.60 6.86 6.50

memcached.memslap

4 0.96 0.96 0.96
8 1.01 1.00 1.00
12 1.00 1.01 1.01
24 1.00 1.01 1.00
48 1.03 1.03 1.03

Table 4.11: Model vs measured exploited parallelism on AMD NUMA
124

Chapter 4. Model Parameterization and Validation

 0

 5

 10

 15

 20

 25

 30

 1 6 12 18 24 30 36 42 48

E
xp

lo
ite

d
P

ar
al

le
lis

m
 π

’(m
,n

)

n (#cores)

Modeled
Modeled w/ measured ω(n)

Measured

Figure 4.11: Modeled vs measured exploited parallelism: BT.C on AMD NUMA

We partition BT.C in m=8 threads for UMA system, m=16 threads on Intel

NUMA and m = 48 on AMD NUMA. We determine π(m,∞) using baseline runs

on one core. For the π′(m,n) prediction, we used values of ωμ(n) predicted by

our model and values directly measured, and we present both. We compared our

prediction against speedup measurements, keeping the number of threads fixed

and increasing the number of cores n from 1 to m. For the Intel NUMA system,

the increase in the number of cores is done as follows:

� n ∈ [1 : 4] activate the first hardware thread of the cores from the first

socket;

� n ∈ [5 : 8] activate the first hardware thread of the cores from the second

socket;

� n ∈ [9 : 12] activate the second hardware thread of the cores from the first

socket;

� n ∈ [12 : 16] activate the second hardware thead of the cores from the second

socket.

On the AMD NUMA system, the order of cores activation follows a fill-socket-first

125

Chapter 4. Model Parameterization and Validation

policy, and the NUMA nodes are activated in increasing latency order, starting

from NUMA node 0.

Figures 4.9, 4.10 and 4.11 show the predicted versus measured exploited par-

allelism on Intel UMA, Intel NUMA and AMD NUMA systems. The evaluate

the accuracy of the data-dependency model, we predict the exploited parallelism

using both predicted and modeled values of memory contention factor ωμ. The

control metric is the measured speedup.

For BT.C we noticed that the measured speedup varies among the five runs,

especially when the number of threadsm does not divide by the number of cores n.

Considering that measured speedup is our control value, the accuracy of the model

is the lowest when m does not divide by n (maximum error is 25% for predicted

π′(8, 7) using measured ωμ and 13% for predicted π′(8, 7) using modeled ωμ). For

the other cases, the model has much better accuracy. Overall, the average error

for BT.C on UMA is 9% for predicted π′(m,n) using measured ωμ(n) and 4% for

predicted π′(m,n) using modeled ωμ(n).

4.4.4 Power and Energy

We validate the energy model against measurements of energy usage, as described

in section 4.1. First we show summary validation results for all workloads. We

present in detail the validation of programs EP, CG, SP and memcached, and

present summary results for the rest of the programs.

To validate the programs, we apply the baseline run for each program. The

baseline runs are performed on four core-frequency configurations: n = 1 f =

0.2 GHz, n = 1 f = 1.4 GHz and n = 4 f = 0.2 GHz, n = 4 f = 1.4 GHz.

On each configuration we measure the total cycles, stall cycles, number of I/O

requests, arrival rate of I/O requests. To validate the model, we predict the

execution time T (n, f) and energy E(n, f) considering the number of cores n

126

Chapter 4. Model Parameterization and Validation

and clock frequency f fixed throughout the program execution. We compare this

prediction against measurements of T (n, f) and E(n, f). To change the number

of cores that the program is using we change the number of worker threads of

the programs. For each program, we validate four cores and 13 core frequencies,

giving 52 core-frequency configurations.

We measure the energy usage of the program using a Yokogawa WT210 power

monitor. The power monitor measures the DC voltage supply, the DC current, the

power and the energy usage since a fixed arbitrary time moment (usually since the

last manual reset of the power monitor). Because the sample size is quite coarse,

we use the measured value of energy as the control metric for the power and energy

models. Thus, in the experiments, we log the energy usage at the beginning and

the end of the experiment. The measured total energy usage is then computed as

the difference between the two values.

To evaluate the accuracy of the energy model independent of the accuracy of

the prediction of the CPU time and I/O time prediction, we present the validation

for both execution time and energy usage. For execution time validation we also

present the validation of the predicted number of cycles, to further isolate the

source of inaccuracy. Similarly, the validation of the energy model is broken down

into validation of energy usage and of power use.

Figures 4.12 show the validation of the embarrassingly-parallel CPU-intensive

EP program, and the validation of a program with a medium degree of memory

contention, CG. The accuracy of the parallelism model is very good, with predic-

tion error rate of less than 1% percent for EP and less than 6% for CG. However,

the accuracy of the energy model is slightly worse: EP is 22% and CG is 11%.

Figures 4.13 present the validation results for the most memory-bounded pro-

gram, SP and for I/O-boundedmemcached. The accuracy of the programs follows

the same pattern as for EP and CG: the power model is the main culprit for the

127

Chapter 4. Model Parameterization and Validation

 0

 20

 40

 60

 80

 100

 120

 140
0.

2
0.

6
1.

0
1.

4
0.

2
0.

6
1.

0
1.

4
0.

2
0.

6
1.

0
1.

4
0.

2
0.

6
1.

0
1.

4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores
3 cores 4 cores

Measurement
Model

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(a) EP (b) CG

 0

 100

 200

 300

 400

 500

 600

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

 0

 50

 100

 150

 200

 250

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(c) EP (d) CG

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(e) EP (f) CG

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

 0

 100

 200

 300

 400

 500

 600

 700

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(g) EP (h) CG

Figure 4.12: Validation of power-energy model: EP and CG
128

Chapter 4. Model Parameterization and Validation

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(a) SP (b) memcached

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(c) SP (d) memcached

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(e) SP (f) memcached

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

 0

 100

 200

 300

 400

 500

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

(g) SP (h) memcached

Figure 4.13: Validation of power-energy model: SP and memcached
129

Chapter 4. Model Parameterization and Validation

loss of accuracy of the energy model, with the execution time being much more

accurate than the power model.

4.4.5 Errors and Limitations

We have presented the validation results for the memory contention, I/O overhead,

exploited parallelism and power/energy models. Next we present the overall ac-

curacy of our modeling approaches, and discuss the model errors and limitations.

Table 4.12 shows the average error between model and measured values, using

the six HPC dwarfs, two PARSEC programs and the memcached workload. We

present error for all the four proposed models for memory contention factor ωμ,

I/O overhead factor ωσ, exploited parallelism π′(m,n) and energy usage of the

program E(n). The error is determined across predictions of the model for all

values of n, while for ARM Cortex-A9, for all values of n and f .

The average error between a set of predicted values x1, x2 . . . xn and the set of

measured value y1, y2, . . . yn is computed as:

Err[%] =
100

n

n∑
i=1

abs(y1 − x1)

y1
(4.1)

Two factors affect the accuracy of the exploited parallelism model: (i) the

inaccuracy of ωμ(n), which is the most significant source of error for the HPC

dwarfs and (ii) inaccuracy of π(m,n). We hypothesize that π(m,n) is related to

inter-barrier time of the program. We observe a variation of up to 11% for IS.C and

23% for CG.C among the values of the average number of active threads predicted

from the five baseline runs. We suspect that the inter-barrier time both programs

may be smaller than our sample size of 10 ms, which is in-line with observations

made by [55]. Overall, the average error across all programs is around 6% for

UMA and 11% for NUMA. EP is the most straightforward to model, with an

130

Chapter 4. Model Parameterization and Validation

System Program
Error [%]

ωμ ωσ π′(n) E(n)

Intel UMA

EP 0.35 – 1.22 –
IS 3.50 – 11.55 –
CG 9.70 – 12.20 –
FT 3.37 – 9.11 –
BT 2.62 – 5.39 –
SP 9.75 – 9.80 –
x264 8.18 – 8.50 –

blackscholes 9.90 – 3.31 –
memcached 9.07 4.80 6.03 –

Average 6.27 4.80 7.45 –

Intel NUMA

EP 8.70 – 6.11 –
IS 7.14 – 4.10 –
CG 10.27 – 12.03 –
FT 14.91 – 16.22 –
BT 5.55 – 10.21 –
SP 24.44 – 28.30 –
x264 9.19 – 9.91 –

blackscholes 11.11 – 13.30 –
memcached 3.20 15.84 3.00 –

Average 10.50 15.84 11.48 –

AMD NUMA

EP 1.83 – 11.31 –
IS 2.53 – 9.10 –
CG 9.69 – 16.65 –
FT 6.18 – 14.12 –
BT 4.13 – 15.80 –
SP 14.25 – 21.50 –
x264 1.91 – 14.23 –

blackscholes 3.20 – 6.55 –
memcached 1.05 3.92 2.0 –

Average 4.97 3.92 12.56 –

ARM Cortex-A9

EP 0.59 – 1.63 22.38
IS 2.72 – 2.91 7.67
CG 5.59 – 17.06 11.07
FT 4.19 – 3.40 8.63
BT 3.76 – 3.60 7.81
SP 4.56 – 4.85 13.23
x264 0.91 – 3.88 12.55

blackscholes 1.20 – 4.54 9.91
memcached 9.40 22.91 9.40 10.70

Average 3.65 22.91 5.70 11.55

Table 4.12: Model errors

131

Chapter 4. Model Parameterization and Validation

average error of less than 1%. Programs x264, blackscholes and memcached also

show good accuracy (generally less than 10% error). Overall, the inaccuracy in

the prediction of π(m,n) results in only a small prediction error. These results

show that the dynamic run-queue size is a good proxy for determining the average

number of active threads of a program.

However, a larger source of inaccuracy in the parallelism model on the bench-

marked programs is the prediction of the memory contention factor, ωμ. When

using one or two sockets, the model accuracy is generally good and the variability

among runs is limited. However, on the AMD NUMA system, using more than two

NUMA domains results in a noticeable decrease in model accuracy. We identify

two factors for this loss in accuracy:

1. The assumption of equal memory affinity among threads is violated for com-

plex NUMA topologies. In all the programs covered by our validation, the

division of work among threads is equal at an algorithmic level, and thus

the number of memory accesses to shared variables should be equal among

threads. However, the threads almost inevitably exhibit imbalances dur-

ing their executions, and the imbalances lead to a skew in memory access

patterns. This observation is consistent to findings reported in the litera-

ture [79].

2. Executions on larger number of cores on AMD NUMA exhibit larger vari-

ability in the number of cycles incurred on the same configuration. This

variability cannot be controlled by repeating the experiment several times

and averaging the results, as the system exhibits clustering of performance

results. For example, the run of BT.C on 42 cores registers is executed ten

times. The first three runs register an execution time of 9.58 seconds and a

standard deviation of 0.04 seconds. The fourth and fifth run register 10.25

132

Chapter 4. Model Parameterization and Validation

seconds and 10.03 seconds, respectively. The next four runs register an av-

erage of 7.04 and a standard deviation of 0.04 seconds, while the tenth run

executes in 7.22 seconds. This shows that the execution times are clustered

around at least two centers (with 7.04 and 9.58 seconds) but with significant

points far from both centers. We briefly investigated the reason for the large

variations among runs, by periodically running the numactl --hardware

command to check the free space on each NUMA node. To our surprise, we

noticed huge variations among the memory used in different NUMA nodes,

even if all our workloads should have uniform memory affinity. Many runs

allocate a disproportionate amount of memory on the first NUMA node.

For example, on BT using 42 cores, a balanced memory allocation should

allocate 28% of the working set size on each of the first three NUMA nodes

and 14% on the fourth. However, we routinely observe more than 50% of

the working set size allocated on the first NUMA node. However, we cannot

balance this memory allocation just by tweaking the NUMA policy. The OS

NUMA policy only dictates which nodes can be used during the memory

allocation. It does not specify how much of the working set size should be

allocated on each node. Similar observations on the suboptimal behavior of

the NPB HPC dwarfs on complex NUMA topologies are presented by [109].

We conclude that our simple M/M/1-based approach for predicting the perfor-

mance of memory-bounded applications is reasonable for simple NUMA topologies,

but better support for understanding and controlling the way the OS handles the

application of the NUMA policies is needed both for performance prediction and

for performance optimizations.

For programs with I/O overheads, we identify three factors that affect the

accuracy of the model. The most significant source of error comes from irregu-

larities during execution. For example, memcached incurs more instructions on

133

Chapter 4. Model Parameterization and Validation

higher core frequencies, which are caused by a polling mechanism used to monitor

the network sockets. This significantly increases the energy used, but does not

reduce the execution time. This increase causes our model to underestimate by

up to 23% the CPU cycles incurred by memcached on one core.

In the power and energy models, there are three main sources of inaccuracy:

1. The first source of errors is the accuracy of the system characterization

parameters. In particular, the power values for active cycles, stall cycles

and idleness differ by up to 20 mW. When no other significant sources of

error are present, this variability translates into a slight overestimate of the

average power, especially for configurations with low frequencies or low core

counts.

2. The second source of error is the low accuracy of the measured energy. The

resolution of our energy meter is 0.001 Wh or 3.6 J. Because the measuring

sample size is 1 second, a program consuming less than 3.6 W might register

two consecutive energy samples with the same energy value.

3. The third error is the instability of the measured power values. The sys-

tem exhibits large variations in power usage even for seemingly the same

workload executed in the same configurations. One tentative explanation

is that the power consumption is linked to the temperature of the Exynos

4412 SoC. Although the system is provisioned with a heat-sink that can

passively dissipate enough heat to keep the SoC well below the maximum

operating temperature, long running CPU-intensive jobs lead to an increase

the temperature of the heat-sink to around 45 ◦C. We did not possess the

tools to do a systematic analysis of the dependency between temperature

and power usage, but we noticed an idle system power of more than 1850

mW immediately after running a job on a high temperature SoC. After the

134

Chapter 4. Model Parameterization and Validation

job finishes, the idle power slowly and consistently drops to a minimum of

1740 mW, which corresponds to the minimum observed temperature of the

heat-sink of 21 ◦C.

Next we discuss the main limitations of our modeling approach. The main

model limitation is the requirement that the three types of service demands – to

cores, memory and I/O devices – are perfectly overlapped. While this assumption

is reasonable for HPC dwarfs, the analyzed PARSEC programs and server work-

loads such as memcached, not all programs can be faithfully modeled as such. In

particular, a class of programs which does not obey this overlap very well consists

of programs with a long setup phase during which the data is loaded from the

storage, followed by a compute phase [111]. If this setup phase cannot be over-

lapped with the beginning of the computations, our model might mispredict the

performance of such programs. This limitation can be overcome if the model is

first applied to the setup phase and then for the computation phase. Programs

x264 and blackscholes both exhibit a setup phase during which they load a file

from disk. While x264 loads pieces of a file periodically, overlapping the reading

from disk with computations, blackscholes first loads the entire file in memory.

Due to this aspect, blackscholes would be more accurately predicted as a program

with two distinct phases. But overall, the loading phase is small enough such that

the computation phase dominates. Furthermore, it is beyond the objective of this

thesis to tailor the model for program-specific behaviors.

A second model limitation is that it assumes that programs obey a work-

conserving property among different core-frequency configurations. If a program

executes in one way on one core, but in a different way when the number of

cores changes, it is not work-conserving because the total work performed by the

program changes among configurations. Because we base our predictions on mea-

surements of the total number of work cycles on one core, we might mispredict the

135

Chapter 4. Model Parameterization and Validation

useful work of the program. Unfortunately, complex programs rarely have a per-

fect work-conserving property. Even among our analyzed programs, memcached

and even EP exhibit changes among the number of instructions executed across

different core-configurations. While for EP the change is negligible and mostly

observable on NUMA systems, for memcached it is noticeable on the low-power

ARM Cortex-A9 system, where the main source of inaccuracy is linked to the

changes in number of instructions among different core-configurations, even when

the input of the program is the same.

4.5 Summary

This section describes four experimental evaluations. First we perform an sen-

sitivity analysis that helps us decide the parameters of the baseline executions

used to collect the inputs of our model. In the second analysis, we present re-

sults that support our modeling assumption that the number of active core does

not influence strongly the number of work cycles, CPU instructions and last-level

cache misses. Third, we showed that the memory traffic is not always bursty, as

previously reported in literature. Instead, the memory burstiness depends on the

problem size. Large parallel programs that exhibit memory contention generate

non-bursty memory traffic, while programs with low contention do generate bursty

traffic. Lastly, validation results of our model against measurements show an av-

erage error across all programs and problem sizes of around 7% for Intel UMA,

11% for Intel NUMA, 13% for AMD NUMA, and 6%-12% for ARM Cortex-A9.

136

Chapter 5

Model Applications

In this section we describe applications for our parallelism-energy modeling ap-

proach for understanding and optimizing the performance of shared-memory pro-

grams. First we present a summary of the performance of all workloads studied in

this thesis and discuss the causes of the performance loss in each program. Next,

we use our proposed models to address three scenarios that may be encountered

by users and architects of parallel systems:

1. Given a program with a specified problem size and a target multicore system,

what is the configuration with the minimum number of cores, required to

meet a specified execution time deadline TD? If it cannot be achieved it,

where does the program lose parallelism? And how can the system and the

program be improved to meet the performance requirement?

2. Given a program with a specified problem size and a target multicore system,

what is the configuration that achieves minimum energy usage? How does

this configuration depend on the type of system bottleneck? Can we optimize

the time and energy usage compared to the default Linux policies of setting

the number of cores and core clock frequency?

137

Chapter 5. Model Applications

3. Given a program executing on a multicore system with an imbalance between

cores, memory and I/O, what is the best strategy for reducing the energy

wastage: lower the hardware performance to reduce power, or improve the

hardware performance to reduce execution time?

5.1 Understanding Parallelism-Energy

Performance

We present a summary of parallelism and energy performance for the studied

programs, and discuss the causes of the parallelism loss for the programs.

5.1.1 Inherent and Exploited Parallelism

Table 5.1 shows the inherent parallelism, exploited parallelism and parallelism

losses due to data dependency, memory contention and I/O overhead of the profiled

applications on the x64 multicore systems. Each application is partitioned in a

number of threads m equal to the number of cores of the machine. For each

application, the most significant parallelism loss is highlighted in bold.

The performance summary shows that the programs chosen by us exhibit

widely different inherent and exploited parallelism. HPC programs typically have

high inherent parallelism, as there is little data dependency between the threads

of the programs. This matches the analysis done by previous work [40] and is

linked to the application structure of the HPC dwarfs. All HPC programs are

OpenMP programs written in C or Fortran that have long parallel regions that

finish without an OpenMP barrier (because they use the OpenMP nowait at-

tribute). Thus, the small loss due to data dependency is mostly due to initial-

ization and cleanup and due to imperfect load balancing of the OpenMP for loop

138

Chapter 5. Model Applications

System Program

Parallelism Parallelism Loss

Inherent Exploited
Data Memory I/O

Dependency Contention Overhead
π π′ πδ πμ πσ

Intel UMA

EP 7.99 7.83 0.01 0.16 –
IS 7.80 6.65 0.20 1.15 –
CG 7.70 3.91 0.30 3.79 –
FT 7.67 3.11 0.33 4.56 –
BT 7.33 3.50 0.67 3.83 –

(m = 8) SP 7.85 0.83 0.05 7.12 –
x264 6.03 5.65 1.97 0.38 –

blackscholes 6.12 5.91 1.88 0.21 –
memcached 8.00 1.00 0.00 0.65 6.35

Intel NUMA

EP 23.57 20.92 0.43 2.65 –
IS 21.80 14.92 2.20 6.88 –
CG 23.15 5.38 0.85 17.77 –
FT 22.77 7.70 1.23 16.07 –
BT 23.18 4.90 0.82 18.28 –

(m = 24) SP 22.90 1.81 1.10 21.09 –
x264 11.23 9.92 12.77 1.31 –

blackscholes 7.87 7.12 16.13 0.75 –
memcached 24.00 1.00 0.00 0.44 22.56

AMD NUMA

EP 47.03 45.11 0.97 1.92 –
IS 46.15 25.25 1.85 20.90 –
CG 45.80 17.55 2.20 28.25 –
FT 44.38 22.87 3.62 21.51 –
BT 46.75 20.94 1.25 25.81 –

(m = 48) SP 47.21 6.47 0.79 40.74 –
x264 16.24 14.29 31.76 1.95 –

blackscholes 6.85 6.50 41.15 0.35 –
memcached 48.00 1.03 0.00 0.74 46.23

Table 5.1: Inherent parallelism, exploited parallelism and parallelism loss

139

Chapter 5. Model Applications

iterations to threads, which causes some threads to finish the last for loop earlier.

Memcached also exhibits very low data dependency, as it uses a multi-threaded

mechanism for listening on sockets, using the epoll_wait system call. For the

time interval when the memcached performs service, each request is assigned to a

different thread. Because there are much more concurrent requests than threads,

and because the I/O bandwidth is much smaller than what the threads service

capacity, the threads only wait on the network sockets (distinguished by being

blocked on epoll_wait, and not on locks or semaphores, when they are blocked

on futex_wait). Finally, memcached does have startup and a cleanup phases that

are not fully parallelizable, but they are not included in our analysis.

The Parsec programs exhibit much larger parallelism loss due to data depen-

dency, mostly due their large initialization phase. For example, blackscholes has a

startup phase during which it reads an input file into memory and performs a data

transformation on the input. This phase is completely sequential, thus resulting

in a large parallelism loss due to data-dependency.

The exploited parallelism of HPC dwarfs is limited the most by memory con-

tention. With the exception of EP , all the other dwarfs exhibit non-negligible

parallelism loss due to memory contention: high for SP , medium for CG, BT and

FT , and low for IS. Among CG, BT and FT , we observe that FT has the highest

parallelism loss on Intel UMA, but the lowest on the NUMA systems. From [79] we

observe that FT has smaller bandwidth requirements than CG and BT , but more

than 50% of memory requests are traversing the NUMA interconnect, compared

to less than 20% for CG and BT .

5.1.2 Power and Energy Performance

We discuss the power and energy incurred on the ARM Cortex-A9 system and

the energy efficiency factor for the cores, memory and I/O of each program. Ta-

140

Chapter 5. Model Applications

System Program Time [s] Energy [J] Power [W] ηCPU [%] ηM [%] ηI/O [%]

EP 21.08 95.5 4.52 99 0 0
IS 20.33 83.63 4.10 99 99 0
CG 47.11 18.70 4.00 98 98 0

ARM FT 14.77 60.23 4.07 99 99 0
Cortex-A9 BT 43.50 183.10 4.20 99 99 0

SP 41.30 167.28 4.04 100 100 0
x264 692.04 3052.92 4.41 92 0 0

blackscholes 295.04 1129.33 3.82 82 0 0
memcached 60.63 209.95 3.46 52 93 100

Table 5.2: Time and energy performance on ARM Cortex-A9 system

ble 5.2 shows the time-energy performance of the programs when using all cores

at maximum frequency. For the HPC dwarfs the results are intuitive and tally

directly with the know characteristics of the programs. PARSEC programs x264

and blackscholes have lower CPU energy proportionality, because they lose par-

allelism due to data-dependency and thus do not keep the cores fully occupied.

Memcached has even lower energy proportionality because of its parallelism loss

due to I/O overhead.

We show in detail the energy proportionality of all cores, memory and I/O

device for memcached on all cores and clock frequencies, in Figures 5.1 and 5.2.

Execution on a small number of cores or small clock frequencies have higher energy

 0

 25

 50

 75

 100

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

En
er

gy
 P

ro
po

rti
on

al
ity

 [%
]

Frequency [GHz]

1 core 2 cores 3 cores

4 cores
 ηCPU

 ηM
 ηI/O

Figure 5.1: CPU, memory and I/O energy proportionality: memcached

141

Chapter 5. Model Applications

proportionality than execution on larger number of cores. But this execution

incurs both higher execution time and higher energy usage. For example, the

execution on one core at minimum frequency incurs T = 277 s and E = 503 J,

while an execution on maximum cores and maximum frequency incurs T = 60.63 s

and E = 210 J.

 0

 25

 50

 75

 100

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

D
ev

ic
e

U
til

iz
at

io
n

[%
]

Frequency [GHz]

1 core 2 cores 3 cores

4 cores
 UCPU

 UM
 UI/O

Figure 5.2: CPU, memory and I/O device utilization: memcached

Our analysis shows that high energy proportionality does not necessarily mean

good performance. For example, with the exception of EP , the HPC dwarfs have

nearly perfect CPU and memory energy proportionality, because both devices

have near full utilization. However, due to memory contention, the CPU does

not perform useful work, but rather incurs stall cycles. For the same reason the

average power consumption is not as high as in CPU-bounded programs, because

CPU power consumption when incurring stall cycles is smaller than when incurring

work cycles. This analysis shows that energy proportionality alone is not always

a good indicator of the time-energy performance of a program. Throughout this

thesis we have used the definition of energy proportionality from literature [16].

However, just relating performance to device utilization does not always paint a

clear picture about the time-energy performance of a program. Ideally, the energy

142

Chapter 5. Model Applications

proportionality should also be related to the useful work output of the program.

In the next two sections we show that our proposed parallelism performance model

can be used as a guideline for minimizing both execution time and energy usage,

even for programs where the energy proportionality is close to 100%.

5.2 Meeting Performance Requirements onMul-

ticore Systems

Given a large parallel application and a problem size, a common scenario encoun-

tered by users is to execute the program faster than a specified deadline TD. We

show an application of our model for predicting the number of cores that achieves

this performance, for a shared-memory program with significant data-dependency

and memory traffic. Specifically, we determine the multicore configuration with

the minimum number of cores n on which a program meets the performance dead-

line TD.

5.2.1 Number of Cores Required to Meet a Deadline

Given a program and a problem size, we describe the application of the model to

predict the number of cores required to execute the program in less than TD. We

select a target multicore systems with two quad-core sockets connected using a

UMA memory architecture. On this target system, our goal is to meet a deadline

of execution time TD < 100 seconds for a complex parallel application SP.B (SP

with problem size B) [13]. Because SP is an application that allows changing

the number of threads in which the program is partitioned, first we chose the

partition size. Because the system has eight cores, we choose m = 8 threads to

use in program SP .

143

Chapter 5. Model Applications

We perform a baseline execution using one core on the target multicore system.

During this execution, we collect the trace of operating system run-queue and

measure the execution time on one core, T (1), the number of work cycles w and

total cycles c(1). Next we perform a baseline execution using two cores on the

same socket, and collect c(2). Thirdly, we perform an execution using all four of

the first socket and only one core on the second socket, and measure c(5).

Based on T (1) and TD, we determine the required speedup π′
D that achieves

the deadline:

π′
D =

T (1)

TD

Because T (1) is around 300 seconds, the required exploited parallelism is π′
D = 3,

on a UMA core system with n = 8 cores.

From the trace of the operating system run-queue we determine the inherent

parallelism π(8,∞) and the constrained parallelism π(8, n) when n varies from

one to eight. Using the measured values of c(1), c(2) and c(5) as inputs, we apply

our memory contention model to determine ω(n) for our program. With ω(n) and

π(8,∞), we can apply the general parallelism performance model to predict the

values of the inherent parallelism.

Because we are interested in finding out the configuration with the minimum

number of active cores that meets the performance challenge, it is not needed to

predict the exploited parallelism for all possible values of n. Because the π′(n)

might be non-monotonic with n, the range of n which is useful consists of values of

n for which π′(n) is growing. Using equation 3.19 the condition for which π′(m,n)

is increasing with n is (if ω(n) > −1 and assuming there are enough threads, so

m ≥ n):

dω(n)

dn
< π′(m,n) · ∂π(m,n)

∂n
(5.1)

Equation 5.1 expresses the range of useful values of n as the intervals for which

144

Chapter 5. Model Applications

the rate of growth in memory overhead is smaller than the rate of growth in

useful work. We use numerical differentiation to compute the values of n for

which π′(m,n) increases. The range of n that satisfies equation 5.1 is a union

of j intervals ∪j [nmin,j , nmax,j]. The number of cores of the best configuration is

therefore min{n ∈ ∪j [nmin,j, nmax,j]|π′(n) > πD}
We apply numerical differentiation to compute the solutions of equation 5.1.

The solution is n ∈ [1, 2] ∪ [4, 6]. However, after applying the model for this set

of configurations, the maximum speedup achieved is π′(8, 6) = 1.67, which does

not meet the parallelism performance deadline of π′
d = 3. For n > 6 the exploited

parallelism decreases fast, because ω(n) grows rapidly with n.

For comparison purposes, we show in Figure 5.3 the measured values of the

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 3 4 5 6 7 8

E
xp

lo
ite

d
P

ar
al

le
lis

m

n (#cores)

SP.B

Figure 5.3: Measured exploited parallelism: SP.B

exploited parallelism when the number of active cores n ranges from one to eight,

with spline smoothing of the predicted values. The ranges of n for which the

speedup is increasing are correctly predicted as [1, 2] ∪ [4, 6] and the maximum

measured speedup is π′(8, 6) = 1.60, significantly below the required πD = 3.

Therefore, the required execution time of under TD = 100 seconds cannot be

achieved on the target architecture, not even if all the cores in the system are used

145

Chapter 5. Model Applications

at maximum frequency.

5.2.2 Understanding Parallelism Loss

Motivated by the poor parallelism performance of program SP.B on the target

UMA multicore system, we apply the model to understand the sources of the par-

allelism loss. We study the parallelism loss due to data dependency and memory

overhead for program SP .

Because a well known property of parallel programs is that speedup improves

for larger problem sizes [47], we perform the analysis of the parallelism loss not

only for problem size B, but also for three other sizes, W, A and C, to see if the

changing the problem size affects the parallelism loss. The ratio of problem sizes

W:A:B:C ≈ 1:4:16:64.

We predict the parallelism loss of SP when varying m from 1 to 8 threads.

We have run the baseline run for predicting π(m,∞) and we derive ω(n) using

measured c(1), c(4) and c(5) on the target UMA system for all four problem sizes.

Figure 5.4 shows the speedup loss for SP for all problem sizes. SP has a counter-

intuitive behavior: the speedup reduces as the problem size is increased. We can

see that small problem sizes lead to larger parallelism loss due to data dependency.

This is expected considering that data dependency in SP is mostly induced by

barriers [13]. Smaller input sizes lead to small intra-barrier times. Therefore, it is

expected that problem W has data dependency as the most significant source of

speedup loss. For larger inputs, data dependency reduces significantly. From the

application of the model we observe that none of the problem sizes results leads to

a value of exploited parallelism that meets the parallelism performance deadline

π′(m,n) > πD.

For large input sizes, the main source of speedup loss is the memory overhead,

which increases both with the number of cores and with the problem size. For

146

Chapter 5. Model Applications

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

P
ar

al
le

lis
m

 a
nd

 P
ar

al
le

lis
m

 L
os

s

W A
Problem Size

B

Useful Work
Memory Contention
Data Dependency

C

Figure 5.4: Modeled exploited parallelism and parallelism loss: SP

problem size C, π′(m,n = m) degrades very close to 1, when m > 2, which means

that allocating more than two cores to SP.C decreases speedup and increases

number of resources used.

This analysis leads to two conclusions. Firstly, SP is particularly impacted by

memory contention among cores, and therefore it should benefit from higher mem-

ory bandwidth, either through faster memory, larger memory bandwidth through

NUMA architectures, or increased caching. Secondly, matching the input size to

the number of cores should reduce significantly both execution time and number

of cores required. The second implication is very important relative to energy use

of the program. For program SP , on our target UMA system, the increase in n

results in increase of both power usage and execution time. This results in a large

increase in energy use.

147

Chapter 5. Model Applications

5.2.3 Impact of Changing from UMA to NUMA

As the parallelism loss analysis suggests that memory contention among cores is

the primary factor of performance loss, we apply our model to understand the

effect of switching from a two-socket UMA system to a two-socket NUMA system.

Specifically, we want to understand if the larger bandwidth in a NUMA system

reduces the memory contention and improves the exploited parallelism to the point

of meeting the parallelism performance deadline.

We derive the inherent parallelism for a two-socket quad-core NUMA, compar-

ing the results with the two-socket quad-core UMA. On the NUMA system, we

use a fill-socket-first core allocation policy, which means we want to fully utilize

the cores on the first socket before we activate the cores on the second socket.

To determine c(1), c(2) and c(5), we perform the set of baseline runs on a target

dual-socket quad-core NUMA system. Figure 5.5 shows the modeled memory

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8

M
em

or
y

C
on

te
nt

io
n

n (#cores)

UMA
NUMA

Figure 5.5: Modeled memory contention: SP.B on UMA & NUMA

contention ω(n) for different values of n in UMA and NUMA systems. For clarity,

we show only program SP with problem size B. We observe that for values of

n between one and four, memory contention grows on both UMA and NUMA

148

Chapter 5. Model Applications

systems. However, there is a pronounced difference, even when only one memory

node is used. Because our target NUMA system has significant higher memory

bandwidth per node, due to more memory channels and larger cache size, the

memory contention when using only one controller is at most ω(4) = 1.66 on

NUMA compared to ω(4) = 2.40 on UMA. The memory contention drops when

the second memory node is activated on NUMA. Overall, the memory contention

is significantly lower on NUMA, ω(8) = 1.85, compared to UMA ω(8) = 5.18.

The effect of the lower memory contention on the exploited parallelism can

be seen in Figure 5.6. The exploited parallelism on the NUMA system is larger

compared to the UMA system. The maximum speedup increases more than two

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

E
xp

lo
ite

d
P

ar
al

le
lis

m

n (#cores)

UMA
NUMA

Figure 5.6: Modeled exploited parallelism: SP.B on UMA & NUMA

times, from the maximum value of π′(8, 6) = 1.60 on UMA to π′(8, 8) = 4.09 on

NUMA. However, even on NUMA, program SP.B hits the memory wall, because

more than 99% of the parallelism loss of the program is due to memory contention.

To conclude the analysis, program SP.B meets the parallelism performance dead-

line of π′
d = 3 only on the NUMA system. The configuration with the minimum

number of cores that achieves the target parallelism performance deadline is n = 6

with π′(8, 6) = 3.02 on the target NUMA system.

149

Chapter 5. Model Applications

5.3 Improving Energy Efficiency in Parallel Pro-

grams

5.3.1 Core-Frequency Configuration for

Minimum Energy Use

An important aspect of parallel computing is the energy incurred by a program.

While energy concerns have traditionally been associated with battery-powered

embedded systems, the proliferation of datacenters that power today’s intercon-

nected computers have pushed these concerns to mainstream multicore servers.

In this section, we apply our model to predict the multicore configuration that

achieves the minimum energy use for a program, and determine the relationship

between performance and minimum energy usage. The system configuration is

parameterized by the number of active cores, n, and the clock frequency of the

cores, f .

We apply our modeling approach to predict the core-frequency configuration

that achieves the minimum energy usage for three programs with different perfor-

mance requirements: CPU-bounded using program EP , memory-bounded using

program SP and I/O-bounded using programmemcached. The inputs of the three

programs are the same as used in the validation experiments shown in Chapter 4.

Figures 5.7, 5.8 and 5.9 show the execution time and total energy usage of EP ,

SP andmemcached on the Exynos 4412 ARM Cortex-A9 system. Comparing the

three program, the effects of the system bottleneck can be seen on the energy usage.

For CPU-bounded programs such as EP , increasing the number of cores and core

clock frequency does not increase the number of cycles incurred by the program.

Thus, the execution time drops proportionally to the average number of active

150

Chapter 5. Model Applications

 0

 200

 400

 600
1 core 2 cores 3 cores 4 cores

Ti
m

e
[s

]

 0

 500

 1000

 1500

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Frequency [GHz]

E
ne

rg
y

[J
]

Figure 5.7: Execution time and energy usage of EP

 0

 100

 200

 300 1 core 2 cores 3 cores 4 cores

Ti
m

e
[s

]

 0

 200

 400

 600

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Frequency [GHz]

E
ne

rg
y

[J
]

Figure 5.8: Execution time and energy usage of SP

151

Chapter 5. Model Applications

 0

 100

 200

 300
1 core 2 cores 3 cores 4 cores

Ti
m

e
[s

]

 0

 200

 400

 600
0.

2
0.

6
1.

0
1.

4
0.

2
0.

6
1.

0
1.

4
0.

2
0.

6
1.

0
1.

4
0.

2
0.

6
1.

0
1.

4

Frequency [GHz]

E
ne

rg
y

[J
]

Figure 5.9: Execution time and energy usage of memcached

cores of the programs. Since EP is also embarrassingly-parallel, the execution

time decreases linearly when the number of cores n and core clock frequency f

increase. Even though the power usage increases superlinearly with the core clock

frequency, the consistent reduction in execution time with an increase in n and

f results in an overall decrease in energy usage as the number of cores and clock

core frequency increase. Thus, for CPU-bounded programs, executing on high

core counts and clock frequencies is advantages for both parallelism and energy,

and the minimum execution time is reached on a configuration of n=4 cores and

f=1.4 GHz.

Memory-bounded programs such as SP are less energy-efficient than CPU-

bounded applications. Because the response time of the program is dictated by

the memory response time, the total number of cycles of the program will increase

when the core clock frequency increase (as modeled by equation 3.28, and as can

be seen in the validation section in Figure 4.13(a). Furthermore, the slope of

the cycles over core frequency f is the memory response time. As the number of

cores increase, the slope becomes steeper due to the memory contention among

cores. Because of the increase in number of cycles with n and f , executing on

152

Chapter 5. Model Applications

large number of cores limits the decrease in execution time. But power usage

still increases with n and f . Thus, the energy usage of the program increases

for large cores counts and clock frequencies, but without a proportional reduction

in execution time. The minimum execution time is reached on a configuration

with n=3 cores and f=1.4 GHz, while the minimum energy usage is reached when

executing on n=3 cores and f=1.1 GHz. Because of the memory boundedness,

executing on four cores is contraindicated, as it increases both execution time and

energy usage.

Next we comment on the I/O-bounded program memcached. Because the

execution time is lower-bounded by the I/O response time, increasing the core

clock frequency and core counts does not translate into a reduction of execution

time, as shown in the validation Figure 4.13(d). On the Exynos 4412 ARM Cortex-

A9 system, memcached saturates the I/O bandwidth on n=2 cores at f=600 MHz.

Increasing the core counts and frequency past this point is completely inefficient,

as the power use and incurred energy increase without any reduction in execution

time.

Table 5.3 shows the configuration that achieves the minimum execution time,

and the minimum energy usage for all programs studied. Only CPU-bounded

Program Bottleneck
Configuration

Min. Time Min. Energy
n f [GHz] n f [GHz]

EP Cores 4 1.4 4 1.4
BT Memory 4 1.4 4 1.1
CG Memory 3 1.4 3 1.0
FT Memory 3 1.4 3 1.2
IS Memory 3 1.4 3 1.0
SP Memory 3 1.4 3 1.1

blackscholes Cores 4 1.4 4 1.4
x264 Cores 4 1.4 4 1.4

memcached I/O 2 0.6 2 0.6

Table 5.3: Minimum time and energy configurations

153

Chapter 5. Model Applications

Program
Time [s] Energy [J]

Model Ondemand Saving [%] Powersave Saving [%] Model Ondemand Saving [%] Powersave Saving [%]
BT 43.51 43.51 0.0 165.97 281.5 169.47 183.11 8.0 418.46 146.9
CG 40.61 46.74 15.1 104.0 156.1 140.4 187.08 33.2 259.65 84.9
FT 11.57 14.77 27.7 42.46 266.9 43.25 60.24 39.3 106.46 146.1
IS 52.13 55.91 7.3 140.09 168.7 185.9 226.72 22.0 351.34 89.0
SP 35.34 41.31 16.9 101.04 185.9 127.35 167.28 31.4 253.34 98.9

memcached 60.63 60.63 0.0 118.25 95.0 140.07 209.95 49.9 235.11 67.9

Table 5.4: Execution time and energy savings over Linux DVFS policies

programs execute efficiently on large number of cores and high core frequency.

For memory and I/O bounded programs, the minimum energy usage is achieved

when using a frequency lower than the maximum, and only two or three of the

four cores.

Next we quantify the execution time improvements and energy savings that can

be achieved when using a core-frequency dictated by our model, versus the default

core-frequency policies employed by Linux. By default, many Linux systems use

the ondemand dynamic voltage and frequency scaling policy, which applies the

maximum frequency if the cores are utilized and minimum frequency when the

cores are not utilized. Our analysis shows that this policy would lead to energy

wastage for execution of memory-bounded programs on any number of cores.

Moreover, the powersave policy of keeping the core frequencies at the minimum

setting increases the execution time dramatically, to the point that energy usage

is disproportionately high. Table 5.4 shows the execution time improvements and

energy savings enabled by core-frequency configurations predicted by our model

for memory and I/O bounded programs, versus the ondemand and powersave

policies of Linux DVFS governors. The savings are expressed as percentage, and

are computed as the difference between the optimal configuration predicted by

the model, relative to the configuration using n=4 cores under ondemand and

powersave DVFS governors.

This analysis shows that for memory or I/O bounded programs, an efficient

execution operates neither at the highest frequency nor using the full core counts.

154

Chapter 5. Model Applications

Compared to the Linux ondemand DVFS policy, our model predicts configurations

that balance the cores, memory and I/O resources and results in a reduction of

execution time and energy usage by up to 27% and 50%, respectively. Compared

to the powersave policy, our model reduces execution time by a factor of 2.8 and

energy usage by up to 1.5 times.

5.3.2 When is Low Power not Energy-Efficient?

There has always been a trade-off between reducing power usage and and in-

creasing the performance of processing systems. Many currently-available ARM

Cortex-A9 systems have been configured mostly for mobile computing devices such

as phones or tablets, and thus their resources are sized for the balance between

cores, memory and I/O required by mobile applications. As part of this balance,

they are provisioned with lower achievable memory bandwidth than traditional x64

server systems. For example, the memory-level parallelism in Cortex-A9 chips is

limited to two outstanding memory requests [84], as compared to ten in Intel

chips [86]. Because mobile apps are typically not memory-bounded, the size of

the caches range between 256 kB and 1 MB in the commodity Cortex-A9 systems

shipped by vendors such as Samsung, Nvidia, Texas Instruments or ST-Ericsson.

In contrast, the size of the cache memory in most x64 server systems exceeds

10 MB. Furthermore, the memory subsystem in many currently available ARM

Cortex-A9 chips use low power memory, with 32-bit data bus width and oper-

ating at lower clock frequencies compared with traditional memory chips. As

a result of these factors, low-power computing on ARM Cortex-A9 might suffer

from a larger imbalance between arithmetic and memory performance than tra-

ditional x64 systems. Considering that many types of server workloads are I/O

or memory-intensive, the large gap between core and memory performance might

lead to unexpected results.

155

Chapter 5. Model Applications

To address this difference between core and memory performance in traditional

and low-power multicore systems, we compare the execution of memory-bounded

SP on low-power Cortex-A9 with the Intel NUMA multicore system.

We ran program SP with 400 iterations on a grid of 1623 (similar to input size

C, but with more iterations). The input results in a working set large enough to

exceed the caches of both systems, but fits into 1 GB of main memory.

We apply our prediction for execution time on the low-power multicore for

all core-frequency configurations, and observe that the minimum execution time

exceeds 17,000 seconds. In contrast, the execution time on the x64 system is 330

seconds, using all cores at maximum frequency. The large gap between execution

times appears because the Intel system is equipped with much larger caches, and

thus, incurs 15 times less cache misses. Furthermore, the main memory bandwidth

is around 8 times higher, while the bandwidth of the caches are ten times (for L1)

and four times (when comparing Intel L3 to ARM L2) higher. The average power

used by the Intel system (with disks turned off) is around 210W.

We extend this analysis for datacenters, factoring the additional power re-

quired for power conversion and cooling the systems. The Power Usage Effective-

ness (PUE) of a datacenter measures the total power required to deliver 1 Watt

of IT power. From literature, we identify two PUE bounds: the lower bound

is PUE=1.13, in a Google datacenter [5], while an the upper bound is 1.89 [6].

Figure 5.10 shows the predicted values of energy consumption on low-power mul-

ticore, for all configurations of cores-frequency, compared with an execution on

all x64 cores at maximum frequency, for PUE between 1.13 and 1.89. Few ARM

configurations manage to achieve lower energy cost than x64, with less than 7%

energy reduction, but at a cost of incurring execution time more than 50× higher.

However, the x64 execution is not energy efficient because all cores are used at

maximum frequency even though the memory is the bottleneck. We conclude that

156

Chapter 5. Model Applications

Frequency [GHz]

 0

 40

 80

 120

 150

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[W
h]

1 core 2 cores

3 cores 4 cores

ARM PUE=1.13
ARM PUE=1.89

x64 PUE=1.13
x64 PUE=1.89

Figure 5.10: SP energy usage: ARM Cortex-A9 vs Intel NUMA x64

memory-bounded programs can be unsuitable for low-power multicores, even if op-

timizing the core-frequency configuration to achieve best performance at minimum

energy cost.

This analysis shows that the balance between core and memory performance

plays an important role in achieving energy-efficient executions. Thus, the design

of the Exynos 4412 ARM Cortex-A9, which favors high CPU processing power but

comparatively little memory bandwidth leads to energy wastage. The question

then becomes: how should the system be balanced? By turning off under-utilized

cores or by increasing the performance of the memory and I/O subsystem?

5.3.3 Improving Energy Efficiency of Low-power Multi-

core Systems

ARM multicores typically have good energy efficiency when used as mobile com-

puters, due to their sleep states and low-power operation [84]. However, our

previous analysis shows that resource imbalances lead to large energy wastage in

server workloads. Thus, leveraging on the idea that ARM systems are highly con-

157

Chapter 5. Model Applications

figurable, we apply our model to understand how to lower the energy usage of

server workloads.

As the key to improving energy proportionality is system balance, we apply our

model to predict the performance of programmemcached under different hardware

configurations that balance the system resources. Figure 5.11 shows the response

times of different resources for the original hardware configuration (100 Mbps

Ethernet, one memory controller), when using two active cores. This number of

cores is selected as it achieves the best performance at minimum energy cost. For

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Ti
m

e
[s

]

Frequency [GHz]

Work Time (W)
Mem. Time (TM)
I/O Time (I)
Exec. Time (T)

Figure 5.11: Memcached Response Times

small core frequencies, the CPU work time (W = w+b
f

) is the bottleneck, but

at 600 MHz the CPU response time matches the I/O response time. Beyond

600 MHz, the I/O bandwidth becomes the bottleneck, and the execution time

does not reduce anymore.

This analysis allows significant energy savings if two cores are turned off. Un-

fortunately, the operating system on our system does not allow selective power

off of a subset of cores, and thus we cannot measure directly the energy savings.

However, using figures from related work [67, 84], by shutting down two out of the

four cores we can estimate a reduction of processor power between a conservative

158

Chapter 5. Model Applications

25% and an optimistic 50%. With these figures, applying the configuration pre-

dicted by our model allows for a reduction in total energy savings between 13%

and 31%, and without compromising the execution time performance.

We analyze the performance impact of replacing two system components. First,

the 100 Mbps Ethernet is replaced with 1 GBps Ethernet, without modifying any

other component. In this analysis, we consider a Gigabit Ethernet adapter with a

power consumption of 600 mW, which is typical for a power-efficient network

card. The I/O time for memcached is composed of transfer time IT = 56 s

and blocking time TB = 5.1 s. With a 1 Gbit Ethernet, the total I/O time

becomes I = 10.7 s. However, because the I/O device is memory mapped, we

consider that the Gigabit Ethernet will utilize 125 MB/s out of the approximately

800 MB/s memory bandwidth. Thus, sM increases from 38 ns to 45 ns. Applying

Equation 3.41, TM increases from 36.5 s to 47 s. Thus, the effect of moving to

1 GBit Ethernet is a reduction from of execution time from T = 61 s to T = 47 s,

and the system bottleneck becomes the memory. Due to the increase in I/O power

by 400 mW and due to the increase in stall cycles, the average power increases by

approximately 500 mW. Figure 5.12 shows that total energy decreases by switching

 0

 300

 600

 900

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [GHz]

1 core 2 cores

3 cores 4 cores

100 Mbps, 1x mem
1 Gbps, 1x mem
1 Gbps, 2x mem

Figure 5.12: Memcached with 1 Gbit Ethernet and Double Memory Bandwidth

159

Chapter 5. Model Applications

to a 1 Gbps Ethernet because the decrease in execution time offsets the increase

in average power. Since the new bottleneck is the memory, we consider next the

impact of doubling the effective memory bandwidth (ARM Cortex-A9 systems can

be configured to up to quad-memory channels, while the next generations ARM

Cortex-A15 and ARM Cortex-A50 support more outstanding memory requests

and can be configured to use LPDDR3). With the double memory bandwidth,

the memory response time drops to 18.1 s, and the system bottleneck becomes

the core. We consider a pessimistic scenario, where power consumption is the

quadruple of the original memory system (100 mW idle memory power and 1 W

active memory power). However, the energy consumption still decreases by more

than 50%, and memcached becomes CPU-bounded. It achieves best performance

and minimum energy when using all cores at full frequency.

This analysis showed that reducing the imbalance among core, memory and

I/O leads to lower energy usage. However, counter to intuition, we showed that

balancing the resources by addingmore hardware resources results in higher energy

savings (50% reduction compared to the original hardware configuration), com-

pared to balancing the resources by turning off underutilized cores (13-31% reduc-

tion). However, this results in higher average power consumption.

Our model suggest that future energy-efficient multicore system must focus on

improving execution time by improving the memory and I/O subsystems, rather

than to limit performance because of adhering to a low-power design. While this

has important implications to circuit design, thermal and power management, our

analysis concludes that future energy-efficient systems must take on these chal-

lenges, and move away from a reliance on low-power to achieve energy-efficiency.

Considering that next-generation ARM systems such as ARM Cortex-A15 and

the 64-bit ARM Cortex-A50 family target much improved memory and I/O sub-

systems [112], we conclude that our analysis validates the direction that the indus-

160

Chapter 5. Model Applications

try is following. If the trends continue, future multicore systems based on ARM

multicores will deliver better energy-efficiency than current ARM Cortex-A9, but

at a cost of higher power usage.

5.4 Summary

In this chapter we applied the model to understand the parallelism-energy per-

formance of workloads covering HPC, financial, multimedia and datacenter work-

loads. We showed that many applications lose significant parallelism, and this

contributes to an increase in both execution time and energy usage. Furthermore,

we showed that analyzing the parallelism loss of a program is a better handle at

optimizing the energy usage of a program, compared to analyzing just the energy

proportionality of the program execution.

Following this analysis we described three scenarios in which the proposed

parallelism-energy performance analysis framework is used to drive performance

optimization for both execution time and energy usage. First we showed that our

model can be used to determine the minimum number of cores that achieves a

required execution time on a commodity multicore server. If the system cannot

achieve the desired execution time, we showed that our model can be applied to

understand the exploited parallelism and parallelism loss due to data dependency

and memory contention, and to analyze the impact of switching from UMA to

NUMA memory interconnect. Second, we predict the optimal core frequency and

number of active cores that achieves the minimum energy utilization in low power

ARM multicores and show that 50% energy savings can be made using predictions

of our model, compared with Linux ondemand and up to 1.5× compared to the

powersave frequency governors. Finally, we show that the energy consumption

of low-power multicores when executing server workloads can be reduced if the

161

Chapter 5. Model Applications

performance of the memory and the I/O subsystems is increased, even if this

leads to higher power usage.

162

Chapter 6

Conclusions

We conclude the thesis by presenting a summary of our main contributions followed

by a discussion on the further research directions.

6.1 Thesis Summary

This thesis presents an approach for understanding the parallelism and energy

performance of shared-memory programs on both traditional and low-power mul-

ticore systems. Our analytical models for parallelism and energy performance, are

driven by insights derived from measurements, with inputs from traces of operat-

ing system run-queue, hardware events counters and static power measurements.

Our parallelism model predicts the inherent parallelism and exploited paral-

lelism of a program, and quantifies the parallelism loss due to data-dependency and

memory contention. Validation of the model was performed against measurements

using HPC workloads from NPB suite, financial and multimedia workloads from

PARSEC benchmarks and datacenter workloads such as memcached on state-of-

the-art UMA and NUMA systems with up to 48 cores. Our model results differ

from measurements by around 6%-13% for a range of traditional Intel/AMD and

163

Chapter 6. Conclusions

low-power multicore systems. Our energy performance model is designed to un-

derstand the relationship between parallelism and energy performance. Given a

shared-memory program, the energy model predicts the average power required,

the total energy usage and the knee clock frequency where core and memory per-

formance are balanced, and execution time and energy performance are close to

optimum.

In carrying out extensive measurement analysis on which the model is based,

we draw a number of insights on memory contention in multicore systems [117].

In contrast with previously reported observations [63], we show that the memory

traffic is not always bursty, and memory burstiness depends on problem size. Small

problem size do not generate memory contention, but exhibit bursty memory

traffic. In contrast, large parallel programs which generate significant memory

contention are observed to cause less bursty traffic. This simplifies the modeling

of the memory contention in large multicore systems. For problems with large

contention, we show that a single-server queueing system accurately models the

behavior of the memory system [115].

Our modeling approach is used to drive performance optimizations for different

user scenarios. For users that are concerned with program executions under a

strict deadline, we show that our models can be used to determine the multicore

configuration that achieves a required execution time. Counter to intuition, if

the program exhibits severe memory contention, the smallest execution time is

achieved using low core counts [114, 116]. If the desired execution time cannot

be met, the parallelism loss from data dependency and memory contention, as

predicted by our model, can assist the user in making appropriate changes to

the program or the machine. For example, we show that switching from a UMA

system to a NUMA system is the most effective configuration change that reduces

contention and improves speedup.

164

Chapter 6. Conclusions

For users of parallel programs that execute under tight energy constraints,

we show that our model predicts the number of cores and clock frequency that

optimizes the energy use without increasing the response time of the program.

Furthermore, we show that in memory-bounded programs executing on low-power

ARM multicore systems, our model predicts configurations that balance the cores,

memory and I/O resources and results in a reduction of execution time and energy

usage by up to 27% and 50%, respectively. Compared to the powersave policy,

our model reduces execution time by a factor of 2.8 and energy usage by up to 1.5

times.

Finally, by modeling the relationship between performance and energy, this

thesis suggests that the key for improving energy efficiency of multicore systems

is to balance the cores, memory and I/O resources, such that waiting time and

idle energy in the system are minimized. For a program execution that leads to a

imbalance among resources, we show that restoring system balance by increasing

the performance of the bottleneck devices leads to lower execution time and energy

usage, compared to turning off under-utilized resources, even if this is achieved

with higher power usage [116].

6.2 Future Research Directions

Our proposed approach of modeling the time and energy performance via exploited

parallelism and the parallelism loss due the data-dependency, memory contention

and I/O overheads can be extended in several directions.

A first extension involves extending the model to distributed-memory pro-

grams. For such programs, the model needs to be extended in two ways. First,

a model for the communication overhead needs to be included, such that we can

quantify the parallelism loss when processes are waiting among themselves. Sec-

165

Chapter 6. Conclusions

ond, the overlap between the three response times among different nodes needs

to be modeled. For example, in a datacenter workload that executes on multiple

multicore server nodes, the response times of a job will depend on the slowest

node, and the response time on the slowest node in turn depends on the overlap

between its cores, memory and I/O service times.

Another direction is to tackle the increasing presence of heterogeneous mul-

ticore systems. First, heterogeneity among the cores of a server is becoming the

norm in the dark silicon era. However, the question of whether intra-node hetero-

geneity leads to a more efficient usage of the off-chip resources is still unanswered.

For example, the next generation ARM big.LITTLE architecture, such as Sam-

sung Exynos 5 couples four low-power in-order ARM Cortex-7 cores with four

high-performance out-of-order ARM Cortex-A15 cores. Because of their in-order

execution, executions on ARM Cortex-A7 might not fully exercise the off-chip

memory bandwidth or the I/O resources. Because these off-chip resources still

consume significant power even when under-utilized, it is thus possible that signif-

icant energy is still wasted. On the other hand, executions on the ARM Cortex-

A15 cores might still be imbalanced, if the off-chip resources are bottleneck before

the cores reach their full execution capacity. An optimal solution might involve a

controlled transition between the two types of cores, supported by a power alloca-

tion model that matches the on-chip and off-chip resource supply to the workload

demands.

Secondly, heterogeneity among nodes of a cluster can be exploited for energy-

efficient executions of datacenter workloads. Such workloads must often obey

strict response time constraints. Thus, to maintain a good user experience, the

service time inside a datacenter might be different among users, even for the same

type of job. While a system with only low-power nodes may not meet a target

deadline, a system using only high-performance nodes may require an inordinate

166

Chapter 6. Conclusions

amount of energy when operating at higher performance level than necessary.

Ideally, a system should allow a range of configurations that decreases the energy

progressively as the deadline is relaxed. This motivates the case for analyzing a

heterogeneous cluster system with a mix of high-performance nodes and low-power

nodes.

Lastly, to support performance analysis of data-intensive programs, the ex-

tension to distributed computing can be supplemented by a cost model for data

movement among the nodes of a cluster and the cost of storage I/O.

167

168

References

[1] Advanced Configuration and Power Interface. http://www.acpi.info/.

[2] Go Programming Language. http://golang.org/.

[3] JEDEC STANDARD Low Power Double Data Rate 2 (LPDDR2).

http://www.jedec.org/sites/default/files/docs/JESD209-2B.pdf.

[4] Memcached. http://memcached.org/.

[5] Google Data Center Efficiency: How We Do It, Oct 2012.

http://www.webcitation.org/6C8PjIMYd.

[6] Uptime Institute 2012 Survey, Oct 2012. http://uptimeinstitute.com/2012-

survey-results/.

[7] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy Propor-

tional Datacenter Networks. Proc. of 37th Annual International Symposium

on Computer Architecture, pages 338–347, 2010.

[8] G. M. Amdahl. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. Proc. of AFIPS Spring Joint Computer

Conference, pages 483–485, Atlantic City, USA, 1967.

[9] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and

V. Vasudevan. Fawn: a fast array of wimpy nodes. Proc. of ACM SIGOPS

169

22nd Symposium on Operating Systems Principles, SOSP ’09, pages 1–14,

Big Sky, Montana, USA, 2009.

[10] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and

K. A. Yelick. The landscape of parallel computing research: A view from

berkeley. Technical report, Electrical Engineering and Computer Sciences,

University of California at Berkeley, 2006.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload

analysis of a large-scale key-value store. Proc. of ACM SIGMETRICS/PER-

FORMANCE Joint International Conference on Measurement and Modeling

of Computer Systems, pages 53–64, London, UK, 2012.

[12] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for

Computer System Modeling. Computer, 35:59–67, 2002.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,

H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel

Benchmarks — Summary and Preliminary Results. Proc. of 3rd ACM/IEEE

Conference on Supercomputing, pages 158–165, Albuquerque, USA, 1991.

[14] M. K. Bane and G. D. Riley. Extended Overhead Analysis for OpenMP

(Research Note). Proc. of the 8th International Euro-Par Conference on

Parallel Processing, pages 162–166, London, UK, 2002.

[15] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski, and

M. Schulz. A Regression-based Approach to Scalability Prediction. Proc. of

22nd International Conference on Supercomputing, pages 368–377, Island of

Kos, Greece, 2008.

170

[16] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing.

Computer, 40(12):33–37, Dec. 2007.

[17] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. De-

composable and Responsive Power Models for Multicore Processors Using

Performance Counters. Proc. of 24th ACM International Conference on Su-

percomputing, pages 147–158, Tsukuba, Japan, 2010.

[18] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications. Proc. of 17th International

Conference on Parallel Architectures and Compilation Techniques, pages 72–

81, Toronto, Canada, Oct. 2008.

[19] R. D. Blumofe and C. E. Leiserson. Space-efficient Scheduling of Multi-

threaded Computations. Proc. of 25th Annual ACM Symposium on Theory

of Computing, pages 362–371, San Diego, USA, 1993.

[20] S. Borkar and A. A. Chien. The future of microprocessors. Communications

of the ACM, 54(5):67–77, May 2011.

[21] J. M. Bull. A Hierarchical Classification of Overheads in Parallel Programs.

Proc. of 1st IFIP TC10 International Workshop on Software Engineering for

Parallel and Distributed Systems, pages 208–219, Berlin, Germany, 1996.

[22] A. Carroll and G. Heiser. An Analysis of Power Consumption in a Smart-

phone. Proc. of 11th USENIX Annual Technical Conference, Boston, USA,

2010.

[23] A. Carroll and G. Heiser. The Systems Hacker’s Guide to the Galaxy Energy

Usage in a Modern Smartphone. Proc. of 4th Asia-Pacific Workshop on

Systems, pages 5:1–5:7, Singapore, Singapore, 2013.

171

[24] J. Chen, M. Dubois, and P. Stenström. SimWattch: Integrating Complete-

System and User-Level Performance and Power Simulators. IEEE Micro,

27:34–48, 2007.

[25] S. Cho and L. Jin. Managing Distributed, Shared L2 Caches through OS-

Level Page Allocation. Proc. of 39th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 455–468, Orlando, USA, 2006.

[26] K. Choi, R. Soma, and M. Pedram. Dynamic Voltage and Frequency Scaling

Based on Workload Decomposition. Proc. of 10th International Symposium

on Low Power Electronics and Design, pages 174–179, Newport Beach, USA,

2004.

[27] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S. Nikolopou-

los. Prediction-Based Power-Performance Adaptation of Multithreaded Sci-

entific Codes. IEEE Transactions on Parallel and Distributed Systems,

19(10):1396–1410, 2008.

[28] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.

de Supinski, and M. Schulz. Prediction Models for Multi-dimensional Power-

performance Optimization on Many Cores. Proc. of 17th International Con-

ference on Parallel Architectures and Compilation Techniques, pages 250–

259, Toronto, Canada, 2008.

[29] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP Throughput

with Mediocre Cores. Proc. of 14th International Conference on Parallel

Architectures and Compilation Techniques, pages 51–62, 2005.

[30] J. Donald and M. Martonosi. Techniques for Multicore Thermal Manage-

ment: Classification and New Exploration. SIGARCH Computer Architec-

ture News, 34:78–88, 2006.

172

[31] A. B. Downey. A Model For Speedup of Parallel Programs. Technical Report

UCB/CSD-97-933, EECS Department, University of California, Berkeley,

1997.

[32] A. B. Downey. A Parallel Workload Model and its Implications for Pro-

cessor Allocation. Proc. of 6th IEEE International Symposium on High

Performance Distributed Computing, 1997.

[33] J. E. G. Coffman, M. R. Garey, and D. S. Johnson. An Application of

Bin-Packing to Multiprocessor Scheduling. SIAM Journal on Computing,

7(1):1–17, 1978.

[34] D. Eager, J. Zahorjan, and E. Lazowska. Speedup Versus Efficiency in Par-

allel Systems. IEEE Transactions on Computers, 38(3):408–423, 1989.

[35] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and

B. Schroeder. Temperature Management in Data Centers: Why Some

(Might) Like it Hot. Proc. of ACM SIGMETRICS/PERFORMANCE Joint

International Conference on Measurement and Modeling of Computer Sys-

tems, London, UK, 2012.

[36] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger.

Dark Silicon and the End of Multicore Scaling. Proc. of 38th Annual Inter-

national Symposium on Computer Architecture, pages 365–376, 2011.

[37] A. Fedorova, M. Seltzer, and M. D. Smith. Improving Performance Iso-

lation on Chip Multiprocessors via an Operating System Scheduler. Proc.

of 16th International Conference on Parallel Architecture and Compilation

Techniques, pages 25–38, Brasov, Romania, 2007.

173

[38] S. Fuller and L. Millett. Computing Performance: Game Over or Next

Level? Computer, 44(1):31–38, Jan.

[39] K. Fürlinger and M. Gerndt. ompP: A Profiling Tool for OpenMP. Proc. of

1st International Workshop on OpenMP, Eugene, USA, 2005.

[40] K. Fürlinger and M. Gerndt. Analyzing Overheads and Scalability Charac-

teristics of OpenMP Applications. Proc. of the 7th International Meeting on

High Performance Computing for Computational Science, Rio de Janeiro,

Brazil, 2006.

[41] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. A Case for Machine

Learning to Optimize Multicore Performance. Proc. of 1st USENIX Con-

ference on Hot Topics in Parallelism, Berkeley, USA, 2009.

[42] A. Gandhi, M. Harchol-Balter, and I. J. B. F. Adan. Server Farms with

Setup Costs. Performance Evaluation Review, 67(11):1123–1138, 2010.

[43] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal Power Al-

location in Server Farms. Proc. of ACM SIGMETRICS/Performance Joint

Conference on Measurement and Modeling of Computer Systems, pages 157–

168, 2009.

[44] A. Gandhi, M. Harchol-Balter, and M. A. Kozuch. Are Sleep States Effective

in Data Centers? Proc. of 3rd International Green Computing Conference,

pages 1–10, 2012.

[45] R. Ge, X. Feng, and K. W. Cameron. Modeling and Evaluating Energy-

performance Efficiency of Parallel Processing on Multicore Based Power

Aware Systems. Proc. of 23rd IEEE International Symposium on Paral-

lel&Distributed Symposium, 2009.

174

[46] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr.

The Scalasca Performance Toolset Architecture. Concurrency and Compu-

tation: Practice and Experience, 22(6):702–719, 2010.

[47] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM,

31(5):532–533, 1988.

[48] E. Haritan, T. Hattori, H. Yagi, P. Paulin, W. Wolf, A. Nohl, D. Wingard,

and M. Muller. Multicore Design is the Challenge! What is the Solution?

Proc. of 45th Annual Design Automation Conference, pages 128–130, Ana-

heim, California, 2008.

[49] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edition:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., 2006.

[50] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and J. Moses.

Rate-based QoS Techniques for Cache/Memory in CMP Platforms. Proc. of

23rd International Conference on Supercomputing, pages 479–488, Yorktown

Heights, USA, 2009.

[51] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer,

41(7):33–38, 2008.

[52] U. Hölzle. Brawny cores still beat wimpy cores, most of the time. IEEE

Micro, 30(4), 2010.

[53] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jes-

persen, K. Taylor, and R. Biswas. Performance Impact of Resource Con-

tention in Multicore Systems. Proc. of 24th IEEE International Parallel &

Distributed Processing Symposium, Atlanta, USA, 2010.

175

[54] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-

grammability. McGraw-Hill Higher Education, 1992.

[55] C. Iancu, S. Hofmeyr, F. Blagojevic, and Y. Zheng. Oversubscription on

Multicore Processors. Proc. of 24th IEEE International Symposium on Par-

allel & Distributed Processing, Atlanta, USA, 2010.

[56] E. Ipek, B. R. de Supinski, M. Schultz, and S. A. McKee. An Approach

to Performance Prediction for Parallel Applications. Proc of 11th Interna-

tional Euro-Par Conference on Parallel Processing, pages 196–205, Monte

de Caparica, Portugal, 2005.

[57] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana. Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach. Proc. of 35th Annual

International Symposium on Computer Architecture, pages 39–50, Beijing,

China, 2008.

[58] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End Proces-

sors: Methodology and Empirical Data. Proc. of 36th Annual IEEE/ACM

International Symposium on Microarchitecture, San Diego, USA, 2003.

[59] R. Jain. The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling. Wiley,

1991.

[60] N. K. Jha. Low Power System Scheduling and Synthesis. Proc. of

IEEE/ACM International Conference on Computer-Aided Design, pages

259–263, San Jose, California, 2001.

[61] A. Karbowski. Amdahl’s and Gustafson-Barsis Laws Revisited. CoRR,

abs/0809.1177, 2008.

176

[62] T. Karkhanis and J. E. Smith. A Day in the Life of a Data Cache Miss.

Proc. of 2nd Workshop on Memory Performance Issues, Anchorage, USA,

2002.

[63] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and

High-Performance Scheduling Algorithm for Multiple Memory Controllers.

Proc. of 16th International Symposium on High Performance Computer Ar-

chitecture, Bangalore, India, 2010.

[64] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Caşcaval. How

Much Parallelism Is There in Irregular Applications? Proc. of 14th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming,

Raleigh, USA, 2009.

[65] M. Kumar. Measuring Parallelism in Computation-Intensive Scientific/Engi-

neering Applications. IEEE Transactions on Computers, 37(9):1088–1098,

1988.

[66] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah, and D. Tsirogiannis.

Towards Energy-Efficient Database Cluster Design. PVLDB, 5(11):1684–

1695, 2012.

[67] E. Le Sueur and G. Heiser. Slow Down or Sleep, that is the Question. Proc.

of USENIX Annual Technical Conference, Portland, USA, 2011.

[68] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. S. Kim. Improving

Throughput of Power-Constrained GPUs Using Dynamic Voltage/Frequency

and Core Scaling. Proc. of the 20th International Conference on Parallel Ar-

chitectures and Compilation Techniques, pages 111–120, Minneapolis, USA,

2011.

177

[69] K.-J. Lee and K. Skadron. Using Performance Counters for Runtime Tem-

perature Sensing in High-Performance Processors. Proc. of 19th IEEE Inter-

national Parallel & Distributed Processing Symposium Workshops, Denver,

USA, 2005.

[70] T. Li and L. K. John. Run-time Modeling and Estimation of Operating Sys-

tem Power Consumption. SIGMETRICS Performance Evaluation Review,

31:160–171, 2003.

[71] W.-Y. Liang, S.-C. Chen, Y.-L. Chang, and J.-P. Fang. Memory-aware

Dynamic Voltage and Frequency Prediction for Portable Devices. Proc. of

14th IEEE International Conference on Embedded and Real-Time Comput-

ing Systems and Applications, Kaohsiung, Taiwan, 2008.

[72] M. Lin, A. Wierman, L. Andrew, and E. Thereska. Dynamic Right-sizing for

Power-proportional Data Centers. Proc. of 30th IEEE International Con-

ference on Computer Communications, pages 1098–1106, 2011.

[73] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the Last Line

of Defense Before Hitting the Memory Wall for CMPs. Proc. of 10th In-

ternational Symposium on High Performance Computer Architecture, pages

373–380, San Jose, USA, 2004.

[74] F. Liu, X. Jiang, and Y. Solihin. Understanding How Off-chip Memory Band-

width Partitioning in Chip Multiprocessors Affects System Performance.

Proc. of 16th International Symposium on High Performance Computer Ar-

chitecture, Bangalore, India, 2010.

[75] G. Long, D. Fan, and J. Zhang. Characterizing and Understanding the

Bandwidth Behavior of Workloads on Multi-core Processors. Proc. of 15th

178

International European Conference on Parallel and Distributed Computing,

pages 110–121, Delft, The Netherlands, 2009.

[76] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,

A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi. Scale-out Proces-

sors. Proc. of 39th Annual International Symposium on Computer Architec-

ture, 2012.

[77] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation. Proc. 23th ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

190–200, Chicago, USA, 2005.

[78] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg,

J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System

Simulation Platform. Computer, 35:50–58, 2002.

[79] Z. Majo and T. R. Gross. Matching Memory Access Patterns and Data

Placement for NUMA Systems. Proc. of 10th International Symposium on

Code Generation and Optimization, pages 230–241, 2012.

[80] K. Malladi, F. Nothaft, K. Periyathambi, B. Lee, C. Kozyrakis, and

M. Horowitz. Towards energy-proportional datacenter memory with mo-

bile dram. Proc. of 39th Annual International Symposium on Computer

Architecture, pages 37–48, Portland, USA, 2012.

[81] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi,

and M. Horowitz. Towards Energy-proportional Datacenter Memory with

Mobile DRAM. Proc. of 39th Annual International Symposium on Computer

Architecture, pages 37–48, 2012.

179

[82] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating Server

Idle Power. Proc. of 14th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 205–216, 2009.

[83] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.

Power Management of Online Data-intensive Services. Proc. of 38th Annual

International Symposium on Computer Architecture, pages 319–330, 2011.

[84] R. Mijat. System Level Benchmarking Analysis of the Cortex-A9 MPCore.

ARM Connected Community Technical Symposium, 2009.

[85] J. Milthorpe, V. Ganesh, A. Rendell, and D. Grove. X10 as a Parallel Lan-

guage for Scientific Computation: Practice and Experience. Proc. of 25th In-

ternational Parallel & Distributed Processing Symposium, pages 1080–1088,

Anchrage, USA, 2011.

[86] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory Perfor-

mance and Cache Coherency Effects on an Intel Nehalem Multiprocessor

System. Proc. of 18th International Conference on Parallel Architectures

and Compilation Techniques, pages 261–270, 2009.

[87] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and

S. Vishin. Hierarchical Power Management for Asymmetric Multi-Core in

Dark Silicon Era. Proc. of 50th Design Automation Conference, 2013.

[88] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: En-

hancing both Performance and Fairness of Shared DRAM Systems. Proc.

of 35th Annual International Symposium on Computer Architecture, pages

63–74, Beijing, China, 2008.

180

[89] A. K. Nanda, H. Shing, T.-H. Tzen, and L. M. Ni. Resource Contention in

Shared-Memory Multiprocessors: A Parameterized Performance Degrada-

tion Model. Journal of Parallel and Distributed Computing, 12(4):313–328,

1991.

[90] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Mem-

ory Systems. Proc. of 39th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 208–222, Orlando, USA, 2006.

[91] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual Private Caches. Proc.

of 34th Annual International Symposium on Computer architecture, pages

57–68, San Diego, USA, 2007.

[92] J. M. Paul and B. H. Meyer. Amdahl’s Law Revisited for Single Chip

Systems. International Journal of Parallel Programming, 35(2):101–123,

2007.

[93] M. Pricopi and T. Mitra. Bahurupi: A polymorphic heterogeneous multi-

core architecture. ACM Transactions on Architure and Code Optimization,

8(4):22:1–22:21, Jan. 2012.

[94] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-

Hill Education Group, 2003.

[95] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A

Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared

Caches. Proc. of 39th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 423–432, Orlando, USA, 2006.

[96] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe, T. F.

Wenisch, and M. M. Martin. Computational Sprinting on a Hardware/-

181

Software Testbed. Proc. of 18th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 155–166,

2013.

[97] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F.

Wenisch, and M. M. K. Martin. Computational sprinting. Proc. of 18th

IEEE International Symposium on High-Performance Computer Architec-

ture, pages 1–12, New Orleans, USA, 2012.

[98] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin.

Scaling the Bandwidth Wall: Challenges and Avenues for CMP Scaling.

SIGARCH Computer Architure News, 37(3):371–382, 2009.

[99] J. C. Sancho, D. Kerbyson, and M. Lang. Analyzing the Trade-off between

Multiple Memory Controllers and Memory Channels on Multi-core Proces-

sor Performance. Proc. of Workshop on Large-Scale Parallel Processing,

Atlanta, USA, 2010.

[100] D. Sehr and L. V. Kale. Estimating the Inherent Parallelism in Prolog

Programs. Proc of. International Conference on Fifth Generation Computer

Systems, pages 783–790, Tokyo, Japan, 1992.

[101] K. Sevcik. Characterizations of Parallelism in Applications and Their Use in

Scheduling. Proc. of 10th ACM SIGMETRICS Internaltional Conference on

Measurement and Modeling of Computer Systems, pages 171–180, Berkeley,

USA, 1989.

[102] S. S. Shende and A. D. Malony. The Tau Parallel Performance System. In-

ternational Journal of High Performance Computer Applications, 20(2):287–

311, 2006.

182

[103] S. Siddha, V. Pallipadi, and A. Mallick. Process Scheduling Challenges in

the Era of Multi-core Processors. Intel Technology Journal, 11(4), 2007.

[104] K. Singh, M. Bhadauria, and S. A. McKee. Real Time Power Estimation

and Thread Scheduling via Performance Counters. SIGARCH Computer

Architure News, 37:46–55, 2009.

[105] K. Singh, M. Curtis-Maury, S. McKee, F. Blagojevic, D. Nikolopoulos,

B. de Supinski, and M. Schulz. Comparing Scalability Prediction Strate-

gies on an SMP of CMPs. Proc. of 16th International European Conference

on Parallel and Distributed Computing, Ischia, Italy, 2010.

[106] Y. Solihin, V. Lam, and J. Torrellas. Scal-Tool: Pinpointing and Quantifying

Scalability Bottlenecks in DSM Multiprocessors. Proc. of 11th ACM/IEEE

Conference on Supercomputing, Portland, USA, 1999.

[107] C. Stewart, T. Kelly, and A. Zhang. Exploiting Nonstationarity for Perfor-

mance Prediction. ACM SIGOPS Operating Systems Review, 41(3):31–44,

2007.

[108] V. Suhendra and T. Mitra. Exploring Locking & Partitioning for Predictable

Shared Caches on Multi-cores. Proc. of 45th Annual Design Automation

Conference, pages 300–303, 2008.

[109] J. Tao, W. Karl, and M. Schulz. Memory Access Behavior Analysis of

NUMA-based Shared Memory Programs. Scientific Programming, 10(1):45–

53, Jan. 2002.

[110] Y. C. Tay. Analytical Performance Modeling for Computer Systems. Syn-

thesis Lectures on Computer Science. Morgan & Claypool Publishers, 2010.

183

[111] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel. Practical Performance

Models for Complex, Popular Applications. Proc of. 31st SIGMETRICS In-

ternational Conference on Measurement and Modeling of Computer Systems,

New York, USA, 2010.

[112] Travis Lanier. Exploring the design of the Cortex-A15 processor, 2011. ARM

Technical Reports.

[113] H.-L. Truong and T. Fahringer. SCALEA: A Performance Analysis Tool for

Parallel Programs. Concurrency and Computation: Practice and Experience

Journal, 15(11-12):1001–1025, 2003.

[114] B. M. Tudor and Y. M. Teo. A Practical Approach for Performance Analysis

of Shared-Memory Programs. Proc. of 25th IEEE International Parallel &

Distributed Processing Symposium, pages 652–663, Anchorage, USA, 2011.

[115] B. M. Tudor and Y. M. Teo. Towards Modelling Parallelism and Energy

Performance of Multicore Systems. Proc. of 26th IEEE International Parallel

& Distributed Processing Symposium PhD Forum, Shanghai, China, 2012.

[116] B. M. Tudor and Y. M. Teo. On Understanding the Energy Consumption

of ARM-based Multicore Servers. Proc. of 34th ACM SIGMETRICS Inter-

national Conference on Measurement and Modeling of Computer Systems,

pages 267–278, Pittsburgh, USA, 2013.

[117] B. M. Tudor, Y. M. Teo, and S. See. Understanding Off-Chip Memory

Contention of Parallel Programs in Multicore Systems. Proc. of 40th Inter-

national Conference on Parallel Processing, pages 602–611, Taipei, Taiwan,

2011.

184

[118] S. J. E. Wilton and N. P. Jouppi. CACTI: An Enhanced Cache Access and

Cycle Time Model. IEEE Journal of Solid-State Circuits, 31:677–688, 1996.

[119] F. Wolf and B. Mohr. KOJAK - A Tool Set for Automatic Performance

Analysis of Parallel Applications. Proc. of 9th European Conference on

Parallel Computing, pages 1301–1304, Klagenfurt, Austria, 2003.

[120] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of

the Obvious. SIGARCH Computer Architure News, 23(1):20–24, 1995.

[121] Y. Xie and G. Loh. Dynamic Classification of Program Memory Behaviors

in CMPs. Proc. of 2nd Workshop on Chip Multiprocessor Memory Systems

and Interconnects, Beijing, China, 2008.

[122] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The Design and

Use of SimplePower: a Cycle-Accurate Energy Estimation Tool. Proc. of

37th Annual Design Automation Conference, pages 340–345, Los Angeles,

USA, 2000.

[123] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan. BOOM:

Enabling Mobile Memory Based Low-power Server DIMMs. Proc. of 39th

Annual International Symposium on Computer Architecture, pages 25–36,

Portland, Oregon, 2012.

[124] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing Shared Resource

Contention in Multicore Processors via Scheduling. Proc. of 15th Edition of

Architectural Support for Programming Languages and Operating Systems,

pages 129–142, Pittsburgh, USA, 2010.

185

186

Appendix A

Validation Results

A.1 Validation of Memory Contention Model

A.1.1 Intel UMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.1: Memory contention validation: BT.W on Intel UMA

187

Chapter A. Validation Results

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.2: Memory contention validation: BT.A on Intel UMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.3: Memory contention validation: BT.B on Intel UMA

188

Chapter A. Validation Results

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.4: Memory contention validation: BT.C on Intel UMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.5: Memory contention validation: CG.W on Intel UMA

189

Chapter A. Validation Results

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.6: Memory contention validation: CG.A on Intel UMA

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.7: Memory contention validation: CG.B on Intel UMA

190

Chapter A. Validation Results

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.8: Memory contention validation: CG.C on Intel UMA

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.9: Memory contention validation: EP.W on Intel UMA

191

Chapter A. Validation Results

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.10: Memory contention validation: EP.A on Intel UMA

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.11: Memory contention validation: EP.B on Intel UMA

192

Chapter A. Validation Results

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.12: Memory contention validation: EP.C on Intel UMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.13: Memory contention validation: FT.W on Intel UMA

193

Chapter A. Validation Results

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.14: Memory contention validation: FT.A on Intel UMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.15: Memory contention validation: FT.B on Intel UMA

194

Chapter A. Validation Results

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.16: Memory contention validation: IS.W on Intel UMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.17: Memory contention validation: IS.A on Intel UMA

195

Chapter A. Validation Results

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.18: Memory contention validation: IS.B on Intel UMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.19: Memory contention validation: IS.C on Intel UMA

196

Chapter A. Validation Results

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.20: Memory contention validation: SP.W on Intel UMA

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.21: Memory contention validation: SP.A on Intel UMA

197

Chapter A. Validation Results

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.22: Memory contention validation: SP.B on Intel UMA

 0

 1

 2

 3

 4

 5

 6

 7

 1 4 8

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.23: Memory contention validation: SP.C on Intel UMA

198

Chapter A. Validation Results

A.1.2 Intel NUMA 2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 1 4 8 12 16 20 24

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.24: Memory contention validation: EP.C on Intel NUMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 8 12 16 20 24

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.25: Memory contention validation: IS.C on Intel NUMA

199

Chapter A. Validation Results

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 4 8 12 16 20 24

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.26: Memory contention validation: CG.C on Intel NUMA

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 4 8 12 16 20 24

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.27: Memory contention validation: FT.C on Intel NUMA

200

Chapter A. Validation Results

 0

 2

 4

 6

 8

 10

 12

 1 4 8 12 16 20 24

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.28: Memory contention validation: SP.C on Intel NUMA

201

Chapter A. Validation Results

A.1.3 AMD NUMA

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.29: Memory contention validation: EP.C on AMD NUMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.30: Memory contention validation: IS.C on AMD NUMA

202

Chapter A. Validation Results

-0.5

 0

 0.5

 1

 1.5

 2

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.31: Memory contention validation: CG.C on AMD NUMA

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.32: Memory contention validation: FT.C on AMD NUMA

203

Chapter A. Validation Results

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.33: Memory contention validation: BT.C on AMD NUMA

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 1 6 12 18 24 30 36 42 48

M
em

or
y

C
on

te
nt

io
n

Fa
ct

or
 ω

μ(
n)

n (#cores)

Measurement
Model

Figure A.34: Memory contention validation: SP.C on AMD NUMA

204

Chapter A. Validation Results

A.2 Validation of Parallelism and Energy Model

on ARM Cortex-A9

 0

 20

 40

 60

 80

 100

 120

 140

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores
3 cores 4 cores

Measurement
Model

Figure A.35: CPU cycles validation: EP on ARM Cortex-A9

 0

 100

 200

 300

 400

 500

 600

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.36: Execution time validation: EP on ARM Cortex-A9

205

Chapter A. Validation Results

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.37: Power validation: EP on ARM Cortex-A9

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.38: Energy validation: EP on ARM Cortex-A9

206

Chapter A. Validation Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.39: CPU cycles validation: IS on ARM Cortex-A9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.40: Execution time validation: IS on ARM Cortex-A9

207

Chapter A. Validation Results

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.41: Power validation: IS on ARM Cortex-A9

 0

 200

 400

 600

 800

 1000

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.42: Energy validation: IS on ARM Cortex-A9

208

Chapter A. Validation Results

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.43: CPU cycles validation: CG on ARM Cortex-A9

 0

 50

 100

 150

 200

 250

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.44: Execution time validation: CG on ARM Cortex-A9

209

Chapter A. Validation Results

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.45: Power validation: CG on ARM Cortex-A9

 0

 100

 200

 300

 400

 500

 600

 700

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.46: Energy validation: CG on ARM Cortex-A9

210

Chapter A. Validation Results

 0

 20

 40

 60

 80

 100

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.47: CPU cycles validation: FT on ARM Cortex-A9

 0

 20

 40

 60

 80

 100

 120

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.48: Execution time validation: FT on ARM Cortex-A9

211

Chapter A. Validation Results

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.49: Power validation: FT on ARM Cortex-A9

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.50: Energy validation: FT on ARM Cortex-A9

212

Chapter A. Validation Results

 0

 50

 100

 150

 200

 250

 300

 350

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.51: CPU cycles validation: BT on ARM Cortex-A9

 0

 100

 200

 300

 400

 500

 600

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.52: Execution time validation: BT on ARM Cortex-A9

213

Chapter A. Validation Results

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.53: Power validation: BT on ARM Cortex-A9

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.54: Energy validation: BT on ARM Cortex-A9

214

Chapter A. Validation Results

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.55: CPU cycles validation: SP on ARM Cortex-A9

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.56: Execution time validation: SP on ARM Cortex-A9

215

Chapter A. Validation Results

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.57: Power validation: SP on ARM Cortex-A9

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.58: Energy validation: SP on ARM Cortex-A9

216

Chapter A. Validation Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

C
yc

le
s

[*
10

9]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.59: CPU cycles validation: memcached on ARM Cortex-A9

 0

 50

 100

 150

 200

 250

 300

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

Ti
m

e
[s

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.60: Execution time validation: memcached on ARM Cortex-A9

217

Chapter A. Validation Results

 0

 1

 2

 3

 4

 5

 6

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

P
ow

er
 [W

]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.61: Power validation: memcached on ARM Cortex-A9

 0

 100

 200

 300

 400

 500

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

0.
2

0.
6

1.
0

1.
4

E
ne

rg
y

[J
]

Frequency [MHz]

1 core 2 cores

3 cores 4 cores

Measurement
Model

Figure A.62: Energy validation: memcached on ARM Cortex-A9

218

