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Summary

We study an initial-boundary value problem for the one-dimensional Navier-
Stokes Equation. The point-wise structure of the fundamental solution for the
initial value problem is first established. The estimate within finite Mach number
area is based on the long wave-short wave decomposition. The short wave part
describes the propagation of the singularity while the long wave part is shown
to decay exponentially. A weighted energy estimate method is applied outside
the finite Mach number area. With the Green’s identity, we are able to relate
the Green’s function for the half space problem to the full space problem. The
crucial step is to calculate the Dirichlet-Neumann map that constructs the Neu-
mann boundary data from the known Dirichlet boundary data. Here we apply
and modify the method in [23]. The full structure of the boundary data is thus
determined. Thus the Green’s function for the initial-boundary value problem is
obtained. At last, we write the representation of the solution to the nonlinear
problem which is a perturbation of a constant state by Duhamel’s principle. We
introduce a Picard’s iteration for the representation and make an ansatz assump-
tion according to the initial data given. We then verify our ansatz to obtain the
asymptotic behavior of our solution.

The sketch of this thesis are as follows: In Chapter 2 we construct the funda-
mental solution to the initial value problem. In Chapter 3 we derive the Green’s
identity and calculate the inverse Laplace transformation to obtain the Dirichlet-
Neumann map. In Chapter 4, we construct the full boundary data and get the

Green’s function. In Chapter 5, we make an application to the nonlinear problem.



Chapter 1

Introduction

The study of Navier-Stokes equations is an important area in fluid mechanics.
The interest of studying Navier-Stokes equations rises from both practically and
academically. They can be used to model the water flow in a pipe, air flow around
the wing of an aeroplane, ocean currents and maybe the weather. As a result,
the Navier-Stokes equations and their simplified forms are widely applied to help
with the design of aircraft and cars, the analysis of water pollution, the control
of blood flow and many others. They can also be used to study the magneto-
hydrodynamics if been coupled with Maxwell equations. However, the existence
and the smoothness of the solutions to the Navier-Stokes equations have not yet
been proven by the mathematicians. This fact is somehow surprising considering
the wide range of practical applications of the equations. As a result, the study
of the Navier-Stokes equations becomes one of the most popular areas of modern

mathematics.

In this thesis, We will focus on the one dimensional Navier-Stokes equations
and consider the initial-boundary value problem. There are a lot of works on
the initial value problems but the study of the problems with boundary remains

open. It is known that the Navier-Stokes equations can be used to model the
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compressible viscous fluid. For the one dimensional Navier-Stokes equations:

pr +mg =0,
(1.1)

2
where p and m stands for density and momentum respectively.

We consider the linearized form of (1.1):

pe+my =0,
(1.2)
My + Pz = Mgy
The reference state for the linearization is (p, m) = (1,0).
p 01 00
Let F' = , A= , B = , we have the matrix form of
m 10 01
(1.2) as follows:
OF + A0, F = BO’F. (1.3)

The fundamental solution G(z,t) for the initial value problem to the system

(1.3) is a 2 x 2 matrix valued function which satisfies

0,G(z,t) + A0, G(x,t) = BO*G(x,t) for x € R, t > 0,

G(z,0) = d(x)I.

The Green’s function G(z,y,t) for the initial-boundary value problem to the
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system (1.3) is also a 2 x 2 matrix valued function which satisfies

/

0,G(z,y,t) + AD,G(x,y,t) = BO*G(x,y,t) for x > 0,t > 0,
G(z,y,0) = 6(z — y)I, (1.5)

G(0,y,t) = 0.

\

In 1940s, Courant and Friedrichs systematically studied the modeling for kinds
of fluid problems in their book Supersonic Flow and Shock Waves [4]. Many
important concepts for compressible fluids were first introduced. The authors
focused on wave interactions and shock reflections for ideal gas where the viscosity

is neglectable. Problems introduced by this books are still hot topics in the area.

The Navier-Stokes equations are to study the viscous fluid. There are some
famous books on the concepts and important problems of Naiver-Stokes equations,
like [3], [13], [29]. During the past decades, there have been some breakthrough
in the study on Navier-Stokes equations with constant viscosity coefficient. For
the initial value satisfies some "small" conditions, the global existence, uniqueness
and approximation for the solutions are well known [5], [26], [27], [28]. However,
problems with large initial data are very hard. The first important result was by
Lions [15]. Lions obtained the global existence of the weak solution by the weak
convergence method. In [7], Feireisl, Novotny and Petzeltova consider a more
general case based on Lions’ work. In addition, for initial value "small" only in
the energy space, Hoff |9, 10] derived the existence for the global weak solution.

He and Santos also studied the propagation of the singularity in [11].

In fact, only when the density and temperature stay within certain range, the
real fluid can be seen as ideal fluid where the viscosity coefficient is constant. Liu,
Xin and Yang [19] studied the Cauchy problem of Navier-Stokes equations with

viscosity depending on density, and proved its local well-posedness. In the other
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hand, it is known that Navier-Stokes equations can be derived from Boltzmann
equations by Chapman-Enskog expansion. By the expression, one can see that

the viscosity also depends on temperature.

In real life, most problems we meet, as been before mentioned, like the water
flow in a pipe, the air flow around the wing of an aircraft, are with boundary.
As a result, the study of initial-boundary value problem seems to be much more
useful practically than the initial value problem. However, so far there is not

much knowledge on the initial-boundary value problem due to it’s mathematical

difficulty.

Our goal is to study the Navier-Stokes equations with a boundary. The tradi-
tional ways for studying well-posedness always fail with a boundary existing. In
[12], Kawashima and Matsumura studied 3 types of gas dynamics equations where
the second type is the one dimensional Navier-Stokes equations. In the process of
proving the asymptotic stability result of traveling wave solutions, they applied
an elementary energy estimate method to the integrated system of the conserva-
tion form of the original one. To make this energy method work, they supposed
that the total integral of the initial disturbance to be zero. In [8], Goodman and
Xin studied the zero dissipation problem for a general system of conservation laws
with positive viscosity including the Navier-Stokes equations. In their proof, the
authors used energy estimate method as well as a matched asymptotic analysis.
However, these methods cannot be extended to problems with boundary. This is
because with L? or L' estimates, local information around the boundary is not
clear. Therefore, it is very difficult to combine the boundary with the internal

solution structure together.

With this thought, it is inspired that the point-wise estimate for the solutions

may help. In order to get point-wise estimate of the solutions, new methodology
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is needed. The fundamental solution was introduced by Liu in [18]. The fun-
damental solution is a solution to the original equations with ¢ initial data. In
[18], Liu studied the point-wise convergence rate of the perturbations of shock
waves for viscous conservation laws. It is shown that the non-zero total integral
of the perturbations gives rise to a translation of the shock front and the diffusion
waves, as well as an algebraically decaying term which measures the coupling of
waves pertaining to different characteristic families. The proof in [18| is based
on the combination of time-asymptotic expansion, construction of approximate
fundamental solution and nonlinear analysis of wave interactions. The point-wise
estimate yields optimal convergence rate of the perturbations to the shock and
the fundamental solution method is also useful for the studying of nonlinear wave

interactions.

In |21], Liu and Yu studied the fundamental solution of one dimensional Boltz-
mann equation and the large time behaviors of the solutions. The proof is based
on two types of decompositions: the particle-wave decomposition and the long
wave-short wave decomposition. The particle component is represented by singu-
lar waves while the fluidlike wave reveals the dissipative behavior which usually
can be shown by the Chapman-Enskog expansion. The long wave component
is studied by the spectrum of the Fourier transform using contour integral and
complex analysis while the short wave component is shown to be exponentially
decay. Waves outside the finite Mach number area are estimated by a weighted
energy estimate method. With combining the estimate results from the above two
different angles of decompositions, the authors have constructed the full structure
of the fundamental solution of the linearized Boltzmann equation according to a
global Maxwellian. The point-wise description of the large time behavior then be-
comes an application when the initial perturbation is not necessarily smooth. The
results obtained in [21] are significant and the two decompositions in constructing

the fundamental solution are innovative and useful. This work paves the way of
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studying the initial value problems for all kinds of nonlinear differential equations
using fundamental solution. I will apply the long wave-short wave decomposi-
tion and the weighted energy estimate method in Chapter 2 in constructing the
fundamental solution for the full space problem of one dimensional Navier-Stokes

equations.

To achieve our main goal, it is crucial to build the relationship between the so-
lutions of initial value problem and initial-boundary value problem. The Laplace
transformation is frequently used to solve kinds of initial value problems of ordi-
nary differential equations. It was first introduced to be applied to partial dif-
ferential equations by Liu and Yu in [23]. From the first Green’s identity, the
representation of the difference between the solutions to the initial value problem
and the initial-boundary value problem can be established. The only unknown
term in this representation is the boundary Neumann data. This gives rise to the
construction of the Dirichlet-Neumann map. The Dirichlet-Neumann map in the
Laplace space is achieved from the Laplace transformation and the well-posedness
of the original system. The discussion on the calculation of the inverse Laplace
transformation of the Dirichlet-Neumann map for kinds of different PDE system

remains to be the last concern for the authors in [23].

In Chapter 2, we will first construct the fundamental solution to the initial
value problem of the Navier-Stokes equations (1.4). The point-wise study of the
fundamental solution for a system with physical viscosity was first done by Zeng for
the p-system [30]. The result was then extended to a general hyperbolic-parabolic
system by Liu and Zeng [24]. Our problem can be regarded as part of the result
in [24]. However, we still have to re-do the calculation to get the explicit formula
of the fundamental solution for our system as the first step to obtain the Green’s
function of the initial-boundary value problem. The spectrum analysis in [30]

is helpful and will be briefly reviewed in Chapter 2. The detailed constructions
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are different and will encounter difficulties if we exactly followed [30]. Thus, we
also referred to the method in [21]. In our result, within the finite Mach number
area, the short wave component consists of singularity and the remaining parts
are estimated by the spectrum analysis and a contour integral. Waves outside
finite Mach number area are proved to decay exponentially by a weighted energy

estimate method. The main theorem in this chapter is as follows:

Theorem 1 There exists a positive constant C' such that the fundamental solution

G(z,t) of the initial value problem satisfies

5(z) 0 B ity
c(1+t c(1+t
G(z,t) — ¢ <o) + £ + e~ (lal+0/ey
0 0 VI+t V14t
The norm | - | here stands for supnorm, that is, our estimate is point-wise.

The above result gives the point-wise estimate to the fundamental solution. It
is shown that the d-function of = variable only remains at the upper-left element
of the matrix. This is different from the fundamental solution of the Boltzmann
equation [21] or its simplified form, the Broadwell model [14]. This is because
the variables of these equations have different meaning. The variables of the
Navier-Stokes equations are thermodynamical parameters while the variables of
the Boltzmann equations or the Broadwell model indicate the wave propagations.
Moreover, our result is reasonable in the sense of the original system itself. The
first equation with respect to variable p is a transport equation so the d-function
remains. The second equation has the viscosity term. From the heat equation,
we can see that the solution to the parabolic equations will not maintain the

singularity in the initial data for any ¢ > 0.

In Chapter 3, we will first introduce some basic results on Laplace transfor-

mation and inverse Laplace transformation. We will apply the innovative method
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in [23] to construct the full boundary data which is useful in the representation

derived from the Green’s identity.

In Chapter 4, some convolution results is proved. This can be seen as the in-
teraction of the waves pertaining to different wave types. Finally the full structure

of the Green’s function to the initial-boundary value problem is derived as follows:

Theorem 2 There exists C > 0 such that

[ d@—y) O . .
G(z,y,t) — e — 1y, t)0(z) — ja(,t)0(—y)|
0 0
S
€ (&
<0(1 4 1 e—(z—yl+t)/C
< O Vitt Vitt )
e o iy e
e e t e e t
+0(1 + +O(1)e W@ +
VAT T POV s T
_ ly—t? _ ly+e)?
+o)et o0 L € Ty L o 1)eletHil/C
VI+t 1+t
ai(y,t) ax(y,t
where j1 is a matriz of the form 1w, az(v,?) satisfying
0 0
_ly—t? _Jyttl?
e C+y e Ca+h)

+ + 6—(\y|+t)/0)’

a1 (y, 1)1, laz(y, 1)] = O(1)( NETRNEY

.o . bl(xvt) 0 C
and jo 1s a matrixz of the form satisfying
b2 (LU, t) 0
lz—1t|2 |z+¢)2

e C+y e 0+

e (lH0/0y,

ba(. D a2, O] = O +

In Chapter 5, we make an application of the Green’s function to the genuine
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1 ) H(x,0
nonlinear problem. Let 4 = + P , where p(z.0) < ee™* for
m 0 m m(z,0)
| p(2,0) | .
€ < 1and o < 1, that is, is a perturbation about the constant state
m(x,0)
1
, we prove the following Theorem:
0
p(z,t) 1
Theorem 3 The solution U(z,t) = — satisfies
m(x,t) 0
|sup, o U(z,1)] = 0. (1.6)

Moreover, we have U(z,t) — 0 by the rate t=2 along the characteristic curve x =t
and away from the characteristic curve it is exponentially decaying with respect to

t.



Chapter 2

The Fundamental solution

In this chapter, we first consider the fundamental solution to the initial value
problem (1.4). We apply the Fourier transformation to the equation (1.3). Our
main focus is to calculate the inverse Fourier transformation. We first need the

spectrum analysis as follows.

2.1 Spectrum Property

We consider the Fourier transformation of (1.3) in the z-variable
F, 4+ inAF = —*BF. (2.1)
Solve the above ODE (2.1) we have
F(n,t) = =P (, 0) = G(n, ) F(n, 0). (2.2)

The operator G(n,t) = e"4=7B) can be expressed as

10
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0 —
where \; (), A2(n) are the spectrum of the operator —inA —n*B = !
—in —n’
They are the zeros of
0 = det[—inA — n*B — M| = X2+ n° A + n?. (2.4)
We have the following explicit expression:
1 2 1 2
A= =g+ ViR = 4), A = —on(n — Vi — 4). (2.5)
And the corresponding eigenspaces are
ks =
P = 2,\/772_4 Vi Py = 2\/772_4 Vi . (26)
7 n 7

— 1 n
24/n2—4 \/n2—4 2 T 2¢/n2—4

N[

VP-4

By the inverse Fourier transform, we have the explicit formula for the funda-

mental solution G:

G:/G(n,t)eimdn. (2.7)
R

In the following sections, we will apply different methods, i.e., the complex
analysis and weighted energy method respectively to the region inside the finite
Mach number {|z| < Mt} and outside the finite Mach number {|z| > Mt}. Inside
the finite Mach number region, we will apply a long wave-short wave decomposition

and use complex analysis.
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2.2 Long Wave-Short Wave decomposition

Define the long wave-short wave decomposition:
G(z,t) = Gp(z,t) + Gg(z, 1), (2.8)

where

el 0) = (MG 0. st = 0 - x(pemn. 9

Here, x(y) is a characteristic function

x(y) = (2.10)

Therefore:

G:/G(n,t)eimdn:/ @(n,t)e””dnjt/ G(n, t)e™dn. (2.11)
R In[<r

[n1>k

2.3 Long Wave estimate

For the long wave component, that is, the wave number 7 is small, we make

use of the analytic property of G. We need the following lemma:

Lemma 2.3.1. There exists kg > 0, k1 > 0 such that for any |n| > Ko,
Re(M\j(n)) < —ky for j =1,2,3; (2.12)

and for |n| < ko, the eigenvalues \j(n), j = 1,2, 3 are analytic functions and satisfy
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the following asymptotic representations for |n| < ko

M (n) = —in — 30* + O(L)n?

Xao(n) = in— 5n* + O(1)n?

(2.13)

there are corresponding analytic eigenspaces P;(n) satisfying the asymptotics for

In| < ko:

1 1
+o0)n, =1 7% *l+0@)m. (2.14)

o

Il
IR N
IR N

Proof Similar as in [21], the first part is consequence of the spectrum gap property
of the eigenvalues at the origin. We omit the proof of this part. We calculate the

behavior of A for |n| < 1. We make use of

2 2
ViR —4=2iy/1— UZ =2i(1—%+0(1)n3)- (2.15)
Hence,
2
1

A= ——n (m+vVn*—4)= ——n (n+2i(1 - 7; +0()n’)) = —in—5n* + O(L)y”

(2.16)
1 - 1 P U

Ao = —on(n— Vi —4) = —gn(n = 2i(1 — =+ O()i")) = in — 51" + o)’

(2.17)

The calculations for the corresponding eigenspaces are then straight forward.

Lemma 2.3.2. For 0 < kg < 1, there exists Co(ko) > 1 such that for any

|z| < Co(ko)(1 +t) we have

_z—t)? _Jat)?
e Co(l+t) e Co(l+t)

| 6inx+(—inA—n2B)tdn| < 0(1)(

< + +O0(1)e V%, (218
In|<ko \/1+t \/1+t) () ( )
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Proof We prove for A\; only. Due to the similarity, the proof for \; are omitted. We

apply the complex contour integral to calculate the inverse Fourier transformation

for |n| <k
/ 6ixn+)\1tpld77 — / eixn-{—)\ltpldn’
[nl<ko I'1+24T3
where
[+ Re(i) 0< () < r2=1
= {n: Re(n) = —kp,0 < Im(n) < r=——-—1,
n n 05 n 11t
To— {0+ —rko < Re(n) < o, Im(n) = r—"},
s . — KR, NS e K,, m
2 n 0 n 0 n 1+t
Dy = {n: Re(n) = 10,0 < Im(n) < r—)
= . ne = S X .
3 n n Ko, n Tl—i—t
Here, we choose 0 < 1 < ko/2(Cp +2). Since |z| < Co(ko)(1+1), s

Hence, we have 7“1—+t < Ko/2. On Iy,

| : ei:cn—l—)qtpldn‘
2
— 0(1)‘ wcn znt—2n2t+0 3td7]|

ZCC —1,2 3
( )‘ t)n 277 t+0(1)n td??\

O(1)] e — st~ yt—i@—1)%)2+0(1 oy l

‘/ —(1 17“

(z—t)

0
= O(1)e 707 )4(1+t>/ e 11 gy
o

)2
~(1-(-r) Sty

vV1+t

; 2(144)+2i(1—r)u(z—t)+O0 (1) (u +(r

(2.19)

(2.20)

(2.21)

(2.22)

< Ch+2.

tdu|

And from the spectrum gap stated in (2.12), there exists C; > 1, such that

| - NPy | = O(1)e Y
1+1'3

(2.23)

The above lemma established the point-wise estimate of the fundamental so-
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lution for |n| small. For {x < |n| < N} inside the finite Mach number region we

have the following:

Lemma 2.3.3. For k sufficiently small and a large number N > 0, we have

| G(n, t)e™dy| < Ce™"e, (2.24)

K<|n|<N
where positive constants C' and ¢ depend on k and N.

Proof We observed that Re{—1in(n++/n> —4)} < 0 and G is an entire function.

In the finite region {xk < |n| < N}, we have:

t t
Rei—gn(n+vn? —4)} < —-, (2.25)
where c is a positive constant. Hence, we have

| @(n, t)e™dn| < Cete, (2.26)

Kk<|n|<N

where positive constants C' and ¢ depend on x and N.

We have finished the point-wise estimate for the long wave component. The

main theorem of this section follows:

Theorem 2.3.4. Inside the finite Mach number region, we have the following

point-wise estimate of the fundamental solution G for the long wave component:

—‘c””&i‘z) _g(ﬁ‘z)
inz A & t & ¢
e G(n,t)dn| < O(1 + +0(1 _t/c, 2.27

where N is sufficiently large and C' is a positive constant.

Proof The proof is straightforward derived by the above two lemmas.
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Corollary 2.3.5. For PG | ¢ N, we have the following point-wise estimate for

8Ik )

the long wave component:

_Jz—t)? _ Jatt)?
e C(1+t) e C(1+1t)

| " (in)*G(n, t)dn| < O(1)(

+ +0(1)eC, (228
<N J1ot m) (1)e (2.28)

where N > 0 sufficiently large and C, ¢ are positive constants.

Proof The interval {x < |n| < N} is precompact, so the proof of Lemma 2.3.3
is still true for (in)kG(;),t). We can also verify the proof of Lemma 2.3.2 for

(z’n)kG({?, t) similarly.

2.4 Short Wave estimate

When 1 — oo, by the explicit formula (2.5) and (2.6), A} = —1, Ay = —o0,

10
P = and P, = . Therefore,

0 0 01

G(oo,t) =e! . (2.29)

oG, t) — - | 1o, (2.30)

We will calculate the inverse Fourier Transformation for O(n%) and % in the

following two lemmas respectively.

Lemma 2.4.1. Let f(n) be the Fourier transformed function of f(x) for variable

n = a+if with |3| < ¢ and € > 0 be any fized number. If f(n) has weighted
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L*(R) — bound as follows:

/R (P + 1) f(n)Pdo < K, (2.31)

then f(x) satisfies | f(x)| < Ce~12V/¢ where C' and c are positive constants.

Proof Denote F(z) = f(z)e’”. Since f(a + if3) is well defined with |3] < e, we

have

/ Fla)e P2 qe — fla+if) = / f(x)ee ™ de = F(a). (2.32)
R R

The Parseval equality implies:

[1iaripfan= [ 1P@Fda= [ 1F@Pde= [ 1f@efa, (23

and

/R () P = / (£ (2)e%Y —  (2) e P < / | (a) Pdat 5 / |F(z)da.
(2.34)

The above two equality and the assumption (2.31) show that:

/ F@)e® + | (2)e Pda < K, (2.35)
R

for any [ satisfying || < e. Hence, by the Sobolev embedding theorem, we have

|f(z)| < Ce™1#V/¢ for some positive constants C and c.

Lemma 2.4.2. For any real number N > 0,

1
| e—dn| < C, (2.36)
In|>N N



CHAPTER 2. THE FUNDAMENTAL SOLUTION 18

where C' 1s a positive constant.

Proof The statement is true for x = 0. For x # 0, we have the following equality:

* sinzn T
dn = —. 2.37
| a3 (2.31)
Therefore,
i 1 . [ sinzn : [V sinan
eM—dn = 2i dn =i — 21 dn. (2.38)
[n|>N n N T 0 Z

Hence, | fln\ N e”"%dm is bounded by some constant C.

Theorem 2.4.3. For N > 0 sufficiently large, we have the point-wise estimate of

the fundamental solution G for the short wave component as follows:

(G —e )e®dn| < Ce™t 4 Cetlel/e (2.39)
In[>N 0 0
where C' and ¢ are positive constants.
Proof For any sufficiently large real number N > 0, 0(1)7]1—2 satisfies:
2 1 2 1
(Inl” + D]O(1) = da < C (Inl” + D)= lda < C. (2.40)
n|>N n In|>N n
By Lemma 2.4.1 and (2.30), we have
. 10 0 <) .
(e'G — ) — T e ndn| < Cemlele, (2.41)
[n|>N 00 -0
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Therefore, by Lemma 2.4.2, we have

. 1 0 , .
| (etG— )emndm S | 6”“7d7]| +Ce—\90\/0 S C_|_C€—|m|/c_

[n|>N 0 0 In|>N

-
S Il

(2.42)

This shows the point-wise estimate for the short wave component.

Corollary 2.4.4. For %%, k= 1,2, we have the following point-wise estimate for

the short wave component:

. 1445t i DY
| [('H?)kG —e t(’l??)k n n n ]6zxndn| S Ce—t +C6_t_|x|/c,
[n|>N —iy t=2) 1
n 72 7>
(2.43)
for some constants C' and c.
Proof Since we have
R 1 + ﬁ _ 4 _'_ i(t—2) k
el (in)kG = (in)* n’ U o <”’4> ) (2.44)
_ig ut=2) _1 n
n 7> 7>

By the same method above, we can prove this corollary.

2.5 Waves outside finite Mach number area

We will use a weighted energy estimate in this section to obtain the point-
wise structure of the fundamental solution G in the region outside the finite Mach

number {|z| > 2t}.

The initial data for the fundamental solution G is (x)I where I is the 2 x 2

identity matrix. Therefore, in order to obtain the point-wise estimate for G, we
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need to consider for the case with initial data (pg, mg) = (0(x),0) and initial data
(po, mo) = (0,9(x)) respectively. We will deal with the case (pg, mg) = (§(2),0) in
this section. The proof for the other case is similar. Rewrite the original system
as follows:

My + pe — Mgz = 0. (2.46)

Introduce new variable p = p — e7*§(x) and m = m, we have
pr + 1y, = —e "o (z), (2.47)

My + Pr — Mae = €0 (2). (2.48)

We multiply an exponential growth term @29 to p - (2.47) and m - (2.48) re-
spectively and integrate them over {|z| > 2¢} with respect to the x variable. Here
the coefficient « is chosen to be positive and small, that is, 0 < 6 < 1. The
source terms in (2.47) and (2.48) have no effect in the integration in the interval
{|z| > 2t}

/| g eIe=30 55, 1 e(71=30 5 dy = 0, (2.49)
x>t

/ U305, + 211395, — =30 mm, do = 0. (2.50)
\x\>gt

Add up the above two equations together we have

(Pt )30 / el =30 — g

\x\>%t

/ (pop+mm) e =20 duda+ /
\x\>%t |z|>2¢

(2.51)
In order to get the weighted energy estimate, we use integration by parts for the

three terms of the above equation (2.51). For notification simplicity, let

~2 ~ 2
E(t) = / (P patlel =30 g (2.52)
w>5t 2
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For the first term in (2.51), we use integration by parts for ¢:

=2 | =2
/ (pep + mym)e allzl =30 gy = / (p +m )teo‘“"’”'_gt)d:)s
>3t ol>8t 2

~2 2
/? +m ) a(|:c|—gt)]dl,_/ (/? J;m
lz|>3t

~—

~2 52 ~2 52
p-+m p-t+m Jeellel=30)

) H10),_ gy + -

5+ 7 (

—5¢-

=] Ot

For the second term in (2.51), we use integration by parts for x:

/ (1700 + fo) e300 dy = / (1) e71=30) gy
|m|>gt

\x\>gt

d a|z|— ~ ~ allz]—3
:c> St

\x\>§t
— (pr)enti30 1 / ()0 do
= |m|> t |LU‘

This term would be controlled by the arithmetic mean inequality. For the last

term, we use integration by parts with respect to x variable twice:

~ ~ _3
_ / i, meeel-30
\x\>%t

~ _3 . . ar _3 ~ o~ _
2> 3t |z]

For the second term above, we have

/ i & allel=30 g,
lz|> 3t |LU‘

~ 9T 3 :c——ft . . ox 3
= 2 ellel= t)| —/ i, — 171720 4 5202 e(e1=30 g,
|m|> t

|z] o=t |z]

This implies:

. _az _3 1 _,ax sy =5t Q - _3
/ Mg— =20 gy = —p2 _—eollal=30)"77af m2e(71=20 4y
|z|>2¢
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Finally, we have (2.51) can be written as:

d 3a ax 3
0=—E(t)+ =E(t) —/ — (prn)e=1=20 gy
dt 2 \x\>%t ‘SL’|
2
+/ miea<‘x‘—%t>dx— a_/ 2e(71-30 gy
][> 5t 2 Jye|>3e
b2+ Mm% (-2 b2+ Mm% (-2
(ES)en i8]y 4 5 (BTt

H(pm)ecle=30p=r8 | 120 aqui-gpr=—it

~ 3, z=—2¢
e e mmmea(lml zt)| 4
r=7t 2 |LU‘ r=73t

_5,; -
m—4t

For the integration part, we use arithmetic mean value inequality:

d 3o ox 3
—E(t) + —=E() —/ — (pr)e#1=2 gy
dt 2 |:c|>gt ‘SL’|

2
L / 2pollzl=30 g, O 2e0(lel—20) g
X
][> 51 2 Jye|>3t

> %E(t) + (% ) E().

For the boundary part

507+ M a2 552+ m%, s

Z( 5 Je (|| gt)|x:_gt+1( 5 Je (|| 2t)|x:%t
o\ ofle-Bty=—3t | L o QT (g 34y e==Ft

+(pm)e 2 |x:%t4 —l—§m me 2 |x:%t4 > 0.

We conclude that

d
B0+ (% — 0 E(t) < —tignine® 17720 _ o, + im0, (2.53)

By the estimate for m, and m at |z| = %t of Corollary 2.3.5 and Corollary 2.4.4,

we have
d a C t
_E — —AE1) < ~i1 2.54
GEO (5 0B < e, (2:54)

where (' is some positive constant. By the smallness of o, we have § — a? > 0.
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Therefore, there exists some constant K, such that

~2 ~2 .
(XM patlel=30 g < K. (2.55)
>3 2

Repeat the above procedure for p, and m,, similarly we have

= | =2

/ (P ollel=30) gy < J. (2.56)
>3t 2

By the Sobolev embedding theorem, we have

elel=30 5| e2(71=30 3| < K, (2.57)

on {|z| > 2¢}. It is obviously true for {|z| > 2t} also. When |z| > 2t,

3 1 7 3 1 1
—=t> = —t—=t>= —t. 2.58
ol = 5t > Slal 4+ 76— 5t > olal + 3 (259)
As a result, we have
181, || < Cemle0/e, (2.59)

for some constants C and c.

2.6 Conclusion

Inside the finite Mach number region {|x| < 2¢}, we have

0 . .
Gl t) — 6 (x) = / (G — e ey
00 R 00
Sl S
e c(1+t e c(1+t
<0(1 + +O(l)e e 4 Ce + Celol/et
( VIFi \/1+t) (1)
—‘ff”? _\aglmz)
c(1+t c(1+t
<o)~ +° ) + Celelrt/e

VI+t V14t
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where C' and ¢ are constants. For outside the finite Mach number region {|z| > 2t},

we have

G, 1)| < Ce (/e

where C' and ¢ are constants. The above two inequalities lead to the proof of our

main Theorem 1.



Chapter 3

The Dirichlet-Neumann map

From this chapter, we start to consider the problem with the presence of bound-
ary. We will construct Green’s function for the initial-boundary value problem
based on the fundamental solution for the initial value problem. We make use
of the property of the backward fundamental solution in our construction. We
first introduce the definition of the backward fundamental solution and prove its

equivalence to the normal forward fundamental solution in the next section.

3.1 The forward equation and the backward equa-
tion
We recall the definition of the forward fundamental equation first.

The fundamental solution G(z,t) for the initial value problem to the system

(1.3) is a 2 x 2 matrix valued function which satisfies

0,G(x,t) + AD,G(z,t) = BO*’G(x,t) for x € R, ¢ > 0,

G(z,0) = d(x)I.

25
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To differentiate from the backward fundamental solution introduced in this sec-
tion, we call the above forward fundamental solution. The equation satisfied

by the forward fundamental solution is called the forward equation.

We introduce the backward fundamental solution G as follows:

Definition 3.1.1. The backward fundamental solution G®(x —y,t — 1) for
the initial value problem to the system (1.3) is a 2 X 2 matriz valued function which

satisfies the backward equation:

—0.GP(x —y,t —7) — 0,GP(x —y,t —7)A - 0;G"(x —y,t — 7)B =0 for 7 € (0,1),
GP(z —y,0) =d(z —y)I.
(3.2)

We will show the equivalence of the forward fundamental solution and the

backward fundamental solution.

Lemma 3.1.2. The backward fundamental solution and the forward fundamental

solution are equal.

Proof We consider the solution of the following initial value problem:

dg(x,t) + Adyg(w,t) — Bd2g(x,t) = 0,
(3.3)

g(,0) = go(x).

Left multiply it with the backward fundamental solution G®(z — y,t — 7) and

integrate over (0,t) x (—o0, 00), we have

/ot /_"" GP(w =yt =7)(0rg(y, ™) + ADyg(y, ™) — BOyg(y, 7))dydr = 0. (34)
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For (3.4), we do integration by parts term by term. For the first term,

t )
/ / G®(x —y,t — 7)0-g(y, T)dydr
0 —00
00 t )
= / GP(x —y,t —7)g(y, 7)dy|=h — / / 0,G"(z —y,t — 7)g(y, 7)dydr
—00 0 —00
~ [ s —t0dy— [ 67— 090000y

t e
—/ / 0.G?(z —y,t — 1)g(y, 7)dydr
0 —00
) t e
— g(at) - / GP(x — y. D)g(y, 0)dy — / / 0.GP(x — y,t — 7)g(y, 7)dydr.
—00 0 —00

For the second term,

/ / GB(z — .t — 7)Ad,g(y, )dydr
t [e'e)

- / GB(a — y,t — 7)Agly, )dr]1=>, — / / 9,G(x — y,t — 7)Ag(y, 7)dydr
0 —00

0

t ')
— / / 0yGB(:E —y,t —7)Ag(y, 7)dydr.
0 —00

For the third term,

— /t /OO GP(x —y,t — 7)B0y,g(y, T)dydr
= / GP(z —y,t — 7)Bo,g(y, T)dr[=>,
+ /t /OO 0yGB(:E —y,t—71)B0,g(y, T)dydr
/ / 0,G"(z — y,t — 7)BO,g(y, T)dydr
/ 0,G”(z — y,t — 7)Bg(y, 7)dr )=,
/ / 0y, GP(x — y,t — 7)Bg(y, 7)dydr
—/0 / 0,y G” (x — y,t — 7)Bg(y, 7)dydr.
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By the definition of the backward fundamental solution, we have
~0,GP(x —y,t —7) - 0,G%(x —y,t — 7)A - 9,,G® (v — y,t — 7)B = 0.
Right multiply with g(y, 7) and integrate over (0,t) x (—o0, 00):

t [e%e] t o0
[ ] 0wt -yt =gt nidyar— [ [ 0,65 — vt~ 1) gty rydyar
0 —00 0 e

t o)
— / / 0y G®(x — y,t — 7)Bg(y, 7)dydr = 0.
0 J—oo

Therefore, (3.4) reduced to

g(z,t) = /Oo G (z —y,t)go(y)dy. (3.5)

—0o0

Now, take go(y) = 0(y), from the definition of g(x,t), we have
g(z,t) = G(z,t).
On the other hand, since go(y) = d(y), (3.5) yields:
g(z,t) = GB(x,1).

Hence, the forward fundamental solution and the backward fundamental solution

are equal.

Since the forward and backward fundamental solution are equivalent, in the

following we will denote them uniquely as G(x,t).
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3.2 The Green’s Identity

The main objective of this and the next chapter is to study the behavior of
the difference between the solutions to the initial value problem and the initial-
boundary value problem. We denote the Green’s function to the initial-boundary
value problem G(z,y,t) as: G(z,y,t) = G(x — y,t) + H(z,y,t), where G(z,1)
is the fundamental solution to the initial value problem which is obtained in the

previous chapter. Therefore, we have the following equations for H:

/

OH (z,y,t) + A0, H (x,y,t) = BO*H(x,y,t),2,t > 0

H(xz,y,0)=0, (3.6)

H(0,y,t) = —G(—y,t).

\

Left multiply G(x — z,t — 7) with the first equation of (3.6) and integrate over

(0,%) x (0,00),

t 00
/ / G(z — 2,t — 7)(0:H(z,y,7) + AD,H(z,y,7) — BO*?H(2,y,7))dzdr = 0.
0 Jo
(3.7)

We do integration by parts for (3.7) term by term. For the first term

// (= 2t — 7)OLH (2, y, T)d=dr

_/0 Gla — 2.t — 7)H(z,y, 7)d2|'=T // 0.G(z — 2t — )H(2,y, 7)dzdr.
_ /0 S — ) H (2 y, ) — /0 TGl — 2 ) H (2, y, 0)dz
/ / 0.G(x — 2.t — )V H (=, y, 7)dzdr

H(x,y,t) / / 0.G(x — z,t — 7)H(2,y, T)dzdr.



CHAPTER 3. THE DIRICHLET-NEUMANN MAP 30

For the second term

t 00
/ / G(x — z,t = T7)A0,H(z,y, 7)dzdr
o Jo
t
= / G(x — z,t — 1)AH (z,y, 7)dt|:Z / / 0.G(x — z,t — 7)AH(z,y, 7)dzdT
0

¢
= — / G(z,t —7)AH(0,y,7)dT — / / 0.G(z — z,t — 7)AH(2,y, T)dzdr.
0 0 Jo

For the third term

_ /0 t /0 T Glo— .t — ) BOH (2, y, 7)dzdr
S /0 t G(z — z,t — 7)BO.H (z,y,7)dr|2=
+ /0 t /0 T 0.Gla — 2t — TV BOH (2, y, 7)dzdr
_ /OtG(x,t — F)BO.H(0,y, 7)dr + /t /oo 0.G(x — 2.t — ) BOH (2, y, 7)d=dr
:/tG(x t—7)BOH(0,y. 7 dT+/ 0.G(x — 2t — 7)BH(z,y, 7)dr|*=
/ / 9..G(x — 2,t — 7)BH(z,y, 7)dzdr
:/ G(a,t — 7)BI,H(0,y, 7 dT—/ 0,G(x — z,t — 7)BH(2,y, 7)dr|:Z
/ / 9..G(z — 2,t — 7)BH(z,y, 7)dzdr
:/ Glut — 7)BOH(0,y, 7 d7+/ 0,G(xz,t — 7)BH(0,y,7)dr

/ / 0..G(x — z,t —7)BH (z,y, 7)dzdT.
Since G(x — z,t — 7) satisfies the backward equation (3.2),

—0.G(x —2,t—7) = 0.G(z —2,t —7)A — 0,.G(x —2,t = 7)B=0.  (3.8)



CHAPTER 3. THE DIRICHLET-NEUMANN MAP 31

Therefore, we have the following representation for H(x,y,t)

t
H(:)s,y,t):/ G(x,t—7)AH(0,y,7)—G(z,t—7)BI, H(0,y,7)—0,G(x,t—7)BH (0, y, 7)dT.
0
(3.9)

In the above representation of H(x,y,t), the only term unknown is the Neu-
mann boundary data d, H(0,y, 7). As aresult, it would be great if we can construct

the Neumann boundary data from the given Dirichlet boundary data H(0,y, 7).

We will apply Laplace transformation and inverse Laplace transformation to
construct a Dirichlet-Neumann map in the following sections. We will first in-
troduce some basic properties for the Laplace transformation and inverse Laplace

transformation in the next section.

3.3 Laplace transformation and inverse Laplace trans-
formation

In order to calculate the Dirichlet-Neumann map, we first introduce the def-
inition and some properties of the Laplace transformation and inverse Laplace

transformation.

Definition 3.3.1. For any function f(t),t > 0, the Laplace transformation of
f(t) is defined to be a function F(s), by

F(s) = L[f](s) = /0 T et ()t (3.10)

Definition 3.3.2. For function V(z,t),t > 0,z > 0, the Laplace transforma-
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tion of V(z,t) over variable t is defined by
LV](z,s) = / e "V (z,t)dt, (3.11)
0
and the Laplace transformation of V(x,t) over variable t and x is defined by

JIV](, s) = /000 e YLV (, s)d. (3.12)

Lemma 3.3.3. Let L[f]|(s) = F(s), then

L[Z_J;] = sF(s) — £(0). (3.13)

Proof By definition and integration by parts,

/OOO e‘“%it)dt = [le" fO)|X — /OOO dz:tf(t)dt = —f(0)+sF(s). (3.14)

Lemma 3.3.4. Let L[f](s) = F(s), then

2f

521 = s"F(s) — sf(0) = f'(0). (3.15)

Proof By definition and integration by parts,

O Gdf(t) . _adf(t), de~tdf(t)y, df

Substitute in the result for L[Z] from the previous Lemma, we proved (3.15).

Definition 3.3.5. For function F(s), the inverse Laplace transformation or

Bromwich integral of F(s) is defined to be a function f(t), by the following
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complex integral

ft)=L"YF|(t) = 1 lim WZ e’ F(s)ds, (3.17)

271 T—o0 T

where v 1s a real number so that the contour path of integration is in the region of

convergence of F(s).

Lemma 3.3.6. Let F(s) = %, then
F(t) = LYF)(t) = ——. (3.18)

Proof % is convergent in the region {Re(s) > 0}. Hence, we choose v = 0, and

by Bromwich integral

1 +iT . 1
t)=— 1 —ds. 1
1) 2m5§o/_”6\/§5 (3:19)
Let
iw = /s,
therefore,
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By complex contour integral,

1 +iT
st
—— lim e ds
27TZ T—oo —iT \/g
= L lim e‘“Qt_zw dw
21 T—oo Jp w
= — lim e tdw
T T—o00 r
2
= — lim e vt
T T=00 Jp 4 To4T5+T
1 2
= — lim e Y tdw

R Y Ay 1
-/ W=
_ L
N Tt
&
Lt
-T r{ 0 T% T
5
i . T k]

Pic.1

Lemma 3.3.7. Let F'(s) be convergent in the region { Re(s) > 0}, and the Bromwich

integral f(t) exists, then the inverse Laplace transformation of F(s+ K), K > 0
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satisfies

K+iT

LY [F(s + K)|(t) = — lim e F(s)ds = e~ KU f(#). (3.20)

2mi T—oo J g 47

Proof By direct calculation. Moreover, combine this and the above Lemma, we

—-Kt

have L_l[\/si—K] = \/%e

Lemma 3.3.8. Let F(s) = s, then

f(&) =L F)(t) = —d(t). (3.21)

L7 F(s)G(s)](t) = /0 gt =7)f(r)dr = f(t) * g(t). (3.22)

3.4 Dirichlet-Neumann map

In this section, we will construct the Dirichlet-Neumann map, that is, to
write the representation of the Neumann boundary data in terms of the Dirichlet
boundary data. For notation simplicity in calculation, in this section, we denote
p(0,y,t) = py, p=(0,y,t) = pe, m(0,y,t) = my, mx(0,y,t) = m,. We have the

following representation for the Neumann data m, in terms of my:

Theorem 3.4.1. The Nuemann boundary data m,(0,y,t) can be represented in

terms of the Dirichelt boundary data m(0,y,t) as follows:

1 t e—(t—T)

7, ﬁ&m(o,y,ﬂdr (3.23)

ml‘(o? y? t) -
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Proof We calculate the Laplace transformation for each equation of system (1.2)

for both x and t variable, apply Lemma 3.3.3, Lemma 3.3.4 and denote V = JIV]:

sp -+ Em = 1y, (3.24)

s 4 Ep = py + E2 — My — Ep, (3.25)

where g, = p(0,y,s), m, = m(0,y,s), and m, = m,(0,y, s). Moreover, calculate
the Laplace transformation of the first equation of system (1.2) for t variable, and
take value at x = 0:

sL{ps) + L[ma] = 0, (3.26)

Apply Laplace transformation to (3.26) for x variable:

Py = —Tiiy. (3.27)

Combine (3.24), (3.25) and (3.27) together, we have:

[(s 4+ 1)€2 — 8%m = (5 + 1) (1, + Emy). (3.28)
Hence,
- (D) +Emy) g+ &y
e P T _52_%. (3.29)
Solve &2 — (s‘fl) =0, we have:
S
&1 = NESE (3.30)
b= ——— (3.31)

\V'S 1

Hence, we can write down the representation formula for m:

L[m] = e""F, + €% F, = 0, (3.32)
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where
Fi = Rese_gm — et (3.33)
§1— &
Fy = Rese_e,im — e T80, (3.34)
§2— &

Therefore, by the well-posedness of P.D.E., for the positive solution &;, we have

F, =0, (3.35)
that is
m, + &my = 0. (3.36)
Therefore,
s
Ny = — Tp- 3.37
Mo = = g (3:37)

Apply the inverse Laplace transformation with respect to x, we have

L(mg) = — L(myp). (3.38)

Hence, it would be sufficient if we are able to obtain the inverse Laplace transfor-

S

mation for — By Lemma 3.3.6 and Lemma 3.3.7, we have

Vsl
1 1
Lt = -t 3.39
N LY (3.59)
By Lemma 3.3.8,
_ d
L' F)(t) = aé(t). (3.40)
Therefore, by Lemma 3.3.9,
. 1 . 1 t 6—(1‘,—7’) ,
e = —L7H () L7 (s) ey = —W/O — ). (3.41)
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The above relationship is called Dirichlet-Neumann map. We will construct the
Green’s function for the initial-boundary value problem based on this relationship

in the next coming Chapter.



Chapter 4

The Green’s function

In this chapter, we will derive the exact estimate of the Green’s function
G(zx,y,t) for the initial-boundary value problem to the linearized Navier-Stokes
equations (1.5). We recall the representation of H(z,y,t) which is the difference
of the Green’s function for the initial-boundary value problem G(z,y,t) and the

fundamental solution for the initial value problem G(z — y,t):

H(z,y,t)= /Ot G(x,t—7)AH(0,y,7)—G(z,t—7)BH.(0,y,7)—G,(x,t—7)BH(0,y, T)dT.
(4.1)

From the above representation, to construct the full boundary data from the

known boundary data becomes our first step.

4.1 A Priori Estimate on the Neumann boundary
data H,(0,y,1)

Lemma 4.1.1. For any variable x > 0 and constant c; > 0, there exists constants
Ca,c3 > 0, such that

re T L cge” BT, (4.2)

39
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Proof There exists constant ¢y > 0, such that

r < e, for any x > 0 and fixed ¢; > 0.

Choose ¢3 = %cl, we have

_ _1 e
re T L ege” 29T = cpe” BT,

40

(4.4)

The following two lemmas are on the estimate of the derivative of heat kernel

and exponential decay term.

Lemma 4.1.2. There exists Cy > 0, such that

d _ (zf)\t)z 1 _ (:L‘f()\t)2)
e C0+t) e Ci(i+t
—(———) <01 .
# i) S W
Proof By direct calculation,
_@an? _(@=Aan)?
d e e 2Nz — M) (x—A)2 1 1 e cm

it vi+i’' ~ O(l+1) +C(1+t)2_21+t)(\/1—t)'

By Lemma 4.1.1,

z—t)2 (z=t)2

2)\($ - )\t) e (C(Ht) 1 e C1(+t)

cavy vitr) SOV AT

(z— M)? oG | e Sat
3 ) < O(1)—( )
CL+02 VI+t v

Combine the above together, we proved (4.5).

Lemma 4.1.3.

L ~tal+/C ¢ O(1)e=Ue+/C.

dt

(4.5)

(4.7)
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Lemma 4.1.4.

_ly—t? Cly+t?
e CU+y e C0+n

_'_
VItt I+t

Imy(y, )] < O(1)( )+ O(1)e~(WH+d/C, (4.10)

Proof This can be derived directly from Theorem 1 and replace z by —y from

the definition of Hy(y,t) = H(0,y,t) = —G(—y,t).

The following two lemmas are on the convolution of exponential decay term

with heat kernel and exponential decay term.

Lemma 4.1.5. There exists Cy > 0, such that

t
o~ (1214+0)/C y g=t/C1 — / e(T+9)/C L ~0=5/C1 gg < O(1)e~(FH0/C2 (411
0

Proof Separate the integration scales:

t L t
/ o (lel48)/C ~(t=9)/C1 g _ / ? o~ (249)/C o~ (t=5)/C1 g o / ¢~ (Ia+5)/C o ~(t=5)/Cs g
0 0 t

(4.12)

and

Jer
(NG

/ * e (lal+9)/C L o=(t=)/C1 gg < o~lal/C | / 1.~ 0=9/Cigg < o ll/C . ~1/201 (4 13)
0 0

m\w\
2

t

(12l +9)/C | ~(t=5)/C1 gg < o~lal/C | / e~ (1H9/C 1 g < ol/C L o=t/2C (4.14)
t
2

Lemma 4.1.6. There exists Cy > 0, such that

(z—Xt)?

-2 _leoAa—e)? (2= 21)2
€ Tt

t C(1+t—s) e C20+D)

L xe WO = 67~e_s/clds<0 1) —
VvV1i+t o VI+t—s ()\/1—0—15

+ O(1)e el +D/C2

(4.15)
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Proof We consider A > 0 first. Without loss of generality, we suppose C' > A\2C}.

For x < 2)t,
e —s
R E
o Vi+i—s
;o ¢ -
- e*/%ds —l—/ C T s/Oigs
2
L (a2 x4+ (t—s))
< O(l) 2 g ‘C+t—s) ) 6_)\28/0 ) 6_(S/Cl_>\25/c)d3
0 VIitt—s
e —s
+O()e P | s
W A
%6—(%—2)\1‘4—)\%)

< 0(1) —(s/Cl —A25/C) d8+0( ) (Jz|+t)/C2

0 \/1—|—t—8

¢ (z=At)?
2 e CO+y)

vi+t—s

_(z=ap)?
— O 6 C(1+t)

< O(l) 6_(5/01—)\25/C)d8 + 0(1)6_(‘1"_’_”/02

—(s/C1=Ns/C) gg 4 0(1)6—(\w\+t)/02

[ =

+ O(1)eleFD/C:,

(z—Xt)?
e C20tD

SO

For = > 2\t
- (cvf)\(tfs))z ;o t— c
e C(+i—s) e (lz|+t—s)/

- s/ < O(1 - . es/0y <0 (lz[+)/C2
e s < s
0o V1i+t—s (1) 0o V1+t—s (1)e”

(4.16)
The proof for A = 0 is similar. For A < 0,
-t
< < O(1)e~(z+t=9)/C. (4.17)

Vi+t—s

therefore
_ (cvf)\(tfs))z

b o~ T Coati-s)
e ¥Os < O(1)e BHD/C2 4.18
/0 — (L)e- (4.18)
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Combining the above lemmas together, we have the following a priori estimate

theorem on Neumann data:

Theorem 4.1.7. There exists C' > 0, such that

_ly—t? _ ly+tl?
e C(1+1t) e C(1+t)

+
v1I+t V14t

Im4(0,y,1)] < O(1)( ) + O(1)e~WH+d/C, (4.19)

Proof The representation for |m,(0,y,t)| is from the Dirichlet-Neumann map
Theorem 3.4.1. Combining with the above Lemma 4.1.2 to Lemma 4.1.6 which

estimate the derivative, initial data and convolution, we proved this theorem.

From next section, we are able to see that only |m,(0,y,t)| is useful in the

estimate of H(x,y,t). Hence we finished the estimate of H,(0,y,1).

4.2 Estimate on H(x,y,t)

In this section, we will calculate the point-wise estimate on H (z,y, t) using the
representation (4.1). We need the following lemma for the convolution of the heat

kernel.

Lemma 4.2.1. For given constants Cy > 0 and C7 > 0, there exists Cy > 0 such

that

_ (a=A(t—s)? (y=Ars)? _ (zty—rt)?

/t e Co(t—s) 6_ C1(1+s) J 0(1)6 Co (1+¢t)
. S — e
o V1+t—s5 +/1+s V1+t

(4.20)
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Proof Without loss of generality, we suppose Cy > (7,

_ (m=A(t—s))? _w=2s)?
Co(t—s) e C1(1+s)
. ds
\/1 +t—s V1+s
_ (z=A(t—s))? _(w—2xs)?
Co(t—s) e Co(1+s)
. ds
\/1 +t—s \/1 +s
_M y=2s)?
_ (zry—an)? Aﬂ2 2Co(t—s) e 2Co(+s)
— O T 200t . ds
\/1 +t—s +1-+s
7)\5) _ (z=A(t—s))* s))2
O(1)e _(zty— m2( 5 e ~2o(1ts) / 200 (—s) 0s)
= e 2COt S
Viti/Its \/1+s \/1+t—s\/1+t
_ (zty-r)? Aﬂ2 y—As)2 (z—A(t—s)
20t 5 e 2Cb(1+s) te ‘ERZR?‘ET‘ )
—ds
\/1—1- \/1+S t Vi+t—s
_(ac+y7>\t)2
e Co(1+1)

=0

For the second equal we make use of the following:

(z = At —9))*  (y—As)’
205t —s)  2Co(1+ s)
1 1’2 y2

- _ 2 — —
_200(15—5 2\ + A (¢ S)—i—l . 20y + A1+ s))
1 2%+ 92 5 (t—s)2z* + (1 + s)*y?
—2 1+t
BT AR 2 Gk s pre oy sy )
1 2%+ 92 9 2xy
/i%(1+t—2Mx+w+A(L+w+TI?
_(zHy— )
B 200t

Lemma 4.2.2. For given constants Cy > 0 and Cy > 0, there exists D > Cy, Cy

such that

o lz—t|? _ lzttf? _ly—t? _ly+tl?
e Co(+t) e Co(l+1t) e Ci1(1+1) e Ci1(+Y)

i S e S S e Y 2

le—y—t|? le—y+t|2 oy —t|2 le+y+t|?
< O(1)(

e DO+y) e D0+y) e DU+t e D0+y)

+ - +
N e A e R e B e
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Proof By similar calculation as in the proof of Lemma 4.2.1, we have

_lz—t|? _ly—t? _Jzty—t?
e Co(l+t) e Ci1(1+t) O( )e Ca(1+t) (4 )
* =0(1)———, 21
V1+t V1+t V1+t
and
_ o=t _ lyrtl? _ o=t -2 _le—y—t2
e Co(+1) e Ci1(+t) e Co(l+1t) e €10+ e Ca(l+t)

VItt  Virt Jirt o Jitd IO(l)ﬁ, (4.22)

Other calculations for the convolution are similar. Hence we proved this lemma.

Now we can prove the main result of this Chapter as follow:

Theorem 4.2.3. There exists C' > 0 such that

H(LL’, Y, t) = .jl (y7 t)é(l’) + .j2(x7 t>5(_y> + j3(x7 Y, t)? (423)

ay (y7 t) a2(y7 t)

where jy is a matriz of the form satisfying
0 0
- Eﬁi‘; - ‘cyﬁf)
e e
a1 (y, 1), laz(y, t)| = O(1 + + e~ (WHD/Cy 4.24
s () sl )] = O (s + 5 Y
bl(l',t) 0
J2 1S a matriz of the form satisfying
bg(l‘,t) 0
-y 2) - g(ﬁ‘f)
ba(a, ), [ba, 1)] = O(1)(= e 0/, (4.25)

_'_
VItt I+t
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and j3(z,y,t) is a matriz satisfy

_lz—y—tf? _lz—y+t? _lzty—t? _lzty+t)?
| ) ( t)| 0(1)(6 C(1+1t) _I_ e C(1+t) + e C(1+t) _I_ e C(1+t) )
x? Y =
Y Vitt  Vi+t  JI+t I+t
|z —1)2 |+

e C+y

e, € T
+O(M)e Vit  VIid

_ly-t? _ ly+t?
—‘:E‘/C e C(1+1) e C(1+1t)

+
VIi+t 14+t

+0(1)e ) + O(1)e~elHlul+0/C

Proof We first calculate
t t
/ G(z,t —7)AH(0,y,7)dT = —/ G(z,t — 7)AG(—y, T)dT. (4.26)
0 0

By the structure of the fundamental solution, we have

|z —t)2 |z+t)2
G(x,t):e_té(x) 10 —1—0(1)(6 c(1+t)+e O+ —(|m|+t)/C) ail a1 il
0 0 Vitt VIt Qg1 Q22
(4.27)
_ly=t? _ ly+t?
G(—y,t):e_té(—y) 10 —|—O(1)(6 C(1+t)+e C+D _'_e—(ly\+t)/0) ai;  ai2 Ll
0 0 Vitt i+t 21 Q22
(4.28)

where I; and I3 denote the part include the d-function.

To estimate the convolutions in (4.26), we need the following results for matrix

calculation,

= , (4.29)

= , (4.30)
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Therefore,

¢
/ Lz, t — )ALz (—y, 7)dT =0,
0

that is, there is no term of the form §(z)d(—y) in the result. Since

0 1 a a a a
. oGz 21 Q22 _
0 0 21 G929 0 0
and
apr A 0 0 ap O
: = EM2>
a1 A2 10 ass 0
we have,
¢
/ I(w,t — )AL (—y, 7)d7 = R (y, 1)3(x) M,
0
and

/Ot Lz, t — 1) ALz (—y, 7)dT = ha(y, t)0(—y) Ma,

where for some constant C > 0

. —éy(iﬂ; e —‘cyﬁﬂf)
hiy,t)| = O(1 n + e~ (l+0/0y.
Iy, 0l = O == + A )
_lz—t|? _ lzrtf?
e C(+o) e~ C(i+i)

|ha(z, 1)] = O(1)( Vil Viti

+ e~ (el )/

47

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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48
For the remaining term, we have
t
/ L(z,t — 7)AL(—y, 7)dr = ha(a,,1)
0
_lz—y—t|? _ =yt _lety—t|? _letyte?
_ 0(1)(6 C(1+¢t) N e CU+D) N e CU+D N e CU+D) )
V1+t V14t V14t V14t
_le—t? _ Jatt)?
e CO+t) e CU+t)
+O(1)e~ /e +
(1) (\/1 +t 1+t
e ‘cydf) e~ ‘cyﬁf)
+0O(1)e"l2l/C + + O(1)eUel+lyl+6)/C.
(1) <\/1+t \/1+t) (1)
We then calculate the second term
¢
/ G(z,t —7)BH,(0,y, 7)dT, (4.39)
0
where
10 —‘cz(fﬂi —‘cz(t‘z) ay a
1+t 1+t 11 12
G(z,t) = e~'(x) +0o(1)(< 45 e~(lal+0/C) = [+,
0 0 VIt VI+i o1 G22
(4.40)
00
B = , (4.41)
01
and
)z (P2)a
H(0,y,t) = e (2 (4.42)
(m1>m (m2>m
Since
10 0 0
=0, (4.43)
00 0 1
we have
t
/ Ii(x,t —7)BH,(0,y, 7)dT = 0. (4.44)
0
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Since
an az| [0 0} f(p)e (p2)e | _ [a@r2(mi)e arz(mo) o (4.45)
az1 Q22 01 (Mm1)e  (M2)e A2(mi)e az2(ma)s

we have

_z—t)? _lzt)?
e C(1+t) e C(1+t)

n alZ(ml)x alZ(m2)x
VI+t 1+t

e (el 0/C

/t Iy(x,t—7)BH,(0,y,7)dT = O(1)(
0 a'22(m1):c a'22(m2)x
(4.46)

We note that there is no singularity é(x), 6(—y) or d(z)d(—y) in the above
representation. Moreover, the only required Neumann boundary data in this es-
timate is the derivative of the momentum m, which is calculated in the previous
Chapter by the Dirichlet-Neumann map. Hence, combined with the estimate of

m,, we have

t
|/ G(l’,t - T)BH:B(Ovy7T)dT‘
0

_le—y—t? _le—y+t)? _lety—t? _letyte?
B 0(1)(6 C(1+t) n e CO+p) N e CO+nH n e CO+p) )
V1+t V1+t V1+t V1+t
_ Ja—t)? _ Jatt)?
e CU+y e CO+y
+O(1)e" W@ +
@ (V1+t VIFi
- g’&i‘; - ‘C?(Tﬂtz)
+O(1)e /e (& ¢ ) + O(1)e~UeHlul+0/C.

_|_
VI+t V14t

At last, we estimate the third term

/t Gz, t —T7)BH(0,y,7)dT = — /t G (z,t — 7)BG(—y, 7)dT (4.47)

Similar as in the proof of Lemma 4.1.2 and Lemma 4.1.3, we have the following
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estimate for G, (z,1),

|z—t|2 |z+t|2
1 0 1 e~ TOTD e~ TOFD
Gu(x,t) =e "' (x +0(1 + + O(1)e(=+0/C.
@0 =@ | O+ ) + 00
(4.48)
0
Due to the presence of B = in the representation, there will be no
01

singular terms after the matrix multiplication as in before. Therefore,

t
|/¢%@J—ﬂBHWWJWﬂ
0

|z—1t|2 |2+
1 e CQ+i) e CQa+i)
: ()\/1+t(\/1+t \/1+t) (1) ]
- gy(;tr‘ 2) - ‘C?(Tﬂtz)
e t e
«[0(1 + + e~ (WiHD/C
O Vi+t 1+t )
_lz—y—t]? _lz—yte)? _lzty—t? _lztyte)?
_ O(l)(e C(1+t) L e Ca+p) + e C+b) L e Ca+y )
v+t V1+t V14t V14t
|z —t)2 |z+t)2

e Cca+y

_ e Ca+o
O V14t " V14t

_ly—tf? ly+t?
e CQ+t) e C@+t)

VIFi * \/1+t)

+0(1)e~171/¢( + O(1)e~ (l+lyl+n/C.

Combined the above estimates together, we proved this Theorem. It is then
natural to write down the representation of the Green’s function G(x,y,t) of the
initial-boundary value problem as in Theorem 2 based on the above Theorem and

the fundamental solution G(z,t) derived in Chapter 2.

In the next coming Chapter, we will make use of the structure of the Green’s
G(z,y,t) of the initial-boundary value problem to study the asymptotic behavior

of the general nonlinear problem.



Chapter 5

The nonlinear problem

In this Chapter, we will study the following initial-boundary value problem:

p

\

pr +my =0,
m2
my + (7 + p)x = Mgy,

p(0,t) =1,m(0,t) =0,

p(z,0) =14 ee " m(z,0) = ce™™*

where p and m stands for density and momentum respectively, z,t > 0, € and « are

positive constants, € < 1 sufficiently small and o < 1. We note that the boundary

data is fixed at the reference state (p, m) = (1,0) while the initial data is a small

perturbation of the reference state (p,m) = (1,0). Therefore, its linearization at

the reference state (p,m) = (1,0) is (1.2). Let p = p — 1, " = m, then (5.1)

becomes

pr + My =0,

p(0,t) = m(0,¢) = 0,

axr

p(x,0) = ee * m(z,0) = ee”

51

(5.2)
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p 0 1 00 0
Let U = , A= , B = , N = N , we have the
m 10 0 1 (%ﬁ)m

matrix form of (5.2) as follows:

(

8,U + Ad,U — BO2U = —N,

U0,t) =0, (5.3)

U(z,0) = Up(x) = ee™ .

\

With the help of the Green’s function derived in the previous Chapter, we
are able to obtain the point-wise estimate and the asymptotic behavior for the
solution U. Before we write out the explicit representation of the solution U with
respect to the Green’s function, initial data and the nonlinear term, we first need

to introduce the backward Green’s function.

5.1 Green’s function: backward and forward, and
their equivalence

We first recall the definition of the (forward) Green’s function. The Green’s
function G(z,y,t) for the initial-boundary value problem to the system (1.3) is a

2 x 2 matrix valued function which satisfies

(

0G(x,y,t) + AD,G(x,y,t) = BO*G(z,y,t) for x > 0,t > 0,
G(0,y,t) =0, (5.4)

G(x,y,0)=d6(x —y)l.

\

Correspondingly, we introduce the backward Green’s function G* as follows:
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Definition 5.1.1. The backward Green’s function GP(x,y,t — 1) for the
initial-boundary value problem to the system (1.3) is a 2 X 2 matriz valued function

which satisfies the backward equation:

p

—0.GP(x,y,t —7) — 0,GP(x,y,t — 7)A — 0;GP(x,y,t —7)B =0 for 7 € (0,1),
GP(z,0,t) =0,

GB(z,y,0) = 6(z —y)I.

\

(5.5)

We will then show the equivalence of the forward Green’s function and the

backward Green’s function.

Lemma 5.1.2. The backward Green’s function and the forward Green’s function

are equal.

Proof For the first equation of (5.4), we left multiply it with the backward Green’s

function GP(x,y,t — 7) and integrate over (0,t) x (0, 00), we have

t 00
/ / G, 2t — )0, G2y 7) + ALz, 7) — BO2G(2, y, 7))d=dr = 0.
0 0
(5.6)

For (5.6), we calculate the integration term by term. For the first term,

/0 t /0 h GB(x,2,t — 1)0.G(z,y, T)dzdT
_ /OOO GP (2,2t — )Gz, y, 7)== / / 0,G(x, 2,1 — 7)G(z, y, 7)dzdr
_ /0 TS — )Gz, )z — / GP(a,2,0)8(= — y)d=

_ /0 t /0 T 0GP (1,2t — TGz, P)ddr

= G(z,y,t) — GB(z,y,1) / / 0.GB(x,2,t — 7)G(2,y, T)dzdT.
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For the second term,

t o]
/ / GB(x,2,t — 1)AD.G(z,y, T)dzdr
0o Jo
t t o]
= / GB(x,2,t — T)AG(2,y, T)dT|?ZF — / / 0.GB(x,z,t — T)AG(z,y, T)dzdr
0 0 Jo
t t (o)
= — / GB(x,0,t — 7)AG(0,y, T)dT — / / 0,GP(x,2,t — 7)AG(z,y, T)dzdT
0 0o Jo

t 00
= —/ / 0,GB(x, z,t — T)AG(z,y, T)dzdr,
o Jo

where we make use of the boundary data GZ(z,0,t —7) = G(0,y,7) = 0. For the

third term,

— /Ot /000 GB(z,2,t — 7)BO*G(2,y, 7)dzdr
= — /Ot GB(x,2,t — 7)BO,G(2,y, 7)dT|?=5°
+ /Ot /000 0,GB(x, z,t — 7)BO,G(z,y, 7)dzdr
= /Ot GB(z,0,t — 7)BO,G(0,y, 7)dr + /Ot /000 0,GB(x, z,t — 7)BO,G(z,y, T)dzdr
= /Ot /000 0,GP(x,2,t — 7)BO.G(2,y, T)dzdr
= /Ot 0.GP(x,2,t — T)BG(z,y, 7)d7|7=5° — /Ot /000 0*GP(x,z,t — 7)BG(2,y, T)dzdr
=— /Ot 0.GB(x,0,t — 7)BG(0,y, 7)dT — /Ot /000 O*GP(x,2,t — 7)BG(z,y, 7)dzdr
= — /Ot /000 OPGB(x,2,t — T)BG(z,y, 7)dzdr.
In the above calculation, we make use of the boundary data of the backward
Green’s function GZ(z,0,t — 7) = 0 in the third equal and the boundary data of

the forward Green’s function G(0,y,7) = 0 in the sixth equal. By the definition

of the backward Green’s function, we have

—0,GB(x,2,t —7) — 0.GP(x,2,t — 7)A — O*GP(x,2,t — 7)B = 0.
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Therefore,

t 00 t 00
—/ / 0.GP(x,2,t — 7)G(z,y, 7)dzdT — / / 0.GB(x, z,t — T)AG(z,y, T)dzdT
o Jo o Jo

t 00
—/ / 0*GP(x,2,t — 7)BG(z,y, 7)dzdr = 0.
o Jo
Hence, (5.6) reduced to
G(z,y,t) — G¥(z,y,1) =0. (5.7)

So we have that the forward Green’s function and the backward Green’s function

are equal.

Since the forward and backward Green’s function are equivalent, in the follow-

ing we will denote them uniquely as G(x,y,t).

5.2 Duhamel’s Principle: The representation of
the solution

In order to study the original nonlinear problem, we first transfer the original
differential equation to an integral equation. The solution is then represented by
an integration in terms of the Green’s function, initial data and the nonlinear term.
This process is so called the Duhamel’s Principle. We will show the derivation of

the representation as follows.

The solution U(z,t) of the nonlinear initial-boundary value problem (5.3) sat-

isfies

O,U + Ad,U — BO*U = —N. (5.8)
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Left multiply the above equation with the Green’s function G(z,y,t) and in-

tegrate over (0,t) x (0, c0),

/ / (x,y,t —7)(0;U(y, )+ A0, U(y, T) — B&*U(y, 1) + N)dydr = 0. (5.9)

We do integration by parts for (5.9) term by term. For the first term

/ / (x,y,t —1)0.Ul(y, 7)dydr
/ Gla,y,t — 1VU(y, 7)dy|'= / / 0,Glx, y,t — 7)U(y, 7)dydr
= /OOO o(z —y)U(y, t)dy — /0 G(z,y,t)U(y, 0)dy

t 00
—/ / 0.G(x,y,t — 7)U(y, 7)dydr

= Ul(x,t) /Gmy, VUo(y)dy — // 0.G(z,y,t — 7)U(y, 7)dydr.

For the second term

// G(x,y,t —7)A0,U(y, T)dydr
- / Gyt —7)AU(y, 7)dr|= / / 8,G(x,y,t — 1) AUy, 7)dydr
0

t
:/ G(:E,O,t—T)AU(O,T)dT—// 0,G(x,y,t — 1)AU(y, 7)dydr
0 0o Jo

t oo
— / / 0,G(z,y,t —1)AU(y, 7)dydr.
0 Jo

In the above estimate, we make use of the boundary condition U(0,7) = 0. For
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the third term

// (,y,t — ) BO2U (y, 7)dydr

:—/0 G(x,y,t —7)BO,U(y, T)dr|;=; +/ / 0,G(z,y,t —1)BO,U(y, T)dydr
/GmOt 7)Bo,U (0, T)d7'+// 0,G(z,y,t —7)BO,U(y, T)dydr
:/ / 0,G(x,y,t — 7)BO,U(y, T)dydr
/ 0,G(x,y,t —7)BU(y, T)dr|;_ / / &2G(z,y,t —7)BU(y, 7)dydr
—/0 0,G(z,0,t —T)BU(0, 7)dr —/0 /0 Gz, y,t —7)BU(y, 7)dydr
— /Ot /000 2G(z,y,t — 7)BU(y, 7)dydr.
In the above estimate, we make use of the boundary condition G(x,0,t — 7) of
the backward Green’s function in the third equal and the boundary condition

U(0,7) = 0 of the nonlinear equation in the sixth equal. Since G(x,y,t — 7)

satisfies the backward equation (5.5),
—0,GP(z,y,t — 1) — 0,GP (2, y, t —7)A — 02GB(33 y,t —1)B =0.
Hence, we have the following representation for U(z,t)

Uz,t) = /000 G(x,y,t)Us(y)dy — /0 /000 G(z,y,t — 7)N(y, 7)dydr.  (5.10)

This representation is an integral equation because the nonlinear term N is
a function on the solution U. We will first estimate the first integration in the
next section. Based on this estimate result, we make an ansatz assumption for the
solution. We then prove our ansatz assumption by calculating the second double

integration.
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5.3 Estimate regarding to the initial data

We estimate the integration of the Green’s function with the initial data
J” G(z,y,t)Up(y)dy in this section, where Up(y) = ee~*. Recall the representa-

tion of the Green’s function G(z, vy, t):

d(z—y) 0

G(Jf,y,t) = e_t _'_jl(yu t)é(l’) —|—j2<l’,t)5(—y)
0 0
S e
e e
+0(1 + + e msirnl/C
(1) V1+t V1+t )
S ~Ein it
e e e e
+0(1 + +O(1)e /€ +
(1) V1+t \/1+t) (1) (\/1+t V1+t
_ly—t? _ Lyt
e C(1+1t) e C(1+1t)

+O(1)e” 171/ ) + O(1)e(al+lsl+0/C

+
Vv1+t V1+t
=L+ o+ I3+ i+ s+ Jg + Jr + T,

&1(y, t) a2(y7 t)

where j; is a matrix of the form satisfying
0 0
a(y,t)],az(y,t)] = O(1 + _|_€—(\y|+t)/07
. . b (l’, t) 0 P
and j, is a matrix of the form satisfying
b2 (l’, t) 0
_Ja—t)? e+t
e C(1+1t) e C(1+1t)

|b1(x,t)|,|bg($,t)|:O(l)(\/1—_'_t+ \/1—+t

+ e~ (el 0/,

We will estimate for J;,2 = 1,--- ,8 term by term. We will use some constants
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D; instead of O(1) in the calculation to make the structure more clear. For Ji,

o0 o0 0(x—y) 0\ [ Diee= Dyee=*~!
/ Ji(z,y,)Uo(y)dy = / e’ dy
0 0 0 0 Dyee™Y Dieeox=t

For JQ,
/0 " ey OUo(y)dy = 5(a) / i HUs(y)dy.

For z,t > 0, fooo J1(y, )Us(y)dy is a function on t and §(z) = 0. Therefore,

/ To(.y, ) Uoly)dy = 0.
0

For J3,
/ Ty y, OUs(y)dy = ol ) / 5(—)Uo(y)dy,
0 0
where
o0 Die
/ 5(=)Uo(y)dy —
0 D2€
Therefore,
o0 D1€bl(.§(3,t)
/ Js(@,y, U y)dy = ,
0 D1€bgl',t

where the estimate of by(x,t) and by(x,t) are given in the above representation of

_ et _Jzt)?
G(z,y,t). Wenote for z, ¢t > 0, the term O(1)< \Z%t is dominated by O(1)< Cl(j:
and O(1)e~=+8/C Therefore,
_le—t)?
e C(1+1t)

J3(x,y, t)Us(y)dy = Dse 4 e~ @+t)/Cy
| )y = Daet s )

where D3 > 0 is some constant.

For the estimate on J; and J5, we need the following Lemma:
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Lemma 5.3.1. There exists Cy > 0, such that

@—y—t) (@—1)?
o0 T eaFn e Ci1(+D)
Yy < O(1)—— + O(1)e /O 5.11
. ViTi y< O~ +OW) (5:11)

Proof In order to do the above estimate, we consider 3 cases: 0 < x <t,t <z <
2t and x > 2t. For 0 < x < t, we have

|l —y —t| > |x —t|.
Therefore,
o — (z—y—t)?

(z—t)?
e C(1+t)

o2
oy < [ oy oy
— e y < e Yy = .

o V14t v+t Jo 1+
Fort<z<2t,x—t>0,

(z— 715)2 _
o c(lljth)

a—t _ (z—y—1)? _(@—y—1)?
_— / 2 e CO+D —ang +/°° e Cu+n
- .e y — - . ¢ y - .

0 \/1+t 0 \/1+t 12*75 \/1+t
For the first term of above,

| > sl
T—y— |z —
Yy 5 ;

for y < xT_t Hence,

_(e—y—t)?
T3 e~ T CU+D

)2
ug vdy = O(1 i
— Wy < ——— [ e dy =
o VItt VIt Jo

Vi+t

(z—1)2

e 4C(+1) oo
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For the second term,

[o¢] 2
—a(p_yp) _(z—y—t) _ay
e 4 e Cu+n . e 2Y(dy

For x > 2t, we still have

_(a—y—1)? et _ (z—y—t)? _(@—y—1)?
0 e C(1+t) —ay 2 e C(1+t) e e} e C(1+t)

C ey = = . d e
N R AN NG
For the first term, the calculation for the case t < x < 2t still works. For the

second term, we have

_(m—y—t)? _(w—y—t)?
o0 [ C(1+t) a(z—t) &0 e C(1+1) a(z—t)
2

. 3 —dy <0
et V1+t B z—t /1 +1 4=

Combined the above 3 cases together, we proved this lemma.

The integration for the other heat kernel terms in Jy and .J5 are similar as
shown in Lemma 5.3.1.

For the rest term e~ (#=¥+9/C e have

/ " lenl/C L meugy / " @€ maugy 4 / T /O maugy
0 0 T
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Without loss of generality, we let a > 1/C. Therefore,

/ emlTmWC L em gy < 2e7/C £ O(1)e™® < O(1)e™ %/,
0
for some C; > 0.

By Lemma 5.3.1 and (5.12), we conclude

o |z—t|2
/ (Jals s 1) + J5(, 9 ) Uo(y)dy = Die
0

e C1(+D)

_'_6—(m+t)/01 7
v1I+t )

where C}, Dy > 0 are some constants.

For Jg, we have

w2 wtt|2
/OOJ o J o1 e“c(vtr‘t) e_‘C(TJtr‘t) /OO y/C »
r,y,t = € + e ¥ETa
i s(z,y,t)Uo(y)dy ()\/1+t \/1“)0 y
_lz—t|? _ lzrtf?
_0(1)6 e C(1+t) _l_e C(1+t)
VIiFt 1+t

For J7, we have

ly—t12 ly—(1+ )t
> o7 CTh e o
e Ydy = O(1)
0 141

—a(l1+9)t/C —at/C
—e 4 dy =0(1)e .

_lyt?

.. 00 ¢ C{FD)

The remaining part f; wirs:
Therefore,

e~ “dy is dominated by the above integration.

/ Jo(x, y, ) Us(y)dy = O(1)ee/C=,
0

62

(5.12)
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The calculation for Jg is straightforward,

/ Js(z,y, t)Uo(y)dy = 0(1)6‘”0‘”0/ eV dy = O(1)ee"/C71C.
0 0

Now, we conclude the main Theorem of this section as follows:

Theorem 5.3.2. The solution to the following initial-boundary value problem

p

AU + Ad,U — BRU = 0,z,t > 0
U(0,t) = 0, (5.13)

U(x,0) = Up() = O(1)ec™

\

satisfies
_Jz—t?
e D(1+t)

V1+t

where D > 0 is a universal constant.

|U(z,t)| = De + Dee @@ )/D. (5.14)

We finished the estimate of the first integration of (5.10). In the next section,
we will introduce a Picard’s iteration for the integral equation (5.10). We first
make an ansatz assumption based on the above estimate (5.14), then we verify

our ansatz assumption by the Picard’s iteration.
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5.4 Proof of the main result

We introduce the following Picard’s iteration to solve the nonlinear problem

(5.3):

Uy (,t) = [~ Gz, y,t)Us(y)dy,
U (z,t) = Ugy(z,t) + [5 o G, y,t — 7)(=N(Ug-1)))dydr, for 1 > 1.
(5.15)

From last section, we have

Ja—t)?
e D(1+t)

V1+t

+ Dee—a(z-ﬁ-t)/D’

|U(0)(:L',t)| = De

where D > 0 is a universal constant. We make our ansatz assumption to be

_Ja—t)?
e D(1+t)

UG, 0] < 2ADe s

+ D€€_a(m+t)/D).

That is, for all [ > 1, if

we are going to verify from the second equation of (5.15) that

_Je—t?
e D+t

vV1+t

Uy (,t)| < 2(De + Deemo@td/Dy,

This is equivalent to show that

_Je—t?
e D@+t)

V1+t

t o0
|/0 /0 G(z,y,t — 7)N(Uy-1))dydr| < De + Dee~@@t/D - (516)

For the Green’s function G(x,y,t — 7), we still apply the separation as in the
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last section that G(x,y,t —7) = > J;,i = 1,---,8. We calculate the double

integration for J; term by term. For notation simplicity, we write N = ,
N*

where N* = (22

1+ﬁ)w'

For Ji,
t oo t oo sx—y) 0\ [0
/ / Jl(x7 y7t - T)NdydT - / / 6_(t_T) ( y) dydT == 0
o Jo o Jo 0 0 N*

For JQ,

t 00 t oo
/ / Jo(z,y,t — 7)Ndydr = 0(x) / / 71y, t — T)Ndydr.
0 Jo 0 Jo

For a,t > 0, [0 [ ji(y,t — 7)Ndydr is a function on ¢ and §(x) = 0. Therefore,

t o0
/ / Jo(z,y,t — 7)Ndydr = 0.
0 Jo

For Js,

bl [L’ t) 0 0
/ / J3(x,y,t NdydT—/ / dydr = 0.

For the remaining terms, since there is no singularity in them, we apply an
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integration by parts before we do the estimate, which is as follows:

// (z,y,t —17) *dydf—// (z,y,t )(172 Sé;i ), dydr
:/0 Ji(z,y,t — )1771;;@ / / (z,y,t T)%dydT
“(

t m=(0 7‘) / / m2(y,T)
=— [ Ji(z,0,t —7)— Zdr — J)y(x,y, t — 7)————dydr
/0 ( )1+P(0>7’) 0o Jo (ol y )1+P(y>7) Y

We make use of the boundary condition 72(0,7) = 0 in the above integration.

For (J;),, similar as Lemma 4.1.2, we have

=2 _ w2
0 e <ca+y 1 e Cia+D)

8y( VIt

where C] > C'is a constant and can be taken slightly larger than C', that is, we

can choose C = %C’. And similar as in Lemma 4.1.3, we have

0

|a e~ WH/C| < O(1)e~ /O,
Yy

1 (y,7)
For ) We have

(w—m)2

g T) 2
52 Dee 205D + Dee—w+7)/D)2 ——S’&Q—)
m*(y, ) < ( Vitr ) < g(Dee

1+ p(y,7) — 14 De

for e sufficiently small.
For the universal constant C' in the Green’s function, we can choose D > 2C
in our ansatz assumption. For the estimate on .J; and J5, we need the following

Lemmas:
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Lemma 5.4.1. There exists Cy > 0, such that

_(@—y—(t=1)? (@12

T C+t—T) D(1+t)
/ / 6_2a(y+T)/DdydT < Cl(e + 6—a(x+t)/D)‘

N =T

Proof For D > 2C', we have

(z—y—(t=7)?

C(1+t T)
—2a(y+7)/D g4,
e T
/ / \/1 +t—7 Y

_2(e—y—(t=7)2

T DOFt—1)
<O(1 e~ 20W+n)/D gy,
/ / v/ 1 +t—T 4

The proof is then similar with the proof of Lemma 5.3.1.

Lemma 5.4.2. There exists Cy > 0, such that

z—y—(t—7))> _2(y—m)? (z—1)2

/ / C(1+t ) 6 D(1+7) dud e D0+t
T < —_—.
Jiti—7 Jixr Ve

Proof ForD > 2C, we have

—(t—7))2 _2(y-7) _2(a—y—(t—7))2 2(y—7)

2
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(5.17)

(5.18)

_ C(1+t ) 6 D(1+T) d < O D(1+t—7) e Da+n) dud
T .
// Vitt—7 i+t ay // Vitt—7 V1+7

We make use of the inequality:

(e—y—-(=9) =9 _ (z=1)
Cltt—s) Cll+s) =C+1b)

ydr.
(5.19)



CHAPTER 5. THE NONLINEAR PROBLEM 68

2z—y—(t—7))2 2(y—7)?2

/ / T T D(+t—7) 6_ D(1+47) d d
T
Vit+t—71 Y

_2(a—y—(t—7))2 2(y—7)2

< O z( t2) / / / D(1+t—7) e D0O+n) dud
e T D+t . T
\/1 t—7 V14T Y

2(@—y—(t—7)2

< O(1)e Bt / / o dr + / / 0 gy
- VItr/I+t 4y VIi+Ht—7V1+1 Y

(z— t2
e D(l+t)

Vit

< O(1)

The integration for the other heat kernel terms in J; and J5 are dominated by
the integrations in Lemma 5.4.1 and 5.4.2.

For the rest term e~ (#=¥1+8/C e have

Y

/ / —(|lz—y|+t—7)/C e—2o¢(y+‘r)/Ddyd7_ < O(l)e—a(x-i-t)/D

for D > 2C.

Hence, we conclude

_ (@=t)?
e D(1+t)

V1+t

)

t fe'e)
‘/ / (Ju(x,y,t) + Js(x,y,t)) N*dydr| < Dyé( + e /D)
0 0

where Dy > 0 is some constant.

For Jg, we have

[ ot SZL,)WT‘

_(@=t)? _ (w+t>2 _2(y—r)?
9 e C(1+t) e C(1+t)

e D@a+7)
< O(1)e( + e ¥C . (3D + 3D%2e 20w/ D) qydr
B V1+t V1+t 1
e —gzt“i
e O+t e Ot
< O(1)é? +
< O m)
(z—1)2
T DA+t
S D2€2€

Vi+t’
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where Dy > 0 is a constant and we choose D > 2C > (' as in the above case.

For J7, we make use of

_ly=@-7)2

/ / e CO+i—7) _2a(y+7)/Ddyd7'
1+t—71 +t—7

2=+ ) -

D(1+t ) o
/ / e—2a(l+z)(t—7')e—2a7’/Ddyd,7_
1+t—71

< O( )/ —2a(1+ %)t~ 7’) 2a'r/Dd,7_
0

< O(1)e /P,

_lyre=n)?
for D > 2C'. The integration for the remaining part % is dominated by

the above integration. Therefore,

t [eS)
‘/ / J7(x,y,t)N*dyd7—| < D3€26—a(ac+t)/D’
0o Jo

where D3 > 0 is a constant.

For Jg, we have

t [e'e)
| / / J(z, y, () N*dydr]
2(y77)2

T D(+7)
< O(1)e*/¢ / / /et 3D R D)y

<D 6 e CM(ZB-"‘t/D

where D, > 0 is a constant.

Conclude the above calculations, we have

_Je—t)?
e DO+t

1+1

t o]
| / / G(z,y,t — 7)Ndydr| < (D1 + Dy + Ds + Dy)e*( + 6_O‘(x+t)/D).
0o Jo

Choose our ¢ sufficiently small such that (D; + Dy + D3 + Dy)e? < De, then we
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verified our ansatz assumption. We conclude the whole section as the following

Theorem.

Theorem 5.4.3. The solution to the initial-boundary value problem (5.3) satisfies

_Je—t?
e D@+o)

V1+t

|U(z,t)] < De + Dee @@ t)/D (5.20)

where D > 0 s a universal constant.

From this Theorem, we conclude that the perturbation U(z,t) tends to zero
when the time ¢ tends to infinity. Since our estimate is point-wise, we also obtained
the decay rate. For the wave component along the characteristic curve x = ¢, the
decay rate is ¢~2. Other wave components are exponentially decaying with respect

to t.
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