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Summary

This thesis comprises the study of two basic topics in quantum information science:
symmetric minimal quantum tomography and optimal error regions.

We first consider the implementation of the symmetric informationally complete
probability-operator measurement (SIC POM) in the Hilbert space of a d-level system
in terms of two successive measurements: a diagonal-operator measurement with high-
rank outcomes, followed by a rank-1 measurement in a basis chosen in accordance with
the result of the first measurement. We show that any Heisenberg-Weyl group-covariant
SIC POM can be realized by such a sequence where the second measurement is simply
a measurement in the Fourier basis, independent of the result of the first measurement.
Furthermore, we study in particular such constructions of SIC POMs in dimensions
2, 3, 4, and 8. Surprisingly, this formulation reveals an operational relation between
mutually unbiased bases (MUB) and SIC POMs; the former are used to construct the
latter. As a laboratory application of the two-step measurement process, we propose
feasible optical experiments that would realize SIC POMs in various dimensions.

The second part of this thesis investigates a simple construction of optimal error
regions for quantum state estimation. A point estimator, constructed from the measure-
ment outcomes on a finite number of independently and identically prepared systems,
can never be perfectly accurate; it has to be supplemented with an error region that
summarizes our uncertainty about the guess. Exploiting the natural correspondence
between the size of a region in state space and its prior content, we show that the
optimal choices for two types of error regions—the maximum-likelihood region, and
the smallest credible region—are both concisely described as the set of all states for
which the likelihood (for the given tomographic data) exceeds a threshold value, i.e.,
a bounded-likelihood region. These error regions are reminiscent of the standard error
regions obtained by analyzing the vicinity of the maximum of the likelihood function, a
construction valid only when a large number of copies of the state have been observed.

Yet, we require no such restriction. This surprisingly simple characterization permits

vii



Summary

concise reporting of the error regions even in high-dimensional problems. Besides, our
error regions are conceptually different from confidence regions, a subject of recent
discussion in the context of quantum state estimation; however, the smallest credible
regions can serve as good starting points for constructing confidence regions. We dis-
cuss criteria for assigning prior probabilities to regions, and illustrate the concepts and

methods with several examples.
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CHAPTER 1

Introduction

Quantum mechanics is a mathematical framework for the development of physical the-
ories. On its own, quantum mechanics doesn’t tell you what laws a physical system
must obey, but it does provide a mathematical and conceptual framework for the devel-
opment of such laws. As we know, all classical theories, including Newton’s mechanics,
Maxwell’s electromagnetism as well as Einstein’s relativity, are deterministic in the
sense that the state of the system uniquely determines all phenomena about the sys-
tem in the future, as well as in the past, at least in principle. However, a fundamental
feature of quantum theory is that it is probabilistic, not deterministic [1|. Complete
knowledge of the state does not enable us to predict the outcomes of all measurements
that could be performed on the system, but only the probabilities of the possible out-
comes. In other words, the state does not determine the phenomena about the system.

Generally, there are four postulates in quantum mechanics that provide the connec-
tion between the physical world and the mathematical formalism. Here, we only give
a global review of these postulates [2,3], with the more detailed description of them to
be given along the course of this thesis. Postulate 1 sets the arena for quantum me-
chanics, by specifying how the state of an isolated quantum system is to be described.
Postulate 2 tells us that the dynamics of closed quantum systems are described by the
Schrédinger equation, and thus by unitary evolution. Postulate 3 tells us how to extract
information from our quantum systems by giving a prescription for the description of
measurement. Postulate 4 tells us how the state spaces of different quantum systems
may be combined to give a description of the composite system.

According to Postulate 1, any isolated physical system can be described by a state

vector (or a statistical operator) residing in its state space, i.e., the Hilbert space. The
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Chapter 1. Introduction

state of a physical system is the mathematical description of our knowledge of it, and
provides information on its future and past. Therefore, a state tomographic technique
is designed to acquire the complete information of a system, in other words, to achieve
the maximum possible knowledge of the state, thus allowing one to make the best
probabilistic predictions on the results of any measurement that could be performed on
the system [4]. Different from its classical counterpart, the state of a quantum system
is confined by the fundamental features of quantum theory, namely the Heisenberg
uncertainty relation [5,6] and the no-cloning theorem |7, 8]. Therefore, it is impossible
to infer a generic unknown quantum state from measurements on a single copy of
the system; that is, many copies of independently and identically prepared quantum

systems are needed for reliable state determination.

Quantum state tomography (also called quantum state estimation; note that we
use these two terms interchangeably in this thesis) [4] is a measurement procedure
designed to acquire complete information about the state of a given quantum system.
It is indispensable to take into account additional constraints, such as the positivity of
quantum states, when designing quantum tomographic methods. In addition, the choice
of strategies may also depend on the system under consideration and the application
in mind. As can be seen, a complete implementation of quantum state tomography
involves two basic steps, namely the measurement scheme to get data first, followed by
a data processing protocol. One of the main challenges in quantum state tomography
is to infer quantum states as efficiently as possible (in terms of, for instance, time
consumption) and to optimize the resources necessary to achieve a given accuracy,
which can be quantified by various figures of merit, such as the mean trace distance,

the mean square Hilbert-Schmidt distance (MSH), the mean fidelity and so on.

Besides its fundamental importance, quantum state tomography is also a crucial
component in most, if not all, quantum computation and quantum communication
tasks. The characterization of a source of quantum carriers, the verification of the
properties of a quantum channel, the monitoring of a transmission line used for quantum

key distribution—all three require reliable quantum state tomography, to name just the
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Chapter 1. Introduction

most familiar examples. The successful execution of such tasks hinges in part on the

ability to assess the state of the system at various stages.

A good quantum state tomographic strategy entails judicial choices on both mea-
surement schemes and data processing protocols for reconstructing the true state. Com-
pared with measurement schemes, there is generally more freedom in choosing the re-
construction methods in practice, and a good choice is the first step towards getting a
reliable and efficient estimator. On the other hand, given the measurement results, the
optimization of data processing is basically a subject of classical statistical inference,
although attention has to be paid to account for any additional quantum constraints,
such as the positivity of the density matrices. Therefore, if concentrating solely on the
reconstruction methods, quantum state tomography s classical state tomography with
quantum constraints. Accordingly, quantum mechanicians can benefit much from the

methods developed by statisticians.

Since the data have statistical noise, every estimation strategy comes with errors.
It is well known in classical statistical inference that the minimal error is determined by
the Fisher information matrix [9] through the Cramér-Rao lower bound (CRLB) [10,11].
Therefore, to be statistically meaningful, any point estimator has to be supplemented
with error bars of some sort, or error regions beyond dimension one. Many ad-hoc
recipes have been proposed for attaching a vicinity of states to an estimator, which
usually rely on having a lot of data, involve data resampling, or consider all data
that one might have observed. By contrast, in this thesis, we tackle this problem by

systematically constructing error regions from the data we actually observed.

In another respect, the main departure of quantum state tomography from its classi-
cal counterpart is the choice over measurements, which underlies the difference between
quantum information processing and classical information processing. In practice, the
set of possible measurements is mainly determined by the experimental apparatus. As
technology advances, it is ultimately limited by the basic principles of quantum me-
chanics. For example, as a consequence of the Heisenberg uncertainty relation [5,6] and

the complementarity principle [7, 8], it is impossible to measure two non-commuting
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sharp observables simultaneously, which implies that no measurement can extract max-
imal information about both observables simultaneously. To put it differently, any gain
of information about one observable is necessarily accompanied with a loss of informa-
tion about the other. Therefore, to devise good measurement schemes, it is crucial
to balance such information trade-off, which is one of the main challenges in current

quantum state tomography theory.

The most natural and useful type of measurements in quantum mechanics is the
generalized measurement, which is often referred to as probability-operator measure-
ment (POM) or positive operator-valued measure (POVM). A POM is informationally
complete (IC) if any state of the system is determined completely by the probabilities of
the possible outcomes. A symmetric IC POM (SIC POM) is an IC POM of a particular
kind: In a finite d-dimensional Hilbert space, it is composed of d? subnormalized pro-
jectors onto pure states with equal pairwise fidelity (the equiangular condition) [12,13].
The high symmetry and high tomographic efficiency of SIC POMs have attracted the
attention of many researchers; see, for example, Refs. [12-18]. Besides, SIC POMs
are closely related to many other problems in both physics and mathematics, such as
quantum cryptography [19,20], MUB [21-24], t-designs and equiangular lines [12,13],

and other foundational studies.

All SIC POMs known so far are group covariant in the sense that each of them
can be generated from a single state—the fiducial state—under the action of a group
composed of unitary operators. Moreover, most known group-covariant SIC POMs
are covariant with respect to the Heisenberg-Weyl (HW) group, except for the set
of Hoggar lines (in dimension 8 = 23), which is covariant with respect to the three-
qubit Pauli group. It seems that there is a deep root for this observation, but the
reason is still unclear. Up to now, analytical solutions of HW SIC POMs have been
constructed in dimensions 2-16, and 19, 24, 28, 31, 35, 37, 43, 48; numerical solutions
with high precision have been found up to dimension 67. All these results strongly
support Zauner’s conjecture [13] that HW covariant SIC POMs exist in any Hilbert

space of finite dimension. In sharp contrast with this wealth of evidence, there is neither
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Chapter 1. Introduction

an existence proof nor an efficient way for constructing SIC POMs. What is worse,
many basic properties of SIC POMs have remained elusive. The implication of the
equiangular condition is largely a mystery, although it looks so simple. In this thesis,
we study the construction and implementation of SIC POMs by using what we call the

successive-measurement scheme.

Chapter 2 of this thesis presents an overview of quantum state tomography from the
theoretical perspective. We start with a brief introduction of the developments in this
field and then introduce several basic ingredients in quantum state tomography, such
as quantum states and measurements, quantum tomographic methods, Fisher informa-
tion, and estimation errors. For the tomographic methods, we first present the simplest
linear inversion method as well as the well-known maximum-likelihood estimation, fol-
lowed by several other methods, including the hedged maximume-likelihood estimation,
the Bayesian mean estimation, and the minimax mean estimation. We then show the

derivation of the Jeffreys prior in Bayesian statistics from the Fisher information.

Chapter 3 deals with the problem of quantum measurements. Based on Postulate 3
of quantum mechanics, we first introduce two general types of quantum measurement,
1.e., the projective measurement and the generalized measurement. Then we talk about
the basic features of SIC POMs and the construction of group-covariant SIC POMs,
followed by the discussion of MUB and the construction of MUB when the dimension d
is a prime power. In the last section of this chapter, we present the scheme of successive
measurements, using which a few proposals for implementing SIC POMs will be given

in the following chapter.

In Chapter 4, we consider the implementation of SIC POMs in the d-dimensional
Hilbert space by employing a two-step measurement process: a diagonal-operator mea-
surement with high-rank outcomes, followed by a rank-1 measurement in a basis chosen
in accordance with the result of the first measurement [23,24]. By using this scheme, we
are able to realize any Heisenberg-Weyl group-covariant SIC POM, where the second
measurement is simply a measurement in the Fourier basis, independent of the result

of the first measurement. Then, we study the construction of SIC POMs in dimensions
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2, 3, 4, and 8 respectively. We find an unexpected operational relation between MUB
and SIC POMs; the former are used to construct the latter. In order to implement
the two-step measurement process in the laboratory, we also propose feasible optical
experiments that would realize SIC POMs in various dimensions.

Chapter 5 considers the construction of optimal error regions for quantum state
estimation [25]. Instead of reporting a single point estimator for the actual state of the
quantum system for the given data, we intend to assign a region for it. As opposed to
standard ad-hoc constructions of error regions, we introduce the maximum-likelihood
region—the region of largest likelihood among all regions of the same size—as the
natural counterpart of the popular maximume-likelihood point estimator. Here, the size
of a region is its prior probability. A related concept is the smallest credible region—the
smallest region with pre-chosen posterior probability. For both optimization problems,
the optimal region has constant likelihood on its boundary. This surprisingly simple
characterization permits concise reporting of the error regions even in high-dimensional
problems. We also discuss several criteria for assigning prior probabilities to regions.
For illustration, we first apply the method to study the problem of a classical coin. Then
in the quantum scenario, we identify optimal error regions for single qubit (confined to
the equatorial plane of the Bloch sphere) and two-qubit states from computer-generated
data that simulate incomplete tomography with few measured copies.

We close with a short conclusion and outlook in Chapter 6.



CHAPTER 2

Quantum state tomography

2.1 Introduction

Quantum state tomography (QST) is a procedure for inferring the state of a quantum
system from generalized measurements, known as probability-operator measurements
(POMs). Owing to the Heisenberg uncertainty relation [5,6] and the complementarity
principle [7,8|, any measurement on a generic quantum system necessarily induces a
disturbance, limiting further attempts to extract information from the system. As a
result, it is impossible to fully recover the true state of a quantum system if only a finite
number of measurements are performed. Quantum state tomography is an important
and primitive component in most, if not all, quantum information processing tasks,
such as quantum computation, quantum communication, and quantum cryptography,
because all these tasks rely heavily on our ability to determine the state of a quantum
system at various stages.

The problem of QST can be traced back to Pauli [26] when he asked whether the
position distribution and momentum distribution suffice to determine the wave function
of a quantum system. However, a systematic study was not initiated until the 1950s
when Fano [27]| introduced the concept of a quorum. Later, Ivanovi¢ [28]| explored
the state estimation problem from a geometric perspective, with a special emphasis
on mutually unbiased measurements. He also constructed a complete set of mutually
unbiased measurements when the dimension is a prime, followed by a generalization to
prime power dimensions by Wootters and Fields [29].

The advance of experimental techniques and the emergence of quantum information

science further stimulated the development of QST. The problem of reconstructing
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quantum states from informationally incomplete measurements was addressed by Buzek
et al. |30, 31], who proposed a method for selecting the most objective estimator by
means of Jaynes principle of maximum entropy [32,33]. Meanwhile, the maximum-
likelihood (ML) estimation was advocated by Hradil [4,34], who developed an efficient
algorithm for computing the ML estimator, which avoids the problems of non-positivity
and choice ambiguity of the traditional linear estimators. As alternatives to the ML
approach, several other methods for state tomography have been developed, including
the hedged maximum-likelihood estimation (HMLE) [35-38], the Bayesian mean (BM)
estimation [39-45], and the minimax mean estimation [46-50]. These methods are
proposed to solve the zero-eigenvalue problem which often occurs in the ML estimation,
but may result in additional complications and more computational needs. Meanwhile,
several methods have been developed to deal with large quantum systems, such as

compressed sensing [51] and direct fidelity estimation [52].

Every statistical inference comes with errors, so how to quantify the efficiency of
a state tomographic strategy? This question was first addressed by Helstrom [53,54],
who prompted the introduction of quantum analogs of the Fisher information and
the Cramér-Rao lower bound (CRLB) based on the symmetric logarithmic derivative
(SLD), and then solved the optimization problem in the one-parameter setting. For
the multi-parameter scenario, Yuen and Lax [55] solved the problem of estimating the
complex amplitude of coherent signal in Gaussian noise by means of CRLB based on
the right logarithmic derivative (RLD), which is often tighter than the SLD bound
in the multi-parameter setting. Based on a similar approach, Holevo [56] solved the
estimation problem about the mean value of Gaussian states. He also introduced a
new quantum Cramér-Rao bound, known as the Holevo bound, which is tighter than
both the SLD bound and the RLD bound. However, this bound is generally not easy

to calculate since the definition itself involves a tough optimization procedure.

As an extension to QST, quantum process tomography (QPT) focuses on char-
acterizing unknown quantum operations (also called quantum processes or quantum

channels) instead of quantum states, which is crucial to ensure the performance of
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many quantum information processing protocols. Its development has drawn much
inspiration from QST, since mathematically QPT and QST are proved to be equiva-
lent [57]. Introduced by Chuang and Nielsen [58] as well as by Poyatos et al. [59] in
the late 1990s, the standard QPT (SQPT) involves preparing an ensemble of quan-
tum states and sending them through the process, then using quantum state tomogra-
phy to identify the resultant states. Several experimental demonstrations of SQPT in
NMR [60,61] and quantum optics systems [62] have been done recently. Other tech-
niques of QPT include the ancilla-assisted process tomography (AAPT) [57,63] and
entanglement-assisted process tomography (EAPT) [64], which make use of an addi-
tional ancilla system. All the previous techniques are known as indirect methods for
characterization of quantum dynamics, since they require the use of QST to reconstruct
the process. In contrast, there are direct methods such as the direct characterization of
quantum dynamics (DCQD) [65-68] which provide a full characterization of quantum
systems without using state tomography. Reference [69] is a recent survey on all the
strategies of QPT and provides a benchmark which is necessary for choosing the scheme

that is the most appropriate in a given situation, for given resources.

In a sense complementary to QST and QPT, quantum measurement tomography
(QMT) [70,71] tries to calibrate the measuring apparatus prior to any quantum pro-
cessing tasks. The strategy is to send in systems of various known states, and use these
states to estimate the outcomes of the unknown measurement. Since a measurement
can be characterized by a set of POMs, the goal of QMT is to reconstruct these POM
outcomes. Inspired by QST, the same strategies, such as the ML estimation [71]| and
the Bayesian methods, can be used for QMT. Since the observation of several different
quantum states by a single measuring apparatus is equivalent to the measurement of
several non-commuting observables on many copies of a given quantum state, the ML
approach of the QMT can be interpreted as a synthesis of information from mutually

incompatible observations [72,73|.

In this chapter, we first review the basic ingredients in QST, such as quantum states

and measurements, quantum tomographic methods, Fisher information, and estimation
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errors. We then show the derivation of the Jeffreys prior in Bayesian statistics from
the Fisher information in Sec. 2.4.1. Some of the topics, like quantum measurements

and the Jeffreys prior, will be discussed again in later chapters.

2.2 Quantum states and measurements

2.2.1 Simple systems

Postulate 1 of quantum mechanics says that, associated to any isolated physical system
is a complex vector space with inner product known as the state space, or the Hilbert
space, usually denoted by H. All information about the quantum system is encoded in
its state vector, which is a unit vector in the system’s state space. The knowledge of the
state is equivalent to knowing the result of any possible measurement on the system.
Mathematically, a pure state is represented by a normalized ket, say [¢), and any
superposition of kets also represents a legitimate state. Since kets that are proportional
to each other are physically equivalent, there is a one-to-one correspondence between
the pure states and the rays in the Hilbert space.

In general, one can describe the state of a quantum system in the language of a
density operator (also called a statistical operator), which is a positive semidefinite
matrix of unit trace, usually denoted by p. Density operators with rank 1 represent
pure states, while those with higher ranks represent mixed states; mathematically, a
pure state satisfies tr{p?} = 1, but a mixed state has tr{p?} < 1. For instance, the

density operator of an arbitrary qubit state can be written as
1 —
p=oU+7 7)), (2.1)

where 7 is a real three-dimensional vector satisfying \7] < 1, and & are the Pauli
matrices. This state can be visualized in a Bloch ball with Bloch vector 7, such that
all ps with |7| = 1 residing on the surface are pure states and all ps with ]7| <1
inside the sphere are mixed states. When ]7| = 0, the state becomes p = I/2, which

is called the completely mixed state.
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The second Postulate of quantum mechanics gives a prescription for the description
of state changes. The evolution of a closed quantum system [¢)) at time ¢; is described

by a unitary transformation, such that

[¥) =Uly), (2.2)

where [¢)') is the state at time t2 and the unitary operator U depends only on the times
t1 and t3. Or put it differently, Postulate 2 can be described by the time-dependent

Schrédinger equation,

L OlY) 4
ih= " = H[v), (2.3)

where 7 is the reduced Planck constant and H is a Hermitian operator known as the
Hamiltonian of the closed system. If we know the Hamiltonian of a system, then we
understand its dynamics completely, at least in principle. However, in practice, it can

be very difficult to figure out the Hamiltonian, and then solve the Schrodinger equation.

A quantum system evolves according to unitary evolution when it is closed. But
when the system interacts with the rest of the world, the system is no longer closed,
and thus not necessarily subject to unitary evolution. Then Postulate 3 of quantum
mechanics provides a way for describing the effects of measurements on quantum sys-
tems, according to which, observation in quantum mechanics is an invasive procedure
that typically changes the state of the system. A generalized measurement in quantum
mechanics is described by a set of measurement operators { M} corresponding to a set

of measurement outcomes, which satisfy the completeness condition,
> MM =1. (2.4)
k

Given the initial state of a quantum system p, the probability p; that outcome k occurs

is given by the Born rule,
Dk :tr{Mkng} ) (2.5)
As a result of the completeness condition, summation of the probabilities is equal to the
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identity, i.e., >, pr = 1, and the post-measurement statistical operator of the system
is described as follows

p = W : (2.6)

tr{MkpM k}

A measurement is a projective (or von Neumann) measurement if the measurement
operators Mys are orthogonal projectors. A projective measurement is repeatable in
the sense that repeated measurements yield the same outcome as the first one and
thus provide no additional information about the original quantum system. If we are
interested only in the outcome statistics but not the state after the measurement, the
measurement can be effectively described by a set of positive operators Il = M IIM;.C,
with >, IIy = 1. In this case, the measurement is referred to as a probability-operator
measurement (POM), and the set of operators IIs may be identified with the outcomes
of the measurement. According to Neumark’s dilation theorem |74, any POM can be
realized as a projective measurement on a larger system.

A measurement is informationally complete (IC) if any state is completely deter-
mined by the outcome statistics [75]. In a finite d-dimensional Hilbert space, an IC
measurement consists of at least d?> outcomes. An informationally overcomplete mea-
surement is an IC measurement with more than d? outcomes. We will give a more

thorough discussion about quantum measurements in Chapter 3, with more emphasis

on symmetric IC POMs and mutually unbiased measurements.

2.2.2 Composite systems

Compared with simple systems, a distinctive feature of composite systems is the ex-
istence of quantum correlations known as entanglement [76]|, as emphasized by the
famous EPR paradox [77]. Quantum entanglement is not only a characteristic fea-
ture of quantum physics but also a crucial resource for many information processing
tasks |76], such as quantum teleportation [78|, superdense coding [79], quantum key
distribution [80], and quantum computation [81]. Its connection with quantum state
tomography can be elaborated in two aspects. On one hand, quantum tomographic

techniques provide basic means of detecting, quantifying, and characterizing entangle-
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ment [76,82-85]. On the other hand, entanglement is a basic ingredient of collective

measurements [86], the most general measurements allowed by quantum mechanics.

Postulate 4 of quantum mechanics describes how the state space of a composite
system is built from the state spaces of the component systems. Consider a bipartite
composite system as an example. Suppose the Hilbert spaces of two physical systems
A and B are ‘H; and Hs respectively, then the Hilbert space H of the whole system is
the tensor product H = Hi; ® Hs. If we denote the state of the composite system as
pAB, the reduced density operator for system A is obtained by taking the partial trace
over system B, i.e., pg = trp{pap}. A pure state p € H is separable if it is a tensor
product of the two states in each Hilbert space; otherwise, it is entangled. In other
words, a pure state is separable if and only if each reduced state is pure. A mixed state
is separable if it can be written as a convex combination of separable pure states [87]
and is entangled otherwise. Similar concepts can also be defined for systems composed

of more than two parties [76].

A measurement on a composite system is collective if it cannot be decomposed into
individual measurements on the constituent subsystems. A separable measurement is
defined if each outcome can be written as a convex combination of tensor products of
positive operators, or equivalently, if each outcome corresponds to a separable state,
which is not necessarily normalized [88]|. A simple example of separable measurements
are product measurements, which can be decomposed into independent measurements

on the constituent subsystems.

A measurement is entangled if it is not separable. A simple example of entan-
gled measurements in the two-qubit setting is the Bell measurement. In practice, it
is generally much harder to realize entangled measurements than separable measure-
ments. There is an open question in quantum state tomography theory: By how much
can the efficiency be increased with entangled measurements compared with separable
measurements? Besides being of practical interest, this question is also of paramount
importance in understanding the difference between quantum information processing

and classical information processing.
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2.3 Quantum tomographic methods

Quantum state tomography is a procedure of inferring the state of a quantum system
from measurement outcomes, which originates in classical statistics literature. However,
due to the fundamental limitations related to the Heisenberg uncertainty principle [5,6]
and the no-cloning theorem |7, 8], it is indispensable to take into account additional
constraints, such as the positivity of the quantum state, when designing quantum
tomographic methods. In addition, the choice may also depend on the system under
consideration and the application in mind. In this section, we review several well-known

quantum tomographic methods and briefly comment on each method.

2.3.1 Linear inversion

Linear inversion (sometimes called linear state tomography) is one of the simplest
reconstruction methods in state tomography, which was first considered by Fano [27]
and followed by many other researchers [17,89-92]. Suppose we are given N identically
prepared copies of an unknown quantum system p, which are then measured by the
POM {Hk}szl, with ), II; = 1. The probability of getting a particular output k is
given by the Born rule: py = tr{pll;}. Provided that the kth output has been registered
ny times, >, np = N, then the relative frequency of the output k is fi, = ni/N. In
linear inversion, one tries to find an estimator p that matches the observed frequencies,

that is,

tI‘{[)Hk} = fr, VEk. (27)

If the measurement is IC, there exists at most one solution. If, in addition, the mea-
surement is symmetric, there is always (exactly) one solution. Every symmetric POM
has, apart from the outcome operators {Hk}ff:l, a set of Hermitian, trace-1 operators
{Ak}f:1 with the defining property that tr{Il;A;} = dy;, which is also called the dual
basis. This allows the expansion of the part of the state measured by the symmetric

POM as
K
p=> fulp. (2.8)
k=1
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Therefore, the Ags are also known as reconstruction operators. Once the reconstruction
operators are known, the estimator can be computed immediately by applying Eq. (2.8).
Since in reality there is generally no estimator that can match the frequencies exactly,
the choices for the reconstruction operators may not be unique.

The main advantage of linear inversion is its simplicity. It is a good starting point
in theoretical analysis, but not a wise choice in practice due to several major defects.
First, the estimator obtained may not be positive semidefinite (may not be physical),
which happens quite often if the true state has a very high purity and/or the sample
size is small. This problem may be solved by mixing the estimator with some noise
(the completely mixed state for example) until it is positive semidefinite. Second,
there is generally no systematic strategy to choose the reconstruction operators when
the measurement is informationally overcomplete, and the information encoded in the
measurement results cannot be extracted optimally if the reconstruction operators are
chosen a priori. To solve this problem, we need to change the reconstruction operators
adaptively according to the measurement results. Alternatively, we can circumvent the

two problems simultaneously by maximizing the likelihood functional (next section).

2.3.2 Maximum-likelihood estimation

First proposed by Fisher [9] in the 1920s, the maximum-likelihood (ML) estimation
strategy is an entirely different approach to quantum state tomography compared to
the technique of linear inversion. The principle of ML estimation is to seek the quantum
state that is most likely to generate the observed data by maximizing the likelihood
functional over the state space. The ML estimator (MLE) has become the estimator of
choice. During the past decade, it has found extensive applications in quantum state
tomography [4,34,93,94] as well as some other areas like entanglement detection [82]
and characterization [84].

The ML strategy consists in maximizing the likelihood functional, which is defined

as follows

K
L(p) =[] i, (2.9)
k=1
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where py = tr{pll;} (Born rule) is the probability of obtaining the outcome k given the

true state p. In practice, it is more convenient to work with the log-likelihood functional,

K K
log L(p) =Y nglogpe = N Y _ filogpy . (2.10)
k=1 k=1

The MLE pyy,, is obtained by maximizing the likelihood functional £(p), or equivalently

the log-likelihood functional log £(p). As a consequence of the Gibbs inequality [95],

> felogpy <Y frlog fi, (2.11)
K K

the estimator p obtained by Eq. (2.7) of linear inversion coincides with the MLE py,
if such a state exists.

Generally, it is not an easy task to find a closed formula for the MLE py;,. For-
tunately, the estimator can be computed efficiently with an algorithm proposed by
Hradil [4,34]. Since the log-likelihood functional log £(p) is a concave function defined
on a convex and closed state space, the search for the MLE turns into a convex op-
timization problem, which can be solved by using the steepest-ascent method. The
starting point for the algorithm can be chosen arbitrarily; usually we take the com-
pletely mixed state p,, = 1/d for step m = 0 in a d-dimensional Hilbert space. Then

the MLE py, can be obtained through the iteration of the following steps:

i. Compute

- Jrlly
Ry = zk: Tl (2.12)

which is a positive semidefinite operator defined by its expansion into the mea-

sured POMs.

ii. Choose a small parameter €,, and update the estimator p,, according to

I+ emBm)pm(1 + emBRn)
Prtl = 50 + emBon) oL+ €mBom)}

(2.13)

ili. Break out of the iteration if tr{|(Ry, —1)pm|} < €, where tr{|A|} = tr{\/ ATA} is
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the trace norm for an operator A and ¢ is a pre-chosen threshold value; otherwise,

replace m with m + 1 and repeat the above steps.

The small parameter €, may be chosen a priori, for instance, €,, = 0.5 works quite
well when d is small. In general, a suitable line optimization procedure for choosing €,,
adaptively may help to speed up the algorithm. The MLE py,, obtained by the above
algorithm is unique if the measurement is IC; otherwise there exists a plateau in the
state space on which all states have the same likelihood value, and the estimator is
generally not unique. Recently, this problem was solved by Teo et al. [96] based on the
ML principle and the maximum-entropy principle [32,33]. An efficient algorithm was
developed to compute the most objective estimator—the state with the highest von
Neumann entropy among all the states that maximize the likelihood functional.

The ML estimation is by now the most popular state tomography strategy in use and
it has many nice features. The MLE is guaranteed to be positive semidefinite and thus
represents a legitimate quantum state; it is asymptotically unbiased; it is asymptotically
efficient in the sense of attaining the CRLB for a large amount of registered data [9];
it can be computed efficiently with a simple algorithm [34] (for an improved version,
see Ref. [97]). However, a major drawback of the ML technique is the zero-eigenvalue
problem [45], namely that the MLE is often rank-deficient when the true state has a
very high purity or when you get untypical data. These zeros eigenvalues represent
unrealistic confidence over certain measurements with only a finite amount of data,

which is undesirable for applications such as data compression and cryptography.

2.3.3 Other reconstruction methods

Over the past few years, several alternatives to the ML estimation approach have been
proposed, including the hedged maximum-likelihood estimation [35-38]|, the Bayesian
mean (BM) estimation [39-45], and the minimax mean estimation [46-50]. Meanwhile,
several methods have been developed to deal with large quantum systems, such as
compressed sensing [51] and direct fidelity estimation [52]. In this section, we briefly

discuss the first three methods.
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2.3.3.1 Hedged maximum-likelihood estimation

Proposed by Blume-Kohout [38], the hedged maximum-likelihood estimation (HMLE)
[35-37] can be used as a plug-in substitute for the ML strategy and supplemented
to solve the zero-eigenvalue problem which is likely to occur during the application
of the ML estimation. This method employs an idea in classical statistical inference
known as the “add ” rule, also known as Lidstone’s law [98,99|. In HMLE, instead of
maximizing the likelihood functional £(p) itself, the product of £(p) and an additional
hedging functional

h(p) = det(p)’ (2.14)

is maximized, where det(-) represents the determinant and f is called the hedging
parameter usually taking values between 0 and 1. By this way, the estimator defined
by the maximum of the functional L(p)h(p) is guaranteed to have full rank. Since
the hedging function h(p) and the likelihood functional L(p) are both concave, the
estimator can be computed efficiently with a similar algorithm as that used for MLE.
These two nice features make HMLE an appealing alternative to the ML estimation.
However, the problem with HMLE is that there is no general criterion for choosing the
hedging functional, which may depend on both the prior knowledge available and the
figure of merit adopted. This contrasts with the classical case, where § ~ 1/2 is known

to be asymptotically optimal in all cases [36].

2.3.3.2 Bayesian mean estimation

In Bayesian mean (BM) estimation [39-45], one chooses a prior distribution 7y(p) dp
over the state space, which represents the estimator’s ignorance about the identity of
the state and should generally be chosen to be as uninformative as possible. Then the
posterior distribution is derived by multiplying the prior with the likelihood functional,
that is, m¢(p) oc L(p) mo(p) dp, which represents the estimator’s knowledge. The BM

estimator (BME) is the mean state over the posterior, such that,

= [ pri(0)dp. (2.15)
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Common choices of the prior include uniform distribution with respect to the Hilbert-
Schmidt measure and uniform distribution with respect to the Bures measure [100].
With a suitable choice of the prior, the BM strategy can avoid the zero-eigenvalue
problem and is thus more appealing than the ML estimation. In addition, BM estima-
tion often outperforms ML estimation when the sample size is small. The problem with
BM estimation is that there is no universal criterion for selecting the prior. While some
natural restrictions may be imposed on the prior based on symmetry consideration, say
unitary invariance, such restrictions generally cannot specify a unique prior. Another
serious problem is the difficulty in computing the estimator even numerically since it
involves a high-dimensional integral over the state space. There is still no reliable and

efficient algorithm for this purpose (Monte Carlo methods have been proposed).

2.3.3.3 Minimax mean estimation

The minimax mean estimator [46-48| for the trine was proposed by Ng et al. [49,50]
very recently. This method generalizes the classical estimator to the quantum problem
upon imposing quantum constraints. Firstly, the three-outcome trine measurement
(see Sec. 5.5.2.1 in Chapter 5 for more detailed discussions) has outcomes that are sub-
normalized projectors onto the eigenstates of o, and (—o, & v/30,)/2 with eigenvalues

+1. It then has the probabilities

1 D2 1

p1==(1+x), =-(2-z+V3y), (2.16)

3 D 6
3

with z = (o), y = (0,) and note the additional constraint, i.e., >, p2 < 1/2. Now,

the mean estimator (ME) pyg is investigated where the mean is taken with a weight

function . 51
flp) = (H m) . (2.17)
k=1

Among such mean estimators, an optimal one with the smallest worst-case error (over
all physical states)—the minimax mean estimator—is reported. The minimax approach

makes use of the mean square error (MSE), defined for state p with outcome probabil-
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ities p and estimator p with outcome probabilities p as
MSE(p,p) = > L(Dnlp) > _[px — px(Dn)]%, (2.18)
Dy k

where Dy ~{ni,na,...,nx } summarizes the detector clicks. Then the optimal value of
[ is obtained by

mﬁin max MSE <p, ﬁM(,;B)> : (2.19)
p

However, unlike the classical case, this optimization problem can only be performed
numerically because of the quantum constraints. Another problem with this approach
is that the resulting minimax mean estimator does not offer much advantage over
simpler estimators like the MLE, but the small gain does not warrant the additional
complications required to compute it. It is also pertinent to question if the conclusions
for the trine hold in higher dimensions. Some other figures of merit (for example, the
mean trace distance or relative entropy) rather than the MSE may be explored in future

to assess the performance of this estimation strategy.

2.4 Fisher information and estimation errors

The efficiency of an estimation strategy can be quantified by certain measures of infor-
mation, among which the Fisher information [9] is the most important one. The Fisher
information is defined as the expected value of the observed information yielded by a
measurement concerning certain parameters of interest. Another concept in statisti-
cal inference closely related to the Fisher information is the Cramér-Rao lower bound
(CRLB) [10, 11], which quantifies the minimal error with which one can infer these
parameters.

Consider the simple example of the estimation of a single parameter . Suppose
that a family of probability distributions p(£|6) with measurement outcomes & has been
registered, based on which the true value of the parameter 6 is to be estimated. The
partial derivative with respect to 6 of the log-likelihood function logp(£|€) is called

the score, which reflects the sensitivity of the log-likelihood function with respect to
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the variation of 6. Under certain regularity conditions, the score has a vanishing first

moment; its second moment is known as the Fisher information |9] and it is given by

B dlogp(€0)\ dlogp(€0)\* 1 (ap(E]o)\?
Iw)”“(@é)‘;p“"’) (5 ‘§p<sw>( )
(2.20)

The Fisher information defined above represents the average sensitivity of the log-
likelihood function log p(£|f) with respect to the variation of . Note that 0 < Z(0) <
00, so intuitively speaking, the larger the Fisher information is, the better one can

estimate the value of the parameter 6.

An estimator 6 of the parameter 0 is unbiased if its expectation over & is equal to

the true value, that is,

E0-0)= p(¢l0) (é(g) - 9) = 0. (2.21)
£
By taking the derivative of Eq. (2.21) with respect to # and applying the Cauchy-
Schwarz inequality (using the fact that . p(£]0) = 1), we obtain the well-known
CRLB [10,11], which can be expressed as

A 1
Var(6) > 70 (2.22)

This inequality states that the MSE of any unbiased estimator is bounded from below
by the inverse of the Fisher information, no matter in how clever a way an estimator

is designed. We can also define the efficiency of an unbiased estimator é,

_I(0)!
a Var(6)

e(6) : (2.23)

which measures how close the estimator’s variance comes to this lower bound. The
CRLB thus gives
e(f) <1. (2.24)

An unbiased estimator which achieves this upper bound is said to be fully efficient.
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Such a solution achieves the lowest possible MSE among all the unbiased methods, and
is therefore called the minimum variance unbiased (MVU) estimator. The importance
of CRLB is that it provides the ultimate resolution of estimation.

In the multi-parameter scenario, the Fisher information takes the form of an N x NV
matrix, the Fisher information matrix (FIM), with typical element given as

L4(0)=E [<alo%§§g|9)> (aloigigw))]_ 2.35)

and the CRLB for any unbiased estimator can be written as a matrix inequality,

CO) >1740), (2.26)

where C(0) is the covariance matrix (or the MSE matrix),

Cju(0) = [(éj - 9]-) (ék - ek)] . (2.27)

Since the likelihood function is multiplicative, the FIM is additive; that is, the total
FIM for several independent measurements is equal to the sum of the FIMs from each
measurement. In particular, the FIM for N identical measurements is N times the
FIM for one measurement. Therefore, the covariance matrix of any unbiased estimator
based on N measurements satisfies C™ () > 1/NZ(6). According to Fisher’s theorem,
the CRLB can be saturated asymptotically with the ML estimator for a large amount
of registered data (detected particles). Therefore, in the large-sample scenario, the
scaled covariance matrix NCY (6) is generally independent of the sample size. It is also
denoted by C(6) when there is no confusion.

In practice, it is often more convenient to use a single number rather than a
matrix to quantify the error. A common choice is the scaled MSE tr{C(0)}; a
more general alternative is the weighted MSE (WMSE) tr{W(#)C(0)}, where W(6)
is a positive semidefinite weight matrix depending on #. The CRLB implies that
tr{W(9)C(0)} > tr{W(0)Z~1(0)}; again this bound can be saturated asymptotically

by the ML estimator. However, the problem with the MSE is that it depends on the
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parametrization, which is somehow arbitrary. The WMSE, on the other hand, can

avoid this problem with a suitable choice of the weight matrix W (6).

Let us evaluate the overall performance of the ML estimator with the help of CRLB
[4]. The state of any quantum system can be decomposed into an orthonormal basis
{Fk}ii_ll of traceless Hermitian operators defined on the Hilbert space of the system,

d2—1
1
p(0) = gt ; 0Ly, (2.28)

where d is the dimension of the Hilbert space. Given a measurement with out-
comes Il¢, the probability of obtaining outcome § is again given by the Born rule
p(&l0) = tr{p(0)llc}; and the likelihood function for a specific measurement is
L=1l (tr{p(@)ﬂg})né. Then by applying Eq. (2.25), the FIM Z;,(0) for the un-

known state of Eq. (2.28) is calculated as

Tin(0) = N Y te {10} tr {TT1e} /p(€]60) (2.29)
3
where N = Zg n¢ denotes the total number of quantum systems registered. In the
asymptotic limit of a large amount of accumulated data, the FIM can be transformed
into

7'=Uz1U7, (2.30)

where Z' becomes diagonal and the unitary tranformation U is composed of the eigen-
vectors of the original FIM Z. Therefore, once FIM is known, the inverse of it sets a
lower bound for the covariance matrix of any unbiased estimator, which is saturated

asymptotically by the ML estimator.

2.4.1 Jeffreys prior

In Bayesian statistical inference, a prior is the probability distribution that would
express one’s belief about an unknown quantity before any data is taken into account.

Here, the Fisher information is used to calculate the Jeffreys prior (denoted by 7(6)
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over the parameter 6) [101,102], which is a standard, non-informative prior distribution
on the parameter space that is proportional to the square root of the determinant of

the Fisher information, such that,

7(6) o \/det Z(6) . (2.31)

The key feature of the Jeffreys prior is that it is form-invariant under reparameterization
of the parameter 0, which is a valid reason why this non-informative prior is preferred
over others. When using the Jeffreys prior, inferences about the unknown parameter
6 depend not just on the probability of the observed data (the likelihood function),
but also on the universe of all possible experimental outcomes, as determined by the
experimental design, because the Fisher information is computed from an expectation
over the chosen universe. One problem of the Jeffreys prior is that sometimes it cannot
be normalized, thus one must use an improper prior. But in this thesis, we simply

exclude pathological cases of improper priors.

Let’s take the classical 3-sided die [50] and the qubits confined to an equatorial
plane as examples. The die is described by a probability distribution {pg}3_,, such
that 22:1 pr = 1 and pr > 0 for all k. We can visualize the physical states of
the die as points on an equilateral triangle (also known as the regular 2-simplex),
with vertices corresponding to the states with outcome probabilities (p1,p2,ps) =
(1,0,0),(0,1,0),and (0,0, 1) respectively (see Fig. 2.1). In the figure, we also show
the physical qubit states, measured by the three-outcome trine measurement, residing
on the disk inscribed within the classical equilateral triangle. Points in the triangle
outside of the disk correspond to unphysical states, as the outcome probabilities for

the trine measurement have to satisfy an additional constraint, that is, >, pz <1/2.

The Jeffreys prior for the classical 3-sided die is given by

dp1 dp2 dps
X ——— .

w(p)d
(p) b \/P1P2P3

(2.32)

If we perform a reparameterization of the probabilities (p) = (¢?) for each py, then the
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(a) A
VA

Figure 2.1: Probability distribution for three outcomes by using the Jeffreys prior in the
plane. The triangles contain all points (p1, p2, p3) such that >, pr, = 1 and py > 0 for all
k. The disks contain all points in the triangle that also satisfy the quantum constraint
of >, pt < 1/2. (a) Contour lines of S(a) with intervals a/(7/6) = 0.1,0.2,...,1.0.
(b) Contour lines with S(a) =0.1,0.2,...,1.0.

Jeffreys prior in the (p) space transforms into the primitive prior in the (q) space,
7(q) dg o< dg1 dg2 dgs . (2.33)

Now, consider the integral of the Jeffreys prior over (p) space, with an additional

constraint imposed,

S(p1 + p2 + ps — 1) n(prpaps — a), (2.34)

1  dp; dpy d
S(a) / p1 dp2 dp3
0

=5 N
where the free parameter a is a constant taking values between 0 and 1/4/27, with
S(0) = 1 and S(1/4/27) = 0 being the boundary conditions; the symbol §(-) denotes
Dirac’s delta function and 7(-) is Heaviside’s unit step function. The additional con-
straint n(plpgpg — a2) in Eq. (2.34) has the meaning that the multiplication of the
three coordinates for a point (p1,pa,p3) inside the triangle is no less than a2, which
restricts the integration region to a smaller bounded area inside the triangle. Through
a reparameterization and transformation of the above integral by using the spherical

coordinates, we obtain the following simple form

S(a) = 4 /Oa dp cos(pB) cos*1<cos(3a)/cos(3[3)>, (2.35)
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where we have a = cos (3a)/v/27 and, therefore, 0 < o < 7/6.

Fig. 2.1 shows the probability distribution of the Jeffreys prior for three outcomes
in the equilateral plane. In Fig. 2.1(a), ten contour lines of S(«) were plotted with
intervals «/(w/6) = 0.1,0.2,..., 1.0 respectively; while Fig. 2.1(b) is the plot for ten
contour lines with S(a) = 0.1,0.2,...,1.0 respectively. The difference between these
two scenarios gives us a general picture as how the Jeffreys prior affects the probability
distributions in the parameter space. We will discuss and use the Jeffreys prior to study

the optimal error regions of estimators in Chapter 5.

2.5 Summary

To summarize, this chapter is a general review of the basic ingredients in quantum
state tomography, including quantum states and measurements, quantum tomographic
methods, Fisher information, and estimation errors. For the tomographic methods, we
introduced the simplest linear inversion method, the well-known ML estimation method
and several other alternatives to the ML strategy. We also showed the derivation of the
Jeffreys prior in Bayesian statistics from the Fisher information. As a popular choice
of an unprejudiced prior, we will use the Jeffreys prior in the examples of Chapter 5 to

construct error regions.
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CHAPTER 3

Quantum measurements

3.1 Introduction

The framework of quantum mechanics requires a careful definition of measurement
(see Ref. [103] for a recent discussion). The issue of measurement lies at the heart of
the problem of the interpretation of quantum mechanics, for which there is currently
no consensus. Although quantum mechanics has held up to rigorous and thorough
experimental testings, many of these experiments are open to different interpretations.
There exist a number of contending schools of thought, differing over whether quantum
mechanics can be understood to be deterministic, which elements of quantum mechanics
can be considered as “real”’, and many other matters. However, despite the considerable
philosophical differences, they almost universally agree on the practical question of what
results from a routine quantum-physics laboratory measurement. To describe this, a
simple framework to use is what known as the Copenhagen interpretation, the utility
of which has been verified countless times, and all the other interpretations (such as
the many-worlds interpretation [104]) are necessarily constructed so as to give the same
quantitative predictions as this in almost every case.

From a qualitative point of view, the state of a prepared quantum system after
measurement is assumed to be an eigenstate of the mathematical operator used to
represent that measurement, with the eigenvalue that corresponds to the result of
the measurement. Thus, repeated measurements of the same dynamic variable will
produce the same result. However, if the preparation of the same system is repeated,
subsequent measurements will likely produce different values. By this phenomenon,

the measurement process is often said to be random and indeterministic, but there
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is considerable dispute over this issue. The expected result of the measurement is in
general described by a probability distribution of the measurement outcomes, which is
determined by the average or expectation value of the measurement operator over the
quantum state of the prepared system.

Postulate 3 of quantum mechanics tells us that all measurements have an associated

observable, with the following properties [2]:

i. The observable is a Hermitian (self-adjoint) operator mapping a Hilbert space

into itself.

ii. The observable’s eigenvectors form an orthonormal basis that span the state
space in which that observable exists. Any quantum state can be represented as

a superposition of the eigenstates of an observable.

iii. Since Hermitian operators’ eigenvalues are real, the possible outcomes of a mea-

surement precisely correspond to the eigenvalues of the observable.

iv. For each eigenvalue there are one or more corresponding eigenvectors. A measure-
ment results in the system being in the eigenstate corresponding to the eigenvalue

of the measurement.

Important examples of observables include the Hamiltonian operator H , the position
operator z, and the momentum operator p. Two observables commute if and only if
there is at least one basis of vectors, each of which is an eigenvector of both opera-
tors. Non-commuting observables are said to be incompatible and cannot in general
be measured simultaneously, such as the position operator and the momentum oper-
ator. In fact, non-commuting observables are related by the Heisenberg uncertainty
principle [5,6], for example, A(Z)A(p) > |<[§772]3]>‘ = g

In this chapter, however, we are not going to discuss the definition nor interpretation
of quantum measurement, but simply give the basic ingredients of it for later use.
First, we briefly discuss the two general types of quantum measurement—projective

measurement and generalized measurement. Then we introduce the most special case

of POM, i.e., SIC POMs as well as the group-covariant SIC POMs. Next we discuss
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the MUB and show the derivation of a maximal set of MUB in prime power dimensions.
In quantum information theory, both the problems of constructing SIC POMs and a
maximal set of MUB are considered to be hard. In the last section of this chapter,
we present the scheme of successive measurements, using which several proposals for

implementing SIC POMs will be given in the following chapter.

3.2 Projective measurements

The projective measurement (also known as the von Neumann measurement, or simply
vNM) is an important special case in the quantum-measurement regime. This measure-
ment scheme, the ancestor of quantum decoherence theory, describes measurements by
taking into account the measuring apparatus which is also treated as a quantum object.
For many applications of quantum computation and quantum information, we will be
concerned primarily with projective measurements [2].

A projective measurement is described by an observable, O, a Hermitian opera-
tor on the state space of the system being observed. The observable has a spectral

decomposition,

O0=> kP, (3.1)
k

where Py is the projector onto the eigenspace of O with eigenvalue k. In addition to
satisfying the completeness relation, i.e., >, P = I, the measurement operators also
satisfy the condition that Py are orthogonal projectors, that is, P,P; = 0jFP;. The
possible outcomes of the measurement correspond to the eigenvalues, k, of the observ-
able. Upon measuring the state [1)) of a prepared quantum system, the probability of

getting an outcome k is

pr = (Y| Pel) . (3.2)

The completeness relation automatically guarantees that the probabilities, ¢.e., the pgs,
sum to 1. Given the outcome k occurred, the state of the quantum system immediately

after the measurement is

_ Pily)
k) = N (3.3)
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Projective measurements have the unique feature that repeated measurements give the
same result. For example, if a measurement gives the result k, then a second identical
measurement carried out immediately after gives the same result k& with probability 1.
Later, we will introduce the scheme of successive measurements and discuss the possible
applications of the scheme to construct SIC POMs. The essential idea of successive
measurements is to make the intermediate measurements “weak”; in other words, the
intermediate measurements should not be vNM, whereas the final measurement is one.
By doing so, we make sure that each measurement will yield some new information
about the initial quantum system we are interested in. For more discussions on this

scheme, see Sec. 3.6 of this chapter as well as the whole Chapter 4.

3.3 Generalized measurements

The quantum measurement postulate, Postulate 3, involves two elements, one be-
ing the rule of describing the measurement statistics (the respective probabilities of
different possible measurement outcomes) and the other being the rule of describing
the post-measurement state of the system. However, for some applications the post-
measurement state of the system is of little interest, with the main item of interest
being the probabilities of the respective measurement outcomes [2]. In such instances,
a more natural and useful type of measurements is the generalized measurement, which
is often referred to as probability-operator measurement (POM) or equivalently posi-
tive operator-valued measure (POVM). The need for the POM formalism arises from
the fact that projective measurements on a larger system, described mathematically by
a projection-valued measure (PVM), will act on a subsystem in ways that cannot be
described by a PVM on the subsystem alone.

A POM on a quantum system is composed of a set of outcomes. These outcomes
are mathematically represented by positive operators II; that sum up to the identity,
II;; > 0 with ), Il = 1. The probability of obtaining the outcome k is given by the
Born rule: py = tr{plly}, where p is the pre-measurement statistical operator of the

system and ), pr = 1 by the completeness relation. If the kth outcome is found, the
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post-measurement statistical operator of the system is given by
1 f
pr = —MypMj, (3.4)
Pk

where Mj, is the relevant Kraus operator for the kth outcome, i.e., Il = MIIMk
Note that the decomposition of the II;s into the corresponding Kraus operators is not
unique; for example, M ,IM k is invariant under the unitary transformation My — Uy My,
with different Ugs corresponding in practice to different ways of implementing the
measurement. Up to this point, we find that the projective measurement is in fact
a special case of POM, with the POM elements being the same as the measurement
projectors. However, the repeatability feature of the projective measurement is not

generally possessed by a generalized measurement.

3.4 Symmetric informationally complete POMs

A POM is IC if any state of the system is determined completely by the measurement
statistics [75,105,106]. State tomography strategies infer these probabilities from the
data acquired with the aid of the POM. A symmetric IC POM (SIC POM) is an IC
POM of a particular kind. In a d-dimensional Hilbert space (of kets), it is composed
of d? outcomes, {Hk}ff:l, which are subnormalized rank-1 projectors onto pure states,
Iy = |[1bg) (x| /d, with equal pairwise fidelity [12,13], such that!

B d(sjk-‘rl

(Wil = =" Gk =12, 0% (35)

Note that the completeness condition ZZ; II; = 1 is already implied by the above
equation and needs not to be imposed separately. Two SIC POMs are said to be
equivalent if there is a unitary operator that maps one SIC POM to the other. As
mentioned early, the problem of constructing SIC POMs in any finite dimension is

considered to be hard.

1One can lift the restriction that the POM outcomes are rank-1 while maintaining the SIC property,
but we are not considering this more general situation here.
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The high symmetry and high tomographic efficiency of SIC POMs have attracted
the attention of many researchers, and a lot of work, both analytical and numerical,
has been devoted to the construction of SIC POMs in various dimensions; see, for
instance, Refs. [12-18]. Besides, SIC POMs are closely related to many other problems
in both physics and mathematics, such as quantum cryptography [19,20], MUB [21-24],
t-designs and equiangular lines [12,13], and other foundational studies. Recently, they
have also attracted the attention of many experimentalists; for example, qubit SIC
POMs [107-109] and qutrit SIC POMs [110] were implemented in the laboratory. In
addition, we will propose a novel scheme for realizing HW SIC POMs in any finite

dimension by successive measurements [23,24] in the next chapter.

3.4.1 Group-covariant SIC POMs

A group-covariant SIC POM is a measurement which can be generated from a single
projector—the fiducial state—under the action of a group consisting of unitary opera-
tions. Almost all known SIC POMs are covariant with respect to the Heisenberg-Weyl
(HW) group (also known as the generalized Pauli group) [12,13,18], except for the set
of Hoggar lines (in dimension 8 = 23), which is covariant with respect to the three-qubit
Pauli group. Besides the extensive applications they have found in the study of SIC
POMs [15,111-113] and MUB [28,114], the HW group and its normalizer—the Clifford
group—have also played an important role in quantum information science (see, for
example, Ref. [115]). It should be noted that there are different versions of the HW

group and, accordingly, different versions of the Clifford group [15,115].

In a d-dimensional Hilbert space, the HW group Dgw is composed of d? (if one

ignores the phase factor) unitary operators, and generated by two operators Z and X

d—1 d—1
2= mwl, X=YIne1)l, (3:6)
n=0 n=0

i2mw/d

where w = e is the fundamental dth root of unity and @ stands for the sum modulo

d. X and Z are the cyclic shift and phase operators respectively, obeying the Weyl
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commutation relation

ZX =wXZ, X'=2z4=1, (3.7)

which determines the HW group up to unitary equivalence and overall phase factors.

Their action on the kets |n) of the computational basis is

Zln) =w"n), Xn)=|n+1). (3.8)

All elements of the HW group take on the form

Dy g, = P2 X1 702 (3.9)

where k1,ko = 1,...,d and 7 is a primitive dth root of unity when d is odd but a 2dth

root of unity otherwise. These d* elements satisfy the following relations [15]:

Df = D_y,
DyDyq = 79Dy, (3.10)
Dy if d is odd,
Dk+dq =

(—1).D Dy if d is even,

where bold face stands for pair of indices, i.e., k = (ki, k2), and (k, q) := kaq1 — k1go

is the symplectic form. Note Dy q4q may differ from Dy by a sign factor if d is even.

According to the definition of a SIC POM, i.e., Eq. (3.5), a fiducial state [igq) of

the HW group in a d-dimensional Hilbert space obeys

1

[(Va| Dy ks [¥sia) | = N

(3.11)

for all (k1, k2) # (0,0). The d? outcomes of the HW SIC POM Il j, k,j = 1, ..., d, take

on the following form
, 1 ,
Wy ;= szj‘wﬁd>g<wﬁd‘ZﬂXkT : (3.12)

The fiducial state is chosen such that the IlIs satisfy the defining property of a SIC
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POM [49] (alternative form of Eq. (3.5), but written using POM outcomes),

1 1
tI‘(HkJ‘Hm,n) = ﬁ <6k,m5j,n + (1 - 6k’m5j’n)d—|—l> . (3.13)

With the (normalized) fiducial state

d—1
[ha) = Y In)an (3.14)
n=0

in Eq. (3.12) and applying the transformations Z7 followed by X*, we obtain

d—1
1 .
i = - > Im @ k)omw™ ™ ag(n @ k|. (3.15)
n,m=0
In Chapter 4, we will show that any HW SIC POM taking the form of Eq. (3.15)
can be realized by a two-step measurement scheme: a high-rank diagonal-operator
measurement, followed by a projective measurement in the Fourier basis, independent

of the result of the first measurement.

Up to now, analytical solutions of HW SIC POMs have been constructed in di-
mensions 2, 3 [116], 4, 5 [13], 6 [113], 7 [15], 8 [117,118], 9-15 [18,118-121], 16 [111],
19 [15], and 24, 28, 31, 35, 37, 43, 48 [18]; numerical solutions with high precision
have been found up to dimension 67 [12,18]. All these results suggest strongly that
HW SIC POMs exist in any finite-dimensional Hilbert space, but there is neither a
universal recipe for constructing SIC POMs nor a rigorous proof of their existence.
What is worse, many basic properties of SIC POMs have remained elusive. Although

the equiangular condition looks so simple, its implication is largely a mystery.

When the dimension is a prime power p* with k& > 2, there is another version of the
HW group that is the k-fold tensor product of the usual HW group in prime dimension.
This HW group is usually called k-qubit Pauli group when p = 2. In dimension 8, the
three-qubit Pauli group can generate the set of Hoggar lines (see Sec. 4.6 and Ref. [117]).
However, no other multi-qubit Pauli group can generate any SIC POM according to

Ref. [122]. The situation is still not clear in the case of odd prime power dimensions.
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3.5 Mutually unbiased bases

Mutually unbiased bases (MUB) for quantum degrees of freedom are central to all
theoretical investigations and practical explorations of complementary properties. The
notion of MUB emerged in the seminal work of Schwinger [123] and it was Ivanovi¢ [28]
who first explored the idea of applying MUB to the problem of quantum state tomogra-
phy. The elegant work of Wootters and coworkers [29,124-126] on MUB has turned it
into a cornerstone of quantum information. In addition to playing a vital role in quan-
tum state tomography [28,29]|, MUB are also important for many other theoretical
studies as well as practical applications, such as the “mean king’s problem” [127,12§],
quantitative wave-particle duality in multi-path interferometers [129], quantum key dis-
tribution [130], quantum teleportation and dense coding [131-133]. See Ref. [114] for

a recent review on MUB.

Two orthonormal bases of a Hilbert space are said to be unbiased if the transition
probability from any state of the first basis to any state of the second basis is indepen-
dent of the two chosen states. In a finite d-dimensional Hilbert space, the normalized

basis states |a;) and |b;) of two unbiased bases imply the defining property
9 1 .
[(ai|bj)] =3 foralli,j7 =1,2,...,d. (3.16)

Physically speaking, if the system is prepared in a state of the first basis, then all
outcomes are equally probable when we conduct a measurement in the second basis.
The concept of unbiasedness can be generalized to more than two bases by defining a

set of MUB, such that all bases in the set are pairwise unbiased.

Much is known about MUB, but there are also a fair number of important questions
that have not been answered in full yet. In a finite d-dimensional Hilbert space, there
can be at most d+ 1 MUB, and there exist systematic methods for constructing such a
maximal set of MUB if the dimension d is a prime or prime power [28,29,114,134,135|.
In the context of quantum state tomography, a maximal set of MUB is also complete

because when we know all the probabilities of transition of a given quantum state
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towards the states of the bases of this set—exceptional situations aside, there are
(d+1)(d —1) = d*> — 1 independent probabilities—we can reconstruct the statistical
operator that characterizes this quantum state; in other words, we can perform full
tomography or complete quantum state determination. For other finite dimensions
(N =6,10,12,...), it is still an open problem whether such a maximal set exists or
not. Even in the simplest case of dimension six, it remains unknown, although there
is quite strong numerical evidence that no more than three MUB exist [113,136-138].
However, it is always possible to construct a set of at least three MUB in any finite-
dimensional space (see Ref. [114] and references therein).

More recently, the problem of the existence of MUB in the infinite-dimensional
Hilbert spaces, that is d — 0o, has been addressed. This limit is taken by consider-
ing a basic Weyl pair of complementary observables whose eigenbases are conjugated
(Fourier transforms of each other) [123]. These conjugated eigenbases are unbiased,
and as a manifestation of Bohr’s principle of complementarity [139], each Weyl pair is
algebraically complete as it suffices for a complete parameterization of the degree of
freedom. For infinite-dimensional spaces, different Weyl pairs corresponding to differ-
ent continuous degrees of freedom can be obtained, and then the maximal set of MUB,

since there exist different ways of taking the d — oo limit [114, 140].

3.5.1 MUB in prime power dimensions

The construction of maximal sets of MUB in prime power dimensions [114, 135, 141]
makes use of the properties of finite fields (see Appendix A). Here we follow Ref. [114]
and first introduce the shift operators Vji, where the superscript ¢ represents the sets
of MUB and the subscript j represents the elements in each set. For dimension d =
pM, with p a prime number and M € Z%, we choose the orthonormal set {|i),i =

0,1,...,d — 1} as the computational basis and denote the primitive pth root of unity

with v = ¢27/P Then the Fourier transform basis can be defined as

QU
—

|y RO (3.17)
0

b=
"=V

i
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where the field operations & and ©® as well as & below are defined in Appendix A.
Clearly, we have |(j|k)|? = 1/d, meaning that the computational basis and the Fourier

transform basis are unbiased (see the scheme in Sec. 4.2 that uses these two bases).

Define the shift operators for the computational basis and the Fourier transform

basis respectively as

d—1
V=) =) lienl,
=0
d—1 -
Vi = (Vi)' =) liall, (3.18)
i=0
where [ = 0,1,...,d — 1. Immediately, we have the following relations

iy =liot), VPO = [y,

iy =liel)y, Vi =]y (3.19)

Note that when deriving the relations in Eq. (3.19), we used the equality

d—1

D A =dbig, (3.20)
=0

which allows us to get a relation between the projector |i)(i| with the shift operator V/{
1 d—1 n
\ oLy /1
iyl = 2> () (3.21)
n=0

The building blocks of the HW group are obtained through the operator multiplication

of the shift operators Voj and Vio, such that,
Vi = GV = (3.2
with the composition law

VIV = /T OV VOV = 4oV (3.23)
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The orthonormality relation for the HW operators can be derived from the above

composition law as

tr{(Vj)TV,;”'"b} = SO (3.24)

Here, we will not prove that the d? orthonormal shift operators give us a maximal
set of MUB, but only show the explicit expressions of MUB using Vl.j . Explicitly, the Oth
basis is the eigenbasis of V, namely |e)) = ﬁ), while the dth MUB is the computational
basis |ed) = |i). Generally, the jth state of the ith bases (i = 0,1,...,d — 1) can be

expressed as
=
= —= > k¥ (aky)" (3.25)
Vd k=0

where « is a complex phase factor, chosen to be symmetric, for instance, ali =
AOURIONG2 jg often used. We can use Eq. (3.25) to verify that these bases are indeed

mutually unbiased. It it clear that

(kleh) = \/g’y@]@’“ (aby)”, (3.26)

meaning that the computational basis is unbiased to all the other bases. Generally, we

have
d—

1 x
Z\e =7 Z OkO(nO7) ot Le ()7, (3.27)
k=0

the square norm of which can be shown to be
itm 1 1
[(e5len VP = p + Oim ((5]-7” - d) ) (3.28)
Therefore, the set of bases {|j) = |e?>, |e§->,i,j =0,1,...,d — 1} is indeed a maximal

set of MUB for dimension d = pM

3.6 Successive measurements

As discussed in Sec. 3.2, if a system is subjected to a projective measurement, the

statistical operator p describing the system would collapse to the state space of the
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(@) (b)

H E delay lines

O measurement

D~ detector

Figure 3.1: A simple sketch for successive measurements. (a) The first measurement
is taken to be “weak”, and the second measurement is a projective measurement which
depends on the actual outcome of the first one. The Us specify the bases for the second
measurement. (b) Together with delay lines, the successive nature of the measurement
may allow us to use fewer detectors than would have been used otherwise. Here,
different sets of outcomes are registered in different temporal domains.

measurement operators. Therefore, a second measurement on the same system would
yield no further information, which is not useful for state tomography. Inspired by
the idea of “weak measurement” [142], in order to measure the same system many
times, the intermediate measurements have to be “weak” followed by a final projec-
tive measurement. In this section, we describe the general settings for a sequence of
two measurements only, but more complicated settings with more than two successive

measurements can be generalized accordingly.

Suppose that a given system is subjected to a sequence of two POMs, the first

d
one has di outcomes {.Ak = ALA;C} ' , followed by a second POM with dy outcomes

(k) _ gt gk ® U :

{Bj = Bj Bj } X where the superscript k indicates that in general the second
J:

measurement depends on the actual outcome of the first measurement. Given that

the statistical operator for the system prior to the measurements is p, then if the nth

and mth outcomes for the first and second measurements are found respectively, the

post-measurement statistical operator of the system is given by

BL AnpAL B!
Pnm = .
tr{pALB%‘) An}

(3.29)
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Following Born’s rule, the probability of obtaining the nth and mth outcomes for the
first and second measurement is simply given by the denominator of Eq. (3.29) as
Prm = tr{ pAILB%L )An}. Accordingly, the two successive measurements are equivalent
to a single POM with d = dydy outcomes that are labeled by a pair of indices II,, ,,, =
ALB,(?:L)An, withn =1,...,d;y and m = 1,...,dy respectively. Indeed, summing II,, ,,
over the outcomes labeled by m yields the outcome A,. Therefore, upon finding the
overall outcome II, ,,, we know that the nth outcome of the first POM and the mth
outcome of the second POM are found correspondingly. In Chapter 4, we set d; =
ds = d, meaning that the two measurements have the same number of outcomes. As
such, we will identify the A,s and the B,,s such that Il, ,,s make up a SIC POM in
the d-dimensional Hilbert space of a qudit by utilizing the structure of Eq. (3.29).

In Fig. (3.1a) we sketch the scheme for successive measurements. We note that the
proposed scheme may allow us (depending on the specific experimental realization) to
use fewer detectors. Consider the case where the first and the second measurements
have the same number of outcomes d. Then, by using delay lines after the first mea-
surement and only d detectors, d outcomes could be registered. Each set of d outcomes
is registered in a different time domain as illustrated in Fig. (3.1b). Obviously, such a

scheme should use detectors with a rather quick revival time.

3.7 Summary

To conclude, this chapter summarizes the basic ingredients in quantum measurements.
We first briefly introduced the two general types of quantum measurement—projective
measurement and generalized measurement. Then we had a detailed discussion of SIC
POMs and MUB, as well as their constructions in finite dimensions. We emphasize
again that the construction of SIC POMs and a complete set of MUB in any finite
dimension are both considered to be hard. In the last section, we presented the scheme
of successive measurements, using which a few proposals for implementing SIC POMs

will be given in the next chapter.
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CHAPTER 4
Symmetric minimal quantum

tomography

4.1 Introduction

As discussed in Chapter 3, a lot of work, both analytical and numerical, has been
devoted to the construction of SIC POMSs in various dimensions due to their high sym-
metry and high tomographic efficiency; see, for example, Refs. [12-15,17,18]. Besides,
SIC POMs are closely related to many other problems in both physics and mathemat-
ics, such as MUB, equiangular lines, Lie algebras, and so on. Zauner’s conjecture [13]
states that SIC POMs exist in every finite dimension. While a rigorous proof for this
conjecture is still missing, a great deal of numerical evidence suggests strongly that
group-covariant SIC POMs indeed exist in all finite-dimensional Hilbert spaces. In this
chapter, we consider the implementation of SIC POMs in the Hilbert space of a d-level
system by a two-step measurement process: a diagonal-operator measurement with
high-rank outcomes, followed by a rank-1 measurement in a basis chosen in accordance
with the result of the first measurement. We then proceed to show that any Heisenberg-
Weyl (HW) group-covariant SIC POM can be realized by such a sequence where the
second measurement is simply a measurement in the Fourier basis, independent of the
result of the first measurement.

Nevertheless, in contrast to the major theoretical progress, up to date, all experi-
ments and even proposals for experiments implementing SIC POMs have been limited
to the very basic quantum system (qubit) [107,109], with the exception of the recent

experiment by Medendorp et al. [110], where a SIC POM for a three-level system was
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Chapter 4. Symmetric minimal quantum tomography

approximated. This is, in part, due to the fact that there is no systematic procedure

for implementing SIC POMs in higher dimensions, in a simple experimental setup.

In Sec. 4.5 of this chapter, we propose an experiment that realizes a SIC POM in
the four-dimensional Hilbert space of a qubit pair [23,24]. The experimental scheme
exploits a new approach to SIC POMs that uses a two-step process: a measurement
with full-rank outcomes, followed by a projective measurement on a basis that is chosen
in accordance with the result of the first measurement. In this work, following the
ideas presented in Ref. [23], we explore the possibilities of implementing SIC POMs
using a successive-measurement scheme. We start by “breaking” a given SIC POM
into two successive measurements, each with d outcomes, with the intention that each
measurement will be relatively easy to implement. Unexpectedly, we find that this
approach provides a simple, systematic procedure to implement all HW group-covariant
SIC POMs. The latter could be realized by first implementing a POM with high-rank
outcomes diagonal in a given basis followed by a rank-1 projective measurement, where
the basis of the first measurement and the basis of the second measurement are related

by the Fourier transform (FT).

Based on this approach, we propose an experimental scheme implementing HW
SIC POMs in the Hilbert space of a d-dimensional quantum system (a qudit). In this
scheme, the qudit is carried by a single photon as a path qudit, and the implementation
is accomplished by means of linear optics (see, for instance, experiments in Refs. [143—
145]). In particular, we show that the one-parameter family of nonequivalent HW
SIC POMs in dimension 3 could be implemented using the successive-measurement
approach in a single experimental setup. Furthermore, we study the construction of
the known SIC POMs in dimensions 2 and 8 from two successive measurements. We
find that the concept of MUB plays a central role in the construction of SIC POMs in

these dimensions—a hint at a possibly profound link between SIC POMs and MUB.

1

This chapter is organized as follows." Section 4.2 is concerned with the finite-

Note that this chapter is based on Refs. [23,24], hereby, I sincerely acknowledge the contribution
from the other authors of Refs. [23,24].
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dimensional Hilbert spaces. There we discuss the formulation of SIC POMs in general,
and the HW SIC POMs in particular, in terms of two successive measurements. Then
we study the construction of known SIC POMs in particular dimensions. In Sec. 4.3,
we reformulate the SIC POM in dimension 2 (known as the tetrahedron measurement)
in terms of successive measurements, and show that the actual implementation of it
by Ling et al. [107] was indeed carried out using a successive-measurement scheme.
We also show how a relation between the SIC POM and MUB in dimension 2 is re-
vealed through this formulation. In Sec. 4.4, we study the decomposition of all known
nonequivalent SIC POMs in dimension 3 into two successive measurements. We show
that this decomposition allows the implementation of all (known) nonequivalent SIC
POMs in dimension 3 with a single experimental setup. In Sec. 4.5, we study the re-
alization of the (known) SIC POMs in dimension 4 by successive measurements. Here
we also find an interesting structural and operational relation between MUB and SIC
POMs. We briefly describe a proposal for their implementation, using single-photon
sources together with passive linear optical elements [23|. In Sec. 4.6, we discuss the
construction of the three known, nonequivalent, group-covariant SIC POMs in dimen-
sion 8 in terms of successive measurements. We show that the one that is covariant
with respect to the three-qubit Pauli group has the same structure as the SIC POMs

in the other studied dimensions. Finally, we offer a short summary in Sec. 4.7.

4.2 The general case

In this chapter, we employ the same notations as those used in Chapter 3. The outcomes
for a generalized measurement on a quantum system are mathematically represented by
a set of positive operators {II; }, with II;, > 0 and ), II, = 1. For the pre-measurement
statistical operator p of the system, if the kth outcome is found, the post-measurement

statistical operator is

1
pr = FkMkPMT7 (4.1)

where pr = tr{plly} is the probability of getting the kth outcome and Mj is the
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Chapter 4. Symmetric minimal quantum tomography

relevant Kraus operator for the kth outcome, such that II;, = M, ,;er

We briefly repeat the successive-measurement scheme of Sec. 3.6, but assume now
d
k

that the two POMs have the same number of outcomes d, such that {Ak = A};Ak}

d

followed by {B](k) = Bj(k)TBJ(k)} _y where the superscript k indicates that in general the
J:

second measurement depends on the actual outcome of the first measurement. Given

that the statistical operator for the system prior to the measurements is p, then if the

nth and mth outcomes for the first and second measurements are found respectively,

the post-measurement statistical operator of the system is represented as

Bl Anp AL BG!
tr{ p Al B An}

Pn,m = (4.2)
According to Born’s rule, the denominator of the above equation gives the probability
of obtaining the nth and mth outcomes for the first and second measurement, that
is, pnm = tr{ pAILB,(,?)An}. As mentioned before, we may use a single POM (with
d? outcomes) in the form of IL,.m = A;[LBT(Q)AM n,m = 1,...,d, to denote the overall
outcome of the two successive measurements. Indeed, summing II,, ,,, over the outcomes
labeled by m yields the outcome A,,, and on the other hand, yields the outcome B,,
if summing over n. In what follows, we will identify the A,s and the B,,s such that

IL,, ;s make up a SIC POM in the d-dimensional Hilbert space of a qudit.

4.2.1 HW SIC POMs

Let us begin by showing that all SIC POMs which are covariant with respect to the
HW group could be realized by a two-step measurement scheme with a rather simple
structure—a high-rank, diagonal-operator measurement, followed by a measurement in
the Fourier basis.
As discussed in Sec. 3.4.1, a HW SIC POM in a finite d-dimensional Hilbert space
has d? outcomes IIj j, which can be written as
d—1

1 .
My =~ Y Imekomw™ armekl, kj=1,....d (4.3)

n,m=0
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i2m/d

with w = e and «, is related to the fiducial state by

d—1
[Paa) = D In)an (4.4)
n=0

At this point, we note that the right-hand side of Eq. (4.3) has a two-step measurement
structure. The Kraus operators corresponding to the outcomes of the first measurement
are given by
d—1
Ap =) Im® k)om(m @ k|, (4.5)

m=0
with & = 1, ..., d, while the outcomes of the second measurement are projections onto

the eigenstates of the Fourier basis,

with j = 1,...,d. Indeed, for Eqgs. (4.3)—(4.6) we have
I, = ALB; Ay, (4.7)

so that the HW SIC POM for the fiducial state of Eq. (4.4), when it exists, is realized
by a two-step measurement. This demonstrates the case. If we relax the requirement
that the sequential measurements in Eq. (4.7) compose a symmetric IC POM, one can
show [146] that in any finite-dimensional Hilbert space there exist as such that these
measurements are 1C.

The mathematical formulation of SIC POMs as a two-step measurement process
hints at the possibility for their implementation. Here, we propose an experimental
scheme with which any HW SIC POM in a d-dimensional Hilbert space of a qudit
could be realized. The qudit is carried by a single photon and is encoded in d spatial
alternatives of the photon (“path qudit”). A unitary transformation on the qudit state
amounts to sending the photon through a set of beam splitters (BSs) and phase shifters
(PSs), similar to the methods presented in Ref. [147].

In this optical setting, the HW SIC POMs are implemented as follows (see Fig. 4.1):
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First measurement Second measurement

ay

d-1
BSs

Figure 4.1: An optical implementation of a HW SIC POM using a two-step measure-
ment process.

The first measurement setup is designed to implement the Kraus operators of Eq. (4.5)

by appropriately choosing the reflection amplitudes of the d — 1 BSs at each path. The

n—1
choice H bk Tnk = Qkon, Where 7y, i and ¢, are the reflection and the transmission

m=1

amplitudes of the nth BS at the kth path (here n = 1,...,d — 1,k = 1,...,d, the BSs
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4.2. The general case

are counted from the entrance port, and the paths are numbered from left to right, as
indicated in the figure; we define ¢, = 1 for all k), ensures that a photon which enters
the apparatus with a path statistical operator p exits at port k with the statistical op-
erator AkpAL / tr{AkpAL}. Upon exiting the first measurement apparatus, the photon
is measured in the Fourier basis (indicated in the figure as a black box labeled by FT).

This measurement could be realized by a collection of BSs and appropriate PSs [148].

4.2.2 Fuzzy measurements

So far, we considered the decomposition of a given HW SIC POM for a d-level system
into a succession of two POMs, each with d outcomes. Now, we would like to follow the
reverse path, namely, to start with a given structure for the two POMs, and study under
what conditions they compose a SIC POM when measured in succession. In particular,
we consider the situation where the first measurement is a “fuzzy measurement”, where
“fuzzy” means that each of the measurement outcomes corresponds to a projector onto

the computational basis Z = |k)(k|, k = 1,...,d, mixed with the identity operator,

Ay = %(1 C )+ AZy, (4.8)

whose positivity requires that —ﬁ < A < 1. Up to a unitary transformation, the

corresponding Kraus operators for the first measurement are given by

11—\ 1+ (d—1)A
Ay = ‘/T ’sz N (4.9)
J(#k)

For the second measurement, we consider a projective measurement on a basis that is

chosen in accordance with the result of the first measurement,
k . .
B = Ul 2, = [{))] (4.10)

where \j(k)) is the jth state of the kth basis. The unitary operator Uy specifies the

basis for the second measurement. It is worth recalling that the outcomes of the first
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measurement are invariant under unitary transformations, Ay — UpAg. Therefore, we

can write down the overall outcomes of the two-step measurement process as
k)
M = ALB" Ay (4.11)

We now write the necessary and sufficient conditions that the Ms in Eq. (4.11)
represent a SIC POM, that is, that this ansatz works. Equations (3.13) and (4.9)-

(4.11) jointly require that

A= i\/lle and | (m[n(™)[2 = % (4.12)
as well as for k #£ m,
[(n™ e+ (8 — @) (Im) (m| + [k) (kD] W) = % : (4.13)

with |n(™) = U,Mn), a=+v1-X,8=+/1+Ad-1), and all indices take on the
values 1,2,...,d. From the condition on A given right after Eq. (4.8), we get that
A=1/ V1+d for d > 4. Note that the indices k and m label the first measurement
while j and n label the second one. Recalling the definition of unbiased bases [114],
Eq. (4.12) implies that different bases of the second measurement are unbiased to one
of the states from the computational basis.

We are able to solve Egs. (4.12) and (4.13) for d = 2 and 3, and can also show that
the known SIC POM in d = 4 is a solution for these equations. Unfortunately, we did
not manage to solve or prove the existence of a solution for these equations in higher

dimensions. In the following sections we discuss the solutions for these equations.

4.3 Dimension 2: A qubit

4.3.1 General construction

We first consider the most general POM in dimension 2 that could be realized by two

successive measurements of the following form. We take the first measurement to be a
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“fuzzy” projection on the computational basis,

1 1+ A 1—A
Apmziu—»+xmz 5k~ Zran (4.14)

with Zy = k) (k| = (1+ (=1)*0.)/2, and k = 0, 1. The Kraus operators associated (up

to a unitary transformation) with these POM elements are given by

[14+ A [1—A
A = 5 Zy + 5 Zrg1 - (4.15)

If the second measurement is a projection on the computational basis (modulated by

certain unitary transformations), then the overall 4-outcome POM is given by

[T+ A 1-A o [1+ X [1— )
Hk,j:( 5 Zk+\/TZk®1><U11|J><J|Uk)< 52kt 5 Zk@)»

1
(4.16)

with k, j = 0,1. We note that any 2 X 2 unitary matrix of determinant 1 is of the form

UT = em1a0z =100y o —i70- (4.17)

for some real numbers «, 8 and . Here we can simply take v = 0 since the second

measurement is diagonal in the z basis. The POM elements are now given by

14 (=1 xcos (28) 1 p A+ (=1)FH cos (281)
iy = 2 Pl (1 +(=1) 1+ (—1)k+iX cos (28) 7z
. /1 — A2sin (2 .
+ (=1 = (71)“],8)\ c(osﬂ(l;)ﬁk) (cos (204) 4 + sin (20u) ay)>, (4.18)

with k,7 = 0,1. One can verify that the IIs correspond to rank-1 projectors. The free
parameters A, oy and S allow us to realize various POMs in two-dimensional Hilbert

space with 4 elements.

4.3.2 Tetrahedron measurement

The solution for Eqgs. (4.12) and (4.13) in the case of dimension 2 is fairly straight-
forward since we have |m)(m| + |k)(k| = 1 for k # m. Accordingly, for A\ = +1//3,
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Eq. (4.13) reads
O = 2 (419)

which means that one can realize a SIC POM in dimension 2 by a fuzzy measurement,

with the corresponding diagonal Kraus operators

. 1 1
Al—dlag (\/2—\/E
1 1 1 1
Ay = ding [ 1+ L Ao L) 4.20
2= s (\/2 v12'\ 2 \/12> (4.20)

followed by a measurement in a basis which is chosen in accordance with the result

of the first measurement. The solution indicates that the two bases of the second
measurements must be unbiased to each other and also unbiased to the computational
basis. For example, if the As of Eq. (4.20) are diagonal in the o3 basis (where the o;s
are the usual Pauli operators), then the two MUB of the second measurements could

be the o7 basis and the o9 basis.

Actually, all SIC POMs for a qubit are unitarily equivalent to the “tetrahedron mea-
surement” (TM), whose outcomes correspond to four vectors that define a tetrahedron

(regular 3-simplex) in the Bloch sphere [12,14|. The general form of the SIC POMs for

Trj = % (1 + (—1)’“\/503 + (—1)j\/§f7k+l> , (4.21)

with k,j = 0,1. The tetrahedron geometry was shown to be the optimal estimation

a qubit is

technique when using four-element POMs [14].

As was shown in the previous section, the TM could be realized in a two-step
measurement process, for example, by using a setup similar to the one presented in
Fig. 4.1. The first measurement is a two-outcome POM given in Eq. (4.8) with A =
1/4/3 (the negative value of X yields the “anti-tetrahedron”) and in Eq. (4.18) with
ap = 0 and Sy = 51 = a1 = 7/4, and depending on the actual outcome of the first
measurement, the second measurement is a rank-1 projective measurement onto one of

two bases which are unbiased to the computational basis and to each other. We could
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(a) (b)
é%o
—D7—§1
C%Tw
p — -
(O measurement pBs | quarter-wave plate

fuzzy measurement PPBS I half-wave plate

Figure 4.2: An optical implementation of the tetrahedron measurement (polarization
qubit) using two successive measurements. (a) The scheme uses a fuzzy measurement
of o3 followed by either a measurement of o1 or of o9, depending on the outcome of the
first measurement. (b) Optical realization of the tetrahedron measurement that was
implemented in Ref. [107]. The fuzzy measurement is realized by a partially polarizing
beam splitter and the measurements of o1 and o5 are realized by the appropriate wave-
plates followed by polarizing beam splitters and detectors.

take, for instance, the measurements of o1 and o9. In Fig. (4.2a), we illustrate the

scheme for such a realization.

It is worth noting that the TM was successfully implemented in an optical sys-
tem [107], where the qubit was encoded in a photon’s polarization (“polarization qubit”)
rather than in a spatial binary alternative (and therefore there was no need to stabilize
interferometric loops in the setup). The setup of Ref. [107] also consisted of a sequence
of two measurements, quite analogous to what is described above. The fuzzy measure-
ment Ay in the computational basis (horizontal and vertical polarizations) was realized
by means of partially polarizing beam splitter (PPBS). The second measurement, i.e.,
the measurement of o7 and o2 (depending on whether the photon was transmitted
or reflected), was realized by the usual means of wave plates followed by polarizing
beam splitters (PBS) and detectors, see Fig. (4.2b). This setup was extended [107],
in a straightforward manner, to perform state tomography of many qubits. Each of
the qubits passed through the TM. While this POM is IC, it is not symmetric. The

specific case of SIC POM in dimension 4 (two-qubit system) will be discussed later.
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Chapter 4. Symmetric minimal quantum tomography

Actually, with this setup we could use only two detectors for the tomography process,
and the four outcomes would be resolved in the time domain by using a delay line
between the two arms after the first measurement. This feature could be attractive

from experimental point of view.

Here, as a special case of the successive measurement scheme of Fig. 4.1, we present
the scheme to realize the TM by using path qubits, see Fig. 4.3. In this setup, the qubit
is encoded in a spatial alternative of a single photon (“path qubit”): traveling on the
left or on the right. A unitary transformation on the qubit state amounts to sending

the photon through a set of beam splitters (BSs) and phase shifters (PSs) [147].

In this optical setting, the TM is implemented as follows: First, two BSs
(BS1 and BS2) are used to implement the Kraus operators A; = diag(t,t2) and
Ag = diag(r1,7r2), where diag(-) stands for a diagonal matrix, and ¢; and r; are the
transmission and reflection amplitudes of the ith BS. A photon which enters the ap-
paratus with a path statistical operator p, exits at port k with the statistical opera-
tor AkpA,t/tr{AkpAL}. For the values t; = r9 = % — \/% and to =1 = | /% + %,
these operators correspond to the measurement outcomes Ay = % ( ( o )
with k=1, 2 (note that the Pauli operator o3 is diagonal in the left-right basis). Then a
photon that exits the first measurement apparatus at port 1 is measured in the oy basis
while a photon that exits at port 2 is a measured in the g2 basis. These measurements

could be realized by balanced BSs and appropriate PSs, as indicated in the figure.

In the successive measurement construction of POMs for a qubit, there is an opera-
tional relation between the TM and the three MUB in dimension 2. The latter are used
to construct the former by means of successive measurements. This relation actually
stems from the common mathematical structure of the four kets (in the Hilbert space of
a qubit) corresponding to the TM and the four kets composing the two bases unbiased
to the computational basis and to each other. To see this more clearly, consider the

columns of the following matrices:

1 X X

1
- (4.22)
N\ 4 N
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First measurement Second measurement
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Figure 4.3: An optical implementation of the tetrahedron measurement (path qubit)
using two successive measurements.

There are two special cases. For N = m and x = \/m, the four columns
represent the kets corresponding to the TM. While for N = 1/v/2 and x = 1, the two
columns of each matrix form a basis. The two bases are unbiased to each other and also
unbiased to the computational basis. We will see later that similar relations appear in
dimensions 3, 4, and 8 as well.

Finally, since the TM is equivalent to a HW SIC POM, it could also be implemented
by a two-step process: a measurement with the corresponding Kraus operators of
Eq. (4.5) followed by a measurement in the Fourier basis, Eq. (4.6) (call it the o
basis). We note that while the outcomes of the first measurement for this process and
the outcomes for the fuzzy measurement in the process discussed in this section are the
same, the Kraus operators, and therefore the implementations, are different.

Before moving on to the case of higher dimensions, let us close the present discussion
with three remarks: (i) In the above construction, the qubit MUB play a central role:
they are used to construct, by means of successive measurements, the SIC POM. We
will see later that such a relation appears in other dimensions as well. (ii) A practical
implementation of the scheme presented in Fig. 4.3 requires the stabilization of the
interferometer loop defined by the four BSs. (iii) SIC POMs for a three-level system
could be implemented by using a similar setup, but with allowing the photon to take

three different paths, see next section.
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4.4 Dimension 3: A qutrit

We focus on constructing all nonequivalent HW SIC POMs for a qutrit using successive
measurements. As we shall see, these measurements end up to be a fuzzy measurement
in the computational basis, followed by a projective measurement on a basis unbiased
to the computational basis.

According to the conditions listed in Eqs. (4.12) and (4.13), the ansatz Eqs. (4.9)—
(4.11) yields a SIC POM in dimension 3, if and only if [(m|n(™)|?> = 1/3 and either
A=1/2 and

[(n™(L + |m)(m] + k) (KDWY =1, (4.23)

with k # m, or A = —1/2 and

1
(M) =5, (4.24)
with k& # m # [. Whereas Eq. (4.23) does not have a solution, Eq. (4.24) can be solved.
One possible solution is [(n(™|1)|> = |(1|j*))|? = 1/3. This implies that a SIC POM in
dimension 3 could be broken into a sequence of a fuzzy measurement with A = —1/2,

such that
_ 1
V2

with k& = 1,2,3, followed by a projective measurement onto a basis unbiased to the

Al (kol)kal|+|ka2)(ka2]), (4.25)

computational basis (in which the As are diagonal).
Actually, in dimension 3, there exists a one-parameter family of nonequivalent HW

SIC POMs [12,13,15],

iy = 51615 () (914 (0)]

61,0) = 5 (18 - ek o ). (4:26)

where k,j7 =1,2,3, 0 <t < 7/6, w = 612”/3, and the symbol @ stands for addition
modulo 3. This continuum of SIC POMs could be realized using our ansatz in the

following way: First, a fuzzy measurement, with the corresponding Kraus operators of
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First measurement Second measurement
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Figure 4.4: An optical implementation of the one-parameter family of nonequivalent
SIC POMs for a path qutrit.

Eq. (4.25), is carried out. Then, if the kth outcome is found, the system goes through

the following diagonal unitary transformation
Ul = k) (k| — [k @ e (k@1 + [k @ 2) (k2. (4.27)

And last, the system is subjected to a projective measurement onto a basis unbiased
to the computational basis, say the Fourier basis; cf. Eq. (4.6) with d = 3.

This procedure implements the SIC POMs in Eq. (4.26) for all ¢t. From an opera-
tional point of view, this result shows that the entire family of nonequivalent SIC POMs
could, in principle, be realized in a single setup. In Fig. 4.4, we present such an imple-
mentation in an optical setting for a path qutrit. The balanced (1 : 1) BSs in the first
part are used to implement the fuzzy measurement, then the unitary transformations
of Eq. (4.27) are implemented by path dependent PSs placed in the appropriate paths,
and finally the Fourier transformation is applied to the state of the qutrit after which
the path of the photon is detected. The Fourier transformation is implemented using
three BSs, BS1, BS2, and BS3, which implement the transformations by the unitary

operators (o3 + 01)/V2, (03 +v/201)/v/3, and (03 + 02)/V/2, respectively.
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In the above construction, we chose the Fourier basis for the second measurement
independent of the outcome of the first measurement. However, the same family of SIC
POMs (or its unitary equivalent) could be realized with a different choice for the basis
for the second measurement, as long as Eq. (4.24) is obeyed. For example, one may

use three MUB which are also unbiased to the computational basis,

7=(10) + [1) +12))
(|0> + w|1) + w?|2)
(|0> + w?|1) + w|2)

)

)
)

-Gl Sl

7=(10) + w?[1) + w?|2))
(2]0)+\1>+w2]2)) , (4.28)
75 (W?0) + w?(1) + [2))

sk o) g

75(10) +wl1) +wl2))
75W[0) + 1) +wl2))
75 (w[0) + w[1) +2))

B3 =

=~ Sl S

These bases can be used for all values of the parameter ¢.

As mentioned in Sec. 4.1, an experiment was recently proposed by Medendorp et
al. [110], where a SIC POM for a three-level system was approximated. But for our
proposal of Fig. 4.4, the one-parameter family of nonequivalent SIC POMs for a path
qutrit can be realized exactly without approximation. As a further note, the necessity
of an adequate measurement of qutrits is caused not only by fundamental interest
but also by some potential applications. For example, it has been shown that the
key distribution in quantum cryptography is associated with the dimensionality of the
Hilbert space for the states in use (see, for instance, Refs. [149,150]). From this point

of view only, qutrits are expected to play a more important role than qubits.

4.5 Dimension 4: Two qubits

Higher dimensional systems, like dimensions 4 and 8, offer advantages such as increased

security in a range of quantum information protocols, greater channel capacity for quan-
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4.5. Dimension 4: Two qubits

tum communication, novel fundamental tests of quantum mechanics, and more efficient
quantum gates [2]. Optically, such systems have been realized using polarization and
transverse spatial modes. However, in each case, state transformation techniques have
proved difficult to realize. In fact, performing such transformations is a significant

problem in a range of physical architectures.

In this section, we propose an experiment that realizes a SIC POM in the four-
dimensional Hilbert space of a qubit pair. The qubit pair is carried by a single photon
as a polarization qubit and a path qubit. The implementation of the SIC POM is
accomplished with the means of linear optics. The experimental scheme exploits our
approach to SIC POMs that uses a two-step process: a measurement with full-rank
outcomes, followed by a projective measurement on a basis that is chosen in accordance
with the result of the first measurement. The basis of the first measurement and the
four bases of the second measurements are pairwise unbiased—a hint at a possibly

profound link between SIC POMs and mutually unbiased bases.

In dimension 4, there is only one known HW SIC POM, and all the other known
SIC POMs are unitarily equivalent to it [15]. Written in a compact form, the HW SIC

POM is given as
1 oy~ R
Wi = 25 X" 2716) (0| 27T XM,
1 3
9=+ (x\0> £y |m>>, (4:29)
m=1

with N = V/5+V5, x = V2+ V5, k,j = 1,2,3,4, and the generators of the HW

group appear in the form,

0 1 0 O 0 010

. ] -1 0 0 O ~ om 0 001

Z =e¢'1 , =e'1 (4.30)
0 0 0 —i -1 0 0 O
00 -1 0 0 100

Thus, this SIC POM is composed of 16 subnormalized projectors onto 16 (fiducial)
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kets. The latter are represented in the following matrices as columns [151],

X X X
1 1 -1 1
N 1 1 -1
1 -1 -1
1 1 1
1] ix —ix ix
N i i —i
—1 1 1

X
-1
-1

1

—_

5%

(4.31)

These matrices have a unique structure. Each of them could be written as a diagonal

matrix times a unitary matrix. The set of bases, corresponding to each unitary matrix

together with the computational basis form the complete set of MUB in dimension 4.

To be more specific, the diagonal matrices are

1 1
Ar =4 diag(x, 1,1,1), Az = 57 diag(1, 1, x, 1),

1 1
Ay = diag(1x, 1,1), Az = - diag(1,1,1,%),

and the unitary matrices are

1 1
11 =1
Uy ==
201 1
1 -1
1 1
1 1 —1
Uy= =
2 1 1
-1 1

1
Z/{3—§
1
2/{425

(4.32)

(4.33)

Noting that > y A}L.Aj = 1, we identify the As with the Kraus operators of a measure-

ment. Actually, the four operations of Eq. (4.33) transform the computational basis

58



4.5. Dimension 4: Two qubits

into the MUB, such that
By=¢ V2

By ={ V2

, (4.34)

where ¢z stands for the controlled-z (phase flip) operation, i.e., cz = diag(1,1,1,—1).
The bases %81 and By are composed of product states, while the bases B3 and B4
consist of maximally entangled states.

The structural relation between the fiducial kets, Eq. (4.31), and the kets that
compose the four MUB in dimension 4, Eq. (4.33), is now clear. For N = \/m
and x = \/m, the columns of each matrix in Eq. (4.31) form the 16 fiducial
kets, while for N = 1/2 and x = 1, the columns of each matrix in Eq. (4.33) form
a basis. These bases are mutually unbiased to each other and also unbiased to the
computational basis; cf. Eq. (4.34).

The structure of the fiducial vectors in Eq. (4.31) allows us to implement the SIC
POM by two successive measurements: a measurement whose Kraus operators are given
in Eq. (4.32), and depending on the measurement outcome, a measurement in one of
the MUB of Eq. (4.34). We should not fail to mention that the Kraus operators of
Eq. (4.32) correspond to a fuzzy measurement with A = 1/v/5 for d = 4; cf. Eq. (4.9).

Next, we propose an optical implementation for this scheme.

4.5.1 Experiment proposal

Up to date, the SIC POM in dimension 4 has not been realized in laboratories (partly)

due to its complexity. A state tomography of two qubits was realized by using the
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SIC POMs (the TM) for a single qubit, e.g., in Ref. [107], or by measurements of the
complete set of MUB in dimension 4 as in Ref. [152]. The former is not symmetric and
the latter is nor symmetric neither minimal.

Our proposal [23,24] for implementation is based on the methods presented in
Ref. [147] where the two qubits, a polarization qubit and a path qubit, are encoded in
a single photon. (We choose here to use a polarization qubit instead of another path
qubit in order to avoid as many interferometric loops as possible in the optical setup.)
We consider the vertical (v) and horizontal (h) polarizations as the basic alternative
of the polarization qubit, and traveling on the left (L) or on the right (R) as the basic
alternative of the path qubit. A unitary transformation on the two-qubit state amounts
to sending the photon through a set of passive linear optical elements (optical plates)
that unitarily change the state of the path and polarization qubits [147]. In particular,
in order to realize the fuzzy measurement, two more path-qubits were used as ancillae.
With this scheme at hand, the tetrahedron measurement for a (polarization) qubit has
already been realized [107] where the path qubit played the role of an ancillary qubit
system (a meter).

Let us describe the scheme to realize the SIC POM for a two-qubit system—the
polarization and path qubits encoded in a single photon state. For this purpose, we

would need the following optical elements:

e Half-wave plate (HWP): A HWP with its major axis at an angle 6 to the optical
axis, transforms the polarization according to the unitary
[ cos(20) sin(26)
sin(26) — cos(26)
And in our scheme, we only need the HWP with an angle 8 = /8, which effects

the transition
i 1 1

Uiiwe = ——— (4.36)
HWP \/§ 1 _1

e Polarization dependent phase-shifter (PS): It transforms the polarization accord-
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First measurement Second measurement

,,,,,,,,,,,,,,,,,,,,,,,,

3 out 1
v ‘
! out 2
'BS2a i
3 ‘out 3
BSla |
L out 4
: H 1
| BS2b |
| | § PSs & 3
! BS1b | /BS Z PBS PPBS Owave plates D\’detectori
in
hL hR
vL VR

Figure 4.5: A successive-measurement scheme for realizing the SIC POM of a qubit
pair. Here the two-qubit state is encoded in the spatial-polarization state of a single
photon.

ing to the unitary
1 0

0 e
e Beam splitter (BS): A BS splits the electromagnetic field into two spatial modes
with a given reflection and transmission coefficients. Here we need the use of a

balanced BS whose action on the state of the path qubit is given by the unitary

transformation
i 1 1

Upge = —
BS \/5 1 _1

(4.38)
Notice that in the definition of the BS above, we included a global phase factor.

e Path dependent phase-shifter (PS): An interferometric phase shift in the right

path amounts to the unitary Upg given above.

e Partially Polarizing BS (PPBS): This is a BS whose reflection and transmission
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Chapter 4. Symmetric minimal quantum tomography

coefficients depend on the polarization. Its action corresponds to a joint unitary
transformation on the polarization-path qubits. In the present context, it suffices
to consider a PPBS with real amplitude division coefficients r and t that obey

the unitarity condition r? + t> = 1 for the vertical and horizontal polarizations,

Uppps = . (4.39)

This is a block-diagonal matrix, with the blocks transforming the vertical or
horizontal polarization, respectively. Two cases of interest are (i) r, = r, = 1:
the controlled-z gate, and (ii) r, = t;, = 1: the polarizing beam splitter (PBS)
which totally reflects (transmits) vertically (horizontally) polarized light, written

explicitly as

1000
0100
UPBS - (440)
0 001
0 010

The Kraus operators for the first measurement are listed in Eq. (4.32). Their
realization is schematically drawn in Fig. 4.5 at the ‘first measurement’ part. For
each port, we set the parameters of the different optical elements such that a photon
which enters the apparatus with a polarization-path statistical operators p, exits at
port k with the two-qubit statistical operator AkpAL / tr{AkpAL}. Thus, a projective
measurement (with 4 possible outcomes) on the ancillary qubits effectively produces
the desired POM on the two-qubit system {Ay}. To be more specific, the apparatus is
configured such that the beam splitters BS1a and BS1b have the same properties and
so have beam splitters BS2a and BS2b. The PPBSs on the left and right arms also have
the same properties. The reflection coefficient of BSla and BS1b is 11 = 1/N. The
reflection coefficient ry of BS2a and BS2b satisfies t179 = 1/N, that is, ro = 1/\/@,

where 1 is the transmission coefficient of BSla(b). Setting r, = t;, = y in Eq. (4.39),
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4.5. Dimension 4: Two qubits

the two PPBSs transform vertically polarized incident light |v) to the polarizations y|v)
and W |v) in the reflected and transmitted arms, respectively, and horizontally
polarized light |h) to the polarizations y/1 — y2|h) in reflection and y/h) in transmission.
The amplitude division coefficient y is chosen such that ¢; +toy = 1/N, and therefore,
y = 1/v/N2 —2, where t, is the transmission coefficient of BS2a(b). These settings
ensure that the measurement of Eq. (4.32) is realized.

To complete the measurement scheme, a second measurement is taking place. This
measurement depends on the actual outcome of the first measurement, namely, on the
output port where the photon exits. For photons emerging from the kth port, basis B
of Eq. (4.34) is measured. In order to measure in a given basis, By, we first apply a
unitary operation Uy, of Eq. (4.33) that transforms the basis By, into the computational
basis and then measure in the computational basis by using PBSs and photodetectors,
as illustrated in Fig. 4.5 at the ‘second measurement’ part.

To implement the unitary transformations of Eq. (4.33), one could use either a sin-
gle, specially designed, birefringent material, or a sequence of wave plates and PPBSs.

Considering the latter option, these unitary transformations can be represented as

ul = UHWP X UBS7
Z/{Z = (UPSUHWP) ® (UPSU%S) )
Uz = CZ( (UpsUnwr) ® UBS),

Z/{4 = CZ (UHWP & ([]PSUBS) ), (441)

where €z is the controlled-z gate, Ups = diag(1,i) shifts the phase of the path and
polarization qubits by /2, and Uywp and Ugg together implement the Hadamard gate,
1 1 1

H= ) (4.42)

for the polarization qubit and the path qubit, respectively. For this aim, we use a HWP
with its major axis at an angle 7/8 to the optical axis, and a balanced BS.

We see that the unitary transformations Uy and Us can be decomposed into a
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tensor product of two unitary transformations, one for the path qubit and one for the
polarization qubit. However, the unitary transformations U3 and Uy are not of that
kind and could be realized, for example, by using PPBSs together with a Mach-Zehnder

interferometer. This closes our proposal.

4.6 Dimension 8: Three qubits

In dimension 8, there are three known nonequivalent SIC POMs. One of them is
covariant with respect to the three-qubit Pauli group, an alternative version of the HW
group [13,117]; while the other two are covariant with respect to the HW group [18].
According to the result presented in Sec. 4.2, the latter two could be realized by a
diagonal-operator measurement followed by a measurement in the Fourier basis of the
three qubits. Interestingly, the former SIC POM (also known as Hoggar’s SIC POM
or Hoggar lines [117]) is the only exception known so far that is not covariant with
respect to the HW group. But as we will see in what follows, this SIC POM could be
broken into a diagonal-operator measurement followed by projective measurements in
eight MUB, similar to what happens in dimensions 2, 3, and 4.

Hoggar’s SIC POM is composed of (subnormalized) projectors onto 64 kets. The
latter are constructed from the action of the three-qubit Pauli group elements on a
fiducial vector |¢),

(k,l,m)
(n,r,s)

) = 21Xt @ Z5X} @ Z3XP'|6) (4.43)

with all indices take on the values 1, 2. Here Z = 03 and X = o0 are the generators of
the Pauli group in dimension 2, and their subscripts in Eq. (4.43) label the degree of
freedom on which they act. In what follows, we omit this subscript when no ambiguity
arises. We refer to the basis in which o3 is diagonal as the computational basis. In this

basis, the fiducial ket |¢) is represented by

1
|¢> = 7(7“707 _wgawga_w&w;?O?O)T’ (444)

V6
where wg = €27/8 = \/ is the fundamental eighth root of unity and r = wg +wg = V2.
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4.6. Dimension 8: Three qubits

Table 4.1: Hoggar’s SIC POM for dimension 8, which is covariant with respect to the
three-qubit Pauli group. Matrix of complex 2-vectors (a,b) (denoted by the letters “O,
D, S, R”) gives the 64 lines, where wg = el2™/8 = \/i and r = wg + wi = V2.

Row O D S R

1 (0,0) (ws,wd) (ws, —ws) (0, 7) Type 1: ODSR
2 (0,0) (w§, —wg) (ws,wg) (r,0) Type2: DORS
3 (0,0) (w§, wg) (w§, wg) (0,ir) Type 3: SROD
4 (0,0) (ws, —wi) (w§, —wg) (ir, 0) Type 4: RSDO

This set of 64 SIC POM vectors in dimension 8 can also be read off from Hoggar’s
paper [117] about the quaternionic polytope. We modified the table by using our
familiar notations, which is given in Table 4.1. A given row in the table exhibits a
complex 8-vector v, with |v| = 6. Then by coordinate sign changes or by inserting +
signs in each row, we are able to obtain a total number of 4 x 4 = 16 vectors for each

row and altogether 16 x 4 = 64 vectors.

This SIC POM can be broken into two successive measurements. The Kraus oper-

ators corresponding to the first measurement are

2
A= — dlag(()? —ir, w§7 iwga _w>8k7 —lws, 0, O) ’

V3

2
A2 = = dla‘g(_O‘);? w§7 —17'7 07 07 07 iw87 lwg) ’

V3

V3

Ay = —= diag(—ws, —wyg, 0,0, —ir, 0, —iwg, —iwg) ,

V3

2
As = —= diag(—wyg, iws, 0,0, 0, 7, —iwg, wg) ,

Az = diag(wg, iwg, 0, 7,0, 0, —iwg, ws) ,

V3
Ag = jg diag(0, 0, iws, iwg, iwg, iwg, 7, 0) ,
A7 = 55 diag(0, 0, iwg, ws, —iwg, wg, 0,ir) ,
Ag = 7 diag(r, 0, —wg, wg, —ws, —wg, 0,0) . (4.45)

The basis for the second measurement is chosen in accordance with the result of the

first measurement. The eight different bases for the second measurement, together
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with the computational basis, form a complete set of MUB in dimension 8. This set
is constructed as follows [153]. Consider the two unbiased bases in dimension 2—the
ones that correspond to the Pauli matrices o1 and o9 denoted as column vectors

1 1 1 1 1 1

O=__

=51, ) IzE - (4.46)

Then the full set of MUB vectors (recognized as columns of the matrices) in dimension

8 can be simply constructed as

000 U-00I V-0I0 W-OII
MUBS8 = , (4.47)

IIT U-II0 VIOI WIOO

where the unitary transformations U, V and W are the controlled-z (phase flip) oper-

ations for three-qubit gate, given by

U = diag(1,1,1,1,1, -1, -1,1),
cz for 3-qubit{ V= diag(1,1,1,—1,1,—1,1,1), (4.48)
W = dlag(la 17 17 _17 17 17 _17 1) :

The eight sets of MUB vectors comprise the bases for the second measurement. Then,

the full set of 64 SIC POMs in dimension 8 represented as columns are

A;.000 A3 UIIO A;W-IOO A;.V-OIO
SICS = . (4.49)

A, U-001 A,III Ag.VIOI  Ag.V-OII

Or, in a more compact form, we may label the unbiased bases in dimension 2 by {|e})}

where v = 1,2 labels the vector in basis b = 1,2. Furthermore, consider the operator
M) =3 03 Q®03®03 +o3 "®Oo3 Qo3 o3®o3®o03),  (4.50)
with k,I,m = 1,2. The states defined by a fixed triplet (k, [, m),
(kvlvm) — m k l
el = Gl Lm)le) @ k) @ Jel) (4.51)

(n,r,8)
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form a basis, while bases with different (k,l,m) triplets are mutually unbiased to each
other. These bases together with the computational basis form a complete set of MUB
for three qubits (dimension 8). One can verify that the 64 fiducial vectors in Eq. (4.43)

could be written as follows

(k‘,l,m)> yy (k,l,m)> 7 (4.52)

(n,r,s) k,l,m) e(n,r,s)

where the index of the Kraus operators is written in binary representation, where m
is the least significant bit. Indeed, the last equation implies that Hoggar’s SIC POM
can be realized by a measurement with the corresponding Kraus operators A ;,,) and
depending on the result, followed by a measurement in one of the MUB.

Finally, we note that the above construction of the SIC POM in dimension 8 is
different in two points from the constructions given for the SIC POMs in dimensions 2,
3, and 4. First, the SIC POMs in dimensions 2, 3, and 4 are covariant with respect to
the HW group while the Hoggar’s SIC POM is covariant with respect to the three-qubit
Pauli group. And second, in dimensions 2, 3, and 4 the first measurement is a fuzzy

measurement while in dimension 8 this is not the case.

4.7 Summary

SIC POMs are considered to be hard to implement. Here, we are proposing to imple-
ment them by breaking the measurement process into two steps, having in mind that
each step should be rather easy to implement. Based on this idea, we presented a sys-
tematic procedure that implements HW SIC POMs in finite-dimensional systems. The
implementation is accomplished by a diagonal-operator measurement with high-rank
outcomes followed by a rank-1 measurement in the Fourier basis. As an example, we
have considered the realization of HW SIC POMs for a path qudit encoded in a single
photon. Moreover, we found that if we take the first measurement to be a fuzzy mea-
surement and we let the bases for the second measurement to be chosen in accordance
with the result of the first measurement, then in the particular studies cases (dimen-

sions 2, 3, and 4) an operational link between SIC POMs and MUB appears, that is,
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the MUB are used to implement the SIC POMs in the successive measurement scheme.
A similar link was found in dimension 8 as well, but here the first measurement was
not of the fuzzy kind.

Moreover, we proposed a feasible experimental scheme that implements the SIC
POM for a two-qubit system. Our scheme uses linear optical elements and photode-
tectors, and is, therefore, well within the reach of existing technology. The proposal is
based on a successive-measurement approach to SIC POMs. We found that the SIC
POM for the qubit pair corresponds to a POM diagonal in the computational basis,
followed by projections onto bases which are mutually unbiased. We observed that this
unique construction is owed to a structural relation between the fiducial vectors and
the MUB in dimension 4.

On a more general note, we believe that it would be interesting to learn, if and
how this scheme can be generalized to higher dimensions. Such a study could be of a
theoretical and a practical use; it might teach us about the SIC POMs’ structure in
high dimensions and provide new ideas for implementing them.

There is still an open question as to the generality of such a relation and its origin.
Currently it is unclear whether the successive measurement approach will provide a
reasonable scheme for implementing SIC POMs in arbitrary dimensions and thus reveal

their structure in high-dimensional Hilbert spaces.
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CHAPTER 5

Optimal error regions of estimators

5.1 Introduction

Quantum state estimation (see, for example, Chapter 2 of this thesis and Ref. [4]) is cen-
tral to many, if not all, tasks that process quantum information. In the typical situation
that we are considering, a source emits several independently and identically prepared
quantum-information carriers, which are measured one-by-one by an apparatus that
realizes a probability-operator measurement (POM), suitably designed to extract the
wanted information. The POM has a number of outcomes, with detectors that register
individual information carriers (photons in the majority of current experiments), and
the data consist of the observed sequence of detection events (“clicks”).!

The quantum state to be estimated is described by a statistical operator, the state,
and the data can be used to determine an estimator for the state—another state that,
so one hopes, approximates the actual state well. There are various strategies for
finding such an estimator. Thanks to the efficient methods that Hradil, Rehééek, and
their collaborators developed for calculating maximum-likelihood estimators (MLEs,
reviewed in Chapter 3 of Ref. [4]; see also Ref. [97] and Chapter 2 of current thesis),
MLEs have become the estimators of choice. For the given data, the MLE is the state
for which the data are more likely than for any other state.

Whether one prefers the MLE or a point estimator found by another method, the
data have statistical noise and, therefore, one needs to supplement the point estimator

with error bars of some sort—error regions, more generally, for higher-dimensional

Tt is advisable to verify that the observed sequence does not have systematic correlations that speak
against the assumption of independently and identically prepared quantum-information carriers.
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problems. Many recipes, often ad-hoc in nature, have been proposed for attaching
a vicinity of states to an estimator. These usually rely on having a lot of data (see
Refs. [154] and [155] for examples in quantum state estimation), involve data resampling
(see, for instance, Ref. [156]), or consider all data that one might have observed (see
Refs. [157,158], and Sec. 5.3.4 on confidence regions of current chapter). By contrast,

we systematically construct error regions from the data actually observed [25].

For this purpose, we propose mazimum-likelihood regions (MLRs) and smallest cred-
ible regions (SCRs). These are regions in the space of quantum states (more precisely:
in the reconstruction space; see Sec. 5.2.1). The MLR is that region of pre-chosen size,
for which the given data are more likely than for any other region of the same size.
The SCR is the smallest region with pre-chosen credibility—the credibility of a region
being its posterior probability, that is: the probability of finding the actual state in the
region, conditioned on the data (see, for example, Ref. [159]). Whether one chooses

the MLR or the SCR as the optimal error region depends on the situation at hand.

Central to both concepts is the notion of the size of a region. In fact, some notion
of size must underlie any useful definition of error regions, since one usually aims at
reporting an error region that is not unnecessarily large—a judgement that can only be
made with a suitable concept of size. We agree with Evans, Guttman, and Swartz [160]
that, in the context of state estimation, it is most natural to measure the size of a region
by its prior—before any data are at hand—probability of finding the actual state in the
region: Regions with the same prior probability are considered as having the same size.

The size of a region hence expresses the relative importance of that region of states.

The identification “size = prior probability” is also technically possible because both
quantities simply add when disjoint regions are combined into a single region. While

2 since state estimation expresses our

for some tasks one prefers not to assign a prior,
best attempt at guessing the state, any prior information we possess should be taken

into account in the estimation process, alongside the data. Much guidance on choosing

2For tasks like quantum key distribution, one may want to adopt a different attitude, and assume
the worst possible scenario, rather than relying on one’s information to assign a prior. Then, the
confidence regions of Refs. [157] and [158] are appropriate as error regions.
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priors can be found in standard statistics literature; in Sec. 5.4, we provide a summary
that focuses on points relevant in quantum contexts. Ultimately, the choice of prior is
up to the user, but it should be consistent: The estimation results should be dominated

by the data, not the prior, if many copies of the state are measured.

As we show below, the problems of finding the MLR and the SCR are duals of each
other. In both cases, the optimal regions contain all states for which the likelihood of
the data exceeds a threshold value. This provides a simple and concise way of com-
municating one’s uncertainty of the estimate. That the optimal error regions possess
such a simple description is surprising, since our construction imposes no restriction
on the shape of the regions to be considered. The shape of the optimal regions are
uniquely determined by the likelihood function, in sharp contrast to the arbitrariness
in the shape of a confidence region (see Sec. 5.3.4), a concept that is the subject of
recent discussion [157,158]. Yet the two are not unrelated: Our SCRs provide natural

starting points for the construction of the confidence regions considered in Ref. [157].

While the chosen MLR or SCR depends on the prior, the set of candidate regions
is prior-independent: It depends only on the likelihood function for the given data.
Also reassuring is the fact that every MLR or SCR is a small vicinity of the MLE, in
the respective limits of small size or small credibility. This is reminiscent of standard
ellipsoidal error regions constructed around the MLE, but which are applicable only in
the limit of a large amount of data when the central limit theorem can be invoked and

the uncertainty can be characterized by the Fisher information [154].

3 We set the stage in Sec. 5.2 where we

Here is a brief outline of this chapter.
introduce the reconstruction space, discuss the size of a region, and define the various
joint and conditional probabilities. Equipped with these tools, we then formulate in
Secs. 5.3.1 and 5.3.2 the optimization problems that identify the MLRs and SCRs and

find their solutions in Sec. 5.3.3; this is followed by remarks on confidence regions in

Sec. 5.3.4. Criteria for choosing unprejudiced priors are the subject of Sec. 5.4. We

3Note that this chapter is based on Ref. [25], hereby, I sincerely acknowledge the contribution from
the other authors of Ref. [25].
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illustrate the matter by several examples in Sec. 5.5, and close with an outlook.

5.2 Setting the stage

5.2.1 Reconstruction space

The K outcomes IIy, I, ..., IIx of the POM, with which the data are acquired, are

positive Hilbert-space operators that decompose the identity,

K
d I =1 withIly >0 fork=12,... K. (5.1)
k=1

If the state p (a statistical operator) describes the system, then the probability py that

the kth detector will click for the next copy to be measured is

pr = tr{pll} = (I, (5.2)

which is the Born rule, of course. Here, the state p can be any positive operator with
unit trace,

p>0, tr{p}=1. (5.3)

The positivity of p and its normalization to unity ensure the positivity of the pis and

their normalization
K
pe20, > pp=1. (5-4)
k=1

Probabilities p = (p1,p2, ..., px) for which there is a state p such that Eq. (5.2) holds,
are permissible probabilities. They make up the probability space.

The probability space for a K-outcome POM is usually smaller than that of a tossed
K-sided die because not all positive pis with unit sum are permissible. The quantum
nature of the state estimation problem enters only in these additional restrictions on
p: Quantum state estimation is standard statistical state estimation with constraints
of quantum-mechanical origin. The rich methods of statistical inference immediately

apply, modified where necessary to account for the restricted probability space.
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5.2. Setting the stage

Whereas p is uniquely determined by p in accordance with Eq. (5.2), the converse
is true only if the POM is informationally complete (IC). In any case, there is always a
reconstruction space Ry, a set of ps that contains exactly one p for each permissible p,
consistent with the Born rule. If there is more than one reconstruction space, it does
not matter which one we choose. As an example, consider a harmonic oscillator with
its infinite-dimensional state space. If the POM has two outcomes with p; equal to the
probability of finding the oscillator in its ground state, and po = 1 —p1, the reconstruc-
tion space is the set of convex combinations of the projector to the ground state and
another state with no ground-state component. In this situation, there are very many
reconstruction spaces to choose from, because any other state serves the purpose, and

all one can infer from the data is an estimate of the ground-state probability.

Since the probability space is unique, while there can be many different reconstruc-
tion spaces, it is often more convenient to work in the probability space. In particular,
the probability space has the desirable property that it is always convex; it is, however,
not always possible to find a convex reconstruction space. The primary objective of
state estimation is then to find an estimator, or a region of estimators, for the prob-
abilities p. The conversion of p into a state p can be performed later, if at all. At
this stage, if the POM is not IC, one must invoke additional criteria—beyond what
the data tell us—for a unique mapping p — p. For example, one could follow Jaynes’s
guidance [32,33] and maximize the entropy [96] (see also Chapter 6 of Ref. [4]). Follow-
ing the tradition in this topic, however, we will formally work in a reconstruction space
Ro although all actual calculations are performed in the probability space. Estimators

are states in R, and regions are sets of states there.

5.2.2 Size and prior content of a region

Prior to acquiring any data, we assign equal probabilities to equivalent alternatives.
For instance, if we split the reconstruction space in two, it is equally likely that the
actual state is in either half and, therefore, each half should carry a prior probability of

1/2, provided that the splitting-in-two is fair, that is: the two pieces are of equal size.
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Chapter 5. Optimal error regions of estimators

A preconceived notion of size is taken for granted here. Further fair splitting, into more
disjoint regions of equal size, then suggests rather strongly that the prior probability of
a region should be proportional to its size. We take this suggestion seriously: Scale all
region sizes such that the whole reconstruction space has unit size because the actual
state is surely somewhere in the state space, and then the size of a region is its prior

probability—its “prior content” if we borrow terminology from Bayesian statistics.

As mentioned already in Sec. 5.1, it is technically possible to identify the size of a
region with its prior probability, because both quantities simply add if disjoint regions
are combined into a single region. There is no room for mathematical inconsistencies
here, unless we begin with a region-to-size mapping for which the reconstruction space
cannot be normalized to unit size, so that we would obtain improper prior probabilities.
We are not interested in pathological cases of this or other kinds and just exclude them.
Should an improper prior be useful in a particular context, it should come about as

the limit of a well-defined sequence of proper priors.

The above line of reasoning can be reversed. Should we have established each
region’s prior probability with other means (perhaps invoking symmetry arguments
or taking into account that the source under investigation is designed to emit the
information carriers in a certain target state; see Sec. 5.4), then we accept this as
the natural measure of the region’s size [160]. After all, the reconstruction space is
an abstract construct that is often not endowed with a self-suggesting unique metric.
Instead, a region’s prior probability—the quantity that matters most in the present
context of statistical inference—offers a natural notion of size. This relieves us of the
need to invoke additional, possibly artificial, criteria for the assignment of size, for
instance, one that has more to do with a simple parameterization of the state space

than the relative importance of different regions in terms of our prior expectations.

We denote by (dp) the size of the infinitesimal vicinity of state p in Rg. The size

Sr of a region R C Ry is then obtained by integrating over the region,

S’R:/R(dp) with /Ro(dp) =1, (5.5)
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5.2. Setting the stage

where the latter integration covers all of the reconstruction space, i.e., Rg.

By construction, Sz does not depend on the parameterization that we use for the
numerical representation of (dp). The primary parameterization is in terms of the
probabilities,

(dp) = (dp) w(p) with (dp) =dp1dpz --- dpk, (5.6)

where the prior density w(p) is nonzero for all permissible probabilities and vanishes

for all non-permissible ones. In particular, w(p) always contains

wo(p) = n(p1)n(pz) - - - n(prk) 5<Zpk - 1) (5.7)
k

as a factor and so enforces the constraints that the probabilities are positive and have
unit sum, where the symbol 7(-) denotes Heaviside’s unit step function and J(-) is
Dirac’s delta function. If there are no other constraints, we have the probability space
of a K-sided die. For genuine quantum measurements, however, there are additional
constraints, some accounted for by more delta-function factors, others by step functions.
The delta-function constraints reduce the dimension of the reconstruction space from
K — 1 to the number of independent probabilities. Accordingly, there is a factor of
constraint wegtr(p) [containing wp(p)] that specifies the probability space and appears
in all possible priors. In particular, there are two specific priors we will employ as

examples below: the primitive prior

(dp) X (dp) wcstr(p) s (5.8)

and the Jeffreys prior (see, for instance, Ref. [161] and Sec. 2.4.1 of Chapter 2)

1
(dp) o (dp) westr (p) \/ﬁ ) (5.9)

which is a popular choice of an unprejudiced prior [162].

For the harmonic-oscillator example in Sec. 5.2.1, which has the same probability

space as a tossed coin, the factor wg(p) selects the line segment with0 < p; =1 —ps <1
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Chapter 5. Optimal error regions of estimators

in the pip2 plane. If we choose the primitive prior (dp) = (dp) wo(p), the subsegment

with a < p; < b has size b — a. For the Jeffreys prior

1

_ 5.10
T\/P1P2 ( )

(dp) = (dp) wo(p)

the same subsegment has size %[Sin_l(\/g) —sin~!(\/a))].

In this example, and also in those we use for illustration in Secs. 5.5.1 and 5.5.2
below, it is easy to state quite explicitly the restrictions on the set of permissible
probabilities that follow from the Born rule; in other situations, including the examples
of Sec. 5.5.3, this is more difficult; in yet more complicated situations it could be
impossible. It is, however, possible to check numerically if a certain p = (p1,...,PK)
is permissible. For example, one calculates a MLE (which can be done efficiently) for
relative frequencies ng /N = py (see below), and if the resulting probabilities p are such
that p = p, then p is permissible; otherwise it is not. This is also why state estimation is
often done by searching for a statistical operator in a suitable state space. For practical
reasons, it may be necessary to truncate the full state space—which can be, and often
is, infinite-dimensional—to a test space of manageable size. With such a truncation,
one accepts that not all permissible probabilities are investigated. Therefore, a criterion
for judging if the test space is large enough is to verify that the estimated probabilities

do not change significantly when the space is enlarged. Examples for the artifacts that

result from test spaces that are too small can be found in Ref. [163].

5.2.3 Point likelihood, region likelihood, credibility

The data D consist of a sequence of detector clicks, with ny clicks in total of the kth
detector after measuring N = nj +ng + - - - + nx copies of the state.* The probability

of obtaining D, if p is the state, is the familiar point likelihood

L(Dlp) = py'ps® - - pi*- (5.11)

4One can account for detector inefficiencies and dark counts, but such technical details, important
for practical applications, are immaterial to the current discussion.
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5.2. Setting the stage

It attains its maximal value when p is the MLE py,,,
max L(Dlp) = (Dl (5.12)

where py, is in the reconstruction space Ry, but the maximum could be taken over all

states. As we can see, the MLE is fully determined by the relative frequencies ng/N.

The joint probability of finding the state p in the region R and obtaining the data
D is then

prob(D AR) = /R(dp) L(D|p) . (5.13)

If R =Ry, we have the prior likelihood L(D),

prob(D A Rg) = L(D) = /R (dp) L(D|p). (5.14)

Since one of the click sequences is surely observed, the likelihoods of Eqs. (5.11) and

(5.14) have unit sum,

Z N! 5N,n1+n2+-"+nk pnlp”2 .. .an
nilng! - mgl 12 o

S L(D|p)
D

nNl,...,NK

= (pi+p2t-+pr)V =1,

Y L(D) = /R(d,o)zl, (5.15)

D

where the summation is taken over all possible data for NV clicks and the multinomial

factor is the number of sequences with the same counts of detector clicks.

We factor the joint probability prob(D A R) in two different ways,
prob(D AR) = L(D|R)Sgr = Cr(D)L(D), (5.16)

and so identify the region likelihood L(D|R) and the credibility Cr (D). Both quantities
are conditional probabilities: L(D|R) is the probability of obtaining the data D if the
actual state is in the region R; Cr(D) is the probability that the actual state is in the

region R if the data D were obtained—the posterior probability of R.
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5.3 Optimal error regions

5.3.1 Maximum-likelihood regions

Instead of looking for the MLE, the single point in the reconstruction space that has the
largest likelihood for the given data D, we desire a region with the largest likelihood—
the MLR. For this purpose, we maximize the region likelihood L(D|R) under the
constraint that only regions with a pre-chosen size s participate in the competition,
with 0 < s < 1; an unconstrained maximization of L(D|R) is not meaningful because
it gives the limiting region that consists of nothing but the point py.. The resulting
MLR 7/€ML is a function of the data D and the size s, but we wish to not overload
the notation and will keep these dependences implicit, just like the notation does not

explicitly indicate the D dependence of the MLE py..
The MLR analog of the MLE definition in Eq. (5.12) is then

max L(DIR) = L(D|Ry)  with Sg = s. (5.17)

Since all competing regions have the same size, we can equivalently maximize the joint

probability under the size constraint,
max prob(D A R) = prob(D A ﬁML) with Sg = s. (5.18)
RCRo

The answer to this maximization problem is given in Corollary 4 of Ref. [160], which

we translate into our present context as follows:

The MLRs of various sizes s consist of all states p for which
the point likelihood exceeds a threshold value, with higher (5.19)

thresholds for smaller sizes.

This corollary is justified by a detailed proof of considerable mathematical sophistica-
tion in Ref. [160]. Here we proceed to offer an alternative argument that is perhaps

more accessible to the working physicists.
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Figure 5.1: Infinitesimal variation of region R. The boundary OR of reggl R (solid
line) is deformed to become the boundary of region R + R (dashed line). dA(p) is the
vectorial surface element of OR at p, and de(p) is the infinitesimal displacement of p.

Owing to the maximum property of the MLR and its fixed size, both Sz and
prob(DAR) must be stationary under infinitesimal variations 0R of the region R. Such
an infinitesimal variation is achieved by deforming the boundary R of the region, as
illustrated in Fig. 5.1. The resulting change in the size Sz vanishes for all permissible

deformations,

5k = [)Rﬂ(p) 3e(p) = 0. (5.20)

H
Here, dA(p) is the vectorial surface element of the boundary OR at point p in the
%
reconstruction space, and de(p) is the infinitesimal displacement of the point p that

deforms R into R + dR.

The corresponding change in prob(D A R) is

5prob(D/\R):/ dA(p) - ¢
OR

(p) L(Dlp) =0, (5.21)

which attains the indicated value of 0 at the extremum R = ﬁML. If we have the
situation sketched in the top-left plot of Fig. 5.2, where 7€ML is completely in the interior
of the reconstruction space, both Egs. (5.20) and (5.21) must hold simultaneously for
arbitrary infinitesimal deformation éR. This is possible only if the point likelihood
L(D|p) is constant on the boundary BQML of 7€ML, for an ﬁML entirely contained inside

Ro (so that 5_e>(p) can have any direction), that is: Ry, is an iso-likelihood surface
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Chapter 5. Optimal error regions of estimators

Figure 5.2: MLRs of two different kinds. In the top-left sketch, ﬁML is completely con-
tained inside the reconstruction space; while in the bottom-right sketch, the boundary
aﬁML of 7/'\’\,ML contains a part of the surface ORg of the reconstruction space. Dotted
lines indicate iso-likelihood surfaces, that is: surfaces on which the point likelihood is
constant.

(ILS). Furthermore, R, must correspond to the interior of this ILS (as opposed to its
complement in the reconstruction space), since the concavity of the logarithm of the
point likelihood implies that the interior necessarily has larger likelihood values than

its complement.?

If the boundary GﬁML of ﬁML contains a part of the surface 0Ry of the reconstruc-
tion space, which is the situation on the bottom-right in Fig. 5.2, all interior points on
87/?\,ML must still lie on an ILS, or else we can always deform 87/?\,ML to attain a larger value
of the region likelihood with a permissible choice of (5_e>(p) On the Ry part of IRy,

the point likelihood L(D|p) has larger values than the constant value on the interior

®The negative logarithm of the point likelihood is N times the sum of the relative entropy between
the probabilities p and the frequencies v, and the Shannon entropy of the frequencies (see Table 5.1),

1 v,
— NlogL(D|p) = E Vk logp—i — E vk log vy .
& k

Since the relative entropy is a convex function of the probabilities, the logarithm of the point likelihood
is a concave function of p.
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L(D|p)/‘L(D|Z)\ML)

Figure 5.3: Illustration of a BLR: Ry is the reconstruction space; the region R is
a BLR, delineated by the threshold value AL(D|py.); Ao marks the minimum ratio
L(D|p)/L(D|pwu.) over Ry.

part of the boundary, because ILSs that are inside R (dashed lines in Fig. 5.2) and
have endpoints in OR assign their larger likelihood values to these points. Therefore,
deforming the Ry part of OR inwards, with the change in size compensated for by
an outwards deformation of the interior part of 87€ML, decreases the value of the region
likelihood. And since outwards deformations of Ry are not possible, a region with
an ILS as interior part of the boundary, supplemented by a part of 0Ryg, is a possible
MLR, indeed.

In summary, the MLRs of various sizes s consist of all states p for which the point
likelihood L(D|p) exceeds a certain threshold value, with higher thresholds for smaller
sizes. Now, it is expedient to specify the threshold value as a fraction of the maximum
value L(D|pyy) of the point likelihood; see Fig. 5.3. Denoting this fraction by A, the
characteristic function of the corresponding bounded-likelihood region (BLR) R is the

step function

Yalp) = n(L(D\p) - AL(DWML)), (5.22)
where
1 ifpisin R
Xalp) = (5.23)
0 else

is the characteristic function of region R. BLRs have appeared previously in standard

statistical analysis; see Ref. [164] and references therein.
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The BLR R has the size

o = /R (@) (0), (5.24)

and we have R) = Rg and sy = so = 1 for A < Xy with Ag > 0 given by
min L(D]p) = ML (Dla). (5.25)

As X increases from Ay to 1, s) decreases monotonically from 1 to 0. Note that Ag
may not be 0. Since Ao marks the minimum ratio L(D|p)/L(D|pu.) over Ry, it will
be finite if the minimum value of the point likelihood in a reconstruction space is not
0. Remember that the whole reconstruction space has unit size (corresponding to Ag).
This is the situation sketched in Fig. 5.3 where we have Ag > 0, which is the more
general scenario. The size s specified in Eq. (5.17) is obtained for an intermediate A
value, and the corresponding BLR is the looked-for MLR.

The MLE is contained in all MLRs. In the s — 0 limit, the MLR becomes an
infinitesimal vicinity of the MLE and the region likelihood of the limit region is equal
to the point likelihood of the MLE, L(D|Ry.) — L(D|pu)-

5.3.2 Smallest credible regions

The MLR is the region for which the observed data are particularly likely. With a
reversal of emphasis, we now look for a region that contains the actual state with
high probability. Ultimately, this is the SCR ﬁsc—the smallest region for which the
credibility has the pre-chosen value c. For the given D, the optimization problem

Jnin Sr = Sz, with Cr(D) =c¢ (5.26)

is dual to that of Egs. (5.17) and (5.18). Here we minimize the size for given joint
probability; there we maximize the joint probability for given size. It follows that the
BLRs of Eq. (5.22) are not only the MLRs, they are also the SCRs: Each MLR is a
SCR, each SCR is a MLR.
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The BLR R, has the credibility

1
=I5 /R (@) VA LADlp), (5.27)

which, just like sy, decreases monotonically from 1 to 0 as A increases from Ag to 1.
The credibility ¢ specified in Eq. (5.26) is obtained for an intermediate value, and the
corresponding BLR is the looked-for SCR.

That the general definitions of the MLR and the SCR, which allow for regions of
arbitrary shapes, permit such a simple characterization in terms of BLRs is remarkable.
BLRs are reminiscent of standard ellipsoidal error regions constructed by analyzing
the neighborhood of the peak of the likelihood function—a procedure justified only for
large enough N for the central limit theorem to apply (see, for instance, Ref. [154]);
yet, our result employs no such assumption. Also surprising is that, while A depends
on the choice of prior, the set of regions that enter the competition is independent of
that choice; the prior enters only in the size, region likelihood, and credibility of the
MLR/SCR.

Once the data are obtained, there is the MLR and the SCR for these data, and
other MLRs or SCRs associated with unobserved data play no role. This is in sharp
contrast to confidence regions, whose construction requires consideration of all data
that could have been obtained, since the confidence level is a property of the entire set
of confidence regions, one for each possible data (see Sec. 5.3.4). Nevertheless, they are
not unrelated: Christandl and Renner [157] showed that high-credibility regions offer
starting points for constructing confidence regions—a set of SCRs with high credibility
immediately suggests itself—and Blume-Kohout [158] argued that BLRs can be good

confidence regions.

5.3.3 Reporting error regions

The responses of the size sy and the credibility ¢y of a BLR to an infinitesimal change
of A\ are linked by

N 0
L(D|pyn)A=<58x - (5.28)

B,
L(D) A%

AN
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Therefore, once sy is known as a function of A, we obtain ¢, by integrating Eq. (5.28),

such that .
Asy + / d)\ sy
ey = A , (5.29)
/ d)\/ S)\/
0
in deriving which, we also used a relation between L(D) and sy, i.e.,
1
L(D) = L(D|pws) / X sy (5.30)
0

This is, of course, consistent with the limiting values for A < A\g and A = 1, and also
establishes that, for all intermediate values, the credibility of a BLR is larger than its
size (see Fig. 5.7, the insets of Fig. 5.8, and Fig. 5.9 in Sec. 5.5),

ex>sy for0<A<1. (5.31)

Further, Eqgs. (5.28) and (5.29) tell us that in the A — 1 limit (L’Hopital’s rule may be

applied here), when both sy and ¢y vanish, their ratio is finite and exceeds unity,

C) 1 o L(D|ﬁML)

- = 1 for \ 1. 5.32
S}\—> T / (D) > or A\ — ( )
/d)\ S\
0

We note that this relation provides the value of L(D), since the maximal value L(D|pyy.)

of the point likelihood is computed earlier as it is needed for identifying the BLRs.
Relation (5.31) is also an immediate consequence of the following two inequalities

pl"Ob(D VAN R)\) > SA)\L(D|b\ML) )

prob(D ARy) > L(D) — (1 — s\)AL(D|pw) » (5.33)

which in turn follow from

XA(p)L(D|p) > XA(p)AL(D|pw)

[1—=Xx(p)]L(D]p) < [1—Xx(p)]AL(D|py) , (5.34)

with the equal sign holding only on the (interior part of the) boundary of R). The

84



5.3. Optimal error regions
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Figure 5.4: Geometrical meaning of the relation (5.29) between the size sy and the
credibility cy. For the chosen value of ), say ), the horizontal line from (0, s5) to (A, s5)
divides the area under the graph of s, into the two pieces A and B indicated in the
plot. The credibility is the fractional size of area B, that is ¢ = B/(A + B).

inequalities (5.34) state the defining property of the BLR: Inside the region, the point
likelihood is larger than its value on the interior boundary; outside it is less than that.

Now, by using Eq.(5.29), we write down the difference between ¢y and sy,

1 A 1
C)x — S\ = — |:S/\ <)\ —/ d)\/ S)\/> + (1 — S)\)/ d)\l S)\/:| . (5.35)
/ dX sy 0 A
0

Since each term on the right hand side of the equality is always positive except when

A = 0, we have the inequality Eq. (5.31) satisfied for all the values 0 < A < 1.

Inasmuch as the value of s) quantifies our prior belief that the actual state is in
the region R ), we are surprised when the data tell us that the probability for finding
the state in that region is larger. Accordingly, the SCR is the region for which we are
most surprised for the given prior belief. Moreover, if we wish to be quantitative about
these beliefs, we can use the number 10log;,(Cr/Sr) to measure the evidence for the
hypothesis that the actual state is in region R (in units of dB). Then there is more
evidence in favor of the BLR R than for any other region of the same credibility. This
matter and other aspects of Bayesian inference based on the concept of relative surprise

are discussed in Ref. [160].

Relation (5.29) has a simple geometrical meaning in terms of areas under the graph
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of sy, as explained in Fig. 5.4. This relation is also of considerable practical impor-
tance because we only need to evaluate the integrals of Eq. (5.24), but not those of
Egs. (5.27) and (5.14). Since the latter integrals require well-tailored Monte Carlo
methods to handle the typically sharply peaked point likelihood, the numerical effort
is substantially reduced if we only need to evaluate the integral of Eq. (5.24). Indeed,
error regions for the observed data are then concisely communicated by reporting sy
and cy as functions of A. With these, the end user interested in the MLR with the size
s of his liking or the SCR of her wanted credibility ¢ can determine the required value
of A. It is then easy to check whether a state is inside the specified error region. The
example of Sec. 5.5.3 illustrates the matter for an 8-dimensional reconstruction space,
for which the error regions would be impossible to visualize, but can still be easily
specified through reporting the sy and ¢y values.

Once more, we use the harmonic-oscillator example of Sec. 5.2.1 for an illustration.
Suppose, N = 2 copies have been measured, and we obtained one click each for the
two outcomes, so that the point likelihood is p1ps. In this situation, we have A\g = 0

and Xx(p) = n(4pip2 — N), so that ‘pl — p2| < /1 — X for the BLR R). This gives

sy = V1—X\,

oy = %(2 FAVI—A (5.36)

for the primitive prior, and

sy =1- gs.in_l(\ﬂ),

2
ex=1—Zsin"HVA) + ZV/A1 = N) (5.37)
™
for the Jeffreys prior.

5.3.4 Confidence regions

The confidence regions that were recently studied by Christandl and Renner [157], and

independently by Blume-Kohout [158|, are markedly different from the MLRs and the
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SCRs. The MLR and the SCR represent inferences drawn about the unknown state
p from the data D that have actually been observed. By contrast, confidence regions
are a set of regions, one region for each possible data, whether observed or not, from
the measurement of N copies. The confidence regions would contain any state in, at
least, a certain fraction of many N-copy measurements, if the many measurements were
performed. This fraction is defined as the confidence level.

When denoting by Cp the confidence region for data D, the confidence level v of

the set C of Cps for all conceivable data (for fixed N) is
Y(C) =min}  L(Dlp) e, (). (5.38)
D

where 7, (p) = 1if pisin Cp and 0 otherwise; the minimum is reached in the “worst
case”. For example, in the security analysis of a protocol for quantum key distribution,
one wishes a large value of v to protect against an adversary who controls the source
and prepares the quantum-information carriers in the state that is best for her.

Any set C, for which ~ has the desired value, serves the purpose. A smaller set
C’, in the sense that C7, is contained in Cp for all D, is preferable, but usually there
is no smallest set of confidence regions. Here, “smaller” is solely in this inclusion sense,
with no reference to a quantification of the size of a region and, therefore, there is no
necessity of specifying the prior probability of any region. Since the transition from
set C to the smaller set C’ requires the shrinking of some of the Cps without enlarging
even a single one, it is easily possible to have two sets of confidence regions with the
same confidence level and neither set smaller than the other.

For illustration, we consider the harmonic-oscillator example of Sec. 5.2.1 yet an-
other time. Figure 5.5 shows two sets of confidence regions (v = 0.8) and the corre-
sponding three SCRs (¢ = 0.8) for the primitive prior and the Jeffreys prior. Both
sets of confidence regions are optimal in the sense that one cannot shrink even one of
the regions without decreasing the confidence level, but neither set is smaller than the
other. In the absence of additional criteria that specify a preference, both work equally

well as sets of confidence regions. This generic non-uniqueness of confidence regions,
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P2

=-+to

Figure 5.5: Confidence regions and smallest credible regions. The bars indicate in-
tervals of p; = 1 — ps for the harmonic-oscillator example of Sec. 5.2.1, which has the
reconstruction space of a tossed coin. Two copies are measured. The left solid bars indi-
cate the regions for (ny,n2) = (0, 2) counts; the right solid bars are for (n1, n2) = (2,0);
and the central open bars are for (n1,n2) = (1,1). Cases (a) and (b) show two sets of
confidence regions for confidence level v = 0.8. Regions (c) and (d) are the SCRs for
the primitive prior and the Jeffreys prior, respectively, both with a credibility ¢ = 0.8.

and the arbitrariness associated with it, are in marked contrast to the SCRs, which are
always unique.

We also observe in this example that confidence regions tend to overlap a lot, which
is indeed unavoidable if a large confidence level is desired. By contrast, the SCRs for
different data usually do not overlap unless the data are quite similar. In Fig. 5.5, there
is no overlap of the SCRs for the data (ni,n2) = (0,2) and (2,0).

Another important difference of considerable concern in all practical applications
is the following. Once the data are obtained, there is the MLR and the SCR for these
data, and it plays no role what other MLRs or SCRs are associated with different data
that have not been observed. To find a confidence region for the actual data, however,
one must first specify the whole set C of confidence regions because the confidence level

of Eq. (5.38) is a property of the whole set.

5.4 Choosing the prior

The assignment of prior probabilities to regions in the reconstruction space should
be done in an unprejudiced manner while taking into account all prior information

that might be available. We cannot do justice to the rich literature on this subject
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and are content with noting that Ref. [162] reviews various approaches to constructing
unprejudiced priors. Here, we discuss some criteria that are useful when choosing a
prior, illustrating with examples familiar in quantum contexts.

A general remark is this: The chosen prior should give some weight to (almost) all
states, and it should not give extremely high weight to states in some part of the state
space and extremely low weight to other states. This is to say that the prior should
be consistent in the sense that the credibility of a region—its posterior content—is
dominated by the data, rather than by the prior, if a reasonably large number N of
copies is measured. For the examples of Fig. 5.8 in Sec. 5.5.2, N = 24 is close to being
“reasonably large”, while N = 2 in Fig. 5.5 is clearly not. Also, N = 60 in Sec. 5.5.3 is
not large enough to ensure data dominance, because the A\ values in Table 5.3 for the
primitive prior are much smaller than those for the Jeffreys prior.

Below, we describe a few criteria for choosing priors. We begin in Sec. 5.4.1 with the
common choice of a uniform prior; Sec. 5.4.2 discusses priors motivated by the utility of
the estimated state; Sec. 5.4.3 invokes symmetry arguments to restrict considerations
to priors that possess some symmetry properties; Sec. 5.4.4 presents form-invariant
prior constructions; Sec. 5.4.5 deals with the situation where one has a target state
in mind; and Sec. 5.4.6 is about priors induced by marginalization of full-state-space

priors according to what the data can tell us.

5.4.1 Uniformity

The time-honored strategy of choosing a uniform prior on Rg in which all states are
treated equally gets us into a circular argument. Our identification of the size of a
region with its prior content amounts to assigning equal probabilities to regions of
equal sizes, prior to acquiring any data. But that just means that we now have to
declare how we measure the size of a region without prejudice, and we are again faced
with the original question about a uniform prior.

In fact, there is no unique meaning of the uniformity of a prior. In the sense that

each prior tells us how to quantify the size of a region, each prior is uniform with respect
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to its induced size measure. To illustrate, reconsider the harmonic-oscillator example

of Sec. 5.2.1. For the primitive prior of Eq. (5.8), the parameterization

1 1
p1:§(11+u), p2:§<’l)—’U,),
1
dp1 dpz = dudv 5 (5.39)

gives

(dp) = dudv %77(1} +u)n(v —u)d(v—1)

1
— du 3 with -1 <u <1, (5.40)

where we integrate over v in the last step and so observe that the primitive prior is
uniform in u, that is: the size of the region u; < u < ug is proportional to us — u;.

Likewise, the parameterization

p1 =v(sina)?, py = v(cosa)?,

dp1 dp2 = dadv vsin(2a) (5.41)

gives

2
(dp) — da — Withogagg
T

(5.42)

for the Jeffreys prior of Eq. (5.9), which is uniform in the parameter «, instead. Other
priors can be treated analogously, each of them yielding a uniform prior in an appro-
priate single parameter.

Visualization of the uniformity for qubit priors can be found in Fig. 5.6. Plot (b)
shows uniform tiling of the unit disk by tiles of equal size. Here size is measured by
the primitive prior of Eq. (5.72), which is uniform in 2 and y, and also in 72 and ¢ (the
latter is used for the plot). Plots (c1) and (¢2) show uniform tilings of the unit disk for
the Jeffreys prior for the four-outcome POM of Eq. (5.73), while plots (d1) and (d2)
show those for the three-outcome POM of Eq. (5.74). The crosshair symmetry of the

four-outcome POM and the trine symmetry of the three-outcome POM are manifest
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Figure 5.6: Uniform tilings of the unit disk for four different priors. The disk is in the
xy plane, with the x axis horizontal, the y axis vertical, and the disk center at x = y = 0.
Tiling (a) is for the marginal prior of Eq. (5.52); tiling (b) depicts the primitive prior
of Eq. (5.72); tilings (c1) and (c2) illustrate the Jeffreys prior of Eq. (5.73) with the
blue dots (e) just outside the unit circle indicating the four directions onto which the
POM outcomes project; and tilings (d1)and (d2) are for the Jeffreys prior of Eq. (5.74),
the blue dots marking the three directions of the trine projectors. In each tiling, we
identify 96 regions of equal size by dividing the disk into eight “tree rings” of equal
size and twelve “pie slices” of equal size. In the tilings (a), (b), (cl), and (d1), the
boundaries of the pie slices are (red) rays and an arc of the unit circle; in the tilings
(a), (b), (c2), and (d2), the tree rings have concentric circles as their boundaries.

in their respective uniform tilings.

The parameterizations in Eqgs. (5.39) and (5.41), and the tilings of Fig. 5.6 exhibit
in which explicit sense the primitive prior and the Jeffreys prior are uniform. But
the priors are what they are, irrespective of how they are parameterized. They are
explicitly uniform in a particular parameterization and implicitly uniform in all others.
Uniformity, it follows, cannot serve as a principle that distinguishes one prior from

another.
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This ubiquity of uniform priors for a continuous set of infinitesimal probabilities
is in marked contrast to situations in which prior probabilities are assigned to a fi-
nite number of discrete possibilities, such as the 38 pockets of a double-zero roulette
wheel. Uniform probabilities of 1/38 suggest themselves, are meaningful, and clearly
distinguished from other priors, all of which have a bias. Uniformity in a particu-
larly natural parameterization of the probability space might also be meaningful. This,

however, invokes a notion of “natural” that others may not share.

5.4.2 Utility

In many applications, estimating the state is not a purpose in itself, but only an
intermediate step on the way to determining some particular properties of the physical
system. The objective is then to find the value of a parameter that quantifies the wutility
of the state.

For example, one could be interested in the fidelity of the actual state with a target
state, or in an entanglement measure of a two-partite state, or in another quantity
that tells us how useful are the quantum-information carriers for their intended task.
In a situation of this kind, one should, if possible, use a prior that is uniform in the
utility parameter of interest. Contrary to the situation of the previous section, where
requiring uniformity in Rg may be ill-advised because uniformity is a parameterization-
dependent notion, here we specify uniformity for the parameter we are interested in.

To illustrate, consider a single qubit. Suppose the utility parameter is the purity
£(p) = tr{p?} of the state p. With the Bloch-ball representation of a qubit state,
p =31+ 0), where o = tr{op} = (o) is the Bloch vector and o is the vector of

Pauli matrices, the purity is given by
1 2 .
§p) = 5(1+ %) with o= a]. (5.43)
A prior uniform in purity induces a prior on the state space according to

(dp) x d€dQ oxx pdpdQ2, (5.44)
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where we parameterize the Bloch ball by spherical coordinates (o, 8, ¢). Here, d2 is
the prior for the angular coordinates; the prior for the radial coordinate g is fixed by
our choice of uniformity in £. Irrespective of what we choose for df2, the marginal prior
for ¢ is uniform in &.

If one can quantify the utility of an estimator by a cost function, an optimal prior
can be selected by a minimax strategy: For each prior in the competition one determines
the maximum of the cost function over the states in the reconstruction space, and then
chooses the prior for which the maximum cost is minimal. In classical statistics, such
minimax strategies are common (see, for instance, Chapter 5 in Ref. [165]); for an

example in the context of quantum state estimation, see Ref. [50].

5.4.3 Symmetry

Symmetry considerations are often helpful in narrowing the search for the appropriate
prior. For a particularly instructive example, see section 12.4.4 in Jaynes’s posthumous
book [166].

Returning to the uniform-in-purity prior of Eq. (5.44), one can invoke rotational
symmetry in favor of the usual solid-angle element, dQ2 = sin 8df d¢, as the choice of
angular prior. The reasoning is as follows: The purity of a qubit state does not change
under unitary transformations; unitarily equivalent states have the same purity. Now,
regions that are turned into each other by a unitary transformation have identical
radial content whereas the angular dependences are related by a rotation. Invariance
under rotations, in turn, requires that the prior is proportional to the solid angle,
hence the identification of d{2 with the differential of the solid angle. Note that the
resulting prior element (dp) is different from the usual Euclidean volume element,
0%dp sin #df d¢, which would be natural if the Bloch ball were an object in the physical
three-dimensional space. But it ain’t.

Symmetry arguments can be very helpful if used carefully and not blindly. For
a fairly tossed coin, the prior should not be affected if the probabilities for heads

and tails are interchanged, w(p1, p2) = w(p2, p1). However, for the harmonic-oscillator
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example of Sec. 5.2.1, which has the same reconstruction space as the coin, there is
poor justification for requiring this symmetry because the two probabilities—of finding

the oscillator in its ground state, or not—are not on equal footing.

5.4.4 Invariance

When one speaks of an invariant prior, one does not mean the invariance under a
change of parameterization—all priors are invariant in this respect (see Sec. 5.4.1)—
but rather a form-invariant construction in terms of a quantity that, preferably, has
an invariant significance. We consider two particular constructions that make use of
the metric induced by the response of the selected function to infinitesimal changes of
its variables.

The first construction begins with a quantity F(p) that is a function of all proba-
bilities p = (p1,...,px). We include the square root of the determinant of the dyadic

second derivative in the prior density as a factor,

(5.0:)
det { [ ———
Ip; Opk ) i

where westr(p) contains all the delta-function and step-function factors of constraint

1/2

(dp) = (dp) wcstr(p)v (5'45>

as well as the normalization factor that ensures the unit size of the reconstruction
space. The prior defined by Eq. (5.45) is invariant in the sense that a change of

parameterization, from p to «, say, does not affect its structure,

(795
det ¢ | m7——%—
804]' aak jk

because the various Jacobian determinants for the reparameterization take care of each

1/2

(dp) = (dOé) Westr (p(a)) ) (546>

other. Since westy(p) enforces all constraints, the pgs are independent variables when
F(p) and G(p,v) are differentiated in Eq. (5.45) and Eq. (5.47), respectively.

For the second construction, we use a data-dependent function G(p, ) of the prob-
abilities p and the frequencies v = (v1,12,...,vk) with v; = n;/N. Here, the square

root of the determinant of the expected value of the dyadic square of the p-gradient of
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Table 5.1: Form-invariant priors constructed by one of the two methods described
in the text. The “v/det” column gives the p-dependent factors only and omits all p-
independent constants. The first method of Eq. (5.45) proceeds from functions of the
probabilities that have extremal values when all probabilities are equal or all vanish
save one. The second method of Eq. (5.47) uses functions that quantify how similar
are the probabilities and the frequencies. The “hedged prior” is named in analogy to
the “hedged likelihood” [38].

method primary function Vdet
1st —>  pilogp S —
(Shannon entropy) (Jeffreys prior)
1st Z pi 1
(pllclrity) (primitive prior)
2nd Z VkDk pip2 - PK
(innel; product) (hedged prior)
1
2nd ; vy log(vg /i) \/ﬁ

(relative entropy) (Jeffreys prior)

G is a factor in the prior density,

1/2

(dp) = (dp) Westr (P) 5 (5.47)

det <8G8G>
Ip; Opr ) .
where f(v) denotes the expected value of f(v),
fv) = LDIp)f(v). (5.48)
D

We have, in particular, the generating function

K K N
exp (Z (Ik;l/k) = (Z ea’“/Npk) (5.49)
k=1 k=1

for the expected values of products of the vgs. The prior defined by Eq. (5.47) is

form-invariant in the same sense, and for the same reason, as the prior of Eq. (5.45).
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Table 5.1 reports a few examples of “v/det” factors constructed by one of these two
methods. It is worth noting that the Jeffreys prior can be obtained from the entropy
of the probabilities by the first method as well as from the relative entropy between
the probabilities and the frequencies by the second method. The latter is a variant of

Jeffreys’s original derivation [161] in terms of the Fisher information.

5.4.5 Conjugation

Sometimes there are reasons to expect that the actual state is close to a certain target
state with probabilities t = (¢1,t9,...,tx). This is the situation, for example, when a
source is designed to emit the quantum-information carriers in a particular state. A

conjugate prior

8
(dp) = (dp) (ptfpt; - -pi?) Westr(p)  with 8> 0 (5.50)

could then be a natural choice. Such priors are called “conjugate” in standard statistics
literature because the (---)? factor has the same structure as the point likelihood: a
product of powers of the detection probabilities. The (---)? factor is maximal for p = ¢,
and the peak is narrower when 3 is larger.

The conjugate prior can be understood as the “mock posterior” for the primitive
prior that results from pretending that 8 copies have been measured in the past and
data obtained that are most typical for the target state. Therefore, a conjugate prior
is quite natural to express the expectation that the apparatus is functioning well. The
posterior content of a region will be data-dominated only if N is much larger than 5.

In this context, it may be worth noting that the Bayesian mean state (see Sec. 2.3.3.2

in Chapter 2),

Pons — /R @), (5.51)

computed with the conjugate prior above, is usually not the target state unless 3 is
large. One could construct priors for which pgy is the target state, but the presence of

the westr(p) factor requires a case-by-case construction.
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5.4.6 Marginalization

All priors used as examples—the ones in Egs. (5.40), (5.42) and (5.50), and Table 5.1—
have in common that they are defined in terms of the probabilities and, therefore, they
refer to the particular POM with which the data are collected. While this takes duly
into account the significance of the data, it does not seem to square with the point of
view that prior probabilities are solely a property of the physical processes that put

the quantum-information carriers into the state that is then diagnosed by the POM.

When adopting this viewpoint, one begins with a prior density defined on the en-
tire state space. In addition to the parameters that specify the reconstruction space
(essentially the probabilities p), this full-space prior will depend on parameters whose
values are not determined by the data. There could be very many nuisance parameters
of this kind, as illustrated by the somewhat extreme harmonic-oscillator example of
Sec. 5.2.1. Upon integrating the full-space prior over the nuisance parameters, one ob-
tains a marginal prior on the reconstruction space. As a function on the reconstruction
space, the marginal prior is naturally parameterized in terms of the probabilities and

so fits into the formalism we are using throughout.

We note that the invoking of “additional criteria” for a unique mapping from p to p,
as mentioned at the end of Sec. 5.2.1, is exactly what would be required if one wishes
to report estimated values of the nuisance parameters. That, however, goes beyond
making statements that are solidly supported by the data and is, therefore, outside the

scope of our present discussion.

The symmetric uniform-in-purity prior of Secs. 5.4.2 and 5.4.3 provides an example
for marginalization if the POM only gives information about = (o) and y = (o), but
not about z = (0,). We express the full-space prior in cartesian coordinates, integrate

over z, and arrive at

2 9
(dp) = dxdy/d” oy 2
x2+y + 22

1

= dxdy —77(1 — 22 —y?)cosh™? (5.52)
T
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This marginal prior is a function on the unit disk in the xy plane, which is the natural
choice of reconstruction space here. When one expresses (dp) in polar coordinates,
x +1iy = rel?, one sees that (dp) is uniform in ¢ and in 72 cosh™(1/r) — V1 — 72,
which increases monotonically from —1 to 0 on the way from the center of the disk at

r = 0 to the unit circle where 7 = 1. Plot (a) in Fig. 5.6 illustrates the matter.

5.5 Examples

In this section, we first apply the method of constructing MLRs and SCRs to study the
problem of a classical coin. Then for illustrations in the quantum scenario, we identify
optimal error regions for single qubit (confined to the equatorial plane of the Bloch
sphere) and two-qubit states from computer-generated data that simulate incomplete

tomography with few measured copies.

5.5.1 The classical coin

As the simplest example, we consider the classical coin and try to find out the probabil-
ity p that heads (or tails) turn up by tossing a biased coin. We use a general normalized

prior function, parameterized by a factor 3, i.e.,

(26 +1)!

e PPl with §> -1, (5.53)

m(p, B) =

which corresponds to the primitive prior if 8 = 0, the Jeffreys prior for two outcomes
if = —1/2, and the hedged prior if 5 = 1/2. Then for a BLR R with 0 < A < 1, the

size of it using the above prior is calculated through Eq. (5.24), such that

(8) = /R (dp) 7(p. B)

- W(sz —Bpl)(5+1,ﬁ+1), (5.54)

where By(a,b) = / 7 1(1 —t)>7dt is the incomplete beta function and the BLR R
0

is simply the interval [p;, p2] in the real unit line and has the boundary condition being
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(a)
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Figure 5.7: Plots of the credibility c) versus the size sy for the BLRs of two simulated
experiments of coin tossing by using various 3 values of the prior, i.e., Eq. (5.53). Plot
(a) is for N = 100 total tosses; plot (b) is for N = 10 total tosses with the sy values
shown up to 0.3 only, since ¢y = 1.0 for all values of sy > 0.3.

L(D|p1) = L(D|p2). By applying Eq. (5.27), the corresponding credibility is

/R (dp) 7(p. B) L(DIp)
() = IR

[ @) w5 LDl
Ro

(Bp2—3p1>(n+ﬁ+1,]\f—n+6+1)
- Bn+B+LN-—n+p8+1) ’ (5.55)

assuming that n heads (or tails) occur out of N total tosses and B(a,b) =
(a—1)1(b—1)!

(a+b—1) is the (complete) beta function. Another way to calculate the credibil-
a - 1)!
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ity is to use Eq. (5.29), in which the pre-obtained values of the size s) can be used to
calculate ¢y without invoking the normally highly-peaked likelihood function.

In Figs. 5.7(a) and 5.7(b), we show the plots of the credibility ¢y versus the size
sy for the BLRs of two simulated experiments by using various 8 values of the prior,
i.e., Eq. (5.53). Figure 5.7(a) was generated by simulating a total number of N = 100
tosses; while Fig. 5.7(b) was done by using N = 10 tosses only. As can be seen from the
figures, the ratio ¢y /sy (gradients of the plots) in Fig. 5.7(b) is much larger than that in
Fig. 5.7(a). The reason is that with a large N, the likelihood function L(D|p) is highly
peaked, which plays a dominant role when calculating the credibility c). However, the

size sy of a BLR is solely determined by the prior.

5.5.2 Incomplete single-qubit tomography

For a first illustration in the quantum scenario, we consider the simplest situation that
exhibits the typical features: The quantum-information carriers have a qubit degree of
freedom (confined to the equatorial plane of the Bloch sphere), which is measured by

one of two standard POMs that are not informationally complete.

5.5.2.1 POMs and priors

For both POMs, the unit disk in the xy plane suggests itself for the reconstruction
space Rg. The first POM is the crosshair measurement (K = 4) that is built from four
pure states symmetrically arranged in the xy plane of the Bloch sphere, subtending

angles of m/2 between pairs of states,
1 . ) T
(1) (Wil = 5(1 + 0u cos gy + oy singy), with ¢, = ¢o + (k= 1) 7, (5.56)

for k =1,2,3,4, where os are the usual Pauli operators. It it easy to check that these

four states are complete, such that

4
5D Il =1, (5.57)
k=1
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but they are not pairwise linearly independent, meaning that the POM outcomes con-

structed from them are not symmetric (not a symmetric POM),
1 .
y, = !¢k>§<¢k1, with k = 1,2,3, 4. (5.58)

As is required for is a physical POM, Eq. (5.57) ensures that Zi:l I = 1. Every
physical state lying in the xy plane of the Bloch sphere can be described in polar

coordinates as
p= % [14+7r(o,cos¢p+ ozsing)], with0 <r <land0<¢ < 27. (5.59)
Then the outcome probabilities for state p are given by
pr = tr{pll;} = %[1 +rcos(op— )], k=1,2,3,4. (5.60)

For the simulation, we make the phase ¢y = 0 being constant and combine the projec-

tive measurements of o, and o, into the four-outcome POM (K = 4) with probabilities

D1 1 D3 1
=(1+a), =-(1+y), 5.61
pz} 1£2) p4} 21 EY) (5.61)

with ¢ = (0,) and y = (o). Notice that we have Zi:l pr=1,p1+p2=p3+ps=1/2,

and also an additional constraint for this POM, such that

4
1 , 1 1,\ 3
S<> =1 ) <2, .
4_k_1pk 4<1+2r>_8 (5.62)

Therefore, the permissible probabilities are identified by

Westr(p) = 1(p) 5(p1 + p2 — 3) 6(p3 +pa — 3) (3 — 8p?), (5.63)
where
K K
n(p) =[] npx) and p*>=> p}. (5.64)
k=1 k=1
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The dotted equal sign in Eq. (5.63) stands for “equal up to a multiplicative constant”,

namely the factor that ensures the unit size of the reconstruction space.

The second POM (introduced briefly in Sec. 2.4.1 of Chapter 2) that we use is the
three-outcome trine measurement (K = 3), which is indeed a symmetric POM with
three POM outcomes built from three pure states symmetrically arranged in the xy

plane of the Bloch sphere, subtending angles of 27 /3 between pairs of states, such that

1 2

(V) (Wl = 5(1+ 02 cos dp + owsingy), with ¢y, = o + (K —1) =, (5.65)

for kK =1,2,3. These trine states are pairwise linearly independent and complete since

3
3 1 2
2_ 2 - - =
(Ol = i+ 3 and 532 o =1 (5.66)
The outcomes of the trine POM are
2 )

Equation (5.66) ensures that 3.3 _, Ty = 1 and the outcome probabilities are

1
pr = tr{pll;} = 5[1 +rcos(¢p— )], k=1,2,3. (5.68)
Notice that we have Zi:l pr = 1, and the trine outcome probabilities also satisfy the

following constraint,
3
1 , 1 1,) 1
< =-(14+2r2) <= .
s <D0k 3<+2r)_2, (5.69)
for all the physical qubit states. For the simulation, we again make the phase ¢y = 0
being constant, in which case the POM outcomes can be represented by subnormalized

projectors on the eigenstates of o, and (-0, +v/30,)/2 with eigenvalue +1. It then

has the probabilities

plzé(1+$), f}:é@—xi\/gy), (5.70)
3
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for which

Westr (P) = 1(p) 3(p1 + p2 + p3 — 1) (1 — 2p?) (5.71)

summarizes the constraints for the trine measurement that the permissible values of
P1, P2, p3 should obey.
Both POMSs have the same expression for the primitive prior,

dep

.72
=3 (5:72)

(dp) = drdy —n(1 —* — ) = d(r?)

where z+iy = re'? with 0 < r < 1 and ¢ covers any convenient range of 2. This prior
is uniform in 2 and y, and also uniform in 72 and ¢. The polar-coordinate version is

the more natural parameterization of the unit disk, which is used for the plot (b) in

Fig. 5.6.

The Jeffreys prior for the four-outcome POM is

2 drrde

(dp) = = :
i \/1 —rZ 4 %r‘l sin(2¢)?2

(5.73)

Plots (c1) and (c2) in Fig. 5.6 show uniform tilings of the unit disk for this prior. For

the three-outcome POM, we have the Jeffreys prior

1 drrde
4 — 24 sin"1(1/3) \/1 — 372 4 113 cos(3p)

(dp) = : (5.74)

and the tilings of plots (d1) and (d2) in Fig. 5.6. The crosshair symmetry of the four-
outcome POM and the trine symmetry of the three-outcome POM are manifest in their

respective uniform tilings.

5.5.2.2 Computer-generated data

Before jumping to the simulated experiments, we need some mathematical tools to

simplify the calculation. We follow Ref. [50] to define the generalized moments for a
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K-outcome measurement as
. K
M) = 2 [0 o) (0. 5) X0 0) [
k=1
K
-y /R (Ap) () 7. B) [ %, 0<A<1,  (575)
A k=1

where w(p) is the characteristic function accounting for all the physicality constraints,
and 7(p, B) is the prior function with an additional parameter 3, for instance, form like

the following (unnormalized),

K \F
(p, B) o (Hpk> : (5.76)
k=1

The values of 5 can take any real number as long as all the integrals for the moments
exist, i.e., f = —1/2 gives the Jeffreys prior and § = 0 is the primitive prior. The BLR
R, is determined by the step function X (p) = n(L(D|p) — AL(D|pu.)), which is the
same as the defined Ry using X, (p) in Eq. (5.22).

The moments have permutation symmetry [50], such that
Mé‘(m,ng, N ,TIK) = Mé\(ng,ng, v ,nK,nl) == Mé‘(nK,nl, N ,nK_l), (5.77)
and obey a sum rule [50],

Mé\(nl+1,n27---,n1<)+M,é\(”1,n2+1,---,nf()+"'

"'+M$(TL1,7’L2,.--,7’LK+1) :Mg’\(nl,TLQ,-..,nK), (578>

since we have Zszl pr = 1. With the moments defined in Eq. (5.75), the size s, and
the credibility ¢y of a BLR R for a K-outcome measurement can be simply expressed

as the following,

A A
SA(5)2M5(0787:::70) C/\(B):Mﬁ(nl,ng,...,nK) . (5.79)

Mg(m,ng, e ,nK)
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(a)

Figure 5.8: Smallest credible regions for simulated experiments. Twenty-four copies
are measured by the POMs of Sec. 5.5.2.1, which have the unit disk of Fig. 5.6 as
the reconstruction space. Plot (a) is for the four-outcome POM with the crosshair
indicating the orientations of the two projective measurements. Plot (b) is for the three-
outcome measurement with the orientation of the trine indicated. The red star (x) at
(z,y) = (0.6,0.2) marks the actual state that was used for the simulation. For each
POM, there are SCRs for the data of two simulated experiments, with black triangles
(») indicating the respective MLEs. The boundaries of the SCRs with credibility
¢ = 0.9 are traced by the continuous lines; all of these SCRs contain the actual state.
The dashed lines are the boundaries of the SCRs with credibility ¢ = 0.5; the actual
state is inside half of these SCRs. Red lines are for the primitive prior of Eq. (5.72),
the blue lines are for the Jeffreys priors of Egs. (5.73) and (5.74), respectively. — The
insets in the lower left corners show the size sy and the credibility ¢, for the BLRs
of two simulated experiments. Inset (a) is for (6, 3,10,5) counts for the four-outcome
POM and the Jeffreys prior; inset (b) is for (13,7,4) counts for the three-outcome
POM and the primitive prior. The dots show the values computed with a Monte Carlo
algorithm. There is much more scatter in the ¢, values than the sy values. The red
lines are fits to the s) values, with the fits using twice as many values than there are
dots in the insets. The green lines that approximate the ¢y values are obtained from
the red lines with the aid of Eq. (5.29).
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The denominators in the two expressions with superscripts A = 0 serve as normalization
purposes, even if the prior distributions may not be normalized previously. When the
parameter A = 0, we are taking the whole state space into account, which gives the
size and the credibility all equal to 1; if A = 1, the region converges to a single point,

which is exactly the MLE.

With the previous tools at hand, we write down the moments for the four-outcome

POM with the Jeffreys prior as well as the primitive prior, in polar coordinates,

4
1 p—
Ml)\/Q(nlan27n3,n4) = / Tdrng)Hka 1/2’
Ra k=1

T
1 4
M} (n1,ng,n3,n4) = 7r/ rdrde [ pp*, (5.80)
R k=1

and for the trine POM with these two priors, respectively,

3
1 -
M1>\/2(n17n27n3) = / Tdrd¢Hpkk 1/27
R k=1

m
1 3

M}MNny,ng,ng) = / rd’r’dd)HpZ’“. (5.81)
TR k=1

Then the size sy and the credibility ¢y are calculated by applying Eq. (5.79).

Figures 5.8(a) and 5.8(b) show SCRs obtained for simulated experiments in which
N = 24 copies of a qubit state are measured. The actual state used for the simulation
has x = 0.6 and y = 0.2. Its position in the reconstruction space is indicated by the
red star (x). In Fig. 5.8(a), we see the SCRs for the four-outcome POM. Two measure-
ments were simulated, with (n1,n2,ns,ns) = (8,5,10,1) and (6,3,10,5) clicks of the
detectors, respectively, and the triangles (A) show the positions of the corresponding
MLESs. For each data, the plot reports the SCRs with credibility ¢ = 0.5 and ¢ = 0.9,
both for the primitive prior of Eq. (5.72) and for the Jeffreys prior of Eq. (5.73). The
actual state is inside two of the four SCRs with credibility ¢ = 0.5 and is contained in

all four SCRs with credibility ¢ = 0.9.
Not unexpectedly, we get quite different regions for the two rather different sets of
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detector click counts. Yet, we observe that the choice of prior has little effect on the
SCRs, although the total number of measured copies is too small for relying on the
consistency of the priors. The same remarks apply to the SCRs for the three-outcome
POM in Fig. 5.8(b); here we counted (ni,n2,n3) = (15,8,1) and (13,7,4) detector
clicks in the simulated experiments.

In Sec. 5.3.3, we remarked that the estimator regions are properly communicated
by reporting sy and cy as functions of A\. This is accomplished by the insets in Fig. 5.8
for two of the four simulated experiments. The dots give the values obtained by numer-
ical integration that uses an (adapted) Monte Carlo algorithm. The scatter of these
numerical values confirms the expected: The computation of sy only requires sampling
the probability space in accordance with the prior and determining the fraction of the
sample that is in Ry; for the computation of ¢\ we need to add the values of L(D|p)
for the sample points inside Ry; and since L(D|p) is a sharply peaked function of
the probabilities, the s) values are more trustworthy than the c) values for the same
computational effort. The line fitted to the sy values is a Padé approximant (see, for
example, section 5.12 in Ref. [167]) that have taken the analytic forms near A = A\g = 0
and A = 1 into account (see below). The line approximating the ¢, values is then

computed in accordance with Eq. (5.29).

5.5.2.3 Analytic forms of s) near A\=0and A =1

The behaviors of sy near A = 0 and A = 1 can be analyzed in the general situation
of having a probability space with dimension dj,. There are actually two different, yet
quite similar scenarios. Here we only consider the case when (a small vicinity of) the
MLE is contained inside the probability space. When A < 1, it’s easy to show that the

size sy takes on the following form,

dp/2
S\ X <log )\) < 1, (5.82)

which can be rewritten as

log (1 - si/dp) o log . (5.83)
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Whereas when A 2 0, the size sy is approximated by
Sy < 1 —a\?, (5.84)
where a and « are two undetermined free factors, and again we rewrite it as

2
log (1 - si/dp> x log d—: +alog\. (5.85)

By now, we see that both of the relations (5.83) and (5.85) are linear between
log (1 — s?\/dp) and log A, knowing which greatly helps interpret the data (see Fig. 5.9).
Depending on the likelihood function, sy changes abruptly near A = 0, while near A =1
the data are not trustworthy because of noise. The scenario when the MLE lies on the
boundary of the probability space has quite similar results, with all the entries of d, in

(5.82)—(5.85) being replaced by (d,, + 1).

5.5.3 Incomplete two-qubit tomography

For a second illustration, we consider the situations that arise in the quantum-key-
distribution schemes by Bennett and Brassard (BB84 [168|) and the trine-antitrine
(TAT) scheme of Ref. [169]. Both schemes can be implemented by having a source
of entangled qubit pairs distribute one qubit each to the two communicating parties.
Prior to any key generation, the two-qubit state emitted by the source needs to be
characterized. It is desirable to achieve quantum state estimation with reliable error

regions without sacrificing many data that are then not available for the key generation.

5.5.3.1 POMs and computer-generated data

In the BB84 scheme, each qubit is measured by the crosshair POM of Eq. (5.61); the
resulting two-qubit POM has sixteen outcomes that obey eight constraints that give
delta-function factors in westy(p). In the TAT scheme, one qubit is measured by the
trine POM of Eq. (5.70) and the other qubit by the antitrine POM that has the signs of

x and y reversed in Eq. (5.70); the resulting two-qubit POM has nine outcomes subject
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to the single delta-function constraint of unit sum. Accordingly, the probability space
is eight-dimensional for both schemes,® and we cannot report the SCRs by showing
the optimal error regions in the reconstruction space with plots, as was possible for
the two-dimensional probability space in Fig. 5.8. Therefore, we employ the strategy
of Sec. 5.3.3 and report the size s, and the credibility ¢y of the respective BLRs as

functions of A.

For the generation of the simulated data, we first add noise to the singlet state by
putting it through a random Pauli channel, which is used as a simple model for noise

in a communication protocol. The channel acts on an input state as

p— Z ik (0; ® o) p(oj @0y), withj k=0,2,y,z, (5.86)
I

where o denotes the single-qubit identity operator, and the rj;s are sixteen randomly
chosen probabilities. The 60 copies of the true state come from passing 60 copies of
the singlet state through one instance of the random Pauli channel, i.e., the 7j;s are
randomly picked once, with rgg given a higher weight of 0.7 to simulate weak noise.
The resulting true state has the probabilities for the two-qubit POMs given in the top
row of Table 5.2. For example, the “12” entry in the 4 x 4 table for the double-crosshair
POM is the probability for outcome II; ® ITy = (1 + 05) ® 3(1 — 0,). The “11” entry
of the 3 x 3 table for the trine-antitrine POM is 16/9 times that number. Note that all
marginal probabilities (sums of rows and sums of columns) are equal; this is so because
the reduced single-qubit states of the true state are completely mixed. For the same
reason, both tables are symmetric and the lower-left and upper-right 2 x 2 subtables
of the 4 x 4 table have entries of 1/16 = 0.0625. More generally, there is a one-to-one
correspondence between the 16 permissible probabilities in the 4 x 4 table and the 9

permissible probabilities in the 3 x 3 table, because all table entries are determined by

5In actual experiments, the probability space is nine-dimensional because one must account for the
no-click probability of the qubit pairs that do not give rise to coincidence clicks. Further, the state
estimation could also exploit the data collected for single-qubit detection without the coincidental
detection of the partner qubit. Consistent with the footnote in Sec. 5.2.3, we are here content with
the idealized situation of perfect detection devices, because our objective is to give an example for a
higher-dimensional space, rather than evaluating real experimental data.
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Table 5.2: Computer-generated data for the estimation of a two-qubit state from
measuring 60 identically prepared copies. The first row gives the joint probabilities
of the true state. The broken second row shows the number of detector-click pairs
obtained in the simulated experiment (and their expected values) together with the
single-qubit marginals. The third row reports the joint probabilities of the MLEs for
the data in the second row. In each row, we have a 4 x 4 table on the left for the
double-crosshair POM of the BB84 scenario and a 3 x 3 table on the right for the
9-outcome POM of the TAT scheme. The rows of a 4 x 4 table for the double-crosshair
POM refer to the four II;s of the first qubit in the pair and the columns refer to the II;s
of the second qubit; entry “j&” is the probability for outcome II; ® II;. Analogously,
entry “jk” in a 3 x 3 table for the TAT scheme is the expectation value of 11; ® II, with
trine outcome II; and antitrine outcome IIj.

double-crosshair POM

trine-antitrine POM

2

3

4

3 1 2 3
o .3
££ 1]00206 0.1044 0.0625 0.0625 101856 00739 0.0739
ZE 201044 0.0206 0.0625 0.0625
$= 210.0739 0.1848 0.0747
=S 300625 0.0625 0.0212 0.1038 3100739 0.0747 0.1848
T A 4100625 0.0625 0.1038 0.0212 ’ ' :
1 2 3 4
110(1.24) 4(6.26) 6(3.75) 4(3.75) [ 14(15)
=@ 2|6(626) 3(L24) 8(3.75) 4(3.75) | 23(15)
EE  3[3(375) 1(3.75) 0(1.27) 8(6.23) | 12(15)
[}
T 411(3.75) 7(3.75) 4(6.23) 1(1.27) | 13(15)
£y 10(15) 15(15) 18(15) 17(15)
£ g
2 1 2 3
= 1[11(11.14) 4(4.43)  5(4.43) |20(20)
=g 2] 2(4.43) 10(11.09) 5(4.48) |17(20)
S & 3| 4(4.43)  6(4.48) 13(11.09) | 23(20)
= 17(20)  20(20)  23(20)
’ | 1 2 3 4 o ) 3
£ 1]0.0056 0.1012 0.0497 0.0571 101833 00667 0.0833
E;; 210.0939 0.0493 0.0821 0.0611 5100333 01667 0.0833
Eg 310.0630 0.0344 0.0025 0.0949 2100667 0.1000 0.2167
2 4]0.0365 0.1160 0.1293 0.0232 ' ‘ '

the expectation values of A® B with A, B = 1,0,,0,.

Simulated measurements of 60 qubit pairs in the true state for each POM produced

the counts of detector-click pairs in the second row of Table 5.2; expected values are
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given in parentheses. Owing to the statistical fluctuations, the tables of counts are not
symmetric’ and the marginal counts are not equal.

The third row of Table 5.2 shows the corresponding MLE probabilities. These
probabilities are equal to the relative frequencies of the counts for the 9-outcome POM,
but are different from the relative frequencies for the 16-outcome POM. This tells
us that the computer-generated data are not typical for the double-crosshair POM,

whereas we have typical data for the trine-antitrine POM.

5.5.3.2 Size and credibility of the BLRs

As noted in Sec. 5.3.3, the primary task of the data evaluation is the computation of
the multi-dimensional integrals that give the size sy of the BLRs for the whole range of
0 < A < 1. For the data in Table 5.2, these are integrals over eight-dimensional regions.

We used a random-sampling technique for this purpose.

As a preparation, we generated a random sample of 648 785 permissible sets of prob-
abilities, uniformly distributed in accordance with the primitive prior (see Sec. 5.5.3.3
below). In view of the one-to-one correspondence between the permissible probabilities
of the 16-outcome POM and the 9-outcome POM, the same random sample can be,
and was, used for both POMs.

The actual data processing consists of two steps. In the first step, we determine the
size sy for the 161 values of A\ with —log;o A = 0.0(0.1) 16.0. This requires a simple
counting of how many samples are inside the BLR R if the primitive prior is used. In
the case of the Jeffreys prior, one adds the weights (pips - - - )~'/2 of the samples inside
the BLR. The correct normalization follows from sy—g = 1.

In the second step, the integrals needed in Eq. (5.29) are evaluated, for which a
simple linear interpolation between adjacent (), s)) pairs is sufficiently accurate. Then,
¢y is known as a function of A and the \ values for which we have 99% or 95% credibility

are determined.

"One usually restores the symmetry by the so-called “twirling” before the key generation protocol
is executed. The characterization of the source, however, should be done without the twirling.
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Table 5.3: Threshold \ values for 99% and 95% credibility for the data of Table 5.2
and Fig. 5.9, and the sizes of the respective BLRs. The true state is inside the Rys
with A < 3.368 x 1073 for the 16-outcome POM (with its untypical data), and inside
the BLRs with A < 0.2486 for the 9-outcome POM.

16-outcome POM 9-outcome POM
.ng y A S\ C) A S\ C)
-*g -8 6.70 x 107° 0.0279 0.99 1.92 x 10_fl 0.0601 0.99
-g & 6.03x10~* 0.0106 0.95 1.44 x 10~% 0.0268 0.95
E} )\ S\ C) )\ S\ C)
—
&E -8 1.73 x 10~* 0.0374 0.99 6.74 x 107° 0.0186 0.99
2 & 1.35x 103 0.0161 0.95 6.20 x 10~ 0.0070 0.95

We show sy and c) as functions of A in Fig. 5.9. Table 5.3 reports the X\ values of
the 99% and 95% credibility thresholds. We observe that for the 16-outcome POM,
the true state is inside the SCRs with 99% credibility for both the primitive prior and
the Jeffreys prior, whereas it is inside the 95% SCR only for the primitive prior but
not for the Jeffreys prior. This is more evidence that these data are untypical. By
contrast, for the 9-outcome POM, the true state is inside all SCRs for both priors and
both values of the credibility.

Typicality, or lack thereof, can also be noticed in Fig. 5.9. Since the Jeffreys prior
gives more weight to the regions near the boundary of the probability space than the
primitive prior, and less weight to regions deep inside, one expects that the values of
sy for the primitive prior are larger than those for the Jeffreys prior if the data are
typical and, accordingly, the MLE is not close to the boundary. This is indeed the case

for the trine-antitrine data, but not for the double-crosshair data.

5.5.3.3 Numerical effort

The two steps of data evaluation, the computation of the size s) and then the credi-
bility cy, take a few seconds of CPU time. The preparation of the random sample of
permissible probabilities, which could be done ahead of the data taking, lasts much
longer. For each potential sample of probabilities, we first generate nine random num-

bers x1,x92,...,x9 uniformly and independently between 0 and 1. Then, the nine
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Figure 5.9: The size sy (dotted lines) and the credibility ¢y (solid lines) as functions of
A for the data of Table 5.2. The top plot is for the double-crosshair POM, the bottom
plot is for the trine-antitrine POM; curves ‘a’ are for the primitive prior, curves ‘b’ are
for the Jeffreys prior. The abscissa is linear in log A. For A < 1, the BLRs are so small
that only very few sample points are inside and the sizes s) have comparatively large
fluctuation errors. This statistical noise is visible in the bottom-right corners of the
plots. It has no bearing, however, on the accuracy of the credibility ¢y in the important
range of smaller A values, as one notes upon recalling Fig. 5.4.
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probabilities are chosen according to

log xy,

= ok withk=1,2,..,9, (5.87)
> ey logzy

Pk

which constitute a sample in the eight-dimensional simplex of the classical nine-sided
die, and the samples are distributed in accordance with the primitive prior. This can

be checked easily by showing that

1 1 log x log x
0 0 > 1 logxy > o logxy

9
=dpy---dpgé (Zpk - 1) . (5.88)

k=1

The sample p = (p1,pa, ..., pg) is accepted if it is a permissible set of probabilities for
the trine-antitrine POM with its nine outcomes. Whereas the generation of another
sample p is fast, the test of permissibility is the part that consumes most of the CPU
time. After identifying the candidate p with the relative frequencies of a measurement
with the 9-outcome POM, we calculate a MLE for these frequencies. If the probabilities
of the MLE are equal to p, this sample probability is accepted, otherwise it is rejected.
In the sampling of this example, only 9.27% of the 7 x 10% candidate probabilities

generated were accepted.

Since random-sampling techniques are the methods of choice, our sample of 648 785
probabilities took almost 100 hours of CPU time® on a standard desktop (Intel i7-870
CPU, using one of the four cores and 8 GB RAM). The procedure of random sampling
that we employed was simple and reliable but not optimized for speed. There is clearly
much room for improvement. For instance, one may try to parallelize the sampling
over many different computers and later combine into a single dataset. The chance
that a candidate probability is permissible can be much increased by cleverer Monte

Carlo methods where one makes use of information at the current physical point to

8Since the completion of this thesis, we have improved the sampling algorithm and thereby reduced
the CPU time consumed to less than 10% of what it was before. This speed-up results from a faster
test of permissibility that is still easy to implement. Further improvements are likely.
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stay within the physical state space. It is also worth noting that this computational
time is an overhead that is incurred only once and the sampling can be done ahead of

any actual data-taking in the laboratory.

5.6 Summary

For the given data and chosen size or credibility, the MLR or the SCR is a neighborhood
of the MLE. In this sense, one can regard them as systematically constructed error
regions for the MLE. While there are efficient methods for computing the MLE [4,97],
we are currently lacking equally efficient algorithms for finding the MLR and the SCR.
Progress on this front is needed before one can apply the concepts of MLRs and SCRs to
situations in which the reconstruction space is of high dimension. Upon recalling that
IC POMs for two-qubit systems already have a 15-dimensional reconstruction space,
the need for powerful numerical schemes is utterly plain.

In many applications, one is interested in a few parameters only, perhaps a single
one, such as the concurrence of a two-qubit state or its fidelity with a target state (see,
for example, Refs. [52,170-174]). It may then be possible to reduce the dimensionality
of the problem by marginalizing the nuisance parameters, preferably proceeding from a
utility-based prior. A variant of the methodology described here can be used to deter-
mine small regions of high credibility in the few-parameter space of interest, without
first determining SCRs in the reconstruction space.

Even after such a reduction, there remains the challenge of evaluating the multi-
dimensional integrals that tell us the size of the BLRs, and then their credibility,
so that we can identify the looked-for MLR and SCR. For this purpose, one needs
good sampling strategies [160]. Markov-chain Monte Carlo (MCMC) methods, such
as the Metropolis-Hastings algorithm, suggest themselves (see, for example, section
15.8 in Ref. [167]). After surveying many kinds of MCMC strategies, we found that
the Langevin MC method might suit our problem better than others. Efforts in this
direction will continue. It is also suggestive to rely on the data themselves for guidance.

The full sequence of detector clicks identifies the MLE of the data, and subsequences—
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chosen randomly or systematically—have their own MLEs. These bootstrapped MLEs
are expected to accumulate in the vicinity of the full-data MLE and may so provide a
useful sampling method.

We close this chapter with a general observation. MLEs, MLRs, SCRs, and confi-
dence regions are concepts of statistics, even if the terminology is not universal. As we
have seen, the quantum aspect of the state estimation problem enters only through the
Born rule which restricts the probabilities to those obtainable from a POM and a bona
fide statistical operator. Except for these restrictions, there is no difference between
state estimation in quantum mechanics and standard statistics. Accordingly, quantum

mechanicians can benefit much from the methods developed by statisticians.
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Conclusion and Outlook

In quantum information theory, the problem of constructing SIC POMs in various
dimensions is considered to be hard, especially when the dimension d grows larger.
Zauner’s conjecture states that SIC POMs exist in every finite dimension. Although a
great deal of numerical evidence strongly supports it (at least for the group-covariant
SIC POMs), a rigorous proof for this conjecture is still missing. In the last two decades,
a lot of work, both analytical and numerical, has been devoted to the construction of
SIC POMs in various dimensions, not only because SIC POMs have the nice property
of high symmetry and high tomographic efficiency, but also because they are closely
related to many other problems in both physics and mathematics, such as MUB, equian-
gular lines, Lie algebras, and so on. Therefore, a deeper and more thorough under-
standing of SIC POMs may also help solve these problems.

Nevertheless, in contrast to the major theoretical progress, another aspect con-
cerning SIC POMs is their implementation. Up to date, all experiments and even
proposals for experiments implementing SIC POMs have been limited to the very basic
quantum system of a qubit, with the exception of the recent experiment by Medendorp
et al. [110], where a SIC POM for a three-level system was approximated. This is, in
part, due to the fact that there is no systematic procedure for implementing SIC POMs
in higher dimensions in a simple experimental setup.

As a contribution to solve the above problems, in this thesis, we introduced the
successive-measurement scheme. We propose to implement the SIC POMs by breaking
the measurement process into two steps, having in mind that each step should be
relatively easy to implement. Based on this idea, we present a systematic procedure

that implements all HW SIC POMs in finite-dimensional systems. The implementation
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is accomplished by a diagonal-operator measurement with high-rank outcomes followed
by a rank-1 measurement in the Fourier basis. As an example, we have considered the
realization of HW SIC POMs for a path qudit encoded in a single photon. Moreover, we
found that if we take the first measurement to be fuzzy and let the bases for the second
measurement be chosen in accordance with the result of the first measurement, then in
the particular cases studied (dimensions 2, 3, and 4) an operational link between SIC
POMs and MUB appears: The MUB are used to construct the SIC POMs. A similar
link was found in dimension 8 as well, but in this case the first measurement was not

of the fuzzy kind.

Moreover, we propose a feasible experimental scheme that implements the SIC POM
for a two-qubit system. Our scheme uses linear optical elements and photodetectors,
and is, therefore, well within the reach of current technology. The proposal is also
based on the successive-measurement approach to SIC POMs. We found that the SIC
POM for the qubit pair corresponds to a POM diagonal in the computational basis,
followed by projections onto bases which are mutually unbiased. We observe that this
unique construction is due to a structural relation between the fiducial vectors and the

MUB in dimension 4.

On a more general note, we believe that it would be interesting to learn if and
how this scheme can be generalized to higher dimensions. Such a study could be of
theoretical as well as practical use; it might teach us about the SIC POMs’ structure
in high dimensions and provide new ideas for implementing them. Besides, the relation
we found between SIC POMs and MUB may provide a hint to prove the existence
of SIC POMs (at least, we hope) in prime power dimensions, in which circumstance a
complete set of MUB does exist and can be easily constructed. In addition, there is still
an open question as to the generality of such a relation and its origin. Currently, it is
unclear whether the successive-measurement approach will provide a reasonable scheme
for implementing SIC POMs in arbitrary dimensions and thus reveal their structure
in high-dimensional Hilbert spaces. We have tried to construct the SIC POMs in

dimension 16 using the successive-measurement scheme, but with no success.
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The second main topic of this thesis investigates optimal error regions of estimators
for quantum state tomography. A point estimator is a state that represents one’s
best guess of the actual state of the unknown quantum system for the given data.
To be statistically meaningful, estimators have to be endowed with error regions, the
generalization of “error bars” beyond one dimension. For this purpose, we propose
maximum-likelihood regions (MLRs) and smallest credible regions (SCRs). These are
regions in the space of quantum states. The MLR is that region of pre-chosen size,
for which the given data are more likely than for any other region of the same size.
The SCR is the smallest region with pre-chosen credibility—the credibility of a region
being its posterior probability, that is: the probability of finding the actual state in
the region, conditioned on the data. Whether one chooses the MLR or the SCR as the

optimal error region depends on the situation at hand.

Central to both concepts is the notion of the size of a region. In the context of state
estimation, it is most natural to measure the size of a region by its prior—before any
data are at hand—probability of finding the actual state in the region: Regions with
the same prior probability are considered as having the same size. The size of a region
hence expresses the relative importance of that region of states. Ultimately, the choice
of prior is up to the user, but it should be consistent: The estimation results should be

dominated by the data, not the prior, if many copies of the state are measured.

As we show, the problems of finding the MLR and the SCR are duals of each other.
In both cases, the optimal regions contain all states for which the likelihood of the data
exceeds a threshold value. This provides a simple and concise way of communicating
one’s uncertainty of the estimate. That the optimal error regions possess such a simple
description is surprising, since our construction imposes no restriction on the shape of
the regions to be considered. The shape of the optimal regions are uniquely determined
by the likelihood function, in sharp contrast to the arbitrariness in the shape of a
confidence region. Yet the two are not unrelated: Our SCRs provide natural starting

points for the construction of the confidence regions.
While the chosen MLR or SCR depends on the prior, the set of candidate regions
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is prior-independent: It depends only on the likelihood function for the given data.
Also reassuring is the fact that every MLR or SCR is a small vicinity of the MLE, in
the respective limits of small size or small credibility. This is reminiscent of standard
ellipsoidal error regions constructed around the MLE, but which are applicable only in
the limit of a large amount of data when the central limit theorem can be invoked and
the uncertainty can be characterized by the Fisher information.

While there are efficient methods for computing the MLE, we are currently lacking
equally efficient algorithms for finding the MLR and the SCR—there remains the chal-
lenge of evaluating the multi-dimensional integrals that give s). For this, one needs
good sampling strategies. Markov-chain Monte Carlo methods, such as the Metropolis-
Hastings algorithm, suggest themselves. Progress in this aspect has been made, and in
the mean time we are seeking possible applications of the algorithm.

Often, only a few parameters computed from the state are of interest. It is then
possible to reduce the dimensionality of the problem by discarding nuisance parameters.
A variant of the methodology described here can be used to determine small regions of
high credibility in the few-parameter space of interest, without first determining SCRs

in the reconstruction space. This direction is currently under investigation.
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Finite Fields

In abstract algebra, a finite field or Galois field is a field that contains a finite number
of elements. Finite fields are important in many subjects, such as number theory,
coding theory, cryptography, and quantum error correction [175]. The construction
of maximal sets of MUB in prime power dimensions [114,135] also makes use of the
properties of finite fields. For the purpose of this thesis (Sec. 3.5 to be specific), we
give a very brief description of finite fields. More details on this topic can be found in,

for instance, Refs. [114,176].

The number of elements of a finite field is a prime power, and for d = pM, with p a
prime number and M € Z™, there exists one and only one field F' (up to isomorphism)
with order |F| = d. In particular, a field P of prime order p can be identified with the
field Z/pZ of residues modulo p, and a field F with d = p™ can be regarded as the
splitting field over P of the polynomial 2% — z. More explicitly, every element i of F'
can be represented by M-tuples (ig, i1, ...,iMm—1) of integers, with each integer running

from 0 to p — 1, that we get from the p-ary expansion of i:
M-1
i = (ig, i1, ... ive1) if 4= Zinp". (A1)
n=0

Each field is characterized by two operations, an addition and a multiplication, that
we shall denote by @ and ® respectively. The field addition operation @ is equivalent

to the component-wise addition modulo p, that is

i=j® kS iy =7jn+ ky(modp), (A.2)
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forn =0,1,...,M — 1. As a consequence, the summation in Eq. (A.1) is also a field

summation, such that,

i = (iop®) & (i1p") & -+ @ (im—1p™ ) = EP inp™ (A.3)

The inverse of element ¢ relative to the field addition operation is denoted as &4, and
one may also consider the symbol © as the field subtraction operation.

Unfortunately, there is no similarly simple convention for the field multiplication
operation ® as that for the addition operation @, except for d = p and d = 4. However,
in view of the associative and distributive nature of ®, thatis: (a®b) ©c=a® (b©® ¢)
and (a ® ¢) ® c=(a ® ¢) ® (b ® ¢), respectively, we only need to state the values of
p? ®p*. For M =1 and d = p, the field multiplication is just multiplication modulo p.

For M > 1, we have the Galois construction

pItk if j+k<wM,
M-1

Popt=< > wp if j+k =, (A.4)
=0

PO (pjfl @pk) recursively, if j 4+ k > M,

where the coefficients p; € Z/pZ that define the j + k = M products are restricted by

the following requirement that

M

x> 2™ — Z it (A.5)
1=0

—_

which is an irreducible polynomial over the Galois field with p elements. Similarly as
the addition operation, one may define the inverse of a nonzero element i relative to
the multiplication operation ® to be @i, and treat the symbol @ as the field division

operation.
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Quantum gates

Analogous to the way a classical computer is built from an electrical circuit containing
wires and logic gates, a quantum computer is built from a quantum circuit containing
wires and elementary quantum gates to carry around and manipulate the quantum
information. Basically, quantum gates amount to unitary transformations of the quan-
tum states. In this appendix, we describe some simple single qubit gates as well as

controlled gates for several qubits. More details see, for example, Refs. [2,153].

B.1 Single qubit gates

As the simplest quantum system of all, a single qubit is represented by a vector [¢)) =
a|0) + B|1) parameterized by two complex numbers satisfying !a‘z + | ﬁ‘2 = 1. Thus
operations on a single qubit are described by 2 x 2 unitary matrices, of which Pauli

matrices are the most familiar ones:
A= ) (B.1)

Note that Pauli-X gate is also called the quantum NOT gate as the role of |0) and
|1) in state |¢)) will be interchanged after the operation; Pauli-Z gate flips the sign of
|1) to give —|1), while leaves |0) unchanged. Three other quantum gates also play an
important role, the Hadamard gate (denoted by H), phase gate (denoted by S), and
/8 gate (denoted by T):

1 1 1 10 1 0

;o S = o T = ) (B.2)

H=— .
V211 -1 0 i 0 eim/4
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The Pauli-Z gate, phase gate, and 7/8 gate are three special cases of the family of the
phase shift gates (denoted by R):

R= 1, (B.3)

with 6 = 7 being the Pauli-Z gate, § = w/2 being the phase gate S, and § = 7/4 being
the m/8 gate T

A couple of useful algebraic relations are that S = 7%, H = (X + Z)/+/2 and
H? = S'S = T'T = I,, where I, is the identity matrix in dimension 2. Here, we use

the following chart to illustrate the operations of these single qubit gates on the qubit

vector [1):
X [¥’) = B|0) + 1)
Y [¥’) = —i(8[0) — /1))
Z [¥’) = a|0) — B|1)
[¥) = l0) + B[1) — — ) = ayo>\4/r§\1> +5’0>\;§|1>
S [¥') = al0) +iB]1)
TH— [¢/) = al0) +e™/4p)1)

Figure B.1: Symbols of the most common single qubit gates as well as their actions
on the qubit vector |¢) = a|0) + 5]1).

B.2 Controlled gates

Controlled operations may be applied to two or more qubits, but here we only consider
the quantum gates with two input qubits. Generally, a two-qubit controlled-U gate has

the following form

Cy = = 10)(0| & Iy + [1)(1]| @ U. (B.4)
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In terms of the computational basis, the action of the controlled-U gate is represented
as |c)|t) — |c)U|t); when the control qubit |¢) = |0), the target qubit |t) passes through
the gate unchanged, whereas when the control qubit |¢) = |1), the operator U is applied
to the target qubit.

Controlled-NOT (CNOT or XOR) gate: This is the prototypical controlled gate for two

qubits, which in matrix form is

10 0 0
0100
CNOT = (B.5)
0 001
0 010

Writing it compactly, the action of the CNOT gate on two qubits is given by cNOT|c)|t) =
leY|e @ t) with ¢,t € {0,1}.
Controlled-phase (cP) gate: In Secs. 4.5 and 4.6 of Chapter 4, we meet the

controlled-z (¢z) gate, which in matrix representation is

1 00 O
010 O
Ccz = (B.6)
001 O
0 0 0 -1

In a compact form, the action of the ¢z gate on two qubits is cz|c)|t) = |c)(—1)°|t)
with ¢,t € {0,1}.

A set of gates is said to be universal for quantum computation if any unitary oper-
ation may be approximated to arbitrary accuracy by a quantum circuit involving only
those gates [2|. It has been shown that the following three sets of gates are universal:
(1) two-level unitary gates, (2) single qubit and cNOT gates, and (3) Hadamard, phase,

CNOT and 7/8 gates.
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APPENDIX C
Distance and distinguishability

measures

In quantum state tomography, how good the estimator is has to be answered by using
certain distance or distinguishability measures. In this appendix, we briefly review some
most often used candidates, such as the trace distance, the Hilbert-Schmidt distance,
the fidelity, the Bures distance and the relative entropy. See Refs. [2,100,177| for more

detailed discussions.

C.1 Trace distance and Hilbert-Schmidt distance

Classically, for two probability distributions {p(z)} and {¢(x)} over the same index set

x, we define the trace distance as follows

Dalp(a), a(x)) = 3 3 Ip(x) — gfa)] (1)

This quantity is also known as the L1 distance or Kolmogorov distance. Analogously,

the trace distance between two quantum states p and o is defined as

Da(p,0) = gtr{lp— o} (C2)

It is one of the most common figures of merit used in quantum state tomography,
especially in experiments, because it has a nice operational interpretation, which is best
manifested in a state discrimination problem. The trace distance between two given

states determines how well they can be distinguished from each other by the optimal
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strategy. Notice also that if p and ¢ commute then the quantum trace distance between
them is equal to the classical trace distance between the eigenvalues of p and o.
The Hilbert-Schmidt (HS) distance between p and o is induced by the HS inner

product among operators

Dus(p,0) = v/tr{(p — 0)?} . (C.3)

It is the Euclidean distance between p and o viewed as vectors in the space of Hermitian
operators. When both p and o are diagonal, it reduces to the Lo distance between the

diagonals of the two states, respectively.

C.2 Fidelity and Bures distance

The notion of fidelity also originates in classical probability theory, which, for two

probability distributions {p(z)} and {g(x)}, is defined by
Fa(p(z),q(x)) =) Vp(x)a(z) . (C4)

Similarly, we define the fidelity between two quantum states p and o as [2]!

Fou(p,0) = tr {\/pl/Qapl/Q}, (C.5)

or equivalently,

Fau(p,o) =tr { ’,01/201/2‘} : (C.6)

Clearly, the second definition shows that the fidelity is symmetric with respect to the
two states. Notice that both the classical and quantum versions of fidelity are not
metrics, although they do give rise to other useful metrics. There are three special

cases where it is possible to give more explicit formulae for the fidelity. The first is

Tt should be noted that some authors define the fidelity with a square [100, 177], which is called
the squared fidelity according to our definition.
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when p and o commute, the quantum fidelity Fyu(p, o) reduces to the classical fidelity

between the eigenvalue distributions of p and o. The second one is when o is a pure

state [¢), the formula can be simplified to Fyu(p, [¢)(¢]) =/ (¥|p|b). The third special

case concerns the fidelity between two single-qubit states [178§],

Fou(p(r1), o(rs)) = %(1 trm /I omom)),  (CD)

where we have used the Bloch-ball representation for qubits of Eq. (2.1), and 7 and 7o
are the Bloch vectors for the two qubits respectively. For a nice geometric observation

of the fidelity between these two single-qubit states, see Ref. [179].

According to Uhlmann’s theorem [177|, Fu(p, o) is equal to the maximal transition

probability between purifications of p and o,

Fau(p,0) = e [(Wpltba)] (C.8)

where [1),) is a purification of p. Therefore, in general, the fidelity is the maximum
overlap between purifications. This formula makes it clear that the fidelity is symmetric
in its inputs, Fqu(p,0) = Fqu(o, p), and that the fidelity is bounded between 0 and 1.
The minimum is attained if and only if p and ¢ have support on orthogonal subspaces,
meaning that they are perfectly distinguishable; while the maximum is saturated if and
only if p = o, which can be seen from Uhlmann’s formula [2|. Other important proper-
ties enjoyed by quantum fidelity include unitary invariance, concavity, multiplicativity

and joint concavity; see, for instance, Ref. [180].

The fidelity can be used to define the Bures distance Dg(p, o),
Di(p,0) =2 — 2Fu(p,0), (C.9)

which is a metric on density operators. When both p and ¢ are diagonal, the Bu-
res distance reduces to the Hellinger distance between the diagonals of p and o [2].

When p = diag(Ag, A1, ..., Ag—1) has full rank and o is infinitesimally apart, the Bures
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distance is explicitly given by [181]

dp|k)|?
Di(p,p+dp) = Z 19 )\’ ji')\k‘ . (C.10)

Like its classical counterpart, the infinitesimal Bures distance has a clear operational
meaning as it determines how well two nearby quantum states can be distinguished
[182]. In addition, the Riemannian metric defined by this distance is equivalent to the
metric defined by the SLD quantum Fisher information matrix [182].

The fidelity Fqu(p, o) and the trace distance Dy, (p, o) are closely related, despite
their very different forms. Here, we simply report the relationship between them, which

is given by

1 — Fau(p,0) < Die(p,0) < (/1= Foqu(p,0)? . (C.11)

See Ref. [2] for a rigorous proof of this inequality. The implication is that the trace
distance and the fidelity are qualitatively equivalent measures of closeness for quantum
states. In many circumstances, it does not matter whether the trace distance or the
fidelity is used to quantify distance, since results about one may be used to deduce

equivalent results about the other.

C.3 Relative entropy

Entropy is a key concept of quantum information theory [2]. It measures how much un-
certainty there is in the state of a physical system. Here, we only review its applications
in distinguishing quantum states, i.e., the relative entropy.

The relative entropy or Kullback-Leibler divergence is a very useful entropy-like
measure of the closeness of two probability distributions, {p(x)} and {gq(x)}, over the
same index set z. Being a non-symmetric measure, the relative entropy of {p(x)} to

{q(x)} is defined by

~—

H(p(x)||q(z Zp Jog 28 — _pr(x Zp )log q(x (C.12)

q(x)
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where H(X) = — > p(z)logp(z) is known as the Shannon entropy associated with
the probability distribution {p(z)}. Note that we define —0log0 = 0 and —p(x)log0 =
+o0 if p(x) > 0. The relative entropy is non-negative, H(p(x)||¢(z)) > 0, with equality
holds if and only if p(x) = ¢g(z) for all x.

In quantum mechanics, we have the von Neumann entropy of a quantum state p

defined analogously as the Shannon entropy, such that

S(p) = —tr{plogp}, (C.13)

with the logarithms based on 2. If A\, are the eigenvalues of p, then the von Neumann

entropy can be re-expressed as

S(p) == AlogAs, (C.14)

where again we define 0log 0 = 0, as that for the Shannon entropy. Then the quantum

relative entropy of p to o is define by

S(pllo) = tr{plogp} — tr{plogo}. (C.15)

Similarly, the quantum version of the relative entropy is non-negative, S(p|loc) > 0

(known as the Klein’s inequality), with equality holds if and only if p = o.
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Kullback-Leibler divergence, see relative
entropy

L, distance, see trace distance

L, distance, see Hilbert-Schmidt (HS) dis-
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L’Hopital’s rule, 84

Lidstone’s law, 18

likelihood functional, 15, 18

linear inversion, 14

linear state tomography, see linear inver-
sion

log-likelihood functional, 16, 21

logic gates, 123

Mach-Zehnder interferometer, 64
many-worlds interpretation, 27
maximum-likelihood (ML)
algorithm, 16
estimation, 15
estimator (MLE), 16, 69, 77
region (MLR), see error regions
mean estimator (ME), 19
minimax mean estimator, 19
mean king’s problem, 35
mean square error (MSE), 20
MSE matrix, see covariance matrix
scaled MSE, 23
weighted MSE (WMSE), 23
measurement
collective, 13
entangled, 13
Bell measurement, 13
post-measurement, 31, 39, 44
pre-measurement, 31, 43
product, 13
seperable, 13
weak, 30, 39
meter, see ancilla
minimum variance unbiased (MVU), 22
modulo, 33, 55, 121
moments, 104
Monte Carlo, 19, 86, 107
Markov-chain Monte Carlo, 116, 120

Langevin MC algorithm, 116
Metropolis-Hastings algorithm, 116,
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multi-path interferometer, 35
mutually unbiased, 38, 59, 67
bases (MUB), 35, 57, 121

measurements, 7

NOT gate, see Pauli matrices
Neumark’s dilation theorem, 12
Newton’s mechanics, 1
no-cloning theorem, 2, 14
noise, 3, 15

Gaussian, 8
non-commuting observable, 4, 9, 28
normalization, 72, 94, 106
number theory, 121
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Hamiltonian operator, 28
momentum operator, 28
position operator, 28
orthonormal, 23, 28, 36
orthonormality, see orthonormal

Padé approximant, 107
partially polarizing BS (PPBS), 52, 62
Pauli, 7
Pauli group, 34
3-qubit Pauli group, 34, 43, 64
generalized Pauli group, see also
Heisenberg-Weyl (HW) group
multi-qubit Pauli group, 34
Pauli matrices, 10, 123
Pauli operators, see Pauli matrices
permissible probabilities, 72, 75, 101
phase shifter (PS), 45, 52, 61
photon, 43, 45, 52, 55, 57, 60, 69, 118
plateau, 17
point
estimator, 3, 70
likelihood, 76, 80, 84, 96
polar coordinates, 98, 101, 106
polarizing BS (PBS), 52, 62
polynomial, 122
positive operator-valued measure
(POVM), see probability-
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non-positivity, 8
posterior, 18, 77
Postulate, 1, 10, 28
prior, 18, 71, 74, 75, 88
conjugate prior, 96
hedged prior, 95, 98
invariant prior, 94
Jeffreys prior, 23, 76, 86, 90, 94, 98,
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marginal prior, 97
primitive prior, 76, 86, 90, 94, 98, 103,
111
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symmetry, 93
uniform prior, 89
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probabilistic, 1
probability space, 72, 75, 92
probability-operator
(POM), 5, 7, 12, 30
projection-valued measure (PVM), see
projective measurement
projective measurement, 12, 29, 39, 47, 54,
57, 64, 101
purification, 128
purity, 15, 94

measurement

quantum channel, 3, 9
capacity, 57
Pauli channel, 110
quantum computation, 7, 13, 29, 125
quantum computer, 123
quantum error correction, 121
quantum gates, 123
controlled gates, 124
controlled-U, 124
controlled-NOT (CNOT, XOR), 125
controlled-z (cz), 59, 62, 66
controlled-phase (cp), 125
single quantum gates, 123
/8 gate T', 123
Hadamard gate H, 63, 123
Pauli operators, see Pauli matrices
phase gate S, 123
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quantum key distribution, 3, 13, 35
BB8&84 scheme, 108
trine-antitrine (TAT) scheme, 108
quantum measurement tomography
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quantum mechanics, 1
quantum operation, see quantum channel
quantum process, see quantum channel
quantum process tomography (QPT), 9
ancilla-assisted process tomography
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direct characterization of quantum dy-
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entanglement-assisted process tomog-
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standard QPT (SQPT), 9
quantum state, 10
mixed state, 10
fully mixed, 10
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quantum state estimation, see quantum
state tomography
quantum state tomography (QST), 3, 7
quantum teleportation, 13, 35
quaternionic polytope, 65
qubit, 32
control qubit, 125
path qubit, 52, 57, 60
polarization qubit, 52, 57, 60
target qubit, 125
three qubits, 64
two qubits, 56
singlet state, 110
qudit, 42, 44
path qudit, 45
quorum, 7
qutrit, 32, 54
path qutrit, 55

rank, 10
full rank, 18, 42, 129
high rank, 34, 41
rank-1, 31, 41, 49
rank-deficient, 17
reconstruction operator, see dual basis
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relativity, 1
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Schwinger, 35
score, 21
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simplex, 24, 50, 114
size of a region, 71, 74, 82
state space, see Hilbert space
steepest-ascent method, 16
step function, see Heaviside’s unit step
function
successive measurements, 30, 38, 44, 49,
54, 59, 65
symmetric informationally complete POM
(SIC POM), 31
group-covariant SIC POM, 32
Hoggar’s SIC POM, 64
HW SIC POM, 33, 44, 47, 53, 57
symplectic, 33

t-designs, 32

tetrahedron measurement (TM), 49
anti-tetrahedron, 51

trace, 10, 13, 72
distance, 126

mean trace distance, 3, 20

norm, 17

trine measurement, 19, 24, 102, 106
antitrine measurement, 108

tuples, 121

twirling, 111

Uhlmann’s formula, 128

unbiased, 21, 35, 48

unitary evolution, see unitary transforma-
tion

unitary operation, see unitary transforma-
tion
unitary transformation, 11, 31, 45, 55, 64,
93, 123
unitary equivalence, 33
unitary invariance, 19
unitary operator, 11, 31
universal gates, 125
unphysical, 15, 24

von Neumann measurement (vNM), see
projective measurement

wave-particle duality, 35
Wootters, 7, 35

Zauner’s conjecture, 5, 41, 117
zero-eigenvalue problem, 8, 17, 19
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