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Summary 

As command signals from the motion control system of human, transmitted to muscles 

through the motor nerves, surface Electromyography (sEMG) signals are commonly used 

in muscles relevant studies, such as sports, clinical decision-making, biofeedback, gait 

analysis and human-machine interface (HMI). Knowledge of internal forces and 

moments during movements is important to develop better active and intuitive assistive 

and rehabilitation devices. The ability to predict the muscle forces is beneficial to the 

control system by using the estimated human intention. In addition, localized muscle 

fatigue occurs after prolonged and relatively strong muscle activity. Therefore, muscle 

force estimation and fatigue detection are considerably important for biofeedback and 

HMI of assistive device and rehabilitation. 

The aim of this study is to investigate the relationships between the sEMG signals 

features and muscle force using a time-frequency analysis method, and to explore novel 

approaches to predict muscle force and detect muscle fatigue. In addition, real-time 

implementation of the force estimation and fatigue detection methods are carried out to 

test and validate the feasibility of the algorithms using online sEMG signals. 

Three relationships, sEMG amplitude-force relationship, mean frequency (MF) and force 

relationship, and the relationship between frequency parameters and signal energy 

distribution (MF-power relationship) are first investigated in this thesis. The results show 

that these relationships are nonlinear from both time-domain method and time-frequency 

analysis method with high regression correlation coefficients R
2
 values. In addition, the 

influence of electrode locations on these relationships is studied, since the sEMG signal 

amplitude and frequency features are very sensitive to small electrode displacements. 

Statistical analysis results demonstrate that the electrode locations affect these 
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relationships with different regression fitting R
2
 values. In addition, the relationships 

established from the electrode located in the innervation zone shows higher R
2
 values.  

Several approaches are explored to predict muscle force/torque in this study. The time-

domain force estimation method (windowed RMS) is based on the amplitude-force 

relationship, while the time-frequency analysis method is based on the MF-force 

relationship using continuous wavelet transform (CWT). When comparing the two 

methods, force estimation results from off-line sEMG signals show high correlation 

coefficients from the CWT-based method between the estimation force and measured 

force. Tf is also calculated which describes the time difference between the estimated 

force and the measured force. Longer Tf is found from the proposed frequency domain 

method, and the estimated force leads the measured force by a few milliseconds. This 

long Tf ensures the prediction of the muscle force in advance or concurrently to the actual 

applied force, which is important if sEMG signal is used in rehabilitation device as the 

control signal. Another force prediction method is developed based on CWT and artificial 

neural networks (ANN). The filtered MF and measured force are the input signals for 

network training. Results also show high correlation coefficients between the estimated 

force and measured force for both healthy subjects and stroke patients.   

A novel muscle fatigue detection approach is explored using a time-frequency analysis 

method from sEMG signals during various muscle contraction conditions for both the 

healthy and stroke subjects. General fatigue levels are first obtained indicating the fatigue 

changes in muscles. These fatigue levels are quantified to the muscle maximal capacity 

based on linear regression and statistical analysis, which enables the proposed algorithm 

to describe the fatigue progresses as close as the changes of the real physiological fatigue.  

The proposed methods are finally implemented and tested using the on-line sEMG 

signals in real-time. When the CWT-based force estimation approach is implemented 

with the lower limb rehabilitation robot, real-time experimental results illustrate that the 

assistive device assists the subjects with proper torque according to their intention. In 

real-time, fatigue detection results are generally in line with the off-line results, which 

provide significant potential of implementation in rehabilitation device. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Motivations 

Human movements such as walking, squatting or lifting heavy loads are accomplished by 

contracting skeletal muscles. Measurements on contracting muscles of interest are very 

important in many fields of application such as sports, clinical decision-making [1], 

biofeedback [2], gait analysis and human-machine interface (HMI) [3]. In assistive 

device or rehabilitation robotic devices, HMI is commonly used as the interaction 

between human and device. Thus, measuring the forces applied to a joint and predicting 

the force generated by the muscles are vital for an intuitive HMI, since they are the 

commonly used ways to detect human intention. However, to record force generated by 

muscles directly is currently infeasible. Currently, special force sensors are required to 

measure the individual forces exerted by muscles. In addition, most of the commercial 

force or torque sensors are bulky, expensive, inconvenient and not user friendly. 

Therefore, a muscle force estimation method should be developed to avoid using such 

force sensors. Nevertheless, muscle fatigue occurs when muscles are under a prolong 

contractions.  

Muscle fatigue is the reduction in the ability of a muscle to generate force or to maintain 

a target force [4, 5]. Generally, localized muscle fatigue occurs after a prolonged and 

relatively strong muscle activity. Consequently, the accumulation of long periods of 

fatigued contractions can lead to muscle pain and even an increased risk of injuries [6]. 
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Such sudden accidents and injuries can be avoided by continuously monitoring the 

progression of muscle fatigue, which is able to inform the users in advance. Moreover, in 

application field, if human muscles are involved in the HMI for rehabilitation device, it is 

essential to detect muscle fatigue and estimate the fatigue levels to moderate the output 

torque of such devices.  

Electrical currents are produced by muscle fibers prior to the generation of muscle force. 

These small currents are generated by exchanging the ions across muscle fiber 

membranes, which is a part of the signal processing for the muscle fibers to contract [7]. 

The signal associated with muscle contraction is called the electromyography (EMG). 

Generally, the EMG signals can be measured by applying conductive elements or surface 

electrodes to the skin surface, or intramuscular measurements. To measure intramuscular 

EMG, needle electrodes or a needle containing two fine-wire electrodes is inserted 

through the skin into the muscle tissues invasively.  Physiotherapists must be involved to 

observe the electrical activities while inserting the electrodes. In order to minimize the 

risk to the subjects and to simplify the signal measurement procedures, surface EMG 

(sEMG) is the more commonly employed measurement method. Since sEMG signal is 

unique in revealing what a muscle actually does at any human movement or posture [8], 

it has been widely employed in recent decades to predict human limb movements and the 

amount of force required to accomplish a task, and to track muscle state, from non-

fatigue to fatigue [9]. There are many variables that can influence the signal at any given 

time: velocity of shortening or lengthening of the muscle, rate of tension buildup, fatigue, 

and reflex activity [10].  

Currently, sEMG signals generated from healthy humans are widely investigated. 

However, the analysis of sEMG signals from stroke patients for predicting muscle force 

and estimating fatigue has not been studied comprehensively. In recent years, stroke has 

become a leading cause of chronic and serious disabilities. Most of the stroke patients’ 

movements are abnormal, and there are dramatic structural changes in skeletal muscles 

after stroke. Due to the hemiparesis and one-side motor impairment of the body, the 

patient’s daily activities are usually affected. Shaughnessy et.al [11] found that nearly 
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two thirds of stroke survivors experience a limitation in walking. Stroke also leads to 

long-term complications of falls, osteoporosis, contractures, depression and 

cardiovascular complications. Hence, to develop a lower limb rehabilitation device is 

significant for stroke patients gait training. An active and intuitive assistive device where 

sEMG signals play an important role in the HMI, especially enables a more efficient gait 

training. However, muscular atrophy due to stroke reduces the amplitude of sEMG 

signals measured from the stroke patients. Therefore, it is still a great challenge to 

estimate muscle force generated from the affected side muscles of stroke patients using 

sEMG signal. In addition, it is necessary to understand and investigate the changes of 

sEMG characteristics during muscle fatigue processes for stroke patients.  

1.2 Objectives and Scope 

From current research studies, different approaches have been proposed to estimate the 

force/torque generated by muscles and assess muscle fatigue. However, there are still 

some issues to be resolved, they are as follows: 

 The relationships between force and sEMG features during muscle voluntary 

contractions, so far, have not been studied comprehensively. The sEMG 

amplitude-force relationship was found to be linear or parabolic curves. However, 

the relationships between sEMG spectral parameters and force, especially for both 

healthy subjects and stroke patients, are not well understood. Furthermore, in 

frequency domain, to the author’s knowledge, there is no intensive research study 

that correlates the change in signal frequency to the energy distribution of the 

sEMG signal. 

 If the human intention detected from sEMG is used for HMI in assistive device or 

rehabilitation robotics, it is essential to predict muscle force in advance or 

concurrently to the actual exerted force. Currently, most of the research works 

investigate muscle force estimation without considering the prediction of muscle 

force before the force is measured. If proper signal processing method is 
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developed, the force generated by muscles can be predicted in a few milliseconds 

before the actual force is applied. Moreover, most of the current force estimation 

approaches are based on time domain analysis, whereas, the time-frequency 

analysis method for muscle force prediction has not been investigated, even 

though time-frequency analysis method is proved to be more suitable for 

extracting features from non-stationary signal. 

 Due to the variability of the muscle characteristics from person to person, there is 

no simple or suitable function based on muscle load and timing that can describe 

muscle fatigue progress precisely between subjects. Therefore, how the muscle 

fatigue progress changes from non-fatigue state to fatigue state is still unclear. In 

addition, for the types of muscle contraction aspect, most of fatigue detection 

studies concentrate on constant force contraction, while varying force is hardly 

comprehensively investigated. Meanwhile, only few studies have documented 

fatigue assessment methods in persons with hemiparesis due to stroke. 

A detailed survey of relevant literature works and specific gaps will be covered in 

Chapter 2.  

The main purpose of this thesis is to develop novel methods for muscle force estimation 

and fatigue detection based on continuous wavelet transform (CWT) using sEMG signals, 

and implement the proposed algorithms in real-time. 

There are many factors influencing the experimental protocol and results. In this thesis, 

the focus will be on investigating both muscle force estimation method and muscle 

fatigue assessment approach with single and specific muscles. Other aspects such as 

muscle co-contractions will not be considered. Meanwhile, some other factors such as 

gender, age, weight are not taken into account. In this thesis, the muscle groups of 

interest are the main muscles that are relevant to elbow and knee flexion/extension, 

namely, biceps brachii, triceps brachii, rectus femoris, and triceps femoris.  
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The specific objectives of this research are to: 

 Establish the relationships between sEMG features and force using linear 

regression. These relationships are the sEMG amplitude-force relationship, and 

sEMG spectral frequencies and force relationship, respectively. Another 

relationship will only focus on the sEMG frequency domain features, sEMG 

spectral frequency and signal power relationship. Furthermore, the influences 

contributed by difference electrode locations on these relationships are also 

investigated. This will help the selection of the most suitable electrode location.  

 Investigate possible approaches which can predict force/torque exerted by 

muscles for healthy subjects and stroke patients. Tf describes the average time 

difference between the estimated force and the measured force from force sensor. 

The Tf value, correlation coefficients, root mean square errors between the 

measured force and estimated force are calculated to evaluate the efficiency of the 

force estimation methods. 

 Explore possible approaches which can detect muscle fatigue using sEMG 

collected from muscles under constant and varying force contractions. General 

estimated fatigue levels are marked to track the progress of muscle fatigue. sEMG 

characteristics changes during fatigue process is also to be investigated. In 

addition, the same approach with modified parameters is applied to detect stroke 

patients muscle fatigue of stroke patients with sEMG signals from the affected leg 

muscles during isometric contraction and varying force contraction.  

 Implement the force estimation method and fatigue detection approach in real-

time and test with online sEMG signals. The CWT-based force estimation method 

is implemented in a new wearable lower extremity assistive device for 

rehabilitation. Proper assistive torque will be provided according to the user’s 

intention to control the knee joint in real-time. In addition, isometric and force-
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varying contractions until fatigued are performed to validate the feasibility of the 

fatigue detection method in real-time. 

1.3 Thesis Contributions 

The results of this study contribute to the development of novel force estimation methods 

and fatigue assessment approaches for both healthy subjects and hemiplegic patients after 

stroke. Specifically, the contributions of this thesis are summarized: 

 Establish the relationships between sEMG features and force, and relationships 

between frequency parameters and signal energy distribution for healthy subjects 

and stroke patients. The relationships with frequency domain features are able to 

interpret the association between sEMG and force from a new point of view. The 

influence on these relationships from different electrodes locations are also 

detailed studied in detail. 

 Explore new methods of muscle force estimation for healthy subject and stroke 

patients. A long Tf value ensures the force is predictively in advance or concurrent 

to the measured force, implying that there is a high potential for application in a 

rehabilitation device. 

 Propose new approach which can detect muscle fatigue based on continuous 

wavelet transform for healthy subjects and stroke patients. Quantified fatigue 

levels make the fatigue assessment much closer to the real physiological fatigue 

changes. 

 Successfully implement the proposed force estimation on a lower limb 

rehabilitation robotics. The proposed fatigue detection algorithm works well in 

tracking the muscle fatigue states by showing the general estimated fatigue levels. 
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1.4 Thesis Organization 

This thesis is organized as follows: 

Chapter 2 first gives a general introduction of sEMG signal. Then, a detailed literature 

review of different sEMG analysis methods for estimating muscle force and detecting 

muscle fatigue is presented.      

Chapter 3 establishes the relationships between sEMG features and force with time 

domain and frequency domain analysis, respectively. Meanwhile, the relationships 

between the frequency parameters and signal energy distribution are also established. 

Newly developed based-line noise removal algorithm will be presented first. Then, the 

detailed description of the experimental protocol for collecting sEMG signal is provided. 

The methods to establish these relationships are mentioned in the following section. 

Lastly, results of the effects of different electrode locations on these relationships will be 

illustrated and discussed.  

Chapter 4 provides a comprehensive description of the proposed muscle force estimation 

method for healthy subjects and stroke patients. The experimental protocol of sEMG 

signal collection for force estimation is first described in detail. Evaluation on the 

feasibility of the proposed methods will be carried out by calculating the root mean 

square error and correlation coefficients. The proposed CWT-based method is also 

compared with the traditional time-domain method. The ability to estimate the muscle 

forces in healthy subjects and patients following stroke will benefit the development of 

assistive device for rehabilitation.  

Chapter 5 gives a detailed description of the proposed fatigue detection approach. First, 

different fatigue experimental protocol is presented. The sEMG data from the 

experiments are employed to test the feasibility of the proposed method. The results and 

statistical analysis shows the discrete fatigue levels keep increasing with the raising 

progress of fatigue. These fatigue levels are quantified using regression and statistical 
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analysis methods. The same fatigue assessment method is also applied to detect fatigue 

for stroke patients, which is presented in the rest section of this chapter. 

Chapter 6 presents the results of implementing the force estimation method real-time on 

a lower extremity rehabilitation device. The results of the real-time implementation are 

yielded by performing different muscle contraction tasks. In addition, the fatigue 

detection algorithm is implemented in real-time, the results show that the subjects fatigue 

levels keep increasing, which are in line with the off-line performance. 

Chapter 7 concludes the contributions of this thesis and outlines the directions for future 

studies. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter covers in detail the research studies mentioned in the introduction. Utilizing 

sEMG signals to predict muscle force and assess fatigue requires a deep understanding of 

muscles and the way they generate bioelectrical signals. Thus, the review starts with the 

elaborate knowledge of sEMG signal. This part includes the basic principle of sEMG 

signal generation, physiology mechanisms, the factors and phenomena that contribute to 

this signal, and the wide spread application of this signal. Section 2.3 reviews some 

developed approaches towards estimating the muscle force using sEMG signal. In 

Section 2.4, different advanced signal processing methods to detect muscle fatigue will 

be introduced. The physiological changes in sEMG signals for both the healthy subjects 

and stroke patients under muscle fatigue will also be highlighted in this section. 

2.2 EMG Signals 

2.2.1 Physiology Mechanism of Signal Generation 

EMG signal is one of the electrophysiological signals, which is extensively studied and 

applied in clinic and engineering. The basic use of EMG signal is in physiological and 

biomechanical studies. In addition, it is also widely employed in sport training, gait & 
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posture analysis [12], physical therapy [13], and rehabilitation [14]. This signal represents 

the electrical activity generated when skeletal muscles contract after an action potential 

(AP) stimulated by the muscle fibers [8].  

The central nervous system (CNS) controls all the muscle activities in the human body 

(be its contraction or relaxation). This system, which is responsible for the activation of 

muscle fibers, carries the electrical pulses from the brain to the muscles [15]. Motor 

neuron, situated in the spinal cord, has a long axon,combines with other axons in a nerve 

to the muscle. A skeletal muscle is composed of thousands of tiny muscle fibers, groups 

of which are innervated by a single alpha-motor neuron. These two components, a single 

motor neuron and all the muscle fibers it innervates, compose a motor unit (MU) which is 

the smallest functional unit to describe the neural control of the muscular contraction 

process [16].  

Figure 2.1 illustrates the simplified schematic diagram of the CNS and the background 

concept of MUs [17, 18]. When a MU is electrically activated, a measurable electrical 

potential called action potential (AP) is carried down from the motor neuron to the 

muscle [17, 19, 20]. The generated APs emerge at the neuromuscular junction in the 

middle of the muscle body, and propagate along the muscle fibers to both directions 

towards the muscle tendons. The superimposition of all the electrical activity is called the 

motor unit action potential (MUAP) [21]. In one MU, all the muscle fibers are fired when 

the MU fires. The repetitive firing of a MU creates a train of pulse which is known as the 

motor unit action potential train. The temporal summation of electrical activity created by 

each MU is the EMG signal.   

EMG signal can be detected by invasive electrodes or surface electrodes. The invasive 

electrodes, which are also known as intramuscular electrodes since they are inserted 

directly into the muscle, allow for the electrical potentials detection close to the source. 

However, in order to choose the most accurate electrodes locations for inserting the 

electrodes, a well-trained physical therapist should be involved in data collection 

experiments. Conversely, surface electrodes which are attached to the skin surface, are 

easy handling and enable us to simplify the data measurement procedures. Due to these 



11 

 

benefits, surface electrodes are commonly used in research studies. Most of the important 

limb and trunk muscles can be measured by surface electrodes. The basic diagrams of the 

main muscles are shown in Figure 2.2.  

 

Figure 2.1 Simplified schematic diagram of the basic motor control mechanism, motor unit and 

its components (Modified from [17, 18]). 
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Figure 2.2 Basic diagrams of the human main muscles. 
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2.2.2 sEMG Signal Characteristics and Measurements 

Raw sEMG signal is an unfiltered and unprocessed signal generated from the 

superimposed MUAPs [17]. By its nature, raw sEMG spikes are of random shape. The 

amplitude of the raw signal is about 0 to 10 mV (peak-to-peak) [8, 22]. The usable energy 

of the signal is limited typically to around 6 to 500 Hz frequency range, and most of the 

sEMG frequency dominant power is located between 10 to 250 Hz.   

Since the approximate usable frequency range of this signal is 6-500 Hz, the sampling 

rate is usually at least twice as high as the maximum expected frequency of the signal. 

This sampling frequency ensures that the signal frequency spectrum is translated 

completely by the processing unit. Accordingly, the minimum sampling frequency is 

typically set to be 1 KHz or higher [19, 22].  

When working with sEMG signal, several external factors which alter its shape and 

characteristics should be taken into account. Konrad [17] summarized the basic 

influencing factors as follows: 

1) Tissue characteristics; 

2) Physiological crosstalk; 

3) Changes in the geometry between muscle belly and electrode site; 

4) External noise; 

5) Electrode and amplifiers; 

Most of these influencing factors can be minimized or controlled by well-designed circuit 

and skin preparation. sEMG signal is easily affected by various sources of noise. First, all 

electronics equipment generates electrical noise which cannot be eliminated. It can only 

be reduced by applying high quality electronic components, intelligent circuit design and 

good construction techniques. Another noise is the ambient noise which originates from 

sources of electromagnetic radiation, such as televisions, computer monitors, motors, 

electrical power lines, fluorescent lamps or light bulbs. This kind of noise cannot be 

avoided. The ambient noise frequency occurs primarily within the range of 50 Hz or 60 
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Hz [22], while the amplitude of the ambient noise is about one to three times greater than 

that of an sEMG signal. Lastly, the interface between the detection surface of electrodes 

and skin, the movement of the cable connecting the electrodes to the amplifier, are 

another two main sources contributing to the motion artifacts. Since the dominant energy 

of the motion artifacts is distributed in a frequency range from 0 to 20 Hz, it can be 

reduced by using low-pass filters.  

Currently, the advent of modern electronics and differential amplification have enabled 

the measurement of sEMG signals with low noise and high signal fidelity. In practice, it 

is possible to measure the full effective bandwidth of the signal with differential amplifier. 

Generally, the signal should be amplified using high common mode rejection rate 

(CMRR), and the high input impedance in the analogue circuit [22]. Typically, the band-

pass filter ranges are from between 10 and 20 Hz (high-pass filtering) to between 500 and 

1000 Hz (low-pass filtering) [23]. 

2.2.3 Stroke Patients sEMG Signals 

The affected muscles in stroke patients are commonly very weak. This muscle weakness 

can be related to both the interruption of the corticospinal tract and muscle atrophy [24]. 

The impairment and disability affect the muscle strength in a group of chronic stroke 

survivors. This neurological disorder is accompanied by a diminished ability to sustain 

voluntary contractions. The damaged CNS of the post-stroke patient causes a lack in the 

central drive of the muscle during muscular contractions. Consequently, the contractions 

in muscle itself are limited, and the detected output sEMG signal are limited as well [25]. 

Meanwhile, muscular atrophy due to stroke reduces the amplitude of sEMG signals 

measured from the stroke patients, which makes the muscle force estimation be a great 

challenge. The physiology of muscle fatigue in post-stroke patients will be discussed in 

fatigue section (Subsection 2.4.4).   



15 

 

2.3 Muscle Force Estimation Methods 

To utilize sEMG signal to detect human intention and to command motors of 

rehabilitation devices, the force generated from muscles are the key information 

contributed to the control scheme. However, currently, muscle force cannot be easily 

measured in vivo, because it is inside the human body, and it is difficult to be assigned to 

a specific muscle due to complex actions in which involve a large number of muscles 

[26]. In addition, special force sensors might be able to measure the force exerted by 

muscles, but most of the commercial force transducers are bulky, expensive, inconvenient 

and not user friendly. Moreover, solely using sEMG signal to predict muscle force 

directly does not yield accurate results. Therefore, the force exerted by muscles must be 

assessed, calculated and modeled. To access the force generated by muscles, it is 

necessary to investigate the relationship between force generated by muscles and the 

corresponding sEMG signals. Based on these relationships, muscle force can be 

estimated or predicted. 

2.3.1 sEMG Features and Force Relationship 

The electrical activity associated with a muscle can be observed using electrodes on the 

skin surface. This electrophysiological activation of a muscle initiates the production of 

mechanical force. Considering most of the applications of sEMG signal for muscle force 

prediction, assumptions are made that there is a relationship between sEMG signals and 

underlying muscle forces. Generally, the relationship between sEMG features and force 

is divided into two fundamental branches, sEMG amplitude and force and sEMG spectral 

frequencies and force. 

2.3.1.1 sEMG Amplitude and Force 

Two main mechanisms contribute to the control of muscle force: the recruitment of 

additional MUs and the increasing firing rate of the already active MUs. For different 

muscles, these two mechanisms are presented in different proportions, which may have 
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different effects on both sEMG signal amplitude and force [27]. The sEMG signal 

amplitude depends on both the number of active MUs and their firing rates. sEMG 

amplitude features are commonly extracted using root mean square (RMS) or mean 

absolute value (MAV).  

Since both sEMG amplitude and force changes because of the same mentioned 

mechanisms, there is a very high correlation between force and sEMG signal amplitude. 

Most of the sEMG amplitude-force relationship research studies are based on the early 

work of Inman et.al and Bigland [28, 29]. Their investigations demonstrate that there is a 

linear relationship between force and sEMG amplitude. Some literatures concluded that, 

for various muscles, the magnitude of the sEMG signal is directly proportional to muscle 

strength for isometric contractions with a constant speed [30-32]. While others found that 

this relationship is nonlinear [19, 33-37], [38].  

More specifically, Hof and Van Den Berg [39] found a linear association between triceps 

surae muscle sEMG and ankle plantar moment, when the weighted sum of all heads of 

the triceps muscle was considered. On the other hand, when they analyzed the sEMG 

signal of each head separately, nonlinear relationship was obtained. In some skeletal 

muscles that control fingers, the relationship between force and sEMG amplitude was 

found to be linear [40]. Bell and Eloranta et.al [41, 42] investigated the individual 

muscles of the quadriceps femoris during isometric knee extension. Their results 

illustrated that the relationship is nonlinear, such that sEMG amplitude increases out of 

linear proportion to force. Figure 2.3 shows a typical case of force testing with static 

force. A highly reproducible relationship between the forces exerted at the wrist and the 

sEMG activity of the biceps muscle is curvi-linear is shown. At the higher force portions, 

more sEMG is needed to generate higher force [43].  
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Figure 2.3 (a) sEMG activity as a function of force F under isometric conditions. The different 

curves related to different arm angles meaning different muscle length of biceps. (b) The 

normalized F/Fmax in relation to the sEMG activity values [43]. 

2.3.1.2 sEMG Spectral Frequencies and Force 

Most studies on the sEMG-force relationship focus on the associations between the 

sEMG signal amplitude and force. In contrast, the relationships between force and sEMG 

frequency domain features are not widely investigated. The superposition of the spectral 

densities of the MUAP represents the power spectral density of the interference sEMG 

signal [27]. Alternatively, when the force increases, the activation frequency of the 

muscle fiber recruitments will be increased. In non-fatigued muscle state, some literature 

studies found that there is an increase of spectral variables (e.g. mean frequency) with 

increasing force target [33, 44-47], while others showed no increase or even decrease of 

mean frequency (MF) [33, 48].  

Solomonow et al. [49] reproduced the natural recruitment process in the cat’s 

gastrocnemius muscle experimentally using electrical stimulation. The results 

demonstrated a linear increase in the median frequency (MDF) of the power density 

spectrum (PDS) when the motor units were recruited progressively. Bilodeau et al. [50] 

investigated the changes of sEMG frequency contents with the increasing force generated 
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from the quadriceps femoris muscles of both male and female. The increasing mean 

power frequency (MPF) was observed with the ramp up muscle contraction force.  

Generally, most studies aim to develop a suitable method to estimate the force exerted by 

muscles using sEMG-force relationships. Multiple studies can be found in [26, 36, 38, 51, 

52] and good force estimation results can be observed. However, for these force 

estimation methods, most sEMG signals features are derived in the time domain, while 

the force estimation approaches using frequency-domain features are quite few. In 

addition, only a few current studies consider the Tf values between the estimated force 

and the measured force. Whether the frequency domain method provides longer Tf values 

than the time-domain method has never been investigated comprehensively. Here Tf 

describes the average time difference between the estimated force and the measured force 

from force sensor. 

2.3.2 Other Methods 

Instead of investigating the relationship between sEMG features and force for force 

estimation, some other force estimation methods have been developed by applying 

musculoskeletal models. These models consider the effects of muscle length and muscle 

contractile speed on the force, and extract a function to transfer the activation to the force. 

Muscle models explain how the muscles act together to produce the exerted force. They 

have been developed to estimate force for knee [9, 53, 54], elbow [55] and lower back 

[56] specifically. Lloyd and Besier [9] developed an modified Hill-type muscle model to 

estimate knee moments and muscle forces, using activation and muscle tendon lengths as 

the inputs for healthy subjects during dynamic tasks. The results illustrated that it is a 

possible way to estimate muscle forces and predict the knee joint moment for a range of 

tasks.  

The development of muscle models requires validation from some external kinematic or 

dynamic data measured by dynamometers or other sensors. Moreover, during muscle 

movements, time and frequency features of the signals are influenced by muscles and the 



19 

 

activation manners of muscle fibers. At the same time, problems may be induced by 

making assumptions about some unknown nonlinear parameters that cannot be measured 

experimentally. Under different circumstances, the unknown properties may lead to 

undesirable influences on the force estimation. Currently, musculoskeletal models have 

been used to investigate movement dynamics for healthy individuals. It is still unclear if 

this approach could be used to estimate muscle forces produced by post-stroke patients.  

Artificial neural networks (ANN) is another commonly applied approach for estimating 

muscle force. ANN has been used to map complicated relationships successfully in 

biomechanics research studies [57-59]. It is able to extract features from complicated 

signals and acts as a black box model to approximate the complex nonlinear mappings 

directly from the input signals. Furthermore, no detailed information such as the 

mathematical expression that relates the sEMG signals to the muscle force is involved 

when using ANN. Thus, no need to derive any complex functions to describe the 

relationships. The first use of ANN for muscle force estimation was reported in [58]. 

Savelberg et al. [60] employed multi-layer perceptron artificial neural networks 

(MLPANN) with back propagation (BP) training for cat leg dynamic tendon force 

estimation, using recorded EMG data and kinematic information (joints angle and 

velocity). Palmar pinch force was estimated in real-time by Choi et al. [61] with ANN, 

and good estimation results were obtained. The training target was the measured force 

during palmar pinch, while the amplitude of sEMG worked as the training input data. Luh 

et al [62] constructed a three-layer feed-forward network with an adaptive learning rate to 

map the relations between the isokinetic elbow joint torque and the sEMG activity.  

Nevertheless, in most of these studies, the characteristics extracted from sEMG signals 

are limited to the time domain, while the frequency domain features, such as MF, MDF 

are seldom involved for muscle force estimation. Moreover, most of these present works 

are carried out with healthy subject muscles, there should be significant and meaningful 

outcomes if post-stroke patients sEMG signals are studied.    
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2.4 Muscle Fatigue Detection Methods 

As being one of the most common phenomena with substantial impacts on human daily 

life, muscle fatigue has attracted much attention since the beginning of last century. 

Recent advances in physiological studies have demonstrated the significance of detecting 

or predicting muscle fatigue in various aspects of our lives, including sports, 

rehabilitation and ergonomics. Various signal analysis methodologies are developed to 

assess fatigue non-invasively using sEMG signals recorded from muscles under different 

contraction conditions.  

Nevertheless, most current research studies focus on the myoelectric manifestations of 

fatigue during constant force conditions, which is easy to be studied, but cannot reflect 

the muscle functions of daily life. In addition, to date, research on localized muscle 

fatigue mainly focuses on clinical side and detecting the occurrence of fatigue. Very little 

research is carried out on detecting muscle fatigue in real-time and tracking the 

continuous muscle state from non-fatigue to fatigue. Meanwhile, few works are reported 

to track the muscle state using discrete fatigue levels. The estimated fatigue levels could 

be incorporated in assistive devices, to reduce the risk of injuries and to track the patient 

participation during gait training by modulating the assistance torque level.  

Special individuals, such as stroke patients, experience functional deficits induced by the 

muscle weakness and fatigue. So far, little is known concerning the changes in 

neuromuscular fatigue after stroke. In the following sections, the general definition of 

fatigue and fatigue physiological phenomenon are first introduced briefly. Then the 

prevalent research studies on detecting fatigue are reviewed.  

2.4.1 Definitions and Physiological Phenomenon 

“Fatigue” is a commonly used term to describe the decrease in physical performance 

associated with an increase in difficulty of a task or exercise. During muscle contractions, 

fatigue is a long lasting reduction of the ability to contract and exert force, or to maintain 
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the required level of strength [4, 5]. Generally, localized muscle fatigue occurs after a 

prolonged, relative strong muscle activity, and develops progressively over time [63]. 

Also argued by Barry and Enoka [64],  the fatigue definition indicates that fatigue occurs 

fast after the onset of a sustained period of exercise, although the subjects may still be 

able to sustain the activity. Another description of fatigue deals with the inability to reach 

the same initial level of maximal voluntary contraction (MVC) force. The evolution 

progress of muscle fatigue may be fast or slow, depending on the effort performed, and 

leads to mechanically detectable performance changes eventually.   

Commonly, muscle fatigue is divided by central fatigue and peripheral fatigue based on 

sustained time of muscle contraction [65]. Central fatigue designates a decrease in 

voluntary activation of muscle, such as a decrease of the MUs firing rate. Peripheral 

fatigue indicates a decrease in the contractile strength of the muscle fibers, which 

represents the changes in mechanisms underlying the transmission of APs [66].  

During isometric fatiguing contractions, some biochemical and physiological changes in 

skeletal muscles can be observed. As a result of the biochemical changes, muscle fiber 

conduction velocity decreases and directly induces changes in the shape of the MUAP 

waveform. Eventually, the properties of sEMG signal will be an interference signal of all 

the generated MUAPs [8, 67]. The direct result of this phenomenon is the decrease of MF 

or MDF. Therefore, the decrease of muscle fiber conduction velocity is one of the causes 

of signal power spectral shifting toward lower frequencies. Meanwhile, this change also 

leads to the increase of sEMG signal amplitude.  

2.4.2 Time Domain and Frequency Domain Analysis 

As mentioned in the previous section, myoelectric manifestations of muscle fatigue can 

be summarized to the changes in signal frequency, amplitude and the muscle conduction 

velocity for various types of muscle contractions. However, due to the variability of 

muscle characteristics for different persons, there is no simple function that can precisely 
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describe muscle fatigue progress or the fatigue levels. In general, changes in the sEMG 

signals caused by fatigue are either measured in time or frequency domain.  

Integrated EMG (iEMG), RMS and MAV are frequently used as the time domain features, 

and an increase can be observed in the fatiguing period for isometric muscle contractions 

[68, 69]. These amplitude features reflect the combination of MUs recruitment and 

muscle fiber firing rate [70]. However, sEMG signal amplitude is rarely used as a fatigue 

indicator solely. One method, named joint analysis of sEMG spectrum and amplitude 

(JASA) [67, 71] is generally developed based on signal amplitude and spectral changes 

under fatigue. In this method, the fatigue state is distributed into four different cases, 

force increase, force decrease, fatigue and recovery, which corresponds to the changes in 

sEMG amplitude and spectrum. Luttmann et al. [71] found that it is possible to reach 

precise conclusion with this simple and easy implemented four-case method. In addition 

to the above approaches, zero-crossing rate of the signal is also studied by [72], which 

illustrated close properties to MF. At the onset of fatigue, the zero-crossing rate drops 

dramatically due to the decrease in conduction velocity in the muscle. However, zero-

crossing rate is strongly dependent on the signal-to-noise ratio of sEMG. 

When analyzing fatigue in frequency domain, the total band power (THP) was estimated 

by Welch [73] in the early studies. This method has been proven to be useful in fatigue 

analysis by calculating the sEMG signal power [67]. Two of the most common 

frequency-dependent features in sEMG analysis are the MF and MDF. MF is the 

frequency where the product of the frequency value and the amplitude of the spectrum 

are equal to the average of all such products throughout the complete spectrum. While 

MDF is the frequency which divides the power spectrum in average [67]. For constant 

force muscle contraction, these two spectral features decrease during the fatiguing 

process attributed by the decrease in MUAP conduction velocity, which are strong 

indication of fatigue [8, 70, 74] [48]. A development of muscle fatigue correlates with the 

changes in sEMG amplitude and MDF was observed by [75].  

Another newly defined spectral frequency parameters to represent the frequency content 

or the instantaneous frequency are the instantaneous median frequency (IMDF) and 
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instantaneous mean frequency (IMNF) [76]. These two features demonstrate a significant 

decline for isometric contraction, which are indicators of fatigue occurrence.  

With the above-mentioned approaches, to detect precise fatigue occurrence seems to be 

feasible for isometric muscle contractions. During constant force contractions, sEMG 

signal is assumed to be wide-sense stationary over a contraction period of 0.5-2.0 seconds 

[77, 78]. Under such circumstance, time domain or frequency domain characteristics are 

reliable fatigue indicators. However, most of the human daily activities are carried out 

under dynamic muscle contractions. Additionally, if the fatigue detection studies are to be 

extended to other applications such as sports, rehabilitation or assistive devices, it is 

essential to adapt a proper signal processing method to deal with the non-stationary 

signals.  

During force-varying muscle contractions, changes in the exerted muscle force, muscle 

lengths, the electrode locations and the movement velocity have strongly influences on 

the fatigue evaluation results [76]. Under such conditions, the generated sEMG signals 

cannot be considered as a stationary process. Hence, the power spectrum parameters 

obtained from fast Fourier transform (FFT) [79] and other traditional signal processing 

methods may not be suitable for the analysis of sEMG signals from such muscle 

contractions. 

In order to overcome these issues in the non-stationary muscle contraction analysis, many 

time-frequency or time-scale methods have been employed to assess fatigue. Cohen’s 

class of distribution, a general time-frequency representation, was first introduced by 

Cohen [80] using bilinear transformations. However, the Cohen’s class can be affected by 

cross-term contamination. 

Due to the variation of the sEMG signals, applying FFT to extract the frequency features 

would lose the information about time. Short time Fourier transform (STFT) is derived 

from FFT, which is calculated on a sliding short time window. This approach provides an 

insight into variations of the spectrum as a function of time [67], and it is commonly 

employed to determine the frequency and phase evolution of sEMG over time [81]. STFT 
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is able to estimate the spectral variation with time in a relatively short time window, the 

resolutions of the time and frequency for the non-stationary signal is traded-off for the 

shorter time window. STFT was used to evaluate fatigue during cyclic flexion-extension 

movements of the quadriceps muscle [82]. MF as a fatigue indicator was calculated from 

the spectrogram. The slope of regression fitting of the maximum values of MF was 

considered as the fatigue index.  

The Wigner-Ville distribution (WVD) [83] is an optimal approach to analyze non-

stationary signals, which overcomes some limitations of the spectrogram with high 

resolution representation in time and frequency. Duchene, J., et al. [84] applied the WVD 

method to analyze the electrical activities of uterine muscle and to track its instantaneous 

frequency. However, this time-frequency method is limited by severe cross-terms or 

interference terms between the components in different time-frequency regions.  

The Choi-Williams distribution (CWD) attenuates the interference terms without 

influencing the auto-terms of the time-frequency distribution significantly. Knaflitz et al. 

[76] discussed the electrical manifestations of muscle fatigue during cyclic dynamic 

contractions. They extracted the instantaneous spectral parameters suited to track the 

changes arisen by muscle fatigue. The results highlighted that this method allows the 

assessment of muscle electrical manifestations during fatiguing contractions.  

Wavelet transforms is an alternative method for time-varying signal analysis. It replaces 

the frequency shifting operation in STFT by a time scaling operation [85, 86]. It not only 

can be used in non-stationary conditions as they vary the time-frequency aspect ratio, but 

also leading to good frequency localization at low frequencies and good time localization 

at high frequencies [87]. The fundamental concept comparison of STFT and wavelet 

transform is illustrated in Figure 2.4. STFT has a fixed time and frequency resolution, 

and it is unable to have good time resolution along with good frequency resolution 

inherently. However, wavelet transform ensures good time resolution at high frequencies 

and good frequency resolution at low frequencies [87, 88].  Karlsson et al. [89, 90] 

compared several time-frequency analysis methods, including WVD, CWD, STFT and 

continuous wavelet transform (CWT), to analyze the sEMG signal during dynamic 
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muscle contractions by extracting time-dependent spectral parameters. They found that 

the MF and MDF estimated by CWT is more accurate and precise than the other three 

time-frequency methods. Meanwhile, CWT offers a high and flexible resolution for scale 

and time when compared with others.   

 

Figure 2.4 Fundamental concept comparison, time resolution and frequency resolution. (a) STFT; 

(b) Wavelet transform. 

However, during force-varying muscle contractions, the MU recruitments and muscle 

fibers firing rate change according to the force exerted by muscles. As a result, the MF or 

MDF and amplitude of sEMG signal vary according to the applied force. Under such 

conditions, it is inaccurate to track the fatigue progress exclusively by simply extracting 

time or frequency spectral parameters. 

2.4.3 Other methods 

Briefly, the time domain, frequency domain, and time-frequency analysis methods in the 

previous section are applied to extract features which are relevant to indicating fatigue. 

Other than these mentioned methods, other methods based on the time and frequency 

analysis method have been developed to assess muscle fatigue. 

Gonzalez-Izal et al. [91-93] assessed peripheral fatigue during dynamic contractions by 

comparing different sEMG parameters. Based on discrete wavelet transforms (DWT), 

they developed new spectral indices. These spectral indices were compared to different 

parameters, such as MAV, MDF and ratios between different scales obtained by DWT. 
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The results demonstrated that the spectral indices was a useful tool in indicating changes 

in muscle power output during fatiguing dynamic contractions, and can be used as 

predictors of changes in muscle power output. sEMG signals features are also extracted 

based on the use of wavelet packet in combination with neural networks to identify and 

classify muscle fatigue [94, 95].   

Entropy is a nonlinear, statistical measurement of the complexity of a signal. Sung et al. 

[96] claimed that entropy reveals sEMG features that are not included in the power 

spectrum. More fatigue studies can be found in [97, 98]. Approximate entropy (ApEn) 

was first developed by Pincus [99] based on the theory of entropy. It is believed to 

provide quantitative information about the complexity of experimental data which are 

usually corrupted with noise and short data length. Xie et al. [100, 101] applied ApEn 

with fuzzy logic to detect fatigue with biceps muscles under isometric contraction. 

Results suggested that the proposed fuzzy ApEn has the potential to be a reliable method 

for fatigue assessment and it is applicable to other short noisy physiological signal 

analysis.  

Autoregressive (AR) model is a random process applied in statistics and signal 

processing to model and estimate the natural phenomena. It was used to measure muscle 

fatigue in the truck muscle by [102], and the results demonstrated the capability of 

assessing fatigue for isometric contractions.  

Some other fatigue studies are based on ANN models. In these methods, the commonly 

used sEMG features were extracted and combined as the inputs of the ANN model. 

MacIsaac et al. [103-105] extracted four time-domain features and four frequency-

domain characteristics, and combined them into the training data set and the testing data 

set. A mapping function tuned by ANN yielded a generalized mapping index that 

assessed fatigue effectively.  

Al-Mulla et al. [106] developed an algorithm for automated muscle fatigue detection in 

sport related scenarios. They labeled the sEMG signals in two classes, non-fatigue and 

fatigue. The labels were determined by a fuzzy classifier, and the inputs were the elbow 



27 

 

angle and its standard deviation. A genetic algorithm was employed to evolve a pseudo-

wavelet function for optimizing the detection of muscle fatigue on any unseen sEMG 

signals. From their updated research studies, the labeling had been extended to three 

types, non-fatigue, transition-to-fatigue, and fatigue [107]. 

Most of developed fatigue detection approaches have accomplished efficient fatigue 

assessment. However, many complicated algorithms, such as genetic algorithm, fuzzy 

logic, wavelet decomposition etc. integrated in one approach may increase the burden of 

computation and storage. In addition, few of these methods are applicable for real-time 

implementation.  

2.4.4 Stroke patients muscle fatigue 

Most current fatigue studies focus on the sEMG signals from normal subjects. While only 

a few studies have reported sEMG characteristics of fatigue and fatigue detection 

approaches for persons with hemiparesis due to stroke [24] [108]. Individuals following 

stroke experience altered muscle activation and movement patterns. Many changes within 

the motor system following a stroke could potentially alter specific responses of the 

neuromuscular system to fatigue. Significant changes in the ability to activate muscles 

were observed from the hemiparetic patients. Some literatures reported that there is a 

dramatic decrease in the ability to achieve maximum muscles activation at knee joint and 

elbow joint. Thus, fatigue after stroke is common and distressing to patients. To track the 

muscle state of post-stroke patients, it is essential to understand the cause of fatigue in 

stroke patients.  

Some new evidence reveals dramatic structural and metabolic changes in skeletal muscle 

after stroke. These muscle changes include gross atrophy and shift to fast myosin heavy 

chain in the hemiparetic leg muscles [109]. The impairments will eventually lead to total 

fatigue, where it is impossible for the patients to continue performing task [110].   

Typically, fatigue studies on stroke patients compare and observe the features changes 

between the affected side and healthy side. The paretic and non-paretic muscles in stroke 
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patients were studied to compare the changes of sEMG characteristics under fatiguing 

contractions for lower limbs [24, 111, 112]. The results demonstrated that the changes in 

MDF for affected side and non-affected side were statistically different, with the values 

on healthy side much higher than the affected side. In addition, a greater decrease in 

MDF was found for healthy side when comparing with the paretic side. Riley et al. [112] 

evaluated the effects of stroke on fatigue related changes in upper limb torque patterns 

and sEMG signals. Compared with the healthy side, the affected side showed a lower 

level of voluntary activation and higher relative torque at the forearm and shoulder. For 

the changes in MDF, roughly same changes were found as presented in [24] and [111]. 

The reasons of these changes, the decrease in the ability to activate muscles and declined 

motor unit synchronization in stroke patients were pointed out by [113-115]. 

2.5 Summary 

This chapter provides a general introduction of sEMG signals and a review of past works 

on estimating human muscle force and assessing muscle fatigue, giving a specific 

classification of the most prevalent research that has been done in detail.  

As the command signals from the human motion control system, transmitted to the 

muscles through the motor nerves, sEMG signal is commonly used in muscles relevant 

studies. In its application fields, sEMG signal is widely used for the control of assistive 

devices. The sEMG signal features are typically used to predict the intended limb 

movement or the amount of force required to execute a task, and human muscle fatigue.  

Different algorithms for estimating the force exerted by muscles have been reviewed. The 

most popular methods are generally based on the sEMG and force relationship. Linear or 

nonlinear relationships between sEMG amplitude and force have been found. While the 

relationship between sEMG frequency domain features and force has not been examined 

comprehensively.  Few studies argued an increase and decrease of spectral variables with 

increasing muscle force. The results of recent studies of different sEMG spectral features 

and force relationships are still equivocal. Most of the force estimation methods are 
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accomplished with the sEMG amplitude-force relationship, the ambiguous spectral 

variables and force relationship has not been examined comprehensively and applied to 

estimate muscle force. 

Another aspect reviewed in this chapter is the approaches for muscle fatigue detection. 

Generally, time domain, frequency domain, and time-frequency analysis methods are 

used to extract fatigue related features. Most of the studies focus on isometric 

contractions, while only a few works concentrated on dynamic contractions are reported. 

Meanwhile, muscle fatigue levels describing the fatigue progress have not been 

investigated.  

Based on the above literature survey, some advantages but also limitations have been 

shown in these methods. In this thesis, the relationships between sEMG time domain 

features and force, and the relationships between spectral features and force will be 

investigated comprehensively in the following chapter. Two muscle force estimation 

approaches will be described in Chapter 4, one is based on sEMG-force relationship, and 

another is based on the CWT and ANN. In addition, a novel fatigue detection method 

will be presented for isometric contractions and force-varying contractions. Real-time 

implementation will also be accomplished to evaluate the efficiency of these methods.  
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CHAPTER 3  

RELATIONSHIPS BETWEEN sEMG FEATURES AND 

FORCE 

3.1 Introduction 

The relationships between sEMG features and force exerted by muscles are the direct 

way to estimate the force information from sEMG signal. Like in time-frequency analysis, 

sEMG spectral frequencies and signal power are also correlated with some mathematical 

associations. This chapter is the fundamental for Chapter 4, Chapter 5 and Chapter 6.  

In this chapter, we first describe the experimental protocol for data collection. sEMG 

signal is collected from four muscles, biceps brachii, triceps brachii, quadriceps femoris 

and rectus femoris of fourteen subjects under separate experiment trials. The forces 

applied by subjects’ muscles are measured by a load cell. Then, we propose the method 

to establish the relationships between sEMG signal features and force. These sEMG 

features will be extracted using time domain and time-frequency analysis, respectively. In 

time domain, windowed RMS is a quadratic mean of the sEMG signal, which is widely 

used as the amplitude feature. While in time-frequency analysis, MF will be calculated 

from time-scale analysis method, CWT. Since another objective is to establish the 

relationship between MF and signal power, the signal power describing the energy 

distribution of power spectrum will also be extracted from CWT.  
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In the rest of this chapter, the influence on the relationships of different electrode 

positions obtained from biceps brachii muscles will be investigated in detail. A summary 

on the established relationships results and the electrode location influences is provided at 

the end of the chapter.   

3.2 Experimental Protocol 

In this section, the experimental protocol is presented. The information about the subjects 

is first described. In Subsection 3.2.2, the experiment setup and the data collection 

instruments are shown. Lastly, we highlight the experiment methods for collection sEMG 

signals. 

3.2.1 Subjects 

Fourteen subjects (10 males and 4 females) voluntarily participated in this study. Each 

subject agreed and signed the written informed consent documents before participating in 

the experiments. None of the participants reported any current or ongoing neurological 

disorders or musculoskeletal problems specific to the wrist, elbow, shoulder and legs. 

The subjects’ mean ± standard deviation age, weight and height are 26.3±2.9 years, 

65.6±12.3 kg and 170.3±7.0 cm respectively. The experiments were approved by the 

institutional review board of National University of Singapore. 

3.2.2 sEMG and Force Measurements 

sEMG signals were recorded from the biceps brachii, triceps brachii, rectus femoris and 

biceps femoris muscles of the dominant side of the subjects separately, using self-

adhesive pre-gelled Ag/AgCl surface electrodes (Noraxon USA, Inc.). The sEMG 

electrodes and the pre-amplifier are shown in Figure 3.1. The recorded voltage waveform 

is the difference in potential between the two red electrodes. Another black electrode is 

the ground.  
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Before electrodes were attached to the skin, the underlying skin at the targeted areas was 

prepared by shaving the excess hair and cleaned with alcohol to reduce the electrical 

impedance between skin and electrodes. The electrode placement and locations onto the 

target muscles were done according to SENIAM guidelines [116]. All electrodes pairs 

were placed parallel to the general direction of muscle fibers, and along the longitudinal 

axes of the short head of the target muscles. Electrodes pairs were placed with the 

distance between the electrode’s centers of 20mm. For female subjects, the electrodes 

were placed by a female staff. Contraction tests were carried out by contracting and 

relaxing the target muscles. The acquired sEMG signals activity correlated to the 

contraction and relaxation of the target muscle was checked to ensure good contact 

between electrodes and skin.   

 

Figure 3.1 Surface Electrodes and pre-amplifier. 

sEMG signals were pre-amplified and the common mode rejection ratio (CMRR) of the 

pre-amplifier was over 95 dB. The data was recorded with a 12 bit analog to digital 

convertor at a sampling rate of 10 KHz. The recorded signal was subsequently stored in a 

computer for off-line analysis.   

A force-measuring setup with handles was used to measure the force exerted by human 

muscles generated by elbow and knee joints. During the experiments, the positions of the 

handle are in the middle of forearm and the middle of shank, respectively. The force 

sensor is able to measure bidirectional force with a measurement range of 30 kg. The 

measured force data were amplified with a strain gauge amplifier. Before the experiments, 

the force and output voltage relationship of the force measurement setup was calibrated 

using a digital force gauge (IMADA, DS2-50N). Figure 3.2 depicts the experimental 
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setup for measuring the force and recording sEMG signals. The measured force signal 

was sampled at 10 KHz and synchronized with the sEMG signal recordings. The sEMG 

and force signals were recorded simultaneously with a data acquisition system (USB-

DAQ 6009, National Instruments, US).  

 

 

Figure 3.2 Illustration showing the force measurement. 

3.2.3 Experiment Methods 

During the experiments, the subjects were seated comfortably on a chair with their back 

in a vertical position. To help the subjects familiarize with the setup and the experimental 

tasks, warm-up exercises were performed by slowly performing elbow and knee joint 

flexion/extension. Since the sEMG features and force relationships depend strongly on 

the type of the force dynamics, the changes of muscle lengths, and joint angles during 

muscle contraction trials are fixed. All the flexion/extension muscle contractions were 

performed by elbow or knee joint at a 90 degrees joint angle. The elbow 

flexion/extension angle was defined as the angle formed by the intersection of the 

forearm and upper arm, while the knee flexion/extension angle was defined as the angle 

between thigh and calf. 

Graphs depicting the target force, actual applied force and sEMG signals were displayed 

in real-time on a computer screen facing the subjects to provide a visual biofeedback 
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while they performed their muscle contractions. Three different contraction trials were 

performed by each subject using per muscle, and each trial was conducted on different 

days to avoid the influence from muscle fatigue.  

 Trial 1: MVCs measurements 

The subjects were asked to contract biceps brachii muscles to the maximal 

voluntary contraction (MVC) while pulling the handle of the force measurement 

setup with the elbow joint angle at 90 degrees. Each MVC value was held for at 

least 3-5 seconds. After a two minutes rest, same contractions were repeated at 

least two more times to ensure the recorded signals represent the maximum force 

of each subject. The subjects were encouraged verbally to exceed previous 

maximum force level. The averaged MVC value was considered as the non-

fatigue maximum voluntary force. This value was used in the following trials as 

the reference to set the submaximal force level for each subject.  

The same procedures were performed by triceps brachii, rectus femoris and biceps 

femoris in the subsequent separate trials. However, the MVCs were measured by 

pushing the setup handle for triceps brachii and rectus femoris, namely, elbow and 

knee joint extension. 

 Trial 2: Ramp up contractions   

The subjects exerted their muscle force from a relax state to MVC slowly within 

approximate 10 seconds. The computer screen displayed a ramp up function 

illustration as a guide for subjects to follow.  

 Trial 3: Ramp down contractions   

The subjects exerted their muscle force from 100% MVC to a relaxed state slowly 

within approximate 10 seconds. The computer screen displayed a ramp down 

function illustration as a guide for subjects to follow.  
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3.3 sEMG Amplitude and Force Relationship 

To establish the amplitude-force relationship, the time domain feature, windowed RMS 

was calculated using the sEMG signals recorded under ramp down muscle contraction. 

The recorded sEMG signals and the measured force were downsampled to 2500Hz. The 

signal flow diagram describing the procedures to establish this relationship is illustrated 

in Figure 3.3. 

 

Figure 3.3 Sign flow diagram for establishing relationship between sEMG amplitude and force 

(Dashed arrows depict elbow/knee joint flexion, while solid arrows show the elbow/knee joint 

extension). 

Raw sEMG signals from each muscle of per subject under ramp down muscle 

contractions were the input to the proposed method. The raw sEMG signal was first 

band-pass filtered using a 4
th

 order Bessel IIR filter with the cut-off frequencies at 

f1=35Hz and f2=650Hz. These cut-off frequencies were chosen such that the motion 

artifacts and higher frequency signals without correlating to the muscle activation have to 

be removed [117]. The Bessel filter is observed to have a linear phase response and 

maximally flat group delay. Meanwhile, since this filter has constant and controllable 

group delay across the whole pass-band, it ensures the filtered signal shape in the pass-

band and provides effortless choice of the overall delay introduced by the filter. 

Subsequently, the signals were rectified and smoothed using windowed RMS which is 

defined as, 
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where xk is the input signal sample, n is the window length, k is the windowing running 

index and it starts from m-n and ends at m. For windowed RMS, the longer window 

length, the smoother the output signal, but the larger time delay. Thus, a properly selected 

window length has a strong influence on the signal processing results. In this method, n is 

chosen to be 250 samples which corresponds to 100 ms.  

For different subjects and different muscle groups, the skin impedance at the electrode 

sites is different. Meanwhile, the force target values vary from subject to subject. In 

addition, a prominent characteristic of windowed RMS is its variability, which makes it 

inherently difficult to compare signal amplitude across different individuals, different 

muscles or even across different sessions within the same individual. To compensate the 

variability of these factors, the windowed RMS signals have to be normalized to 1. 

Meanwhile, the measured force is normalized and expressed as a percentage of MVC. 

The sEMG amplitude-force relationship was established using linear regression method, 

curve-fitting tool in MATLAB. The two input data sets are the output signals from 

windowed RMS as x-axis and the measured force from force sensor as y-axis, 

respectively.  

3.4 sEMG Spectral Frequency and Force Relationship 

The manifest property of sEMG signal is its variation with respect to time, however, 

typically, the temporal variation of sEMG signal alone is not enough to present all the 

physical processes involved. For this reason, various forms of transforms have been 

developed to analyze sEMG signals. One of extensively studied aspects of sEMG signals 

is in frequency domain. sEMG signal has the energy distributed around 6 to 500 Hz 

frequency range, and the most dominant power is located between 10 to 250 Hz. This 

frequency range contains the characteristics relevant to force exerted by muscles.  
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The FFT of sEMG signal cannot depict how the spectral contents of the signal with time, 

which induces the information loss in many non-stationary signals in practice. Commonly, 

to extract frequency information from sEMG signals, time-frequency analysis method is 

applied. Time-frequency representations provide direct information about the frequency 

components occurring at any given time by combining the information of temporal 

behavior of the signal. It avoids the problems arisen by FFT. The basic goal of time-

frequency analysis is to determine the energy concentration along the frequency axis at a 

given time instant [118]. 

3.4.1 CWT and Spectral Features Extraction 

Time-frequency analysis is more appropriate for analyzing non-stationary signals, as it 

provides direct information about the frequency components occurring at any given time. 

To investigate sEMG signals with time-frequency representations, CWT is regularly 

applied to extract frequency parameters, which has been proven to be computational 

efficiency and better to estimate the frequency variables.  

CWT was first introduced by Morlet in 1982 as an alternative approach to the STFT and 

specifically to overcome the resolution limitation of the STFT [85]. STFT is derived from 

FFT working on a short time windowed signal which is assumed to be stationary. When 

using STFT, the time-bandwidth product is constant in the whole time-frequency plane, 

once the window is chosen, the time-frequency resolution is fixed at all time and 

frequencies. Narrow window length results in good time resolution but poor frequency 

resolution. Meanwhile, wide window induces good frequency resolution but with poor 

time resolution. On the contrary, in the case of CWT, the time-frequency resolution 

varies according to the frequency of interest. High frequency resolution for low-

frequency signal and good time resolution for high-frequency signal can be achieved 

simultaneously in CWT.  

The CWT analysis is done in a similar way to the STFT analysis, in the sense that the 

signal is multiplied with a function. Similar to the window function in the STFT, CWT is 
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calculated separately for different segments of the time-domain signal [119]. Given the 

input signal     , the CWT of the signal      is defined as the integral transform of      

with a family of window function        : 

        ∫     
 

  
    

                                              (3.2) 

where     represents the scale parameter,   is the temporal translation parameter (time 

shifting). The output of the CWT is the wavelet coefficients. These wavelet coefficients 

yield information as to the correlation between the wavelet (at a certain scale) and the 

data array (at a particular location). Larger positive amplitude implies a higher positive 

correlation, while large negative amplitude implies a high negative correlation. 

Meanwhile, the superscript   in Equation (3.2) refers to the complex conjugate.     
     is 

obtained by scaling the mother wavelet      at time   and scale   [87], 
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The function      is commonly called the mother wavelet, whereas the family of 

functions         are called daughter wavelets since they are derived from scaling and 

shifting the mother wavelet [87]. The mother wavelet function is limited in time domain, 

and has values in a certain range. Two dominant properties of mother wavelet are zero-

mean and the normalization is constant,  

∫         
 

  
                                                (3.4) 
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Unlike STFT, the temporal width of         of CWT is not a constant. It changes as the 

transform is computed for every single spectral component, scale parameter a.   
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If the localization properties of the CWT filter characteristic are combined together, 

CWT performs a local filtering of the input signal      both in time and in scale. 

Therefore, commonly, wavelet transform can also be seen as a bank of filter.  

The relationship between wavelet scale parameter   and its center frequency is defined as 

  
  

 
                                                            (3.6) 

where    is the sampling frequency, f0 is the center frequency of the mother wavelet at 

scale a=1,   is the pseudo-frequency (Hz) corresponding to wavelet scale  . Based on 

this relationship, it can be observed that large scales corresponds to low frequencies, 

while small scales correspond to high frequencies. For the resolution property, lower 

scales have a better scale resolution, which means that it is less ambiguous about the 

exact value of scale. While, higher scales correspond to better frequency resolution of 

lower frequencies.  

Most widely used way to determine CWT energy distribution within the data array is to 

plot the wavelet power, which is equivalent to the square of the absolute value of CWT, 

        |       |
                                             (3.7) 

This        is called Scalogram which represents the energy distribution of the sEMG 

signal over the entire time-scale plane. Since the wavelet coefficients consist of    

columns (  is the input data points index) and   rows (  is the wavelet scale index), 

Scalogram calculated from MATLAB is a two-dimensional (   ) matrix of squared 

wavelet coefficients, but with the signal energy distributed at specific time and scale.  

In MATLAB implementation, the wavelet scale length was selected to be 196 to calculate 

the Scalogram. Morlet wavelet was selected as the mother wavelet from the suggestion 

given by Karlsson et al. [89, 120]. The wavelet Morlet wavelet is a complex analytic 

function and has been commonly used in signal processing. Figure 3.4 illustrates real-

valued Morlet wavelet in the time domain.  



40 

 

 

Figure 3.4 Morlet wavelet in the time domain (Real-valued). 

In this thesis, two spectral parameters have been extracted with time-frequency analysis, 

namely MF and the signal power P. Signal power P is able to describe sEMG signals 

spectral energy distribution with time. Meanwhile, MF is a useful frequency-domain 

features [121] that is frequently used for muscle fatigue assessment with sEMG signals 

[67]. Using scalogram, MF representing the signal frequency domain characteristics is 

defined as the average frequency of the signal power spectrum. It is calculated as [67] 
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                                                   (3.8) 

where       represents the scale parameter,   is the temporal translation parameter 

(time shifting).    is the sampling frequency, f0 is the center frequency of the mother 

wavelet at scale a=1.   (      ) is the Scalogram. The Scalogram is a two-dimensional 

(   ) matrix, where   is the input data sample index and   is the wavelet scale index.    

is the length of scale. 

The signal power P is the average energy distribution along the scale for sample i is 

calculated as 

   
∑         

  
   

  
                                                    (3.9) 
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where    is the length of scale,  (      ) is the Scalogram . 

3.4.2 Baseline Noise Elimination 

In sEMG time-frequency analysis, the major sources of variability that influence the 

signal are the diverse noises associated with sEMG recordings. Several intrinsic and 

extrinsic sources of noise contaminate the sEMG signals. Modern advance electronics 

technology and appropriate designed circuits can attenuate some extrinsic noise, such as 

the power line noise and the cable motion artifacts [122]. However, despite noise 

reduction is done at the source by proper skin preparation, and the use of well-designed 

electrodes and signal recording equipment, some noise always accompany the desired 

signal [117].  

Intrinsic noise, like baseline noise, is detectable whenever the electrodes are attached to 

the skin. It is one of the major sources which can be observed at some zero contraction 

force sections. Figure 3.5 shows a trial of ramp up force and sEMG signals measured 

from biceps brachii during elbow flexion. It is easy to observe the baseline noise (see the 

red dashed circle) from the sEMG signal at the end of the trial, where the muscle 

contraction force is zero. When calculating MF and P of the power spectrum, the power 

spectrum contributed from quiet epoch should be discarded rather than ignored, since it 

contaminates the sEMG signal in the whole trial. Eliminating the effect of zero 

contraction force (quiet epochs) on the sEMG signal power spectrum makes the signal 

power spectrum parameters estimation more accurate. For this reason, the baseline 

spectrum diminishing is essential.   
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Figure 3.5 (a) Normalized force measured during a ramp up biceps brachii muscle contraction in 

approximate 10 s period; (b) the corresponding sEMG signal.  

To remove the baseline noise, scalogram of the silent period (zero muscle contraction 

force) was first calculated. The energy of the silent period is very small. A maximum 

value    of the power spectrum for this section was obtained and set as the threshold. To 

avoid contaminating MF and P calculation, when calculating MF and P for the active 

contraction, if the scalogram value at time t is smaller than   , the signal power spectral 

density will be set to zero. Otherwise, continue to calculate the MF and signal power P. 

Mathematically, the calculation can be expressed as Equation 3.10, 

         {
                          

                  
                               (3.10) 

Where          is the scalogram at signal sample i and scale j, while    is the threshold 

value.  
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With this method, MF (Equation 3.8) and P (Equation 3.9) will be calculated much more 

accurately. Figure 3.6 illustrates an example of MF calculated with and without this 

baseline variability elimination algorithm. It is evident that the power spectrum of the 

quiet period signal influences MF dramatically by contaminating the baseline level. For 

those parts where the muscle contraction force are zero, the MF contents should be zeros 

or very low frequencies, however, from Figure 3.6 (b), the lower frequency components 

are shifted to higher part due to the effects from baseline noise. 

Since the signal power spectrum in the silent period has been eliminated, MF decreases to 

low frequency level when the exerted force is small, and it changes with the muscle 

active contraction progressively. Using the baseline elimination algorithm on the signal 

power spectrum, more accurate MF and signal power P can be obtained and they vary 

with the force exerted by muscles correctly.   

 

Figure 3.6 (a) sEMG signal recorded from rectus femoris with force-varying contraction; (b) MF 

is calculated without baseline variability elimination algorithm; (c) MF is calculated baseline 

variability elimination algorithm. 
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For each muscle contraction trial, the quiet period is unavoidable and strongly influences 

the calculation accuracy of MF and signal power P. Without setting the threshold    on 

the power spectrum leads to inaccurate results in MF. The proposed eliminating method 

is an effective way to obtain the accurate estimation of MF and P. Therefore, in the 

following chapters, for any calculation on MF and P, the algorithm will eliminate the 

baseline noise first. However, attributed by the changes in electrode positioning, different 

muscle groups and different muscle contraction trials, the noise characteristics of the zero 

force contraction vary significantly. Therefore, it is essential to set the threshold    trial 

by trial to ensure the accuracy. 

3.4.3 Relationships Establishment 

Figure 3.7 depicts the procedures to establish the relationship between MF and force 

using the sEMG signal from ramp down muscle contractions. MF obtained from CWT 

was first low-pass filtered. A 4
th

 order low-pass Bessel filter with a 5Hz cut-off frequency 

was used to smoothen the MF signal by removing the spurious peaks. Then the measured 

force and the filtered MF were analyzed with linear regression. The measured force and 

filtered MF have to be normalized due to the variation from different individuals and 

different muscle groups. The filtered MF is normalized to 100 Hz, while the measured 

force is normalized and expressed as a percentage of MVC. In MATLAB implementation, 

two input data sets to curve fitting tool are the normalized MF as the x-axis and the 

measured force as the y-axis, respectively.  

 

Figure 3.7 Signal flow diagram for establishing sEMG MF-force relationship (Dashed lines 

depict elbow/knee joint flexion, while solid lines show the elbow/knee joint extension). 
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The development of relationship between MF and signal power P is illustrated in Figure 

3.8. The sEMG signals collected under ramp down muscle contractions are used to 

establish this relationship. MF and P were filtered by 4
th

 order Bessel filters with a 1.5 Hz 

cut-off frequency to simultaneously remove the noise which are shown as the high 

frequency spurious peaks. This also ensures that two paths were performed with the same 

signal bandwidth and group delay. Then the filtered MF was normalized to 100 Hz, while 

P was normalized to 1. In MATLAB implementation, two input data sets to curve fitting 

tool are the normalized MF as x-axis and signal power P as y-axis, respectively.  

 

Figure 3.8 Signal flow diagram for establishing MF-P relationship (Dashed lines depict 

elbow/knee joint flexion, while solid lines show the elbow/knee joint extension). 

3.5. Relationships Results 

The recorded sEMG under ramp down muscle contractions were used to obtain the 

sEMG amplitude-force relationship, MF-force relationship and MF-P relationship. Figure 

3.9, Figure 3.10 and Figure 3.11 illustrate the amplitude-force relationships, MF-force 

relationships and the MF-P relationships, respectively, from the four measured muscle 

groups. These relationships were fitted with polynomial models. All available polynomial 

models were selected during curve fitting estimation, such as linear, quadratic, cubic and 

higher order polynomial. For each muscle, a polynomial model was obtained from each 

subject. The best polynomial estimator for each muscle group was selected by comparing 

which gives the highest R
2
 value and lowest root mean square error (RMSE). R

2
 value is 

the square of the coefficient of multiple correlations. It is used to check the goodness of 
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fit. The closer this value is to 1, the higher goodness of fit is between the two signals. The 

level of significance value alpha was set at p 0.05 in this study. Even though there might 

be some other models like exponential, power, logarithmic etc. describing the 

relationships relatively accurate, considering the computational efficiency when 

implementing in real-time system and to simplify the implementation process, only 

polynomials are employed in the thesis.    

For the sEMG amplitude-force relationship, the windowed RMS values increase slowly 

at low-level exerted force, and they increase dramatically when the exerted force is 

increased to higher level. It is evident that relative more muscle fibers are fired to 

generate more contraction force. 

For the MF-force relationship, the general trends of the two upper arm muscles are 

slightly different from the rectus femoris and biceps femoris, but they are still in 

parabolic shapes. At low-level muscle force, MF increases rapidly, whereas the growth is 

slower when a very high muscle force level is exerted by biceps brachii and triceps 

brachii. In the rectus femoris and biceps femoris, the changes in MF are almost same as 

the amplitude-force relationship when the force is increasing. This can be attributed to the 

increasing firing rates of muscle fibers, which results in the rapidly increasing rate of MF 

at high muscle force. This phenomenon also can be observed in the relationships between 

MF and signal power P.     
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(a) Curve fitting example with input data (Biceps brachii)

 
                          (b) Biceps brachii                                     (c) Triceps brachii 

 
(d) Rectus femoris                        (e) Biceps femoris 

Figure 3.9 sEMG amplitude-force relationships. (a) Curve fitting example with input data (Biceps 

brachii); (b) Biceps brachii (3rd order polynomial); (c) Triceps brachii (3rd order polynomial); (d) 

Rectus femoris (4th order polynomial) (e) Biceps femoris (4th order polynomial).     
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(a) Curve fitting example with input data (Biceps brachii)                                              

 

  
 (b) Biceps brachii                                             (c) Triceps brachii 

 
(d) Rectus femoris                        (e) Biceps femoris 

Figure 3.10 sEMG MF-force relationships. (a) Curve fitting example with input data (Biceps 

brachii); (b) Biceps brachii (3rd order polynomial); (c) Triceps brachii (3rd order polynomial); (d) 

Rectus femoris (4
th
 order polynomial) (e) Biceps femoris (4

th
 order polynomial).     
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(a) Curve fitting example with input data (Biceps brachii)                                              

 

 
(b) Biceps brachii                                             (c) Triceps brachii 

 
      (d) Rectus femoris                                           (e) Biceps femoris 

Figure 3.11 sEMG MF-P relationships. (a) Curve fitting example with input data (Biceps brachii); 

(b) Biceps brachii (3rd order polynomial); (c) Triceps brachii (3rd order polynomial); (d) Rectus 

femoris (4
th

 order polynomial) (e) Biceps femoris (4
th

 order polynomial).     
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Table 3.1 lists the R
2
 and RMSE values of the selected polynomials given by the 

regression fitting from each muscle for the amplitude-force relationship and MF-force 

relationship. The high R
2
 values indicate that there are strong correlations not only 

between the force and sEMG with time domain features, but also between the force and 

the spectral frequency features.    

Analysis of variance (ANOVA) is employed to analyze the differences between group 

means and their associated procedures [123]. In this study, a single factor ANOVA was 

performed to compare the R
2
 values between these two sEMG features and force 

relationships, for the results from all measured muscle groups. The ANOVA in this study 

was calculated using Microsoft Excel. In addition, ANOVA was performed among the 

four muscles to determine any significant difference in measured muscles for each 

established relationships. P-values less than 0.05 were considered significant. In this 

study,  the ANOVA was calculated using Microsoft Excel. 

ANOVA results indicate that the difference between the MF-force and amplitude-force 

relationship are not statistically significant since the p-value is larger than 0.05. This also 

demonstrates that the association varies relatively small for both sEMG amplitude feature 

and the spectral frequency. On the other hand, for the relationships, amplitude-force and 

MF-force, the single factor ANOVA reveals that there were no significant difference 

among all the measured muscles. 

Table 3.1 Selected Polynomial R2 and RMSE Values for Each Muscle (MF-force relationship and 

Amplitude-force relationship).  

Muscles 
MF-force relationship Amplitude-force relationship 

R
2
 RMSE R

2
 RMSE 

Biceps Brachii 

Triceps Brachii 

Rectus Femoris 

   Biceps Femoris 

0.9233 

0.8601 

0.7685 

0.8041 

0.0756 

0.2786 

0.3772 

0.3823 

0.8195 

0.8858 

0.9033 

0.9071 

1.066 

0.3862 

0.2270 

0.2495 
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3.6 Influence of Electrode Locations on the Relationships  

When discussing the relationship between sEMG features and force, numbers of factors 

should be taken into account. One of the factors is the electrode location. In numbers of 

methodological and clinical publications, the effects of electrode locations on the 

estimation of sEMG amplitude or the spectral variables have been studied in recent years. 

However, the influence of electrode locations on the relationships between sEMG 

features and force are hardly comprehensively investigated. It is widely known that the 

sEMG amplitude and spectral parameters are very sensitive to small electrode 

displacements and they depend on the electrode locations strongly. Jensen et.al [124] 

examined the effects of electrode positions on the sEMG amplitude-force characteristics 

for the upper trapezius muscles. Results indicated that in the region with high sEMG 

amplitude, a linear amplitude-force relationship was observed, whereas highly variable 

relationships were found in the lateral and dip region. They also highlighted that an 

almost linear relationship could be observed for electrode locations far from the 

innervation zone.  

The different electrode locations not only affect the sEMG amplitude, but also influence 

the frequency spectral parameters. To locate the electrode more accurately and precisely, 

and investigate the effects of electrode positions on the relationships, some muscle 

contraction trials and relationship results from different electrode locations are presented 

in this section.  

3.6.1 Experimental Methods 

Five subjects were involved in this investigation. The five subjects are random selected 

from the fourteen subjects that are mentioned in Subsection 3.2.1. The five subjects’ 

mean ± standard deviation age, weight and height were 23.5±1.6 years, 66.4±10.6 kg and 

171.6±5.2 cm respectively. sEMG and force signals were recorded using the same 

equipment as mentioned in Subsection 3.2.2. sEMG signals were collected from biceps 

brachii of the subjects’ dominant sides by performing elbow flexion. The electrode pairs 
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were placed with the distance between the electrode’s centers of 20mm. To distinguish 

the three target electrode locations on the skin surface, they were marked with circles and 

named as location 1 (L1), location 2 (L2) and location 3 (L3). The three target electrode 

locations were chosen with 10mm center distance between each set of electrodes. For 

each electrode location, Trial 1 and Trial 2 mentioned in Subsection 3.2.3 were 

performed by each subject. Figure 3.12 shows the three different electrode locations. A 

single factor ANOVA was performed among the subjects by comparing the R
2
 values to 

investigate any significant difference in the three electrode locations for the three 

established relationships (p<0.05). 

 
Figure 3.12 Three different electrode locations on biceps brachii.  

3.6.2 Statistical Analysis Results 

The sEMG amplitude-force relationship, MF-force relationship and the MF-P 

relationship were calculated using the same methods as Section 3.3 and Section 3.4 for 

the three different electrode positions. Linear, quadratic, cubic or higher order polynomial 

regression was fit for each subject with each set of electrodes position. The example of 

relationship curves from one subject with different electrode locations are shown in 

Figure 3.13, Figure 3.14 and Figure 3.15, respectively.  

All the relationships are found to be non-linear. As shown in Figure 3.13, no much 

difference can be observed from the sEMG amplitude-force relationship under the three 

electrode locations. For the MF-force relationship, in L3, the MF increasing rate is much 

faster than the other two locations as the force increases. The signal power increases very 

slow at low MF for L1 in the MF-P relationship. When we change the electrode location 
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to L2 and L3, the increasing trends are very rapid, but the relationship curves show no 

much difference between the two locations. 

 

  
(a)                                                           (b) 

 

 
(c) 

Figure 3.13 Relationship between sEMG amplitude and the exerted force. (a) L1; (b) L2; (c) L3.     
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(a)                                                           (b) 

 

 
(c) 

Figure 3.14 sEMG MF-force relationship. (a) L1; (b) L2; (c) L3.     
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(a)                                                           (b) 

 

 
(c) 

Figure 3.15 sEMG MF-P relationship. (a) L1; (b) L2; (c) L3.     

For each electrode location, the average R
2
 value and standard deviation (SD) were 

calculated among all participants, which are depicted in Figure 3.16, Figure 3.17 and 

Figure 3.18 for amplitude-force relationship, MF-force relationship and MF-P 

relationship, respectively.  

Among the three different electrode locations, the sEMG amplitude-force relationship 

shows very high R
2
 value which indicates the windowed RMS correlates the muscle force 

well. More specifically, L1 indicates the highest R
2
 value (R

2
=0.9265) on average than L2 

and L3 with the average R
2
 values are 0.9245 and 0.9188 respectively for all subjects.  
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For the relationship between MF and muscle force, the regression performance of L2 with 

R
2
=0.8584 outperforms the others among the subjects. However, the average R

2
 values 

obtained from all the electrode locations are not very high.   

As shown in Figure 3.18, it is evident that L2 gives the highest R
2
 values (R

2
=0.9404) and 

L3 gives the lowest R
2
 values (R

2
=0.7213) on average for the MF-P relationship.   

A single factor ANOVA performed on the amplitude-force relationship regression 

indicates a significant difference between the three electrode locations (ANOVA, 

p=0.8510). In addition, for MF-force relationship, the differences between the electrode 

positions are statistically significant (ANOVA, p=0.1958). However, no statistically 

significant differences are noted between electrode locations for MF-P relationship 

(ANOVA, p=0.043). 

 

Figure 3.16 sEMG amplitude-force relationship regression fit performance with three electrode 

locations (Averaged R2 value and SD).  
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Figure 3.17 sEMG MF-Force relationship regression fit performance with three electrode 

locations (Averaged R2 value and SD).  

 

 

Figure 3.18 sEMG MF-P relationship regression fit performance with three electrode locations 

(Averaged R2 value and SD).  
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These electrode locations comparison results may vary from subject to subject since the 

exact electrode locations changes slightly between the subjects, but they cover a position 

approximate 2cm range along the biceps brachii muscles based on the experiment 

measurements. Moreover, sEMG is unlikely to measure every precise position for each 

subject since the muscle lengths varies with subjects, which is another factor influencing 

the relationship results. Although the maximum displacement for each set of the 

electrodes was 10 mm, the new MF-force relationships and MF-P relationships, showed 

higher R
2 
values as the second electrode location was in the innervation zone.  

From the results, L2 has a better performance for MF-force and MF-P relationships. The 

relationships results indicate that a large and well-designed region to attach the electrodes 

to biceps brachii will give the most representative sEMG signals to achieve better 

regression fitting for establishing these relationships. In addition, the R
2
 values 

comparison between different electrode locations provides important information on 

selecting suitable electrode location in following experiments.    

3.7 Summary 

In this chapter, three relationships, sEMG amplitude-force relationship, MF-force 

relationship and MF-Power relationship are established based on the time-domain 

analysis and time-frequency analysis. The spectral parameters of sEMG signal, MF and 

signal power P, are extracted using CWT. The regression fitting results show that not 

only the signal amplitude (windowed RMS) increases non-linearly with the increasing 

exerted force, but the spectral parameter MF rising trends are in line with the force non-

linearly. These two relationships will be employed in next chapter for estimating muscle 

force. In addition, non-linear relationship is also observed from the relationship between 

MF and signal power P. The MF-P relationship will contribute to the novel muscle 

fatigue detection method in Chapter 5. 

Furthermore, based on the relationship establishment algorithms, the influence of 

electrode locations on these three relationships is also investigated in this chapter. As 
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shown from the relationships regression fitting figures, no much difference is found for 

each relationship obtained under different electrode positions. However, for the 

amplitude-force relationship, the statistical analysis results show that L1 outperforms the 

others with highest R
2
 value on average for all subjects. L2 has a better performance for 

MF-force and MF-P relationships. The relationships results indicate that a large and well-

designed region to attach the electrodes to biceps brachii will give the most representative 

sEMG signals to achieve better regression fitting for establishing these relationships.   
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CHAPTER 4 

MUSCLE FORCE ESTIMATION 

4.1 Introduction 

This chapter presents the algorithms to estimate muscle force based on the previous 

established amplitude-force relationship and MF-force relationship, respectively. Since 

there is an electromechanical delay between the onset of electrical activity in muscles and 

the onset of force generation by muscles contraction, proper signal processing methods 

enable us to predict the force exerted by muscles before the actual force is applied by a 

few milliseconds. Tf describes the average time difference between the estimated force 

and the measured force from force sensor. The predictive capabilities of the two methods 

will be compared by correlation coefficient (CC) values, RMSE and Tf values between 

the estimated force and measured force.  

Knowledge of internal forces and moments of muscles during movement is important for 

developing better active and intuitive rehabilitation robotics for stroke patients. The 

ability to predict the muscle forces in patients following stroke benefits the treatment 

planning and evaluation of therapies geared at improving patient function. Moreover, 

rehabilitation devices can use the predicted muscle force value as an effective control 

signal. Therefore, to estimate muscle force for stroke patients, the proposed force 

estimation algorithms are applied to sEMG signal recorded from the post-stroke patients. 
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Since sEMG signals recorded from the affected side of stroke patients are likely to be 

abnormal, relationships between sEMG signal and force cannot be developed accurately. 

These relationships may not be just a non-linear function of the selected sEMG features. 

Therefore, instead of establishing the non-linear sEMG-force relationships, artificial 

neural networks (ANN) is used to approximate the complex nonlinear mappings directly 

from the input sEMG signal features. The rest of this chapter presents the CWT-ANN 

based muscle force estimation algorithm for both healthy subjects and stroke patient 

subjects.  

4.2 Experimental Protocol 

In this section, the experimental protocol is presented. First, the information about the 

subjects is described. In Subsection 4.2.2, the experiment setup and the data collection 

instruments are shown. Lastly, we highlight the experiment methods for collecting sEMG 

signals.   

4.2.1 Subjects 

The healthy subjects for the experiment presented in this chapter were the same ones 

recruited for the experiments in Chapter 3. To study stroke patients’ sEMG signals, five 

post-stroke subjects (1 female and 4 male) were participated in this experiment. They 

were recruited from the National University Hospital (NUH). All the patients gave 

written informed consent prior to participating in this study. The experiments were 

approved by the NUH institutional review board. The post-stroke patients are aged from 

56 to 68 with the mean ± SD of 61.2 ± 4.38 years. The inclusion criteria and exclusion 

criteria of stroke patients involved in the experiments are as follows: 

 Inclusion criteria: (1) Hemiparesis or hemiplegia confined to one side of the body; 

(2) At least 6 months post-stroke with a stable medical condition and at least 6 

months of rehabilitation therapy with neuromuscular facilitation techniques; (3) 
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Have the ability to produce more than a predetermined minimal force at the knee 

joint and is able to walk.  

 Exclusion criteria: (1) peripheral neuropathies; (2) other diseases of the central 

nervous system; (3) peripheral arterial disease; (4) chronic heart failure; and (5) 

orthopedic diseases; (6) severe cognitive or affective dysfunction; (7) brainstem 

lesion; (8) tremor and contracture. 

Among the stroke subjects, four patients suffered from left sided hemiparesis and the 

other one from right sided hemiparesis. The clinical characteristics of the patients are 

listed in Table 4.1. 

Table 4.1. An Overview of Clinical Information Regarding the Five Stroke Patients. 

Subject Gender Age (years) 

Time Since 

Event 

(Months) 

Hemiplegic 

Side 

Diagnosis 

Cause 

1 Male 56 NA Left NA 

2 Male 68 54 Left 
Right corona 

radiate infarct 

3 Male 60 65 Left 
Right basal 

ganglia bleed 

4 Female 62 64 Left 
Parietotemporal 

bleed 

5 Male 60 25 Right 
Right 

hemiparesis 

NA: Clinical information was not obtained from the therapist at the time of data collection for the 

first subject. 

 

4.2.2 sEMG and Force Measurements 

For the healthy subjects, the sEMG signals were recorded from the biceps brachii, triceps 

brachii, rectus femoris and biceps femoris muscles of the dominant side separately. The 

same skin preparation as described in the previous chapter was performed. In addition, 

the sEMG and force signals were collected using the same setup as mentioned in Chapter 

3 (Subsection 3.2.2). 
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In order to make the proposed force estimation algorithms beneficial to the lower limb 

motion recovery for stroke patients, and implement the algorithms to the lower limb 

rehabilitation device, the sEMG signals were recorded from rectus femoris and biceps 

femoris from the affected side of stroke patients. However, muscular atrophy due to 

stroke reduces the amplitude of sEMG signals measured from the stroke patients. For 

example, the sEMG signals amplitude from the fourth stroke subject’s biceps femoris and 

the first subject’s rectus femoris are very small and cannot be separated from the baseline 

noise level.  

The sEMG electrode locations on the target muscle skin surface were found with the 

assistance from hospital therapists. Figure 4.1 shows the sEMG and force measurement 

setup designed for stroke patients. The setup is almost same as the one described in 

Chapter 3 (Subsection 3.2.2), but it is designed for lower extremities experiments usage 

only. 

 

Figure 4.1 Illustrations showing the force measurement designed for stroke patient’s lower 

extremities data collection. 1: Handle for legs experiments; 2: sEMG electrodes; 3: force sensor.    

4.2.3 Experiment Methods 

During healthy subject’s experiments, the subjects were seated comfortably on a chair. 

The basic muscle contraction details and the preparation are same as Chapter 3 

(Subsection 3.2.3), but to perform different muscle contraction trials. In this experiment, 

two different contraction trials were performed by each subject using per muscle. Each 

trial was conducted on different days to avoid the influence from muscle fatigue.  
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 Trial 1: MVCs measurements 

The subjects were asked to contract muscles to MVC while pulling or pushing the 

handle of the force measurement setup with the joint angle at 90 degrees. Each 

MVC value was held for at least 3-5 seconds. After a two minutes rest, same 

contractions were repeated at least two more times to ensure the recorded signals 

represented the maximum force of each subject. The subjects were encouraged 

verbally to exceed previous force level. These measured MVCs will be used in the 

following trials to determine the general force target of each submaximal 

contraction. 

 Trial 2: Force-Varying contractions   

During this trial, a target trajectory of force amplitude in the shape of a force-

varying half-sinusoidal was displayed. The subjects exerted the muscle 

contraction force in accordance to the trajectory with the peak target force up to 

40% MVC by performing joint flexion or extension. Precise tracking performance 

was not required for a successful experiment. Actually, the purpose of the target 

tracking was to ensure that subjects exerted the contraction forces at a roughly 

constant frequency. Subjects took a few minutes (followed by a 5 minutes rest) to 

become familiar with the tracking task as none had any prior experience. Five or 

six flexion/extension contractions were conducted per trial. The contraction 

period of every repeated cycle contraction was limited approximately to be two 

seconds. 

The same trials were performed by healthy subject’s each muscle separately. The forces 

were measured by pushing the setup handle for triceps brachii and rectus femoris, namely, 

elbow or knee joint extension. The measured MVCs will be used to normalize the signals. 

A sample of the raw sEMG signal (from biceps femoris) and the measured force recorded 

during the knee flexion is shown in Figure 4.2.  
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Figure 4.2 A sample of sEMG signal and force measured during knee joint flexion from healthy 

subject. (a) sEMG signal; (b) normalized measured force (force signal is normalized to the 

maximum value).    

 

During data collection from stroke patients’ muscles, the above-mentioned two trials 

were performed separately. Even though all the trials were completed in one day for each 

subject, at least 30 minutes rest time was given to the patients between each trial to 

reduce the influence of muscle fatigue.   

4.3 Force Estimation based on the Established Relationships  

As presented in Section 2.2, the additional MUs recruitments and the increase of firing 

rate of the already active MUs lead to the generation of muscle force. The phenomenon 

results in the changes in sEMG amplitude and MF with the varying muscle force. Since 

non-linear relationships have been found between sEMG features and force, it is feasible 

to predict force exerted by muscle based on these relationships in time-domain and the 

time-frequency analysis. Here, two methods, the time-domain analysis and the time-
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frequency analysis methods, are proposed and compared by calculating the Tf, CC and 

RMSE between measured force and estimated force.  

4.3.1 Electromechanical Delay 

It is well known that there is a time lag between sEMG signal and the generated force. 

Generally, this delay is defined as electromechanical delay (EMD) [125] which presents 

the delay between the onset of electrical activity and the onset of measurable force 

generated by muscle contraction. The EMD is investigated as the difference between 

these two distinct onset time [126]. When AP in muscles initiates contractile 

phenomenon, the elements in the sarcomeres begin to contract but this contraction does 

not generate simultaneous movement on the joint. The existence of serial and parallel 

elastic components within the muscle is the main reason for this delay [127]. 

The EMD can be easily observed if both sEMG and the output force are measured 

simultaneously. Figure 4.3 depicts the sEMG signal and the measured force (this force 

value is normalized to the maximum value of the sEMG signal amplitude to simplify the 

comparison) generated at the same time. In this figure, Ts_sEMG is the general starting 

point of the sEMG signal of this single contraction, Ts_Force is the start of the measured 

force. As shown in Figure 4.3, it is apparent that there is a delay from the beginning of 

sEMG and the onset of the muscle force.  
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Figure 4.3 sEMG signal and normalized measured force from one single contraction.   

 

Some studies have been done to observe the EMD between the onset of sEMG and 

muscle force. Imman et. al. [28] reported a delay of 80±20 ms between the peak muscle 

force and the peak in a rectified and smoothed sEMG from three muscles under isometric 

contractions. The EMD was also reported by Corser [125]. In his study, sEMG signals 

were recorded from forearm muscles during various forearm movements, and 

approximate 25 to 75 ms delays were found between the onset of sEMG and the onset of 

movements. However, the time delay values may vary in a wide range due to the 

differences in methodologies used. 

Figure 4.3 also shows that the sEMG signal reaches to the peak much earlier than the 

exerted force, which notably implies that proper signal processing methods with suitable 

filters have the potential to predict the force exerted by muscle before the force measured 

by force sensor. However, few studies considered the EMD when estimating muscle 

force/torque using sEMG signals [9]. Lubecki et al [3] employed filters and RMS to 

develop a muscle force estimator. Results demonstrated that the signal processing was 
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done with a small time delay of less than 60 ms which is an enough period to predict the 

force/torque generated by muscles. Therefore, using a proper signal processing approach 

enables us to predict the muscle force before the actual force is applied by a few 

milliseconds. In this thesis, the actual applied force that we refer to, is taken from the 

force recorded with the data acquisition system. Even though the force sensor induces 

time delay to the force measurement system, we appropriately designed the circuit to 

reduce the time delay given by the force measurement system to the minimum.   

4.3.2 Force Estimation Methods 

Two different methods, CWT-based method and windowed RMS method for 

force/torque estimation are presented in Figure 4.4.  

 

Figure 4.4 Signal flow diagram for two muscle force estimation methods.    

The upper path shows the windowed-RMS based method. This method is based on the 

sEMG amplitude-force relationship. The recorded signal was first band-pass filtered. The 

cut-off frequencies for this filter were selected to remove the movement artifacts and high 

frequency signals which are not related to the muscle activations. Accordingly, a 4
th

 order 

Bessel band-pass filter with f1=35 Hz and f2=650 Hz cut-off frequencies was employed.  
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Then a windowed RMS was applied on the filtered signal. The windowed RMS 

parameter, such as the window length, was same as the one used in sEMG amplitude-

force relationship establishment (Section 3.3). In addition, as mentioned in Section 3.3, it 

is necessary to normalize the signal to MVC to compensate for the variability due to the 

affecting factors.  

The proposed time-frequency analysis method is depicted in another path of Figure 4.4. 

This method is based on the MF-force relationship. MF was first calculated from CWT 

scalogram. Figure 4.5 shows a single force-varying contraction and the corresponding 

contour scalogram. Most dominant energy is distributed at the large signal amplitude part. 

Meanwhile, it also can be observed that high percentage of the energy is located above 

approximate scale 40 which corresponds to 20.31 Hz. In this figure, the arrow illustrates 

the direction of frequency increasing, which corresponds to the scale decreasing direction.  

 
 

Figure 4.5 sEMG signal from one single contraction and the corresponding scalogram contour 

plot.  



70 

 

To smoothen MF by removing the spurious peaks, a low-pass filter was first applied. 

Appropriate cut-off frequency selection is crucial for the force estimation performance. 

Tm describes the average time difference between the filtered MF and the measured force 

from force sensor. Suitable low-pass filter ensures longer Tf, high correlation coefficients 

and low RMSE between the estimated force and measured force. To present the method 

for selecting the most suitable low-pass filter type and cut-off frequency, sEMG of a 

single contraction from one biceps brachii varying force trial is employed as an example. 

Three types of filters, Bessel filter, Butterworth filter and Chebyshev filter, are 

considered and compared during the filter selection. Butterworth filter is the maximally 

flat amplitude filter and provides a near zero attenuation until near the cut-off frequency, 

and then descends into the attenuation smoothly. However, this filter induces some 

overshoot and ringing on the sharp rising waveforms, and gets even worse with higher 

orders. The Chebyshev filter has a better rate of attenuation beyond the pass-band than 

Butterworth, but it has considerably more ringing in step response than Butterworth. 

Compare with Butterworth filter and Chebyshev filter, Bessel filter outperforms by 

achieving flat group delay and linear phase response with very little overshoot or ringing 

[128]. In addition, Bessel filter can be easily implemented in the real-time system. 

Therefore, Bessel filter is selected as the low-pass filter in this force estimation method.  

It should be noted that filters often induce time delay between the sEMG MF and the 

measured force, which definitely influences the Tf value. Filters with very low cut-off 

frequencies make the output signal quite smooth, but induce very long time delay, which 

renders the muscle force prediction is meaningless since we are predicting the muscle 

force in advance to the force exerted. Whereas, without filters or filtering with a high cut-

off frequency leads to a noisy output signal with high frequency spikes, even though the 

Tm value is larger. Therefore, the most suitable cut-off frequency represents a compromise 

between the optimal estimated force shape and larger Tm value. 

Five cut-off frequencies, namely, 12.5 Hz, 10 Hz, 7.5 Hz, 5Hz and 2.5 Hz, were 

compared. Figure 4.6 illustrates the measured force and filtered MF with different cut-off 
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frequencies. In order to simplify the comparison procedure, the filtered MF and measured 

force are normalized to 1 to be plotted in one figure. 

 
 

Figure 4.6 Measured force and filtered MF with different cut-off frequencies: 12.5 Hz, 10 Hz, 7.5 

Hz, 5 Hz and 2.5 Hz. The arrow points to the measured force. All values are normalized to 1 for 

comparison.      

 

As illustrated in Figure 4.6, among the compared five cut-off frequencies, the highest cut-

off frequency at 12.5 Hz shows the least smooth shape. Whereas, the lowest cut-off 

frequency at 2.5 Hz yields almost same signal shape as the measured force, but a very 

long time delay can be observed when comparing with others cut-off frequencies. Table 

4.2 tabulates the comparison of these cut-off frequencies by calculating the Tm and 

correlation coefficients between filtered MF and measured force. The cut-off frequency at 

5 Hz demonstrates the highest correlation coefficients between filtered MF and measured 

force, yet the Tm value is acceptable. In order to compromise between the closest shape to 

measured force and proper temporal delay, a 4
th

 order Bessel filter with 5 Hz cut-off 

frequency is chosen to smoothen the MF signal. 
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 Table 4.2 Cut-off Frequency Selections for Low-pass Filtering MF.    

Cut-off 

frequencies 
Tm(ms) Correlation Coefficients 

12.5 Hz 67.4 0.9849 

10 Hz 62.2 0.9865 

7.5 Hz 50.6 0.9891 

5 Hz 38 0.9908 

2.5 Hz -63 0.9895 

*Tm value: Negative value indicates that the measured force leads the filtered MF, while 

the positive Tm value demonstrates that the filtered MF leads the measured force. 

Subsequently, the filtered MF signal was normalized to the maximum value of the muscle 

contraction trial. The estimated force was obtained by feeding the normalized signal to 

the MF-force relationship polynomial. Based on the analysis of the last chapter 

(Subsection 3.4.3), the relationship polynomial estimators for all the measured four 

muscles are non-linear and shown in Table 4.3. In this table, for the amplitude-force 

relationship, x is the windowed RMS, whereas for the MF-force relationship, x is the 

filtered MF signal. The output Y of the polynomial is the estimated force.  

Table 4.3 sEMG Signal Amplitude-Force Relationship and MF-Force Relationship Polynomials 

for the Measured Four Muscles. 

Muscle 

groups 

Windowed RMS Method 

Amplitude-Force Relationship 

CWT-based Method 

MF-Force Relationship 

Biceps 

brachii 
Y=93x

3
-1211x

2
+5703x-0.5 Y=-2.171x

3
+1050x

2
+67390x+118100 

Triceps 

brachii 

Y=38870x
3
-3850x

2
+204.3x-

0.9529 
Y=0.0001388x

2
-0.01426x+0.3615 

Rectus 

femoris 

Y=396000x
3
-25300x

2
+533.3x-

1.238 
Y=1.607x

3
-503.8x

2
+65620x 

Biceps 

femoris 
Y=143.3x

3
-335.9x

2
+309.4x Y=7.174x

3
-1195x

2
+71350 
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At this stage, sometimes, the estimated force is not very smooth for both methods. To 

achieve higher force estimation accuracy and to smoothen the output signal, a low-pass 

filter can be used for post-processing, even though it induces some more time delays. For 

both of the time-domain method and the CWT-based method, the estimated force was 

filtered using a 4
th

 order Bessel low-pass filter with 9Hz cut-off frequency. However, 

some estimated forces are appropriately smooth (the CC value between the estimated 

force and measured force is higher than 0.95) and there is no need to be further filtered. 

Thus, the low-pass filter is optional and depends on the performance of estimated force.  

The long positive Tf value can be observed since the estimated force leads the measured 

force generally. This Tf value is calculated by cross-correlation analysis of the estimated 

force and the measured force. The analysis determines the Tf that maximizes the cross-

correlation coefficient between the predicted force and measured force. To validate the 

proposed methods, each force estimation result was evaluated against the corresponding 

measured force with another two criteria, cross-correlation coefficients (CC) and RMSE, 

which are calculated using the following expressions,  

     
∑      ̂  

 
 

√∑   
 

 √∑  ̂ 
 

 

                                                (4.1) 

   
∑     ̂  

√∑   
 

 √∑  ̂ 
 

 

                                                  (4.2) 

where    is the measured force and  ̂  is the estimated force. Cross-correlation is a 

measure of similarity of the    and  ̂  regardless of scaling. The closer the value is to 1, 

the higher the level of similarity is between the two signals. The two validation 

parameters were computed after adjusting for Tf between the estimated and measured 

forces. Between the two proposed methods, a one-way ANOVA was performed to 

determine if there is any significant difference, and the level of significance value alpha 

was set at p 0.05. 
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4.3.3 Results and Statistical Comparison 

Figure 4.7 shows the force estimation results from the two proposed methods comparing 

with the measured force from biceps brachii during one single contraction (Subject 12). 

The solid line indicates the measured force. The red dashed line depicts the force 

estimated by the proposed windowed RMS method, while the blue dash-dot line shows 

the predicted force by the CWT-based method. The force amplitude was normalized to 

the maximum force value to avoid the variability induced from different subjects and 

different muscles during muscle contractions. Apparently, the estimated force is leading 

the measured force and the shape of the predicted force is consistent with the measured 

one. In addition, the force predicted by CWT-based method is in advance to the force 

estimated by windowed RMS method. 

 

Figure 4.7 Force estimation results using the two proposed methods (subject 12). The green solid 

line indicates the measured force, while the red dashed lines depicts the force estimated by the 

proposed windowed RMS method and the blue dash-dot line shows the predicted force by the 

CWT-based method. (Force amplitude is normalized to 1). 
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Figure 4.8 illustrates the estimated force and measured force from four different muscles 

under flexion/extension performed by Subject 8. As illustrated in this figure, the muscle 

force generated by the four muscle groups can be estimated by both methods in similar 

shape. 

 

          (a)                                                                      (b) 

 

         (c)                                                                    (d) 

Figure 4.8 Force estimation results using the two proposed methods (Subject 8). The green solid 

line indicates the measured force, while the red dashed line depicts the force estimated by the 

proposed windowed RMS method and the blue dash-dot line shows the predicted force by the 

CWT-based method. (a) Biceps brachii (elbow flexion), (b) Triceps brachii (elbow extension), (c) 

Rectus femoris (knee extension), (d) Biceps femoris (knee flexion). 
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The Tf values calculated based on the correlation analysis of the estimated force and 

measured force are tabulated in Table 4.4. The Tf values obtained from CWT-based 

method have the average value range between 35.9±9.7 ms and 75.4±23.7 ms for 

different muscles among all the participants. While for the windowed RMS method, Tf  

ranges from 10.4±9.2 ms to 43.5±17.7 ms in average for all measured muscles. A one-

way ANOVA reveals that significant differences are noted in Tf for every single muscle 

between the CWT-based method and windowed RMS method (p<0.05).  

Table 4.4 CWT-based method vs. Windowed RMS method (Tf for each muscle group in 

milliseconds). 

Subjects 

4 Muscle groups 

Biceps Brachi Triceps Brachi Rectus Femoris Biceps Femoris 

CWT Windowed 
RMS CWT Windowed 

RMS CWT Windowed 
RMS CWT Windowed 

RMS 

s1 36.8 31.6 34.2 7.6 90.8 54.8 96.4 74.8 

s2 40.4 7.2 58.4 39.2 99.4 59.2 25.8 26.8 

s3 44.4 0.4 76.2 49.6 63.8 46.4 42.4 32.4 

s4 44.2 6 55.6 46 90.4 49.2 74.4 40.8 

s5 51.8 5.6 100 72.8 104.6 53.6 51.6 46.8 

s6 39.6 7.6 41.6 38 18.6 61.2 51.8 23.2 

s7 20.4 2 68.2 44 107.6 64.8 68.8 60.4 

s8 50.2 12 46.6 42 88 55.2 66 43.6 

s9 29.4 15.2 60.2 43.6 67.2 48.8 69 49.6 

s10 25.4 5.6 49.4 49.4 75.8 42 70.4 30.8 

s11 23.8 11.2 34.2 33.2 61.4 14.8 107.8 81.2 

s12 34.6 4.8 58.4 39.6 55.2 27.2 92.8 23.6 

s13 33.6 28.8 76.2 51.6 69 16.4 57 27.2 

s14 28.4 8.8 55.6 30.4 64.2 15.2 49.2 35.6 

Average±svd 35.9±9.7 10.4±9.2 58.2±17.9 41.9±14.1 75.4±23.7 43.5±17.7 65.9±22.3 42.6±18.5 

 

Figure 4.9 shows the two methods comparison in the average Tf between the estimated 

force and the measured force. The average Tf of the 14 subjects obtained from CWT-

based method is longer than windowed RMS method in all measured muscles. At least 

15.3 ms difference of Tf is observed between the two methods throughout all the 

measured muscles.  
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Figure 4.9 Tf comparison between CWT-based method and windowed RMS method of 14 

subjects. 

Figure 4.10 depicts the average RMSE and CC values of the four measured muscles. 

Generally, the CC values for all the subjects are high and the RMSEs are low, which 

indicates both methods have a good performance in following the shape of the measured 

force. Good agreement in shape, similarity in magnitude and time to peak are observed, 

when comparing the estimated force with the experimentally measured force.  

More specifically, for the results from CWT-based method, the average RMSE is lower 

with 0.1524±0.016 in triceps brachii and 0.2152±0.040 rectus femoris when it is 

compared with the windowed RMS method. On the contrary, lower RMSEs are yielded 

from windowed RMS method in biceps brachii and biceps femoris with 0.1312±0.062 

and 0.1929±0.042 respectively.  

High CC values are observed between estimated force and measured force for both 

methods. P-value which is used for testing the hypothesis of no correlation are all less 

than 0.05, indicating significant correlations between the estimated force and measured 

force. However, the windowed RMS method outperforms CWT-based method with 

slightly greater values of average CC>0.9527, while the average CC for the CWT-based 

method is larger than 0.8693 for all measured muscles. 
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(a) 

 

 
(b) 

 
Figure 4.10 Average RMSE and correlation coefficients comparison between CWT and 

windowed RMS with the four different muscle groups of the 14 subjects. (a) RMSE. (b) 

Correlation Coefficients. 

 

Other than validating the proposed methods with sEMG signals from healthy subjects, 

stroke patients’ sEMG signals are also used to validate the feasibility of the algorithms. 

The selected polynomials describing the sEMG amplitude-force relationship and MF-

force relationship for rectus femoris and biceps femoris of stroke patients are all third 

order polynomials (Table 4.5). Based on these relationships, the estimated force and 

measured force for both methods are illustrated in Figure 4.11 (Stroke subject 3). 
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Table 4.5 sEMG Signal Amplitude-Force Relationship and MF-Force Relationship Polynomials 

Established from Stroke Patients sEMG signal. 

Muscle 

groups 

Windowed RMS Method 

Amplitude-Force Relationship 

CWT-based Method 

MF-Force Relationship 

Rectus 

femoris 
Y=27.29x

3
-162.9x

2
+245.2x-12.06 

Y=1.645 10
-4

x
3
-

0.01154x
2
+0.5522x+3.408 

Biceps 

femoris 
Y=-50.1x

3
+50.59x

2
+61.45x 

Y=3.417 10
-5

x
3
-

0.005956x
2
+0.8159x+46.46 

 

 

         (a)                                                                        (b) 

Figure 4.11 Force estimation results using the two proposed methods (Stroke subject 3). The 

green solid line indicates the measured force, while the red dashed lines depict the force estimated 

by the windowed RMS method and the blue dash-dot line shows the predicted force by the CWT-

based method. (a) Rectus femoris (knee extension), (b) Biceps femoris (knee flexion). 

As illustrated in Figure 4.11, good force estimation can be accomplished with similar 

shape to measured force using stroke patients’ sEMG signals. For the windowed RMS 

method, the CCs between the estimated force and measured force are high with 

0.968±0.014 and 0.9401±0.1859 for rectus femoris and biceps femoris respectively. 

While high CCs obtained from the CWT-based method are 0.9594±0.0212 and 

0.9497±0.0231 for both muscles on average. No significant difference is found between 

the two methods when the CCs were measured using ANOVA (p<0.05). In addition, for 

the measured two muscles, the RMSE are small with 0.1101±0.0199 and 0.1279±0.0327 
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on average for time-domain method, 0.1182±0.027 and 0.1416±0.0348 for time-

frequency analysis method, respectively.  

Figure 4.12 shows the statistical analysis results of Tf from stroke patients’ sEMG signals 

using the two methods. The negative time values in this figure demonstrate that the 

estimated force lags the measured force. For the windowed RMS method, the mean 

values of the Tf value indicate that the estimated force does not lead the measured force. 

Whereas, for the CWT-based method, the average Tf shows the estimated force leading 

the measured force with 51.93 ms and 59.09 ms for rectus femoris and biceps femoris, 

respectively. The results also demonstrate that the CWT-based force estimation method 

outperforms the windowed RMS method since Tf calculated from CWT-based method is 

much longer not only for healthy subject but for stroke patients. 

 

Figure 4.12 Tf between estimated force and measured force for stroke patients. The first two are 

obtained from windowed RMS method, while the other two are the results from CWT-based 

method. (Negative values: the estimated force lags the measured force). 
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4.4 Neural Networks based Force Estimation 

In the previous section, the muscle force estimation methods are based on the sEMG 

amplitude-force relationships and MF-force relationships. Good similarity in the 

estimated signal shape and long Tf are achieved for healthy subjects. However, for post-

stroke patients, the hemiparetic muscles have been shown to have altered fiber type 

proportions and fiber atrophy. These changes in muscle architecture influence the muscle 

force-activation relationship of patients. Although high average CC values and long Tf are 

yielded, not every trial achieves good force estimation performance using the two 

methods, since the established relationships may not be suitable for each patient. 

Meanwhile, not all patients’ data can establish the relationships successfully. The MF-

force relationship using second order or third order polynomial may not be sufficient. 

Among the five stroke patients, only stroke subject 3 and subject 5 generate the 

relationships with high correlation coefficients, while others relationships demonstrate 

very low coefficients and cannot be described with polynomials accurately.  

In some literatures, ANN has been used to derive complex relationships without 

involving detailed information, such as mathematical expressions describing relationships 

[57, 60, 61, 129]. ANN is a computational system inspired by the learning characteristics 

and the structure of biological neural networks. One of the most widely used ANN is the 

multilayer perceptron (MLP). MLP is characterized by a set of input units, a layer of 

output units, and a number of hidden layers. Each input node is connected to each unit in 

the hidden layer. The connections between units have an associated weight W. Each unit 

of the hidden layer is connected to the neurons in the following layer, the hidden or 

output, in a similar way. 

To predict force exerted by muscles without establishing complicated relationships for 

stroke patients, a novel approach based on CWT and ANN is presented in this section. 

sEMG signals collected from healthy subjects and stroke patients will be used to validate 

the feasibility of this new approach.  
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4.4.1 ANN Training 

ANN is a mathematical model inspired by biological neural networks. It consists of 

interconnection of multiple layers of artificial neurons. The processing unit is called 

“neurons” which are interconnected and distributed in layer. The neurons are sorted in a 

number of layers and neuron outputs. In each layer, they are interconnected to the other 

layer neuron inputs. The ANNs are distinguished by their learning and recall mechanisms, 

the activation functions, the number of layers and neurons, and the distribution of the 

connections. 

Figure 4.13 depicts the general architectural graph of a multilayer network. As illustrated 

in this figure, the blue circles are the neurons, and each neuron unit receives input from 

some other units or from an external source. The outputs of the neurons in each layer are 

interconnected to the other layer neuron inputs. Since a multilayer perceptron with a 

single hidden layer is sufficient to approximate any bounded continuous function, only 

one hidden layer is used for the ANN in this study. 

 
Figure 4.13 Architectural graph of a multilayer network. 

 

 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Biological_neural_network
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(a) 

 
(b) 

Figure 4.14 Signal flow diagrams for muscle force estimation. (a) ANN parameters training; (b) 

Muscle force estimation method. 

Figure 4.14 illustrates the signal flow for the new muscle force estimation method based 

on CWT and ANN. During the ANN training, sEMG signals generated from one or two 

contraction of each trial were randomly selected as the subset to calculate the MF of 

signal power spectral. A 4
th

 order Bessel low-pass filter was applied to smoothen the MF 

signal by removing the high frequency spurious peaks. Then the filtered MF signal was 

normalized to the maximum values. The training desired output was the corresponding 

normalized measured force. During the network training, batch training is employed. The 

weights and biases are updated in batch training after all the inputs and targets are 

presented. In this kind of training, the weight updating is done at the end of a training 

epoch.  

In MATLAB implementation, the weights in the ANN models were adjusted using the 

conjugate gradient back propagation (BP) algorithm that is a common employed method 

for training ANN models. It has a feed-forward stage and a learning stage. The two steps 

are repeated until the difference between the training output and the target signal is below 

a specified value.  

Parameters selection of the ANN model is important for the performance of proposed 

method. Before training the network, the network input and the desired output data in 
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each training set were normalized to [minimum, maximum], which corresponds to -1 to 1. 

The networks were trained for 2000 epochs with a very small training performance goal 

(1e-15).  

Different number of layers and hidden neurons were examined for the networks. In this 

study, only two layers with one single hidden layer are sufficient to approximate the 

bounded continuous function, since the training data were not very large and complicated.  

The optimal number of hidden neurons that produce the small test error and high 

correlation coefficients (CC) value, guarantees good performance in the force estimation 

results. To choose a suitable number of hidden neurons, two criteria, the RMSE and the 

CC values were examined. Figure 4.15 shows the training and testing RMSE and CC 

results for selecting optimal number of hidden neurons. The training error keeps 

decreasing consistently with the increasing number of hidden neurons, while the CC is 

increasing. However, the CC value and the RMSE reach to roughly steady state from 6 

hidden neurons onwards. ANN with the lowest training error is over-fitted to the training 

data, as shown by the fact that the test error increased. Therefore, an ANN with 6 neurons 

for the hidden layer was selected. Nevertheless, for different trials of healthy subjects and 

stroke patients, the optimal number of hidden neurons is different and the selection has to 

be repeated for each trial.  

After the ANN model training, the sEMG signal generated from the other contractions of 

the same trial is used to calculate the MF. This filtered and normalized MF is the input to 

the ANN model. The output of this ANN model is the estimated force. This muscle force 

estimation method is shown in Figure 4.14 (b). 
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   (a)                                                                    

 
 (b) 

Figure 4.15 The ANN training and testing results to determine the optimal number of hidden 

neurons. (a) CC; (b) RMSE (sEMG signal from biceps femoris of stroke patient 3). 

Since the position of sEMG electrodes relative to the motor units, muscle fiber types, 

muscle length, muscle volume, skin impedance are different from subject to subject, the 

network generated from one subject may not be applicable for other subjects. Therefore, 

the network was trained for each individual to avoid the influence of these variable 

factors. 
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4.4.2 Force Estimation Results 

Figure 4.16 shows the example of training errors progress, in terms of mean squared 

errors, up to 56 epochs of training sets when training was stopped. Even though the best 

training performance is 0.0010188 which is larger than the training performance goal (1e-

15), good performance still can be found from the validation results.  

 

Figure 4.16 Progress of training errors (Performed by the sEMG signal recorded from stroke 

patient 5 biceps femoris during knee flexion). 

The linear regression of the training target relative to the training outputs is illustrated in 

Figure 4.17. In this figure, Y is the training output and T is the training target. As shown 

in this figure, the Y=T curve almost overlaps the regression fitting line and the linear 

regression curve indicates good performance of this network with a very high R-value 

(R=0.9957).  
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Figure 4.17 ANN training regression. T is the training target and Y is the training output. 

(Performed by the sEMG signal recorded from stroke patient 5 biceps femoris during knee 

flexion) 

Figure 4.18 (a) (b) (c) (d) illustrate the results given by the CWT-ANN based force 

estimation method from four different muscles of healthy subject 12, 4, 14, 8, 

respectively. The results were quantitatively evaluated against the measured force using 

the RMSE and CCs for each single contraction of each healthy subject. For all the healthy 

subjects, the RMSE are averaged across all the participants and the measured muscles. 

The RMSE values are low with 0.1701±0.047. Meanwhile, high CCs are obtained with 

0.9398±0.0230 on average for all measured muscles.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.18 Force estimation results using the proposed CWT-ANN based approach. The green 

solid line indicates the measured force, while the blue dash-dot line shows the predicted force by 

the proposed method. (a) Subject 12, biceps brachii, elbow flexion; (b) Subject 4, triceps brachii, 

elbow extension; (c) Subject 14, rectus femoris, knee extension; (d) Subject 8, biceps femoris, 

knee flexion; 



89 

 

Figure 4.19 illustrates the sample of muscle force estimation results from two different 

muscles of stroke patient 2 and 3, respectively. The muscle force estimation results are 

quantitatively evaluated against the measured force using the RMSE and CC for each 

single contraction.  

 
(a) 

 

 
(b) 

Figure 4.19 Force estimation results using CWT-ANN method. The green solid line indicates the 

measured force, while the blue dash-dot line shows the predicted force by the proposed method. 

(a) Stroke subject 3, Rectus femoris (knee extension), (b) Stroke subject 2, Biceps femoris (knee 

flexion). 

For each stroke patient, same method is used to evaluate the performance of the proposed 

method. The corresponding RMSE and CCs are tabulated in Table 4.6. The RMSEs are 

averaged across participants and the measured muscles. The RMSE values are low with 

0.1645±0.0691 and 0.1584±0.1036 for rectus femoris and biceps femoris respectively. 

Meanwhile, high correlation coefficients are obtained with 0.8967±0.0934 for rectus 

femoris and 0.9029±0.1406 for another muscle on average. 
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Table 4.6 Muscle Force Estimation Results of the Five Stroke Patients.  

Stroke 

Patient 
CC RMSE 

 Rectus Femoris Biceps Femoris Rectus Femoris Biceps Femoris 

Patient 1 0.9247±0.1058 0.9135±0.0613 0.1342±0.05936 0.1419±0.0765 

Patient 2 0.8068±0.1145 0.8434±0.1020 0.2389±0.0688 0.2437±0.0990 

Patient 3 0.9670±0.0164 0.9371±0.1884 0.1037±0.0199 0.0933±0.0292 

Patient 4 0.9391±0.0263 NA 0.1411±0.0227 NA 

Patient 5 0.8800±0.0628 0.9730±0.0284 0.1642±0.0350 0.0849±0.0373 

Average 0.8967±0.0934 0.9029±0.1406 0.1645±0.0691 0.1584±0.1036 

*NA: sEMG signals recorded from the biceps femoris of patient 4 have very small amplitude and 

difficult to be separated from baseline noise level. 

For the Tf value, not every single contraction indicates that the estimated force leads the 

measured force for stroke patients. For those contractions where the estimated force leads 

the measured force, the average Tf  is 93.04 ms for recuts femoris and 64.45 ms for biceps 

femoris.  

Although the muscle activation patterns of stroke patients result in a great variability 

[130-132], due to the dysfunction caused by spasticity, reduced coordinative control, 

muscle weakness and impaired sensory-motor control, from the force estimation results, 

the CWT-ANN based method shows a good performance on estimating muscle force for 

stroke patients. 

4.5 Summary 

In this chapter, three approaches are proposed to estimate the force exerted by muscles. 

The first two methods are based on the sEMG amplitude-force relationship and the MF-

force relationship. The force estimation results are compared between the windowed 

RMS method and CWT-based method. Generally, the CWT-based method indicates 

longer Tf than the time-domain analysis method. However, slight higher correlation 

coefficients can be observed from the results of windowed RMS method, which implies 
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good consistent in the shape of the estimated force with the measured force. Another 

approach is developed based on CWT and ANN. The method is investigated to overcome 

the difficulty to establish nonlinear sEMG-force relationships from stroke patients’ 

sEMG signals. sEMG signal collected from healthy subjects and stroke patients are used 

to validate the CWT-ANN based method. The results show that the muscle force/torque 

can be estimated with high correlation coefficients and low RMSE. It also can be 

concluded that ANN is an effective way to map the relationship between sEMG signals 

time-frequency features and force.  

From the results obtained from these methods, great application potential can be found in 

force estimation for multiple groups of muscles. The proposed CWT-based method will 

be chosen for further implementation in rehabilitation device, since the force can be 

predicted much longer before the actual force is applied. With respect to the applications, 

longer Tf ensures the prompt delivery of the estimated force to the motor. Meanwhile, 

more advance information also ensures that the assistive device or rehabilitation device 

deliver assistive force/torque concurrently or even be faster than muscles. The 

implementation details and the real-time experiments will be presented in Chapter 6. 
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CHAPTER 5 

MUSCLE FATIGUE DETECTION 

5. 1 Introduction 

Muscle fatigue is the reduction in the ability of a muscle to generate force or to maintain 

a target level of force [4, 5]. The accumulation of long period of fatigued contractions 

leads to muscle pain and even an increased risk of injuries [6]. Sudden accidents and 

injuries can be avoided by continuously monitoring the muscle fatigue progression. To 

this end, the electrical activation, muscle contraction strength, muscle state and fatigue 

features extracted from sEMG signals, have been commonly used for fatigue detection.  

As presented in Section 2.3, typical fatigue detection studies focus on the isometric 

contraction where the muscle is trying to maintain a constant force. Under such 

circumstance, the time-domain features, such as RMS, MAV increase when the muscle 

fatigue occurs. While, the MF and MDF of sEMG signals power spectrum shift to the 

lower frequencies with time-frequency analysis. These changing characteristics are 

reliable fatigue indictors. However, isometric muscle contractions are not commonly 

involved in human daily activities where the dynamic muscle contraction is mostly 

carried out. During dynamic muscle contractions, MF and signal power P of the power 

spectrum change with the forces exerted by muscles. These changing fatigue 

characteristics are function of the applied force. Hence, it is necessary to consider the 

force generated by muscles as one of the key factors influencing the fatigue evaluation 
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results. Moreover, most of current fatigue detection approaches for dynamic contraction 

focus on developing efficient algorithms to extract and select fatigue relevant features 

from sEMG signals [8] [95, 102]. Whereas, some other studies classified muscle states 

into non-fatigue, transition to fatigue and fatigue [107] or developed fatigue index [103-

105].  

In this chapter, a novel fatigue detection method will be presented. This approach is 

based on CWT, and the MF and signal power P are correlated for detecting muscle 

fatigue. Most of current fatigue research mainly focuses on the clinical aspects. Research 

on the real-time implementation of detecting fatigue in assistive device or rehabilitation 

device has been scarce. Thus, generalized muscle fatigue levels could be useful to track 

the muscle state of the users. In this study, discrete fatigue levels are estimated, which 

describe the fatigue state changes generally, but not assigned to any quantified force 

values. To make the fatigue levels describe the real physiological fatigue changes more 

accurately, the fatigue levels are quantified to the muscle maximal capacity based on 

linear regression and statistical analysis. The feasibility of this approach is evaluated 

using the sEMG signals recorded under fatigue contractions from 14 healthy subjects and 

5 stroke patients.  

5.2 Experimental Protocol 

In this chapter, the healthy subjects and stroke patients were the same ones recruited for 

the experiments in Chapter 4. In addition, the sEMG and force signals were collected 

using the same setup as mentioned in Subsection 3.2.2.  

During the experiments, the subjects were seated comfortably on a chair. For healthy 

subjects, the sEMG signals were recorded from biceps brachii, triceps brachii, rectus 

femoris, and biceps femoris. For the stroke patients, the data were only collected from the 

lower extremity muscles: rectus femoris and biceps femoris of the stroke-affected leg. In 

this study, the constant force contractions and force-varying muscle contractions were 

both involved. Due to the limitations of the force measurement setup, the dynamic 
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contraction can only be performed with a varying force but constant joint angles. Thus, 

all the muscle contractions were performed with the joint extension or flexion at a 90 

degrees joint angle.  

Warm-up exercises consisting of 5-6 submaximal contractions were first performed by 

each subject. The exercise includes slow extension and flexion until the subject feels 

familiar with the setup and the experimental tasks. After the warm-up exercise, the 

subjects were asked to perform contraction trials in sequence. Each muscle contraction 

trial consists of three steps:  pre-fatigue MVCs measurements, constant force contractions 

or force-varying contractions and post-fatigue MVCs measurements.  

During the varying force muscle contractions, it is obvious that the muscle lengths, the 

electrodes locations and the movement velocity have significant influences on the sEMG 

signals collection. In our fatigue exercise protocol, we assume that these factors are 

adequately constrained to be considered constant throughout each trial. For stroke 

patients’ data collection experiments, due to their weak muscles and the muscular 

changes in the affected side, the measured force may not be highly consistent with the 

requested applied force. The detailed 3 steps of each trial is descried as follows: 

 Pre-fatigue MVCs measurements 

The experimental protocol began with the acquisition of the MVC by pulling or 

pushing the handle of the setup (Figure 3.2), and kept the contraction force for at 

least 3-5 seconds with joint flexion or extension. The subjects were encouraged 

verbally to exceed previous force level. For each subject, the MVCs were 

performed at least three times to make sure the recorded signals represent the 

maximum force of the subject. The average MVC value was considered as the 

pre-fatigue maximum voluntary force. This value was also used in the following 

steps as the reference to set the submaximal force level for each subject.  
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 Isometric muscle contraction 

During constant contraction trials, the subjects were asked to maintain a constant 

force until they felt exhausted and cannot continue any further. This kind of 

contraction trial was repeated 4 times with increasing force target for each time. 

The targeted force values were 20% MVC, 40% MVC, 60% MVC and 80% MVC.  

To track the MVCs changes during isometric contractions, the subjects were 

asked to perform another isometric contraction, exerting one MVC every 10 

seconds in constant force contraction.  

 Force-Varying muscle contraction 

Three generally varying force contraction trials were conducted. The first trial 

was performed by a cycle of a contraction. The contraction force varied from a 

relax state to a target force value before returning to the relax state. The subjects 

first performed joint flexion or extension at the peak target force up to be 60% 

MVC repeatedly until exhaustion. 

Another contraction was performed with the same varying-force contraction, but 

one maximum force was exerted after every 5th cycle of 60%MVC contractions.  

Lastly, the subjects performed 10 cycles of 60% MVC joint flexion and extension 

followed by a period of 40 seconds of 40 % MVC constant force contraction to 

induce more muscle fatigue. The subjects completed the rest of this trial with 

more repeated 60% MVC joint flexion and extension until they felt exhausted. 

The contraction period of each repeated cycle contraction was limited 

approximately to be 4-s.  

 Post-fatigue MVCs measurements 

Right after above mentioned each fatigue contraction step, subjects were asked to 

produce at least three MVCs in their joint extension or flexion with the same 

muscle contraction protocol used for pre-fatigue measurements. These MVCs 
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were averaged and the values were used to compare with the pre-fatigue values to 

confirm the occurrence of muscle fatigue. 

If all the steps in each trial are performed continuously, the muscles of each subject must 

be over-fatigued and might be a source of injury to the subjects. In addition, the fatigue 

from the previous steps will influence the following ones. Therefore, to reduce the 

influence of muscle fatigue between steps and to avoid over-fatigue, each trial was 

conducted on different days to ensure that the muscles were fully recovered from the 

previous trial. Figure 5.1 illustrates some examples of the measured forces of the 

isometric contraction and the varying-force contraction, which represents different 

activities of trials performed by the subjects. 

 

Figure 5.1 Example of measured force representing the contraction activities of the trials. (a) 

constant force muscle contractions, 4 target force levels, 20% MVC, 40% MVC, 60% MVC and 

80% MVC; (b) varying force muscle contraction; (c) varying force contraction with around 40 s 

constant force contraction. 

Since the pre-fatigue and post-fatigue MVCs were measured before and after fatigue 

contractions, the occurrence of muscle fatigue can be observed from the decreasing 

MVCs. Figure 5.2 shows one example of the MVC changes before muscle fatigue and 

after muscle fatigue. These MVCs were measured before and after the muscle contraction 

with a 60% MVC constant force from all healthy subjects. In order to compare the MVCs 

between subjects, the measured MVC forces before muscle fatigue are all expressed as 
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100% MVCs, and the post-fatigue MVCs are converted to a percentage of the pre-fatigue 

MVCs.  

 

Figure 5.2 MVC changes before muscle fatigue and after muscle fatigue for the 14 healthy 

subjects. The example contraction trial is the 60% MVC constant force contraction. 

Figure 5.3 depicts the averaged MVCs comparison between pre-fatigue and post-fatigue 

from all trials. The MVCs measured before fatigue contraction trials, is found to be 

significantly higher than the MVCs after fatigue, which indicates the capacity to 

maximally activate the muscles decreases due to fatigue contraction. Evidently, the MVC 

values decrease dramatically after the fatigue trials, which is a strong confirmation of 

fatigue occurrence. A single factor ANOVA was performed on pre-fatigue MVCs and 

post-fatigue MVCs. The ANOVA results indicate the difference between pre-fatigue 

MVCs and post-fatigue MVCs are significant since the p-value is larger than 0.05.  

Based on this analysis, if any subjects’ MVCs from pre-fatigue measurement and post-

fatigue measurement do not show any decrease, they were asked to redo the experiments 

on different day.  
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Figure 5.3 Averaged MVC changes before muscle fatigue and after muscle fatigue for the seven 

fatigue experimental trials. Trial 1 to 4 are the constant force contraction with 20% MVC, 40% 

MVC, 60% MVC and 80% MVC respectively, trial 5 to 7 are the varying force muscle 

contractions (Average value for all subjects). 

5.3 Fatigue Detection 

When muscles contract under a varying force, the sEMG signals cannot be assumed to be 

stationary, which implies that the traditional signal processing approaches, such as fast 

Fourier transform (FFT), may not be suitable to extract fatigue relevant features. Time-

frequency analysis has proved to be feasible to extract fatigue features. MF and signal 

power P are the frequency domain characteristics, which change with the occurrence of 

muscle fatigue. However, these features change instantaneously as the exerted force, 

which implies that the fatigue assessment for varying force contraction should not only 

rely on tracking the changes of MF and signal power P. In this section, the approach for 

assessing muscle fatigue is proposed by correlating MF and signal power P based on 

CWT.  
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5.3.1 Time-frequency Analysis Method 

In this method, frequency-domain characteristics of sEMG signals, MF and signal power 

P were extracted from CWT. The background theory of CWT and the procedures to 

calculate MF and P were mentioned in Chapter 3 (Subsection 3.4.1). The signals were 

first down sampled from 10 KHz to 1000 Hz. Figure 5.4 shows the contour scalograms 

which are calculated from the isometric muscle contraction with 40% MVC force target. 

These two scalograms compare the energy distribution for each wavelet coefficient of the 

first one-second and the last one-second of the completely constant contraction trial. 

Apparently, high percentage of the signal energy shifts to the lower frequency as the 

isometric contraction goes on, which is a significant sign of muscle fatigue for static 

contraction.  

 

Figure 5.4 Contour scalograms of the 40% MVC isometric muscle contraction. The x-axis is the 

number of samples, and y-axis is the frequency which is converted from the scale. (a) Contour 

scalogram of the first one second; (b) Contour scalogram of the last one second. 

Signal flow diagram describing the procedures to detect muscle fatigue is illustrated in 

Figure 5.5. The method presented in this figure is modified and improved based on the 

time-frequency analysis method described in [3]. The idea of this fatigue detection is to 
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yield the sEMG features relative changes by decoupling the muscle fatigue from the force 

exerted by muscles, since the sEMG features change with the force exerted by muscles 

during force-varying contractions. The following figure (Figure 5.5) states the step-by-

step details of the signal flow of the proposed muscle fatigue detection method.    

 

Figure 5.5 Signal flow diagram of muscle fatigue detection approach. MF is mean frequency, P is 

the signal power, P’ is the filtered P, P* is the estimated signal power. 

First, MF and P were calculated using CWT from Equation 3.8 and 3.9. The signal power 

P and MF were further processed separately. To remove the high signal spikes and to 

reject the motion artifacts, the MF and P were first filtered with a 4
th

 order Bessel low-

pass filter. To ensure the same signal bandwidth and group delay of the two paths, the 

low-pass filter cut-off frequency was selected to be 1.5 Hz for both MF and P, and the 

filtered P is represented as symbol P’.  

The polynomial describing the relationship between filtered MF and signal power P 

(Subsection 3.4.3) for non-fatigue muscles was used to correlate the signal frequency 

changes with the signal energy changes. All available polynomial models were selected 

during curve fitting, such as linear, quadratic, cubic and higher order polynomial. For 

each muscle, a polynomial model was obtained from each subject. The polynomial 

estimator for per muscle group was selected by comparing which gives the highest R
2
 

value and lowest RMSE. The level of significance value alpha was set at p 0.05. Even 

though there might be some other models like exponential, power, logarithmic etc. 

describing the relationships relatively accurate, considering the computational efficiency 
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when implementing in real-time system and to simplify the implementation process, only 

polynomials are employed in the thesis.    

This relationship function covers the full range of force produced by muscle up to MVC 

under non-fatigue contraction. Based on the relationship study in Chapter 3, the 

relationship polynomials between MF and signal power P are tabulated in Table 5.1. 

Table 5.1 sEMG Signal MF-P Relationship. 

Muscle Groups Polynomial Relationship 

Biceps Brachii Y=6.371x
3
-123x

2
+16440x-4530 

Triceps Brachii Y=7.345x
2
+50.01x-6700 

Rectus Femoris Y=4.553x
2
+3.588x+6113 

Biceps Femoris Y=4.606x
2
-0.4198x+169.7 

 

When the input x to the MF-P relationship is MF, the output of the polynomial Y is the 

estimated signal power P*. Since MF is one of very important indicator of muscle fatigue, 

this P* from the relationship not only depends on the MF of the signal power spectrum, 

but also a function of muscle exerted force and level of muscle fatigue. When muscle 

fatigue occurs under isometric muscle contractions, the MF shifts to lower frequency, 

which induces the P* decreases slowly according to the regression polynomial. Figure 

5.6 illustrates the MF, signal power P and estimated power P* changes from two 

individual samples under isometric contraction. It is evident from the figures that the 

changing trend of P* is decreasing, which follows the MF generally. In addition, as the 

contraction goes on, the signal power P shows a slowly increasing trend due to the 

growing muscle fiber firing rates.  
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       (A)               

                                                    

 
       (B) 

Figure 5.6 Two individual examples of the biceps brachii muscles during isometric muscle 

contractions. (a) Raw sEMG signal; (b) MF; (c) Signal power P and P* changes. (A) Subject 7, 

80% MVC. (B) Subject 2, 40% MVC. 
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Subsequently, to make the signal frequency contents independent from the force exerted 

by muscles, and to get the relative changes by comparing the two paths, P and MF, the 

ratio between P and P* was computed as R=P’/P*. This output value R had to be further 

filtered by a 4
th

 order Bessel low-pass filter with 0.8 Hz cut-off frequency due to the 

signal variation over the time. To ensure the stability of the output, another ratio Q=P/R 

was calculated. This output signal Q is inversely proportional to fatigue and independent 

from the force exerted by muscles. A low-pass 4
th

 order Bessel filter with 0.2 Hz cut-off 

filter was then implemented on Q to smoothen the signal and to remove the signal high 

frequency spikes.   

The fatigue output was given as one of n levels with hysteresis and the values were 

normalized to a maximum value of 1.6. Signal threshold values for a given level of 

fatigue, which are 0.4, 0.8 and 1.2 respectively. The fatigue is defined and discretized 

into four levels (1 to 4), where level 4 means significant level of fatigue and level 1 

corresponds to the non-fatiguing state. The second level and the third level are assumed 

to be light fatigue and intermediate fatigue, respectively [133]. Figure 5.7 shows the 

muscle fatigue detection results and discrete fatigue levels of Subject 13’s muscle under 

60% MVC isometric contraction calculated from the proposed fatigue assessment 

approach. The output fatigue level demonstrates that the muscle fatigue level increases to 

the third level in 23 seconds and stays at this level until the end of the experiment. This 

fatigue level is indicative information to show the general fatigue progress. 

 

Figure 5.7 Filtered Q value (left Y-axis) and discrete fatigue level (right Y-axis). The result is 

obtained from 60% MVC isometric contraction (Subject 13). 
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It is apparent that the current approach works well for isometric muscle contraction, and 

the discrete fatigue levels are able to describe the general fatigue progress as well. 

However, when this approach was implemented on sEMG signals recorded from muscles 

under varying force contractions, some problems arise. Since the MF and P change with 

the varying force, MF and P might get very low values when the exerted force decreases 

to zero in one contraction cycle. For this reason, the R=P’/P* value usually goes to 

infinity. In addition, different individuals commonly result in wide frequency range of 

MF and signal power P. Therefore, it is necessary to normalize the MF and P.  

To solve these problems, an improved approach with normalization and threshold setting 

has been developed, which is shown in Figure 5.8. 

 

Figure 5.8 Signal flow diagram of improved muscle fatigue detection approach. 

In this improved approach, signal normalization procedures were added to the filtered 

MF and P. This normalization aims at reducing variability between subject in sEMG 

amplitude and frequency range associated with, for example, differences in muscle length, 

force exerted by muscles varying force contractions. The filtered MF was normalized to a 

maximum frequency of 100 Hz and the filtered power P’ was also normalized to 100. 

The normalized MF was then applied to get the estimated signal power P* from the 

relationship polynomial. This P* value was normalized to 100 as well to make the 

changes of P* be consistent with the variation of P’ for the same contraction trial. 
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When a muscle contracts under very small contraction forces, muscle fibers are activated 

randomly and not all the muscle fibers are involved. Therefore, to reduce the effects from 

signal power values introduced by very small muscle contraction forces and to attenuate 

the movement artifact noise, it is necessary to set thresholds on signal power P’ and P*. 

Meanwhile, the thresholds are a suitable way to avoid the problems induced by these 

infinity values when comparing P and P*. The thresholds should be set as small as 

possible and the values are verified to impact significantly on the final fatigue results and 

the quantified fatigue levels. For each experimental trial, the threshold values have to be 

set individually.  

As shown in Figure 5.8, other new added contents to this improved approach are the low-

pass filters on R and Q. These filters were set with low cut-off frequencies. The low-pass 

filter on the P’ value with threshold is to ensure the time delay is consistent with P’/P*. 

In addition, the cut-off frequencies of the filters are different for each individual trial.  

5.3.2 Signal Evaluation Results 

To present the data validation results clearly, this section is divided into two parts, one is 

the results from isometric contractions and another is the evaluation results from force 

varying muscle contractions.  

5.3.2.1 Isometric Contraction 

When the improved fatigue detection algorithm is implemented to the sEMG signals 

generated during isometric contraction under 20% MVC, 40% MVC, 60% MVC and 80% 

MVC contraction forces, both MF and the estimated power P* decease while the signal 

power P is slowly increasing (Figure 5.6).  

One example of the MF and P calculated from the sEMG signal under isometric 80% 

MVC contraction of Subject 13’s triceps brachii is shown in Figure 5.9. The dash-dot 

lines are the slopes of MF and P fitted using linear regression in MATLAB. The slope 

value for the decreasing MF is -0.87, and this slope value for the increasing signal power 
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is 2.3. Apparently, the MF decreases and P increases dramatically over the experiment 

period, which is a strong evident of muscle fatigue. The increasing signal power P is a 

frequency domain feature which reflects the signal energy change. This energy change is 

generally same as the signal amplitude variation obtained from windowed RMS. This 

increasing signal power with constant force contraction mainly reflects the recruitment of 

new motor units and increasing muscle firing rates under fatigue state.  

 

Figure 5.9 MF and signal power P from sEMG signal under isometric 80% MVC contraction of 

Subject 13’s triceps brachii. The dash-dot lines are the slope of MF and P obtained using linear 

regression method. 

The muscle fatigue detection results and discrete fatigue levels of Subject 7 under the 

four force levels contractions are shown in Figure 5.10. During the 4 trial sessions, a 

downward trend can be observed from the filtered Q value as the muscle fatigue levels 

increase. In this individual’s example, the muscle fatigue levels increase to the 3
rd

 level 

for all 4 exerted force values but at different shift time. It takes approximately 70 seconds 

for the subject to reach the 3
rd

 level for 20% MVC force level. While for 40% MVC, it 

only takes 22 seconds for the fatigue level to rise to the 3
rd

 level. For the 60% MVC and 

80% MVC targeted forces, it takes just 17 seconds and 13 seconds to reach the 3
rd

 

discrete fatigue level, respectively. Evidently, the time duration for each isometric 
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contraction trial decreases as the targeted exerted force values increase due to the earlier 

occurrence of muscle fatigue.  

 

Figure 5.10 Subject 7’s filtered Q values (Left Y-axis) and discrete fatigue levels (Right Y-axis) 

with isometric contraction from biceps brachii with force exerted by muscle at 4 force targets. (a) 

20% MVC; (b) 40% MVC; (c) 60% MVC; (d) 80% MVC. 

Figure 5.11 illustrates the average time duration for each fatigue level of all the 

participants. The time duration of each isometric contraction trial decreases remarkably, 

due to the increasing muscle fatigue. The increasing force targets have gradually shorten 

the period of each fatigue level and accelerated the shifting of the fatigue level to higher 

levels. In addition, for very high contraction force target, the fatigue level reaches to the 

4
th

 level and the average time duration of each level is much smaller than other constant 

force levels.  
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Figure 5.11 Time duration (average value) of each fatigue level under the four force targets. 

Fatigue level from 1 to 4 represents the increasing severity of muscle fatigue.   

5.3.2.2 Force-varying Contraction 

In the force-varying contraction trials, the changes in MF and signal power P of all 

subjects are in accordance with the change in force exerted by the muscles. Figure 5.12 to 

Figure 5.14 show the recorded raw sEMG signals, the force exerted by muscles, MF, P 

and the estimated power P* when the subjects performed three different varying force 

contraction trials. Figure 5.12 is the results from the biceps femoris of Subject 1, Figure 

5.13 shows the results from rectus femoris of Subject 5 and the Figure 5.14 is from biceps 

brachii of Subject 3. In these figures, the measured force values are normalized to have a 

maximum force of one, and the P and P* values are normalized to 100 to simplify the 

comparison. 
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Figure 5.12 Biceps femoris muscle during varying repetitive elbow flexion and a period of 

constant force contraction of Subject 1. (a) Raw sEMG signal; (b) Measured force (normalized to 

1); (c) MF; (d) Signal power P and the estimated signal power P*.   
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Figure 5.13 Rectus femoris muscle during varying repetitive knee extension of Subject 5. (a) Raw 

sEMG signal; (b) Measured force (normalized to 1); (c) MF; (d) Signal power P and the 

estimated signal power P*.   
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Figure 5.14 Biceps brachii muscle during varying repetitive elbow flexion of Subject 3. (a) Raw 

sEMG signal; (b) Measured force (normalized to 1); (c) MF; (d) Signal power P and the 

estimated signal power P*.   

From the above three figures, the peak values of MF for each submaximal contraction 

show a slight decrease over the whole contraction trial period, while the peak values of 

P* also illustrate a downward trend. Meanwhile, the changes of these parameters depend 

highly on the force exerted by muscles.  

Figure 5.15 depicts the individuals’ fatigue detection outputs and the discrete fatigue 

levels, which correspond to the data illustrated in Figure 5.12, Figure 5.13 and Figure 

5.14. The fatigue detection output filtered Q value decreases rapidly and smoothly over 

the experiment period which leads to the increasing fatigue levels. For the recorded data 

shown in Figure 5.12, the fatigue levels keep increasing and goes up to the 4
th

 level in 72 
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seconds, which implies that the 40 seconds static muscle contraction induced muscle 

fatigue significantly. During Subject 5’s rectus femoris repetitive varying force 

contraction (Figure 5.13), the discrete fatigue level stabilizes on the 3
rd

 level at 63 

seconds. The results illustrated in Figure 5.15 (c) show a slight fluctuation. The fatigue 

level reaches to the 4
th

 level at 58 second for a short while, then shifts back and stabilizes 

at the 3
rd

 level.  

 

Figure 5.15 Three individual examples of varying force muscle contractions fatigue detection 

results and discrete fatigue levels. (a) Subject 1, biceps femoris; (b) Subject 5, rectus femoris; (c) 

Subject 3, biceps brachii. 

The fluctuation in the fatigue output is the reason why there is a sudden shift in the 

fatigue levels, which sometimes appears in the fatigue detection results. The instability is 

probably induced by the fast velocity of varying force, signal artifact noises and the 

fatigue output filtered Q value. In addition, the varying force generated by the muscles, 

variations in the muscle length, motor unit synchronization and the changing contraction 

velocities may also contribute to this instability. Even though the instability in the 

comparison ratio Q can be eliminated using low-pass filters, very low cut-off frequency 

filters bring much more time delays. From the experimental aspects, since the contraction 

within individual trials follows a fixed and repetitive force trajectory, some of the 
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affecting factors are assumed to be similar, and their effects on the results can be 

cancelled out. Therefore, the slight fluctuation in these levels is ignored and assumed to 

stay at the origin level where the fatigue levels are fluctuated in a short period.  

Since the occurrence of muscle fatigue is a gradual process, the influence of temporal 

delay given by low-pass filters are assumed small and can be roughly ignored, even 

though low-pass filters lead to the group delays in approximate 3.8 seconds. In this study, 

even though the proposed fatigue detection algorithm has a slow response, the fatigue 

levels are still viable to indicate the fatigue state as the muscle fatigue in human body is a 

slow progress.  

5.3.3 Quantifying Fatigue Levels to MVCs 

So far, the muscle fatigue progress can be described using the discrete fatigue levels. 

However, these fatigue levels indicate the stable response without visibly correlated to 

the force exerted by muscles. As one commonly accepted definition of muscle fatigue is 

the long lasting decrease of the ability to contract and exert force, or to maintain the 

required level of strength, the fatigue progress should be much more representative if it is 

described using the muscle maximum force capacity. Therefore, the reduction of the 

force can be a straightforward way to associate with the increasing fatigue levels. 

Accordingly, the fatigue levels should be quantified to make the fatigue estimation close 

to the real physiological fatigue changes of human body.   

To correlate the fatigue levels with force exerted by muscles, the muscle force values 

from the contractions with MVC measured every 10 seconds were employed. This kind 

of contraction was performed by exerting a MVC every 10 seconds during constant force 

contraction and varying force contraction. These MVCs reflect the force capacity of the 

muscles during fatigue progress.  

During one trial, the measured MVCs have a decreasing trend generally. These MVC 

values were normalized and expressed in percentage of the highest MVC. The filtered Q 

values were extracted at the time when MVC was applied. From the results shown in 
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previous section, the filtered Q values fluctuate slightly but decrease slowly during the 

fatigue period. Since the time duration of each trial contracted under different muscle 

force is different from others, the measured number of MVCs is varied from trial to trial.  

Subsequently, the MVC values and the corresponding normalized Q values were 

correlated using curve fitting tool in MATLAB. Figure 5.16 illustrates examples of the 

regression fit between filtered Q value and the MVCs from a constant force contraction 

and a varying force contraction. As shown in this figure, a second order polynomial 

describes the relationship between Q and MVCs with high R-square value (R
2
=0.9861) 

and another is correlated high with 0.9706 R-square value. Based on this regression 

method, linear or quadratic models are employed to correlate the Q values with MVCs 

for different fatigue contraction trials. 

In this fatigue detection study, the fatigue levels are transited when the filtered Q is 1.2, 

0.8 and 0.4, which corresponds to the 4 fatigue levels (1 to 4 level). Level 1 means non-

fatiguing state, while level four corresponds to the significant level of fatigue. To 

quantify the fatigue levels, MVC values corresponding to the transition fatigue levels are 

calculated from the Q value and MVCs relationships.  

 
    (a)                                                                               (b) 

Figure 5.16 Examples of regression fit between filtered Q and MVCs. (a) Triceps brachii, Subject 

2, 40% MVC constant force contraction; (b) Bicep brachii, Subject 11, varying force contraction. 
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The average MVC values correlated to the fatigue levels are tabulated in Table 5.2. The 

first column is the Q value at the fatigue level transition points. The fatigue levels are 

quantified to the MVCs ranges in reference to MVC without fatigue.  

Table 5.2 Fatigue Levels Quantification to Non-fatigue MVCs. 

Filtered Q value range 

between the level 

transition points 

Fatigue level Range 
MVCs range corresponds 

to the fatigue level (%) 

1.6 to 1.2 Level 1 to Level 2 85.81-100 

1.2 to 0.8 Level 2 to Level 3 64.18-98.96 

0.8 to 0.4  Level 3 to Level 4 41.44-91.57 

  

5.3.4 Stroke Patients Fatigue Assessment 

During stroke patients fatigue experiments, the experimental measurements are same as 

the healthy subjects. Two constant force contractions and one varying force contraction 

trials were performed by stroke patients. For the constant force contractions, the force 

targets were 60% MVC and 80% MVC. While during the varying force contraction trial, 

stroke patients exerted the muscle contraction force repeatedly in a cycle from a relax 

state to 60% MVC until exhaustion.  

From the pre-fatigue and post-fatigue MVCs measured before and after fatigue 

contractions respectively, the occurrence of muscle fatigue can be observed since the 

MVCs are decreasing dramatically. Same as the healthy subjects, to simplify the MVCs 

comparison between subjects, the measured maximal forces before muscle fatigue are all 

expressed as 100% MVC, and the post-fatigue MVCs are converted to a percentage of 

100% MVC. For each stroke patient, the MVCs are averaged throughout the fatigue trials 

and the measured muscles, which are shown in Figure 5.17. Between the pre-fatigue and 

post-fatigue MVCs, a one-way ANOVA was performed to determine if there is any 

significant difference. The level of significance value alpha was set at p 0.05. Before 
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fatigue, the capacity of patients to activate maximally their rectus femoris and biceps 

femoris were found to be significantly higher than the MVCs after fatigue (p=0.00013).  

 

Figure 5.17 Averaged MVC changes before muscle fatigue and after muscle fatigue for the five 

stroke patients. 

For each constant force contraction trial, MF of the first five-second and the last five-

second of the complete contraction were calculated. The mean values of the MF from the 

measured muscles were obtained and illustrated in Figure 5.18. When the rectus femoris 

involved in constant force contraction, the average MF values decrease from 52.73±13.21 

to 45.99±9.52. Decreasing trend is observed for biceps femoris with MF average values 

changing from 60.09±13.79 to 51.40±21.42 (p=0.04, p<0.05). These results are also a 

strong indication of muscle fatigue during the fatigue contraction period. 
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Figure 5.18 Averaged MF of the first five-second and the last five-second for stroke patients 

recuts femoris and biceps femoris muscles. 

The time-frequency analysis method presented in Subsection 5.3.1 was applied to assess 

muscle fatigue of stroke patients affected muscles. The polynomials describing the 

relationship between filtered MF and signal power P for rectus femoris and biceps 

femoris of stroke patients were first established using the methods presented in 

Subsection 3.4.3. The relationship polynomials between MF and signal power P with 

regression fitting are tabulated in Table 5.3. 

Table 5.3 sEMG Signal MF-P Relationship of stroke patients. 

Muscle Groups Polynomial Relationship 

Rectus Femoris Y=4.644x
3
+168.7x

2
-466.9 

Biceps Femoris Y=3.258x
2
+272.3x-1965 

 

To make the proposed fatigue detection method much more suitable to detect the stroke 

patients muscle fatigue, some filter parameters, such as the filter order, filter cut-off 

frequency, are modified according to the algorithm implementation performance step by 

step.  

The muscle fatigue detection results and discrete fatigue levels of stroke patient 2 under 

60% MVC isometric contraction are shown in Figure 5.19. As illustrated in this figure, a 
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downward trend can be observed from filtered Q as the muscle fatigue levels increase. In 

this stroke patient’s example, the muscle fatigue levels increase to the 2
nd

 level in 18 

second, and the level shifts to the 3
rd

 level in 52 seconds.  

Figure 5.20 illustrates another results example from sEMG signal generated during 

varying force contraction performed by stroke patient 5. Apparently, in varying force 

contraction, the changes in MF, P and the estimated power P* follow the exerted force. 

From the fatigue detection results, filtered Q value keeps decreasing leading to the shifts 

in fatigue levels. The fatigue level reaches to the 3
rd

 level in 130 seconds, which is the 

indicative information representing the fatigue progress generally during the fatigue 

contraction period for stroke patients.  

 

Figure 5.19 Rectus femoris muscle during 60% MVC constant force contraction of stroke subject 

2. (a) Raw sEMG signal; (b) MF; (c) Signal power P and the estimated signal power P*; (d) 

filtered Q value (left Y-axis) and discrete fatigue level (right Y-axis). 
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Figure 5.20 Biceps femoris muscle during varying force contraction of stroke subject 5. (a) Raw 

sEMG signal; (b) MF; (c) Signal power P and the estimated signal power P*; (d) Filtered Q value 

(left Y-axis) and discrete fatigue level (right Y-axis). 

5.4 Summary 

In this chapter, a novel muscle fatigue detection approach is proposed. This method is 

developed based on the sEMG signal time-frequency analysis method CWT and the MF-

P relationship. The performance and efficiency of the proposed method have been 

evaluated using the sEMG signals recorded from fatigue contraction experiments. The 

decrease in the relative change ratio Q value leads to the fatigue levels shifting to high 

levels for both constant force contractions and varying force contractions. Although the 

proposed fatigue detection algorithm has a slow response, the fatigue levels are still 

viable to indicate the fatigue state as the muscle fatigue in human body is a slow progress. 

These fatigue levels are quantified by correlating the fatigue levels with the MVCs during 

the fatigue tests in reference to MVCs without fatigue. The fatigue level quantification 
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adapts the fatigue levels to the muscle maximal capacity, which reflects the fatigue 

estimation as close as the real physiological fatigue changes of human body.  

Same approach has been implemented to detect stroke patients muscle fatigue using 

sEMG signals from the affected leg muscles under constant force contraction and varying 

force contraction. Although the stroke patient sEMG signals are far different from 

healthy subjects, the preliminary results from a small number of stroke subjects still 

demonstrate that the proposed method is feasible for detecting fatigue for not only 

healthy subjects but also stroke patients. Further real-time implementation of the 

proposed approach will be presented in next chapter.  
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CHAPTER 6 

REAL-TIME IMPLEMENTATION 

6.1 Introduction 

In recent decades, stroke has become a leading cause of chronic and serious disabilities. 

Because of hemiparesis and one-side motor impairment of the body, neurological 

impairments after stroke often affect the patient’s ability to perform daily activities. In 

addition, nearly two thirds of stroke survivors experience a limitation in walking. Usually, 

physical rehabilitation therapists are involved to assist the stroke patients to regain 

movement functions. Research studies have found that high intensity, task-oriented 

rehabilitation training enables to enhance the walking ability of patients after stroke and 

regain the muscle motor function, particularly for those with moderate walking deficits 

[134]. For rehabilitation training, robotic exoskeletons and assistive devices have been 

widely developed for a variety of applications.  

Devices such as the AutoAmbulator (Motorika, USA), LOPES [135] and ALEX [136], 

are designed as automated lower extremities gait training. These devices are commonly 

controlled to generate an assistive torque/force by a prescribed trajectory to move the 

patient’s legs. Lokomat [137] is designed for stroke patients gait training with an 

advanced body weight support system, a robotic gait orthosis and a treadmill. It adjusts 

the shape of the desired stepping trajectory based on the participant’s interaction forces, 

as well as the robot impedance. However, these rehabilitation devices move the patient’s 
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legs through a fixed gait trajectory and there is no cycle-to-cycle variation in the 

kinematics and bio-signal feedback. Hybrid Assistive Limb (HAL) [138] is a wearable 

robot designed for assisting the elderly and stroke patients. The latest HAL-5 exoskeleton 

is controlled by sEMG signals to trigger the movement and drive the motor to assist 

movement-deficient elderly and disabled persons. There are many other lower extremity 

assistive devices designed for aiding people, such as RoboKnee [139] and Quasi-Passive 

Exoskeleton [140]. For these devices, multiple actuation systems and HMI are applied. 

However, due to limitations in price, size and portability, most of these devices are not 

suitable for casual indoor or home usage. Therefore, it would be advantageous to have a 

portable rehabilitation device give the users walking assistance for both hospital and 

home use.  

To solve these problems of the current devices, a novel rehabilitation robotic device is 

designed by our group especially for providing assistive torque for stroke patients’ lower 

limbs. The hardware design for this device is presented briefly in this chapter first. Then 

the proposed approach which is able to estimate muscle force is implemented real-time 

on the rehabilitation device. In addition, on-line tests on the force measurement setup and 

level walking are performed. Isometric and dynamic fatigue contraction experimental 

trials are performed to validate the feasibility of the proposed fatigue assessment 

approach in real-time. 

6.2 Lower Limb Rehabilitation Device 

A novel lower extremity rehabilitation device, as shown in Figure 6.1, is designed to aid 

in the flexion and extension motion of the wearer’s hip and knee joint in the sagittal plane. 

This device consists of a lightweight adjustable anthropomorphic frame and actuator 

modules attached at the joints. Its adjustable frame is derived from the anthropometrical 

data provided in [141], to ensure it fit a wide range of users. Orthotic cuffs are used as the 

interface between the device frame and the user.  
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The actuator module is powered by a frameless direct drive high torque DC motor with a 

harmonic drive at a 50:1 gear ratio, which could deliver up to 50 Nm of maximum 

momentary torque and a continuous torque of 35 Nm. The maximum output speed can 

reach to 15.3 rad/s.  

Optical incremental encoder at 1000 counts/rev is also equipped at the pre-reduction 

stage of each actuator module to measure the hip angle θh and knee angle θk. sEMG 

sensors are incorporated with the detection of user’s intention. Mechanical stops at each 

joints limits the range of the motion of each joint to ensure that the device moves within 

the range of motion of a normal human for safety reasons. This range of motion is set to 

be slightly smaller than the normal human motion range. For the hip joint, the motion 

ranges from -15° to 130°, while it changes from 0° to -130° for the knee joint. A 

summary of the rehabilitation device is tabulated in Table 6.1. 

Table 6.1 Specifications of the Rehabilitation Device. 

Actuator Module Parameters 

Maximum output speed 877°/s 

35 Nm 

347 W 
Maximum continuous torque 

Power 

  

Range of motion (Sagittal) Flexion Extension 

Hip 130° -15° 

Knee 130° 0° 

 

A real-time reconfigurable embedded control and acquisition system, which consists of a 

real-time processor, a user-reconfigurable field programmable gate array (FPGA), and 

analog and digital I/O are used for the signal processing and the low-level motor control. 

A digital servo drive at each actuator module performs close-loop current control to 

control the torque output at each actuated joint. Desktop computer can communicate with 

the controller via network cable for high-level control and monitoring. Controller area 

network (CAN) bus communication at 1 Mbits/s is implemented between the controllers 

and the digital servo drive. All the electronics can be fitted into a small backpack for 
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portability. The internal electrical block diagram of the whole system schematic is shown 

in Figure 6.2. 

 

Figure 6.1 Lower extremities rehabilitation device prototype with users. 1: Orthotic cuffs; 2: Hip 

joint actuator module; 3: Knee joint actuator module; 4: DC motor and harmonic drive housing; 5: 

Digital servo drive; 6: Incremental encoder. 

 

 

Figure 6.2 Block diagram illustrating control system architecture of the rehabilitation device. 

6.3 Real-time Implementation of Force Estimation Algorithm 

The proposed method for predicting muscle force has been validated to be feasible and 

efficient using the off-line sEMG signals recorded from biceps brachii, triceps brachii, 

rectus femoris and biceps femoris. To test the feasibility on the rehabilitation device, the 
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developed method is implemented real-time. Different testing trials were performed on 

the force measurement setup and the rehabilitation device. The details of the trials are 

described in the following subsections and the performance of the force estimation results 

are also presented.    

6.3.1 Online Tests on Force Measurement Setup 

During the online tests, sEMG signals and the measured force data are recorded at a 

sampling rate of 10 KHz using a USB data acquisition (DAQ) device (National 

Instruments). The skin preparation, the electrodes attachments, and the warm-up 

exercises are all same as the details described in Chapter 3 (Subsection 3.2.2). During the 

experiments, the subjects were seated comfortably on a chair with their back in a vertical 

position. All the muscle contractions were performed by elbow or knee flexion/extension 

at a joint angle of 90-degree. Graphs depicting the actual applied force and the estimated 

force from the CWT-based algorithm were displayed real-time on a computer screen 

facing the subjects.  

The proposed CWT-based force estimation algorithm was implemented in LabView 

(National Instruments). During the Labview implementation, some signal processing 

parameters of the proposed algorithm were modified to achieve good muscle force 

estimation performance. For example, in MATLAB off-line implementation, the sEMG 

signal and the measured force were recorded at a sampling rate of 10K Hz, and the 

signals were downsampled to 5000 Hz in order to reduce the size of data. Whereas, 

during the real-time implementation, the sampling rate was downsampled to be 2500 Hz. 

In addition, some filters parameters were changed. To smoothen the MF signal, a low-

pass filter was implemented to filter out the high frequency spikes. This low-pass filter 

was selected to be a 4
th

 order Bessel filter with 3 Hz cut-off frequency. This filter cut-off 

frequency is lower than the one used in off-line signal processing. It was selected 

according to the real-time signal processing performance. We tried a few cut-off 

frequencies by comparing the filtered signal shape and time lag. No additional filters are 

involved to filter the estimated force as the predicted force results are observed to be 
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appropriately smooth. These mentioned modifications on the proposed method were 

chosen by repetitive results performance comparison.  

Four muscles, biceps brachii, triceps brachii, rectus femoris and the biceps femoris were 

involved in the first online test by performing contraction tasks separately. During the 

contraction trials, each subject exerted the muscle contraction force, following the shape 

of a half-sinusoidal signal by pulling or pushing the handle of the force measurement 

setup (Figure 3.2 and Figure 4.11). Precise tracking performance was not required for a 

successful experiment. Actually, the purpose of the target tracking was to ensure that 

subjects would exert the contraction forces at a roughly constant frequency. Subjects took 

a few minutes (followed by a 3 minutes rest) to become familiar with the tracking task as 

none had any prior experience.  

The peak force target was up to 40% MVC and the forces were exerted by only 

performing joint flexion or extension. To avoid the influence of muscle fatigue induced 

from long-term muscle contraction, only five to six flexion/extension contractions were 

performed during each trial. The period of each repeated cycle was limited approximately 

to two seconds. 

The graphic user interface of the real-time implementation is illustrated in Figure 6.3. In 

the left column, the top block is the raw sEMG signal. The bottom block depicts the 

measured force and the estimated force in one graph. The red curve is the applied force 

measured from force sensor, while the white curve shows the estimated force calculated 

using the CWT-based algorithm. The right column is the scalogram of CWT, which 

represents the signal energy distribution. The highest energy during one varying force 

contraction cycle is distributed in the red color area. In addition, the corresponding 

frequency and time of this dominant energy distribution can be observed in this demo 

graph.    
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Figure 6.3 Real-time force estimation implementation user interface. 

Figure 6.4 shows the estimated force results calculated online from the four muscles of 

healthy Subject 8. The actual applied forces measured by the force sensors are also 

plotted to compare the performance with the estimated force. Good similarity in the 

signal shape can be observed between the estimated force and the measured force.  

The CC values and RMSE are calculated using the same method as in Chapter 4 between 

the estimated force and the measured force, and the corresponding results are tabulated in 

Table 6.2.  

For the involved four muscles, the CC values are high (p<0.05). The average correlation 

coefficients values are above 0.9535±0.0201 throughout all the muscles, reflecting 

similar shapes between the estimated force and measured force. In addition, the RMSEs 

are low, and the minimum averaged value is 0.1071±0.0304 obtained from biceps brachii 

among all the measured muscle groups.  
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       (a)                                                                (b) 

 

 
       (c)                                                                (d) 

Figure 6.4 Real-time force estimation results using the proposed CWT-based approach. (a) biceps 

brachii, elbow flexion; (b) triceps brachii, elbow extension; (c) rectus femoris, knee extension; (d) 

biceps femoris, knee flexion. 

 

Table 6.2 Averaged correlation coefficients and RMSE of four muscles from real-time 

implementation. 

Muscle Groups Correlation Coefficients RMSE 

Biceps Brachii 0.9614±0.0212 0.1071±0.0304 

Triceps Brachii 0.9535±0.0201 0.1333±0.0358 

Rectus Femoris 0.9614±0.0244 0.1259±0.0577 

Biceps Femoris 0.9630±0.0149 0.1224±0.0316 
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The Tf values are also calculated using the same approach as Chapter 4 (Subsection 4.3.3). 

Even though for every single contraction, the estimated force does not lead the measured 

force, the Tf ranges from 8.8 ms to 70.4 ms for those contraction cycles where the 

estimated force leads the measured one. Figure 6.5 shows the statistical analysis results of 

Tf during real-time implementation for the four measured muscle groups. The negative Tf 

values demonstrate the estimated force lags the measured force. The Tf results indicate 

that it is feasible and efficient for the CWT-based algorithm to be implemented in real-

time with some parameters modifications.  

 
Figure 6.5 Tf calcualted during real-time implementation for all measured muscle groups. 

(Negative values demonstrate the estimated force lags the measured force). 

6.3.2 Online Tests on Level Walking 

Results from the online force estimation tests showed good similarity in shape and long 

Tf as compared to the actual measured forces, we then followed up with another online 

test of level walking on a treadmill. sEMG signals were recorded from the lower 

extremity muscles, rectus femoris and biceps femoris. The CWT-based algorithm works 

online to predict muscle force during walking using sEMG signals. During the 

experiments, the subjects were asked to walk on a treadmill at different walking speed, 

1.5 km/h, 2 km/ h, 2.5 km/h, 3 km/h, 3.5 km/h, 4 km/h, 4.5 km/h and 5 km/h. Another 

higher speed of 8 km/h was also involved in this experiment. At this high speed, the 
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subjects had to perform a running activity. Figure 6.6 shows the recorded sEMG signals 

and the estimated force under different walking and running velocity. The estimated force 

is normalized to the maximum force value. In each figure, plot (a) is the sEMG signal 

recorded from rectus femoris, plot (b) is the sEMG signal recorded from biceps femoris. 

The last two plots, plot (c) and plot (d) are the estimated forces from rectus femoris and 

biceps femoris respectively.  

 

        (A) Walking speed 1.5 km/h;                          (B) Walking speed 2 km/h;  

 

        (C) Walking speed 2.5 km/h;                     (D) Walking speed 3 km/h; 
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        (E) Walking speed 3.5 km/h;                         (F) Walking speed 4 km/h; 

 

        (G) Walking speed 4.5 km/h;                          (H) Walking speed 5 km/h; 
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(I) Running speed 8 km/h; 

Figure 6.6 Muscle force estimation results on level walking and running at different speed.  

From these plots, the sEMG signal amplitude is very small when the walking speed is 

low. For the low walking speed, the force estimation results are not quite smooth, since 

the small sEMG amplitude can easily be contaminated by the baseline noise and 

movement artifacts. As the walking speed increases, the sEMG amplitude becomes larger 

and the human intention can be detected in a smooth shape and generally simultaneously 

or before the muscles contract. Results also demonstrate that the force estimation 

algorithm yields good prediction results for running activity. As we are interested in 

estimating force/torque at the knee joint for the application in rehabilitation device, the 

force estimation approach shows its potential feasibility from these plots in Figure 6.6. In 

addition, the force estimation results show the proposed CWT-based force estimation 

method is robust under a wide range of walking speeds. 

6.3.3 Online Tests on Rehabilitation Robotic Device 

To test the feasibility and efficiency of the proposed force estimation approach on 

rehabilitation device, the algorithm was implemented in a real-time embedded controller 
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(National Instruments, NI sbRIO-9612). Different trials were performed to test the 

performance with a lower extremities rehabilitation device to control the knee joint.  

Subjects performed the experiments while sEMG signals were recorded from the rectus 

femoris in real-time. To make the subjects familiarize with the device and the 

experimental tasks, warm-up exercises were carried out before the experiments. This 

helped these inexperienced subjects to perform independent movements and proper 

operations on the device. To confirm the effects of assistance as physically sensed by its 

users, repetitive squatting and sit-stand motion experiments were conducted by mounting 

the device on subjects. Two trials were performed in the experiments: 

 Trial 1: Subjects were asked to perform the two legged squatting by knee extension 

and flexion with around 6 seconds per cycle. 

 Trial 2: 6 cycles of the repetitive sit-stand were performed by the subjects in 30 s. 

Figure 6.7 illustrates the signal flow with sEMG signal controlling the knee joint. Raw 

sEMG signals were acquired by the analog input at the sampling frequency of 10 KHz. 

The normalized estimated force was amplified by a proper selected gain. Then the signal 

was transmitted as a desired assistive torque via CAN-bus to the digital servo driver to 

actuate the motor. The transmission speed of the CAN bus was set to 1 Mbits/s. Raw 

sEMG signals, the normalized estimated force, hip and knee joint position data were 

measured and displayed on the LabView user interface for online monitoring and data 

recording. 

 

Figure 6.7 Signal flow of sEMG control structure of the real-time implementation of the device. 

During the experiments, to ensure the safety of the subjects, low gain was selected to be 3 

and the torque for the motor was set to be 25 Nm. Figure 6.8 and Figure 6.9 illustrate the 

online data measured during repetitive squatting and sit-stand trials. The knee joint is 
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controlled by the estimated force/torque. The positions change with the estimated 

force/torque. The hip joint positions are also recorded by the encoders. For the sit-stand 

motion, the knee and hip joint angles reach the mechanical joint limit when the subjects 

sit down.  

 

Figure 6.8 Muscle force estimation method real-time implementation on rehabilitation device 

during repetitive squatting. (a) Raw sEMG signal from rectus femoris muscles; (b) Estimated 

muscle force/torque; (c) Hip joint angle; (d) Knee joint angle. 
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Figure 6.9 Muscle force estimation method real-time implementation on rehabilitation device 

during repetitive sit-stand. (a) Raw sEMG signal from rectus femoris muscles; (b) Estimated 

muscle force/torque; (c) Hip joint angle; (d) Knee joint angle. 

From the figures, it can be observed that the knee joint is controlled by the estimated 

force/torque. Meanwhile, the force/torque is estimated by the proposed CWT-based 

approach concurrent or faster than the muscles. This information ensures the prompt 

delivery of the estimated force to the motor, which is very important for developing an 

active and intuitive rehabilitation device. In addition, from the feedback of the subjects, 

they felt that there was significant assistance from the device while performing the given 

tasks as the device was able to provide assistive torque according to the subject’s 

intention.  

6.4 Fatigue Detection Algorithm Real-time Implementation 

For our rehabilitation device, sEMG signals are used to detect the human intention so as 

to command the control system to provide assistive torque, which makes the device 
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active and intuitive. However, human muscles can fatigue even with the external 

assistance from the device, and human performance may be decrease dramatically. When 

fatigued, human tends to be more error prone and it might lead to accidental injury. 

Therefore, during rehabilitation gait training, accidents and injuries can be avoided by 

continuously monitoring the progression of muscle fatigue, warning the users in advance. 

Hence, knowledge of muscle fatigue is useful for the improvement of a rehabilitation 

device control system. In addition, based on the previous chapter’s study, the estimated 

fatigue levels can be applied to moderate the output torque of the device.  

The proposed muscle fatigue detection approach (described in Subsection 5.3.1) has been 

investigated and validated using the off-line recorded sEMG signals from upper arms and 

legs muscles. To investigate the feasibility of the algorithm with online data, the 

proposed method was implemented in real-time. In this section, the details of the 

experimental trails are presented, and the fatigue detection results are illustrated in 

figures. As the fatigue detection approach is an online implementation, but the 

rehabilitation device is still under development, we alternatively tested the fatigue 

detection approach with separate setup to experiment with online fatigue contractions.  

6.4.1 Online Tests on Fatigue Contraction 

During the online tests, the data collection setup is same as Chapter 3 (Subsection 3.2.2). 

The proposed approach was implemented using LabView (National Instruments). The 

MF and signal power P were calculated from CWT. The relative changes of P and P* 

were obtained by employing the same method as the off-line computation.   

During the off-line data validation, the shifting transition thresholds of the fatigue levels 

are 0.4, 0.8, 1.2 and 1.6 (Subsection 5.3.1), which describe the fatigue levels into four 

levels. All the fatigue contraction trials end when the subjects feel exhausted and cannot 

continue any further, which demonstrates the fatigue levels have almost reached to the 

highest fatigue level. Therefore, in this real-time implementation, to make the estimated 

fatigue levels demonstrate the fatigue progress as close as the true physiological changes 
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under fatigue, the threshold values for fatigue level transitions were modified to be 1, 1.2, 

1.4 and 1.6 respectively for the 4 fatigue levels. These threshold values were chosen 

because the filtered Q value decreases much slower in real-time when compared to the 

off-line filtered Q.  

Three muscles, biceps brachii, rectus femoris and biceps femoris were involved in the 

online tests by performing different contraction tasks separately. Before the fatigue 

contraction, the subjects exerted MVCs for at least three times. The submaximal force 

values used in the following trials were calculated from the averaged MVC values.  

The fatigue contractions were divided into isometric contraction and dynamic muscle 

contraction. During the isometric contraction trials, each subject exerted the muscle 

contraction at 60% MVC and maintained the force level until exhaustion. The forces 

were exerted by performing joint flexion or extension while pulling or pushing the 

handles of the force measurement setup. To avoid the influence of muscle fatigue 

between trials and to avoid injuries from over-fatigue, each trial was conducted on 

different days to ensure that the muscles are fully recovered from the previous trial.  

Figure 6.10 illustrates the raw sEMG signal, MF and the corresponding fatigue detection 

results from biceps brachii under isometric contraction from different healthy subjects. 

As shown in this figure, MF keeps decreasing as the increasing progress of muscle 

fatigue. In Figure 6.10 (c), the filtered Q declines as the muscle fatigue levels increase. In 

this figure, the Subject 4’s (Figure 6.10 (A)) filtered Q shows a fast and straightforward 

decrease and the fatigue levels reach to the 4
th

 fatigue level in 55 seconds. Whereas, from 

Figure 6.10 (B), the filtered Q fluctuates at the initial few seconds. The fatigue levels start 

to shift to level 2 in approximate 77 seconds and keep on shifting to higher fatigue level 

in the following 20 seconds. Figure 6.11 shows the real-time fatigue detection results 

from lower extremity muscles, rectus femoris and biceps femoris. From the results, the 

MF and filtered Q changing trends are general same as the biceps brachii. The overall 

estimated fatigue levels keep increasing until they reach to the highest fatigue level 

before the contraction trial ends. 
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     (A)                                                                       (B) 

 

Figure 6.10 Real-time implementation results of muscle fatigue estimation method during 

isometric contraction. (a) Raw sEMG signal from bicep brachii muscle; (b) MF; (c) Filtered Q 

(blue curve corresponding to the left Y-axis) and discrete fatigue level (red curve corresponding to 

the right Y-axis). (A) is fatigue results from Subject 4 and (B) is fatigue results from Subject 8. 

 

 

     (A)                                                                       (B) 

 

Figure 6.11 Real-time implementation results of muscle fatigue estimation method during 

constant force muscle contraction. (a) Raw sEMG signal; (b) MF; (c) Filtered Q (blue curve 

corresponding to the left Y-axis) and discrete fatigue level (red curve corresponding to the right Y-

axis). (A) is fatigue results from Subject 3’s rectus femoris and (B) is fatigue results from Subject 

8’s biceps femoris. 
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Another fatigue contraction trial was completed by performing the squatting in a fixed 

position. During this trial, sEMG signal was recorded from rectus femoris muscle. The 

knee angle between thigh and shank was kept approximate 110 degree. The subjects were 

asked to keep the squatting posture and stop the contraction until they felt exhausted and 

cannot continue any further. Figure 6.12 shows the sEMG signal, normalized MF and the 

fatigue detection results of this kind of fatigue contraction.    

 
     (A)                                                                       (B) 

 

Figure 6.12 Real-time implementation results of muscle fatigue estimation method during 

squatting. (a) Raw sEMG signal; (b) MF; (c) filtered Q (blue curve corresponding to the left Y-

axis) and discrete fatigue level (red curve corresponding to the right Y-axis). (A) is fatigue results 

from Subject 4’ rectus femoris and (B) is fatigue results from Subject 8’s rectus femoris. 

The last trial for real-time fatigue detection validation was the dynamic muscle 

contraction performed by biceps brachii. During this dynamic muscle contraction, the 

subjects performed the elbow flexion and extension while holding a 2 kg dumbbell. The 

contraction started at the position of 90 degree between the forearm and upper arm, and 

the angle between upper arm and trunk was kept at 0 degree. Then the subjects exerted 

force by rising up the dumbbell during the elbow flexion until the elbow joint angle 

decreased to the minimum. One cycle of dynamic contraction was completed by 

increasing the joint angle back to the starting position. Repetitive dynamic cycles were 

performed until exhaustion. The raw sEMG signal, MF and estimated fatigue levels of 

one example are illustrated in Figure 6.13.  
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Figure 6.13 Real-time implementation results of muscle fatigue estimation during dynamic 

contraction (biceps brachii). (a) Raw sEMG signal; (b) MF; (c) Filtered Q (blue curve 

corresponding to the left Y-axis) and discrete fatigue level (red curve corresponding to the right Y-

axis). 

From the all the above figures, the filtered Q keeps decreasing which induces the muscle 

fatigue levels shifting up the higher levels. Although the fatigue detection algorithm in 

real-time shows a slow response, the fatigue levels are still viable to indicate the fatigue 

state as the muscle fatigue in human body is a slow progress. 

6.5 Summary 

In this chapter, the newly developed lower limb rehabilitation device is first briefly 

introduced. This device is designed to aid in the flexion and extension motion of the 

wearer’s hip and knee joint by providing assistive torque actively, during level walking or 

stairs climbing for stroke patients. Then the proposed CWT-based force estimation 

method and the fatigue detection method described in Chapter 4 and Chapter 5 are 

implemented in real-time to validate the efficiency and feasibility using online data.  
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The online force estimation results demonstrate high correlation coefficient (CC>0.9535) 

when comparing with the measured force, which implies similar shape as the measured 

force can be obtained from this approach. When this method is implemented to the 

rehabilitation device, the knee joint is controlled by the estimated force/torque and the 

positions change with the estimated force. The results also indicate that the device is able 

to provide assistive torque according to the human’s intention. Moreover, it also ensures 

the intuitive and effortless control from the user’s perspective when using sEMG signals 

as HMI.  

The fatigue assessment approach based on CWT is implemented and tested in real-time. 

Online validation tests are performed during isometric contractions, squatting and 

dynamic contractions, respectively. The general estimated fatigue levels keep rising with 

the increasing progress of muscle fatigue. Even though these discrete fatigue levels 

probably not represent the true fatigue progress accurately, the general trends of these 

increasing levels are an important reference to track the muscle state. 
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CHAPTER 7  

CONCLUSION AND FUTURE WORKS 

7.1 Conclusion 

The main objectives of this research were to investigate the relationships between sEMG 

signal features and muscle force using time-frequency analysis, and to explore novel 

approaches to estimate muscle force and detect muscle fatigue. In addition, real-time 

implementation of force estimation and fatigue detection methods are carried out to test 

and validate the feasibility of the algorithms using online sEMG signals. 

An initial investigation on the correlation between sEMG features and muscle force was 

first carried out. Three relationships were established, the amplitude-force, MF-force and 

the relationships between frequency parameter and signal energy distribution (MF-P 

relationship). Regression fitting results showed that these relationships were nonlinear 

with high R
2
 values. Both signal amplitude and MF were found to increase nonlinearly 

with an increasing exerted force, with the former generally consistent with observations 

reported by previous literatures [33-37]. In particular, one significant contribution of this 

thesis is in being the first to successfully establish a relationship between MF and force 

with the frequency domain features. In addition, the MF-force relationship provides a 

simple way to quantitatively estimate the force exerted by muscles through the analysis 

of the sEMG signal. The establishment of the MF-P relationship in this thesis reveals the 
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correlation between signal frequency spectral changes and signal energy distribution in 

the frequency domain.  

The influence of different electrode locations on these relationships was examined by 

displacing the electrode locations along muscle fibers. The linear regression and 

statistical analysis results revealed that the relationships were nonlinear. Although the 

maximum displacement for each set of the electrodes was 1 cm, the new MF-force 

relationships and MF-P relationships, showed higher R
2 

values as the second electrode 

location was in the innervation zone.  

New approaches for estimating muscle force using sEMG signals from healthy subjects 

and stroke patients were proposed and evaluated in this work. From the off-line sEMG 

signal validation results, the force/torque exerted by the four muscle groups (biceps 

brachii, triceps brachii, rectus femoris and biceps femoris) can be estimated using both 

time-domain and time-frequency analysis approaches. On average, high correlation 

coefficients between the estimated force and measured force were observed from the 

CWT-based method for all measured muscle groups. In addition, the estimated force 

leads the measured force by Tf =75.4±23.7 ms. These findings from the developed 

approaches of this study are of crucial importance in terms of predicting human muscle 

intention in advance or concurrently. The major advantage of the force estimation 

approach developed in this study over conventional approaches is that the muscle force 

can be predicted using sEMG signals before the force exerted by muscles are recorded, 

both in healthy subjects and stroke patients. This contribution has a large potential for 

application, especially in the development of active rehabilitation devices.  

A new muscle force prediction method was also developed based on CWT and ANN. 

The force estimation results demonstrated high correlation coefficients between the 

estimated force and the measured force for both healthy subjects and stroke patients. The 

important contribution of this approach is that it avoids deriving complex and specific 

polynomials with different inputs signals from different subjects. This approach is more 

suitable for stroke patients force estimation compared to the CWT-based approach.  
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A novel muscle fatigue detection approach was also developed based on time-frequency 

analysis for both healthy and stroke subjects. Validation with sEMG signals recorded 

during isometric and varying force contractions demonstrated the effectiveness and 

reliability in assessing muscle fatigue for both type of contractions. The estimated fatigue 

levels were being the first to be obtained, indicating the changes within muscles during 

fatigue contractions. The fatigue levels deliver indicative information of muscle fatigue 

with the slow response of this approach. In addition, quantification of the fatigue levels 

by mapping the fatigue levels to the percentage of muscle maximal capacity was 

proposed. This quantification to the maximum voluntary contractions (MVCs) is 

substantial since it presents the fatigue assessment much closer to the real physiological 

fatigue changes. The quantified fatigue levels provide valuable information concerning 

the muscle state, possibly offering a general standard to avoid injury during variety 

muscle contractions. In addition, the fatigue detection algorithm for stroke patients 

showed the feasibility in tracking the patients’ affected muscle state. 

The proposed muscle estimation and fatigue detection methods were implemented and 

tested using on-line sEMG signals. High correlation coefficients between the online 

estimated force and measured force were achieved. When the CWT-based force 

estimation approach was implemented on the lower limb rehabilitation device, the real-

time experimental results showed that the device provided assistive torque to users 

according to their intention. When implementing the fatigue detection algorithm in real-

time, validation results were consistent with the off-line fatigue detection results. The 

major advantage of the fatigue assessment approach proposed in this study that surpasses 

most current methods is that it can be used to detect fatigue with both off-line data and in 

real-time for constant force and dynamic contractions. In addition, this approach is of 

considerable importance since it provides significant application potential in assessing 

muscle fatigue in real-time for rehabilitation device.  



145 

 

7.2 Future Works 

Although this thesis has reported the successful estimation of muscle force and 

assessment of muscle fatigue with both healthy subjects and stroke patients using the 

proposed approaches, there are still some limitations. More works can be done to further 

improve on the current approaches. The following aspects are recommended for further 

study: 

 Although CWT has been proved to be the most computational and storage efficient 

method when compared to STFT, WVD and CWD, CWT is unlikely to provide 

precise estimation of the low frequency components with short-time duration or 

narrow-band high frequency components. In wavelet transform, the basic functions 

are derived from a single mother wavelet by two operations of dilation and translation. 

To avoid the problems in using CWT, a new time-frequency analysis approach like 

the chirplet transform, which accomplishes the time-frequency plane feature 

extraction based on the rotation of the TF plane, can be investigated in future studies. 

Chirplet transform has been introduced to improve energy concentration for signals 

whose components are not aligned with either the time or the frequency axis. 

Currently, very few studies use this transform to analyze sEMG signals. Muscle force 

and fatigue estimation studies based on chirplet transform may be an interesting area 

for the future work. 

 To achieve more robust results for the proposed force estimation and fatigue detection 

methods for stroke patients, more patients are still needed. Even though validation 

results from the limited number of patients achieved successful force and fatigue 

estimation, more stroke patients with different severities should be encouraged to 

participate in future studies to ensure that the proposed methods are suitable for a 

wide variety of patients.  

 The current data collection from stroke patients focuses only on the affected legs with 

the differences between the affected legs and un-affected legs not compared. If the 
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force estimation and fatigue detection results from both legs are compared, it will be 

helpful in exploring more effective approaches.  

 Even though the proposed methods have been shown to be feasible using sEMG 

signal from dynamic contractions both offline and online, it is still necessary to 

modify the present force measurement setup to be suitable for measuring force from 

varying angles instead of constant angles. 

 Implementation of the proposed fatigue detection approach can be carried out on the 

lower limb rehabilitation device allowing compensation torque by the device to be 

adjusted based on the muscle fatigue levels and control algorithms.  
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