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Abstract

The work described in this thesis is an attempt to understand the spin transport

properties of graphene - the weakly spin-orbit coupled two dimensional allotrope of

carbon. In the first half of the thesis we make an effort to understand the spin re-

laxation mechanisms in monolayer and bilayer graphene. For this, four-terminal spin

valve devices are characterized in the non-local geometry and a correlation between

the charge and spin parameters has been drawn. Our systematic analysis shows that,

unlike monolayer graphene where the spin relaxation is due to a direct consequence

of momentum scattering, in bilayer graphene the spin dephasing occurs due to the

precession of spins under the influence of local spin-orbit fields between momentum

scattering. The role of intrinsic and extrinsic factors that could lead to such contrast-

ing results is discussed.

The second half of the thesis focuses on enhancing the spin-orbit interaction in

graphene by introducing adatoms. Our pioneering experiments in graphene sam-

ples decorated with adatoms, demonstrate a three orders of magnitude increase in

spin-orbit interaction strength while preserving the unique transport properties of

intrinsic graphene. In such samples, we realize for the first time room-temperature

non-local spin Hall effect at zero applied magnetic fields. Moreover, the methods em-

ployed for the introduction of adatoms, specifically the metallic adatoms, in graphene

can easily be generalized for any metal, and would thus allow for the future realization

of a graphene-based two dimensional topological insulator state.

ix
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Chapter 1

Introduction

The development of quantum mechanics in the early half of the twentieth century has

enabled a deeper understanding of the fundamental particles that constitute matter.

The electrons, the first understood elementary particle, with a negative elementary

electric charge and half-integer intrinsic angular momentum (spin) plays an impor-

tant role in the current technological developments. Depending on the fundamental

property which is being manipulated, two closely related but independent fields have

emerged: (1) electronics, where the charge of electron is manipulated for logical oper-

ations and transistor functionalities and (2) spintronics, where the electron’s intrinsic

angular momentum, called spin, is manipulated. The electron’s spin angular momen-

tum (in units of ~) can have two values of 1/2 (spin-up) or -1/2 (spin-down) when

placed in a magnetic field, allowing binary logical operations. The aim of this chapter

is to give a short introduction on the developments in the emerging field of spintron-

ics. At the end of the chapter an outline of this thesis with short summaries on each

chapter is provided.
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1.1 Spintronics: an overview

Spintronics [1] refers to the study of the electrical, optical and magnetic properties

of materials, due to the presence of non-equilibrium spin populations. In a broader

sense, spintronics is the study of spin phenomena like spin-orbit, hyperfine and/or

exchange interactions. Such insights into spin interactions allow us to learn more

about the fundamental processes leading to spin relaxation and/or spin dephasing in

metals, semiconductors and semiconductor heterostructures [2].

The first observations of the effects of electron spins on the charge transport can

be dated back to 1857 [3, 4], even before the discovery of electrons (J.J. Thomson

1897). The observation that the resistance of the ferromagnet relies on the relative

angle between the charge current direction and the magnetization direction in the

ferromagnet [3, 4], termed as the anisotropic magneto resistance (AMR), has since

been an important topic of study [5, 6]. After the discovery of electrons in 1897

and the development of quantum mechanics in the early half of the 20th century

[7], the fundamental studies in understanding the puzzling observations in the line

spectra of atoms led to the proposal of an intrinsic angular momentum for electrons

by Uhlenbeck and Goudsmit in 1925 [8,9]. This intrinsic angular momentum, known

as spin interacts with magnetic field and attains quantized values of 1/2 or -1/2. Since

these quantized values of 1/2 or -1/2 can be used in a similar way to the Boolean

logical operations based on binary numbers 0 and 1, a new field where the spin degree

of freedom of electron is utilized for the realization of spin based electronic applications

has emerged [1, 2, 10–12]. The potential applications of spintronics range from spin

field effect transistors [13], magnetic random access memories [14], spin-based light
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emitting diodes (LED’s) [15] to topological quantum computations [10]. However, an

effective utilization of the spins for information processing requires three important

criteria to be satisfied: (1) the injection of spin polarized current into the material of

interest, metals, semiconductors etc., (2) an ideal material with a long spin relaxation

length in which the injected spins can diffuse, and (3) a detector for the spins [2].

One of the first realistic proposals for the injection of spins came from Aronov and

Pikus in 1976 where they proposed the electrical spin injection as a method to create

non-equilibrium spin population in non-magnetic materials [16, 17]. Experimentally

the electrical spin injection in metals was realized by Johnson and Silsbee in 1985 in

single crystal aluminum [18–20]. However, until 1988 the field of spintronics remained

of interest for fundamental studies only. In 1988-89 two groups led by Albert Fert in

France and Peter Grünberg in Germany( Nobel Prize in Physics 2007) discovered the

giant magnetoresistance in a ferromagnet/metal/ferromagnet heterostructure [21–25].

It was shown that the relative orientation of the magnetization in the ferromagnetic

layers determined the electrical resistance of the heterostructure. The change in the

resistance between parallel and anti-parallel configurations of the magnetization in

the ferromagnetic layers could be greater than 100%; hence the name giant magneto

resistance (GMR). These discoveries were later followed by the demonstration of

GMR-based magnetic read heads in commercially available hard drives. The GMR-

based magnetic read head is one of the first and foremost applications of spintronics

till date.

The discovery of the GMR also triggered the renewed interest for new spin-dependent

electron transport in metals as well as in semiconductor heterostructures. Notable
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among these phenomena were (1) the tunneling magneto resistance (TMR) in mag-

netic tunnel junctions [26–28], (2) the electrical injection of spins into a non-magnetic

medium (metals and semi-conductors) employing a four terminal non-local lateral

spin-valve geometry [29–32], and (3) the creation of non-equilibrium spin population

in metals and semi-conductors by the spin Hall and inverse spin Hall effects [33–36].

Specifically, the spin transport in semiconductors attracted much attention due to

their unique properties such as the presence of a band gap which allows the injection

and detection of spins via optical means. For instance, the experimental demonstra-

tion of the spin Hall effect was first reported in GaAs semiconductor by spatially

resolving the Kerr rotation of the reflected light from the samples [35]. However, a

demerit of the semiconductor and metal spintronics is the low spin relaxation length

of charge carriers due to the enhanced spin-flip scattering induced by the high spin-

orbit coupling strength. This calls for new materials where the spin-orbit coupling

can be manipulated with minimal compensation of the spin relaxation length.

An ideal source of materials which could allow such long spin relaxation length are

the organic conductors like carbon nanotubes [37] and graphene [6]. Carbon being a

light element (Z = 6), the intrinsic spin-orbit coupling (∝ Z4) is weak and hence the

dominant spin dephasing mechanism due to spin-orbit coupling is also weak [39]. This

allows fora spin relaxation length of the order of 100µm in these materials [40, 41].

Moreover, it is also easy to functionalize these carbon-based materials with reactive

elements like hydrogen and fluorine [42] and also by metallic adatoms [43]. Such

controlled additions of adatoms are predicted to enhance the spin-orbit coupling in

graphene without affecting its long spin relaxation length. In this thesis I will discuss

our recent results in understanding the spin transport properties of graphene and
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functionalized graphene.

1.2 Thesis Outline

The main focus of this thesis is to understand and study the spin transport properties

in the newly discovered perfect 2D material ”Graphene” and its chemically/physically

functionalized derivatives. For this, we first utilize the non-local spin-valve geometry

with a Ferromagnet (Co)/Tunneling barrier (MgO)/Graphene/Tunnel barrier(MgO)/

Ferromagnet (Co) structure. The aim of these studies are to understand and con-

trast the fundamental spin relaxation/scattering mechanisms in single- and bi-layer

graphene. As a next step we manipulate the electron spins in graphene via the spin

Hall effect. Besides being of interest from a fundamental physics perspective, this

technique will also allow the transport and detection of spins without the need for

any magnetic elements. This is of utmost importance for future applications since it

allows manipulation of spins by the simple application of a voltage. However, due to

the low spin-orbit coupling of carbon atoms, this effect is feasible only at ultra-low

temperatures in graphene and necessitates new methods to enhance the spin-orbit

coupling in graphene.

Among the different approaches proposed, the decoration of graphene with adatoms

holds a lot of promise. Here, the graphene spin-orbit coupling can be enhanced in

two different ways: (1) by chemical functionalization of graphene with adatoms like

hydrogen and fluorine [44] and (2) by the introduction of metallic adatoms like copper

(Cu) or gold (Au) which due to its proximity to the graphene lattice allows electron

tunneling from graphene to the adatoms and back resulting in a local enhancement of
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the spin-orbit coupling strength [43]. Our aim in this work will be to see the predicted

enhancement in spin-orbit coupling in graphene by the introduction of adatoms. For

this we take hydrogen, gold and copper as the model systems. A brief outline for the

individual chapter in this thesis is given below:

Chapter 2: The basic concepts essential for understanding the spin transport in non-

magnetic materials is introduced. The chapter will focus on the theoretical back-

ground required for understanding the non-local spin transport measurements in the

conventional lateral spin-valve geometry. This will be followed by an introduction to

the spin Hall and inverse spin Hall effects. After discussing these basic spin transport

theory, a brief introduction to graphene and graphene spintronics is provided.

Chapter 3: This chapter will focus on the basic experimental techniques required to

perform the spin transport measurement in the spin-valve as well as in the spin Hall

geometry. This includes graphene sample preparation, identification of single and

bi-layer graphene, device fabrication and characterization.

Chapter 4: The experimental results on the spin transport in graphene spin-valves are

discussed. The main focus of this chapter will be to differentiate the spin transport

in single- and bi-layer graphene with emphasis given to identify the dominant spin

scattering mechanism in bilayer graphene.

Chapter 5: This chapter discusses the controlled functionalization of graphene with

adatoms like hydrogen to enhance the otherwise weak spin-orbit coupling in graphene

by the conversion of the sp2 to sp3 hybridization of the graphene lattice. Such en-

hancement of the spin-orbit coupling is experimentally confirmed by demonstrating

room temperature spin Hall effect.
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Chapter 6: Similar to hydrogenation, the spin-orbit coupling in graphene can also be

enhanced by introducing metallic adatoms like copper (Cu), gold (Au) or silver (Ag).

In this chapter, our present efforts towards the enhancement of graphene’s spin-orbit

strength by metal decoration will be discussed.

Chapter 7: The conclusion and future perspectives of the work presented in this thesis

will be discussed.
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Chapter 2

Basic Concepts and Theory

2.1 Introduction

In this chapter a brief discussion on the basic theory of electrical spin injection and

detection will be discussed. The main emphasis of this chapter will be the spin trans-

port in the diffusive regime where the Boltzmann transport formalism is applicable.

Since the focus of this thesis is on the spin transport in graphene in the diffusive

regime, the basic properties of graphene that are relevant for the presented study

will also be discussed. The following works were consulted extensively and used as a

guide for the preparation of this chapter: (1) Jedema, PhD thesis [1], (2) N. Tombros

PhD thesis [2], (3) I. Zutic ”Spintronics: Fundamentals and applications” [3], (4) J.

Fabian ”Semiconductor spintronics” [4] and (5) A. H. Castro Neto ”The electronic

properties of graphene” [5].
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2.2 Spin transport: Basic theory

In metals and semiconductors the electrons undergo scattering due to the presence

of disorder, impurities or phonons. The resultant motion of electrons is equivalent

to a random walk problem in one dimensions [4]. The relation between the resultant

average velocity of the electrons to the applied electric field and system parameters

like the mean free path and average scattering time (momentum relaxation time) is

obtained in the standard Drude formalism [6]. Here, our aim is to review a similar

theoretical formalism for the spins within the diffusive transport framework [4]. For

this, consider a system with an electron density n such that n↑ is the density of

spin-up electrons and n↓ is the density of spin-down electrons, then

n = n↑ + n↓ (2.2.1)

while the spin density s is given by

s = n↑ − n↓ (2.2.2)

In the diffusive regime the spin-up and spin-down electrons can also be considered to

be performing random walks due to collisions. In such scattering process the spins

are allowed to flip (spin-up to spin-down or vice-a-versa) and if f is the probability

that a spin flips in the time τ , then the spin flip rate is f/τ . Now to understand the

time evolution of the density of the spin states, let us assume that at time t and at

position x, the density of spin-up electrons n↑(x, t) is given by the densities at x-l and

x+l in the time interval t-τ . If p+ and p− are the probabilities for the spin-flip process

at x-l and x+l, the spin-up density around (x,t) is
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n↑(x, t) = n↑(x− l, t− τ)(1− f)p+ + n↑(x+ l, t− τ)(1− f)p−

+n↓(x− l, t− τ)fp+ + n↓(x+ l, t− τ)fp−

(2.2.3)

Taylor expansion of the equation (2.2.3) around (x,t) for infinitesimal l and τ by

retaining terms up to O(l2) and O(τ) gives,

n↑(x, t) = n↑(x, t)(1− f)p+ − l(1− f)
∂n↑

∂x
p+ +

1

2
l2(1− f)

∂2n↑

∂x2
p+

−τ(1− f)
∂n↑

∂t
p+ + n↑(x, t)(1− f)p− + l(1− f)

∂n↑

∂x
p−

+
1

2
l2(1− f)

∂2n↑

∂x2
p− − τ(1− f)

∂n↑

∂t
p− + n↓(x, t)fp+

−lf ∂n↓

∂x
p+ +

1

2
l2f

∂2n↓

∂x2
p+ − τ

∂n↓

∂t
p+ + n↓(x, t)fp−

+lf
∂n↓

∂x
p− +

1

2
l2f

∂2n↓

∂x2
p− − τ

∂n↓

∂t
p−

(2.2.4)

The actual spin flip probability within the time limit τ is of the order of 10−6, i.e.,

f <<1. Also p++p−=1 and p+-p−=∆p. Substituting these conditions into equation

(2.2.4) gives the relation for the spin-up density at (x,t) as

n↑(x, t) = n↑(x, t)(1− f)− l∆p
∂n↑

∂x
+

1

2
l2
∂2n↑

∂x2
− τ

∂n↑

∂t
+ n↓f (2.2.5)

The drift-diffusion equation for n↑ can thus be rewritten as

∂n↑

∂t
=

1

2

l2

τ

∂2n↑

∂x2
− l

τ

∂n↑

∂x
− f

τ
(n↑ − n↓) (2.2.6)

Similarly for n↓
∂n↓

∂t
=

1

2

l2

τ

∂2n↓

∂x2
− l

τ

∂n↓

∂x
− f

τ
(n↓ − n↑) (2.2.7)

Since the total spin density s =n↑-n↓, subtracting equations (2.2.6) and (2.2.7) gives

the spin diffusion equation for s
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Figure 2.1: Decay of the spin density s as a function of the position x. Here at x = 0
the spin density is normalized to 1 and as the distance increases from x = 0 the spins
start to decay with a characteristic length scale λs

∂s

∂t
= D

∂2s

∂x2
− vd

∂s

∂x
− s

τs
(2.2.8)

where D = 1
2
l2

τ
is the diffusion coefficient, vd=

l
τ
=µE is the drift velocity of electrons

in applied electric field E, µ is the mobility of the charge carriers, and 1
τs

= 2f
τ

is the

spin relaxation/dephasing length. Since our focus is on the diffusion of spins in a

medium, the spin drift-diffusion equation (2.2.8) can be solved by neglecting the drift

term.

2.2.1 Spin diffusion without drift

The spin diffusion equation (2.2.8) neglecting the drift term is given by
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∂s

∂t
= D

∂2s

∂x2
− s

τs
(2.2.9)

Now at time t=0 the spin density s at (x,t) =(x,0) is given by

s(x, 0) = S0δ(x) (2.2.10)

where S0 is the total spin density at t=0. In the steady state, i.e. ∂s
∂t

= 0, the solution

to equation (2.2.9) gives

D
∂2s

∂x2
=

s

τs

s(x) = s0e
− x

λs

(2.2.11)

where λs is the spin relaxation length defined as
√
Dτs, and clearly shows that the

spin density decays exponentially with x with the characteristic length scale λs. The

length scale λs tells us how far an electron spin can travel in the medium before its

initial spin direction gets randomized.

2.3 Spin injection and detection via non-local spin

valves

In the previous section we have seen that in the diffusive transport regime the spin

density decays exponentially with the characteristic length scale given by its spin

relaxation length λs. In this section, we will review how such a spin density can be

introduced and detected in a non-magnetic material by electrical transport measure-

ments.
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2.3.1 Electrical spin injection into a non-magnetic material

By the electrical spin injection we mean the creation of non-equilibrium population

of up and down spins in the material. This can be achieved by the introduction

of a ferromagnetic material as the source of the spins, since in a ferromagnet due to

exchange splitting [7,8], the density of states as well as the Fermi velocity for the spin-

up and spin-down sub-bands become different. This results in different conductivities

for the spin-up and spin-down electrons and hence in the generation of spin polarized

current j↑,↓, [9–15]

j↑,↓ =
σ↑,↓∂µ↑,↓

e∂x
(2.3.1)

where σ↑,↓ = e2N↑,↓D↑,↓ is the spin up and spin down conductivity, e is the electric

charge, N↑,↓ is the spin dependent density of states at the Fermi energy and D↑,↓ =

1
3
vF↑,↓le↑,↓ is the spin dependent diffusion coefficient with Fermi velocity vF↑,↓ and

electron mean free path le↑,↓ for spin-up and spin down electrons and µ↑,↓ is the

electrochemical potential of the spin species defined as

µ = µch − eV (2.3.2)

Here, µch is the chemical potential which by definition is the energy needed to add

one electron to the system and accounts for the kinetic energy of the electrons, and

eV is the potential energy the electrons experience due to an electric field E. Since

the spin-up and spin down current and conductivities are different, the bulk spin

polarization in the ferromagnet can be defined as

P =
σ↑ − σ↓
σ↑ + σ↓

=
j↑ − j↓
j↑ + j↓

(2.3.3)

where j↑ − j↓ = js is the spin current, j↑ + j↓ = j is the total charge current and
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σ↑ + σ↓ = σ is the total conductivity. The relation for the spin current equation

(2.3.1) can now be rewritten as

j↑ = (1 + P )
σ∂µ↑

2e∂x
(2.3.4)

and

j↓ = (1− P )
σ∂µ↓

2e∂x
(2.3.5)

From the above relations, it is clear that the variation in the electrochemical potential

of the up and down spins would result in the generation of a spin polarized current

and this can be achieved either by varying the density of spin polarized electrons

(∇n) or by the application of an electric field E=-∇V.

2.3.2 Detection of the decaying spins

As discussed, in a diffusive material, the injected spin decay exponentially with a

characteristic length scale given by the spin relaxation length λs and time scale given

by the spin relaxation time τs. The first electrical detection scheme based on spin-

charge coupling was proposed by Johnson and Silsbee [16]. In a spin-charge coupling

a non-magnetic material with non-equilibrium spin population when in contact with a

ferromagnet produces electrical current, thus allowing the electrical detection of spins.

A second method is to use optical methods where spin polarized electrons recombine

with the unpolarized holes to emit circularly polarized light. The spins can also be

detected by using the spin-valve effect [17]. In the spin-valve effect, the injected spins

from the ferromagnet electrode into the non-magnetic material can be detected by

using a second ferromagnet. Here, the relative orientation of magnetization of the

injector and detector ferromagnetic electrodes is important for the reliable detection
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of the diffusing spins.

2.3.2.1 Detection of spins by spin-valve effect:

A simple spin-valve geometry consists of two ferromagnetic electrodes in contact with

a non-magnetic material (see figure 2.2(a)). Initially the magnetizations of both

the ferromagnetic electrodes are aligned parallel to each other. When an electric

current is passed through the ferromagnet, spins are injected into the non-magnetic

material which diffuse following the decay equation (2.2.11) for spins towards the

second ferromagnet. Now a parallel magnetic field is swept across the sample such

that the magnetization of one of the ferromagnetic electrodes switches direction. To

make sure that only one of the electrodes switches the magnetization first, we design

the electrodes with different widths so that the switching fields are different, since

Bc ∝ 1/w, where Bc is the switching field and w is the width of the electrodes. For

simplicity, let us assume the magnetization of the detector electrode has switched to

the opposite direction. Now the diffusing spin reaching the detector electrode will see

a higher resistance due to the magnetization switching resulting in a change in the

chemical potential of the second ferromagnetic electrode. This change in the chemical

potential will be measured change in resistance which will be proportional to the spin

accumulation underneath the ferromagnetic electrode. This method, thus, gives a

direct measure of the spin accumulation in the non-magnetic medium. However, in

the two terminal spin-valve measurements since the charge current and spin current

flow in the same direction, sometimes the spin signal gets overshadowed by spurious

effects like the Hall effects, anisotropic magnetoresistance [18], interference effects [19]

and magneto-coulomb effects [20, 21]. These effects could also mimic the spin signal

and it becomes difficult to separate the spin accumulation signal from the spurious

signals.
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Figure 2.2: Measurement schematics for (a) a two terminal spin-valve device and
(b) a four terminal non-local spin-valve device. The current and voltage probes are
marked in the schematics.

2.3.3 Four terminal non-local spin-valve geometry

In order to separate any contribution from the charge current flow to the measured

spin signal, Jedema et al. [22], introduced the four terminal non-local spin-valve ge-

ometry. In the non-local spin-valve geometry the charge current path is separated

from the spin current path, thus enabling the detection of pure spin currents. Figure

2.2(b) shows a typical non-local spin-valve device with the measurement configura-

tion. Here, among the four electrodes at least the two centre electrodes should be

ferromagnetic with different widths so that the switching fields for these electrodes

are different. The spin-valve devices presented in this thesis, however, have all the

four electrodes as ferromagnets but with different widths. As shown in the figure

2.2(b), the charge current is passed between the first two ferromagnetic electrodes

while the non-local signal is measured across the third and fourth electrodes marked

with symbol V. A typical non-local signal measured for a graphene based non-local

spin-valve is shown in figure 2.3

However, this simple non-local geometry works only when the contact resistance(Rc)

of the ferromagnet-non-magnetic material (F/N) interface is much less than the resis-

tance of the non-magnetic medium (RN) and that of the ferromagnet (RF ) and both
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Figure 2.3: A typical non-local signal measured for a graphene based spin-valve.

the non-magnetic medium and the ferromagnet have comparable resistances.i.e.

Rc<<RN , RF (2.3.6)

and

RN ≈ RF (2.3.7)

For this condition, the spin injection efficiency Pj given by

Pj =
RF

RN +RF

PσF ≈ PσF (2.3.8)

is high and comparable to the bulk polarization of the ferromagnet.
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2.3.4 Conductivity mismatch and tunnel barriers

In the previous section, we saw that for the effective spin injection and detection

in the spin-valve geometry depends on two important factors: (1) the relative mag-

nitude of the interface resistance to that of the resistance of the ferromagnet and

the non-magnetic medium and (2) on the relative magnitude of the ferromagnet and

non-magnet resistance (conductance). In general, the conductance/conductivity of

the ferromagnet and the non-magnetic medium for the spin transport might not be

comparable [23,24] and this necessitates alternate methods for effective spin injection.

Here, the introduction of a thin layer of an insulating material (I) between the ferro-

magnet (F) and the non-magnetic medium (N) is found to increase the magnitude of

the measured spin-signal due to the following reasons [25].

(1) The tunnel barrier (I) provides high spin dependent resistance at the F/N in-

terface and enhances the spin polarization of the injected tunneling current into the

non-magnetic medium by overcoming the conductivity mismatch between the ferro-

magnet and the non-magnetic medium.

(2) The high spin dependent resistance of the tunnel barrier also prevents the back

flow of the injected spins into the ferromagnet and allows the spins to diffuse in the

non-magnetic medium. Thus the spin detection through the tunnel barrier is ideal

since the measured voltage will predominantly be due to the spin accumulation in

the non-magnetic medium and not due to the spin relaxation in the ferromagnetic

detector. Thus the spin transport measurement using the F/I/N/I/F configuration

for injection and detection probes the spin relaxation happening due to the spin

scattering process in the non-magnetic medium.
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2.3.4.1 F/I/N/I/F spin-valve

Consider an infinite non-magnetic metal strip (N) to which a ferromagnet (F) is

contacted via a tunnel barrier (I). Let this position be denoted by x = 0. The non-

equilibrium density of up and down spins injected from the ferromagnet to the non-

magnetic medium decays exponentially as it diffuses along the strip and at x → ±∞

the total spin imbalance in the non-magnetic medium is fully neutralized due to the

spin flip scattering in the medium. Let τs,↑,↓ be the average time for an up spin to

flip to a down spin and τs,↓,↑ the average time for a down spin to flip to an up spin.

If n↑ and n↓ represents the density of the up and down spins in the non-magnetic

medium, then the requirement that the total number of particles (n) in the system is

conserved leads to the condition

1

e
∇j↑ = − n↑

τs,↑,↓
+

n↓

τs,↓,↑
(2.3.9)

and
1

e
∇j↓ =

n↑

τs,↑,↓
− n↓

τs,↓,↑
(2.3.10)

At steady state when there is no net spin scattering, the relation (2.3.9) and (2.3.10)

gives

N↑

τs,↑,↓
=

N↓

τs,↓,↑
(2.3.11)

From equations (2.3.1), (2.3.9), and (2.3.10), the spin diffusion equations can be

derived

D
∂2(µ↑ − µ↓)

∂x2
=

(µ↑ − µ↓)

τs
(2.3.12)
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where µ↑,↓ is the chemical potential for up and down spins, D=D↑D↓(N↑+N↓)/(N↑D↑+N↓D↓)

is the spin averaged diffusion coefficient and 1/τs = 1/τs,↑,↓+1/τs,↓,↑ is the spin relax-

ation time. The solution to the above spin diffusion equation is given by

µ↑(x) = µ0exp(−x/λs) (2.3.13)

µ↓(x) = −µ0exp(−x/λs) (2.3.14)

The boundary conditions, for the F/I/N/I/F system with zero spin flip scattering at

the interface are

(1) continuity of µ↑, µ↓ at the interface and

(2) conservation of the spin-up (j↑) and spin-down (j↓) currents at the interface.

Based on the above boundary condition, the equations (2.3.13) and (2.3.14) can be

solved for µ0 employing a simple resistor model for the F/I/N/I/F system [1] as

shown in the figure 2.4. From the F/I/N circuit, the spin accumulation at the injector

position x=0

I↑R
I
↑ − I↓R

I
↓ =

2µ0

e
(2.3.15)

where we assume that the magnitude of the chemical potential for the up and down

spin in the ferromagnet F to be µ0 but of opposite sign. Here,

I↑ =
−I
2

− µ0

eRN

(2.3.16)

and

I↓ =
−I
2

+
µ0

eRN

(2.3.17)
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Figure 2.4: Schematics of F/I/N/I/F non-local spin-valve structure. The top left
inset shows the resistor model for F/I/N spin injector and the top right inset shows
the resistor model for the voltage probe.

From equation (2.3.13) and (2.3.14), we get the spin accumulation at x =0 as

µ↑ − µ↓ = 2µ0 (2.3.18)

Equating the relations (2.3.15) with (2.3.18), we can estimate the value for the spin

accumulation at x = 0 which turns out to be

µ↑ − µ↓ = 2µ0 =
IeRNP

1 + 2RN/(RI
↑ +RI

↓)
(2.3.19)

where P =
RI

↓−RI
↑

RI
↑+RI

↓
is the polarization of the current in the non-magnetic material. In

general, if the tunnel resistance (RI
↑ + RI

↓) is much larger than the resistance of the

non-magnetic medium, then at x=0
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µ0 =
IeRNP

2
=
IeλsP

2AσN
(2.3.20)

where λs is the spin relaxation length in N, A is the active area of N and σN is the

conductivity of N. Now the injected spins in the non-magnetic medium (N) decays as

it diffuses through N and is detected by a second ferromagnet. The signal measured

across the detector electrode can be calculated as follows. Since the detector electrode

probes the voltage (potential), there is no net current flow into the ferromagnetic

probe and the potential at the ferromagnet is a weighted average of the µ↑ and µ↓ in

N.

i.e.

µF =
P (µ↑ − µ↓)

2
(2.3.21)

and the measured non-local signal at a distance x = L is given by

RN(L) =
V

I
=

(µF − µN)

eI

= ±P (µ↑ − µ↓)− 0

eI

= ± P 2λs
2AσN

exp(
−L
λs

)

(2.3.22)

i.e. the measured non-local signal decays exponentially as a function of the distance

L between the injector and detector electrodes [26, 27]. Thus, the relevant spin pa-

rameters like the spin relaxation length and the spin polarization can be determined

experimentally by studying the length dependence of the non-local signal.
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Figure 2.5: Schematics of the spin precession measurement in non-local geometry
when both the injector and detector ferromagnets have (a) parallel magnetization and
(b) anti-parallel magnetization with the external magnetic field applied perpendicular
to the initial direction of the spin.

2.4 Electron spin precession in an external mag-

netic field

An alternate and unambiguous method to confirm the spin signal in a non-magnetic

medium N is to study the precession of the diffusing spins in an external magnetic

field applied perpendicular (B⊥) to the initial spin direction [28]. The B⊥ field will

exert a torque on the spins because of which the spin angular momentum vector S

precess (Larmor precession) about the applied field. The torque T is given by

T = −µBB⊥sinθ (2.4.1)

and the precession frequency, Larmor frequency is given by

ωL =
−gµBB⊥

~
(2.4.2)

where g is the g-factor for electrons, µB is the Bohr magneton and gµB/2 is the spin

magnetic moment associated with the spin angular momentum S (S= 1/2) and ~ is
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Figure 2.6: Modulation of the spin signal in an external magnetic field due to spin
precession in the ballistic transport regime. The red and blue curve represents the spin
signal modulation for the relative parallel and anti-parallel magnetization between the
injector and detector electrodes.

the reduced Planck’s constant.

2.4.1 Spin precession in ballistic transport regime

When a perpendicular field is applied to the initial direction of the spin the mea-

sured spin signal will be modulated due to the precession of the spin. The external

magnetic field, B⊥, changes the initial direction of the spin by an angle ϕ =ωLt =

−gµBB⊥
~ t (here t is the time of flight of electrons from injector to detector) and the

detector electrode detects by projecting this modified spin direction on its magne-

tization direction, i.e. the detector electrode sees the parallel component (cosϕ) of

the spins on its magnetization direction. In the ballistic transport regime, assuming

no back-scattering of electrons at the interface, the measured output signal will be a

perfect modulation of the cosine function (cosϕ) as shown in figure 2.6
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2.4.2 Spin precession in diffusive transport regime

In the diffusive transport scenario, the time of flight t for the spins to reach the

detector from the injector is not unique, i.e. the diffusing electrons can take different

paths to reach the detector electrode. Such a spread in the diffusion time implies a

spread in the precession angle ϕ =ωLt. The probability that the electrons injected

at x = 0 is present at x = L without spinflip at time t is given by the distribution

(ρ(x, t)) [1, 4]

ρ(L, t) =
√
1/4πDt e(−L2/4Dt) (2.4.3)

where ρ(L, t) is proportional to the number of electrons per unit volume that will be

present at the detector electrode after a diffusion time t.

Due to the distribution of the electron transit time in diffusive transport the spin

precession angle for the electrons is also different. When this difference becomes

comparable to the Larmor period the average spin reaching the detector electrode

will be zero and the spin signal vanishes. In addition to the decay of the spin signal

due to the distribution of the spin diffusion time, the spin flip process should also

be considered. The probability that the electron spin has not flipped within a time

period t is given by exp(-t/τs) and hence the total probability for finding the spin at

a distance x = L after a time t is

ρ(L, t)e(−t/τs) =
√

1/4πDt e(−L2/4Dt) e(−t/τs) (2.4.4)

Now to calculate the measured voltage across the detector electrodes we first deter-

mine the number of spin-polarized electrons (n↑-n↓) arriving at the detector. This

can be estimated by the summation of all injected spins arriving at the detector.

n↑ − n↓ =
IP

eA

∞∫
0

ρ(t)cos(ωLt)e
(−t/τs)dt (2.4.5)
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Figure 2.7: Modulation of the spin signal in an external magnetic field due to spin
precession in the diffusive transport regime for graphene spin-valves. The red curve
represents the fit to the data points.

where IP/e is the injection rate and cos(ωLt) is the precession around the perpen-

dicular axis. Since µ↑-µ↓ = 2
N(EF )

(n↑-n↓) and V, the measured voltage is P(µ↑-µ↓)/e,

the output voltage for the parallel and anti-parallel configuration of the injector and

detector electrodes becomes

V (B⊥) = ± IP 2

e2N(EF )A

∞∫
0

ρ(t)cos(ωLt)e
(−t/τs)dt (2.4.6)

From equation (2.4.6) it is clear that the spin precession signal has both the oscillatory

and decay component which dampens the oscillation. Hence, to see the sign reversal

of the spin signal in a precession measurement, the spread in the precession angle

should be much smaller than π, while the average precession angle is much larger

than π. A typical spin precession signal for a graphene based non-local spin-valve

device is shown in figure 2.7
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2.5 Spin relaxation mechanisms

The diffusion of spins in a non-magnetic medium is always accompanied by spin flip

scattering processes. The process of spin scattering results in the damping of the

spin signal as it travels along the non-magnetic medium and hence it is important to

understand the fundamental reasons behind such scattering events. There are four

main scattering mechanisms identified that could cause spin flip/dephasing in a non-

magnetic medium. They are Elliott-Yafet, D’yakonov-Perel, Bir-Aronov-Pikus and

hyperfine interactions [3, 4].

2.5.1 Elliott-Yafet spin scattering

Figure 2.8: Schematics for Elliott-Yafet spin scattering. Here, the momentum scat-
tering by impurities or phonons has a finite probability to flip the electron spin.

In the Elliott-Yafet (EY) mechanism [29, 30] the spin relaxation occurs as a con-

sequence of the momentum scattering of the conduction electrons with phonons or

impurities. Due to spin-orbit coupling the eigenstates of the electron wavefunctions

are a mixture of both spin up and spin down states.

The probability for the electron’s spin to flip increases with each momentum scatter-

ing and thus the faster the momentum scattering the faster the relaxation of spins.

i.e. in the EY mechanism the spin relaxation rate is proportional to the momentum

relaxation rate
1

τs
∝ 1

τp
(2.5.1)
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The EY mechanism is found to be more dominant in semiconductors with a centre of

symmetry such as silicon.

2.5.2 D’yakonov-Perel spin scattering

Figure 2.9: Schematics for D’yakonov-Perel spin scattering. Here, the electron spin
precess about the momentum dependent magnetic field.

The D’yakonov-Perel scattering [31] is found to be dominant in semiconductors with-

out a centre of symmetry, for e.g. semiconductors with zinc blende structure such as

GaAs, where the inversion symmetry is broken by the presence of two distinct atoms

in the Bravis lattice. The lack of inversion symmetry makes the momentum states

of spin-up and spin-down electrons to be non-degenerate. Such spin splitting due to

inversion asymmetry manifests itself as a momentum dependent magnetic field (B(k))

about which the electron spins precess with a Larmor frequency, Ω(k) = (e/m)B(k).

This intrinsic magnetic field is as a result of the spin-orbit coupling in the material.

When a moving electron gets scattered by impurities or phonons, the momentum

dependent magnetic field experienced by the electron also changes both in magnitude

and direction, i.e. the electron spins precession axis and direction changes and the

spin relaxation happens between the momentum scattering events. The more the

momentum scattering events, the less the spin relaxation

τs ∝
1

τp
(2.5.2)
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2.5.3 Bir-Aronov-Pikus spin scattering

Figure 2.10: Schematics for Bir-Aronov-Pikus spin scattering.Here, the electron ex-
changes spin with holes of opposite spin, which then undergoes spin relaxation via
Elliott-Yafet scattering.

In heavy p-doped semiconductors the spin relaxation can occur by scattering followed

by a spin exchange between electrons and holes [32]. The exchange interaction given

by the Hamiltonian

H = AS.Jδ(r) (2.5.3)

where A is the exchange integral between conduction and valence bands, J is the

angular momentum operator, S is the spin operator and r is the relative position of

electrons and holes. An electron with up spin will exchange its spin with down spin

hole. Since the holes in semiconductors relax their spin fast due to the high spin-orbit

coupling and thus acts as a reservoir for the electrons to lose their spins. In general,

the Bir-Aronov-Pikus (BAP) mechanism coexists with EY and DP mechanism. How-

ever, the three mechanisms can be identified based on their density and temperature

dependences. BAP mechanism dominates in heavy p-doped semiconductors at low

temperatures while at high temperatures the DP mechanism dominates due to its

increased importance at large electron densities.
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2.5.4 Spin scattering due to hyperfine interaction

The hyperfine interaction is the magnetic interaction between electron spins and nuclei

spin. In general this interaction is dominant for spin decoherance of localized electrons

in quantum dots [3, 4]. This interaction is weak in metals and semiconductors.

2.6 Spin-orbit coupling

Spin-orbit coupling (SOC) refers to the interaction between an electron’s linear mo-

mentum with its spin angular momentum [33]. Such a coupling between the electron’s

momentum and its spin state is quite important since it will allow the manipulation

of the electron spin without the need for an external magnetic field and the strength

of the SOC will also determine the spin relaxation in the material. These two factors

are essential for the manifestation of spin Hall effect, which occurs due to the spin

dependent scattering induced by the enhanced SOC in the material. Since, the focus

of the second half of this thesis will be on the enhancement of the SOC in graphene

by functionalization and the manifestation of the spin Hall effect in such functional-

ized graphene, a basic idea on the evolution of the SOC in individual atoms (taking

hydrogen as an example) as well as in solids will be discussed.

2.6.1 Spin-orbit coupling: atomic picture

In an atom the electrons orbit around the nucleus and the system can be represented

by a Hamiltonian (H) consisting of a kinetic energy (K.E) part due to the electron’s

momentum and a potential energy(P.E) part due to the Coulomb interaction between

the electrons and the nucleus [33, 34]. i.e.
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H = K.E + P.E =
p2

2m∗ − eϕ(r) =
−~2

2m∗∇
2 − Ze2

r
(2.6.1)

where p is the momentum operator given by −~2
2m∗ ∇2 and ϕ(r) is the Coulomb potential

experienced due to the positive nucleus and is given by Ze
r
.Here, m* is the rest mass

of electron, e is the charge of electron and Z is the atomic number. For simplicity,

let us consider the case of hydrogen atom with Z = 1. In the rest frame of electron,

the electron orbiting the nucleus transforms to a system where the electron sees the

nucleus orbiting around it with a velocity vp =−p/2m∗. This motion of the nucleus

produces a magnetic field

BSO =
1

c
vp × E(r) (2.6.2)

Since E(r)= (-1/e)∇V(r) and ∇V(r) = e2r/r3, the equation (2.6.2) can be rewritten

as

BSO =
−1

2m∗ec
p×∇V(r) =

−e
2m∗c

p× r

r3
(2.6.3)

This magnetic field interacts with the spin of the electron via the Zeeman interaction

HSO = −µs.BSO =
e

2m∗c
µs.

p× r

r3
(2.6.4)

Here, µs is the magnetic moment of the electron spin in vacuum and is given by

µs = −gµBS

~
(2.6.5)

where g is the electron g-factor = 2, µB is the Bohr magneton = e~
2m∗c

, S is the spin

angular momentum and r× p = L is the orbital angular momentum.
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Substituting the values for µs and p× r, we get

HSO =
gµ2

B

~2
S.L

r3
(2.6.6)

The equation (2.6.6) thus represents the coupling of electron’s spin and its orbital

angular momentum about the nucleus in vacuum and is known as the spin-orbit

coupling. The above equation can also be written in a more generalized form by

using equations (2.6.2), (2.6.3) and (2.6.4) as

HSO =
gµ2

B

~2
S.L

r3

= − g

~2
e2~2

4m∗2c2
S.p× r

r3

= − ge2

4m∗2c2
S.p×∇V(r)

e2

= − g~
4m∗2c2

S.k×∇V(r)

= − g~2

8m∗2c2
σ.k×∇V(r)

= λSO σ.(k×∇V(r))

(2.6.7)

where λSO is the spin-orbit coupling strength in vacuum, λSO = -3.7×10−6 Å2,σ is

the Pauli spin matrices, and k = p/~ is the electron wave vector.

2.6.1.1 Dependence of SOC strength on the atomic number

In the previous section we calculated the spin-orbit coupling for atomic hydrogen.

Now, it will be interesting to see how this SOC strength depends on the atomic

number Z. It should be noted that since the Coulomb potential is proportional to Z,

it is evident that the SO strength should be proportional to Z. Moreover, the average

value for the factor (1/r3) in equation (2.6.4) also depends on Z as
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<
1

r3
>=

∫
Ψ∗ 1

r3
Ψr2drdΩ ∝ Z3 (2.6.8)

for an atomic wavefunction Ψ . Hence, the total spin-orbit coupling strength will

depend on the atomic number as Z4 [35].

2.6.2 Spin-orbit coupling in solids

The spin-orbit coupling in a material without any magnetic impurities can be derived

as follows [34]. If VSO represents the spin-orbit potential and Vr represents the normal

impurity potential, then the total potential Vtot = VSO+ Vr creates an electric field

E(r) given by E(r) = -(1/e)∇Vtot(r). When a free conduction electron moving with a

velocity v = (~/i)∇/m∗, encounters this field, it experiences an effective magnetic field

given by Beff (r)=-(1/m∗c)p× E(r), which in turn introduces a spin-orbit coupling

given by

HSO(r) ∝ σ.Beff (r) (2.6.9)

Here, the effective magnetic field Beff includes contributions from the materials’

band structure and also from impurities present in the system. Thus, we can say that

the Beff could be determined by two different physical mechanisms. The intrinsic

mechanism, which is due to the spin-related band structure of the material, and the

extrinsic mechanism which is due to the impurities present in the system.
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2.6.3 Spin dependent scattering due to spin-orbit coupling

2.6.3.1 Intrinsic spin-orbit coupling: Dresselhaus and Rashba spin-orbit

interaction

The contribution of the intrinsic effect to spin-orbit coupling (SOC) was first proposed

by Karplus and Luttinger in 1954 to explain the observed anomalous Hall effect (AHE)

in ferromagnets [36]. This effect is related to the spin-dependent band structure of

the materials and is prominent in systems without inversion symmetry. In general,

there are two important types of inversion asymmetry (1) the Dresselhaus inversion

asymmetry - due to the bulk inversion asymmetry, and (2) the Rashba inversion

asymmetry - due to the structural inversion asymmetry.

The Hamiltonian for the linear Dresselhaus and Rashba coupling in a 2D system can

be written as [37]

HD =
~2k2

2m
+ β(kxσx − kyσy) (2.6.10)

and

HR =
~2k2

2m
+ α(kxσy − kyσx) (2.6.11)

It should be noted that for the Rashba coupling the effective magnetic field (Beff ) is

perpendicular to k while for the Dresselhaus term it has a more complicated depen-

dence. The intrinsic mechanism can be explained qualitatively as discussed below:

Consider a 2D system where the electrons’ spins are confined to the plane. Now

when an external electric field is applied along the x direction the Fermi surface gets

displaced in the x direction in k-space. This means that the k dependent intrinsic

magnetic field shifts to Beff (k) → Beff (k+∆k) which realigns the spins out of the

magnetic field direction. The field Beff (k+∆k) exerts a torque on the spins and
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aligns them back to the field direction. If we consider two electrons in the oppo-

site side of the Fermi surface (± ky), the field Beff (k+∆k) points in the opposite

direction enabling the creation of a z-polarized spin current in the y-direction.

2.6.3.2 Extrinsic spin-orbit coupling

In the extrinsic spin-orbit interaction, the spin-dependent scattering of electrons oc-

curs due to the presence of impurities or defects in the material. The extrinsic spin

scattering mechanism has been classified into two distinct types: (1) skew scattering

and (2) side-jump scattering mechanisms.

2.6.3.3 Skew scattering

Figure 2.11: The trajectory for the spin-up and spin-down electrons after skew
scattering. The angle δ represents the angle at which the electrons get deflected.

The first mathematical investigation on the scattering of an incoming wave of electrons

by nuclei was carried out by Nevil Mott in 1929 by a double scattering method
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[38]. Based on the spin-orbit interaction term discovered by Dirac, Mott showed that

for an incoming beam of electrons with spin polarization P, the detectors placed at

opposite sides of the beam measured different scattering densities. This asymmetrical

scattering of electrons thus provided an unambiguous evidence for the existence of the

free electron spin and is known as the skew scattering [38–40]. In a simple way the

skew scattering can be understood from the electron-impurity collisions. An electron

passing through an impurity potential V(r) with a velocity v experiences an electric

field E(r) =∇V(r). In the rest frame of the electron, the moving charge induces an

effective magnetic field Beff = -v×E
c2

. This spin-orbit-induced magnetic field exerts a

spin-dependent force proportional to the gradient of the Zeeman energy,

F = 2µB∇(S.B) (2.6.12)

such that the force at one end of the dipole will be slightly greater than the opposing

force at the other end of the dipole. This leads to a spin current along the orthogonal

direction. Here, the rate of spin separation is proportional to the rate of collision

between the electrons and the impurities. That is, the skew scattering resistivity

is linearly proportional to the Drude resistivity, ρSS ∝ ρxx. Figure 2.11 shows the

schematics for the skew scattering which is characterized by an angle δ; the angle

at which the electrons get deflected from their initial path due to spin dependent

scattering. However, the skew scattering will not lead to a charge separation in the

orthogonal direction due to the equal population of spin-up and spin-down electrons

in a non-magnetic material. This spin accumulation at the sample edges gives rise to

the spin Hall effect (SHE).

2.6.3.4 Side-jump

A different scattering of spins due to spin-orbit coupling, called the side-jump spin

scattering, was proposed by Berger in 1970 [41]. The origin of the side-jump scattering
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can be traced back to the anomalous velocity operator in systems with spin-orbit

interaction, and is defined as the sideways displacement of the center of mass of an

electron wave packet due to collisions with the impurity potential [42]. A schematic

showing the side-jump scattering is shown in figure 2.12. In a system with spin-orbit

potential, the total impurity potential is given by Vtot = VSO+ Vr. The one-electron

Hamiltonian for this system is then [34]

H =
∑
k,σ

ξka
†
kσakσ +

∑
k,k′

∑
σ,σ′

V σ,σ′

tot,k,k′a
†
k′σ′akσ (2.6.13)

In equation (2.5.13), the first term represents the kinetic energy of the electrons with

Figure 2.12: The trajectory for the spin-up and spin-down electrons after side-
jump scattering. The vector δ⃗ represents the opposite sideways displacement of the
electrons with up and down spins.

energy ξk and the second term represents the total impurity potential for the localized

impurities and can be rewritten in the form

V σ,σ′

totk,k′ = Vimp[δσ′σ + iλeffSO σσ′σ.(k× k′)]
∑
i

ei(k−k′).ri (2.6.14)

The velocity of the electron in this impurity potential can be calculated from the

velocity operator v= dr/dt=(1/i~)[r,H(k)]. In the momentum space the operator for
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r= i∇k. Now the velocity can be estimated by taking the matrix elements between

the scattering states
∣∣k†σ

⟩

vσ
k =

⟨
k†σ

∣∣ v̂ ∣∣k†σ
⟩
=

~k
m∗ + ωσ

k (2.6.15)

where the second term ωσ
k represents the anomalous velocity due to the spin-orbit

term and is

ωσ
k =

λeffSO

~
∑
i

⟨
k†σ

∣∣σ ×∇V (r− ri)
∣∣k†σ

⟩
(2.6.16)

The side jump displacement can be determined by integrating the equation (2.6.14).

Here, it is important to note that the electron displacement is along the direction

given by σ × ∇V (r− ri) and is evident that the direction of the scattering is spin

dependent. Moreover, the side jump resistivity scales quadratically with the Drude

resistivity ρSJ ∝ ρ2xx.

The difference in the resistivity dependence of the skew scattering and side jump

mechanism can be used to differentiate the dominant mechanism in a material. For

instance the skew scattering mechanism dominates when ρxx is small and also at

low temperatures and at low impurity concentration, while the side jump mechanism

dominates when ρxx is large and at high temperatures and at higher impurity con-

centrations. However, in an experiment both contributions may be present and the

measured dependence of the transverse resistivity would be a linear combination of

both the contributions i.e.

ρxy = Aρxx +Bρ2xx (2.6.17)

where A and B are constants.

41



2.7 Spin Hall Effect

In the above section, we found that the spin-orbit interaction in solids can introduce

spin-dependent scattering of electrons. There are two important physical phenomena

arising due to the spin-orbit interaction in solids; (1) the anomalous Hall effect (AHE)

in ferromagnetic materials [43,44] and (2) the spin Hall effect (SHE) in paramagnetic

materials [45, 46]. Both these effects could originate either from the extrinsic skew

scattering and side-jump mechanisms or the intrinsic mechanism due to the band-

structure contribution. Since in this thesis the aim is to study the spin Hall effect

in functionalized graphene, the focus of this section will be the SHE in paramagnetic

materials.

Figure 2.13: The trajectory for the spin-up and spin-down electrons due to spin Hall
effect. The longitudinal charge current induces transverse spin accumulation

In paramagnetic materials when an unpolarized charge current is introduced by the

application of an electric field, the spin-orbit interaction induces a spin Hall current

and causes spin accumulation in the paramagnetic material in a direction perpendic-

ular to the charge current (see figure 2.13).
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2.7.1 Generation and detection of spin currents via SHE

Theoretically the possibility of orienting the spins with charge current (SHE) was first

proposed by M. I. D’yakonov and V. I. Perel 1971 [45] and later independently by

Hirsch in 1999 [46]. The first experimental detection of SHE was reported in 2004 in

n-doped GaAs and InGaAs thin films by Kato et al. in both strained and unstrained

thin films [47]. Here, the detection of the spin accumulation at the sample edges

was performed by optical Kerr rotation spectroscopy and the experiments clearly

demonstrated that the spin Hall effect observed in the strained samples depended

weakly on the crystal direction and suggested the importance of extrinsic mechanism

for the observed SHE. Soon after the first experimental demonstration, SHE was

also demonstrated in p-doped GaAs using an electroluminescence method, where

the orientation of the circularly polarized light reversed at the opposite edges of

the sample indicating the presence of opposite spins at the sample edges [48]. The

observed phenomenon was claimed to be intrinsic since the effect only depends weakly

on the disorder in the system. Recently, SHE in n-doped GaAs [49], n-type ZnSe [50]

semiconductors has been realized.

2.7.2 Electrical detection of spin currents

For the detection of SHE in a metallic system, the optical methods employed for

semiconductors are not ideal. This is because in metallic systems the spin relaxation

length is much smaller when compared to semiconductors. This means that the spin

accumulation lies within the spin relaxation length scale and hence the large optical

beams with spot sizes in the order of micrometers are unable to resolve the spin

separation. The solution is to employ the inverse spin Hall effect, where the spin

current induces a orthogonal charge current which can be measured as a Hall voltage.
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The various methods employed to introduce spin currents in metals are

(1)Ferromagnetic resonance induced spin− pumping : In ferromagnetic resonance-

based spin-pumping experiments the interfacial spins are pumped into the non-magnetic

medium due to the precession of the ferromagnet’s magnetization by the application

of a microwave stimuli frequency matching the ferromagnetic resonance of the sys-

tem [51,52]. In ferromagnetic resonance experiments, the transfer of the spin angular

momentum from the ferromagnet to the non-magnetic metal, a spin current is gen-

erated in the metal. The large spin-orbit coupling in the metal allows the conversion

of the injected spin current into an electrical voltage by inverse spin Hall effect. This

method has successfully been used to induce spin transport in metals like Au, Mo,

Nb, Pd, Pt, PtCu, PtAu [51, 53–60] and recently in semiconductors like GaAs [61]

and p-type Si [62].

(2)Spin injection via ferromagnet : Similar to the spin-valve devices, the injection

of spin-polarized current to the non-magnetic metal is achieved by using a ferromag-

netic electrode connected to the metal non-locally (see figure 2.14) . The spin polar-

M 

I 
V 

Figure 2.14: Schematics showing the measurement configuration for the detection of
the spin accumulation by non-local inverse spin Hall effect. Here the spin is injected
into the normal metal using a ferromagnet with magnetization M.
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ized current from the ferromagnet diffuses into the non-magnetic metal and results in

the generation of the electrical voltage due to the inverse spin Hall effect. This experi-

ment was first demonstrated in Aluminum by Valenzuela and Tinkham [16,63,65–69].

(3)Non− local H − bar geometry : In the non-local H-bar geometry, the spin current

is generated by the spin Hall effect and the detection of the diffusing spins in the

material is done by invoking the inverse spin Hall effect (see figure 2.15) [70–72]. These

V 

I 

Figure 2.15: Schematics showing the measurement configuration for the injection
and detection of the spin accumulation by non-local H-bar geometry. Here the spin
separation is generated in the normal metal by spin Hall effect while the detection is
realized by the inverse spin Hall effect.

experiments have successfully been performed by the group of Molenkamp in HgTe

quantum wells where the helical nature of the spin polarized counter-propagating

edge channels was demonstrated for the first time experimentally [73,74].
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2.7.3 Non-local spin detection in the diffusive regime using

H-bar geometry

Consider an infinite narrow strip i.e. -∞< x <+∞ and -w/2< y <+w/2, where w is

the width of the sample. In such a system, the spin accumulation generated by the

spin Hall effect evolves according to the diffusion equation [71]

Ds∂
2s(x, y)− Ξ(x, y)− s(x, y)

τs
= 0 (2.7.1)

where s is the z-component of the spin density, Ds is the spin diffusion coefficient, τs

is the spin relaxation length, and Ξ represents the spin current due to the spin Hall

effect and is given by

Ξ(x, y) = σsδ

(
y − 1

2
w

)
Ex,+(x)− σsδ

(
y +

1

2
w

)
Ex,−(x), (2.7.2)

where σs is the spin Hall conductivity and Ex,± (x) is the electric filed at the bound-

aries of the sample. The above equations can be solved by the inverse Fourier trans-

form method to get the net spin current in the system

Js(x) =
Iσsw

2σλs
e−|x|/λs . (2.7.3)

The spin current Js(x) induces a non-local voltage across the detector electrodes by

the inverse spin Hall effect and is given by

δV (x) =
γJs(x)

σ
=
Iγσsw

2λsσ2
e−|x|/λs (2.7.4)

Here γ is the charge current generated due to the spin current (spin Hall coefficient)

and is related to the spin conductivity σs and charge conductivity σ by the relation
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γ =
σs
σ

(2.7.5)

Substituting the relation for γ into equation (2.7.4) allows us to write the non-local

response as a transresistance

RNL =
δV (x)

I
=

1

2
γ2

w

σλs
e−|x|/λs (2.7.6)

From equation (2.7.6) it is clear that the dependence of the non-local signal on the

device parameters like length and width can be used to extract the spin parameters:

spin relaxation length λs and the spin Hall coefficient γ. Here the measured non-local

signal decays exponentially with length for a constant width while it increases linearly

with width for a constant length.

2.7.4 Magnetic field dependence of the non-local signal

In the presence of an in-plane magnetic field the spin diffusion equation (2.7.1) is

modified to [71]

Ds∂
2s(x, y)− Ξ(x, y)− s(x, y)

τs
+ [ωB × s] = 0 (2.7.7)

where ωB is the Larmor precession frequency. The solution to the above relation gives

the net spin current in the channel to be

Js(x) =
Iσsw

2σ
Re

[√
1 + iωBτs/λse

−
√
1+iωBτs|x|/λs

]
(2.7.8)

and the non-local transresistance to be

RNL =
δV (x)

I
=

1

2
γ2
w

σ
Re

[√
1 + iωBτs/λse

−
√
1+iωBτs|x|/λs

]
. (2.7.9)
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Figure 2.16: In-plane magnetic field dependence of the non-local spin Hall signal.
The damped oscillatory behaviour of the non-local signal is a clear signature for the
spin precession in the medium.

The equation (2.7.9) can be simplified for higher fields as

RNL =
1√
2
γ2
w

σ

√
ωBτs/2 Sin

(√
ωBτs|x|√
2λs

+
π

4

)
e−

√
ωBτs|x|/

√
2λs . (2.7.10)

From the simplified equation for the non-local signal it is clear that the in-plane

magnetic field modulates the non-local signal with multiple sign changes and damping.

The oscillatory behaviour of the non-local spin Hall signal thus gives the unambiguous
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confirmation for the measured transresistance to be of spin origin. Figure 2.16 shows

a typical magnetic field dependence of the non-local signal for a weakly hydrogenated

graphene sample.

2.8 Graphene

Graphene is the two dimensional array of carbon atoms arranged in a honeycomb lat-

tice [5,75–77]. Since graphene is only one atom thick, this material can be considered

as the perfect 2D material ever discovered. Graphene forms the basis for all other

carbon allotropes, and, hence, understanding the electronic properties of graphene is

crucial. Some of the interesting properties of this wonder material are:

1. Its low energy excitations are massless Dirac fermions and hence at low ener-

gies this system mimics the physics of quantum electrodynamics for massless

fermions.

2. The massless Dirac fermion nature of its charge carriers can be transmitted with

probability one across a classically forbidden region - known as Klein-paradox.

3. Under certain conditions these Dirac fermions are immune to localization effects.

4. Being only one atom thick, graphene is highly structurally and electronically

flexible allowing chemical and structural modifications, thus enabling the cre-

ation of graphene-based magnetic and superconducting systems.

5. Since carbon atoms have low atomic number, the spin-orbit coupling in graphene

is very weak and thus would allow spin transport over large distances of the order

of hundreds of micrometer even at room temperature.
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In the following section, a brief review on the electronic and spintronic properties of

graphene will be presented.

2.8.1 Electronic properties of graphene

a1 

a2 

Figure 2.17: Lattice structure of graphene with two interpenetrating triangular lat-
tices.

The honeycomb structure of graphene is made of a triangular lattice with a basis

of two atoms per unit cell, designated as A and B (see figure 2.17). The 2D lattice

vectors for this system in real space are given by [5, 77]

a1 =
a

2

(
3,
√
3
)

and a2 =
a

2

(
3,−

√
3
)

(2.8.1)

where a= 1.42Å is the nearest neighbour carbon-carbon distance. In the reciprocal

lattice space this leads to two inequivalent points, Dirac points, at the corners of the

Brillouin zone and they are given by

K =

(
2π

3a
,

2π

3
√
3a

)
and K′ =

(
2π

3a
,− 2π

3
√
3a

)
(2.8.2)

These Dirac points play a role similar to the Γ points in direct band gap semicon-

ductors like GaAs and play an important role in the electronic transport of graphene.

The electronic band dispersion of graphene was first calculated by Wallace in 1947

within the tight binding model.
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2.8.1.1 Band structure of graphene

Graphene has four valence electrons, out of which three form bonds with the three

neighbouring carbon atoms in the plane. These three electrons forming co-planar

bonds will not play any role in the conductivity while the fourth un-bonded electron

determines the conductivity of graphene [75]. The wave functions for the bonded

electrons in graphene can be written as

1√
3

(
ψc(2s) +

√
2ψc(σi2p)

)
(2.8.3)

where ψc(2s) is the 2s wavefunction of carbon and ψc(σi2p) are the 2p wave functions

of carbon which are in the direction σi joining the neighbouring carbon atoms in

the plane. The fourth unbonded electron in the 2pz state, which determines the

conductivity in graphene, is perpendicular to the plane of the lattice. Thus graphene

can be modelled as a system with one conduction electron in the 2pz state. If X(r)

is the normalized 2pz orbital wave function for an isolated carbon atom, in the tight

binding approximation, the wavefunction can be written as

Ψ = ϕ1 + λϕ2 (2.8.4)

where

ϕ1 =
∑
A

exp [2πik.rA]X(r − rA) (2.8.5)

and

ϕ2 =
∑
B

exp [2πik.rB]X(r − rB) (2.8.6)

Here, the first and second sums are over all the lattice points generated from A and B

respectively. In order to get the energy dispersion relation, the equations (2.8.5) and

(2.8.6) are substituted in the relation (2.8.4) and multiply by ϕ1 and ϕ2 respectively,

integrate and finally eliminate the λ from the resulting two equations.
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i.e.

⟨ϕ1|H |Ψ⟩ = ⟨ϕ1|H |ϕ1⟩+ λ ⟨ϕ1|H |ϕ2⟩

=

∫
ϕ∗
1Hϕ1dτ + λ

∫
ϕ∗
1Hϕ2dτ

= H11 + λH12

(2.8.7)

Similarly,

⟨ϕ2|H |Ψ⟩ = ⟨ϕ2|H |ϕ1⟩+ λ ⟨ϕ2|H |ϕ2⟩

=

∫
ϕ∗
2Hϕ1dτ + λ

∫
ϕ∗
2Hϕ2dτ

= H21 + λH22

(2.8.8)

Since HΨ = EΨ,we also have

⟨ϕ1|H |Ψ⟩ = E ⟨ϕ1|ϕ1⟩+ Eλ ⟨ϕ1|ϕ2⟩

= E

∫
ϕ∗
1ϕ1dτ + Eλ

∫
ϕ∗
1ϕ2dτ

= E

∫
ϕ∗
1ϕ1dτ ∵

∫
ϕ∗
1ϕ2dτ = 0

= EN

(2.8.9)

and
⟨ϕ2|H |Ψ⟩ = E ⟨ϕ2|ϕ1⟩+ Eλ ⟨ϕ2|ϕ2⟩

= E

∫
ϕ∗
2ϕ1dτ + Eλ

∫
ϕ∗
2ϕ2dτ

= Eλ

∫
ϕ∗
2ϕ2dτ ∵

∫
ϕ∗
2ϕ1dτ = 0

= EλN

(2.8.10)

where
∫
ϕ∗
1ϕ1 dτ =

∫
ϕ∗
2ϕ2 dτ = N is equal to the number of unit cells in the crystal

since there is no overlap of the pz wave functions centered at different atoms.
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Combining equations (2.8.7), (2.8.8), (2.8.9) and (2.8.10), we get two equations

H11 + λH12 = EN

H21 + λH22 = EλN
(2.8.11)

which can be rewritten as a secular equation

∣∣∣∣∣ H11 − EN H12

H21 H22 − EN

∣∣∣∣∣ = 0 and gives

E =
1

2N

[
H11 +H22 ± ((H11 −H22)

2 + 4|H12|2)
1
2

]
. (2.8.12)

By symmetry H11 = H22 and also defining H11
† = H22

†=H11

N
=H22

N
and H12

†=H12

N
, we

get

E = H†
11 ±

∣∣∣H†
12

∣∣∣ (2.8.13)

The relation for energy E can be calculated by evaluating H11
† and H12

†.

Now,

H†
11 =

1

N
H11

=
1

N

∑
A,A′

exp [−2πik.(rA − rA′)]

×
∫
X∗(r− rA)HX(r− rA′)dτ

(2.8.14)

Considering only the nearest neighbour interaction among intrasublattice atoms (A-A

or B-B), the above integral can be solved giving,

H†
11 = E0 − 2γ′0

(
cos(2πkya) + 2cos(

√
3πkxa)cos(πkya)

)
(2.8.15)

where E0 is the energy of an electron on the 2pz state in carbon and γ0
′ is the next-

nearest neighbour (intrasublattice A-A or B-B) hopping amplitude given by
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Figure 2.18: Energy-momentum dispersion relation for graphene.

γ′0 =

∫
X∗(r − ρ′)(U − V )X(r)dτ > 0 and ρ′ = AA = a1 (2.8.16)

Similarly, H12
† can be solved to get

H†
12 = −γ0

(
exp[−2πikx(a/

√
3)] + 2cos(πkya).exp[2πikx(a/2

√
3)]

)
|H12|2 = γ20

(
1 + 4cos2(πkya) + 4cos(πkya)cos(

√
3πkxa)

) (2.8.17)

The total energy E is

E±(k) = H†
11 ±

∣∣∣H†
12

∣∣∣
= E0 − 2γ′0

(
cos(2πkya) + 2cos(

√
3πkxa)cos(πkya)

)
+ γ0

√(
1 + 4cos2(πkya) + 4cos(πkya)cos(

√
3πkxa)

) (2.8.18)
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Since cos2(θ) =1+cos(2θ)
2

, the above equation can be simplified to

E±(k) = ±γ0
√

3 + f(k)− γ′0f(k)

where

f(k) = 2cos(2πkya) + 4cos(
√
3πkxa)cos(πkya)

(2.8.19)

Close to the Dirac point (k → K+ q, where q << K), the value of γ′0 << γ0 (0.02γ0

≤ γ′0≤ 0.2γ0 ) and hence the terms involving γ′0 can be neglected and the energy

dispersion becomes [5, 75,77]

|E±(q)− E0| = ±
√
3πγ0a|q| = ±~vF |q| (2.8.20)

i.e. graphene has a linear energy-momentum dispersion relation close to the Dirac

point. This linear relation implies that

1. The conduction and valence bands intersect at q =0 with no energy gap, i.e.

graphene behaves like a zero band-gap semiconductor with linear dispersion

relation.

2. The Fermi velocity vF calculated from the tight binding parameters vF = 3γ0a
2~

gives a value of 108 cm/s

3. The existence of two equivalent but distinct sub-lattices leads to the existence

of two linear branches of graphene dispersion relation indicating a pseudospin

quantum number analogous to electron spin, i.e. graphene has a pseudospin

index in addition to orbital and spin index. Thus the Schrodinger equation for

the graphene carriers near the Dirac point becomes

−i~vFσ.∇Ψ(r) = EΨ(r) (2.8.21)

where σ is the vector of Pauli matrices and Ψ(r) is the 2D spinor wavefunction

corresponding to the pseudospin symmetry intrinsic to graphene.
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4. The cyclotron mass defined as

m∗ =
1

2π

[
∂A(E)

∂E

]
(2.8.22)

depends on the carrier density n. Since A(E), the area in k-space, is given by

πq(E)2 = πE2

v2F
, the cyclotron mass for graphene is

m∗ =
~
√
π

vF

√
n. (2.8.23)

The
√
n dependence also implies that the charge carriers in graphene behave

like massless Dirac fermions.

5. The zero band-gap nature of graphene allows the simple tuning of the Fermi-

level with a gate voltage that not only allows the control of the carrier density

but also the continuous control of the nature of the charge carriers (hole or

electron). This enables the estimation of the charge carrier density from the

gate capacitance C as

n =
C

e
Vg = αVg (2.8.24)

For a SiO2 gate with 300 nm thickness, α = 7.2×1010/(cm2V).

2.8.2 Electronic properties of bilayer graphene

Bilayer graphene can be considered as an intermediate system between the single

layer graphene and bulk graphite. The system by itself is quite interesting because

the integer quantum Hall effect is different from that of single layer graphene and

also a gap can be opened in this system by the mere application of a perpendicular

electric field, which is not possible in single layer graphene. Although, there could be

different staking order for the bilayer graphene, the most common stacking order is

the AB stacking, similar to the one seen in bulk graphite.
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a b 

Figure 2.19: (a) Gate voltage tuning of the graphene’s Fermi energy and (b) the
same graph shown as a function of the charge carrier density n. The charge carrier
density is calculated using equation (2.8.24).

2.8.2.1 Band structure of bilayer graphene

Similar to the single layer graphene, the tight-binding model can be used to determine

the band structure of graphene [5, 77, 78]. Considering the AB stacking for bilayer

graphene, the low wavelength low energy electronic structure of bilayer graphene can

be described by the relation

E2
±(q) =

[
V 2 + ~2v2F q2 + γ2⊥ ± (4V 2~2v2F q2 + γ20~2v2F q2 + γ4⊥/4)

1/2
]

(2.8.25)

where γ⊥ is the effective interlayer hopping energy and γ0 and vF are the intra layer

hopping energy and Fermi velocity for the single layer graphene. For V <<γ0, equa-

tion 2.8.25, can be expanded as

E±(q) = ±[V − (2~2v2FV q2)/γ⊥ + v4F q
4/(2γ2⊥V )] (2.8.26)

From equation 2.8.26, it is clear that bilayer graphene has a gap at q2 ≈ (2V2/~2vF 2).

i.e. the gap in the bilayer system depends on the applied bias voltage and for V =
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Figure 2.20: The band structure of graphene (a) without bias field i.e. V = 0 and
(b) with bias field V ̸= 0. Here γ⊥ = 0.4 eV

0, the bilayer graphene is a gapless semiconductor with parabolic dispersion relation

for small q given by

E±(q) = ~2v2F q2/γ⊥ (2.8.27)

The possibility of a band gap opening in bilayer graphene with the application of a

bias voltage and the distinct parabolic band dispersion differentiates bilayer graphene

from the monolayer graphene. Since bilayer graphene has a parabolic band dispersion

similar to semiconductors, a comparison can be made between these systems.

2.8.2.2 Semiconductors and bilayer graphene: A comparison

The important differences between a 2D semiconductor and graphene are

1. 2D semiconductor systems have a large band gap (> 1eV) while bilayer graphene

is gapless at zero bias voltage with parabolic dispersion where the carriers change

from electrons to hole at the Dirac or charge neutrality point, which makes

graphene always metallic in nature.

2. Graphene systems, both single- and bi-layer systems, are chiral, while 2D semi-

conductors are non-chiral.
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3. Graphene systems are the ideal 2D systems while 2D semiconductors are quasi-

2D systems with average thickness of the order of ∼ 5 nm. A 2D semiconductor

loses its 2D nature at high carrier densities when higher sub bands are popu-

lated.

2.8.3 Graphene spintronics

Since graphene is made of carbon atoms, the intrinsic spin-orbit coupling, which has

power law dependence (∝ Z4), see section (2.5.1), is very weak. This implies that the

spin dependent scattering due to the SO interaction is very weak and hence the spin

diffusion/relaxation length should be comparatively large [79–83]. A second impor-

tant reason for graphene to have long spin relaxation length is the weak hyperfine

interactions. Only less than 1% of the carbon atoms consist of the C13 isotope of

carbon which has a nuclear spin, and, hence the effect of the nuclear spins on the

graphene spin transport is very weak.

Theoretically, spin relaxation length’s of the order of 100µm has been predicted in

graphene [82]. However, initial results in graphene spin transport showed spin re-

laxation length’s of the order of 1 µm, and this has been attributed to additional

spin dephasing due to factors like (1) the presence of adatoms like hydrogen, and (2)

contribution from the surface optical phonons of the underlying substrate [82,84–86].

Recent results have shown that utilizing an ultra flat substrate like boron nitride

would enhance the observed spin relaxation length to the order of 10µm [87, 88].

Most importantly, the group of Albert Fert has shown that the predicted 100µm spin

relaxation length could be reached by using ultra clean and high mobility epitaxial

graphene samples [89].
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2.8.3.1 Spin relaxation in graphene

Identifying the spin relaxation mechanism in graphene seems to be a herculean task.

The initial experimental evidence pointed to the importance of the EY spin scattering

mechanism in single layer graphene and multilayer graphene [90,91,94–96]. However,

later experiments on bilayer graphene, discussed in this thesis, showed a completely

unexpected result of DP spin scattering as the dominant spin dephasing mechanism

[92, 93]. Later theoretical models developed based on these results suggest that the

DP mechanism could be the dominant mechanism along with contributions from EY

and spin-orbit interactions from random Rashba fields [82, 102–104]. A complete

and thorough understanding of the relevant scattering mechanism in graphene is still

lacking. However, in general, the spin scattering rate can be written as a combination

of both EY and DP mechanisms as follows

1

τs
=

1

τEY
s

+
1

τDP
s

(2.8.28)

Here,
1

τEY
s

=
∆2

EY

ϵ2F

1

τp
(2.8.29)

and
1

τDP
s

=
4∆2

DP

~2
τp (2.8.30)

where 1
τEY
s

is the spin scattering rate for the EY mechanism, 1
τDP
s

is the spin scattering

rate for the DP mechanism, ∆EY and ∆DP are the spin-orbit coupling strength for

EY and DP scattering, and τp is the momentum relaxation time. Substituting the

equations 2.8.29 and 2.8.30, the relation 2.8.28 can be rewritten as

ϵ2F τp
τs

= ∆2
EY +

4∆2
DP

~2
ϵ2F τ

2
p (2.8.31)
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The above relation can be used to fit the experimental data to determine the spin

scattering rate specific to EY and DP mechanisms as shown in reference [97]

Since much work has already been performed on monolayer graphene [94–96,98–101],

the aim of this work will be to understand the spin transport in graphene bilayers

[105]. It should be noted that the differences in the bilayer graphene band structure

with the possibility of a band gap opening, discussed in section 2.8.2, in principle could

also result in a different spin scattering in bilayer graphene and, hence, studying

the spin transport in this system will be important both from a fundamental and

application point of view. We will also focus our effort in understanding the spin

transport properties in graphene by enhancing its otherwise weak spin orbit coupling

strength by functionalization.
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Chapter 3

Experimental Techniques

3.1 Introduction

In this chapter the experimental techniques required for the fabrication and char-

acterization of graphene-based devices are described. The initial characterization of

graphene is carried out by the optical contrast of the mechanically exfoliated flakes

followed by Raman spectroscopy and atomic force microscopy. The details of these

techniques are discussed. Since the device features have an average size of the order

of a micrometer, the device fabrication requires the use of electron beam (e-beam)

lithography to pattern devices on the graphene samples. The details of the device

fabrication with e-beam and subsequent processes are also discussed.

3.2 Graphene: sample preparation

The graphene samples for the experiments discussed in this thesis are prepared either

by the mechanical exfoliation of graphene from graphite using a scotch tape [1], or by

the large area chemical vapour deposition of graphene using methane and hydrogen
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as the precursor gas on a thin copper foil [2,10]. The preparation and characterization

of these samples are discussed below:

3.2.1 Mechanical Exfoliation

In this method, graphene flakes are isolated by repeated ’peeling off’ of graphite

using a scotch tape [1]. The thin layers of graphene (mono, bi, tri etc.) are then

transferred to a desired substrate (usually Si/SiO2) by pressing the scotch tape on to

the substrate. In general multiple graphene flakes of different thickness ranging from

single layer to bulk graphite will be present on the substrate which is then identified

by their optical contrast [4]. The observed thickness-dependent optical contrast of

graphene flakes can be explained by considering the scenario of normal light incidence

from air, with refractive index η0 = 1, onto a trilayer structure of graphene/SiO2/Si.

Assuming the thickness of graphene as d1, where d1 is given by the out-of-plane

extension of the π orbitals for single layer graphene (d1 = 0.34 nm) with a refractive

index η1(λ), the reflected light intensity can be written as

I(η1) = |(r1ei(ϕ1+ϕ2) + r2e
−i(ϕ1−ϕ2) + r3e

−i(ϕ1+ϕ2) + r1r2r3e
i(ϕ1−ϕ2))

×(ei(ϕ1+ϕ2) + r1r2e
−i(ϕ1−ϕ2) + r1r3e

−i(ϕ1+ϕ2) + r2r3e
i(ϕ1−ϕ2))−1|2

(3.2.1)

where

r1 =
η0 − η1
η0 + η1

r2 =
η1 − η2
η1 + η2

r3 =
η2 − η3
η2 + η3

(3.2.2)
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Figure 3.1: Optical image: (a-f) Various steps involved in the mechanical exfoliation of
graphene using the ’scotch tape’ method and (g) shows the different optical contrast
for a single layer mechanically exfoliated graphene (SLG) adjacent to a multilayer
graphene flake (MLG) on a 300 nm SiO2 substrate.

are the relative indices of refraction and

ϕ1 =
2πη1d1
λ

ϕ2 =
2πη2d2
λ

(3.2.3)

are the phase shifts due to changes in the optical path. Here, η1(λ), η2(λ) and η3(λ)

are the refractive indices for graphene, SiO2 of thickness d2 and Si (assumed to be

semi-infinite) respectively. Now the contrast C is defined as the relative intensity of

the reflected light in the presence and absence of graphene and is given by

C =
I(η0 = 1)− I(η1)

I(η0 = 1)
(3.2.4)

and for the normal SiO2 thickness of 300 nm, the contrast C for monolayer graphene

is maximum for the green wavelength range [4] and can be used for the identification
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of graphene flakes optically. Figure 3.1 (a-f) shows various steps involved in the

mechanical exfoliation of graphene using the ’scotch tape’ method and (g) shows the

different optical contrast for a single layer mechanically exfoliated graphene (SLG)

adjacent to a multilayer graphene flake (MLG) on a 300 nm SiO2 substrate.

3.2.2 Large area growth of graphene by chemical methods

The mechanical exfoliation gives single layer graphene of few tens of micrometesr on

average. However, for many practical applications, for e.g. transparent conducting

electrodes for solar cells, touch screen panels, etc., large area graphene is required and

hence methods where by scalable growth of graphene could be achieved need to be

realized. The chemical growth of graphene using some form of carbon source is one

of the plausible methods. The most common chemical methods to produce graphene

are

1. Reduction of graphene oxides [5–7]: In the reduction of graphene oxide, graphite

flakes are first oxidized which are then suspended in an aqueous solution. The

solution is then passed through a membrane which gets covered with graphene

sheets. These graphene sheets can then be transferred to a substrate of choice.

One drawback of this method is that the obtained graphene film is often non

uniform. Also these oxidized films need to be chemically treated to make them

electrically conducting.

2. Growth by molecular beam epitaxy (MBE) [8, 9]: The epitaxial growth of

graphene is an ideal method for growing high quality monolayer graphene and

the films are grown by the thermal decomposition on the (0001) surface of 6H-

SiC [8]. Recently, molecular beam epitaxy has also been used to grow graphene

on metal surfaces. In this method, a graphite filament source is heated in ultra
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high vacuum. As the filament is heated, the carbon atoms sublimate and get

deposited on a metallic substrate forming a layer of graphene film [9]. Though

the MBE method produces uniform large-area graphene, it requires ultra high

vacuum for the synthesis of high quality films.

3. Growth by chemical vapour deposition (CVD) [2, 10, 10–12]: In the chemical

vapour deposition method, the graphene films are grown on a metal foil like

copper. For a high quality growth of single layer graphene, the copper foil is

first heated at high temperature (≈ 1000 C) in the CVD chamber which is then

followed by the introduction of the reaction gas mixture of methane CH4 and

hydrogen H2 for 30 minutes. Finally the sample is cooled down to room temper-

ature in a hydrogen gas environment. The graphene grown on the Cu foil can

then be etched away by using a solution of ferric chloride FeCl3 or ammonium

persulfate (NH4)2S2O8 and then transferred to any desired substrate.

SLG 

BLG 

Figure 3.2: Optical image of CVD graphene grown after transferring onto a 300 nm
SiO2 substrate. The inset shows the magnified picture of the CVD graphene samples.
In general, there are islands of bilayer graphene flowers in between the single layer
graphene region.

The large area graphene samples used in our experiments are grown by the CVD

method as explained in reference [10]. An optical picture of the large area CVD
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graphene transferred onto a SiO2 substarte is shown in figure 3.2. The inset in the

figure clearly shows that these large area CVD graphene are predominantly of single

layer, with some bilayer graphene flowers (5-10 µm in size) in between.

3.3 Graphene: sample characterization

In addition to the optical characterization explained in the previous section [4], the

thickness and the quality of the graphene films (exfoliated and CVD) can be deter-

mined by Raman spectroscopy and atomic force microscopy (AFM) measurements.

3.3.1 Raman characterization

Raman spectroscopy has been used to study and characterize carbon-based materi-

als [13,14]. For sp2 carbons like graphene, the Raman spectroscopy gives information

about crystalline size, the presence of sp3 hybridization, chemical impurities, opti-

cal energy gap, elastic constants, doping, defects, strain in the sample, number of

graphene layers etc. The most prominent features of the graphene Raman spectrum

are the G band appearing at wavenumber 1580 cm−1 and the 2D band appearing

(also known as G′ band) at wavenumber 2680 cm−1 for a laser excitation energy of

2.41eV. The G band is associated with the doubly degenerate in-plane transverse op-

tical (iTO) and longitudinal optical (LO) phonon mode at the Brillouin zone center.

The 2D (G′) band, which is sensitive to the number of layers, originates from the

second order process involving two iTO phonons near the K point. As a function

of the laser excitation energy the 2D band frequency upshifts linearly with the laser

energy (Elaser) with a slope ∂ω2D/∂Elaser around 100 cm−1/eV.
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a) b) 

c) d) 

Figure 3.3: Raman mapping for the (a) 2D band and (b) G band for a SLG Hall bar
device. (c & d) The Raman spectrum for a SLG and BLG showing G and 2D bands
with a characteristic 2D band FWHM ∼ 23 cm−1 and 56 cm−1 respectively.

3.3.1.1 Determining the number of graphene layers

Specific to graphene, the Raman spectrum can be used to identify the number of layers

in a sample by analyzing the nature of the 2D band spectrum. Since the present work

focuses only on single layer (SLG) and bilayer (BLG) graphene samples, the discussion

here will concentrate on how to differentiate single and bilayer graphene by Raman

spectroscopy. For SLG, the 2D band shows a single Lorentzian feature with a full

width at half maximum (FWHM) of ∼ 24 cm−1 [13, 14]. Moreover, for SLG the 2D

peak intensity is larger than the G peak intensity [13, 14]. In BLG, the interaction

between the two graphene layers causes splitting of the π and π∗ bands into four

bands allowing four different scattering process for phonons. These four scattering
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processes give rise to the four Raman peaks in the 2D band of BLG, which can be

fitted with four Lorentzians each with a FWHM of 24 cm−1. Also, for BLG, the 2D

and G band peak intensities are almost comparable [13, 14]. Figure 3.3 shows the

Raman spectra for both SLG and BLG.

3.3.1.2 Determining the quality of graphene: Effect of disorder

The presence of disorder or covalently bonded adatoms (like hydrogen) breaks the

crystal symmetry of graphene resulting in the activation of new vibrational modes

such as the D-band in the Raman spectrum at wavenumber 1350 cm−1 for a laser

excitation energy of 2.41 eV [13, 14]. By studying the evolution of the defect D-

band intensity with respect to that of the G-band intensity, a rough estimate on the

defect density is possible. Such analysis is quite important for our studies of weakly

hydrogenated graphene, since this method allows an estimate of the percentage of

hydrogenation in our samples. From the ratio of the intensities of the D and G-bands,

the spatial separation, and hence the density, of hydrogen atoms can be calculated

using the relations [15]

L2
D(nm

2) = (1.8± 0.5)× 10−9λ4L(IG/ID) (3.3.1)

ni(cm
−2) = 1014/(πL2

D) (3.3.2)

Figure 3.4 shows the evolution of the D-peak intensity with respect to the G-peak

intensity for different percentage of covalently bonded hydrogen atoms on graphene

lattice.
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Figure 3.4: Evolution of the D-peak intensity at wavenumber 1350 cm−1 with increas-
ing defect density. Here the defects are introduced by progressively hydrogenating
the HSQ coated graphene samples by e-beam irradiation. The e-beam dose range
from 0-8 mC/cm2

3.3.2 Atomic Force Microscopy

Atomic force microscopy (AFM) can be used to characterize the surface morphology

of graphene samples. Since graphene is only one atom thick, it easily conforms to

any substrate on which it sits and hence the smoothness of the substrate is quite

important for getting high quality samples. It should be noted that the exfoliation of

graphene and the transfer of CVD graphene to SiO2 by a wet transfer method could

inadvertently introduce a thin layer of water (≈ 0.75 nm thick) between the graphene

and SiO2 substrate. Hence AFM measurements performed on single layer graphene

samples give a thickness of the order of 1 nm (0.75 nm water layer + 0. 3 nm thickness

76



0 

10nm 

1um 

22.70 nm

0.00 nm

1.7µm

a) b) 

Figure 3.5: Atomic force microscopy (AFM) image of an (a) exfoliated graphene
sample on a SiO2 substrate. (b) CVD graphene sample on a SiO2 substrate showing
the presence of CVD growth specific ripples and wrinkles.

of graphene calculated from the out-of-plane extension of the π orbitals). Figure 3.5

shows the AFM image of graphene samples on a SiO2 substrate. The AFM, thus,

can also be used as an additional tool to the Raman spectroscopy for determining the

thickness of the graphene flakes which is directly related to the number of layers.

Specific to the experiments detailed in this thesis, the AFM characterization plays a

critical role in determining the quality of the tunnel barrier, MgO in our case, grown

for the lateral spin-valve devices which is discussed in detail in the next section.

3.4 Tunnel barrier: Growth and characterization

As discussed in chapter 2, in the spin-valve geometry, to combat the ”conductivity

mismatch” and to enhance the spin polarization of the injected current into graphene
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a) b) 

Figure 3.6: Atomic force microscopy (AFM) image of MGO-deposited graphene sam-
ple on a SiO2 substrate. The image clearly shows that (a) without annealing or (b)
with annealing only at 100◦ after MgO deposition results in a non-uniform growth of
the tunnel barrier.

(non-magnetic material), a thin insulating layer is introduced between the ferromag-

net and the non-magnetic material (graphene in our case). In all the spin-valve

experiments discussed in this thesis a layer of magnesium oxide (MgO) 1-2 nm in

thickness is used as the tunnel barrier. In the past, most of the research in graphene

spin transport focussed on the use of Al2O3 tunnel barriers. The drawback with this

tunnel barrier is that it requires cooling of the substrate to 77K after the deposi-

tion of Al under UHV conditions and subsequent oxidation under an oxygen envi-

ronment (100mbar) to obtain a uniform Al2O3 layer [16]. In addition, the alumina

tunnel barriers are amorphous [17]. The MgO tunnel barrier which is crystalline or

poly-crystalline in nature, can be grown at room temperature under molecular beam

epitaxy (MBE) conditions. It has also been predicted that the coherent tunnelling of

electrons occurs in crystalline tunnel barriers, which allows us to expect a high spin

polarization of the FM contacts with the MgO tunnel barrier [18].
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3.4.1 Optimization of tunnel barrier growth

Before MgO deposition: 

0 

5nm 

0 

3nm 

Roughness(RMS)=0.189nm 

preannealing 

@200C, 60min 

Roughness(RMS)=0.208nm 

MgO(1.5nm) 

deposition @RT 

Roughness(RMS)=0.329nm 

postannealing 

@200C, 60min 

Roughness(RMS)=0.221nm 

0 

5nm 

1um 
0 

3nm 

100nm 

0 

5nm 

1um 
0 

3nm 

100nm 

0 
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1um 100nm 

0 

5nm 

1um 

Figure 3.7: Atomic force microscopy (AFM) images showing the sequences and
optimal conditions for the deposition of a uniform MGO layer on a graphene sample
on a SiO2 substrate.

The growth of a uniform and thin tunnel barrier depends on various conditions,

like annealing of the samples before and after MgO deposition and the substrate

temperature during deposition. Figure 3.6 shows the AFM topography image of the

MgO-deposited graphene samples. The deposition is performed at room temperature.

From the images it is clear that our initial attempts resulted in non-uniform and
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discontinuous MgO growth. Based on further experiments, the optimal conditions

for the deposition of uniform MgO layer were found to be

1. Pre- and post-annealing the graphene samples for one hour at 200◦C in Vacuum

(5×10−10mbar)

2. Deposition to be performed at room temperature with deposition rate of 0.007

nm/s

The pre- and post-annealing steps allow a uniform MgO growth with typical thickness

of 2nm and roughness of around 0.3nm on the graphene surface (see figure 3.7).

Though we do not require TiO, as in ref [27], as a buffer layer for uniform MgO

growth, we do see pinholes in our tunnel barrier and our spin transport is across this

pinhole tunnel barrier.

3.5 Device Fabrication

Depending upon the type of experiments performed the device fabrication steps vary.

In this thesis, there are mainly two types of measurements discussed: (1) the non-local

spin-valve measurements, and (2) the spin Hall effect measurements in graphene/or

functionalized graphene. Below a short description on the fabrication of devices for

these experiments is discussed.

3.5.1 Spin-valves

1. Preparation (by exfoliation or by CVD method), identification and selection of

graphene samples on SiO2 substrate.

2. Deposition of thin layer (1-2 nm) of MgO tunnel barrier
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d) 

a) b) 

c) 

Figure 3.8: Optical images showing (a) the alignment markers adjacent to graphene
samples (b & c) the Design CAD file with electrode patterns designed for the specific
sample shown in (a) and (d) the final device structure on graphene after e-beam
lithography and development.

3. Introducing alignment markers around graphene samples: The first major step

in device fabrication is the introduction of alignment markers around the graphene

samples. The alignment markers are important since it allows to identify the

graphene samples precisely relative to the patterned markers, thus enabling

the accurate design and patterning of electrode structures on graphene. For

the devices presented in this thesis, the alignment markers around graphene

are introduced using e-beam lithography. For this, the MgO/graphene/SiO2/Si

samples are first spin coated uniformly with poly-methyl methacrylate, PMMA

(A5-950K), polymer. Now using the e-beam lithography technique, an array of

markers is written on the PMMA. Figure 3.8 (a) shows the optical image of a

graphene sample after alignment marker patterning.
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4. Once the alignment markers are written, optical pictures of the sample at differ-

ent magnifications are taken. These optical images are then used as a template

to design the device electrode structure using Design CAD (see figure 3.8 (b &

c)) and the Design CAD files are loaded to the nanometer pattern generator

(NPGS) software used in our FEI Nano SEM 230 e-beam lithography machine.

Co

Co

SiO2/MgO

graphene

z

Figure 3.9: Scanning electron microscopy (SEM) image of a graphene spin-valve
device after liftoff showing multiple junctions. The electrodes highlighted in blue
represent one spin valve junction.

5. Patterning electrodes using e-beam lithography: In the e-beam lithography,

electrons with energies in the range 10keV - 100 keV impinge on a sample

protected by a polymer resist like PMMA. Here, the path of the e-beam can be

controlled using a predefined design of the electrodes loaded on to the NPGS

software. This is followed by the development of the resist in an appropriate

developer. In our case, we use the positive resist PMMA. Hence, the developer
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(Methyl isobutyl ketone (MIBK): Isopropyl alcohol (IPA = 1:1)) removes the

exposed area of the resist on the sample while the remaining part of the sample

remains covered with PMMA. Figure 3.8 (d) shows the final image of a graphene

sample after e-beam lithography and development.

6. Deposition of metals and lift off: Following the e-beam lithography step, the

samples are loaded into an e-beam evaporator to deposit Co electrodes. Here

the presence of the undeveloped PMMA layer on the sample acts as a mask for

the metal deposition. The Co electrodes ∼ 40 nm in thickness for our samples

are deposited at a rate of 0.010 nm/s which is followed by the deposition of a

capping layer of 3 - 5nm Au or Pt (0.005 nm/s deposition rate) to avoid the

oxidation of the ferromagnetic Co electrodes. The samples are then immersed

in cold Acetone overnight for liftoff of the electrodes. The SEM image of a

Co/MgO/graphene/SiO2/Si sample after lift off is shown in figure 3.9.

3.5.2 Spin Hall devices

The spin Hall device fabrication involves the following steps:

1. Preparation (by exfoliation or by CVD method), identification and selection of

graphene samples on SiO2 substrate.

2. Introducing alignment markers around graphene samples

3. Design the device electrode structure using Design CAD and the Design CAD

files are loaded to the nanometer pattern generator (NPGS) software used in

our FEI Nano SEM 230 e-beam lithography machine.

4. Patterning electrodes using e-beam lithography followed by development of the

PMMA resist using Methyl isobutyl ketone (MIBK): Isopropyl alcohol (IPA) in
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the ratio 1:1.

5. Deposition of metals and lift off: Following the e-beam lithography step, the

samples are loaded into a thermal evaporator to deposit Chromium and gold

(Cr/Au) electrodes. The thin layer (1-5 nm) of Cr is used as a buffer layer

for the growth of Au electrodes on graphene, since Au alone does not stick

well on the graphene samples. The steps 1 to 5 are identical to the spin-valve

device fabrication except for the fact that in the spin Hall device fabrication the

deposition of the MgO tunnel barrier as well as cobalt metal are not required.

Also, the device geometry for spin Hall samples is different from the spin-valve

samples.

a) b) c) 

Figure 3.10: The optical images of graphene showing (a) the device after lift-off and
prior to etch mask writing (b) the device after writing etch mask to define the Hall
bar geometry and (c) the final Hall bar device after O2 plasma etching of the etch
channel.

6. Writing etch mask to pattern the Hall bar device structure: After the success-

ful liftoff of the Cr/Au electrodes, additional e-beam lithography is performed

following steps identical to 3 and 4. This additional e-beam step is to open up

channels in the PMMA to define the geometry of the graphene samples to a

Hall bar which is then followed by the oxygen plasma removal of the exposed

graphene area. Figure 3.10 (a) shows the graphene device prior to etch mask
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writing and figure 3.10 (b & c ) shows the formation of the graphene Hall bar

device after etch mask writing and the final device after oxygen plasma etching

respectively.

3.6 Device Characterization

The graphene samples prepared (both spin-valves and spin Hall effect samples) are

first characterized for the charge transport. For this the samples are glued to a 44-

pin chip carrier with silver paste. Here, it is important to align the samples such

that the contacts along the length will be aligned parallel to the magnetic field while

performing spin-transport measurements later on. The device contact pads as well as

the back gate are connected to the chip carrier via wire bonding. We use aluminum

wire for wire bonding. The samples are then loaded to a vacuum probe which can be

inserted into a variable temperature insert cryostat (1.6 K - 400 K) with magnetic

field sweep capability of ± 9T or ±16T. The basic charge transport measurements are

performed with standard a.c. lock-in techniques at low frequencies (∼ 13 Hz) under

a four terminal set-up as shown in figure 3.11. The output sinusoidal signal from

the lock-in is connected through a measurement box with standard resistors, so that

a constant current can be passed to the graphene sample and the output voltage is

measured by connecting the voltage terminals to the A and B input of the lock-in. If

the output signal is small, the voltage probes can be connected to the lock-in inputs

A and B through a pre-amplifier, which amplifies the voltage by 10. The back gate

to the graphene sample is applied through a Keithley sourcemeter 6430 as shown in

figure 3.11.
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Figure 3.11: Schematics showing the measurement set-up for transport measurement.

3.6.1 Spin transport measurements

For both the spin-valve and spin Hall experiments discussed in this thesis, the mea-

surements are performed employing a four terminal non-local geometry where the

charge current path is isolated from the spin current path (see figure 2.5 (b) and

figure 2.15). The standard a.c. lock-in technique is again employed for the measure-

ments. Here, the most important aspect is that the samples are loaded onto a rotating

probe, so that the field direction can be adjusted to be parallel or perpendicular to

the sample by the mere rotation of the sample stage. A picture of the rotating sample

holder fixed to the low temperature probe is shown in figure 3.12
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Figure 3.12: The sample holder in the rotating probe. The sample holder can be
rotated to align the sample parallel to- or perpendicular to- the direction of the
applied magnetic field.
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Chapter 4

Spin Transport Studies in Mono-
and Bi-layer Graphene Spin-valves1

4.1 Introduction

The pioneering work of Tombros et al. [1] demonstrating micrometer long spin relax-

ation in single layer graphene at room temperature has made this wonder material a

promising candidate for spintronics applications. However, most of the spin transport

studies have focused on single layer graphene [1–13] while an equally important bilayer

graphene has not received much attention. This is surprising since bilayer graphene

has unique electronic properties which differ from that of monolayer graphene, viz.

effective mass of charge carriers, electric field-induced band gap, and also from that

of regular two-dimensional (2D) electron gases, for e.g. chirality [14, 15]. Moreover,

unlike monolayer graphene, bilayer graphene has much more screening from charge

impurities and hence scattering (both charge and spin) from such charge impurities

is reduced [16]. Since charge and spin transport are highly correlated, it is natural to

expect a profound difference in the nature of spin transport in bilayer graphene. The

1T-Y. Yang*, J. Balakrishnan* et al, Phys. Rev. Lett. 107, 047206 (2011)
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aim of this chapter is to understand and compare the spin transport properties of

single- and bi- layer graphene spin valves. The experiments and results discussed in

this chapter are performed in collaboration with Prof. Gernot Güntherodt and Prof.

Bernd Beschoten from II A Institute of Physics, RWTH Aachen University.

4.2 Characterization of mono- and bi- layer graphene

spin-valves

0 0.5 1.0 1.5µm
-1nm

1nm

(a) (b)

PTP=1.5 nm

3 nm

500 nm0

Co

Co

SiO2/MgO

graphene

x
y

z

Figure 4.1: (a) Atomic force microscopy image of a bilayer graphene sample after
MgO deposition: rms roughness ∼ 0.3 nm. (b) Scanning electron microscope image
of a bilayer graphene sample with multiple non-local spin valves.

The single- and bi-layer exfoliated graphene spin-valve devices are prepared utilizing

the method discussed in chapter 3. Unlike the previous reports on graphene spin-

valves, where a thin layer of Al2O3 [1] was used as a thin tunnel barrier to combat

conductivity mismatch between ferromagnetic electrode and graphene [17], in this

work we utilize a thin (1.5 nm - 2 nm) magnesium oxide (MgO) tunnel barrier. The

presence of crystalline/polycrystalline MgO tunnel barrier increases the spin injection
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efficiency too [18]. Spin-valve devices are fabricated on two-types of MgO-covered ex-

foliated graphene samples using standard electron beam (e-beam) lithography. Figure

4.1 shows the AFM and SEM image of a bilayer graphene sample after MgO depo-

sition. In type I samples, the thin MgO layer is deposited globally on the exfoliated

graphene samples which is then followed by device patterning and Cobalt (Co) elec-

trode deposition. In type II devices the electrodes are first patterned on the exfoliated

graphene samples, followed by a single run deposition of MgO and Co; i.e. in type II

devices the thin MgO tunnel barrier is present only locally beneath the ferromagnetic

Co electrodes.

a) b) 

Figure 4.2: (a) Carrier density dependence of BLG resistivity for the temperature
range 2.3-300 K. (b) The momentum relaxation time, τp = σm∗/ne2 calculated in the
Boltzmann framework as a function of carrier density n for BLG at T = 300 K (black
circles), 50 K (red circles), and 5 K (blue circles).

Prior to any spin transport measurements, the graphene spin-valve devices are char-

acterized for charge transport. Since the aim of our study is to differentiate and

understand the spin transport properties of bilayer graphene, we will discuss in detail

the bilayer graphene transport properties and the monolayer results will be discussed
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when and where required for comparison. A characteristic R vs VG curve clearly

shows that, at the charge neutrality point, the bilayer graphene resistance shows sig-

nificant insulating behaviour (see figure 4.2). This is unlike single layer graphene

where the temperature dependence is weak even at the charge neutrality point. Such

a thermally active behaviour at low temperature is attributed to the onset of an in-

sulating phase at low temperature in bilayer graphene [19, 20]. In fact, such strong

insulating behaviour also favours the importance of short range scatterers in bilayer

graphene, since dominant Coulomb disorder in bilayer graphene is expected to pro-

duce a metallic behaviour even at low temperatures [20]. Moreover, the momentum

relaxation time τp estimated from τp = σm∗/ne2 where m∗ = 0.03me) for our bilayer

samples, shows a diverging behaviour near the charge neutrality point (see fig 4.2).

This strong increase of τp near the charge neutrality point is qualitatively in good

agreement with the recent experiments on bilayer graphene [21,22]. Such an increase

has also been attributed to the logarithmic corrections to τp arising from the presence

of strong short range scatterers.

4.2.1 Spin injection and spin transport in bilayer graphene

4.2.1.1 Non-local spin valve measurements:

Once the devices are characterized for charge transport, four terminal non-local spin-

valve measurements are performed. In the non-local geometry (see figure 4.3), the

charge current path is separated from the active spin diffusion path, thus enabling

the detection of pure spin currents [23].The non-local spin signal (∆R), measured by

sweeping the in-plane magnetic field in a loop from negative (-80 mT) to positive

(+80 mT) and then back to negative values (-80 mT), corresponds to a value for the

change in resistance between parallel and anti-parallel magnetizations of the injector
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Figure 4.3: (a-c) Schematics of non-local spin valve showing the non-local measure-
ment procedure in an in-plane magnetic field. Measurements are performed with
standard a.c. lock-in techniques at low frequencies with currents in the range of 1-10
µA. (d) Non-local resistance for a bilayer graphene sample as a function of the in-
plane magnetic field. The blue and red arrows show the field sweep direction while the
black arrows show the relative magnetization orientations of the injector and detector
electrodes.

and detector electrodes. A clear bipolar signal is observed at room temperature, with

a positive value of the non-local resistance for parallel alignment of the electrodes’

magnetization and a negative resistance for the anti-parallel alignment. For the de-

vice shown in figure 4.3(b), the measured ∆R has a value of around 4Ω at room

temperature.
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4.2.1.2 Hanle spin-precession measurements:

Though the non-local signal measured in the lateral spin-valve measurements suggests

the diffusion of spins in bilayer graphene, for an unambiguous confirmation of the spin

transport Hanle spin precession measurements in an external perpendicular magnetic

field are performed [24]. For these experiments, first an in-plane magnetic field is

applied along the easy-axis of the ferromagnetic electrode, so that the magnetization

direction of the injector and detector are aligned parallel (anti-parallel). Now the non-

local signal as a function of the perpendicular magnetic field will show an oscillatory

behaviour due to the precession of the spins in an external magnetic field. Since,

our transport is in the diffusive regime, the diffusing spins will travel different paths

to reach the detector from the injector, which implies that there is a broadening

of the spin precession angle. Hence the measured signal is the sum of the all the

contributions from the diffusing spins and is given by [24]

a) b) 

Figure 4.4: Hanle precession measurement for a perpendicular magnetic field Bz(T)
sweep for (a) the same sample in figure 4.3(b) with µ ∼ 2000cm2/Vs and (b) for a
sample with µ ∼ 300cm2/Vs.

Rnl ∝
∫ ∞

0

1√
4πDst

e
−L2

4Dst cos(ωLt)e
−t
τs dt (4.2.1)
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Figure 4.4(a) shows the Hanle spin precession measurements for the same sample

shown in figure 4.3(b). A fit to this signal using the above equation gives the values

for the spin relaxation time τs = 135 ps and spin diffusion coefficient Ds = 0.0032

m2/s. The spin relaxation length defined as λs =
√
τsDs, gives a value of around

0.7µm. Figure 4.4(b) shows the spin precession data for a sample of low mobility µ

∼ 300 cm2/Vs with a spin relaxation time of τs = 2 ns. Comparing the figures 4.4

(a & b), it is clear that in addition to the characteristic oscillatory behaviour of the

spin precession signal, in low mobility samples additional oscillations or wiggles are

seen. One possibility for such wiggles is the contribution from orbital magnetoresis-

tance as suggested by Tombros et al. [2, 25]. This induces a background which could

contain non-periodic fluctuations as a function of the perpendicular magnetic field

Bz. Since the estimated spin parameters are comparable to the values reported for

monolayer graphene samples, we now focus to understand whether the spin scattering

mechanisms in bilayer graphene are also similar to single layer graphene or not.

4.2.2 Identifying the spin scattering/dephasing mechanism

in bilayer graphene

The possibility to open a band gap in bilayer graphene by the application of a gate

voltage makes this material more promising from an application point of view. How-

ever, any future developments towards this requires a deeper understanding of the

mechanisms that dephase spins in these systems. For this, we study the spin relax-

ation time τs as a function of (1) the charge carrier mobility µ, (2) the minimum

conductivity σmin, and (3) the charge carrier density n both at room temperature

and at low temperature.
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4.2.2.1 Spin relaxation time τs vs. charge carrier mobility µ:

As discussed in chapter 2, the major spin relaxation/dephasing mechanisms that

could possibly dephase spins in graphene are (1) the Elliott-Yafet (EY) spin scatter-

ing mechanism [26] and (2) the D’yakonov-Perel’ (DP) spin scattering mechanism [27].

In the EY spin scattering the conduction electron spins dephase via the momentum

scattering by phonons or impurities; i.e. the spin relaxation time τs is directly propor-

tional to the momentum relaxation time τp and hence to the mobility µ (τs ∝ τp ∝ µ).

In the DP spin scattering mechanism, in contrast to EY mechanism, the spin dephas-

ing is due to the precession of spins under the influence of a local magnetic field

(which varies in magnitude and direction with an average time period τp) induced by

the spin-orbit coupling in the material between the momentum scattering events and

translates to the condition that the spin relaxation time τs is inversely proportional to

the momentum relaxation time τp and to the mobility µ (τs ∝ 1/τp ∝ 1/µ). In order

a) b) 

Figure 4.5: Results of Hanle precession measurements for BLG samples with mobil-
ity varying from 200-8000 cm2/Vs .τs vs. µ plotted on a log-log scale (a) at room
temperature and (b) at low temperature, 5 K.

to identify the dominant scattering mechanism in bilayer graphene, we selected 17
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devices whose field effect mobilities varied by more than an order of magnitude from

200 cm2/Vs to 8000 cm2/Vs. Such mobility dependent studies have been useful in

identifying spin scattering mechanisms in inorganic semiconductor systems [28]. Fig-

ure 4.5 shows the mobility dependence of the spin relaxation time in bilayer graphene

at room temperature and at low temperature, respectively. The graph is plotted in

log-log scale and shows a clear inverse relation of τs with µ. The samples with the

highest mobility shows a τs ∼ 30 ps while the lowest mobility shows a τs ∼ 2 ns at RT.

Such values of τs are longer by an order of magnitude when compared to the values

reported so far in any single layer spin-valve experiments. Furthermore, this strong

variation of τs with µ offers the most direct evidence for the correlation between spin

and charge transport. Since higher mobility samples will typically involve higher mo-

mentum spin relaxation time µ ∝ τp in Boltzmann regime, the inverse dependence of

τs on µ clearly demonstrates that the DP mechanism is the dominant spin scattering

mechanism in bilayer graphene. Note that all the data are taken at electron density

of n = 1.5 × 1012/cm2. This is because near the charge neutrality point the mobility

is ill-defined and an analysis based on the mobility dependence of the spin relaxation

time is not valid.

4.2.2.2 Spin relaxation time τs vs. conductivity σ:

The dependence of the τs on the mobility of the sample cannot be employed for

data acquired near the charge neutrality point. Hence, we study the dependence

of the measured spin relaxation time at charge neutrality point as a function of the

minimum conductivity σminof the samples. The value of the σmin varies between clean

and dirty samples and is higher for cleaner samples [29–31]. Figure 4.6 shows the τs

vs.σmin data at room temperature. The τs follows a 1/σmin dependence indicating a

higher spin relaxation time in dirtier samples. Therefore, this correlation is in good
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Figure 4.6: τs vs. σmin for bilayer graphene samples of figure 4.5 at room temperature.

agreement with the above conclusion that the DP mechanism is dominant at room

temperature. However, at low temperature the σmin at the charge neutrality point

is no longer a suitable parameter to study the scaling of τs. The available σmin data

scatters significantly at low temperature, but the overall variation in σmin is small

compared to room temperature. This is not surprising since σmin is expected to take

a disorder independent value of 3e2/πh at T = 0 K [32].

An alternative way to conclude about the DP mechanism at CNP

An alternative way to look at the scattering mechanism is to compare the transport

at the charge neutrality point with the transport in disordered semiconductors [33].

Near the metal-insulator transition (metallic part of the critical regime), the reduced

conductivity is due to the non-Gaussian diffusion and hence the conductivity is pro-

portional to the diffusion coefficient. Also, from the definition of the electron spin

relaxation time, we have

τ−1
s =

∫ ∞

0

⟨Ωk(0)Ωk(t)⟩dt ≈ Ω2τ (4.2.2)

where Ω is the Larmor frequency and τ is the relaxation time.

Now near the charge neutrality point, the electrons can be considered to be in a
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localized state and the transport is due to the tunnel hopping from one localized

state to the next. This implies that we can define electron trajectory, wave vector

and velocities for each trajectory and hence the diffusion coefficient can be defined as

D =

∫ ∞

0

⟨v(0)v(t)⟩dt ≈
⟨
v2
⟩
τ (4.2.3)

substituting equation (4.2.3) into (4.2.2) gives

τ−1
s ≈ Ω2τ ≈ D

Ω2

⟨v2⟩
∝ σ (4.2.4)

i.e. close to the charge neutrality point the spin relaxation time τs is inversely pro-

portional to the conductivity and hence to the mobility of the sample, suggesting the

dominance of DP spin scattering mechanism close to the neutrality point.

4.2.2.3 Spin relaxation time τs vs.charge carrier density n

a) b) c) 

Figure 4.7: (a) Upper panel: Resistance vs. n for single layer graphene at 5 K and
at 300 K; Lower panel: τs vs. n for T = 300 K (black circles) and 5 K (red circles),
(b) Upper panel: Resistance vs. n for bi layer graphene at 5 K, 50 K and at 300 K;
Lower panel: τs vs.n for T = 300 K (black circles), 50 K (blue circles), and 5 K (red
circles) and (c) Upper panel: τs vs. T for four densities n = CNP (black circles),
0.7 × 1012/cm2 (red circles), 1.5 × 1012/cm2 (blue circles) and 2.2× 1012/cm2 (green
circles) for bilayer graphene; Lower panel: τs vs. T for two densities n = CNP (black
circles), 1.5 × 1012/cm2 (blue circles) for single layer graphene.
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Since at low temperature (LT) σmin is not a good parameter, we are left with the

density dependence of τs to elucidate on what happens near the charge neutrality

point. Figure 4.7 shows the comparison between the single and bilayer graphene

non-local signal density and temperature dependence. It is clear that not only the

density dependence but also the temperature dependence of the non-local signal is

very distinct for bilayer graphene from that of the single layer graphene. For bilayer

graphene at room temperature the density dependence of the spin relaxation time τs

shows a minimum at the charge neutrality point. As the temperature is decreased this

minimum in τs is gradually suppressed and the slope of τs(n) changes sign. Finally,

at T = 5 K the density dependence shows a strong enhancement (≥ 50 %) near

the charge neutrality point. Now from references [21, 22] and from figure 4.2 (b), it

is clear that the momentum relaxation time shows a diverging behaviour as we go

close to the charge neutrality point. To understand the scattering mechanism at the

charge neutrality point, we compare the density dependence of τp to that of τs close

to the charge neutrality point. At room temperature, this clearly suggests an inverse

relation between τp and τs. However, at low temperature, both τp and τs show similar

density dependence and this correlation suggests a transition from DP to EY spin

scattering mechanism at low temperature, around the charge neutrality point.

In order to unambiguously determine which scattering mechanism dominates, we also

calculate the quantities τsτp and τs
τp

in the density range n = 1-3 × 1012/cm2. In this

density range, at RT, the τsτp almost remains a constant while τs
τp

show an increase

of 28% with increase in charge density. This is consistent with the dominance of

DP mechanism away from the charge neutrality point in bilayer graphene at RT,

because for DP τs ∝ τ−1
p . However, at low temperature both quantities vary by

a comparable amount, i.e. both τsτp and τs/τp show in the density range 1- 3 ×

1012/cm2 a decrease by ∼ 10 % at 50 K and by ∼ 25 % at 5 K. This makes it difficult

to deduce the dominant scattering mechanism from density dependence alone.
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Figure 4.8: (a) The momentum relaxation time, τp = σm∗/ne2 calculated in the
Boltzmann framework as a function of carrier density n for BLG at T = 300 K (black
circles), 50 K (red circles) and 5 K (blue circles); (b, c and d) The carrier density
dependence of the product τsτp and the ratio τs/τp, which identifies the dominant
scattering mechanism for T = 300 K, 50 K and 5 K, respectively. A constant value
for τsτp indicates DP while a constant value for τs/τp indicates EY mechanism. The
arrow in figure b shows the significant change in the ratio τs/τp with density at RT
when compared to the change inτsτp.

4.2.2.4 Effect of electron-hole puddles at the charge neutrality point

As discussed, the logarithmic corrections arising from the presence of strong short-

range scatterers, causes a strong increase in τp near the charge neutrality point in

bilayer graphene. Thus, a comparison of the τp and τs values indicates a transition

from DP to EY like spin scattering in bilayer graphene at LT near the charge neutral-

ity point. Moreover, the presence of electron-hole puddles for these bias voltages may

also suggest the possibility of spin scattering via the Bir-Aronov-Pikus (BAP) mech-

anism [34]. If such electron-hole scattering together with spin flip is present, the spin
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scattering is expected to happen only at the boundaries of electron-hole puddles and

not uniformly across the samples. This is because the BAP spin scattering requires

a significant overlap in the electron and hole wave functions. Although we cannot

completely rule out spin scattering of BAP-type, we believe that this is not likely

because it is usually only relevant in hole-doped systems with large effective mass

of the charge carriers [35]. However, precise theoretical studies on the electron-hole

scattering near the CNP are required to fully estimate the influence of electron-hole

exchange interaction in spin scattering.

Therefore, to sum up, at low temperatures the scattering mechanism is determined

only by the mobility dependence of the spin relaxation time. Since the momentum

scattering mechanism is different in bilayer graphene at low temperature near the

charge neutrality point, it is not surprising that the spin relaxation mechanism is also

different. However, we note that there remains to be resolved the fact that why there

is a transition from DP to EY spin scattering mechanism in bilayer graphene at low

temperature and at the charge neutrality point. We believe one possible explanation

could be related to the thermally activated behaviour of charge carriers in this density

regime in bilayer graphene.

4.2.3 Estimate of the spin-orbit coupling strength in bilayer

graphene

Our analysis of the dependence of the spin relaxation time as a function of mobil-

ity, minimum conductivity and charge carrier densities at room temperature and at

low temperature, clearly suggest that away from the charge neutrality point, the DP

spin scattering mechanism dominates. This knowledge of the dominant spin scatter-

ing mechanism allows for an estimate of the spin-orbit coupling strength in bilayer
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graphene. Since DP mechanism involves the precession of spins in a local magnetic

field, the spin-orbit coupling strength can be calculated from the Larmor frequency

as
1

τs
= Ω2

effτp =
4∆2

~2
τp (4.2.5)

where Ωeff is the Larmor frequency of the precessing spins and ∆ is the spin orbit

coupling strength [36].The Larmor frequency can be calculated in two ways (1) from

the τs vs σ plot and (2) from the τs vs. µ plot. A detailed analysis on how to estimate

the Larmor frequency from both these methods is given below:

4.2.3.1 From conductivity data

σ = neµ =
ne2τp
m∗ (4.2.6)

στs =
ne2τpτs
m∗ = An (4.2.7)

Now by fitting the στs vs. n plot with the above equation we get the values for A and

the standard error (∆A) for A. Here we take the standard error ∆A obtained from

the fitting as the error or uncertainity in A.

The Larmor frequency Ω defined as 1√
τsτp

when substituted into the above equation

gives

Ω =
e√
m∗A

(4.2.8)

and the uncertainity in Ω is given by

∆Ω

Ω
=

∆A

2A
(4.2.9)

4.2.3.2 From Mobility data

µ =
eτp
m∗ (4.2.10)
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µτs =
eτpτs
m∗ (4.2.11)

A = µτs =
e

m∗Ω2
; Ω±∆Ω =

√
e

m∗A
=

√
e

m∗A
(1± ∆A

2A
). (4.2.12)

Both these methods give the Larmor frequency for our samples as Ω = 407± 25GHz.

Figure 4.9: στs vs n for a bilayer graphene device. From the slope, the Larmor
frequency for spins can be estimated.

Now in the case of DP mechanism the Larmor frequency with which the spins precess

is related to the spin-orbit coupling constant through the equation

Ω =
2∆

~
(4.2.13)

and gives a spin-orbit coupling strength in our bilayer samples to be ∆ = 0.13 meV.

It should be noted that ∆ depends weakly on the temperature. Therefore, it is

unlikely that low energy phonons (such as acoustic phonons) are responsible for the

observed spin scattering. Thus the most important question to be answered is whether

the estimated spin-orbit coupling strength is intrinsic or extrinsic in nature. While

theoretical calculations have shown the intrinsic spin-orbit coupling strength to be in
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the range 25µeV - 0.1 meV in clean bilayer graphene samples, the influence of both the

externally applied electric field and the role of the adatoms cannot be excluded [37,38].

Since inter-layer hopping is involved in bilayer graphene, electric field dependent

modifications to the intrinsic spin-orbit coupling strength are expected. Adatoms on

the other hand induce local curvature to an otherwise flat graphene lattice and can

cause spin scattering by both EY and DP mechanisms [12, 36]. However, in the case

of bilayer graphene the role of the adatoms in determining DP or EY spin scattering

might be even smaller due to a higher lattice stiffness [39], thus reducing the adatom

induced SO coupling strength. Thus, more detailed and thorough investigations are

needed to clarify the type and concentration of spin scatterers in single and bilayer

graphene and to differentiate the contribution from extrinsic and intrinsic factors to

the spin-orbit coupling in bilayer graphene samples with disorder.

4.3 Conclusion

In conclusion, we have demonstrated spin injection and detection in bilayer graphene

across MgO barriers and observed spin relaxation times up to 2 ns at room tempera-

ture. Our systematic study shows that at room temperature spin scattering in bilayer

graphene follows an inverse dependence of τs on both the mobility µ and the room

temperature minimum conductivity σmin, indicating a DP spin scattering mechanism.

We discuss the role of intrinsic and extrinsic factors that could lead to the dominance

of DP spin scattering in bilayer graphene. While the inverse scaling of mobility with

τs persists down to T = 5 K, the density dependence of τs indicates deviations from

the DP mechanism at low temperatures near the charge neutrality point.
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Chapter 5

Colossal Enhancement of
Spin-Orbit Coupling in Weakly
Hydrogenated Graphene1

5.1 Introduction

In the previous chapter, we discussed comprehensively the spin transport in bilayer

graphene and compared the results to its single layer counterpart, employing the

widely used non-local spin-valve geometry. This approach, however, required mag-

netic elements, i.e. applied parallel and perpendicular external magnetic fields and

ferromagnetic electrodes, for both injection and detection of the diffusing spins in

graphene. An alternate method to study the spin transport in a material is by invok-

ing the spin Hall effect (SHE) [2, 14], thus avoiding magnetic elements in the device

geometry. However, specific to graphene, the realization of the spin Hall effect requires

an enhancement of its otherwise weak spin-orbit (SO) coupling. Such enhancement

of the SO coupling strength is also essential for the realization of many interesting

phenomena such as the topological insulator states [3–5] and the quantum spin Hall

1Jayakumar Balakrishnan et al., Nature Physics 9, 284 (2013)
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effect [3]. In this chapter, we will discuss the adatom-induced enhancement of the SO

coupling strength in graphene and it’s effect on charge and spin transport. For this,

weakly hydrogenated graphene has been used as the model system.

Figure 5.1: Schematics showing the lattice deformation due to the functionalization
of graphene with adatoms like hydrogen.

5.2 Functionalization of Graphene

Graphene [6] is an ideal 2D system with large Young’s modulus [7] and low bending

rigidity [12]. Its extraordinary in-plane mechanical strength allows for large out-of-

plane deformations, even at the atomic scale. This enables a broad class of chemical

reactions/functionalizations which are not practical with other 2D materials [9]. For

example, the functionalization of graphene with atoms such as hydrogen and fluo-

rine enables the realization of graphene derivatives with novel physical and chemical

properties [10, 11]. The out-of plane distortions of the planar carbon bonds, i.e.

sp2 to sp3 hybridization accompanying the functionalization, are unique to graphene
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and may allow for a strong enhancement in its otherwise weak intrinsic SO cou-

pling strength [12–14]. This enhancement is unlike the enhancement in metals [41]

and semiconductors [16], and is even distinct from the curvature-induced SO cou-

pling in carbon nanotubes [17,18]. Since the sp3 bond angle depends strongly on the

graphene-substrate interaction the hydrogenation of graphene allows for a controllable

SO strength ranging from a few tens of µeV up to 7 meV [12].

5.2.1 Hydrogenation of graphene

We introduce small amounts of covalently bonded hydrogen atoms to the graphene

lattice by the e-beam dissociation of hydrogen silsesquioxane (HSQ) resist [19]. The

HSQ is first spin-coated on graphene on a 300 nm SiO2 substrate. For the experiments

discussed in this chapter, we have used two different thickness of HSQ; 250 nm (fox

12) and 50 nm (DOW CRONING, Part No: XR-1541-002) and the parameters for

spin-coating are

1. spin speed : 4000 rpm

2. acceleration : 110 rpm

3. duration: 100 sec.

An important point to be noted is that we do not bake our samples after HSQ spin-

coating. Moreover, since HSQ is highly sensitive to humidity, it is also important not

to expose/keep the resist in ambient conditions for long time.

The HSQ approach has a number of advantages over the hydrogenation of graphene

using radio frequency (RF) hydrogen plasma [10,20]. First, it provides hydrogenation

without introducing vacancies. Second, the degree of hydrogenation can be precisely

controlled and kept minimal. Last but not least, it enables e-beam-controlled local
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hydrogenation in the sub-micron size range.

5.3 Characterization of the hydrogenated graphene

samples

5.3.1 Raman Characterization

As discussed, the basal plane hydrogenation of the graphene lattice is done by the

e-beam dissociation of HSQ. In order to achieve varying concentration of hydrogen

adatoms on graphene we expose the HSQ coated graphene devices to varying doses

of e-beam dose in the range 200 µC/cm2 to 8000 µC/cm2. The e-beam-irradiated

samples are then characterized by Raman spectroscopy measurements to estimate the

percentage of hydrogenation. The evolution of the defect peak (D-peak)( see fig. 5.2

(a)) in the Raman spectrum is a clear indication for the progressive hydrogenation of

graphene with increasing e-beam dose [19]. Moreover, an unambiguous conclusion on

the hydrogenation of the graphene lattice can be reached (1) from the decrease in the

Si-H peak intensity due to the dissociation of hydrogen from HSQ with e-beam dose

and (2) from the change in the D-peak intensity with annealing in Ar environment

[19]. Figure 5.2 (b) shows the evolution of the Si-H Raman peak at 2265 cm−1 as

a function of the e-beam dose. With increasing dose the peak intensity decreases

drastically indicating the dissociation of hydrogen from HSQ. This together with

the increase in the D-peak intensity with e-beam dose points to the hydrogenation

of the graphene lattice. Finally, the Raman spectrum showing the reversibility of

hydrogenation upon annealing in Ar environment at 250◦C for 2 hours is shown in fig.

5.2(c). A constant Ar gas flow of 0.3L/min is maintained throughout the annealing
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a) b) 

c) 

Figure 5.2: (a) The Raman spectrum of graphene coated with HSQ after irradiation
with e-beam (dose 0-8 mC/cm2). The progressive increase in the D-peak intensity
results from the hydrogenation of the graphene sample. (b) The evolution of the
Si-H peak at 2265 cm−1 as a function of e-beam dose. With increasing dose the peak
intensity decreases drastically indicating the dissociation of the hydrogen from the
HSQ. (c) The Raman spectrum for a single graphene device showing the reversibility
of hydrogenation upon annealing in Ar environment at 250◦C for 2 hours. A con-
stant Ar gas flow of 0.3L/min is maintained throughout the annealing process. The
near vanishing of the D-peak after annealing confirms that HSQ e-beam irradiation
introduces minimum vacancies in the graphene system.
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a) b) 

Figure 5.3: (a) Scanning electron micrograph of a hydrogenated graphene sample
showing multiple Hall bar junctions. Scale bar, 5 µm (b) ρ vs. n for pristine and
hydrogenated graphene.

process. The near vanishing of the D-peak after annealing confirms that HSQ e-beam

irradiation introduces minimum vacancies in the graphene system.

5.3.2 Charge transport characterization

Most of the transport characterization involving functionalized graphene, hydro-

genated and/or fluorinated, studied so far is in the highly insulating regime [10, 20].

However, for spin transport studies in a functionalized graphene system, the intro-

duction of the adatoms should enhance the SO coupling strength while keeping the

graphene system in the metallic regime with relatively long spin relaxation length.

Hence, we focus our studies on graphene devices with low hydrogenation coverage.

Moreover, hydrogen atoms are predicted to cluster at higher densities [21]. The

charge transport measurements are characterized using standard Hall bar devices.

The scanning electron microscope image of one such device with multiple Hall bar

junctions is shown in fig. 5.3(a). Figure 5.3(b) shows the resistivity vs. carrier density
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(a) (b) (c)
Fit

Figure 5.4: Resistance as a function of temperature at CNP (red solid circles) and
at n =1 ×1012/cm2(blue solid circles) (a) for pristine graphene and (b) for weakly
hydrogenated graphene. Note that the data presented in (a) and (b) are for two
distinct samples. (c) low temperature R vs T for weakly hydrogenated graphene
fitted for logarithmic corrections of the form ρ = ρ0 + ρ1ln(T0/T); where ρ0 = 10251
Ω, and ρ1 = 166 Ω

plot for a graphene Hall bar device before and after hydrogenation at room temper-

ature. When compared to previous hydrogenation studies [10, 20], the characteristic

increase in the resistivity ρ and the broadening of the voltage plateau at the charge

neutrality point are small. The mobility for these samples is calculated from the

slope of the conductivity curve as µ=∂σ
∂n

1
e
, and gives values of ∼ 1600 cm2/Vs for

0.02% hydrogenation.A detailed description on the determination of the percentage

of hydrogenation is given in the next section. It is important to note that only junc-

tions where the channel resistance (R vs. Vg) across all the four electrodes of the

Hall bar show identical values are selected for any further measurements. In order

to confirm that our samples are in the metallic regime, we compare the temperature

dependence of the resistivity of a pristine graphene sample with that of a weakly

hydrogenated graphene sample both at the charge neutrality point and at n = 1×

1012/cm2. At both doping levels the weakly hydrogenated graphene samples and

pristine graphene samples show qualitatively similar temperature dependence (see
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fig. 5.4(a&b)). A logarithmic increase in the resistivity at the CNP with decreas-

ing temperature of the form ρ= ρ0+ρ1ln(T0/T) (see fig.5.4(c)) is observed in both

samples. Thus, in contrast to the strongly hydrogenated samples reported by Elias

et al., our samples are not in the strong localization regime, but are instead in the

metallic regime (disordered Fermi liquid) [20,22]. The logarithmic corrections to the

resistivity likely originate from weak localization, disorder-induced electron-electron

interaction (Altshuler-Aronov effect) [22], or the Kondo effect [23]. Further studies

are needed to differentiate between the various contributions.

5.3.2.1 Is the transport in our devices in the diffusive regime or in the

ballistic regime?

It is also important to confirm whether the charge transport in our devices is in the

ballistic or in the diffusive regime. For this we calculate the electron mean free path

for the weakly hydrogenated graphene sample with the largest mobility µ ∼ 20,000

cm2/Vs at 4 K and compare it with the dimensions of the device (W= 400 nm). The

electron mean free path calculated from the equation σ = 2 e2

h
kF le (where e is the

electron charge, h is Planck’s constant, kF is the Fermi wave vector, and le is the

electron mean free path) gives a le of 170 nm at n = 5 × 1011/cm2. The calculated

mean free path in our highest mobility sample is, thus, much less than the dimensions

of our devices, and confirms that the transport in our weakly hydrogenated samples

is in the diffusive regime.
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a) b) 

Figure 5.5: (a) The evolution of the integrated ID/IG ratio of graphene coated with
HSQ samples irradiated with increasing e-beam dose (b) The evolution of the per-
centage of hydrogenation with increasing irradiation dose for HSQ (0- 5mC/cm2)
calculated from the ID/IG ratio

5.3.3 Determination of percentage of hydrogenation

5.3.3.1 Estimate from Raman Data

The concentration of impurities (ni) and hence the percentage of hydrogenation can

be estimated from the ID/IG ratio (see figure 5.3(a)) of the Raman peaks for different

e-beam irradiation dose [24]. From the ID/IG ratio the spacing between the hydrogen

atoms, and hence the impurity concentration can be determined using the relation [24]

(see figure 5.5)

L2
D(nm

2) = (1.8± 0.5)× 10−9λ4L(IG/ID) (5.3.1)

ni(cm
−2) = 1014/(πL2

D) (5.3.2)

(where LD = separation between hydrogen atoms, λL = wavelength of the Raman

Laser = 514 nm, IG = intensity of Raman G-peak, ID = intensity of Raman D-peak).
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Figure 5.6: The σ vs n plot for one of the G/HSQ samples irradiated with an e-beam
dose of 1mC/cm2. The red curve is the fit to the conductivity for resonant scatterers
which gives an impurity density nimp = 1 × 1012/cm2.

The ID/IG ratio for 1mC/cm2 and 3mC/cm2 HSQ dose gives LD = 13 nm and 9

nm, and ni = 0.9 × 1012/cm2 and 1.6 × 1012/cm2 respectively. From the LD values,

an estimate of the fraction of hydrogenation is obtained as 3
√
3

π

(
a
LD

)2

×100. The

calculated values of hydrogenation for 1mC/cm2 and 3 mC/cm2 HSQ dose are thus

0.018% and 0.05%, respectively.

5.3.3.2 Estimate from Transport data

An estimate of the impurity concentration (ni) can also be done from the conductivity

(σ) vs. carrier density (n) for the hydrogenated graphene samples. Figure 5.6 shows

the σ vs. n data for the sample e-beam-irradiated with a HSQ dose of 1mC/cm2.

The conductivity due to resonant scatterers is given by the relation [25,26]

σ =

(
4e2

h

)(
k2F
2πni

)
ln2(kFR) (5.3.3)
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(where kF = (πn)1/2 is the Fermi wave vector, ni is the concentration of impurity

adatoms, and R is the impurity radius) and a fit to the experimental data with this

equation gives ni ∼ 1.2× 1012/cm2 for 1mC/cm2 and 2× 1012/cm2 for 3 mC/cm2 HSQ

irradiation respectively. The adatom concentration increases by a factor of two from

1mC/cm2 to 3 mC/cm2 irradiation. The percentage of hydrogenation obtained as ∼(
ni

nc

)
× 100 gives 0.025% and 0.051% for 1mC/cm2 and 3 mC/cm2 HSQ irradiation

respectively, where nc is the density of carbon atoms in the hexagonal lattice. This

estimate from the transport data is consistent with the above estimate from the

Raman data.

5.4 Spin transport studies in weakly hydrogenated

graphene devices

a) b) c) 

Figure 5.7: (a) Measurement schematics for the non-local spin Hall measurement.
Inset: schematics showing the deformation of the graphene hexagonal lattice due
to hydrogenation. (b) RNL versus n for pristine graphene (blue) and hydrogenated
graphene 0.02% (red) at room temperature. The dark grey dashed lines show the
ohmic contribution to the measured signal for pristine graphene. (c) Dependence of
the RNL on the percentage of hydrogenation. The dark grey dashed lines show the
calculated ROhmic contribution for this sample.
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Once the charge transport and Raman characterizations are performed, samples with

uniform hydrogenation are selected for spin transport measurements. Since, our aim

is to study the spin Hall effect in the non-local geometry we employ the standard

H-bar geometry for measuring the non-local spin Hall signal [27, 28]. Here, a charge

current (∼ 5µA) is passed across the transverse contacts IS and ID and the non-local

voltage (VNL) is measured across the adjacent contacts (see figure 5.7(a)). Note

that in the H-bar geometry neither the spin injection nor the spin detection requires

ferromagnetic leads, since the former is achieved by the spin Hall effect (SHE), and

the latter by the inverse spin Hall effect (iSHE). Figure 5.7 (b) shows the non-local

resistance (RNL) measurements for an exfoliated graphene Hall bar with length L =

2 µm and width W = 1 µm. The presence of a finite non-local signal at zero field is

not intriguing since its value is comparable to the estimated Ohmic contribution

ROhmic = ρe
−πL
W (5.4.1)

This is expected for pristine graphene samples since the intrinsic SO coupling is so

weak that any non-local signal due to spin Hall effect can be observed only at very

low temperatures (∼ 0.1 K) [3, 14]. However, after very weak hydrogenation (∼

0.02%), we observe a significant increase (∼ 400%) in the non-local signal, well above

what can be accounted for by Ohmic contribution. With increasing hydrogenation

the measured RNL shows a steep increase, reaching 170Ω at 0.05% hydrogenation

(see figure 5.7 (c)). It should be noted that a strong increase in non-local signal is

observed even at charge densities ≥ 1× 1012/cm2. Since the Ohmic contribution to

the non-local signal remains negligible over the entire hydrogenation level, the only

plausible explanation for the observed physical phenomenon, in the absence of an

applied field and at room temperature, is the spin Hall effect. Here, the SO coupling

induced external magnetic field exerts a spin-dependent force F = 2µB∇⃗(S⃗·B⃗) on the
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charge carriers, leading to a pure spin current orthogonal to the charge current [29].

The diffusing spins in graphene, in turn, induce a transverse voltage via the iSHE,

which is detected non-locally at the detector electrode.

5.4.0.3 Eliminating contributions from spurious thermoelectric effects to

the measured non-local signal

Figure 5.8: The I-V characteristics of the non-local signal. The linear dependence of
the I-V curve clearly excludes the possibility of any dominant thermoelectric contri-
bution to the non-local signal.

A possible source of the measured non-local signal, apart from the Ohmic contribu-

tion discussed above, is the contribution from thermoelectric effects, like contributions

from Joule heating. To make sure that such thermoelectric effects are not respon-

sible for the observed non-local signal, we studied the dependence of the non-local

voltage as a function of the applied current. If the dominant contribution is from the

thermoelectric effect the voltage should show a non-linear dependence with applied

current. However, our data clearly shows a linear dependence, thus excluding any

possible contribution from thermoelectric effect. Moreover, it should be noted that
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the temperature gradient due to thermoelectric effect should be along the length of

the sample, while the measured non-local voltage is across the width in the H-bar

geometry, which also allows us to exclude any such contribution from thermoelectric

effects on the measured non-local signal.

5.4.1 Carrier density dependence of the non-local signal

A comparison of the carrier density dependence of the non-local signal with that of the

geometrical leakage contribution indicates a large enhancement of the non-local signal

at the charge neutrality point. This is a consequence of the transport being bipolar

at the charge neutrality point. The spin Hall resistivity ρxy is inversely proportional

to the chare carrier density, n [30]. At the neutrality point due to disorder and two

particle scattering smearing of the 1/n singularity of ρxy occurs, resulting in a steep

linear dependence of ρxy in n [31]. This implies that the spin Hall coefficient, given

by ∂ρxy/∂n has a larger value, giving rise to a giant SHE signal.

5.4.2 Spin precession measurements in an external in-plane

magnetic field

The most direct way to confirm whether the observed non-local signal is due to

the SHE is to study the in-plane magnetic field sweeps, where the presence of spin

polarized current leads to an oscillating signal [27]. For the H-bar geometry, the

non-local signal is predicted to oscillate in an in-plane magnetic field range given

by the Larmor frequency ωB=ΓB ≤(Ds/W
2), where Γ is the gyromagnetic ratio, B

the applied magnetic field, Ds the spin diffusion coefficient and W is the width of the

sample [27]. For this, devices with higher mobilityµ∼ 20,000 cm2/Vs (higher diffusion
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1 

(a) (b) 

(c) (d) 

Figure 5.9: Parallel-field precession data for the sample with L/W ∼ 5 and mobility
∼ 20,000 cm2 /Vs (a) raw data and (b) same data after a background has been
subtracted from the raw data. The red dotted line is the fit for the experimental
curves. The fitting gives λs ∼ 1.6 µm. (c-d) for a second sample with λs ∼ 2.8 µm

coefficient) and smaller W are selected so that the condition W < λs is satisfied and

the variation in the spin polarization across the strip is negligible. Figure 5.9(a) shows

the in-plane field dependence of the non-local signal for the device with L/W ∼ 5 at

T = 4 K. A fit to this oscillating signal using [27]

RNL =
1

2
γ2ρWRe

[√
1 + iωBτs
λs

e

(
−
√

1+iωBτs
λs

)
L

]
(5.4.2)

(where γ is the spin Hall coefficient, ρ is the graphene resistivity , W is the width

of the sample, ωB is the Larmor frequency, τs is the spin relaxation time and λs is

the spin relaxation length) gives a spin relaxation length of λs(B) ∼ 1.6 µm and
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a spin Hall coefficient γ ∼ 0.18. Figure 5.9(b) shows similar precession data for a

second device with λs ∼ 2.08 µm,τs ∼ 40 ps and γ ∼ 0.13. It should be noted that

such an oscillatory behaviour is not seen for pristine graphene samples. Thus, the

oscillatory behaviour of RNL is a direct signature of both the SHE arising from the

hydrogenation of the pristine graphene lattice and the enhancement of an otherwise

weak SO coupling strength in graphene upon hydrogenation.

5.4.2.1 Important note on precession measurements:

Figure 5.10: The non-local signal, RNL vs. n. The black dashed lines show the
calculated leakage current contribution and (b) the precession measurement for the
same sample.

It is important to note that, the oscillating non-local signal in an in-plane field has

an additional background signal (see figure 5.10). Such residual background signal

can exist depending on the boundary conditions imposed on the spin current [32]. As

shown by Hankiewicz et al. [32], the presence of additional leads perpendicular to the

H-bar electrodes, does not influence the spin signal, but influences the residual back-

ground voltage. This appears to be the most plausible explanation for the offset in

our data. The equation 5.4.2. used for fitting the data strictly explains the precession
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part of the data and does not consider the offset involved.

5.4.2.2 Non-local signal as function of perpendicular magnetic field:

Figure 5.11: RNL vs. n for different perpendicular magnetic fields in the range 0-
4 T for (a) sample with L (2 µm)/W (1 µm) = 2 and (b) sample with L (2 µm)/W
(0.4 µm) = 5

In addition to the in-plane magnetic field dependence, we also study the dependence

of the non-local signal in a perpendicular magnetic field. Figure 5.11 represents the

measured RNL vs. n for perpendicular magnetic fields in the range 0-4T and shows

an increasing RNL with increasing B field. The large increase in the non-local signal

near the charge neutrality point can be understood as the combined effect of the

bipolar transport at charge neutrality point and the Zeeman splitting in an applied

external magnetic field. Both result in a steep increase in the Hall resistivity at

the CNP and hence to an enhancement of our non-local signal [31, 33]. Moreover,

in the presence of an external field the percentage change in the non-local signal is

comparable to the changes observed due to flavour Hall effect in pristine graphene
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samples [33]. This, in addition to the recent results on the absence of ferromagnetic

ordering in graphene due to point defects and in hydrogenated graphene, clearly

supports the fact that magnetic ordering in our low hydrogenated graphene samples

is, if at all, weak and can be neglected [34, 35]. In order to confirm that there are

no ferromagnetic moments induced by hydrogenation in our experiments, we have

performed anomalous Hall effect (AHE) measurements. Figure 5.12 shows the AHE

measurements for one of our samples at 3.4 K. The absence of the AHE signal is a

clear indication that there is no ferromagnetic ordering in our weakly hydrogenated

samples also.

Figure 5.12: The absence of any anomalous Hall signal at zero magnetic field for the
weakly hydrogenated sample at T = 3.4 K.
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5.4.3 Length and width dependence of the Non-local signal

5.4.3.1 Length dependence

Further to the magnetic field dependence, we also study the length and width de-

pendence of the non-local signal to confirm that the origin of the signal in weakly

hydrogenated graphene samples is due to the SHE. We first discuss the length de-

pendence by keeping the width W = 1 µm constant. Figure 5.13 shows the length

dependence of the non-local signal both at the charge neutrality point and at n =

1 × 1012/cm2, for the same sample hydrogenated first to 0.02% and then to 0.05%.

The sample has mobilities of 1600 cm2/Vs and 900 cm2/Vs for 0.02% and 0.05% hy-

drogenation respectively. At zero applied field the equation (5.4.2) for the non-local

signal for a device with length L and width W becomes [27,28]

RNL =
1

2
γ2ρ

W

λs
e−

L
λs (5.4.3)

By fitting the RNL/ρ vs. L curve using the above equation (5.4.3), we determine the

spin relaxation length λs ∼ (0.95±0.02)µm and γ ∼ 0.58 at CNP, and λs ∼ (1.12 ±

0.06)µm and γ ∼ 0.45 at n = 1 × 1012/cm2. These results are consistent and in good

agreement with the results from conventional lateral spin-valve [25,26,28,39] devices

for hydrogenated graphene with ferromagnetic contacts [35, 46]

5.4.3.2 Width dependence

Next we study the width dependence of the non-local signal at a fixed length L =

2µm. For this specific sample, the mobility is ∼ 14,000 cm2/Vs at room temperature.

In such high mobility samples, the width dependence of the SHE signal shows a

power law dependence (see fig 5.14 (a)). The Ohmic contribution on the other hand
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a) b) 

Figure 5.13: Length dependence of RNL at room temperature. (a) At the CNP and
(b) at n = 1×1012 cm−2 (b) for samples with 0.02%(red solid circles) and 0.05% (blue
solid circles) hydrogenation. Here the length is the center-center distance between the
injector and detector electrodes. The solid lines are the fit for the data and the dark
grey dashed line is the calculated ohmic contribution at these charge carrier densities

depends on the width as e
−πL
W and is orders of magnitude smaller. The distinction

between the non-local signal and the expected Ohmic contribution is most apparent

at the smallest width (W = 400 nm). This is in good agreement with the theoretical

predictions of Abanin et al. [27] for narrow channels. The observed width dependence

can be also explained by the theoretical model for clean wires, i.e. for high mobility

devices in the limit W < λSO, where λSO is the spin precession length defined as

the length scale in which the electron spin precess a full cycle in a clean ballistic 2D

system [40, 41]. This length scale λSO remains unchanged as long as the width W

of the wire is less than λSO. In such samples, the finite width of the devices can no

longer be neglected and the spin relaxation length as a function of the width W is

given by λs(W ) =
λ2
SO

W
. The relation for non-local signal can hence be modified as
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Figure 5.14: RNL (red circles) as a function of width W (W= 400 nm -1.8 µm) for
a fixed length L (2 µm). The solid red line is the fit for the data and the dark grey
dashed line is the calculated ohmic contribution (inset: R versus W on a linear scale).

RNL =
1

2
γ2ρ

(
W

λSO

)2

e
− LW

λ2
SO (5.4.4)

For the case W << λSO, the expression can be Taylor expanded in W as

RNL =
1

2
γ2ρ

(
W

λSO

)2 [
1− LW

λ2SO
+ ......

]
(5.4.5)

i.e. for small W’s the non-local signal has a power law dependence in W and a log-log

plot of R vs. W should give a straight line as seen in Figure 5.14. The figure clearly

follows the expected linear dependency and the fitting gives a self-consistent value for

λSO ∼ 8µm. It should also be noted that if the dominant signal came from Ohmic

contribution, we should have seen a non-linear curve (grey dashed line in the figure).
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5.5 Spin - orbit coupling in weakly hydrogenated

graphene devices

The in-plane magnetic field spin precession measurements and the length and width

dependence of the non-local signal unambiguously demonstrates that the observed

signal is due to the spin Hall effect induced by the enhancement of the spin-orbit (SO)

coupling strength in graphene by weak hydrogenation. In hydrogenated graphene,

the dominant spin scattering mechanism is predicted to be the spin dephasing due

to Elliott-Yafet (EY) scattering [12]. Within the EY mechanism the spin relaxation

time τs is given by [43,45]

τs = (ϵF/∆SO)
2 τp (5.5.1)

where ϵF is the Fermi energy, ∆SO is the spin-orbit coupling strength and τp the

momentum relaxation time.

5.5.1 Estimation of τp and τs

As discussed in section 5.3.2, our weakly hydrogenated samples are in the diffusive

regime. In this regime, the values for τp = 2D/v2F , τs = λ2s/D, where vF is the Fermi

velocity, D is the diffusion coefficient calculated from the conductivity σ as σ = νe2D,

where ν is the density of states and λs the spin diffusion length can be evaluated. For

the typical hydrogenated samples with mobility 1600 cm2/Vs and 900 cm2/Vs, the

values for τp are 24 fs and 12 fs while the values for τs are 100 ps and 90 ps respectively

at n = 1.0 × 1012/cm2. The Fermi energy, ϵF = ~vF
√
πn at n = 1.0 × 1012/cm2.

Figure 5.15 shows the linear dependence of τs on τp for weakly hydrogenated samples
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Figure 5.15: τs vs. τp for weakly hydrogenated graphene devices.

at a constant density 1.5 × 1012/cm2. The linear dependence clearly suggests that in

weakly hydrogenated graphene the EY spin dephasing mechanism dominates.

5.5.2 Determination of SO coupling strength

From the calculated value of the τs, τp and ϵF , the spin-orbit coupling strength es-

timated using equation(5.5.1) gives a value of 2.5 ± 0.2 meV. Remarkably, this is

three orders of magnitude higher than the values predicted for pristine graphene. In

an undistorted graphene lattice all the bonds are sp2 with the σ orbitals perpendic-

ular to the π orbitals which are normal to the graphene plane. The σ orbitals are

all coupled and the low energy physics of the problem is described by the 2D Dirac

Hamiltonian for the π band:

H0 = −i~vF σ⃗ · ∇⃗, (5.5.2)

132



where σ⃗ is the Pauli matrices that act on the subspace of the sublattice A and B,

vF is the Fermi-Dirac velocity (∼ 106 m/s), and ∇⃗ is the gradient operator. The

spectrum of H0 is given by E0(k) = ±vF k, and gives rise to two Dirac cones at the K

and K’ points in the Brillouin zone. The SO coupling given by :

HSO = ∆at
SOL⃗ · S⃗, (5.5.3)

where ∆at
SO ≈ 10 meV is the SO strength for atomic carbon, L⃗ is the angular mo-

mentum operator (L = 1 for the carbon p-orbitals, with projections m=0, ±1) and S⃗

(S= 1/2 with projections sz = ↑, ↓) is the spin operator. The L⃗ · S⃗ operator induces

transitions between orbitals of different values of m and sz. Since the σ band is made

of pure m = ±1 states, and the π band is made out of pure m= 0 (i.e. pz orbitals),

the SO coupling always involves transition between the two bands. In a sp2 bond, the

σ and π bands are orthogonal and separated by an energy of the order of ∆E
∼=10 eV.

Hence SO can occur only as a second order process with energy ∆sp2

SO=|∆at
SO|2/∆E

∼=

10 µeV, explaining the smallness of SO in flat graphene [44].

On the other hand, an adatom locally breaks the reflection symmetry across the graphene

plane leading to an out-of-plane distortion by an angle φ relative to the plane (it varies

from φ = 0◦ for sp2 to φ = 19.5◦ for a full sp3). For φ ̸= 0◦ the distortion mixes the σ

and π orbitals that are no longer orthogonal (for full sp3 these states are degenerate).

Hence, the SO becomes a first order effect leading to the large enhancement of SO

coupling for covalently bonded hydrogen impurities in graphene. Following Ref. [12],

we can show that the strength of the SO coupling can be written as:

rSO = ∆H
SO/∆

at
SO

∼= −3tan(φ)[1− 2tan2(φ)]1/2 (5.5.4)

or equivalently,
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φ = Arctan[1/4− (9− 8r2SO)
1/2/12]1/2. (5.5.5)

Our experimental results give rSO ∼= 0.25 which implies φ = 5◦. This value is of

the same order of magnitude to the value predicted theoretically, φDFT ≈ 16◦, by

ab initio calculations for suspended graphene [45]. We assign the difference between

the measured value and the one obtained by DFT to the interaction between graphene

and its substrate, which is not taken into account in ab initio methods.

In the presence of this local spin orbit coupling two new terms can be added to the

Hamiltonian H0: (1) a Dresselhaus term,

HD = λDσzszτzδ(r)a
2, (5.5.6)

where τz = ±1 represents either the K or K’ points (a is the lattice spacing); and (2)

a Rashba term,

HR = 2λR(σxsyτz − σysx)δ(r)a
2. (5.5.7)

Notice that HD is invariant under time reversal symmetry, T (T: σ → σ, T: s → -s,

T: τ → -τ) and parity, P (P: σ → -σ, P: s → s, P: τ → -τ). For a uniform system, it

opens a gap in the spectrum of size λD . HR is allowed in this case because reflection

symmetry is broken. In a uniform system, this term does not open a gap but it splits

the up and down spin bands into four hyperbolic bands of energy:

ER(K) = ±λR ± [λ2R + (vFk)
2]1/2 (5.5.8)

which are parabolic at low energies with an effective mass given by m∗ = λR/v
2
F .

These two terms are allowed by symmetry and, in a scattering process, lead to spin

precession and hence to spin Hall effect.
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5.5.3 Comparison with lateral spin valve data for hydro-

genated Graphene

a) b) 

Figure 5.16: (a) The non-local spin-valve resistance as a function of the in-plane
magnetic field.The horizontal arrows show the field sweep direction and (b) the Hanle
precession measurement for perpendicular magnetic field for the same junction. The
fitting gives a spin relaxation time of 200 ps which is in good agreement with the
values extracted from the spin Hall measurements.

The spin relaxation times measured from our spin Hall measurements are in the

picoseconds range. Since these spin Hall measurements in weakly hydrogenated

graphene devices are performed for the first time in this work, it will be better to

perform a consistency check on the extracted spin parameters using the conventional

lateral spin-valve devices. For this, conventional spin-valve devices with MgO tunnel

barrier and Co electrodes are made, followed by the HSQ coating. Here, while device

fabrication, we do not develop the HSQ in TMAH (trimethyl ammonium hydroxide)

solutions since the ferromagnetic electrodes easily degrade. Figure 5.16(a) shows the

non-local bipolar spin-valve signal in an in-plane magnetic field sweeps in the range
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± 150 mT. The clear bi-polar signal confirms the spin-transport in weakly hydro-

genated graphene. Moreover, from the Hanle spin-precession measurements we can

estimate the spin relaxation time in these samples. Figure 5.16(b) shows the Hanle

spin precession measurements in an out-of plane magnetic field swept in the range ±

300mT. The fit to the Hanle curves, as explained in chapter 4, gives a spin relaxation

time in the order of 200ps which is in excellent agreement with the values extracted

independently from the spin Hall measurements. Moreover, these results are also in

good agreement with the values reported by McCreary et al. [35] and by Wojtaszek

et al. [46] in weakly hydrogenated graphene spin-valve devices.

5.5.4 Identification of the spin scattering mechanism

Finally, we identify the dominant microscopic mechanism for the observed spin Hall

scattering. For the side jump mechanism the spin Hall resistivity ρSHE is independent

of the impurity concentration nimp, while for skew scattering ρSHE ∝ nimp [30]. The

ρSHE is estimated from the spin Hall angle, defined as γ = (σSHE/σG) = (ρG/ρSHE)

and gives a value of ρSHE = 12.9 kΩ and 14.2 kΩ for 0.02% and 0,05% hydrogenation

respectively. The value of ρSHE, thus, depends only weakly on nimp (nimp ∼ 0.9

× 1012/cm2 for 0.02% and 1.16 × 1012/cm2 for 0.05% hydrogenation) and hence,

suggests the dominance of side-jump mechanism in hydrogenated graphene samples.

5.6 Conclusion

In this chapter, we have demonstrated that the spin-orbit coupling in graphene can

be drastically enhanced by the controlled addition of covalently bonded adatoms

without a significant suppression of conductivity. Hydrogenated graphene has been
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used as a model system to demonstrate that this leads to a strong spin Hall effect.

Such weak hydrogenation keeps the system in the metallic regime, without creating

electronic (Anderson localization). The SHE is confirmed by directly measuring the

non-monotonic oscillatory behaviour of the non-local signal in an applied in-plane

magnetic field as also by studying the dependence of the non-local signal on the

length, width and adatom density. From the length dependence of the non-local

signal, we extract the spin transport parameters like the spin relaxation length ∼

1µm, spin relaxation time ∼ 90 ps and spin-orbit coupling strength ∼ 2.5 meV for

samples with 0.05% hydrogenation. These findings are crucial to the development

of graphene based spintronics applications, as the need for ferromagnetic electrodes

and magnetic field is eliminated from the device architecture. Last but not least, the

demonstration of the non-local spin Hall effect due to impurity adatoms in graphene

is a major step in the realization of a robust 2D topological states and a SHE based

spin transistors (SHE-SFET) at RT.
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Chapter 6

Giant Spin Hall Effect in CVD
Graphene1

6.1 Introduction

The integration/utilization of graphene into commercial spintronics devices and topo-

logical quantum computation schemes requires a control over graphene’s intrinsic

properties like the spin-orbit coupling (SOC) strength, while preserving its long spin

relaxation length [1, 2]. Here, the introduction of dilute adatoms is expected to hold

significant potential as adatoms can enhance the SO interaction by several orders of

magnitude. Covalently bonded hydrogen atoms have already been shown to enhance

graphene’s SOC strength [3]. Recently, it has been predicted that electron tunneling

from graphene to heavy adatoms and back locally enhance graphene’s SOC by sev-

eral orders of magnitude [2, 4–6]. Decoration with adatoms, preserving time reversal

symmetry and primarily inducing intrinsic SOC type, are the key factors to achieve

a robust 2D topological insulator (TI) state in graphene [2]. The realization of such

a quantum spin Hall state in conjunction with the electric field effect in graphene

1Jayakumar Balakrishnan et al., manuscript in preparation
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is of great significance since TIs in proximity with superconductors are predicted to

host Majorana fermions which can be used as building blocks for a topological quan-

tum computer [2]. Most importantly, the detection of the spin-polarized current on

the surface of the topological insulator is extremely difficult and requires the exper-

iment to be performed in the ballistic transport regime [7, 8]. This is because due

to the helical spin polarization of the surface states the spin relaxation length and

the electron mean free path in the TI surface states becomes equal. Graphene, with

its ultra-high mobility even at room temperature, is thus an ideal candidate for the

direct experimental detection of the spin-polarized current, which until now has only

been observed in 2D HgTe quantum wells at low temperatures [7, 9].

In this chapter, we show that the presence of dilute residual Cu adatoms on CVD

graphene grown on Cu foil (Cu-CVD) [10–13], is sufficient to enhance the SOC

strength by several orders of magnitude. This allows the generation of spin cur-

rents via spin Hall effect (SHE) [14, 15] with exceptionally large spin Hall coefficient

(angle), γ ∼ 0.2 comparable to what has been observed in thin films of heavy metals

like gold (Au) [16], platinum (Pt) [17] or tungsten (W) [18]. Such large spin Hall co-

efficient is an important step towards graphene based spintronics devices within the

existing CMOS technology. The results are confirmed independently by intentionally

introducing metallic adatoms (Cu, Ag and Au) on pristine exfoliated graphene sam-

ples. Similar to the hydrogenated graphene samples, the enhancement in the SOC

strength will be determined by studying the non-local spin Hall effect in the H-bar

geometry.
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6.2 Cu-CVD graphene

The growth of CVD graphene on Cu foil and the subsequent etching of Cu in ammo-

nium per sulfate (7 gm dissolved in 1-litre of DI water) and transfer onto a Si/SiO2

substrate are performed following ref. [10]. The transferred samples are annealed in

Argon/Hydrogen (90:10) environment at 320◦C for 5 hours to remove any organic

contaminants. Two steps of e-beam lithography, first to etch the Hall bar and the

second for Cr/Au contacts are performed. The final device is again annealed in Ar-

gon/Hydrogen (90:10) environment at 300◦C for 3 hours.

The CVD growth process is an ideal way to introduce metallic adatoms to graphene

since it utilizes metallic thin films as substrate for growth. The presence of residual

Cu atoms in CVD graphene has already been established by high resolution trans-

mission electron microscopy images [19]. Moreover, Cu has also been used as an

extrinsic impurity to induce spin-orbit coupling and spin Hall effect in metals like

Pt [17]. Figure 6.1 shows the AFM image of a graphene sample decorated with Cu

nanoparticles with average particle diameter of ∼ 30 nm and are in good agreement

with the TEM results [19].

6.3 Characterization graphene samples

Prior to any transport (charge and spin) measurements, CVD graphene samples

are characterized by (1) Raman spectroscopy, (2) X-ray photoelectron spectroscopy

(XPS) and (3) energy dispersive X-ray spectroscopy (EDS), to estimate the quality

as well as the amount of residual Cu adatoms on graphene. Figure 6.2(a) shows the

Raman mapping of the G, 2D and D peak intensities of a CVD graphene Hall bar

device. The Raman spectroscopy data shows that the defect peak (D-peak) in our
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Figure 6.1: (a) AFM data for graphene sample decorated with Cu nanoparticles. The
Particle Analysis function gives the details of the distribution of the particle sizes on
graphene and the average Cu nanoparticle size for this sample is about 32 nm

samples is negligible compared to the G and 2D peak intensities, confirming the good

quality of CVD graphene with minimum defects and/or vacancies. However, in such

samples, our XPS and EDS spectrum shows the characteristic peaks for Cu (figure

6.2 (b-c)). The shape and position of the Cu peaks in the XPS spectrum also confirms

that the Cu adatom on graphene is not oxidized [21].

6.3.1 Nature of Cu adsorption on Graphene

As discussed above, the XPS and EDS data clearly shows the presence of Cu adatom

in CVD graphene. An idea of how the Cu adatoms are adsorbed on to the graphene

lattice can be understood by analyzing the Raman data carefully. Figure 6.3 (a&b)

shows the comparison of the Raman 2D and G peak position for pristine exfoliated

graphene samples and Cu-CVD graphene samples. With respect to the pristine ex-

foliated graphene samples, the Raman 2D peak for Cu-CVD graphene shows a blue
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2D G D 

a) 

b) c) 

Figure 6.2: (a) Raman mapping of a Cu-CVD graphene spin Hall device showing
2D, G and D bands. The high quality of the CVD graphene can be inferred from
the weak D-band intensities. The D-peak intensities are more prominent along the
edges of the device which is due to the oxygen plasma induced defects at the edges,
(b) Energy dispersive X-ray spectroscopy (EDS) using TEM. The samples for TEM
measurements are prepared on a standard TEM gold grids. The size of each grid is
7 µm X 7 µm. The additional Au peaks in the EDS spectrum is due to the presence
of Au TEM grids on which the graphene samples are prepared and (c) XPS data for
CVD graphene showing the C1s peak and the inset shows the measured Cu 2p peaks.
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Figure 6.3: (a & b) Comparison of Raman 2D and G peak positions for Cu-CVD and
exfoliated graphene samples and (c) Raman G-peak shift for hydrogenated graphene
sample showing the chemisorbed nature of the adsorption.

shift of ∼ 10 cm−1 in wavenumber while the G peak shows negligible shift. The

blue shift of 10 cm−1 in 2D peak indicates a strain of 0.3% and the relatively small

G-peak shift validates the physisorbed nature of the Cu-adatom [22]. If the adatoms

were chemisorbed, i.e. forms chemical bonding with the carbon atoms like in hy-

drogenation, the G-peak position shows a large shift of ∼ 10 cm−1 while graphene

with physisorbed adatoms show negligible G-peak shift. Figure 6.3c shows the G-

peak shift in weakly hydrogenated (∼0.01%) graphene sample when compared with

the pristine exfoliated samples. The negligible G-peak shift in our CVD graphene

samples together with the XPS and EDS spectra strongly suggests not only the pres-

ence of residual Cu, but also clearly demonstrates the physisorbed nature of the Cu

adatoms on graphene.
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Figure 6.4: (a) Optical image of 3×3 array of devices on Si/SiO2 substrate together
with the SEM image of the active area of a typical spin Hall device. (b) AFM 3D
surface topography of a typical CVD spin Hall device with details of actual measure-
ment configurations and (c) the longitudinal resistivity as a function of carrier density
for opposite pair of contacts (blue and red curves). Inset: Transverse resistance as
a function of gate voltage showing the absence of any zero field Hall signal, thus
eliminating the possibility of magnetic moments due to adatoms.

6.4 Transport measurements

6.4.1 Charge transport measurements

Figure 6.4 (a&b) shows the optical picture of a 3 x 3 array of spin Hall devices on

a Si/SiO2 wafer together with the scanning electron micrograph (SEM) and AFM

images. Prior to any spin transport measurements, the Cu-CVD graphene devices

are first characterized for charge transport using the conventional four-terminal local

geometry to ensure homogeneity of the sample and only Hall junctions where the

opposite pair of contacts shows identical resistivity are selected (see figure 6.4(c)).

Moreover, the absence of any transverse Hall resistivity (inset figure 6.4(c)) at zero

external magnetic fields confirms the uniformity of the sample [23, 24]. The ab-

sence of this anomalous Hall signal also eliminates the possibility of (Ferro) magnetic

moments due to the introduction of adatoms, the presence of which could break the
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required time-reversal symmetry for the realization of a 2D topological insulator state

in graphene.

6.4.2 Non-local measurements

Once the devices are characterized for charge transport, non-local spin transport

measurements are performed first via the conventional lateral spin-valves using fer-

romagnetic contacts [25–28] and then by the spin Hall measurements using gold con-

tacts [14,15].

6.4.2.1 Spin-valve measurements

Figure 6.5: Non-local spin-valve measurements: (a) RNL vs B|| and (b) Hanle pre-
cession measurements for Cu-CVD graphene samples.

The CVD spin-valves has the Co (35 nm) /MgO (2 nm)/CVD graphene/MgO (2

nm)/Co (35 nm) structure with a final Au capping layer, 5 nm thick, to prevent

oxidation of the Co electrodes. The non-local spin-valve signals for parallel and
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perpendicular magnetic field sweeps are performed following the procedure discussed

in chapter 4 and is shown in figure 6.5. A fitting to the Hanle precession curve using

the relation [26]

Rnl ∝
∫ ∞

0

1√
4πDst

e
−L2

4Dst cos(ωLt) e
−t
τs dt (6.4.1)

gives a spin relaxation length of 1.3 µm.

6.4.2.2 Spin Hall measurements

The ferromagnet free spin Hall measurements are performed by employing only Au/Cr

contacts in the non-local H-bar geometry both at room temperature (RT) and at liquid

He temperatures at zero magnetic fields. In the presence of an enhanced SOC, passing

a charge current through the first leg of the H-bar (contacts C1 and C2 in fig. 6.6(a))

should result in the creation of a longitudinal spin current in the graphene channel via

SHE which can then be detected as a non-local voltage across the adjacent contacts

(contacts C3 and C4) on the second leg by invoking the inverse spin Hall effect (iSHE)

(see figure 6.6 (a) for measurement geometry). In fig. 6.6(b), we compare the non-

local signal (RNL) as a function of the charge carrier density n at RT, for exfoliated

pristine graphene and CVD graphene with identical length to width ratio L/w = 2

and comparable mobilities (∼ 5000 cm2/Vs). We observe an exceptionally high RNL

∼ 160 Ω for CVD graphene. On the other hand in exfoliated grapheme the measured

signal is indistinguishable from the expected Ohmic contribution (∼ 20 ). The latter

follows [29,30],

ROhmic = ρe−πL/W (6.4.2)
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Figure 6.6: (a) Schematics showing the non-local measurement geometry and (b)non-
local signal RNL vs. charge carrier density for pristine graphene samples and Cu-
CVD graphene samples. The dotted lines represent the calculated Ohmic leakage
contribution. The L/W ratios for all the samples are ∼ 2

where ρ is the resistivity of the channel, L is the length of the channel and w is

the width of the channel. Since, the thermo-magneto electric effect, as discussed in

ref. [31], are only present in an externally applied perpendicular magnetic field, the

only remaining physical phenomenon that would give rise to a zero magnetic field non-

local signal is the SHE. [14,15,32] The SHE, however, requires exceptionally large SOC

strength and points to an enhanced SOC in Cu-CVD graphene when compared to

exfoliated pristine graphene. Hence an unambiguous confirmation of the SHE in Cu-

CVD graphene is essential. Towards this, we perform three independent experiments,

viz.

1. Length dependence of the non-local signal

2. Width dependence of the non-local signal and

3. the in-plane magnetic field dependence, spin precession, of the non-local signal
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6.4.3 Length and width dependence of the non-local signal

Figure 6.7: Length and width dependence of the non-local signal for Cu-CVD
graphene. The inset shows the RNL vs. n for different L/W ratio

For the length dependence measurement, we fix the width W of the channel and vary

the length L and for the width dependence case we fix the length L of the sample and

vary the width W. Here,we first discuss the length dependence of the non-local signal

(fig. 6.7(a)) by fixing W = 0.5 µm and varying length L = 1.5 - 4 µm. The length

dependence of the non-local signal at the charge neutrality point decays exponentially

with L. Here, the exponential decay cannot be accounted for by the length dependence

of the Ohmic contribution ROhmic (dashed grey line). Instead, assuming a spin-based

origin our data can be fit well with the formula [29,30]

RNL =
1

2
γ2ρ

W

λs
e−

L
λs . (6.4.3)

Here, γ is the spin Hall coefficient (angle) defined as spinHallconductivity
longitudinalresistivity

=σxy

σxx
, ρ is the

local resistivity of the channel, and λs is the spin relaxation length. From this, we

extract a spin relaxation length of 0.8 µm and exceptionally large spin Hall coefficient

γ of 0.18. However, since both RNL and ROhmic depend exponentially on the length
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L, we also study the dependence of the non-local signal on the width of the device

to eliminate any ambiguity arising on the measured non-local signal. For the width

dependence sample, we fix the length of the sample L = 2 µm and vary the width W

∼ 0.6 - 1.6 µm (see figure 6.7 (b)). The width dependence of the non-local signal for

Cu-CVD graphene samples show a power law dependence distinct from the Ohmic

contribution (shown as grey dotted line in figure 6.7 (b)). This power law dependence

can be explained by including the dependence of the λs on the width w of the sample.

It has been theoretically predicted that λs varies with the width W as [33,34]

λs(W ) =
λ2so
W

(6.4.4)

whereλso is the spin precession length defined as the length scale in which the electron

spin precess a full cycle in a clean ballistic 2D system. For such samples, the non-local

resistance RNL at zero magnetic fields gets modified to

RNL =
1

2
γ2ρ

(
W

λSO

)2 [
1− LW

λ2SO
+ ......

]
(6.4.5)

The fitting of figure 6.7(b) with equation (6.4.5) gives a spin relaxation length and

γ. A comparison of the values obtained from the length and the width dependence

of the non-local signal is shown in Table 6.1. These values are in excellent agreement

with values extracted from the length dependence data for the non-local signal and

provides extra support for extrinsically generated spin Hall effect in graphene.

Table 6.1: Fitting parameters from L and W dependence

Adatom λs (µm) γ

L dependence Cu-CVD 0.8 0.20
W dependence Cu-CVD 1.1 0.18
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6.4.4 In-plane magnetic field dependence of the non-local sig-

nal

Figure 6.8: In-plane magnetic field dependence of the non-local signal for two Cu-
CVD graphene samples. The amplitude of the oscillatory signal diminshes as we move
away from the charge neutrality point. Inset: In-plane field dependence for a pristine
exfoliated sample.

For the narrow strip geometry, as in our case, the non-local transresistance should

show a monotonic oscillatory dependence with multiple sign change and damping as

a function of the in-plane magnetic filed due to the precession of spins in the external

field. Hence, demonstration of the spin precession is essential for the unambiguous

confirmation of spin Hall effect in Cu-CVD graphene. Figure 6.8 shows the RNL vs B||

for two CVD graphene samples (CVD1 and CVD2) and pristine exfoliated graphene
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sample (inset). For pristine graphene samples the characteristic oscillatory behavior

is absent while the CVD show the non-monotonic oscillatory dependence of the non-

local signal. The magnitude of the oscillatory signal diminishes as we move away

from the Dirac point. The oscillating signal, within the diffusive regime, can be fitted

with [29]

RNL =
1

2
γ2ρWRe

[√
1 + iωBτs
λs

e

(
−
√

1+iωBτs
λs

)
L

]
(6.4.6)

(where ωB = ΓB|| is the Larmor frequency with Γ the gyromagnetic ratio for electron

and B|| is the applied in-plane magnetic field). The fitting gives a λs of 1.6 µm and 1.1

µm and a spin Hall coefficient γ of ∼ 0.14 and 0.18 for CVD1 and CVD2 respectively.

6.5 Identifying the cause for giant spin Hall effect

in CVD graphene

The length, width and Hanle precession measurements not only confirm that the

observed non-local signal is due to SHE, but also gives comparable spin parameters.

It is worth noting that the spin parameters obtained from spin Hall measurements

are also in good agreement with values obtained from both the conventional non-local

spin-valve (see fig.6.5) [28] and spin pumping [35] measurements. All these point to

a strong enhancement of the SOC in CVD graphene. Furthermore, since we do not

observe SHE in exfoliated pristine graphene, its origin are extrinsic and must be due

to growth defects such as wrinkles, grain boundaries, ripples, vacancies, or the organic

residues coming from the Cu etching solution or the residual Cu adatoms [19]. We

can rule out defects as the main contributor to the observed non-local signal since

Raman mapping shows no D-peak for the entire device. We further rule out organic
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residues as the dominant source by immersing identically prepared exfoliated graphene

samples in the same Cu etching solution (ammonium per sulfate). In such devices

the measured non-local signals are much smaller than in CVD graphene and remain

comparable to the expected Ohmic contribution (see fig.6.9).

Figure 6.9: (a) Length dependence of the non-local signal for exfoliated graphene
samples dipped in the etchant solution, ammonium per sulfate. The measured non-
local signal is comparable to the calculated Ohmic contribution. (Inset: RNL vs. n
for one junction) (b) Length dependence of the non-local signal for Cu-CVD graphene
sample, before and after vacuum annealing at 400K for 24 hours. (c) Measured non-
local voltage as a function of the source-drain current (VNL vs. ISD).

Since the growth of CVD graphene involves hydrogen environment, the possibility of

the hydrogen getting bonded with the carbon atoms cannot be neglected. One way

to identify the presence of hydrogen is to look at the Raman D-peak. As shown in

fig.6.2, in our CVD graphene samples the Raman D-peak is prominent only at the

sample edges, which can be assigned to the uneven edges of the sample due to oxygen

plasma etching. However, to make sure that the contribution from any remnant

hydrogen is not present to the non-local signals, we vacuum anneal the sample at

400K (limited by the maximum temperature set point of our probe) for 24 hours.

Our results,fig.6.9(b), shows very little effect of annealing on the measured signal and

the non-local signal before and after annealing remains the same, thus eliminating
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hydrogen as the possible cause for the measured non-local signal. This leaves only

residual copper adatoms as main cause for the large increase of non-local signal. This

has been also recently confirmed directly by TEM measurements [19]. Indeed detailed

AFM measurements show adatom clustering with average size ∼ 20 nm in radius and

particle density of 0.6 × 1010/cm2) (see fig 6.1).

We directly confirm the presence of Cu also by both XPS and EDS measurements

(see fig 6.2(b&c)). Note that here and unlike in ref. [3], a comparison of the Raman

G-peak position in CVD graphene with that in exfoliated graphene rules out bond-

angle deformation as a potential cause for the SOC enhancement [22]; in hydrogenated

graphene, the Raman G-peak shows a shift of ∼ 10 cm−1 in wavenumber (see fig.6.3).

[22] However, the negligible G-peak shift in our CVDG demonstrates the physisorbed

nature of the Cu adatoms on graphene (see fig.6.3). Furthermore, the Raman mapping

of the D-peak intensity on the entire device shows negligible D-peak in the active

device channel (see fig.6.2). All this strongly suggests proximity induced enhancement

of the SOC.

Eliminating Thermo-electric contributions to non-local signal

As discussed in ref. ( [31]), the measured non-local signal could have significant con-

tributions from thermo-magneto-electric effects. However, these contributions play

an important role only in the presence of a perpendicular magnetic field. In the ab-

sence of an external field in the length and width dependence measurements and in

the presence of in-plane field in the spin precession measurements, the only thermal

effect which could contribute to the non-local signal is the Joule heating. Since in

Joule heating, the measured signal is proportional to the square of the source drain

current, studying the I-V characteristics of the non-local device should provide the

clear evidence, if any. Figure 6.9c shows the I-V curve for a Cu-CVD graphene device.

The linear I-V clearly demonstrates that the contributions from Joule heating, if any,
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to the measured non-local signal is negligible.

6.6 Control experiments on exfoliated graphene

with metallic adatoms

To unambiguously establish that Cu adatoms are the dominant cause for the observed

SHE in CVD graphene, we exfoliate graphene onto a Cu foil and repeat the same

etching and transfer process used for CVD graphene. Lastly, similar measurements

have been also performed on exfoliated pristine graphene samples decorated with Ag

and Au by both solution process and thermal evaporation to confirm that the SHE

is due the proximity effect caused by physisorbed metal adatoms .

6.6.1 Sample preparation

6.6.1.1 Introduction of Cu adatoms

Two different methods have been used to introduce Cu adatoms on exfoliated graphene.

1. The graphene samples are first exfoliated on to a SiO2 substrate with Au mark-

ers. Using the standard transfer technique for graphene/boron nitride hetero-

structures [20], the exfoliated graphene samples together with the Au markers

are peeled off with a polymer layer and then transferred on to a Cu foil. The

transferred samples are first baked at 120◦C in a hot plate for better adhesion.

The sample on Cu foil is then placed in the Cu etchant (ammonium per sulfate,

7gm dissolved in 1-litre of DI water) [10]. The etching process which is exactly

the same as the process performed for CVD graphene introduces Cu particles
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on graphene.

2. A second way to introduce the Cu adatoms is to dissolve the Cu foil in the Cu

etchant (ammonium per sulfate). This is followed by immersing the graphene

spin Hall device on SiO2 into the solution containing dissolved Cu.

6.6.1.2 Au and Ag deposition

Figure 6.10: (a) SEM data for graphene sample decorated with Au nanoparticles and
(b) AFM data on final spin Hall device with Au nanoparticles.

1. The Au and Ag adatoms are introduced onto the graphene by drop-casting

commercially available Au/Ag colloidal solutions. The Au and Ag nanoparticles

are of average size ∼ 30 nm. For the experiments shown in this paper, we

have used the colloidal solutions bought from BBI solutions (Product code:

CIKITDIAG (for Au) and ArraySC40 (for Ag)). These solutions are diluted

with DI water to get different concentrations of the nanoparticles, i.e. 1010

particles/ml to 107particles/ml.

2. By thermal deposition of Au. Here, the deposition is performed by using the

lowest deposition rate of 0.01Å/s and by opening and closing the shutter for
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the sample for a short time period ∼ a second. This allows deposition of Au

nanoparticles on graphene lattice with average size ∼ 25 nm. Figure 6.2 shows

the AFM image for a graphene spin Hall device with Au adatoms and Table 6.2

shows the average diameter and particle distribution of various adatoms in our

samples

Table 6.2: Adatom distribution

Adatom Avg. Diameter (nm) Stand. Dev.(diameter, nm) Particle Density (cm−2)

Cu 40 12.6 0.6×1012

Au 29 8 1.1×1012

6.6.2 Transport measurements

Figure 6.11: (a & b) Length and width dependence of the non-local signal for ex-
foliated graphene decorated with Cu, Ag and Au adatoms. The grey dotted line
shows the measured non-local signal (which is equal to the Ohmic contribution) for
a pristine graphene sample (Inset: RNL vs n) (c) ϵ2F τp/τs vs ϵ2F τ

2
p plot for various

adatoms.

In exfoliated graphene samples decorated with metallic adatoms, we perform identical

local and non-local measurements. In such samples, we find non-local signals com-

parable to the one observed for CVD samples. Figure 6.11 summarizes the length,
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Figure 6.12: In-plane magnetic field precession measurements for graphene with Cu
and Au adatoms. Far away from the charge neutrality point the oscillatory behaviour
of the spin signal diminishes. The red dotted lines are fit to the experimental data.

width and Fermi energy dependence of the non-local signal for all three types of metal

decoration. The fits give comparable spin relaxation lengths and spin Hall angle (see

Table 6.3). The spin natures of the signals are again confirmed by Hanle precession

measurements (fig. 6.12). In contrast to the exfoliated graphene dipped in etch-

ing solution only, samples with metallic adatoms show the characteristic oscillatory

behavior when an in-plane magnetic field is swept.

The demonstration of SHE in exfoliated graphene decorated with metallic adatoms

like Cu, Au and Ag clearly confirms our inference of residual Cu atom induced SHE

in CVD graphene.
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Table 6.3: Spin parameter for graphene decorarted with metallic adatom

Adatom Mobility (cm2/Vs) λs(µm) γ

Cu-CVD 11000 1.6 0.14
Cu-Exf 9000 1.1 0.27
Au-Exf 15000 2.0 0.15

6.6.2.1 Additional note on in-plane magnetic field dependence

As discussed in the previous section, as we move away from the charge neutrality

point the amplitude of the oscillating signal diminishes. This is consistent with the

fact that the amplitude of the non-local signal is proportional to the resistivity of

the sample. Figure 6.13 shows the in-plane magnetic field dependence of the non-

local signal at different back gate voltages for the same exfoliated graphene sample

decorated with Au adatoms.

6.7 Estimate of spin-orbit coupling strength

The length, width and in-plane magnetic field dependence of the non-local signal un-

ambiguously confirms the spin Hall effect in graphene decorated with metallic adatom.

This inturn demonstrates that the addition of the metallic adatom enhances the spin-

orbit coupling (SOC) strength in graphene and an estimate of this enhanced SOC can

be determined by understanding the dominant spin relaxation mechanism in these

systems. For this, we study the dependence of the spin relaxation time τs to the mo-

mentum relaxation time τp and a linear relation τs ∝ τp indicates the dominance of

the EY spin scattering mechanism [36] while τs ∝ τ−1
p indicates the dominance of DP

spin scattering mechanism [37]. Figure 6.14(a) shows the dependence of τs to the τp

for graphene decorated with various adatoms. The data in 6.14(a) taken at a constant

density n = 1.5 × 1012cm−2 clearly shows that unlike the hydrogenated case, where a
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Figure 6.13: In-plane magnetic field dependence of non-local signal at different back
gates for graphene decorated with Au adatoms.

clear linear relation is seen between τs and τp, in graphene with metallic adatoms, τs

remains almost a constant with τp. The relation that τs is independent of τp is consis-

tent with the EY spin scattering mechanism, if the microscopic mechanism causing

spin scattering is different from that causing the charge (momentum) scattering; i.e.

for instance the enhanced SOC in graphene due to adatoms cause the spin scattering

while the momentum scattering is determined by the additional charge impurities

introduced into the system by the adatoms [38]. However, for an unambiguous de-

termination of the dominant spin relaxation mechanism in graphene decorated with

metallic adatoms, we follow the approach employed in reference [39]. Assuming that

both EY and DP scattering mechanisms are present, the spin scattering rate can be

written as [39]
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a) b) 

c) d) 

Figure 6.14: (a) τs vs τp for graphene decorated with adatoms. ϵ2F τp/τs vs. ϵ
2
F τ 2p for

graphene decorated with (b) Au, (c) Cu (CVD) and (d) Cu (exfoliated). From the
slope and y-intercept the SOC strength due to EY and DP spin scattering mechanisms
are estimated.

1

τs
=

1

τEY
s

+
1

τDP
s

(6.7.1)

where

τEY
s =

ϵ2F
∆2

EY

τp (6.7.2)

and
1

τDP
s

=
4∆2

DP

~2
τp (6.7.3)
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Substituting equation (6.5.2) and (6.5.3) in equation (6.5.1), we get the relation

ϵ2F τp
τs

= ∆2
EY +

4∆2
DP

~2
ϵ2F τ

2
p (6.7.4)

Now from the density dependence of the longitudinal resistivity and that of the non-

local signal, the quantities ϵF , τp and τs can be calculated for each sample, which can

then be used to plot ϵ2F τp/τs vs. ϵ2F τ 2p . Figure 6.14 (b-d) shows the ϵ2F τp/τs vs.

ϵ2F τ 2p plot for graphene samples decorated with Au, Cu (CVD) and Cu (exfoliated)

adatoms. From the slope and the y-intercept, the SOC strength contribution from

both the EY and DP spin relaxation mechanisms can be estimated. Surprisingly, the

estimated SOC strength is only weakly dependent on the atomic number (Z), and

falls in the range of 7.5 ± 1.3 meV for CVD graphene and graphene decorated with

Cu adatoms and 9 ± 2 meV for graphene decorated with Au adatoms. Note that

similar to metallic thin films such a weak dependence of Z is expected [40].

6.8 Identifying dominant spin Hall scattering mech-

anisms

Finally, we discuss how SOC enhancement leads to the establishment of a robust

SHE with such a large spin Hall coefficient (angle), γ. A large γ in pure metals

such as Pt (0.01-0.1) has been ascribed to resonant scattering on impurity states split

by the spin-orbit interaction [16, 41]. The importance of such resonant scatterers in

graphene is also well established [42,43]. The SHE originates in asymmetric scattering

in the presence of SOC: charge carriers of opposite spins are deflected in opposite

directions transverse to the applied electric field. Two extrinsic mechanisms produce

SHE: skew scattering (SS) and quantum-side jump (QSJ) [44]. The former arises
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from asymmetry of cross sections in up/down spin channels. On the other hand,

QSJ produces anomalous spin currents via spin-dependent shift (side jump) of wave

packets in materials endowed with momentum-space Berry curvature. Although the

latter is negligible in pristine graphene (due to very weak SOC), non-trivial Berry

phase-related effects emerge in adatom-doped graphene via proximity-induced effect.

In the SS (QSJ) scenario the magnitude of induced spin currents is proportional to

n−1
SO (n0

SO) [44] where nSO denotes the density of SOC active adatoms. Since all

samples measured are relatively clean (i.e., small nSO) we expect SS to be critical.

In order to identify the SHE driving mechanism we carried out realistic transport

calculations taking into account adatoms originating the observed SOC enhancement

and uncontrolled sources of disorder diminishing the delivered spin Hall coefficient

(angle). Our results confirm the dominance of SS mechanism in the experiments and

show that the γ for Cu-CVD graphene in and around the neutrality point (± 1×1012

cm−2) remains almost a constant, due to the wide distribution of adatom cluster sizes.

This is significant in applications for it allows the generation of robust spin currents

irrespective of the initial doping level in graphene. The combination of enhanced SOC

and the resonant character of large Cu clusters (∼ 10 nm) make the SS mechanism

extremely efficient in the production of spin currents with giant γ in the range 0.1-0.3.

With respect to the absence of a strong Z dependence it is important to note that a

large SOC at the impurity site is not the only criteria which can gives rise to a large

SHE. A strong perturbation of the potential at the impurity site can become equally

important [40]. Indeed in both CVD and EPG the perturbation of the potentialdue

to the presence of metallic adatom clusters-is large and thus is likely the dominant

mechanism.
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Figure 6.15: the Fermi energy dependence of the spin Hall coefficient (angle) at room
temperature for the Cu-CVD graphene sample. The (dashed) blue line is the ideal
spin Hall angle as generated by SOC active dilute Cu clusters in otherwise perfect
graphene generated via SS. The (solid) orange line shows the realistic γ taking into
account other sources of disorder (modelled here as resonant scatterers). Calculations
performed at room temperature; other parameters as given in main text.

6.8.1 Theoretical modelling for giant γ

Here, we show that the giant spin Hall coefficient (angle) γ ∼ 0.2 have origin in the

enhancement of spin-orbit coupling (SOC) due to decoration with clusters of heavy

adatoms. These SOC active clusters act as efficient (resonant) scattering centers,

highly sensitive to the spin orientation of electronic currents (skew scattering), thus

explaining the unusually robust spin Hall effect. Our theoretical modeling applies

both to Cu-CVD graphene and decorated exfoliated graphene samples; for concrete-

ness the discussion below is focused on the Cu-CVD samples.
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The effective potential exerted by residual adatoms VSO (r⃗) is an 8-dimensional Her-

mitian matrix (acting on valley, sub-lattice and spin subspaces), whose functional

form in a realistic setup is difficult to predict a priori. We posit our study on a mini-

mal model for VSO (r⃗) derived from the following experimental evidence: (1) residual

Cu adatoms cluster (AFM images show clusters of average size R ∼ 20 nm much

larger than graphene’s lattice spacing) justifying the neglect of inter-valley terms in

VSO (r⃗); and (2) the dependence of non-local resistivity curves with the Fermi energy

RNL (ϵF ) present relatively small electron-hole asymmetry (≤ 10%) indicating that

(scalar) electrostatic terms play little role. Finally, the high-quality transport char-

acteristics of all samples investigated justify modeling the adatoms as independent

scattering centers. We are hence lead to the following minimal model:

VSO(r⃗) =

NSO∑
i=1

[∆Iσzsz +∆R(σxsy − σysx)]Sδ(r⃗ − r⃗i) (6.8.1)

In the above, σ⃗ and s⃗ denote Pauli matrices, with σz = ±1 [sz = ±1] describing states

on A(B) sub-lattice [with spin projections ↑ (↓)], ∆I and ∆R stand for the strength of

intrinsic and Rashba SOC terms, respectively, r⃗i=(xi, yi) are the positions of scatter-

ing centers (areal density nSO = NSO/A) and S=2πR2 their areal range. Higher-order

SOC terms (proportional to the electronic momentum) have been neglected.

Rashba SOC arises from the breaking of reflection symmetry z → -z and is always

non-zero in disordered graphene. On the other hand, intrinsic-like SOC being present

in the band structure of graphene preserves the basic symmetries of the honeycomb

lattice. Although this form of SOC is very weak in pristine samples (of the order of

10 µeV) [45], physisorbed species can enhance ∆I by several orders of magnitude [2].

The Raman, XPS and EDS studies demonstrate the physisorbed nature of the SOC

active scattering centers (see fig.6.2) and hence ∆I is expected to play a central role

167



in the reported spin Hall effect. Likewise, the colossal enhancement of ∆R seen in

hydrogenated samples due to sp2 to sp3 bond conversion [3] is not expected here.

A recent study [42] also shows that the magnitude of spin Hall z-polarized currents

with origin in particle-hole symmetric interactions [such as VSO (r⃗)] is dictated by∆I ,

being little sensitive to the Rashba coupling strength. This observation allows us

to considerably simplify calculations by setting ∆R =0 and working in subspaces of

definite spin projection along z (see below).

To compute the charge and spin conductivity tensor, we solve for the semi-classical

transport equations taking into account two distinct types of scattering centers: (1)

adatom clusters inducing spin Hall currents via the effective potential VSO (r⃗); and

(2) other impurities/defects affecting charge transport. The transport characteris-

tics of Cu-CVD graphene strongly suggest that residual Cu adatoms give the main

contribution to inverse transport lifetimes (and thus transport cross sections). The

inclusion of (2) in the transport calculations is needed for a rigorous comparison with

the experimental data (impurities/defects uncorrelated with the SOC-active adatoms

diminishes the magnitude of the spin Hall current). The total inverse transport life-

time is therefore computed as τ−1
∥ = τ−1

i + τ−1
SO, where τSO(τi) denotes the transport

lifetime of SOC active clusters (other impurities/defects).

The analytic expression for the full charge and spin conductivity tensor at finite tem-

perature can be obtained in closed form as shown in Ref. [42]. In the presence of

SOC the exact solution of the Boltzmann transport equations involves two distinct

lifetimes: the usual longitudinal (transport) scattering time τ∥ and a transverse life-

time τ⊥ associated with asymmetric (skew) scattering. SOC active clusters contribute

with finite skew relaxation time determined by [42]
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τ−1
⊥ (k⃗, s) =

2πnSO

~

∫
d2p⃗

(2π)2

∣∣∣T (p⃗, k⃗)∣∣∣2 sin(θp⃗ − θk⃗)δ(ϵp⃗ − ϵk⃗), (6.8.2)

where T(p⃗,⃗k) =
⟨
p⃗, s |T | s, k⃗

⟩
are matrix elements of the T-matrix associated with

eq. 6.8.1,
∣∣∣s, k⃗⟩ are the graphene eigenstates of definite momentum k⃗ and spin pro-

jection s = s⃗ · e⃗z, θr⃗ is the angle that the vector r⃗ forms with the direction of the

external electric field, and ϵk⃗ = λ~vF |⃗k| is the graphene’s dispersion relation (λ = ±1

denotes the carrier polarity and vF the Fermi velocity). A finite value τ⊥ < ∞ (skew

scattering) has two effects: (1) the emergence of spin transverse currents and hence

non-zero spin Hall conductivity i.e., σsH = ((2e2)/h)(ϵF/~)τ⊥/[1+(τ⊥/τ∥ )2] (here all

quantities being evaluated at the Fermi surface ϵk⃗ = ϵF ), and (2) the modification

of the standard longitudinal conductivity according to σ = ((2e2)/h)ϵF τ eff∥ /~, with

τ eff∥ =τ∥/[1+(τ∥/τ⊥ )2]. Below, we compute carrier lifetimes and present the general

formula for spin Hall angle produced via skew scattering.

To make contact with the experiments, we model the (non-SOC) disorder by resonant

impurities, whose importance in graphene is well established [43]. The inverse lifetime

of resonant scatterers (areal density ni) is given by τ−1
i = ni(2~vF )−2 vF

∣∣∣⃗k∣∣∣ /|g(a)|2.
Here, a is the scatterer range and g(x )=

λ|k⃗|
2π~vF

ln(
∣∣∣⃗k∣∣∣x )- |k⃗|4~vF

i stands for the Dirac

fermion propagator with short-distance cut-off x. The inverse lifetime associated

with the clusters (Eq. 6.8.1) is given by the familiar golden rule

τ−1
SO =

2πnSO

~

∫
d2p⃗

(2π)2

∣∣∣T (p⃗, k⃗)∣∣∣2 [1− cos(θp⃗ − θk⃗)]δ(ϵp⃗ − ϵk⃗). (6.8.3)

We obtain τ−1
SO = nSO(2~vF )−2 |T |2, where |T |2 = |t1|2 + |t−1|2 - Re(t1t∗−1) and t±1 =

±∆IS/[1±∆ISg(R)]. Finally, evaluation of eq. 6.8.2 yields the inverse skew lifetime:

τ−1
⊥ = nSO(2~vF )−2svF

∣∣∣⃗k∣∣∣ |T⊥|2, where |T⊥|2 = Re(t1)Im(t−1)- Re(t−1)Im(t1). From
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the knowledge of these lifetimes, the charge and spin polarized conductivity tensor at

finite temperature can be easily computed. The non-zero entries are

σyx
sH(T ) = −e2 gv

2~
∑
s=±1

∫ ∞

−∞
dϵ |ϵ| ∂f(T )

∂ϵ

sτ⊥(ϵ, s)

1 + ( τ⊥(ϵ,s)
τ∥(ϵ,s)

)2
, (6.8.4)

σxx(T ) = −e2 gv
2~

∑
s=±1

∫ ∞

−∞
dϵ |ϵ| ∂f(T )

∂ϵ

τ∥(ϵ, s)

1 + (
τ∥(ϵ,s)

τ⊥(ϵ,s)
)2
, (6.8.5)

σxy
sH = -σyx

sH and σyy = σxx. In the above, gv = 2 (valley degeneracy) and f(T) = 1/[1

+ e(ϵ−ϵF )/kBT ] denotes the Fermi-Dirac distribution function.

The spin Hall coefficient (angle) γ is defined as the ratio of the spin z-polarized

transverse current to the steady state longitudinal current for a system driven by an

electric field along the x direction, i.e.,

γ(T ) =
σyx
sH(T )

σxx(T )
. (6.8.6)

In our model, sz is conserved and thus lifetimes have the symmetry properties:

τ⊥ ≡ τ⊥(k⃗, 1) = −τ⊥(k⃗,−1) and τ∥ ≡ τ∥(k⃗, 1) = −τ∥(k⃗,−1) which allows simplifi-

cation of the conductivity tensor. At zero temperature Eq. (6.8.6) acquires a par-

ticularly enlightening form: γ(0)=τ∥/τ⊥, clearly showing the role of skew scattering

in establishing pure spin (transverse) currents. The expected spin Hall angle (Eq.

6.8.6) and the experimental γ are shown in Fig.6.15. The most salient features are:

(1) remarkably largeγ due to resonant skew scattering as recently predicted in a re-

lated model [42] and (2) small amplitude of variations in γ as the Fermi energy is

swept. The latter is explained by the wide distribution of cluster sizes R in the Cu-

CVD sample (see below) that quenches otherwise pronounced variations of transport

quantities with Fermi energy. As anticipated above, the non-SOC impurities (here
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modeled by resonant scatterers) considerably diminish the magnitude of the spin Hall

angle for they decrease τ∥ and produce no effect on τ⊥.

6.8.1.1 Choice of parameter

Figure 6.16: the Fermi energy dependence of the longitudinal (charge) conductivity
at room temperature for the Cu-CVD graphene sample. The (solid) orange line shows
the theoretical value of the conductivity as computed from Eq. 6.8.5. The excellent
qualitative agreement shows that fit parameters are consistent with charge transport
characteristics of the system. (Parameters as in Fig. 6.15.)

The parameters used in Fig. 6.15 are representative of the Cu-CVD sample. Cluster

geometric features have been taken directly from the experiment (AFM studies show

an average cluster radius R≈ 2 0nm with standard deviation ≈ 6 nm) as to perform

realistic disorder averaging in Figures 6.15 and 6.16; Gaussian distributions have been

used. From the spin precession data (see manuscript) we estimate a lower bound [46]

for ∆I in the range 6.2 - 11 meV. In our calculations we have taken a conservative

value ∆I ≃ 9.5 meV. Finally, the values for (a,ni) and nSO were found by requiring

a fine agreement between theory and experiment in both γ(T) and σxx(T) (see Fig.

6.16). The obtained values-a ≃ 2.5 nm, ni ≃ 3.84× 1010 cm−2 and nSO ≃ 1.04×1011
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cm−2 are consistent with preparation methods of the CVD graphene samples. The

estimated concentration of SOC active dilute Cu clusters nSO ≃ 1.04×1011 cm−2 is

one order of magnitude larger than the lower bound set by the AFM images.

6.8.1.2 Driving mechanisms for the spin Hall effect

The quality of the fits shown in Fig. 6.15 and 6.16, as well as their consistency with

the main characteristics of the Cu-CVD graphene sample, emphasizes the importance

of skew scattering (SS) in the experiment. We should note, however, that transverse

spin currents could also arise from another mechanism, namely the quantum side

jump (QSJ). The latter results from the shift of wave-packets associated with charge

carriers as they scatter from SOC potentials (see Ref. [47] for a comprehensive review

on the QSJ). Our calculations show that QSJ provides corrections to up to 30%.

However, we were not able to find consistent parameter ranges for which QSJ would

dominate over SS (this would require dirty samples with much larger nSO). For this

reason, we are lead to conclude that SS is the driving mechanism for the large spin

Hall angles reported in this work.

6.9 Conclusion

In conclusion, we have shown that the Cu-CVD graphene has a spin-orbit coupling

three orders of magnitude larger than that of pristine exfoliated graphene samples.

The enhancement in the SOC in Cu-CVD graphene is due to the presence of residual

Cu adatoms introduced during the growth and transfer process. We confirm this

by introducing Cu adatoms to exfoliated graphene samples and extract a SOC value

comparable to the one in Cu-CVD graphene ∼ 7.5 meV. In addition to Cu, we also
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show that adatoms like Au and Ag can also be used to induce such enhancement of

SOC in pristine graphene. An enhancement of graphenes SOC is key to achieving

a robust 2D topological insulator state in graphene [5, 49]. Also, the observation of

a robust SHE with exceptionally large γ ∼ 0.2 at room temperature is a first but

important step towards introducing graphene for spin based concepts such as spin

transfer torque based magnetic memory and spin logic applications [18,48]. Since the

effect is equally strong with commonly used non-magnetic metals such as Cu, these

applications would be also compatible with existing CMOS technology.
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Chapter 7

Summary and Outlook

In this thesis, an effort has been made to understand the spin transport properties of

bilayer and functionalized graphene. The experiments performed for these systems

are based on

1. the non-local spin valve structure employing ferromagnetic electrodes for injec-

tion and detection of spin currents.

2. the non-local spin Hall effect employing the H-bar geometry without the need

for any ferromagnetic elements in the device architecture.

7.1 Spin-valve experiments

For the non-local spin valve experiments, unlike the previous works on single layer

graphene, we identified bilayer graphene as our system of study due to

1. the unique electronic properties of bilayer graphene which differ from that of

single layer graphene,viz. effective mass of charge carriers, electric field induced

band gap and
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2. the efficient screening of charge impurities and hence reduced scattering from

charge impurities. This is important since in single layer graphene it is cur-

rently believed that the spin relaxation is dominated by momentum scattering

from charge impurities and hence bilayer graphene due to its enhanced charge

screening is a unique system by itself. This also implies the importance of short

range scatterers in determining the transport properties.

In order to understand and to identify the nature of spin relaxation in bilayer graphene,

the dependency of the spin relaxation time, estimated from the non-local spin valve

measurements, was studied as a function of (1) the field effect mobility µ (2) the

minimum conductivity σmin, (3) the charge carrier density n and (4) the temperature

T. Our systematic analysis showed that the spin relaxation in bilayer graphene is

dominated by the D’yakonov-Perel’ type spin scattering with spin relaxation times

up to 2 ns at room temperature [1].

An interesting direction to proceed further on the studies of the spin relaxation in

bilayer graphene could well be

1. the influence of a band gap opening in the spin transport properties of bilayer

graphene and

2. studying the influence of the second sub band on the spin transport properties

of bilayer graphene. This can be achieved by using a top ionic gate which would

allow the filling of high energy subbands in bilayer graphene at densities ≥ 2.4

×1013/cm2 [2].
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7.2 Spin Hall experiments

In the second half of the thesis, we focused on methods to enhance the spin-orbit cou-

pling in graphene. Towards this, the method identified was to functionalize graphene

with adatoms like hydrogen. Here the out-of-plane deformation of the graphene lat-

tice due to the sp3 bonding with the hydrogen atoms results in the enhancement of

the spin-orbit coupling from a few µeV to a few meV. Our non-local spin Hall mea-

surements show the spin-orbit strength in the weakly hydrogenated samples to be of

the order of 2.5 meV. Such large enhancement of the spin-orbit coupling is impor-

tant for the realization of the graphene based spin-FET’s and an ideal 2D topological

insulator state. In such hydrogenated samples, the enhancement of the spin-orbit

coupling was demonstrated by non-local spin Hall measurements and spin precession

measurements [3].

As an independent measurement, the spin splitting in hydrogenated graphene can also

be demonstrated by studying the longitudinal resistance as a function of the magnetic

field applied at tilted angles. Here, the magnitude of the perpendicular component of

the magnetic field is kept constant while varying the in-plane parallel magnetic field

component. Figure 7.1 shows the longitudinal resistance as a function of the back

gate voltage for varying in plane magnetic field and a constant perpendicular field B⊥

= 4.94 T at T = 3.45 K. The Shubnikov-de-Haas (SdH) oscillations show a graduate

phase shift with the increase of the parallel field and reverses its phase at the highest

field of B∥ = 15.2 T. Such a phase reversal has been explained by Fang and Stiles in

their seminal work [4] as due to the fact that the spin splitting is not fully resolved;

i.e., the energy separation of the spin levels of the adjacent Landau states (~ωc -

gµBB) is smaller than the spin splitting and cannot be resolved in this case resulting

in the phase reversal of the SdH oscillations. These initial results are promising and

require further measurements to be performed for any quantitative analysis and this
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will be our next step.

a) b) c) 

Figure 7.1: a) Resistance of the weakly hydrogenated graphene sample as a function
of the carrier density for different tilt angles. Here the perpendicular magnetic field is
kept at a constant value while varying the in-plane field. The graph is shifted in the
y-axis for better visibility. (b) the same graph showing the change in the phase of the
SdH peaks with varying tilt angle.(c) R*n vs n of the weakly hydrogenated graphene
sample for different tilt angles the graph shifted in the y-axis for better visibility.

Moreover, the demonstration of spin Hall effect in functionalized graphene also opens

the door for many other interesting experiments. Some of the experiments which are

of interest are

1. understanding the effect of the substrate on the deformation of the graphene

lattice upon functionalization by performing similar experiments on graphene

deposited on BN, MoS2 etc.

2. functionalize graphene with other adatoms like fluorine. Here, since fluorine

atoms are known to form both covalent and ionic bonding, performing non-

local spin Hall measurements on this system will be quite interesting.

3. studying the influence of substrates with very high spin orbit coupling on

graphene.
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”Spin-Orbit Proximity Effect in Graphene”, manuscript under review (2013).

7. Jayakumar Balakrishnan∗, Gavin Kok Wai Koon∗,Ahmet Avsar, Yuda Ho, Jong

Hak Lee, Manu Jaiswal, Seung-Jae Baeck, Jong-Hyun Ahn, Aires Ferreira,

Miguel A. Cazalilla, A. H. Castro Neto, and Barbaros Özyilmaz, ”Giant Spin

Hall Effect in CVD Graphene”, manuscript submitted (2013).

184


	Coverpage
	SPIN TRANSPORT STUDIES IN GRAPHENE_final_Jan2014
	SPIN TRANSPORT STUDIES IN GRAPHENE
	Jaya1


