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Summary

Enhancing the capability of biomanipulation systems has become a pressing

need for advancing the fields of biology and biomedicine. This is particu-

larly motivated by the recent rapid development in the area of mechanobiology,

which studies the comprehensive effect of mechanical stimuli on cellular behav-

ior. One important aspect of biomanipulation is the ability to apply mechanical

forces accurately on biological organisms. Substantial efforts from a wide range

of disciplines have been devoted to developing versatile automated biomanipu-

lation systems. These research efforts have led to various applications of such

systems, yet the issue of how to improve the dexterity of fully automated bioma-

nipulation systems equipped with sophisticated force control capability (in order

to fully realize the potential of such systems) remains a challenging problem in

engineering research. It is in the context of this problem that this thesis explores

the specific issues of speed optimization and force control in biomanipulation

systems.

The first part of this thesis addresses the design of speed trajectories in a mi-

croinjection process, which is a common biomanipulation task, in order to min-

imize adverse physical effects on the biological organism induced by the in-

jection force. An optimization problem in the design of a speed trajectory for

the motion of the micropipette during automated microinjection of zebrafish

embryos is formulated. The objective of this optimization problem is to min-

imize the deformation sustained by the zebrafish embryo. A solution to this

optimization problem is proposed by first constructing a viscoelastic model of

the zebrafish embryo, and then synthesizing an optimal speed trajectory based

on a class of polynomials. Furthermore, results from numerical simulation and

experiments that demonstrate the effectiveness of the proposed solution are pre-

sented. The statistically meaningful experimental data (generated using a large
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sample of zebrafish embryos) provide direct evidence on the advantage of such

speed optimization in microinjection.

The second part of this study is devoted to force control of biomanipulation sys-

tems. Mechanical force is known to influence the behavior of biological cells.

To study how external mechanical forces may affect cellular response and cel-

lular function necessitates the development of sophisticated force-control tech-

niques for accurate application of dynamical forces on biological organisms. A

six-strut cellular tensegrity model constructed based on the structural approach

is used for the development of advanced force control techniques, since it pro-

vides a more comprehensive description of the nonlinearity and dynamic cou-

pling of internal structural elements. The force control task is specified in the

context of the six-strut cellular tensegrity model being assigned different prop-

erties. To this end, a homogenous tensegrity model with constant mechanical

properties is first introduced and a robust force control algorithm is proposed to

deal with model uncertainties and partial measurability. A heterogenous tenseg-

rity model with time-varying mechanical properties is subsequently developed

and a robust adaptive control algorithm is proposed to handle the time-varying

feature. Lastly, based on the tensegrity model, a novel neural-network-based

force tracking control for biomanipulation is proposed. The proposed force

controller is readily applicable for the control problem concerning manipulator

interacting with soft compliant materials. Numerical simulations are conducted

to demonstrate the effectiveness of the proposed force control techniques. The

work reported in this thesis represents an initial step in analytical investigation

of localized force-bearing interactions between a cellular tensegrity model and

an external mechanical manipulator.
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Chapter 1

Introduction

1.1 Background

Biomanipulation refers to the manipulation (e.g.,positioning and grasping) of

biological materials/structures (e.g. cells and embryos). It is a common process

in biology, biomedicine related practise and areas involving handling of biolog-

ical materials. Over the last two decades, it has attracted considerable research

interests from a wide range of disciplines and various engineering approaches

have been developed. The key approaches developed involve mechanical tech-

niques, magnetic and electrical field based methodologies, optics based means

and microelectromechanical systems (MEMS) based approaches. Despite these

research efforts and advancements, developing novel means to further expand

the biomanipulation capability is still an active research area. The direction

of recent research focuses on developing sophisticated engineering platforms

featuring the integration of force sensing techniques, which enables quantita-

tive investigation of the force the biological material/structure sustains during

biomanipulation.
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Cell manipulation is one of the most common biomanipulation techniques. It

is the crucial step in performing some molecular biology tasks such as DNA

microinjection and intracytoplasmic sperm injection (ICSI). The conventional

method of single cell manipulation is manual and its success mainly depends

on the experience of the operator. Therefore, operator-related factors, such as

contamination and poor reproducibility, are inextricable and result in a rela-

tively low success rate. To address these shortcomings, considerable research

efforts have been made to automate cell manipulation processes. Most of these

efforts concentrate on developing automation systems for the microinjection of

zebrafish embryo, due to its wide application in biology study.

These substantial progresses in automating the microinjection process notwith-

standing, some factors which play an important role in the injection process have

not been fully explored, especially in the aspect of improving the capability of

microinjection systems. The speed design in microinjection is such a factor

which has not been explicitly studied. Besides microinjection speed, the role of

force feedback and force control in microinjection is well recognized in the con-

text of performance improvement. Moreover, the advancement in mechanobi-

ology, the study of how mechanical forces affect cells, further emphasizes the

profound role of force and force control in biomanipulation. As a result, novel

and efficient tools and means of force sensing at cellular and subcellular levels

have been developed for cell mechanobiology study. However, most of research

efforts concentrate on developing hardware platforms while less work has been

done on exploring sophisticated control algorithms to achieve accurate control

of dynamic forces applied on living cells.

The force control problem necessitates the modelling of cell behavior under ex-

ternal force. Approaches based on continuum and structural mechanics have

been shown to be useful in constructing mechanical models of living cells. Cel-

lular tensegrity model from the structural approach offers a potentially more

2



effective alternative to those models derived from continuum approach. It is

capable of simulating many aspects of cell mechanical behavior and providing

biologically plausible explanations for such behaviors. However, its potential

for force control application in biomanipulation has not been explored.

The remainder of this chapter provides a brief overview of biomanipulation and

microinjection whilst a more detailed review of the automated biomanipulation

systems is presented in Chapter 2. An introduction of mechanobiology is then

presented with the engineering perspective highlighted. Subsequently, cellular

tensegrity model is introduced while a more detailed review will be discussed in

Chapter 2. Finally, the objectives and potential contributions of this thesis are

presented.

1.2 Biomanipulation and Microinjection

In the field of biology and biomedicine, transportation, orientation and injection

of cell and similar micro biological structures are often required. Such manipu-

lations of biological materials/structures are referred to as biomanipulation[12].

The key component of a biomanipulation setup is the micromanipulator which

scales down the magnitude of motions from the operator to the end-effector. The

movement of the end-effector is usually observed through high-magnification

microscopes. The modern biomanipulation systems are equipped with high-

resolution actuators (e.g. high-resolution motors and piezoelectric actuators)

which are capable of precise control. However, the capabilities of these bioma-

nipulation devices are not fully realized when the tasks are performed manually

since competence of the operator is required and highly dependent. Moreover,

even for an operator with experience, it is not possible to guarantee the success

of the manipulation due to human-related factors, such as fatigue and contami-

nation.
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To address the limitations of manual operation in biomanipulation, a number of

researchers with multidisciplinary backgrounds are motivated to develop auto-

mated biomanipulation systems. Most of these research works focus on au-

tomating the microinjection system for zebrafish embryos[5, 13]. The mo-

tivation for zebrafish embryo microinjection arises from many factors. First

of all, microinjection is a prevalent process in many applications involving

in vitro fertilization, intracytoplasmic sperm injection, gene therapy and drug

development[14]. Since zebrafish embryos is widely used as experimental sub-

jects in biology on account of a number of its characteristics (e.g., transparent,

genetically manipulatable, fast development), the injection of zebrafish embryo

is one of the most common encountered biomanipulation tasks[15]. Secondly,

the developed automated microinjection system for zebrafish embryo is repre-

sentative of microinjection systems since it consists of all the crucial compo-

nents, such as micromanipulator, microinjector and positioning stage. More-

over, the control techniques (e.g., vision control and force control) developed

in microinjection system are readily applicable for other biomanipulation sys-

tems.

1.2.1 Speed in Automated Microinjection System

Microinjection of zebrafish embryo is a common practice in studying the early

developmental processes of biological organisms. Conventional manual mi-

croinjection usually involves an operator moving the micropipette towards the

embryo until its tip slightly touches the chorion, then driving the micropipette

to pierce the chorion and maneuvering the tip of the micropipette to a desired

location inside the embryo to delivery the DNA material. Such manual opera-

tion relies on visual information from optical devices to guide the operator, and

is prone to errors (due to various human factors such as fatigue). Approaches
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reported in the literature for improving the process mainly concentrate on pro-

viding haptic feedback to the operator (e.g., [16, 17]) and automating the overall

process (e.g., [18, 19]). Considering the requirements of high reproducibility

and capability of mass processing (batch biomanipulation), automation of the

microinjection process is apparently the more promising approach.

Great advancements have been made in automation of microinjection process.

A large portion of them aim at developing devices/systems and control tech-

niques to facilitate the automated process. Some microinjection system towards

automatic batch microinjection are developed[6]. These systems consist of a in-

verted microscope, a micromanipulator, a micropipette and an injector. They are

able to precisely deliver genetic material to the desired region or specific target

within the zebrafish embryo. However, the microinjection speed and its effects

on the embryo is not explicitly studied within the context of further improving

the performance of the microinjection system.

The performance of a microinjection process can be evaluated in various con-

text. From a pure biological perspective, the survival rate of the injected em-

bryos is one key performance indicator. From a bio-mechanical perspective, the

deformation sustained by the embryo is an important factor to consider, since a

large deformation can damage the embryo to the extent of adversely affecting

its survivability. Since speed of the micropipette is directly related to the defor-

mation of embryo, the study of injection speed may benefit the microinjection

process in terms of minimizing the deformation during the indentation.

The investigation of the microinjection speed is motivated by the fact that em-

bryos exhibit viscoelastic behavior that can be described by analytical models.

In particular, when the micropipette indents an embryo at different speeds, the

peak contact force and the embryo deformation vary accordingly. Leveraging on

viscoelastic models which describe a complex relationship among the applied
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force, the speed of indentation, and the deformation of the embryo, it is worthy

to study how the microinjection speed affects the reaction force and deformation

of zebrafish embryo under indentation during the microinjection process.

1.2.2 Force in Automated Microinjection System

Vision sensing has been the primary modality for early developed automated

microinjection systems since it enables precise delivery of genetic material to

desired region within the embryo. However, a successful delivery of genetic

material does not guarantee a successful microinjection task considering that

the damage to embryo induced by injection process may cause the demise of

the embryo and thus the failure of the injection task. It has been realized that

the force during the penetration procedure is an important factor defining the

mechanical injury resulted by injection process. For instance, the embryo after

injection has a lower survival rate when the applied force during penetration

process exceeds some threshold.

Importance of the role that force plays in microinjection has prompted the in-

tegration of force sensing and control into the microinjection system for per-

formance improvement. The objective of these works is to regulate the force

during indentation to follow a reasonable desired force trajectory, such as the

force trajectory extracted from a proficient technician. The main contribution

of these works is the development of various types of force sensing techniques

and their integration with the microinjection system. It is noted that the control

techniques developed are direct application of conventional robot force con-

trol strategies (e.g., PID control and impedance force control). Moreover, these

developed force control techniques are based on relatively simple mechanical

models constructed from the continuum approach. Although adequate for sim-

ple mechanical environment usually encountered in conventional robotic manip-
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ulation tasks, these models fall short of capturing the rich dynamics exhibited

by living biological cells. For instance, there are only a few works considering

the viscoelasticity of the biological materials for force control in microinjec-

tion/biomanipulation.

From above discussions, it can be concluded that the existing force control ap-

proaches developed for microinjection/biomanipulaiton is preliminary. Suitable

modeling of mechanical response of biological materials/structures is vital to

realize precise control of applied force on them. Among various mechanical

models of living cells, tensegrity model has gained its acceptance in the sci-

entific community since it has been proved to be capable of simulating many

aspects of cell mechanical behavior and providing plausible biological expla-

nations for such behavior. A detailed discussion of cellular tensegrity model is

presented in section 1.3.

1.3 Needs of Force Control in Cell Mechanobiol-

ogy

Living cells are constantly subjected to diverse mechanical stimuli from a wide

array of sources, including forces generated internally and applied externally.

The external mechanical forces exerted on the living cells are known to affect

cellular behaviors and functions. Evidences of that mechanical force contributes

to the regulation of cell activities, such as gene induction, protein synthesis and

a variety of other cellular activities which are essential to cells to maintain ap-

propriate biological functions, are well recognized[1]. An representative exam-

ple is that abnormal mechanical loading will cause cells dysfunction[20]. The

study of how mechanical forces affect cell is referred to as cell mechanobiol-

ogy. Enormous research devoted to cell mechanobiology notwithstanding, the
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Table 1.1: Mechanobiological response of Human tendon fibroblasts. Adapted from
[1].

Response Type of load/force/duration Significance
Increase in cell Uniaxial stretch, 0.5Hz, 4h Stretch magnitude
proliferation, collagen with 4 and 8% -dependent
I gene expression, and response
Collagen I protein
Increase in cell Cyclic biaxial stretch, 5%, Stretch time-depend-
proliferation 1 Hz, 6, 12, and 24 h ent response
Decrease in cell Cyclic biaxial stretch, 5%,
proliferation 1 Hz, 48h

mechanism of how cells respond to the external mechanical forces is largely

insufficiently studied. Table 1.1 lists some of the mechanobiological response

of a type of cell, human tendon fibroblast, to different mechanical loads (e.g.,

type of force and duration of force). From Table 1.1, it is clearly indicated that

different mechanical stimuli result in different cell behavior.

A crucial challenging issue facing cell mechanobiology is the precise control

of the mechanical stimuli applied on living cells. This has raised plenty of

research interests in engineering community. Various engineering approaches

including mechanical, magnetic, optical and microelectromechanical systems

(MEMS) techniques, have been developed for quantitative investigation of me-

chanical loads that the cells are subjected to and the biomechanical responses

(e.g., cellular deformation)[14]. Moreover, novel micro-engineered platforms

integrated with these key methodologies have been developed with the objec-

tive of simulating the vivo-like environment that the living cell experience in

an in vitro settings[21]. These approaches and platforms not only significantly

facilitate the study of cell mechanobiology, but also contribute to the area of

biomanipulation where quantitative information about force applied on living

cells is concerned.

Although substantial progress has been achieved in developing novel and ef-
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ficient tools for force sensing at cellular and subcellular levels, most of these

research efforts focused on the hardware platforms while rare research works fo-

cused on exploring sophisticated control algorithms to achieve accurate control

of dynamic forces applied on living cells. The force control problem proposed

by mechanobiology study can be deemed as a specific case of biomanipulation

with the objective of explicit force control. Therefore, besides the requirement

from conventional biomanipulation (e.g., microinjection), cell mechanobiology

further underscores the importance of force control in biomanipulation.

In addition, living cells and biological structures will tune their mechanical

properties (significantly in certain contexts) in response to the exogenous forces.

This is a key feature that distinguishes living cells from passive materials. There-

fore, this time-varying mechanical property should be considered in the force

control development for cell mechanobiology.

1.4 Cellular Tensegrity Structure

Tensegrity, an acronym standing for tensional integrity, is coined by R.Buckminster

Fuller as a structural principle in architecture. Interestingly, in conjunction with

its many applications in architecture and smart engineering structures (e.g., [22–

24]), it has been drawn on to model and explain cell behavior by Don E. Ingber,

according to whom, “A tensegrity system is defined as an architectural construc-

tion that is comprised of an array of compression-resistant struts that do not

physically touch one another but are interconnected by a continuous series of

tension elements”. Such tensegrity models proposed for living cells are referred

to as cellular tensegrity structure or cellular tensegrity model. They serve as an

important alternative model paradigm for depicting cell mechanical behavior, in

addition to the ad hoc mechanical models. They are widely studied for under-

standing mechanobiology, mechanosensing and mechanotransduction.
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Figure 1.1: Tensegrity model of the cell. Adapted from [2].

Cellular tensegrity models are the most recognized and promising among the

models for living cells constructed from structural approaches. The cellular

tensegrity model underlies that CSK is mechanically active, which is supported

by experimental observations at both cell level and population level. The central

assumption of the cellular tensegrity model is that the cytoskeleton (CSK) as a

internal structural component of a cell is the main contributor to the stabilization

of cell shape. This assumption distinguishes the cellular tensegrity model from

continuum models which normally deem the cell as a viscous fluid comprised by

a membrane. As such, compared with continuum models, the cellular tensegrity

model is able to provide a biomechanics perspective for the understanding of

intracellular and extracellular biological/mechanical processes. Therefore, the

study of tensegrity model will advance the understanding of cell behavior at the

molecular level built upon a cellular biophysical basis.

CSK consists of three classes of filaments: microtubule, actin filaments and

intermediate filaments. Among these filaments, microtubles have the highest

average stiffness and intermediate filaments have the lowest. In the cellular
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tensegrity structure, microtubles are treated as the elements bear compression

while actin filaments and intermediate filaments are treated as the elements bear

tension (as shown in Figure 1.4). With this general rule, different theoretical

studies have been undertaken to examine the mechanical property/behavior of

a number of cellular tensegrity models. These studies have indicated that a

six-strut minimal tensegrity structure is capable of simulating many aspects of

cell mechanical behavior and providing plausible explanations for such behav-

iors from biological perspective. One representative example is that tensegrity

structure displays a nonlinear stiffening response to external loading which re-

sembles living cells. It should be noted that the introduction of tensegrity to

modeling cell behavior has many deep biological implications while this thesis

concentrate more on the mechanical property the cellular tensegrity structure

exhibits, which concerns the externally applied stimuli (e.g., force) and how

cells deform under this stimuli.

Despite the well acceptance of cellular tensegrity model, to the best of our

knowledge, it has not been used for force control in biomanipulation. Most

of the models for cells or other biological materials are constructed by the con-

tinuum approach due to its clear advantage that its constitutive equations can

be derived from experimental observations. However, the more comprehensive

description of the nonlinearity and dynamic coupling of internal structural ele-

ments provided by cellular tensegrity model should be leveraged on. Moreover,

to employ cellular tensegrity model for force control well suits the requirements

of force control in cell mechanobiology since it provides not only the compre-

hensive mechanical description of mechanical behavior of cells under external

force but also many biological insights and implications.

Besides the model shown in Figure 1.1, there exist a number of tensegrity mod-

els. This work focuses on the six-strut tensegrity model because of its popular-

ity and representativeness. However, it should be highlighted that the type of
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tensegrity model should be chosen to best fit the particular biological structure

under investigation.

1.5 Objectives and Significance

From above review, it is noted that a growing number of research efforts from

the engineering community have been made to develop high-performance au-

tomated biomanipulation systems with the objective of fulfilling novel and de-

manding requirements for applications in biological research. In particular, it

is noted that the study on speed design in automated microinjection system has

not been explored. Another important issue is that sophisticated force control

techniques are necessary to fully realize the potential of existing biomanipula-

tion systems. Moreover, the study of cell mechanobiology has further motivated

the study of force control in biomanipulation. Furthermore, the more compre-

hensive and competent cellular tensegrity models should be explored for force

control in biomanipulation.

Following the overall objective to enhance the capability of biomanipulation

system, this study firstly aimed at investigating the injection speed and its effects

in automated microinjection system for zebrafish embryos. The first contribu-

tion is to facilitate understanding the effects of different speeds in automated

microinjection. Another major contribution is to provide a systematic way of

designing an optimal injection speed to achieve better outcome in the context of

improving survival rate. An potential contribution is to benefit the general prob-

lem of optimizing the localized force-bearing interaction between a manipulator

and a viscoelastic environment in micro/macro-manipulation.

The second objective of this study was to develop force control techniques for

biomanipulation based on cellular tensegrity model. This represents an initial
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step in analytical investigation of localized force-bearing interactions between a

cellular tensegrity model and an external mechanical manipulator. This is also

the pioneering study of developing force control technique based on the models

from structure approach, which explicitly considers the dynamics of the cy-

toskeleton. Moreover, the developed force control approach directly contributes

to the advancement of biomanipulation tools and techniques for mechanobiol-

ogy. Another potential area where the developed force control techniques can

be applied is microinjection since at the operational level, the key objective in a

microinjection process is to apply a dynamical force on the surface of a cell in

order to pierce the cell membrane.

1.6 Outline

This chapter presents the research background, objectives and significance. The

remainder of this thesis is organized as follows:

Chapter 2 firstly reviews the advancements in automated biomanipulation sys-

tems with the role of speed and force highlighted. Subsequently, the dynamics

of the well accepted cellular tensegrity model from structure approach is re-

viewed. Lastly, a number of the control results of neural network based control

techniques for multi-input multi-output systems are reviewed considering their

potential in developing force control techniques.

Chapter 3 formulates a speed optimization problem in microinjection process

for zebrafish embryos and provides simulation and experimental results.

Chapter 4 presents the development of force control technique based on a cel-

lular tensegrity model with model uncertainties and partial state measurabil-

ity.

Chapter 5 presents the development of force control technique based on the
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cellular tensegrity model with time-varying mechanical properties.

Chapter 6 presents the force tracking control in biomanipulation using neural

networks.

Chapter 7 summarises the work done in this thesis and discusses the future re-

search directions.
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Chapter 2

Literature Review

This Chapter presents a review of the existing literature on automated bioma-

nipulation system. Firstly, the advancements in automation of microinjection

system for zebrafish embryo are summarized. Secondly, the existing force sens-

ing techniques and force control strategies for biomanipulation are reviewed. As

force control requires modeling of the dynamic behavior of cells, the studies of

mechanical behavior of cellular tensegrity models are subsequently introduced.

Lastly, a number of neural network based control techniques for multi-input

multi-output systems are reviewed in the context of their potential for automated

biomanipulation. In particular, results for tracking control of nonlinear systems

with input saturations are discussed.

2.1 Automation in Microinjection System

Over the last decade, automation of microinjection processes has attracted ex-

tensive research attention in the engineering community. A number of auto-

matic microinjection systems have been reported for an array of cell types. The

cells involved in microinjection can be classified into two general groups: ad-
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herent cells (e.g., neurons, heart cells and liver cells) and suspended cells (e.g.,

oocytes) [3]. Adherent cells are of irregular-shape and attached to a surface

while suspended cells are of rounded shape and can move freely. Furthermore,

adherent cells (usually with a diameter between 10µm to 20µm) are normally

much smaller than suspended cells. For instance, zebrafish embryo, as a type

of suspended cell, has a diameter of 800µm. Due to these significant differ-

ences between adherent cells and suspended cells, microinjection systems are

designed accordingly to address their respective challenges.

The common operation of microinjection system for adherent cells involves

moving a fine microcapillary (since the adherent cell is small) to penetrate the

cell membrane with its tip and subsequently apply a pressure pulse to inject

the material in the capillary into the cell. The main challenge is to position

the microcapillary properly such that its tip can penetrate the cell membrane

while inducing minimal damage on the cell. This requires a highly accuracy

mechanical system and high performance positioning control. Another main is-

sue is the detection of the contact between cell and microcapillary since the tip

of fine microcapillary only about 1µm. To address this contact detection prob-

lem during injection process, an injection guidance system integrated with the

automatic micromanipulator MANiPEN (as shown in Figure 2.1) is developed

[25] through an impedance measurement device.

Owing to the prevalence of oocytes in microinjection process, many research

efforts have been focused on developing automatic microinjection systems for

suspended cells. These efforts mainly aim at solving a wide range of problems

in both hardware design (e.g., microrobotics, cell-holding device and vision

system) and software design (e.g., visual servoing control and injection force

control). In [4], a prototype of microinjection system using autonomous micro-

robotics is developed (as shown in Figure 2.2(a)). The automation is achieved

based on a visual servoing control strategy which is capable of precisely po-
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Figure 2.1: MANiPEN micromanipulator. Adapted from [3].

sitioning the tip of the micropipette to the desired location within the mouse

embryo (as shown in Figure 2.2(b)).

(a)

(b)
Figure 2.2: (a) Autonomous embryo injection system. (b) Teleoperated embryo injec-
tion. Adapted from [4].

Several promising prototypes of autonomous microinjection system attempting
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to solve efficient batch injection are reported in the literature. In [5], a spe-

cially designed holder featuring an array of V-grooves immobilizing zebrafish

embryos is proposed (as shown in Figure 2.3(a)). A machine vision algorithm

is developed to identify the center line of each zebrafish embryo within field of

view as the trajectory for the micropipette to follow (as shown in Figure 2.3(b)).

When the micropipette is aligned with the center line and moves towards the

center of the embryo, the contact force between the tip of micropipette and the

embryo membrane is recorded. The contact force will drop sharply when the

membrane ruptures and this is used as part of the force profile for position con-

trol of the micropipette.

(a)

(b)
Figure 2.3: (a) Close view of injection area. (b) Centerlines of the zebrafish embryos
and micropipette. Adapted from [5].

In [6], motivated by the need for efficiently positioning the zebrafish embryos
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for injection, which is the bottleneck of automatic process, a vacuum-based em-

bryo holding device with an array of through holes is developed (as shown in

Figure 2.4). These through-holes trap zebrafish embryos when vacuum is ap-

plied. Image processing algorithm is developed to recognize the internal struc-

ture of zebrafish embryo to identify the deposition destination. In [7], another

cell-holding device for streamlining the laborious pick-and-place process is pre-

sented (as shown in Figure 2.5). This device can swiftly transport zebrafish

embryos into the field of view for injection and immobilize them.

Figure 2.4: Vacuum-based zebrafish embryo holding device: (a) Device picture; (b)
Device schematic with embryos immobilized for injection. Adapted from [6].

2.2 Force Sensing and Control in Biomanipulation

Various bioengineered platforms have been developed to permit quantitative in-

vestigation of the force cell sustains. These platforms are capable of applying

and measuring controlled mechanical forces to the order of nano/pico Newton.

Furthermore, they are often equipped with vision systems to provide the dis-

placement information of how cells are deformed, extended, or depressed by the

applied force. With these platforms, characterization of the mechanical property

of cells and modelling of the dynamics of cells are enabled. Moreover, based

on these platforms, some control schemes are proposed to realize the control of

force applied on cells so as to enhance the biomanipulation process. This sec-

tion reviews some of the key force sensing techniques in biomanipulation and
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(a)

(b)
Figure 2.5: (a) CAD prototype of mold for cell-holding device. (b) Laboratory test
bed suspended cell-injection system. Adapted from [7].

the force control in biomanipulation.

2.2.1 Force Sensing Techniques in Biomanipulation

In biomanipulation, owing to the fact that biological cells are highly delicate

and deformable, quantification of interaction force between the end-effector

and cell is challenging. To address this issue, various innovative force sens-

ing techniques are proposed[14][21]. Among these techniques, the most repre-

sentative and practical micro/nano force sensing techniques are MEMS-based,

Polyvinylidene fluoride (PVDF) film based, piezoresistive material based and

vision based.

MEMS-based force sensing is one of the promising micro/nano force sensing

techniques on account of the match between the micrometer scale size of most

oocytes and the feature sizes of MEMS. Another merit of MEMS-based sensors
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Figure 2.6: Solid model of the multiaxis cellular force sensor. Adapted from [8].

rendering them popular in biomanipulation is that they are able to be used in

aqueous environment In [8], a MEMS-based two-axis capacitive cellular force

sensor is presented. This device is able to provide real-time force feedback dur-

ing cell manipulation. As illustrated in Figure 2.6, the device has a movable

inner structure, which moves when a force is exerted on the probe and subse-

quently results in capacitance change. The device is capable of resolving a max-

imum force of 490µN with a resolution as low as 0.01µN in x direction, and a

maximum force of 900µN with a resolution of 0.24µN in y direction. Based on

this MEMS-based capacitive force sensor, a similar monolithic micro-gripper

for the application of picking-and-placing cells is reported in [26]. This micro-

gripper is integrated with force sensing capability to feedback the gripping force

information.

PVDF film, as a piezoelectric material, has been explored to fabricate the po-

tential force sensors in Micromanipulation on account of its high mechanical

strength and high sensitivity [27]. PVDF micro-force sensors for microinjection

systems are often used to hold the micropipette (as shown in Figure 2.7) so as

to measure the contact force between micropipette and the cells [9]. In [28], an

two-axis in situ PVDF micro-force sensor with resolution of sub-micro Newton
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Figure 2.7: PVDF force sensor used for zebrafish embryo injection. Adapted from [9].

is developed to identify the force profile of microinjection of living Drosophila

embryos. In [10], a novel force sensing approach based on the beam structure

which supports the zebrafish embryo during injection is proposed. The PVDF

film is adhered to the supporting beam and therefore deforms with the beam (as

shown in Figure 2.8). The advantage of this sensing scheme is that it minimize

the interference to the injection system since the force sensing and injection

are independent, which differs from the majority of sensing techniques using

integration of force sensing and end-effector (e.g., micropipette).

Piezoresistive micro force sensor provides force information through measuring

(a)

(b)
Figure 2.8: (a) Force-sensing structure of the PVDF force sensor. (b) PVDF film with
beam structure. Adapted from [10].
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its resistance variance, which is a function of the external mechanical loading

exerted on it. The main merit of stable force signal is its capability of providing

stable force signal within a relatively large measurement range[29]. In [5], a

commercial cantilever-based piezoresistive force sensor (SensorOne Technolo-

gies Corporation, model AE801) is modified by gluing a shortened micropipette

to the free end of the cantilever (as shown in Figure 2.9) to measure the contact

force between micropipette and zebrafish embryo.

Figure 2.9: Side view of the modified piezoresistive micro-force sensor with the mi-
cropipette. Adapted from [5].

Vision-based techniques have also been developed to measure the micro/nano

level force. In these techniques, polydimethylsiloxane (PDMS), which is an type

of extremely compliant material, is often used to sense the force. The force sens-

ing is realized through image tracking of the deformation of PDMS to provide

the displacement information and subsequently convert to force information.

In [30], a two-dimensional PDMS micro-force sensor is fabricated for micro-

robotics is presented. For the purpose of biomanipulation [11], the nano-force

measurement in microinjection is achieved by measuring the deformation of the

post (made of PDMS) supporting cell under injection in the cell holding device.

This sensing scheme is motivated to circumvent the end-effector exchange prob-

lem, which is due to the fact that the end-effector (e.g., micropipette) and force

sensor (e.g., piezoresistive beam) are glued together. The sub-pixel visual track-

ing algorithm is developed to track the deflection of the post during injection

and provides a resolving force down to 3.7nN .
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Figure 2.10: (a) Force balance on the cell under indentation. (b) Post deflection model.
Adapted from [11].

2.2.2 Force Control in Biomanipulation

Compared to the extensive research attentions on development of micro/nano

force sensing techniques, few have been dedicated to explicitly controlling force

in biomanipulation. In this section, an overall review of force control is pre-

sented first. Subsequently, some works on regulating the force for the purpose

of enhancing microinjection process are reviewed.

Force control in general has been an important research area in robotics since

many applications of robot require manipulator interact with its environment.

During the development of robot force control, several control algorithms have

been explored and refined to provide robotic systems with enhanced capabil-

ity in managing the interaction between end-effector and environment[31][32].

In literature, force control can be classified as direct force control and indi-

rect force control. The key difference between these two categories is that the

former has an explicit force feedback loop to realize force control whilst the

latter realizes force control through motion control. The most recognized in-

direct force control strategy is impedance control, which which achieves com-

pliant motion control through explicitly controlling end-effector position in the

unconstrained subspace and interaction force in the constrained subspace [33].
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Impedance control is the most studied indirect force control since it achieves

designed force control performance through introducing a prescribed dynamic

relationship between contact force and position error[34]. Based on these fun-

damental interaction control strategies, many advanced force control algorithms

integrating robust control and adaptive control are developed [35].

Force control usually requires the modeling of the environment which the end-

effector is interacting with. The linear spring model of environment with con-

stant stiffness is the mostly used model. This widely adopted model is repre-

sentative of many situations where stiffness is the dominant factor of the inter-

action dynamics[36]. Besides, stiffness is the most important characteristic for

stability analysis[37]. The Kelvin-Voigt spring-damper mode is another popular

model since it considers the dissipation of energy by combining the damping

term which introduce a damping force.

With the various developed force sensing techniques as reviewed in previous

section, a number of force control techniques have been reported with the pur-

pose of controlling the penetration force in automated microinjection system.

In [11] and [38], proportional-integral-derivative (PID) is employed on account

of its robustness. In [7][13] and [39], impedance control is employed to render

the penetration force track a reference trajectory, which is obtained via learning

the manual injection by a human expert. The impedance is designed such that

severe oscillation and large overshoot are avoided to reduce the damage induced

by injection. The contact force is modelled simply as a polynomial function of

the deformation of the cell. Hence, the desired interaction dynamics are given

by[39] ⎧
⎪⎨

⎪⎩

mẍ+ bẋ+ kx = fr − fe

fe =
n∑

i=0
Cixi

(2.1)

where m, b and k are positive constants, representing prescribed mass, damp-
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ing and stiffness respectively; x is the deformation of cell; fr is the reference

force and fe is the contact force; Ci is the parameter of the polynomial func-

tion. A control law based on feedback linearization is designed to achieve the

desired dynamics 2.1 and asymptotical convergence of force tracking error is

ensured.

2.3 Review of Cellular Tensegrity Model

Approaches based on continuum and structural mechanics have been shown

to be useful in constructing mechanical models of living cells [40][41]. The

tensegrity model of cell deformability offers a potentially more effective al-

ternative, because it is capable of simulating many aspects of cell mechanical

behavior and providing biologically plausible explanations for such behavior

[42–45]. The recognition that the cellular tensegrity mode leads to new insights

about cellular behavior further prompts the proposition of many cellular tenseg-

rity structures. These proposed tensegrity structures are analyzed through their

distinct physical response characteristics, which are compared with the exper-

imental observations to gain understanding on how a cell physically responds

to external mechanical stimuli. Among the different tensegrity structures devel-

oped for cell mechanics, the numbers of elements in compression and in tension

vary significantly. Sometimes the hierarchy of the tensegrity structure is also

designed differently depending on the types of cells and assumptions.

There is increasing evidence supporting the validity of cellular tensegrity model.

In [45], a number of sophisticated experiments are carried out to demonstrate

that the microtubule which bears compression is the main contributor to cellular

mechanics, and that prestress exists within CSK and plays a critical role in guar-

anteeing the shape stability of the cell. These two observations are consistent

with the key features of the cellular tensegrity model. Moreover, quantitative
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measurements had been conducted to indicate that the tensegrity model is able

to predict many complex cellular mechanical behaviors [41].

2.3.1 Equations of Motion of a Well-Accepted Six-Strut Cel-

lular Tensegrity Model

The effectiveness of the six-strut cellular tensegrity structure in predicting the

dynamic behavior in cells is also explored [46][47]. A number of researcher

have been investigating the dynamics of tensegrity structure notwithstanding, in-

troducing Lagrangean formulation to derive the dynamics of the cellular tenseg-

rity model is initially proposed in [47]. In this section, a detailed review of using

Lagrangean formulations to analyze the dynamics of the well-accepted six-strut

cellular tensegrity model is presented. The tensegrity structure employed in [47]

((as shown in Figure. 2.11(a)) is consist of 6 struts and 36 tendons. The bot-

tom three struts AiCi(i = 1, 2, 3) are freely rotatable about Ai while the upper

three struts BiDi are only connected by tendons. Since Ai are fixed, only 33

tendons out of the 36 tendons contribute to the deformation of structure under

external load and they are referred as working tendons. A slight modification

of this tensegrity model with respect to previous six-strut tensegrity structure in

[48] is that the intermediate filaments are incorporated and represented by 12

tendons connecting to a massless point at the geometrical center of the spherical

structure.

The struts are considered as rigid bars of identical length L and of negligible in-

ertial property under compression, whereas the tendons as identical viscoelastic

Voigt elements. The constitutive equation of a tendon is

ft = k · (l/l0 − 1) + c · l̇
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(a) (b)

(c) (d)

Figure 2.11: (a) A six-strut cellular tensegrity structure. (b) Orthonormal base vectors
(⃗b1, b⃗2, b⃗3). (c) Configuration of A3C3. (d) Configuration of B1D1.
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where ft is the force sustained by the tendon, k is the stiffness, c > 0 is the

damping coefficient, l and l0 are the length and the initial length of the tendon,

respectively, and l̇ is the time derivative of l.

A right handed system of orthonormal base vector (⃗b1, b⃗2, b⃗3) (as shown in Fig-

ure 2.11(b)) is introduced to facilitate the mathematical description of the model.

The configuration of the tensegrity structure is described by the positions of all

the struts (AiCi and BiDi(i = 1, 2, 3)), which are defined by a set of generalized

coordinates. The bottom struts AiCi are specified by two angles: azimuth α1i

(i.e., the angle between the orthogonal projection of the strut on plane A1A2A3

and the vector b⃗1) and declination δ1i (i.e., the angle between the strut and vector

b⃗3). For the upper struts BiDi, in addition to azimuth α2i and δ2i, the Cartesian

coordinates of the geometric center of strut, (Xi, Yi, Zi) is introduced to col-

lectively describe the position. Figure. 2.11(c) and Figure. 2.11(d) illustrate

the definitions of the generalized coordinates for AiCi and BiDi, respectively.

Lastly, the Cartesian coordinates of the massless point is required and defined

as (X, Y, Z). With above defined general coordinates, the vector of generalized

coordinates q can be obtained as:

q = [ δ11 α11 δ21 α21 δ31 α31 X1 Y1 Z1 δ12 α12

X2 Y2 Z2 δ22 α22 X3 Y3 Z3 δ32 α32 X Y Z ]T (2.2)

The equations of motion can be subsequently derived using Lagrangean formu-

lation
∂V

∂qj
=

7∑

n=1

(F T
n

∂ṙn
∂q̇j

+MT
n

∂Ωn

∂q̇j
), j = 1, . . . , 24 (2.3)

where, V represent the potential energy; qj is the jth element of q; Fn and Mn

are the resultant force and moment, respectively; n represents the nth rigid body

(including both struts and the center massless point); ṙn is the velocity of the
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center of the strut and the point; Ωn is the angular velocity of the nth rigid

body. Let R and I denote the set of real numbers and integers, respectively. The

equations of motion of the tensegrity structure are:

A(q)T (q) + C(q)q̇ = H(q)f (2.4)

where
q ∈ R24×1 : vector of generalized coordinates,
A(q) ∈ R24×33 : equilibrium matrix,
T (q) ∈ R33×1 : tensions in the working tendons,
C(q) ∈ R24×24 : damping matrix,
N ∈ I : number of external forces and torques,
H(q) ∈ R24×N : disturbance matrix,
f ∈ RN×1 : vector of external forces and torques.

The elements of A(q), T (q), C(q) and H(q) are given in Appendix A.

2.3.2 Prestressability and Reference Solution

One of the most important and unique feature of tensegrity model is their pre-

stressability [49], which indicate to the extent of stretching the tendons sustain.

Prestressability directly associate the capability of the structure to maintain the

equilibrium configuration when no external loads are applied. The equilibrium

configuration is considered as the reference solution for Equation (2.4). The

reference solution depends on prestressability, which is described by two pa-

rameters: prestress P and basis tensions T0. P is a positive constant while

T0 is the vector of the basis tensions at equilibrium configuration. At equilib-

rium configuration (i.e., reference solution), the tension matrix can be expressed

as

T (q0) = PT0 (2.5)

q0 is the reference solution. Provided P and T0, the corresponding generalized

coordinates can be obtained. The basis tensions T0 at reference solution are set
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according to the classes of the tendon, which are defined as follows[47]: the

intermediate filaments (I) class which consist of the tendons connected to the

center of structure; the saddle (S) tendons class which consists of the tendons

connecting B1, B2, B3, C1, C2 and C3; the top (T) tendons class which consist

of the tendons connecting D1, D2 and D3; the diagonal (D) tendons class which

consists of A1B2, A2B3, A3B1, D1C2, D2C3 and D3C1; the vertical (V) tendons

class which consists of A1C3, A2C1, A3C2, D1B3, D2B1 and D3B2. The values

of the basis tensions at tension are assumed to be : T S
0 = 0.210, T V

0 = 0.219,

TD
0 = 0.226, T T

0 = 0.213 and T I
0 = 0.022.

2.3.3 Three-Dimensional Finite-Element Cellular Tensegrity

Models

In addition to analyzing the dynamics of cellular tensegrity models, finite ele-

ment method (FEM) has been applied to simulate how cellular tensegrity mod-

els deform under various external loads. By employing the six-strut tensegrity

structure as shown in Figure 2.11(a) as the central component, a computational

three-dimensional finite-element model of an adherent eukaryotic cell is devel-

oped to simulate structural response of the cell under the usual mechanical stim-

uli (e.g. fluid flow) [50]. An important advantage of using FEM for simulating

the deformation of tensegrity structure is that complex tensegrity structure is

able to be considered. For instance, in [51], a tensegrity structure of 30 struts

and 30 cables is analyzed to simulate the transmission of mechanical load ap-

plied on the surface. Moreover, it possesses both external structure and internal

structure and the interconnecting elements between the external structure and

the internal structure. In both [50] and [51], besides cytoskeleton, the finite ele-

ment model incorporates some other structurally significant cellular components

(i.e., nucleus, cytoplasm and membrane) that influence the mechanical behavior
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of the cell.

A three-dimensional finite-element model similar to [47] is proposed in [2] for

use as a virtual training environment for microinjection operations; it repre-

sents the first attempt to simulate the reaction force from a deformed tensegrity

structure. In all these important research works on cell dynamics modeling, the

external force considered to be experienced by the cell is often in the form of a

static load. The interaction between the viscoelastic behavior of the cell and an

dynamically applied external force has yet to be fully explored.

2.4 Neural Network Control of Multi-Input Multi-

Output Nonlinear systems

A brief review of control of multi-input multi-output (MIMO) system is pro-

vided in this section since the force control for manipulator with multiple de-

gree of freedom is essentially a control problem of MIMO nonlinear systems.

As an effective control strategy for control of MIMO systems, a special interest

is given to radial basis function neural network (RBFNN) based controller. In

particular, NN-based control techniques for MIMO systems with input satura-

tions is reviewed.

The control of MIMO nonlinear systems is a practical yet challenging problem

since most of engineering systems are multivariable and nonlinear. The control

challenge is mainly due to the couplings of both inputs and outputs. Moreover,

the uncertainties and nonlinearities in the input coupling matrix lead to further

complication[52]. It is therefore important to develop effective control tech-

niques for uncertain MIMO systems. Among the available control techniques

for control of uncertain MIMO nonlinear systems (e.g.,[53–58]), neural network

(NN) based adaptive controller has attracted considerable interests. Various con-
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trol strategies have been developed, with most of them focusing on integrating

the neural networks to the robust adaptive control techniques under the scheme

of the popular backstepping approach[52, 59–63]. In [52], the singularity prob-

lem of the control input matrix has been overcome by leveraging on the prop-

erties of the MIMO systems in block-triangle form. In [60], the developed NN

based robust control design relaxes the requirement for off-line training. These

results have demonstrated that NN based controllers are effective for control of

highly nonlinear systems with uncertainties.

2.4.1 Radial Basis Function Neural Network Based Control

of MIMO systems

For the purpose of nonlinear control, the most widely applied NNs are radial ba-

sis function neural networks (RBFNNs), high-order neural networks (HONNs)

and multilayer neural networks (MNNs)[64]. RBFNNs have been extensively

studied to approximate the unknown dynamics of the MIMO system on account

of their outstanding capability in modeling highly nonlinear functions[65]. They

have been widely applied to tackle various control problems for MIMO systems

[52, 66–70]. In the aforementioned works, RBFNNs are used to approximate

a continuous function h(Z) : Rq → R over a compact set ΩZ ⊂ Rq in the

following way:

h(Z) = W ∗TS(Z) + ϵ (2.6)

where Z ∈ Rq; W ∗ is ideal NN weights vector; ϵ is the approximation er-

ror corresponding to the ideal NN weights; S(Z) is the basis function vector.

As proven in [65], (2.6) is able to approximate h(Z) to arbitrarily any accu-

racy.
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2.4.2 Control of Nonlinear Systems with Input Saturations

Physical dynamical systems are inevitably suffer from input constraint due to

actuator limitations in magnitude and rate. This may severely degrade system

performance if handled inappropriately. Various attempts have been made to ad-

dress this issue(e.g., [68, 69, 71–79]). In [76], a modified tracking error system

is developed as a novel strategy to deal with the adaptation process for on-line

approximation when input saturation occurs. The main advantage of the pro-

posed control system is to protect the learning capabilities in presence of input

saturation. In [78], an adaptive backstepping control scheme using command fil-

ters to emulate actuator physical constraints on both the control law and the vir-

tual control laws is presented. The issue of input constraints is more complicated

for uncertain nonlinear MIMO systems. In [68], the auxiliary system design in

[76] is extended to guarantee the H∞ performance for a general class of nonlin-

ear MIMO systems with uncertainties in the presence of both disturbances and

control input constraints. A model-based adaptive control is developed in [79] to

handle the non-symmetric input saturation and a NN-based robust controller is

developed in [69] to resolve a general input nonlinearity concerning both input

saturation and deadzone. In both works, a new type of auxiliary system design

is proposed with its signal utilized in the designed control law. The semi-global

uniformly ultimate boundedness of all the signals in the closed-loop system is

achieved in presence of input saturations by virtue of the special design of the

auxiliary system.
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Chapter 3

Speed Optimization in Automated

Microinjection of Zebrafish

Embryos

3.1 Introduction

Microinjection of zebrafish embryo is a common practice in studying the early

developmental processes of biological organisms. Zebrafish embryo serves as

a widely used experimental subject in biology on account of its some unique

characteristics. These characteristics includes that the embryos are transparent

and genetically manipulatable. Besides, the fast development of its embryo

is another attractive feature. The development of zebrafish embryos and the

embryo structure are shown in Figure 3.1 and Figure 3.2, respectively.

Conventional manual microinjection usually involves an operator moving the

micropipette towards the embryo until its tip slightly touches the chorion, then

driving the micropipette to pierce the chorion and maneuvering the tip of the

35



Figure 3.1: The development cycle of zebrafish embryo

micropipette to a desired location inside the embryo to delivery the DNA mate-

rial. Such manual operation relies on visual information from optical devices to

guide the operator, and is prone to errors (due to various human factors such as

fatigue). Approaches reported in the literature for improving the process mainly

concentrate on providing haptic feedback to the operator (e.g., [16]).

Figure 3.2: Structure of a zebrafish embryo
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3.2 Motivation

In automated microinjection involving zebrafish embryos, the motion of the mi-

cropipette (which induces deformation in the embryo) may cause damage to

the embryo, thus rendering the injected embryo useless. The work reported in

this chapter was motivated by the need to avoid such damage while improving

the efficiency of the process. The performance of a microinjection process can

be evaluated in various context. From a pure biological perspective, the sur-

vival rate of the injected embryos is one key performance indicator. From a

bio-mechanical perspective, the deformation sustained by the embryo is an im-

portant factor to consider, since a large deformation can damage the embryo to

the extent of adversely affecting its survivability. For this reason, developing en-

gineering tools for microinjection with the main objective of reducing embryo

deformation remains an active research area.

3.3 Dynamics Model of Zebrafish Embryo

Under indentation zebrafish embryos exhibit viscoelastic behavior that can be

described by analytical models [80][40]. In particular, when the micropipette

indents an embryo at different speeds, the peak contact force and the embryo

deformation vary accordingly. The applied force, the speed of indentation, and

the deformation of the embryo form a complex dynamical relationship.

Figure 3.3(a) shows a typical (side view) image illustrating the indentation of a

zebrafish embryo. A micropipette exerts on the membrane an indentation force,

which compresses the embryo to create a dimple around the point of contact.

The left half of the embryo is characterized by the dimple due to the indentation,

while the right half is characterized by the planar circular contact surface formed

on the rigid supporting wall.
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(a)

(b)
Figure 3.3: (a) Indentation of the zebrafish embryo membrane by a micropipette. (b)
The distribution of stress and stain in the deformed membrane, where the symbols ξ
and σ denote stress and strain, respectively (max stand for maximum and min stand for
minimum). F denotes the contact force between the micropipette and the membrane of
the embryo.
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Figure 3.3(b) illustrates the force and strain information during zebrafish mi-

croinjection process([80]). The microinjection process is assumed to start from

the moment the micropipette first makes contact with the chorion. The tip of the

micropipette creates a small planar circle contact with the membrane. This is

referred to as the dimple top. The stress sustained by different part of the mem-

brane varies. Maximum stress in the membrane occurs at the perimeter of the

dimple top because the edge of the tip of the micropipette is pressed against the

membrane. The dimple top is considered the fixed end of the overall (deformed)

membrane. Thus the strain on the membrane at the dimple top is zero. For the

deformed portion of the embryo, starting from the dimple top the stress (strain)

of the membrane gradually decreases (increases) along the curved perimeter,

reaching its minimum (maximum) at the dimple base.

In the remainder of this section, a dynamics model of the zebrafish chorion

under indentation is constructed, and its parameter values are determined exper-

imentally.

3.3.1 Dynamics Model

A Maxwell-Wiechert model with two Maxwell elements [81], as shown in Fig-

ure 3.4, is adopted and the values of its parameters through a set of experiments

are estimated.

The following assumptions facilitate the application of this Maxwell-Wiechert

model in the context of microinjection:

Assumption 3.1: The micropipette is kept in contact with the membrane of the

embryo such that the deformation of membrane is considered to be exclusively

caused by the movement of the micropipette.

Assumption 3.2: The deformation of embryo is adequately described by the
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depth of indentation on the membrane. This is consistent with the fact that the

depth of indentation is a dominant variable in describing such deformation[80].

Assumption 3.3: The reaction force, generated by the membrane under inden-

tation, directly correlates with the stress sustained by the membrane so that

whether a membrane has been ruptured due to the indentation can be directly

deduced from the magnitude of the reaction force.

Figure 3.4: Maxwell-Weichert model having two Maxwell elements.

The total force in the Maxwell-Weichert model (as shown in Figure 3.4) can be

expressed in the Laplace domain as:

F (s) =

(
k1 +

k2s

s+ k2/b2
+

k3s

s+ k3/b3

)
X(s) (3.1)

where X(s) is the deformation and F (s) is the indentation force acting on the

membrane. For a single indention step, it is obtained that (in the time do-

main)

x(t) =

⎧
⎪⎨

⎪⎩

∫ t

0

v(τ) dτ for 0 ≤ t ≤ t′

x(t′) for t > t′
(3.2)

where v is the speed of the micropipette and t′ is the time when the micropipette

stops its indenting motion. Combining Equations (3.1) and (3.2) yields the rela-
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tionship (in the time domain) among f , x, and v:

f(t) = k1x(t) +
3∑

i=2

ki

∫ t

0

v(τ)e−αi(t−τ)dτ (3.3)

where αi = ki/bi, with i = 2, 3. The values for the parameters k1, k2, k3, b2, and

b3 were estimated by experiment, as described below.

3.3.2 Estimation of Parameter Values

A prototype general-purpose micromanipulation system was utilized to attain

empirical data for estimation of parameters in Equation (3.3). Figure 3.5 illus-

trates the components of this system.

6-axis 
Positioning 

Stage

Light 
Source

3-axis 
Positioning 

Stage

M
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sensor
Micro-
pipette
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Holder
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Figure 3.5: A plastic cuboid, with its bottom glued to a transparent plastic sheet, con-
tains the zebrafish embryo. It has a vertical wall to keep the embryo stationary when
being indented by the micropipette (which is actuated by a 3-axis positioning stage).
The holder that supports this sheet is mounted on a 6-dof motion stage that can be ma-
noeuvred to algin the wall of the cuboid to be perpendicular to the direction of motion
of the micropipette. A force sensor, incorporated in the micropipette, measures the in-
dentation force, while a digital camera, positioned directly above the cuboid, captures
the view of the microscope.

The embryo holder device is made of a plastic cuboid with its bottom glued
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to a transparent sheet. The height of the cuboid is marginally greater than the

embryo. The reason of this design is to guarantee that the vision system is

able to fittingly focus on the edge of the rectangular cube and the perimeter of

the embryo. The cuboid serves as a stopper to immobilize the embryo under

indentation by the micropipette. As illustrated in Figure 3.6, a small water pool

was formed by adding some water into the surroundings of the embryo.

Side View

Plastic cuboid

Water pool Plastic 
sheet

Micro-pipette

Figure 3.6: Schematic illustration of (a) the overall micromanipulation system; (b) the
small pool area.

The holder was mounted on a high-precision six-axe motion stage. Another

three-axe positioning stage was used to move the micropipette. A micro-force

sensor (mounted onto the micropipette) measured the indentation force, as shown

in Figure 3.7. The micro-force sensor was originally developed in [29]. The sen-

sitivity of the force sensor was 128em N , where em is the measured strain and

of a resolution of 10−8. The force signal is obtained through a strain meter (Na-

tional Instrument, model NI 9327). The images of the embryo under injection is

captured by the digital camera positioned above the cuboid (as shown in Figure

3.7).

During the experiment, the micropipette tip was firstly positioned to slightly

contacts the chorion of the embryo. After the establishment of the contact, the

micro-force sensor is turned on to start measure the contact force. Subsequently,

42



micro-force 
sensor 

micropipette 

embryo

wall

Figure 3.7: Close-up view of the contact between the micropipette and the embryo.

the micropipette was driven by the positioning stage to move at a preset constant

speed until it travels a designed distance, which is considered as a single inden-

tation step. After the indentation, the micropipette was maintained its position

until the force measured stabilized. The sampling rate of the force sensor is

1 kHz, namely, for every 0.1 second, 100 force readings were recorded. The

preparation of the zebrafish embryos tested was as per the standard procedures

as elaborated in [15] (zebrafish embryos collected were at the state between four

to six hours after fertilization).

Measured
Curve-fitted

Figure 3.8: Curve fitting of data from experiment using a Maxwell-Wiechert model
with two Maxwell elements.

The solid curve in Figure 3.8 shows the measured force (the solid curve) during
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the indentation of a zebrafish embryo. (The dash curve, almost coinciding with

the solid curve, represents result from the curve-fitting of the the experiment

data, as discussed below.) At t = 0, the tip of the micropipette was in contact

with the chorion and the force reading was around 0µN. A step indentation of

300µm was then applied on the embryo at a speed of 1mm/s. At t = 0.3s, the

contact force reached a peak value of 289.53µN and then started to drop grad-

ually. At t = 75s, the contact force stabilized at a magnitude of 159µN. Since

the speed of the micropipette is constant during the indentation, the dynamics

of the Maxwell-Wiechert model takes the specific form:

f(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1v0t+
3∑

i=2

bi(1− e−αit)v0, for t ∈ [0, t0]

k1x0 +
3∑

i=2

bi(e
αit0 − 1)v0e

−αit, for t > t0

(3.4)

where v0 = 1mm/s, t0 = 0.3s, and x0 = 300µm.

Fitting the measurements obtained from the experiment into Equation (3.4) us-

ing MATLAB yields the corresponding force trajectory represented by the dash

curve in Figure 3.8. The average R-Square value is 0.99, indicating a high con-

fidence level on the goodness-of-fit for this Maxwell-Weichert model.

Figure 3.9 shows the results of curve-fitting data from experiments on five em-

bryos with different values for the maximum indentation force, while Table 3.1

lists the values of the parameters in Equation (3.4), obtained from these five ex-

periments. It can be seen that the five sets of parameter values are comparable.

The variation in some of the values across the trials are mainly due to inher-

ent errors in the experiments and the physical characteristics of the zebrafish

embryos at their individual states of development.
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Figure 3.9: Force responses of zebrafish embryos predicted by the analytical model and
measured from experiments. The smooth solid curves are generated from the model
using the paramater values listed in Table 3.1. The jagged curves are obtained from
experimental data.

Table 3.1: Parameter values of five indentation trials
Trial

Parameter 1 2 3 4 5 Avg.
k1 (N/m) 0.43 0.53 0.42 0.56 0.75 0.538
k2 (N/m) 0.22 0.22 0.25 0.20 0.23 0.224
k3 (N/m) 0.21 0.22 0.26 0.21 0.25 0.230
b1 (Ns/m) 0.22 0.22 0.25 0.40 0.20 0.258
b2 (Ns/m) 5.2 4.4 5.2 5.9 3.0 4.74
F ∗ (N) 256.88 289.53 291.71 316.38 375.75
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Incidentally, the parameter estimation using a Maxwell-Wiechert model with

only one Maxwell element have been tried. The result (shown in Figure 3.10)

reveals the inadequacy of this model.

Figure 3.10: Curve-fitting of force trajectory using a Maxwell-Wiechert model with
only one Maxwell element.

3.4 Speed Optimization

The objective in optimizing the speed of an automated microinjection process is

to minimize the deformation of the embryo. One approach to achieve this is to

design a suitable speed trajectory v(t) for the motion of the micropipette. In the

viscoelastic model represented by Equation (3.3), the depth of the indentation

x(t) is the only variable that describes the deformation of the embryo. In this

context, the objective of the optimization problem is to minimize x while per-

mitting the force sustained by the embryo to reach the required magnitude for

piercing the embryo.

46



3.4.1 Problem Formulation

The selection of such an optimal speed is necessarily constrained in practice

by the limitation of the actuation system. Such limitations typically include

the maximum acceleration (denoted by A), the maximum deceleration (D), and

the maximum velocity (V ) of the micropipette. Consequently, there is a limit

on the type of speed trajectory that can be implemented on a given actuation

system.

One way to represent a general speed trajectory is to use an nth-order polyno-

mial, i.e., v(t) =
∑n

i=0 cit
i, where the set of constants {ci}, with i = 1, . . . , n,

are the coefficients that can be chosen to satisfy the constraints imposed by A,

D, and V . Let Ωv denote the set of all such trajectories implementable on a

given system, i.e.,

Ωv =
{
v(t)

∣∣ ∥v(t)∥∞ ≤ V,

|dv/dt| ≤ A if dv/dt > 0, and

|dv/dt| ≤ D if dv/dt < 0
}

where ∥v(t)∥∞ = max[ |v(t)| ] is the L∞-norm of v(t). For a trajectory v(t) ∈

Ωv, there is an instant (measured from t = 0 and denoted by τ ∗) when the

embryo is just about to be pierced. The force at τ ∗ is denoted by F ∗.

The speed optimization problem can now be formulated as, for a given n,
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Find: {ci}, i = 1, 2, . . . , n

Minimizing: x(τ ∗) =

∫ τ∗

0

v(τ) dτ , with v(t) =
n∑

i=0

cit
i

Subject to: 1) f(τ ∗) = F ∗

2) f(t) < F ∗ for t ∈ [0, τ ∗ − ε]

3) v(t) ∈ Ωv for t ∈ [0, τ ∗]

where f(t) is as given in Equation (3.3), and ε is an infinitesimal positive

value.

3.4.2 Numerical Solution Approach

Given τ ∗ and n, the optimization problem becomes linear and semi-infinite. For

for a set of values of τ ∗ and a set of values of n, solving the corresponding

linear semi-infinite optimization problems results in a set of speed trajectories

and the associated minimum deformation x(τ ∗). The trajectory associated with

the smallest x(τ ∗) is considered to be an optimal speed trajectory for the given

sets of values for τ ∗ and n.

Limits on the values of τ ∗ and n can be established based on practical consider-

ations. For τ ∗, the practicality of a microinjection process requires it to have a

finite upper bound, while the capability of the actuation system dictates a lower

bound. Hence, τ ∗ can be considered to vary within a practically meaningful

range. For n, the possible values can be limited to 3 or 4, since a speed trajec-

tory in the form of such a polynomial can represent sufficiently rich dynamics

for this type of manipulation tasks.

To illustrate this solution process, the results for the case where n = 3 and

τ ∈ [0.2, 2] is firstly presented, with (i) the parameter values of the dynamics

model being that obtained from Trial 2 as listed in Table 3.1 (since they are close
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to the average), and (ii) the parameter values that characterize the performance

of the actuation system as given in Table 3.2. The latter set of parameter val-

ues reflect the hardware limitation of the prototype micromanipulation system

shown earlier in Figure 3.5.

Table 3.2: Parameters of the hardware
Parameter Symbol Value
Maximum acceleration A 0.01 m/s2

Maximum deceleration D 0.01 m/s2

Maximum velocity V 0.002 m/s
Maximum force F ∗ 250 µN

The optimization problem was solved using MATLAB’s linprog. The sam-

pling time for the semi-infinite constraints was set at τ ∗/30 and the increment

of τ ∗ at 0.01 second. Figure 3.11(a) shows the minimum deformation of the

embryo over the given range of values for τ ∗, while Table 3.3 lists the values

of the coefficients of the optimized speed trajectory v(t) for a set of sample τ ∗

values.

Table 3.3: Coefficients of optimal speed trajectories.
τ ∗ c0 c1 c2 c3

0.2 0.0004 0.0078 0.0323 -0.1590
0.4 0.0001 -0.0037 0.0335 -0.0312
0.7 0.0000 0.0003 -0.0038 0.0102
1.1 0.0000 0.0005 -0.0023 0.0027
1.4 0.0000 0.0003 -0.0011 0.0010
1.7 0.0000 0.00020 -0.00062 0.00048

Figure 3.11(a) indicates that, for the interval of τ ∗ between 0.2 and 2, the

minimum deformation (among all the minimum in that interval) occurs when

τ ∗ = 0.2. Figure 3.11(b) and 3.11(c) show the corresponding trajectories of

v(t), x(t) and f(t), respectively.

Results from numerical simulations for the cases where v(t) takes the form of
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(a)

(b)

(c)
Figure 3.11: (a) Minimum deformation at different Time τ∗. (b) Trajectory of v(t) for
τ∗ = 0.2s. (c) Deformation and force for τ∗ = 0.2 sec.
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a polynomial of 0th-, 3rd- and 4th-order are presented in Figure 3.12. The 0th-

order polynomial (constant speed) corresponds to the case where the indentation

is carried out at a constant speed for the same interval of τ ∗. In this case the

optimization problem degenerates into a simple relationship between x and τ ∗,

since from Equation (3.3) and with v̄ being the constant speed, it is obtained

that

x(τ ∗) = v̄τ ∗ =
F ∗

k1 + (δ2(τ ∗) + δ3(τ ∗)) /τ ∗
(3.5)

where δj(t) = bj
(
1− e−kj t/bj

)
, with j = 2, 3. Since ẋ > 0, x(τ ∗) here is a

monotonically increasing function of τ ∗, as illustrated by the top curve in Figure

3.12.

Figure 3.12: Minimum deformation with v(t) of 0th, 3rd, and 4th order polynomials
over an interval of τ .

The simulation results, as summarized in Figure 3.12, indicate that optimization

of the sped trajectory of the micropipette leads to significantly reduction in the

deformation of the embryo. Moreover, the extent of such a reduction is propor-

tional to the time-to-piercing τ ∗ and also to the order of the polynomial used.

However, it can be seen that the difference in x(τ ∗) between the cases of 3rd

and 4th-order polynomial is small (relative to that between the cases of constant

speed and 3rd-order polynomial). This gives support to the consideration that a

3rd-order polynomial would be acceptable in practice.
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3.5 Experiments

Two sets of experiments were performed. The first was to investigate the defor-

mation of zebrafish embryo during microinjection when the indentation speed

was constant. The second set was to verify and demonstrate the effectiveness of

the proposed speed optimization approach for microinjection.

3.5.1 Indentation at Constant Speed

Ten embryos were indented for each of the seven constant speeds ranging from

0.05 mm/s to 1.5 mm/s.This amounts to a total of 70 measurements taken in this

set of experiments. For each (constant) speed, an averaged deformation of the

ten embryos was calculated.

The experimental results are shown in Figure 3.13. A comparison between the

results from the simulation and the experiments is shown in Figure 3.14. These

results agree with the analysis presented in the previous section, and thus con-

firm that a higher (constant) speed, which implies shorter time-to-piecing, re-

sults in a smaller deformation of the zebrafish embryo.

Figure 3.13: Deformation (with one standard deviation) of zebrafish embryo under in-
dentation at constant speed.
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Figure 3.14: Comparison between experiment and simulation for constant speed

The difference between the experiment data and the simulation data is around 20

to 40 micro, which is around 10 percent of the overall deformation and is thus

acceptable. A number of factors may contribute to the difference. The main

factor is that there are errors in the parameters of the Max-well model used

for simulation. These parameter errors may be due to the individual difference

among different embryos and different batches of embryos (the embryos used

for parameter identification and those used for experiments using constant speed

are from different batches). Another key factor is that the micropipette might

have slid against the membrane during the indentation process. Nonetheless, the

main conclusion that can be drawn from the comparison between the experiment

and simulation results is that the data trends are consistent.

3.5.2 Indentation at Optimized Speed

The numerical solution presented in Section III assumes (i) the existence of an

accurate model of embryo deformation, and (ii) precise implementation of the

desired speed trajectory. In practice, a microinjection system is unlikely to be

able to satisfy these assumptions. This leads to the problem of how to verify (in

an actual microinjection process) the effectiveness of the optimal speed trajec-
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tory that has been analytically designed to minimize embryo deformation. This

section describes our approach, and presents experimental results, for demon-

strating the effectiveness of speed optimization under the inherent constraints in

a practical microinjection system.

An immediate consequence of having modeling errors and imprecise speed con-

trol in a practical microinjection system is that the force applied on the embryo

may not reach the prescribed peak F ∗ at exactly the prescribed instant τ ∗ (as

required by the analysis). Since reaching F ∗ is the essential goal of microinjec-

tion, the optimized speed trajectory v(t) is altered to obtain the modified optimal

speed trajectory ve(t), by relaxing the requirement on the time for the force to

reaches F ∗ as follows:

ve(t) =

⎧
⎨

⎩
v(t) for 0 ≤ t ≤ τ ∗

v(τ ∗) otherwise
(3.6)

Under this modification, the indentation process may stop prior to, or beyond,

τ ∗. The actual stopping time (denoted by τe) is the instant when the applied

force reaches F ∗.

Figure 3.15: Optimized speed trajectory and its approximate implementation.

A set of modified optimal speed trajectories associated with τ ∗ ∈ {0.3, 0.5, 1, 2, 3, 4},

were generated based on a 3th-order polynomial and using the parameter values
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of the dynamics model obtained from Trial 2 (as listed in Table 3.1) and the

parameter values listed in Table 3.2. Due to the limitation of the current micro-

manipulation platform, which only permits the specification of point-to-point

motion in terms of a trapezoidal speed profile (defined by the desired position,

the acceleration and deceleration, and the maximum velocity), this set of speed

trajectories were implemented by constructing a sequence of such speed pro-

files to approximate the analytical forms. Figure 3.15 illustrates an example of

such approximate implementation. It shows the (theoretical) optimized speed

trajectory and the actual speed trajectory obtained from the approximate imple-

mentation for the case of τ ∗ = 2. The approximated implementation was done

using three consecutive trapezoidal speed profiles of point-to-point motion. The

intervals for these three profiles are: [0, 0.5], [0.5, 1.2], and [1.2, 2], with the cor-

responding values for the desired position, the acceleration (which is also the

deceleration), and the maximum velocity being set as {0.0043, 0.068, 0.017},

{0.002, 0.1, 0.003}, and {0.7, 0.9581, 0.7665}, respectively.

Constant speed

Optimized speed

Figure 3.16: Deformation of zebrafish embryos obtained from experiments. The top
curve is the same as that shown earlier in Figure 3.14 for the period of [0, 4] seconds.
In the bottom curve, each triangle represents the average value from 10 trials, with the
number in brackets being the standard deviation.

A group of ten trials for each of the six optimized speed trajectories (i.e., one

group for each value of τ ∗) were carried out. This amounts to a total of 60
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measurements taken in this set of experiments. For each group, an averaged de-

formation of the ten embryos was calculated. Figure 3.16 shows the results, with

the results from the constant-speed experiments shown earlier in Figure 3.13 in-

cluded for comparison. This set of experimental results clearly demonstrate that

a suitably designed dynamical (as opposed to constant) speed trajectory can sig-

nificantly improve the performance of microinjection of zebrafish embryos in

terms of minimizing the deformation sustained by the embryos.

3.6 Conclusions

The problem of optimizing the microinjection of zebrafish embryos in terms

of minimizing the deformation sustained by the embryo during the indentation

process, has been investigated. This problem is formulated as one of optimizing

the speed trajectory of the micropipette, and proposed a systematic approach

for solving this problem by synthesizing an optimal speed trajectory, based on

a dynamics model of the zebrafish embryo and a class of polynomials. Numeri-

cal simulations and extensive experiments have been conducted to demonstrate

the effectiveness of the proposed approach. In particular, the statistically mean-

ingful experimental data (generated using a large sample of zebrafish embryos)

provide direct evidence on the advantage of speed optimization in a microinjec-

tion process.
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Chapter 4

Force Control of a Cellular

Tensegrity Structure with Model

Uncertainties and Partial State

Measurability

4.1 Introduction

Studies on how cells respond to mechanical forces have generated strong ev-

idence in support of the view that such forces play an important role in the

regulation of cellular functions [1]. Novel approaches and technologies for

mechanobiology have been developed to enable quantitative investigation of

mechanical forces sustained by cells at cellular and subcellular levels [21]. These

studies mainly focused on exploring hardware platforms that integrate applica-

tion and measurement of mechanical loads on cells. Such micro-engineering

platforms provide a necessary means to support further development of ap-

proaches and algorithms for precisely applying external mechanical forces on
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living cells, with the aim of revealing the relationship between external me-

chanical stimulus and cellular response.

To realize the full potential of such platforms for mechanobiology requires the

integration therein of sophisticated force control techniques in order to achieve

accurate control of dynamical forces at micro/nano-scale in the manipulation of

biological systems. This necessitates the modeling of the mechanical behavior

of cells under external force. Approaches based on continuum and structural

mechanics have been shown to be useful in constructing mechanical models of

living cells. The tensegrity model of cell deformability offers a potentially more

effective alternative, because it is capable of simulating many aspects of cell

mechanical behavior and providing biologically plausible explanations for such

behavior [42].

In the context of force-control tasks involving a robotic manipulator, the cell (on

which a force is applied) represents the environment in the execution of such a

task [11][13]. The linear-spring model with constant spring stiffness and the

Kelvin-Voigt spring-damper model are often used for constructing a dynamics

model of such an environment [32]. Although adequate for simple mechanical

environment usually encountered in conventional robotic manipulation tasks,

these models fall short of being able to capture the rich dynamics exhibited by

living biological cells. Consequently, force control techniques for cell manipu-

lation developed based on such models are usually constrained by the limitation

of these models.

This chapter presents the development of a robust force control algorithm that

enables accurate application of an external force on a dynamics model of bi-

ological cells. Such force control is achieved by utilizing a six-strut cellular

tensegrity model constructed based on the structural approach. Leveraging on

the more comprehensive description of the nonlinearity and dynamic coupling
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Figure 4.1: A spherical tensegrity structure with intermediate filaments used to generate
the computational tensegrity model.

of internal structural elements provided by this tensegrity model, this chapter

presents the synthesization of a novel robust control law that can effectively

deal with model uncertainties and partial state measurability.

4.2 Cellular Tensegrity Model and Task Setting

This section briefly introduces a well accepted six-strut cellular tensegrity model

(as shown in Figure 4.1) which is explained in detail in Section 2.3. The equa-

tions of motion of cellular tensegrity model for the case of being applied a force

on one of its struts is derived based on the results in [47], which is reviewed in

Section 2.3.1.
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4.2.1 Equations of Motion Under External force

Figure 4.1 illustrates the structure of a spherical tensegrity structure with inter-

mediate filaments, where the points A1, A2, and A3 define the plane on which

they are fixed, with CiAi freely rotatable about Ai. The struts are considered

as rigid bars of identical length L under compression, whereas the tendons as

identical viscoelastic Voigt elements.

For the homogeneous tensegrity model, the constitutive equation of a tendon

is

fti = k (li/li0 − 1) + c l̇i (4.1)

where fti is the force sustained by the ith tendon, k is the constant stiffness,

c > 0 is the constant damping coefficient, li and li0 are the length and the initial

length of the tendon, respectively, and l̇i is the time derivative of li.

The equations of motion of the tensegrity structure are:

A(q)T (q) + C(q)q̇ +H(q)f = 0 (4.2)

Since the inertial effect of the tensegrity structure is negligible relative to the

overall system dynamics, they are neglected in this model [46].

Equation (4.2) will take on specific forms depending on the location on the

structure where external forces and moments are applied. Since Ai (i = 1, 2, 3)

are fixed, only the struts BiDi exhibit full degree-of-freedom in their motion.

Applying f on one of these struts will excite the dynamics of the tensegrity

structure more extensively. Let f = [fx fy fz]T ∈ R3×1 be applied on B1D1 at

a point G as shown in Figure 4.1 and Figure 4.2. The strut B1D1 is specified

here simply for clarity of expression in the subsequent analysis, which is readily

applicable to other cases where f is applied on any one of the other struts.
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Figure 4.2: Characterization of B1D1 with external force applied on point G, where
0 ≤ r ≤ L, with L being the length of B1D1. α12, δ12, X1, Y1, Z1 are of the same
definitions as in Section 2.3.1.

The generalized coordinates q is redefined to facilitate subsequent development.

As is shown in Figure 4.2, B1D1 is described by α12, δ12 and q1, where α12 and

δ12 are of the same definition as in Section 2.3.1, while q1 is the Cartesian coordi-

nates of point G. This differs from the original definition in Section 2.3.1, since

the Cartesian coordinates of G, instead of the center of mass of strut B1D1, are

employed. For struts BiDi (i = 2, 3) and AjCj (j = 1, 2, 3), the massless point

at the center of the structure are described by the same independent coordinates

as in Section 2.3.1.

Vector q is partitioned into q1 and q2 in the form (which is referred to as qf ):

q
f
=

⎡

⎣ q1

q2

⎤

⎦ (4.3)

where, q1 ∈ R3×1 is the Cartesian coordinates of G; q2 ∈ R21×1, which denotes
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the rest of the elements of q which are not redefined, is given as:

q2 = [δ11 α11 δ21 α21 δ31 α31 δ12 α12 X2 Y2

Z2 δ22 α22 X3 Y3 Z3 δ32 α32 X Y Z]T

The equations of motion are derived in a similar way as described in [47] to

yield

Af (qf )Tf (qf ) + Cf (qf )q̇f =

⎡

⎣ f

0

⎤

⎦ (4.4)

where, Af , Tf , Cf are the corresponding matrix function or vector function

of A, T and C in Equation (4.2) in terms of q
f
, respectively. The resultant

matrix functions Af , Tf and Cf share similar forms (shown in Appendix B) as

discussed in [47]. Moreover, Tf (qf ) and Cf (qf ) are linearly proportional to the

tendon stiffness k and the tendon damping coefficient c, respectively.

Let

Cf =

⎡

⎣ c · C11 c · C12

c · C21 c · C22

⎤

⎦ , AfTf =

⎡

⎣ k ·K1

k ·K2

⎤

⎦

with C11 ∈ R3×3, C12 ∈ R3×21, M21 ∈ R21×3, M22 ∈ R21×21, K1 ∈ R3×1,

and K2 ∈ R21×1 are known function matrixes or function vectors, which are

independent of c and k. Then Equation (4.4) can be rewritten as

k ·K1(q1, q2) + c · C11(q1, q2)q̇1 + c · C12(q1, q2)q̇2 = f (4.5)

k ·K2(q1, q2) + c · C21(q1, q2)q̇1 + c · C22(q1, q2)q̇2 = 0 (4.6)

The reference solution presented in [47] is adopted as the initial states of q
f
=

[qT1 , q
T
2 ]

T , which are denoted as q
f r = [qT1r, q

T
2r]

T . The form of q
f r is presented

in Appendix C.
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The rewritten equations of motion represent a relatively general case of bioma-

nipulation tasks involving applying and controlling force on living cells or other

similar biological materials. For instance, cell microinjection, as a prevalent

biomanipulation operation, can be considered as a specific case of the discussed

situation by assuming that all of the upper three struts (BiDi (i = 1, 2, 3)) are

applied equivalent vertical force while A1, A2 and A3 are fixed. In this case, the

equations of motion are of the similar form as (4.5) and (4.6) but with reduced

degree-of-freedoms.

4.2.2 Force-bearing Interaction, Parameter Uncertainties, and

State Measurability

The external force f is considered being applied on the tensegrity structure by

a manipulator whose dynamics is known and described (in the Cartesian space)

by

Hr(x) ẍ+ Cr(x, ẋ) ẋ+ gr(x) = u− f (4.7)

where, x, ẋ, ẍ ∈ R3 are the position, velocity, and acceleration of the links of the

manipulator, respectively, Hr(x) ∈ R3×3 is the inertia matrix, Cr(x, ẋ) ∈ R3×3

represents the Centripetal-Coriolis effects, gr(x) ∈ R3 represents conservative

forces (e.g., gravity), and u ∈ R3 is the control input. Under the condition

that the end-effector of the manipulator remains in contact with the tensegrity

structure at the point G (thus taking x = q1), Equation (4.7) becomes

Hr(q1) q̈1 + Cr(q1, q̇1) q̇1 + gr(q1) = u− f (4.8)

The uncertainty in the parameters that characterize the mechanical properties

of the tensegrity model is considered. These parameters are the stiffness k and

the damping coefficient c of the struts. The estimates of these two parameters
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are denoted by k̂ and ĉ respectively. Another issue need to be addressed is

state measurability. Since the external force is considered to be applied on the

tensegrity structure by point contact (i.e., at the point G as illustrated in Figure

4.2), it is reasonable to expect that, for the state of the overall system, only q1

and q̇1 are measurable with suitable instrumentation of the manipulation system.

However, q2 and q̇2 can be estimated from Equation (4.6) as

q̇2 = C−1
22 (q1, q2) [−k ·K2(q1, q2)/c− C21(q1, q2)q̇1] (4.9)

q2 = q2r +

∫ t

0

q̇2 dτ (4.10)

under the condition that C22 is nonsingular during the process when the tenseg-

rity structure sustains the applied external force.

Now from Equations (4.5) and (4.6), it is obtained

f = Ψ(q1, q2, c) q̇1 + Φ(q1, q2, k) (4.11)

where Ψ(q1, q2, c) ! c · (C11 − C12C
−1
22 C21) and Φ(q1, q2, k) ! k · (K1 −

C12C
−1
22 K2). Further, the derivative of contact force is obtained as:

ḟ = Ψ(q1, q2, c)q̈1 +ϖ(q̇1, q1, q2, c, k) (4.12)

where ϖ(q̇1, q1, q2, c, k) ! Ψ̇(q1, q2, q̇1, q̇2, c)q̇1 + Φ̇(q1, q2, q̇1, q̇2, c, k).

Since the expression Ψ(·) defined above is a function of c, it can be further

expressed (to account for the uncertainty in c) as

Ψ(q1, q2, c) = (I + εΨ)Ψ(q1, q̂2, ĉ)

where εΨ ∈ R3×3 is the parametric uncertainty matrixes. The entries for matrix

εΨ are denoted as εΨij . Similarly, the error in ϖ (due to the uncertainties) can
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be expressed as

µ ! ϖ(q̇1, q1, q2, c, k)−ϖ(q̇1, q1, q̂2, ĉ, k̂).

4.2.3 Control Objective

The control objective is to design control law u for the three degree-of-freedom

manipulator as described in (4.8) so that interaction force (between the end-

effector and cellular tensegrity structure) as described in (4.11) follows the de-

sired force trajectory fd (generated from ḟd) in presence of uncertainties due to

unknown mechanical properties and partial state measurability. The uncertain-

ties and estimations of the contact dynamics considered satisfy the following

assumptions:

Assumption 4.1: The matrix Ψ(q1, q̂2, ĉ) is invertible.

Assumption 4.2: There exists a positive constant 0 ≤ ζ < 1 such that

max
i

3∑

j=1

|εΨij| ≤ ζ, i = 1, 2, 3.

Assumption 4.3: There exists a function µ(q1, q̇1, q̂2, ĉ, k̂) ≥ 0 such that

µ(q1, q̇1, q̂2, ĉ, k̂) ≥
∣∣∣µ(q1, q̇1, q2, q̂2, c, k, ĉ, k̂)

∣∣∣

The above assumptions are common in the literature of robust control of multi-

input-multi-output control systems[54]. As indicated by (4.11), the contact

force model is nonlinear and coupled and thus more convoluted compared to

the spring or spring-damper model discussed in the literature. The model uncer-

tainties and partial state measurability further complicates the control problem.

To address these difficulties, a robust control law is proposed while consider-
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ing accommodating the uncertainties due to unknown mechanical property (as

estimated by ĉ and k̂) and partial measurability (as estimated by q̂2).

4.3 Notations

In the sequel, λmax(A) and λmin(A) denote the maximum and minimum eigen-

values of a square matrix A, respectively. ∥A∥I refers to the induced norm of

any matrix A. ∥B∥ refers to the Euclidean norm of any vector B.

4.4 Force Control Development

In this section, a robust force controller is developed via the backstepping method.

4.4.1 Synthesis of Control Law

A vector rf ∈ R3 incorporated with an integral force feedback term is intro-

duced [82]

rf = ef +K1If (4.13)

where ef ! f−fd ∈ R3 is the force tracking error, K1 is a semi-positive definite

matrix, and If is defined as

If = −K−1
1 ef (0) +

∫ t

0

ef (τ)dτ

Obviously, rf (0) = 0. Note that

ṙf = ḟ − ϵ (4.14)
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with ϵ ! ḟd −K1ef .

The control law is proposed as:

u(q1, q̇1, q̂2, f, ϵ, rf ) = Hr(q1)Ψ̂
−1(q1, q̂2)(ua + ur) + f + Crq̇1 + gr (4.15)

where

ua(q1, q̇1, q̂2, f, ϵ, rf ) = −Kfrf − ϖ̂(q̇1, q1, q̂2) + ϵ (4.16)

with Kf being a positive definite matrix, and ur ∈ R3 a robust control term

designed as follows:

ur =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−Krrf if ∥rf∥ ≤ σh (4.17a)

−(1− β) ·Krrf − β · h

1− ζ
· rf
∥rf∥

if σh ≤ ∥rf∥ ≤ (1 + α2)σh (4.17b)

− h

1− ζ

rf
∥rf∥

if ∥rf∥ ≥ (1 + α2)σh (4.17c)

where, Kr is any s.p.d. matrix; σh ! σ(t)/(h+α1) with σ(t) any bounded time-

varying positive scalar (i.e., 0 ≤ σ(t) ≤ σmax) and α1 any positive constant;

β ! (∥rf∥−σh)/α2σh with α2 any positive constant; h is any bounded function

satisfying:

h ≥ max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∥εΨua + µ(q1, q̇1, q̂2)− εΨKrrf∥,

∥εΨua + µ(q1, q̇1, q̂2)− (1− c)εΨKrrf∥,

∥εΨua + µ(q1, q̇1, q̂2)∥

(4.18)

With Assumption 4.2 and 4.3, a natural candidate of h is:

h =
√
3ζ∥ua∥+ µ+

√
3ζγ0∥rf∥ (4.19)
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where γ0 = λmax(Kr).

Remark 4.1: The robust control law (4.17) has similar form as the Smoothing

Method II proposed in [83] while the condition of function h, which charac-

terizes the bounds of the uncertainties of the system, is modified accordingly

to cope with the presence of the uncertainties in the control coefficient ma-

trix (defined by εΨ). Compared to the robust control term proposed in [54]

using the sgn(·) function, the control law (4.17) is smooth and has the virtue

of reducing control chattering when the system is around the sliding mode (i.e.,

∥rf∥ = 0).

4.4.2 Stability Analysis

Theorem 4.1: Consider the manipulator described by (4.8) interacts with the

cellular tensegrity model described by (4.5) and (4.6). Provided that Assump-

tions 4.1-4.3 are satisfied, the proposed control law (4.15) ensures that the force

tracking error ef (t) is uniformly ultimately bounded in the sense that

∥ef (t)∥ ≤ ε0 exp(−ε1t) + ε2 (4.20)

where ε0, ε1, and ε2 are positive constants.

Proof : From Equation (4.13), it yields

∥ef∥ = ∥rf −K1If∥ ≤ ∥rf∥+ ∥K1∥I · ∥If∥ (4.21)

The establishment of the upper bounds for ∥rf∥ and ∥If∥ is then presented.

Choose the Lyapunov function: V = 1
2r

T
f rf ∈ R. Utilizing Equations (4.14),

(4.12), (4.8), (4.15), (4.16), and (4.17) in that order, it can be derived that the
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time derivative of V as follows:

V̇ = rTf ṙf = rTf

(
ḟ − ϵ

)
(using Eq. (4.14))

= rTf [Ψ(q1, q2)q̈1 +ϖ(q̇1, q1, q2)− ϵ]

= rTf [Ψ(q1, q2)H
−1
r (q1)(u− f − Cr(q1, q̇1)q̇1 − gr(q1)) +ϖ(q̇1, q1, q2)− ϵ]

= rTf [ΨΨ̂−1(ua + ur) +ϖ − ϵ]

= rTf [ua +ϖ − ϵ+ (I + εΨ)ur + εΨua]

= −rTf Kfrf + rTf [(I + εΨ)ur + εΨua + µ]

= −rTf Kfrf +M (4.22)

where M ! rTf [(I + εΨ)ur + εΨua + µ]. The following shows that the control

law (4.17) ensures that

M ≤ ε(t), with ε(t) ! (1 + α2)σ(t) (4.23)

for all ∥rf∥.

Case 1: ∥rf∥ ≤ σh.

Noting (4.17a) (4.18), it is obtained that

M = −rTf Krrf + rTf (−εΨKrrf + εΨua + µ)

≤ rTf (−εΨKrrf + εΨua + µ)

≤ ∥rf∥∥ − εΨKrrf + εΨua + µ∥

≤ h∥rf∥ ≤ h · σh = h · σ(t)

h+ α1

≤ σ(t) ≤ ε(t) (4.24)

Case 2: ∥rf∥ ≥ (1 + α2)σh.
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With Assumption 4.2, it is notice that

∣∣∣∣r
T εΨ

rf
∥rf∥

∣∣∣∣ ≤ |rT εΨsgn(rf )| ≤ ζ∥rf∥ (4.25)

Hence, with (4.17c) (4.18), it yields

M = rTf ur + rTf εΨur + rTf (εΨua + µ)

= − h

1− ζ
(rTf

rf
∥rf∥

+ rT εΨ
rf
∥rf∥

) + rTf (εΨua + µ) (using Eq. (4.17c))

≤ − h

1− ζ
(∥rf∥ − ζ∥rf∥) + rTf (εΨua + µ) (using Eq. (4.25))

= −h∥rf∥+ rTf (εΨua + µ)

≤ −h∥rf∥+ ∥rf∥∥εΨua + µ∥

≤ 0 (using Eq. (4.18))

≤ ε(t) (4.26)

Case 3: σh ≤ ∥rf∥ ≤ (1 + α2)σh.

With the proof in Case 1 and Case 2, it is easy to verify that under the control

law (4.17c) and (4.18)

M ≤ −βh∥rf∥+ h∥rf∥ ≤ h∥rf∥

≤ (1 + α2)h · σh ≤ (1 + α2)σ(t)

= ε(t) (4.27)

Hence, M ≤ ε(t) holds for all ∥rf∥.

Consequently,

V̇ ≤ −rTf Kfrf + ε(t) ≤ −2γ1V (t) + ε(t) (4.28)
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where γ1 = λmin(Kf ) and ε(t) is as given in Equation (4.23). Solving the linear

differential inequality (4.28) yields

V (t) ≤ V (0)e−2γ1t +

∫ t

0

e−2γ1(t−τ)ε(τ)dτ (4.29)

Since ε(t) ≥ 0 and let εmax ! (1/γ1) supτ∈[0,t][ε(t)], it is obtained that

V (t) ≤ V (0)e−2γ1t + εmax (4.30)

By definition of V and with rf (0) = 0, it follows

∥rf∥2 ≤ ∥rf (0)∥2e−2γ1t + εmax = εmax (4.31)

Thus,

∥rf∥ ≤
√
εmax (4.32)

Subsequently, the establishment of the upper bound for ∥If∥ is presented. Mul-

tiplying both sides of Equation (4.13) by eK1t and noting that ef (t) = İf (t),

eK1tK1 = K1eK1t, and deK1t/dt = K1eK1t, it follows

eK1t rf (t) =
d

dt

(
eK1t If (t)

)
(4.33)

Integrating it over [0, t], it yields that

If (t) = e−K1tIf (0) + e−K1t

∫ t

0

eK1τrf (τ)dτ (4.34)

Thus,

∥If∥ ≤ ∥If (0)∥e−γ2t + (1− e−γ3t)
√
εmax (4.35)

where γ2 = λmin(K1) and γ3 = λmax(K1).
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Finally, substituting Equations (4.32) and (4.35) into Equation (4.21) yields the

expression for the upper bound on ∥ef∥, i.e.,

∥ef∥ ≤ γ3∥If (0)∥e−γ2t + (1 + γ3 − γ3e
−γ3t)

√
εmax

≤ γ3∥If (0)∥e−γ2t + (1 + γ3)
√
εmax (4.36)

Noting that 0 ≤ σ(t) ≤ σmax, it is obtained that have

√
εmax ≤ ϱ, ϱ !

√
(1 + α2)

γ1
σmax (4.37)

From Equation (4.36) it can be concluded that given any ϱ∗ > (1 + γ3)ϱ, there

exists T ∗ such that for any t > T ∗, ∥ef (t)∥ ≤ ϱ∗. Therefore, ef is uniformly

ultimately bounded and exponentially converges to (1 + γ3)ϱ . ✷

4.5 Numerical Simulation

Numerical simulations are conducted to demonstrate the effectiveness of the

proposed force control law.

Figure 4.3: Schematics of proposed robust controller.

Figure 4.3 shows a schematic diagram of the control system. In the simulations,
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two types of typical force trajectories are used: a step f1d = [20 20 f1dZ ]T (pN),

and a sinusoid f2d = [0 0 f2dZ ]T (pN), where, f1dZ = −40 and f2dZ = −25 −

15 ∗ sin πt/4, as shown in Figure 4.4. The initial states (i.e., q1r and q2r) of the

tensegrity model in the absence of external force are presented in Appendix C.

Furthermore, it is assumed that q̇
f r = q̈

f r = 0.

Figure 4.4: Trajectories of the two types of desired force used in the simulations.

The prestress P (as reviewed in Section 2.3.2), which characterizes the spherical

prestressable configuration, is assumed to be 2. The other parameter values used

in the simulations are listed in Table 4.1, with K1 = diag(10), Kf = diag(2),

and Kr as an identity matrix.

Table 4.1: Values of parameters used in simulation.
L (µm) k (pN) c (pN s/µm) k̂ (pN) ĉ (pN s/µm)
10 100 100 120 80

ζ µ α1 α2 σ
0.5 4ϖ 0.5 0.5 16× 10−24

In both simulations, Assumptions 4.1-4.3 have been found to be satisfied and

the results are of satisfying agreement with analysis.

The simulation results are presented in Figure 4.5 and Figure 4.6. It can be seen

that the force control law was effective in ensuring that the actual force tracked

the desired force in both cases.
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Figure 4.5: Force tracking error with respect to a step desired force.

Figure 4.6: Force tracking error with respect to a sinusoidal desired force.
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4.6 Conclusions

This chapter presents the development of a robust force control algorithm that

enables accurate application of an external force on a dynamics model of bi-

ological cells. Such force control is achieved by utilizing a six-strut cellular

tensegrity model constructed based on the structural approach. Leveraging on

the more comprehensive description of the nonlinearity and dynamic coupling

of internal structural elements provided by this tensegrity model, a novel robust

control law that can effectively deal with model uncertainties and partial state

measurability, is synthesized. The work reported in this chapter represents an

initial step in analytical investigation of localized force-bearing interactions be-

tween a cellular tensegrity model and an external mechanical manipulator. The

significance of this work is that such force-bearing interactions explicitly take

into account the dynamics of the cytoskeleton in governing cellular mechanical

response. Consequently, the approach and results presented in this work are di-

rectly relevant to the development of biomanipulation tools and techniques for

mechanobiology. Another potential area where this proposed approach could

be useful is microinjection. At the operational level, the key objective in a mi-

croinjection process is to apply a dynamical force on the surface of a cell in

order to pierce the cell membrane. Optimizing this process requires sophisti-

cated force control techniques in order to reduce cell deformation so as to avoid

degrading its internal integrity. The approach reported can be utilized to meet

this requirement.
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Chapter 5

Force Control of a Cellular

Tensegrity Model with

Time-Varying Mechanical

Properties

5.1 Introduction

In previous chapter, the six-strut tensegrity structure is discussed under the as-

sumption that the struts are viewed as rigid bars of identical length L under

compression whereas the tendons are viewed as identical viscoelastic Voigt el-

ements - the viscoelastic Voigt elements are consisted of a linear elastic spring

with constant stiffness and a linear viscous damper with constant damping ratio

connected in parallel. This assumption defines the discussed cellular tensegrity

a homogenous model with fixed mechanical property. This cellular tensegrity

structure produces satisfying results in predicting some cellular behavior(i.g.

steady-state elastic response, linear stiffening of cells and etc.). Nonetheless, to
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further realize the potential of this model, the cellular tensegrity structure with

varying mechanical properties is discussed in this chapter. This is motivated by

the fact that living cells will tune the mechanical properties (sometimes signifi-

cantly) in response to the exogenous forces. Such varying mechanical property

under exogenous forces is also the key feature that distinguish living cells from

passive materials. In this respect, a cellular tensegrity structure with varying me-

chanical properties will entitle the tensegrity structure more freedom to describe

the mechanical behavior and thus be more realistic and effective.

In this chapter, the force control strategy for force-bearing cell manipulation de-

scribed in Chapter 4 is further improved. With respect to the work presented in

Chapter 4, the cellular tensegrity model is assumed to be heterogenous and with

varying mechanical property, which renders the tensegrity model more capable

in capturing the mechanical behavior of living cells under external forces. The

variance of the mechanical properties is reflected on the time- of the tendons,

which are assumed to be unknown. The modified tensegrity model complicates

the modeling and results in differences in the control development and stability

analysis with regard to the previous chapter.

5.2 Cellular Tensegrity Model and Task Setting

This section explains the heterogeneous cellular tensegrity model with varying

stiffness which is a modified version of the model studied in previous chapter,

and formulate the problem of robust force control associated with this model.
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5.2.1 Cellular Tensegrity Model with Unknown Time-Varying

Stiffness and Damping Coefficient

A heterogeneous tensegrity structure, where the stiffness of the tendons are

nonuniform and time-varying whereas the damping ratio of the tendons are

identical and time-varying throughout the structure, is considered in this chap-

ter. More specifically, the stiffness of the tendons is assumed to be nonuniform

among the five classes of tendons which are characterized in [47](the interme-

diate filaments (I) class, the saddle (S) tendons class, the top (T) tendons class,

the diagonal (D) tendons class and the vertical (V) tendons class), while the

stiffness of the tendons of the same class is uniform. The stiffness of the five

classes of tendons are denoted as kI(t), kS(t), kT (t), kD(t) and kV (t), respec-

tively. The damping ratio is denoted as c(t). It is assumed that both stiffness

and damping ratio are positive. Moreover, while the stiffness and damping ratio

are unknown, the boundaries of stiffness and damping ratio are assumed to be

known. Furthermore, considering the nature of the varying-stiffness and damp-

ing ratio as a result of the biological response of the cells under external force, it

is expected that both the stiffness and damping ratio will approach some certain

constants, respectively, after some time period when the force-induced biologi-

cal response is fully expressed.

For the heterogeneous tensegrity model, the constitutive equation of ith tendon

is

fti = ki(t) · (
li
lio

− 1) + c(t) · l̇i, (i = 1, ..., 33) (5.1)

where, ki is the stiffness of ith tendon and ki ∈ {kI(t), kS(t), kT (t), kD(t), kV (t)},

depending on the class of the tendon; fti is the force within ith tendon when the

tendon is sustaining deformation; li and lio are the length and the initial length

of ith tendon, respectively; l̇i is the time derivative of li.
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Similar to Chapter 4, it is considered that the external force f = [fx fy fz]T ∈

R3×1 is applied on B1D1 at a point G as indicated in Figure 4.2. The subsequent

analysis is readily applicable to other cases where f is applied on any one of the

other struts.

With the vector of general coordinates qf = [qT1 qT2 ]
T defined in Equation (4.3),

the motion of equations of the cellular tensegrity model under the condition that

the external force is applied on point G on strut B1D1 are given as:

Af (qf )Tf (qf ) + Cf (qf )q̇f =

⎡

⎣ f

0

⎤

⎦ (5.2)

The general forms of Af , Tf and Cf are presented in Appendix D.

It is noticed that Af (qf )Tf (qf ) can be expressed as

Af (qf )Tf (qf ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kT
vec · b1

...

kT
vec · bi

...

kT
vec · b33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.3)

where kvec ∈ R33×1 and its jth element is kj(1 ≤ j ≤ 33)(i.e., kvec !
[k1, ..., kj, ..., k33]T ); bi ∈ R33×1(1 ≤ i ≤ 33) and its jth element is ∂lj

∂qfi
·

(lj − lj0)(1 ≤ j ≤ 33).

Let

Cf = c(t) ·

⎡

⎣ C11 C12

C21 C22

⎤

⎦ , AfTf =

⎡

⎣ M1

M2

⎤

⎦

with C11 ∈ R3×3, C12 ∈ R3×21, C21 ∈ R21×3, C22 ∈ R21×21, M1 ∈ R3×1, and
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M2 ∈ R21×1. Then (5.3) can be rewritten as

M1(q1, q2) + c(t) · C11(q1, q2)q̇1 + c(t) · C12(q1, q2)q̇2 = f (5.4)

M2(q1, q2) + c(t) · C21(q1, q2)q̇1 + c(t) · C22(q1, q2)q̇2 = 0 (5.5)

5.2.2 Force-bearing Interaction and System Uncertainties

Similar to Chapter 4, the external force f is considered being applied on the

tensegrity structure by a manipulator whose dynamics is known and described

(in the Cartesian task space) by

Hr(x) ẍ+ Cr(x, ẋ) ẋ+ gr(x) = u− f (5.6)

where, x, ẋ, ẍ ∈ R3 are the position, velocity, and acceleration of the links of the

manipulator, respectively, Hr(x) ∈ R3×3 is the inertia matrix; Cr(x, ẋ) ∈ R3×3

represents the Centripetal-Coriolis effects, gr(x) ∈ R3 represents conservative

forces (e.g., gravity), and u ∈ R3 is the control input. Under the condition that

the end-effector of manipulator remains in contact with the tensegrity structure

G (thus taking x = q1), Equation (5.6) becomes

Hr(q1) q̈1 + Cr(q1, q̇1) q̇1 + gr(q1) = u− f (5.7)

Invoking (5.4) and (5.5), the contact force can be rewritten in the following

form:

f = c(t) ·Ψ(q1, q2)q̇1 + Φ(q1, q2, k) (5.8)

where, Ψ(q1, q2) ! C11 −C12C
−1
22 C21 and Φ(q1, q2, k) ! M1 −C12C

−1
22 M2, un-

der the condition that C22 is nonsingular during the process when the tensegrity

structure sustains the applied external force.
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Noticing (5.3), the entries of Φ(q1, q2, kvec), φi(q1, q2, kvec) can be expressed

as

φi(q1, q2, kvec) = kT
vec · φ∗

i (q1, q2), 1 ≤ i ≤ 3 (5.9)

where φ∗
i ∈ R33×1 is independent of kvec.

Subsequently, Φ can be expressed in the following form:

Φ(q1, q2, kvec) = K · Φ∗(q1, q2) (5.10)

where,

K =

⎡

⎢⎢⎢⎣

kT
vec 0 0

0 kT
vec 0

0 0 kT
vec

⎤

⎥⎥⎥⎦
,Φ∗(q1, q2) =

⎡

⎢⎢⎢⎣

φ∗
1(q1, q2)

φ∗
2(q1, q2)

φ∗
3(q1, q2)

⎤

⎥⎥⎥⎦
.

Further, the derivative of contact force in (5.8) is obtained as:

ḟ = c(t) ·Ψ(q1, q2)q̈1 + c(t) ·ϖ1 +K ·ϖ2 +∆1 (5.11)

where, ϖ1(q̇1, q̇2, q1, q2) ! Ψ̇(q1, q2)q̇1, ϖ2(q̇1, q̇2, q1, q2) ! Φ̇∗(q1, q2) and

∆1(q̇1, q1, q2, ċ) ! ċ(t) ·Ψq̇1 + K̇ · Φ∗.

By introducing c∗(t) ! c−1(t) and K∗(t) ! K · c−1(t), the above equation can

be expressed as

c∗(t) · ḟ = Ψ(q1, q2)q̈1 +ϖ1 +K∗ ·ϖ2 +∆2 (5.12)

where ∆2(q̇1, q1, q2, c) ! c∗(t) ·∆1.

Since ki ∈ {kI , kS, kT , kD, kV }, the set of independent unknown parameters

of K can be denoted as θk ∈ Rr(r ≤ 5). Then, by noting that K is linear with
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respect to θk, it yields

K∗ ·ϖ2 = Y (ϖ2)θ(t), θ(t) ! c−1(t) · θk(t) (5.13)

where Y is known.

5.2.3 Control Objective

Although the mechanical properties are time-varying, it is reasonable to assume

that the bounds of the mechanical properties are known. Moreover, considering

that the variance of the mechanical properties is caused by the force-induced bi-

ological response, it is reasonable to assume that the mechanical properties will

become constant after some time period when the force-induced biological re-

sponse is fully expressed. Therefore, the following assumptions are made:

Assumption 5.1: c(t) ∈ Ωc ! {c(t) : c ≤ c(t) ≤ c } and θk(t) ∈ Ωθk ! {θk(t) :

θk ≤ θk(t) ≤ θk }, where Ωc and Ωθk are known sets (i.e., c, c ∈ R, θk, θk ∈ Rr

are known positive bounding constant and vectors, respectively). Consequently,

θ ∈ Ωθ ! {θ : θ ≤ θ ≤ θ}, where θ = c̄−1 · θk and θ = c−1 · θk.

Assumption 5.2: ċ∗|t>tb = 0, θ̇|t>tb = 0, where tb > 0.

The control objective is to design control law u for the three degree-of-freedom

manipulator as described in (5.7) so that interaction force (between the end-

effector and cellular tensegrity structure) as described in (5.8) follows the de-

sired force trajectory fd (generated from ḟd) in presence of the uncertainties due

to unknown time-varying mechanical properties, which satisfy Assumption 5.1

and 5.2.
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5.3 Control Development

In this section, an adaptive robust sliding-mode force controller motivated by

[84] and [56] is developed. The robust control law is adopted to compensate

the uncertainties of the time-varying stiffness and damping coefficient of the

tendons of the tensegrity structure. The adaptive control is integrated due to

Assumption 5.2 and regarded to be able to further enhance the control perfor-

mance.

5.3.1 Synthesis of Control Law

To quantify the control objective, force error ef ∈ R3 is defined

ef ! f − fd (5.14)

Similar to Chapter 4, a vector rf ∈ R3 incorporated with an integral force feed-

back term is introduced

rf = ef + Λ1If (5.15)

where Λ1 = ΛT > 0. matrix and If is defined as

If = −Λ−1
1 ef (0) +

∫ t

0

ef (τ)dτ (5.16)

Obviously, rf (0) = 0. Note that

ṙf = ḟ − ϵ (5.17)

with ϵ ! ḟd −K1ef .
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The error of the estimate of c∗ and θ are denoted as

c̃∗ = ĉ∗ − c∗, θ̃ = θ̂ − θ (5.18)

In the sequel, λmax(A) and λmin(A) denote the maximum and minimum eigen-

values of a square matrix A, respectively. ∥B∥ denotes the Euclidean norm of

any vector B.

The following control law has been proposed:

u(q1, q̇1, q2, q̇2, f, ϵ, rf ) = Hr(q1)Ψ
−1(ua + ur) + f + Crq̇1 + gr (5.19)

where

ua(q1, q̇1, q2, q̇2, f, ϵ, rf , θ̂k, ĉ
∗) = −Λfrf −ϖ1 − Y θ̂ + ĉ∗ · ϵ (5.20)

ur(rf , h,α1, β(t)) = −(1 + α1h)h
rf

∥rf∥+ β(t)
(5.21)

with Λf being a s.p.d. matrix, α1 any positive constant and β(t) any bounded

positive time-varying scalar (i.e., 0 ≤ β(t) ≤ βmax), h any bounding function

satisfying

h ≥ ∥ − Y (ϖ2)θ̃ + c̃∗ · ϵ+ 1

2
ċ∗rf +∆2∥ (5.22)

ur is a smooth robust control term proposed in [83] which satisfies the following

property:

h∥rf∥+ rTf uf ≤ ε(t), ε(t) ! β(t)

4α1
(5.23)

The adaptive update law of parameter estimates are given as follows.

˙̂c∗ = −proj(Γcr
T
f ϵ) (5.24)

˙̂θ = proj(ΓθY
T (ϖ2)rf ) (5.25)
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where Γc ∈ R and Γθ ∈ Rr×r are designed positive adaptation gain and positive-

definite constant diagonal adaptation gain matrix, respectively; proj(·) denotes a

sufficiently smooth projection algorithm (cite) utilized to guarantee that ĉ and θ̂

satisfy that

ĉ ∈ Ωc, θ̂ ∈ Ωθ. (5.26)

5.3.2 Stability analysis

Theorem 5.1: Consider the manipulator described by (5.7) interacts with the

cellular tensegrity model described by (5.4) and (5.5). Provided that Assumption

5.1 and 5.2 are satisfied, the following statements hold when proposed control

law (5.19) is applied: i) when t ≤ tb, ef and If are bounded and exponentially

converge to some balls with adjustable size; ii) when t > tb, ef exponentially

converges to zero.

Proof: Invoking that c∗ > 0, a Lyapunov function V (t) ∈ R is chosen as

V =
1

2
c∗rTf rf (5.27)
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The derivative of V is:

V̇ = rTf c
∗ṙf +

1

2
rTf ċ

∗rf

= rTf c
∗(ḟ − ϵ) +

1

2
rTf ċ

∗rf

= rTf (c
∗ · ḟ − c∗ · ϵ) + 1

2
rTf ċ

∗rf

= rTf [Ψq̈1 +ϖ1 + f(ϖ2) + Y (ϖ2)θ +∆2

−c∗ · ϵ+ 1

2
ċ∗rf ]

= rTf [ΨH−1
r (u− f − Crq̇1 − gr +ϖ1 +

Y (ϖ2)θ +∆2 − c∗ · ϵ+ 1

2
ċ∗rf ]

= rTf [ua + ur +ϖ1 + Y (ϖ2)θ +∆2

−c∗ · ϵ+ 1

2
ċ∗rf ]

= −rTf Λfrf + rTf [−Y (ϖ2)θ̃k + c̃∗ · ϵ+∆2

+
1

2
ċ∗rf ] (5.28)

Invoking (5.23), it follows

V̇ ≤ −rTf Λfrf + ε(t)

≤ −2γ1
c∗

V +
βmax

4α1
(5.29)

where γ1 = λmin(Λf ).

Since (5.28) is valid for t ∈ [0,+∞), it is valid for t ∈ [0, tb]. Consequently,

with similar analysis as in Chapter 4 (Equation (4.28)- (4.36)), it can be con-

cluded that ef , If exponentially approach some ball with adjustable size when

t ∈ [0, tb]. This concludes statement i).

Consider the case that t ∈ [tb,+∞).
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According to Assumption 5.2, ∆2 = 0 and ċ∗ = 0. It follows that

V̇ |t≥tb = −rTf Kfrf − θ̃Tk Y
T (ϖ2)rf + c̃∗ϵT rf (5.30)

Moreover, invoking (5.18), it is obtained

˙̃c∗(t)|t≥tb = ˙̂c∗(t), ˙̃θ(t)|t>tb =
˙̂θ(t) (5.31)

Considering the parameter error ĉ∗ and θ̂, the augmented Lyapunov function

candidate is chosen as

Va = V +
1

2
Γ−1
c c̃∗2 +

1

2
θ̃TΓ−1

θ θ̃ (5.32)

From (5.28), rf ∈ L3
∞ and hence rf (tb) is bounded. Moreover, from (5.24) and

(5.25), ˙̂c∗ ∈ L∞ and ˙̂θ ∈ Lr
∞ and hence, ĉ∗ and θ̂ are bounded. These imply that

Va(t0) is bounded. Invoking (5.24), (5.25), (5.30) and (5.31), the time derivative

of Va for t ∈ [tb,∞) is

V̇a|t≥tb = −rTf Kfrf − θ̃Tk Y
T (ϖ2)rf + c̃∗ϵT rf

+
1

2
Γ−1
c c̃∗ ˙̂c∗ +

1

2
θ̃Γ−1

θ
˙̂θ

≤ −2γ1
c∗

rTf rf (5.33)

According to statement i), Vtb is bounded. Therefore, (5.33) implies that Va ∈

L∞.

From (5.29) and (5.33), it can be obtained that rf ∈ L2 ∩ L∞. It is also easy

to check that ṙf is bounded. Hence, using Barbalat’s lemma[85], (5.33) implies

that rf exponentially approaches zero.
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From (5.15), the transfer function between rf and ef is

ef = rf −G1rf (5.34)

where G1 = diag{ λ11
S+λ11

, λ12
S+λ12

, λ13
S+λ13

} with λ1i(i = 1, 2, 3) the ith diagonal

element of Λ1 (i.e., Λ1 = diag{λ11,λ12,λ13}). It is obvious that G1 is stable and

hence ef exponentially approaches zero. This concludes statement ii). ✷.

5.4 Numerical Simulation

Numerical simulations are conducted to demonstrate the effectiveness of the

proposed force control law.

Figure 5.1: Trajectories of the two types of desired force used in the simulations.

In the simulations, the force is assumed to be exerted on point G of strut B1D1

where r = 0.75L. Similar to Chapter 4, two types of typical force trajectories

are used: a step f1d = [20 20 f1dZ ]T (pN), and a sinusoid f2d = [0 0 f2dZ ]T

(pN), where, f1dZ = −40 and f2dZ = −25 − 15 ∗ sin πt/4, as shown in Figure

5.1. The length of the struts L is assumed to be 10µm. The time-varying stiff-

ness kI(t), kS(t), kT (t), kD(t), kV (t) and c(t) are defined in the following way
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:

kI(t) =

⎧
⎨

⎩
10 + 2.5sin π

12t(pN) 0 ≤ t < 6,

12.5(pN) t ≥ 6.

kS(t) =

⎧
⎨

⎩
100 + 25sin π

12t(pN) 0 ≤ t < 6,

125(pN) t ≥ 6.

kT (t) =

⎧
⎨

⎩
125 + 25sin π

16t(pN) 0 ≤ t < 8,

150(pN) t ≥ 8.

kD(t) =

⎧
⎨

⎩
150 + 25sin π

20t(pN) 0 ≤ t < 10,

175(pN) t ≥ 10.

kV (t) =

⎧
⎨

⎩
175 + 25sin π

24t(pN) 0 ≤ t < 12,

200(pN) t ≥ 12.

c(t) =

⎧
⎨

⎩
125 + 25sin π

24t(pN s/ µ m) 0 ≤ t < 12,

150(pN s/ µ m) t ≥ 12.

In the simulation, the boundaries for each type of stiffness and their time deriva-

tive are assumed as following: kI ∈ [5, 15](pN), kS ∈ [50, 175], kT ∈ [75, 200],

kD ∈ [100, 225], kV ∈ [125, 250], k̇I ∈ [−5, 5], k̇S ∈ [−50, 50], k̇T ∈ [−50, 50],

k̇D ∈ [−50, 50], k̇V ∈ [−50, 50]; the boundaries of the damping coefficient and

its derivative are assumed to be ĉ ∈ [75, 200](i.e., c = 75, c = 200). θk is cho-

sen as [kI , kS, kT , kD, kV ]T . Subsequently, θk, θk, θ, θ are set accordingly. The

smooth projector which ensures that θ ≤ θ ≤ θ and c ≤ c ≤ c is adopted from

[86].

The initial states of the tensegrity model in the absence of external force con-

sidered in the simulation is assigned the same as Chapter 4, which is presented

in Appendix C. The prestress P , which characterizes the spherical prestressable

configuration, is assumed to be 2. The basis tensions are set at the same values
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as Chapter 4.

The other control parameters are set as follows: Λ1 = diag(10), Λf = diag(2),

Γc = 10, Γθ = diag(10), and α = 0.25.

The simulation results are presented in Figure 5.2 and Figure 5.3. It is indicated

that the force control law was effective in ensuring that the actual force traced

the desired force in both cases.

Figure 5.2: Force tracking error with respect to a step desired force.

5.5 Conclusions

This chapter presents the development of a force control algorithm to achieve

manipulation of applied force on a cellular tensegrity model with time-varying

mechanical properties(i.e., stiffness and damping coefficient). Compared with

previous homogeneous tensegrity as discussed in Chapter 4, a heterogeneous

tensegrity model in terms of the stiffness of the tendons is considered. As such,

the proposed model is entitled more freedom in modeling the mechanical be-

havior of living cells. Moreover, the introduction of time-varying attribute of

the mechanical properties of the six-strut cellular tensegrity structure, which

aims at modeling the external force induced variance of cellular mechanical

properties while cell is sustaining mechanical external force, further enhances
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(a)

(b)
Figure 5.3: Force tracking error with respect to a sinusoidal desired force.

the proposed cellular tensegrity model. To the best of our knowledge, this pro-

posed cellular tensegrity model with time-varying mechanical properties is the

first mechanical model attempting to capture the “active” feature of living cells

under external mechanical load.

The present study mainly concentrates on the development of force control al-

gorithm based on the proposed cellular tensegrity model instead of parameter

estimation of the proposed model. Nonetheless, the proposed algorithm only

requires the boundaries of the stiffness and damping coefficient and their time

derivative rather than the exact value. This renders the force control law ro-

bust, especially considering the individual difference of mechanical properties

among the same class of cells. Furthermore, it combines adaptive control to fur-

ther improve the performance of the controller in terms of reducing uncertainties

considering that the mechanical properties will reach certain values when the bi-

ological response is fully expressed. Simulation results are presented to validate
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the effectiveness of the proposed force control algorithm.
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Chapter 6

Force Tracking Control in

Biomanipulation Using Neural

Networks

6.1 Introduction

NN-based estimation methods have been shown to be well suited for control

systems with uncertain dynamic models. This merit renders the NN-based con-

trol desirable for the force control problem involving cellular tensegrity model

and micro/nano manipulator as discussed in Chapter 4 and Chapter 5, since the

interaction force model is a coupled and nonlinear function with uncertainty.

This chapter presents the development of a NN-based approximation adaptive

control law for the force control problem described in Chapter 4. Thanks to the

nature of NN estimation, despite that the control development is based on the

tensegrity model, the results should be directly applicable to the interaction force

control problem between manipulator and viscoelastic materials, which repre-

sents a large class of force control problem in biomanipulation. In particular, to
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avoid excessive contact force is given a special interest since it is undesirable in

biomanipulation - it may damage the biological material/structure to handle and

thus the failure of the operation.

6.2 Dynamic Model of a Manipulator in Contact

with a Cellular Tensegrity Model

This section briefly reviews the homogeneous cellular tensegrity model as de-

scribed in Chapter 4, and presents the dynamics of the manipulator used for

applying the force.

6.2.1 Contact Force Model

As derived in Equation (4.11), the contact force model for the homogeneous

cellular tensegrity model with constant mechanical properties is

f = Ψ(q1, q2, c) q̇1 + Φ(q1, q2, k) (6.1)

where, q1 ∈ R3×1 is the Cartesian coordinates of the point where the external

force is applied; q2 ∈ R21×1 is the vector assembles the rest of the generalized

coordinates; c and k are the unkown stiffness and damping ratio of the tendons,

respectively.

Further, the derivative of contact force is (from Equation (4.12))

ḟ = Ψ(q1, q2, c)q̈1 +ϖ(q̇1, q1, q2, c, k) (6.2)
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6.2.2 Dynamic Model of Manipulator

It is considered that the external force f being applied on the tensegrity structure

by a manipulator whose dynamics is known and described (in the Cartesian

space) by

Hr(x) ẍ+ Cr(x, ẋ) ẋ+ gr(x) = u− f (6.3)

where, x, ẋ, ẍ ∈ R3 are the position, velocity, and acceleration of the links of the

manipulator, respectively, Hr(x) ∈ R3×3 is the inertia matrix, Cr(x, ẋ) ∈ R3×3

represents the Centripetal-Coriolis effects, gr(x) ∈ R3 represents conservative

forces (e.g., gravity) and u ∈ R3 is the control input.

The above manipulator dynamics model discussed in this work is under the

following reasonable assumptions:

Assumption 6.1: The dynamics model of manipulator is exactly known, i.e.,

Hr, Cr, gr are known. As discussed later, this assumption can be relaxed under

the proposed control scheme.

Assumption 6.2: The task space inertial matrix Hr(x) is symmetric positive

definite and hence Hr(x) is always invertible.

Assumption 6.3: The manipulator position and velocity, x and ẋ, are measur-

able.

The end-effector of the manipulator is considered to remain in contact with the

tensegrity structure at the point G. Thus, by taking x = q1, the dynamics of

manipulator (6.3) becomes

Hr(q1) q̈1 + Cr(q1, q̇1) q̇1 + gr(q1) = u− f (6.4)
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6.2.3 Control Objective

The dynamic model for a three degree-of-freedom manipulator with the cellular

tensegrity model is described by (6.1) and (6.4). Similar as in Chapter 4, it

is considered that the mechanical property of the tensegrity model is not well

known, i.e., only reasonable estimates of stiffness k and damping coefficient c

are available. Another issue is state measurability. Since the external force is

considered to be applied on the tensegrity structure by point contact (i.e., at the

point G as illustrated in Figure 4.2), with Assumption 6.3, it is reasonable to

expect that, for the state of the overall system, only q1 and q̇1 are measurable

with suitable instrumentation of the manipulation system.

The specific control objective is to design control law u for the three degree-of-

freedom manipulator as described in (6.4) so that interaction force (between the

end-effector and cellular tensegrity structure) as described in (6.1) follows the

desired force trajectory fd (generated from ḟd) in presence of uncertainties due

to unknown mechanical properties (i.e., c and k are unknown) and partial state

measurability (q1 and q̇1 are the only measurable variables).

Considering that both q2 and q̇2 are functions of variables q1 and q̇1 due to the

fact that c, k and qf are constant, the contact force model falls under a class of

general nonlinear viscoelastic model described by f = w(q)q̇+v(q) with q rep-

resent the general deformation of the model. Since we use NN to approximate

Ψ (i.e., w) and ϖ (i.e., v), the proposed NN based controller is applicable for

the force control problem where environment is soft compliant and the reaction

force can be described as f = w(q)q̇ + v(q).
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6.3 Notations

∥ · ∥ denotes Frobenius norm of matrices and the standard Euclidean norm of

vectors, i.e., given a matrix A and a a vector B, the Frobenius norm and Eu-

clidean norm are defined as ∥A∥2 = tr(ATA) =
∑

i,j a
2
ij and ∥B∥2 =

∑
i B

2
i .

λmax(A) and λmin(A) denote the largest and smallest eigenvalues of a square

matrix A, respectively.

6.4 Control Development

The nonlinear coupled contact force model (6.1) is much more complex than

the linear spring model and other contact models, and thus the force control al-

gorithm often discussed in the literature is not directly applicable. Moreover,

the uncertainty of the mechanical property and partial state measurability(i.e.,

q2 is not measurable) further complicates the control problem. Hence, a strate-

gic combination of NN and adaptive control is utilized in the subsequent control

development. In this section, the RBFNNs is firstly used to approximate the un-

known dynamics in the contact force model. Subsequently, an adaptive control

law based on the NN-based approximation is proposed and the stability analysis

is presented.

The force tracking error e ∈ R3 is defined as:

e ! f − fd (6.5)

Invoking Equation (4.9) and (4.10) and the fact that qfr is known constant, it

is known that q2 and q̇2 are functions of variables q1 and q̇1. Consequently,

considering that c and k are constant, hf (Zf ) ∈ R3 and hg(Zg) ∈ R3×3 can be
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introduced in the following way to facilitate the control development:

hg(Zg) ! Ψ(q1, q2, c) (6.6)

hf (Zf ) ! ϖ(q̇1, q1, q2, c, k) (6.7)

where Zf = Zg = [ qT1 , q̇
T
1 ]T . According to Assumption 6.3, Zf and Zg are

measurable. Therefore, (6.2) can be rewritten as

ḟ = hg(Zg)q̈1 + hf (Zf ) (6.8)

6.4.1 NN Function Estimation

RBFNNs is an efficient tool for modeling nonlinear functions on account of its

excellent capability in function approximation. With the ideal weights W ∗
f ∈

RL1 and W ∗
g ∈ RL2×3, and the basis function vector Sf (Zf ) ∈ RL1 and the

basis function matrix Sg(Zg) ∈ RL2×3, hf (Zf ) and hg(Zg) can be represented

by RBFNNs as

hf (Zf ) = W ∗T
f Sf (Zf ) + ϵf (6.9)

hg(Zg) = W ∗T
g Sg(Zg) + ϵg (6.10)

where ϵf and ϵg are the approximation errors corresponding to the ideal weights.

The approximation of hf (Zf ) and hg(Zg) are respectively given as

ĥf (Zf ) = Ŵ T
f Sf (Zf ) (6.11)

ĥg(Zg) = Ŵ T
g Sg(Zg) (6.12)

where Ŵf ∈ RL1 and Ŵg ∈ RL2×3 are the estimates of NN value matri-

ces.
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The RBFNNs estimation discussed in this work possess the following properties

which are utilized in the subsequent development.

Property 1: The idea weights W ∗ are defined as the weights that minimize the

norm of approximation error for all Z ∈ ΩZ ⊂ RL [52].

W ∗ ! arg min
Ŵ∈ΩW

{
sup
Z∈ΩZ

|h(Z)− Ŵ TS(Z)|
}

(6.13)

where ΩW is some suitable prefixed large compact set.

Property 2: The Gaussian RBFNN adopted in this work uses the Gaussian func-

tions of the form

si(Z) = exp
[
−(Z − ai)T (Z − ai)

b2i

]
, i = 1, 2, ..., L (6.14)

where ai and bi are the center of the receptive field and the width of the Gaussian

function, respectively.

Property 3:[69] ∥S(Z)∥ is bounded by known constant, i.e., ∥Sf (Zf )∥ ≤ ζf ,

∥Sg(Zg)∥ ≤ ζg, with ζf > 0 and ζg > 0.

Property 4: The ideal weights are assumed to exist and bounded, i.e., ∥W ∗
f ∥ ≤

W̄f , ∥W ∗
g ∥ ≤ W̄g, with W̄f > 0 and W̄g > 0 .

Property 5: The NN approximation errors corresponding to the idea weights

are bounded over a compact set, i.e., ∥ϵf∥ ≤ ϵ̄f , ∥ϵg∥ ≤ ϵ̄g, with ϵ̄f > 0 and

ϵ̄g > 0.
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6.4.2 Synthesis of Control Law

6.4.2.1 Control Law Design

Define ϱ ! q̈1. Based on Assumption 6.1, the control law of the manipulator

(6.4) is designed as

u(q1, q̇1,Φ(ϱ
∗), f) = Hr(q1)Φ(ϱ

∗) + Cr(q1, q̇1)q̇1 + f (6.15)

where, ϱ∗ = [ϱ∗1 ϱ∗2 ϱ∗3]
T denotes the nominal control law to be defined later;

Φ(ϱ∗) = [Φ(ϱ∗1) Φ(ϱ
∗
2) Φ(ϱ

∗
3)]

T denotes the function which imposes magnitude

and rate constraints on the nominal control law ϱ∗. The magnitude constraint is

designed as

Φ(ϱi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϱi max, if ϱi > ϱi max

ϱi if ϱimin ≤ ϱi ≤ ϱi max

ϱi min, if ϱi < ϱi min

(6.16)

where ϱi max and ϱi min are designed upper bound and lower bound, respec-

tively. The bound of Φ(ϱ∗) is denoted as ϱm, i.e., ∥Φ(ϱ∗)∥ ≤ ϱm. The rate

constraint is designed similarly. A first-order filter similar as in [68] can be used

for the implementation of imposing the constraints on both magnitude and rate.

The schematic of the configuration of the filter is provided in Figure 6.1.

Figure 6.1: Magnitude and rate limiter, where wi is the bandwidth parameters.

Substituting (6.15) into (6.4) and considering Assumption yield

ϱ = Φ(ϱ∗) or q̈1 = Φ(ϱ∗) (6.17)
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Equation (6.17) indicates that ϱ∗ is designed to be the desired acceleration of

the end-effector, while Φ(ϱ∗) is the actual acceleration. The reasons of intro-

ducing Φ(ϱ∗) to impose magnitude bound and rate bound are to cope with the

approximation error of hg and discontinuity of ϱ∗, respectively. Nonetheless,

the introduction of Φ(ϱ∗) renders the control problem more practical since that

most of the real manipulator systems have input saturations in both magnitude

and rate, and moreover, the nominal control law designed based on the NN ap-

proximation may not be implementable when the NN weights are not fine tuned.

The bound of magnitude and rate can be properly chosen by considering both

reflecting the actuator limitations of the manipulator and achieving desired con-

trol performance.

6.4.2.2 Auxiliary System Design

Define ∆ϱ ! Φ(ϱ∗) − ϱ∗. To compensate for effects induced by the rate and

magnitude constraints as defined by Φ(ϱ∗), an auxiliary system with state ξ ∈

R3 is introduced. Let ξ(0) denote the initial condition of ξ. With ε1 and ε2

denoting two positive designed constants satisfying ε1 ≥ ∥ξ(0)∥ and ε2 < ε1,

the idea of the design of the auxiliary system is described as follows. If ξ(0) <

ε1, ξ is initially set to be driven by an designed function χ1 ∈ R3 (i.e., ξ̇ = χ1)

until ∥ξ(t)∥ = ε1. After which, ξ is set to be driven by function χ2 ∈ R3 ( i.e.,

ξ̇ = χ2), which is designed to force ∥ξ∥ to decrease from ε1 to ε2. Subsequently,

ξ is set to be driven by χ1 again. The process repeats in such a way that every

time when ∥ξ∥ increases to ε1, ξ is set to be driven by χ2, and when ∥ξ∥ reduces

to ε2, ξ is set to be driven by χ1. If ξ(0) = ε1, ξ is driven by χ2 first.

To facilitate the description of the auxiliary system, two sets of time sequences

T1 and T2 are defined depending on ∥ξ(t)∥, ε1 and ε2. If ∥ξ∥ < ε1 holds for all t,

then T1 = ∅ and T2 = ∅. If ∥ξ∥ = ε1 occurs for some t, then T1 = {t11, t12, ...}
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is the set contains all the time instants when ∥ξ∥ = ε1, where t1i(i = 1, 2, . . .)

denotes the time instant when ∥ξ∥ = ε1 for the ith time, and T2 = {t21, t22, ...},

where each element t2i (i = 1, 2, . . .) uniquely corresponds to the element t1i in

T1 in the following way: t2i denotes the time instant when ∥ξ∥ = ε2 occurs for

the first time after t1i. Notice that t1i and t2i exist in pair since ∥ξ∥ only decreases

when ξ is driven by χ2 (i.e., t1i ≤ t ≤ t2i). The number of the elements of T1

and T2 is denoted as Q, which depends on both the system and the design of the

auxiliary system. It is noted that Q can be 0 (i.e., T1 = T2 = ∅).

Define

Ωt !

⎧
⎨

⎩
∅ if Q = 0

{t | t1i ≤ t ≤ t2i, i = 1, ...M} if Q ≥ 1
(6.18)

The auxiliary system is designed as:

ξ̇(t) =

⎧
⎨

⎩
χ1(ξ, h′

g, ϱ
∗,Φ(ϱ∗)) if t /∈ Ωt

χ2(ξ, e, h′
g, ϱ

∗,Φ(ϱ∗)) if t ∈ Ωt.
(6.19)

where

χ1 = −K1ξ + h′
g(Zg)(Φ(ϱ

∗)− ϱ∗)

χ2 = −K1ξ − χ20(e, h
′
g, ϱ

∗,Φ(ϱ∗)) + h′
g(Zg)(Φ(ϱ

∗)− ϱ∗)

χ20(e, h
′
g, ϱ

∗,Φ(ϱ∗)) = χ21(e, h
′
g, ϱ

∗,Φ(ϱ∗)) ξ/∥ξ∥2

χ21(e, h
′
g, ϱ

∗,Φ(ϱ∗)) =
1

2
∥eTK1∥2 + |eTh′

g∆ϱ|+ |eTϑΦ(ϱ∗)|

+
1

2
∥e∥2∥Φ(ϱ∗)∥2 + 1

2
∥h′

g∆ϱ∥2

with K1 ∈ R3×3 a positive definite matrix and h′
g ∈ R3×3 a designed function
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matrix satisfying

i. h′
g is nonsingular (6.20)

ii. ∥ϑ∥ ≤ ν, ϑ ! Ŵ T
g Sg(Zg)− h′

g (6.21)

where ν is any bounded time-varying positive scalar, i.e., 0 ≤ ν ≤ νm. h′
g is

introduced to overcome the singularity problem of the estimated input coupling

matrix hg(Zg). Noting that h′
g is not required to be continuous, it can be simply

designed as

h′
g =

⎧
⎨

⎩
ĥg if ĥg is nonsingular

ĥg +∆ if ĥg is singular

where ∆ is any scalar matrix to render ĥg +∆ nonsingular. Moreover, ∆ satis-

fying ∥∆∥ ≤ ν can be different for each singular ĥg.

Remark 6.1: If ĥg is assumed or guaranteed by some projection algorithms to be

invertible, h′
g can be simply chosen as ĥg, i.e., ϑ = 0. If invertibility of ĥg cannot

be guaranteed, h′
g can be designed as ĥg + τhIn with τh being a constant larger

than the spectral radius of ĥg as proposed in [79]. The merit of introducing h′
g

is to introduce more freedom in designing the control, since any h′
g satisfying

(6.20) and (6.21) can be chosen even though it is preferable to choose it close to

ĥg. ✷

Remark 6.2: Let Vξ =
1
2ξ

T ξ. Provided K1 − 1
2In > 0 , it is easy to deduce from

(6.19) that

V̇ξ ≤ −(K1 −
1

2
In)ξ

T ξ for t ∈ [t1i, t2i] (6.22)

Equation (6.22) indicates that ∥ξ∥ decreases when t ∈ [t1i, t2i]. In the case of no

input saturation (i.e., ∆ϱ = 0 ), ξ will remain at zero if ξ(0) = 0. If ξ(0) ̸= 0, ξ

will converge exponentially to zero and remain at zero afterwards. ✷
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6.4.2.3 Design of ϱ∗ and NN Weights Update Laws

The designed control input ϱ∗ is given by

ϱ∗ = h′−1
g (Zg)ϱ

∗
0 (6.23)

ϱ∗0 =

⎧
⎨

⎩
−Ŵ T

f Sf (Zf )−K1e+ ḟd if t /∈ Ωt

−Ŵ T
f Sf (Zf )−K1(e− ξ) + ḟd if t ∈ Ωt

Note that ϱ∗ may not be continuous. This is acceptable since the introduction of

Φ(ϱ∗).

Define e1 ! e − ξ. The adaptive control law for Ŵf and Ŵg are designed

as

˙̂Wf =

⎧
⎨

⎩
Λf (Sf (Zf )eT1 − βfŴf ) if t /∈ Ωt

Λf (Sf (Zf )eT − βfŴf ) if t ∈ Ωt

(6.24)

˙̂Wg =

⎧
⎨

⎩
Λg(Sg(Zg)Φ(u)eT1 − βgŴg) if t /∈ Ωt

Λg(Sg(Zg)Φ(u)eT − βgŴg) if t ∈ Ωt

(6.25)

where Λf = ΛT
f > 0, Λg = ΛT

g > 0, βf > 0, βg > 0.

6.4.3 Stability Analysis

The control law (i.e., (6.23)) and the adaptive control laws (i.e., (6.24) and

(6.25)) for t ∈ Ωt resemble the control techniques proposed in [79] and [69],

while those for t /∈ Ωt are motivated by the control scheme proposed in [76][68].

With the proposed switching structure, the auxiliary system for t ∈ [t1i, t2i] will

have an initial condition with relatively large norm (i.e., ε1), which is desirable

in [79] and [69]. Moreover, when the norm of the auxiliary signal decreases

to a small constant (i.e., ε2), input saturation need not disappear. The integra-
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tion of the direct learning-control scheme proposed in [76] serves to protect the

learning capability under input saturation. By properly selecting the design pa-

rameters (ε1, ε2 and ξ(0)), the proposed switching scheme is able to preserve

the advantages of both control strategies. The performance of the system under

the proposed control scheme is summarized in the following theorem.

Theorem 6.1: Consider the manipulator described by (6.4) satisfying Assump-

tions 6.1-6.3 interacts with the cellular tensegrity model described by (6.1). Pro-

vided bounded initial conditions, under the control law (6.15)(6.23) and param-

eter update laws (6.24)(6.25), there exist control parameters K1 = KT
1 > 0,

Λf = ΛT
f > 0, Λg = ΛT

g > 0, βf > 0 and βg > 0 such that the following

statements hold: i) A bound of the transient tracking error can be estab-

lished as indicated in (6.48); ii) During each time period when t ∈ Ωt (i.e.,

t1i ≤ t ≤ t2i), tracking error e converges asymptotically to a compact set as in-

dicated in (6.50); iii) During each time period when t /∈ Ωt, modified tracking

error e1 converges asymptotically to a compact set as indicated in (6.59).

Proof: To establish the bound of the transient tracking error, we consider the

following Lyapunov candidate

V ∗
1 =

1

2
eT e+

1

2
ξT ξ (6.26)

Define W̃f ! Ŵf − W ∗
f and W̃g ! Ŵg − W ∗

g . By utilizing(6.2)-(6.12) in

sequence, the time derivative of V ∗
1 can be expressed as

V̇ ∗
1 = eT (ḟ − ḟd) + ξT ξ̇

= eT Ŵ T
f Sf (Zf ) + eTh′

g(Zg)Φ(ϱ
∗)− eT W̃ T

f Sf (Zf )

−eT W̃ T
g Sg(Zg)Φ(ϱ

∗) + eT ϵf + eT ϵgΦ(ϱ
∗)− eT ḟd

+eTϑΦ(ϱ∗) + ξT ξ̇ (6.27)
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The rest of the proof for statement i) is presented by considering the two cases

of ξ̇ as follows.

Case 1: ξ̇ = χ1. Substituting (6.19) (6.23) into (6.27) yields

V̇ ∗
1 = −eTK1e− ξTK1ξ + eT ϵf + eT ϵgΦ(ϱ

∗) + eTϑΦ(ϱ∗)

eTh′
g∆ϱ+ ξTh′

g∆ϱ− eT W̃ T
f Sf (Zf )− eT W̃ T

g Sg(Zg) (6.28)

From Equations (6.16) and (6.21), it follows that

eT ϵgΦ(ϱ
∗) ≤ 1

2σ0
∥e∥2 + σ0ϱ2m

2
∥ϵg∥2 (6.29)

eT ϵf ≤ 1

2σ1
∥e∥2 + σ1

2
∥ϵf∥2 (6.30)

eTϑΦ(ϱ∗) ≤ 1

2σ2
∥e∥2 + σ2ϱ2mν

2
m

2
(6.31)

eTh′
g(Φ(ϱ

∗)− ϱ∗) ≤ 1

2
∥e∥2 + 1

2
∥h′

g∆ϱ∥2 (6.32)

ξTh′
g(Φ(ϱ

∗)− ϱ∗) ≤ 1

2
∥ξ∥2 + 1

2
∥h′

g∆ϱ∥2 (6.33)

where, σ0, σ1 and σ2 are designed positive constants.

With above inequalities, V̇ ∗
1 can be upper bounded as

V̇ ∗
1 ≤ −eTK11e− ξTK12ξ +

σ1

2
∥ϵf∥2 +

σ0ϱ2m
2

∥ϵg∥2

+
σ2ϱ2mν

2
m

2
+ ∥h′

g∆ϱ∥2 − eT W̃ T
f Sf (Zf )− eT W̃ T

g Sg(Zg) (6.34)

where K11 = K1 − ( 1
2σ0

+ 1
2σ1

+ 1
2σ2

+ 1
2)In and K12 = K1 − 1

2In.

Considering the NN-weight error signals W̃f and W̃g, an augmented Lyapunov

function candidate is chosen as

V1 = V ∗
1 +

1

2
tr(W̃ T

f Λ
−1
f W̃f ) +

1

2
tr(W̃ T

g Λ
−1
g W̃g) (6.35)
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Substituting (6.24) (6.25) into (6.35) and noting the facts

−tr(W̃ T
f Ŵf ) = −∥W̃f∥2

2
− ∥Ŵf∥2

2
+

∥W ∗
f ∥2

2
(6.36)

−tr(W̃ T
g Ŵg) = −∥W̃g∥2

2
− ∥Ŵg∥2

2
+

∥W ∗
g ∥2

2
(6.37)

the upper bound of V̇1 can be rewritten as

V̇1 ≤ −eTK11e− ξTK12ξ +
σ1

2
∥ϵf∥2 +

σ0ϱ2m
2

∥ϵg∥2

+
σ2ϱ2mν

2
m

2
+ ∥h′

g∆ϱ∥2 − ξT W̃ T
f Sf (Zf )

−ξT W̃ T
g Sg(Zg)−

βf∥W̃f∥2

2
− βg∥W̃g∥2

2
(6.38)

βf∥W ∗
f ∥2

2
+

βg∥W ∗
g ∥2

2
− βf∥Ŵf∥2

2
− βg∥Ŵg∥2

2

Noting ∥Sf (Zf )∥ ≤ ζf and ∥Sg(Zg)∥ ≤ ζg, it follows

−ξT W̃ T
f Sf (Zf ) ≤

1

2σ3
∥ξ∥2 + σ3ζf

2
∥W̃f∥2 (6.39)

−ξT W̃ T
g Sg(Zg) ≤

1

2σ4
∥ξ∥2 + σ4ζg

2
∥W̃g∥2 (6.40)

where σ3 and σ4 are any designed positive constants.

With above inequalities, (6.38) can be rewritten as

V̇1 ≤ −eTK11e− ξTK13ξ − kf∥W̃f∥2 − kg∥W̃g∥2

+
σ1

2
∥ϵf∥2 +

σ0ϱ2m
2

∥ϵg∥2 +
σ2ϱ2mν

2
m

2
+

βf∥W ∗
f ∥2

2
βg∥W ∗

g ∥2

2
+ ∥h′

g∆ϱ∥2

≤ −λ11V1 + c11 + ∥h′
g∆ϱ∥2 (6.41)

where K13 = K1 − (12 +
1

2σ3
+ 1

2σ4
)In, kf = 1

2(βf − σ3ζf ), kg = 1
2(βg − σ4ζg),
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λ11 ! min{2λmin(K11), 2λmin(K13),
kf

λmax(Λ
−1
f )

, kg
λmax(Λ

−1
g )

}, c11 ! 1
2(σ1∥ϵf∥2 +

σ0ϱ2m∥ϵg∥2 + σ2ϱ2mν
2
m + βf∥W ∗

f ∥2 + βg∥W ∗
g ∥2).

Case 2: ξ̇ = χ2. Substituting (6.19) into (6.27) yields

V̇ ∗
1 = eT Ŵ T

f Sf (Zf ) + eTh′
g(Zg)Φ(ϱ

∗) + eTϑΦ(ϱ∗) + eT ϵf

−eT W̃ T
f Sf (Zf )− eT W̃ T

g Sg(Zg)Φ(ϱ
∗) + eT ϵgΦ(ϱ

∗)

−ξT (K1 −
1

2
In)ξ −

1

2
∥eTK1∥2 − |eTh′

g∆ϱ|

−|eTϑΦ(ϱ∗)|− 1

2
∥e∥2∥Φ(ϱ∗)∥2 − 1

2
∥h′

g∆ϱ∥2

−1

2
∥ξ∥2 + ξTh′

g(Zg)(ϱ
∗ − Φ(ϱ∗))− eT ḟd (6.42)

Considering (6.23)(6.27) (6.30) and the following facts:

eTK1ξ ≤ 1

2
∥eTK1∥2 +

1

2
∥ξ∥2 (6.43)

eT ϵgΦ(ϱ
∗) ≤ 1

2
∥ϵg∥2 +

1

2
∥e∥2∥Φ(ϱ∗)∥2 (6.44)

V̇ ∗
1 can be upper bounded as

V̇ ∗
1 ≤ −eTK14e− ξTK15ξ − eT W̃ T

f Sf (Zf )

−eT W̃ T
g Sg(Zg)Φ(ϱ

∗) +
σ1

2
∥ϵf∥2 +

1

2
∥ϵg∥2 (6.45)

where K14 = K1 − 1
2σ1

In and K15 = K1 − In.

Substituting (6.24) (6.25)(6.36)(6.37) and (6.45) into the augmented Lyapunov
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function (6.35), V̇1 is upper bounded as

V̇1 ≤ −eTK14e− ξTK15ξ −
βf∥W̃f∥2

2
− βg∥W̃g∥2

2

+
βf∥W ∗

f ∥2

2
+

βg∥W ∗
g ∥2

2
+

σ1

2
∥ϵf∥2 +

1

2
∥ϵg∥2

−βf∥Ŵf∥2

2
− βg∥Ŵg∥2

2

≤ −λ12V1 + c12 (6.46)

where λ12 = min
{
2λmin(K14), 2λmin(K15),

βf

λmax(Λ
−1
f )

, βg

λmax(Λ
−1
g )

}
and c12 =

1
2(σ1∥ϵf∥2 + ∥ϵg∥2 + βf∥W ∗

f ∥2 + βg∥W ∗
g ∥2).

For t ∈ [0,+∞], to ensure λ11, λ12, c11, c12 > 0, the sufficient gain conditions

are: K1− (12 +
1

2σ0
+ 1

2σ1
+ 1

2σ2
+ 1

2σ3
+ 1

2σ4
) > 0, βf −σ3ζf > 0, βg −σ4ζg > 0.

σ0 is chosen such that σ0ϱ2m
2 ≥ 1. Noting λ11 ≤ λ12 and c11 ≥ c12, it is obtained

that

V̇1 ≤ −λ11V1 + c11 + ∥h′
g∆ϱ∥2 for t ∈ [0, +∞] (6.47)

According to Lemma 1.2 in [52], (6.47) indicates that a transient bound of e can

be established as

∥e(t)∥ ≤
√

2(V1(0) +
c11
λ11

+
1

λ11
sup
τ∈[0,t]

[∥h′
g∆ϱ(τ)∥2]) (6.48)

where V1(0) = (1/2)eT (0)e(0) + (1/2)ξT (0)ξ(0) + (1/2)W̃ T
f (0)Λ

−1
f W̃f (0) +

(1/2)W̃ T
g (0)Λ

−1
g W̃g(0). This concludes the proof of statement i).

Note that the analysis for case 2 applies for t ∈ [t1i, t2i], i.e.,

V̇1 ≤ −λ12V1 + c12 for t ∈ [t1i, t2i] (6.49)

(6.49) indicates that tracking error e exponentially converges to a compact set
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and the transient error bound is given by

∥e∥ ≤
√

2(V1(t1i) + c12/λ12) (6.50)

Noting that λ12 ≥ λ11 and c12 ≤ c11, if the time period [t1i, t2i] is long enough,

it is possible that a good tracking performance is achieved. This concludes the

proof of statement ii).

The control performance for t /∈ Ωt is further discussed by considering the

following Lyapunov function

V ∗
2 =

1

2
eT1 e1 (6.51)

Without loss of generality, we assume that M ≥ 2 and ξ(0) < ε1. In this case,

noting (6.5)-(6.10), the time derivative of V ∗
2 for t ∈ [0, t11] can be expressed

as

V̇ ∗
2 = eT1 (ė− ξ̇)

= eT1 Ŵ
T
f Sf (Zf ) + eT1 h

′
g(Zg)Φ(ϱ

∗)− eT1 W̃
T
f Sf (Zf )

−eT1 W̃
T
g Sg(Zg)Φ(ϱ

∗) + eT1 ϵf + eT1 ϵgΦ(ϱ
∗)− eT1 ḟd

+eT1 ϑΦ(ϱ
∗)− eT1 ξ̇ (6.52)

From Equations (6.16) and (6.21), it follows that

eT1 ϵf ≤ 1

2σ1
∥e1∥2 +

σ1

2
∥ϵf∥2 (6.53)

eT1 ϵgΦ(ϱ
∗) ≤ ϱ2m

2
∥ϵg∥2 +

1

2
∥e1∥2 (6.54)

eT1 ϑΦ(ϱ
∗) ≤ σ2ϱ2mν

2
m

2
+

1

2σ2
∥e1∥2 (6.55)
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With above inequalities, V̇ ∗
2 can be upper bounded as

V̇ ∗
2 ≤ −eT1K16e1 − eT1 W̃

T
f Sf (Zf )− eT1 W̃

T
g Sg(Zg)Φ(ϱ

∗)

+
σ2ϱ2mν

2
m

2
+

σ1

2
∥ϵf∥2 +

ϱ2m
2
∥ϵg∥2 (6.56)

where K16 = K1 − ( 1
2σ1

+ 1
2σ2

+ 1
2)In > 0.

Considering the NN-weight error signals W̃f and W̃g, an augmented Lyapunov

function candidate is chosen as

V2 = V ∗
2 +

1

2
tr(W̃ T

f Λ
−1
f W̃f ) +

1

2
tr(W̃ T

g Λ
−1
g W̃g) (6.57)

Substituting (6.24) (6.25)(6.36)(6.37) (6.56) into (6.57) yields

V̇2 ≤ −λ2V2 + c2 (6.58)

where λ2 = min
{
2λmin(K16),

βf

λmax(Λ
−1
f )

, βg

λmax(Λ
−1
g )

}
and c2 = 1

2(σ2ϱ2mν
2
m +

σ1∥ϵf∥2 + u2
m∥ϵg∥2 + βf∥W ∗

f ∥2).

Provided bounded initial condition, (6.58) indicates

∥e1∥ ≤
√

2(V2(0) + c2/λ2) (6.59)

Furthermore, noticing that the analysis is conducted under the condition that

∥ξ∥ < ε1, we obtain

∥e∥ ≤ ∥e1∥+ ∥ξ∥ <
√

2(V2(0) + c2/λ2) + ε1 (6.60)

The analysis for t ∈ [t2i, t1(i+1)] ∪ [t2Q, +∞](i = 1, ..., Q − 1) is similar as

above. Moreover, if Q is assumed to satisfy Q ≤ d < +∞ where d is any

positive integer, an explicit bound of tracking error e during t ∈ [t2i, t1(i+1)] can
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be found by repeating the above analysis. This concludes the proof of statement

iii). ✷

Remark 6.3: If the artificial bounds of control input magnitude and rate are

chosen to be large or the desired force fd is chosen to be small, there is pos-

sibility that Φ(ϱ∗) − ϱ∗ = ∆ϱ = 0 for all t. In this case, ξ(t) = 0 for

t ∈ [0,+∞] if the initial condition is chosen as ξ(0) = 0. Hence, e(t) = e1(t)

and limt→∞ ∥e∥ = limt→∞ ∥e1∥ . Furthermore, if ∆ϱ does not remain zero

while limt→∞ ∥∆ϱ∥ = 0, it can be deduced that limt→∞ ξ(t) = 0. This implies

that limt→∞ ∥e∥ = limt→∞ ∥e1∥. It is worth pointing out that no assumption

of a square integrable minimum approximation as in [68] is made and thus the

analysis and results are different from therein. ✷

Remark 6.4: Proper selection of ξ(0), ε1 and ε2 may further improve the con-

trol performance in the presence of input saturations. For NN-based adaptive

controllers, input saturation may only occur in the initial stage of control when

the NN weights have not been well tuned. As such, if choosing ξ(0) = ε1 (i.e.,

t11 = 0) with suitable ε1 and ε2, it is possible that input saturation disappears

before t21 and does not occur afterwards. In this case, as indicated in Equation

(6.46), the tracking error converges exponentially to a compact set. Moreover,

during the entire process (i.e., t ∈ [0,+∞]), the tracking performance is guar-

anteed despite the uncertainties and input saturation. It is worth pointing out

that requiring ∥ξ(0)∥ ≤ ε1 is not necessary. In fact, ∥ξ(0)∥ > ε1 can be chosen

and it can be treated in the same way as ∥ξ(0)∥ = ε1. Notice that in this case

t11 is defined as 0 instead of the time instant when ∥ξ∥ = ε1 for the first time.

✷

Remark 6.5: Although (6.17) is obtained based on the assumption that the dy-

namics of manipulator is exactly known, the uncertainties of the manipulator

dynamics can be compensated by the uncertainties of the contact force model
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and therefore assumption 1 can be relaxed. ✷

6.5 Numerical Simulation

To demonstrate the effectiveness of the proposed force control law, numerical

simulations have been conducted. It is considered that applied force is ex-

erted on point G of B1D1 where r = 0.75L. The mechanical properties of

the cellular tensegrity model are assumed as follows: L = 10µm, k = 100pN ,

c = 100pN s/µm. The prestress P is assumed to be 2. The basis tensions T0

at reference solution are set the same values as in Chapter 4. The desired force

trajectory is defined as fd = [fdx fdy fdz]T (as shown in Figure 6.2) with

fdx = fdy = 10pN (6.61)

fdz = −20 + 5 sin(πt)pN (6.62)

Figure 6.2: Desired force trajectory

In the simulation, the design parameters are chosen as ν = 0.05, K1 = diag{20},

Γf = Γg = diag{0.25}, βf = βg = 2, ε1 = 0.1, ε2 = 0.01 and ξ(0) = 0. The

parameters for Φ are designed as ϱi max = 0.3, ϱi min = −0.3, Φ̇(ϱi max) = 3,

Φ̇(ϱi min) = −3 and ωi = 20(i = 1, 2, 3). One hundred nodes are employed for
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estimating hf and hg, i.e., L1 = L2 = 200.

(a)

(b)

(c)
Figure 6.3: Force tracking error: (a) ex. (b) ey. (c) ez .

The tracking error e = [ex ey ez]T , as shown in Figure 6.3 , demonstrates that the

contact force follows the desired force trajectory with a small error in despite of

the system uncertainties. Figure 6.4 and Figure 6.5 show the trajectory of Φ(ϱ∗)

and Φ̇(ϱ∗), respectively. It is noticed that the saturation in both Φ(ϱ∗) and Φ̇(ϱ∗)

occur in the transient phase of the control process. The auxiliary system signal

ξ is shown in terms of its norm in Figure 6.6. It can be concluded that ξ works

as designed. These simulation results demonstrate that the control objective is

achieved with satisfactory tracking performance observed. It is worth pointing

out that in simulations the bound on the rate will also affect when and how the
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input saturation in magnitude occurs. For instance, if the bound on the rate is

chosen sufficiently small, there is a possibility that saturation in magnitude does

not occur at all. Therefore, with different sets of bounds on input magnitude and

rate, the control performance will vary.

(a)

(b)

(c)
Figure 6.4: (a) Φ(ϱ∗1). (b) Φ(ϱ∗2). (c) Φ(ϱ∗3).

6.6 Conclusions

This chapter presents the development of an adaptive NN based force control al-

gorithm for achieving foce tracking in biomanipulation tasks based on a well ac-
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(a)

(b)

(c)
Figure 6.5: (a) Φ̇(ϱ∗1). (b) Φ̇(ϱ∗2). (c) Φ̇(ϱ∗1).
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cepted cellular tensegrity model constructed using structural method. Although

the controller is discussed within the context of cellular tensegrity, the proposed

controller is not limited to the tensegrity model but can be applied for the control

of interaction force between robot and the nonlinear viscoelastic environment

which is often encountered in biomanipulation.

Figure 6.6: Norm of ξ
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Chapter 7

Conclusions

7.1 Summary

The overall objective of this work involves the improvement and optimisation of

biomanipulation systems. Two main issues which are critical to further enhanc-

ing the capability of fully automated biomanipulation systems have been ex-

plored. The first issue was to design an optimal speed trajectory for microinjec-

tion process, which is a common biomanipulation task, in order to minimize the

damage induced by injection process. The second issue was to design control

algorithms for general automated biomanipulation systems to enable accurate

force control on living cells or other similar biological materials/structures. In

particular, the cellular tensegrity model from structure approach was employed

for the force control development.

In Chapter 3, the problem of optimizing the microinjection speed of zebrafish

embryos in terms of minimizing the deformation sustained by the embryo during

the indentation process was investigated. A systematic approach was proposed

for solving this problem by synthesizing an optimal speed trajectory for the
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micropipette. Numerical simulations and extensive experiments were conducted

to demonstrate the effectiveness of the proposed approach.

Chapter 4 to Chapter 6 are dedicated to the development of force control based

on a well-accepted tensegrity model under different task settings. In chapter

4, a homogenous tensegrity model and a robust force control algorithm was

proposed as the first step to control a cellular tensegrity model in presence of

model uncertainties and partial measurability. In Chapter 5, a heterogenous

tensegrity model with time-varying mechanical properties was proposed. This

heterogenous model was shown to be more capable in describing the mechan-

ical behavior of biological materials/structures. The time-varying mechanical

properties were introduced to simulate the variance of mechanical properties

of biological materials/structures caused by external force induced biological

responses. A robust adaptive control was developed through backstepping de-

sign to handle the uncertainties due to the time-varying feature. In Chapter 6,

based on the same homogeneous tensegrity model as in Chapter 4, a novel adap-

tive NN-based controller was proposed based on the six-strut cellular tensegrity

structure. Thanks to the nature of NN-based estimation, the proposed force

controller is readily applicable for the control problem concerning manipula-

tor interacting with soft compliant material which exhibits viscoelasticity. In

particular, a special control technique which aimed at improving the NN-based

adaptive controller was developed and this technique is applicable for tracking

control of MIMO systems with input constraints on both magnitude and rate.

For all the proposed controllers under different task settings, simulations were

conducted to validate their effectiveness.

7.2 Contribution

The contribution of this thesis is summarized as follows:
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1. Speed optimization in biomanipulation

The formulation of the speed optimization problem and the proposed solu-

tion represent a meaningful initial step in the development of sophisticated

approaches for improving the performance of automated microinjection.

To the best of our knowledge, this is the pioneering work devoted to re-

ducing the detrimental physical effects induced by micropipette through

an analytical approach rather than empirical approach. Based on the pro-

posed two-arm Maxwell-Weichert model and its associated assumptions,

minimizing the deformation of cell in the injection process is explicitly

targeted. Results from numerical simulation and experiments presented

clearly demonstrate the effectiveness of the proposed solution. A broader

implication of this line of research is that, although the analysis reported in

this section uses zebrafish embryo as a specific environment upon which

force is applied, the method employed in the analysis can be readily ex-

tended to deal with the general problem of optimizing the localized force-

bearing interaction between a manipulator and a viscoelastic environment

in micro/macro-manipulation.

2. Cellular tensegrity model based force control technique in biomanipula-

tion

The reported cellular tensegrity model based force control is the first at-

tempt to examine the interaction process between end-effector and living

cells through a mechanical model derived from the structural approach.

A key feature of cellular tensegrity model is that it considers cytoskele-

ton as the central role in governing cellular mechanical response rather

than deems the living cell as a viscous fluid comprised by a membrane.

Leveraging on the more comprehensive description of the nonlinearity

and dynamic coupling of internal structural elements provided by this
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tensegrity model, both homogeneous and heterogeneous cellular tenseg-

rity models are discussed with the objective of achieving delicate force

control in biomanipulation. The force control techniques proposed based

on these models can be used to fully realize the potential of the many

advanced micro/nano engineering platforms in terms of enabling accurate

control of mechanical stimuli, which will greatly facilitate the mechanobi-

ology study on how cells are influenced by external mechanical stimuli.

Another contribution of this work is that the results can be utilized to

improve the automatic manipulation of cells such as automated microin-

jection process. With the proposed force control algorithm, the reliability

and dexterity of the automated biomanipulation systems for manipulat-

ing cells can be enhanced. Moreover, the proposed control techniques

in Chapter 4 and Chapter 5 can be readily extended to a general class of

MIMO systems. Furthermore, the proposed auxiliary system in Chapter 6

can be applied for a class of uncertain nonlinear MIMO systems to guar-

antee the control performance in the presence of input saturation in both

magnitude and rate.

7.3 Future Work

For the study of speed optimization in microinjection process, some potential

areas for further investigation may include:

• In the Maxwell-Wiechert model developed, the depth of indentation is

the only variable used to describe the deformation of the embryos whilst

other variables which also contribute to the deformation are all neglected.

Further study is needed to develop more sophisticated models that inte-

grate various other factors that affect the microinjection process should

be studied for the selection of optimal speed in order to obtain a more
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comprehensive solution.

• In the numerical solution, the form of the speed trajectory is predefined to

be polynomials. Although it may be argued that such a practice is com-

mon in the manipulator trajectory-planning literature and that it is possible

to approximate a continuous function by using a suitable polynomial, the

question of whether there exist other forms of speed trajectory suitable for

the same purpose remains to be further explored.

• The optimization problem formulated assumes that the optimal speed will

be implemented (on an actual automated microinjection system) exactly

as designed. This assumption is not realistic since tracking error always

exists in such a dynamical system. To address this problem, an improved

optimization formulation should take this speed tracking error into ac-

count, by considering the capability of the hardware and software compo-

nents used in the automated microinjection system.

For the study of cellular tensegrity model base force control for biomanipulation

purpose, considering that the research in this area is still at an less developed

stage, the following aspects are recommended for future research.

• To consider the uncertainties of manipulators in the development of force

controller. Uncertainties of manipulators are often encountered in force

control problems and it may significantly affect the performance of the

proposed force controller which are based on the assumption that the dy-

namics of the manipulators are exactly known.

• To integrate mechanical contribution from other cellular components(e.g.

cytoplasm and nucleus) with the objective of constituting a more complete

model for force control. The incorporation of these components could

strengthen the tensegrity model since their impact on mechanical response

may be significant under large deformation
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Appendix A

In this appendix, the specific forms of the matrix of the equations of motion in

Equation (2.4) are presented.

The element of the equilibrium matrix A(q), Aij is:

Aij =
∂lj
∂qj

i = 1, . . . 24, j = 1, . . . 33 (A.1)

where lj is the length of the jth working tendon.

The element of the tensions matrix T (q), Tj is:

Tj = kj(lj − l0j) j = 1, . . . 33 (A.2)

where kj is the stiffness of the jth working tendon; l0j is the initial length of the

jth working tendon.

The expression of damping matrix C(q) is:

C(q) =
33∑

j=1

cjCj(q) (A.3)

where cj is the damping ratio of the jth working tendon and Cj(q) is defined by

the geometric properties of the tensegrity structure.
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The expression of the disturbance matrix H(q) is:

H(q) = diag{H1, . . . , H7} (A.4)

where

Hi=1,2,3 =

⎡

⎢⎣
cosαi1 cos δi1

2

sinαi1 cos δi1
2

sinαi1 cos δi1

−sinα11 sin δi1
2

cosαi1 sin δi1
2

0

⎤

⎥⎦ (A.5)

Hi=4,5,6,7 = diag{1, 1, 1, 0, 0} (A.6)
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Appendix B

In this appendix the general forms of Af , Tf and Cf of the homogeneous six-

strut cellular tensegrity structure with constant stiffness k and damping ratio c,

are presented.

Af is the equilibrium matrix with respect to qf whose entries are:

Afij =
∂lj
∂q

f i
(i = 1, ...24, j = 1, ...33) (B.1)

where lj is the length of jth tendon.

Tf indicates the tensions in the tendons whose entries are:

Tfj = k(
lj
lj0

− 1) (B.2)

where lj0 is the initial length of jth tendon.

Cf is the damping matrix with respect to qf and it is given as:

Cf (qf ) =
33∑

j=1

c · Cfj(qf ) (B.3)

where Cfj are matrices which depend on the geometric properties of the struc-

ture.
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Appendix C

In this appendix, the initial state of qf are presented.

q1r and q2r are given as

q1r = [X10 Y10 Z10 ]
T (C.1)

q2r = [ δ α δ α + 240 δ α + 120 δ αX20 Y20 Z20 δ (C.2)

α + 240X30 Y30 Z30 δ α + 120X0 Y0 Z0 ]
T (C.3)
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where α = 60◦, δ = 54◦, L = 10 and

X10 = L

√
6

8
− (L− r) sin δ cosα,

Y10 = L

√
2

8
− (L− r) sin δ sinα,

X20 =
L

4
sin δ cosα− L

√
3

4
sin δ sinα,

Y20 = −L

√
2

4
+

L

4
sin δ sinα + L

√
3

4
sin δ cosα,

X30 = −L

√
6

8
+

L

4
sin δ cosα + L

√
3

4
sin δ sinα,

Y30 = L

√
2

8
+

L

4
sin δ sinα− L

√
3

4
sin δ cosα,

Z10 = (L+ r) cos δ − h,

Z20 = Z30 =
3

2
L cos δ − h,

X0 = Y0 = 0, Z0 = L cos δ − h

2
,

h =
L

cos δ

[
cos 2δ +

√
2

2
sin δ cos(α− 30◦)

]
.
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Appendix D

In this appendix the general forms of Af , Tf and Cf of the heterogeneous six-

strut cellular tensegrity structure with time-varying stiffness and damping ratio

are presented.

Af is the equilibrium matrix with respect to q
f

whose entries are:

Afij =
∂lj
∂q

f i
(i = 1, ...24, j = 1, ...33) (D.1)

where lj is the length of jth tendon.

Tf indicates the tensions in the tendons whose entries are:

Tfj = kj(t) · (
lj
lj0

− 1) (D.2)

where, lj0 is the initial length of jth tendon.

Cf is the damping matrix with respect to qf and it is given as:

Cf (qf ) =
33∑

j=1

c(t) · Cfj(qf ) (D.3)

where Cfj are matrices which depend on the geometric properties of the struc-

ture.
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