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Summary 

 

Epistemic game theory provides a formal language to analyze players' strategic choices, 

rationality, beliefs, etc., which enables us to formally explore the hidden assumptions behind 

solution concepts in the classical game theory. In this thesis, we mainly focus on epistemic 

conditions of three game-theoretic solution concepts, namely "mutually acceptable courses of 

action (MACA)" (Greenberg et al. (2009)), "rationalizable self-confirming equilibrium (RSCE)" 

(Dekel et al. (1999)), and "backward induction outcome." 

    (i) MACA is a unified solution concept for complex social situations where "perfectly" 

rational individuals with different beliefs and views of the world agree to a shared course of 

actions. We formulate and show, by using the notion of "lexicographic probability system 

(LPS)" (Blume et al. (1991)), that MACA is the logical consequence of common knowledge of 

"perfect" rationality and mutual knowledge of agreement on the underlying course of actions. 

(Subjective) perfect equilibrium (Selten (1975). IJGT), rationalizable self-confirming 

equilibrium (Dekel et al. (2002). JET), and (perfect version) rationalizability (Bernheim (1984), 

Pearce (1984). ECTA) are analyzed in the current epistemic approach by varying the degree of 

completeness of the underlying course of actions. 

    (ii) RSCE is a steady state where rational individuals observe the played actions and use 

the information about opponents' payoffs in forming the beliefs about opponents' behavior off 

the equilibrium path. We formulate and show, by using the notion of "conditional probability 

system (CPS)", that RSCE is the result of common knowledge of "sequential" rationality and 

mutual knowledge of the actions along the path of play. Self-confirming equilibrium (SCE) 

(Fudenberg and Levine (1993, ECTA), sequential rationalizable self-confirming equilibrium 

(SRSCE), and sequential rationalizability (Dekel et al. (2002, JET) are analyzed in the current 

epistemic framework by varying the degree of "rationality." 

(iii) We suggest that conditional probability system (CPS) with the strong independence 

property is useful to model players' conjecture in dynamic games, and define a notion of 

"consistent belief" to formalize these conjectures. Subgame perfect equilibrium is shown to be 

the logical consequence of rationality and common consistent belief of rationality (RCCBR) in 

perfect information generic games. 
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1 Introduction

Game theory is a study of strategic thinking which provides a formal language to analyze

decision makers’ behavior in different interactive situations. Various solution concepts (e.g.

iterative elimination of strictly dominated strategies, Nash equilibrium, backward induction,

etc.) are innovated by game theorists. These concepts are mainly motivated by economic intu-

ition. Epistemic game theory formalizes assumption about decision makers’ rationality, belief

and knowledge in a formal and rigorous way which allows game theorists to explore hidden

assumptions behind solution concepts. This helps us have better understanding of those as-

sumptions’ behavior implications in different games. For instance, rationalizability (Bernheim

(1984), Pearce (1984)) is the logical consequence of common knowledge of rationality (Tan

and Werlang (1988)).

In this thesis, epistemic conditions of three game-theoretic solution concepts, namely “mu-

tually acceptable courses of action (MACA)” (Greenberg et al. (2009)), “rationalizable self-

confirming equilibrium (RSCE)” (Dekel et al. (1999)), and “backward induction outcome,”

will be investigated. All of these solution concepts are mainly defined for extensive games.

To analyze epistemic conditions of them, one common challenge is to model players’ ratio-

nality and knowledge of players’ rationality in extensive games. Two non-standard probability

theories are used in the analysis which will be introduced in following sections.

1.1 An Epistemic Approach to MACA

In chapter one, an epistemic approach to the notion of “mutually acceptable courses of action

(MACA)” is provided. In complex social interactions, Greenberg et al. (Economic Theory 40

(2009) 91-112) offered a unified solution concept of “MACA” for situations where “perfectly”

rational1 individuals with different beliefs and views of the world agree to a shared course of

action. In this chapter we investigate epistemic conditions for MACA by employing a non-

standard probability theory.

In particular, we use the notion of "lexicographic probability system (LPS)’ introduced

by Blume et al. (Econometrica 59 (1991a) 61-79) to model players’ beliefs in dynamic games.

1Roughly, a player is cautious if he/she thinks that opponents will make mistake (due to trembling

hand), and hence assigns a strictly positive probability to opponents’ every strategy. A player is rational

if he/she is a utility-maximizer. A player is "perfectly" rational if he/she is both cautious and rational.
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Blume et al. (1991a) presented a non-Archimedean version of subjective expected utility theory.

According to the theory, an agent possesses, not a single probability distribution, but rather a

vector of probability distributions that is used lexicographically in selecting an optimal action.

Such a vector of probability distributions is called a lexicographic probability system (LPS).

A conditional probability system (CPS) can be viewed as a conditional-probability func-

tion which defines a probability distribution on opponents’ choices at every information set,

including those are not reached. The notion of "CPS" is not suitable for characterizing the epis-

temic condition of MACA due to the tension between "perfectly" rationality and knowledge of

"perfectly" rationality. See the following example.

If player 2 is perfect rational, strategy d would be chosen. If player 1 is perfect rational, both

d and f would be assigned positive probability under CPS. If player 1 thinks that player 2 is

perfect rational, probability 1 should be assigned to d. under CPS. There is a conflict between

the player 1’s perfect rationality and player 1’s belief about player 2’s perfect rationality un-

der CPS. To resolve the tension, strategy f needs to be both included and excluded in player

1’s belief. The notion of LPS is designed to handle it. By using LPS, strategy f is assigned

probability 0 in primary belief (the first element in the vector of probability distributions) and

probability 1 in secondary belief (the second element in the vector of probability distributions).

Within a standard semantic framework, we formulate and show that, by using the notion

of LPS, MACA is the logical consequence of common knowledge of “perfect” rationality and

mutual knowledge of agreement on the underlying course of action. In this chapter, we also

demonstrate how epistemic assumptions for various related game-theoretic solution concepts

can be derived by varying the degree of completeness of the underlying course of action. This

study is useful to deepen our understanding of MACA and other solution concepts in the lit-

erature, such as perfect equilibrium, (perfect) rationalizable self-confirming equilibrium, and

(perfect) rationalizability.

It is worthwhile to point out that, by utilizing the notion of LPS, we will present a com-
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prehensive and epistemic analytical framework to accommodate the tension that arises in mod-

eling perfect rationality (that requires to include all possible strategies in a perturbed belief)

and knowledge/belief about perfect rationality (that requires to exclude some strategies from

the perturbed belief) in complex social interactions; cf., e.g., Samuelson (1992 and 2004) and

Brandenburger (2007).

1.2 An Epistemic Characterization of RSCE

In chapter two, an epistemic characterization of “rationalizable self-confirming equilibrium

(RSCE)” is given. Dekel et al. (J Econ Theory 89 (1999) 165-185) offered a solution concept

of “RSCE” as a steady state where rational individuals observe the played actions and use the

information about opponents’ payoffs in forming the beliefs about opponents’ behavior off the

equilibrium path. In this chapter we investigate epistemic conditions for RSCE from a decision-

theoretic point of view by employing the notion of "conditional probability system (CPS)".

Within a standard semantic framework, we formulate and show that, by using the notion of

CPS, RSCE is the logical consequence of common knowledge of rationality and mutual knowl-

edge of the actions along the path of play. We also apply this epistemic framework to other

related solution concepts such that self-confirming equilibrium (SCE), sequential rationalizable

self-confirming equilibrium (SRSCE), and sequential rationalizability.

1.3 Backward Induction and Consistent Belief

In chapter three, an epistemic analysis of backward induction strategy profile is offered. We

suggest that conditional probability system (CPS) with strong independence property is useful

to model players’ conjecture in dynamic game, and define a notion of "consistent belief" to

formalize these conjectures.

A CPS satisfies strong independence property if it can be generated by an independent

convergent sequence of "full-support" probability distributions over the state space. Moreover,

a player is said to consistently believe an event if he possesses a conditional belief system with

strong independence property and believes the event at the beginning of the game.

Within a standard semantic framework, we formulate and show, by using the notion of

CPS with strong independent property, backward induction strategy profile is the logical con-

3



sequence of rationality and common consistent belief of rationality (RCCBR) in perfect infor-

mation generic games.
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2 An Epistemic Approach to MACA

2.1 Introduction

In extensive games, Greenberg et al. (2009) presented a unified solution concept of “mutu-

ally acceptable course of action (MACA)” which can be interpreted as an (incomplete) con-

tract/agreement that free rational individuals would be willing to follow for their own diverse

reasons. As Greenberg et al. (2009, p.93) put it,

“...... a course of action is mutually acceptable if no player would wish, in

his own world, to deviate from it. When deciding on whether or not to devi-

ate from a course of action, every player takes into account that all players

are “rational.” In making their decisions, each player analyzes possible con-

sequences of deviations from the proposed course of action. Players would

be willing to conform to a proposed course of action as long as their con-

formity does not conflict with rational behavior. Observe that each player

may rationalize his expectations in a different way, as long as this does not

violate the common knowledge of rationality as perceived by each player.”

The solution concept of MACA integrates the two main forms of strategic behavior reason-

ings in the game theory literature: (i) players should hold consistently aligned and correct

belief based on behavior specified in a contract/agreement (as in an equilibrium approach) and

(ii) players might hold diverse rationalizable beliefs from introspection on the basic epistemic

assumption of common knowledge of “perfectly” rationality, if there is no code of rules and be-

havior dictated by the (incomplete) contract/agreement (as in a non-equilibrium/rationalizability

approach).2 At a conceptual level, Greenberg et al. (2009) demonstrated that by varying the

degree of completeness of the underlying course of action, the concept of MACA can be related

to commonly used solutions, such as perfect equilibrium, rationalizable self-confirming equi-

librium, and rationalizability. This approach synthesizes the contractarian and rational-choice

paradigms to study extensive-form strategic behavior through the lens of a contract/agreement,

2MACA is related to Rubinstein and Wolinsky’s (1994) notion of a “rationalizable conjectural equilibrium

(RCE)” in normal-form games where players’ information about opponents’ play is represented by general “signal-

functions.” An RCE is defined as a strategy profile such that each player’s chosen action maximizes his payoffs

given his conjecture regarding actions of the others, and the conjectures are consistent with the player’s signal and

common knowledge of Bayesian rationality; see also Esponda (2012) for more discussions on the notion of RCE.
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with special emphasis on the governance of contractual or informational incompleteness and

asymmetries.

The purpose of this chapter is to provide expressible epistemic conditions for the solution

concept of MACA. A major technical difficulty encountered in dynamic extensive-form game

models is, when facing with strategic uncertainty, how to model a player’s beliefs about op-

ponents’ play in every contingency, including information sets that the player thinks will not

actually arise. Inspired by Selten’s (1975) brilliant idea of “trembles,” Greenberg et al. (2009,

pp.95-98) offered one way to overcome this difficulty by elaborating on a player’s (uncorre-

lated) perturbed beliefs about the behavioral strategies of opponents in extensive games; see

also Dekel et al. (2002). In this chapter, we use the notion of “lexicographic probability system

(LPS)” introduced by Blume et al. (1991a) to model players’ beliefs and provide an epistemic

characterization for the solution concept of MACA.3 More specifically, each player is assumed

to have, not a single probability distribution, but rather an “independent” vector of probability

distributions, on the product of action spaces in the agent-normal form of an extensive game,

that is used lexicographically in selecting an optimal strategy. Such a vector of probability

distributions is called an “independent lexicographic probability system (ILPS).” The first com-

ponent of LPS can be thought of as representing the player’s primary theory about how the

game will be played, the second component as the player’s secondary theory, and so on. Within

a standard semantic framework, we formulate and show that MACA is the logical consequence

of common knowledge of “perfect” rationality and mutual knowledge of agreement on the un-

derlying course of action.

The following example illustrates how to use LPS in our analysis of “perfect” strategic

behavior in extensive games:

1 2 1

a1 b1 c1

a2 b2 c2

1

0

0

1

2

0

0

2

3Blume et al. (1991b) demonstrated how LPS can be used to provide decision-theoretic foundations for normal-

form refinements of Nash equilibrium. In an interesting paper, Halpern (2009) offered an alternative and intriguing

approach to sequential equilibrium, perfect equilibrium, and proper equilibrium by using “nonstandard probabil-

ity;” see also Hammond (1994) and Halpern (2003) for the relationship between LPS and nonstandard probability

spaces.
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In this game, it is clear that there is a unique backward induction outcome: (a1, b1, c1), which

also satisfies the “perfect” rationality that every action chosen by a player is optimal along a

trembling sequence. This “perfect” rationality can be represented by lexicographical maxi-

mization in Blume et al.’s (1991a) lexicographic decision theory as follows: (1a) action a1 lex-

icographically maximizes player 1’s expected payoff under a (full-support) LPS on {b1, b2} ×

{c1, c2} – namely ρ ≡
(
1 (b1, c1) ,

1
2
(b1, c2) +

1
2
(b2, c1) , 1 (b2, c2)

)
,4 (1b) action c1 lexico-

graphically maximizes player 1’s expected payoff under a (full-support) LPS on {a1, a2} ×

{b1, b2} – namely ρ ≡
(
1 (a1, b1) ,

1
2
(a1, b2) +

1
2
(a2, b1) , 1 (a2, b2)

)
, and (2) action b1 lexi-

cographically maximizes player 2’s expected payoff under a (full-support) LPS on {a1, a2} ×

{c1, c2} – namely ρ ≡
(
1 (a1, c1) ,

1
2
(a1, c2) +

1
2
(a2, c1) , 1 (a2, c2)

)
. In this context, the pro-

file (a1, b1, c1) can reflect common knowledge/belief of “rationality” where rationality refers to

lexicographical maximization and knowledge/belief is consistent with the primary belief deter-

mined by the first component of lexicographical probability distributions. (Intuitively, player

1 holds the primary belief that player 2 is “perfectly” rational in the sense of (2) and player 2

holds the primary belief that player 1 is “perfectly” rational in the sense of (1a) and (1b), player

1/player 2 holds the primary belief about that player 2/player 1 holds the primary belief that

player 1/player 2 is “perfectly” rational, and so on.)5

In this chapter, we carry out the epistemic program in game theory to express formally the

assumptions on players’ information, knowledge and belief that lie behind the solution concept

of MACA (see, e.g., Dekel and Gul (1997), Battigalli and Bonanno (1999), Samuelson (2004),

Brandenburger (2007), and Bonanno (2013) for surveys of the literature on epistemic game

theory). In a standard semantic framework (or Aumann’s model of knowledge), we offer an

epistemic characterization for MACA in terms of common knowledge of “perfect” rationality

4Here, ρ represents player 1’s LPS belief (at his first decision node) about player 2’s play and player 1’s play

(at his second decision node). For instance, player 1 has the secondary theory that (b1, c2) and (b2, c1) are played

with equal probability.
5By using LPS, the strategies that get infinitesimal weight can be viewed as being both included (because they

do not get zero weight) and excluded (because they get only infinitesimal weight) in players’ beliefs. This im-

portant feature of LPS is critical in our epistemic analysis of MACA; it is used to resolve the tension between

“perfect” rationality (that requires to include all possible strategies in a perturbed belief) and knowledge/belief

about “perfect” rationality (that requires to exclude some strategies from the belief). Samuelson (1992) firstly

pointed out such a logical difficulty in analyzing the notion of “admissibility” in normal-form games within the

conventional probability framework; cf. also Samuelson (2004, Sec. 9.1). Brandenburger (1992) and Branden-

burger et al. (2008) circumvented the difficulty by using LPS; see also Asheim (2001) for an epistemic analysis

of “proper rationalizability” by using LPS. (In this regard, the notion of “conditional probability system (CPS)” is

not appropriate for an epistemic analysis in extensive games involving “perfectly” rational players, since there is

the same kind of logical predicament in dynamic settings.)
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and mutual knowledge of agreement on the underlying course of action (see Theorem 2.3.1

and Corollary 2.3.1). This result also provides a unifying epistemic approach to other related

game-theoretic solution concepts such as perfect equilibrium, rationalizability, and rationaliz-

able self-confirming equilibrium. In this chapter, we demonstrate how epistemic characteriza-

tions for various related solution concepts can be derived by varying the degree of completeness

of the underlying course of action (see Propositions 2.3.1.1, 2.3.2.1 and 2.3.3.1). In the spirit

of Aumann and Brandenburger’s (1995) Theorems A and B, we also provide expressible epis-

temic assumptions for a (mixed) complete MACA when mixed strategies are interpreted as

conjectures of players (see Proposition 2.3.1.2).

In an interesting paper, Asheim and Perea (2005) provided, in two-player extensive games,

a unifying epistemic model for studying different “equilibrium” and “non-equilibrium” solu-

tion concepts including “sequential equilibrium/rationalizability” and “quasi-perfect equilib-

rium/rationalizability (where each player takes into account the possibility of the other players’

mistakes, but ignores the possibility of his own mistakes).” In particular, by utilizing a more

general concept of “conditional LPS” to represent a system of conditional beliefs in dynamic

settings, Asheim and Perea showed that the concept of “sequential rationalizability” can be

characterized by common certain belief of “sequential” rationality, and the concept of “quasi-

perfect rationalizability” is the result of common certain belief of “sequential” and “cautious”

rationality.6

Our work distinguished from Asheim and Perea (2005) in two aspects. Firstly, their work

focused on two-person game which avoided the independence issue. N-person game is allowed

in our work. Secondly, quasi-perfectness instead of perfectness was analyzed. In this chapter,

we conduct a systematic epistemic analysis of various perfect-versions of solution concepts

through MACA, by using a strong form of “perfect” rationality that reflects Selten’s (1975)

original idea of perfectness. This idea rested on backward induction is central to a game-

theoretic analysis of rational strategic behavior in dynamic situations. Accordingly, Selten’s

(1975) perfectness requires that each player be “perfectly” rational based on the assumption

that all the players tremble independently among all actions at each information set (including

each of the player’s own information sets).

6Asheim and Perea (2005) took a different “consistent preferences” approach to an epistemic analysis of game-

theoretic solution concepts; see also Asheim (2005) for extensive discussions. In this paper, we adopt the conven-

tional “rational choice” approach in our epistemic study of rational strategic behavior.
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The rest of this chapter is organized as follows. Section 2.2 contains some preliminary

notation and definitions. Section 2.3 provides an epistemic characterization for MACA and

discusses its epistemic relations to other commonly used game-theoretic solution concepts.

Section 2.4 offers concluding remarks.

2.2 Notation and Definitions

Since the formal description of an extensive game is by now standard (see, for instance, Kreps

and Wilson (1982) and Kuhn (1954)), only the necessary notation is given below. Consider a

(finite) extensive-form game with perfect recall:

T ≡ (N, V,H,
{
Ah
}
h∈H

,
{
ui
}
i∈N
),

where N = {1, 2, . . . , n} is the (finite) set of players, V is the (finite) set of nodes (or ver-

tices), H is the (finite) set of information sets, Ah is the (finite) set of pure actions available at

information set h, and ui is player i’s payoff function defined on terminal nodes.

A mixed action at information set h is a probability distribution on Ah. Denote the set of

mixed actions at h by �Ah. Denote the collection of player j’s information sets by Hj . A

behavioral strategy of player j is a function, yj , that assigns some randomization yj(h) ∈ �Ah

to every h ∈ Hj.

Let Yj be the set of player j’s behavioral strategies. Denote the set of behavioral strategy

profiles by Y, i.e. Y = ×j∈NYj. For y ∈ Y, we abuse notation and denote by ui(y) player

i’s (expected) payoff if strategy profile y is adopted from the root of the game, denote by

y(h) the mixed action of y at h, and denote by y(−h) the profile of mixed actions of y at all

information sets other than h. Write yjk � yj for a “trembling sequence”
{
yjk
}∞
k=1

of strictly

positive behavioral strategies in Yj that converges to yj .

2.2.1 MACA: A Unifying Solution Concept

A course of action (CA) is defined as a mapping x : H → ∪h∈H � Ah ∪ {∅}, with x(h) ∈

�Ah ∪ {∅} for all h ∈ H. A course of action can be interpreted as an (incomplete) contract

or a (partial) agreement arising in real-life situations, which may or may not specify an action

in every contingency. The interpretation of x(h) = ∅ is that the CA x does not specify which
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(mixed) action from �Ah player i would take at h, where h ∈ H i; otherwise, x(h) specifies

player i’s action at h. In particular, a CA x is said to be complete if x(h) �= ∅ for all h ∈ H –

i.e., a complete CA is therefore a strategy profile.

Greenberg et al. (2009) offered the following solution concept of “mutually acceptable

course of action (MACA)” for extensive games where “rational” individuals with different be-

liefs and views of the world agree to a shared course of action. Denote a subset of Yj by Y j.

Denote by yjk
Y j

� yj a “trembling (belief) sequence”
{
yjk
}∞
k=1

generated by convex combination
∑m

t=1 λty
j
t,k (where yjt,k � yjt in Y j) that converges to yj.7 It is easy to see that yjk � yj iff

yjk
{yj}
� yj.

Definition 2.2.1. A CA x is a mutually acceptable course of action (MACA) if there exists a set

of behavioral strategy profiles Y ≡ Y 1× Y 2 · · · × Y n that supports x. That is, for every player

i and every yi ∈ Y i, there exist yik � yi and yjk
Y j

� yj for all j �= i such that

1. for all h ∈ H , y(h) = x(h) whenever x(h) �= ∅, and

2. for all h ∈ H i and for all k = 1, 2, ... , ui(y(h), yk(−h)) ≥ ui(ah, yk(−h)) for all

ah ∈ Ah.

In this chapter, we call the supporting set Y in Definition 2.2.1 a “perfectly x-rationalizable”

set, and a strategy profile y in Y is said to be a “perfectly x-rationalizable” profile. For Y j ⊆ Yj,

let

℘
(
Y j
)
=
{
yjk � yj| yjk

Y j

� yj
}

.

That is, ℘ (Y j) is the set of “trembling (belief) sequences” which can be used to represent

a player’s plausible “cautious” beliefs about the opponent j’s behavioral strategies at all the

information sets including the ones that the player thinks are impossible, given that the player

knows that Y j is a set of strategies which j might adopt.

The notion of MACA in Definition 2.2.1 provides, through the lens of a contract/agreement,

a unifying game-theoretic solution concept. Greenberg et al. (2009) demonstrated that, by

varying the degree of completeness of the underlying course of action, MACA can be related

7That is, there are an integerm, strategies {yjt}t=1, ...,m in Y j , sequences of strictly positive behavioral strate-

gies y
j
t,k � y

j
t , and a probability distribution λ on [1, ..., m], such that the behavioral strategy y

j
k, which is

outcome-equivalent to the convex combination
∑m
t=1 λty

j
t,k, converges to yj .
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to many commonly used game-theoretic solutions, such as perfect equilibrium, rationalizable

self-confirming equilibrium, and rationalizable outcomes. More specifically, there are three

particular categories of MACA in extensive games:

(i) [The “Complete” MACA] A complete MACA is an MACA that specifies actions

in at all information sets. The complete CA is related to the notion of perfect

equilibrium.

(ii) [The “Path” MACA] A path MACA is an MACA that specifies an action at every

information set that is reached with positive probability if the CA is followed. The

path MACA is related to the notion of rationalizable self-confirming equilibrium.

(iii) [The “Null” MACA] The null MACA is an MACA which does not rely on a

priori information regarding actions at any information set. The null MACA is

associated with the notion of rationalizability.

From this perspective, the notion of MACA serves as a unifying solution concept for exten-

sive games. The following three-person game is used to illustrate the notion of MACA. (For

simplicity, we consider only pure strategies.)

1 2 3

s
1

s
2

s
3

c
1

c
2

c
3

1

1

3

3

3

3 3

4

4

3

Fig. 1: A three-person game with a parameter θ ∈ [0, 1].

In the game depicted in Fig. 1, it is easy to see that there are two backward induction (path)

outcomes: c1s2 and c1c2c3, regardless of the valuation of θ ∈ [0, 1]. We consider two cases as

follows.

Case I: 0 ≤ θ < 1. The “complete” MACA yields the set of two strategy profiles {(c1, s2, s3) , (c1, s2, c3)},

which coincides with the set of subgame perfect equilibria. The “path” MACA yields the set

of three path outcomes: s1, c1s2 and c1c2c3, which consists of (rationalizable) self-confirming
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equilibrium path outcomes in Fudenberg and Levine (1993) and Dekel et al. (1999, 2002); in

particular, the “path” MACA may generate an outcome that cannot arise in the backward in-

duction solution (because, unlike in equilibrium, players 1 and 2 need not share the same belief

regarding player 3’s behavior at off-path information sets). The “null” MACA yields the set

of eight “perfect” rationalizable strategy profiles – i.e., the whole set of strategy profiles in this

game, which coincides with the set of (subgame) rationalizable strategy profiles in the sense of

Bernheim (1984) and Pearce (1984).

Case II: θ = 1. Note that player 1’s strategy c1 weakly dominates s1 and, thereby, the

“perfect” rationality requires player 1 never to play strategy s1. Thus, the “perfect-version”

of rationalizability should rule out weakly dominated strategy s1, although every strategy is

still (subgame) rationalizable for θ = 1. In this case, the “complete” MACA remains un-

changed as in Case I, the “path” MACA yields the “refined” set of two path outcomes: c1s2 and

c1c2c3, which excludes the (rationalizable) self-confirming equilibrium path outcome involving

a weakly dominated strategy, and the “null” MACA yields the “refined” set of four “perfect”

rationalizable strategy profiles {(c1, s2, s3) , (c1, s2, c3) , (c1, c2, s3) , (c1, c2, c3)}.

2.2.2 LPS in Extensive Games

Blume et al. (1991a) presented a non-Archimedean version of subjective expected utility theory.

According to the theory, an agent possesses, not a single probability distribution, but rather a

vector of probability distributions that is used lexicographically in selecting an optimal action.

Such a vector of probability distributions is called a “lexicographic probability system (LPS).”

The first component of LPS can be thought of as representing the player’s first order or primary

belief about how the game will be played, the second component as the player’s second order

belief which is infinitely less likely than first order belief, and so on. The agent assigns to

each action a vector of expected utilities calculated by LPS, and chooses an optimal action by

comparing these vectors using the lexicographic ordering ≥lex.

For the purpose of this chapter, we consider the following lexicographic preference order-

ings in the agent-normal game of T .8 Let ρ = (ρ1, ρ2, . . . , ρL) be an LPS on A = ×h∈HA
h.

For i ∈ N and h ∈ Hi, an action ah ∈ Ah is lexicographically preferred to another action

8In the agent-normal game, each agent is viewed as a separate and independent player with the same payoff as

in the original game. The agent-normal game was introduced by Selten (1975) for the purpose of defining “perfect

equilibrium”; cf. Kuhn’s (1954) interpretation of how an extensive game is played. See also Harsanyi and Selten

(1988) and van Damme (1991) for more discussions.
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bh ∈ Ah with respect to ρ if and only if

[
∑

a−h∈A−h

ρ−h
� (a

−h)ui(ah, a−h)]L�=1 ≥lex [
∑

a−h∈A−h

ρ−h
� (a

−h)ui(bh, a−h)]L�=1

where ρ−h = (ρ−h
1 , ρ−h

2 , . . . , ρ−h
L ) is the marginal of ρ on A−h.9 The LPS ρ−h represents agent

h’s vector-probabilistic beliefs about the other agents’ actions.

Blume et al. (1991b) established the relationship between an LPS and a “trembling se-

quence” in games by using the “nested convex combination”: Given an LPS ρ = (ρ1, ρ2, . . . , ρL)

onA, and a vector r = (r1, r2, . . . , rL−1) ∈ (0, 1)L−1, write r�ρ for the probability distribution

on A defined by the nested convex combination

(1− r1)ρ1 + r1(1− r2)ρ2 + r1r2(1− r3)ρ3 + · · ·

+r1r2 · · · rL−2(1− rL−1)ρL−1 + r1r2 · · · rL−1ρL.

This nested convex combination operator converts an LPS to a single probability measure. As

rk → 0, an LPS ρ on A can be converted to a sequence of probability distributions pk = rk�ρ

on A, where ρ� is infinitely more likely than ρ�+1. Blume et al. (1991b, Proposition 2) showed

that any sequence of probability distributions pk → p on A can also be converted to an LPS ρ

on A by pk = rk�ρ. An LPS ρ is associated with pk → p, denoted by ρ[pk→p], if pk = rk�ρ

and rk → 0. An LPS ρ = (ρ1, ρ2, . . . , ρL) on A is (strong) independent if there exists rk → 0

such that for k = 1, 2, ..., rk�ρ is a product measure on A,10 and ρ has full support if for each

a ∈ A, ρ�(a) > 0 for some � = 1, ..., L.

The following lemma states a relationship between the lexicographic preference ordering

and the “trembling sequence” used in extensive games. That is, the standard subjective expected

utility along a “trembling sequence” can be represented by a corresponding lexicographic pref-

erence over actions. This result is an immediate implication of Blume et al.’s (1991b) Proposi-

tion 1.11

9The marginal of ρ on A−h is defined as an LPS ρ−h = (ρ−h1 , ρ−h2 , . . . , ρ−hL ) on A−h such that, for � =
1, 2, ..., L,

∀a−h ∈ A−h, ρ−h	 (a−h) =
∑

ah∈Ah

ρ	(a
h, a−h).

10Govindan and Klumpp (2002) suggested an alternative definition of independence for LPS.
11It is easy to see that: Lemma 2.2.2.1 implies that ah is a lexicographically best response with respect to
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Lemma 2.2.2.1. Let yjk � yj ∀j ∈ N . For ∀h ∈ Hi and ∀ah, bh ∈ Ah, ui(ah, yk(−h)) >

ui(bh, yk(−h)) for k = 1, 2, ... if, and only if, ah is lexicographically preferred to bh with

respect to ρ[yk�y].

For Y ⊆ Y, let

℘ (Y ) = ×j∈N℘
(
Y j
)

,

where Y j = {yj| (yj, y−j) ∈ Y }. Define

ILPSe(Y ) ≡ {ρ| ρ = ρ[yk�y] for some yk � y in ℘ (Y )}.

That is, ILPSe(Y ) is the set of all “independent” LPS (with full support on A) generated by

yjk
Y j

� yj ∀j ∈ N . Greenberg et al. (2009) expounded that in the context of extensive games,

when faced with the subjective uncertainty about the behavioral strategies of an opponent j

in Y j , a player’s plausible “cautious” belief about the opponent j’s strategic behavior can be

modeled as a “trembling (belief) sequence” in ℘ (Y j); cf. also Dekel et al. (2002) for the notion

of “extensive-form convex hull.” By Lemma 2.2.1, such a belief can be viewed as an LPS in

ILPSe(Y ).

2.3 Epistemic Conditions of MACA

Following Aumann (1976, 1987, 1995 and 1999), we provide, within the standard semantic

framework, an epistemic characterization of MACA by common knowledge of “rationality”

and mutual knowledge of the underlying course of action. An epistemic model for game T is

given by12

M(T ) =< Ω, {P i}i∈N , {y
i}i∈N , {ρ

i}i∈N > ,

a full-support LPS ρ on A iff, for yk = rk�ρ and rk → 0 (as k → ∞), ui(ah, yk(−h)) ≥ ui(bh, yk(−h))
∀bh ∈ Ah.

12In this paper, we are mainly concerned with the epistemic analysis of the game-theoretic solution concept of

MACA. We take a point of view that an epistemic model is a pragmatic and convenient framework to be used for

doing such an epistemic analysis; cf. Aumann and Brandenburger (1995, Sec. 7a) for related discussions. See

also Brandenburger et al. (2008) for the epistemic model of type structure with lexicographic probabilities; cf.

Brandenburger (2007) for more discussions.
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where

Ω is the set of states

P i(ω) is player i’s information cell at ω

yi(ω) is player i’s behavioral strategy at ω

ρi(ω) is player i’s vector-probabilistic belief at ω

.

We refer to a subset E ⊆ Ω as an event. For event E ⊆ Ω, we take the following standard

definitions in a semantic framework; see, for instance, Battigalli and Bonanno (1999), Dekel

and Gul (1997), Geanakoplos (1989) and Rubinstein (1998, Chapter 3).

• BiE ≡ {ω ∈ Ω| P i(ω) ⊆ E} is the event that i believes E.

• BE ≡ ∩i∈NBiE is the event that E is mutually believed.

• CBE ≡ BE ∩BBE ∩ BBBE ∩ · · · is the event that E is commonly believed.

Note that the information structure P i may not be partitional; in particular, the belief operator

may fail to satisfy the knowledge axiom: E ⊆ BiE. Since the belief operator B satisfies the

(countable) conjunction axiom: B (∩∞n=1En) = ∩∞n=1BEn, by setting

KiE ≡ E ∩ BiE and KE ≡ ∩i∈NKiE,

we have the following identity:

CKE = KE ∩KKE ∩KKKE ∩ · · ·

= E ∩BE ∩BBE ∩BBBE ∩ · · ·

= E ∩ CBE.

In this semantic framework, we use “believe” to mean “be certain/ascribe (primary) probability

1 to” and we use “knowledge” to mean “absolute certainty/belief with no possibility for any

error”; i.e., an event is said to be known when it is true and believed to be true.13

13The “belief” operator used in our semantic framework can be applied to Brandenburger et al.’s (2008) epis-

temic notion of “assumption” defined in a complete type structure – in this case, “i believes an event E” is

interpreted as “i considers E infinitely more likely than not-E.”
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For E ⊆ Ω, we denote by

y(E) ≡ {y(ω)| ω ∈ E}.

Throughout this chapter, we assume that yi(ω) = yi(ω′) ∀ω′ ∈ P i(ω) – i.e., each player i

knows his using strategy.

We say “agent h ∈ H i is perfectly rational at ω” if we have ρi(ω) ∈ ILPSe(y(P i(ω))

and yi(ω)(h) is a (lexicographic) best response with respect to ρi(ω) – i.e., the contingent spec-

ification yi(ω)(h) for agent h is one of lexicographically most preferred actions with respect to

a vector-probabilistic belief ρi(ω), where the belief that player i holds at state ω, about all the

players’ strategic behavior in game T , should be consistent with i’s information structure at ω.

(For simplicity, we use “rational” and “rationality” instead of “perfectly rational” and “perfect

rationality,” respectively, throughout this chapter.) Denoted by

Rh ≡ {ω| agent h is rational at ω} .

Denoted by Ri ≡ ∩h∈HiRh the event that player i is rational and R ≡ ∩i∈NR
i the event that all

the players are rational.

For a given course of action x, let

Hx = {h ∈ H| x(h) �= ∅},

and let

Rx ≡ ∩h∈Hx
Rh and R−x ≡ ∩h/∈Hx

Rh.

(Define Rx ≡ Ω if Hx = ∅.) That is, Rx is the event that the players are rational at the

information sets along the course of action x, and R−x is the event the players are rational

in all contingencies off the course of action x. Denote by χ the restriction of y to Hx, i.e.,

χ(ω)= y|Hx
(ω) for all ω ∈ Ω. Let

[x] ≡ {ω ∈ Ω| χ(ω) = x} .

We are now in a position to present the central result of this chapter which offers an epis-
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temic characterization for the notion of MACA. Theorem 3.1 states that mutual knowledge of

a course of action, “perfect” rationality along the information sets prescribed by the course of

action, and common knowledge of “perfect” rationality at all other information sets, imply the

underlying course of action is an MACA and, conversely, any MACA can be attained by the

aforementioned epistemic assumptions.14

Theorem 2.3.1. (a) Let ω ∈ (K[x] ∩ Rx)∩CKR−x. Then, y(ω) is a perfectly x-rationalizable

profile; in particular, χ(ω) = x is an MACA. (b) Let x be an MACA. Then, there is an epistemic

model M (T ) such that χ(ω) = x for all ω ∈ (K[x] ∩ Rx) ∩ CKR−x �= ∅.

Proof. (a) For i ∈ N , define

Y i ≡
{
yi(ω)| ω ∈ (K[x] ∩ Rx) ∩ CKR−x

}
,

and let Y ≡ ×i∈NY
i. Clearly, if x (h) �= ∅, y (h) = x (h) for all y ∈ Y . We proceed to show

that Y supports x.

(i) For any i ∈ N and yi ∈ Y i, there exists ω ∈ (K[x]∩Rx)∩CKR−x such that yi(ω) = yi.

Since ω ∈ Rx ∩ CKR−x, ω ∈ R. Therefore, ∀i ∈ N , there is ρi(ω) ∈ ILPSe(y(P i(ω)) such

that, for all h ∈ H i, yi(ω)(h) is a (lexicographically) best response with respect to ρi(ω).

(ii) Let ω ∈ (K[x] ∩ Rx) ∩ CKR−x. Since ω ∈ K[x], ∀ω′ ∈ P i(ω), y(ω′)(h) = x(h)

whenever x(h) �= ∅. That is, ∀ω′ ∈ P i(ω), y(ω′)(h) = y(ω)(h) for all h ∈ Hx. If x(h) = ∅,

then ∀ω′ ∈ P i(ω),

y(ω′)(h) ∈ {y(ω′′)(h)| ω′′ ∈ CKR−x} (since P i(ω) ⊆ CKR−x)

= {y(ω′′)(h)| ω′′ ∈ CKR−x ∩ (K[x] ∩Rx)} .

That is, y(P i(ω)) ⊆ Y . But, since yi(ω) = yi(ω′) ∀ω′ ∈ P i(ω), we have y(P i(ω)) ⊆

{yi} × Y −i for all ω ∈ (K[x] ∩ Rx) ∩ CKR−x.

By (i) and (ii), it follows that for every i ∈ N and yi ∈ Y i, there is ρ ∈ ILPSe ({yi} × Y −i)

such that yi(h) is a (lexicographically) best response with respect to ρ for all h ∈ H i. Thus,

there exist yik � yi and yjk
Y j

� yj for all j �= i such that ρ = ρ[yk�y] and, ∀h ∈ H , y(h) = x(h)

14Note that, in this paper, “common knowledge of rationality (CKR)” is equivalent to “rationality and common

belief of rationality (RCBR).”
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whenever x(h) �= ∅. By Lemma 2.2.2.1, for every player i and every yi ∈ Y i, there exist

yik � yi and yjk
Y j

� yj for all j �= i such that (i) for all h ∈ H, y(h) = x(h) whenever x(h) �= ∅,

and (ii) for all h ∈ H i and for all k = 1, 2, ..., ui(y(h), yk(−h)) ≥ ui(ah, yk(−h)) for all

ah ∈ Ah. That is, Y supports x. Therefore, ∀ω ∈ (K[x] ∩ Rx) ∩ CKR−x, y(ω) is a perfectly

x-rationalizable profile and χ(ω) = x is an MACA.

(b) Let x be an MACA which is supported by Y ≡ Y 1 × Y 2 · · · × Y n. We show a stronger

result that there is M (T ) such that χ(ω) = x for all ω ∈ CK([x] ∩ R) �= ∅. For each i ∈ N

and yi ∈ Y i, there exist yik � yi and yjk
Y j

� yj for all j �= i such that

1. for all h ∈ H , y(h) = x(h) whenever x(h) �= ∅, and

2. for all h ∈ H i and for all k = 1, 2, ... , ui(y(h), yk(−h)) ≥ ui(ah, yk(−h)) for all

ah ∈ Ah.

Let ρi (yi) = ρ[yk�y] such that yik � yi and yjk
Y j

� yj for all j �= i. Clearly, ρi (yi) ∈

ILPSe ({yi} × Y −i). Define an epistemic model for game T :

M (T ) =< Ω, {P i}i∈N , {y
i}i∈N , {ρ

i}i∈N > ,

such that Ω =
{
(yj, ρj (yj))j∈N | y

j ∈ Y j , ∀j ∈ N
}

and for all i ∈ N and ω = (yj , ρj (yj))j∈N
in Ω,

yi (ω) = yi, ρi (ω) = ρi (yi) and

P i (ω) = {ω′ ∈ Ω| yi (ω′) = yi and ρi (ω′) = ρi (yi)}.

Now, consider any arbitrary ω = (yj , ρj (yj))j∈N in Ω. By Lemma 2.2.1, it follows that for all

i ∈ N and h ∈ H i, yi (ω) (h) is a (lexicographically) best response with respect to ρi (ω). Since

ρi (yi) ∈ ILPSe ({yi} × Y −i), ρi (ω) ∈ ILPSe (y (P i (ω))) ∀i ∈ N . Thus, ω ∈ R. But, since

χ(ω) = x, ω ∈ [x]. That is, Ω = R ∩ [x]. Therefore, χ(ω) = x for all ω ∈ CK([x] ∩ R) = Ω.

�

In Theorem 2.3.1, we have identified epistemic conditions for MACA that are as spare as

possible. An immediate corollary of Theorem 2.3.1 gives a readily expressible form of epis-

temic assumptions of MACA: The notion of MACA can be viewed as the logical consequence

of common knowledge of “perfect” rationality plus mutual knowledge of agreement on the

underlying course of action.
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Corollary 2.3.1. (a) Let ω ∈ K[x] ∩ CKR. Then, y(ω) is a perfectly x-rationalizable profile;

in particular, χ(ω) = x is an MACA. (b) Let x be an MACA. Then, there is an epistemic model

M (T ) such that χ(ω) = x for all ω ∈ CKR ∩K[x] �= ∅.

Proof. SinceCKR ⊆ Rx∩CKR−x, Corollary 2.3.1(a) follows directly from Theorem 2.3.1(a).

Corollary 2.3.1(b) follows from the proof of Theorem 2.3.1(b). �

At a conceptual level, Greenberg et al. (2009) demonstrated that by varying the degree of

completeness of the underlying course of action, the notion of MACA can be related to other

game-theoretic solution concepts, such as perfect equilibrium, rationalizable self-confirming

equilibrium, and rationalizability. Theorem 2.3.1 provides a very general and comprehensive

epistemic characterization of MACA which can be applied to a wide range of strategic envi-

ronments. We go on to show how to derive the epistemic characterizations for various game-

theoretic solutions from Theorem 2.3.1, by placing corresponding restrictions on the underlying

course of action.

2.3.1 Complete MACA and Perfect Equilibrium

A complete CA is a course of action x where x(h) �= ∅ ∀h ∈ H – i.e., x is a strategy profile. A

complete MACA can be viewed as a “subjective” perfect equilibrium which is “self supporting”

in the sense that, while all the players know that the complete MACA will be followed, it

is possible for different players to have different trembling sequences that converge to this

MACA. A complete MACA is a perfect equilibrium if all the players share the same trembling

sequence that converges to the MACA; cf. Greenberg et al. (2009, Section 3.1). Analogous to

Aumann and Brandenburger’s (1995) preliminary epistemic observation on Nash equilibrium,

the following Proposition 2.3.1.1, which is an immediate implication of Theorem 2.3.1 for a

complete MACA, states a simple and straightforward epistemic characterization for (subjective)

perfect equilibrium.

Proposition 2.3.1.1. Suppose that x is a complete course of action. (a) Let ω ∈ R ∩ K[x].

Then, χ(ω) = x is a complete MACA – i.e., a subjective perfect equilibrium and, if all the

players share a common prior LPS belief (i.e., ρi (ω) = ρj (ω) for all i, j ∈ N), χ(ω) = x is

a perfect equilibrium. (b) If x is a complete MACA, then there is an epistemic model M (T )

such that χ(ω) = x for all ω ∈ (R ∩K[x]) �= ∅.
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Proof. Since x is a complete CA, Hx = H. Therefore, Rx = R, R−x = Ω and y(ω) =

χ(ω) = x. Note that, if all the players share a common prior LPS belief in a subjective perfect

equilibrium, this equilibrium must be a perfect equilibrium (where all the player believe in

the same sequence of trembles that converges to the equilibrium). Proposition 2.3.1.1 follows

directly from Theorem 2.3.1. �

In two-person normal-form games, it is easy to see that the notion of subjective perfect equi-

librium is equivalent to that of perfect equilibrium. Subsequently, in two-person simultaneous

move games, χ(ω) = x is a perfect equilibrium for all ω ∈ R ∩K[x]. However, the following

example depicted in Fig. 2 shows that, for ω ∈ R ∩ K[x], χ(ω) = x may not be a perfect

equilibrium even in a two-person game with perfect information.

1 2 1 2

s1 s2 s3 s4

c1 c2 c3 c4

1

0

0

1

0

2

2

0

1

1

Fig. 2: A two-person game.

Example 2.3.1.1: Consider the strategy profile x = (c1, c2, c3, c4) in this game. Construct a

knowledge modelM (T ) such that Ω = {ω}, P 1(ω) = P 2(ω) = {ω}, y(ω) = x, and

ρ1(ω) =




1(c1, c2, c3, c4)

1
2
(s1, c2, c3, c4) +

1
2
(c1, c2, c3, s4)

1
3
(c1, s2, c3, c4) +

1
3
(c1, c2, s3, c4) +

1
3
(s1, c2, c3, s4)

1
4
(s1, s2, c3, c4) +

1
4
(s1, c2, s3, c4) +

1
4
(c1, s2, c3, s4) +

1
4
(c1, c2, s3, s4)

1
3
(s1, s2, c3, s4) +

1
3
(s1, c2, s3, c4) +

1
3
(c1, s2, s3, c4)

1
2
(s1, s2, s3, c4) +

1
2
(c1, s2, s3, s4)

1(s1, s2, s3, s4)
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ρ2(ω) =




1(c1, c2, c3, c4)

1
2
(s1, c2, c3, c4) +

1
2
(c1, c2, s3, c4)

1
3
(c1, s2, c3, c4) +

1
3
(c1, c2, c3, s4) +

1
3
(s1, c2, s3, c4)

1
4
(s1, s2, c3, c4) +

1
4
(s1, c2, c3, s4) +

1
4
(c1, s2, s3, c4) +

1
4
(c1, c2, s3, s4)

1
3
(s1, s2, s3, c4) +

1
3
(s1, c2, c3, s4) +

1
3
(c1, s2, c3, s4)

1
2
(s1, s2, c3, s4) +

1
2
(c1, s2, s3, s4)

1(s1, s2, s3, s4)




.

It is easy to verify that, in this example, Ω = R ∩ K[x] and χ(ω) = x is a subjective perfect

equilibrium, but not a perfect equilibrium. (To see this point, assume, in negation, that x is a

perfect equilibrium, supported by a trembling sequence yk � x. For c2 to be player 2’s local

best response to yk, it must be the case that the probability of playing s3 is higher than the

probability of playing s4, i.e., yk(s3) ≥ yk(s4). But then, as yk(s2) > 0, it follows that player

1’s unique local best response to yk at the root of the game is action s1, but not c1.)

In Proposition 2.3.1.1, we hold a traditional view “mixed strategies as objects of choice”:

players deliberately introduce randomness into their behavior. However, a mixed equilibrium

strategy of a player can also be interpreted as the common conjecture of all the other players

about that player’s strategy choices; cf., e.g., Aumann (1987) and Rubinstein (1991). We close

this subsection by providing some epistemic conditions for a (mixed) complete MACA along

this line of interpretation of mixed equilibrium strategies. In the spirit of Aumann and Bran-

denburger’s (1995) Theorems A and B, we present a simple and expressible form of epistemic

prerequisites for a complete MACA interpreted as beliefs: Proposition 2.3.1.2 below states that

mutual belief of all players’ conjectures about a complete (mixed) course of action and of “per-

fect” rationality implies that the complete course of action, which can be viewed as a common

agreed-upon primary belief for the players, is a subjective perfect equilibrium. For the pur-

pose of this analysis, we elaborately require each player i’s strategy choice function yi (·) to be

valued in pure strategies; mixed strategies arise only in the form of subjective beliefs about a

player’s strategy choices. As usual, we also assume that each player i knows his own belief –
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i.e., ρi (ω′) = ρi (ω) ∀ω′ ∈ P i (ω). Consider a complete CA x and an LPS profile ρ = (ρi)i∈N .

Define [
ρ

x
=ρ
]
≡ {ω ∈ Ω| ρ≥2(ω)=ρ≥2 and

(
ρi
1(ω)

)−i
= x−i ∀i ∈ N},

that is,
[
ρ

x
=ρ
]

represents the event that all players hold first-order or primary beliefs agreed

upon x – i.e., the marginal primary belief of each player i about the strategy choices of the

opponents is given by the behavioral strategy profile x−i for the opponents – and higher-order

beliefs given by ρ≥2 =
(
(ρi�)�≥2

)
i∈N

.15

Proposition 2.3.1.2. Let ω ∈ B
([
ρ

x
=ρ
]
∩R

)
. Then, there is an agreed-upon primary belief

ρ∗1 (ω) = x which is a subjective perfect equilibrium and, if all players share a common higher-

order belief – i.e., ρ∗≥2 = ρi≥2 ∀i ∈ N , the primary belief ρ∗1 (ω) = x is a perfect equilibrium.

Proof. Let ω ∈ B
([
ρ

x
=ρ
]
∩R

)
. Since each player i knows his own belief, for all ω′ ∈ P i (ω),

(ρi
1(ω))

−i
= (ρi

1(ω
′))
−i
= x−i. That is, there is an agreed-upon primary belief ρ∗1 (ω) = x

satisfying (ρ∗1 (ω))
−i = (ρi

1 (ω))
−i
∀i ∈ N . Now, consider any fixed player i ∈ N . Let

j ∈ N and j �= i. Since
(
ρ
j
1(ω)

)−j
= x−j and j knows his own using strategy, by ρj(ω) ∈

ILPSe (y (P j (ω))), there exists yk � y in ℘ (y (P j (ω))) such that ρj(ω) = ρ[yk�y] where

y = (yj (ω) , x−j). Thus, there is yik
yi(P j(ω))
� xi. That is, there exist yit ∈ yi (P j (ω)) for

t = 1, 2, ...,m such that yit,k � yit and yik �
∑m

t=1 λty
i
t,k � xi, where the notation “�”

denotes the outcome-equivalence relation between two strategies. (For brevity, we also denote

by xi �
∑m

t=1 λty
i
t the limit point arising from such a situation.) Since yit ∈ y

i (P j (ω)), there

exists ω′ ∈ Pj (ω) such that yi (ω′) = yit. Since ω ∈ BR, ω′ ∈ Pj(ω) ⊆ Ri. Therefore,

for all h ∈ Hi, yit (h) lexicographically maximizes player i’s expected utilities calculated by

ρi (ω′) ∈ ILPSe (y (P i (ω′))). Since ω′ ∈ P j(ω) ⊆
[
ρ

x
=ρ
]

and i knows his own using

strategy, ρi(ω′) =
(
(yit, x

−i) , ρi≥2
)
. Therefore, for all h ∈ H i and t = 1, 2, ...,m, yit (h)

lexicographically maximizes player i’s expected utilities calculated by
(
(yit, x

−i) , ρi≥2
)
.

By Lemma 3.1.1 below, it follows that xi (h) lexicographically maximizes player i’s ex-

pected utilities calculated by
(
x, ρi≥2

)
where xi �

∑m
t=1 λty

i
t. Since

(
(yit, x

−i) , ρi≥2
)
∈ ILPSe (y (P i (ω′)))

15We here purport to present simple and straightforward sufficient epistemic conditions for a complete (mixed)

MACA, which is interpreted as a common primary belief; in particular, we do not need the epistemic assumption

that all players’ conjectures are commonly known as in Aumann and Brandenburger’s (1995) Theorem B. The

formalism of Proposition 3.1.2 is consistent with Aumann and Brandenburger’s (1995) Remark 7.1 if, for each

player i, ρi is taken to be a single (product) probability measure x on A.
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for t = 1, 2, ...,m, there is xk � x in ℘ (Y) such that
(
x, ρi≥2

)
= ρ[xk�x]. By Lemma

2.2.2.1, for all player i ∈ N , there exists a sequence xk � x such that, for all h ∈ Hi and

for k = 1, 2, . . .,

ui(x (h) , xk (−h)) ≥ ui(ah, xk (−h)) for all ah ∈ Ah.

By Greenberg et al.’s (2009) Claim 3.1.1, the agreed-upon primary belief ρ∗1 (ω) = x is an

complete MACA and, hence, it is a subjective perfect equilibrium. Moreover, if there is a

common higher-order belief ρ∗≥2 = ρi≥2 ∀i ∈ N , then the primary belief ρ∗1 (ω) = x is a perfect

equilibrium. �

Lemma 2.3.1.1. If, for t = 1, 2, ...,m, yit (h) is a (lexicographically) best response with respect

to ρt =
(
(yit, x

−i) , ρi≥2
)
, then xi (h) is a (lexicographically) best response with respect to ρ∗ =(

x, ρi≥2
)
, where xi �

∑m
t=1 λty

i
t and h ∈ H i.

Proof. Let

Hi (0) ≡
{
h ∈ Hi| �h′ ∈ Hi s.t. h′ can be reached from h

}
,

where h ∈ Hi (0) is interpreted as a lowest order or 0-order information set of player i from

which no other information set of player i can be reached. Define, inductively, for κ ≥ 1,

H i (κ) ≡
{
h ∈ H i\ ∪κ−1

κ′=0 H
i (κ′) | �h′ ∈ H i\ ∪κ−1

κ′=0 H
i (κ′) s.t. h′ can be reached from h

}
,

where h ∈ H i (κ) is interpreted as a κ-order information set of player i from which no higher or-

der (i.e. κ′-order for κ′ ≥ κ+1) information set of player i can be reached. Clearly, {Hi (κ)}κ≥0
is a (finite) partition of H i since each player is perfect recall. We prove Lemma 2.3.1.1 by in-

duction on the order of κ.

For κ = 0, we show that the result is true for h ∈ H i (0). Since, for t = 1, 2, ...,m, yit (h) is

a (lexicographically) best response with respect to ρt =
(
(yit, x

−i) , ρi≥2
)
, there exists a sequence(

yit,k, x
−i
k

)
� (yit, x

−i) such that, for k = 1, 2, . . .,

ui(yit (h) ,
(
yit,k, x

−i
k

)
(−h)) ≥ ui(ah,

(
yit,k, x

−i
k

)
(−h)) for all ah ∈ Ah.

Since the game is with perfect recall and h ∈ Hi (0) is a lowest order information set for player
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i, for t = 1, 2, ...,m,

ui(yit (h) ,
(
xik, x

−i
k

)
(−h)) ≥ ui(ah,

(
xi
k, x

−i
k

)
(−h)) for all ah ∈ Ah,

where xik
◦
=
∑m

t=1 λty
i
t,k. Therefore, for any probability distribution λ̃ on [1, ..., m],

ui(
m∑

t=1

λ̃ty
i
t (h) , xk (−h)) ≥ ui(ah, xk (−h)) for all ah ∈ Ah.

Since xi �
∑m

t=1 λty
i
t, it follows that xi (h)

(
ah
)
= limk→∞ x

i
k (h)

(
ah
)
= 0 if ah �= yit (h) for

t = 1, 2, ...,m. Therefore, xi (h) can be viewed as a convex combination
∑m

t=1 λ̃ty
i
t (h) and,

hence,

ui(xi (h) , xk (−h)) ≥ ui(ah, xk (−h)) for all ah ∈ Ah.

Now, consider κ = 1. We proceed to show that the result is true for h ∈ H i (1). Since, for

t = 1, 2, ...,m, yit (h) is a (lexicographically) best response with respect to ρt =
(
(yit, x

−i) , ρi≥2
)
,

there exists a sequence
(
yit,k, x

−i
k

)
� (yit, x

−i) such that, for k = 1, 2, . . .,

ui(yit (h) ,
(
yit,k, x

−i
k

)
(−h)) ≥ ui(ah,

(
yit,k, x

−i
k

)
(−h)) for all ah ∈ Ah.

By the proof for κ = 0, player i’s expected payoff conditional on h′ ∈ Hi (0) satisfies:16

ui(yit (h
′) ,
(
yit,k, x

−i
k

)
(−h′) |h′) = ui(yit (h

′) , xk (−h
′) |h′)

= ui(xi (h′) , xk (−h
′) |h′)

= max
ah′∈Ah′

ui(ah
′

, xk (−h
′) |h′).

Since ρ∗ =
(
x, ρi≥2

)
and ρt =

(
(yit, x

−i) , ρi≥2
)

for t = 1, 2, . . .m, we can have

xk = (1− r1,k) x+r1,k
(
r≥2,k�ρ

i
≥2

)
and

(
yit,k, x

−i
k

)
= (1− r1,k)

(
yit, x

−i
)
+r1,k

(
r≥2,k�ρ

i
≥2

)
,

16Note that the conditional expected payoff at an information set from a behavioral strategy profile is well

defined, given that the information set is reached with positive probability when the game is played according to

the specified strategy profile.
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where (r1,k, r≥2,k)→ 0. Therefore, for all h′ ∈ Hi (0),

ui(yit,k (h
′) ,
(
yit,k, x

−i
k

)
(−h′) |h′)

= (1− r1)u
i(yit (h

′) ,
(
yit,k, x

−i
k

)
(−h′) |h′) + r1u

i(
(
r≥2�ρ

i
≥2

)
(h′) ,

(
yit,k, x

−i
k

)
(−h′) |h′)

= (1− r1)u
i(xi (h′) ,

(
xik, x

−i
k

)
(−h′) |h′) + r1u

i(
(
r≥2�ρ

i
≥2

)
(h′) ,

(
xi
k, x

−i
k

)
(−h′) |h′)

= ui(xik (h
′) , xk (−h

′) |h′).

Since the game is with perfect recall, for t = 1, 2, ...,m, it follows

ui(yit (h) , xk (−h) |h) = ui(yit (h) ,
(
yit,k, x

−i
k

)
(−h) |h)

≥ ui(ah,
(
yit,k, x

−i
k

)
(−h) |h)

= ui(ah, xk (−h) |h), ∀a
h ∈ Ah.

Therefore, ui(yit (h) , xk (−h)) ≥ ui(ah, xk (−h)), ∀ah ∈ Ah. Again, by the similar argument

above, we have

ui(xi (h) , xk (−h)) ≥ ui(ah, xk (−h)) for all ah ∈ Ah.

Repeating the argument for κ ≥ 2, we conclude that the result is true for all h ∈ Hi. �

2.3.2 Path MACA and Self-Confirming Equilibrium

A path CA is a course of action, x, that specifies a (mixed) action at the root of the game

and at every information set that is reached with positive probability if x is followed. The

path MACA is related to the notions of “self-confirming equilibrium (SCE)” (see Fudenberg

and Levine (1993)) and “rationalizable self-confirming equilibrium (RSCE)” (see Dekel et al.

(1999, 2002)),17 since they are based on the same idea that the requirement of “commonality of

beliefs” about the actions, which would have been taken in contingencies that were not realized

during the play, cannot be justified and, therefore, should not be required for a solution concept.

The notion of path MACA indeed refines the notion of “sequential RSCE” in which each

17See also Fudenberg and Kreps (1995) and Kalai and Lehrer (1993a, 1993b).
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player is assumed to be sequentially rational at all his information sets (see Dekel et al. (1999,

2002)). Intuitively, the path MACA adopts more stringent “perfect” rationality restrictions

in place of “sequential” rationality used in the definition of sequential RSCE; a path MACA

requires not only that players be “perfectly” rational at information sets along the path of the

play, but also that players commonly know they are “perfect” rational in contingencies off the

equilibrium path.

By restricting attention to a path course of action, Theorem 2.3.1 delivers an epistemic char-

acterization for the path MACA, a perfect-version of rationalizable self-confirming equilibrium.

Proposition 2.3.2.1. Suppose that x is a path course of action. (a) Let ω ∈ (K[x] ∩ Rx) ∩

CKR−x. Then, χ(ω) = x is a path MACA and, hence, it is supported by a sequential RSCE.

(b) If x is a path MACA, then there is an epistemic model M (T ) such that χ(ω) = x for all

ω ∈ (K[x] ∩Rx) ∩ CKR−x.

Proof. Proposition 2.3.2.1 follows immediately from Theorem 2.3.1. �

2.3.3 Null MACA and Rationalizability

A course of action, x, is the null CA if x(h) = ∅ for all information sets h. The concept of null

MACA, which is related to Bernheim’s (1984) and Pearce’s (1984) notion of rationalizability,

is applicable to situations where players have no common background agreement (based on,

say, past observations or social norms) concerning the actions to be taken at some decision

moments. The null MACA suggests an interesting notion of “perfect rationalizability” with

independent perturbed beliefs:

Definition 2.3.3.1. A set of strategy profiles Y ≡ Y 1 × Y 2 · · · × Y n is perfectly rationalizable

if, for every player i and every yi ∈ Y i there exist yik � yi and yjk
Y j

� yj for all j �= i such that,

for all h ∈ H i and for all k = 1, 2, . . .,

ui(y (h) , yk (−h)) ≥ ui(ah, yk (−h)) for all ah ∈ Ah.

In particular, y ∈ Y is said to be a perfectly rationalizable strategy profile.
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Bernheim (1984, Section 6(b)) defined the concept of “subgame rationalizability” by us-

ing Selten’s (1965) subgame perfectness criterion, and Definition 2.3.3.1 can be viewed as a

natural “perfect” extension of subgame rationalizability suitable for general extensive games.

In normal-form games, the null MACA yields a rather intuitive refinement of rationalizability,

since perfect rationalizability never uses weakly dominated strategies. Definition 2.3.3.1 is in-

deed Herings and Vannetelbosch’s (1999) definition of “weakly perfect rationalizability” in the

class of simultaneous-move games. As Herings and Vannetelbosch (2000) showed, this notion

is equivalent to the DF procedure (Dekel-Fudenberg 1990) if allowed for correlated perturbed

beliefs.

By applying Theorem 2.3.1 to the case of the null CA, we can obtain the following Proposi-

tion 2.3.3.1 which provides an epistemic characterization for the “perfect” version of rational-

izability. In normal-form games, Proposition 2.3.3.1 is consistent with Brandenburger’s (1992)

characterization for the DF procedure by using LPS.18

Proposition 2.3.3.1. (a) Let ω ∈ CKR. Then, y (ω) is a perfectly rationalizable strategy

profile and, hence, a rationalizable strategy profile. (b) Let y be a perfectly rationalizable

strategy profile. Then, there is an epistemic model M (T ) such that y (ω) = y for ω ∈ CKR.

Proof. (a) Let R denote a “self-evident event in R” – i.e., R ⊆ R and R ⊆ Bi R ∀i ∈ N .

It is easy to see that ω ∈ CKR iff there is R � ω; cf., e.g., Aumann (1976). For each i ∈ N

define

Yi≡
{
yi (ω

′) | ω′ ∈ R
}

.

Therefore, for every ω′ ∈ R , y−i (Pi (ω
′)) ⊆ Y−i. Since ω′ ∈ Ri, yi (ω

′) is a (lexicographi-

cally) best response of player i to ρi (ω′) ∈ ILPSe (Y ). But, since ω ∈ R , y (ω) ∈ Y is a

perfectly rationalizable strategy profile.

(b) Since x is the null CA, Hx = ∅. Therefore, [x] = Ω, Rx = Ω and R−x = R. Proposition

2.3.3.1(b) follows directly from the proof of Theorem 2.3.1(b). �

In a “generic” PI game (i.e. perfect-information game) where no two different terminal

18In normal-form games, Borgers (1994) provided an alternative characterization for the DF procedure by com-

mon p-belief of “rationality” (where p→ 1) – i.e. it is approximate common belief that players maximize expected

utility using full-support conjectures; see also Hu (2007) for more discussions. Gul (1996) demonstrated that the

DF procedure can be viewed as a weakest perfect version of τ -theory. Barelli and Galanis (2013) also offered

an alternative and interesting approach to providing epistemic conditions for admissible behavior in (two-person)

normal-form games, including the DF procedure and iterated admissibility.
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nodes generate the same payoff for any of the players, Proposition 2.3.3.1 yields the following

corollary that re-states Aumann’s (1995) central result: In a generic PI game, common knowl-

edge of “rationality” implies the backward induction outcome and, moreover, the backward

induction outcome can be attained in terms of common knowledge of “rationality.”19

Corollary 2.3.3.1. Suppose T is a generic PI game. Let ω ∈ CKR. Then y (ω) is the backward

induction outcome. Moreover, there exists an epistemic model M (T ) such that y (ω) is the

backward induction outcome for ω ∈ CKR �= ∅.

Proof. Note that, in a generic PI game, the backward induction outcome is the unique perfectly

rationalizable strategy profile. The result of Corollary 2.3.3.1 follows directly from Proposition

2.3.3.1. �

2.4 Concluding Remarks

In the conventional framework of extensive-form games, Greenberg et al. (2009) presented a

unified game-theoretic solution concept of “mutually acceptable course of action (MACA)” for

situations where “perfectly” rational individuals with different beliefs and views of the world

agree to a shared course of action. In this chapter, we have carried out the epistemic program in

game theory to explore epistemic conditions for MACA.

We have established an expressible epistemic characterization for MACA. More specifi-

cally, by using the notion of “lexicographic probability system (LPS)” introduced by Blume

et al. (1991a), we have defined “rationality” as lexicographic maximization through LPS be-

liefs and, within Aumann’s semantic framework, we have formulated and shown that MACA is

the logical consequence of common knowledge of “perfect” rationality and mutual knowledge

of agreement on the underlying course of action (see Theorem 2.3.1 and Corollary 2.3.1).20

19Aumann (1995) used the conventional semantic model of knowledge with standard “partitional” information

structures. Halpern (2001) provided a nice synthesis of the knowledge-based approach to different theories for

PI games in light of different kinds of counterfactual reasonings; see also Halpern (1999). From this perspective,

players in our framework can be viewed as if they used (full-support) LPS beliefs to revise their beliefs about

other players’ strategic behavior when doing such hypothetical reasoning. In a different framework (i.e., a finite

extensive-form type model), Ben-Porath (1997) defined a “weak” extensive-form notion of common (initial) belief

of “sequential rationality” and showed that, for a “generic” PI game, this notion leads to an extensive-form analog

of the DF procedure which does not necessarily imply the backward induction outcome; cf. Dekel and Gul (1997,

Sec. 5.4) for more discussion.
20Feinberg (2005a) presented a “subjective” epistemic framework in a syntactic fashion for describing and
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This chapter therefore provides an epistemic counterpart of MACA in terms of what players

know and believe about “rationality,” actions, information, and knowledge in complex social

environments with emerging a shared course of action.

One important feature of this work is that we take a strong form of “perfect” and “cautious”

rationality that reflects Selten’s (1975) idea of “trembles” in our analysis. The chapter thus can

provide a simple and useful analytical framework for comparing various perfect-versions of so-

lution concepts, from an epistemic perspective, in game situations where players are “perfectly”

rational individuals; cf. Table 1. In this chapter, we have shown how epistemic characterizations

for various related solution concepts can be obtained, in a direct and simple way, by varying the

degree of completeness of the underlying course of action, as well as assuming different epis-

temic conditions to players in the game (see Propositions 2.3.1.1, 2.3.2.1 and 2.3.3.1). In the

spirit of Aumann and Brandenburger (1995), we have also offered an additional epistemic char-

acterization for a (mixed) complete MACA – i.e., a (subjective) perfect equilibrium – if mixed

strategies are interpreted as conjectures of players (see Proposition 2.3.1.2). It is worthwhile to

point out that, by utilizing the notion of LPS, we have presented a comprehensive and epistemic

analytical framework to accommodate the tension that arises in modeling “perfect” rationality

(that requires to include all possible strategies in a perturbed belief) and knowledge/belief about

“perfect” rationality (that requires to exclude some strategies from the perturbed belief) in com-

plex social interactions; cf., e.g., Samuelson (1992 and 2004) and Brandenburger (2007). The

study of this chapter is useful to deepen our epistemic understanding of MACA and related

game-theoretic solution concepts in the literature.

Finally, we would like to point out that, in this chapter, we define “rationality” as lexico-

graphic maximization by “independent” (cautious) LPS beliefs. This formalism is used for

capturing Selten’s original idea of “trembles” in analyzing dynamic strategic behavior. It is

natural and interesting to extend the epistemic analysis of this chapter to MACA by allowing

for “correlated” LPS beliefs. We leave this issue for future research.

analyzing dynamic strategic behavior. The framework is particularly useful for accounting for the subjective

reasoning of players in hypothetical situations. At a conceptual level, this subjective framework models players’

beliefs from an a posteriori viewpoint, while our approach in this paper models players’ cautious lexicographic

beliefs, which can be used in all possible contingencies, from an a priori viewpoint; cf. Feinberg (2005a, Sec. 1)

for more discussions. Feinberg (2005b) also studied, in such an epistemic framework, various solution concepts

based on the subjective reasoning of players about hypothetical events in dynamic games.
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3 An Epistemic Characterization of RSCE

3.1 Introduction

In extensive games, Fudenberg and Levine (1993) presented a solution concept of “self-confirming

equilibrium (SCE)” which arises as a steady state where players correctly predict the moves

their opponents actually make, but may have misconceptions about what their opponents would

do at information sets that are never reached when the equilibrium is played. That is, the no-

tion of SCE is designed to model situations where players have no a priori information about

opponents’ play or payoffs and, when each time the game is played, they observe only the ac-

tions actually played by their opponents along the equilibrium path; cf. also Fudenberg and

Kreps (1995) and Fudenberg and Levine (2006, 2009). A particular and noteworthy feature

of SCE is that beliefs about off-path play are completely arbitrary so that players may hold

false and inconsistent belief about off-path play; in particular, the notion of SCE allows play-

ers to use a “noncredible” threats in beliefs about off-path play (see Dekel et al. (1999, Fig.

2.1)). If, however, players can use information about opponents’ payoffs and think strategi-

cally, players should be able to deduce and make use of information about opponents’ payoff

functions and, thus, can alleviate inconsistency in players’ beliefs about off-path play. To fulfil

this purpose, by using Bernheim’s (1986) and Pearce’s (1984) idea of rationalizability, Dekel

et al. (1999, 2001) provided a solution concept of “rationalizable self-confirming equilibrium

(RSCE)” which refines SCE by requiring a player’s rationality at the player’s information sets

that are not precluded by his own strategy. Dekel et al. (1999) showed that RSCE is robust

to payoff uncertainty in the sense of Fudenberg et al. (1988). Dekel et al. (1999) also de-

fined a stronger concept of “sequentially rationalizable self-confirming equilibrium (SRSCE)”

by requiring a player’s rationality at all of the player’s information sets, so that the sequential

rationalizability notion implies backward induction in finite games of perfect information with

generic payoffs; SRSCE is related to Greenberg et al.’s (2009) notion of “mutually acceptable

course of action (MACA)”. Sequential rationalizability is also introduced as a byproduct of

SRSCE which refines rationalizability by imposing optimality at every information set.

The purpose of this chapter is to offer a simple epistemic characterization for RSCE. This

line of study can help to deepen our understanding of RSCE and other related solution con-

cepts from an epistemic perspective. In doing so, a technical difficulty encountered in dynamic

extensive-form game models is, when facing with strategic uncertainty, how to model a player’s
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beliefs about opponents’ play in every contingency, including information sets that the player

thinks will not actually arise. Inspired by Selten’s (1975) idea of “trembles,” Dekel et al. (2002)

defined the “extensive-form convex hull” of a set of behavior strategies to model a player’s be-

liefs about the play of an opponent’s strategic behavior in extensive games; cf. also Greenberg

et al. (2009, pp.95-98) for related discussions. In this chapter, we use the notion of “condi-

tional probability system (CPS)” introduced by Myerson (1986) to represent players’ beliefs

and provide an epistemic characterization for the solution concept of RSCE. More specifically,

each player is assumed to hold an “independent” CPS over on the product of action spaces in

the agent-normal form of an extensive game, which is based on the information along the path

of play.

Within a standard semantic framework or Aumann’s model of knowledge, we formulate

and show that RSCE is the logical consequence of mutual knowledge of actions and rationality

along the path of play and common knowledge of rationality off the path of play (Theorem

3.3.1.1 and Corollary 3.3.1.1). This result provides a unifying epistemic approach to other re-

lated solution concepts such as SCE, SRSCE, sequential rationalizability and sequential equi-

librium; we demonstrate, in this chapter, how various epistemic characterizations for related

solution concepts can be derived by varying the restrictions of rationality (Corollaries 3.3.2.1,

3.3.3.1, 3.3.3.2, and 3.3.4.1).

The rest of this chapter is organized as follows. Section 3.2 contains some preliminary

notation and definitions. Section 3.3 presents a simple epistemic characterization for RSCE

and discusses its epistemic relations to other related solution concepts such as SCE, SRSCE,

sequential rationalizability and sequential equilibrium.. Section 3.4 offers concluding remarks.

3.2 Notation and Definitions

Since the formal description of an extensive game is by now standard (see, for instance, Kreps

and Wilson (1982) and Kuhn (1954)), only the necessary notation is given below. Consider a

(finite) extensive-form game with perfect recall:

T ≡ (N,W,H,
{
Ah
}
h∈H

, {ui}i∈N ),
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whereN = {1, 2, . . . , n} is the (finite) set of players,W is the (finite) set of nodes (or vertices),

H is the set of information sets (which is a partition of nonterminal nodes), Ah is the (finite)

set of pure actions available at information set h, and ui is player i’s payoff function defined on

terminal nodes. A mixed action at information set h is a probability measure on Ah. Denote the

set of mixed actions at h by �Ah. Denote the collection of player i’s information sets by H i.

Denote by A ≡ ×h∈HA
h the set of actions.

A behavior strategy of player i is a function, πi, that assigns some randomization πi(h) ∈

�Ah to every h ∈ Hi. Let Πi be the set of player i’s behavior strategies. Denote the set of

behavior strategy profiles by Π, i.e. Π = ×j∈NΠj. For π ∈ Π, we denote by ui(π) player i’s

(expected) payoff if strategy profile π is adopted from the root of the game. For π ∈ Π, we

denote by π(h) the mixed action of π at h, and denote by π(−h) the profile of mixed actions

of π at all information sets other than h. Given π ∈ Π, let Hπ be the set of information sets

reached with positive probability under π. Denote by H i
π = Hπ ∩ Hi the set of player i’s

information sets reached by π and H i
πi
= ∪π−i∈Π−i

H i
(πi,π−i)

the set of player i’s information

sets that are reachable under πi.

Write πk
i � πi for the “trembling” sequence

{
πk
i

}∞
k=1

of strictly positive behavior strategies

in Πi that converges to πi.

3.2.1 RSCE: A Definition

Dekel et al. (1999) proposed a solution concept of “rationalizable self-confirming equilibrium

(RSCE)” for extensive games where players learn the path of the play and incorporate the infor-

mation of opponents’ payoffs into the original notion of SCE. Following Dekel et al. (1999), an

assessment ηi for player i is a function that assigns a probability measure over the nodes at each

of his own information sets. A belief of player i is a pair (ηi, π
i
−i ) where ηi is player i’s assess-

ment and πi
−i = (π

i
j)j 	=i represents player i’s conjecture about opponents’ strategies. A version

of player i is a strategy-belief pair vi = (πi, (ηi, π
i
−i )). Given a version vi = (πi, (ηi, π

i
−i )),

πi (h) is a best response with respect to (πi, (ηi, π
i
−i )) at h ∈ H i if

ui

(
πi, π

i
−i|h, ηi (h)

)
≥ ui

(
ah,
(
πi, π

i
−i

)
(−h) |h, ηi (h)

)
∀ah ∈ Ah
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where ui (π|h, ηi (h)) represents player i’s conditional expected payoff given that information

set h is reached, that player i’s assessment is given by ηi(h), and that the strategy profile is π.

A version vi = (πi, (ηi, π
i
−i )) is consistent (Kreps and Wilson (1982)) if ηi,k → ηi where

ηi,k is obtained using Bayes rule from a trembling sequence πi
−i,k � πi

−i. A belief model

V = (V1, V2, ..., Vn) where Vi is the set of consistent versions for player i.

A strategy πi of player i is in the extensive-form convex hull of a subset Πi ⊆ Πi (Dekel

et al. (2002)), denote by coe (Πi), if there is an integer m, strategies {πi,t}t=1, ...,m in Πi,

sequences of strictly positive behavior strategies πi, t, k � πi,t, and a sequence αk → α of

probability distributions on [1, ..., m], such that the behavior strategies πi, k, which is outcome-

equivalent to convex combination
∑m

t=1 αt,kπi, t, k, converges to πi (in this situation we denote

by πi, k � πi ∈ coe (Πi)).

Dekel et al. (1999, 2002) defined SCE, RSCE and SRSCE as strategy profiles. Since only

the path of play is essential in these notions, we give the following alternative definition in

terms of paths of play.

Definition 3.2.1. (Dekel et al. 1999, 2002). Let π̂ be a path of play. Given a belief model

V = (V1, V2, ..., Vn), for every player i ∈ N and every
(
πi,
(
ηi, π

i
−i

))
∈ Vi, we consider the

following conditions for V :

(1) ∀h ∈ H i
πi

, πi (h) is a best response with respect to (ηi, π
i
−i).

(1’) ∀h ∈ H i
(πi,πi−i)

, πi (h) is a best response with respect to (ηi, π
i
−i).

(1”) ∀h ∈ H i, πi (h) is a best response with respect to (ηi, π
i
−i).

(2) the path of play resulting from (πi, π
i
−i) is π̂.

(3) ∀j �= i, πi
j ∈ coe

(
ΠV

j

)
where ΠV

j = {πj : (πj , (ηj , π
j
−j)) ∈ Vj for some belief

(ηj, π
j
−j)}.

The path π̂ is a rationalizable self-confirming equilibrium (RSCE) if there is a belief model V

satisfying (1), (2) and (3), π̂ is a self-confirming equilibrium (SCE) if there is a belief model

V satisfying (1’), (2) and (3), and π̂ is a sequential rationalizable self-confirming equilibrium

(SRSCE) if there is a belief model V satisfying (1”), (2) and (3).

Dekel et al. (1999, p.173) demonstrated, through the example of Selten’s Horse, that arbi-

trary and heterogeneous false beliefs about off-path play can lead to non-Nash outcomes: SCE,
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RSCE and SRSCE all can arrive at a steady state that cannot arise in Nash equilibrium. Dekel

et al. (1999, Sec. 4) showed that the notion of RSCE is not robust to the presence of a small

amount of payoff uncertainty in the sense of Fudenberg et al. (1988). The following example

illustrates the differences in SCE, RSCE and SRSCE.

1

s1 s2

c1 c22

0

0

0

0

1

s3

c3

0

0

1

1

Fig. 1

In this game depicted in Fig. 1, it is easy to verify that the path outcomes of SCE, RSCE and

SRSCE are as follows:

SCE: s1; c1s2; c1c2c3

RSCE: s1; c1c2c3

SRSCE: c1c2c3

For instance, while the path s1 can arise in RSCE by using a “rationalizable” belief that player

2 will play s2 with probability 1 (since player 1’s second decision node is precluded by his

strategy and, thus, there is no rationality requirement for player 1 at this decision node), the

path c1s2 cannot arise in RSCE (since player 1’s second decision node is not precluded by his

strategy in this case and, thus, the rationality at this decision node requires player 1’s choice to

be c3). In particular, SRSCE yields the unique backward induction outcome: c1c2c3.

3.2.2 CPS in Extensive Games

In this chapter, we consider the “conditional probability system (CPS)” on the space, A =

×h∈HA
h, of action profiles in the agent-normal form of T . Accordingly, a CPS on A can be

viewed as a conditional-probability function which define a probability distribution on agents’

actions at every information set, including those are not reached. Formally, a CPS µ| on A is a
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function that specifies, for every nonempty subsetB ⊆ A, a conditional probability distribution

µ|B given B and satisfies the property:

µ|B(D) = µ|C(D)µ|B(C) for D ⊆ C ⊆ B and C �= ∅.

See, e.g., Myerson (1991, Sec. 1.6). Denote by

A (h) ≡ {a ∈ A : a reaches h}

the set of action profiles by each of which h can be reached. For i ∈ N and h ∈ Hi, ah ∈ Ah

is a best response with respect to a CPS µ| on A if

∑

a−h∈A−h

µ|−h
A(h)(a

−h)ui(a
h, a−h) ≥

∑

a−h∈A−h

µ|−h
A(h)(a

−h)ui(b
h, a−h) ∀bh ∈ Ah

where µ|−h
A(h) is the marginal of µ |A(h) on A−h,21 which specifies the agent h’s belief about

opponents’ choices given that information set h is reached.

By Myerson’s (1986) Theorem 1, a CPS on a (finite) state space can be expressed by a

convergent sequence of “full-support” probability distributions over the state space. A CPS

µ| on A is associated with a probability distribution p (on A), denoted by µ|[pk�p], if there

exists a sequence of probability distributions pk → p such that:

(i) For k = 1, 2, ... and every a ∈ A, pk(a) > 0;

(ii) For any B, C ⊆ A with B �= ∅, µ|B(C) = limk→∞
pk(B∩C)
pk(B)

.

For the purpose of this chapter, we say “a CPS µ| onA is independent” if µ| = µ|[pk�p] where pk

are product measures on the (product) spaceA; cf., e.g., McLennan (1989) for more discussions.

The following lemma is an immediate implication of Myerson’s (1986) Theorem 1, which

states a relationship between “sequential rationality” and “conditionally preference ordering by

CPS.”

21The marginal of µ|A(h) on A−h is defined as probability measure on A−h such that

∀a−h ∈ A−h, µ|−h
A(h)

(
a−h

)
≡

∑

ah∈Ah

µ|A(h)
(
ah, a−h

)
.
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Lemma 3.2.1. Let πj,k � πj ∀j ∈ N . For all h ∈ H i, πi (h) is a best response with respect to

a consistent version (πi, (ηi, π−i )) with πj,k � πj ∀j �= i if, and only if, πi (h) is preferred to

ah with respect to µ|[πk�π] for all ah ∈ Ah.

For any subset Π ⊆ Π, let

coe (Π) = ×j∈Nco
e (Πj) ,

where Πj = {πj : (πj, π−j) ∈ Π}. Written πk � π ∈ coe (Π) for “πj,k � πj ∈ coe (Πj)

∀j ∈ N .” Define

ICPSe(Π) ≡
{
µ| : µ| = µ|[πk�π] for some πk � π in coe (Π)

}
.

That is, ICPSe(Π) is the set of all independent CPS onA that can be generated by π ∈ coe (Π).

3.3 Epistemic Characterization of RSCE

Following Aumann (1976, 1987, 1995, and 1999), we provide, within the standard partition

model, epistemic conditions for RSCE by common knowledge of “rationality” and mutual

knowledge of the equilibrium path. A model of knowledge for game T is given by

M(T ) =< Ω, {Pi}i∈N , {πi}i∈N , {µi|}i∈N > ,

where

Ω is the set of states

Pi(ω) is player i’s information partition at ω

πi(ω) is player i’s behavior strategy at ω

µi|(ω) is player i’s conditional belief systems at ω

.

We refer to a subsetE ⊆ Ω as an event. For an eventE ⊆ Ω, we take the following standard

definitions.

• KiE ≡ {ω ∈ Ω| Pi(ω) ⊆ E} is the event that i knows E.
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• KE ≡ ∩i∈NKiE is the event that E is mutually known.

• CKE ≡KE ∩KKE ∩KKKE ∩ · · · is the event that E is commonly known.

For E ⊆ Ω, we denote by

π(E) ≡ {π(ω) : ω ∈ E}.

Throughout this chapter, we assume πi (·) is measurable w.r.t. information partition Pi – i.e.

πi(ω) = πi(ω
′) ∀ω′ ∈ Pi(ω).

Agent h ∈ Hi is rational at ω if we have µi| (ω) ∈ ICPS
e (π (Pi (ω))) and πi(ω)(h) is a

best response with respect to µi| (ω). For every i ∈ N and every h ∈ H i, denote by

R̊h ≡
{
ω : agent h is rational at ω if h ∈ Hi

πi(ω)

}
,

i.e., R̊h represents the event that agent h is robust-rational whenever information set h is not

excluded by his strategy choice. (Apparently, ω ∈ R̊h if h /∈ H i
πi(ω)

) For any given path of play

π̂, let

R̊π̂ ≡ ∩h∈Hπ̂
R̊h and R̊−π̂ ≡ ∩h	∈Hπ̂

R̊h,

where Hπ̂ is the information sets reached by π̂. That is, R̊π̂ is the event that players are robust-

rational at the information sets along the path π̂ and R̊−π̂ is the event that players are robust-

rational at the off-path information sets.

The path of play under π can be viewed as the restriction of π to reached information sets:

π̂ = ×h∈Hπ
π(h).

Denote by π̂ the restriction of π to Hπ̂, i.e., π̂(ω)= π|Hπ̂
(ω) ∀ω ∈ Ω. Let

[π̂] ≡ {ω : π̂(ω) = π̂} ,

i.e., [π̂] is the event that the path of play is π̂.
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3.3.1 Rationalizable Self-Confirming Equilibrium

We are now in a position to present the central result of this chapter which provides a simple

epistemic characterization for the notion of RSCE. Theorem 3.3.1.1 states that mutual knowl-

edge of a path of play, robust-rationality along the information sets prescribed by the path, and

common knowledge of robust-rationality at off-path information sets, imply an RSCE. Con-

versely, any RSCE can be attained by the aforementioned epistemic assumptions.

Theorem 3.3.1.1. (a) Let ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂. Then, π̂(ω) = π̂ is an RSCE. (b)

Let π̂ be an RSCE. Then, there is a knowledge model M (T ) such that π̂(ω) = π̂ for all

ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂.

Proof. (a) For any i ∈ N , define

ΠV
i = {πi(ω) : ω ∈ (K[π̂] ∩ R̊

π̂) ∩ CKR̊−π̂},

and let ΠV ≡ ×i∈NΠ
V
i .

Clearly, if h ∈ Hπ̂, π(h) = π̂(h) for all π ∈ ΠV . That is, for all π ∈ ΠV , π induces the

same distribution over outcomes as π̂.

(i) For any i ∈ N, πi ∈ ΠV
i , there exists ω ∈ (K[π̂]∩ R̊π̂)∩CKR̊−π̂ such that πi(ω) = πi.

Since ω ∈ R̊π̂ ∩CKR̊−π̂, ω ∈ R̊. Therefore, ∀i ∈ N there is µi|(ω) ∈ ICPS
e(π(P i(ω)) such

that ∀h ∈ Hπi(ω),πi(ω)(h) is a best response with respect to µi|A(h)(ω).

(ii) Since ω ∈ Ki[π̂], for all ω′ ∈ Pi(ω), π(ω
′)(h) = π̂(h) for all h ∈ Hπ̂. That is, for all

ω′ ∈ Pi(ω), π(ω
′)(h) = π(ω)(h) for all h ∈ H π̂.

If h /∈ Hπ̂, then ∀ω′ ∈ Pi(ω),

π(ω′)(h) ∈ {π(ω′′)(h) : ω′′ ∈ CKR̊−π̂} (since Pi(ω) ⊆ CKR̊−π̂)

= {π(ω′′)(h) : ω′′ ∈ CKR̊−π̂ ∩ (K[π̂] ∩ R̊π̂)}.

Therefore, π(Pi(ω)) ⊆ ΠV . Since πi (ω) = πi (ω
′) ∀ω′ ∈ Pi (ω), π(Pi(ω)) ⊆ {πi} × ΠV

−i for

all ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂.

By (i) and (ii), it follows that for every i ∈ N and πi ∈ ΠV
i , there is a µi| ∈ ICPS

e(ΠV )

such that for every h ∈ Hπi, πi(h) is a best response with respect to µi|A(h). Thus, there exists

πk � π ∈ coe
(
ΠV
)

such that µi| = µ|[πk�π], and ∀h ∈ Hπ̂, π(h) = π̂(h). By Lemma 3.2.1,
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∀i ∈ N and πi ∈ ΠV
i , there exists (ηi, π

i
−i ), which is consistent with πk � π, such that

∀h ∈ Hπi , πi(h) is best response with respect to (ηi, π
i
−i ). As ∀j �= i, πj,k � πj ∈ coe

(
ΠV

j

)

and πj = πi
j , π

i
j ∈ co

e
(
ΠV

j

)
. That is, ∀h ∈ Hπ̂

(
πi, π

i
−i

)
(h) = π̂(h).

For all ∀i ∈ N , let

Vi ≡




(πi (ω) , (ηi, π

i
−i )) :

(ηi, π
i
−i ) is consistent with πk � π

where µ|[πk�π] = µi| (ω)

and ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂





,

and V ≡ (V1, V2, ..., Vn). Then, for all i ∈ N and
(
πi,
(
ηi, π

i
−i

))
∈ Vi, we have

(1) ∀h ∈ Hπi , πi (h) is a best response with respect to (ηi, π
i
−i).

(2)
(
πi, π

i
−i

)
has the distribution over outcomes induced by π̂.

(3) ∀j �= i, there exists πi
j ∈ coe

(
ΠV

j

)
where ΠV

j = {π′j : (π
′
j , (ηi, π

j
−j)) ∈ Vj for some

belief (ηi, π
j
−j)}.

That is, ∀ω ∈ (K[π̂] ∩ R̊π̂) ∩ CKR̊−π̂, π̂ (ω) = π̂ and π̂ is an RSCE.

(b)Let π̂ be an RSCE that is supported by V = (V1, V2, ..., Vn).

We proceed to show a stronger result that there is M (T ) such that π̂ (ω) = π̂ for all

ω ∈ CK([π̂] ∩ R̊) �= ∅. For all i ∈ N , for every (πi, (ηi, π
i
−i)) ∈ Vi,

(1) ∀h ∈ Hπi , πi (h) is a best response with respect to (ηi, π
i
−i).

(2)
(
πi, π

i
−i

)
has the distribution over outcomes induced by π̂.

(3) ∀j �= i, there exists πi
j ∈ coe

(
ΠV

j

)
where ΠV

j = {π′j : (π
′
j , (ηi, π

j
−j)) ∈ Vj for some

belief (ηi, π
j
−j)}.

Let µi| (πi) = µ|[πk�π] such that πi, k � πi ∈ coe ({πi}), and πi
j, k � πi

j ∈ co
e
(
ΠV

j

)
∀j �= i.

Clearly, µi| (πi) ∈ ICPSe
(
{πi} × ΠV

−i

)
. Define a knowledge model for game T :

M (T ) =< Ω, {Pi}i∈N , {πi}i∈N , {µi|}i∈N > ,

such thatΩ =
{(
πj , µj| (πj)

)
j∈N

: πj ∈ ΠV
j , ∀j ∈ N

}
and for all i ∈ N and ω =

(
πj, µj| (πj)

)
j∈N

in Ω,

πi (ω) = πi, µi| (ω) = µi| (πi) and

Pi (ω) = {ω′ ∈ Ω : πi (ω
′) = πi and µi| (ω

′) = µi| (πi)}.
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Now, consider any arbitrary ω =
(
πj, µj| (πj)

)
j∈N

∈ Ω. By Lemma 3.2.1, it follows that

for all i ∈ N and h ∈ Hπi , πi (ω) (h) is a best response with respect to µi|A(h) (ω). Since

µi| (πi) ∈ ICPSe
(
{πi} × ΠV

−i

)
, µi| (ω) ∈ ICPSe (π (Pi (ω))) ∀i ∈ N . Therefore, ω ∈ R̊.

But, since π̂ (ω) = π̂, ω ∈ [π̂]. Therefore, Ω = R̊ ∩ [π̂] and, hence, π̂ (ω) = π̂ for all

ω ∈ CK([π̂] ∩ R̊) = Ω. �

An immediate corollary of Theorem 3.3.1.1 gives a more readily expressible and readable

form of epistemic assumptions of RSCE: The notion of RSCE can be viewed as the logical

consequence of common knowledge of robust-rationality plus mutual knowledge of a path of

play.

Corollary 3.3.1.1. Let R̊i ≡ ∩h∈HiR̊h and R̊ ≡ ∩i∈N R̊
i. (a) Let ω ∈ K[π̂] ∩ CKR̊. Then,

π̂(ω) = π̂ is an RSCE. (b) Let π̂ be an RSCE. Then, there is a knowledge model M (T ) such

that π̂(ω) = π̂ for all ω ∈ K[π̂] ∩ CKR̊.

Proof. Since CKR̊ ⊆ R̊π̂ ∩ CKR̊−π̂, Corollary 3.3.1.1(a) follows directly from Theorem

3.3.1.1(a). Corollary 3.3.1.1(b) follows from the proof of Theorem 3.3.1.1(b). �

This theorem says that mutual knowledge of the on-path actions, robust-rationality along

on-path information sets, and common knowledge of robust-rationality at off-path information

sets lead to “rationalizable self-confirming equilibrium (RSCE).” The “robust-rationality” is

defined only at reachable information sets, rather than at all information sets. In particular, this

“rationality” at off-path information sets does require that each player be optimal at all these

information sets, but it requires only that each player be optimal at the information sets that

are not precluded by the player’s strategy at the state. The epistemic assumption of “common

knowledge of robust-rationality at off-path information sets” can be justified by using the prior

payoff information (cf. Dekel et al. (1999)).

3.3.2 Self-Confirming Equilibrium

In Fudenberg and Levine (1993) and Fudenberg and Kreps (1995), players are assumed to

have no a priori information about each others’ payoffs, and only observe the actions chosen

by their opponents. In such an environment, Fudenberg and Kreps (1995) proposed the solu-

tion concept of “self-confirming equilibrium (SCE)” in which players’ behavior is required to
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be optimal only at the observed information sets and players’ behavior at off the equilibrium

path information sets imposes no requirement of rationality. Without imposing any “rational-

ity” restriction on the off-path behavior, we obtain an epistemic characterization for SCE as a

corollary of Theorem 3.3.1.1.

Corollary 3.3.2.1. (a) Let ω ∈ K[π̂] ∩ R̊π̂. Then, π̂(ω) = π̂ is an SCE. (b) Let π̂ be an SCE.

Then, there is a knowledge modelM (T ) such that π̂(ω) = π̂ for all ω ∈ K[π̂] ∩ R̊π̂.

Proof. (a) For any i ∈ N , define

ΠV
i = {πi(ω) : ω ∈ K[π̂] ∩ R̊

π̂}

and let ΠV ≡ ×i∈NΠ
V
i .

Clearly, if h ∈ Hπ̂, π(h) = π̂(h) for all π ∈ ΠV . That is, for all π ∈ ΠV , π has the same

distribution over outcomes as induced by π̂.

(i) For any i ∈ N , πi ∈ ΠV
i , there exists ω ∈ K[π̂] ∩ R̊π̂ such that πi(ω) = πi. Since

ω ∈ K[π̂] ∩ R̊π̂, ω ∈ R̊π̂. Therefore, ∀i ∈ N there is µi|(ω) ∈ ICPSe(π(P i(ω)) such that

∀h ∈ Hπ̂ ∩Hi, πi(ω)(h) is a best response with respect to µi|A(h)(ω).

(ii) Since ω ∈ K[π̂] ∩ R̊π̂, ω ∈ Ki[π̂] ⊆ [π̂]. Then, for all ω′ ∈ Pi(ω), π(ω
′)(h) = π̂(h)

for all h ∈ Hπ̂. That is, for all ω′ ∈ Pi(ω), π(ω
′)(h) = π(ω)(h) for all h ∈ Hπ̂. Therefore,

π(Pi(ω)) ⊆ ΠV . Since πi (ω) = πi (ω
′) ∀ω′ ∈ Pi (ω), π(Pi(ω)) ⊆ {πi} × ΠV

−i for all

ω ∈ K[π̂] ∩ R̊π̂.

By (i) and (ii), it follows that for every i ∈ N and πi ∈ ΠV
i , there is a µi ∈ ICPSe(ΠV )

such that for all h ∈ Hπ̂ ∩ H i, πi(h) is best response with respect to µi. Thus, there exists

πk � π ∈ coe
(
ΠV
)

such that µi| = µ|[πk�π], and ∀h ∈ Hπ̂, π(h) = π̂(h). By Lemma 3.2.1,

∀i ∈ N and πi ∈ ΠV
i , there exists (ηi, π

i
−i ), which is consistent with πk � π, such that

∀h ∈ H(πi, πi−i )
∩Hi, πi(h) is best response with respect to (ηi, π

i
−i ). As ∀j �= i, πj,k � πj ∈

coe
(
ΠV

j

)
and πj = πi

j, π
i
j ∈ co

e
(
ΠV

j

)
. That is, ∀h ∈ Hπ̂

(
πi, π

i
−i

)
(h) = π̂(h).

For all i ∈ N , let

Vi ≡




(πi (ω) , (ηi, π

i
−i )) :

(ηi, π
i
−i ) is consistent with πk � π

where µ|[πk�π] = µi| (ω)

and ω ∈ K[π̂] ∩ R̊π̂





,
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and V ≡ (V1, V2, ..., Vn). Then, for all i ∈ N and
(
πi,
(
ηi, π

i
−i

))
∈ Vi, we have

(1’) ∀h ∈ H(πi, πi−i )
∩Hi, πi (h) is a best response with respect to (ηi, π

i
−i).

(2)
(
πi, π

i
−i

)
has the distribution over outcomes induced by π̂.

(3) ∀j �= i, there exists πi
j ∈ coe

(
ΠV

j

)
where ΠV

j = {π′j : (π
′
j , (ηi, π

j
−j)) ∈ Vj for some

belief (ηi, π
j
−j)}.

That is, ∀ω ∈ K[π̂] ∩ R̊π̂, π̂ (ω) = π̂ and π̂ is an SCE.

(b) Let π̂ be an SCE that is supported by V = (V1, V2, ..., Vn).

We proceed to show a stronger result that there is M (T ) such that π̂ (ω) = π̂ for all

ω ∈ K([π̂] ∩ R̊π̂) �= ∅. For all i ∈ N , for every (πi, (ηi, π
i
−i)) ∈ Vi,

(1’) ∀h ∈ H(πi, πi−i )
∩Hi, πi (h) is a best response with respect to (ηi, π

i
−i).

(2)
(
πi, π

i
−i

)
has the distribution over outcomes induced by π̂.

(3) ∀j �= i, there exists πi
j ∈ coe

(
ΠV

j

)
where ΠV

j = {π′j : (π
′
j , (ηi, π

j
−j)) ∈ Vj for some

belief (ηi, π
j
−j)}.

Let µi| (πi) = µ|[πk�π] such that πi, k � πi ∈ coe ({πi}), and πi
j, k � πi

j ∈ coe
(
ΠV

j

)

∀j �= i. Clearly, µi| (πi) ∈ ICPSe
(
{πi} ×ΠV

−i

)
. Define a knowledge model for game T :

M (T ) =< Ω, {Pi}i∈N , {πi}i∈N , {µi|}i∈N > ,

such thatΩ =
{(
πj , µj| (πj)

)
j∈N

: πj ∈ Π
V
j , ∀j ∈ N

}
and for all i ∈ N and ω =

(
πj, µj| (πj)

)
j∈N

in Ω,

πi (ω) = πi, µi| (ω) = µi| (πi) and

Pi (ω) = {ω′ ∈ Ω : πi (ω
′) = πi and µi| (ω

′) = µi| (πi)}.

Since
(
πi, π

i
−i

)
has the distribution over outcomes induced by π̂ and perfect recall, ∀h ∈ Hπ̂,(

πi, π
i
−i

)
(h) = π̂(h). Now, consider any arbitrary ω =

(
πj, µj| (πj)

)
j∈N

∈ Ω. By Lemma

3.2.1, it follows that for all i ∈ N and h ∈ Hπ̂ ∩Hi, πi (ω) (h) is a best response with respect

to µi|A(h) (ω). Since µi| (πi) ∈ ICPSe
(
{πi} ×ΠV

−i

)
, µi| (ω) ∈ ICPS

e (π (Pi (ω))) ∀i ∈ N .

Therefore, ω ∈ R̊π̂. But, since π̂ (ω) = π̂, ω ∈ [π̂]. Therefore, Ω = R̊π̂ ∩ [π̂] and, hence,

π̂ (ω) = π̂ for all ω ∈ K([π̂] ∩ R̊π̂). �
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3.3.3 Sequential Rationalizable Self-Confirming Equilibrium

As pointed out, Dekel et al. (1999) defined RSCE by using robust-rationality. If “rational-

ity” is defined as the conventional (sequential) rationality in the sense of Kreps and Wilson

(1982) – i.e., it requires to be sequentially rational at every information set, including those

unreachable information sets, we can obtain a stronger version of “sequentially rationalizable

self-confirming equilibrium (SRSCE)”; see Dekel et al. (1999, Sec. 4). Denoted by

Rh ≡ {ω : agent h is rational at ω} ,

i.e., player i is (sequential) rational at information set h where h ∈ H i. For any given path of

play π̂, let

Rπ̂ ≡ ∩h∈Hπ̂
Rh and R−π̂ ≡ ∩h	∈Hπ̂

Rh.

That is, Rπ̂ is the event that players are (sequential) rational along on-path information sets

specified by strategy profile π̂, and R−π̂ is the event that players are (sequential) rational at

off-path information sets.

Corollary 3.3.3.1. (a) Let ω ∈ (K[π̂] ∩ Rπ̂) ∩ CKR−π̂. Then, π̂(ω) = π̂ is an SRSCE. (b)

Let π̂ be an SRSCE. Then, there is a knowledge model M (T ) such that π̂(ω) = π̂ for all

ω ∈ (K[π̂] ∩ Rπ̂) ∩ CKR−π̂.

Proof. R̊h (where h /∈ Hi) has no restrictions on the behavior at the information set h if it is

excluded by player i’s strategy choice. Then, Rh ⊆ R̊h. Corollary 3.3.3.1 follows immediately

from Theorem 3.3.1.1. �

If there is a unique backward induction outcome in a game with perfect information – i.e.

a PI game (which is true for “generic” assignments of payoffs to terminal nodes), then SRSCE

coincides with the backward induction solution since the “rationality” requirement is strength-

ened so that each player’s strategy is (sequentially) optimal at each of his information sets,

including those precluded by the player’s own strategy.

Corollary 3.3.3.2. Suppose a PI game T has a unique backward induction outcome. (a) Let

ω ∈ (K[π̂] ∩ Rπ̂) ∩ CKR−π̂. Then, π̂(ω) = π̂ is the backward induction (path) outcome. (b)
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Let π̂ be the backward induction (path) outcome. Then, there is a knowledge model M (T )

such that π̂(ω) = π̂ for all ω ∈ (K[π̂] ∩ Rπ̂) ∩ CKR−π̂.

Proof. Clearly, π(ω) is the unique backwards induction outcome if ω ∈ (K[π̂]∩Rπ̂)∩CKR−π̂.

The result of Corollary 3.3.3.2 follows directly from Corollary 3.3.3.1. �

3.3.4 Sequential Rationalizability

Sequential rationalizability is also introduced in Dekel et al. (1999) which refines rational-

izability (Bernheim (1984) and Pearce (1984)) by imposing that players behave rationally at

every information set. This is a variant of Definition 4.1 in Dekel et al. (1999).

Definition 3.3.4.1. Given a belief model V = (V1, V2, ..., Vn), let ΠV = ×jΠ
V
j where

ΠV
j = {πj : (πj, (ηj, π

j
−j)) ∈ Vj for some belief (ηj, π

j
−j)}. ΠV is sequential rationalizable if

for every player i ∈ N and every
(
πi,
(
ηi, π

i
−i

))
∈ Vi, we have

(1”) ∀h ∈ H i, πi (h) is a best response with respect to (ηi, π
i
−i).

(3) ∀j �= i, πi
j ∈ co

e
(
ΠV

j

)
.

The following result is in align with Tan and Werlang (1988), and sequential rationalizability

is shown to be a logical consequence of common knowledge of (sequential) rationality.

Corollary 3.3.4.1. (a) Let ω ∈ CKR. Then, π(ω) is a sequential rationalizable strategy

profile. (b) Let π be sequential rationalizable. Then, there is a knowledge model M (T ) such

that π(ω) = π for all ω ∈ CKR.

Proof. (a) Let R denote a “self-evident event inR” – i.e., R ⊆ R and R ⊆ Ki R ∀i ∈ N .

It is easy to see that ω ∈ CKR iff there is R � ω; cf., e.g., Aumann (1976). For each i ∈ N

define

ΠV
i ≡

{
πi (ω

′) | ω′ ∈ R
}

.

Therefore, for every ω′ ∈ R , π−i (Pi (ω
′)) ⊆ ΠV

−i. Since ω′ ∈ Ri, ∀h ∈ Hi πi (ω
′) (h) is a

best response of player i to µi| (ω
′) ∈ ICPSe

(
ΠV
)
.
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Thus, there exists πk � π ∈ coe
(
ΠV
)

such that µi| = µ|[πk�π]. By Lemma 3.2.1, ∀i ∈ N

and πi ∈ ΠV
i , there exists (ηi, π

i
−i ), which is consistent with πk � π, such that ∀h ∈ Hi, πi(h)

is best response with respect to (ηi, π
i
−i ). As ∀j �= i, πj,k � πj ∈ coe

(
ΠV

j

)
and πj = πi

j,

πi
j ∈ co

e
(
ΠV

j

)
.

For all i ∈ N , let

Vi ≡




(πi (ω) , (ηi, π

i
−i )) :

(ηi, π
i
−i ) is consistent with πk � π

where µ|[πk�π] = µi| (ω)

and ω ∈ R





,

and V ≡ (V1, V2, ..., Vn). Then, for all i ∈ N and
(
πi,
(
ηi, π

i
−i

))
∈ Vi, we have

(1”) ∀h ∈ H i, πi (h) is a best response with respect to (ηi, π
i
−i).

(3) ∀j �= i, πi
j ∈ co

e
(
ΠV

j

)
.

That is, ∀ω ∈ CKR, π (ω) is a sequential rationalizable strategy profile.

(b) Let π is a sequential rationalizable strategy profile that is supported by V = (V1, V2, ..., Vn).

We proceed to show a stronger result that there is M (T ) such that π (ω) = π for all

ω ∈ CKR �= ∅. For all i ∈ N , for every (πi, (ηi, π
i
−i)) ∈ Vi,

(1”) ∀h ∈ H i, πi (h) is a best response with respect to (ηi, π
i
−i).

(3) ∀j �= i, πi
j ∈ co

e
(
ΠV

j

)
.

Let µi| (πi) = µ|[πk�π] such that πi, k � πi ∈ coe ({πi}), and πi
j, k � πi

j ∈ coe
(
ΠV

j

)

∀j �= i. Clearly, µi| (πi) ∈ ICPSe
(
{πi} ×ΠV

−i

)
. Define a knowledge model for game T :

M (T ) =< Ω, {Pi}i∈N , {πi}i∈N , {µi|}i∈N > ,

such thatΩ =
{(
πj , µj| (πj)

)
j∈N

: πj ∈ ΠV
j , ∀j ∈ N

}
and for all i ∈ N and ω =

(
πj, µj| (πj)

)
j∈N

in Ω,

πi (ω) = πi, µi| (ω) = µi| (πi) and

Pi (ω) = {ω′ ∈ Ω : πi (ω
′) = πi and µi| (ω

′) = µi| (πi)}.
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Now, consider any arbitrary ω =
(
πj, µj| (πj)

)
j∈N

∈ Ω. By Lemma 3.2.1, it follows that

for all i ∈ N and h ∈ Hi, πi (ω) (h) is a best response with respect to µi|A(h) (ω). Since

µi| (πi) ∈ ICPSe
(
{πi} × ΠV

−i

)
, µi| (ω) ∈ ICPSe (π (Pi (ω))) ∀i ∈ N . Therefore, ω ∈ R.

Therefore, Ω = R and, hence, π (ω) = π for all ω ∈ CKR = Ω. �

3.4 Concluding Remarks

In extensive-form games, Fudenberg and Levine (1993) and Fudenberg and Kreps (1995) pre-

sented a solution concept of “self-confirming equilibrium (SCE)” which arise as a steady state

where players have no prior information about opponents’ payoff functions or strategies, and

each player observes only the actions played by opponents at each round of the game. Dekel et

al. (1999) offered a solution concept of “rationalizable self-confirming equilibrium (RSCE),”

where each player observes only the actions played by opponents at each round of the game and

behaves rationally at all of his information sets that are not precluded by his own strategy, as a

refinement of SCE. In this chapter, we have carried out the epistemic program in game theory

to explore epistemic conditions for RSCE.

We have presented a simple epistemic characterization of RSCE. More specifically, by using

the notion of “conditional probability system (CPS)” introduced by Myerson (1986), we have

defined “rationality” as conditional maximization through CPS beliefs and, within a standard

semantic framework, we have formulated and shown that RSCE is the logical consequence of

common knowledge of “robust-rationality” and mutual knowledge of actions along the path.

This chapter therefore provides an epistemic counterpart of RSCE in terms of what players

know and believe about “rationality,” actions, information, and knowledge in complex social

environments with emerging a commonly observed path.

This chapter provides a unifying epistemic approach to other related game-theoretic solution

concepts such as SCE, “sequential rationalizable self-confirming equilibrium (SRSCE).”, and

sequential rationalizability. In this chapter, we have shown how epistemic characterizations for

various related solution concepts can be obtained, in a direct and simple way, by varying the

requirements of “rationality,” as well as assuming different epistemic conditions to players in

the game. For instance, SCE can be formally represented as the result of mutual knowledge of

actions along the path and rationality along the path; it coincides with the motivation of SCE

where each player’s strategy is a best response to his beliefs about the play of his opponents, and
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each player’s beliefs are correct along the equilibrium path of play. The study of this chapter is

useful to deepen our understanding of RSCE and related solution concepts in the literature.

We would like to point out that, in this chapter, we define “rationality” as conditional ex-

pected maximization by “independent” CPS beliefs. This formalism is used to capture the

conventional notion of sequential rationality in Kreps and Wilson (1982). Greenberg et al.

(2009) presented a unified game-theoretic solution concept of “mutually acceptable course of

action (MACA)” suitable for situations where “perfectly” and “cautiously” rational individu-

als with different beliefs and views of the world agree to a shared course of action. When the

underlying course of action is taken as the form of “path of play,” MACA delivers a strong

perfect-version of SRSCE which can rule out weakly dominated strategies. On the other hand,

the "null MACA" can be viewed as a perfect version of sequential rationalizability, called "per-

fect" rationalizability. Chapter one provided expressible epistemic characterization for MACA

by using “lexicographic probability system (Blume et al. (1991a,b)).”

In an interesting and related paper, Asheim and Perea (2005) provided, in two-player exten-

sive games, a different epistemic model for studying both “equilibrium” and “non-equilibrium”

solution concepts including “sequential equilibrium/rationalizability” and “quasi-perfect equi-

librium/rationalizability (where each player takes into account the possibility of the other play-

ers’ mistakes, but ignores the possibility of his own mistakes).” By utilizing a more general

concept of “conditional lexicographic probability system” to represent a system of conditional

beliefs in dynamic settings, Asheim and Perea showed that the concept of “sequential ratio-

nalizability” can be characterized by common certain belief of “sequential” rationality, and the

concept of “quasi-perfect rationalizability” is the result of common certain belief of “sequen-

tial” and “cautious” rationality. As we have emphasized before, the main focus of this chapter

is concentrated on presenting a simple epistemic characterization for the notion of RSCE.

47



4 Backward Induction and Consistent Belief

4.1 Introduction

Backward induction (BI), one of the most classical solution concepts in dynamic games, is still

in the center of theoretical analysis today (e.g., Aumann (1995); Ben-Porath (1997); Battigalli

and Siniscalchi (2002); Battigalli and Friedenberg (2012); Samet (2013); Bonanno (2013)).

Dated back to Zermelo (1913), the existence of optimal pure strategies in chess game was

proved. In a perfect information game (e.g. chess), the backward induction procedure is simple.

At the last decision node, players choose an action that maximizes their payoff. At the second

last decision node, players take this as given and choose an action that maximizes their payoff.

This procedure continues until the root of the game is reached. The backward induction inspired

the development of subgame perfect equilibrium (Selten (1965)) and perfect equilibrium (Selten

(1975)).

With the emergence of epistemic game theory, theorists are able to formally analyze play-

ers’ knowledge, belief, rationality, etc. Through the analysis, the hidden assumptions behind

solution concepts are uncovered. The backward induction, which seems natural and intuitive,

was found to have logical difficulties when theorists try to epistemically characterize it.(see

Brandenburger (2007)) To implement the BI procedure, players are required to believe in BI

procedure even if there was a clearly observed contradiction of the procedure. Consider the

following centipede game (see example 8.1 in Brandenburger (2007)).

A B A

Out

2

1

1

4

4

3

3

6

Out Down

In In Across

Example 4.1

According to backward induction procedure, Ann chooses Down at the last stage. Taking this

as given, Bob will choose Out at the second stage. Based on these analysis, Ann chooses Out at

the beginning of the game. Let us look at the logic behind it carefully. Ann chooses Out at the
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root of game because she believes that Bob would choose Out at the second stage. Ann’s belief

in Bob’s choice, Out, is deduced from her belief that Bob thinks Ann would choose the optimal

choice, Down, at the last stage. Note that there would be a violation of backward induction

when it is Bob’s turn to make decision as the game should stop at the first stage under the BI

procedure. In other words, Ann believes that Bob believes that she would follow backward

induction at the last stage given his observation of her violation of backward induction at the

first stage.

The purpose of this chapter is to provide the epistemic characterization of backward induc-

tion strategy profiles with Bayesian updating belief in a perfect information generic game. It

provides an explanation of Bob’s ignorance of observed violation in the previous example. The

major difficulty that we encounter is how to model players’ subjective uncertainty at every in-

formation set, particularly at those unreached. In this chapter, we use the notion of "conditional

probability system (CPS)" (Myerson (1986)) to model players’ beliefs and provide an epistemic

characterization for the solution concept of the BI strategy profile. More specifically, we de-

fine the notion of "consistent belief" by using CPS with strong independence property. Within

a standard semantic framework, we formulate and show that BI strategy profile is the logical

consequence of rationality and common consistent belief of rationality (RCCBR) in perfect

information generic game. It is important to obtain the backwards induction strategy profile

instead of only the outcome as strategy profiles are the focus of game theory analysis.

In the pioneer work, Aumann (1995, 1996), the epistemic condition of backward induction

was investigated under the knowledge model, where the backward induction outcome is shown

to be the logical consequence of common knowledge of rationality. In Aumann’s framework,

players take the "from that point on" view, e.g. player acts as if that information set is reached

when deciding what to do at an information set. Common knowledge of rationality implies

that at each decision node players ignore the irrationality at previous stage, and believe that

opponents would behave rationally at the subsequent game.

The major critic of Aumann’s result is that there is no belief revision (Samet (1996), Halpern

(2001)). The concept of "initial belief"22 (Ben-Porath (1997)) was developed to model players’

belief and revision process. In Ben-Porath’s model, players have a conditional belief system

that specifies players’ belief at every information set. If a player initially believes an event,

he would assign probability one to this event at the beginning of game, under the conditional

22The original term is common certainty of rationality. We adopt the terminology in Brandenburg (2007) for

convenience of comparison with the notion of "strong belief" (Battigalli and Siniscalchi (1999,2002)).
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belief system. Moreover, if there is no contradiction of the initial belief at the subsequent infor-

mation sets, players update their original belief at these information sets based on Bayes’ rule.

Otherwise, players may revise their belief arbitrarily. In perfect information generic games, DF

procedure (Dekel and Fudenberg (1990)), one round of elimination of weakly dominated strate-

gies followed by iterative elimination of strictly dominated strategies, was shown to be led by

rationality and common initial belief of rationality (RCIBR) e.g. each player initially believes

that each player is rational, each player initially believes that each player initially believes that

each player is rational, and so on. Clearly, DF procedure may result in more than backward

induction outcomes, e.g., (ID, I) in the Example 4.1.

Battigalli and Siniscalchi (1999, 2002) strengthened the definition of "initial belief" and

introduced the concept of "strong belief". At those information sets contradicting with initial

belief, players employ forward reasoning to revise their belief. They try to explain the status

quo (contradiction in the previous stage) by players’ alternatively rational behavior. Rationality

and common strong belief of rationality (RCSBR) is shown to be equivalent to extensive-form

rationalizability (EFR), due to Pearce (1984) and Battigalli (1997), which coincides with the

backward induction outcome in perfect information generic games.

However, RCSBR may result in non-SPE strategy profile. The difficulty rises at those infor-

mation sets that totally falsify the rationality assumption. In this chapter, we provide an alter-

native notion of belief operator "consistent belief" and investigate the properties of it (Lemma

4.3.2.1, Corollary 4.3.2.1 and Proposition 4.3.2.1). Moreover, we show that backward induction

strategy profile is the logical consequence of rationality and common consistent of rationality

in perfect information generic games (Theorem 4.4.2).

The rest of this chapter is organized as follows. An example is demonstrated in Section

4.2. The framework is introduced in Section 4.3. Section 4.4 provides the formal definition of

consistent belief and an epistemic characterization for backward induction strategy profile. Dis-

cussion and comments on the related literature (Aumann’s model, initial belief, strong belief,

etc.) are presented in Section 4.5. Section 4.6 concludes.

4.2 Example and CPS

In this section, we use an example to illustrate how to use CPS in our epistemic analysis.

Consider the extensive game in Example 4.1. Name the first information set as h1, the second

one as h2, and the last one as h3. Let Ta = {ta1, t
a
2} and Tb =

{
tb1, t

b
2

}
be type spaces for Ann
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and Bob respectively. Each type of Ann/Bob induces a conditional probability system like the

following:

λa (t
a
1) |A×T = 1 ◦

(
OD, ta1, O, t

b
1

)
and λa (t

a
1) |A(h3)×T = 1 ◦

(
ID, ta1, I, t

b
2

)
;

λa (t
a
2) |A×T = 1 ◦

(
ID, ta2, I, t

b
2

)
and λa (t

a
2) |A(h3)×T = 1 ◦

(
ID, ta2, I, t

b
2

)
;

λb

(
tb1
)
|A×T = 1 ◦

(
OD, ta1, O, t

b
1

)
and λb

(
tb1
)
|A(h2)×T = 1 ◦

(
ID, ta2, O, t

b
1

)
;

λb

(
tb2
)
|A×T = 1 ◦

(
OD, ta1, I, t

b
2

)
and λb

(
tb2
)
|A(h2)×T = 1 ◦

(
IA, ta2, I, t

b
2

)
.

λa (t
a
2) |A(h3)×T = 1 ◦

(
ID, ta2, I, t

b
2

)
represents that Ann with type ta2 possesses the conditional

belief 1 ◦
(
ID, ta2, I, t

b
2

)
at information set h3. A state of the world is a 4-tuple (sa, ta, sb, tb)

where sa (∈ Sa) and ta (∈ Ta) are Ann’s actual choice and type respectively. In the extensive

form game, a strategy-type pair, (si, ti) (∈ Si × Ti) is rational if at every his information set, the

action prescribed by si is a best response to his conditional belief induced by his type, λi (ti).

The rational strategy-type pairs in the above example are Ra = {(OD, ta1) , (ID, t
a
2)} and Rb ={(

O, tb1
)
,
(
I, tb2

)}
. At state

(
ID, ta2, I, t

b
2

)
, Ann is rational, and initially believes that [Bob is

rational and initially believes that [she is rational]], and so on. Likewise for Bob. In other

words, there is rationality and common initial belief of rationality (RCIBR) at
(
ID, ta2, I, t

b
2

)
.

However, (ID, I) does not induce a backward induction outcome.

We strengthen the notion of "initial belief" operator by imposing the strong independence

property. A CPS satisfies strong independence property if it can be generated by a convergent

sequence of "full-support" product measures on ×hA
h. It is not difficult to verify that λa (t

a
2)

satisfies strong independence property but not λb

(
tb2
)
. A player is said to consistently believe

(CB) an event if he possesses a conditional belief system with strong independence property

and initially believes the event. In the above example, the only state satisfying "rationality and

common consistent belief of rationality (RCCBR)" is
(
OD, ta1, O, t

b
1

)
where (OD,O) is the

unique subgame perfect equilibrium.

4.3 Notation and Definitions

Since the formal description of an extensive game is by now standard (see, for instance, Kreps

and Wilson (1982) and Kuhn (1954)), only the necessary notation is given below. Consider a
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(finite) perfect information generic extensive-form game:

T ≡ (N, V,H,
{
Ah
}
h∈H

, {ui}i∈N),

where N = {1, 2, . . . , n} is the (finite) set of players, V is the (finite) set of nodes (or vertices),

H is the set of information sets (which is a partition of non-terminal nodes), Ah is the (finite)

set of pure actions available at information set h, and ui is player i’s payoff function defined on

terminal nodes. Throughout this chapter, we only consider generic game where the payoffs of

each player at terminal nodes of the game are different from each other. Denote the collection

of player i’s information sets by Hi. Denote by A ≡ ×h∈HA
h the set of actions, and A−h ≡

×h′ 	=hA
h′ .

A strategy of player i is a function, si, that assigns an action ah ∈ Ah to every h ∈ Hi. Let

Si be the set of player i’s strategies. Denote the set of strategy profiles by S = ×j∈NSj. For

s ∈ S, we denote by ui(s) player i’s payoff if strategy profile s is adopted from the root of the

game.

4.3.1 CPS in Extensive Games

In this chapter, we consider the “conditional probability system (CPS)” on the space, A =

×h∈HA
h, of action profiles in the agent-normal form of T . A CPS µ| on A is a function that

specifies, for every nonempty subset B ⊆ A a conditional probability distribution given B over

A, denoted by µ|B, and satisfies the property:

µ|B(D) = µ|C(D)µ|B(C) for D ⊆ C ⊆ B ⊆ A and C �= ∅.

See, e.g., Myerson (1991, Section 1.6).

Denote by

A (h) ≡ {a ∈ A : a reaches h}

the set of action profiles that reach h. For i ∈ N and h ∈ Hi, a
h ∈ Ah is a best response with

respect to a CPS µi| on A if
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∑

a−h∈A−h

µ|−h
A(h)(a

−h)ui(a
h, a−h) ≥

∑

a−h∈A−h

µ|−h
A(h)(a

−h)ui(b
h, a−h) ∀bh ∈ Ah

where µ|−h
A(h) is the marginal of µ|A(h) on A−h,23 which specifies the agent h’s belief about

opponents’ choices given that information set h is reached.

4.3.2 Strong Independence Property

By Theorem 1 in Myerson (1986), a CPS on a (finite) state space can be expressed by a con-

vergent sequence of “full-support” probability distributions over the state space. A CPS µ| on

A is associated with a probability distribution p (on A), denoted by µ|[pk�p], if there exists a

sequence of probability distributions pk � p such that:

(i) For k = 1, 2, ... and every a ∈ A, pk(a) > 0;

(ii) For any B, C ⊆ A with B �= ∅, µ|B(C) = limk→∞
pk(B∩C)
pk(B)

.

For the purpose of this chapter, we say “a CPS µi| on A satisfies strong independence

property” if µi| = µi|[pk�p] where each pk is a product measure on space Ah × A−h for any

h ∈ H, e.g. for any a ∈ A, pk (a) = phk
(
ah
)
· p−h

k

(
a−h

)
where phk

(
p−h
k

)
is the marginal of p

on Ah
(
A−h

)
.24

For any two distinct h, h′ ∈ H , we say that h is a precedent of h′, denoted as h ≺ h′, if

A (h′) ⊆ A (h). Define h ⊀ h′ as h is not a precedent of h′. Then, we have the following

lemma.

Lemma 4.3.2.1. If µi| is strongly independent on A. ∀h ∈ Hi, µi|
h′

A = µi|
h′

A(h) for h′ ∈ H

where h′ ⊀ h.

23The marginal of µ|A(h) on A−h is defined as probability measure on A−h such that

∀a−h ∈ A−h, µ|−h
A(h)

(
a−h

)
≡

∑

ah∈Ah

µ|A(h)
(
ah, a−h

)
.

24It should be noticed that the strong independence property is different from independence property

in Definition 2.1 Battigalli (1996). Under their definition, the conditional probability measure specified

by CPS at each information set is a product measure on strategy space, ×jSj .
Proposition 3.3 shows that CPS with strong independence property specifies a product measure on

action space, ×hAh, at each information set as a conditional belief.
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Proof. Let pk � p be product measures on space Ah × A−h for any h ∈ H such that

µi| = µi|[pk�p]. Let h ∈ Hi and h′ ∈ H such that h′ ⊀ h.

Pick a ∈ A randomly, and we have

µi|A (a) = lim
k→∞

pk (a)∑
b∈A pk (b)

= lim
k→∞

pk (a)

= p (a)

Denote by ph
′

the marginal of p on Ah′ . Therefore,

µi|
h′

A

(
ah

′

)
=

∑

c−h′∈A−h′

µi|A
(
ah

′

, c−h′
)

=
∑

c−h′∈A−h′

p
(
ah

′

, c−h′
)

= ph
′

(
ah

′

)
.

Note that A (h) = ×h′′A
h′′ (h) in PI games. Since µi|A(h) (a) = limk→∞

pk({a}∩A(h))∑
b∈A(h) pk(b)

, we

have
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µi|
h′

A(h)

(
ah

′

)
=

∑

c−h′∈A−h′

µi|A(h)
(
ah

′

, c−h′
)

=
∑

c−h′∈A−h′

lim
k→∞

pk
({(

ah
′

, c−h′
)}
∩A (h)

)
∑
(bh′ ,d−h′)∈A(h) pk (b

h′, d−h′)

= lim
k→∞

∑

c−h′∈A−h′

pk
({
ah

′
}
∩ Ah′ (h) ,

{
c−h′

}
∩A−h′ (h)

)
∑
(bh′ ,d−h′)∈A(h) pk (b

h′ , d−h′)

= lim
k→∞

ph
′

k

({
ah

′
}
∩Ah′ (h)

)
·
(∑

c−h′∈A−h′ p
−h′

k

({
c−h′

}
∩A−h′ (h)

))

∑
(bh′ ,d−h′)∈A(h) p

h′
k (b

h′) · p−h′

k (d−h′)

= lim
k→∞

ph
′

k

({
ah

′
}
∩ Ah′ (h)

)
· p−h′

k

(
A−h′ (h)

)
∑

bh′∈Ah′ (h) p
h′
k (b

h′) ·
(∑

d−h′∈A−h′ (h) p
−h′

k (d−h′)
)

= lim
k→∞

ph
′

k

(
ah

′
)

∑
bh′∈Ah′ p

h′
k (b

h′)
since Ah′ (h) = Ah′

= lim
k→∞

ph
′

k

(
ah

′

)

= ph
′

(
ah

′

)
. �

With Lemma 4.3.2.1, we have the following corollary immediately.

Corollary 4.3.2.1. If µi| is strongly independent on A, ∀h, h′ ∈ Hi µi|
h′′

A(h) = µi|
h′′

A(h′) for

h′′ ∈ H with h′′ �≺ h and h′′ �≺ h′.

The following proposition says that if µ| satisfies strong independence property, the condi-

tional belief at every information set specified under µ| is a product measure on A.

Proposition 4.3.2.1. If µi| is strongly independent on A, µi|A(h) (a) = Πh′∈Hµi|
h′

A(h)

(
ah

′
)

for any h ∈ Hi and a ∈ A.

Proof. It is trivial if a /∈ A (h). Hence, we only consider the case that a ∈ A (h).

Letm be the number of information set in the game. Index all the information as h1, h2, . . . , hm.

55



(⇒) Let Hp ⊆ H such that ∀h′′ ∈ Hp, h′′ ≺ h.

µi|A(h) (a) = lim
k→∞

pk (a)∑
b∈A(h) pk (b)

= lim
k→∞

Πh′∈Hp
h′

k

(
ah

′
)

∑
b∈A(h) pk (b)

by lemma 4.3.2.2

= lim
k→∞

p
Hp

k

(
aHp
)
· p
−Hp

k

(
a−Hp

)
∑

b∈A(h) p
Hp

k (bHp) · p
−Hp

k (b−Hp)

Since it is a PI game, there is a unique path to h. That is,

µi|A(h) (a) = lim
k→∞

p
Hp

k

(
aHp

)
· p
−Hp

k

(
a−Hp

)

p
Hp

k (bHp)
(∑

b−Hp∈A−Hp(h) p
−Hp

k (b−Hp)
)

= lim
k→∞

p
−Hp

k

(
a−Hp

)
∑

b−Hp∈A−Hp p
−Hp

k (b−Hp)
since A−Hp = A−Hp (h)

= lim
k→∞

p
−Hp

k

(
a−Hp

)

= Πh′∈H\Hp
ph

′

(
ah

′

)

Since there is a unique path to h, µi|
h′′

A(h)

(
ah

′′
)
= 1 for all h′′ ≺ h. Then,

µi|A(h) (a) = Πh′∈H\Hp
µi|

h′

A(h)

(
ah

′

)
by lemma 4.3.2.1

= Πh′∈Hµi|
h′

A(h)

(
ah

′

)
. �

Lemma 4.3.2.2. For any a ∈ A, if pk (a) = phk
(
ah
)
· p−h

k

(
a−h

)
, pk (a) = Πh′p

h′

k

(
ah

′
)
.
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Proof. Let a ∈ A. Let m be the number of information set in the game. Index all the

information as h1, h2, . . . , hm.

pk (a) = ph1k
(
ah1
)
· p−h1

k

(
a−h1

)

= ph1k
(
ah1
)
·


 ∑

bh1∈Ah1

pk
(
bh1 , ah2 , ah3, . . . , ahm

)



= ph1k
(
ah1
)
ph2k
(
ah2
)
·


 ∑

bh1∈Ah1

p−h2
k

(
bh1 , ah3 , . . . , ahm

)



= ph1k
(
ah1
)
ph2k
(
ah2
)
·


 ∑

bh1∈Ah1

∑

bh2∈Ah2

pk
(
bh1 , bh2 , ah3 , . . . , ahm

)



. . .

= ph1k
(
ah1
)
ph2k
(
ah2
)
. . . phmk

(
ahm

)

 ∑

bh1∈Ah1

∑

bh2∈Ah2

. . .
∑

bhm∈Ahm

pk
(
bh1 , bh2 , . . . , bhm

)



= ph1k
(
ah1
)
ph2k
(
ah2
)
. . . phmk

(
ahm

)
�

Remark. The reverse of Proposition 4.3.2.1 is not true. In the example 4.1, Bob’s second

type tb2 induces the CPS λb

(
tb2
)
| as following,

λb

(
tb2
)
|A×T = 1 ◦

(
OD, ta1, I, t

b
2

)

and λb

(
tb2
)
|A(h2)×T = 1 ◦

(
IA, ta2, I, t

b
2

)
.

Clearly, λb

(
tb2
)
|A(h) (a) = Πh′∈Hλb

(
tb2
)
|h
′

A(h)

(
ah

′
)

for any h ∈ Hb and a ∈ A. However,

λb

(
tb2
)
| does not satisfy strong independence property.
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4.4 Epistemic Characterization of Backward Induction

4.4.1 Type Structure and Consistent Belief Operator

Fix a finite extensive game

Γ ≡ (N,V,H,
{
Ah
}
h∈H

, {ui}i∈N).

Let Ti be the finite set of types of player i. Members of Ti are called player i’s types. Denote by

T ≡ ×j∈NTj the set of type profiles. Denote by ∆∗ (S × T ) the set of conditional probability

systems defined overA×T .25 Denote by∆∗◦ (S × T ) the set of conditional probability systems

where the marginal of CPS on A satisfies strong independence property26.

Definition 4.4.1. A {Sj}j∈N -based type structure is a structure

〈S1, ..., Sn, T1, ..., Tn, λ1, ..., λn〉

where for all i ∈ N , λi : Ti → ∆∗ (S × T ). Members of S × T , are called states of the world.

Fix i ∈ N , and an event E ⊆ S × T . We say player i consistently believes E at ti if

λi (ti) | ∈ ∆∗◦ (S × T ) and λi (ti) |A×T (E) = 1, and write

CBi (E) ≡ {ti ∈ Ti : λi (ti) | ∈ ∆
∗◦ (S × T ) and λi (ti) |A×T (E) = 1} .

Throughout this chapter, we assume that player i knows his own type, i.e., CBi (E) ⊆projTiE.

For any h ∈ Hi, denote by si (h) (∈ Ah) the action of player i at information set h prescribed

by strategy si. Player i is rational at (si, ti) if for any h ∈ Hi, si (h) is a best response with

respect to margA (λi (ti) |). Denoted by

Ri ≡ {(si, ti) ∈ Si × Ti : Player i is rational at (si, ti)} .

25We abuse the notation, and define the CPS on S × T as a CPS on A× T . For any E ⊆ S × T , the

µ|A×T (E) is defined in the usual sense.
26For any CPS µ| in∆∗◦ (S × T ), denote the marginal of it on A as a new CPS µ′| defined over A. µ′|

satisfies the strong independence property.
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Let R = ×j∈NRj and R1i ≡ Ri. For finite m ≥ 1, define Rm
i and Rm inductively by

Rm = ×j∈NR
m
j

Rm+1
i = Rm

i ∩ [Si × CBi (R
m)] .

If (s1, t1, ..., sn, tn) ∈ ×j∈N

(
∩∞m=1R

m
j

)
, say there is rationality and common consistent belief

of rationality (RCCBR) at this state.

4.4.2 Characterization of BI

We are now in a position to present the central result of this chapter which offers an epistemic

characterization for the notion of backward induction. Recall that in perfect information generic

games, there is only one subgame perfect equilibrium which is the unique backward induction

strategy profile. Theorem 4.4.2 states that rationality and common consistent belief of rational-

ity (RCCBR) implies the underlying strategy profile is the unique subgame perfect equilibrium

(SPE) in the perfect information generic game, and conversely, any SPE can be attained by the

aforementioned epistemic assumptions.

Theorem 4.4.2. In a perfect information generic game,

(a) Fix a type structure

〈S1, ..., Sn, T1, ..., Tn, λ1, ..., λn〉 .

Let s ∈ ×j∈NprojSj
(
∩∞m=1R

m
j

)
. Then, s is the unique subgame perfect equilibrium.

(b) Let s∗ be the subgame perfect equilibrium. There is a type structure model M (Γ) such

that s∗ ∈ ×j∈NprojSj
(
∩∞m=1R

m
j

)
.

Proof. (a) Let s∗ be the unique SPE in the PI generic game. Let s ∈ ×j∈NprojSj
(
∩∞m=1R

m
j

)
.

We want to show s = s∗.

Let

Hi (0) ≡ {h ∈ Hi : �h
′ ∈ Hi s.t. h′ can be reached from h} ,
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where h ∈ Hi (0) is interpreted as a lowest order or 0-order information set of player i from

which no other information set of player i can be reached. Define, inductively, for κ ≥ 1,

Hi (κ) ≡
{
h ∈ Hi\ ∪

κ−1
κ′=0 Hi (κ

′) : �h′ ∈ Hi\ ∪
κ−1
κ′=0 Hi (κ

′) s.t. h′ can be reached from h
}

,

where h ∈ Hi (κ) is interpreted as an κ-order information set of player i from which no higher

order (i.e. κ′-order for κ′ ≥ κ + 1) information set of player i can be reached. Clearly,

{Hi (κ)}κ≥0 is a (finite) partition of Hi since each player is perfect recall. We prove s = s∗ by

induction on the order of κ.

For κ = 0, we show that for every i ∈ N , si (h) = s∗i (h) for h ∈ Hi (0). Since s ∈

×j∈NprojSj
(
∩∞m=1R

m
j

)
, (si, ti) ∈ ∩∞m=1R

m
i for some ti ∈ Ti. That is, (si, ti) ∈ Ri. Then,

si (h) is a best response to margA

(
λi (ti) |A(h)×T

)
. Since h ∈ Hi (0) and it is a generic game,

si (h) = s∗i (h).

Now, consider κ = 1. We proceed to show that for every i ∈ N , si (h) = s∗i (h) for

h ∈ Hi (1). As shown in the last step, for all j ∈ N and h′ ∈ Hj (0), sj (h
′) = s∗j (h

′). Since

(si, ti) ∈ ∩∞m=1R
m
i , ti ∈ CBiR. That is, margAh

′ (λi (ti) |A×T ) = 1 ◦ s∗ (h′) for all h′ ∈ H (0).

By Corollary 4.3.2.1, for all h′ ∈ H (0)

margAh′
(
λi (ti) |A(h)×T

)
= margAh′ (λi (ti) |A×T )

= 1 ◦ s∗ (h′) .

Since (si, ti) ∈ Ri, si (h) is a best response to margA

(
λi (ti) |A(h)×T

)
. Since it is a generic

game, si (h) = s∗i (h).

Repeating the argument for κ ≥ 2, we conclude that s (h) = s∗ (h) for all h.

(b)Fix a subgame perfect equilibrium s∗. For each i ∈ N , let Ti ≡ {ti} where λi (ti) ∈

∆∗◦ (S × T ) and λi (ti) |A×T = 1 ◦ (s∗, t). We have constructed the type structure

〈S1, ..., Sn, T1, ..., Tn, λ1, ..., λn〉 .
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Clearly, Ri = {s∗i} × Ti for all i ∈ N . Then, CBi (R) = Ti and

R2i = Ri ∩
[
Si × CBi

(
R1
)]

= {s∗i } × Ti ∩ [Si × Ti]

= {s∗i } × Ti.

By induction, (s∗i , ti) ∈ R
m
i for m ≥ 1. That is, s∗ ∈ ×j∈NprojSj

(
∩∞m=1R

m
j

)
. �

4.5 Discussion

In this section, we are going to discuss and comment on the related literature. The current

framework will be compared with Aumann’s model (1995). Moreover, the relationship among

the notion of "consistent belief", "initial belief" (Ben-Porath (1997)) and "strong belief" (Bat-

tigalli and Siniscalchi (2002)) will be analyzed. Lastly, the rationality and common consistent

belief of rationality is related to sequential rationalizability, SRSCE and "null MACA".

4.5.1 Aumann’s Framework

Aumann (1995) provided the first epistemic characterization of backward induction. It shows

that backward induction outcome is a logical consequence of common knowledge of rational-

ity. In his model, every player initially believes that all players will choose behave rationally

at every information set. Moreover, every player will stick to their belief about opponents’

rationality at all information set, particularly at those information sets reached by opponents’

suboptimal actions. In other words, even if there was an observed contradiction of opponent’s

rationality, players will ignore this contradiction and still assume the rationality of opponents.

Aumann (1996) section 9 enriched his original model by adding belief system explicitly.

Each player has a belief system which specifies player’s belief at his every information set. A

player is said to be Bayesian rational if he maximizes his (expected) payoff given the belief at

all his information sets. Moreover, players take the "from that point on" view. It says if players

know something at the beginning of the game, they will believe it at all subsequent information

sets. With the belief system, Aumann (1995) showed that backward induction is the result of

common knowledge of Bayesian rationality.
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The major critic of these two treatments is that there is no belief revision process (Halpern

1999), to justify why they would maintain their belief even if there is a contradiction. However,

our work give a possible explanation of Aumann’s result with Bayesian updating. Particularly,

the belief system in Aumann (1996) can be viewed as a independent conditional probability

system in our model, which is used to characterize BI strategy profile.

4.5.2 Initial Belief and Strong Belief

Ben-Porath (1997) introduced the notion of "initial belief", and showed that the rationality and

common initial belief of rationality (RCIBR) is characterized by DF procedure (Dekel and

Fudenberg (1990)), e.g. one round of elimination of weakly dominated strategies followed

by iterative elimination of strictly dominated strategies. As shown in the example 4.1 and

section 4.2, backward induction may not be the only result led by RCIBR. This is because the

initial belief operator only puts the restriction on belief revision at information sets reached

with positive probability. It means that at information sets that contradict with the initial belief,

players may arbitrarily revise their beliefs.

In the spirit of forward reasoning, Battigalli and Siniscalchi (2002) strengthened the defin-

ition by providing the strong belief operator. Strong belief of rationality says when there is a

contraction between the initial belief and the observation at some subsequent information sets,

players will have a second thought at these information sets and try to find out the reason to

rationalize why such a behavior, e.g. why these information sets are reached before revising the

beliefs. In other words, only at informations sets that totally falsify the rationality assumption,

players will arbitrarily revise their beliefs. With the strong belief operator, backward induction

outcomes is shown to be the logical consequence of rationality and common strong belief of

rationality (RCSBR) in generic PI game. Although strong belief provides the desired belief

revision process, RCSBR may not lead to backward induction profile.
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Example 4.2

In example 4.2, if Bob strongly believes that Ann is rational, he cannot find out a belief

about her belief to justify her choice of In at the first node. In this case, Bob may believe

that she would choose Across at the third stage, and hence choose In at the second stage.

((Out,Down) , In), which leads to BI outcome, is not a BI strategy profile.

4.5.3 Sequential Rationalizability, SRSCE and MACA

The path mutually acceptable courses of action (MACA) is a perfect version of sequential ra-

tionalizable self-confirming equilibrium (SRSCE), and the latter one is the logical consequence

of common knowledge of rationality and mutual knowledge of players’ action along the path.

Players’ belief at SRSCE is a CPS generated by independent trembling sequence of players’

behavior strategies. Together with the Theorem 4.4.2, we conclude that SRSCE is a backward

induction strategy profile in PI generic game.

Moreover, "null MACA", which is the result of common knowledge of (perfect) rationality

(Chapter 2 Proposition 2.3.3.1. and Corollary 2.3.3.1), can be viewed as a "perfect" rationaliz-

ability which is a refinement of sequential rationalizability (Dekel et. al (1999)). Meanwhile,

the notion of "sequential rationalizability" is the logical consequence of common knowledge of

"sequential" rationality (Chapter 3 Corollary 3.3.4.1). Both of them lead to backward induction

in PI generic game.
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4.6 Concluding Remarks

Throughout this chapter, we develop "strong independence property" for a conditional probabil-

ity system. Based on this concept, we define the notion of "consistent belief" which strengthens

the notion of "initial belief" (Ben-Porath (1997)). Within a standard semantic framework, we

formulate and show backward induction strategy profile is the logical consequence of rationality

and common consistent belief of rationality in a perfect information generic game.
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